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Preface

Serendipitous discoveries are fascinating events of science inducing, at times,
paradigm shifts that give rise to new disciplines tout-court.

This is what happened with pangenomics: a novel discipline at the intersection of
biology, computer science and applied mathematics, whose discovery, development
to state of the art and future perspectives are tentatively collected in this book for the
first time, 15 years after its inception.

In simple terms, the pangenome concept is the realization that the genetic
repertoire of a biological species, i.e. the pool of genetic material present across
the organisms of the species, always exceeds each of the individual genomes and can
be, in several cases, “unbounded”: an open pangenome.

This notion was conceived in 2005 as an unexpected, data-driven outcome of the
comparative analyses of a few bacterial genomes. This early example of big data in
biology—in which a mathematical model, developed to address a practical question
in vaccinology, transformed established concepts—opened biology to the
unbounded.

Since then, the advent of next-generation sequencing and computational technol-
ogies has afforded the generation of pangenomes from thousands of isolates and
non-cultured samples of many microbial species, first, and then of eukaryotes
encompassing all the kingdoms of life, confirming and extending the original
hypothesis beyond the most ambitious expectations.

The first part of the book, Genomic diversity and the pangenome concept, opens
with a historical account of the original discovery, the observed analogy between
genomic sequences and text corpora that allowed the application of mathematical
linguistics to the analysis of genomic diversity and the emergence of the pangenome
concept in bacteria.

In the second chapter, the reader will find an extensive introduction of the
biological species concept with its challenges, the processes associated with the
birth and development of a new species and the implications for its pangenome
limits.
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The following chapter provides a perspective on genome plasticity, pangenome
size and functional diversity from the unique point of view of the bacterium itself,
followed in the last chapter of the section by a systematic review of the increasingly
sophisticated and performant bioinformatic pipelines that have been made available
to the scientific community, transforming pangenomics into a commodity tool for
the twenty-first century biologist.

The second part, Evolutionary biology of pangenomes, aims at making sense of
pangenomics through the explanatory perspective of evolution.

As Theodosius Dobzhansky attested half a century ago,' nothing in biology
makes sense except in the light of evolution. Pangenomes are no exception, as the
genetic diversity observed in a species is the direct result of the evolutionary
interplay between its member organisms and their environment. The effort is
facilitated by the significant advances made in the last decade by mathematical
modelling, systems theory and computational simulations, in an attempt to clarify
the functional mechanisms underpinning diversity generation at the population level,
especially in prokaryotes.

The first chapter of this section’ moves from the dynamic forces that shape
pangenome variations, particularly horizontal gene transfer, to discuss the implica-
tions for population structures and their ecological significance.

The second chapter analyses the microevolution of bacterial populations
by introducing a neutral phylogenetic framework open to the assessment of natural
selection and discusses how to reconstruct the microevolutionary history of an
entire pangenome. The relationship between pangenomes and selection is further
explored in the following chapter, which proposes a stimulating view of
pangenomics based on the economic theory of public goods, resulting in the
hypothesis that pangenomes are constructed and maintained by niche adaptation.
The section closes with a zoom into the alarming public health crisis of antimicrobial
resistance, where the authors consider how the pangenome affects the response to
antibiotics, the development of resistance and the role of the selective pressures
induced by antibiotics and discuss how the pangenome paradigm can foster the
development of effective therapies.

The third part, Pangenomics: an open, evolving discipline, takes the reader on a
journey through applications of pangenome approaches beyond just genes and
sequences for prokaryotes and into the realm of eukaryotes. Indeed, as the
pangenome concept evolves and genomes from multiple isolates/individuals within
virtually all living species become available, it is important to study and challenge
the concept beyond the primary genomic sequence and beyond the bacterial world.
While most of the pangenome studies published to date focus on genes as the unit,

"Theodosius Dobzhansky, The American Biology Teacher, Vol. 35 No. 3, March, 1973;
(pp. 125-129) DOL: https://doi.org/10.2307/4444260

2Contributed by the brave scholar who once told the late Prof. Stanley Falkow “this is simply
because, Stan, you don’t understand population biology” [Conference on “Microbial population
genomics: sequence, function and diversity”, Novartis Vaccines Research Center, Siena (Italy),
17-19 January, 2007].
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any sequence (e.g. promoter, intron, intergenic region and mobile element) could be
used as the unit to account for the many levels of variation and regulation governing
a population, including entire communities occupying a particular niche.

The first chapter of section three provides a vision of how pangenome analyses
can be applied to the study of multiple species within a community or microbiome
and how outcomes will lead to the characterization of pan-metagenomes across
niches or environments. The second chapter describes procedures to infer the
biological impact of pangenomic diversity, translating it into functional pathways
and their rendition as phenotypes, or panphenomes. The third chapter brings the
additional layer of epigenetic regulation into the picture, describing modification
processes, methods to detect them and their relationship with the pangenome.
Finally, the application of pangenome studies to other kingdoms of life beyond
bacteria is a natural extension of the concept. Chapter four provides a detailed
overview of eukaryotic genome projects, their genome dynamics and associated
pangenome analyses, while the fifth and last chapter of this book compares and
contrasts computational strategies that can be implemented towards the characteri-
zation of eukaryotic pangenomes.

We hope that this book, thanks to the extraordinary quality of the contributions
from each of the authors involved, will provide a broad readership of life scientists
with a useful tool for getting acquainted with—or delving deeper into—the
pangenome concept and its theoretical foundations, for getting up to speed with
the latest technologies and applications of pangenomics, or simply to explore one of
the most exciting novelties of twenty-first century biology.

Should pangenomics continue to develop at the current pace, this volume would
soon be outdated by the forthcoming developments, killed by its own success.

However, we believe that the elements captured herein—the serendipitous
dynamics of the data-driven discovery and the fundamental mindset shift, the
understanding of the mechanisms through evolutionary biology, the perspectives
and impacts of pangenomics for all kingdoms of life—might remain as a useful
reference for the life science community in the years to come.

Baltimore, MD, USA Hervé Tettelin
Siena, Italy Duccio Medini
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The Pangenome: A Data-Driven Discovery M)
in Biology et

Duccio Medini, Claudio Donati, Rino Rappuoli, and Hervé Tettelin

Abstract An early example of Big data in biology: how a mathematical model,
developed to address a practical question in vaccinology, transformed established
concepts, opening biology to the “unbounded.”

Keywords Pangenome - Heaps’ law - Reverse vaccinology - Group B
Streptococcus - Big data - Unbounded diversity

1 The Quest for a Streptococcus agalactiae Vaccine

In August of 2000, a collaboration between Rino Rappuoli’s team, including Duccio
Medini, Claudio Donati, and Antonello Covacci at Chiron Vaccines in Siena, Italy,
and Claire Fraser’s group, including Hervé Tettelin at the Institute for Genomic
Research (TIGR) in Rockville, MD USA, was established to apply their recently
pioneered reverse vaccinology approach (Pizza et al. 2000; Tettelin et al. 2000) to
the problem of neonatal Group B Streptococcus (GBS, or Streptococcus agalactiae)
infections (Fig. la). The collaboration also included Dennis Kasper, Michael
Wessels, and colleagues, experts in GBS biology from the Boston Children’s
Hospital, Harvard Medical School, Boston, MA USA.

GBS is a leading cause of neonatal life-threatening infections, despite the exten-
sive application of antibiotic prophylaxis. Therefore, a vaccine was dearly needed to

D. Medini - R. Rappuoli
GSK Vaccines R&D, Siena, Italy
e-mail: duccio.x.medini @gsk.com

C. Donati
Computational Biology Unit, Research and Innovation Centre, Fondazione Edmund Mach, San
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Maryland School of Medicine, Baltimore, MD, USA
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Fig. 1 Pangenome visuals. (a) 1999—Plymouth (NH, USA): Rino and Hervé in the woods around
the time of initial discussions about the GBS collaboration. (b) 2004—Rockville (MD, USA):
Pangenome early sketch and (Hervé the) gnome in his pants. (¢) Early 2005—Siena (Italy): Duccio
and Claudio labor over the pangenome formula development. (d) 2018—Ellicott City (MD, USA):
pangenome book editing, Hervé and Duccio locked in the basement

effectively prevent GBS infections. The manufacturing of a capsular polysaccharide-
based vaccine was hindered by the existence and high incidence of at least five
different disease-causing serotypes of GBS. Thus, the collaborative team embarked
on the development of a GBS protein-based vaccine.

The concept was to use the Streptococcus agalactiae genome sequence informa-
tion to predict proteins likely to be surface exposed and use these in experimental
assays for antigenicity and antibody accessibility toward the development of a GBS
vaccine via active maternal immunization [for details on GBS reverse vaccinology,
see Maione et al. (2005)].

Unlike the case of Neisseria meningitidis, with which reverse vaccinology was
pioneered right before the GBS project using a single genome, two GBS gap-free
genomes were available when the project was initiated, and more genomes were gener-
ated early in the course of the project. Indeed, Tettelin et al. [TIGR (Tettelin et al. 2002)]
and Glaser et al. [Pasteur Institute, France (Glaser et al. 2002)] independently reported the
first two complete gap-free genome sequences of GBS in September of 2002.

At that time, sequencing multiple strains or isolates of the same species was far from
commonplace. Both strains, serotype V 2603 V/R and serotype IIl NEM316, were clinical
isolates. Glaser et al. compared their NEM316 genome to that of Streptococcus pyogenes
(group A Streptococcus, GAS) and concluded that 50% of the GBS genes without an
ortholog in GAS were located in 14 potential pathogenicity islands enriched in genes
related to virulence and mobile elements. Tettelin et al. used a microarray-based compar-
ative genomic hybridization (CGH) approach, whereby they hybridized the genomic
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DNA of each of 19 GBS isolates of various serotypes onto a microarray of spotted 2603
V/R gene-specific amplicons, and identified several regions of genomic diversity among
GBS isolates, including between isolates of the same serotype (see Fig. 2a).

These separate studies provided the first evidence that a significant amount of
genomic information or gene content was variable among closely related streptococcal
isolates, challenging the commonly accepted notion that the genome of a single isolate
of a given species was sufficient to represent the genomic content of that species. Based
on this understanding, the collaborative team decided to generate an additional 6 GBS
genomes (Tettelin et al. 2005), selecting isolates from the five major disease-causing
serotypes known at the time. The genome of the serotype Ia strain A909 was sequenced
to completion in collaboration with the group of Craig Rubens at Children’s Hospital
and Regional Medical Center, Seattle, WA, USA. The other five strains—3515 (serotype
Ia), H36B (serotype Ib), 18RS21 (serotype II), COHI (serotype III), and CJB111
(serotype V)—were sequenced as draft genomes, i.e., no attempt was made to manually
close the gaps existing between contigs of the genome assemblies. Comparison of the
eight GBS whole-genome sequences confirmed the presence of the regions of genomic
diversity previously identified by CGH (see Fig. 2b).

Surprisingly for the time, the shared backbone, or core set of genes present in
each of the eight genomes, amounted to only about 80% of any individual genome’s
gene coding potential. Within these eight genomes, there was no pair that was nearly
identical. Instead, each genome contributed a significant number of new strain-
specific genes not present in any of the other genomes sequenced. Other sets of
genes were shared by some but not all of the genomes.

This large amount of genomic diversity, which was not correlated to GBS sero-
types, did not fail to stun members of the investigative team, including the experts in
GBS biology. It also prompted an important question that formed the foundation of
the pangenome concept: “How many genomes from isolates of the GBS species do
we need to sequence to be confident that we identified all of the genes that can be
harbored by GBS as a whole?”

This question, motivated by the need to identify all potential vaccine candidates for
the species, led to active discussions among the collaborators, the drawing of highly
accurate and inspirational scientific sketches (see Fig. 1b), and the decision to develop a
mathematical model to determine how many other strains should have been sequenced.

2  When Data Amount and Complexity Exceed What Can
Be Done Without Mathematics

i)

The question was clear: “how many genomes...,” i.e., the answer had to be a
number. And a clear question is always a great way to start.

"It should be noted that the COH1 genome, a representative of the highly prevalent disease-causing
CC17 clonal complex, was later released as a gap-free genome (NCBI BioProject: PRIEB5232).
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Fig. 2 Group B Streptococcus (GBS) genome diversity data that led to the pangenome discovery.
(a) Comparative genome hybridization (CGH) provided a first hint about the high degree of
genomic diversity within the GBS species. This circular representation of the GBS 2603 V/R
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When the team in Siena was asked to figure out how to come up with an answer,
they were faced with two assumptions, implicit in the question itself. First, the
number was expected to be larger than eight, as the presence of specific genes in
each of the eight isolates already sequenced suggested. Second, such a finite number
was expected to exist.

The whole concept of biological species, a cornerstone of classical cladistics text-
books, had been evolving already toward the “species genome” concept thanks to the
genomic revolution. The common knowledge, though, still held a 1:1 relationship
between the species and the genome concepts. Consequently, a well-defined genetic
repertoire for a bacterial species was the most natural assumption, implying that a finite—
and hopefully small-—number of genome sequences would be sufficient to exhaust it.

Genomic data had already introduced complexity and size in biology a decade
before, when substantial mathematical work had been required to succeed in assem-
bling tens of thousands of Sanger reads into a reconstructed chromosomal sequence
(Sutton et al. 1995).

Here complexity and size were growing again, as the population scale of a species
was being explored. More mathematical modeling was needed to translate the
comparison among genomic data into a number.

Any modeling work starts with arbitrary choices. The first choice—that would
remain a cornerstone of pangenome pipelines in the decades to come—was to adopt
a reference-free approach.

Population genomics had been explored to that point mostly through cDNA
microarrays (CGH), where the experimental design favors the physical comparison
of DNA from many isolates with a reference one, usually a well-known laboratory
strain used worldwide by the scientific community.

This approach has benefits also for in silico comparative genomics, because the
number of comparisons to be performed scales linearly with the number of genome
sequences to be compared, i.e., for any new isolate, one more comparison is
performed. Also, the high-quality annotation of a well-studied genome can be easily
transferred onto the others. However, the reference-based approach introduces
strong limitations biasing the comparisons versus one specific individual of the
species, which usually has no other ecological merit than having been around in
microbiology labs for decades.

<
Y

Fig. 2 (continued) genome shows predicted ORFs in the two outermost rims and those variable
(blue bars) or absent (red bars) in the 19 genomic DNAs hybridized onto the 2603 V/R gene
amplicon microarray. Regions of diversity are numbered 1-15 [for details, see (Tettelin et al.
2002)]. (b) In silico comparative genomic analysis of 8 GBS genomes confirmed CGH results and
revealed additional regions of diversity using each genome as a reference. In this display, genes are
arbitrarily color-coded by position in their genome along a gradient from yellow to blue. Genes are
then depicted above their ortholog in the reference genome using the color they have in their home
genome. Breaks in the color gradient reveal rearrangements and white regions reveal genomic
regions absent in query genomes when compared to the reference. Each panel corresponds to each
of the eight genomes used as the reference [for details, see Tettelin et al. (2005)]. Copyright 2002,
2005 National Academy of Sciences
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Looking for a holistic assessment of a species diversity, the reference-free
approach was natural, but it came with the disadvantage of scaling quadratically,
i.e., any new genome would have to be compared to all the genomes already
considered, leading to significant computational challenges.’

The second modeling choice was to use the gene as a unit of comparison or, more
precisely, the open reading frames (ORFs) bioinformatically predicted on each
genome sequence. Consequently, the analysis focused on an arbitrary subset of the
genetic material, ignoring noncoding sequences whose relevance would have been
increasingly appreciated in the years to come. Also, it implied accepting a certain
number of nucleotide-level polymorphisms as not relevant for the diversity they
were trying to model: allelic variants of the same gene would be considered as the
same entity, as the problem was not to characterize microevolution—that strains
accumulate mutations was well known—but to quantify the amount of “novel”
genetic material contributed by each new sequence.

Intuitively, the more genomes analyzed, the fewer new genes (ORFs not observed
with sufficient similarity in any other genome) should be identified. To answer the
original question (“how many genomes. ..”) the team decided to determine the pace
at which new genes would decrease with increasing numbers of genomes sequenced,
in order to extrapolate the trend toward the number of genomes corresponding to no
new genes identified.

As the number of new genes identified in the n-th genome depends on the selection
of both the n-th genome itself and the previous n — 1 genomes considered, for each
n from 1 to 8 we considered all the 8!/[(n — 1)!-(8 — n)!] possible combinations to
avoid bias, i.e., a total of 1024 pairwise, whole genome vs. whole-genome compar-
isons, i.e., ~2 billion gene vs. gene comparisons.

For each n from 1 to 8, we obtained a cloud of values and, following the same
approach, the number of core genes (ORFs observed with sufficient similarity in all
other genomes) was also measured.

Both new and core gene averages showed the expected decreasing trends, with
the number of core genes for GBS decreasing exponentially toward the asymptotic
value of 1806.

Surprisingly, though, the decreasing number of new genes was not trending toward
zero in any way. Rather, the trend was reasonably reproduced by an exponential decay
converging to a fixed value of 33, significantly greater than zero (see Fig. 3a).

In summary, mathematical extrapolation of the trend observed with the first eight
genomes indicated that, for every new genome sequenced, new genes would have
been discovered, even after a large number of genomes had been sequenced.

The extrapolation had two immediate implications: (i) no number of sequenced
genomes would have assured a complete sampling of the GBS species pangenome,
because (ii) the genetic repertoire of the species had to be considered as an
unbounded entity.

This would have been mitigated a few years later by the introduction of an unbiased, random
sampling adjustment (Tettelin et al. 2008).
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is plotted as a function of the number n of strains sequentially added. The blue curve is the least-
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Understandably, the conclusion elicited in the group reactions comprised between
complacent irony and the gentle suggestion to redo the work and find the mistake
(see Fig. 1c).

So the team did, adding different alignment algorithms, running accurate sensi-
tivity analyses on the thresholds adopted for sequence alignment, applying the same
pipeline to other bacterial species known to be less variable as negative control and
rechecking every line of the code. Eventually, the team agreed that the extrapolation
was correct and novel genes belonging to the GBS species would be found even after
sequencing a very large number of genomes. At this point, the team realized the need
for a new entity in the genome world to account for those genes that belong to the
species but are not present in some genomes. After long discussions, the team agreed
on the pangenome concept and described the pangenome of each species by three
differentiated components: its core genome, i.e., the genes present in each isolate of
the species; its accessory genome, also called initially dispensable, i.e., the genes
present in several but not all isolates; and, finally, its strain-specific genes, sampled
in one isolate only.

As it would become apparent a few years later, when more genome sequences
became available, and for multiple species, a much more accurate description of the
trend of new genes would have been provided by a power-law function (derived
from the Heaps’ law, see Fig. 3b) actually decreasing to zero, as described in more
detail in the next section.

But for S. agalactiae and some other species, the exponent of the power law was
smaller than a critical value, i.e., the decrease of the number of new genes observed
with new genomes was so slow, that the size of the pangenome remained an
increasing and unbounded function of the number of genomes considered, as is
the number of new words discovered in text corpora written in a live language
(Heaps 1978). In other words, although the initial modeling work was still incom-
plete, the conclusion was already correct.

Another critical element that would have gained relevance over time in
pangenome analyses, was the heterogeneity of the population sampling. As in any
population-modeling exercise, the conclusions at the population scale are heavily
dependent on the randomness of the sample, particularly if small, and can be
seriously affected by the presence of structure in the population. If only a few,
related isolates would be sequenced in an otherwise heterogeneous population, the
sample would underestimate the population’s diversity. Conversely, if in a popula-
tion characterized by a few groups of highly similar isolates, we would assess only
one genome per group, by extrapolating the measurement to the whole population
we would largely overestimate the overall diversity. An effective, albeit incomplete,
mitigation of the sampling bias was obtained by replacing the mean of the permu-
tations with medians, which are more robust indicators of centrality.

However, in the original analysis of the eight S. agalactiae isolates, one of the
more surprising results for the experts of the species’ biology, was the lack of any
specific relatedness among isolates belonging to the same serotypes, indicating that
the phenotypic criteria used to classify the species thus far had no direct relationship
with the genomic repertoire of the isolates. From a molecular perspective, this is
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explained by the fact that genes encoding GBS capsular polysaccharides are part of a
single locus, and this locus can be transferred across isolates by lateral gene transfer,
showing how the repertoire of dispensable or strain-specific genes can, under
specific circumstances, become available to any strain of a given species.

All in all, the answer to the question “How many isolates do we need to sequence
to identify all the GBS genes?” was: “there is no such number, the GBS pangenome
is open.”

The very idea of an unbounded genomic repertoire for a bacterial species was
opening the microbiology community to a new way of looking at bacterial species
and their anatomy.

While the core-genome remains substantially stable after a few tens of isolates are
properly sampled, confirming the genomic consistency of the bacterial species
concept, the more isolates are sequenced the more strain-specific genes merge into
the accessory genome, expanding the pangenome size.

The underpinning mechanisms and ecological consequences of these dynamics of
novelty-generation, spanning the scales of individual mutation, horizontal gene
transfer promoted by phage transduction, bacterial conjugation or natural transfor-
mation, and population effects would become the object in the years to come of ever-
increasing attention of the scientific community (see Fig. 4). A recent example was
the observation that the majority of the metabolic innovations in the evolution of
Escherichia coli arose through the horizontal transfer of single DNA segments (Pang
and Lercher 2019).

3 The Vocabulary of Life: Heaps’ Law and Pangenomes

In the initial work on S. agalactiae (Tettelin et al. 2005), the authors used a
decreasing exponential to model the number of new genes discovered in each new
genome sequenced. This mathematical function converges asymptotically to a
constant value (Fig. 3a and blue curves in Fig. 5). The openness of the pangenome
followed from the fact that the best fit of the exponential function to data indicated an
asymptotic value significantly higher than zero, i.e., a fixed number of new genes to
be discovered in each new genome after the first eight sequenced. Although
comforted by the biological diversity observed, such a conclusion was theoretically
disturbing because it indicated that, no matter how exhaustively the species would
have been sampled, the amount of novelty discovered per new isolate would have
remained, on average, constant. A possibility extremely unusual across a wide
variety of sampling problems.

In the subsequent work on H. influenzae (Hogg et al. 2007), the authors proposed
a different approach, focused on the frequency distribution of genes and on the more
conservative assumption of a mathematically closed pangenome. However, an
increasing number of genomes used to train their model, led to larger predicted
size of the pangenome, pointing again toward pangenome openness.
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Fig. 5 Power-law regression for new genes (Tettelin et al. 2008). The numbers 7 of new genes are
plotted for increasing values of the number N of genomes sequenced. Medians of the distributions
are indicated by red squares. Blue curves are least-squares fit of the exponential function, as in the
original pangenome model. Red curves are least-squares fit of the power-law function. The
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shows data for an open pangenome species, P. marinus; the bottom panel for a closed pangenome
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The collaboration with Ciro Cattuto from the Institute for Scientific Interchange
(ISI) Foundation in Turin offered the opportunity to recognize that determining the
size of a pangenome was a problem analogous to many similar sampling problems,
already addressed when dealing with macroscopic characteristics of complex sys-
tems, including human languages.

Before delving into the analogy between genomics and linguistics that allowed to
mathematically solve the pangenome problem, a short diversion into the origins of
the science of complex systems may be useful.

Since the 1970s, a few brilliant minds from disparate academic backgrounds,
realized that challenges and opportunities posed by contemporaneity bear a level of
complexity exceeding the capacity of established scientific paradigms (Ledford
2015). In 1984, a small group of Nobel laureates and eminent scientists from
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Physics, Economics, and other disciplines founded the Santa Fe Institute (Santa Fe
Institute) with the visionary ambition of creating a novel science called complexity
(Waldrop 1993).

That original intuition is at the basis of today’s widespread concept of complex
system, adopted ubiquitously to deal with biological, ecological, economic, techno-
logical, and societal systems that cannot be effectively described by linear, inductive
approaches, because of the nature of the interactions among system’s components,
and between the system itself and its environment.

The inductive approach of empirical sciences (i) observes the detailed phenom-
enology of a system to (ii) infer its underlying dynamics and (iii) uses the inferred
laws to describe deterministically the macroscopic properties of the system. For
example, (i) observe the movements of planet Earth, Moon and of the Sun to (ii) infer
the laws of gravitation and (iii) predict the future trajectory of the planets in the Solar
system (Newton 1687).

The approach proposed from the pioneers of complex systems was, in a way, the
opposite: (i) start by observing macroscopic, statistical properties shared by multiple
systems, (ii) identify a characteristic common to the disparate systems sharing the
same property, and (iii) infer generative models, based on that characteristic, capable
of accounting for the macroscopic properties observed. For example, (i) observe that
in social networks, such as Facebook, few individuals have many connections, and
many individuals have few connections, i.e., the frequency “y” of the degree “x” of
the network nodes follows a power law “y = x*” for some value of the exponent
alpha; (ii) confirm that the frequency of words in human languages, of genes in
genomes and of inhabitants in cities, all share the same property described for social
networks, and all these systems are “modular”, i.e., composed of discrete, connected
elements; (iii) show that the “preferential attachment” mechanism—according to
which the more an element is frequent, the higher the likelihood its frequency will
further increase—can be used to generate systems showing the power-law property
observed above (Albert and Barabasi 2002).

A similar thinking process led to the solution of the pangenome problem. The
rapid accumulation of tens of genome sequences for multiple species had clearly
shown that the number of new genes discovered per new genome sequenced follows
a decreasing power law, rather than a decreasing exponential trend (see Fig. 5). A
similar behavior, for the number of new words discovered upon analyzing increasing
numbers of instance texts written in English, had been observed decades earlier by
the mathematical linguist Gustav Herdan (1960) and then generalized by Harold
Stanley Heaps in the context of information theory as the Heaps’ law (Heaps 1978).

When the number of new genes (or words) discovered is a power law of the
increasing number of genomes (or text corpora), the overall size of the pangenome
(or vocabulary) is also a power law, and the mathematical function depends only on
two parameters: the power-law exponent and a proportionality constant. The rate of
discovery of new genes is predicted to decrease always toward zero, but the speed of
the decrease varies by species. With open pangenomes, such a number is just not
decreasing fast enough for the cumulated number of observed genes to level off.
Thus, a power-law behavior for the observed number of specific genes allows the
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possibility of having an open pangenome without requiring that a fixed number of
new genes be discovered for each new genome.

In order to complete the approach proposed by the pioneers of complexity,
extensive work has been dedicated in recent years to the search for generative
models that would account for the macroscopic properties of pangenomes and
similar complex systems, including preferential attachment (Albert and Barabasi
2002), self-organized criticality (Bak et al. 1987; Mora and Bialek 2011), and
random group formation (Baek et al. 2011). The Heaps’ law, however, is only one
of such properties displayed by genome data, the other two notable ones being the
Zipf’s law for the frequency distribution of gene family sizes in complete genomes
(Huynen and van Nimwegen 1998) and the “U-shaped” gene frequency distribution
(Haegeman and Weitz 2012). The generative models proposed so far could generate
some of the observed macroscopic characteristics, but not all at the same time. More
recently, a novel mechanism based on a sample space-reducing process (Corominas-
Murtra et al. 2015) was proposed, and shown to reproduce naturally the three major
properties of pangenomes at once (Mazzolini et al. 2018). Generative processes
show how a certain system can be built (“generated”) following a pre-defined rule or
mechanism; for example, by choosing the elements of the system from an infinite
pool of possible components, one after the other randomly. The idea behind the
sample space-reducing process for the generation of a certain realization (genome,
book) is that when a component (gene, word) is chosen, that choice restricts the
space of the possible elements than can be chosen thereafter, permitting only certain
other components—but not all—to be added. This assumption seems particularly
relevant for genomic and linguistic systems, where the functioning (for genomes) or
meaningfulness (for texts) depends on ordered combinations of multiple elements
(genes in operons, words in sentences) that are not random (after a restriction
enzyme, only a methylation gene produces a restriction-modification system; after
a subject, only a verb produces a proposition). For this reason, and considering the
relative simplicity of its mathematical implementation, the sample space-reducing
process bears promise in the quest for a deeper understanding of the fundamental
mechanisms responsible for the generation of pangenomes.

4 Pangenome Vaccinology

The existence of species with an open pangenomes has a profound effect on the
selection of potential vaccine candidates identified by a reverse vaccinology
approach. Indeed, the accessory genome was found to be an important contributor
to protein antigens (Mora et al. 2006) implying that, for many bacterial species, a
protein-based universal vaccine would only be possible by including a combination
of antigens from the core and the accessory genomes.

The pathogen population structure and dynamics became a key element of
vaccine research, paving the way for a modern approach to vaccine discovery
known as pangenomic reverse vaccinology (Donati et al. 2010; Mora et al. 2006;



16 D. Medini et al.

Budroni et al. 2011). The key principles of this approach, that expands the reverse
vaccinology paradigm based on a single genome sequence (Rappuoli 2000), include
reducing bias in isolate selection for genome sequencing (to the extent possible, e.g.,
carriage vs. invasive isolates, or commensal vs. pathogenic isolates) based on
epidemiology, followed by defining the population genomic structure of the species,
including its pangenome.

Reverse vaccinology pipelines are then applied to predict the antigenic potential
of proteins based on a collection of desired (and undesired features) that they carry,
for a recent review on reverse vaccinology pipelines, see Dalsass et al. (2019).
Top-ranked vaccine candidate proteins can then be taken through the experimental
portion of the vaccine development phase whereby their accessibility and antigenic-
ity are assayed, for instance starting with antigen-based serological typing [for a
review on this experimental phase and subsequent phases, please see (Del Tordello
et al. 2017)].

It should be noted that the actual transcription, translation, and exposure of a set
of selected vaccine protein candidates may vary with the environment, including
colonization or infection of various organs, and niches within these organs. The
pangenome can inform on these specificities by including isolates with a propensity
to target certain organs/niches vs. others (e.g., skin vs. throat isolates of group A
Streptococcus). Interactions of antigens with host moieties are also key to designing
successful candidates.

Ultimately, a combination of pangenomic reverse vaccinology with other multi-
omics approaches in the context of host—pathogen interactions will better inform the
rational design of next-generation vaccine targets and will lead to the most promising
formulations to test in vivo.

5 Discussion

In 1946, even before the very discovery of DNA’s structure (Watson and Crick
1953), Joshua Lederberg and Edward L. Tatum had demonstrated the existence of
“sexual” genetic recombination in bacteria (Lederberg and Tatum 1946), a discovery
that granted them the Nobel Prize in 1958.

Horizontal DNA exchange in bacteria has been the subject of intense research
ever since so, by the time the pangenome came along, the concept of diversity in
bacterial species had been ingrained in the scientific community for half a century
already. However, possibly because of the hubris induced by the breakthrough of
first-generation genome sequencing technologies, for more than a decade the com-
munity had inadvertently reverted to a “pre-Lederberg-Tatum” mindset, considering
each of the few genomes generated at the time as representatives of the respective
species’ genetic blueprint. Of note, the name pangenome came to life after many,
long discussions on how to name this new concept possibly reflecting the paradigm-
shift that was required, at that time, to recognize the simple evidence of facts.
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The pangenome discovery, at first sight, brought the scientific community back to
Earth, to realize that a single genome was far from describing a whole species and
that, as a side consequence particularly relevant for the genome pioneers of the time,
genome sequencing was there to stay as a flourishing business for decades.

At the same time, though, the pangenome introduced a new dimension in
microbiology that could hardly be associated with already established awareness:
the concept that the genetic repertoire of a defined biological entity, such as a
species, could be unbounded. In a way, the pangenome introduced the infinite in
biology, with some humble analogy to what Theodosius Dobzhansky had done
30 years before, much more fundamentally, through the explanatory light of evolu-
tion (Dobzhansky 1973).

This could partly explain why, over a relatively short period of time,
pangenomics became a discipline in itself (see Fig. 6). From a more practical stance,
the impressive acceleration of bacterial genome sequencing was generating high
numbers of genes that would not map to species’ reference genomes. The new
concept offered a conceptual framework to accommodate the wealth of new data,
becoming rapidly a must have for any microbial sequencing project.
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Thirteen years later (see Fig. 1d), however, two further elements could be
identified, that contributed to transforming a specific, empirical question, into a
discovery that opened the scientific community to a new research field.

First, a concrete challenge motivated by a burning, unmet medical need, had
gathered together people with very different backgrounds, spanning from Biology
and Medicine to Physics and Engineering. This collision model, extensively used in
modern science and business, promotes ideas that challenge the status quo by
facilitating cross-fertilization and lateral thinking. Questioning the serotypes, the
team discovered the pangenome. Simple in hindsight but challenging the established
paradigm of biological species.

Second, pioneering technological breakthroughs at the bleeding edge, as it was
for genome sequencing and assembly at the time, frequently unveils new, unex-
pected horizons. Not always, though: a critical condition remains the osmotic
collaboration between scientists and technology experts mastering the data genera-
tion process, to bring in the team awareness of the limitations intrinsic to the data,
reducing the risk of hasty misinterpretations, as well as the frustration of missed
opportunities.

In conclusion, the pangenome is an early example of mathematical modeling
applied to biological Big data: a serendipitous, data-driven discovery from a human
health challenge, fostered by technological breakthroughs and people with different
backgrounds willing to challenge the status quo. We are deeply grateful to the many
investigators worldwide who took the pangenome concept well beyond what could
be envisioned at the time, perfected and expanded techniques and applications, and
ignited the fascinating evolution of discoveries that the reader now has the oppor-
tunity to explore in the remainder of this book.
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The Prokaryotic Species Concept M)
and Challenges e

Louis-Marie Bobay

Abstract Species constitute the fundamental units of taxonomy and an ideal species
definition would embody groups of genetically cohesive organisms reflecting their
shared history, traits, and ecology. In contrast to animals and plants, where genetic
cohesion can essentially be characterized by sexual compatibility and population
structure, building a biologically relevant species definition remains a challenging
endeavor in prokaryotes. Indeed, the structure, ecology, and dynamics of microbial
populations are still largely enigmatic, and many aspects of prokaryotic genomics
deviate from sexual organisms. In this chapter, I present the main concepts and
operational definitions commonly used to designate microbial species. I further
emphasize how these different concepts accommodate the idiosyncrasies of prokary-
otic genomics, in particular, the existence of a core- and a pangenome. Although
prokaryote genomics is undoubtedly different from animals and plants, there is
growing evidence that gene flow—similar to sexual reproduction—plays a signifi-
cant role in shaping the genomic cohesiveness of microbial populations, suggesting
that, to some extent, a species definition based on the Biological Species Concept is
applicable to prokaryotes. Building a satisfying species definition remains to be
accomplished, but the integration of genomic data, ecology, and bioinformatics
tools has expanded our comprehension of prokaryotic populations and their
dynamics.
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1 The Bacterial Species Challenge

Are There Bacterial Species? The taxonomy of microorganisms has been delayed
relative to macroscopic organisms, due in part to technical reasons. Evolutionary
biologists and population geneticists have originally focused their works on animals
and plants, which typically engage in sexual reproduction. For these organisms,
speciation mechanisms involve—directly or indirectly—the sustained interruption
of gene flow between populations (Dobzhansky 1935; Mayr 1942). The maintenance
of gene flow warrants the genetic cohesion of populations, but because prokaryotes
do not engage in sexual reproduction stricto sensu, the definition of species has been
more elusive in bacteria. It has even been suggested that bacteria cannot and need not
be organized into species, but rather represent a series of organisms with different
levels of divergence to one another reflecting their past history (Doolittle and
Zhaxybayeva 2009; Bapteste et al. 2009). In other words, this view suggests that
imposing a grouping of bacteria into species would be purely arbitrary and
unreflective of any biologically-relevant process (e.g., cessation of gene flow).
However, in practice, microbiologists can usually recognize and designate bacterial
isolates based on their different phenotypic characteristics, and comparisons of
bacterial genomes indicate that bacteria form clear clusters of highly related individ-
uals, instead of showing a scattered distribution (Riley and Lizotte-Waniewski 2009;
Caro-Quintero and Konstantinidis 2012; Konstantinidis et al. 2017), suggesting that
they can be organized into species. Ecologically, bacteria can also be identified and
clustered based on shared niches and properties (Shapiro and Polz 2014). Altogether,
these observations indicate that bacteria can clearly be grouped into genetically and
ecologically cohesive entities characteristic of “species”, although such species might
not be defined based on the same criteria as for sexual organisms. The bacterial
species challenge aims to determine the processes that are shaping and maintaining
these clusters of cohesive entities.

Bacterial Genomics and the Case of Escherichia coli Before the advent of
genotyping methods, microbiologists had to rely exclusively on phenotypic traits to
characterize and classify bacteria. Such phenotypic observations offer one criterion
for building a species concept, similar to the early approaches used by naturalists to
classify animals and plants. However, these early observations showed that it might
not be that simple. The seminal work of Oswald Avery and colleagues had strong
implications in the field of biology by identifying that DNA—not proteins—was the
support of heredity (Avery et al. 1944). But this experiment and previous others
further demonstrated that some phenotypic traits could be transmitted horizontally
from one bacterial cell to another (Griffith 1928). Although it took several decades to
fully understand the extent of horizontal gene transfer in bacteria, this challenging
observation contrasted with animals and plants where traits are almost exclusively
inherited vertically (i.e., from parent to offspring), indicating that something about
bacteria was profoundly different. The development of genetic and genomic tech-
niques further revealed how deeply bacterial genomics differed from animals and
plants: related bacteria can differ dramatically in their gene contents and what is
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typically considered as a bacterial species presents a set of ubiquitous and highly
similar genes, the core-genome, but also a set of accessory genes (also called
dispensable, flexible, or auxiliary genes) presenting a scattered distribution (Vernikos
etal. 2015). The pangenome represents the total gene diversity of a given population:
this comprises the total number of distinct orthologs, including core genes and
accessory genes (Tettelin et al. 2005; Medini et al. 2005; Vernikos et al. 2015).

The bacteria Escherichia coli perfectly illustrates the genomic versatility of pro-
karyotes. E. coli contains approximatively 4400 genes for its model strain K12
MG1655 (Hayashi et al. 2006), but other strains contain up to an additional 1000
genes encoding for a variety of functions (Hayashi et al. 2001). The comparison of
only 20 strains of E. coli shows that the set of genes shared by all strains—the
core-genome—is composed of approximately 2000 genes, but its pangenome
approaches readily 18,000 genes (Touchon et al. 2009) and the inclusion of addi-
tional strains would necessarily increase this number, as suggested by resampling
analyses (Touchon et al. 2009). These numbers indicate that over 50% of the genes
of a single strain of E. coli consist of accessory genes that do not contain orthologs in
the majority of all other strains. Importantly, most of these accessory genes are
typically restricted to a single or a small subset of strains, but are often exchanged
between strains (Groisman and Ochman 1996; Gogarten et al. 2002; Touchon et al.
2009). Many strains of E. coli possess different lifestyles and ecologies broadly
ranging from environmental to commensal or pathogenic and these differences can
be primarily ascribed to their specific sets of accessory genes (Luo et al. 2011). For
example, virulence genes represent a category of extensively studied accessory
genes and they appear to be frequently exchanged during E. coli’s evolution
(Groisman and Ochman 1996; Gogarten et al. 2002).

Although E. coli strains present different phenotypes and many different assem-
blages of accessory genes, they still form a cohesive entity since they share a large
number of core genes that are highly similar between all strains of E. coli (typically
>98% of sequence identity) (Bobay et al. 2013). This situation is problematic for
applying phenotype-based classifications in microbiology, as emphasized by the case
of Shigella. This bacterial “genus” comprises four recognized species (i.e., S. flexneri,
S. boydii, S. sonnei, and S. dysenteriae), which have been grouped based on shared
phenotypic properties (i.e., they are obligate pathogens) (Rolland et al. 1998; Pupo
et al. 2000; Escobar-Paramo et al. 2003). However, genomic analyses showed that
Shigella possesses the same core-genome as E. coli with an average of >98% of
sequence identity across core genes and core-genome phylogenies revealed that
Shigella do not form a monophyletic clade (Touchon et al. 2009). What unites
Shigella together is the presence of shared virulence genes (Buchrieser et al. 2000;
Touchon et al. 2009), their serology, and their incapacity to ferment lactose or
decarboxylate lysine (Hale and Keusch 1996). In other words, Shigella constitutes
asubset of E. coli’s strains with a shared phenotype conferred by the independent gain
of a common set of accessory genes by horizontal gene transfer. It is now recognized
that Shigella are part of the E. coli species, but its taxonomy has not been revised. This
example illustrates that the pangenome and its evolutionary dynamics represent a
challenge to disentangling the complex relationship between phenotypes, ecology,
and genomics in bacteria and how these characteristics correlate with taxonomy.
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2 Species Concepts and Operational Definitions

Pragmatic Approaches: Sequence Thresholds One of the goals of a taxonomy is to
facilitate communication in the scientific community. To satisfy the need of a
coherent microbial taxonomy, pragmatic approaches have been developed in order
to define species based on genetic or genomic similarities. Although this does not
directly offer insight into how and why a given set of strains constitutes a species, a
threshold-based method provides a convenient means to classify strains and revise
taxonomy as more comparative genomic data become available. Due to the lack of a
theoretical framework of these approaches, such threshold-based methods are often
said to define Operational Taxonomic Units (OTUs) rather than “species” to empha-
size that this is only an operational definition.

Before the rise of the genomic era, species membership was established by shared
phenotypic traits and by DNA-DNA hybridization essays, which consist of com-
paring a newly isolated strain to a reference strain (Brenner et al. 2000) (note that
other criteria such as GC content were also considered). The recommended threshold
to define species membership was set at 70% of genomic hybridization to the
reference strain (Brenner et al. 2000). The emergence of sequencing technologies
led to the rise of related approaches. The 16S rRNA subunit has been identified as a
universal gene shared by all bacteria and archaea (Woese and Fox 1977) offering the
possibility to assess prokaryotic species membership with the same gene marker
across all lineages. Analyses revealed that the threshold of 70% identity based on
DNA-DNA hybridization assays corresponds approximately to a threshold of 97%
identity when using the 16S rRNA subunit (Stackebrandt and Goebel 1994; Ludwig
and Klenk 2000; Richter and Rossello-Mora 2009). The use of 16S rRNA thresholds
can be applied with ease and allows for the identification of a species by sequencing
a single locus. OTU-typing based on the 16S rRNA gene became even more popular
with the rise of metagenomic sequencing, where the amplification and sequencing of
a fragment of the 16S rRNA gene provides a direct overview of the taxonomic
diversity of a given sample without the need of cultivating any of its members. A
more recent approach consists of using the entire genome of a strain to calculate the
Average Nucleotide Identity (ANI) across all the genes relative to a reference
genome of the species (Konstantinidis and Tiedje 2005; Richter and Rossello-
Mora 2009). Because protein-coding genes are not as selectively constrained as
the 16S rRNA subunit, the ANI threshold used to attain species membership has
been empirically defined as 95% based on correlations with 16S sequence threshold
used to define species (Konstantinidis and Tiedje 2005; Richter and Rossello-Mora
2009). Considering complete genomes obviously offers a more accurate resolution
of sequence divergence.

Sequence thresholds based on single loci or entire genomes present the advantage
of defining all prokaryotic species under a standardized framework, but, despite their
simplicity, they suffer several technical difficulties. Sequences of the 16S rRNA
subunit evolve very slowly and thus sequences from related strains or species
typically display little or no informative differences (Kettler et al. 2007). Moreover,
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multiple copies of the 16S rRNA gene are frequently found in the same genome and
they sometimes exhibit different levels of divergence (Acinas et al. 2004). In several
cases, the different 16S rRNA copies present in the same genome can display
remarkable levels of divergence, such as Thermoanaerobacter tengcongensis,
which presents 11.6% of sequence divergence between its most different 16S
rRNA copies (Acinas et al. 2004). Comparing these sequences would lead to the
ironic conclusion that the same bacterial isolate should be classified into two distinct
species. A more common criticism against 16S rRNA thresholds is that the diver-
gence of the 16S rRNA gene does not always accurately reflect overall genomic
divergence. For instance, the marine bacterium Prochlorococcus can be classified as
a single species based on 16S rRNA sequences but some strains display only 66%
genome-wide identity based on ANI methods (Zhaxybayeva et al. 2009). ANI
thresholds are recognized as much more reliable criteria to define species and 16S
rRNA alone is of little taxonomic value when complete genome sequences are
available (Richter and Rossello-Mora 2009). However, ANI-based methods also
suffer inconsistencies. Sequence identity might not be constant along the entire
genome (Retchless and Lawrence 2007, 2010) and the identity thresholds used to
infer gene orthology can therefore affect the overall ANI value. Perhaps more
importantly, ANI metrics are frequently computed against a single reference genome
to assess species membership, but the choice of reference genomes is largely
arbitrary and historically contingent. In other words, species borders can vary
depending on which—or how many—genomes are used as a reference. Finally,
using a fixed sequence threshold does not account for the different rates of genomic
evolution across phyla (Hugenholtz et al. 2016), which are dictated by parameters
like mutation rates, selection coefficients, and effective population sizes (Shapiro
2014) that vary across prokaryotic lineages. Other mechanisms might further lead to
differential rates of evolution such as the lack of DNA repair systems (Dorer et al.
2011). Bacterial endosymbionts notoriously evolve at faster rates due to less effec-
tive selective pressures imposed by their reduced population sizes (Moran 1996;
Moran et al. 2009). As a consequence, the sequence threshold constituting a species
in symbiotic bacteria likely corresponds to a different time scale in free-living
bacteria (Parks et al. 2018). As a result of all these issues, applying sequence
thresholds to define species is convenient but does not anchor a bacterial species
concept on a solid theoretical framework.

Phylogenetic Concept Phylogenetic approaches offer another means to classify
species. As for sequence thresholds, phylogenetic methods are also a pragmatic
approach to define species, although phylogenetic species are defined in the context
of evolutionary history (De Queiroz and Gauthier 1994). Besides taking sequence
divergence into account, phylogenies typically require species and other taxa to
constitute monophyletic groups. Although the concept of monophyly is usually a
key feature researched by phylogenetic approaches, it has been argued that exclu-
sivity might be preferable over monophyly (Velasco 2009; Wright and Baum 2018).
Exclusivity is defined as groups of strains/taxa that are more related to one another
than other groups without being necessarily monophyletic (Velasco 2009; Wright
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and Baum 2018). A recent study focusing on Streptomycetaceae and Bacillus found
that exclusive clades can be defined for these taxa, although no objective threshold
appears universal (Wright and Baum 2018). An additional and nontrivial advantage
of phylogenetic methods is their ability to inform other levels of relationships (e.g.,
genus and family) and are not restricted to delimiting species. Multiple genome-
based phylogenies have been constructed for taxonomic purposes (Garrity 2016;
Hugenholtz et al. 2016; Yoon et al. 2017; Parks et al. 2018) and offer a more accurate
resolution than 16S rRNA phylogenies (Brochier et al. 2005; Ciccarelli et al. 2006;
Thiergart et al. 2014). Akin to sequence thresholds, phylogenetic approaches fre-
quently rely on a single threshold (e.g., a phylogenetic distance) to define species,
but recently, a new approach has been developed to reclassify all prokaryotic
organisms, while correcting for the uneven evolutionary rates across the tree
(Parks et al. 2018). Such approaches offer a universal framework to classify spe-
cies—and other taxonomic ranks—across the Tree of Life, while correcting for
uneven rates of evolution (i.e., defining species with lineage-specific thresholds).
The application of these approaches is much more cumbersome than 16S and ANI
thresholds, but online tools and resources to place newly sequenced genomes in a
reference phylogenetic tree are now available (Parks et al. 2018). The development
of such tools and the maintenance of online resources offer the possibility to classify
all prokaryotic genomes with ease into a single phylogenetic framework. Although
phylogenic methods offer many advantages over sequence threshold methods, they
also require comprehensive taxon sampling and can be affected by the underlying
phylogenetic model used to reconstruct the tree. Finally, a phylogenetic species
concept is still based on ad hoc criteria and does not ambition to identify species
based on an explicit speciation model.

The Stable Ecotype Model The stable ecotype model (SEM) is a theoretical
framework of bacterial evolution, upon which a microbial species concept can be
founded (Cohan 2001; Wiedenbeck and Cohan 2011). In a world without sex, new
beneficial alleles can only reach fixation through genome sweep (i.e., fixation of the
entire genotype). Therefore, the competition of different bacterial strains for the
same resources (the same niche) would lead periodically to the fixation of a single
genotype. This model of periodic selection implies that most of the diversity of a
species is periodically erased, thereby maintaining genetically cohesive entities, i.e.,
species. Thus, the SEM has the capacity to explain why bacteria form clusters of
genomically similar entities. Under this framework, speciation is expected to occur
when one strain gains the ability to colonize a different niche (Wiedenbeck and
Cohan 2011). By colonizing a different niche, this new population would stop
competing against the original population and would not be lost by the periodic
selection of a successful genotype of the original population. Note that from the
bacterial point of view, a new niche could be as simple as the presence of a new type
of carbohydrate and multiple niches are expected to overlap in nature.

A theoretical difficulty of the SEM became apparent when comparing the gene
content of bacteria. It became clear that the gene content of a single strain typically
represents a very small fraction of the total gene repertoire of the species (i.e., the
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pangenome) (Tettelin et al. 2005; Medini et al. 2005; Vernikos et al. 2015). This
implies that the genetic cohesion of microbial species is only true for a restricted
fraction of their genes: their core-genome (Lapierre and Gogarten 2009). The
scattered distribution of various accessory genes across strains sharing a highly
conserved core-genome cannot be easily reconciled with the SEM. Although a
substantial fraction of the pangenome corresponds to mobile elements (Bobay et al.
2013), accessory genes often contribute to the colonization of different niches
(Ochman et al. 2000), which implies that the gain and losses of these genes can
provide the capacity of a strain to colonize a new niche. This would lead to the
disturbing conclusion that a given strain could frequently change species membership
by gaining or losing specific sets of accessory genes. Because each genotype virtually
contains its own set of accessory genes, each strain could be ascribed to a different
ecotype and could be viewed as its own species (Doolittle and Zhaxybayeva 2009;
Wiedenbeck and Cohan 2011). This extreme scenario, however, would fail to explain
why many bacterial strains present a nearly identical core-genome.

Although the SEM does not easily accommodate the large diversity of accessory
genes observed in related bacteria, it has been argued that the definition of an ecotype
could be more flexible by encompassing multiple sub-niches (the “nano niche”
model) (Wiedenbeck and Cohan 2011). Some strains of a community can acquire
alleles or accessory genes specialized in a sub-niche, while remaining part of a
broader ecologically-cohesive entity. These specialized strains within an ecotype can
be perceived as new species in the making. Nascent speciation might be constantly
occurring but need not lead to full speciation (Shapiro and Polz 2014) and this could
potentially explain the vast pangenome diversity in bacterial species. Alternative
mechanisms have been hypothesized to explain the extensive gene diversity within
ecotypes such as a high turnover of accessory genes (Doolittle and Papke 2006) or
ecological processes maintaining bacterial diversity such as phage predation (“kill
the winner” hypothesis) (Rodriguez-Valera et al. 2009; Thingstad and Lignell 1997)
or negative frequency-dependent selection (Cordero and Polz 2014).

While the SEM and related models could provide a coherent explanation of the
observation of genomic clusters in the bacterial world—or at least their core-
genomes—few results have reported genome sweeps as predicted by the periodic
selection expected under the SEM. Multiple studies have overwhelmingly observed
that gene sweeps rather than genome sweeps tend to occur under natural conditions
(Simmons et al. 2008; Shapiro et al. 2012; Cadillot-Quiroz et al. 2012; Bendall et al.
2016). These results contradict one assumption made by the ecotype model: recom-
bination is negligible relative to selection. Evidence of homologous recombination
has been reported for the vast majority of analyzed prokaryotic species (Vos and
Didelot 2009; Bobay and Ochman 2017a). That some evidence of homologous
recombination exists for most species does not necessarily imply that the rates of
homologous recombination are high enough to counteract genome sweeps. A more
pertinent metric consists of comparing recombination rate relative to selection: the
ratio /s (Shapiro and Polz 2014). If selection is overwhelmingly strong relative to
recombination, the selected genome is expected to reach fixation before the advan-
tageous alleles are transferred to other genotypes. Because gene sweeps have been
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more frequently observed than genome sweeps in bacterial species, it seems that the
relatively modest levels of homologous recombination in bacteria—in comparison to
truly sexual organisms—would suffice to prevent genome sweeps unless extremely
beneficial alleles are introduced.

Overall, the accumulation of empirical observations of gene sweeps in natural
populations suggest that periodic selection might play a limited role in maintaining
genomic cohesion in bacteria. Nevertheless, the SEM remains relevant for effec-
tively clonal species (species with negligible rates of recombination), although the
previously cited studies suggest that relatively few species might be effectively
clonal (Vos and Didelot 2009; Bendall et al. 2016; Bobay and Ochman 2017a).
An inherent difficulty of the SEM and other ecology-based definitions, in general, is
the difficulty to gain accurate knowledge on microbial ecology and to identify what
objective criteria can be used to define distinct niches. This lack of ecological data
appears even more dramatic when compared to the colossal accumulation of geno-
mic data. In the (meta-)genomic era, alternative approaches are needed. Starting
from this observation, several authors have suggested the use of a reverse ecology
approach, where, instead of searching for the genetic variants responsible for
ecological segregation, it is more relevant to search for the ecological factors
associated with allelic or accessory gene segregation (Shapiro and Polz 2014). The
development of a reverse ecology framework potentially offers a powerful tool to
extend our comprehension of the ecological factors driving the evolutionary dynam-
ics and the cohesion of bacterial species.

Biological Species Concept Sexual organisms engage in meiotic recombination at
each generation and this maintains the genetic cohesion of species (Mayr 1942). The
mechanisms leading to speciation in sexual organisms are diverse, can be either pre-
or post-zygotic in nature, and are often conceptualized in the context of spatial
arrangement of populations (sympatric or allopatric) (Coyne and Orr 2004; De
Queiroz 2007). Most models assume that prolonged interruption of gene flow
(e.g., zero or few migrants per generation) between two separated populations can
lead to the independent accumulation of new alleles and new traits in each popula-
tion through drift or local adaptation, leading to build up of reproductive incompat-
ibilities and potentially triggering reinforcement, if the two populations are reunited.
Other mechanisms, such as the appearance of incompatible alleles or alleles resulting
in mating preferences, or even genomic duplications or rearrangements, can also
lead to sexual barriers and, therefore, to the interruption of gene flow between
populations. While evolution of reproductive barriers is often associated with spe-
ciation, it is important to realize that the interruption of gene flow can be either the
cause or the consequence of speciation. In all scenarios, however, the interruption of
significant gene flow remains associated with speciation, even if the barriers of gene
flow can remain somewhat permissive after speciation (Mallet et al. 2007, 2016).
Although bacteria do not engage in true sexual reproduction, it has long been
known that they are capable of exchanging DNA (Smith et al. 1993). Because gene
flow is a common phenomenon across plants and animals as well as bacteria, this
opens the possibility to define bacterial species with the same standards of the
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biological species concept (BSC) (Dykhuizen and Green 1991; Fraser et al. 2009;
Bobay and Ochman 2017a). The fact that bacteria have the capacity to exchange
DNA does not necessarily imply that they form biological species; instead, the real
challenge is to determine whether the strength of gene flow is sufficient to shape
cohesive bacterial units in bacteria, and thus whether common speciation models
based on gene flow are applicable to bacteria as well. The question is then: how
much and how frequently do they recombine? Can we detect these patterns of gene
flow in bacteria as we do for sexual organisms? By “gene flow”, I exclusively refer to
the replacement of DNA sequences by homologous recombination (also referred to
as gene conversion). Homologous recombination consists of the exchange between
two sequences of DNA that typically display a high identity in nucleotide compo-
sition (Vulic et al. 1997). In contrast to gene flow, horizontal gene transfer (HGT)
refers to the gain of new genetic material without the replacement of a homologous
sequence. This semantic differentiation allows for the distinction of gene segments
of homologous genes that are exchanged (gene flow) versus new genes that are
gained (HGT). Note that this distinction permits the differentiation of the outcome of
the DNA transfer—homologous replacement or gain of DNA—but it does not
necessarily involve different molecular mechanisms since HGT can involve homol-
ogous recombination between regions flanking the exchanged sequence (Mell et al.
2011; Croucher et al. 2012; Cordero et al. 2012; Everitt et al. 2014).

Two independent studies have scrutinized a relatively large range of prokaryotic
species and came to the conclusion that a small proportion (<15%) of analyzed
species do not show substantial signs of gene flow (Vos and Didelot 2009; Bobay
and Ochman 2017a). In fact, similar numbers were estimated for viruses and there is
growing evidence that the vast majority of cellular and acellular organisms engage in
gene flow (Bobay and Ochman 2018a). In addition, many studies have reported that
individual loci—rather than entire genotypes—sweep through natural populations
(Simmons et al. 2008; Croucher et al. 2011; Shapiro et al. 2012; Cadillot-Quiroz
et al. 2012; Bendall et al. 2016; Bao et al. 2016; Porter et al. 2017). These
observations imply that gene flow is substantial enough to spread alleles—and
even beneficial ones—to the entire population, suggesting the cohesive role of
gene flow in bacterial genome dynamics. Importantly, the levels of gene flow across
most bacterial species—and their variations—are often substantial enough to be
detected using genomic datasets (Bobay and Ochman 2017a). Thanks to the vast
accumulation of genomic data, it is possible to identify strains that do not engage in
gene flow with the rest of the species (i.e., sexual isolation) by conducting large-
scale resampling analyses. This allows to classify sexual eukaryotes, bacteria,
archaea, and even viruses under a unique BSC-based species definition.

The delimitation of species based on gene flow is more cumbersome than ANI
sequence thresholds, since it requires identification of the core-genome (or a portion
thereof) for the tested genome sample and estimation of distances or tree topologies
and potentially conducting resampling analyses (Bobay and Ochman 2017b). Sim-
ilar to phylogenetic methods, it is also possible to compare individual genomes to a
database of preprocessed species available online (i.e., ConSpeciFix) (Bobay et al.
2018), which facilitates the classification of newly sequenced data. Detecting and
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quantifying gene flow remains a delicate endeavor as evidenced by the lack of a
consensual methodology to infer homologous recombination. Various methods to
estimate recombination rates exist, but they often rely on different models and
assumptions regarding the recombination process (Didelot and Falush 2007,
Marttinen et al. 2012; Yahara et al. 2014, 2015; Didelot and Wilson 2015; Mostowy
et al. 2017), and this contributes to the inference of inconsistent estimates of
recombination rates across studies (Bobay et al. 2015). Recently, we introduced a
methodology based on the quantification of homoplasies to detect gene flow across
large genomic datasets (Bobay and Ochman 2017a; Bobay et al. 2018). Homoplasies
are polymorphisms incompatible with vertical inheritance from a shared ancestor
and are mostly introduced by gene flow (Bobay and Ochman 2017a). Although the
ratio between homoplasic and non-homoplasic polymorphisms does not provide an
accurate metric to quantify recombination rates, the detection of homoplasies is
rather straightforward and does not rely on complex model assumptions and over
parametrization. Interestingly, this homoplasy-based approach appears more robust
to genome resampling and gene bootstrapping when compared to ClonalFrameML
(Bobay and Ochman 2018b). Inferring gene flow based on homoplasies is limited to
the detection of recombination events internal to the dataset and the method does not
aim to model imports from external sources. Recombining species can sometimes be
misclassified as clonal when multiple sexually isolated genomes are included in the
analysis and the sample size is too small to resample and test subpopulations for gene
flow; thus, the method is most efficient when large datasets are available and when
genetic diversity is high. This limitation will be resolved as more genomes will be
sequenced, but, to this date, the analysis of several species can remain inconclusive
due to ambiguous signals (Bobay and Ochman 2017a). In addition, the recent
accumulation of metagenomic data combined with the development of bioinformat-
ics tools that resolve strain genotypes within metagenomic samples (Nayfach et al.
2016; Pasolli et al. 2017; Truong et al. 2017) constitutes a new source of data readily
exploitable to define species based on gene flow.

Because bacteria can sometimes gain genes from other species through HGT, it
has been argued that bacteria might not fit a BSC definition in comparison to truly
sexual organisms. Species borders are somewhat “fuzzy” for bacteria (Hanage et al.
2005; Hanage 2013) and many studies have detected HGT events in prokaryotes,
leading to the conclusion that they might be genomically promiscuous (Popa and
Dagan 2011). It should be emphasized, however, that gene flow between species
remains very rare when considering the overall time scale of prokaryote evolution,
and HGT events occur primarily between related bacteria (Popa et al. 2011). In
contrast, gene flow within species is expected to occur at much higher frequencies
relative to the acquisition of new genes from external species by HGT (Caro-Quintero
et al. 2009; Cadillot-Quiroz et al. 2012; Shapiro et al. 2012; Krause and Whitaker
2015; David et al. 2017). Comparison of ~100 species indicates that most bacteria
show clear signs of gene flow and the same method can also retrieve species borders
in well classified animals such as humans and Drosophila (Bobay and Ochman
2017a). It is well established that sexual eukaryotes are not as well isolated as
previously thought (Danchin and Rosso 2012; Syvanen 2012), but introgression
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and incomplete lineage sorting do not typically prevent defining species borders in
truly sexual organisms (Mallet et al. 2016). Although eukaryotic and prokaryotic
species borders can be “leaky” and occasionally allow gene flow from external
sources, this process need not be prevalent enough to blur species borders (Mallet
2008).

Given the commonality of genomic exchange across diverse types of organisms, a
BSC-based definition allows the use of a universal species concept to classify all
lifeforms under a biologically relevant definition. What are the implications of
applying such a species concept to microbes? Most BSC-species (i.e., bacterial
species classified based on the BSC) correspond to closely related genomes that
typically present >95% ANI (Bobay and Ochman 2017a). However, this is not
always true since several BSC-species contain genomes that would not be classified
as members of the same species based on ANI thresholds and, conversely, other
BSC-species were found to exclude members that would be part of the same species
according to ANI thresholds (>95% ANI) (Bobay and Ochman 2017a). These results
are in agreement with analyses showing that a single ANI or phylogenetic threshold
fails to define consistent species across prokaryotes (Parks et al. 2018; Wright and
Baum 2018). These differences can be putatively ascribed to the use of more-or-less
permissive recombination mechanisms across species. Experimental data have
suggested that the frequency of homologous recombination decreases exponentially
with sequence divergence (Roberts and Cohan 1993; Zawadzki et al. 1995; Vulic
etal. 1997; Majewski and Cohan 1998; Majewski et al. 2000) due to the action of the
mismatch repair system (Matic et al. 2000). These observations suggest a simple
model of sexual isolation in bacteria. The action of the mismatch repair system seems
highly variable across taxa (Majewski 2001), which suggests that barriers of gene
flow driven by sequence divergence would also be variable across species. In contrast
to these observations, there is no systematic negative correlation between recombi-
nation and sequence divergence (Bobay and Ochman 2017a) and gene flow has been
reported between bacteria presenting relatively divergent genomes (Sheppard et al.
2008; Mell et al. 2011; Cordero et al. 2012), suggesting that sequence divergence
plays a limited role in establishing barriers of gene flow. These discrepancies between
experimental data and genome analyses can be explained by multiple factors. Firstly,
gene flow is detected by the exchange of polymorphisms, and recombination events
that do not result in any exchange of polymorphisms can remain invisible to some
approaches. This implies that the rates of recombination between highly similar
genomes are frequently underestimated. Secondly, selection can potentially have a
strong impact in selecting—positively or negatively—alleles exchanged by gene
flow, mirroring adaptive introgression or Dobzhansky—Muller incompatibilities in
sexual organisms (Mallet et al. 2016). Finally, a simpler explanation might account
for these discrepancies. The exponential relationship between sequence identity and
recombination rate is based on the observation that nearly identical regions flanking
the recombination tract—the minimum efficiently processed segments (MEPS)—are
needed to initiate recombination (Shen and Huang 1986; Wiedenbeck and Cohan
2011; Hanage 2016). However, sequence identity need not be high along the entire
segment of recombined DNA because recombination requires high sequence identity
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only along the MEPS, which are only ~26 nt long (Shen and Huang 1986;
Wiedenbeck and Cohan 2011; Hanage 2016). This suggests that more variable
sequences of DNA might be exchanged as long as a few clusters of nearly identical
nucleotides remain available to initiate homologous recombination.

Mixed Model The SEM and a BSC-like model of bacterial evolution need not be
fundamentally opposed. A BSC-like model is, by definition, unable to define species
borders for clonal species. It is also likely that species with low rates of recombina-
tion would appear effectively clonal when analyzing genomic data, meaning that the
BSC will fail to accurately delimit species in some bacterial groups. For these clades,
the SEM appears the most pertinent force maintaining genetic cohesion and there-
fore is most appropriate to define the borders of these species. The fact that very few
studies have reported genome sweeps relative to gene sweeps suggests the preva-
lence and significance of recombination in bacteria and implies that the vast majority
of bacterial species can be defined based on the BSC. Both models could, therefore,
be integrated to define species; the SEM for lineages that are effectively clonal and a
BSC-like model for species that appear effectively sexual. A key distinction between
both models is that the SEM is inherently ecologically centered, whereas a
BSC-based model of bacterial evolution does not necessarily involve ecological
mechanisms. However, the speciation processes through new niche colonization
assumed under the SEM can also lead to speciation under the BSC.

3 Speciation: From Maintenance to Disruption of Genomic
Cohesion

Neutral Processes Simulations have provided insightful answers regarding the
impact of neutral evolution on the formation of new species. In the absence of
recombination, it is expected that some distinct genome clusters would emerge in
sympatry (Fraser et al. 2007). However, most of these newly emerged clusters are
expected to go extinct through drift. On the other hand, gene flow allows populations
to maintain cohesive genomes (Fraser et al. 2007; Friedman et al. 2013). These
results suggest that neutral evolution is unlikely to promote the emergence of new
species in bacteria, especially in the case of recombining populations. It has been
noted that this neutral model of speciation does not consider the potential barrier of
gene flow imposed by sequence divergence (Fraser et al. 2007), in which case, it may
be possible that divergent genome clusters become more and more sexually isolated.
It should be underlined, however, that neutral evolution is expected to drive diver-
gence very slowly, and due to the frequent loss of newly emerged clusters by drift, it
is unlikely that population clusters would accumulate enough mutations to impose a
substantial barrier of gene flow.

Geography The previous model of neutral speciation has been developed for
sympatric populations (i.e., geographically overlapping populations), which is
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thought to be the preponderant situation in bacteria (Vos 2011; Shapiro and Polz
2015). However, geographic differentiation suggests that allopatric speciation could
occur in bacteria (Simmons et al. 2008; Denef et al. 2010; Whitaker et al. 2003; Reno
et al. 2009; Krause and Whitaker 2015). Processes resembling allopatric speciation
with the interruption of gene flow in bacteriophages targeting different receptors
have even been observed in an experimental evolution setting (Meyer et al. 2016).
The impact of geography remains elusive since species spanning large continental
and oceanic distributions can remain genetically cohesive (Papke et al. 2007,
Coleman and Chisholm 2010; Boucher et al. 2011). Recent modeling work has
emphasized the impact of niche overlap in bacterial speciation, further revealing the
importance of habitat structure in promoting genomic isolation, especially for
recombining bacteria (Marttinen and Hanage 2017). The spatial dynamics of micro-
bial distributions remains difficult to characterize and seemingly overlapping
populations might not necessarily encounter each other due to fine-scale habitat
structure (i.e., mosaic sympatry) (Mallet 2008; Shapiro and Polz 2014).

Recombination Barriers As mentioned above, the initiation of homologous recom-
bination requires the presence of nearly identical short sequences (i.e., MEPS) (Vulic
etal. 1997; Majewski and Cohan 1999) and, although relatively divergent sequences
can engage in gene flow, sequence divergence can affect recombination rates due to
the frequency of available MEPS to initiate recombination. Interestingly, the
sequence (MEPS) conservation required to initiate recombination seems to be depen-
dent on the mismatch repair (MMR) system (Matic et al. 2000), which can be more or
less permissive across species and strains. The evolution—and sometimes the com-
plete loss—of the MMR system is therefore expected to have a strong impact on
sexual isolation in prokaryotes.

Restriction—Modification (RM) systems are frequently used by bacteria to protect
themselves against mobile elements and, in particular, bacteriophages (Thomas and
Nielsen 2005; Labrie et al. 2010). The presence of different RM systems across
strains and species can lead to incompatibilities of gene flow and this has been found
to regulate and structure gene flow (Oliveira et al. 2014, 2016). Consequently, the
gain or loss of RM systems can have direct consequences on the interruption of gene
flow and can potentially lead to speciation. In theory, CRISPR—Cas systems might
exhibit similar properties, but since they specifically target a limited number of
sequences, they are unlikely to introduce genome-wide incompatibilities. Because of
these properties, RM systems can shape the networks of gene flow and the popula-
tion structure of bacterial species. These systems might drive the establishment of
durable barriers of gene flow, potentially leading to speciation.

Gene flow relies on the presence of different vectors and mechanisms capable of
disseminating and capturing DNA. The three main mechanisms of DNA transfer,
namely transformation, conjugation, and transduction, present diverse degrees of
specificity. (i) Transformation does not require cell-to—cell interactions, since envi-
ronmental DNA is directly taken up by the cell; but recipient cells need to be
competent, and relatively few bacteria are known to naturally engage in this process
(Johnston et al. 2014). Some bacteria engaging in transformation such as Neisseria
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and Pasteurellaceae require the presence of specific DNA uptake sequences or
uptake signal sequences (Goodman and Scocca 1988; Scocca et al. 1974; Danner
et al. 1982), thereby restricting the range of potential DNA donors to related lineages.
Moreover, due to the rapid degradation of DNA when released in the environment
this mechanism likely requires close proximity between cells, suggesting that trans-
formation might only mediate gene flow between sympatric populations.
(i1) Conjugation involves more constrained transfers of DNA through cell-to—cell
contacts, which is mediated by specific pilus interactions and type IV secretion
systems (Guglielmini et al. 2013). These conjugative transfers occur primarily
between conspecifics, although plasmids have been shown to be occasionally
exchanged across much more divergent lineages (Smillie et al. 2010). Because this
process requires the direct contact of cells, gene flow mediated by the conjugative
apparatus must also occur in sympatry. (iii) Transduction is another route for gene
flow where bacterial DNA is packaged within phage particles or gene transfer agents
(GTAs) (Lang and Beatty 2007; Popa and Dagan 2011). Phage particles are rarely
able to infect multiple species and are often restricted to a subset of strains (Popa et al.
2017). As opposed to transformation and conjugation, phage particles can potentially
transport DNA over longer distances (and potentially for long periods of time),
suggesting that allopatric—and perhaps anachronistic—populations are able to
engage in some levels of gene flow without requiring migration. These three mech-
anisms, and especially conjugation and transduction, rely on specific molecular
signals and are typically restricted to conspecific cells. The overall specificity of
these mechanisms is expected to favor gene flow within species rather than between
species. Conjugation and transduction also potentially have important consequences
for bacterial speciation, since the loss of cell-vector specificity can lead to the partial
or complete interruption of gene flow.

Selection As mentioned above, neutral processes are unlikely to lead to bacterial
speciation, especially in the case of sympatric recombining populations that co-occur
at fine spatial scales (Fraser et al. 2007). This suggests that selection must initiate the
formation of distinct genomic clusters, which might eventually lead to selection
against genetic intermediates and the cessation of gene flow (Shapiro 2014). Eco-
logical specialization is thought to be a strong force leading to speciation, since the
nascent species will present differentially selected ECOSNPs or specialized accessory
genes, i.e., alleles or genes specialized in one niche (Shapiro et al. 2012). Simula-
tions have shown that sympatric speciation is more likely when fewer loci are
required for speciation and when recombination is reduced (Friedman et al. 2013).
As two populations become more and more differentiated, the accumulation of
substitutions is expected to reduce gene flow due to epistatic interference (Jain
et al. 1999), similarly to Dobzhansky—Muller incompatibilities. Indeed, many loci
of the genome coevolve together, and, for instance, central protein complexes such
as translation, transcription, and replication complexes require interaction between
many central proteins that coevolved together, which could explain why these genes
are rarely exchanged by HGT across species, i.e., the “complexity hypothesis™ (Jain
et al. 1999). Such incompatibilities are expected to be most relevant when
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populations have significantly diverged and most likely form barriers of gene flow
when DNA originates from distant species. However, it is possible that those
negatively selected epistatic interactions also contribute to the isolation of more
recently diverged populations.

Several studies have demonstrated that the impact of selection on bacterial
genome evolution depends on the relative prevalence of selection (s) and recombi-
nation rate (r) in sympatric evolution (Shapiro et al. 2009; Friedman et al. 2013; Polz
et al. 2013). When selection is much stronger than recombination (/s << 1), the
selected allele will lead to the fixation of the entire genotype through genome sweep.
The resulting process will be similar to the periodic selection predicted by the SEM.
On the other hand, alleles with lower selective coefficients relative to recombination
(rls >> 1) are expected to evolve by gene/allele sweep. In this case, selection will be
unable to lead to speciation as the selected allele will be exchanged between the
population’s genotypes by gene sweep. Several studies have attempted to determine
whether prokaryotic populations evolve primarily through gene or genome sweeps
and, so far, evidence overwhelmingly suggests that gene sweeps are more frequent
than genome sweeps (a single case of genome sweep against ~35 cases of gene
sweeps (Simmons et al. 2008; Croucher et al. 2011; Shapiro et al. 2012; Cadillot-
Quiroz et al. 2012; Bendall et al. 2016; Bao et al. 2016; Porter et al. 2017)). The large
prevalence of gene sweeps over genome sweeps is somewhat surprising considering
that prokaryotes, as asexual organisms, are thought to display modest rates of gene
flow (Wiedenbeck and Cohan 2011). It is, however, difficult to clearly quantify the
impact of gene flow on genome evolution (Bobay et al. 2015) and a recent exper-
imental evolution study has shown that gene flow can even lead to the extinction of
beneficial alleles (Maddamsetti and Lenski 2018). It is possible that additional
factors counteract genome sweeps, such as clonal interference (Lieberman et al.
2014; Maddamsetti et al. 2015) and negative frequency-dependent selection
(Cordero and Polz 2014; Takeuchi et al. 2015).

Introgression and HGT from External Species In comparison to the processes
acting in sexual organisms, occasional gene flow from external bacteria could be seen
as a form of introgression. It has been noted that introgression can sometimes present
a source of adaptive alleles in sexual organisms and those transfers can even lead to
hybrid speciation (Mallet 2007; Rieseberg 1997; Seehausen 2004; Keller et al. 2013).
The importance of these processes remains to be explored in prokaryotes. A study
comparing the evolution of two Campylobacter species—C. jejuni and C. coli—can
be viewed as evidence of bacterial introgression (Sheppard et al. 2008, 2013).
Although these results might lead to the complete “despeciation” of the two lineages,
it should be noted that the transfer of DNA is asymmetric where one clade of C. coli
has likely gained alleles from C. jejuni but other clades of C. coli did not. Interest-
ingly, this case of bacterial introgression appears ecologically-driven based on recent
niche overlap (Sheppard et al. 2008). It is, therefore, possible that introgression can
result in the same outcomes in prokaryotes, such as hybrid speciation (Shapiro et al.
2016).
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Similar to introgression, the gain of new genes from distinct species by HGT
offers another means to colonize new niches through ecologically-driven adaptation.
The acquisition of antibiotic-resistant genes constitutes a well-documented case, but
many other examples have been reported (Ochman et al. 2000; Popa and Dagan
2011). It has been shown that HGT—rather than duplication—plays a predominant
role in introducing new paralogs in the pangenome of prokaryotic species (Treangen
and Rocha 2011), although these genes frequently come from related species due to
genetic incompatibilities (i.e., gene promoters/regulators and codon usage bias)
(Sorek et al. 2007; Popa et al. 2017). These acquired genes can mediate the
colonization of new niches and can potentially lead to ecology-driven speciation.
However, as noted above, accessory genes are not stably associated with a given
genotype and tend to be frequently exchanged across strains of a given species
(Schubert et al. 2009), indicating that they do not necessarily drive the formation of
distinct ecologically specialized entities (Shapiro and Polz 2015).

Summary Across the many forces that can affect speciation, it should be noted that
neutral processes such as population dynamics and sequence divergence are unlikely
to lead to speciation in bacteria, and that selection seems to be a necessary force by
initiating and maintaining speciation. Selection in bacteria can act through two
predominant avenues: (i) by driving ecological adaptation to different niches fol-
lowing, for instance, the gain of new genetic material and (ii) by preventing gene
flow between populations due to the presence of genetic incompatibilities, such as
different RM systems, vector specificity, or negative epistasis. Other factors such as
population dynamics and geographic range have been found to have an impact on
speciation, although their relative contribution remains to be precisely deciphered.
Overall, a BSC-based speciation model in prokaryotes would also rely on ecological
processes and selection, as hypothesized by the SEM. However, one major differ-
ence with the SEM is that a BSC-based model of prokaryotic speciation predicts that
speciation events can be driven by genetic incompatibilities and need not be sys-
tematically adaptive and ecologically-driven.

4 Species Borders and Pangenome Borders

Pangenome and Species Definitions The definition of species has direct conse-
quences regarding the definition of pangenomes. If bacterial species are defined
based on inconsistent criteria, it is not possible to compare the size of the pangenome
across species and lineages. The case of Prochlorococcus illustrates this issue
particularly well. Prochlorococcus is often studied as a single entity since it consti-
tutes a single species based on 16S rRNA thresholds but multiple species based on
ANI thresholds. The pangenome of Prochlorococcus has been estimated to reach the
impressive amount of ~75,000 genes (Kashtan et al. 2014), although this would
include strains that present less than 70% ANI, and this entity would actually
correspond to multiple species and even genera. This issue likely affects many
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pangenome analyses considering that public databases frequently contain
misclassified species and species classified based on inconsistent methods (Martiny
et al. 2006; Comas et al. 2009; Trost et al. 2010). Studies focusing on the evolution
of bacterial pangenomes should be based on rigorous species delimitation, since the
misclassification of a single genome can lead to dramatic overestimates or underes-
timates of the size of a species’ pangenome.

Species delimitation is not the only concern when analyzing pangenomes. The
number of genomes sampled for each species obviously impacts pangenome esti-
mates, since pangenomes necessarily increase in size as more genomes are included.
It is possible to test if pangenome size reaches a plateau by performing resampling
analyses, which would indicate that a sufficient number of genomes have been
sampled to estimate the true pangenome size of the analyzed species (Tettelin
et al. 2005; Lapierre and Gogarten 2009). Alternatively, it is possible to apply
resampling analyses or to correct these metrics to account for uneven sampling
biases across species (Bobay and Ochman 2018b). Biases in species sampling are a
common issue for many genomic analyses and several methods have been developed
as an attempt to address this shortcoming (Lapierre et al. 2016). However, the most
efficient solution remains to increase sample sizes, and, more importantly, to limit
biases when collecting samples, but this last consideration is often in conflict with
study designs focusing on medically- or environmentally-relevant strains.

Cohesion of Core- and Pangenomes The goal of a species definition is to identify
cohesive ensembles of evolutionary lineages. The ideal species definition would
succeed in identifying genetically and ecologically cohesive units. Although genetic
cohesion is easier to assess than ecological cohesion for bacteria, the genetic
homogeneity of a group of organisms can be evaluated through different lenses.
Firstly, because the core-genome constitutes the backbone of genes shared by all
members of the species, these genes are more readily used to infer evolutionary
relatedness and other metrics. Moreover, despite gene flow, core-genomes have
conserved the phylogenetic signal of the vertical inheritance of bacterial taxa
(Touchon et al. 2009; Abby et al. 2012). Nearly all genome-based species defini-
tions—i.e., ANI, phylogenetic methods, and BSC-like—rely exclusively on the
cohesion of the core-genome. The pangenome potentially offers an alternative
measure of the genetic cohesion of species, since conspecific strains are expected
to share more similar gene repertoires than strains belonging to distinct species. It is
currently difficult to assess the pangenome cohesion of a species considering that
accessory genes tend to be found at low frequency within species and this would
require deep genome sampling, although more and more bacterial species have now
hundreds or thousands of sequenced genomes. More analyses need to be performed
to understand the specificity of pangenomes, especially in relation to closely related
lineages and ecologically or geographically overlapping species.

Gene flow can define biological species based on DNA exchange along the core-
genome but, so far, this method has been ignoring the patterns of HGT of the
pangenome. The core- and pangenomes are two complementary metrics that can
be used to infer the cohesion of species and some recent results obtained in two
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bacterial phyla suggest that core- and pangenomes present the same phylogenetic
signal, implying that both can be reliable for inferring species borders (Wright and
Baum 2018). In fact, a recent method has proposed a first attempt to delimitate
species based on pangenome cohesion (Moldovan and Gelfand 2018), which opens
promising possibilities to include pangenome cohesion into species delimitation.
More work needs to be done in order to finely understand the evolutionary dynamics
of the pangenome itself. For instance, the dynamics of the pangenome is likely
affected by the ability of a given species to engage in gene flow, as suggested by a
study showing that clonal species are unlikely to present a large pangenome, since
their pangenome primarily evolves through gene loss (Bolotin and Hershberg 2015).
Bacterial species can also gain new genes from external lineages and the extent of
segregation of the pangenome remains poorly understood. The accumulation of
genomic data should soon allow more accurate analysis of the dynamics of the
pangenome and this will open new avenues for evaluating the genetic cohesion of
prokaryotic species.

5 Drift-Barrier Model for Pangenome Evolution

A BSC-based species definition is particularly relevant for studying population
genetics in prokaryotic organisms. Several parameters such as recombination rate,
effective population size (Ne), or pangenome size are metrics that are typically
inferred at the species level. In particular, Ne has strong implications regarding the
relative impact of selection and drift acting on a given species. High Ne populations
are less sensitive to drift and can efficiently purge deleterious sequences, whereas
low Ne populations, on the other hand, will not be as effective at purging deleterious
mutations. A trait conferred by a given variant would primarily evolve through drift
(i.e., neutrally) when [2.Ne.s| << I, while selection will be effective when 2. Ne.
sl >> I, where s represents the selection coefficient of a given sequence or variant
(Kimura 1968). For these reasons, it is believed that more complex organisms such
as mammals, which have low Ne, present larger genomes due to the accumulation of
“junk DNA” through drift (i.e., the Mutational Hazard Hypothesis) (Lynch and
Conery 2003; Lynch et al. 2011). Because these organisms display small population
sizes, selection is not as efficient at purging slightly deleterious sequences, such as
noncoding DNA, introns, and mobile elements.

In contrast to many eukaryotes, bacterial genomes are small and compact and
because microbes present much larger population sizes, this seems in perfect agree-
ment with the expectation of the Mutational Hazard hypothesis. The genomic
compactness of bacteria has been ascribed to a strong bias toward deletion in these
organisms (Mira et al. 2001; Andersson and Andersson 2001). However, several
studies have observed that, across bacteria, genome size appears positively corre-
lated with Ne (Daubin and Moran 2004; Kuo et al. 2009; Novichkov et al. 2009).
Free-living bacteria frequently possess relatively large genomes (typically >3 Mb),
while obligate endosymbionts—with low Ne—have smaller genomes (frequently
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<1 Mb) (Moran and Plague 2004). Yet, some marine bacteria, which are thought to
reach gigantic population sizes, also present streamlined genomes (Giovannoni et al.
2005, 2014). In particular, Prochlorococcus and Pelagibacter ubique have small
genomes (~1 Mb), although they might be among the most abundant cellular
organisms on earth (Batut et al. 2014). Therefore, the relationship between Ne and
genome size appears to be more complex in bacteria.

One key difference between bacteria and higher eukaryotes is the very low
amount of noncoding DNA, introns and mobile elements found in most bacterial
genomes. In prokaryotes, variations in genome size are primarily driven by the
presence of different amounts of accessory genes. Accessory genes are assumed to
be functional and beneficial to the cell and recent modelling work suggests that
virtually all genes in prokaryotic genomes are expected to be beneficial (Sela et al.
2016). Because the diversity of accessory genes is a direct function of pangenome
size, this opens the possibility that Ne may drive the evolution of pangenome size
rather than average genome size in prokaryotes. In support to this hypothesis, clear
correlations between Ne and pangenome size have been observed across a dataset of
153 species, whose borders have been defined based on the BSC under a unified
framework (Bobay and Ochman 2018b). Other recent studies have also reported
similar trends (Mcinerney et al. 2017; Andreani et al. 2017).

Based on these observations, we have recently proposed that bacterial
pangenomes could be driven by Drift-Barrier evolution (Bobay and Ochman
2018b). The Drift-Barrier model has originally been developed to account for the
variation in mutation rates across organisms (Sung et al. 2012; Lynch et al. 2016).
Under a Drift-Barrier model, pangenome size is expected to be a function of Ne
because only the most beneficial accessory genes would be conserved by selection in
small Ne species, while species with large Ne would be able to conserve accessory

Selection coefficient s

Fig. 1 Drift-Barrier model of pangenome evolution. Each large circle represents a pangenome and
small circles represent individual genes. Color gradient reflects the selective coefficient of the genes.
Species with large effective population size Ne are less subject to drift and can retain genes of small
beneficial value (left). As Ne decreases, additional genes of small fitness benefit will be perceived as
effectively neutral and will be lost by drift (center). Under strong levels of drift, as expected in small
Ne species, only the most beneficial genes will be conserved by selection, and this will result in
small pangenomes mostly composed of core/housekeeping genes (right)
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genes with modest fitness contribution (Fig. 1). As supported by multiple studies,
deleterious and neutral sequences are expected to be quickly purged from microbial
genomes (Mira et al. 2001; Andersson and Andersson 2001). Our model assumes
that virtually every gene of the pangenome is beneficial (positive selection coeffi-
cient: s > 0). Even if beneficial, an accessory gene is expected to be retained by
selection only if it is perceived as effectively beneficial. In other words, an accessory
gene will be conserved when 2.Ne.s >> I, while genes that appear effectively
neutral (2.Ne.s << I) are expected to be lost by drift. This implies that high Ne
species are expected to retain a larger pool of genes including many accessory genes
with modest fitness contribution, whereas low Ne species can only conserve the most
beneficial genes (high s), i.e., mostly essential and/or core genes. Although new
genes can be introduced into a species’ pangenome by HGT, those accessory genes
with low selective coefficient will be lost by drift.

6 Outlook

Many aspects of bacterial biology are now better understood but building a
biologically-relevant microbial species concept remains challenging. Because pro-
karyotic organisms are microscopic, their population dynamics, ecological interac-
tions, and speciation mechanisms are still difficult to decipher. Many aspects of the
population processes driving microbial evolution have not been characterized.
Habitat structure—and its temporal variations—of prokaryotic species is still for
the large part mysterious. Similarly, microbial ecology and its impact on population
dynamics remain tedious to describe in depth. Defining clear microbial niches is
problematic practically and conceptually and little is known about microbial ecology
compared to the vast collection of genomic data now available. The recent devel-
opment of reverse ecology approaches opens a new route to gain knowledge about
microbial ecology.

The accumulation of genomic data has profoundly impacted our vision of speci-
ation in prokaryotic organisms. Several results suggest that prokaryotic species are
definable and diagnosable as genetically cohesive as evidenced by the existence of a
core-genome. However, the evolution of the core-genome remains to be fully under-
stood. It is becoming possible to analyze the evolution of species- and genus-specific
core-genomes over relatively short evolutionary time scales by comparing related
species when sufficient genomic data is available (Touchon et al. 2014). On the other
hand, the vast diversity of microbial pangenomes emphasizes the versatility of
bacterial species. Much larger data sets are needed to accurately understand the
dynamics of bacterial pangenomes, but several species now have thousands of
sequenced genomes available. Deciphering the evolution of the pangenome will be
highly insightful for our understanding of the dynamics and the genomic cohesion of
microbial species.

From the original view of bacteria as purely clonal organisms, more and more
evidence indicate that gene flow and HGT are key players in the evolution of most
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bacteria, and potentially act as major contributors to bacterial speciation. Computa-
tional approaches are needed to finely characterize gene flow in order to understand
how networks of DNA routes can drive genomic cohesion and division in microbial
species. Integrating these different aspects of bacterial biology will contribute to a
more comprehensive prokaryotic species concept.
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Further, they provide a framework for modeling the efficacy of drugs and vaccines.
In summary, following the explosion in sequencing technology, pangenome studies
have revealed remarkable genomic organizations at the levels of species, with
important implications to our understanding of evolution, and our ability to design
therapeutics and predict their long-term outcomes.

Keywords Pangenome - Genomic diversity - Genomic plasticity - Horizontal gene
transfer

1 Introduction

Bacteria dominate our planet and can be traced back to billions of years in the
geological record. They play critical roles in shaping our habitat, from adding
oxygen to the atmosphere to fixing nitrogen in the soil. They also play a vital role
in human health, with commensal/mutualistic bacteria influencing nutrition and
immunity, and pathogenic bacteria causing diseases from epidemics like the Black
Death of medieval times to modern-day chronic biofilm infections resulting in the
spread of antibiotic resistance. A defining characteristic of bacteria in both the
environment and health is their ability to rapidly evolve and adapt. Here we discuss
the elegant population-level organizational scheme that bacterial species use wherein
their genomes are distributed among large numbers of strains, with no single strain
having more than a small minority of genes available at the population level. This
distributed pan(supra)-genome provides for adaptation to countless novel challenges
and environmental niches.

Individual bacterial genomes have a discrete number of genes. However, enor-
mous differences in gene content exist even among the genomes of strains of a single
species. Therefore, the gene content of a single strain is less than the full complement
of different genes from all strains. The comprehensive set of genes within a species,
i.e., all genes from all strains, is defined as the pangenome (or supragenome). The
pangenome is organized into the core genome, which corresponds to the set of genes
conserved across all strains in the species, and the accessory genome (or distributed
genome), which are all noncore genes. We compiled pangenome papers from
PubMed, identifying 295 species-specific pangenome projects performed on approx-
imately 70 genera (Fig. 1). In all of these projects, the pangenome was found to be
substantially larger than the core genome (Fig. 2).

The diversity within a species’ pangenome provides a reservoir of genetic
material available to bacterial cells to respond to selective pressures. Horizontal
gene transfer (HGT) is the process by which individual bacterial cells can uptake
genetic material from their environment or neighboring bacteria and generate novel,
strain-specific gene combinations. It seems logical that when HGT occurs among
strains of the same species these events are more likely to be adaptive or work in
concert within the biological network, when compared to random mutations or genes
acquired from distantly related species. This has been demonstrated to be the case in
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multiple species, where the majority of accessory genes appear to be evolving in
tandem with the core genome (Gladitz et al. 2005). In this manner, the pangenome
allows a species to incorporate more solutions to environmental stresses and niches
than can be encoded by a single strain (Ehrlich et al. 2005, 2010).

2 Steps in the Assembly of a Pangenome

Pangenome analyses are performed on a set of strains from the same species, or very
closely related species (often different species grouped together by genus, though we
will not be examining those projects here). The set of all coding sequences (CDS) are
clustered by sequence similarity with the objective of generating groups of
orthologous genes. This is a multistep process that begins with whole-genome
sequencing (WGS) of multiple independent bacterial (nonclonal, nonderivative)
strains selected to represent the broadest geographic and phenotypic ranges of the
species of interest. Following sequencing, the remaining steps are computational and
include (1) assembly of genomes into contigs, (2) annotation of protein-coding
sequences (CDS), and (3) clustering of CDSs based on the sequence similarity of
nucleic acids or amino acids of their cognate encoded proteins. Once clusters are
defined, they are classified based on strain prevalence into core or accessory (dis-
tributed) clusters. The accessory/distributed set of gene clusters is often further
organized into those that are widely distributed (near core/soft core) in a population
and those that are rare (shell) or unique (Fig. 3).
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Fig. 3 Histogram of the number of gene clusters present in a given number of genomes. Taken
from a project examining 12 genomes of Moraxella catarrhalis (Davie et al. 2011), with a total of
2383 gene clusters
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The tools and the parameters used to characterize gene clusters vary widely
among projects (Fig. 4). Generally, the first project(s) within a species tend to
focus on the basic characterization of the pangenome. Subsequent projects often
emphasize specific areas of interest, such as the distribution of virulence factors,
levels of horizontal gene transfer, or epigenetic factors. Our survey of
295 pangenome projects did not reveal a strong preference for any individual
assembly program. This is likely because assembly programs and versions perform
differently depending on the examined species and the employed DNA sequencing
technology. Further, many pangenome projects utilize pre-assembled genomes from
publicly available databases (GenBank, EMBL, DDJB, JGI, PubMLST, etc.). This
survey found that the CD-HIT program was the most frequently used gene clustering
software, though a diverse set of other programs were also utilized for this purpose.
Finally, commonly used software for other analyses include gene annotation (RAST,
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Prokka, PHAST, and Prodigal) (Aziz et al. 2008; Seemann 2014; Zhou et al. 2011;
Hyatt et al. 2010), genome/gene alignments (Muscle, Mauve, Mega, and ClustalW)
(Edgar 2004; Darling et al. 2004; Kumar et al. 1994; Higgins and Sharp 1988), and
phylogenetic tree building (Mega, RAXML, and PhyML) (Kumar et al. 1994;
Stamatakis 2006; Guindon et al. 2010). Overall, there is high variability in the
methods/software used for pangenome analyses, reflecting diversity in the scope
and goals of these projects.

3 Size of the Pangenome

The size of a species’ pangenome, relative to the size of the core genome, is highly
variable across the eubacteria. In Fig. 2, we display the variability we encountered in
295 species-specific pangenome projects (Figs. 1 and 2). Papers included in this
summary span from 2005 [when the first pangenomes were described in
S. agalactiae (Tettelin et al. 2005) and H. influenzae (Shen et al. 2005; Hogg et al.
2007)] through 2018. In all cases, the pangenome was significantly larger than the
set of genes in a given strain. The size of the core genomes ranged from <20 to
>60% of the pangenome (Fig. 2).

In some cases, calculations on the size of the pangenome may reflect inaccuracies
in the current taxonomy, instead of the underlying biology. An instance of high
genomic diversity is observed with Gardnerella vaginalis, where only 27%
(746/2792) of its gene clusters are core (Ahmed et al. 2012). It is likely that
G. vaginalis appears so genomically diverse because traditional biochemical tests
used to identify strains within this taxa were unable to distinguish among the
multiple genomically diverse species that are actually present. Thus, in this case,
the apparent large size of the pangenome (and the corresponding small size of the
core genome) arose from the unintentional merging of multiple species into a single
species. In contrast, instances of low genomic diversity are observed in the genus
Bacillus. Both Bacillus anthracis and Bacillus thuringiensis closely resemble
B. cereus (Vilas-Boas et al. 2007). B. thuringiensis appears to correspond to multiple
phylogenetic clades (lineages) within B. cereus. B. anthracis (a species with one of
the smallest pangenomes) likely represents a single phylogenetic lineage within the
broader, more diverse definition of B. cereus that acquired a clinically important set
of toxin genes (Okinaka and Keim 2016; Hall et al. 2010).

It is tempting to speculate that there are general principles that directly associate
the size of the pangenome with the biology of the species. Factors that may play a
substantial role are the extent of gene transfer, the degree of interactions with
competing and cooperating species, the number of niches inhabited, or the lifestyle
of the bacterium. The hypothesis that highly specialized environments lead to
smaller genome sizes has been explored in the context of obligate intracellular
species and pathogens (Merhej et al. 2009; Georgiades et al. 2011). A study of
overall differences between the genomes of 12 highly pathogenic species compared
to their most closely related nonpathogenic cousins found that, for the sets of
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bacteria studied, the most virulent species generally had smaller genomes, which
suggests gene loss as well as loss-of-function mutations (Georgiades and Raoult
2011). The reduced genome size is hypothesized to be a consequence of extreme
specialization of the pathogens to their hosts, while the less-specialized
nonpathogens show greater levels of genomic variation due to selective pressure to
remain competitive in more diverse environments (Georgiades and Raoult 2011).
While this is an interesting idea, not all studies point to a relationship between
pathogenicity and genome size (Bonar et al. 2018).

In a related vein, longitudinal comparative genomic studies of pathogenic clonal
lineages of Pseudomonas aeruginosa, Burkholderia sp., and Haemophilus
influenzae have captured microevolution and host adaptation in the human lung
(Rau et al. 2012; Lee et al. 2017; Pettigrew et al. 2018; Moleres et al. 2018; Bianconi
et al. 2018; Burns et al. 2001; Li et al. 2005; Jorth et al. 2015; Silva et al. 2016). In
many cases, these changes reveal gene deletions when compared to their anteced-
ents. For instance, serial isolates of H. influenzae clonal lineages in COPD patients
display a significant association with loss-of-function mutations in the ompPl
(fadL) accessory gene. fadL is beneficial to this bacterium in early infection, as it
promotes adhesion and intracellular invasion via interactions with the epithelial cell
ligand hCEACAMI1 (human carcinoembryonic antigen-related cell adhesion mole-
cule 1). In contrast, it may hinder long-term survival in the lung, as its expression
increases sensitivity to arachidonic acid, an exogenous mammalian long-chain fatty
acid with bactericidal effects (Moleres et al. 2018). This is indicative of selective
pressure in favor of ompP1 function in the nasopharynx and against its function in
the lungs. These observations support the general concept that gene loss may
accompany the ability to survive within highly circumscribed niches (Rau et al.
2012; Lee et al. 2017; Pettigrew et al. 2018; Moleres et al. 2018). Nonetheless, one
must keep in mind that evolution in niches that do not support transmission may not
be relevant to the evolution of the pangenome. Large-scale comparative pangenome
and evolutionary studies promise to reveal the rules that shape the overall
pangenome size, as well as identify disease and tissue-specific genes (and gene
losses).

4 The Accessory Genome and Functional Diversity

In general, core genomes are enriched for housekeeping functions. These include
energy production, amino acid metabolism, nucleotide metabolism, lipid transport,
and translational machinery. Accessory genomes often encode genes involved in
protein trafficking and defense, as well as many niche-specific functions. Further,
plasmids, phage, and transposons are also often associated with accessory genomes.
This section focuses on functional diversity as it pertains to the accessory genome.

Phenotypic traits can result from a blend of core genes with highly variable
accessory genes. This is exemplified by the production of the capsule (Swartley
et al. 1997; Bentley et al. 2006), synthesis of the extracellular polymeric substance
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(EPS) (Harris et al. 2017), and modification of the cell wall (Gerlach et al. 2018).
Here, conserved modules encoded in the core and softcore genomes are modified by
components encoded by the accessory genome, providing a procedure to generate
phenotypic variability. In Neisseria meningitidis, capsule biosynthesis genes are
encoded within a single syntenic cps chromosomal region, which encodes both
core and accessory genes. Variations in the accessory genes yield diversity in capsular
types (Harrison et al. 2013). In Lactobacillus salivarius, the EPS cluster 2 contributes
to the biofilm matrix. The genes at the extremities of this multigene cluster genes are
core, while there is extensive variation in the genes encoded in the center of the
cluster. These differences in glycotransferases and EPS biosynthesis-related proteins
contribute to variations in the EPS structure (Harris et al. 2017). Yet another example
is observed in methicillin-resistant Staphylococcus aureus (MRSA), where strains
evade host immunity by modification of wall teichoic acid (WTA) using an alterna-
tive WTA glycosyltransferase encoded on a prophage (Gerlach et al. 2018). These
studies exemplify how diversity within the accessory genome can provide bacteria
with a blueprint to generate variability. This genomic flexibility is likely to increase
the adaptive potential of bacterial species in the face of environmental stresses.
Genes encoded by the accessory genome can influence pathogenic potential. A
well-studied example is Escherichia coli; this species encodes a highly diverse
pangenome, where variability within the accessory genome leads to strains that
differ in their ability to colonize human cell types and to trigger pathogenicity
(Rasko et al. 2008). E. coli strains are grouped into pathovars based on the presence
of virulence markers, often encoded on mobile elements (Kaper et al. 2004). Whole-
genome comparative analyses of pathovars demonstrate that strains of the same
pathovar are not always phylogenetically clustered (Rasko et al. 2008; Salipante
et al. 2015; Hazen et al. 2013). This pattern of clustering is consistent with the
transfer of accessory genes among E. coli strains, as well as the independent
acquisition of virulence traits by strains in the same pathovar. One prominent
example of HGT among E. coli strains of different pathovars is observed in the
highly pathogenic strain that caused the 2011 German food poisoning outbreak
(Mahan et al. 2013). Multiple genomic studies ultimately concluded that the out-
break was caused by a Shiga toxin-producing E. coli (STEC) of serotype O104:H4,
which harbored multiple genes commonly associated with enteroaggregative E. coli
(EAEC) including: a plasmid-encoded type I aggregative adherence fimbriae that
mediate colonization and biofilm formation, assortment of serine proteases
(SPATE:S), and chromosomally encoded Shigella enterotoxin 1 (Askar et al. 2011;
Mellmann et al. 2011; Rasko et al. 2011). Moreover, the prevalence of genetic
transfer among E. coli strains is highlighted by the lack of an exclusive genomic
signature among commensal E. coli strains. The strains that asymptomatically
colonize the human gastrointestinal tract are genetically diverse (Rasko et al.
2008). These commensal strains may serve as genetic repositories for virulence
determinants and, in addition, gene transfer events may modify their pathogenic
potential and drug sensitivity. In conclusion, the accessory genome of E. coli is a
critical determinant of tissue tropism, pathogenic potential, and clinical presentation.
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Non-orthologous accessory genes with related functions are often syntenic across
strains. We propose that this genomic configuration allows one variant to be
switched by another in the process of recombination, where the neighboring genes
provide an anchor for homologous recombination. One example is the genomic
region that encodes the Dpnl, Dpnll, or the Dpnlll type II restriction enzymes in
S. pneumoniae. These loci differ in the sequence of the enzymes, the number of
genes in the locus, and their ability to restrict phages or transforming DNA (Johnston
etal. 2013a; Eutsey et al. 2015). Another example is the genomic region that encodes
bacteriocins downstream of the blp histidine kinase signal transduction system in
S. pneumoniae. While the genes in this region are predicted to be bacteriocins, the
number of genes, their sequence, and the cells they target differ across strains (Lux
et al. 2007; Dawid et al. 2007; Valente et al. 2016; Rezaei Javan et al. 2018). Other
examples of this proposed mechanism, wherein conserved flanking genes anchor
multiple variants of pathogenicity genes, include the parologous vHiSLR genes of
H. influenzae (Kress-Bennett et al. 2016) and the bro gene variants of Moraxella
catarrhalis (Earl et al. 2016). Syntenic regions that encode non-homologous genes
within a single functional class may provide a pangenomic “switch,” allowing cells
to flip between variants of a single function to optimize fitness in diverse niches.

In summary, many of the genes in the accessory genome provide new functions or
variations on a conserved function in a manner that expands the ability of strains to
survive or adapt in their environments. In this manner, the strain diversity resulting
from variations in the accessory genome may serve as a population-level tool to
ensure the survival of a bacterial species.

5 Pangenome Plasticity

Speaking teleologically, via intra- and inter-species gene transfer, individual bacte-
rial strains can draw from an expanded set of genes for their own adaptation and
evolutionary success. This phenomenon was observed as early as 1928 in the
Griffith’s experiment, where a nonencapsulated strain of S. pneumoniae integrated
DNA from an encapsulated isolate, leading to its conversion from avirulent to
virulent (Griffith 1928). Almost a century later, the bacterial research community
has described multitudinous instances of gene transfer among bacterial strains.

5.1 Gene Transfer Events Within and Across Species

Gene transfer events can occur anywhere, and our literature review identified
19 manuscripts that describe bacterial in vivo gene transfer within human patients
(Table 1). A common theme is the acquisition of antibiotic resistance; particularly in
regard to carbapenems, B-lactamases, and quinolones. Resistance was commonly the
result of genes acquired via bacteriophages, plasmids, or pathogenicity islands
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Table 1 Summary of studies on in vivo recombination

K. A. Innamorati et al.

Bacterial species

Citation

Mechanism of transfer

Consequences and
disease state

Acinetobacter Agodi et al. (2006) | Class 1 integrons ICU-acquired pneumonia

baumannii multiresistant antibiotype

Enterobacteriaceae | Hammerum et al. Plasmid Meropenem resistance
(2016)

Enterobacteriaceae | Datta et al. (2017) | Plasmid transfer of Septicemia

blaNDM-1

Enterobacter clo- | Sidjabat et al. Transfer of blaIMP-4 Meropenem resistance

acaelEscherichia (2014)

coli

Enterobacter Neuwirth et al. Plasmid transfer- Multidrug resistance

aerogenes (2001) encoding ESBL TEM-24

Escherichia coli Soto et al. (2011) | Pathogenicity island Male UTI recurrence
acquisition

Escherichia coli Schjgrring et al. Bacteriophage Diarrhea and hemolytic

(2008),

Bielaszewska et al.

(2007)

uremic syndrome,
gastroenteritis

Escherichia coli

Gumpert et al.
(2017)

Conjugative antibiotic
resistance plasmid

Antibiotic resistance

Haemophilus Moleres et al. Selective loss-of-func- Loss of function-

influenzae (2018) tion pressure resistance to bactericidal
fatty acids Acute COPD
exacerbations

Klebsiella Mena et al. (2006) | Insertion sequence Extended-spectrum beta-

pneumoniae (IS26) lactamase-producing
species carbapenem
resistance

Klebsiella Gottig et al. (2015) | Transconjugation of Carbapenem resistance

pneumoniael/ plasmid/transposon

Escherichia coli

Klebsiella Gona et al. (2014) | Mobile genetic elements | Carbapenem-resistant

pneumoniae/ carrying blaKPC, patients developed

Escherichia coli

conjugative plasmids

bloodstream infections

Legionella McAdam et al. Genomic island carrying | Legionnaires’ disease/

pneumophila (2014) T4SS community-acquired
pneumonia-T4SS associ-
ated with more severe
symptoms

Neisseria Brynildsrud et al. Genomic islands, bacte- | NmC meningitis

meningitidis (2018) riophage (MDAphi)

Serratia Mata et al. (2010) | Plasmid mediated AmpC beta-lactamase,

marcescens/ quinolone resistance

Escheric hia coli

Staphylococcus Hurdle et al. Conjugative replicon Mupirocin resistance-

aureus/ (2005) persistent carrier of

epidermidis MRSA

(continued)
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Table 1 (continued)

61

Consequences and

Bacterial species Citation Mechanism of transfer disease state
Staphylococcus Moore and Multiple mobile ele- Hospital MSSA
aureus Lindsay (2001) ments, specifically

phages
Staphylococcus Stanczak-Mrozek | Bacteriophages and Antibiotic-resistant
aureus et al. (2015) plasmids (general MRSA

transduction)
Staphylococcus Langhanki et al. Mobile elements (geno- | Long-term persistence
aureus (2018) mic island, pathogenicity | cystic fibrosis patients

islands, bacteriophages),

transduction

(Conlan et al. 2014; Bielaszewska et al. 2007; Datta et al. 2017; Feld et al. 2008;
Langhanki et al. 2018; Mena et al. 2006; Neuwirth et al. 2001; Soto et al. 2011). In
our set, five cases show HGT between different bacterial species: Serratia
marcescens and Escherichia coli (Mata et al. 2010), two instances of Klebsiella
pneumoniae and E. coli (Gona et al. 2014; Gottig et al. 2015), Staphylococcus
aureus and Staphylococcus epidermidis (Hurdle et al. 2005), and Enterobacter
cloacae and E. coli (Sidjabat et al. 2014). These studies highlight how bacteria
occupying the same niche can evolve during the infectious disease process, posing
new challenges for treatment.

Cross-species transfer events introduce new genes into the species, thus
expanding the pangenome. A prominent example is acquisition of the type 3 secre-
tion system (T3SS) by multiple Gram-negative bacteria. The T3SS allows for the
transport of effector proteins from the bacterial cytosol directly into the host cells
(Hacker et al. 1997; Hueck 1998). In most cases, the genes encoding this injection
system, and their effectors, have been acquired by HGT (Brown and Finlay 2011).
These T3SS systems are critical components of virulence. For instance, in Salmo-
nella, acquisition of the SPI1 T3SS enables the bacterium to invade host cells, while
acquisition of the SPI2 T3SS enables it to escape host defenses and survive within
host cells inside a protective vacuole (Jennings et al. 2017; Ochman et al. 1996).
Another example of cross-species transfer has been observed in S. pneumoniae,
where a multigene locus was acquired from Streptococcus suis (Antic et al. 2017).
This locus was acquired exclusively by a phylogenetically distinct subset of strains
within the S. pneumoniae species—a subset much more likely to infect the conjunc-
tiva. The genes acquired from S. suis appear to contribute to the tissue tropism by
promoting adherence to the ocular epithelium. Thus, expansion of the pangenome by
gene acquisition from outside the species can contribute to bacterial virulence and
tropism.

Gene transfer among strains of the same species provides a mechanism to
redistribute accessory/distributed genes within single strains. Studies on vaccine-
escape strains of S. pneumoniae identified multiple genes acquired from a single
donor (Golubchik et al. 2012). These recombination events ranged from 0.04 to
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44 kb in size, and were located in various regions of the genome, including the
capsular locus. Separate analyses of whole genomes of S. pneumoniae have captured
multiple instances of serotype switches including from 23F to 3 and from 19F to 19A
(Chewapreecha et al. 2014; Croucher et al. 2014a; Hiller et al. 2011). A current
vaccine targets the 19F capsule, but not the 19A. Serotype 19F strains were widely
prevalent pre-vaccine, while serotype 19A strains have spread in the USA during the
post-vaccine era (Geno et al. 2015). This serotype switch has been observed in
vaccinated and non-vaccinated populations. These observations are consistent with a
model where HGT generates diverse genotypes, selective pressure from vaccines
drives the spread of a subset of strains, and competition across strains shape the
population and distribution of accessory genes.

Studies that describe recombination among strains driven by natural competence
and transformation suggest that multiple transfers may occur both simultaneously
and sequentially between individual donors and recipient strains. A study on
S. pneumoniae captured the progressive accumulation of recombinations in a set
of six clinical strains isolated from a pediatric patient over a 7-month period. One
strain incurred multiple recombination events from the same donor, over two
instances of recombination. These events introduced recombinations at 23 sites,
and led to the exchange of over 7% of the genome (Hiller et al. 2010). Similarly, a
laboratory study in H. influenzae also captured multiple gene transfer events after a
bout of recombination (Mell et al. 2011). For this study, DNA from a clinical strain
was used to transform a laboratory strain. Transformants were observed to have
multiple recombination events over the length of the chromosome, collectively
corresponding to ~1-3% of the genome. These analyses not only demonstrate
HGT events across strains, but also suggest that strains may display multiple trans-
fers during a single competence event.

HGT occurring through natural competence and transformation is unique among
HGT mechanisms, in that it is driven by the recipient as opposed to by the donor (as is
the case with mating and transduction). This means that it is an expressed phenotype
that is triggered by the recipient cell. Thus, as a mechanism of mutation and evolution,
it is expressed when a cell is stressed and provides a genetic means to adapt to a
stressful environment resulting in mutation-on-demand (Ehrlich et al. 2005).

5.2 Constraints on Gene Transfer

While there is clear evidence of HGT among strains of the same species, distributed
genes are not randomly distributed within a species. Instead, they tend to be
associated with specific lineages, suggesting that pangenome evolution operates
with forces that promote as well as limit gene transfer (Croucher et al. 2014b), as
discussed in the next paragraphs.

There is increasing evidence that co-selection of genes limits gene transfer. A
genome-wide study in S. pneumoniae demonstrated that a set of 876 loci, annotated
to function in metabolism or transport, displayed a nonrandom distribution (Watkins
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et al. 2015). The authors show that groups of coevolved genes (alleles) are adapted to
particular metabolic niches. They predict that disruption of these groups of alleles, a
process mediated by HGT, would lead to a drop in strain fitness. A computational
approach applied to S. pneumoniae and N. meningitidis also uncovered co-selection
of genes associated with drug resistance and virulence (Pensar et al. 2019). Genome
architecture may also limit gene transfer. Many bacterial genomes encode short
sequences that are enriched in close proximity to the replication terminus. The
location of these sequences is under selection, such that HGT events that disrupt
these elements impose a fitness cost (Hendrickson et al. 2018). Thus, allele
co-selection and genomic architecture illustrate genome-wide features that, when
disturbed, can result in loss of fitness and consequently restrict gene flow.

In addition to factors that limit gene transfer via their influence on fitness, bacteria
encode genes that serve as barriers to incoming DNA, such as restriction modifica-
tion systems (RM), phage-defense systems, and Clustered Regularly Interspaced
Short Palindromic Repeats (CRISPR)—associated proteins (CRISPR-Cas). Most
RM and CRISPR-Cas systems exert their influence on double-stranded DNA.
While DNA entering the cell by transformation is single stranded, these systems
still appear to serve as barriers to transformation; a compelling model proposed that
they do so via their activity on the transformed chromosome (Johnston et al. 2013b).
Studies in N. meningitidis and S. pneumoniae illustrate the role of restriction
modification (RM) systems in limiting HGT. Strains of N. meningitidis organize
into distinct phylogenetic groups that are associated with the distribution of >20 RM
systems (Budroni et al. 2011). This distribution is consistent with the hypothesis that
the RM systems limit HGT among clades. Similarly, the PMEN1 pandemic lineage
of S. pneumoniae displays asymmetric gene transfer. The heterologous gene transfer
from PMENI to other strains is abundant, yet into PMENI is modest (Wyres et al.
2012). The DpnlIl RM system contributes to this structure, as it appears to limits
HGT into PMENT strains, and is almost exclusively found in the PMENT lineage
(Eutsey et al. 2015). Type I RM systems can also limit gene transfer, however, their
architecture may allow rapid evolution of HGT barriers. The type I RM systems have
a multifunctional component, where modification in one sequence can lead to both
changes in methylation and endonuclease activity. This is in contrast to type Il RM
systems, where the protein that directs methylation is distinct from the protein that
directs endonuclease activity, such that changes in specificity require mutations in
more than one protein (Wilson and Murray 2003). In this manner, type I RM systems
can rapidly evolve new specificities and generate diversity. A recent study in
S. pneumoniae demonstrated that phase variation in the SpnIV phase-variable
Type I RM limits acquisition of genomic islands by transformation (Kwun et al.
2018). The work captures an instance of phase variation on a type I RM system that
generated an HGT barrier between nearly identical strains. Together, these studies
suggest that RM systems may foster genomic stability within subsets of strains.

Many bacteria encode an abortive infection (Abi) system, which appears to be
altruistic mechanism to protect the population at-large. When bacteria possessing an
Abi system are infected by phage, the system is activated and triggers the death of
the bacterial host. In this manner, death of the infected isolate avoids spread of the
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phage across the bacterial community (Chopin et al. 2005). In an exciting twist,
phage defense systems may also be encoded by prophage, illustrating cooperation
between bacteria and phage to restrict unrelated phages (Dedrick et al. 2017; Bondy-
Denomy et al. 2016).

CRISPR-Cas confers adaptive immunity in prokaryotes and has the ability to
inhibit conjugation, transduction and transformation. The CRISPR-Cas are com-
posed of arrays of palindromic nucleotide repeats that are interspersed by short
unique DNA segments called spacers, and cas genes. The spacers are acquired
from foreign DNA, usually bacteriophages. Following acquisition, spacers are
transcribed and processed into small CRISPR RNA (crRNA) molecules. A complex
formed by Cas proteins and crRNA leads to the degradation of invading foreign
nucleic acid, protecting cells from future invasion (Jiang and Doudna 2017; Adli
2018). Many bacterial species and lineages are devoid of CRISPR-Cas systems. In
vitro studies in multiple bacteria reveal an inverse correlation between HGT and the
presence of a functional CRISPR-Cas system (Jiang et al. 2013; Watson et al. 2018).
In Enterococcus faecalis, multidrug-resistant plasmids were observed in strains that
lacked CRISPR-Cas systems, while the drug-sensitive strains encoded this system
(Palmer and Gilmore 2010). Further, under selective pressure for the acquisition of
antibiotic-resistant plasmids, Staphylococcus epidermidis strains acquired
inactivating mutations in the CRISPR-Cas system (Jiang et al. 2013). These studies
suggest that bacteria encounter a tradeoff: the fitness advantages associated with
phage resistance afforded by CRISPR-Cas must be balanced against a decrease in
genomic plasticity and the benefits conferred by acquisition of novel genes. None-
theless, the role of phage protection systems in restricting gene flow is far from fully
resolved. Some studies find contrasting results, and do not support the conclusion
that CRISPR-Cas limits HGT. A large-scale computational study revealed that the
activity of the CRISPR-Cas system was not associated with HGT events over long
evolutionary timescales (Gophna et al. 2015). Further, a study in Pectobacterium
atrosepticum suggests that CRISPR-Cas systems may actually contribute to HGT
via their role in protecting bacteria against phage attack (Watson et al. 2018). Thus,
more research is required to determine the ultimate influence of CRISPR-Cas
systems on the genomic plasticity of bacterial populations.

In conclusion, the set of genes in a species’ pangenome can expand via the
introduction of genes from other species, rearrange across strains via an intra-
species exchange, or vary with mutations. The shuffling of accessory genes and
alleles generates new combinations that are subsequently subjected to the forces of
selection on gene products and genome-wide features. Moreover, RMs, CRISPR-
Cas, and phage-defense systems may also influence gene flow across strains and
species. All factors combined, genomic plasticity emerges as a successful strategy
for bacterial survival.
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6 A Balance in the Accessory Genome

A remarkable observation comes from recent mathematical models and population
studies. Negative frequency-dependent selection may stabilize the proportion of
individual accessory genes in a population of S. pneumoniae (Azarian et al. 2018;
Corander et al. 2017). As expected, the authors observed that vaccination led to a
dramatic drop in the representation of vaccine-sensitive strains. In doing so, the
distribution of accessory genes within the population differed from that of the
pre-vaccine population. Interestingly, over time, the frequency of the accessory
genes trended toward that seen in the pre-vaccine population. These results suggest
that the distribution of genes in the pneumococcal pangenome may have an equi-
librium point. It remains to be determined whether similar patterns are observed in
other species. The suggestion that the composition of pangenomes tends toward an
equilibrium has important implications regarding our ability to predict the nature of
replacement strains after the introduction of therapies that target subsets of strains
within a bacterial population using a microbiome-sparing approach.

7 Clinical Applications

Pangenomic analyses can be utilized to identify potential therapeutic targets. Target
specificity can be customized depending on the desired effect. The core genome can
be used to target an entire species, as it contains genes possessed by every member of
the species. Alternatively, targeting select members of the accessory genome, or the
“microbiome-sparing” approach, will ensure that only strains containing the gene of
interest are affected. Both strategies can be utilized to combat a wide variety of
pathogens.

Current efforts to combat pathogenic bacteria include targeting the bacterial
capsule, a large polysaccharide layer that is a major virulence determinant with a
key role in immune evasion. Strains vary in the composition of their capsules: those
with identical capsules are placed in the same serotype, and those with highly similar
capsules within a serogroup. For example, there are over 97 different serotypes
known for S. pneumoniae that fall into 46 serogroups (Bentley et al. 2006; Geno
et al. 2015; Tzeng et al. 2016), and over 12 serotypes for N. meningitidis (Harrison
et al. 2013; Geno et al. 2015; Tzeng et al. 2016; Claus et al. 1997). New serotypes
can arise by HGT, like in the movement of SiaD genes between N. meningitidis
strains, or through mispairing during gene replication, which is responsible for
serotypes 15 B/C in S. pneumoniae (Claus et al. 1997; van Selm et al. 2003).
Capsular polysaccharide vaccines are available for S. pneumoniae, S. typhi, and
N. meningitidis (Geno et al. 2015; Tzeng et al. 2016; Hessel et al. 1999). These
specifically target the bacterial capsule, but young children (under the age of two)
fail to create antibodies against these vaccines. To combat this, polysaccharide—
protein conjugate vaccines were designed, which combine the polysaccharide
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antigen with protein carriers and render them more immunogenic in young children
(Finn 2004; Nair 2012; Szu et al. 1989; Lin et al. 2001). Development of conjugate
vaccines faces major challenges, such as cost, host immune response, and bacterial
structures (Nair 2012). Therefore, it would be ideal to create capsular polysaccharide
vaccines with better immunogenicity. However, the structures of some capsule
sugars are too similar to those found in mammalian tissues to be useful as polysac-
charide vaccines. In these cases, vaccines could be designed to target virulence via
accessory genes or to target these species as a whole via the core genome (Pichichero
2017; Daniels et al. 2016; Chan et al. 2018).

Using the accessory genome to create strain-specific drugs and vaccines has wide
implications. For example, it is easy to imagine the creation of therapies against
bacterial pathogens that are able to spare the larger microbiome. Commensal bacteria
in the microbiome and pathogenic bacteria of the same species may share the same
core genome, but can have vast differences in the content of their accessory
genomes. If a therapy targets protein products from genes found only in the
accessory genomes of pathogenic bacteria, it will not disturb the patient’s microflora
as the commensal bacteria would lack the proteins the therapy is created against.
This strategy has the potential to greatly improve patient health and recovery
following a bacterial infection.

Pangenomic studies can aid in the development of diagnostic tools. As with
vaccines and drug development, accessory genes can be used to identify a particular
strain/phenotype and core genes to identify a specific species. A study of 17 clinical
isolates of G. vaginalis was used to propose the reclassification of G. vaginalis as a
genus, based on the extent of pangenomic variation (Ahmed et al. 2012). Previously,
metronidazole was used as a blanket antibiotic for the treatment of bacterial vagi-
nosis. However, the understanding that metronidazole-resistant clades of
G. vaginalis are actually different species creates room for the development of
diagnostic tools to inform antibiotic treatment for patients with bacterial vaginosis
(Balashov et al. 2014). Similarly, pangenomic studies among phenotypically diver-
gent M. catarrhalis strains led to the characterization of a deep phylogenetic
clade structure that separated the pathogenic sero-resistant strains from commensal
sero-sensitive strains (Earl et al. 2016). In yet another example, Staphylococcus
epidermidis was divided into two phylogenetic groups. One group included both
commensals and pathogens, the other composed exclusively of commensal strains.
Strains in the second group-encoded formate dehydrogenase, revealing a potential
diagnostic marker (Conlan et al. 2012). A study in Helicobacter pylori identified
lineage-specific genes; some have already been associated with acid resistance and
virulence, and thus are potential targets to guide treatments (van Vliet 2017).
Moreover, when studies associating pangenome and phenotype identify unannotated
genes as diagnostic markers, they provide genetic fodder for linking new functions,
distribution, and disease outcome (Ehrlich et al. 2010). One caution to consider in
the development of diagnostics is that chronic infections can be caused by multiple
strains of the same species, and analysis of a single strain could misdirect treatment.

A crucial benefit of pangenomic analyses is their ability to determine the presence
or absence of antibiotic-resistant markers. Prescription of an ineffective antibiotic is
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both detrimental to patient’s health and adds to the problem of global antibiotic
resistance. Some examples of pangenomic analyses to study the distribution and
transmission of resistance genes have been performed on E. coli strains collected
from wastewater treatment plants (Mahfouz et al. 2018), community-associated
Clostridium difficile strains isolated from farm animals and humans (Knetsch et al.
2018), and strains of Stenotrophomonas maltophilia collected from cystic fibrosis
(CF) patients (Esposito et al. 2017). Given that related strains often differ in their
drug resistance profile, probing the accessory genome for genes that encode drug
resistance will be a critical component of personalized medicine.

Genome-scale models (GEMs) of metabolism can provide great insight into the
link between metabolism and pathogenesis. These network reconstructions provide
context for the relationship between gene, gene product, and phenotype.
Pangenomic analyses in three species observed that the majority of core genes are
associated with metabolism (Cornejo et al. 2013; Bosi et al. 2016; Vieira et al. 2011).
Pangenomic analysis of inflammatory bowel disease (IBD)-associated E. coli strains
reported metabolic differences between IBD-associated strains and nonassociated
strains, where the former set appeared to utilize energy more efficiently (Fang et al.
2018). The differences in metabolic capabilities in disease and healthy states provide
a promising place to explore diagnostic applications of the pangenome. Furthermore,
the link between metabolism and virulence can be explored, and be used diagnos-
tically to differentiate strains that cause mild or severe symptom presentation (Bosi
et al. 2016).

Beyond the use of pangenomic analyses to select targets for vaccines, therapeu-
tics, and diagnosis, it has also served as an epidemiological tool. The origin of the
2010 cholera outbreak in Haiti was traced using pangenomic analysis of Vibrio
cholerae. Initially, it was unclear whether the epidemic originated with a local strain
or Asian strain. A pangenomic analysis revealed that the epidemic was caused by
strains originated in Southeast Asia (Reimer et al. 2011; Hendriksen et al. 2011;
Chin et al. 2011; Mutreja et al. 2011; Orata et al. 2014; Hasan et al. 2012). Such
epidemiological studies allow better strategic planning to avoid future epidemics.

8 Conclusions

The Distributed Genome Hypothesis provides both a historical and theoretical
framework for understanding bacterial genomic plasticity, and puts it in the context
of other classes of chronic pathogens (viruses and eukaryotic parasites) that have
developed different mechanistic strategies for the generation of genetic diversity in
situ. Viruses such as HIV-1 utilize an error-prone DNA polymerase (reverse tran-
scriptase) to generate enormous diversity resulting in the development of a
quasispecies within days of infection (Korber et al. 2001). Trypanosomes utilize a
cassetting mechanism for antigen switching wherein they have an entire chromo-
some of outer surface protein cassettes that they can exchange within the larger
functional protein whenever the host adaptive immune response recognizes the
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previous cassette (Horn 2014). Thus, within this context, we can view HGT of
distributed genes among bacterial strains of a species as yet another means of
“programmed” variation (Ehrlich et al. 2010).

9 Perspectives

The plasticity provided by the eubacterial pangenome may be driving the evolution
of other domains of life. The rapid recombination of bacterial strains provided the
evolutionary pressure for the development of the vertebrate adaptive immune sys-
tem—which is mechanistically similar to what the bacteria are doing—it is essen-
tially a random gene rearrangement phenomenon, very similar to HGT (Hu et al.
2007). Lastly, as the variability in species becomes apparent, it triggers the question
of how best to define a species. While pangenomic analyses do not offer the ultimate
solution, they may provide a useful definition. Once the core genome of a species is
defined, strains can be assigned, or not assigned, to a species based on the extent to
which they share the same core genome (Nistico et al. 2014).
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A Review of Pangenome Tools and Recent M)
Studies St

G. S. Vernikos

Abstract With the advance of sequencing technologies, the landscape of genomic
analysis has been transformed, by moving from single strain to species (or even
higher taxa)-wide genomic resolution, toward the direction of capturing the “totality”
of life diversity; from this scientific advance and curiosity, the concept of
“pangenome” was born. Herein we will review, from practical and technical imple-
mentation, existing projects of pangenome analysis, with the aim of providing the
reader with a snapshot of useful tools should they need to embark on such a
pangenomic journey.

Keywords Pangenome - Whole-genome - Exhaustive search - Subsampling -
Regression function - Command line - Web-interface - Bayesian - Hidden Markov
Models - Clustering - ORF alignment similarity - Combinatorial approach - Ortholog
clusters - Reference pangenome - Finite supragenome model - Binomial mixture
model - Infinitely many genes model - Gene presence/absence frequency

1 Introduction

Almost 15 years ago, Tettelin et al. (2005) conceived the concept of pangenome, in
an attempt to describe and model the genomic totality of a taxa (species, serovar,
phylum, kingdom, etc.) of interest. Since then the nomenclature of this concept
became fairly wide to accommodate words like pangenome, core and dispensable
genes, strain-specific genes (Medini et al. 2005; Tettelin et al. 2005), supragenome,
distributed and unique genes (Lapierre and Gogarten 2009), and flexible regions
(Rodriguez-Valera and Ussery 2012). Simply put, using the original definition, the
core-genome describes the set of sequences shared by all members of the taxa of
interest, the dispensable genome captures a subset of sequences shared by some
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members of the group (dictating the diversity of the group: alternative biochemical
pathways, niche adaptation, antibiotic resistance, etc.) while the pangenome is
simply the union of core and dispensable genomes (describing the totality of taxa
at the level of sequence datasets).

The exponential growth of genomic databases started in 1995 with Haemophilus
influenzae being the first complete genome project (Fleischmann et al. 1995). Today,
as of August 2018, 110,660 complete whole-genome sequencing projects—of which
87% are bacteria—and 15,066 finished whole-genome sequencing projects
(Mukherjee et al. 2017) are available in the public domain. These fueled the interest
of many researchers to carry out pangenome analysis at every conceivable phylo-
genetic resolution level (Table 1), exploiting various modeling frameworks, assump-
tions, and underlying homology search engines.

A pivotal work in terms of phylogenetic resolution was carried out by Lapierre
and Gogarten (2009), showing that on average in the largest bacterium group
analyzed so far, the core gene set accounts only for 8% of the pangenome.

The pangenome concept can be implemented either in reverse or in forward-
thinking approaches; in the first case, we are interested to capture the genomic
diversity of the group of interest, while in the second case we are more interested
in exploring and predicting from a pragmatic perspective what is the minimum
number of genome sequences required to capture the totality of the group. Obvi-
ously, limited or sparse datasets might lead to erroneous conclusions; therefore, it
was recommended (Vernikos et al. 2015) that the minimum number of genomes to
analyze be at least five.

The lifestyle of the species of interest is one of the parameters strongly dictating
the distribution shape of the pangenome; for example, if by recurring addition of
group members, the pangenome continues to grow, we are analyzing an open
pangenome (such examples include human pathogens and environmental bacteria)
(Hiller et al. 2007; Tettelin et al. 2008). On the other hand, if the group complexity is
exhausted very fast even from the analyses of a handful of group members then we
are dealing with a closed pangenome whereby we only need few representatives to
describe the totality of the sequence variability.

2 Technical Implementation

In pangenome analysis, the sequence unit for the modeling can be anything from
ORFs, genes, clusters of orthologous groups COGs (Tatusov et al. 1997), coding
sequences (CDS), proteins, arbitrary sequence chunks, concatenated gene or protein
entities, etc.

Practical aspects of consideration that directly influence the validity of the
conclusions drawn, include how quickly is expected a pangenome to grow and
reach a plateau (open or close pangenome), the parameters that determine in the
search engine the orthologous sequences and thereby directly affect the pool of core
and dispensable sequence entities, the mathematical model and the applied
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Table 1 Examples of the application of pangenome approaches at different levels of phylogenetic

resolution
Core size
Level Organism Approach® | # Genomes | (# genes) | Year (reference)
Species Streptococcus ORFsim, 8 1806 Tettelin et al. (2005)
agalactiae Comb
Neisseria ORFsim, 6 1337 Schoen et al. (2008)
meningitidis Comb
ORFsim, 20 1630 Budroni et al. (2011)
Comb
Borrelia ORFsim, 21 1200 Mongodin et al.
burgdoferi Comb (2013)
Escherichia coli ORFsim, 17 2344 Rasko et al. (2008)
Comb
Enterococcus ORFsim, 7 2172 van Schaik et al.
faecium Comb (2010)
Yersinia pestis ORFsim, 14 3668 Eppinger et al. (2010)
Comb
Streptococcus OG, Comb | 11 1376 Lefebure and
pyogenes Stanhope (2007)
Clostridium OG, Comb | 15 1033 Scaria et al. (2010)
difficile
Lactobacillus oG 34 1800 Smokvina et al.
paracasei (2013)
Campylobacter ORFsim, 130 1042 Meric et al. (2014)
Jejuni Ref
Campylobacter ORFsim, 62 947 Meric et al. (2014)
coli Ref
Haemophilus FSM 13 1450 Hogg et al. (2007)
influenzae
Streptococcus FSM 17 1400 Hiller et al. (2007)
pneumoniae ORFsim, 44 1666 Donati et al. (2010)
Comb
Staphylococcus FSM 16 2245 Boissy et al. (2011)
aureus
Moraxella FSM 12 1755 Davie et al. (2011)
catarrhalis
Lactobacillus FSM 17 1715 Broadbent et al.
casei (2012)
Gardnerella FSM 17 746 Ahmed et al. (2012)
vaginalis
Clostridium ORFsim, 13 2657 Bhardwaj and
botulinum Comb Somvanshi (2017)
Group Bacillus cereus ORFsim, 4 3000 Lapidus et al. (2008)
Comb
Bacillus subset of | ORFsim, 12 2009 Eppinger et al. (2011)
species Comb

(continued)
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Table 1 (continued)

Core size
Level Organism Approach® | # Genomes | (# genes) | Year (reference)
Genus Streptococcus OG, Comb | 26 600 Lefebure and
Stanhope (2007)
ORFsim, 52 522 Donati et al. (2010)
Comb
Prochlorococcus ORFsim, 12 1273 Kettler et al. (2007)
Comb
Bifidobacterium ORFsim, 14 967 Bottacini et al. (2010)
Comb
Listeria BMM 13 2032 den Bakker et al.
(2010)
Salmonella BMM 35 2811 Jacobsen et al. (2011)
Shewanella oG 24 1878 Zhong et al. (2018)
Finegoldia oG 12 1202 Briiggemann et al.
(2018)
Class Bacilli IMGM 172 143 Collins and Higgs
(2012)
Phylum Chlamydiae O0G 19 560 Collingro et al. (2011)
Super Eubacteria Gene freq. |573 250 Lapierre and
kingdom Gogarten (2009)

4ORFsim ORF alignment similarity, Comb combinatorial approach of adding successive genomes,
OG ortholog clusters, Refinitial generation of a reference pangenome using a subset of strains, FSM
finite supragenome model, BMM binomial mixture model, IMGM infinitely many genes model,
Gene freq gene presence/absence frequency

distribution of forecasting the evolution of the pangenome and core-genome size.
Another limiting factor, as the number of genomes becomes higher and higher, is the
scalability of all possible genome addition permutations, since the total number of
comparisons needed is described from the following function:

N!

C=mo N =n)

where C is the total number of comparisons, and N is the total number of genomes.

A workaround to an exhaustive approach is a method of subsampling (Vernikos
et al. 2015) the total number of comparisons needed; comparisons are randomly
selected making sure that each genome undergoes the same number of comparisons;
the trick here is to set the number of possible comparisons to a number that will
optimally balance the existing computational power and the target dataset size.
Indeed, observations from limited in size datasets, showed that even extreme
sampling is still able to model reliably the pangenome bypassing the need to follow
an exhaustive all-against-all comparison (Fig. 1) (Vernikos et al. 2015). Additional
optimizations can be achieved by exploiting alternative (to the original exponential
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decay) regressions functions; practical implementations of such optimizations are
described in Tettelin et al. (2008), Eppinger et al. (2010, 2011), Mongodin et al.
(2013) and Riley et al. (2012).

Recently several stand-alone or server-based suites have become available for
pangenome analysis; in the next paragraphs, we will review the most promising and
interesting initiatives. See also Table 2 for additional details.
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3 Bayesian Decision Model

van Tonder et al. (2014) designed a methodology based on Bayesian decision model,
able to analyze directly next-generation sequencing (NGS) data. The model defines
the core-genome of bacterial populations allowing also the identification of novel
genes. A nice caveat of this approach is that it can analyze even strains without a
subset of genes since the model does not assume that all sequences have the entire
core gene dataset present. The model has been benchmarked analyzing Streptococ-
cus pneumoniae sequences.

4 BGDMdocker

BGDMdocker (Cheng et al. 2017) relies on docker technology to analyze and
visualize bacterial pangenome and biosynthetic gene clusters. The pipeline consists
of three stand-alone tools, namely Prokka v1.11 (Seemann 2014) for rapid prokary-
otic genome annotation, panX (Ding et al. 2018) for pangenome analysis, and
antiSMASH3.0 (Weber et al. 2015) for automatic genomic identification and anal-
ysis of biosynthetic gene clusters. The visualization supports several options, includ-
ing alignment, phylogenetic trees, mutations mapped on the phylogenetic branches,
and gene loss and gain mapping on the core-genome phylogeny. Benchmarking took
place on 44 Bacillus amyloliquefaciens strains.

5 Bacterial PanGenome Analysis

Bacterial Pangenome Analysis (BPGA) (Chaudhari et al. 2016), comes with a
handful of new options and features most notably that of optimizing the speed of
execution. In addition, it offers various entity (core-, pangenome, and MLST)
phylogeny, phyletic profile analysis (gene presence/absence), subset analysis, atyp-
ical sequence composition analysis, orthologous, and functional annotation for all
gene datasets, user-selection of gene clustering algorithm, command line interface,
and nice graphics. It runs both in Windows and in Linux as executables files (source
code in Perl). BPGA has dependencies with other tools that require installation. In
terms of input files, BPGA can “digest” the following file formats: GenBank (.gbk)
files, protein sequence file (e.g.,.faa or .fsa or fasta format), binary (0,1) matrix
(tab-delimited) file as output of other tools. The seven functional modules of BPGA
algorithm include: Pangenome profile analysis, pangenome sequence extraction,
exclusive gene family analysis, atypical GC content analysis, pangenome functional
analysis, species phylogenetic analysis, and subset analysis.
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6 ClustAGE

ClustAGE (Ozer 2018) suite (both online and stand-alone) clusters noncore acces-
sory sequences within a collection of bacterial isolates implementing the BLAST
algorithm. It is therefore focused on the accessory genomic dimension of
pangenome; Benchmarking of this tool has taken place on Pseudomonas aeruginosa
genome sequences.

7 DeNoGAP

DeNoGAP (Thakur and Guttman 2016) does many more than pure pangenome
analysis, including functional annotation, gene prediction, protein classification,
and orthology search; therefore, it is applicable both for complete and draft genomic
data. To do this, it implements a big set of existing analysis algorithms. In terms of
scalability, it runs linearly due to implementation of iteratively refined Hidden
Markov models. Its modular structure supports easy updates and addition of new
tools.

8 EDGAR

Implementing phylogenetic concepts like average amino acid and nucleotide identity
indices, an online application namely “EDGAR” (Blom et al. 2009, 2016) was
developed to support comparative genomic analyses of related isolates. Strong
utilities of the suite include Venn diagrams and interactive synteny plots, as well
as ease of access to taxa of interest and quick analyses like pangenome vs. core plot,
the core-genome and singletons.

9 EUPAN

EUPAN (Hu et al. 2017) is one of the first concrete attempts to analyze eukaryotic
pangenomes, even at a relatively low sequencing depth supporting gene annotation
of pangenomic dataset, genome assembly, and identification of core and accessory
gene datasets exploiting read coverage. The tool has been benchmarked using
453 rice genomes.
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10 GET_HOMOLOGUES

GET_HOMOLOGUES (Contreras-Moreira and Vinuesa 2013) is a customizable
and detailed pangenome analysis platform (open source written in Perl and R) for
microorganisms addressed to non-bioinformaticians. GET_HOMOLOGUES can
cluster homologous gene families using bidirectional best-hit clustering algorithms.
The cluster granularity can be adjusted by the user based on various filtering
strategies (e.g., by controlling key blast parameters such as percentage overlap and
identity of pairwise alignments and E-score cutoff value). To estimate the size of the
core- and pangenome, the tool supports both exponential and binomial mixture
models to fit the data.

11 Harvest

Harvest (Treangen et al. 2014) is suitable for the analysis of (up to thousands of)
microbial genomes. It hosts three modules, namely Parsnp (core-genome analysis),
Gingr (output visualization), and HarvestTools (meta-analysis). Parsnp exploits
jointly whole-genome alignment and read mapping to optimize accuracy and scal-
ability aspects of sequence alignment; this approach can accommodate scalability for
up to thousands of genomic datasets. For indexing purposes, it implements directed
acyclic graph improving the identification of unique matches (anchors). The input of
Parsnp is a directory of MultiFASTA files; the output includes core-genome align-
ment, variant calls, and a SNP tree, all of which can be visualized via Gingr. Broadly
speaking, this tool represents a compromise between whole-genome alignment and
read mapping. Parsnp performance has been evaluated on simulated and real data.

12 ITEP

ITEP (Benedict et al. 2014) is a suite of BASH scripts and Python libraries that
interface with an SQLite database backend and a large number of tools for the
comparison of microbial genomes. ITEP hosts several de novo prediction tools such
as sequence alignment, metabolic, clustering, and protein prediction. Users can
develop their own customized comparative analysis workflows.

13 LS-BSR

LS-BSR (large-scale BLAST score ratio) (Sahl et al. 2014), calculates a score ratio
(BSR value = query/reference bit score) per coding sequence (matrix) within a
pangenome dataset using BLAST (Altschul et al. 1997) or BLAT (Kent 2002) for
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all-against-all alignment purposes. The output (bit score per CDS) can be visualized
as a heatmap. Benchmarking has taken place on Escherichia coli and Shigella
datasets.

14 micropan

micropan (Snipen and Liland 2015) is an R package for the pangenome study of
prokaryotes. The R computing environment supports several options of statistical
analyses (e.g., principal component analysis), pangenome models (e.g., Heaps’ law),
and graphics. External free software (e.g., HMMER3) is used for the heavy compu-
tations involved. Benchmarking has been carried out on 342 Enterococcus faecalis
genomes.

15 NGSPanPipe

NGSPanPipe (Kulsum et al. 2018) supports microbial pangenome analysis directly
from experimental reads. Benchmarking has been carried out using simulated reads
of Mycobacterium tuberculosis. The pipeline expects as input experimental reads
and outputs three files, one of which is a binary matrix showing the presence/absence
of genes in each strain; this matrix can be used as input to other pangenome tools like
PanOCT (Fouts et al. 2012) and PGAP (Zhao et al. 2012).

16 PanACEA

PanACEA (Clarke et al. 2018) is an open source stand-alone computer program
written in Perl that supports users to create an interconnected set of html, javascript,
and json files visualizing prokaryotic pan-chromosomes (core and variable regions)
generated by PanOCT (Fouts et al. 2012) or other pangenome clustering tools.
PanACEA was developed to serve as an intuitive, easy-to-use, stand-alone viewer.
Regions and genes can be functionally annotated to allow for visual identification of
regions of interest. PanACEA’s memory and time requirements are within the
capacities of standard laptops. Benchmarking took place on 219 Enterobacter
hormaechei genomes.
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17 Panaconda

Panaconda (Warren et al. 2017) creates whole-genome multiple sequence compar-
isons and provides a model for representing the relationship among sequences as a
graph of syntenic gene families, by discovering collision points within a group of
genomes. The first step is to create a de Bruijn graph and use its traversal to build a
pan-synteny graph; the alphabet used is based on gene families (instead of nucleotide
alphabet). This approach is novel in the context of generating a graph, wherein all
sequences are fully represented as paths.

18 PanCake

PanCake (Ernst and Rahmann 2013) is another tool for pangenome analysis (core
and unique regions) relying exclusively on sequence data and pairwise alignments
(nucmer or BLAST), which makes it annotation independent (i.e., it processes pure
whole-genome content). It hosts a command line interface with several
subcommands, allowing to add chromosomes, to specify a genome for each chro-
mosome, to add alignments, to compute core and unique regions, and to output
selected regions of the analyzed chromosomes. Benchmarking took place on three
genera, namely Pseudomonas, Yersinia, and Burkholderia. PanCake is written in
Python.

19 PanFunPro

PanFunPro (Lukjancenko et al. 2013) exploits functional information (profiles) for
pangenome analysis. The suite supports among others calculation of core, and
accessory gene datasets, homology search (all-against-all and pairwise
sub-querying), functional annotation (HMM-based), and gene-ontology information
analysis. PanFunPro is available both as a standalone (Perl) tool and as a web server.
Benchmarking took place on 21 Lactobacillus genomes.

20 PanGeT

PanGeT (Yuvaraj et al. 2017) can digest both genomic and proteomic data in order to
construct the pangenome for a selection of taxa, exploiting BLASTN or BLASTP,
respectively. In terms of performance, it has been benchmarked using a set of
11 Streptococcus pyogenes strains. The output is given in the form of a flower plot
(core, dispensable, and strain-specific genes).
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21 PanGFR-HM

PanGFR-HM (Chaudhari et al. 2018), is putting an interesting view point on the
“table” of pangenome, by analyzing exclusively microbes from the Human
Microbiome Project; it is a web-based platform integrating functional and genomic
analysis for a collection of ~1300 complete human-associated microbial genomes
exploiting a novel dimensionality of analysis that of body site (location of the bug in
the human body) when comparing different groups of organisms.

22 PanGP

PanGP (Zhao et al. 2014) supports scalable pangenome analysis by analyzing
clusters of orthologs pre-computed by OrthoMCL (Li et al. 2003), PGAP (Zhao
etal. 2012), Mugsy-Annotator (Angiuoli et al. 2011), or PanOCT (Fouts et al. 2012).
In order to predict core and accessory gene datasets, the suite implements random or
distance-guided sampling; in the latter, the genomic diversity (GD) drives the
sampling of strain permutations. GD is modeled relying on three alternative assump-
tions: GD is determined by the evolutionary distance on phylogenetic trees, the
difference in gene numbers per strain, or by the discrepancy among gene clusters;
among the three models the third seems more reliable (preferred model for PanGP).

23 PANINI

PANINI (Abudahab et al. 2018) is a web browser implementation for rapid online
visualization and analysis of the core and accessory genome content, implementing
unsupervised machine learning with stochastic neighbour embedding based on the
t-SNE (t-distributed stochastic neighbour embedding) algorithm; this algorithm
calculates first the similarities between the data (in high dimensional space) and
then it minimizes the divergence between the two probability matrices over the
embedding coordinates. PANINI expects as input the output of Roary (Page et al.
2015).

24 PANNOTATOR

PANNOTATOR (Santos et al. 2013) supports the efforts of automatic annotation
transfer onto related unannotated genomes exploiting the existing annotation of a
curated genome. From this perspective, it is not a main pangenome analysis tool, but
rather as a side-product of cross-comparison it provides pangenomic-related
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information. Its main contribution though to pangenome analysis is to accelerate the
functional annotation of closely related isolates. For this task, it implements a
relational database, interactive tools, several SQL reports, and a web-based interface.
The expected input is the DNA strand, the gene prediction plus the reference
annotated genome.

25 PanOCT

PanOCT (Fouts et al. 2012) is a graph-based ortholog clustering tool for pangenome
analysis of closely related prokaryotic genomes exploiting conserved gene neigh-
borhood information to separate recently diverged paralogs into distinct clusters of
orthologs where homology-only clustering methods cannot. PanOCT is utilizing
BLAST (Altschul et al. 1997) and conserved gene neighborhood information. Four
input files are expected including a tabular file of all-versus-all BLASTP searches
and the actual protein fasta sequences. PanOCT is specifically designed for
pangenome analysis of closely related taxa (in order to be able to distinguish groups
of paralogs into separate clusters of orthologs). In terms of memory requirements,
PanOCT is greedier than other tools used to benchmark its performance; the memory
usage is unchanged until the sixth genome, with a usage of 0.25 GB per genome,
maxing out at 0.5 GB per genome by the 25th genome.

26 Panseq

Panseq (Laing et al. 2010) builds pangenomes and identifies single nucleotide
polymorphisms (SNPs) using genomic data as input. In addition, it produces files
for further phylogenetic analysis exploiting both the information of SNPs as well as
the phyletic profile of accessory sequences; all these wrapped-up with a user-friendly
graphical user interface.

27 Pan-Tetris

Pan-Tetris (Hennig et al. 2015) is a Java-based tool that exploits an aggregation
technique inspired by the Tetris game, to provide an interactive and dynamic
visualization of the gene content in a pangenome table with the option of editing
and on-the-fly modification of user-defined (pan) gene groups. The suite has been
tested on 32 Staphylococcus aureus genomes. Pan-Tetris is one of the first attempts
that enable modification of the computed pangenome. The computation of whole
genome alignment exploits progressiveMAUVE (Darling et al. 2010) algorithm.
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28 PanTools

PanTools (Sheikhizadeh et al. 2016) suite supports the construction and visualization
of pangenomes hosting online tools and algorithms; the visual representation of the
pangenome is based on generalized De Bruijn graphs. The pangenome construction
algorithm scales nicely even with large eukaryotic datasets. In addition to the basic
pangenome tasks (construction and visualization), the suite supports other handy
utilities such as adding, retrieving and grouping of sequences as well as annotating,
reconstructing, and comparing genomes or pangenomes. Overall, it can easily
support multi-genome read mapping, pangenome browsing, structure-based varia-
tion detection and comparative genomics. It has been benchmarked on E. coli, yeast,
and Arabidopsis thaliana genomes.

29 PanViz

PanViz (Pedersen et al. 2017) is a pangenome visualization tool with some analysis
options. It can generate dynamic visualizations supporting both pangenome subset
selection as well as mapping of new genomes to existing pangenomes. The input
data needed is a pangenome matrix (gene group presence/absence across the
included genomes), as well as a gene ontology-based functional annotation of each
gene group.

30 PanWeb

PanWeb (Pantoja et al. 2017) is a web application that performs pangenome analyses
based on PGAP pipeline, providing in addition a user-friendly graphical interface
supporting multiple user-defined analysis queries. It can be implemented by users
without computational skills. As input, it receives the annotation files for each
genome in EMBL format. A complete set of graphs (e.g., pangenome, accessory,
core-genome, and unique genes) is provided.

31 panX

panX (Ding et al. 2018) identifies orthologous gene clusters in pangenomes via a
user-friendly and interactive web-based visualization. The visualization consists of
connected components that allow further analysis. The suite provides alignment and,
phylogenetic tree, it maps mutations of each gene cluster and infers gene gain and
loss in the core-genome phylogeny. The pipeline breaks annotated genomes into
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genes and then clusters them into orthologous groups. To identify homologous
proteins, panX performs an all-against-all similarity search, while the actual cluster-
ing of orthologous genes is carried out by a Markov clustering algorithm.

32 PGAdb-Builder

PGAdb-builder (Liu et al. 2016), constructs a pangenome allele database (PGAdb) to
empower whole genome multilocus sequence typing (wgMLST) analyses and
operates as a web service suite. Two modules are implemented, namely
Build_PGAdb for building a PGAdb database and Build_wgMLSTtree for
constructing a wgMLST tree and determine the genetic relatedness of the input
sequences; both modules “digest” genome contigs in FASTA format. PGAdb-
builder, has however dependencies with other existing suites like Prokka (Seemann
2014) and Roary (Page et al. 2015).

33 PGAP

PGAP (Zhao et al. 2012) supports pangenome analysis and in addition analysis of
functional gene clusters, species evolution, genetic variation, and functional enrich-
ment of query sequences. It outputs the basic pangenome structure and growth curve
and in addition SNP and genomic variation information, phylogenetic, and func-
tional annotation metadata. Benchmarking has taken place on Streptococcus
pyogenes datasets.

34 PGAP-X

Building on PGAP, and in order to more effectively interpret and visualize the
results, PGAP-X (Zhao et al. 2018) was developed. The visualization utility can
intuitively lead to conclusions on pangenomic structure, conserved regions and
overall on genetic variability throughout the pangenomic datasets at hand.
Benchmarking has taken place on S. pneumoniae and Chlamydia trachomatis
datasets. One current limitation of PGAP-X (that is not present in PGAP) is that it
expects as input only complete genomes.
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35 Piggy

Piggy (Thorpe et al. 2018) is a tool for analyzing the intergenic component of
bacterial genomes and it is designed to be used in conjunction with Roary (Page
et al. 2015). The latter works by analyzing protein-coding sequences thus excluding
nonprotein-coding intergenic regions (IGRs) which typically account for approxi-
mately 15% of the genome. Piggy matches Roary except that it is based only on
IGRs. Benchmarking took place on Staphylococcus aureus and Escherichia coli
using large genome datasets. In terms of input and output, Piggy uses the same
format as in Roary and has similar running time requirements. Piggy provides a
means to rapidly identify IGR switches, with many evolutionary applications
including analysis of the role of horizontal transfer in shaping the bacterial regulome.

36 pyseer

pyseer (Lees et al. 2018), is geared toward genome-wide association studies in the
“world” of microbes with the task at hand to identify potential genetic variation
linked with certain phenotypic aspects. Pyseer is actually a python implementation
of a previous initiative written in C++, namely SEER (Lees et al. 2016). The
foundation of pyseer is the use of K-mers (words) of variable length (input) coming
from draft assemblies, while using a generalized linear model for each word their
link with a potential phenotype is evaluated. In addition, multidimensional scaling of
a pairwise distance matrix is implemented in order to control for population structure
(embedded in the regression analysis).

37 Roary

Roary (Page et al. 2015) enables the construction of large pangenomes even on a
typical desktop machine, yielding fairly accurate output. For example, it can digest
up to 1000 strains (13 GB of RAM) building the pangenome in ~4 h. Roary achieves
high accuracy which is attributable to utilization of the context of conserved gene
neighborhood information. A suite of command line tools is provided to interrogate
the dataset providing union, intersection, and complement.
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38 seq-seq-pan

seq-seq-pan (Jandrasits et al. 2018) is a workflow for the sequential alignment of
sequences to build a pangenome data structure and a whole-genome alignment. seq-
seq-pan builds a pangenome data structure allowing editing (addition or removal) of
genomes from a set of aligned sequences and subsequent re-alignment of the whole-
genome sequences; for whole-genome alignments it relies on progressiveMauve
(Darling et al. 2010). The alignment is optimized for generating a representative
linear presentation of the aligned set of genomes.

39 Spine and AGEnt

Spine (Ozer et al. 2014) determines the core-genome from a group of genomic
sequences and AGEnt (Ozer et al. 2014) identifies the accessory genome in draft
genomic sequences. They both use nucmer to align sequences. The pipeline has been
tested on genome sequences of Pseudomonas aeruginosa. However, as mentioned
by the authors, whole genome alignment of reference genomes and core-genome
identification with Spine can be time-consuming.

40 SplitMEM

SplitMEM (Marcus et al. 2014) scales linearly in terms of time and space in relation to
the number of genomes of interest. To do this, it traverses suffix trees (for the genomes)
and builds compressed de Bruijn graphs of pangenomes. In terms of notation, nodes
within the graph represent conserved or strain-specific sequences of the pangenome.
Benchmarking has taken place on Bacillus anthracis and E. coli datasets.

41 Highlights

Pangenome analysis has today many options when it comes to practical implemen-
tation. Depending on the analysis focus, the desired input and output, the depend-
ability on other algorithms, as well as the modeling parametrization, users have
many options to choose from. In the current review, we highlight the following five
tools: BPGA (Chaudhari et al. 2016) for its very fast execution time, the intuitive
handling and the user-defined clustering algorithm, Roary (Page et al. 2015) due to
its internal processing (clustering of high similarity sequences) that results in linear
memory consumption, LS-BSR (Sahl et al. 2014) that similarly to Roary performs
pre-clustering reducing substantially the running time, PanOCT (Fouts et al. 2012),
which takes into account both homology and positional gene neighborhood
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information and PGAP (Zhao et al. 2012) that can work also with draft forms of
genomic data such as annotated assemblies.

42 Food for Thought

The final results and conclusions of a pangenome analysis, among others, massively
depend on the following aspects, that need thoughtful consideration prior to
embarking any such project: Homology search algorithm, the phylogenetic sample
at hand, the pangenome model implemented and the type and quality of sequence
entities (e.g., DNA, protein, presence/absence—phyletic profile, and SNPs).

For example, when it comes to homology definition based on sequence similarity
there is a wide range of similarity thresholds used in previous attempts: i = 50%,
L = 50% (Tettelin et al. 2005), i = 70%, L = 70% (Hiller et al. 2007), i = 70%,
L =50% (Meric et al. 2014), i = 30%, L = 80% (Bentley et al. 2007), where i stands
for sequence identity and L for sequence length.

The starting level (ORFs, CDSs, genes, proteins, SNPs) and the quality (in silico,
manual curation) of annotation as well as inherent bacterial genomic complexity at
the sequence level such as low complexity repeats, recombination hot spots, hori-
zontally acquired genomic fragments constitute other important aspects of consid-
eration. Such information variability can massively affect the predicted conserved
and unique genes in favor of the former or the latter; this might also determine the
structure of pangenome (open or closed).

43 Conclusions

Being able algorithmically to digest the largest possible pool of data available is
critical in order to approach more reliably the phylogenetic history of bacterial
populations. Indeed such comparative genomic analyses started by exploiting
~0.07% of a genome (16s rRNA) (Woese 1987), latter on using up to ~0.2% of
the genomic information (MLST) (Maiden et al. 1998), and recently up to 100% of
the information exploiting the pangenome wealth of data (Medini et al. 2005;
Tettelin et al. 2005).

The recent explosion of sequencing projects replaced the limiting factor of data
sparsity with the immense data dimensionality (Vernikos 2010) and we are now in
the middle of a transformation moving from top-down (trying to fit the limited data
to the model) to bottom-up approaches in an attempt to move from the “infant” stage
of single-strain genomics to the post pangenome era of “adulthood.” The model
assumptions therefore become less and less pivotal as the pace of primary data
generation continues to grow exponentially, asking not for modeling superpower but
instead interpretation and connecting the dots super skills.
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Abstract Prokaryotes demonstrate tremendous variation in gene content, even
within individual bacterial clones or lineages. This diversity is made possible by
the ability of bacteria to horizontally transfer DNA through a variety of mechanisms,
and the extent of such transfer sets them apart from eukaryotes. What has become
evident through interrogation of thousands of bacterial genomes is that gene varia-
tion is directly related to the ecology of the organism and is driven by continual
processes of niche exploration, diversification, and adaptation. Of course, the acqui-
sition of new genes is not necessarily beneficial, resulting in either the removal of
that individual through purifying selection or the occurrence of compensatory
mutations in the genomic “backbone” (i.e., core genes) that become epistatically
linked to the presence accessory genes. There are now numerous examples of
relationship between gene variation and niche adaptation. We explore some of
those examples here as well as the population genomic footprint left by the dynamics
of gene flow, diversification, and adaptation.
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1 Introduction

Pangenomes of bacterial species show a tremendous range of diversity in size,
content, and fluidity. In comparing the core genome size in relation to the accessory
genome, some species possess relatively limited pangenomes while others are
expansive. Accessory genomes may be composed of genes belonging to phages,
transposons, insertion sequences, and plasmids, as well as genes that have diverged
through mutation and recombination to the point where they are considered as a
separate homolog. Some of these genomic elements may be relatively stable (e.g., an
integrated prophage), while others may be gained and lost within a single bacterial
culture (e.g., plasmids). In this chapter, we will discuss the population genomics of
pan-, and more specifically, accessory genomes, specifically detailing how accessory
genomes vary among and within bacterial species and the implications this variation
has for microbial ecology. Throughout this discussion, it is important to not lose
sight of what we are referring to with the catch-all phrase “accessory.” These are the
dynamic elements of the genome, often containing large genomic islands that
augment the bacterium’s phenotype, which may, as we will outline, be used to
glean knowledge of ecology and evolutionary history of a genus, species, or set of
lineages. Further, in no way does the term accessory or the misleading synonym
“dispensable” suggest non-essential, as some “accessory” genes actually represent
divergent variants of an essential gene.

2 Mechanisms of Pangenome Variation

The content and diversity of a bacteria’s accessory genome are directly associated
with the mode and frequency of horizontal gene transfer (HGT), which in turn is
tightly linked to ecology. Modes of HGT include transformation: the uptake and
integration of exogenous DNA from the environment, transduction: the introduction
of exogenous DNA into the bacterial cell through a viral vector (e.g., bacteriophage),
and conjugation: the direct transfer of DNA between two bacterial cells through a
pilus, which usually involves plasmids and transposons. Bacteria vary in the degree
to which each of these mechanisms occurs within their populations and in their DNA
uptake mechanisms. It is also almost certain that other variants of these mechanisms
remain to be discovered, as illustrated by recent work describing “lateral transduc-
tion” capable of transferring genomic regions of remarkable size (Chen et al. 2018).

Integrative and conjugative elements (ICE) include integrative plasmids and
conjugative transposons, which are circularized mobile elements transferred through
conjugation. ICE may harbor a number of genes important to virulence, specialized
metabolism, and survival, and are the primary means by which antibiotic-resistant
genes are transmitted among bacteria. Plasmids may contain anywhere from 5 to
100 or so genes, allowing for a lineage to gain or lose many loci in a single step,
especially for those species with high plasmid diversity. Phylum Proteobacteria,



Structure and Dynamics of Bacterial Populations: Pangenome Ecology 117

which includes several pathogenic species from genera Escherichia, Salmonella,
Vibrio, Helicobacter, Yersinia, and Legionellales possess some of the most prevalent
and diverse plasmids with a wide host range (Shintani et al. 2015). Therefore,
unsurprisingly, species among these genera have moderately large pangenome
sizes (Mclnerney et al. 2017).

Naturally, competent (transformable) species are able to uptake DNA directly
from the environment resulting in homologous or nonhomologous recombination,
the latter frequently associated with gene gain (Croucher et al. 2012). Arguably, the
most famous of these species, Streptococcus pneumoniae, was made so by its role in
the Griffith experiments in 1928, which led to the identification of DNA as the
conveyor of genetic information. Through those experiments, Griffith observed that
“smooth” (i.e., unencapsulated) avirulent S. pneumoniae could become virulent
through exposure to heat-killed virulent “rough” (i.e., encapsulated) pneumococci
(Griffith 1928). We now know that what he observed was transformation resulting in
the acquisition of the capsular polysaccharide (CPS) loci that code genes responsible
for the synthesis and polymerization the antigenic serotype capsule. There are over
90 serotypes identified and the CPS loci span 10,337-30,298 bp with at least
26 coding sequences depending on the particular serotype (Bentley et al. 2006).
Therefore, this single recombination event resulted in the acquisition of 26 accessory
genes. Since then, other species including Neisseria gonorrhoeae, Campylobacter
Jjejuni, Vibrio cholerae, and Haemophilus influenzae have been found to be naturally
competent.

Another method by which transformation may result in differences in gene content
is through events that lead to gene diversification, which are frequently observed
among several species as recombination “hotspots.” The primary effect of these
events is antigenic variation in genes linked to host—pathogen interactions. For
example, among pneumococci, two virulence factors, pneumococcal surface proteins
A and C (pspA and pspC), are known to have 3 and 11 variants, respectively
(Hollingshead et al. 2000; Iannelli et al. 2002). These variants are diverse in length,
structural organization, and nucleotide variation, the results of frequent recombina-
tion events. Most important, they are different in serology, which has significant
implications for host immunity (Azarian et al. 2016; Georgieva et al. 2018). Simi-
larly, among gonococci, the opa and neighboring pil loci are highly mosaic due to
recombination of existing alleles (Bilek et al. 2009). The gene product Opa is an outer
membrane adhesion protein that is important for colonization and invasion of the
genital and nasopharyngeal mucosal epithelium. As a note, antigenic variation
through recombination leads to an interesting contradiction in terminology. In both
of these examples, pspA, pspC, opa, and pil are considered “core” genes in the sense
that each member of their respective species possesses a variant. They are by all
definitions “essential” to core cell function; yet, through current methods of
pangenome analysis that are commonly based on a nucleotide homology level of at
least 80%, they are identified operationally as accessory genes. Finally, transduction
through temperate bacteriophages may introduce considerable gene variation in both
Gram-negative and Gram-positive bacteria (Feng et al. 2008; Waldor and Friedman
2005). While their precise evolutionary impact in most cases remains unclear, it is
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certain that their pathogenesis plays a significant role in the biology of their host. For
example, many phages harbor genes coding for virulence factors including toxins or
secreted enzymes (Romero et al. 2009); therefore, prophages (bacteriophages inte-
grated into host bacterial genomes) represent a significant mechanism for variation of
virulence among closely related bacteria (Fortier and Sekulovic 2013). In relation to
pangenome dynamics, the transmission of bacteriophages can result in significant
variation among bacterial populations on short timescales by two mechanisms:
through (1) the direct integration of the prophage and (2) the acquisition or evolution
of antiphage mechanisms. The later may involve phage-inducible chromosomal
islands and CRISPR-Cas systems (Reyes-Robles et al. 2018), which independently
represent instances of gene acquisition and a source of pangenome variation.
Predator—prey dynamics of bacteriophages and their host has been widely observed
with Siphoviridae phages and S. pneumoniae (Romero et al. 2009), lamba
STX-coding phage in Shiga toxin-producing E. coli, and ICP (Myoviridae) and
CTX phages in Vibrio cholerae (Seed et al. 2011; Waldor and Friedman 2005),
among myriad others. The result is highly variable prophage content even within
closely related members of bacterial lineages (Croucher et al. 2014).

3 Population Genomics of Pangenomes

Today, the identification of a bacterial sample’s core genome is a common interme-
diate step among bioinformatics pipelines for preparing whole-genome sequencing
data for phylogenetic analysis. Historically, the accessory genome was largely
ignored with the exception of the identification of important genes such as those
conferring antibiotic resistance or increased virulence. Methodologically, it was
difficult to scale accessory genome analysis to large population samples of a species
and especially across several species. Then, the discovery that in three diverse E. coli
isolates, less than 40% of the genes was found in the genomes of all three demon-
strated that extensive variation was possible (Welch et al. 2002). A subsequent study
of just eight genomes of Streptococcus agalactiae (Group B Streptococcus)
published in 2005 identified 1806 core genes and 439 “dispensable” genes,
highlighting that tremendous variation could be observed with even a small sample
(Tettelin et al. 2005). This chapter introduced the concept of the pangenome. Now,
large-scale analyses of pangenomes continue to reveal significant diversity even over
short timescales, providing information about the demographic history and adaptive
evolution of bacteria. These studies have shown that pangenome size and diversity
vary among species and depend on lifestyle (McInerney et al. 2017; Ochman and
Davalos 2006).

Mclnerney and colleagues recently summarized the range of diversity observed
among bacterial species (Mclnerney et al. 2017). Pangenome sizes ranged from
974 for the obligate intracellular bacteria Chlamydia trachomatis to 40,362 for the
semiaquatic agricultural Oryza sativa. Comparing sizes of accessory genomes in
relation to the total number of genes in the pangenome, O. sativa had the smallest,
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just 8% of genes were accessory, while in Salmonella enterica, a staggering 83% of
its 10,267 genes are found in the accessory genome. Assessing “genomic fluidity” is
another method for quantifying pangenome diversity (Kislyuk et al. 2011). Instead
of assessing the relationship between core and accessory genome size, genomic
fluidity measures the dissimilarity of genomes evaluated at the gene level calculated
as the “ratio of unique gene families to the sum of gene families in pairs of genomes
averaged over randomly chosen genome pairs from within a group of N genomes.”
In a comparison of genomic fluidity among seven species known to undergo HGT,
Neisseria meningitidis, Escherichia coli, and Streptococcus spp. ranked highest in
genomic fluidity (Kislyuk et al. 2011) (although it should be noted that this metric is
expected to be affected by the sample chosen for study).

Within a species, accessory genome diversity increases with core genome diver-
gence and models of homologous recombination and HGT have shown how these
processes lead to the formation of population structure (Croucher et al. 2014;
Marttinen et al. 2015). Boundaries for HGT across species roughly follow the
same trajectories. Species in genera Streptococcus, Neisseria, and Campylobacter,
for example, have been shown to engage in HGT more frequently with closely
related members (e.g., between S. pneumoniae and S. mitis and S. oralis, and
N. gonorrhoeae and N. meningitidis). Therefore, the size and distribution of acces-
sory genes in a population provide insights into the demographic history of bacterial
species as well as delineations of species boundaries.

As we have described, many methods can generate accessory genome diversity.
While not wholly analogous to the way nucleotide mutations arise and propagate in a
population, the gain and loss of genes nonetheless inform the shared evolutionary
history of a population in the same manner. Genomic islands acquired through HGT
often become relatively fixed in bacterial lineages (Croucher et al. 2014) with the
number of acquired genes increasing with lineage age (Donati et al. 2010). This is
especially true for Staphylococcal Cassette Chromosome mec (SCCmec) elements in
clones of S. aureus (International Working Group on the Classification of Staphy-
lococcal Cassette Chromosome Elements (IWG-SCC) 2009), pathogenicity islands
among toxigenic and non-toxigenic lineages of V. cholerae (Wozniak et al. 2009),
and CPS loci in pneumococci (Bentley et al. 2006). These mobile elements, there-
fore, inform long-scale evolutionary history, while in the short term, prophage
variation and the scars of transformation events reflect more recent events. As
such, it is possible to recapitulate the core genome phylogeny of a population
through phylogenetic reconstruction using a presence—absence alignment of acces-
sory genes, represented by 1’s and 0’s, respectively (Azarian et al. 2018). In essence,
this represents a tight linkage between core genome single nucleotide polymor-
phisms and the history of gene gain and loss. This may, of course, oversimplify
the complex interconnected processes that led to accessory gene variation, but it does
provide an easy data structure that may be investigated to understand how bacterial
populations change over time.

An interesting approach to assessing temporal changes in bacterial population
genomics is to consider the dynamics of the accessory genome. The clearest
examples of this are observations of rapid changes in virulence or antibiotic
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resistance among bacterial lineages, often leading to short-term success of a clone
(Croucher et al. 2014). The impact of human interventions, namely vaccines, affects
not only the distribution of lineages in a population but also the available pool of
accessory genes. For example, if an ICE is strongly associated with a lineage, and
that lineage is targeted by vaccine, then the removal of the lineage from the
population may ultimately remove the reservoir for that ICE. The impact of vaccine
on the pathogen population of S. pneumoniae has been extensively studied (Azarian
et al. 2018; Croucher et al. 2013). After the introduction of the seven-valent
pneumococcal conjugate vaccine (PCV7) in the USA, an analysis of a sample of
616 genomes of pneumococci carried in children in Massachusetts showed the
removal of accessory genes associated with the CPS loci of vaccine serotypes
(Croucher et al. 2013). In addition, the prevalence of antibiotic-resistant genes
associated with two transposons was shifted due to the removal of two vaccine
lineages they were associated with and the subsequent emergence of a non-vaccine
lineage harboring one of the transposons. A study of pneumococcal population
dynamics over 13 years and spanning the introduction of the PCV7 showed that
the introduction of vaccines greatly shifted the frequencies of accessory genes in the
population (Azarian et al. 2018). Surprisingly, the frequencies of accessory genes
then shifted back to pre-vaccine values as the pneumococcal population recovered
from the removal of nearly 30% prevalent genotypes targeted by vaccine. This
observation was elucidated by recent work by Corander and colleagues who inves-
tigated accessory gene frequencies across of 4127 pneumococcal isolates from four
distinct geographic areas (Corander et al. 2017). They found that accessory genes
had similar frequencies in the four populations despite significant differences in
lineage composition and the timing of vaccine use. Through functional analysis of
the accessory genes and population dynamic modeling, they proposed that the
frequencies of accessory genes are shaped by negative frequency-dependent selec-
tion (NFDS) through pathogen—pathogen, host—pathogen, and pathogen—environ-
ment interactions. Classically defined, in an NFDS model the fitness of a phenotype
depends on its frequency relative to other phenotypes in a population. The same
NFDS model has been used to explain the diversity of protein antigens among
pneumococci, which we briefly touched upon early in the chapter. In the case of
protein antigens, increasing host immunity toward an antigen drives diversification
of the gene coding for the protein either through mutation, or most often, recombi-
nation. The same dynamic can be observed with prophages and restriction modifi-
cation systems that defend against infection. Ultimately, these observations point to
a central hypothesis for accessory genome variation, that difference in gene content
are linked to adaptation and niche specialization, but that in the case of NFDS the
niche may be dynamically generated by fluctuating frequencies of loci in the
pangenome.
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4 The Ecological Significance of Pangenomes

The observation of pangenomes as a common feature of many bacteria begs the
question of what has selected them? What are the ecological features that lead to the
pervasive association of a core, with a disseminated complement of many additional
genes, some shared with other species? While some have clear selective conse-
quences, most are obscure. The extent to which bacteria vary in gene content sets
them apart from eukaryotes, and is just one of the reasons we cannot easily transfer
population genetic concepts between the superkingdoms of life. One metaphor for
bacteria and their varying genome content compares them to modern smartphones
(Young 2016) in which the core genome is the operating system, the accessory
genome is the apps downloaded to the phone, and the pangenome would be
everything in the app store. In the following, we divide up the accessory genes
that combine to make up a pangenome into various categories, not by function but by
how they are distributed among lineages in the population.

The perspective we take is of the bacterial genome as a transient construct. Loci
can be added to it, and selected to become more common or indeed lost from the
population, should they no longer be necessary. The pangenome for any sample is
the totality of genes currently associated with its contents. This need not be a
permanent or even especially long relationship. Consider a locally prominent pro-
phage, which might not be present in the same population if you returned at a later
date. Indeed we can imagine that given the many ways bacteria engage in HGT, a
sample of sufficient size will contain many loci in a new genetic background that are
yet to be lost (analogous to incomplete purifying selection (Rocha et al. 2006). A
subset of the pangenome, expected to be rare in any reasonably large sample, is
genes that are either infrequently obtained or actively selected against. In general, the
extent of gene flow will be regulated by the genetic and ecological similarity of the
bacteria and the compatibility of the genetic background to adapt to the acquisition
of novel genes (Wiedenbeck and Cohan 2011).

Moving to loci that are present at intermediate frequencies, say between 5% and
95% of isolates, we can distinguish between loci that are restricted to a few lineages,
or are widely disseminated but not fixed in any lineage. These suggest different
evolutionary scenarios. Dealing with the latter first; a locus that is easy to obtain but
hard to hold onto suggests fluctuating selection. We see it more often than the genes
in the previous category, because it provides selective benefits. However, these are
not consistent benefits or we would expect the gene to rapidly become more common
and indeed part of the core. Examples of these include drug-resistant genes in
lineages that lack compensatory mutations, and as such only experience a selective
benefit in the presence of the drug (Blanquart et al. 2018; Cobey et al. 2017; Lehtinen
et al. 2017).

In contrast, loci fixed in a lineage might represent the ecological “address” of
those bacteria, a dimension of their niche. However, this need not be the case.
Studies of populations of S. pneumoniae have shown that the accessory loci in this
species are not widely disseminated, but are also rarely restricted to a single lineage
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and are instead shared among several, in different combinations (Croucher et al.
2014). It has been suggested that different combinations of accessory loci might be
selected in different populations, depending on the overall frequencies of the indi-
vidual genes, as a result of negative frequency-dependent selection (Corander et al.
2017). At present, this remains a hypothesis without definitive proof.

We must also recognize that a locus might have no wider ecological significance
whatsoever. Toxin—antitoxin genes can drive their own acquisition and maintenance,
to say nothing of the multitudes of transposable elements, prophage and the like
(Wozniak and Waldor 2009). Bacterial genomes are characterized not only by their
variable gene content, and the transience of the associations between loci (long for
core genes, short for others) but by the divergent selective processes affecting them.
In some cases (the core) these are aligned, while in others they are not. Population
geneticists who study sexually reproducing eukaryotes are familiar with the notion
that the selective interests of different loci in the same genome may differ. The
shuffling of genetic information in each generation effectively uncouples the asso-
ciation between all but the closest loci, but even the most frequently recombining
bacteria (Arnold et al. 2018) do not approach the state of sexually reproducing
eukaryotes. As a result, the overall fitness of a bacterial genome is the product of
all the loci making it up. To preserve this overall fitness, it has been proposed that
homologous recombination in bacteria is an adaptation to prevent the colonization of
the genome with selfish genetic elements, by rapidly replacing them with the
homologous region in the ancestral strain, which lacks the additional gene (although
this does not explain the notable variation among bacteria in their recombination
rates) (Croucher et al. 2016). One of the greatest challenges in providing a satisfying
account of bacterial population genetics has been separating the patterns that are the
result of selection, from those of linkage.

The question of how the individual loci that make up the accessory or dispensable
part of the pangenome, associate themselves with the lineages that are defined by the
core component, has come under increasing scrutiny as the numbers of population
genome samples have increased. Population genetic models for the core genome
specifically developed with bacteria in mind, and capable of handling the various
amounts of homologous recombination, are not common. Rarer still are models that
explicitly consider the gain and loss of genes from the accessory genome. Although
gain and loss of loci is not unknown in eukaryotes, and has been implicated in some
major adaptive events (McInerney 2017; Schonknecht et al. 2014) it is nowhere near
as extensive and does not have anything like the impact it does in bacteria. Accurate
models for such processes are crucial to detect departures from neutrality, and
several studies have actually found apparently neutral associations between elements
of the pangenome and the core. However there are reasons to think that the sequence
variation associated with the accessory genome may produce fundamentally differ-
ent results from those in population genetics textbooks. For example, if the site
frequency spectrum expected under neutral assumptions is extended to allow muta-
tions in loci that can be gained or lost, systematic bias results (Baumdicker 2015;
Baumdicker et al. 2012; Collins and Higgs 2012).
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Given that the accessory fraction of the pangenome is enriched for loci involved
in properties from toxin production, to restriction-modification systems, and surface
antigens, to say nothing of drug-resistant genes, it is hard to imagine that it might fit
well to a neutral model—in several cases though, it does (Baumdicker et al. 2012;
Marttinen and Hanage 2017). This result is hard to accept, and it should be given all
we know about the power of selection and the size of bacterial populations. How-
ever, it should be appreciated that a multitude of selective scenarios can produce a
signal that is hard or impossible to distinguish from neutrality. Study of other metrics
may be required to unveil the underlying processes. For instance, the rates with
which diverging strains of pneumococcus acquired or lost genes was found to be
indistinguishable from neutrality and even to yield good estimates of the population
mutation and recombination rates (Marttinen and Hanage 2017). Yet later analysis of
the same population, alongside others, was interpreted as strong evidence for
negative frequency-dependent selection on the accessory fraction of the genome
(see above). What is going on?

A possible explanation lies in the central limit theorem. If an outcome is deter-
mined by many independent random variables, each with finite variance, then we
expect the result of adding them all together to be a normal distribution. In other
words, if the fitness of a strain is the consequence of many independent factors, we
might find it appears neutral—the chances of any individual getting into the next
generation could be normally distributed around 50:50. This result has been the
source of substantial interest in ecology, given that it can be used to show that
species abundance distributions (SADs—a common metric for summarizing eco-
logical diversity (McGill et al. 2007) can appear neutral while actually being the
result of many non-neutral processes. In the case of bacteria, the fitness effects of
genes on the same mobile element may not be independent, however, the effects of
multiple mobile elements may similarly approximate to an overall strain fitness not
distinguishable from neutrality. Other models from community ecology may be
useful in determining the contents of genomes, as well as ecosystems.

Nevertheless, the current consensus in the field is that gene variation directly
reflects the ecological niche occupied by the bacteria (Sheppard et al. 2018) and the
response to local selective pressures (Cordero and Polz 2014). This may involve the
acquisition of antibiotic-resistant genes, as described above, metabolic genes needed
to exploit a novel energy source, bacteriocins for microbial warfare, or phage and
phage-defense genes involved in predation—prey “paper-rock-scissor” dynamics, as
so eloquently described by Corander and colleagues (Arnold et al. 2018). Further, it
is suspected that rapid acquisition and dissemination of genes most often occurs as
bacterial clones adapt to a novel niche previously occupied by another species (Polz
etal. 2013; Popa et al. 2011; Smillie et al. 2011; Vos et al. 2015). An example of this
would be the acquisition of IncA/C plasmid by Vibrio cholerae introduced to Haiti, a
country previously devoid of epidemic cholera for at least 100 years (Carraro et al.
2016) as well as the post-vaccine population of S. pneumoniae in the USA, which
experienced a significant population shift after the 7-valent pneumococcal conjugate
vaccine removed approximately 30% of the pre-vaccine population. Niches them-
selves are not explicitly segregated, and therefore one does not have to be vacated to
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then be exploited by a newcomer. Gene flow may occur between sympatric lineages;
i.e., habitat borders are not defined by walls or other barriers, and recombination can
occur among lineages of a species where habitat space is not clearly demarcated
(Marttinen and Hanage 2017). This model explains lineage divergence and popula-
tion structure among several species, and is important because it highlights that a
species requires not only the ability to acquire genes but also the opportunity to do
so. Interestingly, it has also been suggested that once a competent species encounters
anew niche, it can give rise to noncompetent lineages, providing an advantage when
adaptation through gene acquisition is not required and may, in fact, be deleterious
(Jorth and Whiteley 2012).

The acquisition of genes is not always beneficial and may, in fact, be deleterious
(Vos et al. 2015). Indeed, for every successful lineage that is observed, there are
likely several “failed” ecological experiments. Since there is not a clear delineation
between the fitness gain and costs of gene acquisition, it may be an oversimplifica-
tion of the dynamics to ascribe a net-positive or net-negative effect of gene gain and
loss. The truth, of course, is somewhere in between and likely varies to different
degrees between species. To offset fitness costs and compensate for the acquisition
of mobile elements, mutations may arise in core loci and form epistatic relationships
with the acquired gene. This has been suggested, for example, in E. coli, where
nucleotide substitutions in regulatory genes were found to be associated with the
acquisition and maintenance of accessory genes (McNally et al. 2016). This dynamic
is further supported, in part, by recent findings of epistatic interactions across
genome-wide loci among multiple bacterial species (Arnold et al. 2018; Skwark
et al. 2017).

There are examples where ecological niches are clearly defined among species
and others where the relationships between habitat and organism are obscured. In the
E. coli study (McNally et al. 2016), ecological adaptation and niche segregation were
not observed among isolates collected from humans and animals, while in other
species such as Campylobacter, this is commonly observed (Sheppard et al. 2011).
Methods to investigate gene flow and selection in the context of adaptation and
ecology are continually being refined. In some instances, identifying the appropriate
system to test ecological hypotheses is the limiting step. An intriguing approach to
understanding these associations is not to identify niches, the organisms that inhabit
them, and then attempt to resolve the genes associated with adaptation, but instead
first assess gene flow and then make predictions about ecology. So-called “reverse-
ecology” proposed by Shapiro and Polz seeks to investigate habitat specificity by
assessing gene flow and gene-specific sweeps, and has been used to predict ecolog-
ical differentiation of Vibrio spp. in aquatic environments (Hunt et al. 2008; Shapiro
et al. 2012; Shapiro and Polz 2014). They demonstrate an example of applying a
fresh perspective to an appropriate model system to understanding bacterial ecology.

Taken together, the accumulation of population samples that have been analyzed
with modern genomic methods has greatly improved our understanding of the
pangenome, and its ecological significance. The totality of loci in a sample includes
the essential core, together with a set of accessory loci that have a range of ecological
and evolutionary significance: from functional genes with direct relevance to niche
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such as those described in the reverse ecology approach of Shapiro and Polz, to more
selfish elements such as toxin—antitoxin systems. One feature of the current land-
scape of bacterial genomics that is not often noticed, is that for all the references in
the literature to “Whole Genome Sequencing,” few studies actually determine the
whole, i.e., finished genome including all plasmids. Our current understanding is
overwhelmingly based on high-quality draft, not finished, genomes. The emergence
of long-read technologies is changing this, and as they improve and become more
economical (together with more methods for making hybrid assemblies from short-
and long-read data) we may find that our current understanding underestimates the
actual quantities of sequence variation in bacteria and that there are short regions
under strong selection that accumulate rapid change and are hence hard to assemble
from short-read data. Adding these is just one of the exciting directions for research
over the next few years, which is sure to improve our understanding of pangenomes
and their significance far beyond our current knowledge.
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Bacterial Microevolution )
and the Pangenome ki

Florent Lassalle and Xavier Didelot

Abstract The comparison of multiple genome sequences sampled from a bacterial
population reveals considerable diversity in both the core and the accessory parts of
the pangenome. This diversity can be analysed in terms of microevolutionary events
that took place since the genomes shared a common ancestor, especially deletion,
duplication, and recombination. We review the basic modelling ingredients used
implicitly or explicitly when performing such a pangenome analysis. In particular,
we describe a basic neutral phylogenetic framework of bacterial pangenome micro-
evolution, which is not incompatible with evaluating the role of natural selection.
We survey the different ways in which pangenome data is summarised in order
to be included in microevolutionary models, as well as the main methodological
approaches that have been proposed to reconstruct pangenome microevolutionary
history.

Keywords Pangenome - Bacterial microevolution - Evolutionary model -
Recombination - Duplication - Deletion - Gene content - Ancestral state
reconstruction - Reconciliation

1 Atomic Events in Bacterial Microevolution

Bacterial microevolution is the study of the evolutionary forces that shape the
genetic diversity of a natural population of bacteria. This evolutionary process
takes place as a result of the genetic changes happening within each of the genomes
of the bacterial cells constituting the population. Over time, these changes are
amplified or weakened by the effects of both genetic drift and natural selection.
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Genetic drift represents the evolution caused by the death and birth of cells in the
bacterial population, and it acts at random on all genetic variants (Charlesworth
2009). The effects of genetic drift are higher when the population size is small, and
so it could be thought given the large number of cells in bacterial populations that
genetic drift would be weak. However, bacterial populations sometimes go through
punctual bottlenecks during which genetic drift has a large effect, for example during
transmission of pathogens from one host to another (Didelot et al. 2016). It is also
believed that the strong structure of bacterial habitat, sometimes at the microscale
can lead to much smaller effective population sizes than intuition suggests (Vos et al.
2013). Natural selection on the other hand acts in a nonrandom fashion, amplifying
some variations and suppressing others, and is a very potent evolutionary force in
shaping the diversity of bacterial species (Petersen et al. 2007; Buckee et al. 2008;
Pepperell et al. 2013).

The genetic changes occurring on a single bacterial cell can be classified into
mutation and recombination events, and the events of interest differ whether the
focus is on the core genome (the regions shared by all genomes in the population) or
the accessory genome (the regions that are found in some but not all of the genomes).
As far as the core genome is concerned, the main type of mutation is the point
mutation, whereby a single nucleotide is replaced, and the main type of recombina-
tion is called homologous recombination, in which a relatively short fragment of the
genome is replaced with a homologous fragment coming from another bacterial cell
(Didelot and Maiden 2010). There are three biological mechanisms that can lead to
homologous recombination, namely conjugation (where two bacterial cells come in
contact so that DNA can be transmitted from donor to recipient), transduction (where
a phage acts as vector from donor to recipient) and transformation (where naked
DNA is picked up by the recipient from the environment, possibly following the
death of the donor cell) (Thomas and Nielsen 2005). But since their outcomes are
hard to distinguish this diversity of mechanisms is usually ignored in evolutionary
models of homologous recombination.

Point mutation and homologous recombination events clearly act on the evolution
of the accessory genome in the same way as they do for the core genome. However,
they do not change the genetic content of core genomes. There are two types of
endogenous mutations that can alter the genetic content of a genome, duplication and
deletion, and they can be thought of as opposite forces, with the former increasing
the number of copies of a gene by one and the latter decreasing it by one. Finally, the
accessory genome is also subject to non-homologous recombination, where a bac-
terial cell imports a DNA fragment from another cell and inserts it in its genome,
without overwriting a previously existing homologous fragment (Ochman et al.
2000). Non-homologous recombination is often called lateral gene transfer or
horizontal gene transfer, and in this chapter we will be using these three terms
interchangeably. It should be noted, however, that this terminology is not always
consistently used in the literature, with some authors using the term horizontal gene
transfer to refer to both homologous and non-homologous recombination.

The three biological mechanisms mentioned above for homologous recombina-
tion (conjugation, transduction, and transformation) can lead to non-homologous
recombination and once again, it is helpful when studying the bacterial
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microevolution of the accessory genome to set aside the mechanism at play. Like-
wise, genetic duplication and deletion can have multiple causes that we will not
explore. It should in fact be noted that even though it is useful to present and study
them as separate, the atomic evolutionary events briefly described above are not
biologically independent (Lawrence 1999; Everitt et al. 2014; Oliveira et al. 2017).
For example, a single event of recombination could involve the replacement of some
genes (homologous recombination), the insertion of new genes (non-homologous
recombination) and the loss of some other genes (genetic deletion).

Furthermore, non-homologous recombination can sometimes be duplicative if the
newly imported material is homologous to a sequence found somewhere else in the
genome. In this case, the number of copies of the genes concerned is increased by
one, as in a duplication event. The evolutionary distance between donor and
recipient of such a non-homologous recombination event is then a crucial factor: if
this distance is small the effect is similar to a duplication event, which can be seen as
a transfer event where recipient and donor are the same organism. If distance
between organisms is high, then the difference between the newly imported copy
and the copy already present will likely be high too, providing a clear sign that
duplication was not involved. This situation is analogous to the detection of homol-
ogous recombination in the core genome, where events from a closely related source
do not leave a trace, or perhaps involve just a single substitution in which case they
are undistinguishable from point mutation (Didelot et al. 2010).

2 Neutral Phylogenetic Framework of Bacterial Pangenome
Microevolution

2.1 Challenges with a Comprehensive Model

The microevolutionary events that act on the bacterial pangenome, as briefly
described above, can be combined into an evolutionary model of how the
pangenome evolves over time. Let us consider a comprehensive model, which
would account for the whole population of bacterial cells, including the fact that
cells die and reproduce over time (so that genetic drift is included) and that various
selective pressures are exerted. In this model, the genome of each cell is affected by
various mutation and recombination events, all of which happens at a certain rates
over time for each cell. All the rates involved in this model (birth and death of
individuals, selection for specific variants and various evolutionary events) would
not be assumed to be constant, but would be allowed to vary over time. This model
falls in the class of forward-in-time models, due to the fact that it considers evolution
as it unfolds over time, and famous examples of such models in the general
population genetics literature are the Wright-Fisher model (Fisher 1931; Wright
1931) and the Moran model (Moran 1958). Figure 1 illustrates such a forward-in-
time model of pangenome evolution.
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Fig. 1 Illustration of the forward-in-time evolution of a bacterial population and its pangenome. At
each time step, an individual is removed and another gives birth as in a standard Moran model.
Furthermore, at each time step the accessory genome of each individual may evolve via deletion
(orange cross), duplication (red square) and recombination (orange arrow)

The idea of this comprehensive model is to replicate exactly the processes that we
know occur in nature, so that it is of the highest possible realism. However, a
comprehensive model would also integrate the diversification process of the whole
community of microorganism found at a given spot, with the impact of their biotic
interactions and genetic exchange, but most importantly, of the competitive process
leading to natural selection of the fittest. Such level of description of natural
processes would render the model impossible to use, and that is why it is not
found in the literature. It is educative though to ask ourselves why this model is
unusable, as this will guide us towards more practical models that feature some of
these ideal properties.

The first problem with this comprehensive model is computational: it would
require very large amounts of computer memory to store the state of a population
at a single time point, even much more so to track its evolution over time, and an
equally impossible amount of computer power to consider the evolutionary events
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happening to all members of the population. But even more importantly, there is
statistical problem with the comprehensive model, in the sense that there are too
many unknown quantities involved, for which we would not be able to take even a
very rough guess at what their value might be. Therefore, even if the computational
problems could be overcome, and analysis conducted under the comprehensive
model, the results would be worthless since the quantities to be estimated would
be unidentifiable. Simplifications will therefore have to be made to reach a model
that has practical use, with the best model being not the most comprehensive one, but
the one that achieves the best trade-off between biological realism on one hand, and
computational and statistical considerations on the other hand.

Beyond the degree of complexity of a model and the search for a trade-off
between computational efficiency and model realism, models may rely on different
conceptual formalisation of bacterial genomes and their evolutionary process. These
different concepts will generate different approaches and methods that are in general
complementary. We will thus present different elements of phylogenetic models of
pangenome evolution, which flavours may be combined to provide a variety of
practical models.

2.2 Analysing Selection Based on Neutral Models

Perhaps the greatest challenge posed by the comprehensive model above would be
its attempt at encompassing the role of natural selection. As previously mentioned, it
is clear that natural selection plays a crucial role in shaping the microevolution of the
pangenomes of bacterial populations, but the effect of this force is different for all
genes or nucleotidic site and their allelic variants, may vary significantly over time,
and be different for different segments of the populations, for example if some
lineages are adapted to a certain environment. Such adaptation of a lineage will
involve many traits distributed in the pangenome of that population, and new
mutation arising in this background might interact with it; this leads to complex
epistatic (i.e. non-additive fitness) interactions between genomic traits, affecting the
probability of selecting new genetic variants in one or another genomic back-
ground—a process that could add infinite degrees of complexity to the exhaustive
model. Model design can, therefore, be greatly simplified by considering no effect of
selection, or in other words neutrality of evolution.

Even if the role of selection is not explicitly included in a model, it does not mean
that analyses based on this model are completely uninformative about selection.
Neutral evolutionary models provide a framework to search for evidence of natural
selection. This can be achieved formally by contrasting observed patterns in com-
pared genomic data to expectations under neutral models. Another approach to
detect selection is to fit a neutral model to genomic data, having heterogeneous
parameters to describe the evolution process of each species lineage and/or gene
family; outlier species or genes with ‘abnormally’ high or low parameters can
provide a clue to non-neutral processes taking place. Similarly, the identification
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of historical changes of processes (e.g. acceleration or slowing down of diversifica-
tion rates) in the scenario of pangenome evolution can provide strong clues of
selection affecting the species lineage or gene under focus (Boussau et al. 2004;
David and Alm 2011; Lassalle et al. 2017).

This approach is similar to the way that the role of selection is being investigated
in the core genome. In this more frequently explored setting, a typical pipeline
(Hedge and Wilson 2016) involves reconstructing a phylogenetic tree, classifying
substitutions in terms of whether they are synonymous or not and estimating
evolutionary rates so that selection tests can be applied based on variations in the
rates of synonymous and non-synonymous substitutions along the genome (Wilson
and McVean 2006; Castillo-Ramirez et al. 2011) or between populations (McDonald
and Kreitman 1991; Vos 2011). In this popular approach, the evolutionary models
used to build the phylogenetic tree and reconstruct substitution events are purely
neutral, but still lead to invaluable insights into the natural selection process.

2.3 Phylogenetic Approach

A neutral version of the comprehensive model described above would still be
impossible to use in practice. A major difficulty is that it considers the evolution
of the population forward-in-time, so that every single cell in the population has to be
included. However, any dataset we may have available for analysis will only include
a small fraction of the population, sampled typically at a single time point (or a few
recent time points in the best-case scenario). However, considering the evolution of
the whole population over time can appear wasteful, since most cells in the past
would not have had any descendants surviving in the present-time sample. A much
more tractable approach is therefore to only consider the genealogical process of the
sampled genomes, which is a backward-in-time process. Under relatively mild
assumptions, and without introducing too much approximation, this genealogical
process can be described without reference to the whole forward-in-time process. In
particular, the coalescent model (Kingman 1982) describes the genealogical process
of a population following either the Wright—Fisher or the Moran model of forward-
in-time evolution. Extensions of the basic coalescent model have been derived to
deal with fluctuating population size (Griffiths and Tavare 1994), homologous
recombination (Griffiths and Marjoram 1997), which for bacteria is analogous to
gene conversion (Wiuf and Hein 2000), and many other forms of relaxation of the
assumptions ruling the evolutionary process (Donnelly and Tavare 1995; Nordborg
2001; Rosenberg and Nordborg 2002).

Considering this genealogical process, and the ability to reconstruct it with
relatively high accuracy from genome sequences, is pivotal to lead to a usable
model of pangenome evolution. A simple approach is to focus on core genome
elements and apply a standard phylogenetic method typically based on maximum
likelihood or Bayesian inference under an evolutionary model of neutral point
mutations (Yang and Rannala 2012). Bacteria reproduce clonally and most species
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recombine relatively rarely (Vos and Didelot 2009; Yang et al. 2018), so that this
simple approach can often be sufficient for our purposes. Phylogenetic methods have
also been developed that can account for the effect of homologous recombination
while still reconstructing a single tree (Didelot and Wilson 2015; Croucher et al.
2015). Methods that attempt to reconstruct a graph of ancestry rather than a single
tree are superior in principle, but rarely used in practice due to their high computa-
tional cost (Didelot et al. 2010; Vaughan et al. 2017).

In the context of a phylogenetic tree reconstructed from the core genome, we can
consider the events of duplication, deletion and non-homologous recombination that
shape the accessory genome. These events happen on the branches of the phylogeny
at certain rates that may vary over time and lineages. Notwithstanding such
remaining complexities, a phylogenetic model of bacterial pangenome microevolu-
tion represents a practical approach relative to the comprehensive forward-in-time
model. The events that affect the accessory genome are relatively rare, which results
in a strong phylogenetic inertia of genome gene contents, i.e. a large correlation
between gene contents and core genome-based diversity (Konstantinidis et al. 2006;
Kislyuk et al. 2011). Ignoring this effect would lead to strong misinterpretation of
gene distribution patterns, especially in case of a diversity bias in genome sampling,
e.g. when surveying a pathogen epidemics where clusters of closely related strains
occur. Modelling the pangenome evolution within a phylogenetic framework where
evolution of the gene content takes place along the genealogical tree avoids such
pitfalls, in the same way as a phylogenetic framework avoids false conclusions to be
reached when performing bacterial genome-wide association mapping (Collins and
Didelot 2018).

3 Description of Pangenome Data for Inclusion
in Microevolutionary Models

3.1 Units of Pangenome Evolution

In order to describe further the existing models of pangenome microevolution, it is
necessary to consider the unit in which the pangenome is being described. Figure 2
illustrates the different approaches that have been used for that purpose. The ideal
starting point would be a complete sequence of each genome of interest, but this is
rarely available due to repeat regions in the genomes that obscure the exact ordering
of sequences along the genomes, at least based on short read sequencing. For that
reason, the most frequently used data is a de novo assembly of each genome, which
can be performed, for example using Velvet (Zerbino and Birney 2008) or SPAdes
(Bankevich et al. 2012). This results a set of genomic regions called contigs, which
occur in an unknown order either on chromosomes or on plasmids.

A first approach considers a genome alignment, where every part of a genome is
assigned to a syntenic block—segments of genome sequences that are all
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homologous and can be aligned (Fig. 2b, c). These sequence segments can have
boundaries falling anywhere in the genome, notably between or within protein-
coding sequences, and the often span many genes. While this is a flexible view of
pangenome evolution that is probably the most realistic—evolving genomes ignore
human annotation of functional elements—it may be cumbersome to implement
with a growing number of compared genome. Indeed, every genome added to the
dataset may result in the breakage of a syntenic block into several parts due to
insertion, deletions, or rearrangements in one of the homologous genome segments.
Homologous genome segments can themselves be difficult to align at the nucleotide
level when they include fast-evolving genome regions. For these reasons, even the
best software for this task such as progressiveMauve (Darling et al. 2010) or
MUGSY (Angiuoli and Salzberg 2011) can only deal with between 10 and
100 genomes, depending on how diverse they are. This first alignment approach
works best on the well-conserved parts of pangenomes, i.e. the core genomes and
possibly large conserved accessory regions of the genomes. This partial sampling of
genome sequences is practical because it allows to represent the homology between
genomes as a concatenated alignment of all these syntenic blocks, which amounts to
a representative map of the genome. Alternatively, a representative whole-genome
alignment can be obtained by mapping all homologous sequences in compared
genomes to the genome of a reference isolate, using, for example MUMmer
(Kurtz et al. 2004). This can result in reference-biased representation, which may
be avoided by restricting the alignment to the core genome.

A second approach focuses on genes, or more specifically on families of homol-
ogous genes. These are usually defined based on sequence similarity and restricted to
protein-coding sequences, even though it can be applied to conserved intergenic
sequences as well (Fig. 2e). In this representation, rather than a reference whole-
genome map, we consider independent gene families, which members need not be
localised in a genome. The diversity of the gene family can conveniently be
represented with a phylogenetic tree based on all nucleotide positions in the aligned
genes, which allows the estimation of statistical support (Fig. 2f). This information
can, in turn, be used to inform the ancestral reconstruction of genome gene content
(as discussed below). There are several ways in which this gene family content
identification can be performed. If a representative from each family is known in
advance, similarity search tools like BLAST (Altschul et al. 1997) can be used to
search them in each genome, and, for example BIGSdb automates this process
(Jolley and Maiden 2010). Alternatively, each de novo assembled genome can be
annotated separately, using, for example Prokka (Seemann 2014) or RAST (Aziz
et al. 2008). Homologs can then be identified by using a combination of similarity
search between genes from different genomes (e.g. with BLAST) and similarity
network analysis, as implemented, for example in the software OrthoMCL (Li et al.
2003), with integrated pipelines implemented in software like Roary (Page et al.
2015) and MMseqs (Steinegger and Soding 2017).

A consequence of this distinction is the way genetic exchange between genomes
is considered. In the nucleotide-centred vision, genetic exchange will result either in
the replacement of a region (homologous recombination) or the insertion of a
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sequence at a defined position in the genome map (non-homologous recombination)
(Fig. 2¢). Similarly, a genetic duplication event will consist in recopying a segment
of genome sequence and inserting it next to its template (tandem duplication) or
away from it. Homologous recombination events can be evidenced based on a scan
of the genome map, looking for increased or decreased sequence similarity
(or phylogenetic relatedness) between compared genomes along the genome map
(Didelot et al. 2007). Non-homologous recombination and duplication events consist
of insertion events and are simply evidenced by some region being only represented
in some genomes in the alignment—the others featuring a large ‘gap’, or long string
of missing characters. Distinguishing non-homologous recombination from dupli-
cation events can be tricky: even comparing the inserted segment to the rest of the
genome and finding a similar region is not conclusive that it would be the duplication
template (or copy) of the studied region. Such a pattern could also result from a
recombination with a related organism leading to the insertion of genetic material
that had homologous counterpart already residing in the recipient genome. Not
finding a similar region is not conclusive of the insertion resulting from a
non-homologous recombination event either, as an ancient duplication followed by
a loss (or deletion) in the compared lineage may result in the same pattern. The
answer to this conundrum is modelling of the possible sequences of events, or
scenarios, and determine the most likely based on patterns of sequence divergence.

In the second approach centred on genes, the exchange of genetic material is
made most evident in the phylogeny of genes, or gene tree, because the gene from
the recipient will be more closely related to genes from the donor than to genes from
closely related species. In this context, the event is rather called horizontal gene
transfer, in opposition to vertical evolution, which would have resulted in the
‘normal’ clustering of genes from closely related species. Again, this representation
ignores the locus where genes sit, and it is therefore not straightforward to know
from the gene tree whether the horizontal gene transfer event resulted in the
replacement of a resident sequence or in the addition of a new one.

There are also other evolving units that can be considered as the basis of
pangenome microevolution modelling, including conserved protein domains or
short sequences of a constant length, which are also known as words, features, or
k-mers (Sims and Kim 2011; Sheppard et al. 2013b). Some units may seem more
natural than others from a theoretical point of view, but in practice all units have pros
and cons, and the choice of unit is guided by the evolutionary resolution required by
each pangenome investigation.

3.2  Granularity of Homologous Groups

When modelling the pangenome diversity with homologous gene families, a further
distinction can be done on which homologous link to consider clustering genes into
families. A popular approach is to consider orthology relationships. In theory, genes
are orthologous when they are related only by events of speciation (i.e. diversification
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of the whole genome), not by duplication of horizontal gene transfer. Because the true
course of gene diversification events is unknown, we must rely on practical defini-
tions of orthology. This theoretical definition implies that two orthologues cannot
occur in the same genome. A usual criteria is thus to look for the bidirectional best hit
(BBH) in a similarity search of all the genes in a genome against all of the genes in
another genome pairwise genome (Altenhoff and Dessimoz 2009).

This pairwise relationship can be used to build a network of genes covering the
whole pangenome dataset, where cliques (groups where the found relationship is
transitive among members) are recognised as clusters of orthologous genes or COGs
(Tatusov et al. 1997). Using this practical definition, it is straightforward to classify
any gene into a cluster, many of which will however be clusters of genes on their
own: orphan genes with no homologues, but also those resulting from a recent
transfer or duplication. By construction, these COGs can only be absent or present
in a single copy in a genome, which proves very convenient for representing the
distribution of genes in the pangenome by a genome-to-COG binary matrix filled
with zeros and ones. This representation can be handled by many simple methods
that model the transition between these binary states over the tree of the genomes,
i.e. events of gene gain and loss (Fig. 3a) (Mirkin et al. 2003). This approach has
been widely used, but suffers from its stringent definition that leaves many homol-
ogous genes out of COGs under scrutiny, which may strongly flaw the inferred
ancestral genome gene contents and the derived conclusions on ancestral functional
repertoires.

Instead, it is possible to consider a whole family of homologues, which distribu-
tion of the family in genomes can again be represented in a matrix of counts, where
this time values range from zero to any integer number. Models of pangenome
evolution can account for this multiplicity of gene copy number by invoking extra
gene gain events (Fig. 3b) (Csurds 2008; Csurds and Mikl6s 2009). The nature of
these gain events—duplication or horizontal gene transfer—is, however, not inferred
as it fundamentally requires to know the phylogenetic relationships between genes
within a homologous family.

3.3 Linkage of Genes and Syntenic Blocks

Notwithstanding the type of evolving unit considered (aligned genome segment or
gene family), all units are usually considered to evolve independently on the
phylogeny. This is, however, not always realistic given the high linkage disequilib-
rium found in bacterial genome—the non-independence of physically linked char-
acters in evolution, a consequence of their clonal mode of reproduction.

Linkage can be introduced in a pangenome evolution model by specifying the
location of genes on a genomic map. The evolution of genes on the map is then
modelled through events of insertion, deletion and rearrangement. This map can
relate the absolute position of genes in contemporary genomes (i.e. with nucleotide
site coordinates) by chopping all genomes in the dataset into syntenic blocks, where
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homology and overall gene order between genomes is conserved (Vallenet et al.
2006; Darling et al. 2010). However, as mentioned above, the larger the genome
sample, the more syntenic blocks will split and shrink. Based on such genome maps,
the history of each syntenic blocks can be estimated, describing the ancestral events
of pangenome evolution. Even though in theory the map evolves over time due to
genome rearrangements (Darling et al. 2008), in practice the maps are assumed to be
constant in order to allow to focus on fine-grained changes within the syntenic
blocks. This assumption is commonly made, for example when investigating homol-
ogous recombination in the core genome (Didelot et al. 2010).

Another option is to map the relative position of smaller evolving units (usually
gene families) in each genome of the dataset. Such a relative map can be represented
by a matrix of presence or absence of a direct adjacency between genes in a given
genome, contemporary or ancestral. This more abstract representation allows the use
of incomplete data, such as draft genome assemblies, where the physical linkage of
sequences is not fully or not unambiguously documented. The evolution of gene
neighbourhood is modelled by invoking events of creation and breakage of adja-
cencies between neighbour genes, thereby modelling any insertion, deletion and
rearrangement. Ancestral state reconstruction (see below) is then undertaken, by
estimating a genome map at each ancestral node of a species phylogeny (Fig. 3d)
(Bérard et al. 2012; Patterson et al. 2013; Duchemin et al. 2017). These models are,
however, quite heavy computationally and may become overwhelmed by large
structural diversity in the dataset.

4 Methodological Approaches to the Reconstructing
Pangenome Microevolution

4.1 Ancestral State Reconstruction

The inference of ancestral genomes and corresponding gene gain and loss scenarios
can be a complex and computationally intensive task, but it can also be simplified to
the point that it becomes almost straightforward if the research questions are
relatively simple. For example, using profiles of gene presence/absence in genomes
and a phylogenetic tree as only input, ancestral state reconstruction can be applied to
infer in which internal nodes of the tree the genes were present, and therefore on
which branches the genes were gained and lost. For a general review on ancestral
state reconstruction, see Joy et al. (2016). One of the simplest and most popular
approach is to perform a parsimonious reconstruction, where the number of gain and
loss events is minimised without the need to estimate any parameter (Mirkin et al.
2003). In practice, this is more or less equivalent to performing maximum likelihood
inference under a model in which gain and loss happen at the same small rates.
However, probabilistic modelling of state evolution has the interesting property to
integrate over several possible scenarios. Even a maximum likelihood point estimate



Bacterial Microevolution and the Pangenome 143

of the presence of a gene at a given ancestral node will therefore consist of a
non-binary probability, a nuanced result allowing to consider the uncertainty in the
ancestral reconstruction (Pagel 1999). A similar Bayesian approach is stochastic
character mapping (Huelsenbeck et al. 2003), which consists in sampling gain and
loss histories from their posterior probability distribution via a Monte Carlo method.

Ancestral state reconstruction is particularly well suited to analyses focused on
specific genes rather than the whole pangenome, for example analysing the gain and
loss of pathogenicity genes (Dingle et al. 2014) or resistance genes (Ward et al.
2014). It can also be applied more generally to all genes in a pangenome, and the
rates of gain and loss would typically be assumed to be equal meaning that the
genome size is at equilibrium (Touchon et al. 2009). Alternatively, the reconstruc-
tion can be based on genomic elements known to be gained and lost in one block,
such as bacteriophages, plasmids, and integrative conjugational elements (Zhou
et al. 2013). This represents one simple way of dealing with the linkage of genes
mentioned previously, although at the cost of potentially losing information about
the gene content evolution of the genomic elements assumed to be perfectly linked.
At the other end of the spectrum, the reconstruction can be based on smaller elements
than genes, for example k-mers, but in this case it becomes vital to relax the
assumption of a fixed clock on gain and loss, for example using a local clock
model (Didelot et al. 2009) as illustrated in Fig. 4. This technique has been applied
to the pangenomes of Escherichia coli (Didelot et al. 2012) and Campylobacter
Jjejuni (Sheppard et al. 2013a), showing in both cases a strong relationship between
evolution of the accessory genome via gain and loss events and evolution of the core
genome via homologous recombination.

An important drawback of ancestral state reconstruction methods is that they
ignore the nature (recombination or duplication) and origins (recombination donor)
of gene gain events, which can yield partial and inaccurate scenarios when the true
history is complex, especially with many recombination events. In particular, the
exploitable signal from a profile of gene presence/absence in extant genomes are
quickly saturated when several gene copies coexist in a genome, and likely descend
from separate past events. This issue can sometimes be tackled by defining strict
families of orthologs, where every gene is present in one copy or none, but at the cost
of losing the information on evolution of homologues. Ancestral state reconstruction
could also in principle be applied to data on family of homologues, where each
genome can contain zero, one or more copies of a gene. This would require to fit a
ladder model similar to the ones used when analysing microsatellite data (Ohta and
Kimura 1973; Wilson and Balding 1998). This approach is difficult in practice
because bacterial accessory gene families of interest have often too complex histo-
ries to reliably infer orthologous groups and have high gain and/or loss rates that
quickly saturate signals. It has, however, been applied successfully in studies where
genomes of single representatives from fairly distant species were compared, thus
ignoring the ‘messy’ variation introduced by within-population evolution (Csurds
and Miklés 2009).
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Fig. 4 Illustration of a pangenome gain and loss model with local clock. The clonal genealogy is
shown in black. The width of the red block on the left of the branches is proportional to the rate of
gain. Similarly, the blue block on the right of each branch represents the rate of loss. Both the gain
and loss rates occasionally change over time. Individual gain events are represented by red arrows,
and individual loss events are represented by blue arrows

4.2 Phylogenetic Reconciliation

To deliver more informative scenarios of evolution, it is necessary to know the origin
of gene gains, which effectively means to know the relationship between observed
genes. Gene tree versus species tree reconciliation methods compare the topologies
of phylogenetic trees built from individual gene sequences against a reference
species tree (Maddison 1997). In the context of pangenome analysis, the species
tree is a phylogenetic tree reconstructed from the whole of the core genome. Species
and gene trees often have inconsistent topologies, which could happen by chance,
especially since the gene tree typically has limited statistical support, or may be the
result of evolutionary events affecting the history of the gene relative to the clonal
history. Reconciliation methods intend to explain the significant topological discords
by events of gene duplication, transfer, or loss (Szollosi et al. 2015). Figure 3c
illustrates the principles behind reconciliation methods. Practically, both trees are
annotated with the inferred events, such that there is a full agreement on the course of
events, from the root of the gene lineage to the contemporary distribution of genes in
genomes—thus reconstructing the path of evolution and diversification of genes in
the clonal frame of genome evolution. As a result, this approach allows to explicitly
determine the donors and recipients of transferred genes, or the ancestor in which a
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gene was duplicated. Methods for pangenome reconciliation analysis have been
proposed based on parsimonious reconstruction (Abby et al. 2010; Jacox et al. 2016)
and probabilistic models (Szollosi et al. 2012, 2013).

The ancestral state reconstruction approach and the reconciliation approach have a
lot in common, and the latter can be thought of as a natural extension of the former
when observation is not limited to presence or absence or number of copies of a gene,
but also includes the phylogenetic relationships between genes from separate
genomes. Reconciliation methods are therefore superior in the sense that they exploit
more of the available signal, but they are also much more challenging to implement
computationally and have so far been limited to analysis of a handful of genomes.
Ancestral state reconstruction methods are currently more popular but we predict that
reconciliation methods will become increasingly widespread in the near future with
the development of more effective statistical methods. Beyond the study of the atomic
events whereby the pangenome evolves, both methods allow to infer ancestral states
in hypothetical ancestors, or in other words to reconstruct ancestral genomes. Doing
so, one can derive the expected phenotypic traits of the ancestors—antimicrobial
resistance, metabolic activities, even ecological lifestyle. These inferred traits can
then be compared to historical records of Earth evolution or pathogen epidemic
spread to try and find causal relations between biological activity and the course of
events (David and Alm 2011; Holden et al. 2013), or be considered in support of
further ancestral reconstruction, such as scenarios of ecological niche colonisation
(Lassalle et al. 2017).
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Abstract The evolution and structure of prokaryotic genomes are largely shaped by
horizontal gene transfer. This process is so prevalent that DNA can be seen as a public
good—a resource that is shared across individuals, populations, and species. The
consequence is a network of DNA sharing across prokaryotic life, whose extent is
becoming apparent with increased availability of genomic data. Within prokaryotic
species, gene gain (via horizontal gene transfer) and gene loss results in pangenomes,
the complete set of genes that make up a species. Pangenomes include core genes
present in all genomes, and accessory genes whose presence varies across strains. In
this chapter, we discuss how we can understand pangenomes from a network
perspective under the view of DNA as a public good, how pangenomes are
maintained in terms of drift and selection, and how they may differ between prokary-
otic groups. We argue that niche adaptation has a major impact on pangenome
structure. We also discuss interactions between accessory genes within genomes,
and introduce the concepts of ‘keystone genes’, whose loss leads to concurrent loss of
other genes, and ‘event horizon genes’, whose acquisition may lead to adaptation to
novel niches and towards a separate, irreversible evolutionary path.
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1 Introduction

Horizontal Gene Transfer (HGT) is the most important force affecting evolutionary
change in prokaryotes, and its pervasiveness has resulted in a vast global network of
connectivity between microorganisms. DNA is available for horizontal acquisition
by prokaryotes in a variety of ways: conjugative plasmids (Grohmann et al. 2003;
Lederberg and Tatum 1946) facilitate the transfer of DNA directly from cell to cell,
phage can facilitate the indirect movement of DNA from one prokaryotic cell to
another by generalised transduction (Zinder and Lederberg 1952), and gene transfer
agents (GTAs) facilitate gene transfer by cell lysis. In some Archaea, we even see the
formation of networks of connections between individuals that can lead to the
formation of heterodiploid cells and recombination between the parental cells’
genomes (Naor and Gophna 2013). Another important mechanism is direct acquisi-
tion of DNA through transformation. Extracellular DNA has a ubiquitous distribu-
tion in natural environments from hydrothermal vents, to freshwater, soil, and
sediment (Nagler et al. 2018), as well as in the biofilms (Steinberger and Holden
2005) that line our sewage pipes (Vincke et al. 2001), contaminate hospital equip-
ment (Stickler 2008), associate with tooth decay (Potera 1999), and much more.
Therefore, DNA can be shared and used among organisms and effectively becomes a
public good. All these mechanisms result in a DNA-sharing network that has
probably existed since before life evolved to become cellular and will likely remain
an important part of prokaryotic biology for as long as there are prokaryotes.

With the advent, and subsequent accessibility, of next-generation sequencing
technologies (Shendure et al. 2017), it became apparent that gene presence—absence
variability within a species (i.e. strain-to-strain variability) was much larger than
expected (Tettelin et al. 2005). For example, when the first three Escherichia coli
genomes were sequenced, only 39.2% of their protein-coding genes were found to
be common to all three genomes (Welch et al. 2002). In a more recent study
involving 1524 Pseudomonas aeruginosa genomes, only 3% of genes were found
to be shared (i.e. ‘core’) across all strains, with the remaining 97% being variably
present in a subset of strains (Karasov et al. 2018). The existence of this variability in
gene content within what we regard as single prokaryotic species led to the concept
of a pangenome, the complete set of genes that are present in a given species
(Tettelin et al. 2005). This set of genes is usually divided into two categories: core
genes, that are present across all individuals in a species, and accessory genes, whose
presence varies between individuals or strains (Tettelin et al. 2005; Welch et al.
2002; Karasov et al. 2018; Laing et al. 2010). The pangenome concept revolutionises
our thinking, since it means considering organisms like Escherichia coli not only in
terms of the thousand or so genes that are common to all members, but also in terms
of the 100,000 or so genes that are found in at least one, but not all, E. coli genomes
(Land et al. 2015). This new information on the structure of the prokaryotic world
has meant that we have to think about ‘units’ of selection (Okasha 2006) in different
ways. In this chapter, we will outline some of the ways in which we can think about
pangenomes and what this means for biology. Although our focus is on prokaryotes,
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it should be noted that some eukaryotes also have pangenomes. For example, a high
degree of gene presence—absence polymorphism has been found in different genome
sequences of humans (Sherman et al. 2019), cultivated rice (Wang et al. 2018;
Hubner et al. 2019), sunflower (Hubner et al. 2019), and in the widespread
coccolithophore Emiliania huxleyi (Read et al. 2013).

2 Pangenome Properties

As a consequence of the merging of genetic information through HGT and the
existence of pangenomes, our thinking about the evolutionary history of prokaryotic
genomes has changed. In fact, it is more relevant to think not of the evolutionary
history of a genome, but rather the evolutionary histories of the various parts of a
genome, since these histories can be different (Bapteste et al. 2009). The phyloge-
netic relationships inferred by a single gene, no matter how important that gene,
rarely reflects the evolutionary history of the suite of organisms under consideration.
This idea was codified by Darwin in ‘The Origin’ when he said: ‘The importance, for
classification, of trifling characters, mainly depends on their being correlated with
several other characters of more or less importance’ (Darwin 1860). In other words,
the notion of homoplastic characters (i.e. characters whose similarity is due to
convergent evolution) is an old idea and characters can differ in what they suggest
is the proper classification of an organism. Though Darwin did not know about DNA
or HGT, the warning about character congruence and classification still holds true
today and perhaps even more so because of HGT and the non-tree likeness of this
process.

The pangenomes of different prokaryotic groups differ. Transformation, trans-
duction, and conjugation contribute to shuffling variably sized portions of genomes
through both homologous and non-homologous recombination. The frequency of
the different mechanisms likely depends on environmental conditions, lifestyle, and
cell biology (i.e. the molecular mechanisms present in particular cells or taxa)
(Hanage 2016). Therefore, under different conditions, HGT and recombination can
in principle range from non-existent to widespread, resulting in primarily clonal or
panmictic groups, respectively (Yang et al. 2019). Furthermore, recombination
barriers, both within and between species, can be fuzzy and potentially differ for
different parts of the genome. This can make the delineation of populations or of
species more complicated in prokaryotes, when compared to animals, for example
(Hanage 2013). However, it has been suggested that natural species boundaries do
exist in prokaryotes and that they can be defined (Bobay and Ochman 2017). On the
whole, HGT and DNA recombination in prokaryotes can have similar consequences
to sexual reproduction in eukaryotes: removing deleterious mutations, thereby
avoiding Muller’s ratchet or mutational meltdown, while also offering a mechanism
for bringing together advantageous mutations in different genes or parts of the
genome. But crucially in prokaryotes, recombination can both remove and add a
hugely variable number of genes to a genome, thereby affecting the overall gene
repertoire rather than simply modifying existing genes by point mutation. That is,
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pangenome

closed

Fig. 1 An illustration of how the rate at which new accessory genes are discovered as increasing
numbers of genomes are sequenced. For species with open pangenomes, the rate of accessory gene
discovery continually increases, while for closed pangenomes, this rate plateaus quickly

recombination in prokaryotes often results in insertions or deletions, while in
eukaryotes it tends to swap alleles between chromosomes.

Pangenomes differ in the degree to which they are ‘open’ or ‘closed’. Species that
share almost all genes with each other (i.e. have very little strain-to-strain gene
content dissimilarity) having a large ‘core’ and small ‘accessory’ genome, are
considered to have closed pangenomes (Mclnerney et al. 2017). In contrast, species
can have open pangenomes in which gene content varies appreciably from one
genome to another (Mclnerney et al. 2017) (see Fig. 1). Though we know the
openness of prokaryotic pangenomes varies greatly from one species to the next
(Tettelin et al. 2005), our estimates of openness can be affected by the available
genomic data (i.e. the number of accessory genes is expected to increase as more
strain information becomes available). As such, openness can be measured by
modelling the number of accessory genes as a function of the number of sequenced
genomes (Tettelin et al. 2005) (see also Chap. 1). The first analysis of openness found
that eight Streptococcus agalactiae genomes were not enough to uncover all possible
accessory genes and predicted that new genes would be found with every additional
genome, leading to an essentially infinite pangenome. In contrast, the number of new
accessory genes in Bacillus anthracis dropped to zero after the incorporation of only
four genomes to the study of its pangenome (Tettelin et al. 2005). Therefore, accurate
measurements of pangenome openness depend on sampling the broad diversity of
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genomes in a given species, and such measurements should ideally account for core
genome diversity and the phylogenetic relationships between those genomes.

3 Public Goods

The idea that DNA functions as a public good (Erwin 2015; Mclnerney et al. 201 1a;
MclInerney and Erwin 2017) stems from the fact that HGT makes DNA available to
other ‘users’ and this process has structured a great deal of the life on this planet,
both cellular and viral (Bapteste et al. 2012, 2013). Integration of a new DNA
sequence into a genome can only be successful if the source organism and the
recipient organism can both make use of this DNA in some way. Carl Woese referred
to the universal genetic code as being the ‘lingua franca’ of genetic commerce
(Woese 2002). HGT has been observed in almost all known phyla, though HGT
seems to be reduced in frequency among eukaryotes and perhaps reduced further in
multicellular organisms (Schonknecht et al. 2014; Mclnerney et al. 2014; Ku et al.
2015). As a consequence of HGT, there is no universal Tree of Life, and instead
there is a network of life reflecting the vertical and horizontal movements of genetic
information (Bapteste et al. 2012, 2013; Corel et al. 2018).

Our current appreciation of evolutionary history in prokaryotes and the observa-
tions of pangenomes has led us to consider what metaphors might be appropriate for
representing, modelling, and understanding life on the planet. A variety of alterna-
tives to the tree metaphor, such as ‘cobwebs of life’ (Ge et al. 2005) or ‘thizome of
life> (Merhej et al. 2011), have been used. However, some of us have proposed to
depart from a way of thinking that inherently depends on a particular kind of
diagram. Instead we have advocated a focus on the fundamental process of HGT,
and the fact that it constructs new genomes in the same way that, say, a furniture
manufacturing plant might bring together different materials in order to construct a
new kind of chair, or in the way that a football team might substitute one player for
another. As mentioned above, Woese suggested that HGT could be thought of in
commercial terms (Woese 2002), and a logical extension to this line of thinking is
that DNA acts as though it is a ‘public good’ (MclInerney et al. 2011a, b; MclInerney
and Erwin 2017). Briefly, in the theory of goods, Nobel laureate Paul Samuelson
initially described two kinds of goods thus: ‘[...] I explicitly assume two categories
of goods: ordinary private consumption goods which can be parcelled out among
different individuals [. . .] and collective consumption goods [...] which all enjoy in
common in the sense that each individual’s consumption of such a good leads to no
subtraction from any other individual’s consumption of that good [. ..]” (Samuelson
1954). Since then, the concept has been expanded so that four kinds of goods are
recognised—private goods, public goods, club goods, and common goods
(Mclnerney et al. 2011a), based on whether goods are rivalrous and/or excludable.
The criteria for each of the classifications are contained in Fig. 2, along with
examples of goods that fall easily into each of these categories. A ‘good’ is said to
be rivalrous if its consumption by one consumer prevents simultaneous consumption
by other consumers, and a ‘good’ is said to be excludable if it is possible to prevent
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rivalrous non-rivalrous

excludable

COMMON
non-excludable (e.g. non-renewable
resources)

Fig. 2 The nature of Goods. Goods can fall into four different categories—private, club, common,
and public according to whether they are rivalrous or non-rivalrous, and excludable or
non-excludable. The figure also gives some examples of goods that easily fall into each of these
four categories

others from having access to it. DNA possesses the property of being non-excludable
(e.g. the DNA of any individual is made available, at least at the time of death of the
cell or the individual) and it is also non-rivalrous in a practical sense, given that the
amount of DNA that is produced by any given species cannot realistically be used up
by any consumer. This perspective is useful in the sense that viewing genome
evolution as a process of building functioning tools (i.e. new kinds of organisms)
allows us to ask questions that would not make much sense if we used ‘tree-thinking’
(Bapteste et al. 2013; Dagan and Martin 2009). Tree-thinking inherently supposes
that genes came to be in a genome because all the genes have been inherited through
the same lineage of descent—a process that infers that genes are ‘private’ to a clade.
‘Goods-thinking’, on the other hand, frees us to think more about why the particular
set of genes that we observe in a genome are there, rather than some other set of
genes. We do not assume that any gene is a private good, exclusively found in a
particular species or clade, with other organisms excluded from accessing the
segment of DNA. Goods-thinking infers that a genome has evolved to be the way
it is through vertical inheritance from a common ancestor, but also through the
horizontal acquisition of genes, with the rate of gain (and loss) of genes being
modified by the influences of random drift, selection, and demography. Goods-
thinking, therefore, needs some new tools, outside of the framework of the bifurcat-
ing phylogenetic tree, in order to properly analyse gene and genome evolution
(Bapteste et al. 2009). Here we deal specifically with the pangenome’s part of
Goods Thinking theory.

4 Analyses of Pangenomes

Because of the fluidity of genomes, caused by accessory gene gain and loss, the
analysis of pangenomes lends itself more suitably to networks than to phylogenies.
Networks are mathematical graphs represented by nodes, or vertices, which are
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connected by edges, or lines, if-and-only-if a relationship exists between them.
Networks are widely used in ecology—and in biology in general—to represent,
for example food webs (Dunne et al. 2002), social interactions (Robins et al. 2007),
nutrient/energy flows (Allesina et al. 2005), and cooperation between members in a
population (Jain and Krishna 2001). Networks can have edges that are either directed
(often shown as an arrow) or undirected, depending on whether the relationship that
connects the nodes has directionality (e.g. to connect an organism to their food
source in a food web). The study of networks, or graphs (i.e. graph theory) dates to at
least 1735 (Skiena 2008; Compeau et al. 2011) and has advanced rapidly due to its
applications in computer science, engineering, physics, and biology. The public
goods nature of DNA makes a network structure ideal to uncover patterns and
processes of evolution in ways where phylogenetic trees would be somewhat
lacking, since phylogenetic trees do not infer lateral movement of genetic material.
The analysis of features contained within the graphs such as non-transitive triplets,
or nodes with identical incident edges can reveal patterns of recombination or gene
sharing (Bapteste et al. 2012; Corel et al. 2018; Meheust et al. 2018).

In the analysis of pangenomes, networks are often k-partite or multi-partite,
meaning that their nodes can be coloured using k colours such that no node is
directly connected to another with the same colour (Pavlopoulos et al. 2018). A
special case of k-partite graphs is bipartite or two colourable graphs. In pangenome
analyses, bipartite graphs usually connect genomes to their constituent genes (Corel
et al. 2018). Bipartite networks have been used previously to identify the levels of
gene sharing within microbial genomes (Corel et al. 2018), to characterise the
capacity of accessory genes in metabolic networks (Goyal 2018), and to interrogate
gene presence/absence patterns and coincident relationships (McNally et al. 2016).

Especially relevant for genome evolution is the N-rooted fusion graph (Haggerty
et al. 2014). This graph differs from a phylogenetic tree due to the presence of more
than one root node (a node that depicts the point-of-origin of all operational taxo-
nomic units in the graph) and the presence of at least one internal node in the graph
where the in-degree of the node (the number of edges pointing towards that node) is
greater than 1 and the out-degree of the node (the number of edges emerging from that
node) is 1 (Fig. 3). In other words, the merging of genetic material inherently means
that the graph needs more than a single origin or root. It also means that the point at
which the material merged must be represented by a merger, or fusion node (Fig. 3).
The various components of the internal structure of an N-rooted fusion graph can be
determined by the usual phylogenetic approaches [i.e. parsimony, likelihood, or
distance matrix methods (Felsenstein 2003)]. The complete N-rooted graph is then
constructed by merging of these individual phylogenetic trees, by constructing fusion
nodes at the appropriate places (Haggerty et al. 2014).
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Fig.3 An N-Rooted Fusion

Graph. This kind of
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depicts the root for a

different kind of gene. The

node labelled F indicated the F
fusion node. The different

node colours indicate

different gene families, with

the blue nodes indicating R
that they are a fusion family

5 How Are Pangenomes Maintained?

Because acquired DNA can function across multiple organisms—facilitating it to
become a public good—HGT into some individuals in a population creates diversity
within that species. Transferred sequences will be present in a subset of the
population’s genomes and absent in the rest (McNally et al. 2016), becoming raw
material for natural selection (see Fig. 4). Multiple iterations of this process have
most likely resulted in the observed pattern of hugely varying gene content across
conspecific genomes (Welch et al. 2002; Lukjancenko et al. 2010; Koonin and Wolf
2008). Maintenance of the observed high levels of variation requires an explanation,
because, while we know that transformation, conjugation, and transduction intro-
duce this presence—absence variation, it is expected that both natural selection and
genetic drift would remove this kind of genetic variation from populations. In terms
of sequence variation within populations, different mechanisms have been proposed
to explain the maintenance of diversity. These mechanisms range from relatively
trivial explanations, such as the existence of a balance between the rates at which
new variants arise in populations (by mutation, for example) and the rates at which
they are removed, to more exotic mechanisms such as heterozygote advantage,
interactions between genotypes and different environments, and negative
frequency-dependent selection (Hahn 2018). Although most of these explanations
have been developed in order to account for high levels of genetic diversity in
diploid, sexually reproducing eukaryotes, some of these mechanisms can also help
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Fig. 4 Prokaryotic DNA becomes a public good upon cell death or when the DNA is taken from
the cell via phage or plasmids. Pangenomes can then accrue via the differential acquisition of these
public goods

us to understand genetic variation in prokaryotes. However, understanding the
existence and maintenance of pangenomes has its own particular challenges.

A key element to be considered when we speak about mechanisms that maintain
variability in gene content in prokaryotic populations is the fitness effect that these
accessory genes have on individuals. We will likely find examples of particular
genes whose presence is neutral, deleterious, or adaptive in most genomes; we are
already familiar with genes in the latter class such as those conferring antibiotic
resistance and pathogenicity islands (Sheppard et al. 2018). However, an interesting
question to think about is whether accessory genes on average contribute to fitness
(or under which circumstances they may be adaptive), and which mechanisms have
led to their patchy occurrence in genomes. Depending on the average fitness effect of
accessory genes, different mechanisms could be governing their presence.

If accessory genes are mostly deleterious, which could be the case if they are
predominantly selfish or parasitic, then the patchy presence patterns that we observe
could reflect a constant arms race between these selfish elements and the host
genome (somewhat equivalent to the Red Queen hypothesis for maintenance of
variability in populations of interacting hosts and pathogens). Although this pattern
may be responsible for a proportion of accessory genes, it is very unlikely that this
explains most of the observed variability and the existence of pangenomes, partly
because many accessory genes are not related to selfish elements and appear to be
involved in multiple cellular functions (McNally et al. 2016; Sheppard et al. 2018).

If accessory genes are usually neutral in terms of fitness, eventually they would be
randomly fixed or lost in different populations due to genetic drift, particularly if
recombination is rare. A neutralist model for pangenomes implies that we see
presence—absence variation because there is a random ‘rain’ of genes constantly
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being acquired and we observe their presence in a genome because they have either
not had enough time to drift to fixation or to be lost again. This kind of model implies
that neither the gain nor the loss of accessory genes has a fitness effect (Baumdicker
et al. 2012), a situation that seems contradicted by the observation of both prophage
(Nanda et al. 2015) and antibiotic resistance (Her and Wu 2018) genes affecting
fitness. A recent study (Andreani et al. 2017) showed a correlation between
pangenome fluidity and synonymous variation, which was taken to imply that
genome content diversity is mostly neutral. The implication was that synonymous
diversity arises in the absence of selection and if this correlates with genome fluidity,
then genome fluidity is also neutral. The problem with this model is that synony-
mous diversity in prokaryotes is not necessarily neutral, and we see stronger
selection on synonymous codon usage in organisms with large effective population
size (N,) (Sharp et al. 1993), so the correlation between large N, and genome fluidity
is unlikely to be a consequence of drift alone.

Recently, a drift-barrier model for pangenome evolution has been proposed
(Bobay and Ochman 2018). The authors observed a positive correlation between
pangenome size and N, (using two independent measures of N, for different bacterial
species). In contrast to Andreani et al. (2017) they propose that, on average,
accessory genes make a positive contribution to fitness. Based on nearly neutral
evolutionary theory, they then explain the correlation between N, and pangenome
size by the loss of slightly advantageous genes in populations with small N,.
Therefore, populations with large N, would maintain a larger number of accessory
genes. However, while this may help explain larger genome size (i.e. the mainte-
nance of more genes), it does not necessarily explain diversity in gene content in
different individuals from the same population, since those slightly advantageous
genes would be expected to eventually fix in the population. Furthermore, the
authors did not deal with the likelihood that, on occasion, these advantageous
genes would result in sweeps to fixation. The problem with this model is outlined
in simulations by Niehus et al. (2015). As some of us have previously proposed
(Mclnerney et al. 2017), some of the basics of this drift-barrier model, if combined
with niche adaptation, can go further in explaining the maintenance of genome
content diversity. Under the adaptive pangenomes model of Mclnerney et al.
(2017), accessory genes make, on average, a positive contribution to fitness, and
this contribution may be niche dependent. Therefore, genes are maintained in the
niches where they are beneficial and lost in others. However, ongoing migration
would still allow recombination in other parts of the genome, and thus maintenance
of large N,, at least for the core genome.

In line with the McInerney et al. (2017) model of pangenome maintenance by a
combination of drift and niche-dependence, there is evidence that at least a signif-
icant fraction of accessory genes are beneficial and involved in niche adaptation
(Bruns et al. 2018; Rubino et al. 2017; Mclnerney 2013). The adaptability of
prokaryotes means that they occupy niches all over the planet—including oceans
(Sunagawa et al. 2015), ice sheets (Anesio et al. 2017), and salt flats (Caton et al.
2004), as well as ecosystems deep within the earth’s crust (Chivian et al. 2008), and
on and within our own bodies (The Human Microbiome Project Consortium 2012).
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Some ‘specialist’ prokaryotic species focus on one, specific niche; for example
Buchnera aphidicola is an endosymbiont that forms an obligate association with
aphids (van Ham et al. 2003). Such specialists would likely have little to gain from
extensive gene content diversity, possibly explaining the relative closeness of some
species pangenomes. For example, Tropheryma whipplei, an intracellular human
pathogen and the causative agent of Whipple’s disease (Gorvel et al. 2010), has an
extremely restricted pangenome (Fenollar et al. 2014), and smaller than average N,
(Bobay and Ochman 2018). In contrast, ‘generalist’ prokaryotic species can occupy
many of the niches made available to them. Escherichia coli has been identified in
several different kinds of environments including the gut and urinary tract of
humans, and indeed other warm- and cold-blooded animals (Tenaillon et al. 2010),
as well as soil, sediment, and water (Savageau 1983). In order to occupy such
variable environments, these species must be able to adapt to different carbon and
nitrogen sources (Bertin et al. 2011), to evade various antibiotic pressures (Sdenz
et al. 2004), and to utilise different types of respiration depending on oxygen
availability (Jones et al. 2007). Recent work on the metabolic potential of accessory
genes has identified a correlation between the number of novel metabolites that a
given strain can synthesise and the openness of their pangenome, suggesting that the
acquisition of such genes is adaptive (Goyal 2018). Other scenarios where variation
in accessory genes is actively maintained by selection include negative frequency-
dependent selection (Corander et al. 2017) where a major allele (gene presence or
absence in our case) is at a disadvantage compared with the minor allele (the other
character state). For example, in the case of vaccine programmes, it is likely that a
vaccine targeting a non-essential accessory gene will confer a selective advantage on
strains that do not have that accessory gene (Azarian et al. 2018). Bacteriophages
may have a similar effect on non-essential attachment proteins and other cellular
components. Finally, it is also the case that a particular gene may be beneficial in a
specific niche when another gene is present, but not so when that partner is absent.
This co-dependency of genes for fitness/adaptation to a particular niche will manifest
particular patterns of co-occurrence in genomes (Cohen et al. 2013).

Notwithstanding the argument being made here that pangenomes are, on average,
constructed and maintained by niche adaptation, we are still a long way from having
enough data to say that this understanding is true in all cases. To assess whether
neutralist or selectionist scenarios warrant greater or lesser support in different
prokaryotic species and populations, we need more genomic data and information
on population structure, levels of migration and recombination, and the distribution
of fitness effects of accessory genes in different niches or environments. This
requires deep sampling of prokaryotic genomes across space (within and between
niches) and ideally along time. Recording of information on as many environmental
variables as possible would also be highly advantageous for understanding which
factors influence the evolution of pangenomes.
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6 Keystone Genes and Event Horizon Genes

The dynamics of accessory gene repertoires is clearly a subject of great interest in
microbiology. We have a poor understanding of how these repertoires are structured
and what influences their content, how they grow and are maintained. The process of
gene loss is also poorly understood. We have outstanding questions about what we
might term ‘keystone genes’, those genes that play a central role in determining what
other genes might be successful in a genome. This keystone gene concept is
analogous to the keystone species concept in macroecology (Paine 1969); keystone
species are those whose presence or absence can result in a major shift in the make-
up of a particular ecosystem, often resulting in ecosystem collapse, if the keystone
species leaves or goes extinct (Estes et al. 1978).

In a related, but slightly different context, we might consider the case of ‘event
horizon’ genes. To give an example of the possible existence of such genes, we can
consider the evolution by gene acquisition of Archaeal halophiles from an ancestor
that was a methanogen (Nelson-Sathi et al. 2012). This transition must have involved
the rapid acquisition of a large number of genes. Whereas Haloarchaea are hetero-
trophic, facultatively anaerobic or aerobic organisms with a phototrophic capability,
their ancestors the methanogens are obligately anaerobic, methane-producing,
chemolithotrophic archaea. The differences between these two closely related
groups illustrate that seismic changes in genome content can occur, but also that
the absence of intermediate forms suggests that such changes can come about with
great rapidity. This leads us to the question of which genes, when acquired, led to the
establishment of the halophile phenotype. In an analogy with astrophysics, we can
speculate whether there has been an ‘event horizon’ or a point of no return, where the
acquisition of a particular gene or set of genes permanently converted a methanogen
to a halophile. We might imagine that the combination of importers of organic
compounds and genes for heterotrophic metabolism marked the point of no return.
Indeed, there seems to have been in this case no return, since all halophilic archaea
are monophyletic and none have abandoned this lifestyle. Therefore, the order of
gene acquisition and gene loss is an important question. Future work will help
understand whether these keystone and event horizon genes are common in acces-
sory gene repertoires.

7 Some Conclusions and Future Directions

While evolution has no particular direction, the likely success of a particular
genomic sequence relates to the notion of ‘unity of purpose’. In this sense, the
various components of a biochemical pathway can be said to have unity of pur-
pose—collectively they enable the biological transformation of some important
molecules. The components of the translation apparatus similarly have a unity of
purpose. As a corollary, we could say that inserting genes that can enable
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methanogenesis into the same genome as genes that are responsible for importing
sugars would not likely lead to a genome with a particularly united purpose—one
part of the genome would be dedicated to producing energy by chemolithotrophy,
while another part of the genome would be dedicated to a heterotrophic lifestyle. Yet
situations like this must surely arise from time to time, given the pervasiveness of
HGT. Two great unknowns right now include how often such conflicts arise in
nature, and how compatible are the genes we see in genomes. We know that they are
compatible enough to give rise to functioning organisms, but we do not know how
each individual gene contributes to fitness. Background selection and hitch-hiking
Hill-Robertson effects (Hill and Robertson 1966) are mechanisms that can limit the
‘impact’ of natural selection and allow maintenance of slightly deleterious variants
(Price and Arkin 2015), including, we would suppose, accessory genes that have a
slightly deleterious fitness effect.

The focus on pangenomes is usually centred on protein-coding genes, but there
are several other levels at which pangenomes provide food for thought. An analysis
of E. coli genomes has revealed that selection on non-coding regions has been
instrumental in shaping the success of a particular sequence type (ST131) of the
species (McNally et al. 2016). This brings into focus the combinatorial nature of
genome structure—that the presence or absence of particular kinds of protein-coding
genes, or even RNA-coding genes is only part of the story, and that the ‘regulatory
pangenome’ will be one of the most important future challenges.
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Abstract The rapidly expanding number of sequenced bacterial strains and species,
and the ongoing curation of bacterial pangenomes has uncovered unexpected com-
plexities in understanding and addressing antibiotic resistance in the context of the
pangenome. It is becoming apparent that differences in the genetic background can
cause species and strain-specific responses to the same antibiotic, triggering differ-
ential selective pressures and thereby strain or species-specific adaptive outcomes. In
this chapter, we consider how the pangenome, on a between and within species level,
can affect the response to antibiotics and the development of resistance as well as the
role selective pressures such as antibiotics play in shaping and maintaining the
pangenome. We review the tools that are used to study antibiotic resistance within
a pangenomic context, highlight recent findings, discuss strategies for predicting the
emergence of resistance and consider how effective therapies can be developed in
the context of the pangenome.

Keywords Pangenome - Antibiotic resistance - Genomics - High-throughput tools -
Adaptive evolution - Network analyses - Epistasis - Predictions - Machine learning

1 Introduction

Antibiotic resistance is a naturally occurring phenomenon that can be found in
environments containing antibiotic-producing microorganisms, even in the absence
of human activity (D’Costa et al. 2006). While antibiotic resistance is rampant in
livestock and is a confounding factor in the emergence and spread of resistance into
the human population, most research focuses on bacterial pathogens affecting
humans and in particular the ESKAPE pathogens (Enterococcus faecium, Staphy-
lococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas
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aeruginosa, and Enterobacter species) as well as Mycobacterium tuberculosis
(Santajit and Indrawattana 2016). Instrumental in the development of resistance is
a bacterium’s inherent ability to survive exposure to low antibiotic concentrations
giving the population the opportunity to accumulate genomic changes, eventually
leading to full resistance (Drlica et al. 2008). In clinical practice, bacteria can
frequently encounter significantly lower drug concentrations in host-niches such as
the nasopharynx, inner ear, or lungs compared to plasma levels (Rybak 2006).
Exposure to subinhibitory concentrations of antibiotics may be capable of reducing
bacterial growth rates, but can fail to fully eradicate infections, providing selective
pressure for acquired resistance. Outside clinical settings, environments containing
antibiotics are plentiful, especially due to the rise in antibiotic usage in humans,
agriculture, and veterinary medicine (D’Costa et al. 2006; Watkinson et al. 2007). In
such environments, selection for antibiotic resistance is likely and frequent (Gullberg
etal. 2011).

There are several mechanisms whereby bacteria can resist antibiotic stress
including modification of the antibiotic’s direct target, enzymatic drug inactivation,
and reduction of intracellular drug concentrations via efflux pumps (Walsh 2000;
McKeegan et al. 2002; Wright 2003) (Fig. 1). Adaptation—the process by which
bacteria attain such mechanisms of resistance—can happen through two modes:
horizontal and vertical evolution. The horizontal mode of adaptation (horizontal
gene transfer; HGT) involves the acquisition of genetic material from organisms that
share the same environment, whereas the vertical mode of adaptation involves the
acquisition of de novo mutations. Both modes have an important role in shaping the
pangenome of bacterial species (Santajit and Indrawattana 2016; Sommer et al.
2017). The use of antibiotics can exert selective pressures that fix horizontally
transferred genes or acquired mutations in a population. Examples of HGT include
integrons carrying mecA which converts methicillin-sensitive S. aureus (MSSA) to
the resistant “superbug” MRSA (Wielders et al. 2002), beta-lactamases in
P. aeruginosa, A. baumannii, and various species of Enterobacteriaceae (Weldhagen
2004), and macrolide resistance in Staphylococcus epidermidis (Lampson et al.
1986) and Streptococcus pneumoniae (Chancey et al. 2015). Examples of de novo
resistance mutations are plentiful, including mutations in topoisomerase subunits
gyrA and parC conferring resistance to fluoroquinolones (Fabrega et al. 2009) or in
different penicillin-binding proteins, which confer resistance to beta-lactams
(Murakami et al. 1987; Sauvage et al. 2002; Munita and Arias 2016; Gifford et al.
2018). Moreover, both modes of evolution can be accelerated by antibiotics. On one
hand, fluoroquinolones can induce horizontal gene transfer by activating compe-
tence in S. pneumoniae (Prudhomme et al. 2006; Slager et al. 2014), while on the
other hand, the use of the same class of antibiotics can increase the mutation rate
(Lindgren et al. 2003). Importantly, the maintenance of newly acquired resistance in
a given population, and its dissemination among species, relies heavily on the
associated fitness cost (Melnyk et al. 2015). For instance, the cost of metabolite
production in a given reaction may constrain the evolution of antibiotic resistance,
highlighting the role of bacterial metabolism and environment on antimicrobial
adaptation (Zampieri et al. 2017a). This cost may be different in strains with different
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genetic backgrounds, suggesting that resistance maintenance depends on the bacte-
rial metabolic cost/status as well as for instance the bacterial transcriptional profile in
a particular environment (Cornick and Bentley 2012). These negative fitness costs
(i.e., reduced growth or replication rates) suggest that in the absence of the antibiotic
pressure the adaptive mutations would disappear from the population, nevertheless
adapted populations rarely revert to their wild-type versions, and new mutations can
compensate for the fitness cost (Andersson and Hughes 2010).

Antibiotics usually target important cellular functions (e.g., cell wall synthesis,
DNA replication, or protein synthesis), involving highly conserved and often essen-
tial genes present in a wide range of bacteria (Hershberg et al. 2008) (Fig. 1).
However, it has become clear that while antibiotics may have very specific targets,
the bacterial response to antibiotics and the occurrence of resistance is much more
distributed across the genome. For instance, we and others have assayed the antibi-
otic response of bacteria through genetic perturbations (Fajardo et al. 2008; Tamae
et al. 2008; Breidenstein et al. 2008; Schurek et al. 2008; Girgis et al. 2009; Nichols
et al. 2011; van Opijnen and Camilli 2012; van Opijnen et al. 2016), which
established that a large number of genes and pathways can influence drug suscep-
tibility. These findings underline that we have a limited view of how an antibiotic
inhibits a bacterial cell; instead of just a drug—target binary interaction, it is a
complex, multifactorial process that begins with that interaction but propagates
into various biochemical, metabolic, and regulatory processes of the cell (Tomasz
1979; Vakulenko and Mobashery 2003; Floss and Yu 2005; Drlica et al. 2008;
Chandrasekaran et al. 2016; van Opijnen et al. 2016). Thus, a bacterium’s resistance
to an antibiotic partially stems from the genome-wide program that is triggered by
that antibiotic. This means that small alterations to this program may establish the
bacterium on the road to the development of resistance (Albert et al. 2005; EI’Garch
et al. 2007; Kohanski and Collins 2008; Kohanski et al. 2010; Baquero et al. 2011).
So far it has largely been ignored that the genetic diversity present in a pangenome,
and the often multiple trajectories that can lead to resistance, can result in strain-
and/or species-specific-resistant mechanisms with different fitness costs for
maintaining resistance mutations. We believe that all these factors have contributed
and are still contributing to the emergence of a diverse resistome, (Davies and Davies
2010; Blair et al. 2015; Munita and Arias 2016) that only makes sense when viewed
from a pangenomic context and which makes both the discovery and tracking of
resistance as well as the treatment of resistant bacteria far more complex than
previously thought.

1.1 Species- and Strain-Specific Differences in Adaptation
to Antibiotics

The influence of the pangenome on the complexity underlying the evolution of
resistance can be seen both on a between and within species level. For instance,
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different mechanisms and mutations that trigger resistance to the same antibiotic
have mainly been found between species. Additionally, interactions between drug-
resistance mutations and genetic backgrounds triggering differences in resistance
levels have been found at both the between and within species level. In the following
section, we discuss how the pangenome, or genetic differences between strains and
species, affect the mechanism and/or the level of resistance that evolves.

1.1.1 Species-Specific Resistance: There Is More Than One Way
to Become Resistant

Due to specific (pangenomic) genetic characteristics, different species can adopt
different mechanisms of adaptation to become resistant to the same antibiotic.
Additionally, different species can acquire different mutations or genes to achieve
the same resistance mechanism to the same antibiotic. A well-documented example
of the first scenario is beta-lactam-resistant mechanisms among Gram-negative and
Gram-positive bacteria. Beta-lactam antibiotics inhibit bacterial cell wall synthesis by
targeting penicillin-binding proteins (PBPs), a group of enzymes that are present in all
bacterial species and which catalyze peptidoglycan cross-linking. PBPs interact with
beta-lactams via an active site serine and form a relatively stable covalent complex
(Sibold et al. 1994). The primary resistance mechanism against clinically important
beta-lactams (e.g., penicillin, carbapenem, cephalosporin) is different between Gram-
negative and Gram-positive bacteria. In Gram-negative bacteria, beta-lactam resis-
tance is commonly driven by the acquisition of hydrolyzing beta-lactamases that
inactivate the drug. In contrast, beta-lactam resistance in most Gram-positive species
is mediated by target modifications, with the exception of staphylococcal penicillin-
ase (Rosdahl 1985; Skov et al. 1995). For instance, beta-lactam-resistant Enterococ-
cus faecium have acquired mutations in an essential PBP (PBP5) that reduce the
accessibility of the active site and result in a low-affinity form (PBP5fm) (Sauvage
etal. 2002). Similar low-affinity PBPs have also been reported in methicillin-resistant
S. aureus (MRSA) (Murakami et al. 1987) and in beta-lactam-resistant strains of
S. pneumoniae (encoded by mosaic genes acquired through HGT) (Sibold et al. 1994;
Reichmann et al. 1996). It seems likely that this divergence in beta-lactam-resistant
mechanisms between Gram-negative and Gram-positive bacteria arose from the
differences in their cell envelopes (Munita and Arias 2016). In Gram-negative
bacteria, the presence of an outer membrane and associated porins allows for the
entry and accumulation of beta-lactams in the periplasmic space, prior to binding
PBPs in the inner membrane (Fig. 2a). Such compartmentalization allows for beta-
lactamase accumulation at sufficient concentrations and effective deconstruction of
the beta-lactam molecules.

While species-specific differences in antibiotic resistance can come from very
different mechanisms, there are examples where the target is the same, but the
manner in which it is targeted is different. For example, macrolides target the
peptidyl site of nascent peptides in the large subunit of bacterial ribosomes, thereby
inhibiting protein synthesis. Many cases of clinical macrolide resistance are caused
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by mutations at specific nucleotide positions in the 23S rRNA. Due to differences in
the copy number of the ribosomal RNA operon (rrna), different species have been
shown to have different macrolide-resistant mutations in the 23S rRNA gene
(Fig. 2b). Generally, mutations at A2058 or A2059 in the 23S rRNA (using E. coli
nucleotide sequence numbering) confers macrolide resistance for many pathogenic
bacteria, predominantly bacteria with one or two copies of the rrna operon, such as
azithromycin-resistant Treponema pallidum (Stamm and Bergen 2000; Matejkova
et al. 2009), clarithromycin-resistant Mycobacterium species (Meier et al. 1994;
Nash and Inderlied 1995; Wallace et al. 1996), and Helicobacter pylori with
resistance to macrolide—lincosamide—streptogramin B antibiotics (termed as the
MLSg phenotype) (Wang and Taylor 1998). A2058 and/or A2059 mutations change
the structure of the drug-binding pocket and thereby reduce the binding affinity of
the drug contributing to resistance. In bacteria with higher copy numbers of rrna,
such as Staphylococcus, Enterococcus, and Streptococcus, acquisition of point
mutations on all or multiple copies of the 23S rRNA genes is highly improbable.
Instead, macrolide resistance via 23S rRNA modification is frequently achieved by
erm-methylation of target nucleotides. Erm genes are mobile genes that encode 23S
rRNA methylases and can catalyze dimethylation of A2058 (Toh et al. 2007). In
S. pneumoniae, ErmB provides a high level of resistance to erythromycin
(MIC > 256 pg/mL) (Schroeder and Stephens 2016), which suggests that resistance
level conferred by the same mutation is also dependent on the genetic background.

1.1.2 Interactions Between Resistance Mutations and Genetic
Background Can Affect the Level of Resistance

While it may not come as a complete surprise that different species can adopt different
strategies to overcome resistance, recent studies have shown that when different
species or strains do have the same strategy to become resistant, the same mutation
does not automatically result in the same level of resistance. This can be caused by
differences in the genetic background and is a good example of how genetic differ-
ences between species and strains, can have important effects on (the emergence of)
resistance. Examples at the species level are loss-of-function mutations of the 16S
rRNA-specific methyltransferase GidB involved in streptomycin resistance
(Okamoto et al. 2007; Koskiniemi et al. 2011). Streptomycin, an aminoglycoside
antibiotic, binds to the 30S subunit of the ribosome and causes misreading of the
correct tRNA. These mutations have been identified in low-to-intermediate levels of
streptomycin resistance in multiple bacteria, such as M. tuberculosis, Mycobacterium
smegmatis, S. aureus, and E. coli (Okamoto et al. 2007; Wong et al. 2011; Perdigao
et al. 2014). Koskiniemi et al. (2011) showed that high-level streptomycin resistance
caused by the loss of GidB is largely dependent on the presence of an aminoglycoside
adenyltransferase (AadA) in the bacterium’s genome, which is an enzyme that
modifies and thereby inactivates aminoglycosides (Tait et al. 1985; Svab et al.
1990; Magrini et al. 1998; Frank et al. 2003). In an experimental evolution study,
streptomycin-adapted Salmonella typhimurium strains that have both the aadA gene
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and gidB mutations gained a higher level of streptomycin resistance than strains
having either one alone (Wistrand-Yuen et al. 2018). Species with aadA, e.g.,
S. typhimurium, can thereby gain a high level of streptomycin resistance, while
species that lack this enzyme (e.g., E. coli, S. aureus, and M. tuberculosis) only
obtain low-level resistance (Okamoto et al. 2007).

Within a species, the same mutations may also not necessarily result in the same
level of resistance. One such example is resistance in M. tuberculosis to isoniazid
(INH). As a prodrug, INH must be processed by the mycobacterial enzyme KatG into
its active form, isonicotinic acyl-NADH. The active drug then binds the enoyl-acyl
carrier protein reductase InhA and blocks the synthesis of mycolic acid (Quémard
etal. 1991). In M. tuberculosis, the primary INH-resistance mechanism is via a point
mutation in KatG (e.g., S315T), which results in a partially active protein that reduces
INH binding while retaining enough activity to support bacterial survival. Another
frequently observed resistance mutation is in the promoter region of the target gene
inhA (Lee et al. 2001). Strains that have inh promoter mutations have been observed
to show different levels of INH resistance based on their phylogenetic lineages.
M. tuberculosis is grouped in six main phylogenetic lineages (Hershberg et al.
2008; Comas et al. 2010): three modern lineages that have evolved in regions with
high-density populations and recent massive demographic expansion (i.e., lineage 4:
Europe and America, lineage 3: India and East Africa, lineage 2: East Asia) and three
ancient lineages from older and low-density populations (i.e., lineage 1: the Philip-
pines, lineage 5: Rim of Indian ocean, and lineage 6: west Africa) (Portevin et al.
2011). A study of 158 isolates of multidrug-resistant M. tuberculosis revealed that
mutations in the inhA promoter cause high level of INH resistance (>3.0 pg/mL) only
in the modern lineages 2 and 3, while these mutations cause low-level resistance
(MIC <3.0 pg/mL) mainly in ancient lineages 1 and 5 (Fenner et al. 2012). Although
M. tuberculosis harbors limited genetic diversity compared to other species, multiple
studies have suggested that the variation in drug-resistant phenotypes of
M. tuberculosis could be at least partially explained by epistatic interactions among
the genetic background of different phylogenetic lineages, compensatory mutations
and drug-resistance mutations (Gagneux et al. 2006; Fenner et al. 2012; Gygli et al.
2017).

1.1.3 The Ability of Evolving Antibiotic Resistance May Vary Across
Species Due to Epistatic Interactions and/or ‘“Potentiator’’ Genes

Apart from epistatic interactions between genetic background and drug-resistance
mutations, the presence of potentiator genes can make it possible for a novel trait to
evolve that would otherwise be inaccessible (Blount et al. 2012; Lind et al. 2015).
Depending on the genetic background, the presence of potentiators of antibiotic-
resistance genes can prime strains to evolve resistance. To uncover the role of
potentiators in different genetic backgrounds, Gifford and colleagues evolved eight
strains in the Pseudomonas genus to the beta-lactam antibiotic ceftazidime and
compared their pathways that led to resistance (Gifford et al. 2018). Their results
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show that Pseudomonas species that have the transcription factor ampR
(P. protegens and P. fluorescens) evolve ceftazidime resistance faster than species
lacking this gene (P. mendocina or P. fulva) (Gifford et al. 2018). AmpR has been
shown to increase the expression of beta-lactamase ampC upon the inactivation of
peptidoglycan synthesis (Mark et al. 2011; Ropy et al. 2015). The authors hypoth-
esized that ampR potentiates ceftazidime adaptation by allowing mutations in
peptidoglycan biosynthesis genes such as ampD, pml, and dacB. Indeed, in
P. aeruginosa, dacB inactivating mutations have only been observed in genetic
backgrounds harboring ampR (Moya et al. 2009; Mark et al. 2011). These findings
show that (clinically relevant) high-resistance level markers (e.g., mutations, genes
acquired by HGT) should be considered and validated in different genetic back-
grounds, and thus in a pangenomic context.

1.2 Strain- and Species-Specific Phenotypic Stress Responses
to Antibiotics

Recent advances in high-throughput techniques involving mutant libraries as well as
various omics approaches have allowed for unprecedented understanding of how
bacteria respond to antibiotic-mediated stress. Such strategies have shown the
diversity of antibiotic responses within species represented by a large pangenome
as well as between species. Various examples discussed below show that antibiotics
can induce stress throughout the bacterium both at the direct target of the antibiotic
as well as at off-target pathways throughout the genome. Due to the pangenome and
the consequent differences in genetic backgrounds, strains and species respond to
antibiotics with (slightly) different sets of genes and thereby experience antibiotic
stress in different ways. This means the selective pressures a bacterium experiences
can be strain and/or species specific and drive the evolution of resistance in a strain-
or species-specific manner. As a result, the pangenome not only affects the manner in
which stress is experienced, but that same stress (e.g., antibiotics) also contributes to
maintaining and expanding the pangenome.

1.2.1 High-Throughput Tools for Investigating the Bacterial Response
to Stress

With the rise of low-cost sequencing options, whole genome sequencing (WGS) has
proved useful for identifying antibiotic-resistant bacteria by looking for the presence
of certain genes (e.g., efflux pumps), insertion—deletions, and other polymorphisms
associated with antibiotic resistance (Boissy et al. 2011; Zankari et al. 2012; Liu
et al. 2014; McDermott et al. 2016; Zeng et al. 2018). The increased availability of
large collections of bacterial whole genome sequences has allowed the identification
of numerous single nucleotide polymorphisms (SNPs) associated with drug
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resistance through genome-wide association studies (Power et al. 2017). Resistance-
associated SNPs have been identified for a number of pathogenic bacteria including
M. tuberculosis (Desjardins et al. 2016), S. pneumoniae (Chewapreecha et al. 2014),
and S. aureus (Alam et al. 2014). For antibiotic surveillance, the ability to identify
features such as SNPs means WGS provides much more detailed information
compared to traditional phenotyping such as multilocus sequence typing (MLST).
This increased resolution can be used to predict antibiotic resistance for clinical
isolates based on databases of known antibiotic-resistance determinants (Sandgren
et al. 2009; McArthur et al. 2013; Stoesser et al. 2013; Walker et al. 2015; Lakin
et al. 2017). Recent work has even demonstrated the ability to identify resistant
strains as the sample is sequenced (Bfinda et al. 2018) potentially leading to point-
of-care devices which can guide appropriate use of antibiotics by clinicians. Never-
theless, predictions of resistance are limited to the antibiotics that have been previ-
ously tested (such as clinically important first- and second-line antibiotics), which
hampers their utility in predicting bacterial responses to novel antibiotics. Thereby,
WGS provides a snapshot of the presence or absence of resistance determinants but
cannot directly provide information on what genes or pathways are involved in
responding to the stress induced by antibiotics. Consequently, while WGS and
MLST are highly useful for resistance surveillance and may guide treatment options,
they are more limited in their ability to tease apart phenotypic responses to antibi-
otics for the purpose of understanding and potentially predicting how resistance
develops.

In contrast, the use of ordered mutant libraries can directly link genes to observed
phenotypes (Jacobs et al. 2003; Baba et al. 2006), which have allowed the detailed
characterization of how bacteria respond to various antibiotics (Nichols et al. 2011).
However, these libraries are limited by being time consuming to construct, making it
less amenable for a wide variety of bacteria. The advent of techniques such as
Tn-Seq (van Opijnen et al. 2009), INSeq (Goodman et al. 2009), HiTS (Gawronski
et al. 2009) and TRADIS (Langridge et al. 2009), and variants like RB-TnSeq
(Wetmore et al. 2015; Price et al. 2018) and droplet Tn-Seq (Thibault et al. 2019)
offer a high-throughput alternative which is easily adaptable. In general, all these
techniques rely on generating transposon-insertion libraries, which can be assayed
by high-throughput sequencing for the relative frequency of mutants grown in a
particular stress-inducing environment such as subinhibitory concentrations of anti-
biotics. In this way, the phenotype of each genetic mutant can be determined,
showing directly how bacteria respond to antibiotics and the genes that benefit or
hinder the bacteria’s ability to respond to this stress. Thanks to a diverse number of
transposon systems and the relative ease of creating mutant libraries, these tech-
niques are amenable to a wide variety of bacterial species and individual strains,
providing data within the context of the genetic background of each assayed strain.
Characterization of the response to antibiotics can also be complemented by various
“omic” approaches. These include transcriptomic (Jensen et al. 2017; Qin et al.
2018), metabolomic (Zampieri et al. 2017b), and proteomic (Pérez-Llarena and Bou
2016; Ma et al. 2017) analyses. The datasets generated by these techniques can also
be overlaid with one another to provide a holistic understanding of how bacteria
respond to antibiotic stress (Jensen et al. 2017).
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Studies utilizing Tn-Seq and related methods have shown that antibiotic-induced
stress involves the target of the antibiotic and also extends throughout the entire
genome of the bacterium. For example, fluoroquinolones like ciprofloxacin,
levofloxacin, and norfloxacin target topoisomerase IV and DNA gyrase, critical
enzymes utilized in DNA synthesis. In the Gram-positive S. pneumoniae and the
Gram-negative A. baumannii, Tn-Seq profiles for fluoroquinolones show that genes
involved in DNA replication and repair such as recN and xseA are important for
responding to these antibiotics. While these genes are not direct targets, the inhibi-
tion of DNA replication by targeting gyrase and topoisomerase triggers DNA
damage and thus explains the indirect importance of genes involved in DNA repair
(van Opijnen and Camilli 2012; Geisinger et al. 2019). In addition, Tn-Seq profiles
show a role for genes even beyond those related to DNA repair and replication and
indicate the importance of genes with diverse functions including amino acid and
carbohydrate metabolism. In P. aeruginosa, the aminoglycoside tobramycin also
involves a diverse number of responsive genes, including those involved in cell
division, carbohydrate metabolism, and membrane metabolism (Gallagher et al.
2011). Similar findings can be observed in data from E. coli where colony sizes
were measured for an ordered mutant library grown in the presence of various
stressors, including antibiotics (Nichols et al. 2011). For example, a screen with
trimethoprim/sulfamethoxazole, which targets the folate biosynthesis pathway
shows an important role for genes involved in this pathway, including mogA and
folM, as well as genes involved in nucleotide metabolism. But again, responsive
genes also include those involved in carbohydrate metabolism, glycan biosynthesis,
and membrane transport. These examples highlight that while stress may be felt
acutely at the antibiotic’s target, it extends beyond the primary target and results in
selective pressures acting throughout the genome. The importance of this is further
confirmed by the observation that resistant clinical isolates often have mutations at
sites throughout the genome that resolve such stress and/or work in a compensatory
manner (Albert et al. 2005; EI’Garch et al. 2007). Interestingly, targeting genes
involved in off-target responses can create an opportunity for therapeutic interven-
tion by generating synergy between the off-target gene/response and the
assayed drug.

1.2.2 Strain-Specific Responses to Antibiotic Stress

In addition to showing that stress can reverberate throughout the genome, Tn-Seq is
able to reveal how the genetic background of a strain affects the response to
antibiotic stress. Several examples have shown that the genes and pathways involved
in responding to antibiotic stress can be strain specific. For instance, S. pneumoniae
strains TIGR4 and Taiwan-19F are similarly susceptible to daptomycin, however,
Tn-Seq results show that only 50% of the genes responding to daptomycin are
common to both strains, with the other 50% being strain specific (van Opijnen
et al. 2016) (Fig. 3). Moreover, the distribution of the functional categories of the
responsive genes is significantly different between the two strains. This lack of
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conserved response is also observed for antibiotics representing fluoroquinolones,
aminoglycosides, and glycopeptides, with only 40-50% of the responsive genes
conserved between these two strains for a particular antibiotic. Nevertheless, when
the functional categories are combined into larger groupings corresponding to
different domains of the cell’s physiology, there is no difference in the distribution
between the two strains. This suggests that despite strain-specific differences in
response at the gene level, the global response is more similar (van Opijnen et al.
2016).

In Mycobacterium tuberculosis, in vitro Tn-Seq experiments have shown that
several clinical strains have an increased requirement for the gene encoding KatG,
compared to reference strain H37Rv (Carey et al. 2018). As discussed, KatG is an
activator of the first-line M. tuberculosis antibiotic isoniazid, and adaptation exper-
iments have shown that loss-of-function mutations in katG can result in isoniazid
resistance. However, such mutations occur at a low frequency in clinical strains
(Gagneux et al. 2006; Vilcheéze and Jacobs 2014), which suggests that the increased
fitness cost of mutating karG in clinical strains decreases the frequency of acquisition
of isoniazid mutants compared to H37Rv. Furthermore, Tn-Seq identified minimal
fitness costs for losing glcB (a maleate synthase involved in the glyoxylate shunt,
which is important for carbon and fatty acid metabolism) in some clinical strains,
whereas it is highly important in other strains (Carey et al. 2018). The authors
hypothesized that such differential requirements for glcB would result in correspond-
ingly differential responses to a novel inhibitor of this protein. Indeed, they found
that strains showing less of a requirement for gicB are less susceptible to the
inhibitor. This type of variability illustrates how the pangenome affects responses
and consequently adaptive solutions to antibiotic stress and underscores why ther-
apies may not produce consistent results across all strains. Furthermore, the finding
that strains can demonstrate considerable variation in their response to antibiotics
underscores how caution must be taken when evaluating studies that are based on a
single strain and thereby ignore differential responses that may be present through-
out the pangenome.

Fig. 3 Strain-specific differences in responses to the same antibiotic. Networks show the relative

number of responsive genes of a given functional category responding to either amoxicillin (a) or
daptomycin (b) for S. pneumoniae strains TIGR4 and Taiwan 19F. The number of genes for each
group is shown in the charts on the right side. Note the diversity of functional categories beyond
the membrane target of both antibiotics. Each strain also responds to the antibiotics with slightly
different functional categories. While the strains appear to lack genetic and functional conser-
vancy, they do respond globally in the same way, when the functional categories are condensed
into categories involving the capsule, membrane, cellular control, and metabolism. (¢) The
functional categories show a similar diversity of functions when responding to aminoglycosides,
glycopeptides, and fluoroquinolones for both TIGR4 and 19F
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1.2.3 Gene Homology Frameworks to Uncover Differential Responses
Across Bacterial Species

In addition to considering strain-specific responses to the same antibiotic, we have
assessed stress responses at the species level to determine how similar antibiotic
response patterns are. By combining data from a variety of sources (Nichols et al.
2011; Murray et al. 2015) and generating two frameworks utilizing the OMA and
PATRIC databases (Wattam et al. 2017; Altenhoff et al. 2018) the responses of
E. coli, P. aeruginosa, A. baumannii, and S. pneumoniae to ciprofloxacin, could be
compared. While not all responsive genes have homologs in all species, a consistent
pattern is observed for these diverse species. Genes involved in DNA replication and
repair such as recN and xseA are important in all four species and in both homology
frameworks. Additional nonhomologous genes annotated as involved in DNA
replication and repair are also observed in each of the four species. Each species
also has responsive genes that are involved in various metabolic functions and
cellular processes not related to DNA repair. Nevertheless, pairwise strain compar-
isons indicate only 5-10% of homologs not involving DNA replication and repair
are shared between one or more species. This suggests that species may respond to
antibiotic stress similarly at the antibiotic target and related pathways, but individ-
ually each species is responding with a unique program depending on its genetic
background and thus coping with unique selective pressures that can influence the
emergence of resistance.

1.3 The Role of the PanGenome in Predicting Adaptation
to Antibiotic Stress

We have so far discussed that mutations responsible for the resistance phenotype to a
certain antibiotic can either be common or be specific to a strain or a species.
Nevertheless, the types of adaptive-resistance mutations, and the order in which
they arise and fix in a population (adaptive trajectories) have shown to be replicable
(Elena and Lenski 2003), which suggests adaptive evolution is, at least to a certain
extent, constrained. In this section, we argue that the genetic background and the
environmental context are two major factors that constrain adaptive evolution (e.g.,
during adaptation to antibiotics). We first discuss the role of genetic interactions and
how they reduce the number of available adaptive trajectories, and propose a
pangenome-wide view of studying genetic interactions. Next, we discuss the possi-
bility of using how a selective pressure in the environment is sensed and experienced
by an organism (environmental context) to predict where on the genome adaptive
mutations will appear when the selective pressure is maintained. We argue that the
predictions based on environmental context can be improved by the addition of
pangenome-related information, such as the conservation of genetic sequences across
many related organisms.
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1.3.1 Adaptive Evolution Is Replicable, Therefore Predictable

The analysis of sequence sets on a pangenome scale allows associations to be made
between genetic changes and antibiotic-resistant phenotypes. Such pangenome-wide
association studies have revealed common sets of mutations that appear in organisms
resistant to a certain antibiotic (Croucher et al. 2011; Mobegi et al. 2017a; Del
Barrio-Tofifio et al. 2017). Moreover, phylogenetic reconstructions suggest the same
resistance-causing mutations have appeared independently, and multiple times in
geographically separated strains (Croucher et al. 2011; Farhat et al. 2013;
Chewapreecha et al. 2014). While, such ad hoc associations have the power of
explaining the genetic basis of a certain phenotype, they rarely offer a predictive
model for future adaptive trajectories. However, the observation that the same
mutations have appeared in different pathogens independently suggests that adaptive
evolution is not an entirely random process. This can be further seen in lab-directed
adaptation experiments, where common sets of mutations keep reappearing in
independent populations under the same selective pressure (Lang et al. 2013).
These common adaptive trajectories demonstrate the replicability of adaptive evo-
Iution, which is not to say evolution is an entirely deterministic process. The
emergence of new sequence variants is stochastic and phenomena such as
hitchhiking genetic regions, genetic drift, and clonal interference can incorporate
different degrees of randomness influencing which mutations will reach fixation and
how (Lang et al. 2013). Yet, the replicability of adaptive evolution in antibiotic
resistance suggests that there are a limited number of adaptive trajectories available
to the adapting organism. In other words, while there are many possible ways a set of
resistance mutations can reach fixation, the majority of those trajectories are not
plausible because they are constrained by the environment and the genetic context.
This means that if the environmental and genetic constraints a bacterium evolves
under can be understood and/or (experimentally) captured, adaptive evolution
should become predictable.

1.3.2 Genetic Constraints on Adaptation

In order to understand the genetic constraints on adaptation we need to consider
epistatic interactions within the genome. Epistatic interactions are defined as the
nonadditive effects of combinations of mutations. For instance, mutations can have
different effects on fitness, depending on the genetic background of the organism,
i.e., what other mutations are already present in the parental strain (Vogwill et al.
2016). This is well illustrated by experiments that compared the fitness of single
mutants with combinations of those singlets into double and triple mutants, where
the fitness of the double and triple mutants differed from what is expected under the
multiplicative model (i.e., in the absence of epistasis, the fitness of combining
mutant A and mutant B in the same genome = fitness of A x fitness of B) (Weinreich
et al. 2006; Angst and Hall 2013; Hall and MacLean 2016). Moreover, epistasis
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influences the order in which mutations appear. If two mutations do not interact with
each other, then any order in which they appear is equally likely. However, when
mutations do interact, the appearance of one may limit the appearance of the other.
For instance, when the interactions of 5 mutations that confer resistance to
cefotaxime were mapped out in E. coli, only 10 trajectories (out of 120 possible
ones) turn out to have non-negligible probabilities of being observed (Weinreich
et al. 2006). Another example of this is where lab adaptation of a beta-lactamase in
E. coli is limited in its trajectory and will follow a certain path (that with the highest
likelihood) when a specific initial mutation is present (Salverda et al. 2011).

Since epistatic interactions limit the adaptive trajectories to a few likely ones,
mapping out epistatic interactions can help determine which trajectories are most
plausible, and thereby contribute to predictions of adaptive evolution. A high-
throughput way of determining epistatic interactions is using genome-wide double-
knockout screens, as has been done extensively in Saccharomyces cerevisiae (Tong
et al. 2004), and Schizosaccharomyces pombe (Roguev et al. 2008). In these studies,
synthetic lethality, which is an “extreme” form of epistasis, was used to build
genome-wide epistasis or genetic interaction networks. These networks show the
prevalence of epistatic interactions throughout the entire genome, with most genes
interacting with at least one other gene, and a few hubs with numerous interactions. A
comparison of genetic interaction networks from S. cerevisiae (Tong et al. 2004), and
S. pombe (Roguev et al. 2008) demonstrate that the same interactions are not always
present, even when considering genes common to both organisms. In other words,
while some interactions are conserved, others may be present or absent, depending on
the genetic background. This means that the genetic interaction network of a single
organism is not representative of a pangenome-wide genetic interaction network.
Therefore, predictions of adaptation based on a single-strain network will be limited
to that organism.

1.3.3 A Pangenome-Wide View of Epistasis May Enhance Predictions

Epistatic interactions are more than a collection of gene- or locus-pairs, but rather
form a complex network that has both components that are universally true (those
interactions that are strain or species independent), and components that are only
present in a certain strain or species. When epistatic interactions (on a gene level) are
mapped for a single strain, the interactions are limited to the genes present in this one
strain. However, the lack of a gene is not equivalent to the lack of the influence of
that gene. The fact that the gene is absent may actually affect the fitness of strains
with this particular genetic background. It is possible that genetic elements that vary
considerably in their presence or absence across different strains interact
epistatically. Such interactions have indeed been demonstrated between chromo-
somal mutations and plasmids (Silva et al. 2011) or mobile elements (Stoebel and
Dorman 2010), or even between two plasmids (San Millan et al. 2014). Therefore,
studies mapping out genetic interactions in a single strain or species can be limiting,
showing only the components of a network that applies to the organism being
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studied. In order to get a comprehensive view, it is necessary to construct a
pangenome-wide genetic interaction network.

One possibility is to map out genetic interaction networks on hundreds of related
strains/species. However, even with high-throughput screening methods, this
approach is limited by time and cost. A more feasible alternative would be inferring
genetic interactions through in silico analysis of a collection of genomic sequences.
In a simple model, one can assume there is an underlying network of epistatic
interactions, where each gene’s state (present or absent) influences the states of the
genes it is interacting with [analogous to the Ising model describing particle spin
states in statistical mechanics (Ising 1925)]. Each viable organism can then be
described as a configuration—the presence and absence state of all genes in the
pangenome. In this model, the underlying genetic interaction network results in
some configurations being more likely than others. It is reasonable to assume that
viable organisms are the more likely configurations. Based on this assumption, and
considering the observed states of each gene from many genomes, it is possible to
infer the underlying network connectivity between genes (Bresler 2014) and identify
interactions between genes that are more likely to be universally true, and not strain/
species specific. Such a comprehensive genetic interaction network should give a
much better idea about pangenome-wide constraints on adaptive evolution. In fact,
the fitness landscape (a popular visual metaphor for the effect of genotypes on
fitness) is a pangenomic concept. This long-standing visual lays-out the possible
genotypes of an organism (or the existing genotypes in a pangenome) on a flat
horizontal surface, and the fitness of each genetic variant is plotted on the vertical
axis. Thus, because the fitness landscape considers many genomic variants at once, it
inherently represents a pangenome view of fitness. The classical view of the fitness
landscape is that there is a single peak of fitness, and an organism adapting under a
selective pressure climbs this fitness peak as it accumulates mutations. However,
increasing numbers of epistatic interactions result in the fitness landscape becoming
decorated with peaks and valleys, forming a rugged surface (Kauffman and Wein-
berger 1989). This apparent increase in complexity may also explain certain strain-
specific adaptive outcomes, as it becomes clearer where local fitness maxima and
minima are situated on the landscape. Consequently, the consideration of the
pangenome (rather than single genomes) should uncover a comprehensive genetic
interaction network.

1.3.4 Toward Predicting Adaptive Evolution and the Importance
of Pangenomic Information

The fitness landscape has long been considered a constant and rigid surface for each
organism. However, genotype is not the only determinant of fitness—the same
organism’s fitness varies in different environments. Thus, the fitness landscape is a
much more fluid concept, and its shape/contour depends on environmentally deter-
mined selective pressures. In other words, in addition to the genetic context
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determining fitness outcome and constraining adaptive evolution, environmental
context also plays an important role.

Similar to how genetic interaction networks can reveal genetic constraints on
adaptive evolution, multi-omic profiling reveals environmental constraints on adap-
tive evolution. The manner in which a bacterium will adapt to the environment it
finds itself in is linked to how a stress, i.e., a selective pressure (e.g., antibiotic), is
sensed and processed by the bacterium (Zhu et al. 2018, 2019). The use of multi-
omic profiling (e.g., via Tn-Seq, RNA-Seq) can reveal which genomic loci respond
to and are important in overcoming stress in the environment. For instance, Tn-Seq
experiments identify the genes that contribute to fitness (phenotypically important
genes, or PIGs) under the stress, and RNA-Seq experiments reveal transcriptionally
important genes (or TIGs) responding to the stress. A simple assumption would be
that because PIGs and TIGs are relevant in the organism’s response to stress, they
will also be implicated in resolving this stress over the course of adaptive evolution.
In other words, genes that acquire adaptive mutations will be TIGs and/or PIGs.
While in some cases, PIGs and/or TIGs acquire adaptive mutations, not all adapted
genes are PIGs or TIGs (Fig. 4). This, along with the transcriptional and phenotypic
responses often involving many different cellular functions, makes it challenging to
find straightforward rules that predict which genes will adapt. This has motivated the
use of machine learning algorithms to detect potentially multifactorial and compli-
cated determinants of adaptive evolution (Zhu et al. 2018; Wang et al. 2018b).
Moreover, where changes in expression and fitness are situated in a network can help
inform which genetic changes may or may not be permissible. One can use regula-
tory networks, protein—protein interaction networks or genome-scale metabolic
models to contextualize the stress response. It turns out that with the inclusion of
network features such as degree (how many connections does a gene have) or
clustering coefficients (how many of a gene’s neighbors are neighbors of each
other), machine learning models can be used to predict in which genes adaptive
mutations are most likely to occur (Zhu et al. 2018). Moreover, sequence conserva-
tion and prevalence, which are features that can be extracted from the pangenome,
and which describe how “plastic” (or variable) each gene is, improve prediction
accuracy (Fig. 4c) (Zhu et al. 2018). While this is a step toward predicting the
emergence of resistance before it actually occurs, for instance during treatment,
incorporation of pangenome-wide genetic interaction networks will likely even
further enhance the predictive power and accuracy.

1.4 Developing New Therapeutics in the Light
of the Pangenome

There is an urgent need to develop new strategies to combat resistant pathogens.
Both essential genes and genes required for virulence provide attractive targets for
the development of new drugs or biologicals (Clatworthy et al. 2007; Juhas et al.
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2011; Mobegi et al. 2014). Such candidate targets have been identified for many
species by combining functional experimental analyses like Tn-Seq, RNA-Seq, or
CRISPRi with computational predictive models (Mobegi et al. 2017b). However, it
is becoming more and more apparent that a gene identified as essential or required
for infection in one specific strain is not necessarily essential or required for growth
or infection in a different genetic context (Rancati et al. 2018). As a consequence,
pangenome variability must be taken into consideration when developing new
therapeutics that work at a species-wide level.

1.4.1 Targeting Essential Genes

A gene is essential if it is indispensable for reproductive success, which in the case of
unicellular organisms are those genes that are required for replication (Rancati et al.
2018). A loss-of-function mutation in one of these genes, or a drug that inactivates its
function will stop growth. That is why the identification of a pathogen’s
essentialome (i.e., the set of essential genes in a defined genome or group of
genomes) is an attractive approach for the identification of new drug targets.
Currently, Tn-Seq and related techniques are probably the most popular experi-
mental tools used to determine essentialomes (Peng et al. 2017). Genes that lack
insertions in saturated transposon libraries selected in rich media, are considered to
be highly likely to be essential in any given condition. CRISPRIi is another technique
that is rapidly gaining popularity for determining gene-essentiality in both prokary-
otes and eukaryotes (Peters et al. 2016; Liu et al. 2017; Wang et al. 2018a).
However, since many more strains and species exist than can efficiently and rapidly
be experimentally screened for their essential genes, in silico predictive models of
gene essentiality are receiving increasing interest (Mobegi et al. 2017b; Nigatu et al.

Fig. 4 Prediction of adaptive evolution relies on pangenome features. (a) Circular plot of the

S. pneumoniae chromosome, with all features necessary for accurate prediction of which genes
will contribute with adaptive mutations to vancomycin resistance. Importantly, there is no clear
association with any dataset alone and the adaptive outcome, however, when taken as a whole, all
data types contribute to distinguishing adapted genes from non-adapted ones (see (c¢) and Zhu
etal. 2018). (b) Legend for (a). From innermost plot to outermost: Expression change: log, Fold
Change in gene expression comparing vancomycin treatment to no antibiotic treatment after
20, 30, 45, 60, and 90 min of antibiotic exposure. Sequence conservation: —log;, Smith—
Waterman distance across all pairs of homologous sequences. Sequence prevalence: percentage
of strains in the S. pneumoniae pangenome that have a homolog of the gene. Essential genes:
genes necessary for survival, as determined by Tn-Seq. Fitness change: change in fitness
comparing vancomycin treatment to a no antibiotic control as determined by Tn-Seq. Mutation
frequency: frequency of each mutation in a population adapted to vancomycin. Adapted gene:
gene containing at least one mutation that is fixed at high frequency, and is specific to the
vancomycin adapted populations. (¢) Classification of adapted genes and non-adapted genes.
Receiver operating characteristic curve for a support vector machine trained with all data from
(a, b) (blue) and one trained with pangenome sequence conservation and sequence prevalence
omitted (red). The inclusion of these two pangenomic features improves the performance of the
classifier
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2017). Such models can be based on several types of data, including those obtained
from the genomic sequence of an organism (codon usage, orthology, GC content,
etc.) or from experimental data such as expression profiles or network topology
(Mobegi et al. 2017b; Nigatu et al. 2017). The accuracy of the latter models relies on
omics data obtained from species where functional genomics experiments could be
performed whereas models based on sequencing are more suitable for poorly studied
organisms. Importantly, it is becoming clear that the static concept of gene essenti-
ality is no longer valid. Instead, essentiality is a context-dependent attribute affected
by both the environment and the genetic background of a bacterium (Rancati et al.
2018). In the simplest case, a gene can be conditionally essential, meaning it is
essential in a specific environment but not in another, or in the case of a pathogen, a
gene can be essential in a specific body compartment but not in another.

To understand how genetic context affects gene essentiality it is important to
consider the network structure of a genome. Genes in a genome do not act as isolated
units, but they interact with each other forming a network. The connections that
shape this network can represent protein—protein interactions, epistatic relationships,
or transcriptional regulatory interactions (Babu and Madan Babu 2008; Wuchty and
Uetz 2014; Costanzo et al. 2016). Some genes present a high degree, i.e. a high
number of interactions connecting them to other genes, while other genes are poorly
connected (low degree). Essential genes have been shown to have a higher degree
than nonessential ones in these genetic interaction networks (Jeong et al. 2001;
Davierwala et al. 2005; Costanzo et al. 2010, 2016; Kim et al. 2012; Jiang et al.
2015), which is a characteristic that has been used to predict gene essentiality (Shim
et al. 2017). Interestingly, data from different yeast strains has shown that essential
genes may be split up into those that are always essential (their loss cannot be
overcome), and those that are essential depending on the genetic background. The
loss of essential genes from this latter category can be compensated by the adaptive
evolution of alternative cellular processes; such essential genes are thereby referred
to as “evolvable” essential genes (Motter et al. 2008; Liu et al. 2015). As an example
that this is not limited to yeast, the proteins MreC and MreD, involved in peripheral
peptidoglycan synthesis, are essential for some S. prneumoniae strains. However,
different mutations, including the inactivation of the pbpla gene can suppress the
essentiality of these proteins (Land and Winkler 2011), which classify mreC and
mreD as “evolvable” essential genes. This evolvability thus at least partially explains
how the essentiality of genes can depend on the genetic background and underscores
that it is important to determine a pathogens essentialome at a species-wide level to
enable the identification of pangenome-wide drug targets. In general, broad-
spectrum antibiotics work against large groups of different species of bacteria, and
thus existing drugs often target the “pangenome.” Interestingly, these new
pangenome concepts are creating opportunities to develop drugs that are directed
at a specific clade. The mevalonate pathway is an example of an essential function
against which clade-targeting drugs have been developed. This pathway is involved
in the production of isoprenoids, and has been shown to be essential in different
Gram-positive bacteria (Wilding et al. 2000; Balibar et al. 2009). The pathway is
inhibited by an intermediate product, diphosphomevalonate, and fluorinated
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derivatives of this compound have shown potent antibacterial activities (Kang et al.
2015). However, while the mevalonate pathway is essential, it has also been shown
to be evolvable in S. aureus (Reichert et al. 2018) raising the possibility that
resistance mechanisms can easily arise. Importantly, genomic comparison of differ-
ent Staphylococci has shown that species either have the mevalonate or the
non-mevalonate (or 2C-methyl-D-erythritol-4-phosphate, MEP) pathway for the
biosynthesis of isoprenoids, and specific pathogenic Staphylococci of domestic
animals have the non-mevalonate pathway (Misic et al. 2016). Based on this
difference at the genus level, it has been proposed that antibiotics for domestic
animal Staphylococci targeting the MEP pathway could avoid the emergence of
antibiotic-resistant determinants in human pathogens. Such clade targeting antibi-
otics may thus be an interesting strategy, but are only possible if a comprehensive
understanding of the pangenome is available.

1.4.2 Targeting Mechanisms of Infection

In addition to genes essential for general growth, genes required for colonization,
infection and/or those that damage the host (i.e., virulence factors) are also attractive
targets for drug therapies (Clatworthy et al. 2007; Rasko and Sperandio 2010; Allen
et al. 2014; Dickey et al. 2017). Consequently, resistance mechanisms against
compounds targeting these factors (antivirulence drugs) may not easily spread
outside the host (Allen et al. 2014). Also, antivirulence drugs may be more effective
against persisters (Kim et al. 2018), and since they are directed at very specific
targets they could potentially have less of an effect on the natural microbiota of the
host (Clatworthy et al. 2007; Dickey et al. 2017). Specific antivirulence drugs or
biologicals at different stages of clinical development, target pathways including the
production of teichoic acids, biofilm formation, quorum-sensing mechanisms, and
specific histidine kinases, and are directed against bacteria including the ESKAPE
pathogens (Matano et al. 2016; Pasquina et al. 2016; Goswami et al. 2017; Dickey
et al. 2017; Cardona et al. 2018; Huggins et al. 2018). To expand such specific
therapeutic options, it is necessary to identify a pathogen’s genetic requirements for
infection, for which in vivo Tn-Seq experiments have proven successful (van
Opijnen and Camilli 2012; de Vries et al. 2017; Le Breton et al. 2017; Shields
et al. 2018). As with essential genes, requirements for certain genes seem to be
environment dependent. For example, proline biosynthetic genes in S. pneumoniae
strain TIGR4 have been shown to be required for infecting mouse lungs, but are
dispensable for colonizing the nasopharynx (van Opijnen and Camilli 2012). Other
environmental factors that affect genetic requirements are microbial communities
and polymicrobial infections. For instance, S. aureus requires 182 genes for a
successful infection when co-inoculated with P. aeruginosa, but the same genes
are dispensable if the pathogen is inoculated by itself (Ibberson et al. 2017). By using
a Tn-Seq approach, it was shown that two different strains of P. aeruginosa required
different genes to grow in cystic fibrosis sputum, a growth condition that partially
mimics an in vivo infection (Turner et al. 2015). Moreover, many of the genes
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Genetic requirements of
Streptococcus pneumoniae TIGR4
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Fig. 5 Genetic requirements of strain S. pneumoniae. TIGR4 and its comparison with the species
pangenome. Tn-Seq experiments performed in strain TIGR4 (red arrowhead) determined candidate
essential genes, genes required for growth in minimal medium and those required for infection (van
Opijnen and Camilli 2012). The presence (yellow) and absence (blue) of these genes was
established in 332 other S. pneumoniae strains. It is clearly shown that many genes identified as
essential or required for infection in TIGR4 are absent in many other invasive disease isolates
(Cremers et al. 2015)

required by S. pneumoniae strain TIGR4 for host colonization are not present in the
genomes of other clinical isolates of the species (Fig. 5), which underscores that
virulence determinants are indeed also dependent on genetic background and thus
only make sense in the context of the pangenome. A successful example of consid-
eration of the pangenome to develop an antibacterial therapy is the pneumococcal
vaccine (Berical et al. 2016; Brooks and Mias 2018). The S. prneumoniae capsule is
one of its most important virulence factors and its diversity is high, with over
90 types (serotypes) currently described (Geno et al. 2015). Capsules are highly
antigenic and serotypes differ in polysaccharide residue composition, chemical
decoration of sugar monomers and length of the polysaccharide chain (Bentley
et al. 2006). Pneumococcal vaccines are formulated by mixing multiple capsule
serotypes, which is exemplified by the pneumococcal conjugate vaccine 13 (PCV13)
and the pneumococcal polysaccharide vaccine (PPSV23). These vaccines protect
against 13 and 23 different capsule-type-based strains, respectively (Berical et al.
2016; Brooks and Mias 2018), and are thereby highly successful in targeting a
considerable part of the S. pneumoniae pangenome.
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1.4.3 Antimicrobial Combination Therapy

In addition to developing novel therapies, utilizing currently available drugs in a
more effective way, e.g., through a multidrug strategy (including antibiotic cycling
and antimicrobial combination therapy), potentially provides enhanced ways to treat
clinical infections and prevent resistance (Smirnova et al. 2011; Yoshida et al. 2017;
Firsov et al. 2017). However, it has been shown that the responses to drug—drug
combinations can be species specific (even among phylogenetically related organ-
isms), and in some cases strain specific (Brochado et al. 2018). Thus, the application
of combination therapies presents a challenge with respect to the pangenome. To
overcome this challenge, it is necessary to get a comprehensive understanding of
drug—drug interaction outcomes in many species and strains of a species, potentially
by testing all possible combinations of drugs, and at different concentrations.
Brochado et al. performed 2883 pairwise drug—drug combinations on six bacterial
strains from three Gram-negative bacterial species (E. coli, S. typhimurium and
P. aeruginosa), yielding a total of 17,050 combinations. The authors found that
70% of the detected drug—drug interactions are species specific, and that 13-30% are
strain specific, with different interaction outcomes among the strains (Brochado et al.
2018). Although approaches like these are very important, they can be very time
consuming and expensive to perform, especially when one considers hundreds of
species/strains in a pangenome. This has prompted the application of computational
predictive strategies. One such an approach is INDIGO through which the devel-
opers were able to identify a group of genes that are predictive of antibiotic
interactions in E. coli, and use these genes to predict drug interaction outcomes in
other important pathogens including M. tuberculosis and S. aureus (Chandrasekaran
et al. 2016). Using such predictive modeling methods considerably reduces the
number of experiments that need to be performed, potentially making it possible
to accurately infer drug—drug interaction outcomes on a pangenome scale.

2 Conclusions

The development of antibiotic resistance is a complex process that can involve
multiple modes of adaptation and/or multiple sources of selective pressure. Here
we argue that a fuller understanding of this process is only possible by viewing it
through the lens of the pangenome. We have highlighted recent work that demon-
strates that genetic background plays an important role in how bacteria respond to an
antibiotic and how they develop resistance. We have explained how species and
strains with different genetic backgrounds may exhibit (slightly) different adapta-
tional outcomes in response to antibiotics. Strains within a pangenome may also
exhibit strain-specific differences in their mechanism and level of resistance as well
as their ability to evolve resistance. These different outcomes can be put into context
and partially explained by how antibiotic stress is experienced and processed in
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strain- and species-specific ways. In this way, antibiotics can contribute to the
maintenance and shaping of a pangenome by driving adaptive evolution in strain-
specific ways.

In addition to providing context for understanding strain- and species-specific
responses to antibiotics and their development of resistance, the pangenome can
provide a means of predicting the development of resistance as well as inform the
development of novel therapeutics. We argue that adaptation to sustained antibiotic
pressure is not a wholly stochastic process but rather constrained by a strain’s genetic
background as well as its environmental context. Given these constraints, it is
increasingly possible to utilize machine learning algorithms to make predictions on
the probability that a bacterium will evolve resistance. These algorithms can utilize
multiple layers of data including genomic, transcriptional, and metabolic datasets at
the pangenome level. Therefore, they will continue to improve as additional datasets
are generated. Finally, we have considered the role the pangenome could play in
developing new therapeutics to combat resistant pathogens. Essential genes and
virulence genes offer attractive targets for developing novel therapeutics; however,
these targets must be considered within the context of the pangenome due to a variety
of reasons. Essential genes in one strain may, in fact, be evolvable, while they are
static in another strain. Virulence targets may also be strain specific or dependent on
the environmental context of infection. While this may limit the number of targets that
are present throughout the pangenome, it does offer the possibility of identifying
targets that are strain or species specific.
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Meta-Pangenome: At the Crossroad m)
of Pangenomics and Metagenomics ki

Bing Ma, Michael France, and Jacques Ravel

Abstract With the recent technological advancement in cultivation-independent
high-throughput sequencing, metagenomes have tremendously improved our ability
to characterize the genomic contents of the whole microbial communities. In this
chapter, we argue the notion of pangenome can be applied beyond the available
genome sequences by leveraging metagenome-assembled genomes, to form a com-
prehensive representation of the genetic content of a taxonomic group in a particular
environment. We present the concept of the meta-pangenome, a representation of the
totality of genes belonging to a species identified in multiple metagenomic sam-
plings of a particular habitat. As an essential component in genome-centric
pangenome analyses, we emphasize the importance to perform stringent quality
assessment and validation to ensure the high quality of metagenomic deconvoluted
genomes. This expansion from the traditional pangenome concept to the meta-
pangenome overcomes many of the biases associated with whole-genome sequenc-
ing, and addresses the in vivo ecological context to further develop a systems-level
understanding of microbial ecosystems.

Keywords Meta-pangenome - Pan-metagenome - Pangenome - Metagenome -
Comparative genomics - Metagenome-assembled genome - Intraspecies diversity -
Metagenomic subspecies - Community ecotype - Habitome

1 Introduction

The first microbial genome, Haemophilus influenzae, was sequenced in 1995
(Fleischmann et al. 1995) with the second, Mycoplasma genitalium, following a
few months later (Fraser et al. 1995). In analyzing the M. genitalium genome, the
authors compared its sequence to that of H. influenzae, the only other available
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genome sequence at the time, providing insights into the ecology and evolution of
these two microbes. Every subsequent genome comparison enabled the identification
of shared and unique genetic characteristics between sets organisms. From this
observation emerged the concept of pangenome, which describes the core (genes
present in every strain of the species) and accessory (genes present in a subset of
strains) genomes. Studying the similarities and differences between the genomic
content of organisms can inform their evolutionary relationships, ecological roles,
relationship to health, and has revolutionized our understanding of microbial diver-
sity (Touchman 2010; Xia 2013; Hardison 2003; Miller et al. 2004; France et al.
2016).

Over the years, and with significant technological advancement, the number of
available genome sequences has expanded from a few to a seemingly endless
catalog. Yet this impressive collection suffers from a rather severe bias toward
species and strains that are related to human health, amenable to isolation, and/or
generally tractable. Metagenomics, the sequencing of whole microbial communities,
is filling in these gaps by characterizing the genomes of entire populations in a
community without cultivation. In this chapter, we argue the notion of pangenome
can be applied beyond the available genome sequences by leveraging metagenome-
assembled genomes (MAGs), to form a comprehensive representation of the genetic
content of a taxonomic group in a particular environment. We present the concept of
the meta-pangenome, a representation of the totality of genes belonging to a species
identified in multiple metagenomic samplings of a particular habitat. This expansion
from the traditional pangenome concept to the meta-pangenome overcomes many of
the biases associated with whole-genome sequencing and addresses the in vivo
ecological context by describing the whole genetic potential of a species in a specific
environment. Further building on this new concept, one can think of the
pan-metagenome as the complete genes/proteins catalog of all species found in a
giving environment.

2 Metagenome Deconvolution Enables Genome-Centric
Analyses of Microbial Ecosystems

An overwhelming majority of microbial species have resisted cultivation in the
laboratory, largely due to strict, yet unknown, growth requirements (Bakken 1985).
The cultivation of fastidious microbes requires optimal combinations of nutrients,
growth temperatures, oxygen levels or even, in some cases, and the presence of key
microbial partners (Amann et al. 1995; Eckburg et al. 2005). The inability to grow
these organisms has undoubtedly limited our understanding of the ecology of indig-
enous microbial communities. State-of-the-art whole community sequencing tech-
nology via metagenomics has opened the door to in vivo studies of microbial
populations and communities. By definition, metagenomic sequencing characterizes
the collection of all the genetic material isolated from an environmental sample
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without traditional cultivation (Handelsman 2004; Iverson et al. 2012; Mackelprang
et al. 2011). This has aided the development of systems-level insights into the
structure and function of microbial ecosystems (Handelsman 2004; Gilbert and
Dupont 2011). Advancements in sequencing technologies and throughput have,
and continue to improve our ability to characterize the genomic contents of microbial
communities down to the rare biosphere (Eckburg et al. 2005; Sogin et al. 2006).

Metagenomic sequencing results in a dataset of sequence reads that belong to the
various species that make up the microbial community. Assembly of these datasets
into stretches of contiguous DNA sequences, termed contigs, can be complicated by
the presence of conserved genomic regions across species. Development of
metagenomic specific short reads assembly algorithms and tools that can disentangle
these similar sequences originating from different taxa has improved the quality of
metagenomic assemblies (Pevzner et al. 2001), those include IDBA-UD (Peng et al.
2012), MetaVelvet (Namiki et al. 2012), SOAPdenovo (Li et al. 2010; Luo et al.
2012), ABYSS (Simpson et al. 2009), Khmer (Pell et al. 2012; Howe et al. 2012),
Ray-meta (Boisvert et al. 2012), MEGAHIT (Li et al. 2015, 2016), and metaSPAdes
(Nurk et al. 2017). Binning of these contigs based on genomic characteristics like
GC content, tetramer frequency, sequence coverage, among others has enabled
researchers to identify sets of contigs that belong to the same species. These
advancements have resulted in the concept of metagenome-assembled genomes
(MAGs), which represent the collection of all contigs or scaffolds from a single or
closely related strains of a given species. Developments in bioinformatics tools used
in assembly and binning have made the recovery of genomes from metagenomic
datasets a routine analysis, including rare species and draft genomes from previously
uncultivated species (Albertsen et al. 2013). Binning algorithms and tools have been
reviewed previously (Sangwan et al. 2016; Breitwieser et al. 2017). For each species,
the genetic contents of all strains in the population are included in a species bin,
although sequencing depth, library construction methods, presence of host DNAs,
and other factors may affect the metagenomic sequencing results (Zaheer et al. 2018;
Pereira-Marques et al. 2019; Bowers et al. 2015).

MAGs have led to the discovery of a remarkable amount of genomic diversity
and the characterization of novel bacterial membership. However, MAGs should
always be used with caution for the reasons discussed above. False positives in
binning, conflicted, and incomplete MAGs have been observed for a variety of
different binning tools that can reduce the quality of public genome repositories if
MAGs are not evaluated carefully (Shaiber and Eren 2019). Multiple studies have
suggested that downstream MAGs quality assessment and validation steps are
critical, and available tools published recently to serve such purpose include
MetaQUAST (Koren and Phillippy 2015), CheckM (Parks et al. 2015), MAGpy
(Stewart et al. 2019), Anvio (Eren et al. 2015), AMBER (Meyer et al. 2018), and
DAS tool (Sieber et al. 2018). Further refinement, stringent quality assessment,
extending assembly length through re-assembly after recruiting reads back to the
MAGs, and genome completeness assessments are important and necessary steps to
ensure the fidelity of the MAGs (Eren et al. 2015). High-quality metagenome-
deconvoluted genomes are essential to perform genome-centric in vivo analyses of
microbial ecosystems.
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3 Metagenome-Assembled Genomes Revealed Extensive
within Community Intraspecies Diversity in a Microbial
Community

Microbial populations often composed of multiple strains of each species, and the
resulting intraspecies diversity could have significant functional and clinical impli-
cations (Kraal et al. 2014; Greenblum et al. 2015; Oh et al. 2014). Gel microdroplet
cultivation afforded nearly finished single genomes and revealed substantial intra-
species diversity within human oral and fecal microbiomes (Fitzsimons et al. 2013).
Strains of dominant human skin bacterial species were shown to be heterogeneous
and multiphyletic, which the authors suggested to be the result of micro-scale
differences in the environment that shaped the ecology and evolution of each
subpopulation (Oh et al. 2014). Another study reported extensive strain-level vari-
ation detected in the human gut microbiome using large-scale intraspecies copy
number variation (Greenblum et al. 2015). This intraspecies variation is thought to
be associated with obesity and inflammatory bowel disease. These studies highlight
the complex relationships between within-species diversity and functional capacity,
linking compositional shifts to subspecies-level variations.

Intra-species diversity obviously complicates MAGs generation, a problem that is
compounded by the use of short-read sequencing technology. It is difficult to
establish linkage and synteny between genotypes in a species genome. Binning
strategies can separate sequences that belong to different species, but are generally
not capable of distinguishing between strains of the same species in a metagenomic
dataset (Huson et al. 2011). There are encouraging developments in binning algo-
rithms recently that have addressed strain-level resolution from metagenomic short-
read sequencing such as StrainPhlAn (Truong et al. 2017), ConStrains (Luo et al.
2015), MetaSNV (Costea et al. 2017), and DESMAN (Quince et al. 2017). However,
the word “strain” has been used interchangeably with subspecies type, genotype,
biotype, among others, in metagenome-derived strain-level resolution analyses.
Although intraspecies diversity can be purged during assembly, the remainder
often leads to species bins that contain composite genetic information from multiple
genotypes (strains) of the species. Advancements in chromosome conformation
capture (Hi-C) and long-read sequencing technologies such as PacBio SMRT
sequencing and Oxford nanopore technologies could improve strain deconvolution
from metagenomic data by extending the read length and assembly quality (Frank
et al. 2016; Tsai et al. 2016; Belton et al. 2012). However, these technologies have
not been widely adopted probably due to technical limitations.
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4 A Practical Definition of Meta-Pangenome

The pangenome has been an important concept and a tool used in comparative
genomics to dissect microbial diversity. A pangenome generally refers to the entire
collection of genetic content from all strains of a species (Tettelin et al. 2005; Medini
et al. 2005; Vernikos et al. 2015). By definition, a pangenome represents all of the
genetic potentials of a species and is typically determined by homology among sets
of genes belonging to multiple strains of the species in all environments the species
is found. Here, we extend the pangenome concept to incorporate metagenome-
derived genes and genomes. It is a natural extension as MAGs and metagenomic
contigs have been used to generate species-specific gene catalog and that for all
species present in a given environment (Ma et al. 2019). We introduce the term,
meta-pangenome that refers to the union of genes of a species found in a habitat
using both culture-independent sequencing (metagenome) and culture-based
sequencing (genome) methods. In computational terms, the meta-pangenome is the
entire sequence space of a species in an environment. Thus, within a sample, a
metagenomic species represents known combinations of strains of a species. In this
chapter, we choose to discuss the meta-pangenome in the context of a species, while
the meta-pangenome paradigm can be applied to genera or broader of taxonomic
groups (Lefebure and Stanhope 2007) as well as other domains of life such as fungus
(McCarthy and Fitzpatrick 2019). The term “pan” itself means “whole” or “every-
thing”, and “meta” as a prefix could mean “with”, “among”, and “beyond”. Together
the words “meta-pangenome” literally mean whole genomes of a species from
among samples collected in a given environment.

Similar to the pangenome concept, a meta-pangenome is bound to a specific
species. In order to define the meta-pangenome for a species, say species A, we start
from collecting all available genomes and constructing MAGs of species A from
metagenomes (illustrated in Fig. 1). We then perform gene calling for these MAGs
contigs after quality assessment, followed by similarity search to generate homolo-
gous gene clusters as in conventional pangenome analyses. The final step is to
perform meta-pangenome size interpolation and extrapolation for species A. This
procedure can then be repeated for each of the species present in a particular
environment to define their meta-pangenome. Alternatively, the genetic contents
characterized in all metagenomes and genomes of a habitat can be collectively
pooled to generate homologous gene clusters. Taxonomic assignment of the
resulting gene clusters can then be used to produce meta-pangenomes for each of
the species present in the habitat.

We can then apply the concepts of core, accessory, and unique genes to the meta-
pangenome framework. A species meta-pangenome core genes are those consis-
tently present in all or almost all metagenomes in a habitat such as wastewater or the
GI tract, and meta-pangenome-specific genes are only observed a single sample of
the habitat. The variable or accessory meta-pangenome includes those genes only
present in a subset of populations. As a metagenome can be considered a snapshot of
the microbial community genetic potential at the time of collection, the core meta-
pangenome can be referred as the set of genes being repeatedly observed after
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Fig. 1 Illustration for a workflow to generate a meta-pangenome for a species. The steps could be
modified. For example, the step of gene calling could be after the step of the pooling all
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multiple sampling events. A closed meta-pangenome would thus refer to the case
where no or very few new genes of the species are added with each additional
metagenome sequenced. Conversely, a species open meta-pangenome would refer to
the case where a substantive number of new genes for that species are discovered
with each additional metagenome sequenced. The core meta-pangenome for a
species could be quite small, or even nonexistent, if the abiotic and biotic constraints
on its colonization of the environment are loose or large if these constraints are strict.

Similar to the original pangenome ecological significance (Tettelin et al. 2005),
population size and niche versatility are likely to drive the size of a meta-pangenome.
For example, the meta-pangenome of Gardnerella vaginalis, a highly prevalent
bacterial colonizer of human vagina, is a collection of all the genes assigned to
that species derived from all available vaginal metagenomes and genomes. Despite
hundreds of metagenomes available containing G. vaginalis, this important species
shows an open meta-pangenome (Fig. 2). On the other hand, Lactobacillus gasseri,
another important and beneficial vaginal bacterial species demonstrates an essen-
tially closed meta-pangenome such that new metagenome sequences add relatively
few genes. An in-depth understanding of the genetic diversity of constituent com-
munity members and its relation to community dysbiosis will afford the develop-
ment of novel strategies to evaluate and optimize prevention, diagnostics, and
treatment for adverse health conditions.

<
«

Fig. 1 (continued) deconvoluted assemblies for a species. Alternatively, the genetic contents
characterized in all metagenomes and genomes of a habitat can be collectively pooled to generate
homologous gene clusters. Taxonomic assignment of the resulting gene clusters can then be used to
produce meta-pangenomes for each of the species present in the habitat
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5 A Conceptual Framework for Microbial Comparative
Genomics: Meta-Pangenome, Metagenomic Subspecies,
and Pan-Metagenome

Meta-pangenome forms a practical framework that provides unprecedented insights
into the genetic and functional basis underlying ecological fitness of microbial
population in an environmental niche. The variable or accessory meta-pangenome
of a species are the genes only present in a subset but not all of samples, which has led
to the new concept of “metagenomic subspecies” (Ma et al. 2019). In essence, a
metagenomic subspecies represents a slice of a species’ meta-pangenome that is
commonly identified in metagenomic samplings of a habitat. This slice contains the
genetic contents of a combination of strains that tend to co-occur. In theory, this
co-occurrence could be driven by interactions among the strains and/or their tendency
to co-colonize, termed dispersal limitations (Telford et al. 2006). Specific mecha-
nisms that can lead to the co-existence of multiple strains in a population include
frequency-dependent selection (Svensson and Connallon 2019), cross-feeding
(Livingston et al. 2012; Hunt and Bonsall 2009), spatial structure (France and Forney
2019), resource partitioning (Rosenzweig et al. 1994), and interference competition
(Kerr et al. 2002), among others. That said, the metagenomic subspecies concept is
equivalent to a species genetic “ecotype” for an environment. Several metagenomic
subspecies can exist in a given environment but cannot co-occur within a sample. The
metagenomic subspecies can be determined in silico by hierarchical clustering over
the data matrix such as gene prevalence or gene abundance profiles. Further devel-
opment of relevant pattern recognition tools (supervised or unsupervised) as well as
the approximation of the population size (number of strains) are important ongoing
research developments that will contribute to this field.

The concepts of meta-pangenome and metagenomic subspecies have great value
to investigate intraspecies diversity within a community and the genetic foundation
underlining the functions, resilience, resistance or fitness, among others, of microbial
communities. We term the entire collection of all species’ meta-pangenomes that
exist in a specific environment the “pan-metagenome,” which is essentially the
“habitome” that encompasses the genetic landscape of a habitat. For instance, the
pan-metagenome of the human gastrointestinal (GI) tract is the collection of all
genes of all species found in the human GI tract (Qin et al. 2010; Li et al. 2014), and
the pan-metagenome of the human oral communities encompasses the total genetic
content of all species in the human oral environment (Tierney et al. 2019). The
concept of pan-metagenome is represented by extensive gene cataloging, such as
those constructed for the pig (Xiao et al. 2016) or the mouse GI tract (Xiao et al.
2015). A pan-metagenome of a specific habitat, when used as a catalog of the genetic
contents, has provided a comprehensive reference framework for the study of
microbial communities and their interaction with the environment.

We have recently constructed a pan-metagenome for the human vaginal tract
named VIRGO (the human vaginal nonredundant gene catalog) using an array of
urogenital bacterial isolate genomes and vaginal metagenomes (Ma et al. 2019).



Meta-Pangenome: At the Crossroad of Pangenomics and Metagenomics 213

VIRGO has been shown to be comprehensive and to provide an unbiased represen-
tation of the genetic diversity of each species found in the vaginal microbiome. In
building VIRGO, we found that the vast majority of the genetic diversity was
contributed by MAGs derived from the metagenomic datasets. In fact, the
metagenomic data used to build VIRGO comprise a much larger genetic diversity
(high number of nonredundant genes) than that of all combined single isolate
genome sequences (Fig. 3a, b). This result indicates the importance of extending
the pangenome concept beyond isolate genome sequences.

VIRGO has afforded a different view of the vaginal microbiome, where each
population is composed of complex mixtures of multiple strains, highlighting the
large amount of intraspecies diversity present in these communities. We found that, in
general, the majority of a species’ genes are meta-pangenomic accessory genes. For
example, for Lactobacillus crispatus, the number of meta-pangenomic accessory
genes is twice as many as the number of meta-pangenomic core genes (Fig. 3c).
G. vaginalis demonstrated particularly high intraspecies diversity, for which the core
meta-pangenome does not even exist and the majority of the genes are accessory or
sample specific, suggesting that the species should be split into multiple different
species within the genus Gardnerella. We further observed three distinct
metagenomic subspecies of L. gasseri, among which there were two distinct types
and the third being a combination of the two (Fig. 3d). This suggests that there is
environmental specialized co-colonization of L. gasseri strains in the vaginal envi-
ronment. Future studies are needed to reveal the linkage between specific
metagenomic subspecies and pathophysiological conditions.

6 Conclusion Remarks

The field of comparative genomics has bloomed from that initial genome compar-
ison two decades ago. Thanks to advancements in cultivation-independent whole
community sequencing technology and the increased availability of metagenome-
assembled genomes, we have obtained unprecedented insights into the incredible
amount of diversity present within microbial populations. Intraspecies diversity
exceeds that found in our current reference genome databases. The pangenome
paradigm expanded to metagenome-assembled genomes and metagenomic contigs
comprehensively profile microbial genetic diversity in a specific habitat. However,
the incorporation of metagenome-derived genomes has to be performed carefully
with stringent quality assessment to avoid spurious inflation of gene content. The
meta-pangenome concept unites pangenomics and metagenomics to obtain a more
compete and ecologically meaningful view of different ecosystems. Meta-
pangenomes and pan-metagenomes represent a critical step in the development of
a systems-level understanding of microbial ecosystems.
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Fig.3 Intraspecies diversity revealed using VIRGO (human vaginal nonredundant gene catalog) of
seven vaginal species including L. crispatus, L. iners, L. jensenii, L. gasseri, and G. vaginalis,
A. vaginae and P. timonensis. (a) Summary of the number (N) of isolate genomes and metagenome
(MG) samples with more than 80% of their average genome’s number of coding genes for a species,
based on a dataset of 1507 in-house vaginal metagenomes characterized using VIRGO. (b) Boxplot
of number nonredundant genes in isolate genomes versus vaginal metagenomes. (¢) Heatmap of
presence/absence of L. crispatus nonredundant gene profiles for 56 available isolate genomes and
413 VIRGO-characterized metagenomes that contained either high (red) or low (blue) relative
abundance of the species. Hierarchical clustering of the profiles was performed using ward linkage
based on their Jaccard similarity coefficient. xnumber of isolate genomes and metagenome samples.
"MG: Metagenomes #p < 0.05, ssxp < 0.001 after correction for multiple comparisons.
Figure reproduced from Ma et al. (2019)
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Pangenome Flux Balance Analysis Toward )
Panphenomes st

Charles J. Norsigian, Xin Fang, Bernhard O. Palsson,
and Jonathan M. Monk

Abstract Studies of the pangenome have been empowered by an exponentially
increasing amount of strain-specific genome sequencing data. With this data deluge
comes a need for new tools to contextualize, analyze, and interpret such a vast
amount of information. Network reconstructions, genome-scale metabolic models
(GEMs), and the corresponding computational analysis frameworks such as flux
balance analysis (FBA) have been proven useful toward this end. Network recon-
structions can be used to interpret genomic variation not just from a single strain but
for an entire species. By applying these approaches at the pangenome scale, it
becomes possible to systematically evaluate phenotypic properties for an entire
species thus enabling the study of a panphenome directly from a pangenome.
Applying insights gained from analysis of the panphenome has diverse implications
with applications ranging from human health to metabolic engineering. The future of
pangenomics will include panphenomic analyses, thus supplementing traditional
pangenomic analyses and helping to address the Big-data-to-knowledge grand
challenge of analyzing thousands of genomic sequences.

Keywords Flux balance analysis - Genome-scale modeling - Panphenome - Multi-
strain - Comparative systems biology

1 Introduction

Studying differences between strains of a species using the construct of a
pangenome revolutionized the field of comparative genomics for bacteria (Tettelin
et al. 2005; Medini et al. 2005). This framework allowed scientists to overcome
issues related to species with high genomic variability and lack of a reference
genome. The pangenome alone cannot be used to quantify the phenotypic effects

C. J. Norsigian - X. Fang - B. O. Palsson - J. M. Monk (<))
Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
e-mail: jmonk @ucsd.edu

© The Author(s) 2020 219
H. Tettelin, D. Medini (eds.), The Pangenome,
https://doi.org/10.1007/978-3-030-38281-0_10


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38281-0_10&domain=pdf
mailto:jmonk@ucsd.edu

220 C. J. Norsigian et al.

of genetic variability. Over the past decade, network reconstructions have become an
indispensable tool in molecular systems biology because of their ability to provide a
mechanistic link between experimental studies and computational analyses (Bordbar
et al. 2014). Thus, genome-scale network reconstructions provide an avenue for
extending the power of the pangenome toward evaluating the phenotypic capabilities
of a species or the panphenome. High-quality reconstructions can be expanded
through bioinformatic techniques to map information from a reference strain to
additional strains of the target organism. This chapter describes how reconstructions
and genome-scale models have been applied to study the pangenome by predicting
all possible phenotypes for strains in a species. Using these tools, large-scale
genomic data sets combined with experimental phenotypes can now be integrated
and queried to systematically probe the diversity of strains within a species.
Genome-scale metabolic network reconstructions can delineate conserved and
unique metabolic capabilities across the strains of a species. These differences and
designations can be used to define the metabolic potential of a species often
informative of lifestyle diversity. In this chapter, we detail the following elements
toward true panphenomic analysis: (1) The foundation of reconstructions and flux
balance analysis; (2) The extension of these tools using a “multi-strain” approach to
calculate metabolic panphenomes for several bacterial species; and (3) A future
perspective on the multi-strain approach: moving beyond metabolism for a full
calculation of the panphenome.

2 Network Reconstructions and Flux Balance Analysis

The growing collections of sequences that have been used to study pangenomes are
laden with valuable information, however, strings of nucleotide bases alone do not
make this information easily accessible or immediately apparent. Thus, there is a
critical need for tools that can be used to interrogate this massive amount of data to
generate new knowledge. Genome-scale network reconstructions in concert with
flux balance analysis (FBA) provide such a tool. This section describes the process
of reconstruction as well as mathematical approaches that can be used to query and
compute with reconstruction, in particular, FBA.

2.1 Network Reconstructions Structure Biological Knowledge

Genome-scale reconstructions are organism-specific knowledge bases. They are
built systematically using a quality-controlled bottom-up workflow that incorporates
genome annotation, omics data sets, and legacy knowledge. The literature detailing
the construction and analysis of network reconstructions is extensive (O’Brien et al.
2015; Thiele and Palsson 2010; Herrgard et al. 2008). In brief, these tools organize
knowledge by linking genes, gene products, and cellular components (Fig. la).
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Fig. 1 (a) Reconstructions consist of layered information connecting annotated genes on the
genome sequence to their encoded biological products (e.g., RNA, protein) and how those compo-
nents interact with other biological components (e.g., protein metabolite, in the case of a metabolic
reaction/transformation. Figure reprinted from Reed et al. (2006). (b) Genome-scale models exist
for species across the tree of life that are being made for new species and constantly improving.
Reprint from Monk et al. (2014). (¢) Reconstructions can be converted to a mathematical format by
account for use of biological components (e.g., consumption/production). This allows for molecular
accounting and enforcement of constraints. (d) Enforcement of constraints (e.g., media updates) and
applying an objective (e.g., production of biomass, e.g., growth) allows for simulation of biological
phenotypes from the genotype. Panel ¢ and d reproduced from O’Brien et al. (2015). Reprint from
O’Brien et al.)

Reconstructions can be made for several cellular processes including transcriptional
regulation (Gianchandani et al. 2006, 2009), expression (Thiele et al. 2009) and
metabolism (Feist et al. 2009). The reconstruction approach is iterative and thus all
reconstructions are continually improving as new knowledge is generated. Thus,
reconstructions serve as a valuable resource to integrate and reconcile biochemical
data allowing researchers to collaborate, test, and readily share new hypotheses
about functions in a target organism (Monk et al. 2014).

Reconstructions of cellular metabolism have been the most developed and exten-
sively used type thus far (Bordbar et al. 2014). Metabolic network reconstructions
are composed of all known metabolic genes, their encoded proteins and catalyzed
reactions. This information is synthesized by aggregating organism-specific data-
bases, high-throughput data, and primary literature (Thiele and Palsson 2010).
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Advancements have allowed for partial automation of this process (Henry et al.
2010; Agren et al. 2013). Reactions are organized into pathways, pathways into
subsystems, and ultimately into genome-scale networks; thus, representing biolog-
ical processes at multiple scales. The resulting network reconstruction is a unifica-
tion of the information available for an organism with a genetic basis. Today, there
exist collections of genome-scale reconstructions for a number of target organisms
across the tree of life (Oberhardt et al. 2011; Monk et al. 2014) (Fig. 1b). For
example, as of 2018, there are 178 available, curated reconstructions spanning the
tree of life (http://systemsbiology.ucsd.edu/InSilicoOrganisms/OtherOrganisms).
While this coverage is impressive, several other phyla remain devoid of any recon-
struction initiative. To fully extend the study of panphenomes to all sequenced
organisms, new reconstruction efforts must be initiated (Monk et al. 2014).

2.2 Flux Balance Analysis Enables Computation
of Phenotype from Genotype

Reconstructions alone are static, and unable to be used for predictions. A major value
of the metabolic reconstructions emerges when they are converted into a mathemat-
ical format, enabling computational interrogation using a variety of methods (Orth
et al. 2010; Lewis et al. 2012). This conversion translates the biochemical reactions
of a reconstructed network via tabulation of reaction stoichiometry into a chemically
accurate mathematical format that becomes the basis for a genome-scale model
(GEM) (Fig. Ic). The flow of metabolites through the network is constrained by
these stoichiometries represented as balances or inequalities for bounds (Reed 2012).
Further constraints can be added to a network such as thermodynamic reversibility
constraints and limitations to nutrient uptake or by-product secretion. Computation-
ally predicted network states consistent with imposed constraints are potential
physiological states of the target organism within a defined condition.

Flux balance analysis (FBA) can be applied to these models for prediction of an
organism’s phenotype. This mathematical approach for analyzing the flow of metab-
olites through a metabolic network is the original constraints-based method (Orth
et al. 2010). This approach relies on an assumption of steady-state growth and mass
balance. FBA uses the stated objective (for example, biomass production, e.g.,
growth) to find the solution(s) using linear programming that optimize an objective
function (O’Brien et al. 2015). In a defined environment (defined inputs), GEMs can
be used to compute network outputs (Fig. 1d) FBA allows for computational tracing
of balanced reaction states beginning with defined inputs to produce output metab-
olites. Biomass synthesis is computed using FBA by computing the balanced
reactions states that produce all the required metabolites for growth simultaneously.
Additionally, the model accounts for the energetic, redox, and chemical balances
that must also be maintained (O’Brien et al. 2015).
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Using this technique, a variety of phenotypes such as the effect of gene knock-
outs, metabolite secretion, and growth capabilities on different substrates can be
predicted rapidly and compared to experimental results to verify their accuracy
(Monk and Palsson 2014). Some of the best models have accuracies >90% in
agreement with experimental data (Monk et al. 2017; Brunk et al. 2018). In this
way, GEMs provide a way to bridge the genotype to phenotype gap by providing a
robust platform for analyzing the integrated mechanisms of gene products to produce
unique phenotypic states. The utility of a highly curated GEM and the corresponding
computational analyses is increased by the format’s scalability. Through this meth-
odology, phenotypes for the plethora of sequenced strains within a species become
readily calculable. In the next section, we will highlight how high-quality recon-
structions for a single strain can be extrapolated onto several strains of the same
species to study the phenotypic potential of the pangenome and to gain insight into
strain-specific metabolic capabilities.

3 The Multi-Strain Approach: Extending Genome-Scale
Models to Robustly Explore the Pangenome Phenotypic
Space

Once a high-quality reconstruction and genome-scale model exist, its contents (e.g.,
genes, metabolites, and reactions) can be mapped onto other, closely related strains
in a species. Following this multi-strain approach, tools from comparative genomics
(Monk and Bosi 2018) can be integrated with genome-scale modeling to identify
genetic determinants underlying variability of phenotypes. Such a task is crucial to
understand the evolutionary trajectories of a bacterial species. Strain-specific meta-
bolic diversity has been illuminated through the use of genome-scale metabolic
models. Prediction of unique metabolic capabilities and auxotrophies can be used
to study species lifestyle diversity. This approach is scalable to the pangenome level
and in turn enables panphenome analysis, thus empowering species-wide compara-
tive systems biology. This multi-strain approach has been applied to several species
in a variety of studies and we provide a brief overview of the key insights here.

3.1 Genesis of the Multi-Strain Approach: Studying
Escherichia coli

The first instance of the multi-strain approach as described here was executed by
Monk et al. where the authors leveraged a curated genome-scale model of E. coli
K-12 MG1655 that has been continually updated over 15 years to construct genome-
scale models of 55 other fully sequenced E. coli strains (Monk et al. 2013). Using
FBA on all 55 of these models, the authors were able to extensively investigate the
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Fig. 2 (a) Genome-scale models can be used to predict growth capabilities in different environ-
ments and nutritional niches. This figure represents growth predictions for 55 different strain-
specific models of E. coli and Shigella on over 300 different carbon, nitrogen, phosphorus and
sulfur sources. Strains, for the most part, clustered according to their isolated niches (e.g., extra
versus intestinal). Reproduced from Monk et al. (2013). (b) Using these growth predictions allows
for the classification of strains and their potential isolation site (e.g., bladder versus intestine).
Decision trees could reliably separate EXPEC from InPEC strains. Left panel reproduced from
Croxen and Finlay (2010). Right panel reproduced from Monk et al. (2013)

predicted metabolic capabilities of all the strains (Fig. 2a). The authors delineated
strain-specific auxotrophies and substrate preferences among the set of strains. It is
important to note that these predictions and insights were gained from sequence
alone. Further, this study demonstrated the possibility of applying this approach to
understand cases of patho-adaptation to a given environment and evaluate a given
strain’s infectious niche.
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Further work scaled up the effort to include 1200 strains of E. coli and demon-
strated a large amount of variability within the species both in gene content and
consequent variability of gene products (Monk et al. 2017). It also utilized the
differences across the 1200 strains to construct a robust classification tree for
determination between extra-intestinal and intra-intestinal pathogens using predicted
metabolic phenotypes (Fig. 2b). This type of classification schema opens the door to
investigating how strain-specific traits impact the microbiome. An in-depth example
of such analyses came in a study by Fang et al. into the metabolic capabilities of
inflammatory bowel disease (IBD)-associated E. coli strains in the B2 clade (Fang
et al. 2018). The authors found these strains have advantages in catabolizing sugars
derived from mucus glycans. The interesting and novel outcomes of these E. coli
studies clearly demonstrated the value of the approach, and the natural next step was
to apply the methodology to other species.

3.2 Expanding the Reach of Multi-Strain Approach Across
the Phylogenetic Tree

Numerous studies followed the first E. coli studies that focused on various organ-
isms. Fouts et al. applied the multi-strain approach, broadened to examine various
species of Leptospira known to have ranging levels of pathogenicity (Fouts et al.
2016). They demonstrated that the ability to synthesize vitamin B12 is limited to
pathogenic species of Leptospira and may give them a survival advantage in a
human host where B12 is sequestered by the body. This valuable distinguishing
metabolic capability was captured by being able to leverage the base reconstruction
across multiple species in the genus.

In 2016, Bosi et al. applied the workflow to 64 strains of Staphylococcus aureus.
Beyond reconstructing metabolic capabilities, the approach was extended to identify
virulence factors in the set of 64 strains (Bosi et al. 2016). By using a combination of
predicted metabolic capabilities linked to virulence factors, they were able to stratify
the strains by host type. This study added an additional layer to the promise of the
multi-strain approach by showing that metabolic capabilities could be analyzed in
concert with other components of the pangenome, namely virulence factors (toxins,
adhesins, etc.), and that this combination held predictive power about a strain’s host.
This study also included explicit calculation of the core- and pangenome content of
S. aureus, a metric of genomic diversity among strains in a species.

The multi-strain approach has also been applied to other pathogens such as
Acinetobacter baumannii and Salmonella. In a study by Norsigian et al., a highly
curated base GEM was used to create models for 75 different A. baumannii strains
(Norsigian et al. 2018). These strain-specific models demonstrated major differences
in metabolism between strains indicating that a classification scheme may be possi-
ble from sequence alone. Seif et al. built strain-specific models for 450 Salmonella
strains from various serovars to show that metabolic capabilities can be used to
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distinguish these serovars (Seif et al. 2018). This study indicates that the host-range
may be limited by metabolic capabilities of different strains.

3.3 Extending the Multi-Strain Approach to Investigate
Additional Biological Qualities

The multi-strain framework provides an inherently efficient means of interrogating
the properties of many strains and a few studies have utilized this organizational
efficiency to gain insight into properties outside of direct metabolic capabilities. For
example, Choudhary et al. examined the agr type of 400 S. aureus strains to examine
the structure of genes within the genome (Choudhary et al. 2018). The authors found
that genomic virulence factor profiles are highly correlated with agr type. They also
identified that divergence in histidine kinase protein confers signal specificity with
clear differences in protein structural properties based on agr types. Another example
of additional properties is the investigation of reactive oxygen species (ROS)
tolerance. By leveraging the multi-strain approach in conjunction with 3D structures
Mih et al. was able to simulate ROS production levels to demonstrate that antiox-
idant properties are exhibited in the structural proteome (Mih et al. 2018). A third
example was conducted by Kavvas et al., who took a deeper level of resolution
within the genome by looking at the unique alleles present within Mycobacterium
tuberculosis genomes (Kavvas et al. 2018). Through machine learning techniques on
the pangenome they were able to associate certain alleles potentially responsible for
antimicrobial resistance. The results hint at metabolic rewiring at the allelic level
required for adaptation to antibiotic resistance. The success of the multi-strain
approach in all these various studies suggests that explicit calculation of the
panphenome will provide novel insights.

4 Future Perspectives: Moving Beyond Metabolism: A
Multi-Scale Approach to Calculating Full Panphenomes

This chapter details a computational approach (network reconstruction and FBA) to
systematically calculate metabolic phenotypes for multiple strains in a species.
Beyond calculation of metabolic phenotypes, new methods, both experimental and
computational, offer exciting new avenues for research into the pangenome. These
approaches can be applied at multiple different scales. At the lowest level, single
nucleotide variants (SNV) can be compared across strains using sequence mapping
toolkits like breseq and gatk (Deatherage and Barrick 2014; McKenna et al. 2010).
These approaches can be scaled up from single base changes to full gene sequences to
compare orthologous ORFs across genomes by comparing sequence-specific alleles
across strains in a species (Fig. 3a). As described here, the presence/absence of given
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enzyme-encoding metabolic genes can be used to build strain-specific metabolic
reconstructions that compute metabolic panphenomes. While most of the applica-
tions described here are applied to pathogens with relevance to human health, it is
important to note that the pangenome can also be studied for use in metabolic
engineering applications. For example, the pangenome can be mined to search for
enzymes of interest to industrial microbiology (Moscatello and Pfeifer 2018).

In the future, processes beyond metabolism will also be reconstructed allowing
for true panphenome calculations. For example, reconstructions of protein expres-
sion mechanisms already exist (Thiele et al. 2009) and have been integrated with
models of metabolism (ME models) (O’Brien et al. 2013). These models account for
the transcription and translation processes and molecular constituents required to
express enzymes catalyzing metabolic reactions in the metabolic network. It is
further possible to use the ME model framework to reconstruct proteostatic mech-
anisms and investigate the structural integrity of the proteome (Chen et al. 2017). In
the future, multiple ME models of strains in a species will further expand the scope
of computation possible on contents of the pangenome.

Beyond metabolism and expression, regulatory networks are another aspect of the
pangenome that differ between strains and have been reconstructed for individual
strains (Gianchandani et al. 2006, 2009). Understanding how certain strains regulate
the same set of genes (core-genome), as well as diverse sets of genes, will further
expand our understanding of the structure and function of the pangenome. A small-
scale study of seven E. coli strains and their RNA-seq expression profiles in aerobic
and anaerobic environments showed remarkably different expression levels even for
shared genes of the core-genome (Monk et al. 2016) (Fig. 3b). Studying differen-
tially expressed genes and the transcription factors known to regulate them may lead
to the discovery of alternative regulatory strategies between strains of a species.

Just as sequence databases have grown tremendously in recent years, 3D crystal
structures for the encoded genes have also grown dramatically (Brunk et al. 2016).
The protein data bank (Berman et al. 2000) (PDB) is a repository of protein
structures and these structures can now be integrated with genome-scale models
(GEM-PRO) (Chang et al. 2013). Building multi-strain models with associated
protein structures is another way to compare strains across a species. Using these
tools, sequence diversity can be examined at the 3D level to see how mutations line
up in 3D space, a level of analysis not possible at the sequence level. Furthermore,
mutations in specific regions of the protein can be tabulated (Fig. 3¢) and compared
across strains (Mih et al. 2018).

Finally, a multi-strain approach should prove useful for studies of the
microbiome. Multiple genome-scale models for species found in the microbiome

Fig. 3 (continued) and BL21). Overall the K-12 strains have a much higher correlation between
their transcriptional profiles than did BL21. Reproduced from Monk et al. (2016) (c) Expanding
analysis of sequence similarity by incorporating 3D structural information. The inclusion of
structures mapped to sequences allows the visualization of how differences in sequences manifest
in 3D space. (d) Expanding study of strains to the microbiome using metagenomics and strain-level
resolution. Panels a, ¢, and d reproduced from Monk et al. (2017)
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already exist (Magnusdéttir et al. 2017), and GEM studies were proven effective in
studying the impact of diet (Shoaie et al. 2015) and interactions between microbes
(Shoaie et al. 2013). Expanding the multi-strain approach to study diverse strains in
these species may lead to a deeper level understanding of the gut microbiome
composition. Indeed, strain-level metagenomics is coming (Scholz et al. 2016) and
expanding the study of the pangenome to the microbiome will have fruitful appli-
cations in the near future (Fig. 3d).

In closing, we must list some caveats and risks to the multi-strain approach. First,
all of these approaches require high-quality sequence data connected to high quality,
QC/QA data generation. The success of reliable and maximally effective future
panphenomics rests on ensuring this quality. There must be a continued effort to
ensure that sequencing projects are of quality not only quantity. Additionally, an
interesting question pertaining to the concept of closed pangenomes is, how will the
law of diminishing returns be exhibited in these sequence deposits? Will a point be
reached where additional sequences provide no novel information? Further, the
vision of the panphenome and its implications to understanding how microbial
pathogens impact human health will rely on both the availability of metadata and
the deposition of strains. Metadata on these strains will only deepen the possible
questions to be asked of both pangenomes and panphenomes. A centralized repos-
itory of strains will also greatly expedite the experimental verification needed for
such large computational predictions. The future of the panphenome is apparent and
with it further explanations at the center of biological causality.

5 Conclusions

Significant advancements in DNA sequencing technology have led to an exponential
increase in the number of sequenced strains. This creates a need for new ways to
integrate and analyze this ever-increasing amount of sequence information. This
need will only intensify as the number of sequenced strains within a species
continues to grow exponentially. This chapter demonstrates how the pangenome is
evolving from a theoretical concept to a queryable construct.

In this chapter, we describe how the foundational aspects of GEMs and FBA can
be used to predict phenotypic states for multiple strains in a species. The multi-strain
approach has proven useful in extending this utility in a number of studies providing
evolutionary insights as well as practical applications. As the library of available
sequences continues to grow, the possibility of scaling these techniques to the level
of the pangenome is becoming a reality. The result, a species-wide panphenome,
would create a deeper level of understanding than the collection of gene content
within the pangenome alone.

The ability to systematically characterize an entire species’ phenotypic capabil-
ities will enhance the depth of pangenome analysis possible and pull valuable
information inherent to genome sequences to the forefront (Fig. 4). The linkages
and distinct features at the pangenome scale for a species offer obvious value for
future knowledge generation, especially pertaining to human health and disease.
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Pan-Genomics Pan-Phenomics

Fig. 4 The established assembly of the pangenome through the use of genome-scale reconstruc-
tions and corresponding computational analyses enables the calculation of panphenomes. The
panphenome increases the depth of analysis possible by providing a framework in which to
delineate strain-specific phenotypes. This stratification based on sequence similarity allows for
the determination of which pieces of reconstructed networks are shared among various groups of
strains in a species. This will continue to further inform the generation of evolutionary hypotheses

Further, the future potential applications outlined here such as inclusion of expres-
sion, regulation, and structures into these workflows will only further advance the
scope of genome-scale science. Genome sequences are laden with critical informa-
tion and the tools/workflows described in this chapter provide a means for extracting
this information into actionable knowledge.
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Bacterial Epigenomics: Epigenetics )
in the Age of Population Genomics e

Poyin Chen, D. J. Darwin Bandoy, and Bart C. Weimer

Abstract Genome methylation in bacteria is an area of intense interest because it
has broad implications for bacteriophage resistance, replication, genomic diversity
via replication fidelity, response to stress, gene expression regulation, and virulence.
Increasing interest in bacterial DNA modification is coming about with investigation
of host/microbe interactions and the microbiome association and coevolution with
the host organism. Since the recognition of DNA methylation being important in
Escherichia coli and bacteriophage resistance using restriction/modification sys-
tems, more than 43,600 restriction enzymes have been cataloged in more than
3600 different bacteria. While DNA sequencing methods have made great advances
there is a dearth of method advances to examine these modifications in situ.
However, the large increase in whole genome sequences has led to advances in
defining the modification status of single genomes as well as mining new restriction
enzymes, methyltransferases, and modification motifs. These advances provide the
basis for the study of pan-epigenomes, population-scale comparisons among
pangenomes to link replication fidelity and methylation status along with mutational
analysis of mutLS. Newer DNA sequencing methods that include SMRT and
nanopore sequencing will aid the detection of DNA modifications on the ever-
increasing whole genome and metagenome sequences that are being produced. As
more sequences become available, larger analyses are being done to provide insight
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into the role and guidance of bacterial DNA modification to bacterial survival and
physiology.

Keywords Population bacterial genomics - Whole genome sequencing - Direct
RNA sequencing - Gene expression

1 Introduction

Bacterial cellular functions are widely impacted via epigenetic modification, includ-
ing bacteriophage infection, metabolism, virulence, persistence, replication, and
genome plasticity. DNA modification in bacteria is of great interest because it is
increasingly being linked to functional regulation processes in the organism and
disease progression in mammals (Kumar and Rao 2013). DNA methylation was
first recognized in Escherichia coli as part of restriction/modification systems
(RMS) that limit and regulate bacteriophage infection. RMS are ubiquitous in the
bacterial world with >43,600 RM recognized enzymes in >3600 bacteria (http://
rebase.neb.com/rebase/rebase.html) (Roberts et al. 2010). Methylation primarily
occurs at N°adenine and C>cytosine in many species, but only Ncytosine is found
in bacteria (Wion and Casadesus 2006; Kumar and Rao 2013). Recently, a new
modification that regulates the redox status of the cell using DNA modification via a
unique multifunctional alteration via phosphothioation was identified (Wang et al.
2019). Subsequently, DNA and RNA methylations were defined to play a central role
in bacterial phenotypes that were not encoded in the genome but inherited in bacteria
and do regulate gene expression in bacteria. Post-replication modification allows cells
to rapidly adjust to local environmental conditions via gene expression changes that
are not directly linked to genome variation yet require very dynamic shifts for
survival and growth status.

An emerging area of investigation is the role of the microbiome on the host
epigenome. Particular interest is paid to the role of the bacterial involvement in host
cancer due to dysregulation of gene expression as cancer progresses. A comprehen-
sive review of the state of progress that links infectious agents to cancer and host
epigenome proposed that chronic inflammation was involved in the dysregulation of
gene expression (Rajagopalan and Jha 2018). An intriguing hypothesis is that
bacterial metabolism in utero can have long-lasting effect by regulating epigenetic
modification of the maternal and fetal status in utero (Romano and Rey 2018). The
complexity of the microbiome composition and metabolism leads one to expect a
very complex system for the bacterial community to regulate the host epigenome.
Farhana et al. (2018) reviewed the microbiome and its potential role in cancer. Of
particular interest is that of Helicobacter pylori since it is associated with multiple
states of disease in the progression from normal tissue to cancer with regional and
human race differences since it has coevolved with humans for at least 80,000 years
(Munoz-Ramirez et al. 2017), and it has a complex lifestyle in the microbial
community within a unique location in the body that forces the organism to manage
swings in pH, redox, and nutrient sources within minutes.
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With the emergence of population genomics and metagenomics and large-scale
whole-genome sequencing the vast amount of information has grown rapidly over a
short time. With over 350,000 bacterial genomes in the public domain, a new
challenge has grown in trying to conduct population epigenomes in bacteria and
then associate those changes with change in the host to promote disease. Chen et al.
(2014) described a method for population-scale approaches; however, more robust
methods are now needed that include metagenome analysis as well.

Comparison of genomes using pangenomes and Big data approaches are
progressing to link specific genes and alleles to disease. Population genomics is
beginning to emerge (Weis et al. 2016) but it is disconnected to epigenomes and
pangenome analysis at this point. Hence, focusing on specific genes and modifica-
tions is appropriate and providing results that can be linked to population genomics in
the future.

2 Bacterial DNA Modifications and Biological Importance

On a biochemical level, epigenetic modification of the genome changes the acces-
sibility of specific gene clusters and affinity of transcriptional regulators for their
cognate promoters. This modulation of transcription accessibility and promoter
affinity in turn translates to changes in bacterial response to environmental stimuli.
Because epigenetic modifiers, such as RM systems and specific methyltransferases
(MTases) themselves, are encoded on the chromosome as well as on plasmids, these
elements can be transmitted vertically as a result of replication as well as horizontally
as a result of horizontal gene transfer either via conjugation or phage. As mentioned
above, DNA modification systems serve to identify and eliminate foreign DNA, but
these DNA modifications also serve important roles in cell cycle progression, DNA
repair, and regulation of gene expression.

2.1 Bacterial Histone-Like Proteins

Like eukaryotic histones, bacterial histone-like proteins assist in compacting the
chromosome into a nucleoid structure (Thanbichler et al. 2005). Histone-like proteins
can be classified into four different categories: histone-like proteins (HU), histone-
like nucleoid structuring proteins (H-NS), integration host factors (IHF), and factors
for inversion stimulation (FIS), further reviewed in Dorman and Deighan (2003) and
Anuchin etal. (2011). To accomplish this task, bacteria utilize histone-like proteins to
organize their DNA to minimize space utilization but also to regulate the expression
of their DNA. These proteins work in a concerted manner to bind DNA and facilitate
supercoiling into a nucleoid structure and regulate gene expression, these mecha-
nisms were extensively reviewed previously (Dorman and Deighan 2003;
Thanbichler et al. 2005; Dorman 2013; Takahashi 2014; Grainger 2016). Throughout
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the cell cycle, different histone-like proteins peak in concentration to regulate genes
sets responsible for the progression of an actively replicating cell to a stationary phase
cell, indicating that each one plays a unique role during specific stages of growth.
Cycling histone-like proteins indicates that the pan-epigenome changes at different
phases of growth. In addition to being related to different growth phases, expression
of specific histone-like proteins is also induced in response to environmental stresses.
The ability of environmental stimuli to change histone association with DNA sug-
gests that pan-epigenetic shifts occur when an organism adapts to its environment.
Examples are evident in the existence of microbes adapted to live in extreme
environments as well as pathogens, such as Brucella, that are specifically adapted
to live in their host. While these microbes no longer possess genes found in related
species, it was epigenetic selection that led to the refinement of these genomes.
Sustained pan-epigenetic shifts result in perpetually inactivated genes that are sub-
sequently lost in future generations, resulting in differentiation between DNA mod-
ification and genotypes.

Although DNA methylation is frequently associated with RM systems and
bacterial “immunity” against sources of foreign DNA, we are just beginning to
understand the global impacts of DNA methylation on transcriptional regulation of
gene expression. In addition to protein-DNA interactions affected by methylation,
DNA modifications also regulate bacterial histone-like protein binding to DNA.

While MTases may indirectly impact gene expression through modulating
histone-like protein—-DNA interactions, MTases directly influence gene expression
through the presence of recognition motifs located in promoter regions and protein-
binding sites of genes. The methylation state of these regions work by modulating
the affinity of RNA polymerase and transcriptional regulators such as leucine-
responsive repeat protein (Lrp) and catabolite activator protein (Cap) to specific
genes, among which include dnaA, ppiA, yhiP, and the pap operon (Tavazoie and
Church 1998; Marinus and Casadesus 2009).

RM systems play a major role in bacterial immunity against foreign DNA.
Another component of the bacterial “immune system” was recently discovered,
termed clustered regularly interspaced palindromic repeats/CRISPR-associated
(CRISPR/Cas). CRISPR systems are detectable in 1126 of the 2480 genomes
analyzed to date (Grissa et al. 2007). Similar to phase variable regions of the
genome, CRISPR/Cas systems are composed of short, conserved, DNA repeat
sequences interspersed by stretches of variable sequences with cas genes adjacent
to these regions. CRISPR/Cas systems recognize foreign nucleic acids, targeting
them for degradation via RNA interference effector complexes composed of Cas
proteins and CRISPR RNAs (Gasiunas et al. 2013). Though no associations between
MTases and CRISPR/Cas have been proven, Hernandez-Lucas et al. determined that
Salmonella Typhi casA is under H-NS and Lrp regulation (Medina-Aparicio et al.
2011). In addition to immunity, CRISPR/Cas systems are also hypothesized to affect
DNA mismatch repair with E. coli Casl involved in DNA segregation and mismatch
repair (Babu et al. 2011; Westra et al. 2012). MTases and CRISPRs both share a
number of common interacting partners involved in transcriptional regulation
including Lrp and H-NS. While much remains to be learned about additional cellular
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roles of these systems, it is not improbable to expect a synergistic interaction in
orchestrating essential cell processes.

2.2 DNA Modifications

Bacteria encode numerous restriction-modification (RM) systems that can be cate-
gorized into four main types. RM systems include the restriction endonuclease
(REase), methyltransferase (MTase), and the specificity protein which facilitate
targeted RM enzymatic activity to specific regions of DNA. RM systems require a
specific unit, which enables RM targeting to a DNA recognition domain, a
methyltransferase that modifies DNA with a methyl group, and an endonuclease
that cleaves DNA (REase) with four types of RM systems described to date and
catalogued in Rebase (Roberts et al. 2010). Briefly, Type I is characterized by an
oligomeric MTase and REase complex with restriction occurring at variable distances
from the recognition site. As the largest category with over 16,000 MTases identified,
Type II system fall into numerous subcategories and are composed of either discreet
or fused, MTase and REase subunits that cleave at or near the recognition site. Type
III system cut at a fixed site away from the recognition sequence with the restriction
enzyme activity contingent on association with the cognate MTase. Like Type I, Type
IV system cleave at a variable distance from the recognition site but unlike the other
three systems, the Type IV system is able to recognize and cleave hydroxymethylated
and phosphorothioated DNA in addition to methylated DNA (Vasu and Nagaraja
2013; Loenen et al. 2014).

Originally discovered as a protective mechanism against bacteriophage infection,
MTases selectively transfer the methyl group from SAM to the nitrogen atoms at
position 4 in cytosine and position 6 of adenine (m*C, m°®A) or the fifth carbon of
cytosine (m>C) within specific sequence motifs along the bacterial genome identified
by the RM system recognition domain (Wilson 1991). These methylated sequences
are resistant to endonuclease digestion by the restriction enzyme and are recognized
by the RM system as a means of establishing self from nonself. Any phage DNA
entering the host is assessed by the RM system and digested by the RM endonuclease
if methylation is not detected by the corresponding recognition domain. To circum-
vent host restriction of phage DNA, bacteriophage often introduces their own MTases
during infection. Due to the nature of RM enzyme-DNA dynamics, these MTases are
often retained by the host following bacteriophage infection and transferred to
subsequent generations, giving rise to orphan MTases lacking a reciprocal restriction
enzyme (Labrie et al. 2010; Murphy et al. 2013).

Early experiments involving manipulation of RM systems produced viable cells
with r + m + and r-m + phenotypes. Interestingly, an r + m- phenotype was lethal,
suggesting that in the absence of DNA methylation, restriction enzymes will digest
self-DNA, resulting in cell death (Arber 1965). In studying postsegregational
killing by RM systems, Kobayashi et al. observed a larger amount of MTases
molecules relative to REase in steady-state cells. However, dysregulation of
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cellular MTase and REase levels led to increased cell death due to Res-induced
double-strand breaks in the chromosome (Ichige and Kobayashi 2005). These
results further highlight a characteristic true of all RM systems in which MTases
are fully functional without the cognate restriction enzyme; however, the restric-
tion enzyme activity is contingent on the presence of the MTase. Easy acquisition
and retention of foreign MTases—termed orphan MTases—by host bacteria con-
tributes to the increased diversity of MTases in relation to restriction enzymes with
possible methyltransferase sources being mobile elements acquired through trans-
duction or mating events (Murphy et al. 2013).

DNA Adenine Methylation DAM DNA adenine methylation (Dam) is the predom-
inant methylation found in bacteria and is accomplished by bacterial
methyltransferases (MTases). Dam MTases are widespread throughout all genera
of bacteria, with some MTases sharing the same recognition motif and other MTase
recognition sites being species, if not strain, specific. The presence of hydrophobic
methyl groups either on both strands of DNA (fully methylated) or a single strand of
DNA (hemi methylated) serve to modulate gene expression by way of modulating the
affinity of DNA-binding proteins for specific regions of DNA.

Survival in a niche environment such as the human body requires careful and
concerted regulation of numerous genes, ranging from stress response and nutrient
acquisition to manipulation of host processes in the case of pathogenic bacteria.
Although bacterial pathogens have coevolved with their hosts (Hongoh et al.
2005), the standard transmission cycle of some pathogens dictate that they may
spend some time outside of their human host and in environments that are suboptimal
in moisture and nutrients but can contain antimicrobial compounds (Harb et al. 2000).
Transitioning from an environmental lifestyle to a host-adapted lifestyle requires a
large shift in the gene expression and protein profile of a pathogen. With the
magnitude of gene regulation needed to facilitate this lifestyle change, it is reasonable
to consider the role of epigenetics in driving these changes (Low et al. 2001).

E. coli The pap operon of E. coli encodes the pyelonephritis-associated pilus. While
pap is under methylation-mediated transcriptional control, Pap expression is also
regulated by methylation-mediated phase variation. Mechanistically, Dam competes
with transcriptional regulators, such as Lrp, a global transcriptional activator, for
access to recognition domains wherein methylation of the domain determines the
pilus ON/OFF state (Casadesus and Low 2006). Similar mechanisms governing pilus
formation and phase variation are also documented in many other bacteria including
Salmonella, S. aureus, H. influenza, Neisseria, and H. pylori (Srikhanta et al. 2005,
2011).

Salmonella This organism is broadly modified (Table 1) over the genome with
specific motifs. Within the same Salmonella virulence plasmid, H-NS represses
finP in a Dam-dependent manner while repressing fraJ in a Dam-independent
manner. These observations bring to light the impact of structural differences in
nucleoids of dam + vs dam- genomes and the outcome of these structural differences
on gene expression (Marinus and Casadesus 2009). In addition to histone-like
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Table 1 Epigenetic modification of selected Salmonella serotypes determined using SMRT
sequencing (Weimer, unpublished)

Bareilly Heidelberg Javiana Typhimurium St Paul

(SAL2881) ((CFSAN000318_04) (CFSAN001992_73) |(CFSAN001921_01) (SP3)

5-GATC-3'/3'-CTAG-5'

5-CAGAG-3'/3'-GTCTC-5'

5-ATGCAT-3'/3'-TACGTA-5'

5-CAGCTG-3'/3'-GTCGAC-5

5-GATCAG-3'/3'-CTAGTC-5'

5-ACCANCC-3'/3'-TGGTNGG-5

5-CCGAN5GTC-3'/3'-GGCTN5CAG-5'

5-GAGNBRTAYG-3'/3'-CTCN6YATRC-5

5-GN2TAYN5RTGG-3'/3'-CN2ATRN5YACC-5'

5-GpsAAC-3'/3-CTTysG-5'

Increasing shades of green indicate higher modification in each isolate with the most being 100%
and the least being 10%. No shade indicates no modification and bold base indicates location of
modification

proteins, DNA methylation, specifically adenine methylation (Dam) is known to be
involved in regulating host colonization. PhoP, a master regulator of Salmonella
virulence, binds DNA in a dam-dependent manner (Heithoff et al. 1999). Deletion or
over expression of an MTase results in whole genome-wide change in transcription
profiles. While Salmonella Typhimurium Dam mutants do not exhibit growth-related
deficiencies, Dam-deficient Salmonella exhibits a 10,000-fold increase in the lethal
dose required to kill 50% of a mouse population (LDsp) (Low et al. 2001). Transcrip-
tional profiling of Dam-deficient Salmonella attributes attenuation to an induction of
spvB, along with over 35 other infection-associated genes and a reduction in sipABC
transcripts (Garcia-Del Portillo et al. 1999).

The amount of information in specific organisms that have a minor role in disease
or lack a large amount of whole genome sequence has very little pan-epigenome
information. Chen et al. (2017) examined the epigenome of L. monocytogenes
(Table 2) to find a complex pattern of modification that was not observed to be
associated with pathogenicity. Virulence genes were heavily methylated, but no
observable pattern emerged to uncover how methylation was involved in virulence.

DNA Cytosine Methylation (DCM) Unlike adenine methylation that has been
functionally characterized in numerous bacterial systems, DNA cytosine methyla-
tion (Dcm) remains relatively understudied. Best characterized in E. coli, Dcm
appears to confer resistance against restriction by the REase, EcoRII (Bigger et al.
1973; Boye and Lobner-Olesen 1990). Functionally, Dcm acts as an antitoxin
against EcoRII restriction. Because Dcm and EcoRII share the same recognition



240 P. Chen et al.

Table 2 Epigenome prevalence of modification in Listeria monocytogenes isolates involved in a
foodborne illness outbreak derived from pathogenesis association (Chen et al. 2017)

Serotype 1/2a 1/2b 4b
Methyltransferase Specificity [Modified Base ~
3
ey B
§§$,I§§ X 8.4 12.2[15.8 IR
5 CTaN.COA s
Aratyied e
§ ATGVN.CANG & e
SATN O oA

5'-GTATCC-3' mBA
3'-CATAGG-5

Bold letters indicate the modified base. Numbers indicate the percentage of that motif modified in
the genome using SMRT sequencing. Boxes with two sets of numbers indicates the strand specific
prevalance methylation

sequence—C"CWGG—Dcm is able to methylate sites that would otherwise be
targeted for Ecorll restriction (Palmer and Marinus 1994). In this manner, Dcm
serves a protective function against a parasitic RM system (Takahashi et al. 2002).
Dcm is also associated with mobile element rearrangements in the E. coli genome
involving bacteriophage lambda recombination and TN3 transposition (Korba and
Hays 1982; Yang et al. 1989). On a whole genome level, evidence suggests that Dcm
is involved in transcriptional and translational regulation of ribosome activity to
decrease the expression of ribosomal proteins during stationary phase (Militello et al.
2012).

Phosphorothioate Modification A third, recently discovered DNA modification that
naturally occurs in bacteria is phosphorothioate (PT) modification wherein the oxygen
atom in a phosphate moiety of the DNA backbone is replaced by sulfur (Eckstein 2014).
The ability to carry out PT modifications is contingent on the presence of the dnd gene
clusters, dndABCDE, the modification component, and dndFGH, the restriction com-
ponent although their presence can be mutually exclusive (Tong et al. 2018). First
discovered in Streptomyces lividans, informatics analyses of dnd gene clusters has since
revealed a wide distribution of PT modifications in bacterial genomes (He et al. 2007,
Wang et al. 2011, 2019). Abrogation of PT modifications led to increased double-
stranded DNA breaks in Salmonella and oxidative stress due to significant metabolic
changes in Pseudomonas fluorescens (Cao et al. 2014; Gan et al. 2014; Tong et al.
2018).
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Undiscovered Modifications Next-generation sequencing techniques that incorpo-
rate measurement of polymerase kinetics can detect structural differences to indi-
vidual nucleotides that would otherwise have been overlooked (Rhoads and Au
2015). By comparing the pattern of polymerase kinetics to previously characterized
patterns, we can informatically identify DNA modifications at the single nucleotide
level and characterize epigenetic patterns on the whole genome level (Schadt et al.
2013). The use of this technology in whole genome sequencing has also recorded
polymerase kinetics patterns that are not yet associated with a known DNA modi-
fication (Chen et al. 2017). These data suggest that there is unprecedented diversity
to epigenetic modifications that we have yet to uncover. Epigenetic modifications
that have been characterized thus far are responsible for numerous physiological
processes including defense against foreign DNA, gene regulation, and DNA repli-
cation and mismatch repair. The implications of uncharacterized modifications on
epigenomic regulation potentially have far-reaching implications for interactions
within a niche and interaction with the host for survival and persistence. As
additional advances are made in next-generation sequencing and RNAseq, it may
be possible to define methylation directly in situ, which is a current limitation.

2.3 DNA Replication and Chromosome Sorting

Bacteria encode proteins near their chromosomal origin of replication (oriC) that
facilitate the timing of replication initiation and help to carry out the chromosome
segregation during replication (Ogden et al. 1988; Boye and Lobner-Olesen 1990;
Campbell and Kleckner 1990). Due to the time-sensitive nature of replication
initiation, DNA replication-associated protein levels must be tightly coordinated
with cellular replicative machinery. To accomplish this task, bacteria encode a
higher density of GATC methylation sites around the origin of replication and utilize
DNA methylation to modulate the affinity of replication-associated proteins to DNA.
Methylation around oriC regulates the recruitment of replication initiation proteins
including the initiator of replication, DnaA. Furthermore, GATC methylation motifs
also exist in the promoter region of dnaA, allowing for transcriptional regulation of
replication (Campbell and Kleckner 1990). During DNA replication, both copies of
the chromosome must be accurately sorted into the corresponding cell. After repli-
cation, DNA is in a hemi-methylated state. Methylation at oriC sequesters the origin
replication initiation and prevents reinitiation of DNA replication. Additionally,
global hemi-methylation of newly replicated DNA facilitates chromosome binding
to designated areas of the cell membrane such that individual chromosomes may be
accurately partitioned into each daughter cell (Ogden et al. 1988).
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2.4 Mismatch Repair and Evolution

Bacterial DNA polymerases are capable to replicating DNA with high fidelity, but
replication errors still arise at a rate of 10~° to 10~"" errors per base pair (Drake et al.
1998). When these replication errors arise, the cell must have a way of identifying
the correct template with which to correct the mistake. Template and newly repli-
cated strands of DNA are differentially methylated to differentiate from one another
with the template being methylated and the newly replicated strand remaining
unmethylated. First described in Streptococcus pneumoniae and further character-
ized in E. coli, this methyl-directed mismatch repair system was identified as
MutHLS (Glickman and Radman 1980; Claverys and Lacks 1986) (Fig. 1). MutS
binds to mismatched base pairs while the methyl-sensitive endonuclease MutH nicks
the DNA at the mismatched site. MutL recruits the DNA repair machinery to correct
the mismatch. Both the loss of MTases and overexpression of MTases are correlated
with deficient mismatch repair due to a dysregulation between methylation and DNA
replication kinetics. In dam mutants, the inability to methylate the template strand
leads to inaccurate mismatch repair and vertical transmission of mutations arising
from DNA replication. Dam mutants are unable to methylate the template strands of
replicated DNA, leading MutHLS inability to identify the strand of DNA containing
the mutation for mismatch repair. In this regard, the pan-epigenome directly influ-
ences the accumulation of SNPs that arise during replication. Due to the mobile
nature of RMS systems, over time the loss or acquisition of additional MTase
systems may influence the global methylation status of a genome.

3 Epigenetic Detection Methods and Approaches

Nucleotide modification by methylation is a prevalent feature in living organisms. In
bacteria, base methylation is a form of defense system against bacteriophage or
foreign genetic material. The defense system works by detecting sequence motifs of
nucleotides and cuts it using an endonuclease as a preemptive strike against foreign
genome. Bacterial DNA is spared from the cutting with the action of the methylase.
This is known as the restriction-modification system (RMS). Aside from defensive
function, the restriction modification system also performs genomic regulatory
functions in bacteria. Due to the huge impact of the restriction modification system
in the lifestyle of bacteria with regard to pathogenicity, prokaryotic epigenomics is
an emerging field primarily driven by recent technological advancement in sequenc-
ing capability. The transformational aspect is mainly on the scalability of methyla-
tion analysis at the genomic level. This has opened up doors for genome-wide
methylation analysis.

What are the key considerations in doing large-scale high-throughput epigenomics
research? Genome-wide methylation projects’ considerations are determined by
costs, ease of library construction and preparation, access to equipment or core
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facility, availability of suitable kits for library construction and downstream bioin-
formatic analysis. The level of resolution of epigenomic modification data from crude
to precise distinguishes the possible technological options appropriate for the pipe-
line. The above-mentioned considerations as well as the underlying technology will
be covered in the succeeding sections.

3.1 Pre-sequencing Methods for Genome Methylation:
LC-MS, HPLC-UYV, and ELISA

The pre-sequencing methods are generally used for basic research and their capa-
bility to quantify methylation at the genomic scale. While this ability to quantify
methylation at the genome scale provides a big picture setting of methylation,
mapping the methylation sites to the specific regions in the genome is not possible.
The scalability for population-scale bacterial epigenomics is limited and hence has
limited the applicability of these methods to a few niche research papers.

The key steps in the analytical workflows are DNA extraction, genomic fragmen-
tation, enrichment, and quantification using chromatography or mass spectrometry.
The options for genomic fragmentation are thermal, chemical, and enzymatic hydro-
lysis. The resulting digested DNA monomers is enriched using size-exclusion, liquid
extraction, solid phase extraction, or preparative liquid chromatography. Analyte ions
are separated by the mass-to-charge ratios in mass spectrometry, allowing binning of
the DNA monomers (Tretyakova et al. 2013).

Genome wide methylation using analytical methods particularly HPLC-based
methods have been recently described (Yotani et al. 2018). High-performance liquid
chromatography-ultraviolet (HPLC-UV) enables quantification and identification by
separating the different components. This is accomplished by pushing the compo-
nents using pressurized liquid solvent through a column filled with solid adsorbent
material. The differences between the materials result to variation in flow rates
allowing separation of the components. In bacterial DNA methylation analysis, this
method is applied to quantify the separated methylated and unmethylated
deoxynucleosides.

For crude global methylation analysis, numerous commercial ELISA (enzyme-
linked immunosorbent assay) kits are available. The high level of variance is the
primary reason for the lack of precision of ELISA kits in epigenomics, but the ease
of use is sufficient to capture huge differences in methylation. The target DNA is
immobilized on ELISA plate and specific primary antibody against methylated
nucleoside is applied followed by a secondary antibody that can be detected using
colorimetric methods.

The requirement for specialized equipment for LC-MS and HPLV-UV has
restricted the use of the following methods for genome-wide methylation. While
relative quantification is possible, mapping the methylation is not possible and hence
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population-scale analysis is not possible. The technical challenges of doing the work
hinders its large-scale application.

3.2 Next-Generation Sequencing-Based Methods

The key shortcoming in using analytical methods for bacterial epigenomics is
inability to identify methylation loci. This deficiency has predominantly filled by
next-generation sequencing technology that can simultaneously capture sequence
and methylation data (Fig. 2). The prevailing choice for combined sequencing and
methylation platform is single molecule real-time (SMRT) sequencing by PacBio.
Data is captured for °mA, “mC, and *mC parallel to sequencing data based on the
kinetics of DNA synthesis reactions. This enables genome-wide mapping of meth-
ylated and unmethylated loci. Modified bases have not been a routinely included in
the Sanger-based sequence analysis and has posed significant technological chal-
lenge until the arrival next-generation sequencing options. DNA treatment with
bisulfite converts unmodified cytosine to uracil, enabling discrimination between
modified and unmodified cytosine using various sequencing platform.

SMRT sequencing follows the typical workflow for next-generation sequencing
with library construction after DNA extraction (Kong et al. 2017). The protocols for
automated PacBio 10 kb library construction have been published, which can
immensely improve efficiency of performing epigenomic research. A crucial
requirement for successful high-throughput sequencing run is high molecular weight
genomic DNA. Agilent 2200 TapeStation Nucleic Acid System has been used to
determine the quantity and size distribution of purified genomic DNA (Kong et al.
2014) as well as the 260/280 and 260/230 ratio using Nanodrop 2000 UV-vis
spectrophotometer (ThermoFisher Scientific, Waltham MA). The DNA integrity
number (DIN) is a suitable tool for determining the quality of genomic DNA for
further processing (Kong et al. 2016) and methods exist for automated construction
of the sequencing library (Kong et al. 2017). The core basis for SMRT sequencing is
based on restrictions of light illumination of immobilized target DNA and polymer-
ase using zero-mode waveguide (Rhoads and Au 2015). Signal detection of the
cleaved fluorescent dye from the nucleotide molecule is the basis for base calling.
The bulk of the most technically challenging aspect of the analysis is within the post
sequencing bioinformatic pipeline. DNA methylation detection and quantification
analysis are done in PacBio SMRT analysis platform (http://www.pacb.com/devnet/
code.html). After sequencing, raw reads are trimmed to remove adapter sequences
and then aligned to a reference using BLASR (v1) (Chaisson and Tesler 2012). DNA
methylated sites are then determined using kinetic analysis of the genomic align-
ment. MotifFinder clusters the methylated sites to motifs targeted by methylases.
This platform also allows discovery of novel restriction-modification genes. Homol-
ogy is inferred bioinformatically using databases like SeqWare for cloud applica-
tions (O’Connor et al. 2010).
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The development in sequencing technology allowed large-scale analysis of pro-
karyotes (Blow et al. 2016). Base resolution methylation was captured in unprece-
dented detail and scale using SMRT sequencing initially. The variety of methylation
was found on about 800 different loci in this study, indicative of precise specificities
of methylation present in the bacterial organism. With the use of SMRT sequencing,
the methylation repertoire was significantly increased. This highlights the key
advantage of SMRT sequencing to further enhanced the recognition specificities of
the methylase. Novel mechanistic epigenomic findings include: Type I RM system
cleavage of DNA at large distances from their recognition sites, while both Type II
and Type III systems incomplete cleavage pattern. This epigenomic feature is
problematic for digestion-based analytical methods. The predilection of these
RMS is toward m4C and m6A, which are readily detected by SMRT sequencing.
Another understudied aspect of methylation is the orphaned methylases, which are
common in prokaryotes. This relatively understudied group includes 100 Type II
methylases. One novel discovery is potential regulatory control due to the genomic
pattern associated with the orphan methylases which are located on noncoding
sequences upstream of genes. This potential regulatory role was is widely distributed
across the prokaryotic organism. In another study, a deeper resolution analysis such
as identification and quantification of methylation motifs, correlation with methyl-
ases of methylation motifs using REBASE (Roberts et al. 2015) and identification of
orphaned methylases has been done in large scale in organisms like Listeria (Chen
et al. 2017). This study reported lineage- and clade-specific patterns of restriction-
modification system (RMS). Type Il RMS dominates with its presence in 256 out of
302 genomes, followed by Type I with 110 genomes, Type IV with 73 and lastly by
Type III with 25 genomes. Methylation motifs were also described. These studies
highlight the large-scale applicability of sequencing-based epigenomic study to
unravel population-scale dynamics and patterns.

On a mechanistic level using fine-scale analysis, Fang et al. explored 6 mA
methylation in a Shiga toxin-producing a strain of E. coli 0104:H4 Germany outbreak
isolate predicted to produce 10 methylases that result in the 6-mA modification (Fang
et al. 2012). A phage-encoded modification system capable of targeting hundreds of
loci within the E. coli 0104:H4 isolate. This discovery of phage-encoded modification
system-associated virulence had no prior examples in E. coli, illustrating the immense
power to untangle epigenomic clues using sequencing platforms.

4 Conclusion and Future Direction

The epigenomic studies relied heavily on bioinformatics to deduce motifs that were
highly enriched by modification with specific methylases. These studies discovered
novel methylase specificities, quantified methylation activity, identified novel
enzyme activity, which targets only one strand of DNA and promiscuous gene
lacking specificity. Such precision is only possible with sequencing technology
coupled with methylation detection capability. As sequencing technologies advance,
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the definition of modification will become increasingly important in biological
function interpretation. A current limitation is that the vast amount of whole genome
sequence and the limited number of methods to locate and estimate the modifica-
tions. A proxy for this limitation is to examine the RMS enzymes, which is
interesting, but not direct enough to derive biologically accurate information. This
method also suffers from informatics methods that can be applied on a comparative
population scale, as can be done with pangenomes, but not pan-methylomes for
bacteria. MethBank is available for a few mammals and plants (Li et al. 2018). The
rate of bacterial genome production is only increasing. As such, a need exists to
interrogate methylome of the organism at the speed of sequencing. This is not
available and is a severe limitation in understanding bacterial growth, survival,
and association; which is also true of metagenome interrogation as well. A great
step forward would be to have a similar database for bacteria with the ability to allow
pangenome and pan-methylome comparisons.

The field is poised to link the bacterial methylation status with the host methylation
composition as it relates to disease. However, the dynamic nature of the microbiome,
gene expression, and methylation in the bacterial component is a substantial chal-
lenge. Initial stages of examining the microbiome sequence for RMS enzymes are a
starting point that will aid in understanding the complement of modifications that are
possible. The beginning of this work has started in cancer progression and to some
degree single organisms, such as H. pylori, in the development of various stages of
cancer progression.

Bacterial metagenome production will increase with the expanded use of real-
time sequencing technologies, such as nanopores. However, limitations in analysis
and the dynamic nature of the bacterial DNA modification must be addressed to
make substantial progress in linking it to phenotype. Future prospects of examining
methylation are very exciting and there are many needs in the bioinformatic com-
parative analysis, especially in pathogens associated with chronic diseases.
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Abstract The first eukaryotes emerged from their prokaryotic ancestors more than
1.5 billion years ago and rapidly spread over the planet, first in the ocean, later on as
land animals, plants, and fungi. Taking advantage of an expanding genome com-
plexity and flexibility, they invaded almost all known ecological niches, adapting
their body plan, physiology, and metabolism to new environments. This increase in
genome complexity came along with an increase in gene repertoire, mainly from
molecular reassortment of existing protein domains, but sometimes from the capture
of a piece of viral genome or of a transposon sequence. With increasing sequencing
and computing powers, it has become possible to undertake deciphering eukaryotic
genome contents to an unprecedented scale, collecting all genes belonging to a given
species, aiming at compiling all essential and dispensable genes making eukaryotic
life possible.

In this chapter, eukaryotic core- and pangenomes concepts will be described, as
well as notions of closed or open genomes. Among all eukaryotes presently
sequenced, ascomycetous yeasts are arguably the most well-described clade and
the pangenome of Saccharomyces cerevisiae, Candida glabrata, Candida albicans
as well as Schizosaccharomyces species will be reviewed. For scientific and eco-
nomical reasons, many plant genomes have been sequenced too and the gene content
of soybean, cabbage, poplar, thale cress, rice, maize, and barley will be outlined.
Planktonic life forms, such as Emiliana huxleyi, a chromalveolate or Micromonas
pusilla, a green alga, will be detailed and their pangenomes pictured. Mechanisms
generating genetic diversity, such as interspecific hybridization, whole-genome
duplications, segmental duplications, horizontal gene transfer, and single-gene
duplication will be depicted and exemplified. Finally, computing approaches used
to calculate core- and pangenome contents will be briefly described, as well as
possible future directions in eukaryotic comparative genomics.
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1 The Origin of Eukaryotes

Respiratory-competent eukaryotic cells emerged more than 1.5 billion years ago,
from the endosymbiosis of an alphaproteobacterium and an ancestral archaebacte-
rium, probably belonging to the Asgard clade (Zaremba-Niedzwiedzka et al. 2017).
This protoeukaryote evolved, concomitantly, a complex system of membrane com-
partments that would ultimately lead to the isolation of the genomic content within a
real nucleus (eu karyon in Greek) while the degenerated alphaproteobacteria gave
rise to the mitochondria (Lépez-Garcia and Moreira 2006). The subsequent acqui-
sition of photosynthesis through endosymbiosis with a cyanobacteria evolved this
primitive cell into a protoalga from which all plants will eventually develop. The
general outline of this scenario has been postulated for more than a century
(Mereschowsky 1999; Sagan 1967) and modern-day DNA sequencing techniques
allowed to precisely identify bacteria most closely related to modern eucaryotes,
hence representing their most probable ancestors. However, the exact order of events
is still a matter of debate among evolution specialists. Did membranes come first, to
isolate nucleic acid metabolism from protein and sugar metabolism? Did the mito-
chondria come first, providing a considerable source of oxidative energy to further
develop a complex network of membranes? These two scenarios are not necessarily
exclusive and one may also imagine that a number of different protoeucaryotes
emerged at roughly the same time (at geological scale) and competed with each other
within similar ecological niches, until one lineage arose and was eventually selected
to give rise to all eukaryotic life.

Given the bacterial origin of nucleated cells, it was assumed that most if not all
eukaryotic gene families would share homology to prokaryotic genes. However, the
sequencing of an old deep-branching eukaryote, the excavata Naegleria gruberi
(Fig. 1), revealed that only 57% of its 4133 protein families had a clear prokaryotic
homologue. The remaining genes showed no homology to bacterial sequences and
therefore appear to be eukaryote inventions. Therefore, one must expect eukaryotic
pangenomes to be significantly different from any known prokaryotic pangenome.

2 Sequencing Eukaryotic Genomes

Modern-day eukaryotes are estimated to represent 8,740,000 land species and
2,210,000 ocean species, for a total of roughly 11 million, one order of magnitude
above procaryotes (Mora et al. 2011). Higher estimates, based on plankton sampling,
suggest figures around 16 million of oceanic eukaryotes and 60 million of land
species (de Vargas et al. 2015). Eukaryote classification is a complex problem taking
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its roots into the nineteenth century zoology and botanics, but more recently gained
much insight from whole-genome sequencing and molecular phylogeny reconstruc-
tion methods (Felsenstein 2004). Early eukaryotes (or old eukaryotes), such as fungi,
monocellular green algae, excavata (one of the most basal lineage), amoebozoa, and
chromalveolata diverged probably between 1.2 and 1.45 billion years ago (Embley
and Martin 2006). Younger eukaryotes, like vertebrates, emerged 450 million years
ago (Erwin et al. 2011), whereas Homo sapiens is still in evolutionary infancy with
an estimated date of divergence from chimpanzee around 6.5 million years ago
(Green et al. 2010) (Fig. 1).

The ascomycete Saccharomyces cerevisiae was the first eukaryote whose nuclear
genome was totally sequenced, more than 20 years ago (Goffeau et al. 1996). In the
1990s, it took the efforts of 633 scientists from more than 100 laboratories during
8 years to complete it (Goffeau et al. 1997). In the modern genomic era, sequencing
is fast, cheap, and allows to decipher whole eukaryotic genomes at unprecedented
scale and pace in human history. At the present time, 707 different eukaryote
species, including 54 unicellular animals (Protozoa) or algae, 300 metazoans
(multicellular animals), 137 plants, and 216 fungi had their genome sequenced to
various levels of completion and assembly. Indeed, the actual pace at which eukary-
otes are being sequenced is so elevated, that the aforementioned figures will be
completely outdated when this book will be published. Remarkably, one of the most
ambitious current genome projects envisions to sequence all eukaryotic life present
on planet Earth, and the cost of such a project would be similar to what was spent to
sequence the first human genome alone (Pennisi 2017). Some of the most represen-
tative eukaryote species, whose genomes were completely sequenced are
represented in Fig. 1, on the evolutionary branch they belong to, along with their
estimated geological period of appearance based on molecular clocks.

Fig. 1 (continued) group (or clade) that survived to present day. Branch lengths are arbitrary. When
more than one organism was sequenced in a given clade, only one was shown (for example, among
all sequenced bird genomes only the paradigmatic Gallus gallus species was represented). Vertical
dotted lines indicate speciation time from the most recent common ancestor, calculated from
molecular clocks. For example, Actinopterygians (bony fish) separated from other vertebrates
approximately 450 million years ago. Note that Precambrian radiation datations were only tenta-
tively attributed, given the large uncertainties associated to ancient eukaryotes. Circled numbers
represent whole-genome duplications detected by sequencing. The constriction between Archosau-
rians and Aves represents the Archaeopteryx, the ancestor of all modern birds (Hillier et al. 2004).
The smaller arrow between Archosauria and Crocodilia represents the dinosaurian mass extinction,
66 million years ago, among whom the only survivors were the ancestors of modern-day crocodiles
(Brugger et al. 2017; Renne et al. 2015). Red circled species were used to define core- and
pangenomes and are more extensively described in the text
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3 The 1000 Genome Projects

One of the most remarkable aspects of modern-day genomics is the ambition to
describe a large number of individuals (usually in the range of thousands) belonging
to the same monophyletic group (or clade). When the first eukaryotic genome
sequences were completed, it became apparent that one genome would not be
sufficient to describe the whole species. Several programs subsequently started,
aiming at sequencing a large number of individuals belonging to the same species
and comparing them to the first genome, usually called “reference genome” because
its state of completion and annotation was often more advanced. Several of these
projects have been completed over the last few years: 1011 S. cerevisiae genomes
(Peter et al. 2018), 1135 Arabidopsis thaliana genomes (The 1001 Genomes Con-
sortium 2016), 2504 followed by 10,545 human genomes (Telenti et al. 2016; The
1000 Genomes Project Consortium 2015), and 1483 rice genomes (Yao et al. 2015)
have already been sequenced, but complete analyses of gene content and core- and
pangenome calculations are not always published. Even more ambitious endeavors
are planned: the 10,000 plant genome project led by the Chinese BGI' aims at
sequencing one representative plant from every major clade (Normile et al. 2017);
the same institute launched in 2015 the 10,000 bird genome project, in an attempt to
sequence every one of the 10,500 living bird species (Zhang 2015). The i5K
initiative is planning to sequence 5000 arthropod genomes (15K Consortium 2013)
or the Genome 10K project intends to sequence 10,000 vertebrate genomes
(Genome 10K Community of Scientists 2009). All these projects—and many others
to come—will contribute to unraveling the complete set of genes used by eukaryotic
life forms on Earth. With this wealth of data at hand, assuming it will not be too
overwhelming for available data storage and computing power, essential questions
should find their answers. What are the core genes shared by all eukaryotic species?
How many different versions of the same gene (alleles) can be found? How many
variable or dispensable genes can be detected in a given species? What is the size of a
species pangenome, of a clade pangenome, of the eukaryotic pangenome itself?

4 Defining Eukaryotic Pangenomes: Open or Closed?

The very notion of pangenome was coined by Hervé Tettelin and colleagues in a 2005
seminal article, describing sequencing and genome analysis of eight strains of
Streptococcus agalactiae. Despite a high degree of synteny” between isolates, the
authors detected 69 genomic islands that were absent in at least one genome, some
characterized by an atypical nucleotide compositional bias, suggestive of a possible
acquisition by horizontal transfer. They showed that the number of shared genes in all

"Beijing Genomics Institute, the largest—by far—sequencing center in the world.
2Synteny: gene order along a chromosome.
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species decreased at each addition of a new genome, reaching the minimal number of
1806 genes. On the contrary, each genome addition increased the number of variable
genes, those that are absent in one or more strain. They proposed that a bacterial
species may be defined by a set of genes present in all strains (core-genome) and by a
dispensable—or variable—set of genes, composed of those present in at least one
strain but absent from all others. The addition of these variable genes to the core-
genome would make what was called the “pangenome” (from the Greek word pan
(mav), meaning “whole”) (Tettelin et al. 2005). Mathematical modeling showed that
the pangenome measurement followed the Heap’s law, an empirical law used in
information retrieval, in which as more and more books are read, the number of
different words grows as a power law of the total number of books read. The function
form of the power law depends on two parameters: the exponent o and a proportion-
ality constant. Practically, the number of new genes discovered after each new
genome sequence will be: n = ¥ N~ %, in which « is a constant, N is the number of
genomes sequenced, and a > 0. For a > 1, the pangenome size approaches a plateau
as more and more genomes are sequenced, the pangenome is “closed” (Fig. 2a). On
the other hand, for 0 < a < 1, the pangenome size will increase at each new genome
addition and the pangenome is “open” (Fig. 2b) (Tettelin et al. 2008).

Among sequenced bacterial species, some exhibit a closed pangenome, for
example Staphylococcus aureus (a = 1.84), Streptococcus pyogenes (a = 1.88),
Ureaplasma urealyticum (o = 2.5) or the extreme case of Bacillus anthracis
(@ = 5.6). Others display an open pangenome, like Bacillus cereus (a = 0.65) or
the cyanobacteria Prochlorococcus marinus (o = 0.80). Note than when a is equal
or very close to 1, the pangenome is still open, but the rate of acquisition of new
genes is very slow. This is the case of Escherichia coli (a = 1.04), Streptococcus
agalactiae (a = 1.05), or Streptococcus pneumoniae (a = 0.98) (Tettelin et al.
2008).

5 Yeast Pangenomes

5.1 Saccharomyces cerevisiae

Historically, budding yeast was the first eukaryote whose genome was completely
sequenced (Goffeau et al. 1996). A British collaborative work in which
70 S. cerevisiae and S. paradoxus isolates were sequenced to low coverage showed
that S. cerevisiae strains showed less variability than S. paradoxus strains. Worldwide
budding yeast population structure was made of a few geographically isolated
lineages and of several mosaic genomes, and underlined the possibility that humans
played a major role in producing these variations by transporting and selecting yeast
strains (Liti et al. 2009). Following this pioneering work, a collaborative effort of two
French laboratories and the Genoscope led to the completion of 1011 S. cerevisiae
isolates, collected worldwide, from domesticated, wild, or human origin (mainly
clinical). This sequencing effort allowed to determine that Chinese and Taiwanese
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Fig. 2 Open versus closed pangenomes. (a) Closed pangenome. In this example, the number of
new genes = 400x (Nbr genomes) %, with @ = 2. The number of new genes revealed by each new
genome sequence rapidly decreases and the pangenome size reaches a plateau. (b) Open
pangenome. The number of new genes = 400x (Nbr genomes)™ %, with @ = 0.5. The number of
new genes revealed by each new genome sequence keeps on growing and the pangenome size
steadily increases
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strains were closer to Saccharomyces paradoxus and to the root of the Saccharomy-
ces sensu stricto than strains from any other origin, strongly supporting a single out-
of-China origin for S. cerevisiae, that subsequently spread all over the planet. Using
de novo assembly and a specific detection pipeline, it could be determined that the
yeast core-genome contained 4940 Open Reading Frames (ORFs) whereas 2856
ORFs were variable within the population, for a total of 7796 ORFs constituting the
pangenome (Peter et al. 2018) (Table 1). Core ORFs were mostly found in one copy
per haploid genome, while ca. 20% of variable ORFs were absent or present in more
than one copy. The authors subsequently looked at the origin of these variable ORFs
and classified them in three different groups, based on their phylogeny: ORFs with
their closest ortholog in another S. cerevisiae strain and consistent with genome
phylogeny were considered as being ancestral acquisitions; ORFs with their best
ortholog in another Saccharomyces species were considered to be introgressions; and
finally ORFs more related to another yeast species outside the Saccharomyces
complex were treated as horizontal gene transfers (HGT) (Fig. 3a). Using these
definitions, 1380 variable ORFs were assigned to an ancestral inheritance,
913 were designated as introgressions, and 183 were likely to be the result of HGT
events from distant relative yeast species. Half of these HGT ORFs could be traced to
Torulaspora or Zygosaccharomyces species. Given that these yeasts share similar
environmental fermentative niches, it is likely that such physical promiscuity favored
frequent transfer of genetic material between these species. In six cases, large HGT
events (38—165 kb) were identified, but most isolates retained only mosaics of small
segments suggesting that the large ancestral HGT underwent several rounds of
successive deletions leading to the complex patterns observed today. Among the
913 introgressions, 97% were unambiguously acquired from S. paradoxus, all
S. cerevisiae ORF carrying at least one S. paradoxus ORF, suggesting continuous
gene flows between these two yeast species. This is in good agreement with a former
work using microarrays to genotype Saccharomyces strains of different origins, in
which most introgressions detected in S. cerevisiae came from S. paradoxus (Dunn
et al. 2012). Finally, two-thirds of ancestral acquisitions were present in at least half
the yeast isolates, suggesting that they segregated in most strains since the time of
their acquisition (Fig. 3b).

The core- and pangenomes of the S288C reference strain were analyzed more
thoroughly for variable gene functions. Out of 6081 ORFs, 1144 were identified as
variable. The distribution of these ORFs was found to be skewed toward
subtelomeric regions, which have been known for a long time to be highly poly-
morphic among yeast strains and species (Fabre et al. 2005). Functions of variable
ORFs were strongly enriched for cell-wall and membrane components, cell—cell
interactions, and secondary metabolism. Finally, core-genome ORFs were found to
exhibit lower levels of loss-of-function mutations, as compared to pangenome
OREFs, as well as a lower dN/dS ratio of nonsynonymous over synonymous sub-
stitutions, showing that the former were less constrained than the latter.
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Fig. 3 Variable ORFs of the S. cerevisiae pangenome. (a) Phylogenetic origin of variable ORFs.
ORFs were considered ancestral acquisitions when the best match was found to be a S. cerevisiae
OREF (blue arrow), it was treated as an introgression when the best homolog was another Saccha-
romyces species (purple arrow), or a horizontal gene transfer (HGT, red arrow) when it was found to
be another yeast species. (b) Distribution of variable ORFs. The number of isolates is indicated on
the X-axis and the number of variable ORFs in each category is represented on the Y-axis

5.2 Candida glabrata

C. glabrata is an opportunistic pathogen responsible for candidiasis and bloodstream
infections in immunocompromised patients (Bodey et al. 2002). It is the second cause
of nocosomial infections, after Candida albicans, and a growing concern in public
health, due to its resistance to azole antifungal drugs (Pfaller and Diekema 2004).
Despite its genus name, its genome is closer to S. cerevisiae than to C. albicans. It
belongs to the Nakaseomyces clade that also includes Candida nivariensis and
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Candida bracarensis, two emerging pathogens, as well as Nakaseomyces delphensis,
Nakaseomyces bacilisporus, and Candida castellii, three nonpathogenic species
(Fig. 4). Comparison of orthologous proteins conservation shows that this clade is
as distant from the Saccharomyces clade as man is distant from fish (Dujon 2006).
Hence, the distance between orthologous proteins belonging to these two monophy-
letic groups is similar to the distance covered by vertebrate proteins since the
actinopterygian radiation, some 450 million years ago® (Fig. 1). C. glabrata exhibits
frequent chromosome polymorphisms among different isolates, due to translocations,
copy number variations (CNV), gene tandem amplifications (Muller et al. 2009),
formation of neo-chromosomes (Polakova et al. 2009), and the presence of many
large tandem repeats known as megasatellites (Rolland et al. 2010; Thierry et al.
2008, 2009). The five aforementioned pathogenic and nonpathogenic Nakaseomyces
species were sequenced to high coverage and their sequence was compared to the
C. glabrata CBS138 reference strain (Dujon et al. 2004). Protein contents range from
4875 for C. castellii to 5315 for C. bracarensis, figures significantly lower than the
5886 S. cerevisiae proteins (Gabaldon et al. 2013). Among gene losses in
Nakaseomyces, four entire multigene families (PHO, SNZ, SNO, and PAU) were
absent in all species or represented by only one member in C. castellii or
N. bacillisporus. These genes are involved in phosphate metabolism (PHO), in
nutrient limitation response (SNZ and SNO), or in alcoholic fermentation (PAU).
The loss of BNA genes, functioning in de novo synthesis of nicotinic acid probably
results from the yeast adaptation to its human host, since colonization of the urinary
tract occurs through induction of adhesin genes, upregulated in nicotinic acid-poor
medium, such as urine (Domergue et al. 2005). The C. glabrata genome contains a
large number of genes that are absent from S. cerevisiae and specifically involved in
adhesion and virulence. The EPA genes, a family of glycosyl-phosphatidylinositol
cell-wall genes, completely absent from S. cerevisiae, was represented by 18 members
in the C. glabrata reference strain (CBS138), and seven additional genes were present
in the BG2 strain, widely used in adhesion studies (Cormack et al. 1999). Remark-
ably, the two other pathogenic species, C. bracarensis and C. nivariensis, contained
respectively 12 and 9 members of the EPA family, whereas the nonpathogenic
N. delphensis and C. castelli harbored respectively one and three copies and
N. bacillisporus presented only one distant homologue. In addition, the C. glabrata
genome contained 44 genes comprising internal repeats, whose motifs were
135-300 nt long, tandemly repeated 3-30 times in frame (Thierry et al. 2008).
These megasatellites encode many serine and threonine residues and genes harboring
these tandem repeats were proposed to encode cell-wall glycoproteins and to be
involved in cellular adhesion (Thierry et al. 2009). Phylogenetic studies of 21 fungal
genomes showed that these megasatellites were uniquely found in C. glabrata, but
their presence among other members of the Nakaseomyces has not been tested yet
(Tekaia et al. 2013).

3This does not mean that Saccharomyces and Nakaseomyces diverged 450 million years ago,
because there is no reliable molecular clock for yeasts.
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species whose genomes were completely sequenced, arranged by clade. Branch lengths are arbitrary
and do not reflect evolutive distances. On the right, amino acid conservation of orthologous proteins
between yeast and between animal species are indicated (adapted from Dujon 2006)

In a very recent study, 33 isolates of C. glabrata of different geographical origins
were fully sequenced and compared to the CBS138 reference strain (Carreté et al.
2018). Altogether, 108 genes were deleted or duplicated in these strains, half of them
encoding glycosylphosphatidylinositol-anchored adhesin homologues, showing the
extensive variability of this gene family within this clade. The core-genome
contained 3603 proteins, significantly less than for S. cerevisiae (see above). On
the contrary, the number of variable ORFs was higher than budding yeast, since
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302-580 predicted genes (mean: 342) were found to be unique of each isolate, for a
total of 9915 strain-specific genes among 29 strains considered.* This figure may be
partially overestimated, due to automated annotations or clustering artifacts, but
from these data one may infer that the C. glabrata pangenome covers 13,000-14,000
genes, almost twice as many as the S. cerevisiae pangenome.

In conclusion, yeasts of the C. glabrata clade contain significantly fewer genes
than S. cerevisiae, with specific gains and losses as compared to their distant cousin.
However, gene content is highly variable among Nakaseomyces and the C. glabrata
pangenome size is larger than the S. cerevisiae pangenome, although further ana-
lyses are needed to narrow down these numbers.

5.3 Schizosaccharomyces Genomes

Fission yeasts are very distant relatives of S. cerevisiae and the Taphrinomycotina
clade comprise only four known species: Schizosaccharomyces japonicus,
Schizosaccharomyces cryophilus, Schizosaccharomyces octosporus, and the model
yeast Schizosaccharomyces pombe. They form a basal branch of the Dikarya® tree
(Fig. 4) and exhibit very distinct life history and metabolism as compared to
Saccharomycotina. Under many aspects, S. pombe is actually closer to metazoans
than to budding yeasts: among the more prominent features, large repetitive centro-
meres, heterochromatin histone methylation, heterochromatin proteins, RNA inter-
ference, telomere-binding proteins, cell-cycle control, the mitochondrial translation
code, splicing and spliceosome components are more similar to metazoans. In
addition, core orthologous genes in S. pombe are closer to metazoan genes than to
other Ascomycota. Phylogeny reconstruction of the clade using high coverage
sequence of the four Schizosaccharomyces species and 440 single-copy core
orthologues surprisingly revealed that S. pombe and S. japonicus were as far to
each other (55% average amino acid identity) as man and Ciona intestinalis, an
urochordate (Fig. 1) (Rhind et al. 2011). The two other species, S. octosporus and
S. cryophilus, were closer to each other (85% amino acid identity). Retrotransposons
are numerous in S. japonicus and sequence divergence of their reverse transcriptase
suggests that they predate the last ancestor of the Ascomycota. However, transposons
were dramatically lost in the three other species, since S. pombe harbors two related
retrotransposons, S. cryophilus contains only one and S. octosporus only has
sequence relics of reverse transcriptase sequences. This loss was accompanied by
a reorganization of centromere architecture, replacing the numerous transposons
found at S. japonicus centromeres by other kinds of repeated sequences unrelated
to transposons and specific of each of the other three species.

*Four isolates were excluded from this analysis because of low-quality assembly.
SAscomycota and Basidiomycota together form the Dikarya.
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Out of ~5000 coding genes in fission yeasts, 4218 (84%) were identified as
single-copy orthologues common to all four species. For some gene families, the
level of conservation was even higher: 93% of protein kinases were common and
more surprisingly 81% of introns (2901 out of 3601) were identical across the clade.
Most gene gains were species- or clade-specific genes not found in another yeast
species, whereas gene loss included the glyoxylate cycle, glycogen biosynthesis, the
phosphoenolpyruvate carboxykinase, fewer ADH genes and lack of transcriptional
regulators of glucose repression, all these changes reflecting the inability of fission
yeast to use ethanol as a carbon source, although it produces it by fermentation.
Hence, despite large evolutionary distances of conserved orthologous proteins,
Schizosaccharomyces show a remarkably stable gene content, supporting a
pangenome size only 10-20% larger than its core-genome.

5.4 Candida albicans

Candida albicans is another opportunistic pathogen, responsible for mucosal and
systemic infections in immunocompromised patients. It is also a commensal of the
gastrointestinal tract. Natural isolates of C. albicans are diploid and under specific
conditions they are able to mate, resulting in tetraploid cells subsequently shifting to
diploidy via random chromosome loss (Bennett and Johnson 2003). The nuclear
genome of SC5314, a standard laboratory strain widely used in molecular analyses,
was published in 2004. It revealed a high level of single-nucleotide polymorphisms
(SNP) between both homologues, representing 90% of all detected polymorphisms,
with an average frequency of one SNP in 237 bases. Heterozygosity was not
homogeneous, since several chromosomes were interrupted by large regions of
homozygosity (Jones et al. 2004). After that initial study, 21 clinical isolates of
C. albicans, characterized by different phenotypic profiles, were also completely
sequenced. Single-nucleotide polymorphisms were very limited among the isolates,
being one order of magnitude lower than what was commonly found among
C. glabrata strains (Gabaldén and Fairhead 2019). The gene content of these isolates
was very similar to that of SC5314 reference strain, since most of its genes were
present in all isolates (6069 genes out of 6189—or 98%—on the average), with few
variable genes (Table 1). Genes exhibiting the most variable number of copies were
retroelements as well as the subtelomeric 7LO gene family. The position and number
of TLO genes varied from 10 to 15 among isolates, indicative of a high level of
plasticity (Hirakawa et al. 2015). More recently, the Candida dubliniensis genome,
another opportunistic pathogen, less virulent than C. albicans, was sequenced.
Except for translocations and chromosomal rearrangements that may be expected
between two yeast species, both gene contents were found to be surprisingly similar.
Out of 5569 orthologues, 5363 (96.3%) were more than 80% identical at the nucle-
otide level, and synteny was conserved for 98% of genes (Jackson et al. 2009). The
search for species-specific genes identified 111 ORFs in C. dubliniensis and 191 in
C. albicans. However, most of these variable ORFs corresponded to transposable



Eukaryotic Pangenomes 267

elements. When these were filtered off, the real number of species-specific genes
dropped to 29 and 168, respectively. Among those, the TLO gene family (12 members
in C. albicans) was specifically expanded in this species, since only two copies were
detected in C. dubliniensis and species-specific copies were monophyletic,
supporting an independent expansion in C. albicans. On the contrary, the IFA gene
family (13 members in C. albicans) underwent massive gene loss in C. dubliniensis,
since several gene relics at various stages of decay were identified in this yeast
species. In conclusion, in the present state of analysis, it appears that the core-
genome common to C. albicans and C. dubliniensis probably approximates 5400
genes and that their pangenome may be predicted to be slightly larger, possibly
around 6200 genes.

6 Plant Pangenomes

6.1 Soybean Genomes

Glycine max is the cultivated soybean variety, whose genome was published in 2010
(Schmutz et al. 2010). It was domesticated 5500 years ago and has been under
intensive selection by human populations for yield increase. It diverged from the
wild variety, Glycine soja, 800,000 years ago, well before its domestication. There-
fore, natural selection contributed to differentiation of the two subspecies well before
human selection started. In order to estimate the genetic diversity between domes-
ticated and wild soybean species, the genome of seven Glycine soja isolates from
south-east Asia were sequenced and compared to each other and to G. max (Li et al.
2014). Gene number ranged from 54,256 to 57,631, depending on the isolate and
hundreds of genes were identified as gained or lost as compared to domesticated
soybean. The G. soja core-genome contained 28,716 genes, while 30,364 variable
genes were identified. Most of them (58%) were shared by two to six out of seven
samples, whereas 12,916 (42%) were uniquely found in one of the seven isolates.
The pangenome therefore contained 50,080 genes and covered 986.3 Mb of
sequence. Its size increased with each new isolate, but it did not reach an asymptote,
suggesting that adding new isolates would increase pangenome size (Fig. 2). Inter-
estingly, dispensable genes exhibited more sequence variability than core genes.
SNP frequency was at 2.67 sites per kilobase for variable genes, whereas it was
significantly higher for core genes (4.12 sites per kilobase), and a similar bias was
found for indels. Biological processes enriched in dispensable genes include specific
metabolic processes, antioxidant activity, and structural molecule activity. These
genes were also less conserved than core genes since 58% could not be assigned to a
functional annotation, as compared to only 34% of the core genes. Lineage-specific
genes include 11 genes implicated in effector-triggered immunity, acting as patho-
gen detectors, reflecting adaptation to various biotic stresses.

The domesticated soybean genome contains 1794 genes involved in acyl lipid
metabolism, illustrating the effect of its intense selection for oil and fatty acid
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production. Among those, 32 exhibited CNV when compared to Glycine soja,
252 contained SNPs or indels and 21 showed high dN/dS ratios, suggestive of
their possible positive selection in Glycine max.

In conclusion, G. soja pangenome was found to be twice as large as its core-
genome, and its comparison with the domesticated G. max species revealed the
effect of human selection on this widely cultivated crop.

6.2 Rice Genomes

Rice (Oryza sativa L.) is one of the most important crops in the world, feeding half
the world population. The genome sequence of this monocotyledon was published in
2005 (International Rice Genome Sequencing Project 2005), although draft
sequences of each chromosome were released earlier. Domesticated rice comprises
two subspecies: indica and japonica. The reference genome (Nipponbare) is a
Jjaponica subspecies and contains 37,544 protein-coding genes, among which 2859
(8%) seemed to be uniquely found in rice. In an effort to explore the genetic diversity
of cultivated rice, 1483 sequences of both subspecies from 73 countries, sequenced
at low coverage (1-3 X), were compared to the reference genome. Comparison of
both subspecies sequences to the reference genome identified 8991 predicted genes
for the dispensable indica genome and 6366 for the japonica genome. Among these,
strong evidence of expression or high homology was found for 1120 genes of the
Japonica dispensable genome and 1913 genes of the indica dispensable genome. Out
of these 1913 high confidence genes, 1189 (62%) contained a recognizable protein
domain, for a total of 276 different protein domains altogether (Yao et al. 2015).
In a more recent study, 66 isolates of cultivated rice as well as wild rice (Oriza
rufipogon)® were sequenced to high coverage and the corresponding genomes were
de novo assembled and compared (Zhao et al. 2018). Chromosomal introgressions
from indica were detected in ~16% of tropical japonica genomes. Numerous
insertions and deletions were identified within genes, since a total of 10,872 genes
were at least partially absent from the reference genome, due to large indels. Protein-
coding genes present in at least one isolate were annotated and all transposable
elements were filtered out. A total of 26,372 genes were found to be common to
more than 60 rice isolates and were therefore considered to constitute the rice core-
genome. Variable genes, present in less than 60 genomes, were assigned to a
dispensable set of 16,208 genes, so that the rice pangenome reached a total of
42,580 genes. A larger proportion of core proteins (78%) than of dispensable pro-
teins (36%) matched to known domains, suggesting that some of these variable
genes may be pseudogenes or artifacts. Among dispensable genes, abiotic and biotic
response genes, controlling disease resistance in rice were found to be enriched.
When coding genes were sequentially added from each genome, the number of

28 Oriza sativa japonica, 25 Oriza sativa indica, and 13 Oriza rufipogon isolates.
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different genes reached a plateau, although more pronounced for gene families than
for singletons. This strongly suggests that the rice pangenome is almost closed and
that further sequencing of rice isolates will not prove to be very useful in identifying
new dispensable genes (Table 1).

6.3 Maize Genomes

Transcriptome sequencing of polyadenylated mRNAs was used in a genome-wide
study as a proxy to determine the complete set of protein-coding genes within
503 diverse maize inbred isolates of different origins (Hirsch et al. 2014).
RNA-seq reads were mapped to the Zea mays reference genome and reads that did
not match were used for identification of novel transcripts. To limit redundancy, only
the longest transcript of each locus was taken into consideration for further analysis.
A total of 8681 high confidence transcripts that were absent from the reference
genome were categorized as dispensable genes. Among those, 50% matched with
rice and sorghum proteins, ruling out that they could be artifacts or contaminants.
Transcripts detected in all isolates, including the reference line, represented 16,393
genes and constituted the core-genome. Dispensable transcripts, that were identified
in only a subset of isolates, represented 25,510 genes, for a pangenome of 41,903
genes, very close to the rice pangenome, although the proportion of variable genes
was much higher in maize (61% vs. 38% for rice). Sequential addition of genes
belonging to each isolate revealed that the number of different singletons and gene
families reach a plateau (more pronounced for singletons), demonstrating that the
maize pangenome was closed, or very close to completion (Table 1).

6.4 Cabbage Genomes

Brassica oleracea is a diploid eudicotyledon, comprising remarkably morphologi-
cally diverse crops, including cabbage, cauliflower, broccoli, Brussels sprout, kohl-
rabi, and kale. The B. oleracea pangenome was built by sequencing nine isolates
(eight cultivated and one wild—Brassica macrocarpa) and anchoring them on one
of the two reference genomes (Parkin et al. 2014). The assembled pangenome covers
587 Mb and represents 61,379 genes, after removal of transposable elements. The
core-genome constitutes the majority of the pangenome, representing 49,895 genes
(81%), whereas 11,484 genes (19%) are variable, 1322 (2%) being present in only
one line. Dispensable genes were enriched for functions predicted to be involved in
disease resistance, defense response, water homeostasis, amino acid phosphoryla-
tion, and signal transduction. Lineage-specific variable genes comprised biotic and
abiotic stress response genes, similar to what was observed in rice and soybean.
B. oleracea underwent a whole-genome triplication specific to this lineage, in which
gene families involved in auxin function and in morphological variations were
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amplified, these last ones perhaps contributing to the wide morphology diversity
observed in this species.

There are 14 variable genes predicted to regulate flowering time and maturity in
B. oleracea, but all of them were absent from one of the two reference strains
(TO1000), a rapid cycler. One of the flowering loci, FLC (Flowering Locus C), is
an important regulator of vernalization and regulates flowering time variation by the
number of gene copies. One FLC gene was present in Arabidopsis thaliana, whereas
four paralogues were found in B. oleracea. All four were part of the core-genome
and two additional homologues were detected: one was present in all lines except the
TO1000 reference strain and the other was present only in B. macrocarpa and one
isolate (Cauliflowerl). Independent functional studies showed that disruption of this
gene in cauliflower led to early flowering, strongly suggesting that its absence in
TO1000 was responsible for the early flowering of this rapid cycler (Golicz et al.
2016).

Genetic signatures of the core-genome and of the variable genome are very
different. Core genes are longer on the average and harbor more exons. They also
have lower mean SNP density and the ratio of non-synonymous over synonymous
substitutions was lower than for variable genes, suggesting that core genes were
under a more selective purifying selection than variable genes. In conclusion,
B. oleracea core and variable genes exhibit the same properties that were observed
in other eucaryotic pangenomes.

6.5 Poplar Genomes

The genome of Populus trichocarpa, black cottonwood, was published in 2006. Out
of its predicted 45,555 protein-coding genes, 40,307 (88%) had a homologue in
Arabidopsis thaliana, while conversely 91% of A. thaliana predicted genes showed
some similarity to a P. trichocarpa gene (Tuskan et al. 2006). More recently, six
isolates of other poplar species, four Populus negra and two Populus deltoides, were
sequenced to 26-45X coverage and compared to the P. trichocarpa reference
genome. Genome comparisons identified 7889 deletions and 10,586 insertions in
the two newly sequenced species, as compared to P. trichocarpa. However, a large
majority of these were due to transposons and retrotransposable elements (62% of
deletions and 84% of insertions), a feature shared by all plant pangenomes
sequenced so far. Once transposon sequences were filtered out, 3230 genes
exhibiting CNV signatures between at least two of the samples were detected.
These CNVs were significantly more abundant within 3 Mb from telomeres and
corresponded to gene additions or deletions in one or more sample. A total of
230 variable genes were detected among P. nigra samples, and of 174 dispensable
genes between the two P. deltoides isolates. The reference P. trichocarpa genome
showed 187 genic variations with P. nigra and 213 with P. deltoides. Among these
dispensable genes, 70% belonged to a gene family, allowing to detect some over-
represented gene functions. Remarkably, variable genes were preferentially involved
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in signal transduction, receptor activity, and disease resistance, similarly to what was
observed for soybean, rice, and cabbage (Pinosio et al. 2016).

The authors of this study calculated that the poplar pangenome was approxi-
mately 500 Mb, 80% being shared by all the isolates and therefore constituting the
core-genome. When P. nigra and P. deltoides genomes were compared to the
reference P. trichocarpa, 2270 genes were absent from at least one sample and
2453 other genes were detected in a variable number of copies, for a total of 4723
variable genes. Unfortunately, the proportion of dispensable genes between P. nigra
and P. deltoides was not determined, and it was therefore not possible to figure out
the exact size of the poplar pangenome. However, estimates suggest a size of
~34,000 genes for the core-genome and ~12,000-13,000 variable genes, giving a
pangenome size of ~=46,000-47,000 genes. Using available data about P. nigra
dispensable genes, it is tempting to suggest that its pangenome should be closed.

6.6 Mamiellales Genomes

Micromonas pusilla is a marine picoeukaryote of the Mamiellales order, measuring
less than 2 pm and living in all oceans worldwide. Two independent isolates of
M. pusilla were sequenced and their genomes were compared to those of
Ostreococcus lucimarinus and Ostreococcus tauri, two other Mamiellales. Surpris-
ingly, the two Micromonas shared only 90% of their 10,000 predicted genes,
whereas the two Ostreococcus shared 97% of theirs. Comparison of the four
sequences allowed to define a core-genome containing 7137 genes, involved in
photosynthesis, hydroxyproline-rich glycoproteins (essential components of plant
cell-wall), and meiosis genes. These were unexpected since Mamiellales are gener-
ally considered to be asexual, suggesting that these genes were remnants of their
common ancestor with land plants, or alternatively that they possessed a kind of
sexuality that has not been described yet. This last hypothesis would be compatible
with the presence of glycoproteins known to be expressed after sexual fusion in
Chlamydomonas reinhardtii. In addition to core genes, 14% of proteins (1384) were
shared by both Micromonas isolates but were not found in Ostreococcus. These
include enzymes for plastid peptydoglycan synthesis. These “shared” genes were
found to evolve more rapidly than core genes. A large proportion of genes present in
only one of the two Micromonas isolates exhibited homology to animal or bacterial
lineages, supporting their acquisition by horizontal transfer. Altogether, 793 and
826 genes were unique to each of the two Micromonas isolates, 689 were specific of
O. tauri and 249 were unique to O. lucimarinus. These variable genes when added to
the 7137 core genes and to the 2824 genes shared by at least two of the four
genomes, gave a Mamiellales pangenome size of 12,518 genes (Nordberg et al.
2014; Worden et al. 2009).
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7 Animal Pangenomes

7.1 Drosophila Genomes

Drosophila melanogaster is one of the most intensively studied animal models. The
first draft of its genome was published in 2000 (Adams et al. 2000). Its euchromatin
part covered ~120 Mb and contained 13,600 genes, only twice as many as budding
yeasts. Following this pioneering work, 11 other fly species originating from Africa,
Asia, the Americas, and the Pacific islands were sequenced and compared to
D. melanogaster reference genome. Gene numbers range from 13,733 for
D. melanogaster’ to 17,325 for Drosophila persimilis. Sequence comparisons
established that 49% of D. melanogaster genes were conserved as single-copy
orthologues across the whole set of species, defining a set of 6698 core genes.
Collectively, the 12 Drosophila genomes contain 40,852 variable genes, for a
pangenome size of 47,550 genes, but unfortunately it was not possible to determine
if this pangenome was closed or open with published data. However, some interest-
ing observations were made. First, effector proteins (like antimicrobial peptides)
evolved by rapid duplications and deletions and were significantly underrepresented
in the core-genome. Second, gene families forming most of the variable gene content
expanded or contracted at a rate of one fixed gene gain or loss every 60,000 years.
Common functions among some of the rapidly evolving families include defense
response and proteolysis. Third, the vast majority (98%) of Drosophila proteins were
ancestrally present at the root of the genus. Out of the 296 non-ancestral proteins,
252 were specific of the Sophophora subgenus or were complex acquisitions. The
remaining 44 genes were lineage-specific (four of them are found only in
D. melanogaster), were shorter than the average, harbored fewer introns and 40%
of them (18/44) were testis-specific, consistent with previous observations about
new Drosophila genes (Drosophila 12 Genomes Consortium 2007).

In conclusion, Drosophila core-genes represent roughly 40-50% of each species
gene pool and variable genes arise most of the time by duplication or deletion of an
existing gene, with very little de novo gene creation.

7.2 Avian Genomes

Birds encompass the richest variety of species among tetrapod vertebrates, with
more than 10,000 different species. In an international effort, 48 avian species,
covering most avian clades were sequenced to low or high coverage and compared
to the existing three reference genomes (zebra finch, turkey, and chicken), as well as
to three crocodilian genomes, the closest bird relatives. After filtering for transpos-
able elements, each genome was predicted to contain ~14,000-17,000 genes. They

"Gene number was refined since publication of the draft genome sequence.



Eukaryotic Pangenomes 273

contained a low level of repeated elements (4—10%) as compared to other tetrapods
(34-52% in mammals, for example).

Genes responsible for morphological and physiological peculiarities of the clade
were analyzed more in depth. Flight capacity was permitted through duplication and
positive selection of genes regulating skeleton morphology and bone development.
Out of 89 genes involved in ossification half of them showed traces of positive
selection, compared to one-third of the 31 orthologous genes in mammals.

Feathers are made of o- and p-keratins, the latter only found in birds and reptiles.
Aves genomes contained fewer a-keratin genes as compared to mammals but the
repertoire of B-keratins has expanded (up to =150 copies in zebra finch). Similarly,
most avian genomes contained a higher number of opsin genes than mammalian
genomes, partly explaining their more advanced visual system. Genomic elements
that were highly conserved among the 48 bird genomes were identified genome
wide. Such elements covered 11 Mb (1% of the avian genome) and were signifi-
cantly underrepresented in coding regions. Actually, the proportion of conserved
elements in noncoding regions were 50-fold higher and mostly corresponded to
regulatory regions of developmental genes. This result suggested that few avian-
specific genes arose in this clade, most of the genomic changes resulting from
differences in developmental regulations (Seki et al. 2017).

In conclusion, avian genomes are smaller than mammalian genomes, both in size
and in number of genes, due to extensive deletions of chromosomal segments in the
ancestral lineage. More precise analyses are now required to sort out core genes from
dispensable ones in order to be able to define core- and pangenome sizes and
contents.

7.3 Human Genomes

The first human genome drafts were published in 2001 at the same time by the
Human Genome Sequencing Consortium and by Celera Genomics (International
Human Genome Sequencing Consortium 2001; Venter et al. 2001), and a more
complete version of the academic sequence was released in 2004 (International
Human Genome Sequencing Consortium 2004). A few years later, James Watson’s
own genome was deciphered (Wheeler et al. 2008), rapidly followed by the first
Asian genome (Wang et al. 2008) and the first African genome (McKernan et al.
2009). The human pangenome was built from comparisons between the NCBI
human reference genome and four genomes: Venter’s (Celera Genomics), Watson’s,
YH (Asian genome), and NA18507 (African genome), as well as individual human
sequences retrieved from GenBank. Four types of sequence variants were detected:
(1) sequences that were frequent in African populations but rapidly declined out of
Africa; (2) sequences that were rare in African populations but became more
frequent with geographical distance; (3) sequences that were present at a low
frequency in European populations; and (4) sequences that were rare in Asian
populations. This analysis led to the conclusion that the human pangenome should
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include 19—40 Mb of additional sequence in addition to the reference genome and
that complete coverage of all gene variants should be achieved with the sequencing
of 100-150 randomly sampled individuals, worldwide. Analysis of sequences that
could not map to the reference genome showed that some of the most abundant
genes were those encoding DUX homeobox proteins (113 hits in YH and 58 in
NA18507), known to be associated with chromatin. Also very frequent were gene
families known to be rapidly evolving, such as mucins, zinc-finger proteins, and
olfactory receptor proteins (Li et al. 2010).

In conclusion, the present-day human pangenome is still open and will require
many more finished sequences in order to be resolved. No doubt that recent efforts to
sequence 1070 Japanese genomes (Nagasaki et al. 2015), 2504 individuals from
26 worldwide origins (The 1000 Genomes Project Consortium 2015) or 10,545
human genomes representative of the main human populations (Telenti et al. 2016)
should allow to more precisely define human core- and pangenomes and definitely
solve this question.

7.4 Reaching for the Metazoan Pangenome

With a wealth of more than 300 metazoan genomes sequenced, defining a core- and a
pangenome for multicellular animals could seem a reachable goal. However, with an
estimation time for the last common ancestor of all metazoans around 800 million
years ago (Erwin et al. 2011), identification of a reliable set of core genes might
prove challenging. The sponge Amphimedon queenslandica is an early metazoan
(Fig. 1) whose genome was sequenced in 2010. It is predicted to contain 18,693
protein-coding genes. Comparison with 4670 metazoan gene families defined a set
of 1286 proteins that seem to be metazoan specific, thus defining a draft core-
genome for multicellular animals (Srivastava et al. 2010). Many gene expansions
observed in the metazoan lineage arose by subsequent tandem or local gene dupli-
cations, but extensive work is now needed in order to extract this information from
available metazoan genome sequences.

8 The Oceanic Pangenome

The TARA ocean program aims at sampling all planktonic lifeforms of the world’s
ocean (de Vargas et al. 2015). Metatranscriptomes were established from high-
coverage polyA RNA-Seq performed on 441 size-fractionated planktonic commu-
nities. Subsequent clustering created a nonredundant set of 116 million transcribed
sequences, at least 150 bases long. Despite the sampling effort, it was calculated that
166—-190 million sequences would be needed to reach saturation of all oceanic
eukaryotic expressed sequences. Half of these sequences had no match in public
databases, suggesting that they may correspond to new genes, but most of these
(60%) were present as single copies. Transcription of these new genes showed that
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they were expressed to the same level as known families, suggesting that they were
conserved in a smaller number of species or that they were present in less abundant
taxonomic groups. Increasing the sampling effort should solve this issue (Carradec
et al. 2018). These data, although preliminary and not totally exhaustive, demon-
strated that it was possible to extract thousands of new eukaryotic genes belonging to
yet uncharacterized species from large oceanic metagenomes. It would be difficult to
use the same approach for land eukaryotes for which a comprehensive sampling will
be much more tedious and time consuming.

8.1 The Haptophyte Alga Emiliania huxleyi

Marine phytoplankton is responsible for carbon fixation and export to the sea floor as
calcite, as well as carbon dioxide release during the calcification process. Their
influence on carbon metabolism and export to the deep ocean is complex and crucial
for the Earth ecosystem. The haptophyte E. huxleyi CCMP1516 reference genome
was determined, as well as 13 other isolate genomes, from subarctic to tropical
oceanic origins (Read et al. 2013). Repetitive elements were extremely abundant,
representing about two-thirds of the sequence and include retrotransposons (1%),
DNA transposons (3%), rDNA-related repeats (3%), paralogous genes (10%), tan-
dem repeats and low complexity regions, especially 10—11 bp tandemly repeated
minisatellites (34%) and unclassified repeats (16%). These repetitive elements
account for a large part of the considerable genome size variability, that ranges
from 99 to 133 Mb between isolates (141.7 Mb for the CCMP1516 reference). The
reference genome gene content was then compared to three isolates of very distant
origins.® Out of 30,569 predicted genes in the reference, a total of 5218 (17%) were
absent from at least one of three isolates and 364 were missing from all three. Further
comparisons with the other isolates strengthened this conclusion: the core-genome
contained 20,055 genes, about two-thirds of the reference genes, whereas the
remaining genes were variable, making E. huxleyi pangenome a complex gene
repertoire. Besides repeated elements, the genome encodes many iron-binding pro-
teins, 80 in the core-genome and 30 as variable genes. Iron is essential for calcifi-
cation and photosynthesis and these differences probably reflect ecological
disparities among isolates. In addition, the E. huxleyi pangenome encodes 700 pro-
teins whose function relies on metal binding: selenium (49 proteins, 20 gene fam-
ilies), zinc (413 proteins), or copper (65 proteins). Finally, the pangenome contains
26 genes involved in vitamin metabolism, but is unable to synthesize vitamins B
and B, restricting E. huxleyi to oceanic regions where these are freely available. In
conclusion, the large pangenome of this haptophyte is probably necessary to accom-
modate its ubiquitous distribution in oceans and illustrates physiological and mor-
phological disparities observed among isolates.

8English channel, north-eastern pacific ocean and Great Barrier reef.
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9 Where Do Eukaryotic Variable Genes Come From?

At the present time, there are six independent origins for novel eukaryotic genes:
interspecific hybridizations, whole-genome duplications, segmental duplications,
horizontal gene transfer, single gene duplication, and de novo gene creation (Fig. 5).

9.1 Interspecific Hybridizations

The American botanist Edgar Shannon Anderson published in 1949 a book describ-
ing interspecific hybridizations between flowering plants and genotype combina-
tions resulting from these crosses (Anderson 1949). Since then, it became widely
accepted among botanists that such events were frequent among plants, resulting in
frequent transfers of genes from one species to another. Interspecific hybridizations
were very common among yeast species too (Morales and Dujon 2012). Modern
brewing yeast, Saccharomyces pastorianus, is the offspring of two successive
hybridizations, an ancestral one between Saccharomyces uvarum and an unknown
species and a more recent one between the resulting hybrid and S. cerevisiae
(Nguyen et al. 2011).

Despite these interesting observations, zoologists were stuck with a very conser-
vative notion of species, based on reproductive isolation, i.e., two species were
considered as different if the offspring of their mating was sterile. This remarkably
conservative thinking did not take into consideration that many natural fertile
interspecific animal hybrids were already described: liger (lion and tiger), pizzlies
(polar bear and brown bear), Hawaiian duck (mallard/Laysan duck), Heliconius
butterflies (Heliconius cydno and H. melpomene) and Darwin’s finches, to name
only a few (Pennisi 2016). However, this very conservative way of thinking hit a
wall when genome-wide sequencing of ancient human DNA demonstrated that
modern Homo sapiens were the result of at least two interspecific hybridizations.
The first one occurred 50,000-80,000 years ago between Homo neanderthalensis
and ancestral Homo sapiens, after their “out of Africa” journey. This resulted in the
retention of 1-4% of Neanderthal genes in all modern Homo sapiens genomes,
except for those of pure African descent (Green et al. 2010). The second hybridiza-
tion occurred between offsprings of Homo sapiens and Homo neanderthalensis and
a new species of ancestral human, the Denisovan man (named from the cave in the
Siberian Altai mountains in which it was discovered). The hallmark of this hybrid-
ization can still be seen in present-day Melanesian populations in which 4-6% of
genes come from this ancestral Denisovan man (Priifer et al. 2014). More recently,
the same team discovered the remnants of a 13-year-old girl who was the daughter of
a Neanderthal mother and of a Denisovan father, demonstrating that these two
ancient human populations also hybridized with each other, around 50,000 years
ago (Slon et al. 2018).
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Successive hybridizations can be detected as chromosomal introgressions, large
DNA fragments which may be fixed by natural selection following backcrossing
between an hybrid and one of its parents (Fig. 5a). One such example in modern
humans comes from the Tibetan population. Their genome contains a transcription
factor induced under hypoxic conditions, EPASI, whose expression correlates with
hemoglobin levels in low atmospheric oxygen pressure. This gene is located in a
120 kb chromosomal region containing a large number of SNPs that were very
common in Tibetan and Denisovan DNA, but found at very low frequencies in Han
Chinese genomes. This proved that adaptation to high altitude in Tibetan
populations was due to a large chromosomal introgression inherited from their
Denisovan ancestry (Huerta-Sanchez et al. 2014).

At the present time, it is safe to admit that interspecific hybridizations have been a
significant source of gene novelty in eukaryotic genomes, from fungi to animals and
plants. However, if living species may mate with other species living in a close
ecological niche and produce a fertile offspring, we should now define species
independently of the outdated reproductive barrier. Indeed, one may ask what is a
species?

9.2 Whole-Genome Duplications

Compared to interspecific hybridizations, bringing together two distinct sets of genes,
whole-genome duplications bring together two exact same sets of genes (Fig. 5b).
Whole-genome duplications were extremely frequent in every branch of the eukary-
ote tree, in ascomycetes (Dujon et al. 2004; Kellis et al. 2004; Wolfe and Shields
1997), in paramecium (Aury et al. 2006), in teleostean fish (Jaillon et al. 2004), plants
(International Wheat Genome Sequencing Consortium 2014; Jaillon et al. 2007;
Vision et al. 2000), rotifers (Flot et al. 2013), and vertebrates (Dehal and Boore
2005), just to cite a few (Fig. 1). These whole-genome duplications were rapidly
followed by extensive gene loss, in order to restore gene dosage, but some of the
duplicated genes—also called onhologues—may be maintained for a longer time and

Fig. 5 (continued) up in selecting a chromosomal region from the other parent (Species B) that will
become a permanent introgression. It is possible that other mechanisms besides backcrossing may
generate chromosomal introgressions. (b) Whole-genome duplication will be followed by extensive
gene loss to counteract gene dosage defects. Sub- or neofunctionalization may occur on one of the
two onhologues. Only one chromosome was represented for the sake of clarity, but all chromo-
somes are duplicated in this process. (¢) Segmental duplication of a large chromosomal segment
(in brackets) may produce several duplicated genes in a single event. (d) A gene (in orange) may be
transferred from another organism. Horizontal gene transfer may also affect a small number of
genes. (e) A gene is reversed transcribed and the cDNA integrated in the genome. Former introns
are possibly lost in the process if reverse transcription occurs on a spliced transcript. Note that an
allelic transposition is represented but ectopic duplications are frequent
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evolved new functions by neo- or subfunctionalization. S. cerevisiae harbors two
copies of cytochrome c resulting from an ancestral whole-genome duplication, one
encoded by the CYCI gene and the other by CYC7. The latter is expressed when
oxygen levels are so low that cells are in hypoxia, whereas the former is expressed
when oxygen levels are normal, a classic case of subfunctionalization (Downie et al.
1977). An interesting example of neofunctionalization was discovered in an Antarctic
fish, the eelpout Lycodichthys dearborni, whose genome contains two SAS genes,
resulting from an ancient duplication. Both SAS-A and SAS-B genes encode an
enzyme involved in sialic acid biosynthesis. SAS-B got subsequently partially
duplicated and the resulting paralogue was deleted for four out of six exons, making
a much shorter gene. The resulting protein happened to bind more efficiently ice
crystals than the full-length protein, interfering with crystal growth and behaving as a
good antifreeze protein. Subsequent tandem amplifications of this shorter version of
SAS-B gave the eelpout the ability to resist extreme cold conditions (Deng et al.
2010).

It might prove technically difficult to discriminate between a recent whole-
genome duplication and an interspecific hybridization between two closely related
species, without a good reference. It is possible that some chromosomal duplications
that were thought to arise from whole-genome duplications were actually acquired
by hybridization. In a near future, the achievement of more and more eukaryotic
genomes originating from the same clade should eventually dismiss any concern
about the origin of close paralogues.

9.3 Segmental Duplications

Another frequent source of novelty comes from local or ectopic duplication of a
chromosomal DNA segment, called segmental duplication (Fig. 5c). Their length
range from a few to several hundreds of kilobases and they have been found in every
eukaryotic species sequenced so far. They are also commonly called copy-number
variations (or copy-number variant, or CNV) since their copy number may vary from
one genome to another, or structural variant (SV). Spontaneous segmental duplica-
tions were found in the yeast S. cerevisiae, during experimental evolution of a wild-
type strain (Dunham et al. 2002) or using a gene dosage assay for growth recovery
(Koszul et al. 2004). These chromosomal duplications could be sometimes quite
large, covering 41-655 kb. It was subsequently demonstrated that the mechanism
generating segmental duplications was break-induced replication (BIR), a
replication-based recombination process that could involve homologous sequences
or microhomologies at the junction of duplicated segments (Payen et al. 2008).
Segmental duplications were also described in mouse (Bailey et al. 2004), in
primate genomes (Cheng et al. 2005), as well as in man (Bailey et al. 2002). They are
known to be associated with several human disorders (Emanuel and Shaikh 2001)
and most of them were found to have recently emerged in human history (Jiang et al.
2007). They are undoubtedly a source of gene novelty by successive duplications of
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large chromosomal segments, although their impact on gene content diversity has
not been precisely evaluated yet.

9.4 Horizontal Gene Transfer

Very common between prokaryotes, horizontal gene transfer of a gene (or of a small
number of genes) was limited to a few examples in eukaryotes, but may be more
widely spread than previously thought. Such events have been identified among
Saccharomycetaceae yeasts (Fig. 4). Out of 255 species-specific genes, 11 were
identified as possible gene transfers from bacterial species, based on sequence
similarities and reconstructed phylogenies (Rolland et al. 2009). In S. pombe,
34 genes were identified as good candidates for horizontal transfer from bacteria,
16 having occurred before radiation of the clade, 9 being specific to S. pombe (Rhind
etal. 2011).

Sexuality is a natural obstacle to the propagation of a horizontally acquired gene
to metazoan offspring since it must become integrated in the germ line. Nonetheless,
some remarkable examples of gene transfer between bacteria or yeast to animal
genomes have been described. Wolbachia pipientis is a symbiotic bacteria living
inside several arthropods and some nematodes. Its genome sequence led to the
discovery that 44 out of 45 Wolbachia genes were indeed integrated in the genome
of the tropical fruit fly Drosophila ananassae, one of the natural hosts of this
bacteria. Among the other species subsequently screened for the presence of
Wolbachia genes, one nematode, one mosquito, one tick, three wasps, and five
Drosophila species contained DNA fragments of various lengths originating from
the bacteria (Dunning Hotopp et al. 2007).

Another striking example is the horizontal transfer of yeast genes to pea aphid
(Acyrthosiphon pisum). This insect displays a red-green color polymorphism that
serves to escape its natural predators. The different colors are due to different forms
of carotenoid pigments found in individuals. Animals require carotenoids for several
essential functions but they are unable to make them. Therefore, they normally find
them in their diet. Remarkably, seven carotenoid synthases and carotenoid
desaturases, enzymes required for pigment biosynthesis, are encoded by the aphid
genome. Comparisons with existing sequences showed that these genes cluster with
orthologues from fungi species and subsequent experiments led to the conclusion
that these genes were transferred from a fungal pathogen or aphid symbiont, at the
root of the aphid clade, followed by subsequent duplications of the transferred gene
(s) Moran and Jarvik 2010).

One last example comes from bdelloid rotifers, near-microscopic animals found
in freshwater habitats worldwide. They lost sexual reproduction due to a specific
chromosomal organization incompatible with meiotic recombination (Flot et al.
2013). Telomeric regions of Adineta vaga, a bdelloid rotifer whose complete
genome has been sequenced, revealed dozen of genes of foreign origin. These
were found in large telomeric chromosomal segments covering tens of thousands
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of nucleotides and encoding various proteins playing a role in sugar or amino acid
metabolism, in intracellular oxydo-reduction, or in the synthesis of antibiotics and
toxins. Most of these genes came from bacteria or fungi species, some of them may
have been transferred from plants. Among genes that were identified as of bacterial
origin, some harbored introns, whereas their bacterial counterpart did not, suggesting
that introns were acquired after transfer from bacteria. Telomeric regions being also
enriched in transposable elements, the role of transposons in these massive gene
transfers is still an open question (Gladyshev et al. 2008).

9.5 Single-Gene Duplication

Single-gene duplications may occur as allelic or ectopic genome insertions. When
occurring in allelic position, they led to tandem repeats of paralogous genes, and
were found in variable numbers in eukaryotic genomes. In ascomycetous yeasts, a
few dozen tandem gene arrays were detected in each species, mostly composed of
two to three copies. However, the Debaryomyces hansenii genome contained no less
than 247 arrays of tandem paralogues, distributed all over its genome, some of them
counting eight or nine tandemly repeated copies (Dujon et al. 2004). Ectopic
paralogous gene duplications were also very frequent events in eukaryotes. Most
carry the hallmark of retrotransposition: lack of introns, presence of a 3’-end poly A
tract and remnants of target site duplications. These retrogenes were also called
retroposons (Brosius 1991) and the transposition mechanism was studied in
S. cerevisiae (Schacherer et al. 2004) as well as in human cells (Esnault et al.
2000). It relies on the reverse transcription of a mature mRNA by a reverse
transcriptase (encoded by L1 elements in human cells), followed by integration of
the cDNA at an ectopic or allelic locus (Fig. Se). These duplicated genes lack
promoter sequences that were absent from the mature transcript and are therefore
pseudogenes, unless they luckily transpose near an active promoter. The human
genome contains approximately 10,000 retrogenes, including more than 1700 ribo-
somal pseudogenes, while the mouse genome contains more than 200 copies of
glyceraldehyde-3-phosphate dehydrogenase and Caenorhabditis elegans genome
harbors more than 2000 pseudogenes (reviewed in Richard et al. 2008).

Extensive retroposition was also frequently detected in plants, the rice genome
containing 1235 retrogenes. Interestingly, only 337 (27%) were identified as
pseudogenes containing premature stop codons or frameshifts. Subsequent experi-
ments concluded that more than half of the remaining retroposons were probably
functional genes. In addition, 380 out of 898 intact retrogenes harbor a chimeric
structure containing a flanking exonic sequence (Wang et al. 2006). Therefore,
contrarily to the human genome in which most retroposons are pseudogenes,
retroposition in the rice genome seems to be an active process rapidly creating
new functional genes.
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9.6 De Novo Gene Creation

Some remarkable cases of de novo gene invention have been well documented,
although the total number of such cases having occurred during evolution of
eukaryotes is probably underestimated. Alu retrotransposons are very common in
primate genomes, being found in more than 1,000,000 copies, covering ~z13% of the
genome size and present in almost every protein-coding gene intron (International
Human Genome Sequencing Consortium 2001). In dozens of reported cases, an Alu
sequence was found to be spliced with an upstream exon, resulting in a chimeric
peptide (Makatowski et al. 1994). These hybrid proteins are a source of genetic
novelty, although their total number in the human genome has not been precisely
determined yet.

Before eukaryotes, the living world was asexual, except for bacterial conjugation
that may be considered as a very primitive form of mating. Differentiation between
two sexes appeared with the first eukaryotic cells and was found almost universally
in the eukaryotic world, suggesting that it must be an ancestral acquisition. Sexual
reproduction starts with the fusion between two haploid gametes of opposite sex, one
male and one female, called syngamy, followed by the merging of both genetical
contents. It was recently discovered that the protein responsible for syngamy (called
HAP2) was structurally and functionally related to a viral membrane fusion protein.
HAP2 was conserved in plants and animals and must have been transferred from a
virus to a common ancestor at the root of the eukaryotic lineage (Fédry et al. 2017).

Therian mammals include marsupials and placental (or eutherians), like mouse or
man (Fig. 1). In eutherians, egg development takes entire place within the uterus and
the placenta is larger and more elaborated than in marsupials. In humans, two genes
were responsible for placenta growth, syncitin-1 and syncitin-2. These genes both
derived from an envelope protein gene captured from an ancestral virus 25-40
million years ago. Remarkably, the mouse genome harbored two homologues,
syncitin-A and syncitin-B, also deriving from a viral infection in the murine lineage
around 20 million years ago, but they are not orthologous to their human counter-
parts, showing that the placenta was independently invented twice in two mamma-
lian lineages by a similar mechanism of viral gene capture (Dupressoir et al. 2009).

In D. melanogaster, the Sdic gene coding for a sperm-specific dynein chain was
the result of a local duplication and a complex rearrangement between two genes:
Cdic and AnnX. The resulting Sdic gene was transcribed from a neo-promoter
located in an intronic sequence and the first 21 amino-acids of the resulting protein
came from this same intron, now spliced as the first exon of the Sdic mRNA
(Nurminsky et al. 1998).

One may argue that the above examples are not real de novo gene creations, since
they rely on preexisting DNA sequences (A/u elements, viral genes, or serendipitous
rearrangements of existing exons). It is remarkable that the genome of the excavata
Naegleria gruberi (Fig. 1) contained 40% of genes without any obvious similarity to
any bacterial gene, suggesting that they could be real de novo eukaryotic inventions
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(Fritz-Laylin et al. 2010). However, it is possible that many genes that appeared to be
novel have indeed diverged so much from their prokaryotic ancestor that they cannot
be identified anymore. Hence, the hunt for real de novo gene creation promises to be
exciting but seriously challenging!

10 Bioinformatics Tools to Calculate Core-
and Pangenomes

Most pangenome analyses were so far performed on prokaryotic genomes. Com-
puting tools rely on the initial determination of genes belonging to the core-genome,
followed by addition of all variable genes to build the species pangenome. The initial
step is crucial, since one wants to identify the exhaustive list of orthologues
belonging to each of the species isolates. Orthologue identification generally uses
bidirectional best hits (BDBH), or BLAST followed by a clustering algorithm such
as MCL, or comparison of protein domains using Hidden Markov Models (HMM)
(reviewed in Guimaraes et al. 2015). In a slightly different approach, PanOCT used
synteny information in addition to orthology to define the core-genome. The pro-
gram used a “conserved gene neighborhood” information to discriminate real
orthologues from very recently duplicated paralogues whose sequences are indistin-
guishable (Fouts et al. 2012).

Calculation of eukaryotic core- and pangenomes is significantly more complex
for several reasons: (1) the abundance of transposable elements, including novel
undescribed transposons absent from dedicated databases; (2) the morcellated nature
of genes, particularly in young eukaryotes; (3) the presence of large gene families
that make orthologue identification tedious; and (4) the relative incompleteness of
genomic sequences, particularly of those containing numerous repeats. In an original
approach trying to tackle these problems, genomic and transcriptomic data from
19 A. thaliana isolates were analyzed using the GET_HOMOLOGUES-EST soft-
ware, designed to use tissue-specific expression patterns to build core- and
pangenomes. Results support a set of 26,373 core genes and of 11,416 variable
genes, for a pangenome containing a total of 37,789 genes. The pangenome is open,
each new isolate adding approximately 70 novel variable genes. Core genes exhibit a
higher expression level than variable genes and they are under stronger selective
pressure (AN/dS<<1), confirming what was already observed in other eukaryotes.
The same software was used to analyze transcriptomic data from 16 Hordeum
vulgare isolates (barley), a monocotyledon plant. The barley genome is 34 times
larger than A. thaliana (4 Gb vs. 119 Mb) and contains 75% of repetitive elements.
Its core-genome contains 10,922 genes whereas 28,762 genes were found to be
expressed in the leaf transcriptome. Nine isolates were sufficient to sample 99% of
the pangenome and its size did not increase with subsequent isolates, proving that it
was closed (Table 1). Like A. thaliana, core genes were more expressed and more
constrained than variable genes (Contreras-Moreira et al. 2017). Merging tissue-
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specific transcriptomic and whole-genome sequencing data promises to become a
powerful approach for future core- and pangenome determinations in metazoans and
plants.

11 The Eukaryotic Pangenome

As Francois Jacob put it more than 40 years ago, gene evolution mainly deals with
tinkering, molecular tinkering (Jacob 1977). Young eukaryotes (angiosperms, mam-
mals) reshuffled gene exons and protein domains that already existed in old eukary-
otes (fungi, excavata, monocellular animals, and algae), more than one billion years
ago. There were very few real inventions after the first eukaryotes, some of them
aforementioned here. An Alu element or a piece of a virus genome may be captured
to make a new protein domain, transposons moved around, sometimes taking along a
piece of DNA that would eventually become an exonic sequence, accumulation of
mutations in a duplicated gene copy could ultimately create a new function by sub-
or neofunctionalization. The redundant nature of eukaryotic genomes, particularly
young ones, is only apparent. Eukaryotic core genes are hidden behind legions of
transposons, successive whole-genome duplications and interspecific hybridiza-
tions, but one may ask how many genes are part of the eukaryotic core-genome.
When trying to define it, exons or protein domains, rather than genes, should
probably be considered as relevant genetic units, to circumvent issues due to
molecular tinkering. Further definition of an eukaryotic pangenome will prove to
be a long and complex task, but the accumulation of high-quality genome sequences
and the exponential increase of computing power, might prove it to be a reachable
goal in the forthcoming years.

In 2016, a German team tried to reconstitute the prokaryotic core-genome, using
sequences from 1847 eubacteria and 134 archaebacteria species, covering 6.1
million protein-coding genes belonging to 286,000 families. They identified 355 pro-
teins common to all species, that may be considered as the prokaryotic core-genome
(Weiss et al. 2016, 2018). But one may ask whether this minimal set of core genes is
sufficient to support life. In an attempt to create a hypothetical minimal genome, the
J. Craig Venter institute applied synthetic genomics approaches to Mycoplasma
mycoides. Using a combination of existing deletion data and literature mining,
eight independent segments covering altogether the whole M. mycoides genome
were synthesized. Each of these eight segments was individually reintroduced into
bacteria, but only one of them produced a viable genome. Using high-throughput
transposon mutagenesis, the team subsequently identified a set of 229 genes that
would cause different levels of growth impairment. The eight DNA segments were
rebuilt including these genes. Although each of the individual segment was able to
produce a viable genome, addition of the eight segments in the same bacteria was
lethal. Once the team eventually solved this synthetic lethality issue and succeeded
in synthesizing a fully functional minimal genome, they discovered that the biolog-
ical function of 146 genes (out of 473 encoded) could not be assigned. These genes
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of unknown function were all needed to sustain M. mycoides life (Hutchison et al.
2016). This interesting work supports the conclusion that designing a minimal
genome based on a core set of genes common to several isolates or to several species
might not be sufficient to support life. Therefore, defining pangenome contents
might prove essential to rewrite the genomes of more complex organisms, like
eukaryotes.

As one last word, it must be noted that core-and pangenomes described here took
only into consideration protein-coding genes. It is noteworthy that eukaryotes
contain many more genes encoding various RNA species: tRNA, rRNA, snoRNA,
scRNA, microRNA, and siRNA. Building the whole repertoire of such genes will be
challenging but essential to define, at last, a complete eukaryotic pangenome.
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Abstract Over the last few years, pangenome analyses have been applied to eukary-
otes, especially to important crops. A handful of eukaryotic pangenome studies have
demonstrated widespread variation in gene presence/absence among plant species
and its implications on agronomically important traits. In this chapter, we focus on the
methodology of pangenome analysis, which can generally be classified into two
different types of approaches, a homolog-based strategy and a “map-to-pan” strategy.
In a homolog-based strategy, the genomes of individuals are independently assem-
bled, and the presence/absence of a gene family is determined by clustering protein
sequences into homologs. Alternatively, in a “map-to-pan” strategy, pangenome
sequences are constructed by combining a well-annotated reference genome with
newly identified non-reference representative sequences, from which the presence/
absence of a gene is then determined based on read coverage after individual reads are
mapped to the pangenome. We highlight the advantages and limitations of the
homolog-based strategy and several variant approaches to the “map-to-pan” strategy.
We conclude that the “map-to-pan” strategy is highly recommended for eukaryotic
pangenome analysis. However, programs and parameters for pangenome analysis
need to be carefully selected for eukaryotes with different genome sizes.
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In 2005, Tettelin et al. introduced the concept of a pangenome, namely the entire
gene set of a species, in their study of eight strains of Streptococcus agalactiae, that
causes neonatal infection in humans (Tettelin et al. 2005). The pangenome is
comprised of a “core-genome” that contains genes shared by all individuals of the
species, and a “dispensable genome” containing genes present in some but not all
individuals of the species. The core-genome is generally believed to be responsible
for functions essential to the species, such as growth and development, whereas the
dispensable genome confers functions related to environmental adaptations
(Vernikos et al. 2015). During the past 10 years, pangenome studies have been
widely applied to bacteria and other microorganisms. However, only a handful of
pangenome analyses of higher eukaryotes have been reported (Wang et al. 2018; Hu
et al. 2018; Sun et al. 2017; Zhao et al. 2018; Ou et al. 2018; Darracq et al. 2018;
Montenegro et al. 2017; Pinosio et al. 2016; Golicz et al. 2016; Nguyen et al. 2015;
Lu et al. 2015; Yao et al. 2015; Hirsch et al. 2014; Read et al. 2013; Li et al. 2010,
2014). In this chapter, we will first review the biological insights highlighted from
these studies. Then, we will introduce current challenges and strategies for
performing eukaryotic pangenome analysis, and finally, we will discuss future
directions in this field.

Next-generation sequencing (NGS) technologies have enabled whole-genome
sequencing and comparisons of multiple individual genomes within a species. Single
nucleotide variations (SNPs), small insertions and deletions (InDels), and structural
variations (SVs), including copy number variations (CNVs) and presence/absence
variations (PAVs), can be identified when comparing against a reference genome. A
considerable number of SVs have been observed among human (Sudmant et al.
2015; Genomes Project et al. 2015; Feuk et al. 2006) and animal genomes (Bickhart
and Liu 2014). For example, a typical human genome contains 2100-2500 structural
variants (including ~1000 large deletions), affecting ~20 Mb sequences when
comparing with a reference genome (~3 Gb) (Genomes Project et al. 2015). In
contrast, SVs have been reported to be more pervasive within plant genomes
(Saxena et al. 2014), such as rice (Wang et al. 2018; Hu et al. 2018), arabidopsis
(Cao et al. 2011), maize (Swanson-Wagner et al. 2010), sorghum (Zheng et al.
2011), and potato (Potato Genome Sequencing C et al. 2011). For example, the total
sequences affected by SV that differentiate two typical rice accessions, on average,
are about 22-70 M (out of ~380 M) (Wang et al. 2018). These results imply that
there might be widespread presence of gene PAVs associated with SV sequences.

Pangenome analyses aim to study gene PAVs, providing a new functional
interpretation of within-species variations. Compared to SV studies, pangenome
analyses identify undiscovered genomic sequences and their associated genes and
reveal the species core and dispensable genome. Early pangenome studies focused
on comparisons among a small number (2-3) of well-assembled individual genomes
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(Liu et al. 2007; Ma and Bennetzen 2004). These studies revealed the space of
undiscovered genes and demonstrated widespread gene PAVs within a species. For
instance, Li et al. assembled an Asian and an African genome, leading to the
detection of 5 Mb sequences and hundreds of undiscovered genes that are absent
in the human reference genome. Liu et al. sequenced ten thousand cDNAs of 93-11,
a Xian(indica) rice accession, and found that >1000 genes were absent in the Geng
(japonica) reference genome (Liu et al. 2007), which was believed to have diverged
from Xian ~0.44 million years ago (Ma and Bennetzen 2004); later, Schatz et al.
compared three assembled genomes of a Xian (IR64), a Geng, and an aus (DJ123)
accession, and found that ~3000 genes were absent in at least one accession.

However, studying a small number of individuals cannot reveal the global
landscape of gene PAVs of a species and cannot confidently identify the species
core and dispensable genomes. Thus, systematic studies involving a large number of
representative individuals within a species is highly desired. Large-scale plant
pangenome studies involving tens to hundreds of individuals have emerged over
recent years (Table 1). Many of these studies revealed that gene PAVs are a very
important aspect of the genomic diversity within eukaryotic species/populations that
can provide significant insights into evolutionary history of the species/populations
with significant implications on the functional genomic research of important traits.

In Emiliania huxleyi, a marine phytoplankton important for carbon fixation in
ecosystems, one-third of the genes in the reference genome are absent in the
13 sequenced individuals (Read et al. 2013). The core-genome controls inorganic
nitrogen uptake/assimilation and nitrogen-rich compound acquisition/degradation,
while the dispensable genome is in charge of metabolic repertoires, of which over
one-fourth involve iron-binding activities and vitamin B1 and B12 synthesis (Read
et al. 2013).

In rice, several studies consistently report that about ten thousand genes are
missing in the widely used Nipponbare reference genome (Wang et al. 2018; Zhao
etal. 2018; Yao et al. 2015), and almost all of them can be detected in wild rice (Wang
et al. 2018). The dispensable genome accounts for >38% of the species pangenome
and over one-fourth of a typical individual genome (Wang et al. 2018). On average,
two Xian or Geng genomes differ by about 4000 (~10%) genes, respectively, whereas
a Xian genome and a Geng genome differ by more than 6000 (~15%) genes (Wang
et al. 2018). Although the dispensable genome is less studied, it appeared to harbor
functions related to environmental adaptations, such as regulation of immune/defense
responses and ethylene metabolism (Wang et al. 2018). Interestingly, the well-known
Green Revolution gene, sd-1, coding a key enzyme, GA-oxidase20, in the biosyn-
thesis of the important plant hormone, GA/GA,, is a dispensable gene that associates
with many important processes in plant growth, development, and responses to
abiotic stresses (Wang et al. 2018; Zhao et al. 2018).

In Brassica oleracea (Golicz et al. 2016), bread wheat (Montenegro et al. 2017)
and wild soybean (Li et al. 2014), it was reported that the dispensable genomes take
up 18.7%, 20%, and 35.7% of the pangenomes, respectively. Although the pipelines
and parameters/thresholds used to determine gene presence differed a lot in the
above studies, it is well demonstrated that plants exhibit considerably large
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Table 1 Representative pangenome studies
Haploid
genome
size
Species (bps)* N References Strategy Comment
Homo sapiens 2991 M 3 |Lietal Directly compar- 19~40 Mb
(human) (2010) ing two de novo sequences
assembled individ- | containing >150
ual human genes cannot be
genomes (an Asian | found in the
and an African) reference.
with the human
reference genome.
Emiliania huxleyi | 168 M 14 | Read et al. Building a refer- >1300 reference
(coccolithophore) (2013) ence genome from | genes are not pre-
an individual sent in the 3 indi-
genome; assem- vidual genomes;
bling 3 additional | the core-genome
individual accounts for 2/3
genomes and com- | of the reference
paring them with genes.
the reference
genome; determin-
ing presence/
absence of refer-
ence genes by
mapping short
reads of additional
10 individuals to
the reference.
Zea mays (maize) |2135M 503 | Hirsch et al. | Sequencing the Identifying ~8600
(2014) transcriptome of representative
503 accessions. transcript assem-
Assembling genes | blies (RTAs)
from transcriptome | absent in the B73
sequencing. A reference; 16.4%
gene with FPKM RTAs express in
> 0 is considered | all lines and
as present. 82.7% express in
subsets of the
lines.
Glycine soja 924 M 7 |Lietal Sequencing and de | Dispensable
(wild soybean) (2014) novo assembling genome accounts
7 individuals’ for 20% of the
genomes. Cluster- | pangenome, and
ing annotated displays greater
genes to gene sequence varia-
families. tion than the core-
genome.
Oryza sativa 374 M 1483 | Yao et al. Aligning Detecting ~9000
(rice) (2015) low-depth (1~3x) genes for the

(continued)
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Haploid
genome
size

Species (bps)*

References

Strategy

Comment

reads to a
pangenome; build-
ing the dispensable
genome by assem-
bling the pool of
unaligned reads
from each individ-
ual. Indica and
Jjaponica acces-
sions are sepa-
rately studied.

indica dispens-
able genome

and >6000 genes
for japonica dis-
pensable genome.

Brassica 514 M

oleracea

Golicz et al.
(2016)

Using a reference-
based iterative
strategy to assem-
ble the
pangenome:

(1) mapping reads
to the reference
sequence;

(2) assembling
unmapped reads;
(3) and updating
the reference.
Determine gene
PAV by mapping
short reads to the
pangenome.

Dispensable
genome accounts
for 18.7% of the
pangenome.

Triticum
aestivum (bread
wheat)

13,672 M

18

Montenegro
et al. (2017)

Building a refer-
ence genome;
Constructing the
pangenome
sequences by com-
bining the refer-
ence genome and
non-reference
sequences, which
are assembled
from the pool of
unaligned reads
from each individ-
ual. Determining
gene presence/
absence by map-
ping short reads to
the pangenome.

Dispensable
genome accounts
for 35.7% of the
pangenome.

(continued)
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Haploid
genome
size
Species (bps)* N References Strategy Comment
Oryza sativa 374 M 453 | Wangetal. | Assembling 3010 | Discover 283 M
(rice) (2018), Hu individual non-reference
et al. (2018), | genomes indepen- | sequences with
Sun et al. dently; building >10,000 genes;
(2017) representative Dispensable
non-reference genome accounts
sequences by for 35.7% of the
removing the pangenome.
redundant Dispensable
sequences from the | genes tend to be
pool of contigs that | younger, shorter,
are unaligned to exhibiting higher
the reference. level of SNPs.
Constructing a
pangenome by
combining the
reference genome
and representative
non-reference
sequences.
Determining gene
presence/absence
for 453 individuals
with sequencing
depth >20 by
mapping short
reads to the
pangenome.
Capsicum 3095 M 383 |Ouetal. Using the same Discover 956 M
(including 4 spe- (2018) strategy as the non-reference
cies) (pepper) above rice study. sequences with
>50,000 genes;
55.7% of the
pangenome show
>50% presence
frequencies in all
the 4 species.
Oryza sativa and | 374 M 66 | Zhao et al. Sequencing and de | Discover
Oryza rufipogon (2018) novo assembling >10,000
(rice and wild 66 individual non-reference
rice) genomes. Cluster- | genes; 62% of the
ing annotated pangenome can
genes to gene be found in >60
families. individuals.

“The genome size was obtained from NCBI genome database. It can be the size of a reference
genome or the average size of several independent assemblies
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dispensable genomes, harboring functions related to many agronomically important
traits. Moreover, several studies consistently demonstrate that dispensable genes
tend to be younger (Wang et al. 2018; Chen et al. 2012; Bush et al. 2013), shorter
(Wang et al. 2018; Bush et al. 2013; Schatz et al. 2014), have less exons (Wang et al.
2018; Bush et al. 2013; Schatz et al. 2014), harbor a much higher level of sequence
variations (Wang et al. 2018; Li et al. 2014), and have fewer paralogs (Wang et al.
2018; Bush et al. 2013).

1 Eukaryotic Pangenome Analysis Strategy

Because pangenome is a property of a species/population, any desirable pangenome
study should seriously consider its sampling strategy such that the maximum gene
PAVs can be detected with a minimum number of samples. According to the core
collection concept in plant genetic resources (Frankel and Brown 1984), a core
collection of a plant species germplasm consisting of limited but well-sampled
accessions of a plant species would represent the whole spectrum of its total
within-species diversity. In practice, a well-established semi-stratified sampling
strategy considering both the center(s) of diversity/origin and geographic distribution
of a plant species has demonstrated that the core collection containing only 5% of the
total collected accessions of a species would cover ~95% of the total species diversity
(Jia et al. 2017). Obviously, this concept should equally be applicable to pangenome
research of animal species.

For the analytic methodology, almost all bacterial pangenome analyses follow a
homolog-based strategy (Fig. 1) involving (1) de novo assembly of individual
genomes; (2) independent annotation of protein-coding genes in each assembled
genome; and (3) pooling all protein sequences together and clustering them into
homologs (gene families) or orthologs using protein clustering tools (Steinegger and
Soding 2018; Fu et al. 2012) or ortholog grouping tools (Emms and Kelly 2015; Li
et al. 2003). Gene family presence/absence in each individual can be retrieved from

homolog-based strategy
raw reads contigs protein-coding genes gene family

Individual A — - —————— -

Individual B - ~ -\ 2 > e
Individual C - - = ::, - ;:i core dispensable
de novo assembly gene anotation homology clustering

Fig. 1 Homolog-based strategy for pangenome analyses. This strategy is widely used for bacterial
pangenome analyses. It includes the following steps: (1) independent assemblies of individual
whole genomes; (2) annotation of protein-coding genes for each genome; and (3) clustering genes
to homologs (gene families) to determine the presence/absence of each gene family
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the clustering results. This strategy is highly dependent on the completeness of the
whole-genome assembly. Failure in assembling a sequence segment will lead to
calling the absence of all genes located on this sequence segment. Moreover, the
protein similarity threshold for gene family determination may impact the size and
even the relative size of the core-genome and pangenome.

Several challenges hinder applying a homolog-based strategy to eukaryotic
genomes. First, eukaryotic genomes are usually large, ranging from hundred mil-
lions of bases to billions of bases, and possess a high level of repetitive sequences,
making whole-genome assembly challenging. Several approaches can help improve
the assembly, including increasing the sequencing depth, sequencing multiple
libraries with diverse insertion sizes, and integrating long-read sequencing technol-
ogies (Rhoads and Au 2015; Schneider and Dekker 2012). However, all of these
approaches significantly increase the cost of whole-genome assembly, thus limiting
the number of individuals involved in a study. Second, eukaryotes have split gene
structures. Automatic gene annotation may be inaccurate and lead to biased results.
Even with these challenges, there are several studies following the homolog-based
strategy. Li et al. sequenced seven wild soybean genomes using Illumina technol-
ogy, each with three libraries (insertion sizes of 180 bp, 500 bp, and 2000 bp)
(Lietal. 2014). The average overall sequencing depth was 112x. Based on this data,
they were able to assemble ~89% of the genome. Recently, Zhao et al. sequenced
66 rice and wild rice accessions, each with two libraries (insertion sizes of 400 bp
and 700 bp) (Zhao et al. 2018). The average sequencing depth reached 115x, and
they were able to assemble ~85% of the genomes. Notably, a significant portion of
individual genomes were not assembled in both studies. The associated genes were
labeled as “absent” in the corresponding individuals. However, given that these false
negatives repeatedly happen for certain genes within repeat-rich regions, they can be
treated as systematic errors. The overall results may be still meaningful.

Reference-based genomic studies are prevalent in eukaryotes. Researchers have
been taking tremendous efforts to build more complete reference genomes and
providing confident gene annotations for important species. These reference genomes
and their annotated genes are the basis for modern genomics studies. Moreover,
reference-based genomic variants show a great power in explaining phenotypic
variations when used as markers for genome-wide association analyses. Therefore,
when introducing the pangenome concept to eukaryotic genomic analyses, taking
advantage of a pre-existing well-annotated reference genome is a straightforward
choice. Following this idea, the “map-to-pan” strategy became prevalent for eukary-
otic pangenome studies, especially when the target genome is extremely large or the
study involves a large number of individuals (Fig. 2). The “map-to-pan” strategy
includes two main steps: construction of pangenome sequences by combining the
reference genome and non-reference representative (NRR) sequences (upper panel of
Fig. 2) and determination of the presence/absence of each gene in each individual by
mapping reads to the pangenome and examining the gene coverage (lower pane of
Fig. 2).

Several approaches for detecting NRR sequences have been reported (Wang et al.
2018; Ou et al. 2018; Montenegro et al. 2017; Yao et al. 2015; Read et al. 2013; Li
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‘map-to-pan’ strategy

f Step 1: construction of pan-genome sequences (reference genome + Non-Reference Representative sequences)\

Option 1: metagenome-like assembly of unaligned reads NRR
raw reads contigs NRR sequences

Individual A I

Individual B - - —

Individual C — aligned unaligned

align to reference genome de novo assembly of
pooled unaligned reads

Option 2: independent assembly of unaligned reads

raw reads contigs unaligned contigs / contig clusters ~ NRR sequences
Individual A — - a
a
b b
Individual B - — — — ¢
C d—
e
L d €
Individual C — aligned unaligned, —
align to reference genome de novo assembly of homology clustering  remove reduandancy
. . . i unaligned reads (DNA level)
Option 3: iterative assembly of unaligned reads
start with Individual A add Individual B add Individual C
@ align to reference / updated reference
YO ‘o ‘o @ assembly of unaligned reads
— ) _ ® updating reference by adding newly
@ @ <@ assembled contigs
@ Nol T
«<——NRR sequences

Option 4: independent whole-genome assembly

raw reads contigs unaligned contigs unaligned contig clusters NRR sequences
Individual A — — a
a
b b
Individual B . —, [ — - -
C d——-
e—
Individual C - . aligned  unaligned g e
L de novo assembly align to reference genome homology clustering ~ remove reduandancy )
4 P 2\
Step 2: determination of gene presence/absence by read coverage
geneA gene B gene C
Individual A — PANACIAS]
_ S g
Individual A| v | v | «
Individual B == ais - — —
Individual B| v | v | x
o Individual C[ v | x | v/
Individual C  —— e
reference NRR
align to pan-genome sequences check gene coverage gene presence / absence
& J

Fig. 2 “Map-to-pan” strategy for pangenome analyses. This strategy is mostly used for eukaryotic
pangenome analyses. It includes two main steps: (1) construction of pangenome sequences by
integrating a reference genome and assembled non-reference sequences; (2) determination of
presence/absence of each gene (both reference genes and non-reference predicted genes) based
on read coverage. Four strategies for obtaining non-reference representative sequences are
introduced
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et al. 2014). Yao et al. utilized a metagenome-like assembly of mixed unaligned
reads from 1483 rice accessions with extremely low sequencing depth (1~3x) (Yao
et al. 2015) (Option 1 in Fig. 2), enabling the detection of ~9000 non-reference
genes. This approach assembled NRR sequences using heterozygous reads and may
generate chimeric contigs, especially when considering that non-reference sequences
may exhibit higher levels of repetitive sequences. A variant of this option (Option
2 in Fig. 2) is to assemble the unaligned reads from each individual separately and
retrieve NRR sequences using DNA homology clustering strategies, such as CD-
HIT-EST (Fu et al. 2012), UCLUST (Edgar 2010), MeShClust (James et al. 2018),
etc. Golicz et al. utilized an iterative assembly approach (Option 3 in Fig. 2),
iteratively conducting the following three steps: mapping of the reads to a pseudo
pangenome (starting with the reference genome); assembling the unmapped reads;
and updating a new pseudo pangenome with new sequences added (Golicz et al.
2016). They demonstrated that the sizes of final assemblies were similar regardless
of the order of individuals added into the iterative process. However, an improper
ordering may lead to fragmented assemblies. Alternatively, Hu et al. proposed an
integrated approach (implemented in EUPAN toolkit (Hu et al. 2017)) (Option 4 in
Fig. 2): (1) independent assembly of individual genomes; (2) generation of NRR
sequences from homology clustering of all unaligned contigs. This approach has the
benefit of not involving chimeric sequences as well as keeping better sequence
completeness. This approach has also been recently applied to hundreds of rice
genomes (Wang et al. 2018; Hu et al. 2018; Sun et al. 2017) and the 383 Capsicum
genomes (Ou et al. 2018). This strategy will perform better than Option 2 in the
scenario where a novel sequence contains a short reference segment (likely to be
repetitive sequences) in the middle; option 2 will assemble two segmented segments
instead. However, the process of whole-genome assembly is computationally inten-
sive, hindering its application to extremely large genomes. In summary, pooling of
low-depth sequenced genomes may also contribute to pangenome construction
(Option 1). Options 2—4 are preferable if sequencing depth is high enough for
independent assemblies. Options 2-3 are extremely useful for eukaryotes with
very large genomes (e.g., the bread wheat with a haploid genome of >13Gb).
After the construction of pangenome sequences, gene presence/absence can be
determined by examining gene coverage when raw reads are mapped to the
pangenome (lower panel of Fig. 2). Remarkably, very different thresholds have
been applied to determine a gene’s presence. For example, Wang et al. considered a
gene’s presence as CDS coverage (>1 read) over 0.95 and gene body coverage over
0.85 (Wang et al. 2018); Ou et al. treated a gene’s presence as CDS coverage (>1
read) over 0.6 and gene body coverage over 0.5 (Ou et al. 2018); Read et al.
considered a gene’s presence as gene body coverage (>1 read) over 0.5 (Read
et al. 2013; Montenegro et al. 2017; Golicz et al. 2016) used a threshold of exon
coverage over 0.05. Unfortunately, such divergent thresholds make the quantitative
cross-species comparisons of gene PAV-related features meaningless. Theoretically,
with a high-enough sequencing depth, a gene’s presence is equal to that the gene, at
least the CDS, should be fully covered. Loss of partial sequences of a gene, defined
as a “functional unit,” may cause a loss of gene function. Setting up gene body
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coverage cutoffs will help distinguish retro-transcribed pseudo-genes from their
original ancestries. In reality, certain genomic regions may be not covered due to
both insufficient sequencing depth and unevenness of the sequencing. One plausible
solution is to lower the thresholds. However, the sequencing depth difference may
further lead to inconsistencies in sensitivities of gene presence determination among
individuals; individuals with higher sequencing depth would contain more genes.
Another possible solution is to study the presence/absence of gene families instead
of genes by calculating “gene presence” using a low threshold and determining gene
family presence based on “gene presence.” In this scenario, the unbalanced sequenc-
ing depths also need to be fixed either by sampling to equal depths or setting up
dynamic thresholds based on the sequencing depth. Nevertheless, it is not
recommended to determine gene presence/absence from low-depth sequencing
data. Gene presence/absence should only be studied and compared for individuals
with sufficient sequencing data, that is, when mapping to the pangenome, the
coverage of the genome should be saturated. For example, Wang et al. mapped
raw reads of ~3000 rice accessions to the reference genome and found that genome
coverage is stable when sequencing depth exceeds 20x; therefore, gene presence/
absence was only studied for a selected set of 453 accessions with sequencing
depth >20 (Wang et al. 2018).

The “map-to-pan” strategy also exhibits better accuracy. A pangenome study can
be technically evaluated at two levels: (1) the accuracy of pangenome (gene anno-
tation and gene completeness) and (2) the accuracy of gene presence/absence calling.
The “map-to-pan” strategy utilizes reference sequences and their annotations
directly. Strategies using a whole-genome assembly (homolog-based, and option
4 of the “map-to-pan” strategy) will have a higher possibility of detecting complete
gene sequences. At the gene presence/absence level, the homolog-based strategy has
a bottleneck in assembling a complete genome, and “map-to-pan” strategies defi-
nitely show better accuracy when sequencing depth is high enough (Hu et al. 2017).

After determination of gene presence/absence, similar analyses as seen in bacte-
rial pangenome studies can be performed for eukaryotes, including but not limited to
(1) simulating the pangenome and core-genome sizes; (2) constructing phylogenic
relationships based on gene presence/absence; and (3) exploring functions related to
the dispensable genome or to a specific dispensable gene.

2  Future Directions

In summary, the pangenome is an important property of any eukaryotic species/
populations and gene PAVs represent a very important dimension of within-species/
population diversity that remains uncharacterized in most eukaryotic species. As the
costs in genome sequencing decrease, one would expect the pangenome analyses to
be carried out in more and more species, firstly in most important and/or model plant
and animal species, and then to natural populations of wild species. Thus, eukaryotic
pangenome research in the next several years should focus on revealing within-
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species/population gene PAVs and building the pan-references for species of inter-
est. The pan-reference of a species should include the reference illustrating (1) all the
sequences within the species, (2) the connections of alternative sequence segments
and (3) the genotype likelihoods (allele frequencies) such that all possible mecha-
nisms (SVs and distribution/activities of transposable elements) potentially respon-
sible for pangenome expansion and generation of gene PAVs can be clearly
represented and understood. As pangenomes and gene PAVs are revealed in more
and more plant and animal species, the eukaryotic pangenome research will be
naturally extended to the comparative pangenome analyses, focusing on compari-
sons of the pangenome constitution between or among related species. Results from
this kind of research are expected to provide new insights into the evolutionary
history of eukaryotic species. For example, comparisons between related species or
between different populations of the same species in portions of the core and
dispensable genes/gene families in their pangenomes and their patterns how new
gene emerged will provide important information on their evolutionary history.
Expectedly, emergences of new species would be accompanied with bursts of new
gene emergences, while major distinctions with massive gene losses in evolution.
Also, it would be of great interest to compare the core-genome constitution between
related species and to compare the dispensable genome constitution between differ-
ent populations of the same species. In the former cases, one may see the differences
in key genes and their functionalities between related species. In the latter cases, one
may discover important sets of genes contributing to adaptations to specific envi-
ronments important for future plant and animal improvements. In this respect,
genome-wide association analyses of important traits based on pangenome SNPs
or based on gene PAVs should be widely adopted (Hu et al. 2018).

As more eukaryotic pangenome analyses are expected to emerge, the technical
strategy and methodology in analyses of eukaryotic pangenomes need to be
improved. Because of the relatively high genome sequencing and analytic costs in
eukaryotic pangenomes, the NGS technology will remain the primary technology for
the pangenome studies of most eukaryotes in the short term, particularly for those
species of very large genomes, and so for the “map-to-pan” strategy elaborated in
detail here. However, before applying this strategy, specific attentions should be paid
to the sampling strategy to make sure representative individuals of minimum sample
size of the target species or population to be used, and to the selection and evaluation
of parameters of the map-to-pan methodology. In the presentation and storage of
results from the eukaryotic pangenome analyses, graph-based data structures are
highly desirable and should be widely used in pan-reference storage and visualiza-
tion (Zekic et al. 2018; Marschall et al. 2018; Baier et al. 2016). Pioneer work has
been done in the human genome research, where the NRR sequences might be of a
small size. Alternative sequences of highly variable regions were added to human
reference genome, starting with GRCh37 (Church et al. 2011). Alternative
sequences were anchored to locations along the primary assembly. Besides the
limited NRR sequences, a large number of SNPs, InDels, and SVs (deletions,
duplications, and translocations) can also be integrated into the pan-reference
(Zekic et al. 2018; Marschall et al. 2018; Baier et al. 2016). What is more, read
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alignment tools and variant-calling tools working on the graph-based pan-reference
will be required. However, for plant species of high within-species sequence diver-
sity, the challenge is how to anchor large numbers of NRR sequences, whose sizes
may be as large as half of the reference genome. Finally, considering the prediction
of “new” or novel genes based on simple thresholds of sequence homology without
detailed information on gene functionality is always somewhat arbitrary, the
pangenome results based on the NGS technology can be validated and improved
greatly if high-quality reference genomes of relatively few representative individuals
are included in a pangenome study, particularly for important model species of
relatively small genome sizes.
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