Jean Goubault-Larrecq

Barbara Konig (Eds.)

Foundations
of Software Science and
Computation Structures

23rd International Conference, FOSSACS 2020
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2020
Dublin, Ireland, April 25-30, 2020, Proceedings

fé‘ ETAPS

LNCS 12077 | ARCoSS

EUROPEAN JOINT CONFERENCES ON
THEORY & PRACTICE OF SOFTWARE

Lecture Notes in Computer Science 12077

Founding Editors

Gerhard Goos, Germany
Juris Hartmanis, USA

Editorial Board Members

Elisa Bertino, USA Gerhard Woeginger ®, Germany
Wen Gao, China Moti Yung, USA
Bernhard Steffen ®, Germany

Advanced Research in Computing and Software Science

Subline of Lecture Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy
Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, TU Munich, Germany

Benjamin C. Pierce, University of Pennsylvania, USA
Bernhard Steffen®, University of Dortmund, Germany

Deng Xiaotie, Peking University, Beijing, China

Jeannette M. Wing, Microsoft Research, Redmond, WA, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693
https://orcid.org/0000-0001-9619-1558

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Jean Goubault-Larrecq - Barbara Konig (Eds.)

Foundations
of Software Science and
Computation Structures

23rd International Conference, FOSSACS 2020
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2020
Dublin, Ireland, April 25-30, 2020

Proceedings

@ Springer Open

Editors

Jean Goubault-Larrecq Barbara Konig
Université Paris-Saclay, University of Duisburg-Essen
ENS Paris-Saclay, CNRS Duisburg, Germany

Cachan, France

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-45230-8 ISBN 978-3-030-45231-5 (eBook)

https://doi.org/10.1007/978-3-030-45231-5
LNCS Sublibrary: SL1 — Theoretical Computer Science and General Issues

© The Editor(s) (if applicable) and The Author(s) 2020. This book is an open access publication.

Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this book are included in the book’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-5879-3304
https://orcid.org/0000-0002-4193-2889
https://doi.org/10.1007/978-3-030-45231-5
http://creativecommons.org/licenses/by/4.0/

ETAPS Foreword

Welcome to the 23rd ETAPS! This is the first time that ETAPS took place in Ireland in
its beautiful capital Dublin.

ETAPS 2020 was the 23rd instance of the European Joint Conferences on Theory
and Practice of Software. ETAPS is an annual federated conference established in
1998, and consists of four conferences: ESOP, FASE, FoSSaCS, and TACAS. Each
conference has its own Program Committee (PC) and its own Steering Committee
(SC). The conferences cover various aspects of software systems, ranging from
theoretical computer science to foundations of programming language developments,
analysis tools, and formal approaches to software engineering. Organizing these
conferences in a coherent, highly synchronized conference program enables researchers
to participate in an exciting event, having the possibility to meet many colleagues
working in different directions in the field, and to easily attend talks of different
conferences. On the weekend before the main conference, numerous satellite
workshops took place that attracted many researchers from all over the globe. Also, for
the second time, an ETAPS Mentoring Workshop was organized. This workshop is
intended to help students early in the program with advice on research, career, and life
in the fields of computing that are covered by the ETAPS conference.

ETAPS 2020 received 424 submissions in total, 129 of which were accepted,
yielding an overall acceptance rate of 30.4%. I thank all the authors for their interest in
ETAPS, all the reviewers for their reviewing efforts, the PC members for their
contributions, and in particular the PC (co-)chairs for their hard work in running this
entire intensive process. Last but not least, my congratulations to all authors of the
accepted papers!

ETAPS 2020 featured the unifying invited speakers Scott Smolka (Stony Brook
University) and Jane Hillston (University of Edinburgh) and the conference-specific
invited speakers (ESOP) Isil Dillig (University of Texas at Austin) and (FASE) Willem
Visser (Stellenbosch University). Invited tutorials were provided by Erika Abrahdm
(RWTH Aachen University) on the analysis of hybrid systems and Madhusudan
Parthasarathy (University of Illinois at Urbana-Champaign) on combining Machine
Learning and Formal Methods. On behalf of the ETAPS 2020 attendants, I thank all the
speakers for their inspiring and interesting talks!

ETAPS 2020 took place in Dublin, Ireland, and was organized by the University of
Limerick and Lero. ETAPS 2020 is further supported by the following associations and
societies: ETAPS e.V., EATCS (European Association for Theoretical Computer
Science), EAPLS (European Association for Programming Languages and Systems),
and EASST (European Association of Software Science and Technology). The local
organization team consisted of Tiziana Margaria (general chair, UL and Lero),
Vasileios Koutavas (Lero@UCD), Anila Mjeda (Lero@UL), Anthony Ventresque
(Lero@UCD), and Petros Stratis (Easy Conferences).

vi ETAPS Foreword

The ETAPS Steering Committee (SC) consists of an Executive Board, and
representatives of the individual ETAPS conferences, as well as representatives of
EATCS, EAPLS, and EASST. The Executive Board consists of Holger Hermanns
(Saarbriicken), Marieke Huisman (chair, Twente), Joost-Pieter Katoen (Aachen and
Twente), Jan Kofron (Prague), Gerald Liittgen (Bamberg), Tarmo Uustalu (Reykjavik
and Tallinn), Caterina Urban (Inria, Paris), and Lenore Zuck (Chicago).

Other members of the SC are: Armin Biere (Linz), Jordi Cabot (Barcelona), Jean
Goubault-Larrecq (Cachan), Jan-Friso Groote (Eindhoven), Esther Guerra (Madrid),
Jurriaan Hage (Utrecht), Reiko Heckel (Leicester), Panagiotis Katsaros (Thessaloniki),
Stefan Kiefer (Oxford), Barbara Konig (Duisburg), Fabrice Kordon (Paris), Jan
Kretinsky (Munich), Kim G. Larsen (Aalborg), Tiziana Margaria (Limerick), Peter
Miiller (Zurich), Catuscia Palamidessi (Palaiseau), Dave Parker (Birmingham),
Andrew M. Pitts (Cambridge), Peter Ryan (Luxembourg), Don Sannella (Edinburgh),
Bernhard Steffen (Dortmund), Mari€lle Stoelinga (Twente), Gabriele Taentzer
(Marburg), Christine Tasson (Paris), Peter Thiemann (Freiburg), Jan Vitek (Prague),
Heike Wehrheim (Paderborn), Anton Wijs (Eindhoven), and Nobuko Yoshida
(London).

I would like to take this opportunity to thank all speakers, attendants, organizers
of the satellite workshops, and Springer for their support. I hope you all enjoyed
ETAPS 2020. Finally, a big thanks to Tiziana and her local organization team for all
their enormous efforts enabling a fantastic ETAPS in Dublin!

February 2020 Marieke Huisman
ETAPS SC Chair
ETAPS e.V. President

Preface

This volume contains the papers presented at the 23rd International Conference on
Foundations of Software Science and Computation Structures (FoSSaCS), which took
place in Dublin, Ireland, during April 27-30, 2020. The conference series is dedicated
to foundational research with a clear significance for software science. It brings
together research on theories and methods to support the analysis, integration, syn-
thesis, transformation, and verification of programs and software systems.

This volume contains 31 contributed papers selected from 98 full paper submis-
sions, and also a paper accompanying an invited talk by Scott Smolka (Stony Brook
University, USA). Each submission was reviewed by at least three Program Committee
members, with the help of external reviewers, and the final decisions took into account
the feedback from a rebuttal phase. The conference submissions were managed using
the EasyChair conference system, which was also used to assist with the compilation
of these proceedings.

We wish to thank all the authors who submitted papers to FoSSaCS 2020, the
Program Committee members, the Steering Committee members and the external
reviewers. In addition, we are grateful to the ETAPS 2020 Organization for providing
an excellent environment for FoSSaCS 2020 alongside the other ETAPS conferences
and workshops.

February 2020 Jean Goubault-Larrecq
Barbara Konig

Program Committee

Parosh Aziz Abdulla
Thorsten Altenkirch
Paolo Baldan

Nick Benton
Frédéric Blanqui
Michele Boreale
Corina Cirstea
Pedro R. D’Argenio

Josée Desharnais
Jean Goubault-Larrecq

Ichiro Hasuo
Delia Kesner
Shankara Narayanan
Krishna
Barbara Konig
Stawomir Lasota
Xavier Leroy
Leonid Libkin
Jean-Yves Marion
Dominique Méry
Matteo Mio
Andrzej Murawski
Prakash Panangaden
Amr Sabry
Lutz Schroder

Sebastian Siebertz
Benoit Valiron

Steering Committee

Andrew Pitts (Chair)
Christel Baier
Lars Birkedal
Ugo Dal Lago

Organization

Uppsala University, Sweden

University of Nottingham, UK

Universita di Padova, Italy

Facebook, UK

Inria and LSV, France

Universita di Firenze, Italy

University of Southampton, UK

Universidad Nacional de Cérdoba, CONICET,
Argentina

Université Laval, Canada

Université Paris-Saclay, ENS Paris-Saclay,
CNRS, LSV, Cachan, France

National Institute of Informatics, Japan

IRIF, Université de Paris, France

IIT Bombay, India

Universitdt Duisburg-Essen, Germany

University of Warsaw, Poland

College de France and Inria, France

University of Edinburgh, UK, and ENS Paris, France

LORIA, Université de Lorraine, France

LORIA, Université de Lorraine, France

LIP, CNRS, ENS Lyon, France

University of Oxford, UK

McGill University, Canada

Indiana University Bloomington, USA

Friedrich-Alexander-Universitdt Erlangen-Niirnberg,
Germany

Universitit Bremen, Germany

LRI, CentraleSupélec, Université Paris-Saclay, France

University of Cambridge, UK

Technische Universitdt Dresden, Germany
Aarhus University, Denmark

Universita degli Studi di Bologna, Italy

X Organization

Javier Esparza Technische Universitdt Miinchen, Germany
Anca Muscholl LaBRI, Université de Bordeaux, France
Frank Pfenning Carnegie Mellon University, USA

Additional Reviewers

Accattoli, Beniamino
Alvim, Mario S.
André, Etienne
Argyros, George
Arun-Kumar, S.

Ayala-Rincon, Mauricio

Bacci, Giorgio
Bacci, Giovanni
Balabonski, Thibaut
Basile, Davide
Berger, Martin
Bernardi, Giovanni
Bisping, Benjamin
Bodeveix, Jean-Paul
Bollig, Benedikt
Bonchi, Filippo
Bonelli, Eduardo
Boulmé, Sylvain
Bourke, Timothy
Bradfield, Julian
Breuvart, Flavien
Bruni, Roberto
Bruse, Florian
Capriotti, Paolo
Carette, Jacques
Carette, Titouan
Carton, Olivier
Cassano, Valentin
Chadha, Rohit
Charguéraud, Arthur
Cho, Kenta
Choudhury, Vikraman
Ciancia, Vincenzo
Clemente, Lorenzo
Colacito, Almudena
Corradini, Andrea
Czerwinski, Wojciech
de Haan, Ronald

de Visme, Marc

Dell’Erba, Daniele
Deng, Yuxin
Eickmeyer, Kord
Exibard, Leo
Faggian, Claudia
Fijalkow, Nathanaé¢l
Filali-Amine, Mamoun
Francalanza, Adrian
Frutos Escrig, David
Galletta, Letterio
Ganian, Robert
Garrigue, Jacques
Gastin, Paul
Genaim, Samir
Genest, Blaise
Ghica, Dan
Goncharov, Sergey
Gorla, Daniele
Guerrini, Stefano
Hirschowitz, Tom
Hofman, Piotr
Hoshino, Naohiko
Howar, Falk
Inverso, Omar
Ivan, Szabolcs
Jaax, Stefan
Jeandel, Emmanuel
Johnson, Michael
Kabhrs, Stefan
Kamburjan, Eduard
Katsumata, Shin-Ya
Kerjean, Marie
Kiefer, Stefan
Komorida, Yuichi
Kop, Cynthia
Kremer, Steve
Kuperberg, Denis
Kietinsky, Jan
Laarman, Alfons

Laurent, Fribourg
Levy, Paul Blain
Li, Yong

Licata, Daniel R.
Liquori, Luigi
Lluch Lafuente, Alberto
Lopez, Aliaume
Malherbe, Octavio
Manuel, Amaldev
Manzonetto, Giulio
Matache, Christina
Matthes, Ralph
Mayr, Richard
Melliés, Paul-André
Merz, Stephan
Miculan, Marino
Mikulski, Lukasz
Moser, Georg
Moss, Larry
Munch-Maccagnoni, Guillaume
Muskalla, Sebastian
Nantes-Sobrinho, Daniele
Nestra, Harmel
Neumann, Eike
Neves, Renato
Niehren, Joachim
Padovani, Luca
Pagani, Michele
Paquet, Hugo
Patterson, Daniel
Pedersen, Mathias Ruggaard
Peressotti, Marco
Pitts, Andrew
Potapov, Igor
Power, John
Praveen, M.
Puppis, Gabriele
Péchoux, Romain
Pérez, Guillermo
Quatmann, Tim
Rabinovich, Roman
Radanne, Gabriel
Rand, Robert
Ravara, Antonio
Remy, Didier

Organization

Reutter, Juan L.
Rossman, Benjamin
Rot, Jurriaan

Rowe, Reuben
Ruemmer, Philipp
Sammartino, Matteo
Sankaran, Abhisekh
Sankur, Ocan
Sattler, Christian
Schmitz, Sylvain
Serre, Olivier
Shirmohammadi, Mahsa
Siles, Vincent
Simon, Bertrand
Simpson, Alex
Singh, Neeraj
Sprunger, David
Srivathsan, B.
Staton, Sam

Stolze, Claude
Strafburger, Lutz
Streicher, Thomas
Tan, Tony

Tawbi, Nadia
Torunczyk, Szymon
Tzevelekos, Nikos
Urbat, Henning

van Bakel, Steffen
van Breugel, Franck
van de Pol, Jaco
van Doorn, Floris
Van Raamsdonk, Femke
Vaux Auclair, Lionel
Verma, Rakesh M.
Vial, Pierre
Vignudelli, Valeria
Vrgoc, Domagoj
Waga, Masaki
Wang, Meng
Witkowski, Piotr
Zamdzhiev, Vladimir
Zemmari, Akka
Zhang, Zhenya
Zorzi, Margherita

xi

Contents

Usama Mehmood, Shouvik Roy, Radu Grosu, Scott A. Smolka,
Scott D. Stoller, and Ashish Tiwari

On Well-Founded and Recursive Coalgebras 17
Jiri Adamek, Stefan Milius, and Lawrence S. Moss

Timed Negotiations oot 37
S. Akshay, Blaise Genest, Loic Hélouét, and Sharvik Mital

Cartesian Difference Categories, 57
Mario Alvarez-Picallo and Jean-Simon Pacaud Lemay

Contextual Equivalence for Signal Flow Graphs 77
Filippo Bonchi, Robin Piedeleu, Pawel Sobocinski, and Fabio Zanasi

Parameterized Synthesis for Fragments of First-Order Logic Over

Data Words e 97
Béatrice Bérard, Benedikt Bollig, Mathieu Lehaut,
and Nathalie Sznajder

Controlling a Random Population 119
Thomas Colcombet, Nathanaél Fijalkow, and Pierre Ohlmann

Decomposing Probabilistic Lambda-Calculi 136
Ugo Dal Lago, Giulio Guerrieri, and Willem Heijltjes

On the k-synchronizability of Systems. 157
Cinzia Di Giusto, Laetitia Laversa, and Etienne Lozes

General Supervised Learning as Change Propagation with Delta Lenses. 177
Zinovy Diskin

Non-idempotent Intersection Types in Logical Form 198
Thomas Ehrhard

On Computability of Data Word Functions Defined by Transducers 217
Léo Exibard, Emmanuel Filiot, and Pierre-Alain Reynier

Minimal Coverability Tree Construction Made Complete and Efficient 237
Alain Finkel, Serge Haddad, and Igor Khmelnitsky

X1v Contents

Constructing Infinitary Quotient-Inductive Types. 257
Marcelo P. Fiore, Andrew M. Pitts, and S. C. Steenkamp

Relative Full Completeness for Bicategorical Cartesian Closed Structure 277
Marcelo Fiore and Philip Saville

A Duality Theoretic View on Limits of Finite Structures 299
Mai Gehrke, Tomas Jakl, and Luca Reggio

Correctness of Automatic Differentiation via Diffeologies
and Categorical Gluing 319
Mathieu Huot, Sam Staton, and Matthijs Vikar

Deep Induction: Induction Rules for (Truly) Nested Types. 339
Patricia Johann and Andrew Polonsky

Exponential Automatic Amortized Resource Analysis 359
David M. Kahn and Jan Hoffmann

Concurrent Kleene Algebra with Observations: From Hypotheses

t0 COMPIEENESS . . . o o ot e 381
Tobias Kappé, Paul Brunet, Alexandra Silva, Jana Wagemaker,
and Fabio Zanasi

Graded Algebraic Theories. 401
Satoshi Kura

A Curry-style Semantics of Interaction: From Untyped to Second-Order

Lazy Ap-Calculuso 422
James Laird
An Axiomatic Approach to Reversible Computation 442

Ivan Lanese, lain Phillips, and Irek Ulidowski

An Auxiliary Logic on Trees: on the Tower-Hardness of Logics Featuring
Reachability and Submodel Reasoning. 462
Alessio Mansutti

The Inconsistent Labelling Problem of Stutter-Preserving
Partial-Order Reduction 482
Thomas Neele, Antti Valmari, and Tim A. C. Willemse

Semantical Analysis of Contextual Types. 502
Brigitte Pientka and Ulrich Schépp

Ambiguity, Weakness, and Regularity in Probabilistic Biichi Automata 522
Christof Loding and Anton Pirogov

Contents

Local Local Reasoning: A BI-Hyperdoctrine for Full Ground Store.
Miriam Polzer and Sergey Goncharov

Quantum Programming with Inductive Datatypes:

Causality and Affine Type Theory
Romain Péchoux, Simon Perdrix, Mathys Rennela,
and Vladimir Zamdzhiev

Spinal Atomic Lambda-Calculus.,
David Sherratt, Willem Heijltjes, Tom Gundersen, and Michel Parigot

Learning Weighted Automata over Principal Ideal Domains
Gerco van Heerdt, Clemens Kupke, Jurriaan Rot, and Alexandra Silva

The Polynomial Complexity of Vector Addition Systems with States.
Florian Zuleger

Author Index e

XV

®

Check for
updates

Neural Flocking: MPC-based Supervised
Learning of Flocking Controllers

(9)Usama Mehmood!, Shouvik Roy!, Radu Grosu?, Scott A. Smolkal,
Scott D. Stoller!, and Ashish Tiwari®

1 Stony Brook University, Stony Brook NY, USA
umehmood@cs . stonybrook.edu
2 Technische Universitat Wien, Wien, Austria
3 Microsoft Research, San Francisco CA, USA

Abstract. We show how a symmetric and fully distributed flocking con-
troller can be synthesized using Deep Learning from a centralized flocking
controller. Our approach is based on Supervised Learning, with the cen-
tralized controller providing the training data, in the form of trajectories
of state-action pairs. We use Model Predictive Control (MPC) for the cen-
tralized controller, an approach that we have successfully demonstrated
on flocking problems. MPC-based flocking controllers are high-performing
but also computationally expensive. By learning a symmetric and dis-
tributed neural flocking controller from a centralized MPC-based one,
we achieve the best of both worlds: the neural controllers have high
performance (on par with the MPC controllers) and high efficiency. Our
experimental results demonstrate the sophisticated nature of the dis-
tributed controllers we learn. In particular, the neural controllers are
capable of achieving myriad flocking-oriented control objectives, includ-
ing flocking formation, collision avoidance, obstacle avoidance, predator
avoidance, and target seeking. Moreover, they generalize the behavior
seen in the training data to achieve these objectives in a significantly
broader range of scenarios. In terms of verification of our neural flock-
ing controller, we use a form of statistical model checking to compute
confidence intervals for its convergence rate and time to convergence.

Keywords: Flocking - Model Predictive Control - Distributed Neural Controller
- Deep Neural Network - Supervised Learning

1 Introduction

With the introduction of Reynolds rule-based model [16,17], it is now possible
to understand the flocking problem as one of distributed control. Specifically, in
this model, at each time-step, each agent executes a control law given in terms
of the weighted sum of three competing forces to determine its next acceleration.
Each of these forces has its own rule: separation (keep a safe distance away
from your neighbors), cohesion (move towards the centroid of your neighbors),
and alignment (steer toward the average heading of your neighbors). Reynolds

© The Author(s) 2020
J. Goubault-Larrecq and B. Konig (Eds.): FOSSACS 2020, LNCS 12077, pp. 1-16, 2020.
https://doi.org/10.1007/978-3-030-45231-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45231-5_1&domain=pdf

2 U. Mehmood et al.

Initial State
Distribution

Trajectories NN Parameters Distributed

Neural Controller

Distributed MPC | Trajectories
Controller

Fig. 1: Neural Flocking Architecture

Trajectories
SR

Centralized 5 g
T Modul
MPC Controller Evaluation
Module

controller is distributed; i.e., it is executed separately by each agent, using
information about only itself and nearby agents, and without communication.
Furthermore, it is symmetric; i.e., every agent runs the same controller (same
code).

We subsequently showed that a simpler, more declarative approach to the
flocking problem is possible [11]. In this setting, flocking is achieved when the
agents combine to minimize a system-wide cost function. We presented centralized
and distributed solutions for achieving this form of “declarative flocking” (DF),
both of which were formulated in terms of Model-Predictive Control (MPC) [2].

Another advantage of DF over the ruled-based approach exemplified by
Reynolds model is that it allows one to consider additional control objectives
(e.g., obstacle and predator avoidance) simply by extending the cost function
with additional terms for these objectives. Moreover, these additional terms are
typically quite straightforward in nature. In contrast, deriving behavioral rules
that achieve the new control objectives can be a much more challenging task.

An issue with MPC is that computing the next control action can be compu-
tationally expensive, as MPC searches for an action sequence that minimizes the
cost function over a given prediction horizon. This renders MPC unsuitable for
real-time applications with short control periods, for which flocking is a prime
example. Another potential problem with MPC-based approaches to flocking is
its performance (in terms of achieving the desired flight formation), which may
suffer in a fully distributed setting.

In this paper, we present Neural Flocking (NF), a new approach to the
flocking problem that uses Supervised Learning to learn a symmetric and fully
distributed flocking controller from a centralized MPC-based controller. By doing
so, we achieve the best of both worlds: high performance (on par with the MPC
controllers) in terms of meeting flocking flight-formation objectives, and high
efficiency leading to real-time flight controllers. Moreover, our NF controllers can
easily be parallelized on hardware accelerators such as GPUs and TPUs.

Figure 1 gives an overview of the NF approach. A high-performing centralized
MPC controller provides the labeled training data to the learning agent: a
symmetric and distributed neural controller in the form of a deep neural network
(DNN). The training data consists of trajectories of state-action pairs, where a
state contains the information known to an agent at a time step (e.g., its own
position and velocity, and the position and velocity of its neighbors), and the
action (the label) is the acceleration assigned to that agent at that time step by
the centralized MPC controller.

We formulate and evaluate NF in a number of essential flocking scenarios:
basic flocking with inter-agent collision avoidance, as in [11], and more advanced

Neural Flocking: MPC-based Supervised Learning of Flocking Controllers 3

scenarios with additional objectives, including obstacle avoidance, predator avoid-
ance, and target seeking by the flock. We conduct an extensive performance
evaluation of NF. Our experimental results demonstrate the sophisticated nature
of NF controllers. In particular, they are capable of achieving all of the stated
control objectives. Moreover, they generalize the behavior seen in the training
data in order to achieve these objectives in a significantly broader range of scenar-
ios. In terms of verification of our neural controller, we use a form of statistical
model checking [5,10] to compute confidence intervals for its rate of convergence
to a flock and for its time to convergence.

2 Background

We consider a set of n dynamic agents A = {1,...,n} that move according to
the following discrete-time equations of motion:

pi(k+1) = pi(k) +dt - vi(k), [vi(k)| <

<

(1)

sl

where p; (k) € R?, v;(k) € R? a;(k) € R? are the position, velocity and accelera-
tion of agent i € A respectively at time step k, and dt € R* is the time step. The
magnitudes of velocities and accelerations are bounded by v and a, respectively.
Acceleration a; (k) is the control input for agent ¢ at time step k. The acceleration
is updated after every n time steps i.e., n - dt is the control period. The flock
configuration at time step k is thus given by the following vectors (in boldface):

p(k) = [pi (k) - py (K)]" (2)
v(k) = [of (k) - - vy (k)] (3)
a(k) = [af (k) - -~ a5, (k)] (4)

The configuration vectors are referred to without the time indexing as p,
v, and a. The neighborhood of agent i at time step k, denoted by N;(k) C A,
contains its N-nearest neighbors, i.e., the N other agents closest to it. We use
this definition (in Section 2.2 to define a distributed-flocking cost function) for
simplicity, and expect that a radius-based definition of neighborhood would lead
to similar results for our distributed flocking controllers.

2.1 Model-Predictive Control

Model-Predictive control (MPC) [2] is a well-known control technique that has
recently been applied to the flocking problem [11,19,20]. At each control step,
an optimization problem is solved to find the optimal sequence of control actions
(agent accelerations in our case) that minimizes a given cost function with respect
to a predictive model of the system. The first control action of the optimal control
sequence is then applied to the system; the rest is discarded. In the computation

4 U. Mehmood et al.

of the cost function, the predictive model is evaluated for a finite prediction
horizon of T' control steps.

MPC-based flocking models can be categorized as centralized or distributed. A
centralized model assumes that complete information about the flock is available
to a single “global” controller, which uses the states of all agents to compute
their next optimal accelerations. The following optimization problem is solved by
a centralized MPC controller at each control step k:

T—1
i JE)+ N E+t]|k)|? 5
k) (k) + ;Ha(+t k) (5)

The first term J(k) is the centralized model-specific cost, evaluated for T control
steps (this embodies the predictive aspect of MPC), starting at time step k. It
encodes the control objective of minimizing the cost function J(k). The second
term, scaled by a weight A > 0, penalizes large control inputs: a(k + ¢ | k) are
the predictions made at time step k for the accelerations at time step k + .

In distributed MPC, each agent computes its acceleration based only on its
own state and its local knowledge, e.g., information about its neighbors:

T—1
min Ji(k) + \- a;(k+t|k)|? 6
ai(klk),...,a; (k+T—1|k) < a (k) ; lai([El (6)

Ji(k) is the distributed, model-specific cost function for agent ¢, analogous to J(k).
In a distributed setting where an agent’s knowledge of its neighbors’ behavior
is limited, an agent cannot calculate the exact future behavior of its neighbors.
Hence, the predictive aspect of J;(k) must rely on some assumption about
that behavior during the prediction horizon. Our distributed cost functions are
based on the assumption that the neighbors have zero accelerations during the
prediction horizon. While this simple design is clearly not completely accurate,
our experiments show that it still achieves good results.

2.2 Declarative Flocking

Declarative flocking (DF) is a high-level approach to designing flocking algorithms
based on defining a suitable cost function for MPC [11]. This is in contrast to the
operational approach, where a set of rules are used to capture flocking behavior,
as in Reynolds model. For basic flocking, the DF cost function contains two terms:
(1) a cohesion term based on the squared distance between each pair of agents in
the flock; and (2) a separation term based on the inverse of the squared distance
between each pair of agents. The flock evolves toward a configuration in which
these two opposing forces are balanced. The cost function J for centralized DF,
i.e., centralized MPC (CMPC), is as follows:

1€EAJEAIL)

J (p) =

Neural Flocking: MPC-based Supervised Learning of Flocking Controllers 5

where wy is the weight of the separation term and controls the density of the flock.
The cost function is normalized by the number of pairs of agents, W;
as such, the cost does not depend on the size of the flock. The control law for
CMPC is given by Eq. (5), with J(k) = 31—, JC (p(k + ¢ | k).

The basic flocking cost function for distributed DF is similar to that for
CMPC, except that the cost function JP for agent i is computed over its set of

neighbors A; (k) at time k:

PEE) = Xl e Y @

|2
Nl &= T

The control law for agent 4 is given by Eq. (6), with J;(k) = Zt IR (p(k+t | k)).

3 Additional Control Objectives

The cost functions for basic flocking given in Eqs. (7) and (8) are designed to
ensure that in the steady state, the agents are well-separated. Additional goals
such as obstacle avoidance, predator avoidance, and target seeking are added
to the MPC formulation as weighted cost-function terms. Different objectives
can be combined by including the corresponding terms in the cost function as a
weighted sum.

Cost-Function Term for Obstacle Avoidance. We consider multiple rectangular
obstacles which are distributed randomly in the field. For a set of m rectangular
obstacles O = {01, Os, ..., O, }, we define the cost function term for obstacle

avoidance as:
JOA(pa Z Z (9)
\AHOI i H i)H

where o is the set of points on the obstacle boundaries and 0§i) is the point on

the obstacle boundary of the jt* obstacle O; that is closest to the ith agent.

Cost-Function Term for Target Seeking. This term is the average of the squared
distance between the agents and the target. Let g denote the position of the fixed
target. Then the target-seeking term is as defined as

Jrs(e) = o 3 i = gl (10)
| |z€.A

Cost-Function Term for Predator Avoidance. We introduce a single predator,
which is more agile than the flocking agents: its maximum speed and acceleration
are a factor of f), greater than v and a, respectively, with f, > 1. Apart from
being more agile, the predator has the same dynamics as the agents, given by

6 U. Mehmood et al.

Eq. (1). The control law for the predator consists of a single term that causes it
to move toward the centroid of the flock with maximum acceleration.

For a flock of n agents and one predator, the cost-function term for predator
avoidance is the average of the inverse of the cube of the distances between the
predator and the agents. It is given by:

JPA (pappred Z H (1]-)
zeA pi — ppred”

where ppreq is the position of the predator. In contrast to the separation term
in Egs. (5)-(6), which we designed to ensure inter-agent collision avoidance, the
predator-avoidance term has a cube instead of a square in the denominator. This
is to reduce the influence of the predator on the flock when the predator is far
away from the flock.

NF Cost-Function Terms. The MPC cost functions used in our examination of
Neural Flocking are weighted sums of the cost function terms introduced above.
We refer to the first term of our centralized DF cost function J¢(p) (see Eq. (7))
as Jeones(P) and the second as Jgep(p). We use the following cost functions Ji,
Ja, and J3 for basic flocking with collision avoidance, obstacle avoidance with
target seeking, and predator avoidance, respectively.

Jl (P) = Jcohes (P) + ws - Jsep(p) (12&)
J2(p; 0) = Jcohes(p) + ws - Jsep(D) + wo - JOA(ILO) + wy - JTS(D) (12b)
JS(p7ppred) = Jcohes(p) + Ws * J, ep(p) + Wy - JPA(pappred) (12C)

where w; is the weight of the separation term, w, is the weight of the obstacle
avoidance term, w; is the weight of the target-seeking term, and w, is the weight
of the predator-avoidance term. Note that J; is equivalent to J (Eq. (7)). The
weight wg of the separation term is experimentally chosen to ensure that the
distance between agents, throughout the simulation, is at least d,,;,,, the minimum
inter-agent distance representing collision avoidance. Similar considerations were
given to the choice of values for w, and w,. The specific values we used for the
weights are: w, = 2000, w, = 1500, wy = 10, and w, = 500.

We experimented with an alternative strategy for introducing inter-agent
collision avoidance, obstacle avoidance, and predator avoidance into the MPC
problem, namely, as constraints of the form dpin — pij < 0, dpmin — ||pi —
ng) || <0, and dmin — ||pi — Ppreal| < 0, respectively. Using the theory of exact
penalty functions [12], we recast the constrained MPC problem as an equivalent
unconstrained MPC problem by converting the constraints into a weighted
penalty term, which is then added to the MPC cost function. This approach
rendered the optimization problem difficult to solve due to the non-smoothness
of the penalty term. As a result, constraint violations in the form of collisions
were observed during simulation.

Neural Flocking: MPC-based Supervised Learning of Flocking Controllers 7

4 Neural Flocking

We learn a distributed neural controller (DNC) for the flocking problem using
training data in the form of trajectories of state-action pairs produced by a CMPC
controller. In addition to basic flocking with inter-agent collision avoidance, the
DNC exhibits a number of other flocking-related behaviors, including obstacle
avoidance, target seeking, and predator avoidance. We also show how the learned
behavior exhibited by the DNC generalizes over a larger number of agents than
what was used during training to achieve successful collision-free flocking in
significantly larger flocks.

We use Supervised Learning to train the DNC. Supervised Learning learns a
function that maps an input to an output based on example sequences of input-
output pairs. In our case, the trajectory data obtained from CMPC contains both
the training inputs and corresponding labels (outputs): the state of an agent in
the flock (and that of its nearest neighbors) at a particular time step is the input,
and that agent’s acceleration at the same time step is the label.

4.1 Training Distributed Flocking Controllers

We use Deep Learning to synthesize a distributed and symmetric neural controller
from the training data provided by the CMPC controller. Our objective is to learn
basic flocking, obstacle avoidance with target seeking, and predator avoidance.
Their respective CMPC-based cost functions are given in Sections 2.2 and 3. All
of these control objectives implicitly also include inter-agent collision avoidance
by virtue of the separation term in Eq. 7.

For each of these control objectives, DNC training data is obtained from
CMPC trajectory data generated for n = 15 agents, starting from initial con-
figurations in which agent positions and velocities are uniformly sampled from
[—15,15])% and [0, 1]2, respectively. All training trajectories are 1,000 time steps
in duration.

We further ensure that the initial configurations are recoverable; i.e., no two
agents are so close to each other that they cannot avoid a collision by resorting
to maximal accelerations. We learn a single DNC from the state-action pairs of
all n agents. This yields a symmetric distributed controller, which we use for
each agent in the flock during evaluation.

Basic Flocking. Trajectory data for basic flocking is generated using the cost
function given in Eq. (7). We generate 200 trajectories, each of which (as noted
above) is 1,000 time steps long. The input to the NN is the position and velocity
of each agent along with the positions and velocities of its N -nearest neighbors.
This yields 200 - 1,000 - 15 = 3M total training samples.

Let us refer to the agent (the DNC) being learned as Ag. Since we use
neighborhood size A = 14, the input to the NN is of the form [p§ p§ v§ vy pt p¥
of v ... ply pYy vy vY,], where p¥, pg are the position coordinates and v¥, vl
velocity coordinates for agent Ay, and pi 4, pY 14 and vf 14, v ,, are the
position and velocity vectors of its neighbors. Since this input vector has 60
components, the input to the NN consists of 60 features.

8 U. Mehmood et al.

[g e o f
- rl:l » 4 ,
S = - S
[d
- ¢« oF ¢ ¢ iy * MRy
e . f 5 N . Y
e, e = ‘@ LN P ,.,-/,/
./o/((— o0 N P - . ? 1
- 4 ¢ v L e e o ?

(a) Basic flocking (b) Obstacle avoid. (c) Predator avoid. (d) Target seeking

Fig. 2: Snapshots of DNC flocking behaviors for 30 agents

Obstacle Avoidance with Target Seeking. For obstacle avoidance with target
seeking, we use CMPC with the cost function given in Eq. (12b). The target is
located beyond the obstacles, forcing the agents to move through the obstacle
field. For the training data, we generate 100 trajectories over 4 different obstacle
fields (25 trajectories per obstacle field). The input to the NN consists of the 92
features [pf py vF vy of of ... piy piy Vi VY, 0F4 0, g% gY], where of, of is the
closest point on any obstacle to agent Ag; of 1, , 0] 1, give the closest point on
any obstacle for the 14 neighboring agents, and g%, gV is the target location.

Predator Avoidance. The CMPC cost function for predator avoidance is given in
Eq. (12¢). The position, velocity, and the acceleration of the predator are denoted
by Ppreds Vpred, Gpred, respectively. We take f,, = 1.40; hence vpreq = 1.400 and
apred = 1.40a. The input features to the NN are the positions and velocities
of agent Ay and its A-nearest neighbors, and the position and velocity of the
predator. The input with 64 features thus has the form [p§ pf v vf ... pi, pY,

z Y T Y T Y
V14 V14 ppred ppred Upred Up’red]'

5 Experimental Evaluation

This section contains the results of our extensive performance analysis of the
distributed neural flocking controller (DNC), taking into account various control
objectives: basic flocking with collision avoidance, obstacle avoidance with target
seeking, and predator avoidance. As illustrated in Fig. 1, this involves running
CMPC to generate the training data for the DNCs, whose performance we then
compare to that of the DMPC and CMPC controllers. We also show that the
DNC flocking controllers generalize the behavior seen in the training data to
achieve successful collision-free flocking in flocks significantly larger in size than
those used during training. Finally, we use Statistical Model Checking to obtain
confidence intervals for DNC’s correctness/performance.

5.1 Preliminaries

The CMPC and DMPC control problems defined in Section 2.1 are solved using
MATLAB fmincon optimizer. In the training phase, the size of the flock is

Neural Flocking: MPC-based Supervised Learning of Flocking Controllers 9

n = 15. For obstacle-avoidance with target-seeking, we use 5 obstacles with the
target located at [60,50]. The simulation time is 100, dt =0.1 time units, and
1 = 3, where (recall) 7 - dt is the control period. Further, the agent velocity and
acceleration bounds are v =2.0 and a=1.5.

We use din = 1.5 as the minimum inter-agent distance for collision avoidance,
d%s =1 as the minimum agent-obstacle distance for obstacle avoidance, and
dﬁ:ff = 1.5 as the minimum agent-predator distance for predator avoidance. For
initial configurations, recall that agent positions and velocities are uniformly
sampled from [—15,15]? and [0, 1]2, respectively, and we ensure that they are
recoverable; i.e., no two agents are so close to each other that they cannot avoid
a collision when resorting to maximal accelerations. The predator starts at rest
from a fixed location at a distance of 40 from the flock center.

For training, we considered 15 agents and 200 trajectories per agent, each
trajectory 1,000 time steps in length. This yielded a total of 3,000,000 training
samples. Our neural controller is a fully connected feed-forward Deep Neural
Network (DNN), with 5 hidden layers, 84 neurons per hidden layer, and with a
ReLU activation function. We use an iterative approach for choosing the DNIN
hyperparameters and architecture where we continuously improve our NN, until
we observe satisfactory performance by the DNC.

For training the DNNs, we use Keras [3], which is a high-level neural network
API written in Python and capable of running on top of TensorFlow. To generate
the NN model, Keras uses the Adam optimizer [8] with the following settings:
Ir=1072, 81 =0.9, 3, =0.999, e=10"%. The batch size (number of samples
processed before the model is updated) is 2,000, and the number of epochs
(number of complete passes through the training dataset) used for training is
1,000. For measuring training loss, we use the mean-squared error metric.

For basic flocking, DNN input vectors have 60 features and the number
of trainable DNN parameters is 33,854. For flocking with obstacle-avoidance
and target-seeking, input vectors have 92 features and the number of trainable
parameters is 36,542. Finally, for flocking with predator-avoidance, input vectors
have 64 features and the resulting number of trainable DNN parameters is 34,190.

To test the trained DNC, we generated 100 simulations (runs) for each of the
desired control objectives: basic flocking with collision avoidance, flocking with
obstacle avoidance and target seeking, and flocking with predator avoidance. The
results presented in Tables 1, were obtained using the same number of agents and
obstacles and the same predator as in the training phase. We also ran tests that
show DNC controllers can achieve collision-free flocking with obstacle avoidance
where the numbers of agents and obstacles are greater than those used during
training.

5.2 Results for Basic Flocking

We use flock diameter, inter-agent collision count and velocity convergence [20] as
performance metrics for flocking behavior. At any time step, the flock diameter
D(p) = max(; jje ||pij|| is the largest distance between any two agents in the
flock. We calculate the average converged diameter by averaging the flock diameter

10 U. Mehmood et al.

[—=one — - — DMPC CMPC
24
‘ ‘ 0 ‘ ‘ ‘ ‘
60 80 100 0 20 40 60 80 100
Time Time
(a) Flock diameter (b) Velocity convergence

Fig. 3: Performance comparison for basic flocking with collision avoidance, aver-
aged over 100 test runs.

in the final time step of the simulation over the 100 runs. An inter-agent collision
(IC) occurs when the distance between two agents at any point in time is less than
dpmin. The IC rate (ICR) is the average number of ICs per test-trajectory time-
step. The velocity convergence VC(v) = (1/n) (ZieA lvi = (27—, vj)/n||2> is
the average of the squared magnitude of the discrepancy between the velocities of
agents and the flock’s average velocity. For all the metrics, lower values are better,
indicating a denser and more coherent flock with fewer collisions. A successful
flocking controller should also ensure that values of D(p) and VC(v) eventually
stabilize.

Fig. 3 and Table 1 compare the performance of the DNC on the basic-flocking
problem for 15 agents to that of the MPC controllers. Although the DMPC and
CMPC outperform the DNC, the difference is marginal. An important advantage
of the DNC over DMPC is that they are much faster. Executing a DNC controller
requires a modest number of arithmetic operations, whereas executing an MPC
controller requires simulation of a model and controller over the prediction horizon.
In our experiments, on average, the CMPC takes 1209 msec of CPU time for the
entire flock and DMPC takes 58 msec of CPU time per agent, whereas the DNC
takes only 1.6 msec.

Table 1: Performance comparison for BF with 15 agents on 100 test runs
Avg. Conv. Diameter ICR Velocity Convergence

DNC 14.13 0 0.15
DMPC 13.67 0 0.11
CMPC 13.84 0 0.10

Neural Flocking: MPC-based Supervised Learning of Flocking Controllers 11

Table 2: DNC Performance Generalization for BF
Agents Avg. Conv. Conv. Avg. Conv. ICR

Diameter Rate (%) Time
15 14.13 100 52.15 0
20 16.45 97 58.76 0
25 19.81 94 64.11 0
30 23.24 92 72.08 0
35 30.57 86 83.84 0.008
40 38.66 81 95.32 0.019

5.3 Results for Obstacle and Predator Avoidance

For obstacle and predator avoidance, collision rates are used as a performance
metric. An obstacle-agent collision (OC) occurs when the distance between an
agent and the closest point on any obstacle is less than dgffn. A predator-agent
collision (PC) occurs when the distance between an agent and the predator is less
than df’;fg. The OC rate (OCR) is the average number of OCs per test-trajectory
time-step, and the PC rate (PCR) is defined similarly. Our test results show
that the DNC, along with the DMPC and CMPC, is collision-free (i.e., each
of ICR, OCR, and PCR is zero) for 15 agents, with the exception of DMPC
for predator avoidance where PCR = 0.013. We also observed that the flock
successfully reaches the target location in all 100 test runs.

5.4 DNC Generalization Results

Tables 2—-3 present DNC generalization results for basic flocking (BF), obstacle
avoidance (OA), and predator avoidance (PA), with the number of agents ranging
from 15 (the flock size during training) to 40. In all of these experiments, we use
a neighborhood size of N' = 14, the same as during training. Each controller was
evaluated with 100 test runs. The performance metrics in Table 2 are the average
converged diameter, convergence rate, average convergence time, and ICR.

The convergence rate is the fraction of successful flocks over 100 runs. The
collection of agents is said to have converged to a flock (with collision avoidance)
if the value of the global cost function is less than the convergence threshold.
We use a convergence threshold of J;(p) < 150, which was chosen based on its
proximity to the value achieved by CMPC. We use the cost function from Eq. 12a
to calculate our success rate because we are showing convergence rate for basic
flocking. The average convergence time is the time when the global cost function
first drops below the success threshold and remains below it for the rest of the
run, averaged over all 100 runs. Even with a local neighborhood of size 14, the
results demonstrate that the DNC can successfully generalize to a large number
of agents for all of our control objectives.

12 U. Mehmood et al.

Table 3: DNC Generalization Performance for OA and PA

OA PA
Agents ICR OCR ICR PCR
15 0 0 0 0
20 0 0 0 0
25 0 0 0 0
30 0 0 0 0

35 0.011 0.009 0.013 0.010
40 0.021 0.018 0.029 0.023

5.5 Statistical Model Checking Results

We use Monte Carlo (MC) approximation as a form of Statistical Model Check-
ing [5,10] to compute confidence intervals for the DNC’s convergence rate to a
flock with collision avoidance and for the (normalized) convergence time. The
convergence rate is the fraction of successful flocks over N runs. The collection
of agent is said to have converged to a successful flock with collision avoidance
if the global cost function J;(p) < 150, where J;(p) is cost function for basic
flocking defined in Eq. 12a.

The main idea of MC is to use N random variables, Z1,..., Zy, also called
samples, IID distributed according to a random variable Z with mean pz, and to
take the sum iz = (Z1 +...4+ Zn)/N as the value approximating the mean pz.
Since an exact computation of pz is almost always intractable, an MC approach
is used to compute an (¢, d)-approximation of this quantity.

Additive Approzimation [6] is an (e, §)-approximation scheme where the mean
uz of an RV Z is approximated with absolute error € and probability 1 — §:

Pringy —e<pz<pz+e>1-9§ (13)

where [iz is an approximation of pz. An important issue is to determine the
number of samples N needed to ensure that fiz is an (e, §)-approximation of pz. If
Z is a Bernoulli variable expected to be large, one can use the Chernoff-Hoeffding
instantiation of the Bernstein inequality and take N to be N = 41n(2/d)/€?,
as in [6]. This results in the additive approzimation algorithm [5], defined in
Algorithm 1.

We use this algorithm to obtain a joint (e, d)-approximation of the mean
convergence rate and mean normalized convergence time for the DNC. Each
sample Z; is based on the result of an execution obtained by simulating the
system starting from a random initial state, and we take Z = (B, R), where B
is a Boolean variable indicating whether the agents converged to a flock during
the execution, and R is a real value denoting the normalized convergence time.
The normalized convergence time is the time when the global cost function first
drops below the convergence threshold and remains below it for the rest of the
run, measured as a fraction of the total duration of the run. The assumptions

Neural Flocking: MPC-based Supervised Learning of Flocking Controllers 13

Algorithm 1: Additive Approximation Algorithm

Input: (¢, §) with0<e<land0<d <1
Input: Random variables Z;, IID
Output: fiz approximation of pz
N = 41n(2/6)/¢%;
for (i=0; i < N; i++) do

L S=S5+7;

1z = S/N; return [iz;

Table 4: SMC results for DNC convergence rate and normalized convergence
time; e = 0.01, § = 0.0001

Agents ficr pct

15 0.99 0.53
20 0.97 0.58
25 0.94 0.65
30 0.91 0.71
35 0.86 0.84
40 0.80 0.95

about Z required for validity of the additive approximation hold, because RV B
is a Bernoulli variable, the convergence rate is expected to be large (i.e., closer
to 1 than to 0), and the proportionality constraint of the Bernstein inequality is
also satisfied for RV R.

In these experiments, the initial configurations are sampled from the same
distributions as in Section 5.1, and we set ¢ = 0.01 and § = 0.0001, to obtain N =
396,140. We perform the required set of N simulations for 15, 20, 25, 30, 35 and
40 agents. Table 4 presents the results, specifically, the (e, §)-approximations ficr
and ficr of the mean convergence rate and the mean normalized convergence
time, respectively. While the results for the convergence rate are (as expected) nu-
merically similar to the results in Table 2, the results in Table 4 are much stronger,
because they come with the guarantee that they are (e, §)-approximations of the
actual mean values.

6 Related Work

In [18], a flocking controller is synthesized using multi-agent reinforcement learning
(MARL) and natural evolution strategies (NES). The target model from which
the system learns is Reynolds flocking model [16]. For training purposes, a list
of metrics called entropy are chosen, which provide a measure of the collective
behavior displayed by the target model. As the authors of [18] observe, this
technique does not quite work: although it consistently leads to agents forming
recognizable patterns during simulation, agents self-organized into a cluster
instead of flowing like a flock.

14 U. Mehmood et al.

In [9], reinforcement learning and flocking control are combined for the
purpose of predator avoidance, where the learning module determines safe spaces
in which the flock can navigate to avoid predators. Their approach to predator
avoidance, however, isn’t distributed as it requires a majority consensus by the
flock to determine its action to avoid predators. They also impose an a-lattice
structure [13] on the flock. In contrast, our approach is geometry-agnostic and
achieves predator avoidance in a distributed manner.

In [7], an uncertainty-aware reinforcement learning algorithm is developed
to estimate the probability of a mobile robot colliding with an obstacle in an
unknown environment. Their approach is based on bootstrap neural networks
using dropouts, allowing it to process raw sensory inputs. Similarly, a learning-
based approach to robot navigation and obstacle avoidance is presented in [14].
They train a model that maps sensor inputs and the target position to motion
commands generated by the ROS [15] navigation package. Our work in contrast
considers obstacle avoidance (and other control objectives) in a multi-agent
flocking scenario under the simplifying assumption of full state observation.

In [4], an approach based on Bayesian inference is proposed that allows an
agent in a heterogeneous multi-agent environment to estimate the navigation
model and goal of each of its neighbors. It then uses this information to compute
a plan that minimizes inter-agent collisions while allowing the agent to reach its
goal. Flocking formation is not considered.

7 Conclusions

With the introduction of Neural Flocking (NF), we have shown how machine
learning in the form of Supervised Learning can bring many benefits to the
flocking problem. As our experimental evaluation confirms, the symmetric and
fully distributed neural controllers we derive in this manner are capable of
achieving a multitude of flocking-oriented objectives, including flocking formation,
inter-agent collision avoidance, obstacle avoidance, predator avoidance, and target
seeking. Moreover, NF controllers exhibit real-time performance and generalize
the behavior seen in the training data to achieve these objectives in a significantly
broader range of scenarios.

Ongoing work aims to determine whether a DNC can perform as well as
the centralized MPC controller for agent models that are significantly more
realistic than our current point-based model. For this purpose, we are using
transfer learning to train a DNC that can achieve acceptable performance on
realistic quadrotor dynamics [1], starting from our current point-model-based
DNC. This effort also involves extending our current DNC from 2-dimensional
to 3-dimensional spatial coordinates. If successful, and preliminary results are
encouraging, this line of research will demonstrate that DNCs are capable of
achieving flocking with complex realistic dynamics.

For future work, we plan to investigate a distance-based notion of agent neigh-
borhood as opposed to our current nearest-neighbors formulation. Furthermore,
motivated by the quadrotor study of [21], we will seek to combine MPC with

Neural Flocking: MPC-based Supervised Learning of Flocking Controllers 15

reinforcement learning in the framework of guided policy search as an alternative
solution technique for the NF problem.

References

w

10.

11.

12.

13.

14.

15.

16.

17.

Bouabdallah, S.: Design and control of quadrotors with application to autonomous
flying (2007)

Camacho, E.F., Bordons Alba, C.: Model Predictive Control. Springer (2007)
Chollet, F., et al.: Keras (2015), https://github.com/keras-team/keras.git
Godoy, J., Karamouzas, 1., Guy, S.J., Gini, M.: Moving in a crowd: Safe and
efficient navigation among heterogeneous agents. In: Proceedings of the Twenty-
Fifth International Joint Conference on Artificial Intelligence. pp. 294-300. IJCATI’16,
AAAI Press (2016)

Grosu, R., Peled, D., Ramakrishnan, C.R., Smolka, S.A., Stoller, S.D., Yang,
J.: Using statistical model checking for measuring systems. In: 6th International
Symposium, ISoLA 2014. Corfu, Greece (Oct 2014)

Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate probabilistic
model checking. In: Steffen, B., Levi, G. (eds.) Verification, Model Checking, and
Abstract Interpretation. pp. 73-84. Springer Berlin Heidelberg, Berlin, Heidelberg
(2004)

Kahn, G., Villaflor, A., Pong, V., Abbeel, P., Levine, S.: Uncertainty-aware re-
inforcement learning for collision avoidance. arXiv preprint arXiv:1702.01182.
pp. 1-12 (2017)

Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: 3rd Interna-
tional Conference on Learning Representations, ICLR 2015, San Diego, CA, USA,
May 7-9, 2015, Conference Track Proceedings (2015)

La, H.M., Lim, R., Sheng, W.: Multirobot cooperative learning for predator avoid-
ance. IEEE Transactions on Control Systems Technology 23(1), 52-63 (2015)
Larsen, K.G., Legay, A.: Statistical model checking: Past, present, and future. In:
6th International Symposium, ISoLA 2014. Corfu, Greece (Oct 2014)

Mehmood, U., Paoletti, N., Phan, D., Grosu, R., Lin, S., Stoller, S.D., Tiwari, A.,
Yang, J., Smolka, S.A.: Declarative vs rule-based control for flocking dynamics. In:
Proceedings of SAC 2018, 33rd Annual ACM Symposium on Applied Computing.
pp. 816-823 (2018)

Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York, NY, USA,
second edn. (2006)

Olfati-Saber, R.: Flocking for multi-agent dynamic systems: Algorithms and theory.
IEEE Transactions on automatic control 51(3), 401-420 (2006)

Pfeiffer, M., Schaeuble, M., Nieto, J.I., Siegwart, R., Cadena, C.: From perception
to decision: A data-driven approach to end-to-end motion planning for autonomous
ground robots. In: 2017 IEEE International Conference on Robotics and Automation,
ICRA 2017, Singapore, Singapore, May 29 - June 3, 2017. pp. 1527-1533 (2017)
Quigley, M., Conley, K., Gerkey, B.P., Faust, J., Foote, T., Leibs, J., Wheeler, R.,
Ng, A.Y.: ROS: an open-source robot operating system. In: ICRA Workshop on
Open Source Software (2009)

Reynolds, C.W.: Flocks, herds and schools: A distributed behavioral model. SIG-
GRAPH Comput. Graph. 21(4) (Aug 1987)

Reynolds, C.W.: Steering behaviors for autonomous characters. In: Proceedings of
Game Developers Conference 1999. pp. 763-782 (1999)

https://github.com/keras-team/keras.git

16

18.

19.

20.

21.

U. Mehmood et al.

Shimada, K., Bentley, P.: Learning how to flock: Deriving individual behaviour
from collective behaviour with multi-agent reinforcement learning and natural
evolution strategies. In: Proceedings of the Genetic and Evolutionary Computation
Conference Companion. pp. 169-170. ACM (2018)

Zhan, J., Li, X.: Flocking of multi-agent systems via model predictive control based
on position-only measurements. IEEE Transactions on Industrial Informatics 9(1),
377-385 (2013)

Zhang, H.T., Cheng, Z., Chen, G., Li, C.: Model predictive flocking control for
second-order multi-agent systems with input constraints. IEEE Transactions on
Circuits and Systems I: Regular Papers 62(6), 15991606 (2015)

Zhang, T., Kahn, G., Levine, S., Abbeel, P.: Learning deep control policies for
autonomous aerial vehicles with MPC-guided policy search. In: 2016 IEEE Interna-
tional Conference on Robotics and Automation, ICRA 2016, Stockholm, Sweden,
May 16-21, 2016. pp. 528-535 (2016)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.

0/), which permits use, sharing, adaptation, distribution and reproduction in any

medium or format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

®

Check for
updates

On Well-Founded and Recursive Coalgebras*

Jif{ Adamek!**, Stefan Milius?*** (=)@, and Lawrence S. Moss®

L Czech Technical University, Prague, Czech Republic
j.adamek®@tu-braunschweig.de
2 Friedrich-Alexander-Universitit Erlangen-Niirnberg, Germany
mail@stefan-milius.eu
3 Indiana University, Bloomington, IN, USA
Imoss@indiana.edu

Abstract This paper studies fundamental questions concerning category-
theoretic models of induction and recursion. We are concerned with
the relationship between well-founded and recursive coalgebras for an
endofunctor. For monomorphism preserving endofunctors on complete
and well-powered categories every coalgebra has a well-founded part,
and we provide a new, shorter proof that this is the coreflection in
the category of all well-founded coalgebras. We present a new more
general proof of Taylor’s General Recursion Theorem that every well-
founded coalgebra is recursive, and we study conditions which imply the
converse. In addition, we present a new equivalent characterization of
well-foundedness: a coalgebra is well-founded iff it admits a coalgebra-to-
algebra morphism to the initial algebra.

Keywords: Well-founded - Recursive - Coalgebra - Initial Algebra -
General Recursion Theorem

1 Introduction

What is induction? What is recursion? In areas of theoretical computer science,
the most common answers are related to initial algebras. Indeed, the dominant
trend in abstract data types is initial algebra semantics (see e.g. [19]), and this
approach has spread to other semantically-inclined areas of the subject. The
approach in broad slogans is that, for an endofunctor F' describing the type of
algebraic operations of interest, the initial algebra pF has the property that
for every F-algebra A, there is a unique homomorphism pF — A, and this s
recursion. Perhaps the primary example is recursion on IN, the natural numbers.
Recall that IN is the initial algebra for the set functor FX = X + 1. If A is any
set, and a € A and a: A = A+ 1 are given, then initiality tells us that there is
a unique f: IN — A such that for all n € IN,

fO)=a fn+1)=a(f(n)). (1.1

* A full version of this paper including full proof details is available on arXiv [5].
** Supported by the Grant Agency of the Czech Republic under grant 19-00902S.
*** Supported by Deutsche Forschungsgemeinschaft (DFG) under project MI 717/5-2.
t Supported by grant #586136 from the Simons Foundation.

© The Author(s) 2020
J. Goubault-Larrecq and B. Konig (Eds.): FOSSACS 2020, LNCS 12077, pp. 17-36, 2020.
https://doi.org/10.1007/978-3-030-45231-5_2

http://orcid.org/0000-0002-2021-1644
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45231-5_2&domain=pdf

18 J. Addmek et al.

Then the first additional problem coming with this approach is that of how to
“recognize” initial algebras: Given an algebra, how do we really know if it is
initial? The answer — again in slogans — is that initial algebras are the ones with
“no junk and no confusion.”

Although initiality captures some important aspects of recursion, it cannot be
a fully satisfactory approach. One big missing piece concerns recursive definitions
based on well-founded relations. For example, the whole study of termination
of rewriting systems depends on well-orders, the primary example of recursion
on a well-founded order. Let (X, R) be a well-founded relation, i.e. one with no
infinite sequences - - - x9 Rx1 R xo. Let A be any set, and let a: A — A. (Here
and below, & is the power set functor, taking a set to the set of its subsets.)
Then there is a unique f: X — A such that for all z € X,

f(@) =a{f(y) : y R x}). (1.2)

The main goal of this paper is the study of concepts that allow one to extend
the algebraic spirit behind initiality in (1.1) to the setting of recursion arising
from well-foundedness as we find it in (1.2). The corresponding concepts are
those of well-founded and recursive coalgebras for an endofunctor, which first
appear in work by Osius [22] and Taylor [23,24], respectively. In his work on
categorical set theory, Osius [22] first studied the notions of well-founded and
recursive coalgebras (for the power-set functor on sets and, more generally, the
power-object functor on an elementary topos). He defined recursive coalgebras
as those coalgebras a: A — ZA which have a unique coalgebra-to-algebra
homomorphism into every algebra (see Definition 3.2).

Taylor [23,24] took Osius’ ideas much further. He introduced well-founded
coalgebras for a general endofunctor, capturing the notion of a well-founded rela-
tion categorically, and considered recursive coalgebras under the name ‘coalgebras
obeying the recursion scheme’. He then proved the General Recursion Theorem
that all well-founded coalgebras are recursive, for every endofunctor on sets (and
on more general categories) preserving inverse images. Recursive coalgebras were
also investigated by Eppendahl [12], who called them algebra-initial coalgebras.
Capretta, Uustalu, and Vene [10] further studied recursive coalgebras, and they
showed how to construct new ones from given ones by using comonads. They
also explained nicely how recursive coalgebras allow for the semantic treatment
of (functional) divide-and-conquer programs. More recently, Jeannin et al. [15]
proved the General Recursion Theorem for polynomial functors on the category
of many-sorted sets; they also provide many interesting examples of recursive
coalgebras arising in programming.

Our contributions in this paper are as follows. We start by recalling some pre-
liminaries in Section 2 and the definition of (parametrically) recursive coalgebras
in Section 3 and of well-founded coalgebras in Section 4 (using a formulation
based on Jacobs’ next time operator [14], which we extend from Kripke poly-
nomial set functors to arbitrary functors). We show that every coalgebra for a
monomorphism preserving functor on a complete and well-powered category has
a well-founded part, and provide a new proof that this is the coreflection in the

On Well-Founded and Recursive Coalgebras 19

category of well-founded coalgebras (Proposition 4.19), shortening our previous
proof [6]. Next we provide a new proof of Taylor’s General Recursion Theorem
(Theorem 5.1), generalizing this to endofunctors preserving monomorphisms on a
complete and well-powered category having smooth monomorphisms (see Defini-
tion 2.8). For the category of sets, this implies that “well-founded = recursive”
holds for all endofunctors, strengthening Taylor’s result. We then discuss the
converse: is every recursive coalgebra well-founded? Here the assumption that F'
preserves inverse images cannot be lifted, and one needs additional assumptions.
In fact, we present two results: one assumes universally smooth monomorph-
isms and that the functor has a pre-fixed point (see Theorem 5.5). Under these
assumptions we also give a new equivalent characterization of recursiveness
and well-foundedness: a coalgebra is recursive if it has a coalgebra-to-algebra
morphism into the initial algebra (which exists under our assumptions), see Co-
rollary 5.6. This characterization was previously established for finitary functors
on sets [3]. The other converse of the above implication is due to Taylor using
the concept of a subobject classifier (Theorem 5.8). It implies that ‘recursive’
and ‘well-founded’ are equivalent concepts for all set functors preserving inverse
images. We also prove that a similar result holds for the category of vector spaces
over a fixed field (Theorem 5.12).

Finally, we show in Section 6 that well-founded coalgebras are closed under
coproducts, quotients and, assuming mild assumptions, under subcoalgebras.

2 Preliminaries

We start by recalling some background material. Except for the definitions of
algebra and coalgebra in Subsection 2.1, the subsections below may be read as
needed. We assume that readers are familiar with notions of basic category theory;
see e.g. [2] for everything which we do not detail. We indicate monomorphisms
by writing — and strong epimorphisms by —.

2.1 Algebras and Coalgebras. We are concerned throughout this paper
with algebras and coalgebras for an endofunctor. This means that we have an
underlying category, usually written o7; frequently it is the category of sets or
of vector spaces over a fixed field, and that a functor F': & — & is given. An
F-algebra is a pair (A, «), where a: FA — A. An F-coalgebra is a pair (A, a),
where a: A — FA. We usually drop the functor F. Given two algebras (4, «)
and (B, 8), an algebra homomorphism from the first to the second is h: A — B
in o such that h-a = - Fh. Similarly, a coalgebra homomorphism satisfies
B +h = Fh-a. We denote by Coalg I the category of all coalgebras for F'.

Example 2.1. (1) The power set functor &2: Set — Set takes a set X to the set
P X of all subsets of it; for a morphism f: X —» Y, Zf: X — LY takes a
subset S C X to its direct image f[S]. Coalgebras a: X — X may be identified
with directed graphs on the set X of vertices, and the coalgebra structure «
describes the edges: b € a(a) means that there is an edge a — b in the graph.

20 J. Addmek et al.

(2) Let X be a signature, i.e. a set of operation symbols, each with a finite arity.
The polynomial functor Hy associated to X assigns to a set X the set

HeX =[] Zn x X,
nelN

where X, is the set of operation symbols of arity n. This may be identified with
the set of all terms o(x1,...,x,), for 0 € X,,, and z1,...,z, € X. Algebras for
Hy are the usual Y-algebras.

(3) Deterministic automata over an input alphabet X are coalgebras for the
functor FX = {0,1} x X*. Indeed, given a set S of states, a next-state map
S x X — S may be curried to §: S — S*. The set of final states yields the
acceptance predicate a: S — {0,1}. So an automaton may be regarded as a
coalgebra (a,8): S — {0,1} x S*.

(4) Labelled transitions systems are coalgebras for F X = Z(X x X).

(5) To describe linear weighted automata, i.e. weighted automata over the input
alphabet X with weights in a field K, as coalgebras, one works with the category
Veck of vector spaces over K. A linear weighted automaton is then a coal-
gebra for FX = K x X%

2.2 Preservation Properties. Recall that an intersection of two subobjects
s;:8;— A (i=1,2) of a given object A is given by their pullback. Analogously,
(general) intersections are given by wide pullbacks. Furthermore, the inverse
image of a subobject s: .S — B under a morphism f: A — B is the subobject
t: T — A obtained by a pullback of s along f.

All of the ‘usual’ set functors preserve intersections and inverse images:

Example 2.2. (1) Every polynomial functor preserves intersections and inverse
images.

(2) The power-set functor & preserves intersections and inverse images.

(3) Intersection-preserving set functors are closed under taking coproducts,
products and composition. Similarly, for inverse images.

(4) Consider next the set functor R defined by RX = {(z,y) € X x X: x #
y} + {d} for sets X. For a function f: X — Y put Rf(z,y) = (f(x), f(y)) if
f(x) # f(y), and d otherwise. R preserves intersections but not inverse images.

Proposition 2.3 [27]. For every set functor F there exists an essentially unique
set functor F which coincides with F on nonempty sets and functions and
preserves finite intersections (whence monomorphisms).

Remark 2.4. (1) In fact, Trnkové gave a construction of F: she defined F() as
the set of all natural transformations Cy; — F', where Cp; is the set functor with
Co10 = 0 and Cp1 X = 1 for all nonempty sets X. For the empty map e:) — X
with X # (), Fe maps a natural transformation 7: Cy; — F to the element given
by 7x:1— FX.

(2) The above functor F is called the Trnkovd hull of F. It allows us to achieve
preservation of intersections for all finitary set functors. Intuitively, a functor on

On Well-Founded and Recursive Coalgebras 21

sets is finitary if its behavior is completely determined by its action on finite sets
and functions. For a general functor, this intuition is captured by requiring that
the functor preserves filtered colimits [8]. For a set functor F' this is equivalent to
being finitely bounded, which is the following condition: for each element = € F'X
there exists a finite subset M C X such that x € Fi[FM], where i: M — X is
the inclusion map [7, Rem. 3.14].

Proposition 2.5 [4, p. 66]. The Trnkovd hull of a finitary set functor preserves
all intersections.

2.3 Factorizations. Recall that an epimorphism e: A — B is called strong
if it satisfies the following diagonal fill-in property: given a monomorphism
m: C — D and morphisms f: A — C and g: B — D such that m-f =g-e
then there exists a unique d: B — C such that f =d-e and g =m - d.

Every complete and well-powered category has factorizations of morphisms:
every morphism f may be written as f = m - e, where e is a strong epimorphism
and m is a monomorphism [9, Prop. 4.4.3]. We call the subobject m the image
of f. It follows from a result in Kurz’ thesis [16, Prop. 1.3.6] that factorizations
of morphisms lift to coalgebras:

Proposition 2.6 (Coalg F' inherits factorizations from). Suppose that
F preserves monomorphisms. Then the category Coalg F' has factorizations of
homomorphisms [as f =m - e, where e is carried by a strong epimorphism and
m by a monomorphism in 7. The diagonal fill-in property holds in Coalg F.

Remark 2.7. By a subcoalgebra of a coalgebra (A, a) we mean a subobject
in Coalg F' represented by a homomorphism m: (B,) — (A4, «), where m is
monic in 7. Similarly, by a strong quotient of a coalgebra (A, «) we mean one
represented by a homomorphism e: (A4, a) — (C,~) with e strongly epic in 7.

2.4 Chains. By a transfinite chain in a category & we understand a functor
from the ordered class Ord of all ordinals into .«7. Moreover, for an ordinal A, a
A-chain in & is a functor from \ to &7. A category has colimits of chains if for
every ordinal A it has a colimit of every A-chain. This includes the initial object
0 (the case A =0).

Definition 2.8. (1) A category &/ has smooth monomorphisms if for every
A-chain C' of monomorphisms a colimit exists, its colimit cocone is formed
by monomorphisms, and for every cone of C' formed by monomorphisms, the
factorizing morphism from colim C' is monic. In particuar, every morphism from
0 is monic.

(2) o has universally smooth monomorphisms if <7 also has pullbacks, and
for every morphism f: X — colim C, the functor &7/ colimC — &/ /X forming
pullbacks along f preserves the colimit of C. This implies that initial object 0
is strict, i.e. every morphism f: X — 0 is an isomorphism. Indeed, consider the
empty chain (A = 0).

Example 2.9. (1) Set has universally smooth monomorphisms.

22 J. Addmek et al.

(2) Veck has smooth monomorphisms, but not universally so because the initial
object is not strict.

”

(3) Categories in which colimits of chains and pullbacks are formed “set-like
have universally smooth monomorphisms. These include the categories of posets,
graphs, topological spaces, presheaf categories, and many varieties, such as
monoids, groups, and unary algebras.

(4) Every locally finitely presentable category &/ with a strict initial object (see
Remark 2.12(1)) has smooth monomorphisms. This follows from [8, Prop. 1.62].
Moreover, since pullbacks commute with colimits of chains, it is easy to prove
that colimits of chains are universal using the strictness of 0.

(5) The category CPO of complete partial orders does not have smooth mono-
morphisms. Indeed, consider the w-chain of linearly ordered sets A,, = {0,...,n}+
{T} (T atop element) with inclusion maps A4,, — A, ;1. Its colimit is the linearly
ordered set N4 {T, T’} of natural numbers with two added top elements T" < T.
For the sub-cpo IN + {T}, the inclusions of A,, are monic and form a cocone. But
the unique factorizing morphism from the colimit is not monic.

Notation 2.10. For every object A we denote by Sub(A) the poset of all subob-
jects of A (represented by monomorphisms s: S — A), where s < s’ if there exists
i with s = &' - 4. If & has pullbacks we have, for every morphism f: A — B, the
inverse image operator, viz. the monotone map f : Sub(B) — Sub(A) assigning
to a subobject s: S — A the subobject of B obtained by forming the inverse
image of s under f, i.e. the pullback of s along f.

Lemma 2.11. If &/ is complete and well-powered, then ? has a left adjoint
given by the (direct) image operator 7: Sub(A) — Sub(B). It maps a subobject
t: T — B to the subobject of A given by the image of f - t; in symbols we have
T <sift<Ts)

Remark 2.12. If & is a complete and well-powered category, then Sub(A) is a
complete lattice. Now suppose that & has smooth monomorphisms.

(1) In this setting, the unique morphism L 4: 0 — A is a monomorphism and
therefore is the bottom element of the poset Sub(A).

(2) Furthermore, a join of a chain in Sub(A) is obtained by forming a colimit, in
the obvious way.

(3) If & has universaH}(f_ smooth monomorphisms, then for every morphism
f: A— B, the operator f: Sub(B) — Sub(A) preserves unions of chains.

Remark 2.13. Recall [1] that every endofunctor F' yields the initial-algebra
chain, viz. a transfinite chain formed by the objects F°0 of o7, as follows: F°0 = 0,
the initial object; F'*10 = F(F"0), and for a limit ordinal i we take the colimit
of the chain (FJO)J-Q-. The connecting morphisms w; ; : F'0 — FJ0 are defined
by a similar transfinite recursion.

On Well-Founded and Recursive Coalgebras 23

3 Recursive Coalgebras

Assumption 3.1. We work with a standard set theory (e.g. Zermelo-Fraenkel),
assuming the Axiom of Choice. In particular, we use transfinite induction on
several occasions. (We are not concerned with constructive foundations in this
paper.)

Throughout this paper we assume that &/ is a complete and well-powered
category o/ and that I': &/ — &/ preserves monomorphisms.

For &/ = Set the condition that F' preserves monomorphisms may be dropped.
In fact, preservation of non-empty monomorphism is sufficient in general (for a
suitable notion of non-empty monomorphism) [21, Lemma 2.5], and this holds
for every set functor.

The following definition of recursive coalgebras was first given by Osius [22].
Taylor [24] speaks of coalgebras obeying the recursion scheme. Capretta et al. [10]
extended the concept to parametrically recursive coalgebra by dualizing completely
iterative algebras [20].

Definition 3.2. A coalgebra a: A — F'A is called recursive if for every algebra
e: FX — X there exists a unique coalgebra-to-algebra morphism ef: 4 — X,
i.e. a unique morphism such that the square on the left below commutes:

T T
A— X _

A X
al Te <07A>l FetxA Te

FA F< px FAx A P4 px A

(A, «) is called parametrically recursive if for every morphism e: FX x A — X
there is a unique morphism ef: A — X such that the square on the right above
commutes.

Example 3.3. (1) A graph regarded as a coalgebra for & is recursive iff it has
no infinite path. This is an immediate consequence of the General Recursion
Theorem (see Corollary 5.6 and Example 4.5(2)).

(2) Let ¢: F(uF) — pF be an initial algebra. By Lambek’s Lemma, ¢ is an
isomorphism. So we have a coalgebra (~!: uF — F(uF). This algebra is (para-
metrically) recursive. By [20, Thm. 2.8], in dual form, this is precisely the same
as the terminal parametrically recursive coalgebra (see also [10, Prop. 7]).

(3) The initial coalgebra 0 — F0 is recursive.

(4) If (C,7) is recursive so is (F'C, F'y), see [10, Prop. 6].

(5) Colimits of recursive coalgebras in Coalg F' are recursive. This is easy to
prove, using that colimits of coalgebras are formed on the level of the underlying
category.

(6) It follows from items (3)—(5) that in the initial-algebra chain from Re-
mark 2.13 all coalgebras w; ;1 : Fi0 — F*10, i € Ord, are recursive.

24 J. Addmek et al.

(7) Every parametrically recursive coalgebra is recursive. (To see this, form for
a given e: FX — X the morphism e = e¢- 7, where 7: FX x A — FX is the
projection.) In Corollaries 5.6 and 5.9 we will see that the converse often holds.

Here is an example where the converse fails [3]. Let R: Set — Set be the
functor defined in Example 2.2(4). Also, let C' = {0, 1}, and define v: C' — RC
by v(0) = (1) = (0,1). Then (C,7) is a recursive coalgebra. Indeed, for every
algebra a: RA — A the constant map h: C' — A with h(0) = h(1) = a(d) is the
unique coalgebra-to-algebra morphism.

However, (C,~) is not parametrically recursive. To see this, consider any

morphism e: RX x {0,1} — X such that RX contains more than one pair
(zo,21), ®o # x1 with e((zg,21),7) = z; for i = 0, 1. Then each such pair yields
h: C — X with h(i) = z; making the appropriate square commutative. Thus,
(C,~) is not parametrically recursive.
(8) Capretta et al. [11] showed that recursivity semantically models divide-and-
conquer programs, as demonstrated by the example of Quicksort. For every
linearly ordered set A (of data elements), Quicksort is usually defined as the
recursive function ¢: A* — A* given by

ge) =¢ and g(aw) = g(w<a) * (ag(w>a)),

where A* is the set of all lists on A, e is the empty list, x is the concatenation of
lists and w<, denotes the list of those elements of w which are less than or equal
than a; analogously for w-,.

Now consider the functor X =14+ A x X x X on Set, where 1 = {e}, and
form the coalgebra s: A* =1+ A x A* x A* given by

s(e) =9 and s(aw) = (a, W<q, Wsq) fora € Aand we A",

We shall see that this coalgebra is recursive in Example 5.3. Thus, for the
F-algebram: 1+ A x A* x A* — A* given by

m(e) =¢ and m(a, w,v) = w* (av)

there exists a unique function g on A* such that ¢ = m - Fig - s. Notice that the
last equation reflects the idea that Quicksort is a divide-and-conquer algorithm.
The coalgebra structure s divides a list into two parts w<, and ws,. Then Fgq
sorts these two smaller lists, and finally in the combine- (or conquer-) step, the
algebra structure m merges the two sorted parts to obtain the desired whole
sorted list.

Jeannin et al. [15, Sec. 4] provide a number of recursive functions arising in
programming that are determined by recursivity of a coalgebra, e.g. the ged of
integers, the Ackermann function, and the Towers of Hanoi.

4 The Next Time Operator and Well-Founded Coalgebras

As we have mentioned in the Introduction, the main issue of this paper is the
relationship between two concepts pertaining to coalgebras: recursiveness and

On Well-Founded and Recursive Coalgebras 25

well-foundedness. The concept of well-foundedness is well-known for directed
graphs (G, —): it means that there are no infinite directed paths go — g1 — .
For a set X with a relation R, well-foundedness means that there are no backwards
sequences - -+ Rxo Rx1 R xg, i.e. the converse of the relation is well-founded as a
graph. Taylor [24, Def. 6.2.3] gave a more general category theoretic formulation
of well-foundedness. We observe here that his definition can be presented in a
compact way, by using an operator that generalizes the way one thinks of the
semantics of the ‘next time’ operator of temporal logics for non-deterministic (or
even probabilistic) automata and transitions systems. It is also strongly related
to the algebraic semantics of modal logic, where one passes from a graph G
to a function on ZG. Jacobs [14] defined and studied the ‘next time’ operator
on coalgebras for Kripke polynomial set functors. This can be generalized to
arbitrary functors as follows.
Recall that Sub(A) denotes the complete lattice of subobjects of A.

Definition 4.1 [4, Def. 8.9]. Every coalgebra a: A — F'A induces an endo-
function on Sub(A), called the next time operator

O: Sub(4) = Sub(4), O(s) = &(Fs) for s € Sub(A).

In more detail: we define (s and «(s) by the pullback in (4.1). (Being a pullback
is indicated by the “corner” symbol.) In words, O o(s)

assigns to each subobject s: S »— A the inverse image OS — FS

of F's under a. Since F's is a monomorphism, (s is a O{J IFS (4.1)
monomorphism and «(s) is (for every representation o

(Os of that subobject of A) uniquely determined. A——FA
Example 4.2. (1) Let A be a graph, considered as a coalgebra for & : Set — Set.
If § C Ais a set of vertices, then (S is the set of vertices all of whose successors
belong to S.

(2) For the set functor F X = Z(X x X) expressing labelled transition systems
the operator () for a coalgebra a: A — (X x A) is the semantic counterpart
of the next time operator of classical linear temporal logic, see e.g. Manna and
Pniieli [18]. In fact, for a subset S < A we have that (.S consists of those states
all of whose next states lie in .S, in symbols:

OS={zec Al (s,y) € a(z) implies y € S, for all s € X}.
The next time operator allows a compact definition of well-foundedness as
characterized by Taylor [24, Exercise VI.17] (see also [6, Corollary 2.19]):

Definition 4.3. A coalgebra is well-founded if id 4 is the only fixed point of its
next time operator.

Remark 4.4. (1) Let us call a subcoalgebra m: (B,) — (A,«a) cartesian
provided that the square (4.2) is a pullback. Then

(4, «) is well-founded iff it has no proper cartesian B2 . FB
subcoalgebra. That is, if m: (B,) » (A,«) is a | (4.2)
cartesian subcoalgebra, then m is an isomorphism. mI IFm

Indeed, the fixed points of next time are precisely the A—2~ FA

26 J. Addmek et al.

cartesian subcoalgebras.

(2) A coalgebra is well-founded iff O has a unique pre-fixed point Om < m.
Indeed, since Sub(A) is a complete lattice, the least fixed point of a monotone
map is its least pre-fixed point. Taylor’s definition [24, Def. 6.3.2] uses that
property: he calls a coalgebra well-founded iff O) has no proper subobject as a
pre-fixed point.

Example 4.5. (1) Consider a graph as a coalgebra a: A — £ A for the power-
set functor (see Example 2.1). A subcoalgebra is a subset m: B — A such
that with every vertex v it contains all neighbors of v. The coalgebra structure
G: B — ZB is then the domain-codomain restriction of «. To say that B is a
cartesian subcoalgebra means that whenever a vertex of A has all neighbors in
B, it also lies in B. It follows that (4, «) is well-founded iff it has no infinite
directed path, see [24, Example 6.3.3].

(2) If uF exists, then as a coalgebra it is well-founded. Indeed, in every pull-
back (4.2), since t.~! (as «) is invertible, so is 3. The unique algebra homomorph-
ism from puF to the algebra 3~ !: FB — B is clearly inverse to m.

(3) If a set functor F fulfils F) = (), then the only well-founded coalgebra is the
empty one. Indeed, this follows from the fact that the empty coalgebra is a fixed
point of (). For example, a deterministic automaton over the input alphabet X,
as a coalgebra for FX = {0,1} x X*, is well-founded iff it is empty.

(4) A non-deterministic automaton may be considered as a coalgebra for the set
functor FX = {0,1} x (2X)¥. It is well-founded iff the state transition graph
is well-founded (i.e. has no infinite path). This follows from Corollary 4.10 below.

(5) A linear weighted automaton, i.e. a coalgebra for FX = K x X* on Vecg,
is well-founded iff every path in its state transition graph eventually leads to O.
This means that every path starting in a given state leads to the state 0 after
finitely many steps (where it stays).

Notation 4.6. Given a set functor F', we define for every set X the map
Tx: FX — ZX assigning to every element x € FX the intersection of all
subsets m: M < X such that x lies in the image of F'm:

Tx(x) = m{m | m: M — X satisfies x € Fm[FM]}. (4.3)

Recall that a functor preserves intersections if it preserves (wide) pullbacks
of families of monomorphisms.

Gumm [13, Thm. 7.3] observed that for a set functor preserving intersections,
the maps 7y : FX — ZX in (4.3) form a “subnatural” transformation from F’
to the power-set functor 2. Subnaturality means that (although these maps do
not form a natural transformation in general) for every monomorphism i: X — Y
we have a commutative square:

FX 25 72X
rl [(14)

Fy X 2Y

On Well-Founded and Recursive Coalgebras 27

Remark 4.7. As shown in [13, Thm. 7.4] and [23, Prop. 7.5], a set functor F
preserves intersections iff the squares in (4.4) above are pullbacks. Moreover,
loc. cit. and [13, Thm. 8.1] prove that 7: F — & is a natural transformation,
provided F' preserves inverse images and intersections.

Definition 4.8. Let F be a set functor. For every coalgebra a: A — FA its
canonical graph is the following coalgebra for 22: A & FA 12 P A.

Thanks to the subnaturality of 7 one obtains the following results.

Proposition 4.9. For every set functor F preserving intersections, the next
time operator of a coalgebra (A, «) coincides with that of its canonical graph.

Corollary 4.10 [24, Rem. 6.3.4]. A coalgebra for a set functor preserving
intersections is well-founded iff its canonical graph is well-founded.

Example 4.11. (1) For a (deterministic or non-deterministic) automaton, the
canonical graph has an edge from s to t iff there is a transition from s to t for
some input letter. Thus, we obtain the characterization of well-foundedness as
stated in Example 4.5(3) and (4).

(2) Every polynomial functor Hy: Set — Set preserves intersections. Thus, a
coalgebra (A, «) is well-founded if there are no infinite paths in its canonical
graph. The canonical graph of A has an edge from a to b if «(a) is of the form
o(c1y...,cp) for some o € X, and if b is one of the ¢;’s.

(3) Thus, for the functor FX = 1+ A x X x X, the coalgebra (A*,s) of
Example 3.3(8) is easily seen to be well-founded via its canonical graph. Indeed,
this graph has for every list w one outgoing edge to the list w<, and one to w,
for every a € A. Hence, this is a well-founded graph.

Lemma 4.12. The next time operator is monotone: if m < n, then Om < On.

Lemma 4.13. Let a: A — FA be a coalgebra and m: B — A a subobject.
(1) There is a coalgebra structure B: B — F B for which m gives a subcoalgebra

of (A,) iff m < Om.
(2) There is a coalgebra structure : B — F'B for which m gives a cartesian
subcoalgebra of (A, a) iff m = Om.

Lemma 4.14. For every coalgebra homomorphism f: (B,) — (A, «) we have
s
Oﬁ : f S f : Oa7

where Oq and Op denote the next time operators of the coalgebras (A, a) and
(B, B), respectively, and < is the pointwise order.

Corollary(_él.15<._ For every coalgebra homomorphism f: (B,3) — (4,«) we
have Qg - f = f - Oa, provided that either

28 J. Addmek et al.

(1) f is a monomorphism in &/ and F' preserves finite intersections, or
(2) F preserves inverse images.

Definition 4.16 [4]. The well-founded part of a coalgebra is its largest well-
founded subcoalgebra.

The well-founded part of a coalgebra always exists and is the coreflection
in the category of well-founded coalgebras [6, Prop. 2.27]. We provide a new,
shorter proof of this fact. The well-founded part is obtained by the following:

Construction 4.17 [6, Not. 2.22]. Let a: A — F A be a coalgebra. We know
that Sub(A) is a complete lattice and that the next time operator () is monotone
(see Lemma 4.12). Hence, by the Knaster-Tarski fixed point theorem, O has a
least fixed point, which we denote by a*: A* — A.

By Lemma 4.13(2), we know that there is a coalgebra structure o*: A* — FA*
so that a*: (A*,a*) — (A, «) is the smallest cartesian subcoalgebra of (A,).

Proposition 4.18. For every coalgebra (A,), the coalgebra (A*, a*) is well-
founded.

Proof. Let m: (B,) — (A*,a*) be a cartesian subcoalgebra. By Lemma 4.13,
a*-m: B — Ais a fixed point of (). Since a* is the least fixed point, we have
a* <a*-m,ie a* =a*-m-x for some z: A* — B. Since a* is monic, we thus
have m - & = ids~. So m is a monomorphism and a split epimorphism, whence
an isomorphism. g

Proposition 4.19. The full subcategory of Coalg F' given by well-founded coal-
gebras is coreflective. In fact, the well-founded coreflection of a coalgebra (A,)
is its well-founded part a*: (A*, a*) — (A, a).

Proof. We are to prove that for every coalgebra homomorphism f: (B,3) —
(A,), where (B,) is well-founded, there exists a coalgebra homomorphism
f4: (B, B) — (A*,a*) such that a* - f* = f. The uniqueness is easy.

For the existence of f*, we first observe that f (a*) is a pre-fixed point of
(Op: indeed, using Lemma 4.14 we have OB(?(a*)) < <?(Oa(a*)) = <7(@*).
By Remark 4.4(2), we therefore have idg = b* < <f(ot*) in Sub(B). Using the
adjunction of Lemma 2.11, we have ?(z’dB) < a* in Sub(A4). Now factorize f as
B 5 C % A We have 7(id,3) = m, and we then obtain m = ?(idB) < a*,
i.e. there exists a morphism h: C' — A* such that a* - h = m. Thus, f! =
h-e: B — A* is a morphism satisfying a* - ff =a*-h-e=m-e = f. It follows
that f* is a coalgebra homomorphism from (B, 3) to (A*,a*) since f and a* are
and F' preserves monomorphisms. g

Construction 4.20 [6, Not. 2.22]. Let (A, a) be a coalgebra. We obtain
a*, the least fixed point of (), as the join of the following transfinite chain of
subobjects a;: A; — A, i € Ord. First, put ag = L4, the least subobject of A.
Given a;: A; — A, put a;41 = Qa;: Air1 = OQA; — A. For every limit ordinal
j, put a; = \/i<j a;. Since Sub(A) is a set, there exists an ordinal 7 such that
a; =a*: A* — A.

On Well-Founded and Recursive Coalgebras 29

Remark 4.21. Note that, whenever monomorphisms are smooth, we have Ay =
0 and the above join a; is obtained as the colimit of the chain of the subobject
a;: A; — A, i < j (see Remark 2.12).

If F' is a finitary functor on a locally finitely presentable category, then the
least ordinal ¢ with a® = a; is at most w, but in general one needs transfinite
iteration to reach a fixed point.

Example 4.22. Let (A4,«a) be a graph regarded as a coalgebra for & (see
Example 2.1). Then Ag =), A; is formed by all leaves; i.e. those nodes with no
neighbors, As by all leaves and all nodes such that every neighbor is a leaf, etc.
We see that a node x lies in A;1 iff every path starting in x has length at most
i. Hence A* = A, is the set of all nodes from which no infinite paths start.

We close with a general fact on well-founded parts of fized points (i.e. (co)alge-
bras whose structure is invertible). The following result generalizes [15, Cor. 3.4],
and it also appeared before for functors preserving finite intersections [4, The-
orem 8.16 and Remark 8.18]. Here we lift the latter assumption (see [5, The-
orem 7.6] for the new proof):

Theorem 4.23. Let o/ be a complete and well-powered category with smooth
monomorphisms. For F preserving monomorphisms, the well-founded part of
every fized point is an initial algebra. In particular, the only well-founded fixed
point is the initial algebra.

Example 4.24. We illustrate that for a set functor F' preserving monomorph-
isms, the well-founded part of the terminal coalgebra is the initial algebra.
Consider FFX = A x X + 1. The terminal coalgebra is the set A U A* of finite
and infinite sequences from the set A. The initial algebra is A*. It is easy to
check that A* is the well-founded part of A> U A*.

5 The General Recursion Theorem and its Converse

The main consequence of well-foundedness is parametric recursivity. This is
Taylor’s General Recursion Theorem [24, Theorem 6.3.13]. Taylor assumed that
F preserves inverse images. We present a new proof for which it is sufficient that
F preserves monomorphisms, assuming those are smooth.

Theorem 5.1 (General Recursion Theorem). Let </ be a complete and
wellpowered category with smooth monomorphisms. For F: o/ — &/ preserving
monomorphisms, every well-founded coalgebra is parametrically recursive.

Proof sketch. (1) Let (A,) be well-founded. We first prove that it is recursive.
We use the subobjects a;: A; — A of Construction 4.20%, the corresponding

4 One might object to this use of transfinite recursion, since Theorem 5.1 itself could
be used as a justification for transfinite recursion. Let us emphasize that we are
not presenting Theorem 5.1 as a foundational contribution. We are building on the
classical theory of transfinite recursion.

30 J. Adamek et al.

morphisms «(a;): Aiy1 = OQA; — FA; (cf. Definition 4.3), and the recursive
coalgebras (F0,w; ;1) of Example 3.3(6). We obtain a natural transformation
h from the chain (A;) in Construction 4.20 to the initial-algebra chain (F0) (see
Remark 2.13) by transfinite recursion.

Now for every algebra e: FFX — X, we obtain a unique coalgebra-to-algebra
morphism f;: F'0 — X, i.e. we have that f; = e- F'f; - w; ;+1. Since (4,a) is
well-founded, we know that o = a* = a(a;) for some ¢. From this it is not difficult
to prove that f; - h; is a coalgebra-to-algebra morphism from (A,) to (X, e).

In order to prove uniqueness, we prove by transfinite induction that for any
given coalgebra-to-algebra homomorphism ef, one has ef - aj = f;j - hj - a; for
every ordinal number j. Then for the above ordinal number ¢ with a; = id 4, we
have ef = f; - h;, as desired. This shows that (A, a) is recursive.

(2) We prove that (A, «) is parametrically recursive. Consider the coalgebra
(ayidpg): A — FA x A for F(—) x A. This functor preserves monomorphisms
since F' does and monomorphisms are closed under products. The next time
operator () on Sub(A) is the same for both coalgebras since the square (4.1) is a
pullback if and only if the square on the right below is one.

Since id4 is the unique fixed point of ()

w.r.t. F' (see Definition 4.3), it is also the (a(m),Om)

unique fixed point of O w.r.t. F(—) x A. OS ————— FSx A
Thus, (A,{a,id4)) is a well-founded coal- OmIJ IFmXA
gebra for F'(—) x A. By the previous ar- (a,A)
gument, this coalgebra is thus recursive for A FAxA
F(—) x A; equivalently, (A, «) is parametrically recursive for F. ad

Theorem 5.2. For every endofunctor on Set or Veck (vector spaces and linear
maps), every well-founded coalgebra is parametrically recursive.

Proof sketch. For Set, we apply Theorem 5.1 to the Trnkové hull F (see Proposi-
tion 2.3), noting that F' and F have the same (non-empty) coalgebras. Moreover,
one can show that every well-founded (or recursive) F-coalgebra is a well-founded
(recursive, resp.) F-coalgebra. For Vecg, observe that monomorphisms split and
are therefore preserved by every endofunctor F'. O

Example 5.3. We saw in Example 4.11(3) that for FX =14+ A x X x X
the coalgebra (A, s) from Example 3.3(8) is well-founded, and therefore it is
(parametrically) recursive.

Example 5.4. Well-founded coalgebras need not be recursive when F' does
not preserve monomorphisms. We take &7 to be the category of sets with a
predicate, i.e. pairs (X, A), where A C X. Morphisms f: (X, A) — (Y, B) satisfy
f[4] € B. Denote by 1 the terminal object (1,1). We define an endofunctor
F by F(X,0) = (X +1,0), and for A # (), F(X,A) = 1. For a morphism
f:(X,A) = (Y,B), put Ff = f+idif A= 0;if A # (), then also B # () and
Ffisid: 1 — 1.

On Well-Founded and Recursive Coalgebras 31

The terminal coalgebra is id: 1 — 1, and it is easy to see that it is well-
founded. But it is not recursive: there are no coalgebra-to-algebra morphisms
into an algebra of the form F(X,0) — (X, 0).

We next prove a converse to Theorem 5.1: “recursive = well-founded”.
Related results appear in Taylor [23, 24], Addmek et al. [3] and Jeannin et
al. [15].

Recall universally smooth monomorphisms from Definition 2.8(2). A pre-fived
point of F'is a monic algebra a: FFA — A.

Theorem 5.5. Let o/ be a complete and wellpowered category with universally
smooth monomorphisms, and suppose that F: of — o/ preserves inverse images
and has a pre-fized point. Then every recursive coalgebra is well-founded.

Proof. (1) We first observe that an initial algebra exists. This follows from results
by Trnkova et al. [25] as we now briefly recall. Recall the initial-algebra chain
from Remark 2.13. Let 8: FB — B be a pre-fixed point. Then there is a unique
cocone B;: F'0 — B satisfying ;.1 = (- F3;. Moreover, each (3; is monomorphic.
Since B has only a set of subobjects, there is some A such that for every i > A,
all of the morphisms /3; represent the same subobject of B. Consequently, wx x41
of Remark 2.13 is an ibomorphism due to By = Bxt1 - wart1- Then pF = F20
with the structure ¢ = wy /\+1 : F(uF) — pF is an initial algebra.
(2) Now suppose that (A, «) is a recursive coalgebra. Then there exists a unique
coalgebra homomorphism h: (4,a) — (uF,¢™!). Let us abbreviate w;y by
¢;: F'0 — pF, and recall the subobjects a;: A; — A from Construction 4.20.
We will prove by transfinite induction that a; is the inverse image of ¢; under h; in
symbols: a; = h (¢;) for all ordinals i. Then it follows that ay is an isomorphism,
since so is ¢y, whence (A, «) is well-founded.

In the base case i = 0 this is clear since Ag = Wy = 0 is a strict initial object.

For the isolated step we compute the pullback of ¢;y1: W; 11 — pF along h
using the following diagram:

Ay 2oy gy,

S A

A—2 5 FA LMy P(uF) —— uF
L h 7

By the induction hypothesis and since F' preserves inverse images, the middle
square above is a pullback. Since the structure map ¢ of the initial algebra is an
isomorphism, it follows that the middle square pasted with the right-hand triangle
is also a pullback. Finally, the left-hand square is a pullback by the definition of
a;+1. Thus, the outside of the above diagram is a pullback, as required.
For a limit ordinal j, we know that a; =\/,_; a; and similarly, ¢; = \/,_; ¢;
since W; = colim;; W, and monomorphisms are smooth (see Remark 2. 12().

Using Remark 2.12(3) and the induction hypothesis we thus obtain " (¢j) =

— P
h (Vi<j ci) = Vi<j h(ci) = \/i<j a; = aj.

S8

O

32 J. Adamek et al.

Corollary 5.6. Let o/ and F satisfy the assumptions of Theorem 5.5. Then the
following properties of a coalgebra are equivalent:

(1) well-foundedness,
(2
(3
(
(

) parametric recursiveness,
)

4) ezistence of a homomorphism into (uF,.=1),
)

recursiveness,

5) existence of a homomorphism into a well-founded coalgebra.

Proof sketch. We already know (1) = (2) = (3). Since F has an initial algebra (as
proved in Theorem 5.5), the implication (3) = (4) follows from Example 3.3(2).
In Theorem 5.5 we also proved (4) = (1). The implication (4) = (5) follows
from Example 4.5(2). Finally, it follows from [6, Remark 2.40] that (uF,:™1) is
a terminal well-founded coalgebra, whence (5) = (4). O

Example 5.7. (1) The category of many-sorted sets satisfies the assumptions
of Theorem 5.5, and polynomial endofunctors on that category preserve inverse
images. Thus, we obtain Jeannin et al’s result [15, Thm. 3.3] that (1)—(4) in
Corollary 5.6 are equivalent as a special instance.

(2) The implication (4) = (3) in Corollary 5.6 does not hold for vector spaces.
In fact, for the identity functor on Vecx we have pld = (0,id). Hence, every
coalgebra has a homomorphism into p/d. However, not every coalgebra is recursive,
e.g. the coalgebra (K, id) admits many coalgebra-to-algebra morphisms to the
algebra (K, id). Similarly, the implication (4) = (1) does not hold.

We also wish to mention a result due to Taylor [23, Rem. 3.8]. It uses the concept
of a subobject classifier originating in [17] and prominent in topos theory. This is
an object §2 with a subobject ¢: 1 — {2 such that for every subobject b: B — A
there is a unique b: A — £2 such that b is the inverse image of ¢ under b. By
definition, every elementary topos has a subobject classifier, in particular every
category Set? with ¢ small.

Our standing assumption that <7 is a complete and well-powered category is
not needed for the next result: finite limits are sufficient.

Theorem 5.8 (Taylor [23]). Let F be an endofunctor preserving inverse im-
ages on a finitely complete category with a subobject classifier. Then every recursive
coalgebra is well-founded.

Corollary 5.9. For every set functor preserving inverse images, the following
properties of a coalgebra are equivalent:

well-foundedness <= parametric recursiveness <= recursiveness.

Example 5.10. The hypothesis in Theorems 5.5 and 5.8 that the functor
preserves inverse images cannot be lifted. In order to see this, we consider the
functor R: Set — Set of Example 2.2(4). It preserves monomorphisms but not
inverse images. The coalgebra A = {0, 1} with the structure o constant to (0,1)
is recursive: given an algebra 3: RB — B, the unique coalgebra-to-algebra

On Well-Founded and Recursive Coalgebras 33

homomorphism h: {0,1} — B is given by h(0) = h(1) = S(d). But A is not
well-founded: () is a cartesian subcoalgebra.

Recall that an initial algebra (uF, ¢) is also considered as a coalgebra (uF,.=1).
Taylor [23, Cor. 9.9] showed that, for functors preserving inverse images, the
terminal well-founded coalgebra is the initial algebra. Surprisingly, this result is
true for all set functors.

Theorem 5.11 [6, Thm. 2.46]. For every set functor, a terminal well-founded
coalgebra is precisely an initial algebra.

Theorem 5.12. For every functor on Veck preserving inverse images, the fol-
lowing properties of a coalgebra are equivalent:

well-foundedness <= parametric recursiveness <> Trecursiveness.

6 Closure Properties of Well-founded Coalgebras

In this section we will see that strong quotients and subcoalgebras (see Remark 2.7)
of well-founded coalgebras are well-founded again. We mention the following
corollary to Proposition 4.19. For endofunctors on sets preserving inverse images
this was stated by Taylor [24, Exercise VI.16]:

Proposition 6.1. The subcategory of Coalg F' formed by all well-founded coal-
gebras is closed under strong quotients and coproducts in Coalg F.

This follows from a general result on coreflective subcategories [2, Thm. 16.8]:
the category Coalg F' has the factorization system of Proposition 2.6, and its
full subcategory of well-founded coalgebras is coreflective with monomorphic
coreflections (see Proposition 4.19). Consequently, it is closed under strong
quotients and colimits.

We prove next that, for an endofunctor preserving finite intersections, well-
founded coalgebras are closed under subcoalgebras provided that the complete
lattice Sub(A) is a frame. This means that for every subobject m: B — A and
every family m; (i € I) of subobjects of A we have mA\/,c; m; =\, o, (mAmy).
Equivalently, 7n: Sub(A) — Sub(B) (see Notation 2.10) has a right adjoint
m.: Sub(B) — Sub(A).

This property holds for Set as well as for the categories of posets, graphs,
topological spaces, and presheaf categories Set®, ¢ small. Moreover, it holds for
every Grothendieck topos. The categories of complete partial orders and Vecg
do not satisfy this requirement.

Proposition 6.2. Suppose that F preserves finite intersections, and let (A, «)
be a well-founded coalgebra such that Sub(A) a frame. Then every subcoalgebra
of (A, @) is well-founded.

34 J. Adamek et al.

Proof. Let m: (B,) — (A, «) be a subcoalgebra. We will show that the only
pre-fixed point of Qg is idp (cf. Remark 4.4(2)). Suppose s: S — B fulfils
Op(s) < s. Since F preserves finite intersections, we have m-Oa = Os - m by
Corollary 4.15(1). The counit of the above adjunction i = m, yields 12 (m, (s)) <
5, 50 that we obtain 1 (Qa(m+(5))) = O (M (m.(s))) < Op(s) < s. Using again
the adjunction 712 4 m.,, we have equivalently that O (m(s)) < my(s); i.e. my(s)
is a pre-fixed point of O,. Since (A,) is well-founded, Corollary 4.15(1) implies
that m.(s) = id 4. Since n is also a right adjoint and therefore preserves the top
clement of Sub(B), we thus obtain idg = in(ida) = M (m.(s)) < s. O

Remark 6.3. Given a set functor F' preserving inverse images, a much better
result was proved by Taylor [24, Corollary 6.3.6]: for every coalgebra homo-
morphism f: (B,) = (A, «) with (A, a) well-founded so is (B, §). In fact, our
proof above is essentially Taylor’s.

Corollary 6.4. If a set functor preserves finite intersections, then subcoalgebras
of well-founded coalgebras are well-founded.

Trnkova [26] proved that every set functor preserves all nonempty finite
intersections. However, this does not suffice for Corollary 6.4:

Example 6.5. A well-founded coalgebra for a set functor can have non-well-
founded subcoalgebras. Let F() = 1 and F'’X = 1+1 for all nonempty sets X, and
let F'f =inl: 1 — 1+ 1 be the left-hand injection for all maps f:) — X with
X nonempty. The coalgebra inr: 1 — F'1 is not well-founded because its empty
subcoalgebra is cartesian. However, this is a subcoalgebra of id: 1+1 — 141
(via the embedding inr), and the latter is well-founded.

The fact that subcoalgebras of a well-founded coalgebra are well-founded does
not necessarily need the assumption that Sub(A) is a frame. Instead, one may
assume that the class of morphisms is universally smooth:

Theorem 6.6. If o7 has universally smooth monomorphisms and F preserves
finite intersections, every subcoalgebra of a well-founded coalgebra is well-founded.

7 Conclusions

Well-founded coalgebras introduced by Taylor [24] have a compact definition based
on an extension of Jacobs’ ‘next time’ operator. Our main contribution is a new
proof of Taylor’s General Recursion Theorem that every well-founded coalgebra is
recursive, generalizing this result to all endofunctors preserving monomorphisms
on a complete and well-powered category with smooth monomorphisms. For
functors preserving inverse images, we also have seen two variants of the converse
implication “recursive = well-founded”, under additional hypothesis: one due
to Taylor for categories with a subobject classifier, and the second one provided
that the category has universally smooth monomorphisms and the functor has a
pre-fixed point. Various counterexamples demonstrate that all our hypotheses
are necessary.

On Well-Founded and Recursive Coalgebras 35

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Adémek, J.: Free algebras and automata realizations in the language of categories.
Comment. Math. Univ. Carolin. 15, 589-602 (1974)

Adéamek, J., Herrlich, H., Strecker, G.E.: Abstract and Concrete Categories: The
Joy of Cats. Dover Publications, 3rd edn. (2009)

Adamek, J., Liicke, D., Milius, S.: Recursive coalgebras of finitary functors. Theor. In-
form. Appl. 41(4), 447-462 (2007)

Adamek, J., Milius, S., Moss, L.S.: Fixed points of functors. J. Log. Algebr. Methods
Program. 95, 41-81 (2018)

Adamek, J., Milius, S., Moss, L.S.: On well-founded and recursive coalgebras (2019),
full version; available online at http://arxiv.org/abs/1910.09401

Adamek, J., Milius, S., Moss, L.S., Sousa, L.: Well-pointed coalgebras. Log. Methods
Comput. Sci. 9(2), 1-51 (2014)

Adémek, J., Milius, S., Sousa, L., Wilmann, T.: On finitary functors. Theor. Appl.
Categ. 34, 1134-1164 (2019). available online at https://arxiv.org/abs/1902.05788
Adamek, J., Rosicky, J.: Locally Presentable and Accessible Categories. Cambridge
University Press (1994)

Borceux, F.: Handbook of Categorical Algebra: Volume 1, Basic Category Theory.
Encyclopedia of Mathematics and its Applications, Cambridge University Press
(1994)

Capretta, V., Uustalu, T., Vene, V.: Recursive coalgebras from comonads. In-
form. and Comput. 204, 437-468 (2006)

Capretta, V., Uustalu, T., Vene, V.: Corecursive algebras: A study of general
structured corecursion. In: Oliveira, M., Woodcock, J. (eds.) Formal Methods:
Foundations and Applications, Lecture Notes in Computer Science, vol. 5902, pp.
84-100. Springer Berlin Heidelberg (2009)

Eppendahl, A.: Coalgebra-to-algebra morphisms. In: Proc. Category Theory and
Computer Science (CTCS). Electron. Notes Theor. Comput. Sci., vol. 29, pp. 42-49
(1999)

Gumm, H.: From T-coalgebras to filter structures and transition systems. In:
Fiadeiro, J.L., Harman, N., Roggenbach, M., Rutten, J. (eds.) Algebra and Coalgebra
in Computer Science, Lecture Notes in Computer Science, vol. 3629, pp. 194-212.
Springer Berlin Heidelberg (2005)

Jacobs, B.: The temporal logic of coalgebras via Galois algebras. Math. Structures
Comput. Sci. 12(6), 875-903 (2002)

Jeannin, J.B., Kozen, D., Silva, A.: Well-founded coalgebras, revisited. Math. Struc-
tures Comput. Sci. 27, 1111-1131 (2017)

Kurz, A.: Logics for Coalgebras and Applications to Computer Science. Ph.D. thesis,
Ludwig-Maximilians-Universitdt Miinchen (2000)

Lawvere, W.F.: Quantifiers and sheaves. Actes Conges Intern. Math. 1, 329-334
(1970)

Manna, Z., Pniieli, A.: The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer-Verlag (1992)

Meseguer, J., Goguen, J.A.: Initiality, induction, and computability. In: Algebraic
methods in semantics (Fontainebleau, 1982), pp. 459-541. Cambridge Univ. Press,
Cambridge (1985)

Milius, S.: Completely iterative algebras and completely iterative monads. In-
form. and Comput. 196, 1-41 (2005)

http://arxiv.org/abs/1910.09401
https://arxiv.org/abs/1902.05788

36

21.

22.

23.

24.

25.

26.

27.

J. Adamek et al.

Milius, S., Pattinson, D., Wilmann, T.: A new foundation for finitary corecursion
and iterative algebras. Inform. and Comput. 217 (2020), available online at https:
//doi.org/10.1016 /j.ic.2019.104456.

Osius, G.: Categorical set theory: a characterization of the category of sets. J. Pure
Appl. Algebra 4(79-119) (1974)

Taylor, P.: Towards a unified treatment of induction I: the general recursion theorem
(1995-6), preprint, available at www.paultaylor.eu/ordinals/#towuti

Taylor, P.: Practical Foundations of Mathematics. Cambridge University Press
(1999)

Trnkova, V., Adamek, J., Koubek, V., Reiterman, J.: Free algebras, input processes
and free monads. Comment. Math. Univ. Carolin. 16, 339-351 (1975)

Trnkova, V.: Some properties of set functors. Comment. Math. Univ. Carolin. 10,
323-352 (1969)

Trnkovd, V.. On a descriptive classification of set functors I. Com-
ment. Math. Univ. Carolin. 12, 143-174 (1971)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source,

provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

https://doi.org/10.1016/j.ic.2019.104456
www.paultaylor.eu/ordinals/#towuti
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.ic.2019.104456

®

Check for
updates

Timed Negotiations*

S. Akshayl(g), Blaise Genest?, Loic Hélouét?, and Sharvik Mital'

! IIT Bombay, Mumbai, India {akshayss,sharky}@cse.iitb.ac.in
2 Univ Rennes, CNRS, IRISA, Rennes, France blaise.genest@irisa.fr
3 Univ Rennes, Inria, Rennes, France loic.helouet@inria.fr

Abstract. Negotiations were introduced in [6] as a model for concurrent
systems with multiparty decisions. What is very appealing with negotia-
tions is that it is one of the very few non-trivial concurrent models where
several interesting problems, such as soundness, i.e. absence of deadlocks,
can be solved in PTIME [3]. In this paper, we introduce the model of
timed negotiations and consider the problem of computing the minimum
and the maximum execution times of a negotiation. The latter can be
solved using the algorithm of [10] computing costs in negotiations, but
surprisingly minimum execution time cannot.

This paper proposes new algorithms to compute both minimum and
maximum execution time, that work in much more general classes of ne-
gotiations than [10], that only considered sound and deterministic nego-
tiations. Further, we uncover the precise complexities of these questions,
ranging from PTIME to A% -complete. In particular, we show that com-
puting the minimum execution time is more complex than computing the
maximum execution time in most classes of negotiations we consider.

1 Introduction

Distributed systems are notoriously difficult to analyze, mainly due to the ex-
plosion of the number of configurations that have to be considered to answer
even simple questions. A challenging task is then to propose models on which
analysis can be performed with tractable complexities, preferably within poly-
nomial time. Free choice Petri nets are a classical model of distributed systems
that allow for efficient verification, in particular when the nets are 1-safe [4,5].
Recently, [6] introduced a new model called negotiations for workflows and
business processes. A negotiation describes how processes interact in a dis-
tributed system: a subset of processes in a node of the system take a synchronous
decisions among several outcomes. The effect of this outcome sends contribut-
ing processes to a new set of nodes. The execution of a negotiation ends when
processes reach a final configuration. Negotiations can be deterministic (once an
outcome is fixed, each process knows its unique successor node) or not.
Negotiations are an interesting model since several properties can be decided
with a reasonable complexity. The question of soundness, i.e., deadlock-freedom:

* Supported by DST/CEFIPRA/INRIA Associated team EQuaVE and DST/SERB
Matrices grant MTR/2018/000744.

© The Author(s) 2020
J. Goubault-Larrecq and B. Konig (Eds.): FOSSACS 2020, LNCS 12077, pp. 37-56, 2020.
https://doi.org/10.1007/978-3-030-45231-5_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45231-5_3&domain=pdf

38 S. Akshay et al.

whether from every reachable configuration one can reach a final configuration,
is PSPACE-complete. However, for deterministic negotiations, it can be decided
in PTIME [7]. The decision procedure uses reduction rules. Reduction techniques
were originally proposed for Petri nets [2,8,11,16]. The main idea is to define
transformations rules that produce a model of smaller size w.r.t. the original
model, while preserving the property under analysis. In the context of negotia-
tions, [7, 3] proposed a sound and complete set of soundness-preserving reduction
rules and algorithms to apply these rules efficiently. The question of soundness
for deterministic negotiations was revisited in [9] and showed NLOGSPACE-
complete using anti patterns instead of reduction rules. Further, they show that
the PTIME result holds even when relaxing determinism [9]. Negotiation games
have also been considered to decide whether one particular process can force ter-
mination of a negotiation. While this question is EXPTIME-complete in general,
for sound and deterministic negotiations, it becomes PTIME [12].

While it is natural to consider cost or time in negotiations (e.g. think of the
Brexit negotiation where time is of the essence, and which we model as running
example in this paper), the original model of negotiations proposed by [6] is
only qualitative. Recently, [10] has proposed a framework to associate costs to
the executions of negotiations, and adapt a static analysis technique based on
reduction rules to compute end-to-end cost functions that are not sensitive to
scheduling of concurrent nodes. For sound and deterministic negotiations, the
end-to-end cost can be computed in O(n.(C + n)), where n is the size of the
negotiation and C' the time needed to compute the cost of an execution. Requir-
ing soundness or determinism seems perfectly reasonable, but asking sound and
deterministic negotiations is too restrictive: it prevents a process from waiting
for decisions of other processes to know how to proceed.

In this paper, we revisit time in negotiations. We attach time intervals to
outcomes of nodes. We want to compute maximal and minimal executions times,
for negotiations that are not necessarily sound and deterministic. Since we are
interested in minimal and maximal execution time, cycles in negotiations can be
either bypassed or lead to infinite maximal time. Hence, we restrict this study to
acyclic negotiations. Notice that time can be modeled as a cost, following [10],
and the maximal execution time of a sound and deterministic negotiation can
be computed in PTIME using the algorithm from [10]. Surprisingly however, we
give an example (Example 3) for which the minimal execution time cannot be
computed in PTIME by this algorithm.

The first contribution of the paper shows that reachability (whether at least
one run of a negotiation terminates) is NP-complete, already for (untimed) deter-
ministic acyclic negotiations. This implies that computing minimal or maximal
execution time for deterministic (but unsound) acyclic negotiations cannot be
done in PTIME (unless NP=PTIME). We characterize precisely the complex-
ities of different decision variants (threshold, equality, etc.), with complexities
ranging from (co-)NP-complete to AL

We thus turn to negotiations that are sound but not necessarily determinis-
tic. Our second contribution is a new algorithm, not based on reduction rules,

Timed Negotiations 39

to compute the maximal execution time in PTIME for sound negotiations. It is
based on computing the maximal execution time of critical paths in the nego-
tiations. However, we show that minimal execution time cannot be computed
in PTIME for sound negotiations (unless NP=PTIME): deciding whether the
minimal execution time is lower than T is NP-complete, even for T' given in
unary, using a reduction from a Bin packing problem. This shows that minimal
execution time is harder to compute than maximal execution time.

Our third contribution consists in defining a class in which the minimal exe-
cution time can be computed in (pseudo) PTIME. To do so, we define the class
of k-layered negotiations, for k fixed, that is negotiations where nodes can be or-
ganized into layers of at most k£ nodes at the same depth. These negotiations can
be executed without remembering more than k£ nodes at a time. In this case, we
show that computing the maximal execution time is PTIME, even if the negoti-
ation is neither deterministic nor sound. The algorithm, not based on reduction
rules, uses the k-layer restriction in order to navigate in the negotiation while
considering only a polynomial number of configurations. For minimal execution
time, we provide a pseudo PTIME algorithm, that is PTIME if constants are
given in unary. Finally, we show that the size of constants do matter: deciding
whether the minimal execution time of a k-layered negotiation is less than T
is NP-complete, when T is given in binary. We show this by reducing from a
Knapsack problem, yet again emphasizing that the minimal execution time of a
negotiation is harder to compute than its maximal execution time.

This paper is organized as follows. Section 2 introduces the key ingredients of
negotiations, determinism and soundness, known results in the untimed setting,
and provides our running example modeling the Brexit negotiation. Section 3
introduces time in negotiations, gives a semantics to this new model, and for-
malizes several decision problems on maximal and minimal durations of runs in
timed negotiations. We recall the main results of the paper in Section 4. Then,
Section 5 considers timed execution problems for deterministic negotiations, Sec-
tion 6 for sound negotiations, and section 7 for layered negotiations. Proof details
for the last three sections are given in an extended version of this paper [1].

2 Negotiations: Definitions and Brexit example

In this section, we recall the definition of negotiations, of some subclasses (acyclic
and deterministic), as well as important problems (soundness and reachability).

Definition 1 (Negotiation [6,10]). A negotiation over a finite set of pro-
cesses P is a tuple N' = (N,ng,ny, X), where:

— N s a finite set of nodes. Fach node is a pair n = (P,, R,) where P, C P
is a mon empty set of processes participating in node n, and R, is a finite
set of outcomes of node n (also called results), with R, , = {ry}. We denote
by R the union of all outcomes of nodes in N.

— ng s the first node of the negotiation and ny is the final node. Fvery process
in P participates in both ng and ny.

40 S. Akshay et al.

no-backstop

Fig. 1. A (sound but non-deterministic) negotiation modeling Brexit.

— Foralln € N, X, : P, x R, — 2V is a map defining the transition relation
from node n, with X,,(p,7) =0 iff n = nys,r =rp. We denote X : N x P x
R — 2N the partial map defined on Unen{n} x Py x Ry), with X(n,p,a) =
Xn(p,a) for all p,a.

Intuitively, at a node n = (P,, R,) in a negotiation, all processes of P,, have
to agree on a common outcome 7 chosen from R,,. Once this outcome r is chosen,
every process p € P, is ready to move to any node prescribed by X (n,p,r). A
new node m can only start when all processes of P, are ready to move to m.

Ezxample 1. We illustrate negotiations by considering a simplified model of the
Brexit negotiation, see Figure 1. There are 3 processes, P = { EU, PM, Pa}. At
first EU decides whether or not to enforce a backstop in any deal (outcome back-
stop) or not (outcome no-backstop). In the meantime, PM decides to proroge
Pa, and Pa can choose or not to appeal to court (outcome court/no court). If it
goes to court, then PM and Pa will take some time in court (c-meet, defend),
before PM can meet EU to agree on a deal. Otherwise, Pa goes to recess, and
PM can meet EU directly. Once EU and PM agreed on a deal, PM tries to
convince Pa to vote the deal. The final outcome is whether the deal is voted, or
whether Brexit is delayed.

Definition 2 (Deterministic negotiations). A process p € P is determinis-
tic iff, for everyn € N and every outcome r of n, X(n,p,r) is a singleton. A ne-
gotiation is deterministic iff all its processes are deterministic. It is weakly non-
deterministic [9] (called weakly deterministic in [3]) iff, for every node n, one of
the processes in P, is deterministic. Last, it is very weakly non-deterministic [9]
(called weakly deterministic in [6]) iff, for every n, every p € P, and every out-
come r of n, there exists a deterministic process q such that q € P, for every
n' € X(n,p,r).

Timed Negotiations 41

In deterministic negotiations, once an outcome is chosen, each process knows
the next node it will be involved in. In (very-)weakly non-deterministic nego-
tiations, the next node might depend upon the outcome chosen in other nodes
by other processes. However, once the outcomes have been chosen for all cur-
rent nodes, there is only one next node possible for each process. Observe that
the class of deterministic negotiations is isomorphic to the class of free choice
workflow nets [10]. In Example 1, the Brexit negotiation is non-deterministic,
because process PM is non-deterministic. Indeed, consider outcomes c-meet: it
allows two nodes, according to whether the backstop is enforced or not, which
is a decision taken by process EU.

Semantics: A configuration [3] of a negotiation is a mapping M : P — 2V,
Intuitively, it tells for each process p the set M (p) of nodes p is ready to engage in.
The semantics of a negotiation is defined in terms of moves from a configuration
to the next one. The initial My and final M configurations, are given by My(p) =
{no} and M(p) = 0 respectively for every process p € P. A configuration M
enables node n if n € M(p) for every p € P,,. When n is enabled, a decision
at node n can occur, and the participants at this node choose an outcome r €
R,,. The occurrence of (n,r) produces the configuration M’ given by M’'(p) =
X(n,p,r) for every p € P,, and M'(p) = M (p) for remaining processes in P\ P,.
Moving from M to M’ after choosing (n, r) is called a step, denoted M —=s M’. A
run of N is a sequence (n1,71), (n2,r2)...(nk, 7) such that there is a sequence of
configurations My, My, ..., My, and every (n;,r;) is a step between M;_; and M;.
A run starting from the initial configuration and ending in the final configuration
is called a final run. By definition, its last step is (ns, 7).

An important class of negotiations in the context of timed negotiations is
acyclic negotiations, where infinite sequence of steps is impossible:

Definition 3 (Acyclic negotiations). The graph of a negotiation N is the
labeled graph Gy = (V,E) where V.= N, and E = {((n,(p,r),n’) | n' €
X(n,p,r)}, with pairs of the form (p,r) being the labels. A negotiation is acyclic
iff its graph is acyclic. We denote by Paths(G) the set of paths in the graph of a
negotiation. These paths are of form ™ = (ng, (po,70),n1) - - - (Nk—1, Pk, Tk), Nk)-

The Brexit negotiation of Fig.1 is an example of acyclic negotiation. Despite
their apparent simplicity, negotiations may express involved behaviors as shown
with the Brexit example. Indeed two important questions in this setting are
whether there is some way to reach a final node in the negotiation from (i) the
initial node and (ii) any reachable node in the negotiation.

Definition 4 (Soundness and Reachability).

1. A negotiation is sound iff every run from the initial configuration can be
extended to a final run. The problem of soundness is to check if a given
negotiation is sound.

2. The problem of reachability asks if a given negotiation has a final run.

42 S. Akshay et al.

Notice that the Brexit negotiation of Fig.1 is sound (but not deterministic).
It seems hard to preserve the important features of this negotiation while being
both sound and deterministic. The problem of soundness has received consider-
able attention. We summarize the results about soudness in the next theorem:

Theorem 1. Determining whether a negotiation is sound is PSPACE-Complete.
For (very-)weakly non-deterministic negotiations, it is co-NP-complete [9]. For
acyclic negotiations, it is in DP and co-NP-Hard [6]. Determining whether an
acyclic weakly non-deterministic negotiation is sound is in PTIME [3, 9]. Fi-
nally, deciding soundness for deterministic negotiations is NLOGSPACE-complete [9].

Checking reachability is NP-complete, even for deterministic acyclic negoti-
ations (surprisingly, we did not find this result stated before in the literature):

Proposition 1. Reachability is NP-complete for acyclic negotiations, even if
the negotiation is deterministic.

Proof (sketch). One can guess a run of size < |[N| in polynomial time, and verify
if it reaches ny, which gives the inclusion in NP. The hardness part comes from
a reduction from 3-CNF-SAT that can be found in the proof of Theorem 3. O

k-Layered Acyclic Negotiations

We introduce a new class of negotiations which has good algorithmic properties,
namely k-layered acyclic negotiations, for k fixed. Roughly speaking, nodes of a
k-layered acyclic negotiations can be arranged in layers, and these layers contain
at most k nodes. Before giving a formal definition, we need to define the depth
of nodes in \V.

First, a path in a negotiation is a sequence of nodes ng...ny such that for
all i € {1,...,£— 1}, there exists p;,r; with n;11 € X(n;, p;,7;). The length of a
path ng,...,ng is £. The depth depth(n) of a node n is the maximal length of a
path from ng to n (recall that A is acyclic, so this number is always finite).

Definition 5. An acyclic negotiation is layered if for all node n, every path
reaching n has length depth(n). An acyclic negotiation is k-layered if it is layered,
and for all £ € N, there are at most k nodes at depth {.

The Brexit example of Fig. 1 is 6-layered. Notice that a layered negotiation
is necessarily k-layered for some k < |[N] — 2. Note also that we can always
transform an acyclic negotiation N into a layered acyclic negotiation A, by
adding dummy nodes: for every node m € X (n, p,r) with depth(m) > depth(n)+
1, we can add several nodes nq,...n; with £ = depth(m) — (depth(n) 4+ 1), and
processes P,, = {p}. We compute a new relation X’ such that X’'(n,p,r) =
{n1}, X(ng,p,r) = {m} and for every i € 1.0 — 1, X(n;,p,7) = n;+1. This
transformation is polynomial: the resulting negotiation is of size up to |N/| x
|X'| x |P|. The proof of the following Theorem can be found in [1].

Theorem 2. Let k € N*. Checking reachability or soundness for a k-layered
acyclic negotiation N can be done in PTIME.

Timed Negotiations 43
3 Timed Negotiations

In many negotiations, time is an important feature to take into account. For
instance, in the Brexit example, with an initial node starting at the begining of
September 2019, there are 9 weeks to pass a deal till the 31%¢ October deadline.
We extend negotiations by introducing timing constraints on outcomes of
nodes, inspired by timed Petri nets [14] and by the notion of negotiations with
costs [10]. We use time intervals to specify lower and upper bounds for the
duration of negotiations. More precisely, we attach time intervals to pairs (n,r)
where n is a node and r an outcome. In the rest of the paper, we denote by
T the set of intervals with endpoints that are non-negative integers or oo. For
convenience we only use closed intervals in this paper (except for oo), but the
results we show can also be extended to open intervals with some notational
overhead. Intuitively, outcome r can be taken at a node n with associated time
interval [a,b] only after a time units have elapsed from the time all processes
contributing to n are ready to engage in n, and at most b time units later.

Definition 6. A timed negotiation is a pair (N,v) where N is a negotiation,
and vy : N x R — T associates an interval to each pair (n,r) of node and outcome
such thatr € R,,. For a given node n and outcome r, we denote by v~ (n,r) (resp.
v (n,r)) the lower bound (resp. the upper bound) of y(n,r).

Ezxample 2. In the Brexit example, we define the following timed constraints ~.
We only specify the outcome names, as the timing only depends upon them.
Backstop and no-backstop both take between 1 and 2 weeks: y(backstop) =
~(no-backstop) = [1,2]. In case of no-court, recess takes 5 weeks ~y(recess) =
[5,5], and PM can meet EU immediatly y(meet) = [0,0]. In case of court ac-
tion, PM needs to spend 2 weeks in court y(c-meet) = [2, 2], and depending on
the court delay and decision, Pa needs between 3 (court overules recess) to 5
(court confirms recess) weeks, y(defend) = [3,5]. Agreeing on a deal can take
anywhere from 2 weeks to 2 years (104 weeks): v(deal agreed) = [2, 104]—some
would say infinite time is even possible! It needs more time with the backstop,
~v(deal w/backstop) = [5, 104]. All other outcomes are assumed to be immediate,
i.e., associated with [0, 0].

Semantics: A timed valuation is a map p : P — RZ° that associates a non-
negative real value to every process. A timed configuration is a pair (M, u) where
M is a configuration and p a timed valuation. There is a timed step from (M,)

to (M’ 1), denoted (M,) 5 (M,), i () M 5 MY, i) p ¢ P
implies p/(p) = p(p) (iii) 3d € v(n,r) such that Vp € PB,, we have p'(p) =

max, ep, 1(p') +d (d is the duration of node n).

Intuitively a timed step (M,) L), (M’, 1) depicts a decision taken at
node n, and how long each process of P, waited in that node before taking
decision (n,). The last process engaged in n must wait for a duration contained
in y(n,r). However, other processes may spend a time greater than y*(n,r).

44 S. Akshay et al.

A timed run is a sequence of steps p = (Mo, io) —= (My,p1) ... (M, uy)
where M is the initial configuration, pg(p) = 0 for every p € P, and each
(M, i) N (M1, ptig1) is a timed step. It is final if My, = My. Its execution
time 6(p) is defined as d(p) = max,ep k(D).

Notice that we only attached timing to processes, not to individual steps.
With our definition of runs, timing on steps may not be monotonous (i.e., non-
decreasing) along the run, while timing on processes is. Viewed by the lens of
concurrent systems, the timing is monotonous on the partial orders of the system
rather than the linearization. It is not hard to restrict paths, if necessary, to have
a monotonous timing on steps as well. In this paper, we are only interested in
execution time, which does not depend on the linearization considered.

Given a timed negotiation A/, we can now define the minimum and maximum
execution time, which correspond to optimistic or pessimistic views:

Definition 7. Let N be a timed negotiation. Its minimum execution time, de-
noted mintime(N) is the minimal 6(p) over all final timed run p of N'. We
define the maximal execution time maztime(N) of N similarly.

Given T € N, the main problems we consider in this paper are the following:

— The mintime problem, i.e., do we have mintime(N) < T7?.

In other words, does there exist a final timed run p with §(p) < T?
— The maxtime problem, i.e., do we have maztime(N) < T'7.

In other words, does 6(p) < T for every final timed run p?

These questions have a practical interest : in the Brexit example, the question
“is there a way to have a vote on a deal within 9 weeks ?” is indeed a minimum
execution time problem. We also address the equality variant of these decision
problems, i.e., mintime(N) = T : is there a final run of N that terminates
in exactly T time units and no other final run takes less than T time units?
Similarly for maztime(N) = T.

Example 3. We use Fig. 1 to show that it is not easy to compute the minimal
execution time, and in particular one cannot use the algorithm from [10] to com-
pute it. Consider the node n with P, = {PM, Pa} and R,, = {court, no_court}.
If the outcome is court, then PM needs 2 weeks before (s)he can talk to EU
and Pa needs at least 3 weeks before he can debate. However, if the outcome is
no_court, then PM need not wait before (s)he can talk to EU, but Pa wastes
5 weeks in recess. This means that one needs to remember different alternatives
which could be faster in the end, depending on the future. On the other hand,
the algorithm from [10] attaches one minimal time to process Pa, and one min-
imal time to process PM. No matter the choices (0 or 2 for PM and 3 or 5
for Pa), there will be futures in which the chosen number will over or underap-
proximate the real minimal execution time (this choice is not explicit in [10])%.

* the authors of [10] acknowledged the issue with their algorithm for mintime.

Timed Negotiations 45

For maximum execution time, it is not an issue to attach to each node a unique
maximal execution time. The reason for the asymmetry between minimal and
maximal execution times of a negotiation is that the execution time of a path
is max,ep px(p), for py the last timed valuation, which breaks the symmetry
between min and max.

4 High level view of the main results

In this section, we give a high-level description of our main results. Formal
statements can be found in the sections where they are proved. We gather in
Fig. 2 the precise complexities for the minimal and the maximal execution time
problems for 3 classes of negotiations that we describe in the following. Since we
are interested in minimum and maximum execution time, cycles in negotiations
can be either bypassed or lead to infinite maximal time. Hence, while we define
timed negotiations in general, we always restrict to acyclic negotiations (such as
Brexit) while stating and proving results.

In [10], a PTIME algorithm is given to compute different costs for negoti-
ations that are both sound and deterministic. One limitation of this result is
that it cannot compute the minimum execution time, as explained in Example
3. A second limitation is that the class of sound and deterministic negotiations
is quite restrictive: it cannot model situations where the next node a process
participates in depends on the outcome from another process, as in the Brexit
example. We thus consider classes where one of these restrictions is dropped.

We first consider (Section 5) negotiations that are deterministic, but with-
out the soundness restriction. We show that for this class, no timed problem
we consider can be solved in PTIME (unless NP=PTIME). Further, we show
that the equality problems (mazxtime/mintime(N) = T), are complete for the
complexity class DP, i.e., at the second level of the Boolean Hierarchy [15].

We then consider (Section 6) the class of negotiations that are sound, but not
necessarily deterministic. We show that maximum execution time can be solved
in PTIME, and propose a new algorithm. However, the minimum execution time
cannot be computed in PTIME (unless NP=PTIME). Again for the mintime
equality problem we have a matching DP-completeness result.

| [Deterministic [Sound [k-layered ‘
Max < T | co-NP-complete (Thm. 3)
Max = T'| DP-complete (Prop. 2)

PTIME (Prop. 3) PTIME (Thm. 6)

pseudo-PTIME (Thm. 8)
NP-complete** (Thm. 7)
Min =T | DP-complete (Prop. 2) |DP-complete* (Prop. 4) | pseudo-PTIME (Thm. 8)

Min < T'| NP-complete (Thm. 3) |NP-complete® (Thm. 5)

Fig. 2. Results for acyclic timed negotiations. D P refers to the complexity class, Dif-
ference Polynomial time [15], the second level of the Boolean Hierarchy.

* hardness holds even for very weakly non-deterministic negotiations, and 7" in unary.
** hardness holds even for sound and very weakly non-deterministic negotiations.

46 S. Akshay et al.

Finally, in order to obtain a polytime algorithm to compute the minimum
execution time, we consider the class of k-layered negotiations (see Section 7):
Given k € N, we can show that maztime(N') can be computed in PTIME for
k-layered negotiations. We also show that while the mintime(N) < T'? problem
is weakly NP-complete for k-layered negotiations, we can compute mintime(N)
in pseudo-PTIME, i.e. in PTIME if constants are given in unary.

5 Deterministic Negotiations

We start by considering the class of deterministic acyclic negotiations. We show
that both maximal and minimal execution times cannot be computed in PTIME
(unless NP=PTIME), as the threshold problems are (co-)NP-complete.

Theorem 3. The mintime(N) < T decision problem is NP complete, and the
mazxtime(N) < T decision problem is co-NP-complete for acyclic deterministic
timed negotiations.

Proof. For mintime(N') < T, containment in NP is easy: we just need to guess a
run p (of polynomial size as A is acyclic), consider the associated timed run p~
where all decisions are taken at their earliest possible dates, and check whether
5(p~) < T, which can be done in time O(|]N|+logT).

For the hardness, we give the proof in two steps. First, we start with a proof
of Proposition 1 that reachability problem is NP-hard using reduction of 3-CNF
SAT, i.e., given a formula ¢, we build a deterministic negotiation Ny s.t. ¢ is
satisfiable iff N has a final run. In a second step, we introduce timings on this
negotiation and show that mintime(N,) < T iff ¢ is satisfiable.

Step 1: Reducing 3-CNF-SAT to Reachability problem.

Given a Boolean formula ¢ with variables v;,1 < ¢ < n and clauses ¢j,1 < j <
m, for each variable v; we define the sets of clauses S; + = {¢; | v; is present in ¢;}
and S;: = {c¢; | —v; is present in ¢;}. Clauses in S;, and S;¢ are naturally
ordered: ¢; < ¢; iff ¢ < j. We denote these elements S; (1) < S;+(2) <
Similarly for set S; ¢.

Now, we construct a negotiation N, (as depicted in Figure 3) with a process
V; for each variable v; and a process C; for each clause c;:

— Initial node ng has a single outcome r taking each process C; to node Lone,,,
and each process V; to node Lone,,.

— Lone., has three outcomes: if literal v; € c¢j, then ¢; is an outcome, taking
Cj to Paire, v, and if literal —v; € ¢;, then f; is an outcome, taking C; to
Paire; —v,-

— The outcomes of Lone,,are true and false. Outcome true brings V; to
node Tlone,, ; and outcome false brings V; to node Flone,, i.

— We have a node Tlone,, ; for each j < |5, +| and Flone,, ; for each j <|S; ¢/,
with V; as only process. Let ¢, = S; ¢(j). Node T'lone,, ; has two outcomes
vton bringing V; to T'lone,, j+1 (or ny if j =|S;¢|), and vtoc, , bringing V;
to Paire, »,. The two outcomes from Flone,, ; are similar.

Timed Negotiations 47

) :
Tlone., . Flone,, 1 fi
vton vton

vton

Flone.,,,

vton

Floney, r41

Fig. 3. A part of NV, where clause ¢; is (i2 V =i V —i3) and clause ¢ is (44 V =@ V i5).
Timing is [0, 0] whereever not mentioned

— Node Pair,, ,, has V; and C, as its processes and one outcome ctof which
takes process C to final node ny and process V; to T'lone,, j+1 (with ¢, =
Six(4)), or to ny if j = |S;+|. Node Paire, -, is defined in the same way
from Flone,, ;.

With this we claim that N, has a final run iff ¢ is satisfiable which completes
the first step of the proof. We give a formal proof of this claim in Appendix A
of [1]. Observe that the negotiation N, constructed is deterministic and acyclic
(but it is not sound).

Step 2: Before we introduce timing on Ny, we introduce a new outcome 7/
at ng which takes all processes to ny. Now, the timing function v associated
with Ny is: y(no,r) = [2,2] and ~y(ng,r’) = [3,3] and v(n,r) = [0,0], for all
node n # ng and all r € R,. Then, mintime(N,) < 2 iff ¢ has a satisfiable
assignment: if mintime(Ny) < 2, there is a run with decision r taken at ng
which is final. But existence of any such final run implies satisfiability of ¢. For

48 S. Akshay et al.

reverse implication, if ¢ is satisfiable, then the corresponding run for satisfying
assignment takes 2 time units, which means that mintime(Ny) < 2.

Similarly, we can prove that the MaxTime problem is co-NP complete by
changing y(ng,) = [1,1] and asking if maztime(N) > 1 for the new N. The
answer will be yes iff ¢ is satisfiable. a

We now consider the related problem of checking if mintime(N) = T (or if
maxtime(N) = T'). These problems are harder than their threshold variant un-
der usual complexity assumptions: they are DP-complete (Difference Polynomial
time class, i.e., second level of the Boolean Hierarchy, defined as intersection of
a problem in NP and one in co-NP [15]).

Proposition 2. The mintime(N) = T and maxtime(N) = T decision prob-
lems are DP-complete for acyclic deterministic negotiations.

Proof. We only give the proof for mintime (the proof for maztime is given in
Appendix A of [1]). Indeed, it is easy to see that this problem is in DP, as it can
be written as mintime(N) < T which is in NP and —(mintime(N) < T — 1)),
which is in co-NP. To show hardness, we use the negotiation constructed in the
above proof as a gadget, and show a reduction from the SAT-UNSAT problem
(a standard DP-complete problem).

The SAT-UNSAT Problem asks given two Boolean expressions ¢ and ¢,, both
in CNF forms with three literals per clause, is it true that ¢ is satisfiable and ¢’
is unsatisfiable? SAT-UNSAT is known to be DP-complete [15]. We reduce this
problem to mintime(N) = T.

Given ¢, ¢, we first make the corresponding negotiations Ay and N 5 as
in the previous proof. Let ng and ny be the initial and final nodes of N and
nz) and n/f be the initial and final nodes of N, o (Similarly, for other nodes we
write / above the nodes to signify they belong to A o)

In the negotiation N, o We introduce a new node ngy;, in which all the pro-
cesses participate (see Figure 4). The node nyy has a single outcome 77, which
sends all the processes to ny. Also, for node nz), apart from the outcome r which
sends all processes to different nodes, there is another outcome r,; which sends
all the processes to n4y;. Now we merge the nodes ny and n;) and call the merged
node 74cp,. Also nodes ny and n’f now have all the processes of N, and ng
participating in them. This merged process gives us a new negotiation N 66 1N
which the structure above ng., is same as N, while below it is same as N, o
Node ng., now has all the processes of Ny and ./\/'¢/ participating in it. The
outcomes of ngep will be same as that of njy (rqu,r). For both the outcomes of
Nsep the processes corresponding to Ny directly go to ny of the N, 6.8 Similarly
ng of N o which is same ng of Ny, sends processes corresponding to N di-
rectly to ngep for all its outcomes. We now define tlrmng function v for N 6.6

which is as follows: 'y(Lonevi, r) =[1,1] for all v; € ¢ and r € {true, false},
v(nau, ;) = [2,2] and y(n,r) = [0,0] for all other outcomes of nodes. With this
construction, one can conclude that mintime(Ny ,) = 2 iff ¢ is satisfiable and
¢ is unsatisfiable (see [1] for details). This completes the reduction and hence
proves DP-hardness. a

Timed Negotiations 49

Struéture

N T T T T
of Ny

Nisep

Structure

Y ode), }

Ty Tall T Tall T Tall Ty Tall

l vton

....................

Fig. 4. Structure of NV,

Finally, we consider a related problem of computing the min and max time.
To consider the decision variant, we rephrase this problem as checking whether
an arbitrary bit of the minimum execution time is 1. Perhaps surprisingly, we
obtain that this problem goes even beyond DP, the second level of the Boolean
Hierarchy and is in fact hard for AL (second level of the polynomial hierarchy),
which contains the entire Boolean Hierarchy. Formally,

Theorem 4. Given an acyclic deterministic timed negotiation and a positive
integer k,computing the k' bit of the mazimum/minimum evecution time is
AP -complete.

Finally, we remark that if we were interested in the optimization variant and
not the decision variant of the problem, the above proof can be adapted to show
that these variants are OptP-complete (as defined in [13]). But as optimization
is not the focus of this paper, we avoid formal details of this proof.

6 Sound Negotiations

Sound negotiations are negotiations in which every run can be extended to
a final run, as in Fig. 1. In this section, we show that maztime(N') can be
computed in PTIME for sound negotiations, hence giving PTIME complexi-
ties for the maztime(N) < T7 and maztime(N) = T? questions. However, we

50 S. Akshay et al.

show that mintime(N) < T is NP-complete for sound negotiations, and that
mintime(N) = T is DP-complete, even if T is given in unary.

Consider the graph Gr of a negotiation N. Let m = (no, (po,70),n1) - - -
(nk, (P, k), nik+1) be a path of Gy. We define the mazimal execution time of
a path 7 as the value 6% (m) = >, .o v (ni,ri). We say that a path = =

(no, (Pos70),n1) - -+ (ng, (pey7¢), ne41) is a path of some run p = (My, 1) (Tﬂf)

oo (My, py) if 7o, ..., 7 is a subword of 7], ..., 7.

Lemma 1. Let N be an acyclic and sound timed negotiation. Then maxtime(N)
= MaXrcPaths(Gar) ot (ﬂ-) + 'Y+ (nf7 rf)

Proof. Let us first prove that maxtime(N) > max e patns(cp) 07 (1)+7 1 (g, 7p).
Consider any path 7 of G, ending in some node n. First, as A is sound, we can

compute a run p, such that 7 is a path of p,, and p, ends in a configuration

in which n is enabled. We associate with p, the timed run p} which asso-

ciates to every node the latest possible execution date. We have easily d(pf) >

6T (m), and then we obtain maX ¢ paths(Gr) 0(PF) > MaXrepaths(Ga) 07 (7). As

mazxtime(N) is the maximal duration over all runs, it is hence necessarily greater

than maXﬂ'EPaths(G’N) 5(p7Jrr) + ’7+ (nfv Tf)'

We now prove that maztime(N) < max.cpatns(Gr) 01 (1) +71 (g, 7y). Take

(nuyra)

any timed run p = (My, p1) —=" -+ (Mg, pg) of N with a unique maximal node
ny. We show that there exists a path 7 of p such that §(p) < 6T (m) by induction
on the length k of p. The initialization is trivial for £ = 1. Let k € N. Because ny
is the unique maximal node of p, we have 0% (p) = maxpep, pr—1(p)+7" (g, 7).
We choose one py_1 maximizing ux—1(p). Let £ < k be the maximal index of a
decision involving process py_1 (i.e. px—1 € P,,). Now, consider the timed run
p’ subword of p, but with n, as unique maximal node (that is, it is p where
nodes n;, ¢ > ¢ has been removed, but also where some nodes n;,7 < ¢ have been
removed if they are not causally before ny (in particular, P,, N P,, = 0).)

By definition, we have that 6% (p) = 6T (p') + v (ne,7e) + v (ng, 7). We
apply the induction hypothesis on p’, and obtain a path 7’ of p’ ending in
ne such that 67 (p') + v (ng,re) < 6% (n'). It suffices to consider path m =
7' .(ne, (pk—1,7¢), nk) to prove the inductive step 6% (p) < 67 () + v F (nk,).

Thus maztime(N) = max 6 (p) < maxcpains(cn) 07 (1) +7 T (ng,rp). O

Lemma 1 gives a way to evaluate the maximal execution time. This amounts
to finding a path of maximal weight in an acyclic graph, which is a standard
PTIME problem that can be solved using standard max-cost calculation.

Proposition 3. Computing the mazimal execution time for an acyclic sound
negotiation N' = (N,ng,ns, X) can be done in time O(|N|+ |X]).

A direct consequence is that maztime(N) < T and maztime(N) = T prob-
lems can be solved in polynomial time when N is sound. Notice that if A is
deterministic but not sound, then Lemma 1 does not hold: we only have an
inequality.

Timed Negotiations 51

We now turn to mintime(N'). We show that it is strictly harder to compute
for sound negotiations than maaxtime(N).

Theorem 5. mintime(N) < T is NP-complete in the strong sense for sound
acyclic negotiations, even if N is very weakly non-deterministic.

Proof (sketch). First, we can decide mintime(N) < T in NP. Indeed, one can
guess a final (untimed) run p of size < |N|, consider p~ the timed run corre-
sponding to p where all outcomes are taken at the earliest possible dates, and
compute in linear time §(p~), and check that 6(p~) < T.

The hardness part is obtained by reduction from the Bin Packing problem.
The reduction is similar to Knapsack, that we will present in Thm. 7. The
difference is that we use £ bins in parallel, rather than 2 processes, one for the
weight and one for the value. The hardness is thus strong, but the negotiation
is not k-layered for a bounded k (it is 2¢ + 1 bounded, with ¢ depending on the
input). A detailed proof is given in Appendix B of [1]. O

We show that mintime(N) = T is harder to decide than mintime(N) < T,
with a proof similar to Prop. 2.

Proposition 4. The mintime(N) = T7 decision problem is DP-complete for
sound acyclic negotiations, even if it is very weakly non-deterministic.

An open question is whether the minimal execution time can be computed in
PTIME if the negotiation is both sound and deterministic. The reduction from
Bin Packing does not work with deterministic (and sound) negotiations.

7 k-Layered Negotiations

In this section, we consider k-layeredness, a syntactic property that can be effi-
ciently verified (see Section 2).

7.1 Algorithmic properties

Let &k be a fixed integer. We first show that the maximum execution time can be
computed in PTIME for k-layered negotiations. Let IV; be the set of nodes at
layer i. We define for every layer i the set S; of subsets of nodes X C N; which
can be jointly enabled and such that for every process p, there is exactly one
node n(X,p) in X with p € n(X,p). An element X in S; is a subset of nodes
that can be selected by solving all non-determnism with an appropriate choice of
outcomes. Formally, we define S; inductively. We start with Sy = {ng}. We then
define Sj1 from the contents of layer S;: we have Y € S; 1 iff J, oy P = P
and there exist X € S; and an outcome r,, € R,, for every m € X, such that
n € X(n(X,p),p,rm) for each n € Y and p € P,.

Theorem 6. Let k € NT. Computing the mazimum execution time for a k-
layered acyclic negotiation N can be done in PTIME. More precisely, the worst-
case time complezity is O(|P| - IN|F+1).

52 S. Akshay et al.

Proof (Sketch). The first step is to compute S; layer by layer, by following its
inductive definition. The set S; is of size at most 2¥, as |N;| < k by definition of
k-layeredness. Knowing 5;, it is easy to build S;11 by induction. This takes time
in O(|P||N|**1) : We need to consider all k-uples of outcomes for each layer.
There can be |[A|¥ such tuples. We need to do that for all processes (|P|), and
for all layers (at most |N]).

We then keep for each subset X € S; and each node n € X, the maximal
time f;(n,X) € N associated with n and X. From S;;; and f;, we inductively
compute f;11 in the following way: for all X € S; with successor Y € S;11
for outcomes (r,),cp, we denote fi 1(Y,n,X) = max,epm) fi(X,n(X,p)) +
v (n(X,p),rp). If there are several choices of (rp)pcp leading to the same Y,
we take 7, with the maximal f;(X,n(X,p)) + v (n(X,p),r,). We then define
fir1(Y,n) = maxxes, fir1(Y,n, X). Again, the initialization is trivial, with
fo({no},no) = 0. The maximal execution time of N is f({ns},ny). O

We can bound the complexity precisely by O(d(N) - C(N) - ||R||*"), with:

— d(N) < |N] the depth of ny, that is the number of layers of N, and ||R|| is
the maximum number of outcomes of a node,

— C(N) = max; |S;| < 2%, which we will call the number of contexts of N, and
which is often much smaller than 2%.

— k* = maxxeyy, s, |[X| < k. We say that N is k*-thread bounded, meaning
that there cannot be more that k* nodes in the same context X of any layer.
Usually, k* is strictly smaller than k = max; |V;|, as NV; = UXesi X.

Consider again the Brexit example Figure 1. We have (k + 1) = 7, while
we have the depth d(N) = 6, the negotiation is k* = 3-thread bounded (k* is
bounded by the number of processes), ||R|| = 2, and the number of contexts is
at most C(N) = 4 (EU chooses to enforce backstop or not, and Pa chooses to
go to court or not).

7.2 Minimal Execution Time

As with sound negotiations, computing minimal time is much harder than com-
puting the maximal time for k-layered negotiations:

Theorem 7. Let k > 6. The Min < T problem is NP-Complete for k-layered
acyclic negotiations, even if the negotiation is sound and very weakly non-deterministic.

Proof. One can guess in polynomial time a final run of size < |N]. If the exe-
cution time of this final run is smaller than T then we have found a final run
witnessing mintime(N) < T. Hence the problem is in NP.

Let us now show that the problem is NP-hard. We proceed by reduction from
the Knapsack decision problem. Let us consider a set of items U = {uy, ... uy}
of respective values vy, ...v, and weight wy, ..., w, and a knapsack of maximal
capacity W. The knapsack problem asks, given a value V' whether there exists a
subset of items U’ C U such that >, v; >V and such that >y w; <W.

Timed Negotiations 53

v JEICICICICICIC]

Fig. 5. The negotiation encoding Knapsack

We build a negotiation with 2n processes P = {p1,...p2,}, as shown in
Fig. 5. Intuitively, p;,i < n will serve to encode the value of selected items as
timing, while p;,7 > n will serve to encode the weight of selected items as timing.

Concerning timing constraints for outcomes we do the following: Outcomes
0, yes and no are associated with [0,0]. Outcome ¢; is associated with [w;, w;],
the weight of u;. Last, outcome b; is associated with a more complex function,
such that 2, b; < W iff 37, v; > V. For that, we set [(zes=tifl, “tmaeW] for
outcome b;, where v, is the largest value of an item, and V is the total value
we want to reach at least. Also, we set [TL(Z}T:L“;T)E‘(/, n’;’::;“; VYW
set T'= W, the maximal weight of the knapsack.

Now, consider a final run p in A. The only choices in p are outcomes yes or
no from C1, ..., C,. Let I be the set of indices such that yes is the outcome from
all C; in this path. We obtain 6(p) = max(}_,¢; a; + >, bi, > ;er ¢i)- We have
6(p) T =W iff 37, ., wy < W, that is the sum of the weights is lower than

max W maz—Vi) W .
W, and 37, n”U ,) + > ier Qmae=vdW 117 That is, n - vppee — D ier Vi <

N Vmaz—V

N Umaz — V, 1.€. 75:2 v; > V. Hence, there exists a path p with §(p) <T =W
iff there exists a set of items of weight less than W and of value more than V. O

] for outcome a;. We

It is well known that Knapsack is weakly NP-hard, that is, it is NP-hard only
when weights/values are given in binary. This means that Thm. 7 shows that
minimum execution time < 7' is NP-hard only when 7' is given in binary. We

54 S. Akshay et al.

can actually show that for k-layered negotiations, the mintime(AN) < T problem
can be decided in PTIME if T is given in unary (i.e. if T is not too large):

Theorem 8. Let k € N. Given a k-layered negotiation N and T written in
unary, one can decide in PTIME whether the minimum execution time of N is
< T. The worst-case time complexity is O(|N| - |P|- (T - |N)¥).

Proof. We will remember for each layer i a set 7T; of functions 7 from nodes N;
of layer i to a value in {1,...,T, L}. Basically, we have 7 € T; if there exists a
path p reaching X = {n € N; | 7(n) # L}, and this path reaches node n € X
after 7(n) time units. As for S;, for all p, we should have a unique node n(7,p)
such that p € n(7,p) and 7(n(7,p)) # L. Again, it is easy to initialize Ty = {79},
with 79(ng) =0, and 19(n) = L for all n # ny.

Inductively, we build 7;;1 in the following way: 7,11 € T;41 iff there exists a
7; € Ty and 1), € Ry(r,) for all p € P such that for all n with 7;,1(n) # L, we
have 741 (n) = max, 7" (n(7,p)) + y(n(7, p), 7).

We have that the minimum execution time for A/ is min,¢7, 7(n,), for n the
depth of ny. There are at most T* functions 7 in any 7;, and there are at most
|V| layers to consider, giving the complexity. O

As with Thm. 6, we can more accurately state the complexity as O(d(N) -
C(N)-||R||*" -T* ~1). The k* — 1 is because we only need to remember minimal
functions 7 € 7;: if 7/(n) > 7(n) for all n, then we do not need to keep 7’ in 7;.
In particular, for the knapsack encoding in the proof of Thm. 7, we have k* = 3,
[|R|| = 2 and C(N) = 4. Notice that if k is part of the input, then the problem
is strongly NP-hard, even if T is given in unary, as e.g. encoding bin packing
with £ bins result to a 2¢ + 1-layered negotiations.

8 Conclusion

In this paper, we considered timed negotiations. We believe that time is of the
essence in negotiations, as examplified by the Brexit negotiation. It is thus im-
portant to be able to compute in a tractable way the minimal and maximal
execution time of negotiations. We showed that we can compute in PTIME
the maximal execution time for acyclic negotiations that are either sound or
k-layered, for k fixed. We showed that we cannot compute in PTIME the max-
imal execution time for negotiations that are not sound nor k-layered, even if
they are deterministic and acyclic (unless NP=PTIME). We also showed that
surprisingly, computing the minimal execution time is much harder, with strong
NP-hardness results in most of the classes of negotiations, contradicting a claim
in [10]. We came up with a new reasonable class of negotiations, namely k-layered
negotiations, which enjoys a pseudo PTIME algorithm to compute the minimal
execution time. That is, the algorithm is PTIME when the timing constants
are given in unary. We showed that this restriction is necessary, as the prob-
lem becomes NP-hard for constants given in binary, even when the negotiation
is sound and very weakly non-deterministic. The problem to know whether the
minimal execution time can be computed in PTIME for deterministic and sound
negotiation remains open.

Timed Negotiations 55

References

10.

11.

12.

13.

14.

15.

S. Akshay, B. Genest, L. Hélouét, and S. Mital. Timed Negotiations (extended
version). In Research report, hittps://hal.inria.fr/hal-02837887, 2020.

J. Desel. Reduction and Design of Well-behaved Concurrent Systems. In CONCUR
’90, Theories of Concurrency: Unification and Extension, Amsterdam, The Nether-
lands, August 27-30, 1990, Proceedings, volume 458 of Lecture Notes in Computer
Science, pages 166—-181. Springer, 1990.

J. Desel, J. Esparza, and P. Hoffmann. Negotiation as Concurrency Primitive.
Acta Inf., 56(2):93-159, 2019.

J. Esparza. Decidability and Complexity of Petri Net Problems - An Introduc-
tion. In Lectures on Petri Nets I: Basic Models, Advances in Petri Nets, Dagstuhl,
September 1996, volume 1491 of Lecture Notes in Computer Science, pages 374—
428. Springer, 1998.

J. Esparza and J. Desel. Free Choice Petri Nets. Cambridge University Press,
1995.

J. Esparza and J. Desel. On Negotiation as Concurrency Primitive. In CON-
CUR 2018 - Concurrency Theory - 24th International Conference, CONCUR 2013,
Buenos Aires, Argentina, August 27-30, 2013. Proceedings, volume 8052 of Lecture
Notes in Computer Science, pages 440-454. Springer, 2013.

J. Esparza and J. Desel. On Negotiation as Concurrency Primitive II: Deterministic
Cyclic Negotiations. In FOSSACS’14, volume 8412 of Lecture Notes in Computer
Science, pages 258-273. Springer, 2014.

J. Esparza and P. Hoffmann. Reduction Rules for Colored Workflow Nets. In
Fundamental Approaches to Software Engineering - 19th International Confer-
ence, FASE 2016, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016,
Proceedings, volume 9633 of Lecture Notes in Computer Science, pages 342—358.
Springer, 2016.

J. Esparza, D. Kuperberg, A. Muscholl, and I. Walukiewicz. Soundness in Negoti-
ations. Logical Methods in Computer Science, 14(1), 2018.

J. Esparza, A. Muscholl, and I. Walukiewicz. Static Analysis of Deterministic Ne-
gotiations. In 82nd Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2017, Reykjavik, Iceland, June 20-23, 2017, pages 1-12, 2017.

S. Haddad. A Reduction Theory for Coloured Nets. In Advances in Petri Nets
1989, volume 424 of Lecture Notes in Computer Science, pages 209-235. Springer,
1990.

P. Hoffmann. Negotiation Games. In Javier Esparza and Enrico Tronci, editors,
Proceedings Sizth International Symposium on Games, Automata, Logics and For-
mal Verification, GandALF 2015, Genoa, Italy, 21-22nd September 2015., volume
193 of EPTCS, pages 31-42, 2015.

M. W. Krentel. The Complexity of Optimization Problems. Journal of computer
and system sciences, 36(3):490-509, 1988.

P.M. Merlin. A Study of the Recoverability of Computing Systems. PhD thesis,
University of California, Irvine, CA, USA, 1974.

C. H. Papadimitriou and M. Yannakakis. The Complexity of Facets (and Some
Facets of Complexity). In Proceedings of the Fourteenth Annual ACM Symposium
on Theory of Computing, STOC 82, pages 255-260, New York, NY, USA, 1982.
ACM.

56 S. Akshay et al.

16. R.H. Sloan and U.A. Buy. Reduction Rules for Time Petri Nets. Acta Inf.,
33(7):687-706, 1996.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

®

Check for
updates

Cartesian Difference Categories

Mario Alvarez-Picallo! and Jean-Simon Pacaud Lemay (52)2*

! Department of Computer Science, University of Oxford, Oxford, UK
mario.alvarez-picallo@cs.ox.ac.uk

2 Department of Computer Science, University of Oxford, Oxford, UK
jean-simon.lemay@kellogg.ox.ac.uk

Abstract. Cartesian differential categories are categories equipped with
a differential combinator which axiomatizes the directional derivative.
Important models of Cartesian differential categories include classical
differential calculus of smooth functions and categorical models of the
differential A-calculus. However, Cartesian differential categories cannot
account for other interesting notions of differentiation such as the calcu-
lus of finite differences or the Boolean differential calculus. On the other
hand, change action models have been shown to capture these examples
as well as more “exotic” examples of differentiation. However, change
action models are very general and do not share the nice properties of
a Cartesian differential category. In this paper, we introduce Cartesian
difference categories as a bridge between Cartesian differential categories
and change action models. We show that every Cartesian differential cat-
egory is a Cartesian difference category, and how certain well-behaved
change action models are Cartesian difference categories. In particular,
Cartesian difference categories model both the differential calculus of
smooth functions and the calculus of finite differences. Furthermore, ev-
ery Cartesian difference category comes equipped with a tangent bundle
monad whose Kleisli category is again a Cartesian difference category.

Keywords: Cartesian Difference Categories - Cartesian Differential Cat-
egories - Change Actions - Calculus Of Finite Differences - Stream Cal-
culus.

1 Introduction

In the early 2000s, Ehrhard and Regnier introduced the differential A-calculus
[10], an extension of the A-calculus equipped with a differential combinator ca-
pable of taking the derivative of arbitrary higher-order functions. This develop-
ment, based on models of linear logic equipped with a natural notion of “deriva-
tive” [11], sparked a wave of research into categorical models of differentiation.

One of the most notable developments in the area is the introduction of
Cartesian differential categories [4] by Blute, Cockett and Seely, which provide an
abstract categorical axiomatization of the directional derivative from differential

* The second author is financially supported by Kellogg College, the Oxford-Google
Deep Mind Graduate Scholarship, and the Clarendon Fund.

© The Author(s) 2020
J. Goubault-Larrecq and B. Konig (Eds.): FOSSACS 2020, LNCS 12077, pp. 57-76, 2020.
https://doi.org/10.1007/978-3-030-45231-5_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45231-5_4&domain=pdf

58 M. Alvarez-Picallo and J.-S. P. Lemay

calculus. The relevance of Cartesian differential categories lies in their ability to
model both “classical” differential calculus (with the canonical example being the
category of Euclidean spaces and smooth functions between) and the differential
A-calculus (as every categorical model for it gives rise to a Cartesian differential
category [14]). However, while Cartesian differential categories have proven to
be an immensely successful formalism, they have, by design, some limitations.
Firstly, they cannot account for certain “exotic” notions of derivative, such as
the difference operator from the calculus of finite differences [16] or the Boolean
differential calculus [19]. This is because the axioms of a Cartesian differential
category stipulate that derivatives should be linear in their second argument (in
the same way that the directional derivative is), whereas these aforementioned
discrete sorts of derivative need not be. Additionally, every Cartesian differential
category is equipped with a tangent bundle monad [7, 15] whose Kleisli category
can be intuitively understood as a category of generalized vector fields. This
Kleisli category has an obvious differentiation operator which comes close to
making it a Cartesian differential category, but again fails the requirement of
being linear in its second argument.

More recently, discrete derivatives have been suggested as a semantic frame-
work for understanding incremental computation. This led to the development
of change structures [6] and change actions [2]. Change action models have been
successfully used to provide a model for incrementalizing Datalog programs [1],
but have also been shown to model the calculus of finite differences as well as
the Kleisli category of the tangent bundle monad of a Cartesian differential cate-
gory. Change action models, however, are very general, lacking many of the nice
properties of Cartesian differential categories (for example, addition in a change
action model is not required to be commutative), even though they are verified
in most change action models. As a consequence of this generality, the tangent
bundle endofunctor in a change action model can fail to be a monad.

In this work, we introduce Cartesian difference categories (Section 4.2), whose
key ingredients are an infinitesimal extension operator and a difference combi-
nator, whose axioms are a generalization of the differential combinator axioms
of a Cartesian differential category. In Section 4.3, we show that every Cartesian
differential category is, in fact, a Cartesian difference category whose infinites-
imal extension operator is zero, and conversely how every Cartesian difference
category admits a full subcategory which is a Cartesian differential category. In
Section 4.4, we show that every Cartesian difference category is a change action
model, and conversely how a full subcategory of suitably well-behaved objects of
a change action model is a Cartesian difference category. In Section 6, we show
that every Cartesian difference category comes equipped with a monad whose
Kleisli category again a Cartesian difference category. Finally, in Section 5 we
provide some examples of Cartesian difference categories; notably, the calculus
of finite differences and the stream calculus.

Cartesian Difference Categories 59

2 Cartesian Differential Categories

In this section, we briefly review Cartesian differential categories, so that the
reader may compare Cartesian differential categories with the new notion of
Cartesian difference categories which we introduce in the next section. For a full
detailed introduction on Cartesian differential categories, we refer the reader to
the original paper [4].

2.1 Cartesian Left Additive Categories

Here we recall the definition of Cartesian left additive categories [4] — where
“additive” is meant being skew enriched over commutative monoids, which in
particular means that we do not assume the existence of additive inverses, i.e.,
“negative elements”. By a Cartesian category we mean a category X with chosen
finite products where we denote the binary product of objects A and B by
A x B with projection maps mp : A x B — A and 7 : A x B — B and pairing
operation (—,—), and the chosen terminal object as T with unique terminal
maps !4 : A—T.

Definition 1. A left additive category [4] is a category X such that each
hom-set X(A, B) is a commutative monoid with addition operation + : X(A, B) x
X(A, B) — X(A, B) and zero element (called the zero map) 0 € X(A, B), such
that pre-composition preserves the additive structure: (f +g)oh= foh+goh
and 0o f = 0. A map k in a left additive category is additive if post-composition
by k preserves the additive structure: ko (f +g) =ko f+kog and ko0 =0.
A Cartesian left additive category [4] is a Cartesian category X which is
also a left additive category such all projection maps mg : A x B — A and
m : A X B — B are additive.

We note that the definition given here of a Cartesian left additive category
is slightly different from the one found in [4], but it is indeed equivalent. By [4,
Proposition 1.2.2], an equivalent axiomatization is of a Cartesian left additive
category is that of a Cartesian category where every object comes equipped
with a commutative monoid structure such that the projection maps are monoid
morphisms. This will be important later in Section 4.2.

2.2 Cartesian Differential Categories

Definition 2. A Cartesian differential category [4] is a Cartesian left ad-
ditive category equipped with a differential combinator D of the form
f:A— B
D[f] : AxA— B

verifying the following coherence conditions:

[CD.1] D[f + g] = D[f] + D[g] and D[0] =0

60 M. Alvarez-Picallo and J.-S. P. Lemay

[CD.2] D[f]o (z,y + z) = D[f] o (x,y) + D[f] o (z,2) and D[f] o (z,0) =0
[CD.3] D[14] =m and D[my] = mg o m and D[m] =7 0om

[CD.4] D[(f,g)] = (D[f], Dlg]) and D['4] ='axa

[CD.5] D[g o f] = Dlg] o (f o mo, D[f])

[CD.6] D[D[fHO<<$7 ¥),(0,2)) = D[f] e (z, 2)

[CD.7] DD[f]] e {(z,),(2,0)) = D[D[f]] o {({z,2), {y,0))

Note that here, following the more recent work on Cartesian differential cat-
egories, we've flipped the convention found in [4], so that the linear argument is
in the second argument rather than in the first argument.

We highlight that by [7, Proposition 4.2], the last two axioms [CD.6] and
[CD.7] have an equivalent alternative expression.

Lemma 1. In the presence of the other azioms, [CD.6] and [CD.7] are equiv-
alent to:

[CD.6.a] D[D[f]] o ((z,0),(0,y)) = D[f] o (z,y)
[CD.7.a] D[D[f]] o ((z,9),(z,w)) = D[D[f]] o ((x, 2), {y, w))

As a Cartesian difference category is a generalization of a Cartesian differ-
ential category, we leave the discussion of the intuition of these axioms for later
in Section 4.2 below. We also refer to [4, Section 4] for a term calculus which
may help better understand the axioms of a Cartesian differential category. The
canonical example of a Cartesian differential category is the category of real
smooth functions, which we will discuss in Section 5.1. Other interesting exam-
ples of can be found throughout the literature such as categorical models of the
differential A-calculus [10, 14], the subcategory of differential objects of a tangent
category [7], and the coKleisli category of a differential category [3,4].

3 Change Action Models

Change actions [1, 2] have recently been proposed as a setting for reasoning about
higher-order incremental computation, based on a discrete notion of differentia-
tion. Together with Cartesian differential categories, they provide the core ideas
behind Cartesian difference categories. In this section, we quickly review change
actions and change action models, in particular, to highlight where some of the
axioms of a Cartesian difference category come from. For more details on change
actions, we invite readers to see the original paper [2].

3.1 Change Actions

Definition 3. A change action A in a Cartesian category X is a quintuple
A= (A AA ®4a,+4,04) consisting of two objects A and AA, and three maps:

AtAXAA - A +a4:AA X AA — AA 04: T — AA

such that (AA,+4,04) is a monoid and &4 : A x AA — A is an action of AA
on A, that is, the following equalities hold:

Pa0(la,040l4)=14 @Dao(lagX+4)=DBa0(Bax1aa)

Cartesian Difference Categories 61

For a change action A and given a pair of maps f: C — Aand g: C — AA,
we define f@4g: C — Aas f@1g9 = Dao(f,g). Similarly, for maps h : C' — AA
and k : C — AA, define h +5 k = 44 o (h, k). Therefore, that @, is an action
of AA on A can be rewritten as:

la®z 04 =14 1a @z (laa+71aa) = (la®71aa) 7 1laa

The intuition behind the above definition is that the monoid AA is a type of
possible “changes” or “updates” that might be applied to A, with the monoid
structure on AA representing the capability to compose updates.

Change actions give rise to a notion of derivative, with a distinctly “discrete”
flavour. Given change actions on objects A and B, a map f : A — B can be
said to be differentiable when changes to the input (in the sense of elements
of AA) are mapped to changes to the output (that is, elements of AB). In
the setting of incremental computation, this is precisely what it means for f to
be incrementalizable, with the derivative of f corresponding to an incremental
version of f.

Definition 4. Let A = (A, AA,®a,+4,04) and B = (B, AB,®p,+5,05) be
change actions. For a map f : A — B, a map O[f] : Ax AA — AB is a
derivative of f whenever the following equalities hold:

[CAD.1] fo(z@zy) = foxdg(O[f]o(r,y))
[CAD.2] 9[f]o(z,y +72) = (O[f] o (x,y)) +5 (O[f] o (x ©7 Yy, 2)) and
O[f] o (x,0po!p) = 0polaxaa

The intuition for these axioms will be explained in more detail in Section
4.2 when we explain the axioms of a Cartesian difference category. Note that
although there is nothing in the above definition guaranteeing that any given
map has at most a single derivative, the chain rule does hold. As a corollary,
differentiation is compositional and therefore the change actions in X form a
category.

Lemma 2. Whenever 9[f] and 8lg] are derivatives for composable maps [and
g respectively, then 8[g] o (f o mg, B[f]) is a derivative for go f.

3.2 Change Action Models

Definition 5. Given a Cartesian category X, define its change actions category
CAct(X) as the category whose objects are change actions in X and whose arrows
f A — B are the pairs (f,8[f]), where f : A — B is an arrow in X and
A[f] : Ax AA — AB is a deriative for f. The identity is (14,71), while
composition of (f,8[f]) and (g,8g]) is (go f,8g] o (f o m, O[f])).

There is an obvious product-preserving forgetful functor £ : CAct(X) — X
sending every change action (A, AA,®,+,0) to its base object A and every
map (f,8[f]) to the underlying map f. As a setting for studying differentiation,
the category CAct(X) is rather lacklustre, since there is no notion of higher

62 M. Alvarez-Picallo and J.-S. P. Lemay

derivatives, so we will instead work with change action models. Informally, a
change action model consists of a rule which for every object A of X associates
a change action over it, and for every map a choice of a derivative.

Definition 6. A change action model is a Cartesian category X is a product-
preserving functor a : X — CAct(X) that is a section of the forgetful functor £.

For brevity, when A is an object of a change action model, we will write AA,
@4, +4, and 04 to refer to the components of the corresponding change action
a(A). Examples of change action models can be found in [2]. In particular, we
highlight that a Cartesian differential category always provides a change model
action. We will generalize this result, and show in Section 4.4 that a Cartesian
difference category also always provides a change action model.

4 Cartesian Difference Categories

In this section, we introduce Cartesian difference categories, which are gener-
alizations of Cartesian differential categories. Examples of Cartesian difference
categories can be found in Section 5.

4.1 Infinitesimal Extensions in Left Additive Categories

We first introduce infinitesimal extensions, which is an operator that turns a map
into an “infinitesimal” version of itself — in the sense that every map coincides
with its Taylor approximation on infinitesimal elements.

Definition 7. A Cartesian left additive category X is said to have an infinites-
imal extension ¢ if every homset X(A, B) comes equipped with a monoid mor-
phism € : X(A, B) — X(A4, B), that is, e(f + g) = (f) +e(g) and €(0) =0, and
such that e(go f) = e(g)o f and e(my) = mpoe(laxp) ande(m) =moe(laxp)-

Note that since e(g o f) = e(g) o f, it follows that e(f) = (1) o f and
£(14) : A = A is an additive map (Definition 1). In light of this, it turns out
that infinitesimal extensions can equivalently be described as a class of additive
maps €4 : A — A such that € 4« B = €4 X £5. The equivalence is given by setting
e(f) =epofand eq4 = £(14). Furthermore, infinitesimal extensions equipped
each object with a canonical change action structure:

Lemma 3. Let X be a Cartesian left additive category with infinitesimal exten-
sion e. For every object A, define the maps ®a: AX A — A as Dy = mo+e(m),
+4:AXA—= Aasmo+my, and0y: T — Aas04 =0. Then (A, A, B4, +4,04)
is a change action in X.

Proof. As mentioned earlier, that (A,+4,04) is a commutative monoid was
shown in [4]. On the other hand, that @4 is a change action follows from the
fact that ¢ preserves the addition. |

Cartesian Difference Categories 63

Setting A = (A, A,®4,+4,04), we note that f&5g = f+e(g) and f+59g =
f + g, and so in particular +4 = +. Therefore, from now on we will omit the
subscripts and simply write & and +.

For every Cartesian left additive category, there are always at least two pos-
sible infinitesimal extensions:

Lemma 4. For any Cartesian left additive category X,

1. Setting e(f) = 0 defines an infinitesimal extension on X and therefore in
this case, ®a =mo and f B g=f.

2. Setting e(f) = f defines an infinitesimal extension on X and therefore in
this case, a4 =+ and fHg=f+g.

We note that while these examples of infinitesimal extensions may seem triv-
ial, they are both very important as they will give rise to key examples of Carte-
sian difference categories.

4.2 Cartesian Difference Categories

Definition 8. A Cartesian difference category is a Cartesian left additive
category with an infinitesimal extension € which is equipped with o difference
combinator 0 of the form:

f:A—>B
d[f] AxA—B

verifying the following coherence conditions:

[CB.0] fo(x+e(y) =fox+e(d[flofr,y))

[CB.1] B[] + 9] = B[] + Blg], B[0] = 0, and Ble(f)] = =(8][f])

[C0.2] B[f]o (z,y+2) = lf] o () +Bf] o (x +£(y),) and Df] o (z,0) = 0
[C8.3] O[la] =m and O[mp] = m1;mp and O[mi] = 7137

[CH.4] O[(f,9)] = ([f],8]g]) and B]!a] =!axa

[C8.5] Dlg o f] = Blg o (f om0, B[f])

[C8.6] D[9[f]] o ((x,y),(0,2)) = 3[f] (x+e(y),2)

[C8.7] D[3[f]] o ((z,y)(2,0)) = D[D[[]] (=, 2), (y,0))

Before giving some intuition on the axioms [C8.0] to [C8.7], we first observe
that one could have used change action notation to express [C8.0], [Cd.2], and
[C.6] which would then be written as:

[CB.0] fo(x@y)=(fox)d(d[flo(x,y))

[CO.2] O[f] o (z,y+2) = B[f]o(x,y) + B[f] o {x @ y,z2) and 8[f] o (x,0) =0
[C8.6] D[D[f]] o ((z,1),(0,2)) = Blf] o (x By, 2)

And also, just like Cartesian differential categories, [C8.6] and [C8.7] have

alternative equivalent expressions.

Lemma 5. In the presence of the other axzioms, [C0.6] and [CO.7] are equiv-
alent to:

64 M. Alvarez-Picallo and J.-S. P. Lemay

[C8.6.a] D[D[f]] o ((x,0),(0,y)) = [f] © (x,y)
[C8.7.a] D[B[f]] o ((z,y),(z,w)) = D[B[f]] o ((, 2), (y, w))

Proof. The proof is essentially the same as [7, Proposition 4.2]. |

The keen eyed reader will notice that the axioms of a Cartesian difference cat-
egory are very similar to the axioms of a Cartesian differential category. Indeed,
[CO.1], [C.3], [CD.4], [CO.5], and [CD.7] are the same as their Cartesian dif-
ferential category counterpart. The axioms which are different are [C8.2] and
[C.6] where the infinitesimal extension e is now included, and also there is the
new extra axiom [C8.0]. On the other hand, interestingly enough, [C8.6.a] is
the same as [CD.6.a]. We also point out that writing out [Cd.0] and [Cd.2]
using change action notion, we see that these axioms are precisely [CAD.1] and
[CAD.2] respectively. To better understand [C8.0] to [C8.7] it may be useful
to write them out using element-like notation. In element-like notation, [C8.0]
is written as:

f(x+e(y)) = flx) +e(8f)(x,y))

This condition can be read as a generalization of the Kock-Lawvere axiom that
characterizes the derivative in from synthetic differential geometry [13]. Broadly
speaking, the Kock-Lawvere axiom states that, for any map f: R — R and any
x € R and d € D, there exists a unique f’(z) € R verifying

fla+d) = f(z)+d- f(x)

where D is the subset of R consisting of infinitesimal elements. It is by analogy
with the Kock-Lawvere axiom that we refer to € as an “infinitesimal extension”
as it can be thought of as embedding the space A into a subspace (A) of
infinitesimal elements.

[CO.1] states that the differential of a sum of maps is the sum of differentials,
and similarly for zero maps and the infinitesimal extension of a map. [C.2] is
the first crucial difference between a Cartesian difference category and a Carte-
sian differential category. In a Cartesian differential category, the differential of
a map is assumed to be additive in its second argument. In a Cartesian differ-
ence category, just as derivatives for change actions, while the differential is still
required to preserve zeros in its second argument, it is only additive “up to a
small perturbation”, that is:

Ofl(z,y + 2) = Bf(z,y) + B[f](x +&(y), 2)

[CO.3] tells us what the differential of the identity and projection maps are,
while [C8.4] says that the differential of a pairing of maps is the pairing of their
differentials. [C8.5] is the chain rule which expresses what the differential of a
composition of maps is:

Alg o fl(z,y) = Algl(f(x), B[f](x,y))

[CO.6] and [CO.7] tell us how to work with second order differentials. [C8.6]
is expressed as follows:

A 0[] (x,9,0,2) = B[f](z +(y), 2)

Cartesian Difference Categories 65

and finally [C8.7] is expressed as:

d[0[f]] (x,y,2,0) = 8[8[f]] (x, 2,4, 0)

It is interesting to note that while [C8.6] is different from [CD.6], its alternative
version [C8.6.a] is the same as [CD.6.a].

2 [9[/11 ((2,0),(0,y)) = 8[f](x, 2)

4.3 Another look at Cartesian Differential Categories

Here we explain how a Cartesian differential category is a Cartesian difference
category where the infinitesimal extension is given by zero.

Proposition 1. FEvery Cartesian differential category X with differential com-
binator D is a Cartesian difference category where the infinitesimal extension is
defined as £(f) = 0 and the difference combinator is defined to be the differential
combinator, @ = D.

Proof. As noted before, the first two parts of the [Cd.1], the second part of
[Ca.2], [CO.3], [CD.4], [CD.5], and [CO.T] are precisely the same as their
Cartesian differential axiom counterparts. On the other hand, since (f) = 0,
[CO.0] and the third part of [Cd.1] trivial state that 0 = 0, while the first
part of [C8.2] and [C.6] end up being precisely the first part of [CD.2] and
[CD.6]. Therefore, the differential combinator satisfies the Cartesian difference
axioms and we conclude that a Cartesian differential category is a Cartesian
difference category. |

Conversely, one can always build a Cartesian differential category from a
Cartesian difference category by considering the objects for which the infinites-
imal extension is the zero map.

Proposition 2. For a Cartesian difference category X with infinitesimal exten-
sion € and difference combinator 0, then Xg, the full subcategory of objects A
such that £(14) = 0, is a Cartesian differential category where the differential
combinator is defined to be the difference combinator, D = 9.

Proof. First note that if £(14) = 0 and e(1p) = 0, then by definition it also
follows that e(laxp) = 0, and also that for the terminal object e(11) = 0
by uniqueness of maps into the terminal object. Thus X is closed under finite
products and is therefore a Cartesian left additive category. Furthermore, we
again note that since (f) = 0, this implies that for maps between such objects
the Cartesian difference axioms are precisely the Cartesian differential axioms.
Therefore, the difference combinator is a differential combinator for this subcat-
egory, and so Xy is a Cartesian differential category. |

66 M. Alvarez-Picallo and J.-S. P. Lemay

In any Cartesian difference category X, the terminal object T always satisfies
that (11) = 0, and so therefore, X; is never empty. On the other hand, applying
Proposition 2 to a Cartesian differential category results in the entire category.
It is also important to note that the above two propositions do not imply that
if a difference combinator is a differential combinator then the infinitesimal ex-
tension must be zero. In Section 5.3, we provide such an example of a Cartesian
differential category that comes equipped with a non-zero infinitesimal extension
such that the differential combinator is a difference combinator with respect to
this non-zero infinitesimal extension.

4.4 Cartesian Difference Categories as Change Action Models

In this section, we show how every Cartesian difference category is a particu-
larly well-behaved change action model, and conversely how every change action
model contains a Cartesian difference category.

Proposition 3. Let X be a Cartesian difference category with infinitesimal ex-
tension € and difference combinator 8. Define the functor a : X — CAct(X) as
a(A) = (A, A, ®a,+4,04) (as defined in Lemma 3) and o(f) = (f,8[f]). Then
(X, : X' — CAct(X)) is a change action model.

Proof. By Lemma 3, (A, A,®4,+4,04) is a change action and so « is well-
defined on objects. While for a map f, 9[f] is a derivative of f in the change
action sense since [CO.0] and [C.2] are precisely [CAD.1] and [CAD.2],
and so « is well-defined on maps. That « preserves identities and composition
follows from [C@.3] and [Cd.5] respectively, and so « is a functor. That «
preserves finite products will follow from [C8.3] and [C9.4]. Lastly, it is clear
that « section of the forgetful functor, and therefore we conclude that (X, «) is
a change action model. |

It is clear that not every change action model is a Cartesian difference cat-
egory. For example, change action models do not require the addition to be
commutative. On the other hand, it can be shown that every change action
model contains a Cartesian difference category as a full subcategory.

Definition 9. Let (X, a : X — CAct(X)) be a change action model. An object A
is flat whenever the following hold:

[F.1] AA=4A

[F.2] a(®a) = (®a,®aom)

[F.3] 004 (0®a f)=0@4 f forany f:U — A.

[F.4] @4 is right-injective, that is, if ®a o (f,g) =@a 0 (f,h) then g =h.

We would like to show that for any change action model (X, «), its full sub-
category of flat objects, Flat,, is a Cartesian difference category. Starting with
the finite product structure, since a preserves finite products, it is straightfor-
ward to see that T is Euclidean and if A and B are flat then so is A x B. The
sum of maps f : A — B and g : A — B in Flat, is defined using the change
action structure f +p g, while the zero map 0: A — B is 0 = 0gol4. And so we
obtain that:

Cartesian Difference Categories 67
Lemma 6. Flat, is a Cartesian left additive category.

Proof. Most of the Cartesian left additive structure is straightforward. However,
since the addition is not required to be commutative for arbitrary change actions,
we will show that the addition is commutative for Euclidean objects. Using that
@p is an action, that by [F.2] we have that & p oy is a derivative for ©p, and
[CAD.1], we obtain that:

0@ (f+B9) = 0@ f)®g=0®9) & f=08D®s (g +5 f)

By [F.4], @p is right-injective and we conclude that f +¢g =g+ f. |

As an immediate consequence We note that for any change action model
(X,), since the terminal object is always flat, Flat, is never empty.

We use the action of the change action structure to define the infinitesimal
extension. So for a map f: A — B in Flat,, define (f) : A — B as follows:

e(f)=@po(0pola, f) =005 f
Lemma 7. ¢ is an infinitesimal extension for Flat,,.

Proof. We show that € preserve the addition. Following the same idea as in the
proof of Lemma 6, we obtain the following;:

Op®pe(f+p9)=08®5 (0P (f+B9))
= (OB bB OB) DB ((OB DB f) Dp g) = (OB DB (OB DB f)) DB (OB ®B g)
= (0p@pe(f)) @pelg) =08 @p (e(f) +BE(9))

Then by [F.3], it follows that e(f +¢) = e(f) +&(g). The remaining infinitesimal
extension axioms are proven in a similar fashion. |

Lastly, the difference combinator for Flat, is defined in the obvious way, that
is, 8[f] is defined as the second component of a(f).

Proposition 4. Let (X,a : X — CAct(X)) be a change action model. Then
Flat, is a Cartesian difference category.

Proof (Sketch). The full calculations will appear in an upcoming extended jour-
nal version of this paper, but we give an informal explanation. [C9.0] and
[CO.2] are a straightforward consequences of [CAD.1] and [CAD.2]. [C3.3]
and [C9.4] follow trivially from the fact that o preserves finite products and from
the structure of products in CAct(X), while [C9.5] follows from composition in
CAct(X). [CA.1], [CO.6] and [C.7] are obtained by mechanical calculation in
the spirit of Lemma 6. Note that every axiom except for [C8.6] can be proven
without using [F.3] []

68 M. Alvarez-Picallo and J.-S. P. Lemay

4.5 Linear Maps and e-Linear Maps

An important subclass of maps in a Cartesian differential category is the subclass
of linear maps [4, Definition 2.2.1]. One can also define linear maps in a Cartesian
difference category by using the same definition.

Definition 10. In a Cartesian difference category, a map [is linear if the
following equality holds: 8[f] = f om.

Using element-like notation, a map f is linear if 8[f](z,y) = f(y). Linear
maps in a Cartesian difference category satisfy many of the same properties
found in [4, Lemma 2.2.2].

Lemma 8. In a Cartesian difference category,

. If f: A— B is linear then e(f) = foe(la);

If f : A — B is linear, then f is additive (Definition 1);

. Identity maps, projection maps, and zero maps are linear;

. The composite, sum, and pairing of linear maps is linear;

If f:A— B and k : C — D are linear, then for any map g : B — C, the
following equality holds: Ok ogo fl =kod[g]o (f x f);

. If an isomorphism is linear, then its inverse is linear;

7. For any object A, ®4 and + 4 are linear.

S O

D

Using element-like notation, the first point of the above lemma says that if
f is linear then f(e(z)) = e(f(x)). And while all linear maps are additive, the
converse is not necessarily true, see [4, Corollary 2.3.4]. However, an immediate
consequence of the above lemma is that the subcategory of linear maps of a
Cartesian difference category has finite biproducts.

Another interesting subclass of maps is the subclass of e-linear maps, which
are maps whose infinitesimal extension is linear.

Definition 11. In a Cartesian difference category, a map [is e-linear if e(f)
is linear.

Lemma 9. In a Cartesian difference category,

1. If f: A— B ise-linear then fo(x+e(y)) = fox+e(f)oy;
2. Fvery linear map is e-linear;

3. The composite, sum, and pairing of e-linear maps is e-linear;
4. If an isomorphism is e-linear, then its inverse is again e-linear.

Using element-like notation, the first point of the above lemma says that if
f is e-linear then f(x+¢e(y)) = f(x)+e(f(y)). So e-linear maps are additive on
“infinitesimal” elements (i.e. those of the form e(y)).

For a Cartesian differential category, linear maps in the Cartesian difference
category sense are precisely the same as the Cartesian differential category sense
[4, Definition 2.2.1], while every map is e-linear since € = 0.

Cartesian Difference Categories 69

5 Examples of Cartesian Difference Categories

5.1 Smooth Functions

Every Cartesian differential category is a Cartesian difference category where the
infinitesimal extension is zero. As a particular example, we consider the category
of real smooth functions, which as mentioned above, can be considered to be the
canonical (and motivating) example of a Cartesian differential category.

Let R be the set of real numbers and let SMOOTH be the category whose
objects are Euclidean spaces R™ (including the point R® = {x}), and whose
maps are smooth functions F': R™ — R™. SMOOTH is a Cartesian left additive
category where the product structure is given by the standard Cartesian product
of Euclidean spaces and where the additive structure is defined by point-wise
addition, (F' + G)(x) = F(x) + G(x) and 0(z) = (0,...,0), where x € R™.
SMOQOTH is a Cartesian differential category where the differential combinator
is defined by the directional derivative of smooth functions. Explicitly, for a
smooth function F' : R™ — R™, which is in fact a tuple of smooth functions
F=(f1,...,fn) where f; : R® —» R, D[F] : R” x R™ — R™ is defined as follows:

o1(e-= (3 o .3 o)

where € = (z1,...,2,),Yy = (Y1,...,Yn) € R™. Alternatively, D[F] can also be
defined in terms of the Jacobian matrix of F'. Therefore SMOOTH is a Carte-
sian difference category with infinitesimal extesion ¢ = 0 and with difference
combinator D. Since ¢ = 0, the induced action is simply & ®g» y = x. Also a
smooth function is linear in the Cartesian difference category sense precisely if
it is R-linear in the classical sense, and every smooth function is e-linear.

5.2 Calculus of Finite Differences

Here we explain how the difference operator from the calculus of finite differences
gives an example of a Cartesian difference category but not a Cartesian differ-
ential category. This example was the main motivating example for developing
Cartesian difference categories. The calculus of finite differences is captured by
the category of abelian groups and arbitrary set functions between them.

Let Ab be the category whose objects are abelian groups G (where we use
additive notation for group structure) and where a map f : G — H is simply
an arbitrary function between them (and therefore does not necessarily preserve
the group structure). Ab is a Cartesian left additive category where the product
structure is given by the standard Cartesian product of sets and where the
additive structure is again given by point-wise addition, (f+g¢)(x) = f(z)+g(x)
and 0(x) = 0. Ab is a Cartesian difference category where the infinitesimal
extension is simply given by the identity, that is, e(f) = f, and and where the
difference combinator @ is defined as follows for a map f: G — H:

fl(z,y) = f(z +y) — f(=)

70 M. Alvarez-Picallo and J.-S. P. Lemay

On the other hand, @ is not a differential combinator for Ab since it does not
satisfy [CD.6] and part of [CD.2]. Thanks to the addition of the infinitesimal
extension, @ does satisfy [C.2] and [C.6], as well as [Cd.0]. However, as
noted in [5], it is interesting to note that this 8 does satisty [CD.1], the second
part of [CD.2], [CD.3], [CD.4], [CD.5], [CD.7], and [CD.6.a]. It is worth
noting that in [5], the goal was to drop the addition and develop a “non-additive”
version of Cartesian differential categories.

In Ab, since the infinitesimal operator is given by the identity, the induced
action is simply the addition, ®¢y = x+y. On the other hand, the linear maps
in Ab are precisely the group homomorphisms. Indeed, f is linear if 8[f](x,y) =
f(y). But by [C8.0] and [C.2], we get that:

flx+y) = flx) +0lfl(x,y) = flz) + fy) f(0) = 8[f](x,0) =0

So f is a group homomorphism. Conversely, if f is a group homomorphism:

Olfl(z,y) = flx+y) = f(z) = f(2) + fy) = f(z) = f(y)

So f is linear. Since e(f) = f, the e-linear maps are precisely the linear maps.

5.3 Module Morphisms

Here we provide a simple example of a Cartesian difference category whose dif-
ference combinator is also a differential combinator, but where the infinitesimal
extension is neither zero nor the identity.

Let R be a commutative semiring and let MODpg be the category of R-
modules and R-linear maps between them. MODpg has finite biproducts and is
therefore a Cartesian left additive category where every map is additive. Every
r € R induces an infinitesimal extension £” defined by scalar multiplication,
e"(f)(m) = rf(m). Then MODg is a Cartesian difference category with the
infinitesimal extension " for any r € R and difference combinator 8 defined as:

Af1(m,n) = f(n)

R-linearity of f assures that [C8.0] holds, while the remaining Cartesian dif-
ference axioms hold trivially. In fact, 8 is also a differential combinator and
therefore MODp, is also a Cartesian differential category. The induced action is
given by m @y n = m + rn. By definition of 8, every map in MODp, is linear,
and by definition of " and R-linearity, every map is also e-linear.

5.4 Stream calculus

Here we show how one can extend the calculus of finite differences example
to stream calculus. The differential calculus of causal functions and interesting
applications have recently been studying in [17,18].

For a set A, let A“ denote the set of infinite sequences of elements of A,
where we write [a;] for the infinite sequence [a;] = (a1,a2,as,...) and a;.; for

Cartesian Difference Categories 71

the (finite) subsequence (a;,diy1,...,a;5). A function f : A — B“ is causal
whenever the n-th element f ([a,]),, of the output sequence only depends on the
first n elements of [a;], that is, f is causal if and only if whenever ag., = bo.n,
then f ([ai])g.,, = f([bi])g.,- We now consider streams over abelian groups, so
let Ab” be the category whose objects are all the Abelian groups and whose
morphisms are causal maps from G¥ to H“. Ab” is a Cartesian left-additive
category, where the product is given by the standard product of abelian groups
and where the additive structure is lifted point-wise from the structure of Ab,
that is, (f +g) (ai), = f (ai), +9 ([a]), and 0([a,]), = 0. In order to define
the infinitesimal extension, we first need to define the truncation operator z. So
let G be an abelian group and [a;] € G, then define the sequence z([a;]) as:

Z([ai])o =0 z ([ai])n—i-l = Qn+41

The category Ab" is a Cartesian difference category where the infinitesimal ex-
tension is given by the truncation operator, e(f) ([a;]) = z (f ([ai])),
and where the difference combinator @ is defined as follows:

o[f]([ail, [bi])g = f ([ai] + [bi])g — f ([ail)g
Olf](lai], [bi]) oy = f (Jai] +2([:])),, 0 — £ ([@i]) 10

Note the similarities between the difference combinator on Ab and that on Ab" .
The induced action is computed out to be:

([a:] @ [bi])o = ao ([ai] @ [bi])ns1 = @ng1 + bpya

A causal map is linear (in the Cartesian difference category sense) if and only
if it is a group homomorphism. While a causal map f is e-linear if and only if
it is a group homomorphism which does not the depend on the 0-th term of its

input, that is, f (la:]) = / (z([a:]))-

6 Tangent Bundles in Cartesian Difference Categories

In this section, we show that the difference combinator of a Cartesian difference
category induces a monad, called the tangent monad, whose Kleisli category
is again a Cartesian difference category. This construction is a generalization
of the tangent monad for Cartesian differential categories [7,15]. However, the
Kleisli category of the tangent monad of a Cartesian differential category is not
a Cartesian differential category, but rather a Cartesian difference category.

6.1 The Tangent Bundle Monad

Let X be a Cartesian difference category with infinitesimal extension ¢ and dif-
ference combinator 8. Define the functor T : X — X as follows:

T(A)=AxA T(f) = {f om0, B[f])

72 M. Alvarez-Picallo and J.-S. P. Lemay

and define the natural transformations 7 : 1x = T and p: T2 = T as follows:
na = (14,0) pa = (mp o my, m 0w + Mo o7y + (w0 m))
Proposition 5. (T, u,n) is a monad.

Proof. Functoriality of T will follow from [C8.3] and the chain rule [Cd.5].
Naturality of 7 and pu and the monad identities will follow from the remain-
ing difference combinator axioms. The full lengthy brute force calculations will
appear in an upcoming extended journal version of this paper. |

When X is a Cartesian differential category with the difference structure aris-
ing from setting € = 0, this tangent bundle monad coincides with the standard
tangent monad corresponding to its tangent category structure [7,15].

6.2 The Kleisli Category of T

Recall that the Kleisli category of the monad (T, i, n) is defined as the category
Xt whose objects are the objects of X, and where a map A — B in Xt is a map
f+A— T(B) in X, which would be a pair f = (fo, f1) where f; : A — B.
The identity map in X7 is the monad unit n4 : A — T(A), while composition
of Kleisli maps f : A — T(B) and g : B — T(C) is defined as the composite
ncoT(g)o f. To distinguish between composition in X and X+, we denote Kleisli
composition as go' f = pcoT(g)o f. If f = {fo, f1) and g = (g0, g1), then their
Kleisli composition can be explicitly computed out to be:

go' f={go,q) 0" {fo, 1) = (go o fo.O[go] © {fo. f1) + g1 © (fo +&(f1)))

Kleisli maps can be understood as “generalized” vector fields. Indeed, T(A)
should be thought of as the tangent bundle over A, and therefore a vector field
would be a map (1, f) : A — T(A), which is of course also a Kleisli map. For
more details on the intuition behind this Kleisli category see [7]. We now wish
to explain how the Kleisli category is again a Cartesian difference category.

We begin by exhibiting the Cartesian left additive structure of the Kleisli
category. The product of objects in Xt is defined as A x B with projections
74 : Ax B — T(A) and 7] : A x B — T(B) defined respectively as 7] = (g, 0)
and 7] = (m1,0). The pairing of Kleisli maps f = (fo, f1) and g = (, g0, 1) is
defined as (f,)" = ((fo,90), (f1,91)). The terminal object is again T and where
the unique map to the terminal object is !y = 0. The sum of Kleisli maps f Kleisli
maps f = (fo, f1) and g = (, go, 91) is defined as f+Tg = f+g = (fo+g0, f1+91),
and the zero Kleisli maps is simply 0T = 0 = (0, 0). Therefore we conclude that
the Kleisli category of the tangent monad is a Cartesian left additive category.

Lemma 10. Xy is a Cartesian left additive category.

The infinitesimal extension ¢! for the Kleisli category is defined as follows
for a Kleisli map f = (fo, f1):

eT(f) = (0, fo +e(f1))

Cartesian Difference Categories 73

Lemma 11. €' is an infinitesimal extension on Xt.

It is interesting to point out that for an object A the induced action EBL can
be computed out to be:

Sy =my +' & (m) = (mo,0) + (0,m1) = (mo,m1) = l7(a

and we stress that this is the identity of T(A) in the base category X (but not
in the Kleisli category).

To define the difference combinator for the Kleisli category, first note that
difference combinators by definition do not change the codomain. That is, if
f: A= T(B) is a Kleisli arrow, then the type of its derivative qua Kleisli arrow
should be A x A — T(B) x T(B), which coincides with the type of its derivative
in X. Therefore, the difference combinator @' for the Kleisli category can be
defined to be the difference combinator of the base category, that is, for a Kleisli
map f = (fo, f1):

a"1f] = Blf] = (AL, A1)

Proposition 6. For a Cartesian difference category X, the Kleisli category Xt
is a Cartesian difference category with infinitesimal extension €' and difference
combinator 8" .

Proof. The full lengthy brute force calculations will appear in an upcoming ex-
tended journal version of this paper. We do note that a crucial identity for this
proof is that for any map f in X, the following equality holds:

T(A[f]) = @[T(f)] o (mo x mo, m1 x 71)

This helps simplify many of the calculations for the difference combinator axioms
since T(8[f]) appears everywhere due to the definition of Kleisli composition. B

As a result, the Kleisli category of a Cartesian difference category is again a
Cartesian difference category, whose infinitesimal extension is neither the iden-
tity or the zero map. This allows one to build numerous examples of interesting
and exotic Cartesian difference categories, such as the Kleisli category of Carte-
sian differential categories (or iterating this process, taking the Kleisli category
of the Kleisli category). We highlight the importance of this construction in the
Cartesian differential case as it does not in general result in a Cartesian differ-
ential category. Indeed, even if ¢ = 0, it is always the case that €' # 0. We
conclude this section by taking a look at the linear maps and the £-linear maps
in the Kleisli category. A Kleisli map f = (fo, f1) is linear in the Kleisli category
if @T[f] = f o' «], which amounts to requiring that:

(0lfol, OL1]) = (foom, from)

Therefore a Kleisli map is linear in the Kleisli category if and only if it is the
pairing of maps which are linear in the base category. On the other hand, f is
eT-linear if eT(f) = (0, fo +&(f1)) is linear in the Kleisli category, which in this
case amounts to requiring that fo 4+ (f1) is linear. Therefore, if fj is linear and
f1 is e-linear, then f is £'-linear.

74 M. Alvarez-Picallo and J.-S. P. Lemay

7 Conclusions and Future Work

We have presented Cartesian difference categories, which generalize Cartesian
differential categories to account for more discrete definitions of derivatives while
providing an additional structure that is absent in change action models. We have
also exhibited important examples and shown that Cartesian difference cate-
gories arise quite naturally from considering tangent bundles in any Cartesian
differential category. We claim that Cartesian difference categories can facilitate
the exploration of differentiation in discrete spaces, by generalizing techniques
and ideas from the study of their differential counterparts. For example, Carte-
sian differential categories can be extended to allow objects whose tangent space
is not necessarily isomorphic to the object itself [9]. The same generalization
could be applied to Cartesian difference categories — with some caveats: for ex-
ample, the equation defining a linear map (Definition 10) becomes ill-typed, but
the notion of e-linear map remains meaningful.

Another relevant path to consider is developing the analogue of the “tensor”
story for Cartesian difference categories. Indeed, an important source of exam-
ples of Cartesian differential categories are the coKleisli categories of a tensor
differential category [3,4]. A similar result likely holds for a hypothetical “ten-
sor difference category”, but it is not clear how these should be defined: [C8.2]
implies that derivatives in the difference sense are non-linear and therefore their
interplay with the tensor structure will be much different.

A further generalization of Cartesian differential categories, categories with
tangent structure [7] are defined directly in terms of a tangent bundle functor
rather than requiring that every tangent bundle be trivial (that is, in a tangent
category it may not be the case that TA = A x A). Some preliminary research
on change actions has already shown that, when generalized in this way, change
actions are precisely internal categories, but the consequences of this for change
action models (and, a fortiori, Cartesian difference categories) are not under-
stood. More recently, some work has emerged about differential equations using
the language of tangent categories [8]. We believe similar techniques can be ap-
plied in a straightforward way to Cartesian difference categories, where they
might be of use to give an abstract formalization of discrete dynamical systems
and difference equations.

An important open question is whether Cartesian difference categories (or a
similar notion) admit an internal language. It is well-known that the differen-
tial A-calculus can be interpreted in Cartesian closed differential categories [14].
Given their similarities, we believe there will be a very similar “difference \-
calculus” which could potentially have applications to automatic differentiation
(change structures, a notion similar to change actions, have already been pro-
posed as models of forward-mode automatic differentiation [12], although work
on the area seems to have stagnated).

Lastly, we should mention that there are adjunctions between the categories
of Cartesian difference categories, change action models, and Cartesian differ-
ential categories given by Proposition 1, 2, 3, and 4. These adjunctions will be
explored in detail in the upcoming journal version of this paper.

Cartesian Difference Categories 75

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Alvarez-Picallo, M., Eyers-Taylor, A., Jones, M.P., Ong, C.H.L.: Fixing incremental
computation. In: European Symposium on Programming. pp. 525-552. Springer
(2019)

. Alvarez-Picallo, M., Ong, C.H.L.: Change actions: models of generalised differ-

entiation. In: International Conference on Foundations of Software Science and
Computation Structures. pp. 45—61. Springer (2019)

Blute, R.F., Cockett, J.R.B., Seely, R.A.G.: Differential categories. Mathematical
structures in computer science 16(06), 1049-1083 (2006)

Blute, R.F., Cockett, J.R.B., Seely, R.A.G.: Cartesian differential categories. The-
ory and Applications of Categories 22(23), 622-672 (2009)

Bradet-Legris, J., Reid, H.: Differential forms in non-linear cartesian differential
categories (2018), Foundational Methods in Computer Science

Cai, Y., Giarrusso, P.G., Rendel, T., Ostermann, K.: A theory of changes for higher-
order languages: Incrementalizing A-calculi by static differentiation. In: ACM SIG-
PLAN Notices. vol. 49, pp. 145-155. ACM (2014)

Cockett, J.R.B., Cruttwell, G.S.H.: Differential structure, tangent structure, and
sdg. Applied Categorical Structures 22(2), 331-417 (2014)

Cockett, J., Cruttwell, G.: Connections in tangent categories. Theory and Appli-
cations of Categories 32(26), 835-888 (2017)

Cruttwell, G.S.: Cartesian differential categories revisited. Mathematical Struc-
tures in Computer Science 27(1), 70-91 (2017)

Ehrhard, T., Regnier, L.: The differential lambda-calculus. Theoretical Computer
Science 309(1), 1-41 (2003)

Ehrhard, T.: An introduction to differential linear logic: proof-nets, models and
antiderivatives. Mathematical Structures in Computer Science 28(7), 995-1060
(2018)

Kelly, R., Pearlmutter, B.A., Siskind, J.M.: Evolving the incremental {\lambda}
calculus into a model of forward automatic differentiation (ad). arXiv preprint
arXiv:1611.03429 (2016)

Kock, A.: Synthetic differential geometry, vol. 333. Cambridge University Press
(2006)

Manzonetto, G.: What is a categorical model of the differential and the resource
A-calculi? Mathematical Structures in Computer Science 22(3), 451-520 (2012)
Manzyuk, O.: Tangent bundles in differential lambda-categories. arXiv preprint
arXiv:1202.0411 (2012)

Richardson, C.H.: An introduction to the calculus of finite differences. Van Nos-
trand (1954)

Sprunger, D., Jacobs, B.: The differential calculus of causal functions. arXiv
preprint arXiv:1904.10611 (2019)

Sprunger, D., Katsumata, S.y.: Differentiable causal computations via delayed
trace. In: 2019 34th Annual ACM /TEEE Symposium on Logic in Computer Science
(LICS). pp. 1-12. IEEE (2019)

Steinbach, B., Posthoff, C.: Boolean differential calculus. In: Logic Functions and
Equations, pp. 75-103. Springer (2009)

76 M. Alvarez-Picallo and J.-S. P. Lemay

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

®

Check for
updates

Contextual Equivalence for Signal Flow Graphs

Filippo Bonchi!, Robin Piedeleu®*, Pawel Sobocinski®**, and
Fabio Zanasi®* (<)

! Universita di Pisa, Italy
2 University College London, UK, {r.piedeleu, f.zanasi}@ucl.ac.uk
3 Tallinn University of Technology, Estonia

Abstract. We extend the signal flow calculus—a compositional account
of the classical signal flow graph model of computation—to encompass
affine behaviour, and furnish it with a novel operational semantics. The
increased expressive power allows us to define a canonical notion of con-
textual equivalence, which we show to coincide with denotational equal-
ity. Finally, we characterise the realisable fragment of the calculus: those
terms that express the computations of (affine) signal flow graphs.

Keywords: signal flow graphs - affine relations - full abstraction - con-
textual equivalence - string diagrams

1 Introduction

Compositional accounts of models of computation often lead one to consider
relational models because a decomposition of an input-output system might
consist of internal parts where flow and causality are not always easy to assign.
These insights led Willems [33] to introduce a new current of control theory,
called behavioural control: roughly speaking, behaviours and observations are of
prime concern, notions such as state, inputs or outputs are secondary. Indepen-
dently, programming language theory converged on similar ideas, with contextual
equivalence [25,28] often considered as the equivalence: programs are judged to
be different if we can find some context in which one behaves differently from
the other, and what is observed about “behaviour” is often something quite
canonical and simple, such as termination. Hoare [17] and Milner [23] discovered
that these programming language theory innovations also bore fruit in the non-
deterministic context of concurrency. Here again, research converged on studying
simple and canonical contextual equivalences [24,18].

This paper brings together all of the above threads. The model of computa-
tion of interest for us is that of signal flow graphs [32,21], which are feedback
systems well known in control theory [21] and widely used in the modelling of
linear dynamical systems (in continuous time) and signal processing circuits (in

* Supported by EPSRC grant EP/R020604/1.
** Supported by the ESF funded Estonian IT Academy research measure (project 2014~
2020.4.05.19-0001)

© The Author(s) 2020
J. Goubault-Larrecq and B. Konig (Eds.): FOSSACS 2020, LNCS 12077, pp. 77-96, 2020.
https://doi.org/10.1007/978-3-030-45231-5_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45231-5_5&domain=pdf

78 F. Bonchi et al.

discrete time). The signal flow calculus [10,9] is a syntactic presentation with
an underlying compositional denotational semantics in terms of linear relations.
Armed with string diagrams [31] as a syntax, the tools and concepts of program-
ming language theory and concurrency theory can be put to work and the cal-
culus can be equipped with a structural operational semantics. However, while
in previous work [9] a connection was made between operational equivalence
(essentially trace equivalence) and denotational equality, the signal flow calculus
was not quite expressive enough for contextual equivalence to be a useful notion.

The crucial step turns out to be moving from linear relations to affine rela-
tions, i.e. linear subspaces translated by a vector. In recent work [6], we showed
that they can be used to study important physical phenomena, such as current
and voltage sources in electrical engineering, as well as fundamental synchroni-
sation primitives in concurrency, such as mutual exclusion. Here we show that,
in addition to yielding compelling mathematical domains, affinity proves to be
the magic ingredient that ties the different components of the story of signal flow
graphs together: it provides us with a canonical and simple notion of observation
to use for the definition of contextual equivalence, and gives us the expressive
power to prove a bona fide full abstraction result that relates contextual equiv-
alence with denotational equality.

To obtain the above result, we extend the signal flow calculus to handle affine
behaviour. While the denotational semantics and axiomatic theory appeared
in [6], the operational account appears here for the first time and requires some
technical innovations: instead of traces, we consider trajectories, which are infi-
nite traces that may start in the past. To record the time, states of our transition
system have a runtime environment that keeps track of the global clock.

Because the affine signal flow calculus is oblivious to flow directionality, some
terms exhibit pathological operational behaviour. We illustrate these phenomena
with several examples. Nevertheless, for the linear sub-calculus, it is known [9]
that every term is denotationally equal to an executable realisation: one that
is in a form where a consistent flow can be identified, like the classical notion
of signal flow graph. We show that the question has a more subtle answer in
the affine extension: not all terms are realisable as (affine) signal flow graphs.
However, we are able to characterise the class of diagrams for which this is true.

Related work. Several authors studied signal flow graphs by exploiting concepts
and techniques of programming language semantics, see e.g. [4,22,29,2]. The most
relevant for this paper is [2], which, independently from [10], proposed the same
syntax and axiomatisation for the ordinary signal flow calculus and shares with
our contribution the same methodology: the use of string diagrams as a math-
ematical playground for the compositional study of different sorts of systems.
The idea is common to diverse, cross-disciplinary research programmes, includ-
ing Categorical Quantum Mechanics [1,11,12], Categorical Network Theory [3],
Monoidal Computer [26,27] and the analysis of (a)synchronous circuits [14,15].

Outline In Section 2 we recall the affine signal flow calculus. Section 3 introduces
the operational semantics for the calculus. Section 4 defines contextual equiv-
alence and proves full abstraction. Section 5 introduces a well-behaved class of

Contextual Equivalence for Signal Flow Graphs 79

circuits, that denotes functional input-output systems, laying the groundwork
for Section 6, in which the concept of realisability is introduced before a charac-
terisation of which circuit diagrams are realisable. Missing proofs can be found
in the extended version of this paper [7].

2 Background: the Affine Signal Flow Calculus

The Affine Signal Flow Calculus extends the signal flow calculus [9] with an
extra generator — that allows to express affine relations. In this section, we
first recall its syntax and denotational semantics from [6] and then we highlight
two key properties for proving full abstraction that are enabled by the affine
extension. The operational semantics is delayed to the next section.

—«_:(1,2) —e:(1,00 —|k:(11) —D—:(1,1) _P—:(21) 0—:(0,1) —:(0,1)

21 e—:01) —(k}l:an —@F:an —C:12) —o:(1,00 —i:(1,0)

ci(n,z) d:(z,m) c:(n,m) d:(r, z)

::(O’O) —: (L1 X:(Q’Q) c;d:(n,m) c®d: (n+r, m+z)

Fig. 1. Sort inference rules.

2.1 Syntax
ci=—o| =« |)| {0~ | = | o= [—| (1)
— [D | G G- |—C|—o]—| (2)
| — I [ede | ce 3)

The syntax of the calculus, generated by the grammar above, is parametrised
over a given field k, with k ranging over k. We refer to the constants in rows (1)-
(2) as generators. Terms are constructed from generators, , —, X, and the
two binary operations in (3). We will only consider those terms that are sortable,
i.e. they can be associated with a pair (n, m), with n, m € N. Sortable terms are
called circuits: intuitively, a circuit with sort (n, m) has n ports on the left and
m on the right. The sorting discipline is given in Fig. 1. We delay discussion of
computational intuitions to Section 3 but, for the time being, we observe that
the generators of row (2) are those of row (1) “reflected about the y-axis”.

2.2 String Diagrams
It is convenient to consider circuits as the arrows of a symmetric monoidal cat-
egory ACirc (for Affine Circuits). Objects of ACirc are natural numbers (thus

80 F. Bonchi et al.

ACirc is a prop [19]) and morphisms n — m are the circuits of sort (n, m),
quotiented by the laws of symmetric monoidal categories [20,31]%. The circuit
grammar yields the symmetric monoidal structure of ACirc: sequential composi-
tion is given by c¢;d, the monoidal product is given by ¢ @ d, and identities and
symmetries are built by pasting together — and “x in the obvious way. We will
adopt the usual convention of writing morphisms of ACirc as string diagrams,

and ¢@® ¢ is drawn . More suc-
| C

cinctly, ACirc is the free prop on generators (1)-(2). The free prop on (1)-(2) sans

+— and —i, hereafter called Circ, is the signal flow calculus from [9].

meaning that ¢; ¢ is drawn

Ezxample 1. The diagram represents the circuit

(o—; =)o—); (—(>—;—)); (—o-_-)o—); ((»—; —0)o—)).

2.3 Denotational Semantics and Axiomatisation
The semantics of circuits can be given denotationally by means of affine relations.

Definition 1. Let k be a field. An affine subspace of k% is a subset V C k? that
is either empty or for which there exists a vector a € k% and a linear subspace
L of k? such that V = {a+v | v € L}. A k-affine relation of type n — m is an
affine subspace of k™ x k™, considered as a k-vector space.

Note that every linear subspace is affine, taking a above to be the zero vector.
Affine relations can be organised into a prop:

Definition 2. Let k be a field. Let ARel, be the following prop:

— arrows n — m are k-affine relations.

— composition is relational: given G = {(u,v)|u € k™, v € k™} and H =
{(v,w)|v € k™, w € k'}, their composition is G; H = {(u,w)|Iv.(u,v) €
GA (v,w) € H}.

— monoidal product given by GOH = {(Cj,) , Cj,)) [(u,v) € G, (u,0v) € H}

In order to give semantics to ACirc, we use the prop of affine relations over
the field k(z) of fractions of polynomials in with coefficients from k. Elements
1 2 n

q € k(z) are a fractions kﬁ)ﬂ?;jﬁ%ﬂ:ﬁgvﬁ for some n,m € N and k;,; € k.

Sum, product, 0 and 1 in k(z) are defined as usual.

4 This quotient is harmless: both the denotational semantics from [6] and the opera-
tional semantics we introduce in this paper satisfy those axioms on the nose.

Contextual Equivalence for Signal Flow Graphs 81

Definition 3. The prop morphism [-]: ACirc — ARel,, is inductively defined
on circuits as follows. For the generators in (1)

e () rex} e (o) o)

—e — {(p,e) [pek(a)} o— +— {(s,0)} — —{(s, 1)}

— {(p,p-7) [pekx)} — {(p,p-2) [p €klz)}
)

where o is the only element of k(x)". The semantics of components in (2) is
symmetric, e.g. e— is mapped to {(p,e) | p € k(z)}. For (3)

— > o lrer@r > {((0).() Iraerw)

— {(e,0)} 1Py — [ar] @ [e2] crica — [ei] s [e2]

The reader can easily check that the pair of 1-dimensional vectors (1, ﬁ) €

k(z) x k(z)* belongs to the denotation of the circuit in Example 1.

The denotational semantics enjoys a sound and complete axiomatisation.
The axioms involve only basic interactions between the generators (1)-(2). The
resulting theory is that of Affine Interacting Hopf Algebras (alH).The generators
in (1) form a Hopf algebra, those in (2) form another Hopf algebra, and the
interaction of the two give rise to two Frobenius algebras. We refer the reader
to [6] for the full set of equations and all further details.

Proposition 1. For all ¢,d in ACirc, [c] = [d] if and only if c L.

2.4 Affine vs Linear Circuits

It is important to highlight the differences between ACirc and Circ. The latter
is the purely linear fragment: circuit diagrams of Circ denote exactly the linear
relations over k(x) [8], while those of ACirc denote the affine relations over k(z).

The additional expressivity afforded by affine circuits is essential for our
development. One crucial property is that every polynomial fraction can be
expressed as an affine circuit of sort (0, 1).

Lemma 1. For all p € k(z), there is ¢, € ACirc[0, 1] with [c,] = {(e,p)}.

Proof. For each p € k(z), let P be the linear subspace generated by the pair of
1-dimensional vectors (1, p). By fullness of the denotational semantics of Circ [8],
there exists a circuit ¢ in Circ such that [¢] = P. Then, [—;c] = {(e,p)}. O

The above observation yields the following:

Proposition 2. Let (u,v) € k(z)™ x k(x)™. There exist circuits ¢,, € ACirc|0,n]
and ¢, € ACirc[m, 0] such that [c,] = {(e,u)} and [e,] = {(v,o)}.

82 F. Bonchi et al.

P1 q1
Proof. Let w= | : | and v = | : |. By Lemma 1, for each p;, there exists a
Pn am
circuit ¢,, such that [c,,] = {(e,p;)}. Let ¢y, = ¢p, & ... B ¢p,. Then [¢,] =
{(e,u)}. For ¢,, it is enough to see that Proposition 1 also holds with 0 and 1
switched, then use the argument above. O

Proposition 2 asserts that any behaviour (u,v) occurring in the denotation of
some circuit ¢, i.e., such that (u,v) € [¢], can be expressed by a pair of circuits
(Cu, ¢y). We will, in due course, think of such a pair as a context, namely an
environment with which a circuit can interact. Observe that this is not possible
with the linear fragment Circ, since the only singleton linear subspace is 0.

Another difference between linear and affine concerns circuits of sort (0, 0).
Indeed k()" = {e}, and the only linear relation over k(x)° xk(z)° is the singleton
{(e, @)}, which is idy in ARel,(,,. But there is another affine relation, namely the
empty relation) € k(x)? x k(z)°. This can be represented by o, for instance,

since [—o] = {(e,1)};{(0,)} = 0.

Proposition 3. Let ¢ € ACirc|0,0]. Then [c] is either idy or).

3 Operational Semantics for Affine Circuits

Here we give the structural operational semantics of affine circuits, building on
previous work [9] that considered only the core linear fragment, Circ. We consider
circuits to be programs that have an observable behaviour. Observations are
possible interactions at the circuit’s interface. Since there are two interfaces: a
left and a right, each transition has two labels.

In a transition ¢ >c¢ —» t' > ¢ , cand ¢ are states, that is, circuits
augmented with information about which values k € k are stored in each regis-
ter (—{z)— and —(=}-) at that instant of the computation. When transitioning
to ¢/, the v above the arrow is a vector of values with which ¢ synchronises on the
left, and the w below the arrow accounts for the synchronisation on the right.
States are decorated with runtime contexts: ¢ and ¢’ are (possibly negative) inte-
gers that—intuitively—indicate the time when the transition happens. Indeed,
in Fig. 2, every rule advances time by 1 unit. “Negative time” is important: as
we shall see in Example 3, some executions must start in the past.

The rules in the top section of Fig. 2 provide the semantics for the generators
in (1): —« is a copier, duplicating the signal arriving on the left; —e accepts
any signal on the left and discards it, producing nothing on the right; »— is
an adder that takes two signals on the left and emits their sum on the right,
o— emits the constant 0 signal on the right; is an amplifier, multiplying
the signal on the left by the scalar & € k. All the generators described so far

l
are stateless. State is provided by which is a register; a synchronous one
place buffer with the value [stored. When it receives some value k on the left,
it emits [on the right and stores k. The behaviour of the affine generator —

Contextual Equivalence for Signal Flow Graphs 83

to —« > t+1> —C t> —e 5 t+lp —e
t> p— oo t+1l> p— t>o— = t+1p>o—

l k
te {oD— 5 t+1e —fo)— to —{H— —— t+1p —{—

O0>+— = 1bp+— t>r— = t+1lp— (t#0)
te 3 S5 t+1> e t>e— = t+1>e—
te —C = t+lo —C tb —0 = t+lp> —o

l k
to —@l— - t+1lpo @ to —C— 5 t+1lpo G

0> — — 1> — t>— = t+1lp— (t#£0)
k k1l - ° g
t>— — t+le— t> X 2 ttle X tpi P o 1l
tbe = t+1pc tpd — t+1>d

teceid = t+1>d;d

trec == t+lnd t>d =% t+1>d

tecdd S t+l>dod
Fig. 2. Structural rules for operational semantics, with p € Z, k,l ranging over k and

u, v, w vectors of elements of k of the appropriate size. The only vector of k° is written
as e (as in Definition 3), while a vector (k1 ... E)T ek™as k... kn.

depends on the time: when ¢ = 0, it emits 1, otherwise it emits 0. Observe that
the behaviour of all other generators is time-independent.

So far, we described the behaviour of the components in (1) using the in-
tuition that signal flows from left to right: in a transition —3 , the signal v on
the left is thought as trigger and w as effect. For the generators in (2), whose
behaviour is defined by the rules in the second section of Fig. 2, the behaviour
is symmetric—indeed, here it is helpful to think of signals as flowing from right
to left. The next section of Fig. 2 specifies the behaviours of the structural con-
nectors of (3): > is a twist, swapping two signals, is the empty circuit
and — is the identity wire: the signals on the left and on the right ports are
equal. Finally, the rule for sequential ; composition forces the two components to
have the same value v on the shared interface, while for parallel & composition,

84 F. Bonchi et al.

components can proceed independently. Observe that both forms of composition
require component transitions to happen at the same time.

Definition 4. Let ¢ € ACirc. The initial state cq of ¢ is the one where all the
registers store 0. A computation of ¢ starting at time t < 0 is a (possibly infinite)
sequence of transitions

vy Vi1 V42
tDCO 7:) t+1\>61 T_H) t+2[>02 T—*—?) (4)

Since all transitions increment the time by 1, it suffices to record the time at
which a computation starts. As a result, to simplify notation, we will omit the
runtime context after the first transition and, instead of (4), write

vy Vi41 Vi42
t> cg——=c —>Ccg —— ...
wi W41 W42

Ezxample 2. The circuit in Example 1 can perform the following computation.

In the example above, the flow has a clear left-to-right orientation, albeit
with a feedback loop. For arbitrary circuits of ACirc this is not always the case,
which sometimes results in unexpected operational behaviour.

Example 3. In is not possible to identify a consistent flow: — goes from
left to right, while from right to left. Observe that there is no computation
starting at ¢ = 0, since in the initial state the register contains 0 while +— must
emit 1. There is, however, a (unique!) computation starting at time ¢t = —1, that
loads the register with 1 before — can also emit 1 at time ¢ = 0.

0 1 0 0
—1> @ 2 2 e 2
Similarly, features a unique computation starting at time ¢t = —2.

0 0 0 1 10 0 0
—2> —GHe ¢ HEHE 3 eEHEE o -EHEE

It is worthwhile clarifying the reason why, in the affine calculus, some compu-
tations start in the past. As we have already mentioned, in the linear fragment
the semantics of all generators is time-independent. It follows easily that time-
independence is a property enjoyed by all purely linear circuits. The behaviour
of +—, however, enforces a particular action to occur at time 0. Considering this

in conjunction with a right-to-left register results in +—(}—, and the effect is to
anticipate that action by one step to time -1, as shown in Example 3. It is obvi-
ous that this construction can be iterated, and it follows that the presence of a
single time-dependent generator results in a calculus in which the computation
of some terms must start at a finite, but unbounded time in the past.

Contextual Equivalence for Signal Flow Graphs 85

Example 4. Another circuit with conflicting flow is —o. Here there is no possible
transition at ¢ = 0, since at that time — must emit a 1 and —o can only synchro-

nise on a 0. Instead, the circuit can always perform an infinite computation
t > = — ..., for any ¢ < 0. Roughly speaking, the computations of

these two (0, 0) circuits are operational mirror images of the two possible denota-
tions of Proposition 3. This intuition will be made formal in Section 4. For now,
it is worth observing that for all ¢, & ¢ can perform the same computations
of ¢, while o @ ¢ cannot ever make a transition at time 0.

Example 5. Consider the circuit —(@H=z)—, which again features conflicting flow.
Our equational theory equates it with , but the computations involved are
subtly different. Indeed, for any sequence a; € k, it is obvious that — admits
the computation

0p — 0y 1y e, (5)

The circuit admits a similar computation, but we must begin at time

t = —1 in order to first “load” the registers with ag:
0 0 o ap ap N ay ai . az as "
~1> —GHD- > @D 2 @ 5 -G 2 ... (6)

The circuit —{=)-(=}—, which again is equated with — by the equational theory,

is more tricky. Although every computation of — can be reproduced,
admits additional, problematic computations. Indeed, consider

0 0 0 1
0 - (7)
at which point no further transition is possible—the circuit can deadlock.

The following lemma is an easy consequence of the rules of Fig. 2 and follows
by structural induction. It states that all circuits can stay idle in the past.

Lemma 2. Letc € ACirc[n, m] with initial state co. Then t1> ¢ ‘?ﬁ co ift <O.

3.1 Trajectories

For the non-affine version of the signal flow calculus, we studied in [9] traces
arising from computations. For the affine extension, this is not possible since, as
explained above, we must also consider computations that start in the past. In
this paper, rather than traces we adopt a common control theoretic notion.

Definition 5. An (n,m)-trajectory o is a Z-indexed sequence o : Z — K™ x k™
that is finite in the past, i.e., for which 35 € Z such that o(i) = (0,0) fori < j.

By the universal property of the product we can identify o : Z — k™ x k™
with the pairing (o;,0,) of 0 : Z — k™ and o, : Z — k™. A (k, m)-trajectory
o and (m,n)-trajectory T are compatible if o, = 7. In this case, we can define

86 F. Bonchi et al.

their composite, a (k,n)-trajectory o;7 by o;7 := (07,7,). Given an (n1,m1)-
trajectory o1, and an (na, ma)-trajectory oq, their product, an (ny+ng, mi+ms)-
trajectory o1 @ o9, is defined (o1 ®o2)(i) = (ZE:;) . Using these two operations
we can organise sets of trajectories into a prop.

Definition 6. The composition of two sets of trajectories is defined as S;T =
{o;7|0€S,TeT are compatible}. The product of sets of trajectories is defined
as S1 P Sy = {0’1 D oo | o1 € S1,09 € SQ}

Clearly both operations are strictly associative. The unit for @ is the singleton
with the unique (0,0)-trajectory. Also ; has a two sided identity, given by sets
of “copycat” (n,n)-trajectories. Indeed, we have that:

Proposition 4. Sets of (n, m)-trajectories are the arrows n — m of a prop Traj
with composition and monoidal product given as in Definition 6.

Traj serves for us as the domain for operational semantics: given a circuit ¢
and an infinite computation

ug Ug4l Ut 42
t> cg——>c — Cg —> ...
vt Vi1 Vi42

its associated trajectory o is

U(l) _ {(ui, Ui) if 4 Z t, (8)

(0,0) otherwise.

Definition 7. For a circuit ¢, (c) is the set of trajectories given by its infinite
computations, following the translation (8) above.

The assignment ¢ — (c) is compositional, that is:
Theorem 1. (-}: ACirc — Traj is a morphism of props.

Ezample 6. Consider the computations (5) and (6) from Example 5. According
to (8) both are translated into the trajectory ¢ mapping ¢ > 0 into (a;,a;) and
1 < 0 into (0,0). The reader can easily verify that, more generally, it holds that

(—) ={). At this point it is worth to remark that the two circuits
would be distinguished when looking at their traces: the trace of computation
(5) is different from the trace of (6). Indeed, the full abstraction result in [9] does
not hold for all circuits, but only for those of a certain kind. The affine extension
obliges us to consider computations that starts in the past and, in turn, this
drives us toward a stronger full abstraction result, shown in the next section.

Before concluding, it is important to emphasise that (—) = ()
also holds. Indeed, problematic computations, like (7), are all finite and, by
definition, do not give rise to any trajectory. The reader should note that the use
of trajectories is not a semantic device to get rid of problematic computations.
In fact, trajectories do not appear in the statement of our full abstraction result;
they are merely a convenient tool to prove it. Another result (Proposition 9)
independently takes care of ruling out problematic computations.

Contextual Equivalence for Signal Flow Graphs 87
4 Contextual Equivalence and Full Abstraction

This section contains the main contribution of the paper: a traditional full ab-
straction result asserting that contextual equivalence agrees with denotational
equivalence. It is not a coincidence that we prove this result in the affine set-
ting: affinity plays a crucial role, both in its statement and proof. In particular,
Proposition 3 gives us two possibilities for the denotation of (0, 0) circuits: (i)
()—which, roughly speaking, means that there is a problem (see e.g. Example 4)
and no infinite computation is possible—or (i) idy, in which case infinite com-
putations are possible. This provides us with a basic notion of observation, akin
to observing termination vs non-termination in the A-calculus.

Definition 8. For a circuit ¢ € ACirc[0,0] we write ¢ 1 if ¢ can perform an
infinite computation and ¢t otherwise. For instance T, while —o 7.

To be able to make observations about arbitrary circuits we need to intro-
duce an appropriate notion of context. Roughly speaking, contexts for us are
(0, 0)-circuits with a hole into which we can plug another circuit. Since ours
is a variable-free presentation, “dangling wires” assume the role of free vari-
ables [16]: restricting to (0, 0) contexts is therefore analogous to considering
ground contexts—i.e. contexts with no free variables—a standard concept of
programming language theory.

To define contexts formally, we extend the syntax of Section 2.1 with an

extra generator “—" of sort (n, m). A (0, 0)-circuit of this extended syntax is a
context when “—" occurs exactly once. Given an (n, m)-circuit ¢ and a context
C[—], we write C[c| for the circuit obtained by replacing the unique occurrence
of “=” by c.

With this setup, given an (n, m)-circuit ¢, we can insert it into a context
C[—] and observe the possible outcome: either Clc] 1 or C[¢| . This naturally
leads us to contextual equivalence and the statement of our main result.

Definition 9. Given c,d € ACirc[n, m], we say that they are contextually equiv-
alent, written ¢ = d, if for all contexts C[—],

Cle] 1 iff Cld] 1.

Example 7. Recall from Example 5, the circuits — and —{=)(@}-. Take the
context C[—] =c¢,; — ;¢ for ¢, € ACirc[0, 1] and ¢, € ACirc[1,0]. Assume that
¢y and c¢; have a single infinite computation. Call ¢ and 7 the corresponding
trajectories. If ¢ = 7, both C[—] and C|] would be able to perform
an infinite computation. Instead if ¢ # 7, none of them would perform any

infinite computation: — would stop at time ¢, for ¢ the first moment such that
o(t) # 7(t), while C|[| would stop at time ¢ + 1.
Now take as context C[—] = e—; — ;—e. In contrast to ¢, and c¢,, e—

and —e can perform more than one single computation: at any time they can
nondeterministically emit any value. Thus every computation of C[—] = e—e

88 F. Bonchi et al.

can always be extended to an infinite one, forcing synchronisation of e— and

—e at each step. For C[—[2)~(= -] = e—{x)(z]—e, &— and —e may emit different

values at time ¢, but the computation will get stuck at ¢t + 1. However, our

definition of 1 only cares about whether C| | can perform an infinite
computation. Indeed it can, as long as e— and —e consistently emit the same
value at each time step.

If we think of contexts as tests, and say that a circuit ¢ passes test C[—] if
C'[c] perform an infinite computation, then our notion of contextual equivalence

is may-testing equivalence [13]. From this perspective, — and are not

must equivalent, since the former must pass the test e—; — ; —e while
may not. It is worth to remark here that the distinction between may and must
testing will cease to make sense in Section 5 where we identify a certain class
of circuits equipped with a proper flow directionality and thus a deterministic,
input-output, behaviour.

Theorem 2 (Full abstraction). c=d iff ¢ Ly

The remainder of this section is devoted to the proof of Theorem 2. We
will start by clarifying the relationship between fractions of polynomials (the
denotational domain) and trajectories (the operational domain).

4.1 From Polynomial Fractions to Trajectories

The missing link between polynomial fractions and trajectories are (formal)
Laurent series: we now recall this notion. Formally, a Laurent series is a function
o: Z — k for which there exists j € Z such that o(i) = 0 for all ¢ < j. We
write o as ...,0(—1),0(0),0(1),... with position 0 underlined, or as formal sum
Sooc o(i)z’. Each Laurent series o has then a degree d € Z, which is the first
non-zero element. Laurent series form a field k((z)): sum is pointwise, product
is by convolution, and the inverse o' of ¢ with degree d is defined as:

0 if i < —d
o (i) = {old) if i = —d)
s (o(dri)o (~dtn—i)

) if i=—d+n for n>0
Note (formal) power series, which form ‘just’ a ring k[[z]], are a particular case of
Laurent series, namely those os for which d > 0. What is most interesting for our
purposes is how polynomials and fractions of polynomials relate to k((x)) and
k[[z]]. First, the ring k[z] of polynomials embeds into k[[z]], and thus into k((x)):
a polynomial py + p1x + --- + ppz™ can also be regarded as the power series
Z;’io p;x® with p; = 0 for all i > n. Because Laurent series are closed under
division, this immediately gives also an embedding of the field of polynomial
fractions k(z) into k((z)). Note that the full expressiveness of k((x)) is required:
for instance, the fraction % is represented as the Laurent series ...,0,1,0,0,...,

Contextual Equivalence for Signal Flow Graphs 89

which is not a power series, because a non-zero value appears before position 0.
In fact, fractions that are expressible as power series are precisely the rational

; ; kotkiztkoa® +k,a™
fractions, i.e. of the form T, where g £ 0.

Rational fractions form a ring k{z) which, dif-
ferently from the full field k(z), embeds into k[[z]]“——k((z))

k[[x]]. Indeed, whenever [y # 0, the inverse of \)

lo + lhiw + lax? - + 12" is, by (9), a bona fide "

power series. The commutative diagram on the 7 (@)

right is a summary. kjz]—— k()

Relations between k((z))-vectors organise themselves into a prop ARel, .
(see Definition 2). There is an evident prop morphism ¢: ARel,,, = ARel,((4):
it maps the empty affine relation on k(z) to the one on k((z)), and otherwise
applies pointwise the embedding of k(z) into k((z)). For the next step, observe
that trajectories are in fact rearrangements of Laurent series: each pair of vectors
(u,v) € k((x))™ x k((x))™, as on the left below, yields the trajectory r(u,v)
defined for all i € Z as on the right below.

o'\ (' SONENO

a” B o (1) B (d)
Similarly to ¢, the assignment x extends to sets of vectors, and also to a prop

morphism from ARel,.,, to Traj. Together, £ and ¢ provide the desired link
between operational and denotational semantics.

Theorem 3. () =koio[]

Proof. Since both are symmetric monoidal functors from a free prop, it is enough
to check the statement for the generators of ACirc. We show, as an example, the

case of —&_. By Definition 3, [—«] = { (p, (ﬁ)) Ipe k(x)}. This is mapped
by ¢ to {<a (Z)) lae k(@))}. Now, to see that x(([—«])) = (—«), it is

enough to observe that a trajectory o is in x(c([—«])) precisely when, for all

ki L)

i, there exists some k; € k such that o(i) = (ki, (k

4.2 Proof of Full Abstraction

We now have the ingredients to prove Theorem 2. First, we prove an adequacy
result for (0, 0) circuits.

Proposition 5. Let ¢ € ACirc[0,0]. Then [c] = idy if and only if ¢ 1.

Proof. By Proposition 3, either [¢] = idy or [¢] = 0, which, combined with
Theorem 3, means that {c) = k o 1(idp) or {c) = x o +()). By definition of ¢ this
implies that either (¢) contains a trajectory or not. In the first case ¢ 1; in the
second ¢ 1. O

90 F. Bonchi et al.

Next we obtain a result that relates denotational equality in all contexts to
equality in alH. Note that it is not trivial: since we consider ground contexts
it does not make sense to merely consider “identity” contexts. Instead, it is at
this point that we make another crucial use of affinity, taking advantage of the
increased expressivity of affine circuits, as showcased by Proposition 2.

Proposition 6. If [C[c]] = [C[d]] for all contexts C[—], then ¢ L.

IH
Proof. Suppose that ¢ O;é d. Then [c] # [d]. Since both [c] and [d] are affine
relations over k(z), there exists a pair of vectors (u,v) € k(x)™ x k(x)™ that is in
one of [c] and [d], but not both. Assume wlog that (u,v) € [¢] and (u,v) ¢ [d].
By Proposition 2, there exists ¢, and ¢, such that [c,;c;c,] = [eu]; [c]; [en] =
{(e,u)};[c];{(v,®)}. Since (u,v) € [c], then [c, ;c;cu] = {(o,0)}. Instead, since
(u,v) ¢ [d], we have that [c,;d;c,] = 0. Therefore, for the context C[—] =
Cu; — ;Cy, we have that [C[c]] # [C]d]]. O

The proof of our main result is now straightforward.

Proof of Theorem 2. Let us first suppose that ¢ 2 d. Then [C[e]] = [C]d]] for

all contexts C[—], since [-] is a morphism of props. By Corollary 5, it follows
immediately that C[c] 1 if and only if C[d] 1, namely ¢ = d.

Conversely, suppose that, for all C[—], C[c] 1 iff C[d] 1. Again by Corollary
5, we have that [C[c]] = [C[d]]. We conclude by invoking Proposition 6. O

5 Functional Behaviour and Signal Flow Graphs

There is a sub-prop SF of Circ of classical signal flow graphs (see e.g. [21]). Here
signal flows left-to-right, possibly featuring feedback loops, provided that these
go through at least one register. Feedback can be captured algebraically via an
operation Tr(+): Circ[n + 1, m + 1] — Circ[n, m] taking c: n+1 — m+ 1 to:

n C m

N

Following [9], let us call Circ the free sub-prop of Circ of circuits built from (3
and the generators of (1), without . Then SF is defined as the closure of Cir
under Tr(-). For instance, the circuit of Example 2 is in SF.

Signal flow graphs are intimately connected to the executability of circuits. In
general, the rules of Figure 2 do not assume a fixed flow orientation. As a result,
some circuits in Circ are not executable as functional input-output systems, as

we have demonstrated with +—&}—, o and of Examples 3-5. Notice
that none of these are signal flow graphs. In fact, the circuits of SF do not have
pathological behaviour, as we shall state more precisely in Proposition 9.

At the denotational level, signal flow graphs correspond precisely to rational
functional behaviours, that is, matrices whose coefficients are in the ring k(zx)

Contextual Equivalence for Signal Flow Graphs 91

of rational fractions (see Section 4.1). We call such matrices, rational matrices.
One may check that the semantics of a signal flow graph c¢: (n, m) is always
of the form [c] = {(v,A-v) | v € k(z)"}, for some m x n rational matrix A.
Conversely, all relations that are the graph of rational matrices can be expressed
as signal flow graphs.

Proposition 7. Given c: (n, m), we have [c] = {(p,A-p) | p € k(z)"} for
some rational m xn matriz A iff there exists a signal flow graph f, i.e., a circuit

f: (n, m) of SF, such that [f] = [c].

Proof. This is a folklore result in control theory which can be found in [30]. The
details of the translation between rational matrices and circuits of SF can be
found in [10, Section 7]. O

The following gives an alternative characterisation of rational matrices—and
therefore, by Proposition 7, of the behaviour of signal flow graphs—that clarifies
their role as realisations of circuits.

Proposition 8. An m x n matriz is rational iff A-r € k{z)™ for all r € k(z)".

Proposition 8 is another guarantee of good behaviour—it justifies the name
of inputs (resp. outputs) for the left (resp. right) ports of signal flow graphs.
Recall from Section 4.1 that rational fractions can be mapped to Laurent series
of nonnegative degree, i.e., to plain power series. Operationally, these correspond
to trajectories that start after ¢ = 0. Proposition 8 guarantees that any trajectory
of a signal flow graph whose first nonzero value on the left appears at time ¢t = 0,
will not have nonzero values on the right starting before time ¢ = 0. In other
words, signal flow graphs can be seen as processing a stream of values from left to
right. As a result, their ports can be clearly partitioned into inputs and outputs.

But the circuits of SF are too restrictive for our purposes. For example,

can also be seen to realise a functional behaviour transforming inputs
x

on the left into outputs on the right yet it is not in SF. Its behaviour is no
longer linear, but affine. Hence, we need to extend signal flow graphs to include
functional affine behaviour. The following definition does just that.

Definition 10. Let ASF be the sub-prop of ACirc obtained from all the genera-
tors in (1), closed under Tr(-). Its circuits are called affine signal flow graphs.

As before, none of &}, o and from Examples 3-5 are affine sig-
nal flow graphs. In fact, ASF rules out pathological behaviour: all computations
can be extended to be infinite, or in other words, do not get stuck.

Proposition 9. Given an affine signal flow graph f, for every computation

uw u
t> fOT:%f&L) ---fn

Up+1
there exists a trajectory o € {(c) such that o(i) = (u;,v;) fort <i<t+n.

Proof. By induction on the structure of affine signal flow graphs. O

92 F. Bonchi et al.

If SF circuits correspond precisely to k(x)-matrices, those of ASF correspond
precisely to k(z)-affine transformations.

Definition 11. A map f: k(z)™ — k()™ is an affine map if there exists an
m x n matriz A and b € k(x)™ such that f(p) = A-p+b for all p € k(z)™. We
call the pair (A,b) the representation of f.

The notion of rational affine map is a straightforward extension of the linear
case and so is the characterisation in terms of rational input-output behaviour.

Definition 12. An affine map f: p — A -p+ b is rational if A and b have
coefficients in k(z).

Proposition 10. An affine map f: k(z)™ — k(z)™ is rational iff f(r) € k{zx)™
for all r € k(z)™.

The following extends the correspondence of Proposition 7, showing that ASF
is the rightful affine heir of SF.

Proposition 11. Given c: (n, m), we have [c] = {(p, f(p)) | p € k(z)"} for
some rational affine map f iff there exists an affine signal flow graph g, i.e., a
circuit g: (n, m) of ASF, such that [g] = [¢].

Proof. Let f be given by p — Ap + b for some rational m x n matrix A and
vector b € k(x)™. By Proposition 7, we can find a circuit ¢4 of SF such that

lca] = {(p,A-p) | p € k(x)}. Similarly, we can
represent b as a signal flow graph ¢ of sort (1, m).
Then, the circuit on the right is clearly in ASF and
verifies [c] = {(p, Ap +) | p € k(x)} as required.
For the converse direction it is straightforward to check by structural in-
duction that the denotation of affine signal flow graphs is the graph (in the
set-theoretic sense of pairs of values) of some rational affine map. O

6 Realisability

In the previous section we gave a restricted class of morphisms with good be-
havioural properties. We may wonder how much of ACirc we can capture with
this restricted class. The answer is, in a precise sense: most of it.

Surprisingly, the behaviours realisable in Circ—the purely linear fragment—

are not more expressive. In fact, from an operational (or denotational, by full
abstraction) point of view, Circ is nothing more than jumbled up version of SF.
Indeed, it turns out that Circ enjoys a realisability theorem: any circuit ¢ of Circ
can be associated with one of SF, that implements or realises the behaviour of ¢
into an executable form.
But the corresponding realisation may not flow neatly
from left to right like signal flow graphs do—its inputs
and outputs may have been moved from one side to the
other. Consider for example, the circuit on the right

Contextual Equivalence for Signal Flow Graphs 93

It does not belong to SF but it can be read as a signal flow graph with an input
that has been bent and moved to the bottom right. The behaviour it realises
can therefore executed by rewiring this port to obtain a signal flow graph:

We will not make this notion of rewiring precise here but refer the reader to [9]
for the details. The intuition is simply that a rewiring partitions the ports of a
circuit into two sets—that we call inputs and outputs—and uses ¢ or »-e to
bend input ports to the left and and output ports to the right. The realisability
theorem then states that we can always recover a (not necessarily unique) signal
flow graph from any circuit by performing these operations.

Theorem 4. [9, Theorem 5] Every circuit in Circ is equivalent to the rewiring
of a signal flow graph, called its realisation.

This theorem allows us to extend the notion of inputs and outputs to all
circuits of Circ.

Definition 13. A port of a circuit ¢ of Circ is an input (resp. output) port, if
there exists a realisation for which it is an input (resp. oulput).

Note that, since realisations are not necessarily unique, the same port can be
both an input and an output. Then, the realisability theorem (Theorem 4) says
that every port is always an input, an output or both (but never neither).

An output-only port is an output port that is not an input port. Similarly
an input-only port in an input port that is not an output port.

Example 8. The left port of the register is input-only whereas its right
port is output-only. In the identity wire, both ports are input and output ports.
The single port of o— is output-only ; that of —e is input-only.

While in the purely linear case, all behaviours are realisable, the general case
of ACirc is a bit more subtle. To make this precise, we can extend our definition
of realisability to include affine signal flow graphs.

Definition 14. A circuit of ACirc is realisable if its ports can be rewired so that
it is equivalent to a circuit of ASF.

Ezxample 9. — is realisable; is not.

Notice that Proposition 11, gives the following equivalent semantic criterion
for realisability. Realisable behaviours are precisely those that map rationals to
rationals.

Theorem 5. A circuit ¢ is realisable iff its ports can be partitioned into two
sets, that we call inputs and outputs, such that the corresponding rewiring of ¢
is an affine rational map from inputs to outputs.

94 F. Bonchi et al.

We offer another perspective on realisability below: realisable behaviours cor-
respond precisely to those for which the — constants are connected to inputs of
the underlying Circ-circuit. First, notice that, since

(1-dup) —— (1-del)
—« =" and +—e =

in alH, we can assume without loss of generality that each circuit contains exactly
one —.

Proposition 12. Every circuit ¢ of ACirc is equivalent to one with precisely one
— and no —i.

For ¢: (n, m) a circuit of ACirc, we will call é the circuit of Circ of sort
(n 4+ 1, m) that one obtains by first transforming ¢ into an equivalent circuit
with a single — and no — as above, then removing this —, and replacing it by
an identity wire that extends to the left boundary.

Theorem 6. A circuit ¢ is realisable iff — is connected to an input port of ¢.

7 Conclusion and Future Work

We introduced the operational semantics of the affine extension of the signal
flow calculus and proved that contextual equivalence coincides with denotational
equality, previously introduced and axiomatised in [6]. We have observed that,
at the denotational level, affinity provides two key properties (Propositions 2
and 3) for the proof of full abstraction. However, at the operational level, affin-
ity forces us to consider computations starting in the past (Example 3) as the
syntax allows terms lacking a proper flow directionality. This leads to circuits
that might deadlock (o in Example 4) or perform some problematic computa-

tions (—{2)(=]— in Example 5). We have identified a proper subclass of circuits,
called affine signal flow graphs (Definition 10), that possess an inherent flow
directionality: in these circuits, the same pathological behaviours do not arise
(Proposition 9). This class is not too restrictive as it captures all desirable be-
haviours: a realisability result (Theorem 5) states that all and only the circuits
that do not need computations to start in the past are equivalent to (the rewiring
of) an affine signal flow graph.

The reader may be wondering why we do not restrict the syntax to affine
signal flow graphs. The reason is that, like in the behavioural approach to control
theory [33], the lack of flow direction is what allows the (affine) signal flow calcu-
lus to achieve a strong form of compositionality and a complete axiomatisation
(see [9] for a deeper discussion).

We expect that similar methods and results can be extended to other models
of computation. Our next step is to tackle Petri nets, which, as shown in [5], can
be regarded as terms of the signal flow calculus, but over N rather than a field.

Contextual Equivalence for Signal Flow Graphs 95

References

10.

11.

12.

13.

14.

15.

16.

17.
18.

Abramsky, S., Coecke, B.: A categorical semantics of quantum protocols. In: Pro-
ceedings of the 19th Annual IEEE Symposium on Logic in Computer Science
(LICS), 2004. pp. 415-425. IEEE (2004)

. Baez, J., Erbele, J.: Categories in control. Theory and Applications of Categories

30, 836-881 (2015)

Baez, J.C.: Network theory (2014), http://math.ucr.edu/home/baez/networks/,
website (retrieved 15/04/2014)

Basold, H., Bonsangue, M., Hansen, H., Rutten, J.: (Co)Algebraic characterizations
of signal flow graphs. In: van Breugel, F., Kashefi, E., Palamidessi, C., Rutten, J.
(eds.) Horizons of the Mind. A Tribute to Prakash Panangaden, Lecture Notes
in Computer Science, vol. 8464, pp. 124-145. Springer International Publishing
(2014)

Bonchi, F., Holland, J., Piedeleu, R., Sobocinski, P., Zanasi, F.: Diagrammatic al-
gebra: from linear to concurrent systems. Proceedings of the 46th ACM SIGPLAN
Symposium on Principles of Programming Languages (POPL) 3, 1-28 (2019)
Bonchi, F., Piedeleu, R., Sobocinski, P., Zanasi, F.: Graphical affine algebra. In:
Proceedings of the 34th Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS). pp. 1-12 (2019)

Bonchi, F., Piedeleu, R., Sobocinski, P., Zanasi, F.: Contextual equivalence for
signal flow graphs (2020), https://arxiv.org/abs/2002.08874

Bonchi, F., Sobociriski, P., Zanasi, F.: A categorical semantics of signal flow graphs.
In: Proceedings of the 25th International Conference on Concurrency Theory
(CONCUR). pp. 435-450. Springer (2014)

Bonchi, F.; Sobocinski, P., Zanasi, F.: Full abstraction for signal flow graphs. In:
Proceedings of the 42nd Annual ACM SIGPLAN Symposium on Principles of
Programming Languages (POPL). pp. 515-526 (2015)

Bonchi, F., Sobocinski, P., Zanasi, F.: The calculus of signal flow diagrams I: linear
relations on streams. Information and Computation 252, 2-29 (2017)

Coecke, B., Duncan, R.: Interacting quantum observables. In: Proceedings of
the 35th international colloquium on Automata, Languages and Programming
(ICALP), Part II. pp. 298-310 (2008)

Coecke, B., Kissinger, A.: Picturing Quantum Processes - A first course in Quantum
Theory and Diagrammatic Reasoning. Cambridge University Press (2017)

De Nicola, R., Hennessy, M.C.: Testing equivalences for processes. Theoretical
Computer Science 34(1-2), 83-133 (1984)

Ghica, D.R.: Diagrammatic reasoning for delay-insensitive asynchronous circuits.
In: Computation, Logic, Games, and Quantum Foundations. The Many Facets of
Samson Abramsky, pp. 52—68. Springer (2013)

Ghica, D.R., Jung, A.: Categorical semantics of digital circuits. In: Proceedings of
the 16th Conference on Formal Methods in Computer-Aided Design (FMCAD).
pp. 41-48 (2016)

Ghica, D.R., Lopez, A.: A structural and nominal syntax for diagrams. In: Pro-
ceedings 14th International Conference on Quantum Physics and Logic (QPL). pp.
71-83 (2017)

Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall (1985)
Honda, K., Yoshida, N.: On reduction-based process semantics. Theoretical Com-
puter Science 152(2), 437-486 (1995)

http://math.ucr.edu/home/baez/networks/
https://arxiv.org/abs/2002.08874

96

19.

20.
21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

F. Bonchi et al.

Mac Lane, S.: Categorical algebra. Bulletin of the American Mathematical Society
71, 40-106 (1965)

Mac Lane, S.: Categories for the Working Mathematician. Springer (1998)
Mason, S.J.: Feedback Theory: I. Some Properties of Signal Flow Graphs. MIT
Research Laboratory of Electronics (1953)

Milius, S.: A sound and complete calculus for finite stream circuits. In: Proceedings
of the 2010 25th Annual IEEE Symposium on Logic in Computer Science (LICS).
pp. 421-430 (2010)

Milner, R.: A Calculus of Communicating Systems, Lecture Notes in Computer
Science, vol. 92. Springer (1980)

Milner, R., Sangiorgi, D.: Barbed bisimulation. In: Proceedings of the 19th Inter-
national Colloquium on Automata, Languages and Programming (ICALP). pp.
685-695 (1992)

Morris Jr, J.H.: Lambda-calculus models of programming languages. Ph.D. thesis,
Massachusetts Institute of Technology (1969)

Pavlovic, D.: Monoidal computer I: Basic computability by string diagrams. Infor-
mation and Computation 226, 94-116 (2013)

Pavlovic, D.: Monoidal computer II: Normal complexity by string diagrams.
arXiv:1402.5687 (2014)

Plotkin, G.D.: Call-by-name, call-by-value and the A-calculus. Theoretical Com-
puter Science 1(2), 125-159 (1975)

Rutten, J.J.M.M.: A tutorial on coinductive stream calculus and signal flow graphs.
Theoretical Computer Science 343(3), 443-481 (2005)

Rutten, J.J.M.M.: Rational streams coalgebraically. Logical Methods in Computer
Science 4(3) (2008)

Selinger, P.: A survey of graphical languages for monoidal categories. Springer
Lecture Notes in Physics 13(813), 289-355 (2011)

Shannon, C.E.: The theory and design of linear differential equation machines.
Tech. rep., National Defence Research Council (1942)

Willems, J.C.: The behavioural approach to open and interconnected systems.
IEEE Control Systems Magazine 27, 46-99 (2007)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/

4.0/), which permits use, sharing, adaptation, distribution and reproduction in any

medium or format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if changes

were made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

®

Check for
updates

Parameterized Synthesis for Fragments of
First-Order Logic over Data Words™*

Béatrice Bérard!, Benedikt Bollig?, Mathieu Lehaut!®9 | and Nathalie
Sznajder!

! Sorbonne Université, CNRS, LIP6, F-75005 Paris, France
2 CNRS, LSV & ENS Paris-Saclay, Université Paris-Saclay, Cachan, France

Abstract. We study the synthesis problem for systems with a parame-
terized number of processes. As in the classical case due to Church, the
system selects actions depending on the program run so far, with the aim
of fulfilling a given specification. The difficulty is that, at the same time,
the environment executes actions that the system cannot control. In con-
trast to the case of fixed, finite alphabets, here we consider the case of
parameterized alphabets. An alphabet reflects the number of processes,
which is static but unknown. The synthesis problem then asks whether
there is a finite number of processes for which the system can satisfy the
specification. This variant is already undecidable for very limited logics.
Therefore, we consider a first-order logic without the order on word posi-
tions. We show that even in this restricted case synthesis is undecidable
if both the system and the environment have access to all processes. On
the other hand, we prove that the problem is decidable if the environ-
ment only has access to a bounded number of processes. In that case,
there is even a cutoff meaning that it is enough to examine a bounded
number of process architectures to solve the synthesis problem.

1 Introduction

Synthesis deals with the problem of automatically generating a program that
satisfies a given specification. The problem goes back to Church [9], who formu-
lated it as follows: The environment and the system alternately select an input
symbol and an output symbol from a finite alphabet, respectively, and in this
way generate an infinite sequence. The question now is whether the system has a
winning strategy, which guarantees that the resulting infinite run is contained in
a given (w)-regular language representing the specification, no matter how the
environment behaves. This problem is decidable and very well understood [8,37],
and it has been extended in several different ways (e.g., [24,26, 28,36, 43]).

In this paper, we consider a variant of the synthesis problem that allows us
to model programs with a variable number of processes. As we then deal with
an unbounded number of process identifiers, a fixed finite alphabet is not suit-
able anymore. It is more appropriate to use an infinite alphabet, in which every

* Partly supported by ANR FREDDA (ANR-17-CE40-0013).

© The Author(s) 2020
J. Goubault-Larrecq and B. Konig (Eds.): FOSSACS 2020, LNCS 12077, pp. 97-118, 2020.
https://doi.org/10.1007/978-3-030-45231-5_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45231-5_6&domain=pdf

98 B. Bérard et al.

letter contains a process identifier and a program action. One can distinguish
two cases here. In [16], a potentially infinite number of data values are involved
in an infinite program run (e.g. by dynamic process generation). In a parameter-
ized system [4, 13], on the other hand, one has an unknown but static number
of processes so that, along each run, the number of processes is finite. In this
paper, we are interested in the latter, i.e., parameterized case. Parameterized
programs are ubiquitous and occur, e.g., in distributed algorithms, ad-hoc net-
works, telecommunication protocols, cache-coherence protocols, swarm robotics,
and biological systems. The synthesis question asks whether the system has a
winning strategy for some number of processes (existential version) or no matter
how many processes there are (universal version).

Over infinite alphabets, there are a variety of different specification languages
(e.g., [0, 11,12,19,29,33,40]). Unlike in the case of finite alphabets, there is no
canonical definition of regular languages. In fact, the synthesis problem has been
studied for N-memory automata [7], the Logic of Repeating Values [16], and reg-
ister automata [15,30,31]. Though there is no agreement on a “regular” automata
model, first-order (FO) logic over data words can be considered as a canonical
logic, and this is the specification language we consider here. In addition to
classical FO logic on words over finite alphabets, it provides a predicate x ~ y
to express that two events x and y are triggered by the same process. Its two-
variable fragment FO? has a decidable emptiness and universality problem [7]
and is, therefore, a promising candidate for the synthesis problem.

Previous generalizations of Church’s synthesis problem to infinite alphabets
were generally synchronous in the sense that the system and the environment
perform their actions in strictly alternating order. This assumption was made,
e.g., in the above-mentioned recent papers [7, 15, 16,30, 31]. If there are several
processes, however, it is realistic to relax this condition, which leads us to an
asynchronous setting in which the system has no influence on when the envi-
ronment acts. Like in [21], where the asynchronous case for a fixed number of
processes was considered, we only make the reasonable fairness assumption that
the system is not blocked forever.

In summary, the synthesis problem over infinite alphabets can be classified
as (i) parameterized vs. dynamic, (i7) synchronous vs. asynchronous, and (#i)
according to the specification language (register automata, Logic of Repeating
Values, FO logic, etc.). As explained above, we consider here the parameter-
ized asynchronous case for specifications written in FO logic. To the best of our
knowledge, this combination has not been considered before. For flexible model-
ing, we also distinguish between three types of processes: those that can only be
controlled by the system; those that can only be controlled by the environment;
and finally those that can be triggered by both. A partition into system and
environment processes is also made in [3, 18], but for a fixed number of processes
and in the presence of an arena in terms of a Petri net.

Let us briefly describe our results. We show that the general case of the
synthesis problem is undecidable for FO? logic. This follows from an adaptation
of an undecidability result from [16,17] for a fragment of the Logic of Repeating

Parameterized Synthesis for First-Order Logic over Data Words 99

Values [11]. We therefore concentrate on an orthogonal logic, namely FO without
the order on the word positions. First, we show that this logic can essentially
count processes and actions of a given process up to some threshold. Though
it has limited expressive power (albeit orthogonal to that of FO?), it leads to
intricate behaviors in the presence of an uncontrollable environment. In fact, we
show that the synthesis problem is still undecidable. Due to the lack of the order
relation, the proof requires a subtle reduction from the reachability problem in
2-counter Minsky machines. However, it turns out that the synthesis problem is
decidable if the number of processes that are controllable by the environment
is bounded, while the number of system processes remains unbounded. In this
case, there is even a cutoff k£, an important measure for parameterized systems
(cf. [1] for an overview): If the system has a winning strategy for k processes,
then it has one for any number of processes greater than k, and the same applies
to the environment. The proofs of both main results rely on a reduction of the
synthesis problem to turn-based parameterized vector games, in which, similar to
Petri nets, tokens corresponding to processes are moved around between states.

The paper is structured as follows. In Section 2, we define FO logic (especially
FO without word order), and in Section 3, we present the parameterized synthesis
problem. In Section 4, we transform a given formula into a normal form and
finally into a parameterized vector game. Based on this reduction, we investigate
cutoff properties and show our (un)decidability results in Section 5. We conclude
in Section 6. Some proof details can be found in the long version of this paper [2]

2 Preliminaries

For a finite or infinite alphabet X', let X* and X* denote the sets of finite and,
respectively, infinite words over X. The empty word is . Given w € X* U X¥,
let |w| denote the length of w and Pos(w) its set of positions: |w| = n and
Pos(w) = {1,...,n} if w = 0109...0, € X*, and |w| = w and Pos(w) =
{1,2,...} if w € X¥. Let w[i] be the i-th letter of w for all i € Pos(w).

Executions. We consider programs involving a finite (but not fixed) number
of processes. Processes are controlled by antagonistic protagonists, System and
Environment. Accordingly, each process has a type among T = {s, e, se}, and we
let P;, P., and P, denote the pairwise disjoint finite sets of processes controlled
by System, by Environment, and by both System and Environment, respectively.
We let P denote the triple (B, B, Pie). Abusing notation, we sometimes refer to
P as the disjoint union By U P, U P.

Given any set S, vectors s € ST are usually referred to as triples s =
(Ss, Se, Sse). Moreover, for s,s' € NT, we write s < s’ if sy < s}, for all § € T.
Finally, let s 4+ 8" = (85 + ., Se + 8%, Sse + Ske)-

Processes can execute actions from a finite alphabet A. Whenever an action
is executed, we would like to know whether it was triggered by System or by
Environment. Therefore, A is partitioned into A = AsWA.. Let Xy = Agx (BRUR)
and Y = Ae X (P UP.). Their union X' = XU X is the set of events. A word
w € X* U XY is called a P-execution.

100 B. Bérard et al.

As ={a,b} Ae = {c,d}

@‘ a__, _»d c a c a d b d a

—_— s

7 4 6 6 7 6 2 7 7

Fig. 1. Representation of P-execution as a mathematical structure

Logic. Formulas of our logic are evaluated over P-executions. We fix an infinite
supply V = {x,y, z,...} of variables, which are interpreted as processes from P
or positions of the execution. The logic FO[~, <, +1] is given by the grammar

o u=0(@) |alz) |z=ylrz~y|lz<y|+L(z,y) | ¢ |eVe|Tze

where z,y € V, 0 € T, and a € A. Conjunction (A), universal quantification (V),
implication (=), true, and false are obtained as abbreviations as usual.

Let ¢ € FOs[~, <, +1]. By Free(yp) C V, we denote the set of variables that
occur free in . If Free(p) = (), then we call ¢ a sentence. We sometimes write
o(z1,...,2,) to emphasize the fact that Free(y¢) C {x1,...,2,}.

To evaluate ¢ over a P-execution w = (ay, p1)(az,p2) ..., we consider (P, w) as
a structure Sp) = (P W Pos(w), By, e, Pee, (Ra)aca, ~, <, +1) where P Pos(w)
is the universe, By P, and P, are interpreted as unary relations, R, is the unary
relation {¢ € Pos(w) | a; = a}, < = {(i,j) € Pos(w) x Pos(w) | i < j},
+1={(i,i+1)|1<i<|w|]}, and ~ is the smallest equivalence relation over
P w Pos(w) containing

— (p,i) for all p € P and i € Pos(w) such that p = p;, and
— (4,7) for all (i,7) € Pos(w) x Pos(w) such that p; = p;.

An equivalence class of ~ is often simply referred to as a class. Note that it
contains exactly one process.

Ezample 1. Suppose As = {a,b} and A. = {c,d}. Let the set of processes
P be given by P, = {1,2,3}, B. = {4,5}, and Re = {6,7,8}. Moreover, let
w = (a,1)(b,8)(d,7)(c,4)(a,6)(c,6)(a,7)(d,6)(b,2)(d,7)(a,7) € X*. Figure 1 il-
lustrates Sep,,)- The edge relation represents +1, its transitive closure is <. <

An interpretation for (P,w) is a partial mapping I : V — P U Pos(w). Sup-
pose ¢ € FOy[~, <,+1] such that Free(y) C dom(I). The satisfaction relation
(P,w), I |= ¢ is then defined as expected, based on the structure S) and in-
terpreting free variables according to I. For example, let w = (a1, p1)(ag, p2) ...
and i € Pos(w). Then, for I(z) =i, we have (P,w), I = a(x) if a; = a.

We identify some fragments of FO4[~, <, +1]. For R C {~, <,+1}, let FO4[R]
denote the set of formulas that do not use symbols in {~, <, +1}\ R. Moreover,
FO3[R] denotes the fragment of FO4[R] that uses only two (reusable) variables.

Parameterized Synthesis for First-Order Logic over Data Words 101

Let p(21,...,2n,y) € FOasl~,<,+1] be a formula and m € N. We use

32"y (21, ..., Tn,y) as an abbreviation for
i Fyme N\ cwi=y) A N el wn)
1<i<j<m 1<i<m

if m > 0, and 32%.(x1,...,7,,y) = true. Thus, 32™y. says that there are at
least m distinct elements that verify ¢. We also use 3=™y.¢ as an abbreviation
for 32 y.po A=32M+ 1y 0. Note that » € FO4[R] implies that 32™y.¢0 € FO4[R]
and 3="y. € FO4[R].

Example 2. Let A, P, and w be like in Example 1 and Figure 1.

— ¢1 = Va.((s(z) Vse(z)) = Fy.(z ~ y A (aly) Vby)))) says that each
process that System can control executes at least one system action. We
have @1 € FO3[~] and (P, w) £ @1, as process 3 is idle.

— g =Vaz.(d(z) = Fy.(z ~yAa(y))) says that, for every d, there is an a
on the same process. We have py € FO3[~] and (P, w) = @s.

— 3 =Va.(d(z) = Jy.(x ~yAx < yAa(y))) says that every d is eventually
followed by an a executed by the same process. We have @3 € FO3[~, <]
and (P, w) & ¢3: The event (d, 6) is not followed by some (a, 6).

— s = Vo ((32%y.(z ~ y Aaly)) < (32y.(x ~ y Ad(y)))) says that
each class contains exactly two occurrences of a iff it contains exactly two
occurrences of d. Moreover, ¢4 € FO4[~] and (P, w) = ¢4. Note that ¢, &
FO3[~], as 3=2y requires the use of three different variable names. <

3 Parameterized Synthesis Problem

We define an asynchronous synthesis problem. A P-strategy (for System) is a
mapping f : X* — X U {e}. A P-execution w = o109... € X*U X% is f-
compatible if, for all i € Pos(w) such that o; € X, we have f(o1...0,1) = 0;.
We call w f-fair if the following hold: (z) If w is finite, then f(w) =&, and (i4)
if w is infinite and f(o7 ...0;-1) # € for infinitely many ¢ > 1, then o, € X for
infinitely many j > 1.

Let ¢ € FOq[~, <, +1] be a sentence. We say that f is P-winning for ¢ if,
for every P-execution w that is f-compatible and f-fair, we have (P, w) = ¢.

The existence of a P-strategy that is P-winning for a given formula does not
depend on the concrete process identities but only on the cardinality of the sets
P, P., and P.. This motivates the following definition of winning triples for a
formula. Given ¢, let Win(p) be the set of triples (ks, ke, kse) € NT for which
there is P = (I, P, P) such that |Py| = kg for all § € T and there is a P-strategy
that is P-winning for ¢.

Let 0 = {0} and ke, kse € N. In this paper, we focus on the intersection of
Win(p) with the sets N x 0 x 0 (which corresponds to the usual satisfiability
problem); N x {ke} x {ks} (there is a constant number of environment and
mixed processes); N X N x {ks} (there is a constant number of mixed processes);
0 x 0 x N (each process is controlled by both System and Environment).

102 B. Bérard et al.

Definition 3 (synthesis problem). For fized § € {FO,FO?}, set of relation
symbols R C {~,<,+1}, and N5, Ne,Nee C N, the (parameterized) synthesis
problem is given as follows:

SYNTH(F[R], Ns, Ne, Nee)

Input: A= AW A, and a sentence ¢ € Fa[R)
Question: Win(yp) N (Ns x Ne X Nee) #07

The satisfiability problem for F[R] is defined as SYNTH(F[R],N,0,0).

Ezample 4. Suppose As = {a,b} and A. = {c,d}, and consider the formulas
p1—p4 from Example 2.

First, we have Win(y;) = NT. Given an arbitrary P and any total order =
over Py U P, a possible P-strategy f that is P-winning for ¢ maps w € X* to
(a,p) if p is the smallest process from P, U P wrt. C that does not occur in w,
and that returns e for w if all processes from P U P, already occur in w.

For the three formulas s, @3, and ¢4, observe that, since d is an environment
action, if there is at least one process that is exclusively controlled by Environ-
ment, then there is no winning strategy. Hence we must have P. = (). In fact,
this condition is sufficient in the three cases and the strategies described below
show that all three sets Win(y2), Win(ps), and Win(p,) are equal to N x 0 x N.

— For s, the very same strategy as for ¢; also works in this case, producing
an a for every process in P U P, whether there is a d or not.

— For 3, a winning strategy f will apply the previous mechanism itera-
tively, performing (a,p) for p € Pee = {po,...,Pn—1} over and over again:
f(w) = (a,p;) where 7 is the number of occurrences of letters from X mod-
ulo n. By the fairness assumption, this guarantees satisfaction of ¢3. A more
“economical” winning strategy f’ may organize pending requests in terms of
d in a queue and acknowledge them successively. More precisely, given u € P*
and o € X, we define another word u®o € P* by u®(d, p) = u-p (inserting p
in the queue) and (p-u)®(a, p) = u (deleting it). In all other cases, u®o = u.
Let w =01...0, € X*, with queue (@ 01) ®03...)® 0, =p1...pk. We
let f'(w) =¢if k=0, and f'(w) = (a,p1) if k> 1.

— For ¢4, the strategy f’ for 3 ensures that every d has a corresponding a so
that, in the long run, there are as many a’s as d’s in every class. <

Another interesting question is whether System (or Environment) has a win-
ning strategy as soon as the number of processes is big enough. This leads to the
notion of a cutoff (cf. [1] for an overview): Let N, Ne, Nee € N and W C NT. We
call kg € NT a cutoff of W wrt. (N, Ne, Nee) if ko € N x Mo X Nee and either

— for all k € My x N x Ny such that k > kg, we have k € W, or
— for all k € Ny x N, x N such that k > ko, we have k ¢ .

Let § € {FO,FO?} and R C {~, <, +1}. If, for every alphabet A = A; ¥ A,
and every sentence ¢ € Fa[R], the set Win(yp) has a computable cutoff wrt.

Parameterized Synthesis for First-Order Logic over Data Words 103

Table 1. Summary of results. Our contributions are highlighted in bold.

Synthesis (N,0,0) (N, {ke}, {kse}) (N,N,0) (0,0,N)
FO?[~, <, +1] decidable [7] ? ? undecidable
FO?[~, <] NEXPTIME-c. [3] ? ? ?
FO[~] decidable decidable 7 undecidable

*We show, however, that there is no cutoff.

(N, Ney Nee), then we know that SYNTH(F[R], Ns, Ne, Nee) is decidable, as it
can be reduced to a finite number of simple synthesis problems over a finite
alphabet. The latter can be solved, e.g., using attractor-based backward search
(cf. [12]). This is how we will show decidability of SYNTH(FO[~], N, {ke}, {kse})
for all ke, kse € N.

Our contributions are summarized in Table 1. Note that known satisfiability
results for data logic apply to our logic, as processes can be simulated by treating
every 0 € T as an ordinary letter. Let us first state undecidability of the general
synthesis problem, which motivates the study of other FO fragments.

Theorem 5. The problem SYNTH(FO?[~, <, +1],0,0,N) is undecidable.

Proof (sketch). We adapt the proof from [16, 17] reducing the halting problem
for 2-counter machines. We show that their encoding can be expressed in our
logic, even if we restrict it to two variables, and can also be adapted to the
asynchronous setting. O

4 FO[~] and Parameterized Vector Games

Due to the undecidability result of Theorem 5, one has to switch to other frag-
ments of first-order logic. We will henceforth focus on the logic FO[~] and es-
tablish some important properties, such as a normal form, that will allow us to
deduce a couple of results, both positive and negative.

4.1 Satisfiability and Normal Form for FO[~]

We first show that FO[~] logic essentially allows one to count letters in a class
up to some threshold, and to count such classes up to some other threshold.
Let B € N and ¢ € {0,..., B}". Intuitively, £(a) imposes a constraint on the
number of occurrences of a in a class. We first define an FO4[~]-formula ¢z ¢(y)
verifying that, in the class defined by y, the number of occurrences of each letter
a € A, counted up to B, is ¢(a):

Ypely) = /\ Elze(“)z.(y ~zNa(z)) A /\ Elzé(“)z.(y ~zNa(z))
a€cA | acA |
£(a)<B £(a)=B

104 B. Bérard et al.

Theorem 6 (normal form for FO[~]). Let p € FO4[~] be a sentence. There
is a computable B € N such that ¢ is effectively equivalent to a disjunction of
conjunctions of formulas of the form 3=™y.(0(y) A p(y)) where > € {>,=},
meN, 0eT, and £ € {0,..., B},

The normal form can be obtained using known normal-form constructions
[23,41] for general FO logic [2], or using Ehrenfeucht-Fraissé games [39], or using
a direct inductive transformation in the spirit of [23].

Ezample 7. Recall the formula ¢4 = Va.((372%y.(z ~ y Aa(y))) <= (372%y.(z ~
y Ad(y)))) € FOs[~] from Example 2, over A; = {a,b} and A. = {c,d}. An
equivalent formula in normal form is ¢} = Nycr ycy F=0.(0(y) Abs,e(y)) where
Z is the set of vectors £ € {0,...,3}* such that £(a) = 2 # £(d) or {(d) = 2 #
{(a). The formula indeed says that there is no class with =2 occurrences of a
and #2 occurrences of d or vice versa, which is equivalent to 4. <

Thanks to the normal form, it is sufficient to test finitely many structures to
determine whether a given formula is satisfiable:

Corollary 8. The satisfiability problem for FO[~] over data words is decidable.
Moreover, every satisfiable FO[~] formula has a finite model.

Note that the satisfiability problem for FO?[~] is already NEXPTIME-hard,
due to NEXPTIME-hardness for two-variable logic with unary relations only [11,
,22]. In fact, it is NEXPTIME-complete due to the upper bound for FO?[~, <]
[5]. It is worth mentioning that two-variable logic with one equivalence relation
on arbitrary structures also has the finite-model property [32].

4.2 From Synthesis to Parameterized Vector Games

Exploiting the normal form for FO4[~], we now present a reduction of the syn-
thesis problem to a strictly turn-based two-player game. This game is conceptu-
ally simpler and easier to reason about. The reduction works in both directions,
which will allow us to derive both decidability and undecidability results.

Note that, given a formula ¢ € FOs[~] (which we suppose to be in normal
form with threshold B), the order of letters in an execution does not matter.
Thus, given some P, a reasonable strategy for Environment would be to just “wait
and see”. More precisely, it does not put Environment into a worse position if,
given the current execution w € X*, it lets the System execute as many actions
as it wants in terms of a word u € X7. Due to the fairness assumption, System
would be able to execute all the letters from v anyway. Environment can even
require System to play a word w such that (P, wu) = . If System is not able to
produce such a word, Environment can just sit back and do nothing. Conversely,
upon wu satisfying ¢, Environment has to be able to come up with a word
v € X% such that (P,wuv) & ¢. This leads to a turn-based game in which
System and Environment play in strictly alternate order and have to provide a
satisfying and, respectively, falsifying execution.

Parameterized Synthesis for First-Order Logic over Data Words 105

In a second step, we can get rid of process identifiers: According to our
normal form, all we are interested in is the number of processes that agree
on their letters counted up to threshold B. That is, a finite execution can be
abstracted as a configuration C : L — NT where L = {0,..., B}#. For £ € L and
C(¢) = (ns, ne, Nse), np is the number of processes of type 6 whose letter count
up to threshold B corresponds to ¢. We can also say that ¢ contains ng tokens
of type 6. If it is System’s turn, it will pick some pairs (£,¢') and move some
tokens of type 0 € {s,se} from ¢ to ¢, provided £(a) < ¢'(a) for all a € As and
l(a) = '(a) for all a € A.. This actually corresponds to adding more system
letters in the corresponding processes. The Environment proceeds analogously.

Finally, the formula ¢ naturally translates to an acceptance condition F C ¢
over configurations, where € is the set of local acceptance conditions, which are of
the form (<sng, Mene , XseNse) Where D, I, Xge € {=, >} and ns, Ne, Nse € N.

We end up with a turn-based game in which, similarly to a VASS game [1,0,

,27,38], System and Environment move tokens along vectors from L. Note that,
however, our games have a very particular structure so that undecidability for
VASS games does not carry over to our setting. Moreover, existing decidability
results do not allow us to infer our cutoff results below.

In the following, we will formalize parameterized vector games.

Definition 9. A parameterized vector game (or simply game) is given by a
triple G = (A, B, F) where A = AW A, is the finite alphabet, B € N is a bound,
and, letting L = {0,..., B}, F C €L is a finite set called acceptance condition.

Locations. Let £y be the location such that ¢o(a) = 0 for all a € A. For £ € L
and a € A, we define £ 4+ a by (£ + a)(b) = €(b) for b # a and (£ + a)(b) =
max{¢(a) + 1, B} otherwise. This is extended for all u € A* and a € A by
l+e="Land £+ ua= ({+u)+a By (w), we denote the location ¢y + w.

Configurations. As explained above, a configuration of G is a mapping C': L —
NT. Suppose that, for £ € L and 6 € T, we have C({) = (ng, ne, nse). Then, we
let C(£,0) refer to ng. By Conf, we denote the set of all configurations.

Transitions. A system transition (respectively environment transition) is a map-
ping 7 : Lx L — (Nx {0} xN) (respectively 7 : Lx L — ({0} xNxN)) such that,
for all (¢,¢") € L x L with 7(¢,¢") # (0,0,0), there is a word w € A (respectively
w € A%) such that ¢/ = £+ w. Let T, denote the set of system transitions, T, the
set of environment transitions, and 7" = T, U T, the set of all transitions.

For 7 € T, let the mappings out,,in, : L — NT be defined by out,(f) =
Yover T) and in.(£) = 3, cp T(,£) (recall that sum is component-wise).
We say that 7 € T is applicable at C' € Conf if, for all £ € L, we have out,(£) <
C(¢) (component-wise). Abusing notation, we let 7(C') denote the configuration
C’ defined by C'(¢) = C(¢) — out,(€) + in,(¢) for all £ € L. Moreover, for
T, 0") = (ns,ne,nse) and 6 € T, we let 7(¢, ¢, 0) refer to ny.

Plays. Let C € Conf. We write C = F if there is k € F such that, for all
¢ € L, we have C(¢) = k({) (in the expected manner). A C-play, or simply play,
is a finite sequence m = Cy7C172C5 . .. 7,C), alternating between configurations

106 B. Bérard et al.

and transitions (with n > 0) such that Cp = C and, for all ¢ € {1,...,n},
Ci = Ti(Cifl) and

— if ¢ is odd, then 7; € Ty and C; = F (System’s move),

— if 7 is even, then 7; € T, and C; = F (Environment’s move).
The set of all C-plays is denoted by Plays.

Strategies. A C-strategy for System is a partial mapping f : Playsq — T
such that f(C) is defined and, for all 7 = ComCy ... 7;C; € Playse with 7 =
f(m) defined, we have that 7 is applicable at C; and 7(C;) = F. Play = =
007'101 ‘e Tnon is

— f-compatible if, for all odd i € {1,...,n}, 7, = f(ComCy ... 7-1Ci_1),
— f-maximal if it is not the strict prefix of an f-compatible play,
— winning if C,, = F.

We say that f is winning for System (from C) if all f-compatible f-maximal C-
plays are winning. Finally, C' is winning if there is a C-strategy that is winning.
Note that, given an initial configuration C, we deal with an acyclic finite reach-
ability game so that, if there is a winning C-strategy, then there is a positional
one, which only depends on the last configuration.

For k € NT, let C}, denote the configuration that maps ¢y to k and all other
locations to (0,0,0). We set Win(G) = {k € NT | O}, is winning for System}.

Definition 10 (game problem). For sets N5, Ne,Nee C N, the game problem
is given as follows:

GAME(-/\/'M Nea J\/:se)

Input: Parameterized vector game G

Question: Win(G) N (Ng x Ne X Nee) #07

One can show that parameterized vector games are equivalent to the synthesis
problem in the following sense:

Lemma 11. For every sentence ¢ € FOu[~]|, there is a parameterized vector
game G = (A, B, F) such that Win(p) = Win(G). Conversely, for every param-
eterized vector game G = (A, B, F), there is a sentence ¢ € FOu[~] such that
Win(G) = Win(y). Both directions are effective.

Example 12. To illustrate parameterized vector games and the reduction from
the synthesis problem, consider the formula ¢} = Ay e F=0.(0(y) As.e(y))
in normal form from Example 7. For simplicity, we assume that As = {a} and
Ao = {d}. That is, Z is the set of vectors (a’d’) € L = {0,...,3}{*} such
that i = 2 # j or j = 2 # 4. Figure 2 illustrates a couple of configurations
Co,...,C5 : L — NT. The leftmost location in a configuration is £y, the rightmost

Parameterized Synthesis for First-Order Logic over Data Words 107

Co T Cy To Cs

Environment
.- .
Y oY
AR om REL N
] g)

d \OtO/ %\ ::Q:O/,Q:Q\ 4WJO\)
@gﬂrﬁ:@iﬁ@ Oigéoi::::o:‘::f:@ &

S
JONNC
System Environment System

T3 Cs s Cy T5 Cs

Fig. 2. A play of a parameterized vector game

location (a®d®)), the topmost one (@), and the one at the bottom (d*). Self-
loops have been omitted, and locations from Z have gray background and a
dashed border.

Towards an equivalent game G = (A, 3, F), it remains to determine the accep-
tance condition F. Recall that ¢ says that every class contains two occurrences
of a iff it contains two occurrences of d. This is reflected by the acceptance condi-
tion F = {k} where x(¢) = (=0,=0,=0) for all £ € Z and k(¢{) = (>0,>0,>0)
for all ¢ € L\ Z. With this, a configuration is accepting iff no token is on a
location from Z (a gray location).

We can verify that Win(G) = Win(yp}) = Nx0xN. In G, a uniform winning
strategy f for System that works for all P with B = () proceeds as follows:
System first awaits an Environment’s move and then moves each token upwards
as many locations as Environment has moved it downwards. Figure 2 illustrates
an f-maximal C(g0)-play that is winning for System. We note that f is a
“compressed” version of the winning strategy presented in Example 4, as System
makes her moves only when really needed. <

5 Results for FO[~] via Parameterized Vector Games

In this section, we present our results for the synthesis problem for FO[~], which
we obtain showing corresponding results for parameterized vector games. In
particular, we show that (FO[~],0,0,N) and (FO[~],N,N,0) do not have a
cutoff, whereas (FO[~], N, {ke}, {kse}) has a cutoff for all k., kse € N. Finally, we
prove that SYNTH(FO[~],0,0,N) is, in fact, undecidable.

Lemma 13. There is a game G = (A, B, F) such that Win(G) does not have a
cutoff wrt. (0,0,N).

Proof. We let As = {a} and A, = {b}, as well as B = 2. For k € {0, 1,2}, define
the local acceptance conditions =k = (=0,=0,=k) and =k = (=0,=0, >k). Set

108 B. Bérard et al.

Fig. 3. Acceptance conditions for a game with no cutoff wrt. (0,0, N)

01 = {a)), ls = (ab), 3 = (a®b)), and £, = {a®b*)). For ko, ..., ks € {0,1,2} and
D, ...,y € {=, >}, let kg, >k >2ky PBky "4ky] denote k € €L where
k(l;) = (ik;) for alli € {0,...,4} and k(¢') = (T0) for ¢/ & {o,...,¢4}. Finally,

,=0,72,20] [F0,70,70,70,22
| 0] | Mok,

where K, = {k; | £ € L such that £(b) > £(a)} with ke(¢') = (Z1) if £ = ¢, and
ke(¢") = (20) otherwise. This is illustrated in Figure 3.

There is a winning strategy for System from any initial configuration of size
2n: Move two tokens from ¢y to ¢1, wait until Environment sends them both to
{5, then move them to /3, wait until they are moved to ¢4, then repeat with two
new tokens from /£y until all the tokens are removed from ¢y, and Environment
cannot escape F anymore. However, one can check that there is no winning
strategy for initial configurations of odd size. O

0,=0,20] [2
:1):0’ O] [207:

o
Il

f:

[\

0,
0

[\

—N

2,
L,

i

Lemma 14. There is a game G = (A, B, F) such that Win(G) does not have a
cutoff wrt. (N,N,0).

Proof. We define G such that System wins only if she has at least as many
processes as Environment. Let A = {a}, A. = {b}, and B = 2. As there are no
shared processes, we can safely ignore locations with a letter from both System
and Environment. We set F = {k1, ka, K3, k4 } Where

r1({a)) = (=1,=0,=0) ra((a)) = (=1,=0,=0) rs((a)) = (=0,=0,=0)
r1((0)) = (=0,=0,=0) ra((b)) = (=0,22,=0) r3((b)) = (=0,=1,=0),

ka(ly) = (=0,=0,=0), and k;(¢') = (>0,>0,=0) for all other ¢ € L and
i€ {1,2,3,4). O

We now turn to the case where the number of processes that can be trig-
gered by Environment is bounded. Note that similar restrictions are imposed
in other settings to get decidability, such as limiting the environment to a fi-
nite (Boolean) domain [16] or restricting to one environment process [3, 18]. We
obtain decidability of the synthesis problem via a cutoff construction:

Parameterized Synthesis for First-Order Logic over Data Words 109

Theorem 15. Given ke, kse € N, every game G = (A, B, F) has a cutoff wrt.
(N, {ke}, {kse}). More precisely: Let K be the largest constant that occurs in F.
Moreover, let Maz = (ke+kse) - |Ae|- B and N = |L|Mar+l. K. Then, (N,ke,kse)
is a cutoff of Win(G) wrt. (N, {ke}, {kse})-

Proof. We will show that, for all N > N,
(N, ke, kse) € Win(G) < (N + 1,ke, kse) € Win(G).

The main observation is that, when C' contains more than K tokens in a given
¢ € L, adding more tokens in ¢ will not change whether C' = F. Given C,C’ €
Conf, we write C' <, C'if C # C" and there is 7 € T, such that 7(C) = C’. Note
that the length d of a chain Cy <. C] <¢ ... <e¢ Cy is bounded by Maz. In other
words, Maz is the maximal number of transitions that Environment can do in a
play. For all d € {0,..., Maz}, let Conf,; be the set of configurations C € Conf
such that the longest chain in (Conf, <) starting from C has length d.

Claim. Suppose that C € Conf; and ¢ € L such that C(¢) = (N,ne, nse) with
N > |L|% - K and ne,nee € N. Set D = C[¢ + (N + 1,n¢,nse)]. Then,

C is winning for System <= D is winning for System.

To show the claim, we proceed by induction on d € N, which is illustrated in
Figure 4. In each implication, we distinguish the cases d = 0 and d > 1. For the
latter, we assume that equivalence holds for all values strictly smaller than d.

For 7 € Ty and ¢,¢' € L, we let 7[(£,¢',s)++] denote the transition n € T
given by n(fl,ég,e) = T(fl,gg,e) = O, 77(61,42,56) = 7(61,62756), n(él,fg,s) =
T(€1,£2,S) + 1 if (61,62) = (f,gl), and U(ﬁl,fg, S) = T(ﬁl,fg, S) if (51,62) 75 (6, él)
We define 7[(¢, ¢, s)--] similarly (provided 7(¢,¢',s) > 1).

=—: Let f be a winning strategy for System from C' € Conf,. Let 7/ = f(C)
and ¢’ = 7/(C). Note that C' |= F. Since C({,s) = N > |L|%*! . K, there is
¢" € L such that £ 4+ w = ¢’ for some w € A} and C'(¢;s) = N’ > |L|¢ - K.

We show that D = C[¢ — (N +1, ne, nee)| is winning for System by exhibiting
a corresponding winning strategy g from D that will carefully control the position
of the additional token. First, set g(D) =’ where ' = 7/[(£,¢',s)++]. Let D' =
7' (D). We obtain D’(¢';s) = N’ 4+ 1. Note that, since N’ > K, the acceptance
condition F cannot distinguish between C’ and D’. Thus, we have D’ |= F.

Case d = 0: As, for all transitions 1" € T., we have n’(D') = D' = F, we
reached a maximal play that is winning for System. We deduce that D is
winning for System.

Case d > 1: Take any " € T, and D" such that D" = n"(D’) £ F. Let 7/ = n"
and C” = 7"(C"). Note that D" = C"[(¢',s) — N + 1], C" = D"[(',s) —
NJ], and C”, D" € Conf,- for some d- < d. As f is a winning strategy
for System from C, we have that C” is winning for System. By induction
hypothesis, D is winning for System, say by winning strategy ¢”. We let
g(Dn' D' 0" w) = ¢"(x) for all D"-plays . For all unspecified plays, let g
return any applicable system transition. Altogether, for any choice of 7", we
have that ¢” is winning from D”. Thus, g is a winning strategy from D.

110 B. Bérard et al.

Con, Conf 4
fd 77/ ': F & fdd
D D D" <
G
s B | | c—
¢ l l
NZ‘L|(]+1-K N/Z‘L‘dK
—— v Vo
4 i S
))
¢ l 4
c C/ C//
T =EF

Fig. 4. Induction step in the cutoff construction

<—: Suppose g is a winning strategy for System from D. Thus, for ' = g(D)
and D' = 5/(D), we have D' |= F. Recall that D(¢,s) > (|[L|%** - K) + 1. We
distinguish two cases:

1. Suppose there is ¢/ € L such that ¢ # ¢/, D'(¢';s) = N’ + 1 for some
N’ >|L|% K, and n/(£,¢,s) > 1. Then, we set 7/ = n'[(£,¢',s)--].

2. Otherwise, we have D'({,s) > (|[L|¢- K) + 1, and we set 7/ = 1’ (as well as
¢/ ="¢and N' = N).

Let C' = 7/(C). Since D’ |= F, one obtains C’ = F.

Case d = 0: For all transitions 7 € T, we have 7(C") = C' = F. Thus, we
reached a maximal play that is winning for System. We deduce that C' is
winning for System.

Case d > 1: Take any 7 € T, such that C” = 7"(C") }= F. Let n”/ = 7" and
D" =n"(D"). We have C" = D"[(¢',s) — N'], D" = C"[({',s) — N' + 1],
and C”, D" € Conf,— for some d- < d. As D" is winning for System, by
induction hypothesis, C”’ is winning for System, say by winning strategy f”.
We let f(C7'C" 7") = f"(m) for all C"-plays 7. For all unspecified plays,
let f return an arbitrary applicable system transition. Again, for any choice
of 7, f" is winning from C”. Thus, f is a winning strategy from C'.

This concludes the proof of the claim and, therefore, of Theorem 15. 0O

Corollary 16. Let ke, kse € N be the number of environment and the num-
ber of mized processes, respectively. The problems GAME(N, {ke}, {kse}) and
SYNTH(FO[~|,N, {ke}, {kse}) are decidable.

Parameterized Synthesis for First-Order Logic over Data Words 111

In particular, by Theorem 15, the game problem can be reduced to an ex-
ponential number of acyclic finite-state games whose size (and hence the time
complexity for determining the winner) is exponential in the cutoff and, there-
fore, doubly exponential in the size of the alphabet, the bound B, and the fixed
number of processes that are controllable by the environment.

Theorem 17. GAME(0,0,N) and SYNTH(FO[~],0,0,N) are undecidable.

Proof. We provide a reduction from the halting problem for 2-counter machines
(2CM) to GAME(0,0,N). A 2CM M = (Q, A, c1,¢2,q0,9n) has two counters,
c; and co, a finite set of states @), and a set of transitions A C @Q x Op x @
where Op = {cj++, ¢, ¢;==0 | i € {1,2}}. Moreover, we have an initial
state go € @ and a halting state ¢, € Q. A configuration of M is a triple
v =(q,v1,v2) € @ x N x N giving the current state and the current respective
counter values. The initial configuration is 79 = (go,0,0) and the set of halting
configurations is F' = {¢z} x N x N. For t € A, configuration (¢’,v],v4) is a
(t-)successor of (q,v1, 1), written (q,v1,v2) Ft (¢, V4, %), if there is i € {1,2}
such that v4_;, = vs3_; and one of the following holds: (i) ¢ = (¢,¢;++,¢") and
vi=v;+1,o0r (it) t = (¢,¢;——,¢") and V] = v; — 1, or (iit) t = (¢,¢c;==0,¢") and
v; = v, =0. A run of M is a (finite or infinite) sequence vy F¢, v1 b, The
2CM halting problem asks whether there is a run reaching a configuration in F'.
It is known to be undecidable [34].

We fix a 2CM M = (Q, A,c1,¢2,40,qr). Let As = QUAU{ay, a2} and A, =
{b} with ay, as, and b three fresh symbols. We consider the game G = (A, B, F)
with A = A;WA., B = 4, and F defined below. Let L = {0,..., B}*. Since there
are only processes shared by System and Environment, we alleviate notation and
consider that a configuration is simply a mapping C' : L — N. From now on, to
avoid confusion, we refer to configurations of the 2CM M as M-configurations,
and to configurations of G as G-configurations.

Intuitively, every valid run of M will be encoded as a play in G, and the
acceptance condition will enforce that, if a player in G deviates from a valid
play, then she will lose immediately. At any point in the play, there will be at
most one process with only a letter from @ played, which will represent the
current state in the simulated 2CM run. Similarly, there will be at most one
process with only a letter from A to represent what transition will be taken
next. Finally, the value of counter c¢; will be encoded by the number of processes
with exactly two occurrences of a; and two occurrences of b (i.e., C({a2b?))).

To increase counter c;, the players will move a new token to (a?b?), and to
decrease it, they will move, together, a token from (a?b?)) to (a}b?). Observe
that, if ¢; has value 0, then C'({a?b?)) = 0 in the corresponding configuration
of the game. As expected, it is then impossible to simulate the decrement of
¢;. Environment’s only role is to acknowledge System’s actions by playing its
(only) letter when System simulates a valid run. If System tries to cheat, she
loses immediately.

Encoding an M -configuration. Let us be more formal. Suppose v = (g, 11, v2) is
an M-configuration and C' a G-configuration. We say that C' encodes ~ if

112 B. Bérard et al.

C((a)) =1, C({ait?*)) = 11, C((a3b?)) = v2,
C(0) > 0 for all € € {€o} U{{(g*b?), (t°b?), (aft*) | ¢ € Q,t € Ai € {1,2}},
C'(¢) =0 for all other ¢ € L.

We then write v = m(C'). Let C(v) be the set of G-configurations C' that en-
code . We say that a G-configuration C is valid if C' € C(~) for some .

Simulating a transition of M. Let us explain how we go from a G-configuration
encoding v to a G-configuration encoding a successor M-configuration +’. Ob-
serve that System cannot change by herself the M-configuration encoded. If, for
instance, she tries to change the current state ¢, she might move one process from
lo to {q'), but then the G-configuration is not valid anymore. We need to move
the process in (¢)) into {¢*b*) and this requires the cooperation of Environment.

Assume that the game is in configuration C' encoding v = (g, v1,v2). System
will pick a transition ¢ starting in state ¢, say, ¢ = (¢,c1++,¢’). From con-
figuration C, System will go to the configuration C; defined by Ci({t)) = 1,
Ci({a1))) =1, and C1(¢) = C(¢) for all other £ € L.

If the transition ¢ is correctly chosen, Environment will go to a configura-
tion C3 defined by C((q)) = 0, Ca({ab)) = 1, Ca((£)) = 0, Ca({th)) = 1,
C2({a1)) = 0, C2({ard)) = 1 and, for all other ¢ € L, Cy(¢) = C1(¢). This
means that Environment moves processes in locations (t), {(q), {a1) to loca-
tions (tb), (gb), {a1b)), respectively.

To finish the transition, System will now move a process to the destination
state ¢’ of ¢, and go to configuration Cj defined by C3({¢')) = 1, C3({tb})) = 0,
Cs((#25) = 1, Ca((ab)) = 0, Cs((a®b)) = 1, Cs(fard)) = 0, Cs({alb)) = 1,
and C3(¢) = Cz(¢) for all other £ € L.

Finally, Environment moves to configuration Cy given by C4(<<t2b>)
Ca((P12)) = Ca((£207)) + 1, Ca((g8)) = 0, Ca((¢®t?)) = Cs({24?)) +
Ci((a?b)) = 0, Cy((a?b?) = C3((a2b?)) + 1, and Cy(f) = C3(¢) for all other
¢ € L. Observe that Cy € C((¢/, 11 + 1,112)).

Other types of transitions will be simulated similarly. To force System to
start the simulation in 7, and not in any M-configuration, the configurations
C such that C({g2b®)) = 0 and C({q)) = 1 for ¢ # qo are not valid, and will be
losing for System.

Acceptance condition. It remains to define F in a way that enforces the above

sequence of G-configurations. Let L, = {fo} U {(a?b?)), (a}d?) | i € {1,2}} U

{(??) | g € QYU {(t*b?) | t € A} be the set of elements in L whose values do

not affect the acceptance of the configuration. By [¢; >y nq, ..., L Xy ng|, we

denote k € €% such that k(¢;) = (>x;n;) for i € {1,...,k} and x(¢) = (=0) for all

e L\{ly,...,L}. Moreover, for a set of locations L C L, welet L > 0 stand
r “(¢>0) for all £ € L.

First, we force Environment to play only in response to System by making
System win as soon as there is a process where Environment has played more
letters than System (see Condition (d) in Table 2).

If 7 is not halting, the configurations in C(y) will not be winning for System.
Hence, System will have to move to win (Condition (a)).

Parameterized Synthesis for First-Order Logic over Data Words 113

Table 2. Acceptance conditions for the game simulating a 2CM

Requirements for System

(a) For all t = (g,0p,q') € Q:

Fanr = Ugellba) =1, (1) =1, () =1, (4°0%) > 1, (Lo \ {(d°0*)}) > 0} if op = ci++
Flanr = Ugeollfa) = 1, (1) = 1, (aiv?) = 1, (¢°0%) > 1, (Lo \ {(4°0*)}) > 0} if op = ci—-
Flanr = Ugeollfa) = 1, (1) = 1, (ai*) = 0, (¢°6%) > 1, (Lo \ {(d°0*), (ai0)}) > 0]} if op = ci==

(b) For all t = (qo,0p,q") € Q such that op € {c;++,c;==0}:
f, = {[(ao) =1, << Y =1, ai) = 1,00 > 0]} ifop=citt
={[{q) =1, (t) =1, 4 >0} if op = c;==0

(c) For all t = (q,0p,¢") € Q:
Flatay = {(@°0) =1, (£°b) =
Flara) = {1(a°b) = 1, (£°0)
Faeay = {[{a’b) =1, (£°b) =

1, {aib) =1, (¢')=1,L, > 0]} if op=cit+
1, (aib*) =1, (q) =1, L, > 0]} ifop=ci—
1, L, >0} if op = ¢;==0

Requirements for Environment
(d) Let Lsce = {£ € L | (ZaeA Ua)) < L(b)}. For all £ € Lecer Fe=[0>1,(L\{€}) > 0]
(e) For all t = (q,0p,q") € Q:

{[«qb» L{t)=1(a) =1, L, >0}, [(a) =1, (&) =1, (ai) =1 L¢>o]}
Fow =) =1, (t) =1, (ab) =1, L, > 0], [(gb) =1, (tb) =1, {a:) =1, L, >0, % ifop=ci++
[(ab) =1, (£) =1, {asb) =1, Ly > 0], [(g) =1, (tb) =1, (aib) =1, Ly > 0]
[(ab) =1, () =1, (ad>) =1, Ly > 0], [(g) =1, (tb) =1, (a}b*) =1, L, >0],
Fén = {[«q»L () =1, (@fb*) =1, Ly > 0], [(qb) =1, (tb) =1, (alb”) =1, L >01,} ifop=ci—
[(ab) =1, (£) =1, (adb®) =1, L, > 0], [(g) =1, (tb) =1, (a}b’) =1, L, > 0]
Féo={la) =1, (t) =1, Ly 0], [{q) =1, (tb) =1, L, > 0]} if op = ci==0
(f) For all t = (g,0p,q’) € Q:
[(d) =1, (¢*) =1, (%) >0, (a?b) >0, L, >0,
so o _JUD =1 (@20 () =1 (@it 20, Loz 0L e
@ T (@) =1, (g%b) >0, (£2b) >0, (a3b) =1, L, > 0], Poe
[(q'D) = 1, (¢®b) > 0, (£°b) >0, (aib) >0, L, > 0]
[(d') =1, (¢°b) =1, (%) >0, (al¥*) > 0, L, > 0],
o _JUD =1 (@0l =1 @ty z0 Lo 20|
@) TN () =1, (@P6) 20, (£6) > 0, (alt*) =1, L, 20, [P
[(¢'b) = 1, (¢’b) > 0, (£°b) > 0, (aib’) > 0, L, > 0]
(gD =1, () =1, (£*) >0, L, > 0],
Féwwy = L) =1, (@) >0, (£Pb) =1, L, > 0], if op = ci—=0

114 B. Bérard et al.

The first transition chosen by System must start from the initial state of M.
This is enforced by Condition (b).

Once System has moved, Environment will move other processes to leave
accepting configurations. The only possible move for her is to add b on a pro-
cess in locations (q)), (t), and (a;)), if ¢ is a transition incrementing counter
c; (respectively (a?b?)) if ¢ is a transition decrementing counter c;). All other
G-configurations accessible by Environment from already defined accepting con-
figurations are winning for System, as established in Condition (e).

System can now encode the successor configuration of M, according to the
chosen transition, by moving a process to the destination state of the transition
(see Condition (c)).

Finally, Environment makes the necessary transitions for the configuration
to be a valid G-configuration. If she deviates, System wins (see Condition (f)).

If Environment reaches a configuration in C(v) for v € F, System can win by
moving the process in (gn,) to (g7). From there, all the configurations reachable
by Environment are also winning for System:

Fr={l{ar) =1,L, > 0], [{qib) =1,L, >0], [(gpb°) =1,L, >0]}.

Finally, the acceptance condition is given by

F=J Ru U AUy U FuyYUFy U Faue)UFGre) UFe.

L€ Ls<e t=(qo,0p,q") EA t=(q,0p,q’)EA

Note that a correct play can end in three different ways: either there is a
process in (gn) and System moves it to (g7), or System has no transition to
pick, or there are not enough processes in £y for System to simulate a new
transition. Only the first kind is winning for System.

We can show that there is an accepting run in M iff there is some k such
that System has a winning Cg,o,x)-strategy for G. 0O

6 Conclusion

There are several questions that we left open and that are interesting in their own
right due to their fundamental character. Moreover, in the decidable cases, it will
be worthwhile to provide tight bounds on cutoffs and the algorithmic complexity
of the decision problem. Like in [7,15,106,30,31], our strategies allow the system
to have a global view of the whole program run executed so far. However, it is
also perfectly natural to consider uniform local strategies where each process only
sees its own actions and possibly those that are revealed according to some causal
dependencies. This is, e.g., the setting considered in [3, 18] for a fixed number of
processes and in [25] for parameterized systems over ring architectures.

Moreover, we would like to study a parameterized version of the control
problem [35] where, in addition to a specification, a program in terms of an arena
is already given but has to be controlled in a way such that the specification is
satisfied. Finally, our synthesis results crucially rely on the fact that the number
of processes in each execution is finite. It would be interesting to consider the
case with potentially infinitely many processes.

Parameterized Synthesis for First-Order Logic over Data Words 115

References

1.

10.

11.

12.

13.

14.

15.

P. A. Abdulla, R. Mayr, A. Sangnier, and J. Sproston. Solving parity games on
integer vectors. In P. R. D’Argenio and H. C. Melgratti, editors, CONCUR 2013
- Concurrency Theory - 24th International Conference, CONCUR 2013, Buenos
Aires, Argentina, August 27-30, 2013. Proceedings, volume 8052 of Lecture Notes
in Computer Science, pages 106-120. Springer, 2013.

. B. Bérard, B. Bollig, M. Lehaut, and N. Sznajder. Parameterized synthesis for

fragments of first-order logic over data words. CoRR, abs/1910.14294, 2019.

R. Beutner, B. Finkbeiner, and J. Hecking-Harbusch. Translating Asynchronous
Games for Distributed Synthesis. In W. Fokkink and R. van Glabbeek, editors,
30th International Conference on Concurrency Theory (CONCUR 2019), volume
140 of Leibniz International Proceedings in Informatics (LIPIcs), pages 26:1-26:16,
Dagstuhl, Germany, 2019. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

R. Bloem, S. Jacobs, A. Khalimov, I. Konnov, S. Rubin, H. Veith, and J. Widder.
Decidability of Parameterized Verification. Morgan & Claypool Publishers, 2015.
M. Bojanczyk, C. David, A. Muscholl, T. Schwentick, and L. Segoufin. Two-
variable logic on data words. ACM Trans. Comput. Log., 12(4):27, 2011.

T. Brazdil, P. Jancar, and A. Kucera. Reachability games on extended vector
addition systems with states. In ICALP’10, Part II, volume 6199 of LNCS, pages
478-489. Springer, 2010.

B. Briitsch and W. Thomas. Playing games in the Baire space. In Proc. Cassting
Workshop on Games for the Synthesis of Complex Systems and 3rd Int. Workshop
on Synthesis of Complex Parameters, volume 220 of EPTCS, pages 1325, 2016.
J. R. Biichi and L. H. Landweber. Solving sequential conditions by finite-state
strategies. Transactions of the American Mathematical Society, 138:295-311, Apr.
1969.

A. Church. Applications of recursive arithmetic to the problem of circuit synthesis.
In Summaries of the Summer Institute of Symbolic Logic — Volume 1, pages 3-50.
Institute for Defense Analyses, 1957.

J. Courtois and S. Schmitz. Alternating vector addition systems with states. In
E. Csuhaj-Varji, M. Dietzfelbinger, and Z. Esik, editors, Mathematical Founda-
tions of Computer Science 2014 - 39th International Symposium, MFCS 2014,
Budapest, Hungary, August 25-29, 2014. Proceedings, Part I, volume 8634 of Lec-
ture Notes in Computer Science, pages 220-231. Springer, 2014.

S. Demri, D. D’Souza, and R. Gascon. Temporal logics of repeating values. J. Log.
Comput., 22(5):1059-1096, 2012.

S. Demri and R. Lazié¢. LTL with the freeze quantifier and register automata. ACM
Transactions on Computational Logic, 10(3), 2009.

J. Esparza. Keeping a crowd safe: On the complexity of parameterized verification.
In STACS’14, volume 25 of Leibniz International Proceedings in Informatics, pages
1-10. Leibniz-Zentrum fiir Informatik, 2014.

K. Etessami, M. Y. Vardi, and T. Wilke. First-order logic with two variables and
unary temporal logic. Inf. Comput., 179(2):279-295, 2002.

L. Exibard, E. Filiot, and P.-A. Reynier. Synthesis of Data Word Transducers. In
W. Fokkink and R. van Glabbeek, editors, 30th International Conference on Con-
currency Theory (CONCUR 2019), volume 140 of Leibniz International Proceed-
ings in Informatics (LIPIcs), pages 24:1-24:15, Dagstuhl, Germany, 2019. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik.

116

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

B. Bérard et al.

D. Figueira and M. Praveen. Playing with repetitions in data words using en-
ergy games. In A. Dawar and E. Gradel, editors, Proceedings of the 33rd Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, Ozford, UK,
July 09-12, 2018, pages 404—413. ACM, 2018.

D. Figueira and M. Praveen. Playing with repetitions in data words using energy
games. arXi preprint arXiv:1802.07435, 2018.

B. Finkbeiner and E. Olderog. Petri games: Synthesis of distributed systems with
causal memory. Inf. Comput., 253:181-203, 2017.

H. Frenkel, O. Grumberg, and S. Sheinvald. An automata-theoretic approach to
model-checking systems and specifications over infinite data domains. J. Autom.
Reasoning, 63(4):1077-1101, 2019.

M. Fiirer. The computational complexity of the unconstrained limited domino
problem (with implications for logical decision problems). In E. Borger, G. Hasen-
jaeger, and D. Rodding, editors, Logic and Machines: Decision Problems and Com-
plexity, Proceedings of the Symposium ”Rekursive Kombinatorik” held from May
23-28, 1983 at the Institut fiir Mathematische Logik und Grundlagenforschung der
Universitat Miinster/Westfalen, volume 171 of Lecture Notes in Computer Science,
pages 312-319. Springer, 1983.

P. Gastin and N. Sznajder. Fair synthesis for asynchronous distributed systems.
ACM Transactions on Computational Logic, 14(2:9), 2013.

E. Grédel, P. G. Kolaitis, and M. Y. Vardi. On the decision problem for two-
variable first-order logic. Bulletin of Symbolic Logic, 3(1):53-69, 1997.

W. Hanf. Model-theoretic methods in the study of elementary logic. In J. W.
Addison, L. Henkin, and A. Tarski, editors, The Theory of Models. North-Holland,
Amsterdam, 1965.

F. Horn, W. Thomas, N. Wallmeier, and M. Zimmermann. Optimal strategy syn-
thesis for request-response games. RAIRO - Theor. Inf. and Applic., 49(3):179-203,
2015.

S. Jacobs and R. Bloem. Parameterized synthesis. Logical Methods in Computer
Science, 10(1), 2014.

S. Jacobs, L. Tentrup, and M. Zimmermann. Distributed synthesis for parameter-
ized temporal logics. Inf. Comput., 262(Part):311-328, 2018.

P. Jancar. On reachability-related games on vector addition systems with states.
In RP’15, volume 9328 of LNCS, pages 50—62. Springer, 2015.

M. Jenkins, J. Ouaknine, A. Rabinovich, and J. Worrell. The church synthesis
problem with metric. In M. Bezem, editor, Computer Science Logic, 25th Interna-
tional Workshop / 20th Annual Conference of the EACSL, CSL 2011, September
12-15, 2011, Bergen, Norway, Proceedings, volume 12 of LIPIcs, pages 307-321.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2011.

M. Kaminski and N. Francez. Finite-memory automata. Theoretical Computer
Science, 134(2):329-363, 1994.

A. Khalimov and O. Kupferman. Register-Bounded Synthesis. In W. Fokkink and
R. van Glabbeek, editors, 30th International Conference on Concurrency Theory
(CONCUR 2019), volume 140 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 25:1-25:16, Dagstuhl, Germany, 2019. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik.

A. Khalimov, B. Maderbacher, and R. Bloem. Bounded synthesis of register trans-
ducers. In S. K. Lahiri and C. Wang, editors, Automated Technology for Verifica-
tion and Analysis - 16th International Symposium, ATVA 2018, Los Angeles, CA,
USA, October 7-10, 2018, Proceedings, volume 11138 of Lecture Notes in Computer
Science, pages 494-510. Springer, 2018.

32

33.

34.

35.

36.

37.

38.

39.
40.

41.

42.

43.

Parameterized Synthesis for First-Order Logic over Data Words 117

E. Kieronski and M. Otto. Small substructures and decidability issues for first-
order logic with two variables. J. Symb. Log., 77(3):729-765, 2012.

L. Libkin, T. Tan, and D. Vrgoc. Regular expressions for data words. J. Comput.
Syst. Sci., 81(7):1278-1297, 2015.

M. L. Minsky. Computation: Finite and Infinite Machines. Prentice Hall, Upper
Saddle River, NJ, USA, 1967.

A. Muscholl. Automated synthesis of distributed controllers. In M. M. Halldérsson,
K. Iwama, N. Kobayashi, and B. Speckmann, editors, Automata, Languages, and
Programming - 42nd International Colloguium, ICALP 2015, Kyoto, Japan, July 6-
10, 2015, Proceedings, Part II, volume 9135 of Lecture Notes in Computer Science,
pages 11-27. Springer, 2015.

A. Pnueli and R. Rosner. Distributed reactive systems are hard to synthesize. In
81st Annual Symposium on Foundations of Computer Science, St. Louis, Missouri,
USA, October 22-24, 1990, Volume II, pages 746-757. IEEE Computer Society,
1990.

M. O. Rabin. Automata on infinite objects and Church’s problem. Number 13 in
Regional Conference Series in Mathematics. American Mathematical Soc., 1972.
J. Raskin, M. Samuelides, and L. V. Begin. Games for counting abstractions.
Electr. Notes Theor. Comput. Sci., 128(6):69-85, 2005.

A. Sangnier and O. Stietel. Private communication, 2020.

L. Schroder, D. Kozen, S. Milius, and T. Wilmann. Nominal automata with name
binding. In J. Esparza and A. S. Murawski, editors, Foundations of Software
Science and Computation Structures - 20th International Conference, FOSSACS
2017, Held as Part of the FEuropean Joint Conferences on Theory and Practice of
Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings, volume
10203 of Lecture Notes in Computer Science, pages 124-142, 2017.

T. Schwentick and K. Barthelmann. Local normal forms for first-order logic with
applications to games and automata. In Annual Symposium on Theoretical Aspects
of Computer Science, pages 444-454. Springer, 1998.

W. Thomas. Church’s problem and a tour through automata theory. In Pillars of
Computer Science, Essays Dedicated to Boris (Boaz) Trakhtenbrot on the Occasion
of His 85th Birthday, volume 4800 of Lecture Notes in Computer Science, pages
635-655. Springer, 2008.

Y. Velner and A. Rabinovich. Church synthesis problem for noisy input. In M. Hof-
mann, editor, Foundations of Software Science and Computational Structures -
14th International Conference, FOSSACS 2011, Held as Part of the Joint Euro-
pean Conferences on Theory and Practice of Software, ETAPS 2011, Saarbriicken,
Germany, March 26-April 3, 2011. Proceedings, volume 6604 of Lecture Notes in
Computer Science, pages 275-289. Springer, 2011.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

118 B. Bérard et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/
4.0/), which permits use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes
were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

®

Check for
updates

Controlling a random population*

Thomas Colcombet!, Nathanaél Fijalkow?? (1), and Pierre Ohlmann®

! Université de Paris, IRIF, CNRS, Paris, France
{thomas.colcombet,pierre.ohlmann}@irif.fr
? CNRS, LaBRI, Bordeaux, France
nathanael.fijalkow@labri.fr
3 The Alan Turing Institute of data science, London, United Kingdom

Abstract. Bertrand et al. introduced a model of parameterised systems,
where each agent is represented by a finite state system, and studied the
following control problem: for any number of agents, does there exist a
controller able to bring all agents to a target state? They showed that
the problem is decidable and EXPTIME-complete in the adversarial
setting, and posed as an open problem the stochastic setting, where the
agent is represented by a Markov decision process. In this paper, we show
that the stochastic control problem is decidable. Our solution makes
significant uses of well quasi orders, of the max-flow min-cut theorem,
and of the theory of regular cost functions.

1 Introduction

The control problem for populations of identical agents. The model we study
was introduced in [3] (see also the journal version [4]): a population of agents
are controlled uniformly, meaning that the controller applies the same action
to every agent. The agents are represented by a finite state system, the same
for every agent. The key difficulty is that there is an arbitrary large number of
agents: the control problem is whether for every n € N, there exists a controller
able to bring all n agents synchronously to a target state.

The technical contribution of [3,4] is to prove that in the adversarial setting
where an opponent chooses the evolution of the agents, the (adversarial) control
problem is EXPTIME-complete.

In this paper, we study the stochastic setting, where each agent evolves in-
dependently according to a probabilistic distribution, i.e. the finite state system
modelling an agent is a Markov decision process. The control problem becomes
whether for every n € N, there exists a controller able to bring all n agents
synchronously to a target state with probability one.

* The authors are committed to making professional choices acknowledging the cli-

mate emergency. We submitted this work to FoSSaCS for its excellence and because
its location induces for us a low carbon footprint. This work was supported by the
European Research Council (ERC) under the European Union’s Horizon 2020 re-
search and innovation programme (grant agreement No.670624), and by the DeLTA
ANR project (ANR-16-CE40-0007).

© The Author(s) 2020
J. Goubault-Larrecq and B. Konig (Eds.): FOSSACS 2020, LNCS 12077, pp. 119-135, 2020.
https://doi.org/10.1007/978-3-030-45231-5_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45231-5_7&domain=pdf

120 T. Colcombet et al.

Our main technical result is that the stochastic control problem is decidable.
In the next paragraphs we discuss four motivations for studying this problem:
control of biological systems, parameterised verification and control, distributed
computing, and automata theory.

Modelling biological systems. The original motivation for studying this model
was for controlling population of yeasts ([21]). In this application, the concen-
tration of some molecule is monitored through fluorescence level. Controlling the
frequency and duration of injections of a sorbitol solution influences the concen-
tration of the target molecule, triggering different chemical reactions which can
be modelled by a finite state system. The objective is to control the popula-
tion to reach a predetermined fluorescence state. As discussed in the conclusions
of [3,4], the stochastic semantics is more satisfactory than the adversarial one for
representing the behaviours of the chemical reactions, so our decidability result
is a step towards a better understanding of the modelling of biological systems
as populations of arbitrarily many agents represented by finite state systems.

From parameterised verification to parameterised control. Parameterised verifi-
cation was introduced in [12]: it is the verification of a system composed of an
arbitrary number of identical components. The control problem we study here
and introduced in [3,4] is the first step towards parameterised control: the goal
is control a system composed of many identical components in order to ensure a
given property. To the best of our knowledge, the contributions of [3,4] are the
first results on parameterised control; by extension, we present the first results
on parameterised control in a stochastic setting.

Distributed computing. Our model resembles two models introduced for the
study of distributed computing. The first and most widely studied is popula-
tion protocols, introduced in [2]: the agents are modelled by finite state systems
and interact by pairs drawn at random. The mode of interaction is the key
difference with the model we study here: in a time step, all of our agents per-
form simultaneously and independently the same action. This brings us closer
to broadcast protocols as studied for instance in [8], in which one action involves
an arbitrary number of agents. As explained in [3,4], our model can be seen as
a subclass of (stochastic) broadcast protocols, but key differences exist in the
semantics, making the two bodies of work technically independent.

The focus of the distributed computing community when studying population
or broadcast protocols is to construct the most efficient protocols for a given
task, such as (prominently) electing a leader. A growing literature from the
verification community focusses on checking the correctness of a given protocol
against a given specification; we refer to the recent survey [7] for an overview.
We concentrate on the control problem, which can then be seen as a first result
in the control of distributed systems in a stochastic setting.

Alternative semantics for probabilistic automata. It is very tempting to con-
sider the limit case of infinitely many agents: the parameterised control question

Controlling a random population 121

becomes the value 1 problem for probabilistic automata, which was proved un-
decidable in [13], and even in very restricted cases ([10]). Hence abstracting
continuous distributions by a discrete population of arbitrary size can be seen
as an approximation technique for probabilistic automata. Using n agents cor-
reponds to using numerical approximation up to 27" with random rounding;
in this sense the control problem considers arbitrarily fine approximations. The
plague of undecidability results on probabilistic automata (see e.g. [9]) is nicely
contrasted by our positive result, which is one of the few decidability results
on probabilistic automata not making structural assumptions on the underlying
graph.

Our results. We prove decidability of the stochastic control problem. The first
insight is given by the theory of well quasi orders, which motivates the introduc-
tion of a new problem called the sequential flow problem. The first step of our
solution is to reduce the stochastic control problem to (many instances of) the
sequential flow problem. The second insight comes from the theory of regular
cost functions, providing us with a set of tools for addressing the key difficulty
of the problem, namely the fact that there are arbitarily many agents. Our key
technical contribution is to show the computability of the sequential flow prob-
lem by reducing it to a boundedness question expressed in the cost monadic
second order logic using the max-flow min-cut theorem.

Related work. The notion of decisive Markov chains was introduced in [1] as
a unifying property for studying infinite-state Markov chains with finite-like
properties. A typical example of decisive Markov chains is lossy channel sys-
tems where tokens can be lost anytime inducing monotonicity properties. Our
situation is the exact opposite as we are considering (using the Petri nets ter-
minology) safe Petri nets where the number of tokens along a run is constant.
So it is not clear whether the underlying argument in both cases can be unified
using decisiveness.

Organisation of the paper. We define the stochastic control problem in Section 2,
and the sequential flow problem in Section 3. We construct a reduction from the
former to (many instances of) the latter in Section 4, and show the decidability
of the sequential flow problem in Section 5.

2 The stochastic control problem

Definition 1. A Markov decision process (MDP for short) consists of

— a finite set of states Q,
— a finite set of actions A,
— a stochastic transition table p: Q@ x A — D (Q).

The interpretation of the transition table is that from the state p under action
a, the probability to transition to ¢ is p(p,a)(q). The transition relation A is

122 T. Colcombet et al.

defined by
A={(p,a,q) € Qx Ax Q:p(p,a)(q) > 0}.

We also use A, given by {(p,q) € Q@ X @ : (p,a,q) € A}.

We refer to [17] for the usual notions related to MDPs; it turns out that very
little probability theory will be needed in this paper, so we restrict ourselves to
mentioning only the relevant objects. In an MDP M, a strategy is a function
o : Q — A; note that we consider only pure and positional strategies, as they
will be sufficient for our purposes.

Given a source s € Q and a target t € Q, we say that the strategy o almost
surely reaches t if the probability that a path starting from s and consistent
with o eventually leads to ¢ is 1. As we shall recall in Section 4, whether there
exists a strategy ensuring to reach ¢ almost surely from s, called the almost
sure reachability problem for MDP can be reduced to solving a two player Biichi
game, and in particular does not depend upon the exact probabilities. In other
words, the only relevant information for each (p,a,q) € Q x A x Q is whether
p(p,a)(¢) > 0 or not. Since the same will be true for the stochastic control
problem we study in this paper, in our examples we do not specify the exact
probabilities, and an edge from p to ¢ labelled a means that p(p,a)(q) > 0.

Let us now fix an MDP M and consider a population of n tokens (we use
tokens to represent the agents). Each token evolves in an independent copy of
the MDP M. The controller acts through a strategy o : Q" — A, meaning
that given the state each of the n tokens is in, the controller chooses one action
to be performed by all tokens independently. Formally, we are considering the
product MDP M™ whose set of states is Q", set of actions is A, and transition
table is p"(u,a)(v) = [/, p(u;,a)(v;), where u,v € Q™ and w;,v; are the §*"
components of u and v.

Let s,t € Q be the source and target states, we write s and t" for the
constant n-tuples where all components are s and t. For a fixed value of n,
whether there exists a strategy ensuring to reach t"™ almost surely from s™ can
be reduced to solving a two player Biichi game in the same way as above for a
single MDP, replacing M by M™. The stochastic control problem asks whether
this is true for arbitrary values of n:

Problem 1 (Stochastic control problem). The inputs are an MDP M, a source
state s € Q and a target state t € Q. The question is whether for all n € N,
there exists a strategy ensuring to reach ¢ almost surely from s™.

Our main result is the following.
Theorem 1. The stochastic control problem is decidable.

The fact that the problem is co-recursively enumerable is easy to see: if the
answer is “no”, there exists n € N such that there exist no strategy ensuring
to reach " almost surely from s”. Enumerating the values of n and solving the
almost sure reachability problem for M™ eventually finds this out. However, it
is not clear whether one can place an upper bound on such a witness n, which

Controlling a random population 123

would yield a simple (yet inefficient!) algorithm. As a corollary of our analysis
we can indeed derive such an upper bound, but it is non elementary in the size
of the MDP.

In the remainder of this section we present a few interesting examples.

Example 1 Let us consider the MDP represented in Figure 1. We show that
for this MDP, for any n € N, the controller has an almost sure strategy to reach
t™ from s™. Starting with n tokens on s, we iterate the following strategy:

— Repeatedly play action a until all tokens are in g;
— Play action b.

The first step is eventually successful with probability one, since at each iteration
there is a positive probability that the number of tokens in state ¢ increases. In
the second step, with non zero probability at least one token goes to t, while the
rest go back to s. It follows that each iteration of this strategy increases with
non zero probability the number of tokens in ¢. Hence, all tokens are eventually
transferred to ¢ almost surely.

Fig. 1. The controller can almost surely reach t" from s™, for any n € N.

Example 2 We now consider the MDP represented in Figure 2. By convention,
if from a state some action does not have any outgoing transition (for instance
the action u from s), then it goes to the sink state L.

We show that there exists a controller ensuring to transfer seven tokens from
s to t, but that the same does not hold for eight tokens. For the first assertion,
we present the following strategy:

— Play a. One of the states ¢i* for i; € {u,d} receives at least 4 tokens.

— Play i1 € {u,d}. At least 4 tokens go to ¢ while at most 3 go to ¢;.

— Play a. One of the states ¢3 for i5 € {u,d} receives at least 2 tokens.

Play i € {u,d}. At least 2 tokens go to ¢ while at most 1 token goes to ¢s.
— Play a. The token (if any) goes to ¢4 for i3 € {u,d}.

124 T. Colcombet et al.

— Play i3 € {u,d}. The remaining token (if any) goes to t.

Now assume that there are 8 tokens or more on s. The only choices for a strategy
are to play u or d on the second, fourth, and sixth move. First, with non zero
probability at least 4 tokens are in each of ¢¢ for i € {u,d}. Then, whatever the
choice of action i € {u,d}, there are at least 4 tokens in ¢; after the next step.
Proceeding likewise, there are at least 2 tokens in ¢y with non zero probability
two steps later. Then again two steps later, at least 1 token falls in the sink with
non zero probability.

Fig. 2. The controller can synchronise up to 7 tokens on the target state ¢ almost
surely, but not more.

Generalising this example shows that if the answer to the stochastic control
problem is “no”, the smallest number of tokens n for which there exist no almost
surely strategy for reaching t" from s™ may be exponential in |Q|. This can
further extended to show a doubly exponential in Q lower bound, as done in [3,4];
the example produced there holds for both the adversarial and the stochastic
setting. Interestingly, for the adversarial setting this doubly exponential lower
bound is tight. Our proof for the stochastic setting yields a non-elementary
bound, leaving a very large gap.

Example 3 We consider the MDP represented in Figure 3. For any n € N,
there exists a strategy almost surely reaching t” from s™. However, this strategy
has to pass tokens one by one through ¢;. We iterate the following strategy:

— Repeatedly play action a until exactly 1 token is in ¢;.
— Play action b. The token goes to ¢; for some i € {l,r}.
— Play action i € {l,r}, which moves the token to ¢.

Note that the first step may take a very long time (the expectation of the number
of as to be played until this happens is exponential in the number of tokens),

Controlling a random population 125

but it is eventually successful with probability one. This very slow strategy is
necessary: if g contains at least two tokens, then action b should not be played:
with non zero probability, at least one token ends up in each of g, g, so at the
next step some token ends up in L. It follows that any strategy almost surely
reaching ¢t has to be able to detect the presence of at most 1 token in ¢;. This is
a key example for understanding the difficulty of the stochastic control problem.

Fig. 3. The controller can synchronise any number of tokens almost surely on the target
state t, but they have to go one by one.

3 The sequential flow problem

We let Q be a finite set of states. We call configuration an element of N€ and

flow an element of f € N2X2. A flow f induces two configurations pre(f) and
post(f) defined by

pre(f)(p) =Y f(p,a) and post(f)(g) =Y f(p.q).

qeQ peQ

Given ¢, ¢ two configurations and f a flow, we say that ¢ goes to ¢’ using f and
write ¢ —f ¢/, if ¢ = pre(f) and ¢/ = post(f).

A flow word is f = fi ... f; where each f; is a flow. We write ¢ ~7 ¢ if there
exists a sequence of configurations ¢ = ¢, c1,...,c, = ¢ such that ¢;_; — fi ¢
for all s € {1,...,¢}. In this case, we say that ¢ goes to ¢’ using the flow word f.

We now recall some classical definitions related to well quasi orders ([15,16],
see [19] for an exposition of recent results). Let (E, <) be a quasi ordered set
(i.e. < is reflexive and transitive), it is a well quasi ordered set (WQO) if any
infinite sequence contains an increasing pair. We say that S C E is downward
closed if for any x € S, if y < x then y € S. An ideal is a non-empty downward

126 T. Colcombet et al.

closed set I C F such that for all z,y € I, there exists some z € I satisfying
both z < z and y < 2.

Lemma 1.

— Any infinite sequence of decreasing downward closed sets in a WQO is even-
tually constant.

— A subset is downward closed if and only if it is a finite union of incomparable
ideals. We call it its decomposition into ideals (or simply, its decomposi-
tion), which is unique (up to permutation).

— An ideal is included in a downward closed set if and only if it is included in
one of the ideals of its decomposition.

We equip the set of configurations N€ and the set of flows N2X with the
quasi order < defined component wise, yielding thanks to Dickson’s Lemma [6]
two WQOs.

Lemma 2. Let X be a finite set. A subset of NX is an ideal if and only if it is
of the form
al={ceN¥|c<a},

for some a € (NU {w})X (in which w is larger than all integers).

We represent downward closed sets of configurations and flows using their

decomposition into finitely many ideals of the form a for a € (NU {w})< or
a€ (NU{w})exe.

Problem 2 (Sequential flow problem). Let Q be a finite set of states. Given a
downward closed set of flows Flows C N2%2 and a downward closed set of final
configurations F' C N2, compute the downward closed set

Pre*(Flows, F) = {c e N® | c~ ¢ € F, f € Flows*} ,

i.e. the configurations from which one may reach F' using only flows from Flows.

4 Reduction of the stochastic control problem to the
sequential flow problem

Let us consider an MDP M and a target ¢t € Q. We first recall a folklore result
reducing the almost sure reachability question for MDPs to solving a two player
Biichi game (we refer to [14] for the definitions and notations of Biichi games).
The Biichi game is played between Fve and Adam as follows. From a state p:

1. Eve chooses an action a and a transition (p,q) € Ag;
2. Adam can either choose to
agree and the game continues from ¢, or
interrupt and choose another transition (p,q’) € A,, the game continues
from ¢'.

Controlling a random population 127

The Biichi objective is satisfied (meaning Eve wins) if either the target state ¢
is reached or Adam interrupts infinitely many times.

Lemma 3. There exists a strategy ensuring almost surely to reach t from s if
and only if FEve has a winning strateqy from s in the above Bichi game.

We now explain how this reduction can be extended to the stochastic control
problem. Let us consider an MDP M and a target ¢ € Q. We now define an
infinite Biichi game Grs. The set of vertices is the set of configurations N<. For
a flow f, we write supp(f) = {(p7 q) € Q%: f(p,q) > 0}. The game is played as
follows from a configuration c:

1. Eve chooses an action a and a flow f such that pre(f) = ¢ and supp(f) C A,.
2. Adam can either choose to

agree and the game continues from ¢’ = post(f)

interrupt and choose a flow f’ such that pre(f’) = ¢ and supp(f’) C A,
and the game continues from ¢’ = post(f’).

Note that Eve choosing a flow f is equivalent to choosing for each token a
transition (p,q) € A,, inducing the configuration ¢’, and simiarly for Adam
should he decide to interrupt.

Eve wins if either all tokens are in the target state, or if Adam interrupts
infinitely many times.

Note that although the game is infinite, it is actually a disjoint union of
finite games. Indeed, along a play the number of tokens is fixed, so each play is
included in Q" for some n € N.

Lemma 4. Let ¢ be a configuration with n tokens in total, the following are
equivalent:

— There exists a strategy almost surely reaching t" from c,
— Eve has a winning strategy in the Biichi game Gaq Starting from c.

Lemma 4 follows from applying Lemma 3 on the product MDP M™.
We also consider the game gA(;) for ¢ € N, which is defined just as Gy except

for the winning objective: Eve wins in g/(\i[) if either all tokens are in the target
state, or if Adam interrupts more than ¢ times. It is clear that if Eve has a
winning strategy in Gy then she has a winning strategy in g}\;). Conversely, the
following result states that g}Q is equivalent to Gy for some i.

Lemma 5. There exists i € N such that from any configuration ¢ € N2, Eve
has a winning strateqy in Gaq if and only if Eve has a winning strategy in Q/(\il).

128 T. Colcombet et al.

Proof: Let XV C N9 be the winning region for Eve in g}\;). We first argue that
X =0 X () is the winning region in Gy. It is clear that X is contained in the
winning region: if Eve has a strategy to ensure that either all tokens are in the
target state, or that Adam interrupts infinitely many times, then it particular
this is true for Adam interrupting more than 4 times for any 7. The converse
inclusion holds because Gu4 is a disjoint union of finite Biichi games. Indeed, in
a finite Biichi game, since Adam can restrict himself to playing a memoryless
winning strategy, if Eve can ensure that he interrupts a certain number of times
(larger than the size of the game), then by a simple pumping argument this
implies that Adam will interrupt infinitely many times.

To conclude, we note that each X9 is downward closed: indeed, a winning
strategy from a configuration ¢ can be used from a configuration ¢’ where there
are fewer tokens in each state. It follows that (X (¥));>¢ is a decreasing sequence
of downward closed sets in N€, hence it stabilises thanks to Lemma 1, i.e. there
exists i € N such that X (0) = N, X @ which concludes.]

Note that Lemma 4 and Lemma 5 substantiate the claims made in Section 2:
pure positional strategies are enough and the answer to the stochastic control
problem does not depend upon the exact probabilities in the MDP. Indeed, the
construction of the Biichi games do not depend on them, and the answer to the
former is equivalent to determining whether Eve has a winning strategy in each
of them.

We are now fully equipped to show that a solution to the sequential flow
problem yields the decidability of the stochastic control problem.

Let F be the set of configurations for which all tokens are in state ¢. we let
X®) C N2 denote the winning region for Eve in the game QJ(\Z). Note first that
X = Pre*(Flows", F) where

Flows® = {f e N*2 :3a € A, supp(f) C A,}.

Indeed, in the game g}? Adam cannot interrupt as this would make him lose
immediately. Hence, the winning region for Eve in gj&) is Pre*(FlowsO, F).

We generalise this by setting Flows® for all i > 0 to be the set of flows f €
N€*€ such that for some action a € A,

— supp(f) € Aq, and
— for f’ with pre(f’) = pre(f) and supp(f’) C A,, we have post(f’) € X1,

Equivalently, this is the set of flows for which, when played in the game Gy
by Eve, Adam cannot use an interrupt move and force the configuration outside
of X1,
We now claim that
X@ = Pre*(Flows®, F)

for all i > 0.
We note that this means that for each 7 computing X (V) reduces to solving one
instance of the sequential flow problem. This induces an algorithm for solving

Controlling a random population 129

the stochastic control problem: compute the sequence (X (i))iZO until it stabilises,
which is ensured by Lemma 5 and yields the winning region of Gy. The answer
to the stochastic control problem is then whether the initial configuration where
all tokens are in s belongs to the winning region of Guy.

Let us prove the claim by induction on i.

Let ¢ be a configuration in Pre*(Flows’, F'). This means that there exists
a flow word f = fi--- f; such that f, € Flows® for all k, and ¢~ ¢ € F.
Expanding the definition, there exist ¢o = ¢, ..., ¢, = ¢’ such that ¢, — /* ¢,
for all k. 4

Let us now describe a strategy for Eve in g/(\;) starting from c. As long as
Adam agrees, Eve successively chooses the sequence of flows fi, f2,... and the
corresponding configurations ¢y, co, If Adam never interrupts, then the game
reaches the configuration ¢’ € F, and Eve wins. Otherwise, as soon as Adam
interrupts, by definition of Flows’, we reach a configuration d € X1, By
induction hypothesis, Eve has a strategy which ensures from d to either reach F'
or that Adam interrupts at least ¢ — 1 times. In the latter case, adding the
interrupt move leading to d yields 4 interrupts, so this is a winning strategy for
Eve in gjﬁf, witnessing that ¢ € X ().

Conversely, assume that there is a winning strategy o of Eve in Qj(\fl) from
a configuration c. Consider a play consistent with o, it either reaches F or
Adam interrupts. Let us denote by f = fi, fa,..., fe the sequence of flows until
then. We argue that f;, € Flows" for k € {1,...,¢}. Let f = fi for some k, by
definition of the game supp(f) C A, for some action a. Let f’ such that pre(f’) =
pre(f) and supp(f’) € A,. In the game Gy after Eve played fj, Adam has
the possibility to interrupt and choose f’. From this configuration onward the
strategy o is winning in gﬁ[”, implying that f € Flows’. Thus f = fifs... f
is a witness that ¢ € X@,

5 Computability of the sequential flow problem

Let Q be a finite set of states, Flows C N2*2 a downward closed set of flows and
F C N2 a downward closed set of configurations, the sequential flow problem is
to compute the downward closed set Pre™ defined by

Pre*(Flows, F) = {c e N2 | ¢~ 1 ¢ € F, f € Flows*} ,

i.e. the configurations from which one may reach F using only flows from Flows.
The following classical result of [22] allows us to further reduce our problem.

Lemma 6. The task of computing a downward closed set can be reduced to the
task of deciding whether a given ideal is included in a downward closed set.

Thanks to Lemma 6, it is sufficient for solving the sequential flow problem
to establish the following result.

130 T. Colcombet et al.

Lemma 7. Let I be an ideal of the form al for a € (NU{w})<, and Flows C
N*€ be a downward closed set of flows. It is decidable whether F' can be reached
from all configurations of I using only flows from Flows.

We call a vector a € (NU {w})2X< a capacity. A capacity word is a finite
sequence of capacities. For two capacity words w,w’ of the same length, we
write w < w’ to mean that w; < w] for each i. Since flows are particular cases
of capacities, we can compare flows with capacities in the same way.

Before proving Lemma 7 let us give an example and some notations.

Given a state ¢, we write ¢ € N© for the vector which has value 1 on the ¢
component and 0 elsewhere. More generally we let ag for « € NU {w} denote
the vector with value o on the ¢ component and 0 elsewhere. We use similar
notations for flows. For instance, wq; + g2 has value w in the ¢; component, 1 in
the ¢go component, and 0 elsewhere.

In the instance of the sequential flow problem represented in Figure 4, we ask
the following question: can F' be reached from any configuration of I = (wgqs){?
The answer is yes: the capacity word w = (ac™~'b)" is such that nga~ fngs € F
for a flow word f < w, the begining of which is described in Figure 5.

a b c

a2 © q2 2@ 0492 q2 a2

. o =
3@ 1 :O q3 q3 : 1 ©4g3 BO———>0g3
q4 OT>O q4 q4 7] q4 q4 O—w>o qa

Fig. 4. An instance of the sequential flow problem. We let Flows = al U bl U c|
where a = w(qz, q2) + (92, ¢3) + w(qa, q4), b = w(q1,q2) + (g3,q4) + w(qs,qa), and ¢ =
w(gr, 1) + (g2, 1) + w(g2, g2) +w(gs, g3) + w(gs, ga). Set also F' = (wqa) .

1 o 2 . n—2
® ® 1 / 1 1 w1 @
n n—1 o n—2 n—3 n—4 o --- o n—1
1
le) 1 Y 1 o 1 1 : ®
o (e] (e] o o e] 1
fi<a f2<c fz <c fs<c fn<c far1 <b

Fig.5. A flow word f = fifa... fus1 < ac™ 'b such that nge goes to (n — 1)q1 + qu
using f. This construction can be extended to f < w such that ngs goes to nqgs using f.

We write a[w < n] for the configuration obtained from a by replacing all ws
by n.

Controlling a random population 131

The key idea for solving the sequential flow problem is to rephrase it using
regular cost functions (a set of tools for solving boundedness questions). Indeed,
whether F' can be reached from all configurations of I = a | using only flows
from Flows can be equivalently phrased as a boundedness question, as follows:

does there exist a bound on the values of n € N such that afw < n]~ ¢
for some ¢ € F and f € Flows*?

We show that this boundedness question can be formulated as a boundedness
question for a formula of cost monadic logic, a formalism that we introduce now.
We assume that the reader is familiar with monadic second order logic (MSO)
over finite words, and refer to [20] for the definitions. The syntax of cost monadic
logic (cost MSO for short) extends MSO with the construct | X| < N, where X is
a second order variable and N is a bounding variable. The semantics is defined
as usual: w,n | ¢ for a word w € A*, with n € N specifying the bound N.
We assume that there is at most one bounding variable, and that the construct
|X| < N appears positively, i.e. under an even number of negations. This ensures
that the larger N, the more true the formula is: if w,n | ¢, then w,n’ = ¢
for all n’ > n. The semantics of a formula ¢ of cost MSO induces a function
A* - NU{oo} defined by p(w) =inf{n € N|w,n | ¢}.

The boundedness problem for cost monadic logic is the following problem:
given a cost MSO formula ¢ over A*, is it true that the function A* — NU {oo}
is bounded, i.e.:

IneN, Vwe A" w,n | ?

The decidability of the boundedness problem is a central result in the theory of
regular cost functions ([5]). Since in the theory of regular cost functions, when
considering functions we are only interested in whether they are bounded or
not, we will consider functions “up to boundedness properties”. Concretely, this
means that a cost function is an equivalence class of functions A* — N U {co},
with the equivalence being f = g if there exists a : N — N such that f(w) is finite
if and only if g(w) is finite, and in this case, f(w) < a(g(w)) and g(w) < a(f(w)).
This is equivalent to stating that for all X C A* if f is bounded over X if and
only if ¢ is bounded over X.
Let us now establish Lemma 7.

Proof: Let T = {q € Q| a(q) = w}. Note that for n sufficiently large, we have
alw < n]l=1n{0,1,...,n}. We let € C (NU {w})2*< be the decomposition
of Flows into ideals, that is, € is the minimal finite set such that

Flows = U bl .

bee€

We let k denote the largest finite value that appears in the definition of ¢, that
is, k = max{b(¢,¢') : b € €, q,q' € Q,b(q, ¢') # w}.
Let us define the function
¢ : 6" — NU{w}
w +— sup{n € N: 3f < w,alw < n]~ I F}.

132 T. Colcombet et al.

By definition @ is unbounded if and only if F' can be reached from all configura-
tions of I. Since boundedness of cost MSO is decidable, it suffices to construct
a formula in cost monadic logic for @ to obtain the decidability of our problem.
Our approach will be to additively decompose the capacity word w into a finitary
part w(fin) (which is handled using a regular language), and several unbounded
parts w®) for each s € T. The unbounded parts require a more careful analysis
which notably goes through the use of the max-flow min-cut theorem.

Note that alw < n] decomposes as the sum of its finite part ag, = aw < 0]
and) ., ns. Since flows are additive, it holds that f < w = w;...w; is a
flow from ¢, to F' if and only if the capacity word w may be decomposed into
(W) ser = (wgs) . .wl(s))seT and w(f™ = w§ﬁn) . .wl(ﬁn) such that

all the numbers appearing in the wgs)

capacities are bounded by k,

forall i € {1,..., 1}, wi =3 criqpiny wgs)7

— for all s € T, ns ~ I F for some flow word f < w(®),
— and agy ~» 7 F for some flow word f < w(f®),

In order to encode such capacity words in cost MSO we use monadic variables

(s) /
qu p Where ¢,¢' € Q, p € {0,... ,k,w} and s € T'U {fin}. They are meant to

satisfy that i € Wq(q) s if and only if w(s)(q q') = p. We use bold W to denote

the tuple (W%,). oo and W for (W)). when s € T U {w} is fixed.

a.4'.p a.4'.p
The MSO formula IsDecomp(W ,w) states that a decomposition (w(s))seTU{w}

is semantically valid and sums to w:

; (s) (s)
vi, /\q,q’,s va{O,-u,k,W} (Z EWoap /\p #p # W p)}
: ()
A (/\(Lq/p wi(%(]’) = p) e V(pS)fjeTU{ﬁn} /\SETU{ﬁn} S Wq ¢ p;|
pPs=p

For s € T', we now consider the function

7 ({0,1,. ..,k w}2x9)" — NU{w}
W) s sup{n € N | 3f < w®), nsH F}.

We also define #(fi") C ({0,. .., k,w})QXQ to be the language of capacity words
w®™) such that there exists a flow f < w® with ag, ~ / F. Note that
wfin) is a regular language since it is recognized by a finite automaton over
{0,1,...,k|Q|}< that may update the current bounded configuration only with
flows smaller than the current letter of w(fi®),

We have

&(w) = sup [HW, IsDecomp(W,w) A (/\ v (W) > n) A W) ¢ W(ﬁn)]
" seT

Hence, it is sufficient to prove that for each s € T, W) is definable in cost MSO.

Controlling a random population 133

Let us fix s and a capacity word w € {0,...,k,w}9*< of length |w| = £.
Consider the finite graph G with vertex set Q x {0,1,...,¢} and for all ¢ > 1, an
edge from (q,i — 1) to (¢',i) labelled by w;(q,q’). Then ¥*)(w) is the maximal
flow from (s,0) to (¢,¢) in G. We recall that a cut in a graph with distinguished
source s and target t is a set of edges such that removing them disconnects s and
t. The cost of a cut is the sum of the weight of its edges. The max-flow min-cut
theorem states that the maximal flow in a graph is exactly the minimal cost of
a cut ([11]).

We now define a cost MSO formula ¥(*) which is equivalent (in terms of cost
functions) to the minimal cost of cut in the previous graph G and thus to () In
the following formula, X = (X, 4)q.4'c0 represents a cut in the graph: i € X o
means that edge ((¢,i—1), (¢’,4)) belongs to the cut. Likewise, P = (P, 4/)q.qcQ
represents paths in the graph. Let ¥(*)(w) be defined by

irnlf {HX [/\ n > \Xq’q” A (VLi € Xgg = wi(q,q') < w) A Discsﬁt(X,w)}7

q,q’

where Disc, (X, w) expresses that X disconnects (s,0) and (¢,¢) in G. For
instance Discg + (X, w) is defined by

VP, [(\ﬁ, N\ i€ Poy = wila,d) > 0) A (\0e Py) A (\ € Py
q q

q,q

= 3i,\/ (i€ Xgq Ni€ Ppy).

q,q’

VZZ 17/\i€Pq’q/ —— (\/2—1 EPqH’q)

a,q’ q

Now ¥(%) (w) does not exactly define the minimal total weight @(*)(w) of a cut,
but rather the minimal value over all cuts of the minimum over (g,q’') € Q2 of
how many edges are of the form ((q,7 — 1), (¢/,4)). This is good enough for our
purposes since these two values are related by

7 (w) < 69 (w) < K|QI2F (w),

implying that the functions ¥(*) and &%) define the same cost function. In par-
ticular, @) is definable in cost MSO. O

6 Conclusions

We showed the decidability of the stochastic control problem. Our approach uses
well quasi orders and the sequential flow problem, which is then solved using the
theory of regular cost functions.

Together with the original result of [3,4] in the adversarial setting, our result
contributes to the theoretical foundations of parameterised control. We return to
the first application of this model, control of biological systems. As we discussed

134 T. Colcombet et al.

the stochastic setting is perhaps more satisfactory than the adversarial one,
although as we saw very complicated behaviours emerge in the stochastic setting
involving single agents, which are arguably not pertinent for modelling biological
systems.

We thus pose two open questions. The first is to settle the complexity status
of the stochastic control problem. Very recently [18] proved the EXPTIME-
hardness of the problem, which is interesting because the underlying phenomena
involved in this hardness result are specific to the stochastic setting (and do not
apply to the adversarial setting). Our algorithm does not even yield elementary
upper bounds, leaving a very large complexity gap. The second question is to-
wards more accurately modelling biological systems: can we refine the stochastic
control problem by taking into account the synchronising time of the controller,
and restrict it to reasonable bounds?

Acknowledgements

We thank Nathalie Bertrand and Blaise Genest for introducing us to this fasci-
nating problem, and the preliminary discussions at the Simons Institute for the
Theory of Computing in Fall 2015.

References

1. Abdulla, P.A., Henda, N.B., Mayr, R.: Decisive Markov chains. Logical Methods
in Computer Science 3(4) (2007). https://doi.org/10.2168/LMCS-3(4:7)2007

2. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in
networks of passively mobile finite-state sensors. Distributed Computing 18(4),
235-253 (2006). https://doi.org/10.1007/s00446-005-0138-3

3. Bertrand, N., Dewaskar, M., Genest, B., Gimbert, H.: Con-
trolling a population. In: CONCUR. pp- 12:1-12:16 (2017).
https://doi.org/10.4230/LIPIcs. CONCUR.2017.12

4. Bertrand, N., Dewaskar, M., Genest, B., Gimbert, H., Godbole, A.A.: Controlling
a population. Logical Methods in Computer Science 15(3) (2019), https://lmcs.
episciences.org/5647

5. Colcombet, T.: Regular cost functions, part I: logic and algebra over words. Log-
ical Methods in Computer Science 9(3) (2013). https://doi.org/10.2168/LMCS-
9(3:3)2013

6. Dickson, L.E.: Finiteness of the odd perfect and primitive abundant numbers with
n distinct prime factors. American Journal of Mathematics 35(4), 413-422 (1913),
http://www.jstor.org/stable/2370405

7. Esparza, J.: Parameterized verification of crowds of anonymous processes.
In: Dependable Software Systems Engineering, pp. 59-71. I0S Press (2016).
https://doi.org/10.3233/978-1-61499-627-9-59

8. Esparza, J., Finkel, A., Mayr, R.: On the verification of broadcast protocols. In:
LICS. pp. 352-359 (1999). https://doi.org/10.1109/LICS.1999.782630

9. Fijalkow, N.: Undecidability results for probabilistic automata. SIGLOG News
4(4), 10-17 (2017), https://dl.acm.org/citation.cfm?id=3157833

https://doi.org/10.2168/LMCS-3(4:7)2007
https://doi.org/10.1007/s00446-005-0138-3
https://doi.org/10.4230/LIPIcs.CONCUR.2017.12
https://lmcs.episciences.org/5647
https://lmcs.episciences.org/5647
https://doi.org/10.2168/LMCS-9(3:3)2013
https://doi.org/10.2168/LMCS-9(3:3)2013
http://www.jstor.org/stable/2370405
https://doi.org/10.3233/978-1-61499-627-9-59
https://doi.org/10.1109/LICS.1999.782630
https://dl.acm.org/citation.cfm?id=3157833

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Controlling a random population 135

Fijalkow, N., Gimbert, H., Horn, F., Oualhadj, Y.: Two recursively insep-
arable problems for probabilistic automata. In: MFCS. pp. 267-278 (2014).
https://doi.org/10.1007/978-3-662-44522-8 23

Ford, L.R., Fulkerson, D.R.: Maximal flow through a network. Canadian Journal
of Mathematics 8, 399-404 (1956). https://doi.org/10.4153/CIM-1956-045-5
German, S.M., Sistla, A.P.: Reasoning about systems with many processes. Journal
of the ACM 39(3), 675-735 (1992)

Gimbert, H., Oualhadj, Y.: Probabilistic automata on finite words: De-
cidable and wundecidable problems. In: ICALP. pp. 527-538 (2010).
https://doi.org/10.1007/978-3-642-14162-1_44

Gradel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games,
LNCS, vol. 2500. Springer (2002)

Higman, G.: Ordering by divisibility in abstract algebras. Proceed-
ings of the London Mathematical Society s3-2(1), 326-336 (1952).
https://doi.org/10.1112/plms/s3-2.1.326

Kruskal, J.B.: The theory of well-quasi-ordering: A frequently discovered concept.
J. Comb. Theory, Ser. A 13(3), 297-305 (1972). https://doi.org/10.1016,/0097-
3165(72)90063-5

Kucera, A.: Turn-Based Stochastic Games. Lectures in Game Theory for Computer
Scientists, Cambridge University Press (2011)

Mascle, C., Shirmohammadi, M., Totzke, P.: Controlling a random population is
EXPTIME-hard. CoRR (2019), http://arxiv.org/abs/1909.06420

Schmitz, S.: Algorithmic Complexity of Well-Quasi-Orders. Habilitation a diriger
des recherches, Ecole normale supérieure Paris-Saclay (Nov 2017), https://tel.
archives-ouvertes.fr/tel-01663266

Thomas, W.: Languages, automata, and logic. In: Handbook of Formal Language
Theory, vol. III, pp. 389-455. Springer (1997)

Uhlendorf, J., Miermont, A., Delaveau, T., Charvin, G., Fages, F., Bottani, S.,
Hersen, P., Batt, G.: In silico control of biomolecular processes. Computational
Methods in Synthetic Biology 13, 277-285 (2015)

Valk, R., Jantzen, M.: The residue of vector sets with applications to de-
cidability problems in Petri nets. Acta Informatica 21, 643-674 (03 1985).
https://doi.org/10.1007/BF00289715

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-662-44522-8_23
https://doi.org/10.4153/CJM-1956-045-5
https://doi.org/10.1007/978-3-642-14162-1_44
https://doi.org/10.1112/plms/s3-2.1.326
https://doi.org/10.1016/0097-3165(72)90063-5
https://doi.org/10.1016/0097-3165(72)90063-5
http://arxiv.org/abs/1909.06420
https://tel.archives-ouvertes.fr/tel-01663266
https://tel.archives-ouvertes.fr/tel-01663266
https://doi.org/10.1007/BF00289715
http://creativecommons.org/licenses/by/4.0/

®

Check for
updates

Decomposing Probabilistic Lambda-Calculi

Ugo Dal Lago'®, Giulio Guerrieri?®™)®, and Willem Heijltjes?

! Dipartimento di Informatica - Scienza e Ingegneria
Universita di Bologna, Bologna, Italy
ugo.dallago@unibo.it

2 Department of Computer Science
University of Bath, Bath, UK
{w.b.heijltjes,g.guerrieri}@bath.ac.uk

Abstract. A notion of probabilistic lambda-calculus usually comes with
a prescribed reduction strategy, typically call-by-name or call-by-value,
as the calculus is non-confluent and these strategies yield different results.
This is a break with one of the main advantages of lambda-calculus:
confluence, which means that results are independent from the choice
of strategy. We present a probabilistic lambda-calculus where the proba-
bilistic operator is decomposed into two syntactic constructs: a generator,
which represents a probabilistic event; and a consumer, which acts on
the term depending on a given event. The resulting calculus, the Prob-
abilistic Event Lambda-Calculus, is confluent, and interprets the call-
by-name and call-by-value strategies through different interpretations of
the probabilistic operator into our generator and consumer constructs.
We present two notions of reduction, one via fine-grained local rewrite
steps, and one by generation and consumption of probabilistic events.
Simple types for the calculus are essentially standard, and they convey
strong normalization. We demonstrate how we can encode call-by-name
and call-by-value probabilistic evaluation.

1 Introduction

Probabilistic lambda-calculi [24,22,17,11,18,9,15] extend the standard lambda-
calculus with a probabilistic choice operator N @, M, which chooses N with
probability p and M with probability 1 — p (throughout this paper, we let p be
1/2 and will omit it). Duplication of N& M, as is wont to happen in lambda-
calculus, raises a fundamental question about its semantics: do the duplicate
occurrences represent the same probabilistic event, or different ones with the
same probability? For example, take the term T @ L that represents a coin flip
between boolean values true T and false L. If we duplicate this term, do the
copies represent two distinct coin flips with possibly distinct outcomes, or do
these represent a single coin flip that determines the outcome for both copies?
Put differently again, when we duplicate T @& L, do we duplicate the event, or
only its outcome?

In probabilistic lambda-calculus, these two interpretations are captured by
the evaluation strategies of call-by-name (—cpn), which duplicates events, and

© The Author(s) 2020
J. Goubault-Larrecq and B. Koénig (Eds.): FOSSACS 2020, LNCS 12077, pp. 136-156, 2020.
https://doi.org/10.1007/978-3-030-45231-5_8

http://orcid.org/0000-0001-9200-070X
http://orcid.org/0000-0002-0469-4279
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45231-5_8&domain=pdf

Decomposing Probabilistic Lambda-Calculi 137

call-by-value (—cpy), which evaluates any probabilistic choice before it is du-
plicated, and thus only duplicates outcomes. Consider the following example,
where = tests equality of boolean values.

T v Azz=z)(Tel) —»pn Tol

This situation is not ideal, for several, related reasons. Firstly, it demonstrates
how probabilistic lambda-calculus is non-confluent, negating one of the central
properties of the lambda-calculus, and one of the main reasons why it is the
prominent model of computation that it is. Secondly, it means that a probabilis-
tic lambda-calculus must derive its semantics from a prescribed reduction strat-
egy, and its terms only have meaning in the context of that strategy. Thirdly,
combining different kinds of probabilities becomes highly involved [15], as it
would require specialized reduction strategies. These issues present themselves
even in a more general setting, namely that of commutative (algebraic) effects,
which in general do not commute with copying.

We address these issues by a decomposition of the probabilistic operator into
a generator [a] and a choice &, as follows.

NeM £ [oN&M
Semantically, [a] represents a probabilistic event, that generates a boolean value
recorded as a. The choice N &M is simply a conditional on a, choosing N if a is
false and M if a is true. Syntactically, a is a boolean variable with an occurrence
in &, and [a] acts as a probabilistic quantifier, binding all occurrences in its
scope. (To capture a non-equal chance, one would attach a probability p to a
generator, as [a],, though we will not do so in this paper.)

The resulting probabilistic event lambda-calculus Apg, which we present in
this paper, is confluent. Our decomposition allows us to separate duplicating
an event, represented by the generator [a], from duplicating only its outcome
a, through having multiple choice operators &. In this way our calculus may
interpret both original strategies, call-by-name and call-by-value, by different
translations of standard probabilistic terms into Apg: call-by-name by the above
decomposition (see also Section 2), and call-by-value by a different one (see Sec-
tion 7). For our initial example, we get the following translations and reductions.

cbn: (rz=2)(@] THL) —s (@ TEL=(1TEL) = Tel (1)
cbv: [a] A\z.z=x)(T&L) —5 [a] (TEL)=(TEL) -» T (2)

We present two reduction relations for our probabilistic constructs, both in-
dependent of beta-reduction. Our main focus will be on permutative reduction
(Sections 2, 3), a small-step local rewrite relation which is computationally ineffi-
cient but gives a natural and very fine-grained operational semantics. Projective
reduction (Section 6) is a more standard reduction, following the intuition that
[a] generates a coin flip to evaluate &, and is coarser but more efficient.

We further prove confluence (Section 4), and we give a system of simple
types and prove strong normalization for typed terms by reducibility (Section 5).
Omitted proofs can be found in [7], the long version of this paper.

138 U. Dal Lago et al.

1.1 Related Work

Probabilistic A-calculi are a topic of study since the pioneering work by Saheb-
Djaromi [24], the first to give the syntax and operational semantics of a A-calculus
with binary probabilistic choice. Giving well-behaved denotational models for
probabilistic A-calculi has proved to be challenging, as witnessed by the many
contributions spanning the last thirty years: from Jones and Plotkin’s early study
of the probabilistic powerdomain [17], to Jung and Tix’s remarkable (and mostly
negative) observations [18], to the very recent encouraging results by Goubault-
Larrecq [16]. A particularly well-behaved model for probabilistic A-calculus can
be obtained by taking a probabilistic variation of Girard’s coherent spaces [10],
this way getting full abstraction [13].

On the operational side, one could mention a study about the various ways
the operational semantics of a calculus with binary probabilistic choice can be
specified, namely by small-step or big-step semantics, or by inductively or coin-
ductively defined sets of rules [9]. Termination and complexity analysis of higher-
order probabilistic programs seen as A-terms have been studied by way of type
systems in a series of recent results about size [6], intersection [4], and refinement
type disciplines [1]. Contextual equivalence on probabilistic A-calculi has been
studied, and compared with equational theories induced by Béhm Trees [19],
applicative bisimilarity [8], or environmental bisimilarity [25].

In all the aforementioned works, probabilistic A-calculi have been taken as
implicitly endowed with either call-by-name or call-by-value strategies, for the
reasons outlined above. There are only a few exceptions, namely some works on
Geometry of Interaction [5], Probabilistic Coherent Spaces [14], and Standard-
ization [15], which achieve, in different contexts, a certain degree of indepen-
dence from the underlying strategy, thus accommodating both call-by-name and
call-by-value evaluation. The way this is achieved, however, invariably relies on
Linear Logic or related concepts. This is deeply different from what we do here.

Some words of comparison with Faggian and Ronchi Della Rocca’s work
on confluence and standardization [15] are also in order. The main difference
between their approach and the one we pursue here is that the operator ! in
their calculus /1!€B plays both the roles of a marker for duplicability and of a
checkpoint for any probabilistic choice ”flowing out” of the term (i.e. being
fired). In our calculus, we do not control duplication, but we definitely make use
of checkpoints. Saying it another way, Faggian and Ronchi Della Rocca’s work
is inspired by linear logic, while our approach is inspired by deep inference, even
though this is, on purpose, not evident in the design of our calculus.

Probabilistic A-calculi can also be seen as vehicles for expressing probabilistic
models in the sense of bayesian programming [23,3]. This, however, requires an
operator for modeling conditioning, which complicates the metatheory consid-
erably, and that we do not consider here.

Our permutative reduction is a refinement of that for the call-by-name prob-
abilistic A-calculus [20], and is an implementation of the equational theory of
(ordered) binary decision trees via rewriting [27]. Probabilistic decision trees

Decomposing Probabilistic Lambda-Calculi 139

have been proposed with a primitive binary probabilistic operator [22], but not
with a decomposition as we explore here.

2 The Probabilistic Event A-Calculus Apg

Definition 1. The probabilistic event A-calculus (Apg) is given by the follow-
ing grammar, with from left to right: a wvariable (denoted by z,y,z,...), an
abstraction, an application, a (labeled) choice, and a (probabilistic) generator.

M,N == x| M.N | NM | NéM | [o] N

In a term Ax. M the abstraction Az binds the free occurrences of the variable
x in its scope M, and in [a]. N the generator [a] binds the label a in N. The
calculus features a decomposition of the usual probabilistic sum @, as follows.

NoM 2 [aN&M (3)
The generator [a] represents a probabilistic event, whose outcome, a binary value
{0,1} represented by the label a, is used by the choice operator &. That is, [a]
flips a coin setting a to 0 (resp. 1), and depending on this N &M reduces to N
(resp. M). We will use the unlabeled choice @ as in (3). This convention also
gives the translation from a call-by-name probabilistic A-calculus into Apg (the
interpretation of a call-by-value probabilistic A-calculus is in Section 7).

Reduction. Reduction in Apg will consist of standard S-reduction —3 plus an
evaluation mechanism for generators and choice operators, which implements
probabilistic choice. We will present two such mechanisms: projective reduc-
tion —, and permutative reduction —,. While projective reduction implements
the given intuition for the generator and choice operator, we relegate it to Sec-
tion 6 and make permutative reduction our main evaluation mechanism, for the
reason that it is more fine-grained, and thus more general.

Permutative reduction is based on the idea that any operator distributes
over the labeled choice operator (see the reduction steps in Figure 1), even other
choice operators, as below.

(NEM)EP ~ (NEP)&(MEP)

To orient this as a rewrite rule, we need to give priority to one label over another.
Fortunately, the relative position of the associated generators [a] and [v] provides
just that. Then to define —,, we will want every choice to belong to some
generator, and make the order of generators explicit.

Definition 2. The set fI(N) of free labels of a term N is defined inductively by:
fi(z) = 0 A(MN) = fI(M) UFI(N) fi(\z. M) = fI(M)

fi(]. M) = (M) ~ {a} A(MEN) = fI(M) UA(N) U {a}

A term M is label-closed if fl(M) = ().

140 U. Dal Lago et al.

(Az.N)M —>5 N[M/x] (B)
N&N —, N (i)
(NEM)EP —, NP (c1)
N&(M&P)—, N&P (c2)
Az. (N&M) —p (Az. N)& (Ax. M) (@)
(N§M)P —, (NP)&(MP) (of)
N(M&P) —, (NM)&(NP) (@a)
(NEM)&P —, (N&P)&(MEP) (if a < b) (9@1)
N&(M&P) —, (NEM)&(N&EP) (if a < b) (9®5)
[o] (N&M) = (6] N)& (o] M) (if @ # b) (a00)
[a] N =, N (if a ¢ fI(N)) ()
Az.[a] N = [a] Az N (OX)
(o] NYM —; [a] (NM) (if @ ¢ fI(M)) (of)

Fig. 1. Reduction Rules for f-reduction and p-reduction.

From here on, we consider only label-closed terms (we implicitly assume this,
unless otherwise stated). All terms are identified up to renaming of their bound
variables and labels. Given some terms M and N and a variable x, M[N/x] is
the capture-avoiding (for both variables and labels) substitution of N for the free
occurrences of x in M. We speak of a representative M of a term when M is not
considered up to such a renaming. A representative M of a term is well-labeled
if for every occurrence of [a] in M there is no [a] occurring in its scope.

Definition 3 (Order for labels). Let M be a well-labeled representative of a
term. We define an order <,; for the labels occurring in M as follows: a <jp; b
if and only if [5] occurs in the scope of [a].

For a well-labeled and label-closed representative M, <, is a finite tree order.

Definition 4. Reduction —=-—3 U —, in Apg consists of B-reduction —g
and permutative or p-reduction —p, both defined as the contextual closure of
the rules given in Figure 1. We write —» for the reflexive-transitive closure of
—, and - for reduction to normal form; similarly for —5 and —,. We write =
for the symmetric and reflexive-transitive closure of —p.

Decomposing Probabilistic Lambda-Calculi 141

[o] A\z.2=2)(T&L) —p [o] (A\z.2=2)T & z.2=2)L (®a)
g [a (T=T)& (L=1)
= [a T&T —p [T — T (i,7)

Fig. 2. Example Reduction of the cbv-translation of the Term on p. 137.

Two example reductions are (1)-(2) on p. 137; a third, complete reduction is in
Figure 2. The crucial feature of p-reduction is that a choice & does permute out
of the argument position of an application, but a generator [a] does not, as below.
Since the argument of a redex may be duplicated, this is how we characterize the
difference between the outcome of a probabilistic event, whose duplicates may be
identified, and the event itself, whose duplicates may yield different outcomes.

N(M&P) —, (NM)&(NP) N ([a] M) 4 [a]. NM

By inspection of the rewrite rules in Figure 1, we can then characterize the
normal forms of —, and — as follows.

Proposition 5 (Normal forms). The normal forms Py of —,, respectively
Ny of —, are characterized by the following grammars.

Ny ::= N, | No@Né
N1 H= N2 |)\J?Nl
N2 =T | NQ No

Py::=P | P()EBPO/
P153:SL'|>\5L‘.P1 |P1P0

3 Properties of Permutative Reduction

We will prove strong normalization and confluence of —p. For strong normal-
ization, the obstacle is the interaction between different choice operators, which
may duplicate each other, creating super-exponential growth.? Fortunately, Der-
showitz’s recursive path orders [12] seem tailor-made for our situation.

Observe that the set Apg endowed with —, is a first-order term rewriting sys-
tem over a countably infinite set of variables and the signature X' given by:
the binary function symbol &, for any label a;
the unary function symbol [a], for any label q;
the unary function symbol Az, for any variable z;
the binary function symbol @, letting @(M, N) stand for M N.

3 This was inferred only from a simple simulation; we would be interested to know a
rigorous complexity result.

142 U. Dal Lago et al.

Definition 6. Let M be a well-labeled representative of a label-closed term,
and let X3, be the set of signature symbols occurring in M. We define <, as
the (strict) partial order on X'y, generated by the following rules.

a b .

& <pm D ifa<ayb

& < o] for any labels a,b
[b] <m @ Az for any label b

Lemma 7. The reduction —, is strongly normalizing.

Proof. For the first-order term rewriting system (Apg,—,) we derive a well-
founded recursive path ordering < from <, following [12, p. 289]. Let f and g
range over function symbols, let [Ny,..., N,]| denote a multiset and extend <
to multisets by the standard multiset ordering, and let N = f(Ny,...,N,) and
M = g(My, ..., M,,); then

[N17'--7NTL] < [Mla--~7Mm] lff:g

N <M < < [Ny,...,N,] < [M] if f<myg
[N] < [My,...,M,) it fAm g -

While <, is defined only relative to X'y, reduction may only reduce the signa-
ture. Inspection of Figure 1 then shows that M —, N implies N < M. O

Confluence of Permutative Reduction. With strong normalization, conflu-
ence of —, requires only local confluence. We reduce the number of cases to
consider, by casting the permutations of & as instances of a common shape.

Definition 8. We define a context C[] (with exactly one hole []) as follows, and
let C[N] represent C[] with the hole [] replaced by N.

Clls=[1xeCll| ClIM | NC[] | C[]&éM | N&C[] | [a] CT]

Observe that the six reduction rules @\ through &0 in Figure 1 are all of the
following form. We refer to these collectively as @x.

CIN&M] —, C[N]&C[M)] (@x)
Lemma 9 (Confluence of —,). Reduction —, is confluent.
Proof. By Newman’s lemma and strong normalization of —, (Lemma 7), con-
fluence follows from local confluence. The proof of local confluence consists of

joining all critical pairs given by —p. Details are in the Appendix of [7]. O

Definition 10. We denote the unique p-normal form of a term N by N,.

Decomposing Probabilistic Lambda-Calculi 143

4 Confluence

We aim to prove that —=-—3 U —, is confluent. We will use the standard
technique of parallel B-reduction [26], a simultaneous reduction step on a number
of S-redexes, which we define via a labeling of the redexes to be reduced. The
central point is to find a notion of reduction that is diamond, i.e. every critical
pair can be closed in one (or zero) steps. This will be our complete reduction,
which consists of parallel S-reduction followed by p-reduction to normal form.

Definition 11. A labeled term P® is a term P with chosen [S-redexes annotated
as (Az. N)*M. The unique labeled 3-step P®* = P, from P* to the labeled reduct
P, reduces every labeled redex, and is defined inductively as follows.

(Az. N®)*M*® =3 No[M,/z] N°M*® =5 NoM,
T =g N*&M® =5 No& M,
Az. N* =4 Az. N, [a] N* =5 [a] N,

A parallel 5-step P =g P, is a labeled step P®* =g P, for some labeling P°.

Note that P, is an unlabeled term, since all labels are removed in the reduction.
For the empty labeling, P®* = P, = P, so parallel reduction is reflexive: P =4 P.

Lemma 12. A parallel B-step P =g P, is a B-reduction P —wg P,.
Proof. By induction on the labeled term P® generating P =3 P,. O
Lemma 13. Parallel S-reduction is diamond.

Proof. Let P®* =3 P, and P° =3 P, be two labeled reduction steps on a term
P. We annotate each step with the label of the other, preserved by reduction,
to give the span from the doubly labeled term P°®° = P°® below left. Reducing
the remaining labels will close the diagram, as below right.

PO

ge= P* =P =, P° P} =5 Peoo=Pou g= P3

[e] (o]

This is proved by induction on P*®°, where only two cases are not immediate:
those where a redex carries one but not the other label. One case follows by
the below diagram; the other case is symmetric. Below, for the step top right,
induction on N*® shows that N®[M*®/z] =5 Ne[M,/x].

(Az. N°®)°M°® =5 N2I[M2/x] =3 Noe[Moe/]

(Az. N*°)°M*° =5 (Ax. N2)° M2 =5 Noo[Mao /] O

144 U. Dal Lago et al.

4.1 Parallel Reduction and Permutative Reduction

For the commutation of (parallel) S-reduction with p-reduction, we run into the
minor issue that a permuting generator or choice operator may block a redex: in
both cases below, before —, the term has a redex, but after — it is blocked.

Ae. NEM)P —, (Az. N)&(Nz. M) P (M\z.[o]. N) M —, ([o]. \o. N) M

We address this by an adaptation —, of p-reduction on labeled terms, which is
a strategy in =, that permutes past a labeled redex in one step.

Definition 14. A labeled p-reduction N® —, M?® on labeled terms is a p-
reduction of one of the forms

(Az. N*EM®)*P* =, (A\z. N*)*P*&(\x. M*)*P*
(Az.[a]. N®)*M*® -y [a]. (Az. N®)*M*®
or a single p-step —, on unlabeled constructors in N°®.
Lemma 15. Reduction to normal form in —, is equal to -, (on labeled terms).

Proof. Observe that —», and —, have the same normal forms. Then in one
direction, since —, C -, we have -n», C—,. Conversely, let N -, M. On this
reduction, let P —, @) be the first step such that P /4, Q. Then there is an R
such that P —, R and Q —, R. Note that we have N —», R. By confluence,
R -y, M, and by induction on the sum length of paths in —, from R (smaller
than from N) we have R -, M, and hence N -», M. O

The following lemmata then give the required commutation properties of the
relations —,, -, and = g. Figure 3 illustrates these by commuting diagrams.

Lemma 16. If N®* —, M*® then Ny =, M,.

Proof. By induction on the rewrite step —,. The two interesting cases are:

(A\z. M*)*(N*&P*) SN (M. M®)*N*)&((\z. M*)*P*)
5Jl ! (z € fv(M))

v

MJ(Ne&Py)/a] - ---=-- » My[N,/x]& M, [P, /]

| : (& ¢ (M)

Decomposing Probabilistic Lambda-Calculi 145

How the critical pairs in the above diagrams are joined shows that we cannot
use the Hindley-Rosen Lemma [2, Prop. 3.3.5] to prove confluence of —5 U —,.

Lemma 17. N, =, Np,.
Proof. Using Lemma 15 we decompose N*® =i, N as
N®* = N7 =, N3 =, - = Ny = N;

where (N;)e =p (Nit1)e by Lemma 16. O

4.2 Complete Reduction

To obtain a reduction strategy with the diamond property for —, we combine
parallel reduction = 3 with permutative reduction to normal form -, into a no-
tion of complete reduction =. We will show that it is diamond (Lemma 19), and
that any step in — maps onto a complete step of p-normal forms (Lemma 20).
Confluence of — (Theorem 21) then follows: any two paths —» map onto complete
paths =» on p-normal forms, which then converge by the diamond property.

Definition 18. A complete reduction step N = N, is a parallel 3-step fol-
lowed by p-reduction to normal form:

N = N, = N =g Ng i, Np, -

Lemma 19 (Complete reduction is diamond). If P < N = M then for
some Q, P = Q «& M.

Proof. By the following diagram, where M = Ngp and P = Ngp, and @ = Noep.
The square top left is by Lemma 13, top right and bottom left are by Lemma 17,
and bottom right is by confluence and strong normalization of p-reduction.

Now —Z N2 P N,

I
N.O=B"Nc>o =p Nopo

R

p
pr — Nopo — Noop

O

Lemma 20 (p-Normalization maps reduction to complete reduction).
If N — M then Ny = M.

Proof. For a p-step N —, M we have N, = M, while =3 is reflexive. For a
B-step N —3 M we label the reduced redex in NV to get N®* =3 No = M. Then
Lemma 17 gives Nye =, M, and hence N, =g Npe -1 Mp. O

146 U. Dal Lago et al.

N5 M N S M N— M N—s M
4 N L A L N R A
P = Q P = Q P—0Q P==Q
Lemma 16 Lemma 17 Lemma 19 Lemma 20

Fig. 3. Diagrams for the Lemmata Leading up to Confluence

Theorem 21. Reduction — is confluent.
Proof. By the following diagram. For the top and left areas, by Lemma 20 any

reduction path N —» M maps onto one N, =» M,. The main square follows by
the diamond property of complete reduction, Lemma 19.

M

|

N

N
l Ny —— M,
P

]

P,

¥

_—

T

5 Strong Normalization for Simply-Typed Terms

In this section, we prove that the relation — enjoys strong normalization in
simply typed terms. Our proof of strong normalization is based on the classic
reducibility technique, and inherently has to deal with label-open terms. It thus
make great sense to turn the order <,; from Definition 3 into something more
formal, at the same time allowing terms to be label-open. This is in Figure 4.
It is easy to realize that, of course modulo label a-equivalence, for every term
M there is at least one 6 such that 6 F; M. An easy fact to check is that if
Otr, M and M — N, then 8 7, N. It thus makes sense to parametrize — on
a sequence of labels 6, i.e., one can define a family of reduction relations —? on
pairs in the form (M, 6). The set of strongly normalizable terms, and the number
of steps to normal forms become themselves parametric:
o The set SN of those terms M such that 6§ F;, M and (M,0) is strongly
normalizing modulo —?;
e The function sn? assigning to any term in SN % the maximal number of —?
steps to normal form.

Decomposing Probabilistic Lambda-Calculi 147

Label Sequences: 0 == ¢ | a-0
Label Judgments: E == Ok M
0+, M a-0Fp M
0+ x 0btrL Ax.M 0+ .M
Label Rules: 8 8 L]
Ot M Ok N 0L M 60FL N ac€f
0L MN OFL M&EN

Fig. 4. Labeling Terms

Types: T ou= a| T=p
Environments: I' == x1:7T1,...,%n:Tn
Judgments: T u= I'HFM:T
Lax:rHM:p I'cM:7
Nzr:7Hax: I'ecXxeM:17= I'Hlal M:
Typing Rules: T v T=r L] T
I'rM:7=p I'tEN:7 I'tM:1 I'N:1
I'+MN:p I'-M&N:r

Fig. 5. Types, Environments, Judgments, and Rules

I,eSN® ... L,eSN® MLy...L,,e SN NL,...L,, € SN ac@
xlq... Ly € SN? M&NLy... Ly € SN?

M][Lo/x)L1 ... Ly € SN® Lo € SN MLy...Ln € SN* ViagL;
(Az.M)Lo...Lny € SN? (a] M)L1 ... L, € SN

Fig. 6. Closure Rules for Sets SN?

We can now define types, environments, judgments, and typing rules in Figure 5.

Please notice that the type structure is precisely the one of the usual, vanilla,
simply-typed A-calculus (although terms are of course different), and we can thus
reuse most of the usual proof of strong normalization, for example in the version
given by Ralph Loader’s notes [21], page 17.

Lemma 22. The closure rules in Figure 6 are all sound.

148 U. Dal Lago et al.

Since the structure of the type system is the one of plain, simple types, the
definition of reducibility sets is the classic one:

Red, = {(I',0,M) | M € SN’ AT+ M : a};
Redy—, = {(I0,M) | (T =M : 7= p) A (01 M) A
Y(I'A,0,N) € Red,.(I'A,0, MN) € Red,}.

Before proving that all terms are reducible, we need some auxiliary results.

Lemma 23. 1. If (I, M) € Red,, then M € SN’.

2. IfI'+xLy... Ly :7and Ly, ..., Ly, € SN?, then (I',0,xLy ... Ly,) € Red,.

3. If (I'0, M[Lo/z]Ly ... L) € Red, with I' - Lo : p and Ly € SN?, then
(I',0,(\x. M) Ly ... Ly,) € Red,.

4. If (I0, MLy ...L,,) € Red, with (I, NLy ...L,,) € Red, and a € 0, then
(I0,(M&N)L; ...Ly,) € Red..

5 If(Ia-0,MLy...Ly,) € Red, and a € L; for all i,
then (I',0,([a]. M)Ly ... Ly,) € Red,.

Proof. The proof is an induction on 7: If 7 is an atom «, then Point 1 follows
by definition, while points 2 to 5 come from Lemma 22. If 7 is p = u, Points 2
to 5 come directly from the induction hypothesis, while Point 1 can be proved
by observing that M is in SN if Mz is itself SNY, where x is a fresh variable.
By induction hypothesis (on Point 2), we can say that (I'(z : p),0,z) € Red,,
and conclude that (I'(x : p),0, Mz) € Red,,. O

The following is the so-called Main Lemma:

Proposition 24. Suppose y1 : T1,...,yn : T b M : p and 0 Fp M, with
(I',0,N;) € Red,, for all1 <j <mn. Then (I'0, M[N1/y1,..., Nn/yn]) € Red,.

Proof. This is an induction on the structure of the term M:
e If M is a variable, necessarily one among 1, . .., ¥, then the result is trivial.
e If M is an application LP, then there exists a type £ such that y1 : 71,..., ¥y :
TmbEL:¢&=pandy :71,...,Yn: T E P: & Moreover, 0 -y, L and 6 -, P
we can then safely apply the induction hypothesis and conclude that

(I,8,L[N /y]) € Rede, (I,6,P|N /7)) € Red .

By definition, we get

(1,0, (LP)[N/y]) € Red, .

e If M is an abstraction Ax.L, then p is an arrow type £ = u and y; :
TiyeosYn @ T, @ 2 & F Lt u. Now, consider any (I'A, 6, P) € Rede. Our

objective is to prove with this hypothesis that (I"A,0, (Az.L[N/y])P) €
Red,. By induction hypothesis, since (I"'A,N;) € Red,,, we get that

(I'A,0, L[Ny, P/z]) € Red,,. The thesis follows from Lemma 23.

Decomposing Probabilistic Lambda-Calculi 149

e If M is a sum L&P, we can make use of Lemma 23 and the induction
hypothesis, and conclude.

e If M is a generator [a]. P, we can make use of Lemma 23 and the induction
hypothesis. We should however observe that a -0 P, since 6 1, M. O

We now have all the ingredients for our proof of strong normalization:
Theorem 25. If '+ M : 7 and 0 -1, M, then M € SN.

Proof. Suppose that x1 : p1,...,xn :pp =M 7. Since &1 : p1,...,Tpn : pu x5 :
p; for all ¢, and clearly 6 -, x; for every ¢, we can apply Lemma 24 and obtain
that (I,0, M[Z/Z]) € Red, from which, via Lemma 23, one gets the thesis. [

6 Projective Reduction

Permutative reduction —, evaluates probabilistic sums purely by rewriting. Here
we look at a more standard projective notion of reduction, which conforms more
closely to the intuition that [a] generates a probabilistic event to determine the
choice &. Using + for an external probabilistic sum, we expect to reduce [a] N to
Ny + Ni where each N; is obtained from N by projecting every subterm M & M
to M;. The question is, in what context should we admit this reduction? We first
limit ourselves to reducing in head position.

Definition 26. The a-projections n§(N) and 7§ (N) are defined as follows:

7§ (N&M) = 73 (N) 7 (Ax. N) = dz.wd(N)
(N & M) = (M) 7 (NM) = 7 (N) xf (M)
(@ N) =[N 7NEM)=al(N)&xi(M) ifa#tb
mi(x) == 7 ([b] N) =[b] 7} (N) if a #0.

Definition 27. A head context H|[] is given by the following grammar.
Hl}==[] | Az H[] | H[]IN
Definition 28. Projective head reduction —, is given by
H[[a] N] =z H[nG(N)] + H[x{(N)] .

We can simulate —,, by permutative reduction if we interpret the external
sum + by an outermost ® (taking special care if the label does not occur).

Proposition 29. Permutative reduction simulates projective head reduction:

H[N] if a ¢ fi(N)
Hr§(N)]e H[r{(N)] otherwise.

Hl[a]. N] -, {

150 U. Dal Lago et al.

Proof. The case a ¢ fl(N) is immediate by a iz step. For the other case, observe
that H[[a]. N] =, [o]. H[N] by OX and Of steps, and since a does not occur in
H[], that H[r?(N)] = n?(H[N]). By induction on N, if ¢ is minimal in N (i.e.
a € fl(N)and a < b for all b € fI(N)) then N =, 73(N)&n§(N). As required,

H[[a]. N] -, [a] H[r$(N)] & H[z}(N)] ifa€fl(N). O

A gap remains between which generators will not be duplicated, which we
should be able to reduce, and which generators projective head reduction does
reduce. In particular, to interpret call-by-value probabilistic reduction in Sec-
tion 7, we would like to reduce under other generators. However, permutative
reduction does not permit exchanging generators, and so only simulates reducing
in head position. While (independent) probabilistic events are generally consid-
ered interchangeable, it is a question whether the below equivalence is desirable.

N < BN (4)

We elide the issue by externalizing probabilistic events, and reducing with refer-
ence to a predetermined binary stream s € {0, 1} representing their outcomes.
In this way, we will preserve the intuitions of both permutative and projective
reduction: we obtain a qualified version of the equivalence (4) (see (5) below),
and will be able to reduce any generator on the spine of a term: under (other)
generators and choices as well as under abstractions and in function position.

Definition 30. The set of streams is S = {0, 1}, ranged over by 7,s,t, and i - s
denotes a stream with 4 € {0, 1} as first element and s as the remainder.

Definition 31. The stream labeling N° of a term N with a stream s € S, which
annotates generators as [a]" with i € {0,1} and variables as z° with a stream
s, is given inductively below. We lift S-reduction to stream-labeled terms by
introducing a substitution case for stream-labeled variables: x*[M/x] = M*.

(Az.N)* = \z. N* ([a]. N)* =[a]*. N®
(NM)*=N*M (NEM)® = N*&M*

Definition 32. Projective reduction —, on stream-labeled terms is the rewrite
relation given by
[«]" N —, 7}

“(N) .

Observe that in N* a generator that occurs under n other generators on the
spine of N, is labeled with the element of s at position n + 1. Generators in
argument position remain unlabeled, until a S-step places them on the spine,
in which case they become labeled by the new substitution case. We allow to
annotate a term with a finite prefix of a stream, e.g. N’ with a singleton i, so that
only part of the spine is labeled. Subsequent labeling of a partly labeled term is
then by (N7)®* = N (abusing notation). To introduce streams via the external

Decomposing Probabilistic Lambda-Calculi 151

probabilistic sum, and to ignore an unused remaining stream after completing a
probabilistic computation, we adopt the following equation.

N=N’+N'
Proposition 33. Projective reduction generalizes projective head reduction:

H[[«] N] = H[[]° N]+ H[[o]". N] =, H[r§(N)]+ H[x{(N)] .

Returning to the interchangeability of probabilistic events, we refine (4) by
exchanging the corresponding elements of the annotating streams:

[} M) = [l 1. N* T (e (V%)
~ = 5)
GHal NP = [l N* — b(me (V%))

Stream-labeling externalizes all probabilities, making reduction determinis-
tic. This is expressed by the following proposition, that stream-labeling com-
mutes with reduction: if a generator remains unlabeled in M and becomes la-
beled after a reduction step M — N, what label it receives is predetermined.
The deep reason is that stream labeling assigns an outcome to each generator in
a way that corresponds to a call-by-name strategy for probabilistic reduction.

Proposition 34. If M — N by a step other than i then M?® — N*.

Remark 35. The statement is false for the @ rule [a]. N —, N (a ¢ fI(N)), as
it removes a generator but not an element from the stream. Arguably, for this
reason the rule should be excluded from the calculus. On the other hand, the
rule is necessary to implement idempotence of @, rather than just &, as follows.

NoN = [a] N&N —, [a] N —, N where a ¢ fI(N)

The below proposition then expresses that projective reduction is an inwvari-
ant for permutative reduction. If N —, M by a step (that is not) on a labeled
generator [a]* or a corresponding choice &, then N and M reduce to a common
term, N —, P .« M, by the projective steps evaluating [a]".

Proposition 36. Projective reduction is an invariant for permutative reduction,
as follows (with a case for ca symmetric to c1, and where D[] is a context).

[a]. CIN&N] —— [a]*. C[N] [a]i. C[(No&M)ENy] 5 [a]'. C[No& N

S b T e

152 U. Dal Lago et al.

A [a]'. N 25 [a]". Az N (@ N)M —2 [a]'. NM
] oA K] of K
M.t (N) = 7¢(Az.N) T (NYM = 7¢(NM)

7 Call-by-value Interpretation

We consider the interpretation of a call-by-value probabilistic A-calculus. For
simplicity we will allow duplicating (or deleting) [-redexes, and only restrict
duplicating probabilities; our values V are then just deterministic—i.e. without
choices—terms, possibly applications and not necessarily S-normal (so that our
— gy is actually S-reduction on deterministic terms, unlike [9]). We evaluate the
internal probabilistic choice @, to an external probabilistic choice +.

N:=z | x.N|MN|Me, N (Az.N)V —g, N[V/x]
VW u=zx| V| VW Mo, N -, M+ N

The interpretation [N], of a call-by-value term N into Apg is given as follows.
First, we translate N to a label-open term [N]open = 6 1, P by replacing each
choice @, with one & with a unique label, where the label-context 6 collects the
labels used. Then [N]y is the label closure [N], = |6 b, P|, which prefixes P
with a generator [a] for every a in 6.

Definition 37. (Call-by-value interpretation) The open interpretation [N]open
of a call-by-value term N is as follows, where all labels are fresh, and inductively
[[Ni]]open =0;Fp P; for i€ {1,2}.
[[-T]]open = Frw [[N1N2]]open = 0y-01t PPy
[A\o.Nilopen = O1brAz.Pi [Ni@ NoJopen = 02-01-abp Pi&Ps

The label closure |0 Fp, P| is given inductively as follows.
The call-by-value interpretation of N is [N]y = |[Nopen]-

Our call-by-value reduction may choose an arbitrary order in which to evalu-
ate the choices @, in a term N, but the order of generators in the interpretation
[N]y is necessarily fixed. Then to simulate a call-by-value reduction, we cannot
choose a fixed context stream a priori; all we can say is that for every reduction,
there is some stream that allows us to simulate it. Specifically, a reduction step
C[No &, N1] =, C[N;] where C[] is a call-by-value term context is simulated by
the following projective step.

.0 [E .. DIP & P = . [[

Decomposing Probabilistic Lambda-Calculi 153

Here, [C[No ®y N1|Jlopen =0 F1 D[PO%Pl] with D[] a Apg-context, and 6 giving
rise to the sequence of generators ...[a].[b][¢]... in the call-by-value transla-
tion. To simulate the reduction step, if b occupies the n-th position in @, then the
n-th position in the context stream s must be the element j. Since S-reduction
survives the translation and labeling process intact, we may simulate call-by-
value probabilistic reduction by projective and S-reduction.

Theorem 38. If N =, 5, V then [N]; -, g [V]v for some stream s € S.

8 Conclusions and Future Work

We believe our decomposition of probabilistic choice in A-calculus to be an ele-
gant and compelling way of restoring confluence, one of the core properties of the
A-calculus. Our probabilistic event A-calculus captures traditional call-by-name
and call-by-value probabilistic reduction, and offers finer control beyond those
strategies. Permutative reduction implements a natural and fine-grained equiv-
alence on probabilistic terms as internal rewriting, while projective reduction
provides a complementary and more traditional external perspective.

There are a few immediate areas for future work. Firstly, within probabilistic
A-calculus, it is worth exploring if our decomposition opens up new avenues in
semantics. Secondly, our approach might apply to probabilistic reasoning more
widely, outside the A-calculus. Most importantly, we will explore if our approach
can be extended to other computational effects. Our use of streams interprets
probabilistic choice as a read operation from an external source, which means
other read operations can be treated similarly. A complementary treatment of
write operations would allow us to express a considerable range of effects, in-
cluding input/output and state.

Acknowledgments

This work was supported by EPSRC Project EP/R029121/1 Typed Lambda-
Calculi with Sharing and Unsharing. The first author is partially supported by
the ANR project 19CE480014 PPS, the ERC Consolidator Grant 818616 DI-
APASoN, and the MIUR PRIN 201784YSZ5 ASPRA. We thank the referees
for their diligence and their helpful comments. We are grateful to Chris Bar-
rett and—indirectly—Anupam Das for pointing us to Zantema and Van de Pol’s
work [27].

References

1. Avanzini, M., Dal Lago, U., Ghyselen, A.: Type-based complexity analysis of
probabilistic functional programs. In: 34th Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS 2019. pp. 1-13. IEEE Computer Society (2019).
https://doi.org/10.1109/LICS.2019.8785725

2. Barendregt, H.P.: The Lambda Calculus — Its Syntax and Semantics, Studies in
logic and the foundations of mathematics, vol. 103. North-Holland (1984)

https://doi.org/10.1109/LICS.2019.8785725

154 U. Dal Lago et al.

3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Borgstrom, J., Dal Lago, U., Gordon, A.D., Szymczak, M.: A lambda-calculus
foundation for universal probabilistic programming. In: 21st ACM SIGPLAN In-
ternational Conference on Functional Programming, ICFP 2016. pp. 33-46. ACM
(2016). https://doi.org/10.1145/2951913.2951942

Breuvart, F., Dal Lago, U.: On intersection types and probabilistic lambda
calculi. In: roceedings of the 20th International Symposium on Principles and
Practice of Declarative Programming, PPDP 2018. pp. 8:1-8:13. ACM (2018).
https://doi.org/10.1145/3236950.3236968

Dal Lago, U., Faggian, C., Valiron, B., Yoshimizu, A.: The geometry of parallelism:
classical, probabilistic, and quantum effects. In: Proceedings of the 44th ACM
SIGPLAN Symposium on Principles of Programming Languages, POPL 2017. pp.
833-845. ACM (2017). https://doi.org/10.1145/3009837

Dal Lago, U., Grellois, C.: Probabilistic termination by monadic affine sized typing.
ACM Transactions on Programming Languages and Systems 41(2), 10:1-10:65
(2019). https://doi.org/10.1145/3293605

Dal Lago, U., Guerrieri, G., Heijltjes, W.: Decomposing probabilistic lambda-
calculi (long version) (2020), https://arxiv.org/abs/2002.08392

Dal Lago, U., Sangiorgi, D., Alberti, M.: On coinductive equivalences for higher-
order probabilistic functional programs. In: The 41st Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’14. pp.
297-308. ACM (2014). https://doi.org/10.1145/2535838.2535872

Dal Lago, U., Zorzi, M.: Probabilistic operational semantics for the lambda cal-
culus. RAIRO - Theoretical Informatics and Applications 46(3), 413-450 (2012).
https://doi.org/10.1051 /ita/2012012

Danos, V., Ehrhard, T.: Probabilistic coherence spaces as a model of higher-
order probabilistic computation. Information and Compututation 209(6), 966-991
(2011). https://doi.org/10.1016/j.ic.2011.02.001

de’Liguoro, U., Piperno, A.: Non deterministic extensions of untyped
lambda-calculus. Information and Computation 122(2), 149-177 (1995).
https://doi.org/10.1006/inco.1995.1145

Dershowitz, N.: Orderings for term-rewriting systems. Theoretical Computer Sci-
ence 17, 279-301 (1982). https://doi.org/10.1016,/0304-3975(82)90026-3
Ehrhard, T., Pagani, M., Tasson, C.: Full abstraction for probabilistic PCF. Journal
of the ACM 65(4), 23:1-23:44 (2018). https://doi.org/10.1145/3164540

Ehrhard, T., Tasson, C.: Probabilistic call by push value. Logical Methods in Com-
puter Science 15(1) (2019). https://doi.org/10.23638/LMCS-15(1:3)2019
Faggian, C., Ronchi Della Rocca, S.: Lambda calculus and probabilis-
tic computation. In: 34th Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2019. pp. 1-13. IEEE Computer Society (2019).
https://doi.org/10.1109/LICS.2019.8785699

Goubault-Larrecq, J.: A probabilistic and non-deterministic call-by-push-
value language. In: 34th Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2019. pp. 1-13. IEEE Computer Society (2019).
https://doi.org/10.1109/LICS.2019.8785809

Jones, C., Plotkin, G.D.: A probabilistic powerdomain of evaluations.
In: Proceedings of the Fourth Annual Symposium on Logic in Com-
puter Science (LICS ’89). pp. 186-195. IEEE Computer Society (1989).
https://doi.org/10.1109/LICS.1989.39173

Jung, A., Tix, R.: The troublesome probabilistic powerdomain. Electronic Notes
in Theoretical Computer Science 13, 70-91 (1998). https://doi.org/10.1016/S1571-
0661(05)80216-6

https://doi.org/10.1145/2951913.2951942
https://doi.org/10.1145/3236950.3236968
https://doi.org/10.1145/3009837
https://doi.org/10.1145/3293605
https://arxiv.org/abs/2002.08392
https://doi.org/10.1145/2535838.2535872
https://doi.org/10.1051/ita/2012012
https://doi.org/10.1016/j.ic.2011.02.001
https://doi.org/10.1006/inco.1995.1145
https://doi.org/10.1016/0304-3975(82)90026-3
https://doi.org/10.1145/3164540
https://doi.org/10.23638/LMCS-15(1:3)2019
https://doi.org/10.1109/LICS.2019.8785699
https://doi.org/10.1109/LICS.2019.8785809
https://doi.org/10.1109/LICS.1989.39173
https://doi.org/10.1016/S1571-0661(05)80216-6
https://doi.org/10.1016/S1571-0661(05)80216-6

19.

20.

21.

22.

23.

24.

25.

26.

27.

Decomposing Probabilistic Lambda-Calculi 155

Leventis, T.: Probabilistic Bohm trees and probabilistic separation. In: Pro-
ceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Com-
puter Science, LICS 2018. pp. 649-658. IEEE Computer Society (2018).
https://doi.org/10.1145/3209108.3209126

Leventis, T.: A deterministic rewrite system for the probabilistic A-calculus.
Mathematical Structures in Computer Science 29(10), 1479-1512 (2019).
https://doi.org/10.1017/S0960129519000045

Loader, R.: Notes on simply typed lambda calculus. Reports of the laboratory
for foundations of computer science ECS-LFCS-98-381, University of Edinburgh,
Edinburgh (1998), http://www.lfcs.inf.ed.ac.uk/reports/98 /ECS-LFCS-98-381/
Manber, U., Tompa, M.: Probabilistic, nondeterministic, and alternating decision
trees. In: 14th Annual ACM Symposium on Theory of Computing. pp. 234-244
(1982). https://doi.org/10.1145/800070.802197

Ramsey, N., Pfeffer, A.: Stochastic lambda calculus and monads of probability
distributions. In: Conference Record of POPL 2002: The 29th SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. pp. 154-165. POPL ’02
(2002). https://doi.org/10.1145/503272.503288

Saheb-Djahromi, N.: Probabilistic LCF. In: Mathematical Foundations of Com-
puter Science 1978, Proceedings, 7th Symposium. Lecture Notes in Computer Sci-
ence, vol. 64, pp. 442-451. Springer (1978). https://doi.org/10.1007/3-540-08921-
7-92

Sangiorgi, D., Vignudelli, V.: Environmental bisimulations for probabilistic higher-
order languages. In: Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2016. pp. 595-607
(2016). https://doi.org/10.1145/2837614.2837651

Takahashi, M.: Parallel reductions in lambda-calculus. Information and Computa-
tion 118(1), 120-127 (1995). https://doi.org/10.1006/inco.1995.1057

Zantema, H., van de Pol, J.: A rewriting approach to binary decision dia-
grams. The Journal of Logic and Algebraic Programming 49(1-2), 61-86 (2001).
https://doi.org/10.1016/S1567-8326(01)00013-3

https://doi.org/10.1145/3209108.3209126
https://doi.org/10.1017/S0960129519000045
http://www.lfcs.inf.ed.ac.uk/reports/98/ECS-LFCS-98-381/
https://doi.org/10.1145/800070.802197
https://doi.org/10.1145/503272.503288
https://doi.org/10.1007/3-540-08921-7_92
https://doi.org/10.1007/3-540-08921-7_92
https://doi.org/10.1145/2837614.2837651
https://doi.org/10.1006/inco.1995.1057
https://doi.org/10.1016/S1567-8326(01)00013-3

156 U. Dal Lago et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

®

Check for
updates

On the k-synchronizability of Systems

Cinzia Di Giusto (=) ®, Laetitia Laversa @, and Etienne Lozes ®

Université Cote d’Azur, CNRS, 13S, Sophia Antipolis, France
{cinzia.di-giusto,laetitia.laversa,etienne.lozes}@univ-cotedazur.fr

Abstract. We study k-synchronizability: a system is k-synchronizable
if any of its executions, up to reordering causally independent actions,
can be divided into a succession of k-bounded interaction phases. We
show two results (both for mailbox and peer-to-peer automata): first, the
reachability problem is decidable for k-synchronizable systems; second,
the membership problem (whether a given system is k-synchronizable)
is decidable as well. Our proofs fix several important issues in previous
attempts to prove these two results for mailbox automata.

Keywords: Verification - Communicating Automata - A/Synchronous
communication.

1 Introduction

Asynchronous message-passing is ubiquitous in communication-centric systems;
these include high-performance computing, distributed memory management,
event-driven programming, or web services orchestration. One of the parameters
that play an important role in these systems is whether the number of pending
sent messages can be bounded in a predictable fashion, or whether the buffering
capacity offered by the communication layer should be unlimited. Clearly, when
considering implementation, testing, or verification, bounded asynchrony is pre-
ferred over unbounded asynchrony. Indeed, for bounded systems, reachability
analysis and invariants inference can be solved by regular model-checking [5].
Unfortunately and even if designing a new system in this setting is easier, this is
not the case when considering that the buffering capacity is unbounded, or that
the bound is not known a priori . Thus, a question that arises naturally is how
can we bound the “behaviour” of a system so that it operates as one with un-
bounded buffers? In a recent work [4], Bouajjani et al. introduced the notion of
k-synchronizable system of finite state machines communicating through mail-
boxes and showed that the reachability problem is decidable for such systems.
Intuitively, a system is k-synchronizable if any of its executions, up to reordering
causally independent actions, can be chopped into a succession of k-bounded in-
teraction phases. Each of these phases starts with at most k send actions that are
followed by at most k receptions. Notice that, a system may be k-synchronizable
even if some of its executions require buffers of unbounded capacity.

As explained in the present paper, this result, although valid, is surprisingly
non-trivial, mostly due to complications introduced by the mailbox semantics of
© The Author(s) 2020

J. Goubault-Larrecq and B. Konig (Eds.): FOSSACS 2020, LNCS 12077, pp. 157-176, 2020.
https://doi.org/10.1007/978-3-030-45231-5_9

http://orcid.org/0000-0003-1563-6581
http://orcid.org/0000-0003-3775-6496
http://orcid.org/0000-0001-8505-585X
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45231-5_9&domain=pdf

158 C. Di Giusto et al.

communications. Some of these complications were missed by Bouajjani et al.
and the algorithm for the reachability problem in [4] suffers from false positives.
Another problem is the membership problem for the subclass of k-synchronizable
systems: for a given k and a given system of communicating finite state machines,
is this system k-synchronizable? The main result in [4] is that this problem is
decidable. However, again, the proof of this result contains an important flaw at
the very first step that breaks all subsequent developments; as a consequence,
the algorithm given in [4] produces both false positives and false negatives.

In this work, we present a new proof of the decidability of the reachability
problem together with a new proof of the decidability of the membership pro-
blem. Quite surprisingly, the reachability problem is more demanding in terms of
causality analysis, whereas the membership problem, although rather intricate,
builds on a simpler dependency analysis. We also extend both decidability results
to the case of peer-to-peer communication.

Outline. Next section recalls the definition of communicating systems and re-
lated notions. In Section 3 we introduce k-synchronizability and we give a graphi-
cal characterisation of this property. This characterisation corrects Theorem 1
in [4] and highlights the flaw in the proof of the membership problem. Next,
in Section 4, we establish the decidability of the reachability problem, which is
the core of our contribution and departs considerably from [4]. In Section 5, we
show the decidability of the membership problem. Section 6 extends previous
results to the peer-to-peer setting. Finally Section 7 concludes the paper dis-
cussing other related works. Proofs and some additional material are available
at https://hal.archives-ouvertes.fr /hal-02272347.

2 Preliminaries

A communicating system is a set of finite state machines that exchange messages:
automata have transitions labelled with either send or receive actions. The paper
mainly considers as communication architecture, mailboxes: i.e., messages await
to be received in FIFO buffers that store all messages sent to a same automaton,
regardless of their senders. Section 6, instead, treats peer-to-peer systems, their
introduction is therefore delayed to that point.

Let V be a finite set of messages and P a finite set of processes. A send
action, denoted send(p, q,v), designates the sending of message v from process
p to process ¢. Similarly a receive action rec(p,q,v) expresses that process ¢
is receiving message v from p. We write a to denote a send or receive action.
Let S = {send(p,q,v) | p,g € P,v € V} be the set of send actions and
R = {rec(p,q,v) | p,q € P,v € V} the set of receive actions. S, and R, stand
for the set of sends and receives of process p respectively. Each process is encoded
by an automaton and by abuse of notation we say that a system is the parallel
composition of processes.

Definition 1 (System). A system is a tuple & = ((Ly,6,,19) | p € P) where,

for each process p, L, is a finite set of local control states, §, C (L, x (SpURy,) X
L,) is the transition relation (also denoted | =, 1') and 19 is the initial state.

https://hal.archives-ouvertes.fr/hal-02272347

On the k-synchronizability of Systems 159

Definition 2 (Configuration). Let & = ((Ly,0,,15) | p € P), a configuration

is a pair (I,Buf) where | = (I,)pep € HyepL, is a global control state of & (a
local control state for each automaton), and Buf = (b,),ep € (V*)F is a vector
of buffers, each b, being a word over V.

We write [to denote the vector of initial states of all processes p € P, and Buf
stands for the vector of empty buffers. The semantics of a system is defined by
the two rules below.

[SEND] [RECEIVE]
lp SR,y — by g I, by = v b,
(I, Bug) “IY (g 1) Bug (b, /b)) (1 Bug) I ({1 /1], Bug (b, /b,])

A send action adds a message in the buffer b of the receiver, and a receive action
pops the message from this buffer. An execution e = ay - - - a, is a sequence of

actions in S U R such that (Iy,Bufo) < --- 2% (I,Buf) for some [and Buf.
As usual = stands for 25 ... 2% We write asEz(S) to denote the set of

asynchronous executions of a system &. In a sequence of actions e = ay - - a,,
a send action a;, = send(p, q,v) is matched by a reception a; = rec(p’,q',v’)
(denoted by a; H a;) if i < j, p=19p', ¢ =¢', v=v', and there is £ > 1 such
that a; and a; are the fth actions of e with these properties respectively. A send
action a; is unmatched if there is no matching reception in e. A message exchange
of a sequence of actions e is a set either of the form v = {a;, a;} with a; H a; or
of the form v = {a;} with a; unmatched. For a message v;, we will note v; the
corresponding message exchange. When v is either an unmatched send(p, q,v)
or a pair of matched actions {send(p, q,v),rec(p,q,v)}, we write procg(v) for p
and procg(v) for q. Note that procy(v) is defined even if v is unmatched. Finally,
we write procs(v) for {p} in the case of an unmatched send and {p, ¢} in the case
of a matched send.

An execution imposes a total order on the actions. We are interested in
stressing the causal dependencies between messages. We thus make use of mes-
sage sequence charts (MSCs) that only impose an order between matched pairs
of actions and between the actions of a same process. Informally, an MSC will be
depicted with vertical timelines (one for each process) where time goes from top
to bottom, that carry some events (points) representing send and receive actions
of this process (see Fig. 1). An arc is drawn between two matched events. We
will also draw a dashed arc to depict an unmatched send event. An MSC is, thus,
a partially ordered set of events, each corresponding to a send or receive action.

Definition 3 (MSC). A message sequence chart is a tuple (Ev, \, <), where

— FEv is a finite set of events,
— A: Ev — SUR tags each event with an action,
— <= (<po U <sre)T is the transitive closure of <p, and <sq. where:
® <y, 15 a partial order on Ev such that, for all process p, <,, induces a
total order on the set of events of process p, i.e., on \"1(S, U R,)

160 C. Di Giusto et al.

p q r p p q r
Vi Vi Vi
v \p) V3
- oA
V2
(a) (b) (c) (d)

Fig.1: (a) and (b): two MSCs that violate causal delivery. (¢) and (d): an MSC
and its conflict graph

o ... is a binary relation that relates each receive event to its preceding

send event :
x for all events 1 € A\1(R), there is exactly one events s such that
§ <gre T
x for all events s € N\7Y(S), there is at most one event r such that
S <sre T

x for any two events s,r such that s <g.c 7, there are p,q,v such that
A(s) = send(p,q,v) and \(r) = rec(p,q,Vv).

We identify MSCs up to graph isomorphism (i.e., we view an MSC as a labeled
graph). For a given well-formed (i.e., each reception is matched) sequence of
actions e = a1 ... a,, we let msc(e) be the MSC where Ev = [1..n], <,, is the
set of pairs of indices (¢,j) such that ¢ < j and {a;,a;} C S, U R, for some
p € P (i.e., a; and a; are actions of a same process), and <. is the set of pairs
of indices (i,7) such that a; H aj. We say that e = ay...a, is a linearisation
of msc(e), and we write asTr(&) to denote {msc(e) | e € asFEx (&)} the set of
MSCs of system 6.

Mailbox communication imposes a number of constraints on what and when
messages can be read. The precise definition is given below, we now discuss some
of the possible scenarios. For instance: if two messages are sent to a same process,
they will be received in the same order as they have been sent. As another
example, unmatched messages also impose some constraints: if a process p sends
an unmatched message to r, it will not be able to send matched messages to r
afterwards (Fig. 1a); or similarly, if a process p sends an unmatched message to
r, any process g that receives subsequent messages from p will not be able to
send matched messages to r afterwards (Fig. 1b). When an MSC satisfies the
constraint imposed by mailbox communication, we say that it satisfies causal
delivery. Notice that, by construction, all executions satisfy causal delivery.

Definition 4 (Causal Delivery). Let (Ev, A\, <) be an MSC. We say that it
satisfies causal delivery if the MSC has a linearisation e = a; . .. ay such that for
any two eventsi < j such that a; = send(p,q,v) and a; = send(p’, q, V'), either
a; is unmatched, or there are ', j" such that a; H ay, aj Haj, and i < j'.

Our definition enforces the following intuitive property.

On the k-synchronizability of Systems 161

Proposition 1. An MSC msc satisfies causal delivery if and only if there is a
system & and an execution e € asEx(S) such that msc = msc(e).

We now recall from [4] the definition of conflict graph depicting the causal
dependencies between message exchanges. Intuitively, we have a dependency
whenever two messages have a process in common. For instance an 55, depen-
dency between message exchanges v and v’ expresses the fact that v’ has been
sent after v, by the same process.

Definition 5 (Conflict Graph). The conflict graph CG(e) of a sequence of
actions e = ay - - - a,, is the labeled graph (V, {g}xny{Rys}) where V' is the set
of message exchanges of e, and for all X,Y € {S, R}, for all v,v' € V, there is
a XY dependency edge v 2N W between v and v' if there are i < j such that
{a;} =vNX, {a;} =v'NY, and procy (v) = procy (v').

Notice that each linearisation e of an MSC will have the same conflict graph.
We can thus talk about an MSC and the associated conflict graph. (As an exam-
ple see Figs. 1c and 1d.)

We write v — v/ if v 22 o for some X,Y € {R,S}, and v —* v’ if there is
a (possibly empty) path from v to v’.

3 k-synchronizable Systems

In this section, we define k-synchronizable systems. The main contribution of
this part is a new characterisation of k-synchronizable executions that corrects
the one given in [4].

In the rest of the paper, k denotes a given integer k& > 1. A k-exchange
denotes a sequence of actions starting with at most k sends and followed by at
most k receives matching some of the sends. An MSC is k-synchronous if there
exists a linearisation that is breakable into a sequence of k-exchanges, such that
a message sent during a k-exchange cannot be received during a subsequent one:
either it is received during the same k-exchange, or it remains orphan forever.

Definition 6 (k-synchronous). An MSC msc is k-synchronous if:

1. there exists a linearisation of msc e = ey - eg - - e, where for all i € [1..n],
e; € Sgk . ng,

2. msc satisfies causal delivery,

3. for all j,3" such that a; H aj holds in e, a; H aj holds in some e;.

An execution e is k-synchronizable if msc(e) is k-synchronous.

We write sTr, (&) to denote the set {msc(e) | e € asEx(S) and msc(e) is
k-synchronous}.

Ezample 1 (k-synchronous MSCs and k-synchronizable Ezecutions).

162 C. Di Giusto et al.

p q r p q T P q r S
N
Va2 / V1 va \&
< —— > >
V3
V3 N V2 \Z! R
7] V5
vy \ T T vs T \
(a) (b) (c) (d)

Fig.2: (a) the MSC of Example 1.1. (b) the MSC of Example 1.2. (c) the MSC
of Example 2 and (d) its conflict graph.

1. There is no k such that the MSC in Fig. 2a is k-synchronous. All messages
must be grouped in the same k-exchange, but it is not possible to schedule
all the sends first, because the reception of vi happens before the sending of
vs. Still, this MSC satisfies causal delivery.

2. Let e; = send(r, q,vs)-send(q,p,va)-send(p,q,v1) -rec(q,p, va) rec(r,q,vs)
be an execution. Its MSC, msc(e;) depicted in Fig. 2b satisfies causal deliv-
ery. Notice that e; can not be divided in 1-exchanges. However, if we consider
the alternative linearisation of msc(ey): ea = send(p,q, v1) - send(q,p, va) -
rec(q, p,va) - send(r,q,vs) - rec(r,q, vs), we have that es is breakable into 1-
exchanges in which each matched send is in a 1-exchange with its reception.
Therefore, msc(eq) is 1-synchronous and e; is 1-synchronizable. Remark that
es is not an execution and there exists no execution that can be divided into
l-exchanges. A k-synchronous MSC highlights dependencies between mes-
sages but does not impose an order for the execution.

Comparison with [4]. In [4], the authors define set sEx,(S) as the set of k-
synchronous executions of system & in the k-synchronous semantics. Nonetheless
as remarked in Example 1.2 not all executions of a system can be divided into
k-exchanges even if they are k-synchronizable. Thus, in order not to lose any
executions, we have decided to reason only on MSCs (called traces in [4]).

Following standard terminology, we say that a set U C V of vertices is a
strongly connected component (SCC) of a given graph (V, —) if between any two
vertices v,v’ € U, there exist two oriented paths v —* v’ and v/ —* v. The
statement below fixes some issues with Theorem 1 in [4].

Theorem 1 (Graph Characterisation of k-synchronous MSCs). Let msc
be a causal delivery MSC. msc is k-synchronous iff every SCC in its conflict
graph is of size at most k and if no RS edge occurs on any cyclic path.

Ezample 2 (A 5-synchronous MSC). Fig. 2¢ depicts a 5-synchronous MSC, that
is not 4-synchronous. Indeed, its conflict graph (Fig. 2d) contains a SCC of size
5 (all vertices are on the same SCC).

On the k-synchronizability of Systems 163

Comparison with [{]. Bouajjani et al. give a characterisation of k-synchronous
executions similar to ours, but they use the word cycle instead of SCC, and
the subsequent developments of the paper suggest that they intended to say
Hamiltonian cycle (i.e., a cyclic path that does not go twice through the same
vertex). It is not the case that a MSC is k-synchronous if and only if every
Hamiltonian cycle in its conflict graph is of size at most k and if no RS edge
occurs on any cyclic path. Indeed, consider again Example 2. This graph is not
Hamiltonian, and the largest Hamiltonian cycle indeed is of size 4 only. But as we
already discussed in Example 2, the corresponding MSC is not 4-synchronous.

As a consequence, the algorithm that is presented in [4] for deciding whether
a system is k-synchronizable is not correct as well: the MSC of Fig. 2c¢ would be
considered 4-synchronous according to this algorithm, but it is not.

4 Decidability of Reachability for k-synchronizable
Systems

We show that the reachability problem is decidable for k-synchronizable systems.
While proving this result, we have to face several non-trivial aspects of causal
delivery that were missed in [4] and that require a completely new approach.

Definition 7 (k-synchronizable System). A system & is k-synchronizable
if all its executions are k-synchronizable, i.e., sTry(6) = asTr(S).

In other words, a system & is k-synchronizable if for every execution e of G,
msc(e) may be divided into k-exchanges.

Remark 1. In particular, a system may be k-synchronizable even if some of its
executions fill the buffers with more than k& messages. For instance, the only
linearisation of the 1-synchronous MSC Fig. 2b that is an execution of the system
needs buffers of size 2.

For a k-synchronizable system, the reachability problem reduces to the rea-
chability through a k-synchronizable execution. To show that k-synchronous
reachability is decidable, we establish that the set of k-synchronous MSCs is
regular. More precisely, we want to define a finite state automaton that accepts
a sequence eg - es - - - e, of k-exchanges if and only if they satisfy causal delivery.

We start by giving a graph-theoretic characterisation of causal delivery. For
this, we define the extended edges v e v’ of a given conflict graph. The relation
X% is defined in Fig. 3 with X,Y € {S, R}. Intuitively, v X0 expresses that
event X of v must happen before event Y of v due to either their order on
the same machine (Rule 1), or the fact that a send happens before its matching
receive (Rule 2), or due to the mailbox semantics (Rules 3 and 4), or because
of a chain of such dependencies (Rule 5). We observe that in the extended con-
flict graph, obtained applying such rules, a cyclic dependency appears whenever
causal delivery is not satisfied.

164 C. Di Giusto et al.

XY RR

v = v vNR#(D vy 25y

(Rule 1) % (Rule 2) —n (Rule 3) %
V1 —=» Uy) V1 - U2
viNR#(v2NR=10 Xyvz
rocp(v1) = procg (v U1 Z7*77% U2
(Rule 4) procy(v1) = procp(v2) (Rule 5) <
SS V1 -—> VU2

V1 —=> V2

Fig. 3: Deduction rules for extended dependency edges of the conflict graph

Ezxample 3. Fig. ba and 5b depict an MSC and its associated conflict graph with
some extended edges. This MSC violates causal delivery and there is a cyclic

SS
dependency v --» v1.

Theorem 2 (Graph-theoretic Characterisation of Causal Delivery). An
MSC satisfies causal delivery iff there is no cyclic causal dependency of the form

5S
v --» v for some vertex v of its extended conflict graph.

Let us now come back to our initial problem: we want to recognise with finite
memory the sequences ey, es...¢e, of k-exchanges that composed give an MSC
that satisfies causal delivery. We proceed by reading each k-exchange one by one
in sequence. This entails that, at each step, we have only a partial view of the
global conflict graph. Still, we want to determine whether the acyclicity condition
of Theorem 2 is satisfied in the global conflict graph. The crucial observation
is that only the edges generated by Rule 4 may “go back in time”. This means
that we have to remember enough information from the previously examined k-
exchanges to determine whether the current k-exchange contains a vertex v that
shares an edge with some unmatched vertex v’ seen in a previous k-exchange
and whether this could participate in a cycle. This is achieved by computing two
sets of processes C's, and Cr,y that collect the following information: a process
q is in Cg, if it performs a send action causally after an unmatched send to
p, or it is the sender of the unmatched send; a process ¢ belongs to Cg, if it
receives a message that was sent after some unmatched message directed to p.
More precisely, we have:

Cs,p = {procg(v) | v’ 5% v & o' is unmatched & procp(v') = p}
Cr,p = {procg(v) | v/ 5% v & o' is unmatched & procg(v') =p & vN R # 0}

These sets abstract and carry from one k-exchange to another the necessary
information to detect violations of causal delivery. We compute them in any local
conflict graph of a k-exchange incrementally, i.e., knowing what they were at the
end of the previous k-exchange, we compute them at the end of the current one.
More precisely, let e = s+« 8y, - 71 - - 4y be a k-exchange, CG(e) = (V, E) its
conflict graph and B : P — (2F x 2%) the function that associates to each p € P
the two sets B(p) = (Cs,p, Cr,p). Then, the conflict graph CG(e, B) is the graph
(V',E") with V! = VU {4, | p € P} and E’' D E as defined below. For each
process p € P, the “summary node” 1), shall account for all past unmatched

On the k-synchronizability of Systems 165

€=81"""Sm -TL - Tm S1-Sm€S" ri---rpy €R* 0<m' <m<k
(I,Bufy) = (I, Buf) for some Buf
for all p ceP B(p) = (CS7P7CR7P) and B/(p) = (Cé,pac;?,p)a
Unm, = {¢,} U {v | v is unmatched, procg(v) = p}
58
Cxp=CxpU{p | p € Cxq,0 =5 1y, (procg(v) = p or v =1b)} U
{procy (v) | v € Unm, NV, X = S} U {procy (V') | v Hvve Unmy,,vN X # 0}
forallpeP,p & Ck,

(LB) = (7, B)
Fig.4: Definition of the relation e:’:>
C

messages sent to p that occurred in some k-exchange before e. E’ is the set E

of edges X among message exchanges of e, as in Definition 5, augmented with
the following set of extra edges that takes into account summary nodes.

{d)pgﬂprocx v) € Cgp & vN X # 0 for some X € {S, R}} (
v) € Crp & vN R # () for some X € {S,R}} (
€ Cr,p & v is unmatched} (3

(

=p&vNR#D} U {thy 2>, | p € Cryl

(
U {22 v] procy (

U {wpﬁm) | procg(v

(v)
U {v 55, Uy | procg(v)

These extra edges summarise/abstract the connections to and from previous

. . . 58S SR
k-exchanges. Equation (1) considers connections — and — that are due to
two sends messages or, respectively, a send and a receive on the same process.

. . . RR RS,
Equations (2) and (3) considers connections — and —= that are due to two
received messages or, respectively, a receive and a subsequent send on the same

process. Notice how the rules in Fig. 3 would then imply the existence of a

ss ss
connection --», in particular Equation (3) abstract the existence of an edge --»

built because of Rule 4. Equations in (4) abstract edges that would connect the
current k-exchange to previous ones. As before those edges in the global conflict
graph would correspond to extended edges added because of Rule 4 in Fig. 3.
Once we have this enriched local view of the conflict graph, we take its extended

XY
version. Let --» denote the edges of the extended conflict graph as defined from
rules in Fig. 3 taking into account the new vertices 1/, and their edges.

Finally, let G be a system and €:’:> be the transition relation given in Fig. 4
C

among abstract configurations of the form (l_: B). [is a global control state of

S and B : P — (2° x 2%) is the function defined above that associates to each

process p a pair of sets of processes B(p) = (Cs,p, Cr,p). Transition e:’j> updates
C

these sets with respect to the current k-exchange e. Causal delivery is verified by
checking that for all p € P,p ¢ C}a,p meaning that there is no cyclic dependency

166 C. Di Giusto et al.

- 7 ss| ss 55 SS\\‘\ Crr= 0
, / o Ch, =
" v2 ! 2 < o~ g
J 5 1ss Che =
L | I
P==aa e A e B | N T 7
V3 1 ss '. RR /lss }sz/ Cor = ig)
e \ [os] 78S] Cre = {s}
e > \ | \ Csyr {p, q}
| N ss| 1ss . SS o Z e

(a) (b) (c)

Fig.5: (a) an MSC (b) its associated global conflict graph, (c) the conflict graphs
of its k-exchanges

as stated in Theorem 2. The initial state is (Io, Bo), where By : P — (2F x 2P)
denotes the function such that By(p) = (0,0) for all p € P.

Ezample 4 (An Invalid Ezecution). Let e = e; - es with e; and ey the two
2-exchanges of this execution. such that e; = send(q,r,v1) - send(q, s, va) -
rec(q,s,va) and eq = send(p, s,vs) - rec(p, s, vs) - send(p,r,vy) - rec(p,r,vy).
Fig. 5a and 5c¢ show the MSC and corresponding conflict graph of each of the
2-exchanges. Note that two edges of the global graph (in blue) “go across” k-
exchanges. These edges do not belong to the local conflict graphs and are mim-
icked by the incoming and outgoing edges of summary nodes. The values of
sets Cs, and Cg,, at the beginning and at the end of the k-exchange are given
on the right. All other sets Cg, and Cg, for p # r are empty, since there is
only one unmatched message to process r. Notice how at the end of the second
k-exchange, r € C}C,r signalling that message v, violates causal delivery.

Comparison with [4]. In [4] the authors define :> in a rather different way:

they do not explicitly give a graph-theoretic Characterlbatlon of causal delivery;
instead they compute, for every process p, the set B(p) of processes that either
sent an unmatched message to p or received a message from a process in B(p).
They then make sure that any message sent to p by a process ¢ € B(p) is
unmatched. According to that definition, the MSC of Fig. 5b would satisfy causal
delivery and would be 1-synchronous. However, this is not the case (this MSC
does not satisfy causal delivery) as we have shown in Example 3. Due to to the
above errors, we had to propose a considerably different approach. The extended
edges of the conflict graph, and the graph-theoretic characterisation of causal
delivery as well as summary nodes, have no equivalent in [4].

Next lemma proves that Fig. 4 properly characterises causal delivery.

On the k-synchronizability of Systems 167

Lemma 1. An MSC msc is k-synchronous iff there ise = ey ---e, a lineari-
e,k en,k

sation such that (Iy, By) === (I, B') for some global state I’ and some
C Ci
B' P — (27 x 2P).

Note that there are only finitely many abstract configurations of the form
(I, B) with [a tuple of control states and B : P — (2F x 2F). Moreover, since V
is finite, the alphabet over the possible k-exchange for a given k is also finite.

Therefore == is a relation on a finite set, and the set sTr;,(&) of k-synchronous

C
MSCs of a system & forms a regular language. It follows that it is decidable
whether a given abstract configuration of the form (I, B) is reachable from the
initial configuration following a k-synchronizable execution.

Theorem 3. Let S be a k-synchronizable system and [a global control state of
&. The problem whether there exists e € asEx(&) and Buf such that (ly, Bufg) =
(I,Buf) is decidable.

Remark 2. Deadlock-freedom, unspecified receptions, and absence of orphan mes-
sages are other properties that become decidable for a k-synchronizable system
because of the regularity of the set of k-synchronous MSCs.

5 Decidability of k-synchronizability for Mailbox Systems

We establish the decidability of k-synchronizability; our approach is similar to
the one of [4] based on the notion of borderline violation, but we adjust it to
adapt to the new characterisation of k-synchronizable executions (Theorem 1).

Definition 8 (Borderline Violation). A non k-synchronizable execution e is
a borderline violation if e = ¢’ - r, r is a reception and €' is k-synchronizable.

Note that a system & that is not k-synchronizable always admits at least one
borderline violation €’ - r € asExz (&) with r € R: indeed, there is at least one
execution e € asFEx(S) which contains a unique minimal prefix of the form ¢’ -r
that is not k-synchronizable; moreover since ¢’ is k-synchronizable, r cannot be a
k-exchange of just one send action, therefore it must be a receive action. In order
to find such a borderline violation, Bouajjani et al. introduced an instrumented
system &’ that behaves like &, except that it contains an extra process 7, and
such that a non-deterministically chosen message that should have been sent
from a process p to a process ¢ may now be sent from p to 7, and later forwarded
by 7 to ¢. In &', each process p has the possibility, instead of sending a message
v to ¢, to deviate this message to 7; if it does so, p continues its execution as if it
really had sent it to q. Note also that the message sent to 7 get tagged with the
original destination process g. Similarly, for each possible reception, a process
has the possibility to receive a given message not from the initial sender but from
7. The process 7 has an initial state from which it can receive any messages from
the system. Each reception makes it go into a different state. From this state,

168 C. Di Giusto et al.

it is able to send the message back to the original recipient. Once a message
is forwarded, m reaches its final state and remains idle. The following example
illustrates how the instrumented system works.

Ezample 5 (A Deviated Message).

Let e, es be two executions of a system & with
MSCs respectively msc(eq) and msc(ez). ey is not 1-
synchronizable. It is borderline in &. If we delete the last P

<
i
<
3

reception, it becomes indeed 1-synchronizable. msc(ez) | , (q,v1)
is the MSC obtained from the instrumented system &’ va Vo i
where the message vy is first deviated to m and then
sent back to ¢ from 7. \4 V1
Note that msc(ez) is 1-synchronous. In this case, the
instrumented system &’ in the 1-synchronous semantics

msc(ey) msc(es)

“reveals” the existence of a borderline violation of &.

For each execution e - r € asEx(S) that ends with a reception, there exists
an execution deviate(e -) € asEx(G’) where the message exchange associated
with the reception r has been deviated to 7; formally, if e- 7 =e; - s eo - r with
r =rec(p,q,v) and s H r, then

deviate(e-r) = ey-send(p, 7, (q,v))-rec(p, 7, (q,v))-ea-send(m, q, (v))-rec(w, q, v).

Definition 9 (Feasible Execution, Bad Execution). A k-synchronizable
exzecution € of &' is feasible if there is an execution e -r € asEx(S) such that
deviate(e-r) = ¢’. A feasible execution ¢’ = deviate(e-r) of & is bad if execution
e -1 is not k-synchronizable in &.

Ezample 6 (A Non-feasible Execution). p q
Let ¢’ be an execution such that msc(e’) is as depicted [4,v1)
on the right. Clearly, this MSC satisfies causal delivery
and could be the execution of some instrumented system
&'. However, the sequence e-r such that deviate(e-r) = ¢’ Vi
does not satisfy causal delivery, therefore it cannot be
an execution of the original system &. In other words,
the execution €’ is not feasible.

hS
IS

V2

msc(e’) msc(e - r)

Lemma 2. A system & is not k-synchronizable iff there is a k-synchronizable
execution €' of &' that is feasible and bad.

As we have already noted, the set of k-synchronous MSCs of &’ is regular.
The decision procedure for k-synchronizability follows from the fact that the
set of MSCs that have as linearisation a feasible bad execution as we will see,
is regular as well, and that it can be recognised by an (effectively computable)
non-deterministic finite state automaton. The decidability of k-synchronizability
follows then from Lemma 2 and the decidability of the emptiness problem for
non-deterministic finite state automata.

On the k-synchronizability of Systems 169

Recognition of Feasible Executions. We start with the automaton that
recognises feasible executions; for this, we revisit the construction we just used
for recognising sequences of k-exchanges that satisfy causal delivery.

In the remainder, we assume an execution ¢ € asFExz(G’) that contains
exactly one send of the form send(p,n,(¢,v)) and one reception of the form

rec(m, q,v), this reception being the last action of ¢’. Let (V, {g}x7yE{R7s}) be
the conflict graph of ¢’. There are two uniquely determined vertices Usgart, Ustop €
V such that procy(vstart) = 7 and procg(vstop) = 7 that correspond, respectively,
to the first and last message exchanges of the deviation. The conflict graph of
e - 7 is then obtained by merging these two nodes.

Lemma 3. The execution €' is not feasible iff there is a vertex v in the conflict

SS RR
graph of € such that Usare == U — Ustop-

In order to decide whether an execution e’ is feasible, we want to forbid that
a send action send(p’, ¢q,v') that happens causally after vgan is matched by a
receive rec(p’, ¢, v') that happens causally before the reception veop. As a matter
of fact, this boils down to deal with the deviated send action as an unmatched
send. So we will consider sets of processes Cg and CF similar to the ones used

for %, but with the goal of computing which actions happen causally after the
C

send to m. We also introduce a summary node s, and the extra edges following
the same principles as in the previous section. Formally, let B : P — (2F x 2F),
CZ,C% C P and e € SSFRSF be fixed, and let CG(e,B) = (V',E’) be the
constraint graph with summary nodes for unmatched sent messages as defined
in the previous section. The local constraint graph CG(e, B, Cg,CF,) is defined
as the graph (V”, E") where V" = V' U {tstart} and E” is E' augmented with

{Ystart 25 v | procy (v) € CF & vN X # 0 for some X € {S, R}}
U {¥start S5 | procy (v) € C% & vN R # () for some X € {S, R}}

U {¥start S5 | procg(v) € CF & v is unmatched} U {tstant 55, vy | p e CR}

As before, we consider the “closure” X% of these edges by the rules of Fig. 3.

The transition relation ::> is defined in Fig. 6. It relates abstract configurations
€eas

of the form (ﬁ B,C, dest,) with C= (Cs,x,Cr,x) and dest, € PU{_L} storing to
whom the message deviated to m was supposed to be delivered. Thus, the initial
abstract configuration is (lg, Bo, (0,(), L), where | means that the processus
dest, has not been determined yet. It will be set as soon as the send to process
7 is encountered.

Lemma 4. Let ¢’ be an execution of &'. Then €' is a k-synchronizable feasible
execution iff there are ¢ = ey -+ - e, - send(mw,q,v) - rec(m,q,v) with ey, ..., e, €
S<kpsk pr P 2F (' e (2%)2, and a tuple of control states I such that
msc(e’) = msc(e”), m & Cr,q (with B'(q¢) = (Cs,4,Cryq)), and

(Ig, Bo, (1,0), 1) 25 . =28 (77 B/).

feas feas

170 C. Di Giusto et al.

(B)<S (,B) e=aran (V) procg(v) £

(Vu,v") procg(v) = procg(v') =7 = v=1v"Adest, = L
(Vv) v 3 send(p, 7, (¢,v)) = desty =¢ destr # L = dest) =destx
C%' = C% U{procx (V') | v TV EVNX£D& (procg(v) = 7 Or ¥ = Pstart) }
U {procg(v) | procg(v) =7 & X = S}

U{p|lp€eCx,q&v =5 1q & (procg(v) =T or v = Pstart) }
destl ¢ CR’

(I.B,C%,CF, dest,) f:’% (I, B',C%' CF/, dest),)

eas

Fig. 6: Definition of the relation :feg
eas
Comparison with [4]. In [4] the authors verify that an execution is feasible with
a monitor which reviews the actions of the execution and adds processes that
no longer are allowed to send a message to the receiver of . Unfortunately, we
have here a similar problem that the one mentioned in the previous comparison
paragraph. According to their monitor, the following execution ¢’ = deviate(e-r)
is feasible, i.e., is runnable in &’ and e - r is runnable in &.

e = send(q,m, (r,v1)) - rec(q,m, (r,v1)) - send(q, s, v2) - rec(q, s, va)-

send(p, S, VS) ! TGC(p, S, VS) : Send(pa T, V4) : rec(p, r, V4)'

send(m,r,v1) - rec(m,r,vy)

However, this execution is not feasible because there is a causal dependency
between vy and vs. In [4] this execution would then be considered as feasible
and therefore would belong to set sTr(&’). Yet there is no corresponding exe-
cution in asTr(S), the comparison and therefore the k-synchronizability, could
be distorted and appear as a false negative.

Recognition of Bad Executions. Finally, we define a non-deterministic finite
state automaton that recognizes MSCs of bad executions, i.e., feasible executions
e/ = deviate(e - r) such that e - r is not k-synchronizable. We come back to the

“non-extended” conflict graph, without edges of the form 3(—{. Let Post™(v) =
{v € V | v =* v} be the set of vertices reachable from v, and let Pre*(v) =
{v € V | v/ =* v} be the set of vertices co-reachable from v. For a set of vertices
U CV,let Post*(U) = [J{Post*(v) | v € U}, and Pre*(U) = |J{Pre*(v) | v € U}.

Lemma 5. The feasible execution €’ is bad iff one of the two holds

1. Ustart —>*R—S>—>* Ustop, OT
2. the size of the set Post™ (Ustart) N Pre™(vsiop) s greater or equal to k + 2.

In order to determine whether a given message exchange v of CG(e’) should
be counted as reachable (resp. co-reachable), we will compute at the entry and
exit of every k-exchange of ¢/ which processes are “reachable” or “co-reachable”.

On the k-synchronizability of Systems 171

Ezample 7. (Reachable and Co-reachable Processes)

Consider the MSC on the right made of five 1-exchanges.
While sending message (s, vp) that corresponds to Usgart, (5, v0)
process r becomes “reachable”: any subsequent message ’ >
exchange that involves r corresponds to a vertex of the V3
conflict graph that is reachable from vga:. While send-

ing vo, process s becomes “reachable”, because process vy [
r will be reachable when it will receive message vs. Sim- Vo
ilary, ¢ becomes reachable after receiving vz because r
was reachable when it sent vz, and p becomes reachable
after receiving v4 because ¢ was reachable when it sent
vy. Co-reachability works similarly, but reasoning backwards on the timelines.
For instance, process s stops being “co-reachable” while it receives vq, process
r stops being co-reachable after it receives vy, and process p stops being co-
reachable by sending vi. The only message that is sent by a process being both
reachable and co-reachable at the instant of the sending is vs, therefore it is the
only message that will be counted as contributing to the SCC.

V3

msc(e)

More formally, let e be sequence of actions, CG(e) its conflict graph and
P,Q two sets of processes, Post.(P) = Post* ({v | procs(v) N P # @}) and

Pre.(Q) = Pre* ({v | procs(v) N Q # (Z)}) are introduced to represent the local

view through k-exchanges of Post™(vUstart) and Pre™(vstop). For instance, for e
as in Example 7, we get Post.({7}) = {(s, Vo), V2, V3,v4,vo} and Pre.({r}) =
{vo,Vva,v1,(s,vo)}. In each k-exchange e; the size of the intersection between
Post., (P) and Pre,, (Q) will give the local contribution of the current k-exchange

to the calculation of the size of the global SCC. In the transition relation z:’]:>
a

this value is stored in variable cnt. The last ingredient to consider is to recognise
if an edge RS belongs to the SCC. To this aim, we use a function lastisRec :
P — {True, False} that for each process stores the information whether the last
action in the previous k-exchange was a reception or not. Then depending on
the value of this variable and if a node is in the current SCC or not the value of
sawRS is set accordingly.

The transition relation z:’]:> defined in Fig. 7 deals with abstract confi-
a

gurations of the form (P, @, cnt, sawRS, lastisRec’) where P,Q C P, sawRS is a
boolean value, and cnt is a counter bounded by k+2. We denote by lastisRecg
the function where all lastisRec(p) = False for all p € P.

Lemma 6. Let ¢’ be a feasible k-synchronizable execution of &'. Then €' is a bad
execution iff there are €’ = ey --- e, - send(w, q,v) - rec(m, q,v) with ey, ..., e, €
S<kR=<Ek and msc(e') = msc(e”), P',Q C P, sawRS € {True,False}, cnt €
{0,...,k+2}, such that

en,k

({r},Q,0, False, 1lastisRecy) % . ﬁ (P',{r}, cnt, sawRS, lastisRec)
a a

172 C. Di Giusto et al.

P’ = procs(Post.(P)) Q = procs(Pre.(Q"))
SCC. = Post.(P) N Pre.(Q")
cnt’ = min(k + 2,cnt +n) where n = |SCC.|
lastisRec’(q) & (Jv € SCC..procy(v) = gAvN R # D)V
(lastisRec(q)A Av € V.procg(v) = q)

sawRS' = sawRSV
(Fv € SCC.)(Fp € P\ {n}) procg(v) = p A lastisRec(p) Ap€ PNQ

k .
(P, Q, cnt, sawRS, lastisRec) % (P, @', cnt’, sawRS’, lastisRec’)
El

Fig. 7: Definition of the relation z:’]}
a

and at least one of the two holds: either sawRS = True, or cnt = k + 2.

Comparison with [4]. As for the notion of feasibility, to determine if an execution
is bad, in [4] the authors use a monitor that builds a path between the send to
process 7 and the send from 7. In addition to the problems related to the wrong
characterisation of k-synchronizability, this monitor not only can detect an RS
edge when there should be none, but also it can miss them when they exist. In
general, the problem arises because the path is constructed by considering only
an endpoint at the time.

We can finally conclude that:

Theorem 4. The k-synchronizability of a system & is decidable for k > 1.

6 k-synchronizability for Peer-to-Peer Systems

In this section, we will apply k-synchronizability to peer-to-peer systems. A peer-
to-peer system is a composition of communicating automata where each pair of
machines exchange messages via two private FIFO buffers, one per direction of
communication. Here we only give an insight on what changes with respect to
the mailbox setting.

Causal delivery reveals the order imposed by FIFO buffers. Definition 4 must
then be adapted to account for peer-to-peer communication. For instance, two
messages that are sent to a same process p by two different processes can be
received by p in any order, regardless of any causal dependency between the two
sends. Thus, checking causal delivery in peer-to-peer systems is easier than in the
mailbox setting, as we do not have to carry information on causal dependencies.

Within a peer-to-peer architecture, MSCs and conflict graphs are defined
as within a mailbox communication. Indeed, they represents dependencies over
machines, i.e., the order in which the actions can be done on a given machine, and
over the send and the reception of a same message, and they do not depend on
the type of communication. The notion of k-exchange remains also unchanged.

On the k-synchronizability of Systems 173

Decidability of Reachability for k-synchronizable Peer-to-Peer Sys-
tems. To establish the decidability of reachability for k-synchronizable peer-to-

2p
ey . ek P .
peer systems, we define a transition relation :d> for a sequence of action e

describing a k-exchange. As for mailbox Systenis, if a send action is unmatched
in the current k-exchange, it will stay orphan forever. Moreover, after a process
p sent an orphan message to a process ¢, p is forbidden to send any matched
message to ¢q. Nonetheless, as a consequence of the simpler definition of causal
delivery, , we no longer need to work on the conflict graph. Summary nodes and
extended edges are not needed and all the necessary information is in function
B that solely contains all the forbidden senders for process p.

The characterisation of a k-synchronizable execution is the same as for mail-
box systems as the type of communication is not relevant. We can thus conclude,
as within mailbox communication, that reachability is decidable.

Theorem 5. Let S be a k-synchronizable system and la global control state of
&. The problem whether there exists e € asEx(S) and Buf such that (1o, Bufy) =
(I,Buf) is decidable.

Decidability of k-synchronizability for Peer-to-Peer Systems. As in
mailbox system, the detection of a borderline execution determines whether a
system is k-synchronizable.

) . kPP
The relation transition ——> allows to obtain feasible executions. Differ-

ently from the mailbox setting,swe need to save not only the recipient dest, but
also the sender of the delayed message (information stored in variable exp._).
The transition rule then checks that there is no message that is violating causal
delivery, i.e., there is no message sent by exp, to dest, after the deviation.

Finally the recognition of bad execution, works in the same way as for mailbox
N . . e P2P

systems. The characterisation of a bad execution and the definition of %

al

are, therefore, the same.
As for mailbox systems, we can, thus, conclude that for a given k, k-synchro-
nizability is decidable.

Theorem 6. The k-synchronizability of a system & is decidable for k > 1.

7 Concluding Remarks and Related works

In this paper we have studied k-synchronizability for mailbox and peer-to-peer
systems. We have corrected the reachability and decidability proofs given in [4].
The flaws in [4] concern fundamental points and we had to propose a consid-
erably different approach. The extended edges of the conflict graph, and the
graph-theoretic characterisation of causal delivery as well as summary nodes,

. : . . k k -
have no equivalent in [4]. Transition relations ::> and % building on the
eas a

174 C. Di Giusto et al.

graph-theoretic characterisations of causal delivery and k-synchronizability, de-
part considerably from the proposal in [4].

We conclude by commenting on some other related works. The idea of “com-
munication layers” is present in the early works of Elrad and Francez [8] or Chou
and Gafni [7]. More recently, Chaouch-Saad et al. [6] verified some consensus al-
gorithms using the Heard-Of Model that proceeds by “communication-closed
rounds”. The concept that an asynchronous system may have an “equivalent”
synchronous counterpart has also been widely studied. Lipton’s reduction [14]
reschedules an execution so as to move the receive actions as close as possible
from their corresponding send. Reduction recently received an increasing interest
for verification purpose, e.g. by Kragl et al. [12], or Gleissenthal et al. [11].

Existentially bounded communication systems have been studied by Ge-
nest et al. [10,15]: a system is existentially k-bounded if any execution can be
rescheduled in order to become k-bounded. This approach targets a broader class
of systems than k-synchronizability, because it does not require that the execu-
tion can be chopped in communication-closed rounds. In the perspective of the
current work, an interesting result is the decidability of existential k-boundedness
for deadlock-free systems of communicating machines with peer-to-peer channels.
Despite the more general definition, these older results are incomparable with
the present ones, that deal with systems communicating with mailboxes, and
not peer-to-peer channels.

Basu and Bultan studied a notion they also called synchronizability, but it
differs from the notion studied in the present work; synchronizability and k-
synchronizability define incomparable classes of communicating systems. The
proofs of the decidability of synchronizability [3,2] were shown to have flaws by
Finkel and Lozes [9]. A question left open in their paper is whether synchroni-
zability is decidable for mailbox communications, as originally claimed by Basu
and Bultan. Akroun and Salaiin defined also a property they called stability [1]
and that shares many similarities with the synchronizability notion in [2].

Context-bounded model-checking is yet another approach for the automatic
verification of concurrent systems. La Torre et al. studied systems of commu-
nicating machines extended with a calling stack, and showed that under some
conditions on the interplay between stack actions and communications, context-
bounded reachability was decidable [13]. A context-switch is found in an exe-
cution each time two consecutive actions are performed by a different partici-
pant. Thus, while k-synchronizability limits the number of consecutive sendings,
bounded context-switch analysis limits the number of times two consecutive ac-
tions are performed by two different processes.

As for future work, it would be interesting to explore how both context-
boundedness and communication-closed rounds could be composed. Moreover
refinements of the definition of k-synchronizability can also be considered. For
instance, we conjecture that the current development can be greatly simplified
if we forbid linearisation that do not correspond to actual executions.

On the k-synchronizability of Systems 175

References

1.

10.

11.

Akroun, L., Salaiin, G.: Automated verification of automata communicating via
FIFO and bag buffers. Formal Methods in System Design 52(3), 260-276 (2018).
https://doi.org/10.1007 /s10703-017-0285-8

Basu, S., Bultan, T.. On deciding synchronizability for asynchronously
communicating systems. Theor. Comput. Sci. 656, 60-75 (2016).
https://doi.org/10.1016/j.tcs.2016.09.023

Basu, S., Bultan, T., Ouederni, M.: Synchronizability for verification of asyn-
chronously communicating systems. In: Kuncak, V., Rybalchenko, A. (eds.) Verifi-
cation, Model Checking, and Abstract Interpretation - 13th International Con-
ference, VMCAI 2012, Philadelphia, PA, USA, January 22-24, 2012. Proceed-
ings. Lecture Notes in Computer Science, vol. 7148, pp. 56-71. Springer (2012).
https://doi.org/10.1007/978-3-642-27940-9 5

Bouajjani, A., Enea, C., Ji, K., Qadeer, S.: On the completeness of verifying mes-
sage passing programs under bounded asynchrony. In: Chockler, H., Weissenbacher,
G. (eds.) Computer Aided Verification - 30th International Conference, CAV 2018,
Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July
14-17, 2018, Proceedings, Part II. Lecture Notes in Computer Science, vol. 10982,
pp- 372-391. Springer (2018). https://doi.org/10.1007/978-3-319-96142-2_23
Bouajjani, A., Habermehl, P., Vojnar, T.: Abstract regular model checking.
In: Alur, R., Peled, D.A. (eds.) Computer Aided Verification, 16th Interna-
tional Conference, CAV 2004, Boston, MA, USA, July 13-17, 2004, Proceed-
ings. Lecture Notes in Computer Science, vol. 3114, pp. 372-386. Springer (2004).
https://doi.org/10.1007/978-3-540-27813-9_29

Chaouch-Saad, M., Charron-Bost, B., Merz, S.: A reduction theorem for the veri-
fication of round-based distributed algorithms. In: Bournez, O., Potapov, I. (eds.)
Reachability Problems, 3rd International Workshop, RP 2009, Palaiseau, France,
September 23-25, 2009. Proceedings. Lecture Notes in Computer Science, vol. 5797,
pp- 93-106. Springer (2009). https://doi.org/10.1007/978-3-642-04420-5_10

Chou, C., Gafni, E.: Understanding and verifying distributed algorithms us-
ing stratified decomposition. In: Dolev, D. (ed.) Proceedings of the Sev-
enth Annual ACM Symposium on Principles of Distributed Computing,
Toronto, Ontario, Canada, August 15-17, 1988. pp. 44-65. ACM (1988).
https://doi.org/10.1145/62546.62556

Elrad, T., Francez, N.: Decomposition of distributed programs into
communication-closed layers. Sci. Comput. Program. 2(3), 155-173 (1982).
https://doi.org/10.1016/0167-6423(83)90013-8

Finkel, A., Lozes, E.: Synchronizability of communicating finite state ma-
chines is mnot decidable. In: Chatzigiannakis, I., Indyk, P., Kuhn, F.
Muscholl, A. (eds.) 44th International Colloquium on Automata, Languages,
and Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland. LIPIcs,
vol. 80, pp. 122:1-122:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik
(2017). https://doi.org/10.4230/LIPIcs.ICALP.2017.122, http://www.dagstuhl.
de/dagpub/978-3-95977-041-5

Genest, B., Kuske, D., Muscholl, A.: On communicating automata with bounded
channels. Fundam. Inform. 80(1-3), 147-167 (2007), http://content.iospress.com/
articles/fundamenta-informaticae/fi80-1-3-09

von Gleissenthall, K., Kici, R.G., Bakst, A., Stefan, D., Jhala, R.: Pretend syn-
chrony: synchronous verification of asynchronous distributed programs. PACMPL
3(POPL), 59:1-59:30 (2019). https://doi.org/10.1145/3290372

https://doi.org/10.1007/s10703-017-0285-8
https://doi.org/10.1016/j.tcs.2016.09.023
https://doi.org/10.1007/978-3-642-27940-9_5
https://doi.org/10.1007/978-3-319-96142-2_23
https://doi.org/10.1007/978-3-540-27813-9_29
https://doi.org/10.1007/978-3-642-04420-5_10
https://doi.org/10.1145/62546.62556
https://doi.org/10.1016/0167-6423(83)90013-8
https://doi.org/10.4230/LIPIcs.ICALP.2017.122
http://www.dagstuhl.de/dagpub/978-3-95977-041-5
http://www.dagstuhl.de/dagpub/978-3-95977-041-5
http://content.iospress.com/articles/fundamenta-informaticae/fi80-1-3-09
http://content.iospress.com/articles/fundamenta-informaticae/fi80-1-3-09
https://doi.org/10.1145/3290372

176

12.

13.

14.

15.

C. Di Giusto et al.

Kragl, B., Qadeer, S., Henzinger, T.A.: Synchronizing the asynchronous. In:
Schewe, S., Zhang, L. (eds.) 29th International Conference on Concurrency The-
ory, CONCUR 2018, September 4-7, 2018, Beijing, China. LIPIcs, vol. 118,
pp. 21:1-21:17. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2018).
https://doi.org/10.4230/LIPIcs. CONCUR.2018.21

La Torre, S., Madhusudan, P., Parlato, G.: Context-bounded analysis of concurrent
queue systems. In: Ramakrishnan, C.R., Rehof, J. (eds.) Tools and Algorithms for
the Construction and Analysis of Systems, 14th International Conference, TACAS
2008, Held as Part of the Joint European Conferences on Theory and Practice
of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Proceed-
ings. Lecture Notes in Computer Science, vol. 4963, pp. 299-314. Springer (2008).
https://doi.org/10.1007/978-3-540-78800-3 21

Lipton, R.J.: Reduction: A method of proving properties of parallel programs.
Commun. ACM 18(12), 717-721 (1975). https://doi.org/10.1145/361227.361234
Muscholl, A.: Analysis of communicating automata. In: Dediu, A., Fernau, H.,
Martin-Vide, C. (eds.) Language and Automata Theory and Applications, 4th
International Conference, LATA 2010, Trier, Germany, May 24-28, 2010. Proceed-
ings. Lecture Notes in Computer Science, vol. 6031, pp. 50-57. Springer (2010).
https://doi.org/10.1007/978-3-642-13089-2_4

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use

is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

https://doi.org/10.4230/LIPIcs.CONCUR.2018.21
https://doi.org/10.1007/978-3-540-78800-3_21
https://doi.org/10.1145/361227.361234
https://doi.org/10.1007/978-3-642-13089-2_4
http://creativecommons.org/licenses/by/4.0/

®

Check for
updates

General Supervised Learning as Change
Propagation with Delta Lenses

Zinovy Diskin®9)
McMaster University, Hamilton, Canada
diskinz@mcmaster.ca

Abstract. Delta lenses are an established mathematical framework for
modelling and designing bidirectional model transformations (Bx). Fol-
lowing the recent observations by Fong et al, the paper extends the delta
lens framework with a a new ingredient: learning over a parameterized
space of model transformations seen as functors. We will define a notion
of an asymmetric learning delta lens with amendment (ala-lens), and
show how ala-lenses can be organized into a symmetric monoidal (sm)
category. We also show that sequential and parallel composition of well-
behaved (wb) ala-lenses are also wb so that wb ala-lenses constitute a
full sm-subcategory of ala-lenses.

1 Introduction

The goal of the paper is to develop a formal model of supervised learning in a
very general context of bidirectional model transformation or Bz, i.e., synchro-
nization of two arbitrary complex structures (called models) related by a trans-
formation.! Rather than learning parameterized functions between Euclidean
spaces as is typical for machine learning (ML), we will consider learning map-
pings between model spaces and formalize them as parameterized functors be-
tween categories, f: PxA — B, with P being a parameter space. The basic
ML-notion of a training pair (A, B') € Ag x By will be considered as an incon-
sistency between models caused by a change (delta) v: B — B’ of the target
model B = f(p, A), p € P, that was first consistent with A w.r.t. the transfor-
mation (functor) f(p,). An inconsistency is repaired by an appropriate change
of the source structure, u: A — A’, changing the parameter p to p’, and an
amendment of the target structure v®: B’ — B® so that f(p/,A’) = B® is a
consistent state of the parameterized two-model system.

The setting above without parameterization and learning (i.e., p’ = p always
holds), and without amendment (v® = idp/ always holds), is well known in
the Bx literature under the name of delta lenses— mathematical structures, in

Term Bz refers to a wide area including file synchronization, data exchange in
databases, and model synchronization in Model-Driven software Engineering (MDE),
see [7] for a survey. In the present paper, Bx will mainly refer to Bx in the MDE
context.

© The Author(s) 2020

J. Goubault-Larrecq and B. Konig (Eds.): FOSSACS 2020, LNCS 12077, pp. 177-197, 2020.
https://doi.org/10.1007/978-3-030-45231-5_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45231-5_10&domain=pdf

178 7. Diskin

which consistency restoration via change propagation is modelled by functorial-
like algebraic operations over categories [12,6]. There are several types of delta
lenses tailored for modelling different synchronization tasks and scenarios, partic-
ularly, symmetric and asymmetric. In the paper, we only consider asymmetric
delta lenses and will often omit explicit mentioning these attributes. Despite
their extra-generality, (delta) lenses have been proved useful in the design and
implementation of practical model synchronization systems with triple graph
grammars (TGG) [5,2]; enriching lenses with amendment is a recent extension
of the framework motivated and formalized in [11]. A major advantage of the
lens framework for synchronization is its compositionality: a lens satisfying sev-
eral equational laws specifying basic synchronization requirements is called well-
behaved (wb), and basic lens theorems state that sequential and parallel compo-
sition of wb lenses is again wb. In practical applications, it allows the designer of
a complex synchronizer to avoid integration testing: if elementary synchronizers
are tested and proved to be wb, their composition is automatically wb too.

The present paper makes the following contributions to the delta lens frame-
work for Bx. a) We motivate model synchronization enriched with learning and,
moreover, with categorical learning, in which the parameter space is a cate-
gory, and introduce the notion of a wb asymmetric learning (delta) lens with
amendment (a wb ala-lens) (this is the content of Sect. 3). b) We prove compo-
sitionality of wb ala-lenses and show how their universe can be organized into a
symmetric monoidal (sm) category (Theorems 1-3 in Sect. 4). All proofs (rather
straightforward but notationally laborious) can be found in the long version of
the paper [9]. One more compositional result is ¢) a definition of a compositional
bidirectional transformation language (Def. 6) that formalizes an important re-
quirement to model synchronization tools, which (surprisingly) is missing from
the Bx literature. Background Sect. 2 provides a simple example demonstrat-
ing main concepts of Bx and delta lenses in the MDE context. Section 5 briefly
surveys related work, and Sect. 6 concludes.

Notation. Given a category A, its objects are denoted by capital letters A, A’,
etc. to recall that in MDE applications, objects are complex structures, which
themselves have elements a,d’,....; the collection of all objects of category A
is denoted by Agy. An arrow with domain A € Ay is written as u: A — or
u € A(A,); we also write dom(u) = A (and sometimes u%°™ = A to shorten
formulas). Similarly, formula u: _ — A’ denotes an arrow with codomain u.cod =
A’. Given a functor f: A — B, its object function is denoted by fo: Ag — By.

A subcategory B C A is called wide if it has the same objects. All categories
we consider in the paper are small.

2 Background: Update propagation and delta lenses

Although Bx ideas work well only in domains conforming to the slogan any im-
plementation satisfying the specification is good enough such as code generation
(see [10] for discussion), and have limited applications in databases (only so
called updatable views can be treated in the Bx-way), we will employ a simple

General Supervised Learning 179

database example: it allows demonstrating the core ideas without any special
domain knowledge required by typical Bx-amenable areas. The presentation will
be semi-formal as our goal is to motivate the delta lens formalism that abstracts
the details away rather than formalize the example as such.

2.1 Why deltas.

Bx-lenses first appeared in the work on file synchronization, and if we have two
sets of strings, say, B = {John,Mary} and B’ = {Jon,Mary}, we can readily
see the difference: John # Jon but Mary = Mary. We thus have a structure
in-between B and B’ (which maybe rather complex if B and B’ are big files),
but this structure can be recovered by string matching and thus updates can be
identified with pairs. The situation dramatically changes if B and B’ are object
structures, e.g., B = {01,02} with Name(o1) = John, Name(oz) = Mary and
similarly B’ = {0}, 05} with Name(o}) = Jon, Name(o,) = Mary. Now string
matching does not say too much: it may happen that o; and o) are the same
object (think of a typo in the dataset), while oy and o), are different (although
equally named) objects. Of course, for better matching we could use full names
or ID numbers or something similar (called, in the database parlance, primary
keys), but absolutely reliable keys are rare, and typos and bugs can compromise
them anyway. Thus, for object structures that Bx needs to keep in sync, deltas
between models need to be independently specified, e.g., by specifying a same-
ness relation w C Bx B’ between models. For example, u = {01, 0]} says that
John@B and Jon@B’ are the same person while Mary@B and Mary@QB’ are
not. Hence, model spaces in Bx are categories (objects are models and arrows
are update/delta specifications) rather than sets (codiscrete categories).

2.2 Consistency restoration via update propagation: An Example

Figure 1 presents a simple example of delta propagation for consistency restora-
tion. Models consist of objects (in the sense of OO programming) with attributes
(a.k.a. labelled records), e.g., the source model A consists of three objects iden-
tified by their oids (object identifiers) #A, #J, #M (think about employees of
some company) with attribute values as shown in the table: attribute Expr. refers
to Experience measured by a number of years, and Depart. is the column of de-
partment names. The schema of the table, i.e., the triple Sa of attributes (Name,
Expr., Depart.) with their domains of values String, Integer, String resp., de-
termines a model space A. A model X € A is given by its set of objects OID™
together with three functions Name™, Expr.™, Depart.* from the same domain
OID™ to targets String, Integer, String resp., which are compactly specified
by tables as shown for model A. The target model space B is given by a similar
schema Sp consisting of two attributes. The B-view get(X) of an A-model X

is computed by selecting those oids #0 € OID™ for which Depart.X(#O) is an

IT-department, i.e., an element of the set IT def {ML,DB}. For example, the

upper part of the figure shows the IT-view B of model A.

180 7. Diskin

We assume that all column names in schemas Sa, and Sg are qualified by
schema names, e.g., OIDQS,, OID@SE etc, so that schemas are disjoint except
elementary domains like String etc. Also disjoint are OlD-values, e.g., #JQA and
#JQB are different elements, but constants like John and Mary are elements of
set String shared by both schemas. To shorten long expressions in the diagrams,
we will often omit qualifiers and write #.J = #.J meaning #JQA = #JQB or
#JQB = #.JQB’ depending on the context given by the diagram; often we will
also write #J and #J’ for such OIDs. Also, when we write #J = #.J inside
block arrows denoting updates, we actually mean a pair, e.g., (#JQB,#JQB’).

Given two models over the same schema, say, B and B’ over Sg, an update
v: B — B’ is a relation v ¢ OID”xOID?"; if a schema contains several nodes,
an update should provide a relation vy for each node N in the schema.

Note an essential difference between the two parallel updates vy, v9: B — B’
specified in the figure. Update vy says that John’s name was changed to Jon
(think of fixing a typo), and the experience data for Mary were also corrected
(either because of a typo or, e.g., because the department started to use a new
ML method for which Mary has a longer experience). Update vy specifies the
same story for John but a new story for Mary: it says that Mary #M left the
IT-view and Mary #M’ is a new employee in one of IT-departments.

Source model A °. :gst Target (view) model B
0IDs [Name | Expr. | Depart | el oo > OIDs(lT-deE:r::entS)EXpn
#A | Amn 10 Sales \

| lohn | 10 | DB e ': #l | Jon |10

y 1:put | M M
#M | Mary| 5 | ML JUPR M| May | S

Y - Updated view B’
Updated source A”; FU Updated source A’,*

DIDs|Name] Expr. | Depart. 4" [oDs|Name] Expr. [Depart, |/ |ODs|Name] Expr.
A Am 10 T Sales % [#ATAm| 10 | Sales : #I'| Jon | 10

#l|Jon| 10 | DB t #;, M/"" 10 ?PB” Lo M May| 7
#M|Mary| 7 ML -:# aryl 7 [?(inlD} —, E:Fuﬁar———\\
/ SR \
Y

Updated source model A”’," [
OIDs|Name| Expr. | Depart.

| Updated source model A’;P
| OIDs{Name| Expr. | Depart.
#A | Ann |10 Sales | #A | Ann | 10 Sales

| Jon | 10 DB # | Jon| 10 DB

#M | Mary [?(not IT)| ? (not IT) #M |Mary| 5 ML
#M'|Mary| 7 ? (inlT) \ M| Mary] 7 | 2(nm) /
\\ _______ -

Fig. 1: Example of update propagation

General Supervised Learning 181

2.3 Update propagation and update policies

The updated view B’ is inconsistent with the source A and the latter is to be
updated accordingly — we say that update v is to be propagated back to A. Prop-
agation of vy is easy: we just update accordingly the values of the attributes as
shown in the figure in the block arrow uq: A — A} (of black colour). Importantly,
propagation needs two pieces of data: the view update v; and the original state
A of the source as shown in the figure by two data-flow lines into the chevron
1:put; the latter denotes invocation of the backward propagation operation put
(read “put view update back to the source”). The quadruple 1 = (vq, A, uy, A’)
can be seen as an instance of operation put, hence the notation 1:put (borrowed
from the UML).

Propagation of update vs is more challenging: Mary can disappear from the
IT-view because a) she quit the company, b) she transitioned to a non-IT de-
partment, and c) the view definition has changed, e.g., the new view must only
show employees with experience more than 5 years. Choosing between these pos-
sibilities is often called choosing an (update) policy. We will consider the case of
changing the view in Sect. 3, and in the current section discuss policies a) and
b) (ignore for a while the propagation scenario shown in blue in the right lower
corner of the figure that shows policy c)).

For policy a), further referred to as quiting and briefly denoted by qt, the
result of update propagation is shown in the figure with green colour: notice
the update (block) arrow u" and its result, model A;qt, produced by invoking
operation put9t. Note that while we know the new employee Mary works in one
of IT departments, we do not know in which one. This is specified with a special
value '?’ (a.k.a. labelled null in the database parlance).

For policy b), further referred to as transition and denoted tr, the result of
update propagation is shown in the figure with orange colour: notice update
arrow uy and its result, model A/2“ produced by put'. Mary #M is the old
employee who transitioned to a new non-IT department, for which her expertize
is unknown. Mary #M’ is a new employee in one of IT-departments (we assume
that the set of departments is not exhausted by those appearing in a particular
state A € A). There are also updates whose backward propagation is uniquely
defined and does not need a policy, e.g., update v is such.

An important property of update propagations we have considered is that
they restore consistency: the view of the updated source equals to the updated
view initiated the update: get(A’) = B’; moreover, this equality extends for
update arrows: get(u;) = v;, @ = 1,2. Such extensions can be derived from view
definitions if the latter are determined by so called monotonic queries (which
encompass a wide class of practically useful queries including the Select-Project-
Join class). For views defined by non-monotonic queries, in order to obtain get’s
action on source updates u: A — A’, a suitable policy is to be added to the
view definition (see [1,14,12] for details and discussion). Moreover, normally get
preserves identity updates, get(id4) = idget(4), and update composition: for any
u: A— A" and v': A — A" equality get(u;u') = get(u); get(u’) holds.

182 Z. Diskin

2.4 Delta lenses

Our discussion of the example can be summarized in the following algebraic
terms. We have two categories of models and updates, A and B, and a functor
get: A — B incrementally computing B-views of A-models (we will often write
A.get for get(A)). We also suppose that for a chosen update policy, we have
worked out precise procedures for how to propagate any view update backwards.
This gives us a family of operations put,: A(A,) + B(A.get,) indexed by
A-objects, A € Ay, for which we write put,.v or put,(v) interchangeably.
Definition 1 (Delta Lenses ([12])) Let A, B be two categories. An (asym-
metric delta) lens from A (the source of the lens) to B (the target) is a pair
¢ = (get, put), where get: A — B is a functor and put is a family of operations
put,: A(A,)+« B(A.get,) indexed by objects of A, A € Ay. Given A, op-
eration put, maps any arrow v: A.get — B’ to an arrow u: A — A’ such that
A’.get = B’. The last condition is called (co)discrete Putget law:

(Putget), (puty.v).cod.gety = v.cod for all A € Ay and v € B(A.get,)

where get,, denotes the object function of functor get. We will write a lens as an
arrow {: A — B going in the direction of get.

Note that family put corresponds to a chosen update policy, e.g., in terms
of the example above, for the same view functor get, we have two families
of put-operations, put® and put', corresponding to the two updated policies
we discussed. These two policies determine two lenses (9 = (get, put®) and
(" = (get, put™) sharing the same get.

Definition 2 (Well-behavedness) A (lens) equational law is an equation to
hold for all values of two variables: A € Ay and v: A.get — T". A lens is called
well-behaved (wb) if the following two laws hold:

(Stability) ida = put4.id4 g for all A € Ay
(Putget) (put4.v).get = v for all A € Ay and all v € B(A.get,)

Remark 1. Stability law says that a wb lens does nothing if nothing happens on
the target side (no actions without triggers). Putget requires consistency after
the backward propagation is finished. Note the distinction between the Putget
condition included into the very definition of a lens, and the full Putget law
required for the wb lenses. The former is needed to ensure smooth tiling of
put-squares (i.e., arrow squares describing application of put to a view update
and its result) both horizontally (for sequential composition) and vertically (not
considered in the paper). The full Putget assures true consistency as considering
a state B’ alone does not say much about the real update and elements of B’
cannot be properly interpreted. The real story is specified by delta v: B — B/,
and consistency restoration needs the full (PutGet) law as above. 2

A more detailed trailer of lenses can be found in the long version [9].

2As shown in [6], the Putgeto condition is needed if we want to define operations
put separately from the functor get: then we still need a function get,: Ag — Bo and
the codiscrete Putget law to ensure a reasonable behaviour of put.

General Supervised Learning 183

3 Asymmetric Learning Lenses with Amendments

We will begin with a brief motivating discussion, and then proceed with formal
definitions

3.1 Does Bx need categorical learning?

Enriching delta lenses with learning capabilities has a clear practical sense for
Bx. Having a lens (get,put): A — B and inconsistency A.get # B’, the idea
of learning extends the notion of the search space and allows us to update the
transformation itself so that the final consistency is achieved for a new transfor-
mation get’: A.get’ = B’. For example, in the case shown in Fig. 1, disappearance
of Mary #M in the updated view B’ can be caused by changing the view def-
inition, which now requires to show only those employees whose experience is
more than 5 years and hence Mary #M is to be removed from the view, while
Mary #M’ is a new IT-employee whose experience satisfies the new definition.
Then the update vo can be propagated as shown in the bottom right corner of
Fig. 1, where index par indicates a new update policy allowing for view definition
(parameter) change.

To manage the extended search possibilities, we parameterize the space of
transformations as a family of mappings get,: A — B indexed over some param-
eter space p € P. For example, we may define the IT-view to be parameterized
by the experience of employees shown in the view (including any experience as a
special parameter value). Then we have two interrelated propagation operations
that map an update B~ B’ to a parameter update p~»p’ and a source update
A~ A’. Thus, the extended search space allows for new update policies that look
for updating the parameter as an update propagation possibility. The possibility
to update the transformation appears to be very natural in at least two impor-
tant Bx scenarios: a) model transformation design and b) model transformation
evolution (cf. [21]), which necessitates the enrichment of the delta lens frame-
work with parameterization and learning. Note that all transformations get,,
p € P are to be elements of the same lens, and operations put are not indexed
by p, hence, formalization of learning by considering a family of ordinary lenses
would not do the job.

Categorical vs. codiscrete learning Suppose that the parameter p is itself
a set, e.g., the set of departments forming a view can vary depending on some
context. Then an update from p to p’ has a relational structure as discussed
above, i.e., e: p — p’ is a relation e C pxp’ specifying which departments disap-
peared from the view and which are freshly added. This is a general phenomenon:
as soon as parameters are structures (sets of objects or graphs of objects and
attributes), a parameter change becomes a structured delta and the space of pa-
rameters gives rise to a category P. The search/propagation procedure returns
an arrow e: p — p’ in this category, which updates the parameter value from
p to p’. Hence, a general model of supervised learning should assume P to be
a category (and we say that learning is categorical). The case of the parameter

184 7. Diskin

space being a set is captured by considering a codiscrete category P whose only
arrows are pairs of its objects; we call such learning codiscrete.

3.2 Ala-lenses

The notion of a parameterized functor (p-functor) is fundamental for ala-lenses,
but is not a lens notion per se and is thus placed into Appendix Sect. A.1. We will
work with its exponential (rather than equivalent product-based) formulation
but will do uncurrying and currying back if necessary, and often using the same
symbol for an arrow f and its uncurried version f.

Definition 3 (ala-lenses) Let A and B be categories. An ala-lens from A
(the source of the lens) to B (the target) is a pair ¢ = (get, put) whose first
. P . .
component is a p-functor get: A —— B and the second component is a triple of
(families of) operations put = (put;f’f‘, puty, put;f';‘) indexed by pairs p € Py,
A € Ay; arities of the operations are specified below after we introduce some
notation. Names req (for request’) and upd (for 'update’) are chosen to match
the terminology in [17].

Categories A, B are called model spaces, their objects are models and their
arrows are (model) updates or deltas. Objects of P are called parameters and are
denoted by small letters p, p’, .. rather than capital ones to avoid confusion with
[17], in which capital P is used for the entire parameter set. Arrows of P are
called parameter deltas. For a parameter p € P, we write get, for the functor
get(p): A — B (read “get B-views of A”), and if A € Ay is a source model,
its get,-view is denoted by get,(A) or A.get, or even A, (so that _, becomes
yet another notation for functor get,). Given a parameter delta e: p — p’ and
a source model A € Ag, the model delta get(e): get,(A) — get, (A) will be
denoted by get.(A) or eg (rather than A, as we would like to keep capital letters
for objects only). In the uncurried version, get,(A) is nothing but get(e,idg)

Since get, is a natural transformation, for any delta u: A — A’ we have
a commutative square eg;u, = up;ea (whose diagonal is get(e,u)). We will
denote the diagonal of this square by wu.get, or u.: A, — A;,. Thus, we use
notation

def def def
o A = Aget, = get,(4) = get(p)(4)
ue = uget, < get, (u) E get(e)(u) = esiuy = upear A, — Al

-

Now we describe operations put. They all have the same indexing set Py x Ay,
and the same domain: for any index p, A and any model delta v: A, — B’ in B,

the value puts 4(p, 4), x € {req, upd, self} is defined and unique:

put;f’:: p—p is a parameter delta from p,

@) put;%: A — A’ is a model delta from A,

puts®: B’ — A’, is a model delta from B’
called the amendment and denoted by v©.

General Supervised Learning 185

Note that the definition of put*® involves an equational dependency between
all three operations: for all A € Ay, v € B(A.get,), we require

(Putget), (puts®.v).cod.get, = (v; puts’).cod where p' = (put®P.v).cod

We will write an ala-lens as an arrow ¢ = (get, put): A L. B.
A lens is called (twice) codiscrete if categories A, B, P are codiscrete and

thus get: A . Bisa parameterized function. If only P is codiscrete, we call
£ a codiscretely learning delta lens, while if only model spaces are codiscrete, we
call ¢ a categorically learning codiscrete lens.

Diagram in Fig. 2 shows how a lens’
operations are interrelated. The up-
per part shows an arrow e: p — p/
in category P and two correspond-
ing functors from A to B. The lower
part is to be seen as a 3D-prism
with visible front face A4, A}, A" and
visible upper face AA,A,, the bot-
tom and two back faces are invisi-
ble, and the corresponding arrows are
dashed. The prism denotes an alge-
braic term: given elements are shown
with black fill and white font while de-
rived elements are blue (recalls being
mechanically computed) and blank
(double-body arrows are considered
as “blank”). The two pairs of arrows
originating from A and A’ are not
blank because they denote pairs of Fig. 2: Ala-lens operations
nodes (the UML says links) rather
than mappings/deltas between nodes.
Equational definitions of deltas e, u, v®

¥ are written up in the three callouts near
them. The right back face of the prism is formed by the two vertical derived deltas
up = u.get, and uy = u.get,, and the two matching them horizontal derived
deltas eg = get (A) and es = get (A’); together they form a commutative
square due to the naturality of get(e) as explained earlier.

Definition 4 (Well-behavedness) An ala-lens is called well-behaved (wb) if

the following two laws hold for all p € Py, A € Ay and v: A, — B’

(Stability) if v =id4, then all three propagated updates e, u, v@ are identities:
puttPi(ida,) =id,, put’(ida,) =ids, puts(ida,) =ida,

(Putget) (puty % v).get, = v; v® where e = put;f’i(v) and v® = puts (v)

Remark 2. Note that Remark 1 about the Putget law is again applicable.

Ezample 1 (Identity lenses). Any category A gives rise to an ala-lens id o with
the following components. The source and target spaces are equal to A, and

186 7. Diskin

the parameter space is 1. Functor get is the identity functor and all puts are
identities. Obviously, this lens is wb.

Example 2 (Iso-lenses). Let t: A — B be an isomorphism between model spaces.
It gives rise to a wb ala-lens £(1): A — B with P() = 1 = {x} as follows. Given
any A in A and v: ((A) — B’ in B, we define puti(ﬁ'req(v) = 1~Y(v) while the

two other put operations map v to identities.

Ezample 8 (Bz lenses). Examples of wb aa-lenses modelling a Bx can be found
in [11]: they all can be considered as ala-lenses with a trivial parameter space 1.

Ezample 4 (Learners). Learners defined in [17] are codiscretely learning codis-
crete lenses with amendment, and as such satisfy (the amended) Putget (Remark
1). Looking at the opposite direction, ala-lenses are a categorification of learners
as detailed in Fig. 8 on p. 194.

4 Compositionality of ala-lenses

This section explores the compositional structure of the universe of ala-lenses;
especially interesting is their sequential composition. We will begin with a small
example demonstrating sequential composition of ordinary lenses and showing
that the notion of update policy transcends individual lenses. Then we define
sequential and parallel composition of ala-lenses (the former is much more in-
volved than for ordinary lenses) and show that wb ala-lenses can be organized
into an sm-category. Finally, we formalize the notion of a compositional update
policy via the notion of a compositional bidirectional language.

4.1 Compositionality of update policies: An example

Fig. 3 extends the example in Fig. 1 with a new model space C whose schema
consists of the only attribute Name, and a view of the IT-view, in which only
employees of the ML department are to be shown. Thus, we now have two
functors, getl: A — B and get2: B — C, and their composition Get: A — C
(referred to as the long get). The top part of Fig. 3 shows how it works for model
A considered above.

Each of the two policies, policy qt (green) and policy tr (orange), in which
person’s disappearance from the view are interpreted, resp., as quiting the com-
pany and transitioning to a department not included into the view, is applicable
to the new view mappings get2 and Get, thus giving us six lenses shown in Fig. 4
with solid arrows; amongst them, lenses, L% and L' are obtained by applying
policy pol to the (long) functor Get;, and we will refer to them long lenses. In
addition, we can compose lenses of the same colour as shown in Fig. 4 by dashed
arrows (and we can also compose lenses of different colours (¢]° with £ and ¢t
with £9°) but we do not need them). Now an important question is how long and
composed lenses are related: whether £7° and EfOl;Eg‘)l for pol € {qt,tr}, are
equal (perhaps up to some equivalence) or different?

General Supervised Learning 187

Source model A @] - -Gt “a
0IDs| Name | Expr. | Depart. ' b \éiITJW B(INTdepartrr[;ents) W Ve C (MLdep.)
#A | Am | 10 | Sales s | Name cp.
4 | dom | 10 | o | cgetl [Tm OB getz | O Lo
onn #M | Mary ML #M | Mary

X
Updated B ‘it

o qt
A May | 5] M put1q Upd. G Je-~—(‘PutZy
P] #12#1. i upd. w:
HAEHA e T ' - 2o 0

OIDs [Name| Dep. Updated C”’

Upd. source A% = A'®
0IDs[Name[Expr. | Dep. Eé« :4()::; 2,2 OlDf Name
#A|Ann | 10 | Sales Zput,‘!t,i,,,« #M'| Mary
#] |John| 10 DB
#M'[Mary| ? ML v

) Upd. source model A5 g e Pl Updated B’
w1 oIS Name Expr | Depart. § source & ODs | Name Dep.

. #A | Ann | 10 Sales Expr. | Depart. # T Tom 0B
upd.dy,,: ##MJ, Ifllo:rny 170 Bﬁ 10 Sales #M | Mary | ?inlT/notML
#A = #A ?)
g{qu#gw} #M | Mary| 5 @ 1?0 aBL] My n
BN |#M | Mary| 5 ? notl

Fig. 3: Example cont’d: functoriality of update policies

Fig. 3 demonstrates how the mechanisms work
with a simple example. We begin with an update w
of the view C' that says that Mary #M left the ML
department, and a new Mary #M’ was hired for
ML. Policy gt interprets Mary’s disappearance as
quiting the company, and hence this Mary doesn’t
appear in view B’9 produced by put29 nor in view
A" produced from B9t by put19, and updates v9*
and u}, are written accordingly. Obviously, Mary Fig.4: Lens combination
also does not appear in view At produced by schemas for Fig. 3
the long lens’s Put®. Thus, putl®(put2%(w)) =
Putf'; (w), and it is easy to understand that such equality will hold for any source
model A and any update w: C' — C” due to the nature of our two views getl
and get2. Hence, L9 = ¢{"; (3" where L9 = (Get, Put®) and th (geti, putidt).

The situation with policy tr is more interesting. Model 12 ! produced by the
composed lens /'; /% and model A*" produced by the long lens L = (Get, Put")
are different as shown in the figure (notice the two different values for Mary’s
department framed with red ovals in the models). Indeed, the composed lens
has more information about the old employee Mary—it knows that Mary was
in the IT view, and hence can propagate the update more accurately. The com-
parison update 0% o A" — ALY adds this missing information so that equality
u'; 0%, = uis holds This is a general phenomenon: functor composition looses
informatlon and, in general, functor Get = getl; get2 knows less than the pair
(getl, get2). Hence, operation Put back-propagating updates over Get (we will

188 7. Diskin

also say inverting Get) will, in general, result in less certain models than com-
position putl o put2 that inverts the composition getl;get2 (a discussion and
examples of this phenomenon in the context of vertical composition of updates
can be found in [8]). Hence, comparison updates such as % , should exist for any
A and any w: A.Get — (', and together they should give rise to something like
a natural transformation between lenses, 63 g o1 L™ = £{'; £5. To make this no-
tion precise, we need a notion of natural transformation between “functors” put,
which we leave for future work. In the present paper, we will consider policies
like qt, for which strict equality holds.

4.2 Sequential composition of ala-lenses

Let K: A — B and /: B — C be two ala-lenses with parameterized functors
get: P — [A,B] and get’: Q — [B, C] resp. Their composition is the following
ala-lens k; /. Its parameter space is the product P x Q, and the get-family is
defined as follows. For any pair of parameters (p, q) (we will write pq), getfif =
getf,; getg: A — C. Given a pair of parameter deltas, e: p — p’ in P and h: ¢ — ¢’
in Q, their getf‘-image is the Godement product * of natural transformations,
gethif(eh) = getf(e) * get®(h) (we will also write getf || get?)

Fig. 5: Sequential composition of apa-lenses

Now we define £;¢’s propagation operations puts. Let (4, pg, A,q) with A €
Ay, pg € (PxQ)o, A.getg.getg = A,q € Cp be a state of lens £; ¢, and w: Apy —
(' is a target update as shown in Fig. 3. For the first propagation step, we run
lens ¢ as shown in Fig. 3 with the blue colour for derived elements: this is just an

General Supervised Learning 189

instantiation of the pattern of Fig. 2 with the source object being A, = A.get,
and parameter q. The results are deltas

(3)

h = putf;'jf:(w): q—q,v= putf;;rj: (w): Ay, — B',w® = putgfﬁg(w): C' — By,
Next we run lens £ at state (p, 4) and the target update v produced by lens ¢; it
is yet another instantiation of pattern in Fig. 2 (this time with the green colour
for derived elements), which produces three deltas
(4)

e= putg;ipd(v): p—pu= putﬁ;jq(v): A— A0 = putﬁ;jlf(v): B'— A,

These data specify the green prism adjoint to the blue prism: the edge v of the
latter is the “first half” of the right back face diagonal ApA;, of the former. In
order to make an instance of the pattern in Fig. 2 for lens £; ¢, we need to extend
the blue-green diagram to a triangle prism by filling-in the corresponding “empty
space”. These filling-in arrows are provided by functors get’ and get® and shown
in orange (where we have chosen one of the two equivalent ways of forming the
Godement product — note two curve brown arrows). In this way we obtain yet
another instantiation of the pattern in Fig. 2 denoted by £;¢:

(5) put%’ﬁ”pd(w) = (e, h), put(ﬁf;req(w) = u, put%f;sew(w) = w@;v;@?

where v?; denotes v@.getq,. Thus, we built an ala-lens £; ¢, which satisfies equa-

tion Putget, by construction.

Theorem 1 (Sequential composition and lens laws). Given ala-lenses
kK: A — B and l: B — C, let lens k;0: A — C be their sequential composi-
tion as defined above. Then the lens K;{ is wb as soon as lenses kK and ¢ are
such.

See [9, Appendix A.3| for a proof.

4.3 Parallel composition of ala-lenses

Let /;: A; — B;, i = 1,2 be two ala-lenses with parameter spaces P;. The lens
l1]€2: A1 x Ay — By xBs is defined as follows. Parameter space ¢1 |[fo.P = Py x
L1 L2
p1p2
pairs of parameters by p; |ps rather than p; ® ps to shorten long formulas going

beyond the page width). Further, for any pair of models 41|42 € (A1 X Ag)g
and deltas vy |va: (A ||A2).get41”62

P5. For any pair pi|p2 € (P1xP3)o, define get = getl! x get?2 (we denote

— B]|| B}, we define componentwise

p1|p2
— 4 (£2ll€2)upd .
€ = Pty g a4 (V1102): P1IP2 = PiP)
. o o 4; . A (£1]1£2)req
by settu(lgue : e1]es where e; = put)) o (vi), 7 = 1,2 and similarly for pUtp11”p22,A1HA2
Zl 62 self . . .
and PUL, pa Ay | As The following result is obvious.

Theorem 2 (Parallel composition and lens laws). Lens {1 |¢2 is wb as soon
as lenses ¢1 and ¢y are such.

190 7. Diskin

4.4 Symmetric monoidal structure over ala-lenses

Our goal is to organize ala-lenses into an sm-category. To make sequential compo-
sition of ala-lenses associative, we need to consider them up to some equivalence
(indeed, Cartesian product is not strictly associative).

Definition 5 (Ala-lens Equivalence) Two parallel ala-lenses /,/: A — B
are called equivalent if their parameter spaces are isomorphic via a functor ¢: P —
P such that for any A € Ay, e: p — p' € P and v: (A.get,) — T the following
holds (for xe{req, self}):

A.get, = A.g/\etL(e), L(put;?j(v)) = p/\utb(p))A(v), and put’ 4(v) = p/u\tz((p)!A(v)

Remark 3. It would be more categorical to require delta isomorphisms (i.e., com-
mutative squares whose horizontal edges are isomorphisms) rather than equali-
ties as above. However, model spaces appearing in Bx-practice are skeletal cat-
egories (and even stronger than skeletal in the sense that all isos, including iso
loops, are identities), for which isos become equalities so that the generality
would degenerate into equality anyway.

It is easy to see that operations of lens’ sequential and parallel composition
are compatible with lens’ equivalence and hence are well-defined for equivalence
classes. Below we identify lenses with their equivalence classes by default.

Theorem 3 (Ala-lenses form an sm-category). Operations of sequential
and parallel composition of ala-lenses defined above give rise to an sm-category
aLaLens, whose objects are model spaces (= categories) and arrows are (equiv-
alence classes of) ala-lenses. See [9, p.17 and Appendix A.4] for a proof.

4.5 Functoriality of learning in the delta lens setting

As example in Sect. 4.1 shows, the notion of update policy transcends individual
lenses. Hence, its proper formalization needs considering the entire category of
ala-lenses and functoriality of a suitable mapping.

Definition 6 (Bx-transformation language)

A compositional bidirectional model transforma-

tion language Ly is given by (i) an sm-category

pGet(Lix) whose objects are (Lyx-)model spaces I_Wb
and arrows are (Lpy-)transformations which is ,

aLaLens,,,

supplied with forgetful functor into pCat, and pGet(Lix) e, aLaLens
(i) an sm-functor Ly, : pGet(Lpx) — aLaLens \ 9

such that the lower triangle in the inset diagram A /Q\\'
commutes. (Forgetful functors in this diagram * pCat

are named “—X”7 with X referring to the

structure to be forgotten.)
An Ly -language is well-behaved (wb) if functor L, factorizes as shown by
the upper triangle of the diagram.

General Supervised Learning 191

Ezample. A major compositionality result of Fong et al [17] states the existence
of an sm-functor from the category of Euclidean spaces and parameterized dif-
ferentiable functions (pd-functions) Para into the category Learn of learning
algorithms (learners) as shown by the inset commutative diagram. (The functor
is itself parameterized by a step size 0 < ¢ € R and
an error function err: RxR — R needed to specify Para
the gradient descent procedure.) However, learners are .
nothing but codiscrete ala-lenses (see Sect. A.2), and P /Q°
thus the inset diagram is a codiscrete specialization of pSet
the diagram in Def. 6 above. That is, the category of
Euclidean spaces and pd-functions, and the gradient
descent method for back propagation, give rise to a (codiscrete) compositional
bx-transformation language (over pSet rather than pCat).

Finding a specifically Bx instance of Def. 6 (e.g., checking whether it holds
for concrete languages and tools such as EMOFLON [23] or GROUNDTRAM [22])
is laborious and left for future work.

e,err
———» Learn

5 Related work

Figure 6 on the right is a simplified version of Fig. 8
on p. 194 convenient for our discussion here: imme-
diate related work should be found in areas located (I >® /Tearning
at points (0,1) (codiscrete learning lenses) and (1,0) camers
(delta lenses) of the plane. For the point (0,1), the pa- 0 ’
per [17] by Fong, Spivak and Tuyéras is fundamental:
they defined the notion of a codiscrete learning lens ~ €nses
(called a learner), proved a fundamental results about Fig. 6
sm-functoriality of the gradient descent approach to

ML, and thus laid a foundation for the compositional approach to change prop-
agation with learning. One follow-up of that work is paper [16] by Fong and
Johnson, in which they build an sm-functor Learn — sLens which maps learn-
ers to so called symmetric lenses. That paper is probably the first one where
the terms ’lens’ and ’learner’ are met, but the initial observation that a learner
whose parameter set is a singleton is actually a lens is due to Jules Hedges, see
[16].

There are conceptual and technical distinctions between [16] and the present
paper. On the conceptual level, by encoding learners as symmetric lenses, they
“hide” learning inside the lens framework and make it a technical rather than
conceptual idea. In contrast, we consider parameterization and supervised learn-
ing as a fundamental idea and a first-class citizen for the lens framework, which
grants creation of a new species of lenses. Moreover, while an ordinary lens is a
way to invert a functor, a learning lens is a way to invert a parameterized func-
tor so that learning lenses appear as an extension of the parameterization idea
from functors to lenses. (This approach can probably be specified formally by
treating parameterization as a suitably defined functorial construction.) Besides

Parameter Space

192 Z. Diskin

technical advantages (working with asymmetric lenses is simpler), our asymmet-
ric model seems more adequate to the problem of learning functions rather than
relations. On the technical level, the lens framework we develop in the paper
is much more general than in [16]: we categorificated both the parameter space
and model spaces, and we work with lenses with amendment (which allows us
to relax the Putget law if needed).

As for the delta lens roots (the point (1,0) in the figure), delta lenses were
motivated and formally defined in [12] (the asymmetric case) and [13] (the sym-
metric one). Categorical foundations for the delta lens theory were developed
by Johnson and Rosebrugh in a series of papers (see [20] for references); this
line is continued in Clarke’s work [6]. The notion of a delta lens with amend-
ments (in both asymmetric and symmetric variants) was defined in [11], and
several composition results were proved. Another extensive body of work within
the delta-based area is modelling and implementing model transformations with
triple-graph grammars (TGG) [4,23]. TGG provide an implementation frame-
work for delta lenses as is shown and discussed in [5,19,2], and thus inevitably
consider change propagation on a much more concrete level than lenses. The
author is not aware of any work considering functoriality of update policies
developed within the TGG framework.

The present paper is probably the first one at the intersection (1,1) of the
plane. The preliminary results have recently been reported at ACT’19 in Oxford
to a representative lens community, and no references besides [17], [16] mentioned
above were provided.

6 Conclusion

The perspective on Bx presented in the paper is an example of a fruitful in-
teraction between two domains—ML and Bx. In order to be ported to Bx, the
compositional approach to ML developed in [17] is to be categorificated as shown
in Fig. 8 on p. 194. This opens a whole new program for Bx: checking that cur-
rently existing Bx languages and tools are compositional (and well-behaved) in
the sense of Def. 6 p. 190. The wb compositionality is an important practical
requirement as it allows for modular design and testing of bidirectional trans-
formations. Surprisingly, but this important requirement has been missing from
the agenda of the Bx community, e.g., the recent endeavour of developing an
effective benchmark for Bx-tools [3] does not discuss it.

In a wider context, the main message of the paper is that the learning idea
transcends its applications in ML: it is applicable and usable in many domains in
which lenses are applicable such as model transformations, data migration, and
open games [18]. Moreover, the categorificated learning may perhaps find useful
applications in ML itself. In the current ML setting, the object to be learnt is
a function f: R™ — R” that, in the OO class modelling perspective, is a very
simple structure: it can be seen as one object with a (huge) amount of attributes,
or, perhaps, a predefined set of objects, which is not allowed to be changed during
the search — only attribute values may be changed. In the delta lens view,

General Supervised Learning 193

such changes constitute a rather narrow class of updates and thus unjustifiably
narrow the search space. Learning with the possibility to change dimensions
m,n may be an appropriate option in several contexts. On the other hand, while
categorification of model spaces extends the search space, categorification of the
parameter space would narrow the search space as we are allowed to replace
a parameter p by parameter p’ only if there is a suitable arrow e: p — p’ in
category P. This narrowing may, perhaps, improve performance. All in all, the
interaction between ML and Bx could be bidirectional!

A Appendices
A.1 Category of parameterized functors pCat

Category pCat has all small categories as objects. pCat-arrows A — B are
parameterized functors (p-functors) i.e., functors f: P — [A, B] with P a small
category of parameters and [A,B] the category of functors from A to B and
their natural transformations. For an object p and an arrow e: p — p’ in P,
we write f, for the functor f(p): A — B and f. for the natural transformation

fle): fp = fp. We will write p-functors as labelled arrows f: A 2. B. AsCat
is Cartesian closed, we have a natural isomorphism between Cat(P, [A,B]) and
Cat(PxA,B) and can reformulate the above definition in an equivalent way
with functors Px A — B. We prefer the former formulation as it corresponds to

the notation f: A . B visualizing P as a hidden state of the transformation,

which seems adequate to the intuition of parameterized in our context. (If some

technicalities may perhaps be easier to see with the product formulation, we will

switch to the product view thus doing currying and uncurrying without special

P

mentioning.) Sequential composition of of f: A —— B and ¢: B 2. Cis
P

fg A Q¢ given by (f.9)pq def fp-gq for objects, i.e., pairs peP, ¢eQ, and

by the Godement product of natural transformations for arrows in PxQ. That

is, given a pair e: p — p’ in P and h: ¢ — ¢’ in Q, we define the transformation

(f-9)en: fp-9g = fpr-gq to be the Godement product f, * gp.

Any category A gives rise to a p-functor lda: A . A, whose param-
eter space is a singleton category 1 with the only object x, lda(x) = ida
and Ilda(idy): ida = ida is the identity transformation. It’s easy to see that
p-functors Id are units of the sequential composition. To ensure associativ-
ity we need to consider p-functors up to an equivalence of their parameter

spaces. Two parallel p-functors f: A *.B and f: AL, B, are equiv-
alent if there is an isomorphism o: P — P such that two parallel functors
f: P — [A B] and a;f: P — [A,B] are naturally isomorphic; then we write
f ~a f It’s easy to see that if f =, f: A — B and g =3 §: B — C, then
fi9~axp f; g: A — C, i.e., sequential composition is stable under equivalence.
Below we will identify p-functors and their equivalence classes. Using a natu-
ral isomorphism (PxQ)xR = Px(QxR), strict associativity of the functor
composition and strict associativity of the Godement product, we conclude that

194 7. Diskin

sequential composition of (equivalence classes of) p-functors is strictly associa-
tive. Hence, pCat is a category.

Our next goal is to supply it with a monoidal pCat «<——— pSet
structure. We borrow the latter from the sm-
category (Cat,x), whose tensor is given by the prod- I I
uct. There is an identical on objects embedding (Cat,x) «— (Set,x)

(Cat,x) »— pCat that maps a functor f: A — B

to a p-functor f: A 1. B whose parameter space
is the singleton category 1. Moreover, as this embedding is a functor, the co-
herence equations for the associators and unitors that hold in (Cat,x) hold in
pCat as well (this proof idea is borrowed from [17]). In this way, pCat becomes
an sm-category. In a similar way, we define the sm-category pSet of small sets
and parametrized functions between them — the codiscrete version of pCat. The
diagram in Fig. 7 shows how these categories are related.

Fig. 7

A.2 Ala-lenses as categorification of ML-learners

Figure 8 shows a discrete two-dimensional plane with each axis having three
points: a space is a singleton, a set, a category encoded by coordinates 0,1,2
resp. Each of the points x;; is then the location of a corresponding sm-category of

Parameter categorical learning delta
space learners | , lenses with amend.
PeCat 2)- {1} --------- al.Lens* ----aLaLens
learners of | | codiscr. learning delta
: Fongetal |: lenses with amend.
PeCat* a R {1} ________ al*Lens* ---- al *aLens
} codisar.) ! ! (deltalenses
lenses i | withamend.
p=10©- {1} alens* .. gaLeits -
‘ AN
!) 0 2 Model

A,B=1 A,B€Cat* A,B€ECat spaces
Fig. 8: The universe of categories of learning delta lenses

(asymmetric) learning (delta) lenses. Category {1} is a terminal category whose
only arrow is the identity lens 1 = (id1,idy): 1 — 1 propagating from a terminal
category 1 to itself. Label % refers to the codiscrete specialization of the construct
being labelled: L* means codiscrete learning (i.e., the parameter space P is a
set considered as a codiscrete category) and aLens™ refers to codiscrete model
spaces. The category of learners defined in [17] is located at point (1,1), and the
category of learning delta lenses with amendments defined in the present paper
is located at (2,2). There are also two semi-categorificated species of learning
lenses: categorical learners at point (1,2) and codiscretely learning delta lenses
at (2,1), which are special cases of ala-lenses.

General Supervised Learning 195

References

10.

11.

12.

13.

14.

15.

. Abiteboul, S., McHugh, J., Rys, M., Vassalos, V., J.Wiener: Incremental Mainte-

nance for Materialized Views over Semistructured Data. In: Gupta, A., Shmueli,
0., Widom, J. (eds.) VLDB. Morgan Kaufmann (1998)

Anjorin, A.: An introduction to triple graph grammars as an implementation of
the delta-lens framework. In: Gibbons, J., Stevens, P. (eds.) Bidirectional Trans-
formations - International Summer School, Oxford, UK, July 25-29, 2016, Tutorial
Lectures. Lecture Notes in Computer Science, vol. 9715, pp. 29-72. Springer (2016).
https://doi.org/10.1007/978-3-319-79108-1

Anjorin, A., Diskin, Z., Jouault, F., Ko, H., Leblebici, E., Westfechtel, B.: Bench-
marx reloaded: A practical benchmark framework for bidirectional transformations.
In: Eramo and Johnson [15], pp. 15-30, http://ceur-ws.org/Vol-1827/paper6.
pdf

Anjorin, A., Leblebici, E., Schiirr, A.: 20 years of triple graph grammars: A
roadmap for future research. ECEASST 73 (2015). https://doi.org/10.14279/
tuj.eceasst.73.1031

Anjorin, A., Rose, S., Deckwerth, F., Schiirr, A.: Efficient model synchronization
with view triple graph grammars. In: Modelling Foundations and Applications -
10th European Conference, ECMFA 2014, York, UK, July 21-25, 2014. Proceed-
ings. Lecture Notes in Computer Science, vol. 8569, pp. 1-17. Springer (2014).
https://doi.org/10.1007/978-3-319-09195-2_1

Clarke, B.: Internal lenses as functors and cofunctors. In: Pre-proceedings
of ACT’19, Oxford, 2019. http://www.cs.ox.ac.uk/ACT2019/preproceedings/
BryceClarke.pdf

Czarnecki, K., Foster, J.N., Hu, Z., Lammel, R., Schiirr, A., Terwilliger, J.F.: Bidi-
rectional transformations: A cross-discipline perspective. In: Theory and Practice
of Model Transformations, pp. 260-283. Springer (2009)

Diskin, Z.: Compositionality of update propagation: Lax putput. In: Eramo and
Johnson [15], pp. 74-89, http://ceur-ws.org/Vol-1827/paper12.pdf

Diskin, Z.: General supervised learning as change propagation with delta lenses.
CoRR abs/1911.12904 (2019), http://arxiv.org/abs/1911.12904

Diskin, Z., Gholizadeh, H., Wider, A., Czarnecki, K.: A three-dimensional taxon-
omy for bidirectional model synchronization. Journal of System and Software 111,
298-322 (2016). https://doi.org/10.1016/j.jss.2015.06.003

Diskin, Z., Kénig, H., Lawford, M.: Multiple model synchronization with multiary
delta lenses with amendment and K-Putput. Formal Asp. Comput. 31(5), 611-640
(2019). https://doi.org/10.1007/s00165-019-00493-0, (Sect.7.1 of the paper is
unreadable and can be found in http://arxiv.org/abs/1911.11302)

Diskin, Z., Xiong, Y., Czarnecki, K.: From State- to Delta-Based Bidirectional
Model Transformations: the Asymmetric Case. Journal of Object Technology 10,
6: 1-25 (2011)

Diskin, Z., Xiong, Y., Czarnecki, K., Ehrig, H., Hermann, F., Orejas, F.: From
state-to delta-based bidirectional model transformations: the symmetric case. In:
MODELS, pp. 304-318. Springer (2011)

El-Sayed, M., Rundensteiner, E.A., Mani, M.: Incremental Maintenance of Materi-
alized XQuery Views. In: Liu, L., Reuter, A., Whang, K.Y ., Zhang, J. (eds.) ICDE.
p. 129. IEEE Computer Society (2006). https://doi.org/10.1109/ICDE.2006.80
Eramo, R., Johnson, M. (eds.): Proceedings of the 6th International Workshop
on Bidirectional Transformations co-located with The European Joint Conferences

https://doi.org/10.1007/978-3-319-79108-1
http://ceur-ws.org/Vol-1827/paper6.pdf
http://ceur-ws.org/Vol-1827/paper6.pdf
https://doi.org/10.14279/tuj.eceasst.73.1031
https://doi.org/10.14279/tuj.eceasst.73.1031
https://doi.org/10.1007/978-3-319-09195-2_1
http://www.cs.ox.ac.uk/ACT2019/preproceedings/BryceClarke.pdf
http://www.cs.ox.ac.uk/ACT2019/preproceedings/BryceClarke.pdf
http://ceur-ws.org/Vol-1827/paper12.pdf
http://arxiv.org/abs/1911.12904
https://doi.org/10.1016/j.jss.2015.06.003
https://doi.org/10.1007/s00165-019-00493-0
https://doi.org/10.1109/ICDE.2006.80

196

16.

17.

18.

19.

20.

21.

22.

23.

7. Diskin

on Theory and Practice of Software, BxQETAPS 2017, Uppsala, Sweden, April
29, 2017, CEUR Workshop Proceedings, vol. 1827. CEUR-WS.org (2017), http:
//ceur-ws.org/Vol-1827

Fong, B., Johnson, M.: Lenses and learners. In: Cheney, J., Ko, H. (eds.) Proceed-
ings of the 8th International Workshop on Bidirectional Transformations co-located
with the Philadelphia Logic Week, Bx@QPLW 2019, Philadelphia, PA, USA, June 4,
2019. CEUR Workshop Proceedings, vol. 2355, pp. 16-29. CEUR-WS.org (2019),
http://ceur-ws.org/Vol-2355/paper2.pdf

Fong, B., Spivak, D.I., Tuyéras, R.: Backprop as functor: A compositional perspec-
tive on supervised learning. In: The 34th Annual ACM/IEEE Symposium on Logic
in Computer Science, LICS 2019, Vancouver, BC, Canada, June 24-27, 2019. pp.
1-13. IEEE (2019). https://doi.org/10.1109/LICS.2019.8785665

Hedges, J.: From open learners to open games. CoRR abs/1902.08666 (2019),
http://arxiv.org/abs/1902.08666

Hermann, F., Ehrig, H., Orejas, F., Czarnecki, K., Diskin, Z., Xiong, Y., Gottmann,
S., Engel, T.: Model synchronization based on triple graph grammars: correct-
ness, completeness and invertibility. Software and System Modeling 14(1), 241-269
(2015). https://doi.org/10.1007/s10270-012-0309-1

Johnson, M., Rosebrugh, R.D.: Unifying set-based, delta-based and edit-based
lenses. In: The 5th International Workshop on Bidirectional Transformations, Bx
2016. pp. 1-13 (2016), http://ceur-ws.org/Vol-1571/paper_13.pdf

Kappel, G., Langer, P., Retschitzegger, W., Schwinger, W., Wimmer, M.: Model
transformation by-example: A survey of the first wave. In: Conceptual Modelling
and Its Theoretical Foundations - Essays Dedicated to Bernhard Thalheim on the
Occasion of His 60th Birthday. pp. 197-215 (2012). https://doi.org/10.1007/
978-3-642-28279-9_15

Sasano, I., Hu, Z., Hidaka, S., Inaba, K., Kato, H., Nakano, K.: Toward bidi-
rectionalization of ATL with GRoundTram. In: Theory and Practice of Model
Transformations - 4th International Conference, ICMT 2011, Zurich, Switzerland,
June 27-28, 2011. Proceedings. Lecture Notes in Computer Science, vol. 6707, pp.
138-151. Springer (2011). https://doi.org/10.1007/978-3-642-21732-6_10
Weidmann, N.; Anjorin, A., Fritsche, L., Varré, G., Schiirr, A., Leblebici, E.:
Incremental bidirectional model transformation with emoflon: Ibex. In: The 8th
International Workshop on Bidirectional Transformations co-located with the
Philadelphia Logic Week, Bx@QPLW 2019, Philadelphia, PA, USA, June 4, 2019.
CEUR Workshop Proceedings, vol. 2355, pp. 45-55. CEUR-WS.org (2019), http:
//ceur-ws.org/Vol-2355/paper4.pdf

http://ceur-ws.org/Vol-1827
http://ceur-ws.org/Vol-1827
http://ceur-ws.org/Vol-2355/paper2.pdf
https://doi.org/10.1109/LICS.2019.8785665
http://arxiv.org/abs/1902.08666
https://doi.org/10.1007/s10270-012-0309-1
http://ceur-ws.org/Vol-1571/paper_13.pdf
https://doi.org/10.1007/978-3-642-28279-9_15
https://doi.org/10.1007/978-3-642-28279-9_15
https://doi.org/10.1007/978-3-642-21732-6_10
http://ceur-ws.org/Vol-2355/paper4.pdf
http://ceur-ws.org/Vol-2355/paper4.pdf

General Supervised Learning 197

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/
4.0/), which permits use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes
were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

®

Check for
updates

Non-idempotent intersection types in logical
form*

Thomas Ehrhard [

Université de Paris, IRIF, CNRS, F-75013 Paris, France
ehrhard@irif.fr
https://www.irif.fr/ ehrhard/

Abstract. Intersection types are an essential tool in the analysis of oper-
ational and denotational properties of lambda-terms and functional pro-
grams. Among them, non-idempotent intersection types provide precise
quantitative information about the evaluation of terms and programs.
However, unlike simple or second-order types, intersection types cannot
be considered as a logical system because the application rule (or the
intersection rule, depending on the presentation of the system) involves
a condition stipulating that the proofs of premises must have the same
structure. Using earlier work introducing an indexed version of Linear
Logic, we show that non-idempotent typing can be given a logical form
in a system where formulas represent hereditarily indexed families of
intersection types.

Keywords: Lambda Calculus - Denotational Semantics - Intersection
Types - Linear Logic

Introduction

Intersection types, introduced in the work of Coppo and Dezani [4,5] and de-
veloped since then by many authors, are still a very active research topic. As
quite clearly explained in [13], the Coppo and Dezani intersection type system
D{? can be understood as a syntactic presentation of the denotational interpre-
tation of A-terms in the Engeler’s model, which is a model of the pure A-calculus
in the cartesian closed category of prime-algebraic complete lattices and Scott
continuous functions.

Intersection types can be considered as formulas of the propositional calculus
with implication = and conjunction A as connectives. However, as pointed out
by Hindley [12], intersection types deduction rules depart drastically from the
standard logical rules of intuitionistic logic (and of any standard logical system)
by the fact that, in the A-introduction rule, it is assumed that the proofs of the
two premises are typings of the same A-term, which means that, in some sense
made precise by the typing system itself, they have the same structure. Such
requirements on proofs premises, and not only on formulas proven in premises,

* Partially supported by the project ANR-19-CE48-0014 PPS.

© The Author(s) 2020
J. Goubault-Larrecq and B. Konig (Eds.): FOSSACS 2020, LNCS 12077, pp. 198-216, 2020.
https://doi.org/10.1007/978-3-030-45231-5_11

http://orcid.org/0000-0001-5231-5504
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45231-5_11&domain=pdf

Non-idempotent intersection types in logical form 199

are absent from standard (intuitionistic or classical) logical systems where the
proofs of premises are completely independent from each other. Many authors
have addressed this issue, we refer to [14] for a discussion on several solutions
which mainly focus on the design of a la Church presentations of intersection typ-
ing systems, thus enriching A\-terms with additional structures. Among the most
recent and convincing contributions to this line of research we should certainly
mention [15].

In our “new” approach to this problem — not so new actually since it dates
back to [3] —, we change formulas instead of changing terms. It is based on a
specific model of Linear Logic (and thus of the A-calculus): the relational model.
It is fair to credit Girard for the introduction of this model since it appears at
least implicitly in [11]. It was probably known by many people in the Linear
Logic community as a piece of folklore since the early 1990’s and is presented
formally in [3]. In this quite simple and canonical denotational model, types
are interpreted as sets (without any additional structure) and a closed term
of type o is interpreted as a subset of the interpretation of o. It is quite easy
to define, in this semantic framework, analogues of the usual models of the
pure A-calculus such as Scott’s Dy, or Engeler’s model, which in some sense
are simpler than the original ones since the sets interpreting types need not to
be pre-ordered. As explained in the work of De Carvalho [6,7], the intersection
type counterpart of this semantics is a typing system where “intersection” is non-
idempotent (in sharp contrast with the original systems introduced by Coppo
and Dezani), sometimes called system R. Notice that the precise connection
between the idempotent and non-idempotent approaches is analyzed in [8], in a
quite general Linear Logic setting by means of an extensional collapse.

In order to explain our approach, we restrict first to simple types, interpreted
as follows in the relational model: a basic type « is interpreted as a given set [a]
and the type o = 7 is interpreted as the set Mgy, ([o]) x [7] (where Mg, (E) is
the set of finite multisets of elements of F). Remember indeed that intersection
types can be considered as a syntactic presentation of denotational semantics, so
it makes sense to define intersection types relative to simple types (in the spirit
of [10]) as we do in Section 3: an intersection type relative to the base type « is an
element of o] and an intersection type relative to o = 7isapair ([ay,...,ay],b)
where the a;s are intersection types relative to ¢ and b is an intersection type
relative to 7; with more usual notations® ([a1, ..., a,],b) would be written (a3 A
-+« A ap) — b. Then, given a type o, the main idea consists in representing
an indexed family of elements of [o] as a formula of a new logical system. If
o = (¢ =) then the family can be written? ([ay | k € K and u(k) = j],b;)jes
where J and K are indexing sets, u : K — J is a function such that f=1({j}) is
finite for all j € J, (b;) e is a family of elements of [¢] (represented by a formula
B) and (ag)rex is a family of elements of [¢] (represented by a formula A): in
that case we introduce the implicative formula (A =, B) to represent the family

! That we prefer not to use for avoiding confusions between these two levels of typing.
2 We use [---] for denoting multisets much as one uses {---} for denoting sets, the
only difference is that multiplicities are taken into account.

200 T. Ehrhard

([ar | k € K and u(k) = j],bj)jes. It is clear that a family of simple types has
generally infinitely many representations as such formulas; this huge redundancy
makes it possible to establish a tight link between inhabitation of intersection
types with provability of formulas representing them (in an indexed version LJ(I)
of intuitionistic logic). Such a correspondence is exhibited in Section 3 in the
simply typed setting and the idea is quite simple:

given a type o, a family (a;);es of elements of [¢], and a closed A-term
of type o, it is equivalent to say that = M : a; holds for all j and to
say that some (and actually any) formula A representing (a;);cs has an
LJ(I) proof® whose underlying A-term is M.

In Section 4 we extend this approach to the untyped A-calculus taking as
underlying model of the pure A-calculus our relational version R, of Scott’s D..
We define an adapted version of LJ(I) and establish a similar correspondence,
with some slight modifications due to the specificities of R.

1 Notations and preliminary definitions

If E is a set, a finite multiset of elements of E is a function m : E — N such
that the set {a € E | m(a) # 0} (called the domain of m) is finite. The cardinal
of such a multiset m is #m = ., m(a). We use + for the obvious addition
operation on multisets, and if aq,...,a, are elements of E, we use [aq,...,a,]
for the corresponding multiset (taking multiplicities into account); for instance
[0,1,0,2,1] is the multiset m of elements of N such that m(0) = 2, m(1) = 2,
m(2) =1 and m(:) = 0 for ¢ > 2. If (a;);es is a family of elements of E and if J
is a finite subset of I, we use [a; | i € J] for the multiset of elements of E which
maps a € E to the number of elements ¢ € J such that a; = a (which is finite
since J is). We use Mg, (E) for the set of finite multisets of elements of E.

We use + to denote set union when we we want to stress the fact that the
involved sets are disjoint. A function u : J — K is almost injective if #u='{k}
is finite for each k € K (equivalently, the inverse image of any finite subset of
K under u is finite). If s = (ay,...,a,) is a sequence of elements of F and
ie{l,...,n}, weuse (s)\ ¢ for the sequence (ay,...,a;—1,ai4+1,...,a,). Given
sets E and F, we use F¥ for the set of function from F to F. The elements of
F¥ are sometimes considered as functions u (with a functional notation u(e) for
application) and sometimes as indexed families a (with index notations a. for
application) especially when F is countable.

Ifie{l,...,n} and j € {1,...,n — 1}, we define s(j,7) € {1,...,n} as
follows: s(j,4) = j if j < i and s(j,i) = j + 1 if j > i.

3 Any such proof can be stripped from its indexing data giving rise to a proof of ¢ in
intuitionistic logic.

Non-idempotent intersection types in logical form 201

2 The relational model of the A-calculus

Let Rel, the category whose objects are sets* and Rel;(X,Y) = P(Mg,(X) x Y)
with Idx = {([a],a) | a € X} and composition of s € Reli(X,Y) and ¢ €
Reli(Y, Z) given by

tos={(mi+--+my,c)|
Abq,..., 06 €Y ([b1,...,bx],c) € t and Vj (m;,b;) € s}.

It is easily checked that this composition law is associative and that Id is neutral
for composition®. This category has all countable products: let (X;);c; be a
countable family of sets, their product is X = &jecs X; U g1]} x X, and
projections (pr;)jes given by pr; = {([(j,a)],a) | a € X i} e Relx(X X;) and if
(sj)jesisa family of morphisms s; € Reli(Y, X;) then thelr tupling is <8j>jej =
{([a],(4,0))) | j € J and ([a],b) € 5;} € Rel,(V, X).

The category Rel, is cartesian closed with object of morphisms from X to Y
the set (X = Y) = Mg, (X)xY and evaluation morphism Ev € Rel,((X = Y) &
X,Y)isgiven by Ev = {([(1, [a1,...,ak],b),(2,a1),...,(2,ak)],0) | a1,...,ax €
X and b € Y}. The transpose (or curryfication) of s € Reli|(Z & X,Y) is
Cur(s) € Reli(Z,X = Y) given by Cur(s) = {([c1,--.,¢en], ([a1,...,ax],0)) |
([(1,e1)y---5(1,en),(2,a1), ..., (2,ak)],¢) € s}

Relational Do,. Let Ry, be the least set such that (mg,m1,...) € Ry as soon
as mg,my ... are finite multisets of elements of R, which are almost all equal
to []. Notice in particular that e = ([],[],...) € R and satisfies e = ([], e).
By construction we have Ry, = Mgn(Roo) X Roo, that is Ry = (R = Reo)
and hence R, is a model of the pure A-calculus in Rel; which also satisfies the
n-rule. See [1] for general facts on this kind of model.

3 The simply typed case

We assume to be given a set of type atoms «, 3,... and of variables x,y,...;
types and terms are given as usual by o,7,...:=a|oc=7and M,N,...:=z |
(M)N | A\xz° N.

With any type atom we associate a set [«]. This interpretation is extended to
all types by [0 = 7] = [o] = [7] = Man([o]) x [7]. The relational semantics of
this A-calculus can be described as a non-idempotent intersection type system,
with judgments of shape x1 : my : 01,..., 2, : My : 0y = M : a: o where the z;’s
are pairwise distinct variables, M is a term, a € [o] and m; € Mgy, ([o;]) for
each i. Here are the typing rules:

j#i=m; =[] and m; = [a] Sx-m:cFM:b:T
(x;cmio)l Fxita:o SN M:(m,b):0=T
4 We can restrict to countable sets.

5 This results from the fact that Rel, arises as the Kleisli category of the LL model of
sets and relations, see [3] for instance.

202 T. Ehrhard

S+ M: ([ar,...,a5],b) 0 =T (@ N:ay:o)f
UE(M)N:b:7

where @ = (x; : m; : o))y, & = (v; : ml : o))y for | = 1,...,k and

K3
k
W= (2 om0 m o)y

3.1 Why do we need another system?

The trouble with this deduction system is that it cannot be considered as the
term decorated version of an underlying “logical system for intersection types”
allowing to prove sequents of shape mj : o1,...,m, : 0, F a : o (where non-
idempotent intersection types m; and a are considered as logical formulas, the
ordinary types o; playing the role of “kinds”) because, in the application rule
above, it is required that all the proofs of the k right hand side premises have the
same shape given by the A-term N. We propose now a “logical system” derived
from [3] which, in some sense, solves this issue. The main idea is quite simple and
relies on three principles: (1) replace hereditarily multisets with indexed families
in intersection types, (2) instead of proving single types, prove indexed families
of hereditarily indexed types and (3) represent syntactically such families (of
hereditarily indexed types) as formulas of a new system of indexed logic.

3.2 Minimal LJ(TI)

We define now the syntax of indexed formulas. Assume to be given an infinite
countable set I of indices. Then we define indexed types A; with each such type
we associate an underlying type A, a set d(A) and a family (A) € [A]4). These
formulas are given by the following inductive definition:

—if JCTand f:J— [a] is a function then a[f] is a formula with a[f] = «a,
d(a[f]) = J and {o[f]) = f o

— and if A and B are formulas and u : d(A) — d(B) is almost injective then
A =, Bis a formula with A =, B=A = B, d(4 =, B) =d(B) and, for
k €d(B), (A= B)r = ([(4); | 7 € d(A) and u(j) = k], (B)x).

Proposition 1. Let o be a type, J be a subset of I and f € [o]’. There is a
formula A such that A= o, d(A) = J and (A) = [(actually, there are infinitely
many such A’s as soon as o is not an atom and J # 0)).

Proof. The proof is by induction on o. If o is an atom « then we take A = «[f].
Assume that ¢ = (p = 7) so that f(j) = (m;,b;) with m; € Mgn([p]) and
b; € [r]. Since each m; is finite and I is infinite, we can find a family (K;);cs of
pairwise disjoint finite subsets of I such that #K; = #m;. Let K = UjeJKj,
there is a function g : K — [p] such that m; = [g(k) | k € K] for each j € J
(choose first an enumeration g; : K; — [p] of m; for each j and then define
g(k) = g;(k) where j is the unique element of J such that k € K;). Let u : K — J
be the unique function such that k € K, for all & € K since each Kj is finite,

Non-idempotent intersection types in logical form 203

this function u is almost injective. By inductive hypothesis there is a formula A
such that A = p, d(4) = K and (A) = ¢, and there is a formula B such that
B =r7,d(B) =J and (B) = (bj)jes. Then the formula A =, B is well formed
(since u is an almost injective function d(A) = K — d(B) = J) and satisfies
A=, B=0,d(A=, B)=J and (A =, B) = f as contended. O

As a consequence, for any type o and any element a of [o] (so a is a non-
idempotent intersection type of kind o), one can find a formula A such that
A=o0,d(A) ={j} (where j is an arbitrary element of I') and (A); = a. In other
word, any intersection type can be represented as a formula (in infinitely many
different ways in general of course, but up to renaming of indices, that is, up to
“hereditary a-equivalence”, this representation is unique).

For any formula A and J C I, we define a formula A[; such that A[; = A,
d(Al;) =d(A)NJ and (A];) = (A) [;. The definition is by induction on A.

—aolflls=alf 1]
— (A=, B)ly=(Alk =, Bl;) where K =u~*(d(B)NJ) and v = u [x.

Let u : d(A) — J be a bijection (so that u(d(A)) = J), we define a formula
ux(A) such that u.(A) = A, d(u.(A4)) = u(d(A)) and (u.(A)); = (A)y-1(;)- The
definition is by induction on A:

— uu(a[f]) = a[f o u™]
— U*(A = B) = (A = uov u*(B))

Using these two auxiliary notions, we can give a set of three deduction rules
for a minimal natural deduction allowing to prove formulas in this indexed intu-
itionistic logic. This logical system allows to derive sequents which are of shape

AM A - B (1)

where for each i = 1,...,n, the function u; : d(4;) — d(B) is almost injective (it
is not required that d(B) = [J;—; u;(d(4;))). Notice that the expressions A} are
not formulas; this construction A* is part of the syntax of sequents, just as the «y
separating these pseudo-formulas. Given a formula A and u : d(4) — J almos,t
injective, it is nevertheless convenient to define (4“) € Mz, ([A])7 by (A%); =
[(A)k | u(k) = j]. In particular, when w is a bijection, (A*); = [(A),-1¢;)]-

The crucial point here is that such a sequent (1) involves no A-term.

The main difference between the original system LL(T) of [3] and the present
system is the way axioms are dealt with. In LL(I) there is no explicit identity
axiom and only “atomic axioms” restricted to the basic constants of LL; indeed
it is well-known that in LL all identity axioms can be n-expanded, leading to
proofs using only such atomic axioms. In the A-calculus, and especially in the
untyped A-calculus we want to deal with in next sections, such n-expansions are
hard to handle so we prefer to use explicit identity axioms.

The axiom is

Jj#1i=d(A4;) =0 and u; is a bijection
Alfl, ey AZ" - uz*(AZ)

204 T. Ehrhard

so that for j # ¢, the function u; is empty. A special case is
Jj#1i=d(4;) =0 and u; is the identity function
A, A B A
which may look more familiar, but the general axiom rule, allowing to “delocalize”

the proven formula A; by an arbitrary bijection u;, is required as we shall see.
The = introduction rule is quite simple

Al AU A B
AP, A A=, B
Last the = elimination rule is more complicated (from a Linear Logic point
of view, this is due to the fact that it combines 3 LL logical rules: —o elimination,
contraction and promotion). We have the deduction
ci,...,Cin+- A=, B DY, ...,D»+ A
E,...,E"+FB

under the following conditions, to be satisfied by the involved formulas and
functions: for each i = 1,...,n one has d(C;)Nd(D;) = 0, d(E;) = d(C;) +d(D;),
Ci = Eilac,)» Di = Eildap,), Wi lac,)= wi, and w; [4(p,)= u 0 v;.

Let m be a deduction tree of the sequent AY*,..., A¥" - B in this system.
By dropping all index information we obtain a derivation tree w of A;,..., A, I
B, and, upon choosing a sequence 7 of n pairwise distinct variables, we can
associate with this derivation tree a simply typed A-term m— which satisfies
xy AL, ot Ay E Ty B

3.3 Basic properties of LJ(I)

We prove some basic properties of this logical system. This is also the opportunity
to get some acquaintance with it. Notice that in many places we drop the type
annotations of variables in A-terms, first because they are easy to recover, and
second because the very same results and proofs are also valid in the untyped
setting of Section 4.

Lemma 1 (Weakening). Assume that & = A is provable by a proof m and let
B be a formula such that d(B) = (. Then &' & A is provable by a proof @', where
@' is obtained by inserting B%) at any place in ®. Moreover - = L/;? (where

%
2’ is obtained from z by inserting a dummy variable at the same place).
The proof is an easy induction on the proof of @ - A.

Lemma 2 (Relocation). Let 7 be a proof of (A}")7, = A let u:d(A) — J be
a bijection, there is a proof @' of (A")i F us(A) such that ' = 1> .

The proof is a straightforward induction on .
Lemma 3 (Restriction). Let 7 be a proof of (A}")'_; + A and let J C d(A).

Fori=1,...,n, let K; =u;~'(J) Cd(A;) and v, = u; |k, : K; — J. Then the
sequent ((A;[x,)")", F Al; has a proof @' such that #'— = w=.

i

Non-idempotent intersection types in logical form 205

Proof. By induction on 7. Assume that 7 consists of an axiom (AJ Vi1 b iy (Ai)
Wlth d(A;) = 0if j # ¢, and u; a bijection. With the notations of the lemma,
=0 for J # i and v} is a bijection K; — J. Moreover w}_(A;[k,) = wi.(Ai)]s

i

SO that ((Ailk,)")™, - Al is obtained by an axiom 7/ with ©/— = 2; = 7=.

i

Assume that 7 ends with a =-introduction rule:
p
(Af)i5 - B
(A;M)?:l = An+1 = uni1 B
with A = (Ay41 =w,., B), and we have 12 = Az, 41 B?,wnﬂ' With the no-
tations of the lemma we have Al; = (An+1lKk, , =w , Bls). By inductive

u

hypothesis there is a proof p’ of (4; [KZ)n+1 F B such that o P = P2,

and hence we have a proof 7’ of (A,)i_, = Al; with o’ = /\$n+1 P LT
7 as contended.
Assume last that 7 ends with a =-elimination rule:

I P
(Bi")isiFB=vA (C7)i, B
A, A
with d(AZ) = d()—|—d(C) B, = A; rd(B) and C; = A; Td(c), ulfd(B) = v;
and u;lqc,) = v o w; for © = 1,...,n, and of course 75 = H—) p—- Let

L=v"1(J) Cd(B). Let L; = v;/!(J) and R; = w;~*(L) for i = 1,...,n (we
also set v; = v; [, w, = w;|r, and v' = v[1). By inductive hypothesis, we have
a proof u of (Bil}')izi B Bl = Al such that &’? = p— and a proof o
of (C; FRi)i:l F Bl such that g? = p—. Now, setting K; = u; ~H(K), observe
that

—d(B;)NK;=L; =d(B;|L)and ui[L, = vj since u;i[q(p,) = Vi
- d(C;)NK; =R, =d(C)ﬁwl L(L) since ul[d(c) = 0w and L = v1(J),
hence d(C;) N K; = d(C;[R,), and also u; [z, = v’ o w}.
It follows that d(A;[k,) = L; + R;, and, setting u; = u;[k,, we have u}[, = v]
and uj|g, = v' o w]. Hence we have a proof ©’ of (4;1})i, b Al; such that
o = (E?) P = (H?) p— = m as contended. 0
Though substitution lemmas are usually trivial, the LJ(I) substitution lemma
requires some care in its statement and proof®.
Lemma 4 (Substitution). Assume that (A;-”)Tf_ F A with a proof p and

Jj=1
that, for some i € {1 .,n}, (B 1-”)’-’71 F A; with a proof p. Then there is a

proof w of(7)jZ L+ A such that TN = b= [p(7 i /xl} as soon as for each

j=1...,n—-1, d(C-)—d(As(”))—l—d(i) for each j =1,...,n—1 (remember
that this requires also that d(Ag(j ;) Nd(B;) = 0) with:

5 We use notations introduced in Section 1, especially for s(4,1).

206 T. Ehrhard

= Cilda) = Asgay and wilaay;,.)) = Us(i)
- Cj rd(Bj) = Bj and w rd(Bj) = U; O Vj.

Proof. By induction on the proof u. Assume that p is an axiom, so that there is
ake{l,...,n} such that A = uy,(Ayx), ux is a bijection and d(;) =0 for all
j # k. In that case we have Py = Tk There are two subcases to conmder Assume
first that k = i. By Lemma 2 there is a proof p’ of (Bu’ovf)] L ul*(Ai) such
that p’ (?)\ = P We have C; = B; and wj = u; o v; for j =1,. -1,

so that p’ is a proof of (C)iy ! A, so we take m = p’ and equation T@N =

Hey {p(?)\ /xz] holds since p_, = x;. Assume next that k # 4, then d(4;) = 0

and hence d(B;) = () (and vj = 0p) for j = 1,...,n — 1. Therefore C;j = Ag(; s

and w;j = vg(j 4 for j = 1,...,n — 1. So our target sequent (C}7)1Z] 1 F A can
Us(j,7)

s(4,2))

T(Z)\i = LTk a8 contended.

Assume now that p is a =-intro, that is A = (A,41 =4, ,, A’) and p is

also be written (A }— uk*(Ak) and is provable by a proof 7 such that

0
(At B A
(AF)r_ F A

We set B, = A, 111y and of course v, 11 = 04(4). Then we have a proof p’ of
(B;J) F A; such that p/ PNz, = L by Lemma 1. We set C), = A, 41
and w, = un4+1. Then by mductlve hypothesis applied to 8 we have a proof

0 of (C;Uj);-‘zl F A’ which satisfies 7%z, = 07 4., {B(?)\i/mz} and

applying a =--introduction rule we get a proof 7 of (C’;”J);Z;ll F A such that
TN = Aol 0z 4y [B(?)\i/xi]) = fi {B(?)\i/xi] as expected.

Assume last that the proof p ends with

@ (0
Siyn tin
(Ej)jzll—E:>sA (Fj)jzll—E

(A7) F A

with d(A;) = d(Ej) + d(F}), Ajlae,) = Ejy Ajlar,) = Fj wilae) = $;
and w;lqp;) = s o ty, for j = 1,...,n. And we have Ho = (f?) %7 The
idea is to “share” the substituting proof p of (B;j)i_1 F A; among ¢ and ¢
according to what they need, as specified by the formulas F; and F;. So we write
d(B;) = Lj+Rj where L; = v;~'(d(E;)) and R; = v; ~'(d(F})) and by Lemma 3
ok R
we have two proofs p of (B, 'L,)j=1 ! - E; and (B[)i ! F F; where we set
Uji =v;lL, s;nd vt = v;lR;, obtained from p by restriction. These proofs satisfy
v T @i T @

v

Non-idempotent intersection types in logical form 207

Now we want to apply the inductive hypothesis to ¢ and p”, in order to get

L
a proof of the sequent (G;Uj);’:_11 kB =, Awhere G; = Cjlym,, ,)+L; (observe
indeed that d(Es;,;)) € d(As(;5)) and L; € d(By) and hence are disjoint by our
assumption that d(C;) = d(Ag;,i)) + d(B) and wi = wj ld(Byj.0)+L;- With
these definitions, and by our assumptions about C; and w;, we have for all
j=1,...,n—1

Gjld(Ey) = Cilaay,. ldEg.0) = AsGa ldEg.) = EsGa)

I
L
’LU] {d(Es(j,i)) = wJ rd(As(J L)) I\d(Es(J z)) us(j,i) {d(Es(j,i)) = Ss(j,i)
Gjlr, = Cjla e, = BjlL,

I

L L
wy L, = wjla,) L, = (Ui o), =uila,) o vy =siovj.

wk
Therefore the inductive hypothesis applies yielding a proof ¢’ of (Gj ’)?;11 H

L = .
E = A such that ¢’ P = Pz [L(?)\i/xl] [[B(?)\i/xl].

Next we want to apply the inductive hypothesis to 1 and p%, in order to
get a proof of the sequent (H;);lil F E where, for j = 1,...,n -1, H; =
Cila(r,,.)+r; (again d(Fy;q)) C d(Asjq) and R; C d(B;) are disjoint by our
assumption that d(C;) = d(A (.i)) T d(B;)) and r; is defined by 7;l4r,,) =
ls(j,) and TR, = 1; © UJR. Remember indeed that vf’ R — d(F;) and t; :
d(F;) — d(E). We have

Hj rd(Fs(j,i)) = Cj rd(As(j,i)) rd(Fs(j,i)) = As(jvi) [d(Fs(j,i)) = Fs(jﬂ')
Hjlr; = Cjlas;)Ir; = BjlR,

Tj

and hence by inductive hypothesis there is a proof ¢’ of (H ;);‘:_11 F E such that
Yy = w?[< NMJZQ?QWNMJ
To end the proof of the lemma, it will be sufﬁcient to prove that we can apply
L
a =--elimination rule to the sequents (G;U)iz I FE=,Aand (HT’J)" 'FE
in order to get a proof 7 of the sequent (CJ)]: F A. Indeed, the proof 7

. . . . o / / _)
obtained in that way will satisfy m3)\; = (ﬁ(?)\i) wi(?)\i = pi— [B(?)\i/xl}.
Let j € {1,...,n—1}. We have Cj[q(q,) = G; and Cj[4u,) = H; simply because
G and Hj are defined by restricting C;. Moreover d(G;) = d(Ey(; ;) + L; and
d(H;) = d(Fy) + Rj. Therefore d(G;) Nd(H;) =0 and
d(C)) = d(Agj,iy) +d(By) = d(Es(j)) + d(Fyjy) + Ly + Ry = d(Gy) + d(Hj).

We have w;[qq;) = wJL by definition of wj as wjla(m,.)+1;- We have

Wi la(Hy) ld(Fy) = Wild(Ay) 1By) = Usii) Td(Fa)
=s ot = (sor)lar;.)
w;lac,) [R; = wila,) (R, = (wi 0 v;) R,

R R
=uilgr,) o v =sot;ov;' =sor;[r; = (s07))lR,

208 T. Ehrhard

and therefore w;[4(q,) = s o r; as required. a

We shall often use the two following consequences of the Substitution Lemma.

Lemma 5. Given a proof p of (A uj)" F A and a proof p of B &+ A; (for
some i € {1,...,n}), there is a proof ™ of (A 1—“)1 1 Buwiov (A7) B A such

J
that T = p— {Bz/mz}

Proof. By Weakemng we have a proof p' of (A77)j_ 1,B[8d(A), (AF)7_ . F A

such that p' Ko = B (where 7 is a list of palrvvlseodlstlnct variables of
length n+1), as well as a proof p’ of (4, i=1, BY, (4 [md(A))J _iy1 F Agsuch

that p'_, = Py . By Lemma 4, we have a proof 7’ of (Auj); _t Buiov, (A;-Lj Vi1

Od(a,))

A which satisfies 7’ (5,; = ¢’ {g(?)\i/xz} = p— [Bm/xz} O

Lemma 6. Given a proof i of A’ = B and a proof p of (A;Lj);;:1 F A, there is
a proof ™ of (A Uou’) _1 B such that my = p1 | [p?/:zr]

The proof is similar to the previous one.

If A and B are formulas such that A = B, d(4) = d(B) and (A) = (B), we
say that A and B are similar and we write A ~ B. One fundamental property
of our deduction system is that two formulas which represent the same family
of intersection types are logically equivalent.

Theorem 1. If A~ B then A" & B with a proof ™ such that mw, ~, .

Proof. Assume that A = a[f], then we have B = A and A" I B is an axiom.
Assume that A = (C =, D) and B = (E =, F). We have D ~ F and
hence D F with a proof p such that p . ~n T And there is a bijection
w : d(E) = d(C) such that w,(F) ~ C and « Uow = . By inductive hypothesis
we have a proof y1 of w,(E)' F C such that 1, ~n Y and hence using the axiom
E" I w,(E) and Lemma 5 we have a proof u/ of E* I C' such that /= p .
There is a proof 7! of (C' =, D)4, C* F D such that ©*, = (z)y (consider
the two axioms (C' =, D)'d,C[Od(m FC =, D and (C :\u)[Od(c) cd
and use a =--elimination rule). So by Lemma 5 there is a proof 72 of (C =,

D)l Euew = D, that is of (C =, D)9 EY I D, such that ., = (x)ﬁy
Applying Lemma 6 we get a proof 73 of (C' =, D), EV - F such that 7%, v =

P, [(x) 1, / z} We get the expected proof 7 by a =--introduction rule so that

T, = \yp, [(:r) w,/ Z} By inductive hypothesis m, ~y . -

Non-idempotent intersection types in logical form 209

3.4 Relation between intersection types and LJ(I)

Now we explain the precise connection between non-idempotent intersection
types and our logical system LJ(I). This connection consists of two statements:

— the first one means that any proof of LJ(I) can be seen as a typing derivation
in non-idempotent intersection types (soundness)

— and the second one means that any non-idempotent intersection typing can
be seen as a derivation in LJ(I) (completeness).

Theorem 2 (Soundness). Let m be a deduction tree of the sequent (A}")7_; F
Band @ a sequence of n pairwise distinct variables. Then the A-term m— sat-
isfies (x; : (Aj"); : Ai)iey F = : (B); : B in the intersection type system, for
each j € d(B).

Proof. We prove the first part by induction on 7 (in the course of this induction,
we recall the precise definition of 7=). If 7 is the proof

q#i=d(A;) =0 and u; is a bijection
(Ag")g=1 - uin(Ay)

(so that B = u;,(4;)) then 73 = z;. We have (4,°); = []if ¢ # i, (A}"); =
[(Ai)u, 1)] and (ui(Ag))j = (Ai)y,—1(j)- It follows that (z (Ag?);+ Ao
x; : (B); : B is a valid axiom in the intersection type system.

Assume that 7 is the proof

70

A¥, .. Aun Avb B
AY AU A=, B

where 70 is the proof of the premise of the last rule of 7. By inductive hypothesis
the A-term 7% , satisfies (z; : (A7) : Ay, 2 (A"); : A+ %%, :(B);: B
from which we deduce (z; : (A}"); : Ay F A 7%+ ((A%);,(B);) : A= B
which is the required judgment since 71— = Azd 70— 2 and ((A7);,(B);) =
(A =, B); as easily checked.

Assume last that 7 ends with

i 2

Ci.. . CnbkA=,B DU, DA
EV, . EY- B

with: for each ¢ = 1,...,n there are two disjoint sets L; and R; such that
d(E;) = Li + R;, C; = Eil1,, Di = Ei|Rr,, wi [1,= us, and w; [g,= u o v;.
Let j € d(B). By inductive hypothesis, the judgment (z; : (C;"); : Cy)i_; F

o (A=, B); : A = B is derivable in the intersection type system. Let K; =
u~1({j}), which is a finite subset of d(A4). By inductive hypothesis again, for

210 T. Ehrhard

each k € K; we have (z; : (D) : D))", - 722 : (A)r : A. Now observe that
)

<A:»uB>j=<[<A>k|keKﬁ,<> %o that
(@ i+ Y (Df) B b (ale) n?s : (B);: B
kEK;

is derivable in intersection types (remember that C; = D; = E;). Since 1 =
(z'+) 7% it will be sufficient to prove that

(B = (C)+) (DY) (2)

keK,

For this, since (E;""); = [(E;); | wi(l) = j], consider an element [of d(E;) such
that w;(l) = j. There are two possibilities: (1) either [€ L; and in that case we
know that (E;); = (C;); since E;[1, = C; and moreover we have u; () = w;(l) = j
(2) or I € R;. In that case we have (E;); = (D;); since E;[r, = D;. Moreover
u(v;(1)) = w; (1) = j and hence v;(1) € K;. Therefore

[(E;) |1 € Li and wi(l) = j] = [{Ci)i | wi(1) = j] = (C});

[<E1>l | l € R; and ’LUZ-(Z) :]] = [<Dz>l | ’Ui(l) c Kj] _ Z <sz>k
kK,

and (2) follows. O

Theorem 3 (Completeness). Let J C I. Let M be a A\-term and x1,..., 2,
be pairwise distinct variables, such that (xz; :m] :o;)l-y = M : bj: 7 in the
intersection type system for all j € J. Let Ay,..., A, and B be formulas and
let uy,...,u, be almost injective functions such that u; : d(A;) — J = d(B).
Assume also that A; = o; for each i = 1,...,n and that B = 7. Last assume
that, for all j € J, one has (B); = b; and (A}"); = mz fori=1,....,n. Then
the judgment (A;")!_ = B has a proof ™ such that 7= ~, M.

Proof. By induction on M. Assume first that M = z; for some ¢ € {1,...,n}.
Then we must have 7 = o3, mJ = [] for ¢ # i and m? = [b;] for all j € J.
Therefore d(A4,) = 0 and w4 is the empty function for ¢ # ¢, u; is a bijection
d(A;) — J and Vk € d(A;) (Aj)r = by, k), in other words wu;,(A;) ~ B. By
Theorem 1 we know that the judgment (u;,(4;))" = B is provable in LJ(I) with
a proof p such that p ~;, z. We have a proof 0 of (A;")7_; - u;.(A;) which
consists of an axiom so that 0= = x; and hence by Lemma 6 we have a proof =
of (4;")iL, b B such that m3 = p_ [0z /2] ~y ;.

Assume that M = Az N, that T = (0 =) and that we have a fam-
ily of deductions (for j € J) of (i:m] o)y B M : (m?,c;): 0= ¢ with
bj = (m?,c;) and the premise of this conclusion in each of these deductions is
(zi:ml o), x:ml:o - N :¢j:p. We must have B = (C' =, D) with

D=y, C=0,dD)=J,u:dC) — d(D) almost injective, (D); = ¢; and

Non-idempotent intersection types in logical form 211

[{(C)i | k €d(C) and u(k) = j] = m?, that is (C*); = mJ, for each j € J.
By inductive hypothesis we have a proof p of (A")" ,,C* F D such that
p— , ~n N from which we obtain a proof m of (Aj")i; - C' =, D such that
17’ = Az? p_, ~y M as expected.

Assume laét that M = (V) P and that we have a J-indexed family of deduc-
tions (x; :m! :0;)y b M :bj: 7. Let Aq,..., Ap, u1,...,u, and B be LI(I)
formulas and almost injective functions as in the statement of the theorem.

Let j € J. There is a finite set L; C I and multisets m/°, (m?"')er, such

that we have deductions” of (x; : m?° : ¢;)", F N : ([a{ [leLjl,bj):0=T

K2

and, for each | € L;, of (x; : mg’l to) F P a{ 1 0 with

mi :mg’o—f— ng’l. (3)
lELJ‘

We assume the finite sets L; to be pairwise disjoint (this is possible because I
is infinite) and we use L for their union. Let u : L — J be the function which
maps | € L to the unique j such that { € Lj, this function is almost injective.
Let A be an LL(J) formula such that A = o, d(4) = L and (A), = a;‘(l); such a
formula exists by Proposition 1.

Let i € {1,...,n}. For each j € J we know that

[(Ai)r |7 € d(A) and ui(r) = j] =m] =m® + Y mi"
lELj

and hence we can split the set d(A4;) Nu;~*({j}) into disjoint subsets R/"° and
(R!)ier, in such a way that

[(A))y |7 € RPO)=ml® and Ve L; [(A),|re R = m?t,

K2 K2

We set R? = UjeJ R{’O; observe that this is a disjoint union because R{’O -
u; "' ({7}). Similarly we define R} = {J,c,, Rf(l)’l which is a disjoint union for
the following reason: if 1,1’ € L satisfy u(l) = u(l') = j then R and Rg’ll
have been chosen disjoint and if u(l) = j and w(l’) = j/ with j # j' we have
R C w7 {j} and Rf/’l/ Cu; 1 ({j'}). Let v; : R} — L be defined by: v;(r) is

the unique I € L such that r € R;‘(l)’l. Since each R‘Z’l is finite the function v; is

almost injective. Moreover u o v; = u; | R

We use u) for the restriction of u; to RY so that u} : R} — J. By induc-
tive hypothesis we have ((4; [R?)“;)?:l F A =, B with a proof p such that
Koy ~y N. Indeed [(A;[go)r [€ RY and u)(r) = j] = m?° and (A =, B); =
(la] | u(l) = j],b;) for each j € J. For the same reason we have ((4; [R1)")iz F
A with a proof p such that p_, ~;, P. Indeed for each I € L = d(A) we have

" Notice that our M-calculus is in Church style and hence the type o is uniquely
determined by the sub-term N of M.

212 T. Ehrhard

[(Ailg1)r [vi(r) =1] = m?! and (A4); = al where j = u(l). By an application
rule we get a proof 7 of (A}")?_, F B such that 7— = (Hy) P~y (N) P =M
as contended. O

4 The untyped Scott case

Since intersection types usually apply to the pure A-calculus, we move now to
this setting by choosing in Rel, the set R, as model of the pure A-calculus. The
Reo intersection typing system has the elements of R, as types, and the typing
rules involve sequents of shape (z; : m;)_; = M : a where m; € Mg, (Rs) and
a € Ry.

We use A for the set of terms of the pure A-calculus, and Ay, as the pure \-
calculus extended with a constant {2 subject to the two following ~»,, reduction
rules: Az £2 ~»,, 2 and (£2) M ~»,, 2. We use ~,,, for the least congruence on Ay,
which contains ~», and ~»,, and similarly for ~g,,,. We define a family (H(z))zecv
of subsets of A minimal such that, for any sequence 7 = (z1,...,2,) and Y =
(y1,-..,Yyk) such that 7,7 is repetition-free, and for any terms M; € H(x;) (for
i =1,...,n), one has A?A?(I)Ml-uMnOl-nOl € H(z) where O ~,, 2
for j =1,...,1. Notice that z € H(x).

The typing rules of R, are

bx:mEM:a
z1:[],z falycxn [JFaa S F Mz M : (m,a)

o+ M:([ar,...,a5],b) (B F N:ay)k,
o+ 3h & F(M)N:b

where we use the following convention: when we write @ + ¥ it is assumed that
& is of shape (x; : m;)?; and ¥ is of shape (x; : p;)i, and then & + ¥ is
(x; : m;+p;)"_,. This typing system is just a “proof-theoretic” rephrasing of the
denotational semantics of the terms of Ay in Ry.

Proposition 2. Let M, M' € Ag and @ = (x1,...,x,) be a list of pairwise dis-
tinct variables containing all the free variables of M and M'. Let m; € Mgn(Roo)
fori=1,....n and b € Reo. If M ~gp, M’ then (z; :m;)l—y = M : b iff
(LUZ' : mi)?=1 - M/ :b.

4.1 Formulas

We define the associated formulas as follows, each formula A being given together
with d(A) C I and (A4) € R&Y.

— If J C I then ¢ is a formula with d(e;) = J and (e5); =efor j € J

— and if A and B are formulas and u : d(A) — d(B) is almost injective
then A =, B is a formula with d(4 =, B) = d(B) and (4 =, B); =
([{A)k | u(k) = 7], (B);) € Rec.

Non-idempotent intersection types in logical form 213

We can consider that there is a type o of pure A-terms interpreted as R, in
Rel,, such that (o = 0) = o, and then for any formula A we have A = o.

Operations of restriction and relocation of formulas are the same as in Sec-
tion 3 (setting e;[x = eyni) and satisfy the same properties, for instance
(Alk) = (A) [k and one sets u.(ey) = ek if u: J — K is a bijection.

The deduction rules are exactly the same as those of Section 3, plus the axiom
F eg. With any deduction 7 of (A%)"_, F B and sequence @ = (x1,...,,) of
pairwise distinct variables, we can associate a pure m— € A defined exactly as
in Section 3 (just drop the types associated with variables in abstractions). If 7
consists of an instance of the additional axiom, we set 71— = (2.

Lemma 7. Let A, Aq,..., A, be a formula such that d(A) = d(A;) = 0. Then
(A?”)?zl = A is provable by a proof m which satisfies 7, ~ 2.
The proof is a straightforward induction on A using the additional axiom,
Lemma 1 and the observations that if d(B =, C') =) then u = 0y.

One can easily define a size function sz : R, — N such that sz(e) = 0 and
sz([a1,...,a;],a) =sz(a) —1—2211(1 +5sz(a;)). First we have to prove an adapted
version of Proposition 1; here it will be restricted to finite sets.

Proposition 3. Let J be a finite subset of I and f € RZ,. There is a formula
A such that d(A) = J and (A) = f.

Proof. Observe that, since J is finite, there is an N € N such that Vj € J Vq €
Ng> N = f(j)y =[] (remember that f(j) € Mgn(Rao)Y). Let N(f) be the
least such N. We set sz(f) = >, ;sz(f(j)) and the proof is by induction on
(sz(f), N(f)) lexicographically.

If sz(f) = O this means that f(j) = e for all j € J and hence we can
take A = c;. Assume that sz(f) > 0, one can write® f(j) = (m;,a;) with
m; € Man(Roo) and a; € Ry for each j € J. Just as in the proof of Proposition 1
we choose a set K, a function g : K — Ry, and an almost injective function
u : K — J such that m; = [g(k) | u(k) =j]. The set K is finite since J is
and we have sz(g) < sz(f) because sz(f) > 0. Therefore by inductive hypothesis
there is a formula B such that d(B) = K and (B) = g. Let f': J — Ry defined
by f'(j) = a;, we have sz(f’) < sz(f) and N(f’') < N(f) and hence by inductive
hypothesis there is a formula C' such that (C) = f. We set A = (B =, C) which
satisfies (A) = f as required. O

Theorem 1 still holds up to some mild adaptation. First notice that A ~ B
simply means now that d(4) = d(B) and (A) = (B).

Theorem 4. If A and B are such that A ~ B then A" = B with a proof T
which satisfies w,, € H(x).

8 This is also possible if sz(f) = 0 actually.

214 T. Ehrhard

Proof. By induction on the sum of the sizes of A and B. Assume that A = ¢
so that d(B) = J and Vj € J (B); = e. There are two cases as to B. In the
first case B is of shape ex but then we must have K = J and we can take for
7w an axiom so that m, = € H(x). Otherwise we have B = (C =, D) with
d(D)=J,Vj e J(D); =eand d(C) =0, so that u = 0;. We have A ~ D and
hence by inductive hypothesis we have a proof p of A'Y - D such that p, € H(x).
By weakening and =-introduction we get a proof m of A" F B which satisfies
T, =Ayp, € H(x).

Assume that A = (C' =, D). If B = ¢ then we must have d(C) =0, u = 0,
and D ~ B and hence by inductive hypothesis we have a proof p of D' - B
such that p € #H(z). By Lemma 7 there is a proof 6 of - C' such that 6 ~,, £2.

Hence there is a proof 7 of A - B such that 7, = e, [(z)0/y] € H(x).

Assume last that B = (E =, F'), then we must have D ~ F' and there must
be a bijection w : d(E) — d(C) such that u o w = v and w,(E) ~ C. We reason
as in the proof of Lemma, 1: by inductive hypothesis we have a proof p of D' - F
and a proof u of w,(E)'Y F C from which we build a proof 7 of A - B such

that 7, = Ay p_ [(x) Hy/z} € H(x) by inductive hypothesis. O

Theorem 5 (Soundness). Let w be a deduction tree of AY*,..., A% - B and
7 a sequence of n pairwise distinct variables. Then the A-term n— € Ag satisfies
(@i (Af")j)i_ F o2 : (B); in the Ry intersection type system, for each j €
d(B).

The proof is exactly the same as that of Theorem 2, dropping all simple types.
For all A-term M € A, we define Ho(M) as the least subset of element of
A such that:

—if O € Ap and O ~,, 2 then O € Hp(M) for all M € A

— if M =z then H(z) C Hpo(M)

— if M =MAyN and N’ € Ho(N) then \y N’ € Ho(M)

—if M = (N)P, N' € Ho(N) and P’ € Ho(P) then (N') P’ € Ho(M).
The elements of Hg, (M) can probably be seen as approximates of M.
Theorem 6 (Completeness). Let J C I be finite. Let M € A and x1,. .., 2,
be pairwise distinct variables, such that (x; :m])?_, = M : b; in the Ry inter-
section type system for all j € J. Let Ay,..., A, and B be formulas and let
U, ..., Uy be almost injective functions such that u; : d(A;) — J = d(B). As-
sume also that, for all j € J, one has (B); = bj and (A}"); =m] fori=1,...,n.
Then the judgment A*, ..., A+ B has a proof m such that no € Ho(M).

The proof is very similar to that of Theorem 3.

5 Concluding remarks and acknowledgments

The results presented in this paper show that, at least in non-idempotent inter-
section types, the problem of knowing whether all elements of a given family of

Non-idempotent intersection types in logical form 215

intersection types (a;);jcs are inhabited by a common A-term can be reformu-
lated logically: is it true that one (or equivalently, any) of the indexed formulas A
such that d(A) = J and Vj € (A4); = a; is provable in LJ(I)? Such a strong con-
nection between intersection and Indexed Linear Logic was already mentioned
in the introduction of [2], but we never made it more explicit until now.

To conclude we propose a typed A-calculus a la Church to denote proofs of
the LJ(I) system of Section 4. The syntax of pre-terms is given by s,t... :=
x[J] | Az : A" s | (s)t where in z[J], = is a variable and J C I and, in Az : A" s,
u is an almost injective function from d(A) to a set J C I. Given a pre-term
s and a variable z, the domain of x in s is the subset dom(z,s) of I given by
dom(z,z[J]) = J, dom(z,y[J]) = 0 if y # x, dom(z,\y : A*s) = dom(z, s)
(assuming of course y # z) and dom(z,(s)t) = dom(x,s) U dom(z,t). Then
a pre-term s is a term if any subterm of ¢ which is of shape (s1)ss satisfies
dom(x, s1)Ndom(z, s5) = for all variable x. A typing judgment is an expression
(x; + Aj")Iy F s : B where the z;’s are pairwise distinct variables, s is a term
and each u; is an almost injective function d(A;) — d(B). The following typing
rules exactly mimic the logical rules of LJ(I):

d(A) =0
(i AP)) F 21 A

q#i= d(A;) =0 and u; bijection (@ AP,z A"Fs: B
(g : qu)g:l Foai[d(A4)] : uie(4;) (x; Ay F X A%s: A=, B
(5 0 A; rg;m(mi,s));;l Fs:A=,B (x5 0 Ay [;”(jm(%t))?zl Ft: A

(2; Ayﬁ(uow"’))?:l F(s)t: B

3

The properties of this calculus, and more specifically of its S-reduction, and its
connections with the resource calculus of [9] will be explored in further work.

Another major objective will be to better understand the meaning of LJ(I)
formulas, using ideas developed in [3] where a phase semantics is introduced and
related to (non-uniform) coherence space semantics. In the intuitionistic present
setting, it is tempting to look for Kripke-like interpretations with the hope of
generalizing indexed logic beyond the (perhaps too) specific relational setting
we started from.

Last, we would like to thank Luigi Liquori and Claude Stolze for many helpful
discussions on intersection types and the referees for their careful reading and
insightful comments and suggestions.

References

1. F. Breuvart, G. Manzonetto, and D. Ruoppolo. Relational graph models at work.
Logical Methods in Computer Science, 14(3), 2018.

2. A. Bucciarelli and T. Ehrhard. On phase semantics and denotational semantics in
multiplicative-additive linear logic. Annals of Pure and Applied Logic, 102(3):247—
282, 2000.

216 T. Ehrhard

3.

4.

10.

11.

12.

13.

14.

15.

A. Bucciarelli and T. Ehrhard. On phase semantics and denotational semantics:
the exponentials. Annals of Pure and Applied Logic, 109(3):205-241, 2001.

M. Coppo and M. Dezani-Ciancaglini. An extension of the basic functionality
theory for the A-calculus. Notre Dame Journal of Formal Logic, 21(4):685-693,
1980.

M. Coppo, M. Dezani-Ciancaglini, and B. Venneri. Functional characters of solv-
able terms. Mathematical Logic Quarterly, 27(2-6):45-58, 1981.

D. de Carvalho. Execution time of lambda-terms via denotational semantics and
intersection types. CoRR, abs/0905.4251, 2009.

D. de Carvalho. Execution time of A-terms via denotational semantics and inter-
section types. MSCS, 28(7):1169-1203, 2018.

T. Ehrhard. The Scott model of linear logic is the extensional collapse of its
relational model. Theoretical Computer Science, 424:20-45, 2012.

T. Ehrhard and L. Regnier. Uniformity and the Taylor expansion of ordinary
lambda-terms. Theoretical Computer Science, 403(2-3):347-372, 2008.

T. S. Freeman and F. Pfenning. Refinement Types for ML. In D. S. Wise, editor,
Proceedings of the ACM SIGPLAN’91 Conference on Programming Language De-
sign and Implementation (PLDI), Toronto, Ontario, Canada, June 26-28, 1991,
pages 268-277. ACM, 1991.

J.-Y. Girard. Normal functors, power series and the A-calculus. Annals of Pure
and Applied Logic, 37:129-177, 1988.

J. R. Hindley. Coppo-dezani types do not correspond to propositional logic. The-
oretical Computer Science, 28:235-236, 1984.

J.-L. Krivine. Lambda-Calculus, Types and Models. Ellis Horwood Series in Com-
puters and Their Applications. Ellis Horwood, 1993. Translation by René Cori
from French 1990 edition (Masson).

L. Liquori and S. R. D. Rocca. Intersection-types a la Church. Information and
Computation, 205(9):1371-1386, 2007.

L. Liquori and C. Stolze. The Delta-calculus: Syntax and Types. In H. Geu-
vers, editor, 4th International Conference on Formal Structures for Computation
and Deduction, FSCD 2019, June 24-30, 2019, Dortmund, Germany., volume 131
of LIPIcs, pages 28:1-28:20. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2019.

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

®

Check for
updates

On Computability of Data Word Functions
Defined by Transducers*

Léo Exibard"?**(®=)@®, Emmanuel Filiot'* **, and Pierre-Alain Reynier??

! Université Libre de Bruxelles, Brussels, Belgium
leo.exibard@ulb.ac.be
2 Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France

Abstract. In this paper, we investigate the problem of synthesizing
computable functions of infinite words over an infinite alphabet (data
w-words). The notion of computability is defined through Turing machines
with infinite inputs which can produce the corresponding infinite outputs
in the limit. We use non-deterministic transducers equipped with registers,
an extension of register automata with outputs, to specify functions. Such
transducers may not define functions but more generally relations of data
w-words, and we show that it is PSPACE-complete to test whether a given
transducer defines a function. Then, given a function defined by some
register transducer, we show that it is decidable (and again, PSPACE-c)
whether such function is computable. As for the known finite alphabet
case, we show that computability and continuity coincide for functions
defined by register transducers, and show how to decide continuity. We
also define a subclass for which those problems are PTIME.

Keywords: Data Words - Register Automata - Register Transducers -
Functionality - Continuity - Computability.

1 Introduction

Context Program synthesis aims at deriving, in an automatic way, a program
that fulfils a given specification. Such setting is very appealing when for instance
the specification describes, in some abstract formalism (an automaton or ideally
a logic), important properties that the program must satisfy. The synthesised
program is then correct-by-construction with regards to those properties. It is
particularly important and desirable for the design of safety-critical systems with
hard dependability constraints, which are notoriously hard to design correctly.
Program synthesis is hard to realise for general-purpose programming lan-
guages but important progress has been made recently in the automatic synthesis

* A version with full proofs can be found at https://arxiv.org/abs/2002.08203.
** Funded by a FRIA fellowship from the F.R.S.-FNRS.
*** Research associate of F.R.S.-FNRS. Supported by the ARC Project Transform
Fédération Wallonie-Bruxelles and the FNRS CDR J013116F; MIS F451019F projects.
T Partly funded by the ANR projects DeLTA (ANR-16-CE40-0007) and Ticktac (ANR-
18-CE40-0015).

© The Author(s) 2020
J. Goubault-Larrecq and B. Konig (Eds.): FOSSACS 2020, LNCS 12077, pp. 217-236, 2020.
https://doi.org/10.1007/978-3-030-45231-5_12

http://orcid.org/0000-0003-0318-1217
https://arxiv.org/abs/2002.08203
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45231-5_12&domain=pdf

218 L. Exibard et al.

of reactive systems. In this context, the system continuously receives input signals
to which it must react by producing output signals. Such systems are not assumed
to terminate and their executions are usually modelled as infinite words over
the alphabets of input and output signals. A specification is thus a set of pairs
(in,out), where in and out are infinite words, such that out is a legitimate output
for in. Most methods for reactive system synthesis only work for synchronous
systems over finite sets of input and output signals X and I'. In this synchronous
setting, input and output signals alternate, and thus implementations of such a
specification are defined by means of synchronous transducers, which are Biichi
automata with transitions of the form (q¢,0,7,¢’), expressing that in state g,
when getting input o € Y| output v € I' is produced and the machine moves
to state ¢’. We aim at building deterministic implementations, in the sense
that the output v and state ¢’ uniquely depend on g and o. The realisability
problem of specifications given as synchronous non-deterministic transducers, by
implementations defined by synchronous deterministic transducers is known to
be decidable [14,20]. In this paper, we are interested in the asynchronous setting,
in which transducers can produce none or several outputs at once every time
some input is read, i.e., transitions are of the form (¢, o, w,q’) where w € I'*.
However, such generalisation makes the realisability problem undecidable [2,9].

Synthesis of Transducers with Registers In the setting we just described, the set
of signals is considered to be finite. This assumption is not realistic in general,
as signals may come with unbounded information (e.g. process ids) that we call
here data. To address this limitation, recent works have considered the synthesis
of reactive systems processing data words [17,6,16,7]. Data words are infinite
words over an alphabet X' x D, where X' is a finite set and D is a possibly infinite
countable set. To handle data words, just as automata have been extended to
register automata, transducers have been extended to register transducers. Such
transducers are equipped with a finite set of registers in which they can store
data and with which they can compare data for equality or inequality. While
the realisability problem of specifications given as synchronous non-deterministic
register transducers (NRTsy,) by implementation defined by synchronous deter-
ministic register transducers (DRTgy,) is undecidable, decidability is recovered
for specifications defined by universal register transducers and by giving as input
the number of registers the implementation must have [7,17].

Computable Implementations In the previously mentioned works, both for finite or
infinite alphabets, implementations are considered to be deterministic transducers.
Such an implementation is guaranteed to use only a constant amount of memory
(assuming data have size O(1)). While it makes sense with regards to memory-
efficiency, some problems turn out to be undecidable, as already mentioned:
realisability of NRTsy, specifications by DRTsy,, or, in the finite alphabet setting,
when both the specification and implementation are asynchronous. In this paper,
we propose to study computable implementations, in the sense of (partial)
functions f of data w-words computable by some Turing machine M that has an
infinite input = € dom(f), and produces longer and longer prefixes of the output

On Computability of Data Word Functions Defined by Transducers 219

f(x) as it reads longer and longer prefixes of the input x. Therefore, such a machine
produces the output f(x) in the limit. We denote by TM the class of Turing
machines computing functions in this sense. As an example, consider the function
f that takes as input any data w-word u = (01,d;1)(02,d2) ... and outputs
(01,d1)? if dy occurs at least twice in u, and otherwise outputs u. This function is
not computable, as an hypothetic machine could not output anything as long as
dy is not met a second time. However, the following function g is computable. It
is defined only on words (o1, d1)(02,ds2) ... such that o109+ € ((a+b)c*)*, and
transforms any (o, d;) by (0y,dy) if the next symbol in {a, b} is an a, otherwise it
keeps (o, d;) unchanged. To compute it, a TM would need to store d;, and then
wait until the next symbol in {a, b} is met before outputting something. Since
the finite input labels are necessarily in ((a + b)c*)“, this machine will produce
the whole output in the limit. Note that g cannot be defined by any deterministic
register transducer, as it needs unbounded memory to be implemented.

However, already in the finite alphabet setting, the problem of deciding if a
specification given as some non-deterministic synchronous transducer is realisable
by some computable function is open. The particular case of realisability by
computable functions of universal domain (the set of all w-words) is known to be
decidable [12]. In the asynchronous setting, the undecidability proof of [2] can be
easily adapted to show the undecidability of realisability of specifications given
by non-deterministic (asynchronous) transducers by computable functions.

Functional Specifications As said before, a specification is in general a relation
from inputs to outputs. If this relation is a function, we call it functional. Due to
the negative results just mentioned about the synthesis of computable functions
from non-functional specifications, we instead here focus on the case of functional
specifications and address the following general question: given the specification
of a function of data w-words, is this function “implementable”, where we define
“implementable” as “being computable by some Turing machine”. Moreover, if it is
implementable, then we want a procedure to automatically generate an algorithm
that computes it. This raises another important question: how to decide whether
a specification is functional 7 We investigate these questions for asynchronous
register transducers, here called register transducers. This asynchrony allows for
much more expressive power, but is a source of technical challenge.

Contributions In this paper, we solve the questions mentioned before for the
class of (asynchronous) non-deterministic register transducers (NRT). We also
give fundamental results on this class. In particular, we prove that:

1. deciding whether an NRT defines a function is PSPACE-complete,

2. deciding whether two functions defined by NRT are equal on the intersection
of their domains is PSPACE-complete,

3. the class of functions defined by NRT is effectively closed under composition,

4. computability and continuity are equivalent notions for functions defined by
NRT, where continuity is defined using the classical Cantor distance,

5. deciding whether a function given as an NRT is computable is PSPACE-c,

220 L. Exibard et al.

6. those problems are in PTIME for a subclass of NRT, called test-free NRT.

Finally, we also mention that considering the class of deterministic register
transducers (DRT for short) instead of computable functions as a yardstick for
the notion of being “implementable” for a function would yield undecidability.
Indeed, given a function defined by some NRT, it is in general undecidable to
check whether this function is realisable by some DRT, by a simple reduction
from the universality problem of non-deterministic register automata [19].

Related Work The notion of continuity with regards to Cantor distance is not
new, and for rational functions over finite alphabets, it was already known to be
decidable [21]. Its connection with computability for functions of w-words over
a finite alphabet has recently been investigated in [3] for one-way and two-way
transducers. Our results lift some of theirs to the setting of data words. The
model of test-free NRT can be seen as a one-way non-deterministic version of a
model of two-way transducers considered in [5].

2 Data Words and Register Transducers

For a (possibly infinite) set S, we denote by S* (resp. S“) the set of finite
(resp. infinite) words over this alphabet, and we let S = S* U S“. For a
word u = wuy...u,, we denote |[u] = n its length, and, by convention, for
u € S8Y, ||u|| = oo. The empty word is denoted €. For 1 < i < j < |Jul|, we let
wli:j] = uuiy1 ... wj and w[i] = ufi:d] the ith letter of u. For u,v € S, we say
that u is a prefix of v, written u < v, if there exists w € S*° such that v = uw.
In this case, we define v~ 'v = w. For u,v € S, we say that u and v mismatch,
written mismatch(u,v), when there exists a position 7 such that 1 < i < ||u]l,
1 <@ <|v| and u[i] # v[i]. Finally, for u,v € S, we denote by u A v their
longest common prefix, i.e. the longest word w € S such that w < u and w < v.

Data Words In this paper, X' and I are two finite alphabets and D is a countably
infinite set of data. We use letter o (resp. v, d) to denote elements of X' (resp.
I', D). We also distinguish an arbitrary data value dy € D. Given a set R, let
78t be the constant function defined by 7d%(r) = dg for all r € R. Given a finite
alphabet A, a labelled data is a pair x = (a,d) € A x D, where a is the label and
d the data. We define the projections lab(z) = a and dt(z) = d. A data word over
A and D is an infinite sequence of labelled data, i.e. a word w € (4 x D)¥. We
extend the projections lab and dt to data words naturally, i.e. lab(w) € A“ and
dt(w) € D¥. A data word language is a subset L C (A x D)“. Note that here,
data words are infinite, otherwise they are called finite data words.

2.1 Register Transducers

Register transducers are transducers recognising data word relations. They are
an extension of finite transducers to data word relations, in the same way register

On Computability of Data Word Functions Defined by Transducers 221

automata [15] are an extension of finite automata to data word languages. Here,
we define them over infinite data words with a Biichi acceptance condition, and
allow multiple registers to contain the same data, with a syntax close to [18].
The current data can be compared for equality with the register contents via
tests, which are symbolic and defined via Boolean formulas of the following form.
Given R a set of registers, a test is a formula ¢ satisfying the following syntax:

¢ u=T|L|r= |17 |oAd|oV |0

where r € R. Given a valuation 7 : R — D, a test ¢ and a data d, we denote
by 7,d = ¢ the satisfiability of ¢ by d in valuation 7, defined as 7,d = r= if
7(r) = d and 7,d |= r7 if 7(r) # d. The Boolean combinators behave as usual.
We denote by Tstg the set of (symbolic) tests over R.

Definition 1. A non-deterministic register transducer (NRT) is a tuple T =
(Q, R,ig, F, A), where Q is a finite set of states, igp € @ is the initial state,
F C Q is the set of accepting states, R is a finite set of registers and A C
Q x X x Tstr x 2B x (I' x R)* x Q is a finite set of transitions. We write

o,¢plasgn,o

- q for (q,0,0,asgn,o0,q') € A (T is sometimes omitled).

The semantics of a register transducer is given by a labelled transition system:
we define Ly = (C, A,—), where C' = @ x (R — D) is the set of configurations,
A= (Y xD)x(I'xD)* is the set of labels, and we have, for all (¢,7), (¢',7') € C

!
and for all (I,w) € A, that (¢,7) L), (¢',7") whenever there exists a transition

o,¢plasgn,o
T

(Matching labels) o = o’

(Compatibility) d satisfies the test ¢ € Tstg, i.e. 7,d = ¢.

(Update) 7’ is the successor register configuration of 7 with regards to d and
asgn: 7/(r) = d if r € asgn, and 7/(r) = 7(r) otherwise

— (Output) By writing o = (v1,71) - - . (Ym, "m), we have that m = n and for
all 1 <i<mn,vy =+ and d; = 7'(r;).

¢’ such that, by writing | = (¢/,d) and w = (v;,d1) ... (7}, dn):

Then, a run of T is an infinite sequence of configurations and transitions

» = (qo,70) (u;—vl% (q1,71) (u;—vz% .-+ Tts input is in(p) = uyus . . ., its output is
T T

out(p) = v1 - vy We also define its sequence of states st(p) = qoq1 - .., and its

trace tr(p) = uy-vi-ug-vy Such run is initial if (qo, 70) = (ig, 7d%). It is final if it

satisfies the Biichi condition, i.e. inf(st) N F' # &, where inf(st) = {¢ € Q | ¢ = ¢
for infinitely many ¢}. Finally, it is accepting if it is both initial and final. We

then write (qo,70) % to express that there is a final run p of T starting from

(qo, 7o) such that in(p) = u and out(p) = v. In the whole paper, and unless stated
otherwise, we always assume that the output of an accepting run is infinite
(v € (I" x D)¥), which can be ensured by a Biichi condition.

A partial run is a finite prefix of a run. The notions of input, output and states

are extended by taking the corresponding prefixes. We then write (g, 7o) “Ti>

222 L. Exibard et al.

(qn, Tn) to express that there is a partial run p of T' starting from configuration
(go, 70) and ending in configuration (gy, 7,) such that in(p) = u and out(p) = v.
Finally, the relation represented by a transducer T is:

[T] = {(u,v) € (¥ x D)* x (I" x D)* | there exists an accepting run p of T
such that in(p) = u and out(p) = v}

Example 2. As an example, consider the register transducer Tiename depicted in
Figure 1. It realises the following transformation: consider a setting in which we
deal with logs of communications between a set of clients. Such a log is an infinite
sequence of pairs consisting of a tag, chosen in some finite alphabet X', and the
identifier of the client delivering this tag, chosen in some infinite set of data values.
The transformation should modify the log as follows: for a given client that needs
to be modified, each of its messages should now be associated with some new
identifier. The transformation has to verify that this new identifier is indeed free,
i.e. never used in the log. Before treating the log, the transformation receives as
input the id of the client that needs to be modified (associated with the tag del),
and then a sequence of identifiers (associated with the tag ch), ending with #.
The transducer is non-deterministic as it has to guess which of these identifiers
it can choose to replace the one of the client. In particular, observe that it may
associate multiple output words to a same input if two such free identifiers exist.

ch, T | @,e ch, T|2,e o, |2, (0, r2)
del, T | r1,€ R ch,rl#|7“2,e A #,T|9,¢
-~ s\ o\, ()

U,Tf A 7“2# | 7o, (0,70)

Fig. 1. A register transducer Trename. It has three registers r1, r2 and o and four states.
o denotes any letter in X', r; stores the id of del and r2 the chosen id of ch, while r¢
is used to output the last data value read as input. As we only assign data to single
registers, we write r; for the singleton assignment set {r;}.

Finite Transducers Since we reduce the decision of continuity and functionality
of NRT to the one of finite transducers, let us introduce them: a finite transducer
(NFT for short) is an NRT with O registers (i.e. R = @). Thus, its transition
relation can be represented as A C QQ x X x I'™* x). A direct extension of the
construction of [15, Proposition 1] allows to show that:

Proposition 3. Let T' be an NRT with k registers, and let X C; D be a finite
subset of data. Then, [T]N (X x X)¥ x (I' x X)¥ is recognised by an NFT of
exponential size, more precisely with O(|Q| x | X |I®) states.

2.2 Technical Properties of Register Automata

Although automata are simpler machines than transducers, we only use them as
tools in our proofs, which is why we define them from transducers, and not the

On Computability of Data Word Functions Defined by Transducers 223

other way around. A non-deterministic register automaton, denoted NRA, is a
transducer without outputs: its transition relation is A C Q x X x Tstp x 27 x
{e} x Q (simply represented as A C Q x X x Tstg x 2% x Q). The semantics are
the same, except that now we lift the condition that the output v is infinite since
there is no output. For A an NRA, we denote L(A) = {u € (X x D)¥ | there
exists an accepting run p of A over u}. Necessarily the output of an accepting
run is €. In this section, we establish technical properties about NRA.

Proposition 4, the so-called “indistinguishability property”, was shown in the
seminal paper by Kaminski and Francez [15, Proposition 1]. Their model differs
in that they do not allow distinct registers to contain the same data, and in the
corresponding test syntax, but their result easily carries to our setting. It states
that if an NRA accepts a data word, then such data word can be relabelled with
data from any set containing dy and with at least k + 1 elements. Indeed, at any
point of time, the automaton can only store at most k& data in its registers, so
its notion of “freshness” is a local one, and forgotten data can thus be reused as
fresh ones. Moreover, as the automaton only tests data for equality, their actual
value does not matter, except for dy which is initially contained in the registers.

Such “small-witness” property is fundamental to NRA, and will be paramount
in establishing decidability of functionality (Section 3) and computability (Sec-
tion 4). We use it jointly with Lemma 5, which states that the interleaving of the
traces of runs of an NRT can be recognised with an NRA, and Lemma 6, which
expresses that an NRA can check whether interleaved words coincide on some
bounded prefix, and/or mismatch before some given position.

Proposition 4 ([15]). Let A be an NRA with k registers. If L(A) # &, then,
for any X C D of size | X| >k + 1 such that dy € X, L(A) N (X x X)¥ # @.

The runs of a register transducer 7' can be flattened to their traces, so as to
be recognised by an NRA. Those traces can then be interleaved, in order to be
compared. The proofs of the following properties are straightforward.

(uy,uh) (v1,0)
Let p1 = (qo,70) 1L—T1> (q1,71) ... and p2 = (po, f10) 1L—T1> (p1,p1) ... be
two runs of a transducer T'. Then, we define their interleaving p1 ® pa = uy -uf vy -

v cug-uh vy vh ... and Lg(T) = {p1 ® p2 | p1 and ps are accepting runs of T'}.
Lemma 5. If T has k registers, then Lg(T) is recognised by an NRA with 2k
registers.

Lemma 6. Let i,j € NU{oo}. We define M} = {ujujvivy -+ | Vk > 1, up, v €
(X xD),up, vy, € (I'xD)* V1 < k < j,ok = uy and [luy -uy - Avp-vy.. || < i}
Then, M; s recognisable by an NRA with 2 registers and with 1 register if i = oo.

3 Functionality, Equivalence and Composition of NRT

In general, since they are non-deterministic, NRT may not define functions but
relations, as illustrated by Example 2. In this section, we first show that deciding

224 L. Exibard et al.

whether a given NRT defines a function is PSPACE-complete, in which case we call
it functional. We show, as a consequence, that testing whether two functional NRT
define two functions which coincide on their common domain is PSPACE-complete.
Finally, we show that functions defined by NRT are closed under composition.
This is an appealing property in transducer theory, as it allows to define complex
functions by composing simple ones.

Example 7. As explained before, the transducer Tyepame described in Example 2
is not functional. To gain functionality, one can reinforce the specification by
considering that one gets at the beginning a list of k possible identifiers, and that
one has to select the first one which is free, for some fixed k. This transformation
is realised by the register transducer Tyename2 depicted in Figure 2 (for k = 2).

_)@ del, T | ri,¢ >® ch,rflrg,e >@ch,r1¢/\7f\r37e>

_ _ 13 ~
o, 17 | 9, (o,73) o,ri | 9, (0,13) #W’Y \2 o,ri | 9, (0,72)

o,rl#/\rf | 7o, (0,70) 0,7"1#/\7“2#/\1”3#

[70, (0, 70) Jvrl#/\rj | 7o, (0,70)

Fig. 2. A NRT Tlename2, with four registers r1, 72,73 and 7o (the latter being used, as in
Figure 1, to output the last read data). After reading the # symbol, it guesses whether
the value of register ro appears in the suffix of the input word. If not, it goes to state
5, and replaces occurrences of 1 by ro. Otherwise, it moves to state 6, waiting for an
occurrence of r2, and replaces occurrences of r1 by r3.

Let us start with the functionality problem in the data-free case. It is al-
ready known that checking whether an NFT over w-words is functional is decid-
able [13,11]. By relying on the pattern logic of [10] designed for transducers of
finite words, it can be shown that it is decidable in NLOGSPACE.

Proposition 8. Deciding whether an NFT is functional is in NLOGSPACE.

The following theorem shows that a relation between data-words defined by an
NRT with k registers is a function iff its restriction to a set of data with at
most 2k + 3 data is a function. As a consequence, functionality is decidable as it
reduces to the functionality problem of transducers over a finite alphabet.

Theorem 9. Let T be an NRT with k registers. Then, for all X C D of size
|X| > 2k + 3 such that dy € X, we have that T is functional if and only if
[T]N (X x X)* x (I' x X)¥) is functional.

Proof. The left-to-right direction is trivial. Now, assume 7T is not functional. Let
x € (¥ x D)¥ be such that there exists y,z € (I" x D)¥ such that y # z and
(z,y), (z,2) € [T]. Let i = ||y A z||. Then, consider the language L = {p1 ® p2 | p1
and pe are accepting runs of T, in(p1) = in(p2) and ||out(p1) Aout(p2)|| < i}. Since,

On Computability of Data Word Functions Defined by Transducers 225

by Lemma 5, Lg/(T) is recognised by an NRA with 2k registers and, by Lemma 6,
M}, is recognised by an NRA with 2 registers, we get that L = Lg(T) N M7, is
recognised by an NRA with 2k + 2 registers.

Now, L # @, since, by letting p; and py be the runs of 7" both with input = and
with respective outputs y and z, we have that w = p; ® ps € L. Let X C D such
that |X| > 2k + 3 and dg € X. By Proposition 4, we get that L N (X x X)¥ # @.
By letting w’ = pf @ ph € LN (X x X)¥, and 2’ = in(p}) = in(ph), ¥y = out(p})
and 2z’ = out(ph), we have that (z/,y'), (z/,2") € [T] N (¥ x X)* x (I" x X))
and ||y’ A Z|| < i, so, in particular, ¥’ # 2’ (since both are infinite words). Thus,
[T]N (X x X)* x (I x X)¥) is not functional. O

As a consequence of Proposition 8 and Theorem 9, we obtain the follow-
ing result. The lower bound is obtained by encoding non-emptiness of register
automata, which is PSPACE-complete [4].

Corollary 10. Deciding whether an NRT T is functional is PSPACE-complete.

Hence, the following problem on the equivalence of NRT is decidable:

Theorem 11. The problem of deciding, given two functions f,g defined by NRT,
whether for all x € dom(f) Ndom(g), f(x) = g(x), is PSPACE-complete.

Proof. The formula Vo € dom(f) Ndom(g) - f(x) = g(x) is true iff the relation
fUug={(z,y) |y = f(z) Vy = g(z)} is a function. The latter can be decided by
testing whether the disjoint union of the transducers defining f and g defines a
function, which is in PSPACE by Corollary 10. To show the hardness, we similarly
reduce the emptiness problem of NRA A over finite words, just as in the proof of
Corollary 10. In particular, the functions f; and fy defined in this proof (which
have the same domain) are equal iff L(A4) = &. O

Note that under the promise that f and g have the same domain, the latter
theorem implies that it is decidable to check whether the two functions are
equal. However, checking dom(f) = dom(g) is undecidable, as the language-
equivalence problem for non-deterministic register automata is undecidable, since,
in particular, universality is undecidable [19].

Closure under composition is a desirable property for transducers, which
holds in the data-free setting [1]. We show that it also holds for functional NRT.

Theorem 12. Let f, g be two functions defined by NRT. Then, their composition
fogis (effectively) definable by some NRT.

Proof (Sketch). By fog we mean fog:x +— f(g(x)). Assume f and g are
defined by Ty = (Qf, Ry, qo, Fy, Af) and Ty = (Qg, Ry, po, Fy, Ay) respectively.
Wlog we assume that the input and output finite alphabets of Ty and T}, are
all equal to X, and that Ry and R, are disjoint. We construct 7' such that
[T] = f o g. The proof is similar to the data-free case where the composition is
shown via a product construction which simulates both transducers in parallel,
executing the second on the output of the first. Assume 7} has some transition

226 L. Exibard et al.

D M g where 0 € (X' x Ry)*. Then T has to be able to execute transitions

of Ty while processing o, even though o does not contain any concrete data values
(it is here the main important difference with the data-free setting). However,
if T' knows the equality types between Ry and R, then it is able to trigger the
transitions of Ty. For example, assume that o = (a,74) and assume that the
content of 4 is equal to the content of r¢, 7 being a register of T, then if T has

a,ry |[{r}},o’
e

some transition of the form p’ ¢’ then T can trigger the transition

o Hru(ryi=rg} o . .
(p,q) (p',q") where the operation 7' 1= 1y is a syntactic sugar
on top of NRT that intuitively means “put the content of r, into r}”. O

Remark 13. The proof of Theorem 12 does not use the hypothesis that f and g
are functions, and actually shows a stronger result, namely that relations defined
by NRT are closed under composition.

4 Computability and Continuity

We equip the set of (finite or infinite) data words with the usual distance: for
u,v € (X xD)¥, d(u,v) = 0if u = v and d(u,v) = 271" Il otherwise. A sequence
of (finite or infinite) data words (z,,)nen converges to some infinite data word x
if for all € > 0, there exists N > 0 such that for all n > N, d(x,,z) <e.

In order to reason with computability, we assume in the sequel that the
infinite set of data values D we are dealing with has an effective representation.
For instance, this is the case when D = N.

We now define how a Turing machine can compute a function of data words.
We consider deterministic Turing machines, which three tapes: a read-only one-
way input tape (containing the infinite input data word), a two-way working tape,
and a write-only one-way output tape (on which it writes the infinite output data
word). Consider some input data word = € (X x D)“. For any integer k € N, we
let M (x, k) denote the output written by M on its output tape after having read
the k first cells of the input tape. Observe that as the output tape is write-only,
the sequence of data words (M (z, k))xr>0 is non-decreasing.

Definition 14 (Computability). A function f : (¥ x D)¥ — (' x D)¥ is
computable if there exists a deterministic multi-tape machine M such that for all
x € dom(f), the sequence (M (x,k))r>0 converges to f(x).

Definition 15 (Continuity). A function f: (X x D)¥ — (I' x D)¥ is contin-
uous at x € dom(f) if (equivalently):

(a) for all sequences of data words (x,)nen converging towards x, where for all
i €N, x; € dom(f), we have that (f(xn))nen converges to f(x).
(b) ¥i=0,3j > 0,Vy € dom(f), [z Ayl = j = [[f(x) A f(y)ll = i.

Then, f is continuous if and only if it is continuous at each x € dom(f). Finally,
a functional NRT T is continuous when [T] is continuous.

On Computability of Data Word Functions Defined by Transducers 227

Example 16. We give an example of a non-continuous function f. The finite input
and output alphabets are unary, and are therefore ignored in the description
of f. Such function associates with every sequence s = dids --- € D“ the word
f(s) =d¥ if dy occurs infinitely many times in s, otherwise f(s) = s itself.

The function f is not continuous. Indeed, by taking d # d’, the sequence of
data words d(d')"d“ converges to d(d')*, while f(d(d")"d¥) = d* converges to
@ # F(d(d)?) = d(d')*.

Moreover, f is realisable by some NRT which non-deterministically guesses
whether d; repeats infinitely many times or not. It needs only one register r in
which to store d;. In the first case, it checks whether the current data d is equal
the content r infinitely often, and in the second case, it checks that this test
succeeds finitely many times, using Biichi conditions.

One can show that the register transducer Trename2 considered in Example 7
also realises a function which is not continuous, as the value stored in register ro
may appear arbitrarily far in the input word. One could modify the specification
to obtain a continuous function as follows. Instead of considering an infinite log,
one considers now an infinite sequence of finite logs, separated by $ symbols. The
register transducer Trename3, depicted in Figure 3, defines such a function.

o1 | @, (0,12)

#

o,r] Ar? | ro, (0, 70) a,rf/\rf

A rf | 7o, (o, 70) o.,rf /\rf | 70, (0,70)

Fig. 3. A register transducer Trename3. This transducer is non-deterministic, yet it defines
a continuous function.

We now prove the equivalence between continuity and computability for
functions defined by NRT. One direction, namely the fact that computability
implies continuity, is easy, almost by definition. For the other direction, we rely
on the following lemma which states that it is decidable whether a word v can be
safely output, only knowing a prefix u of the input. In particular, given a function
f, we let f be the function defined over all finite prefixes u of words in dom(f)
by f(u) = \(f(uy) | uy € dom(f)), the longest common prefix of all outputs of
continuations of u by f. Then, we have the following decidability result:

Lemma 17. The following problem is decidable. Given an NRT T defining a
function f, two finite data words u € (X x D)* and v € (I' x D)*, decide whether

v = f(u).

228 L. Exibard et al.

Theorem 18. Let f be a function defined by some NRT T'. Then f is continuous
iff [is computable.

Proof. < Assuming f = [T is computable by some Turing machine M, we show
that f is continuous. Indeed, consider some x € dom(f), and some i > 0. As the
sequence of finite words (M (x, k))ren converges to f(z) and these words have
non-decreasing lengths, there exists j > 0 such that |M(z,j)| > i. Hence, for
any data word y € dom(f) such that |z A y| > j, the behaviour of M on y is the
same during the first j steps, as M is deterministic, and thus |f(z) A f(y)| > ¢,
showing that f is continuous at x.

= Assume that f is continuous. We describe a Turing machine computing f;
the corresponding algorithm is formalised as Algorithm 1. When reading a finite
prefix x[:j] of its input « € dom(f), it computes the set P; of all configurations
(¢, 7) reached by T on z[:j]. This set is updated along taking increasing values
of j. It also keeps in memory the finite output word o; that has been output so
far. For any j, if dt(z[:j]) denotes the data that appear in x, the algorithm then
decides, for each input (o,d) € X' x (dt(z[:j]) U{do}) whether (o, d) can safely
be output, i.e., whether all accepting runs on words of the form z[:j]y, for an
infinite word y, outputs at least 0;(o,d). The latter can be decided, given T', o;
and z[:j], by Lemma 17. Note that it suffices to look at data in dt(z[:4]) U {do}
only since, by definition of NRT, any data that is output is necessarily stored in
some register, and therefore appears in z[:j] or is equal to dg. Let us show that

Algorithm 1: Algorithm describing the machine My computing f.
Data: z € dom(f)
10:=¢€;
2 for j =0 to co do
for (0,d) € ¥ x (dt(z[:4]) U{do}) do
if 0.(0,d) < f(x[:j]) then // such test is decidable by Lemma 17
0:=o.(0,d);
output (o, d);
end

end

© 0 N o v~ W

end

M actually computes f. Let z € dom(f). We have to show that the sequence
(Mg(z,j)); converges to f(x). Let o; be the content of variable o of My when
exiting the inner loop at line 8, when the outer loop (line 2) has been executed
Jj times (hence j input symbols have been read). Note that o; = M¢(x,j). We
have 01 < 0o < ... and o; = f(x[]]) for all j > 0. Hence, 0o; = f(z) for all
j > 0. To show that (0;); converges to f(x), it remains to show that (o0;); is
non-stabilising, i.e. 0;, < 0;, < ... for some infinite subsequence i; < iz <
First, note that f being continuous is equivalent to the sequence (f(x[:k]))x
converging to f(z). Therefore we have that f(x) A f(z[:k]) can be arbitrarily long,

On Computability of Data Word Functions Defined by Transducers 229

for sufficiently large k. Let j > 0 and (0, d) = f(z)[|oj|+1]. By the latter property
and the fact that o;.(0,d) < f(z), necessarily, there exists some k > j such that
0j.(0,d) =< f(z[:k]). Moreover, by definition of NRT, d is necessarily a data that
appears in some prefix of x, therefore there exists &’ > k such that d appears in
z[:k'] and o0;.(0,d) = f(x[:k] = f(z[:k']. This entails that 0j.(0,d) < ogr. So, we
have shown that for all for all j, there exists &’ > j such that o; < o/, which
concludes the proof. O

Now that we have shown that computability is equivalent with continuity for
functions defined by NRT, we exhibit a pattern which allows to decide continuity.
Such pattern generalises the one of [3] to the setting of data words, the difficulty
lying in showing that our pattern can be restricted to a finite number of data.

Theorem 19. Let T be a functional NRT with k registers. Then, for all X C D
such that | X| > 2k + 3 and dy € X, T is not continuous at some x € (X x D)%
if and only if T is not continuous at some z € (X x X)¥.

Proof. The right-to-left direction is trivial. Now, let T" be a functional NRT with
k registers which is not continuous at some z € (X x D)%. Let f : dom([T]) —
(I' x D)“ be the function defined by T', as: for all u € dom([T]), f(u) = v where
v € (I' x D)¥ is the unique data word such that (u,v) € [T7].

Now, let X C D be such that | X| > 2k + 3 and dy € X. We need to build two
words u and v labelled over X which coincide on a sufficiently long prefix to allow
for pumping, hence yielding a converging sequence of input data words whose
images do not converge, witnessing non-continuity. To that end, we use a similar
proof technique as for Theorem 9: we show that the language of interleaved runs
whose inputs coincide on a sufficiently long prefix while their respective outputs
mismatch before a given position is recognisable by an NRA, allowing us to use
the indistinguishability property. We also ask that one run presents sufficiently
many occurrences of a final state ¢y, so that we can ensure that there exists a
pair of configurations containing ¢y which repeats in both runs.

On reading such v and v, the automaton behaves as a finite automaton, since
the number of data is finite ([15, Proposition 1]). By analysing the respective runs,
we can, using pumping arguments, bound the position on which the mismatch
appears in u, then show the existence of a synchronised loop over u and v after
such position, allowing us to build the sought witness for non-continuity.

Relabel over X Thus, assume T is not continuous at some point z € (X x D)¥.
Let p be an accepting run of T over z, and let ¢; € inf(st(p)) N F be an accepting
state repeating infinitely often in p. Then, let ¢ > 0 be such that for all j > 0,
there exists y € dom(f) such that ||z Ayl > j but || f(z) A f(y)| < i. Now, define
K =|Q| x (2k + 3)%* and let m = (2i + 3) x (K + 1). Finally, pick j such that
p[1:j] contains at least m occurrences of gy. Consider the language:

L = {p1 ® p2l[lin(p1) Ain(p2)|| = j, |lout(p1) A out(ps)|| < i and

there are at least m occurrences of ¢y in pl[lzj]}

230 L. Exibard et al.

By Lemma 5, Lg(T') is recognised by an NRA with 2k registers. Additionnally, by
Lemma 6, M} is recognised by an NRA with 2 registers. Thus, L = Lg(T)NO;! ;N
M: 7, where Oqf m,; checks there are at least m occurrences of gy in p1[1:]] (thls is
easily doable from the automaton recognising Lg(7') by adding an m-bounded
counter), is recognisable by an NRA with 2k + 2 registers.

Choose y € dom(f) such that ||z Ay|| > 7 but ||f(z) A f(y)]| < i. By letting
p1 (resp. pa2) be an accepting run of T over = (resp. y) we have p; ® ps € L, so
L # @. By Proposition 4, LN (X x X)* x (I' x X)¥) # @. Let w = p} ® p} €
LNn(¥xX)¥x(Ix X)), u=Iin(p)) and v = in(ph). Then, [|u Av| > j,
I f(u) A f(v)]] < i and there are at least m occurrences of ¢y in p;[1:5].

Now, we depict pj and p/, in Figure 4, where we decompose u as u =
UL .. U and v as v = Uy ... Uy, -t; their corresponding images being respectively
u=uf.oul, s and v = uf .. ou)t”. We also let | = (i + 1)(K + 1) and
I =2(i+ 1)(K + 1). Since the data of u,v and w belong to X, we know that
T, it R — X.

ur |y wp | up m war | upy wp | u) muz'ﬂ | ufryy U | Uy, m s|s’
o _J ' w -

(i + 1)(K + 1) occurrences of gy (i + 1)(K + 1) occurrences of gy (K + 1) occurrences of qr

" " ’ o " /" " "
ur | uf w | m w1 | wpy w | ul m“"“ [upr gy U | Uy 1)t
io, dff @, w Qimy Tm

Fig. 4. Runs of f over u = u1 ... Upm -sand v =uy ... uUp, - t.

(
© G

C

Repeating configurations First, let us observe that in a partial run of p| containing
more than |Q| x | X|* occurrences of gy, there is at least one productive transition,
i.e. a transition whose output is o # . Otherwise, by the pigeonhole principle,
there exists a configuration p : R — X such that (gy, 1) occurs at least twice
in the partial run. Since all transitions are improductive, it would mean that,

| .
(a7,). This
partial run is part of p/, so, in particular, (g,) is accessible, hence by taking

by writing w the corresponding part of input, we have (qs,) —

wo such that (ig, 70) % (qf, i), we have that f(wow®) = w(, which is a
finite word, contradicting our assumption that all accepting runs produce an
infinite output. This implies that, for any n > |Q| x |X|¥ (in particular for n = 1),
| .. ul|| >+ 1.

Locate the mismatch Again, upon reading w1 ...y, there are (i + 1)(K + 1)
occurrences of gy. There are two cases:

(a) There are at least ¢ + 1 productive transitions in p5. Then, we obtain that
lluf ... u)f|| > 4, so mismatch(u) ... up,uf ... u}), since we know | f(u) A
f()|| <iand they are respectively prefixes of f(u) and f(v), both of length at

On Computability of Data Word Functions Defined by Transducers 231

least i+1. Afterwards, upon reading uy 11 . . . uy,, there are K+1 > |Q] x| X|?*
occurrences of gy, so, by the pigeonhole principle, there is a repeating pair:
there exist indices p and p’ such that I’ < p < p’ <m and (gr, ptp) = (a7, thp')5
(gp, ™) = (qp,Tpr). Thus, let zp = u1 ... up, 2r = Upt1... Uy and zc =
Up/+1 - - - Uy - t (P stands for prefiz, R for repeat and C for continuation; we
use capital letters to avoid confusion with indices). By denoting 2 = u} ... uj,
2R = Uy - Upyy 2 = U Uy, 2 = Uy Uy and 26 = ug g ot
the corresponding images, z = zp - zg® is a point of discontinuity. Indeed,
define (2,)nen as, for all n € N, z,, = zp - 2% - z¢. Then, (2,)nen converges

towards z, but, since for all n € N, f(z,) = 2 - 2/" - z{4, we have that

f(zn) A= f(2) = 2} - 217, since mismatch (2}, 2%).
noo
(b) Otherwise, by the same reasoning as above, it means there exists a repeating
pair with only improductive transitions in between: there exist indices p
and p’ such that | < p <p" <V, (g7, 1p) = (af, 1), (@p:Tp) = (@', 1),

and (qf, ip) (a5 1p)s (aps Tp)
taking zp = Uy ... Up, ZR = Upy1 ... Uy and 2o = Upr41 ... Uy - T, We have,
by letting 2p = uj...up, 25 = Upiq.. Uy, 2p = Uy ... uy, zp = € and
2 =up, . .up, -t that z = zp - 2z is a point of discontinuity. Indeed,
define (z,)nen as, for all n € N, 2z, = zp - 2 - z¢. Then, (z,)nen indeed
converges towards z, but, since for all n € N, f(z,) = 2} - 2, we have
that f(z,) A f(2) = 2} - 2%, since mismatch(zp, 2 - 25) (the mismatch
noo

Upt1.- Uy |€ Upt1..Upyr |E

(qp'» 7). Then, by

necessarily lies in 2, since ||zp| > i+ 1). a

Corollary 20. Deciding whether an NRT defines a continuous function is
PSPACE-complete.

Proof. Let X C D be a set of size 2k + 3 containing dg. By Theorem 19, T is not
continuous iff it is not continuous at some z € (X x X)*, iff [T] N (£ x X)“ x
(I'x X)“’) is not continuous. By Proposition 3, such relation is recognisable by a
finite transducer Ty with O(|Q| x |X|#l) states, which can be built on-the-fly.
By [3], the continuity of functions defined by NFT is decidable in NLOGSPACE,
which yields a PSPACE procedure.

For the hardness, we reduce again from the emptiness problem of register
automata, which is PSPACE-complete [4]. Let A be a register automaton over
some alphabet X' x D. We construct a transducer 1" which defines a continuous
function iff L(A) = @ iff the domain of T is empty. Let f be a non-continous
function realised by some NRT H (it exists by Example 16). Then, let # ¢ X' be
a fresh symbol, and define the function g as the function mapping any data word
of the form w(#, d)w’ to w(#,d) f(w’) if w € L(A). The function g is realised by
an NRT which simulates A and copies its inputs on the output to implement the
identity, until it sees #. If it was in some accepting state of A before seeing #, it
branches to some initial state of H and proceeds executing H. If there is some
wo € L(A), then the subfunction g¢,,, mapping words of the form wg(#, d)w’
to wo(#,d)f(w’) is not continuous, since f is not. Hence ¢ is not continuous.
Conversely, if L(A) = @, then dom(g) = @, so ¢ is continuous. O

232 L. Exibard et al.

In [3], non-continuity is characterised by a specific pattern (Lemma 21, Figure 1),
i.e. the existence of some particular sequence of transitions. By applying this
characterisation to the finite transducer recognising [T]N((X x X)* x (I" x X)¥),
as constructed in Proposition 3, we can characterise non-continuity by a similar
pattern, which will prove useful to decide (non-)continuity of test-free NRT in
NLOGSPACE (cf Section 5):

Corollary 21 ([3]). Let T be an NRT with k registers. Then, for all X C D
such that | X| > 2k + 3 and dy € X, T is not continuous at some x € (X x D)¥
if and only if it has the pattern of Figure 5.

’U‘UH

" "
ulu A w | w
0, T0 >\‘1:TJ >

Fig. 5. A pattern characterising non-continuity of functions definable by an NRT: we
ask that there exist configurations (gs,) and (g, 7), where gy is accepting, as well as
finite input data words w, v, finite output data words u’,v",v”,v”, and an infinite input
data word w admitting an accepting run from configuration (g, 7) producing output
w”, such that mismatch(u’,u”) V (v = & A mismatch(u’, u”w")).

5 Test-free Register Transducers

In [7], we introduced a restriction which allows to recover decidability of the
bounded synthesis problem for specifications expressed as non-deterministic
register automata. Applied to transducers, such restriction also yields polynomial
complexities when considering the functionality and computability problems.
An NRT T is test-free when its transition function does not depend on the

tests conducted over the input data. Formally, we say that T is test-free if for all
o,p|asgn,o

transitions ¢ — q' we have ¢ = T. Thus, we can omit the tests altogether

and its transition relation can be represented as A’ C Q x X' x 2 x (I'x R)* x Q.

Ezample 22. Consider the function f : (X x D) — (I' x D)¥ associating, to
x = (01,d1)(02,d2) ..., the value (o1,d1)(02,d1)(03,dy) ... if there are infinitely
many a in z, and (o1,ds)(02,ds)(03,ds) ... otherwise.

f can be implemented using a test-free NRT with one register: it initially
guesses whether there are infinitely many a in x, if it is the case, it stores d; in
the single register r, otherwise it waits for the next input to get do and stores it
in r. Then, it outputs the content of r along with each o;. f is not continuous, as
even outputting the first data requires reading an infinite prefix when d; # ds.

On Computability of Data Word Functions Defined by Transducers 233

Note that when a transducer is test-free, the existence of an accepting run over
a given input x only depends on its finite labels. Hence, the existence of two
outputs y and z which mismatch over data can be characterised by a simple
pattern (Figure 6), which allows to decide functionality in polynomial time:

Theorem 23. Deciding whether a test-free NRT is functional is in PTIME.

Proof. Let T be a test-free NRT such that 7" is not functional. Then, there exists
z € (X xD)W, y,z € (I' x D)¥ such that (z,y), (z,2) € [T] and y # z. Then, let
i be such that y[i] # z[i]. There are two cases. Either lab(y[i]) # lab(z[i]), which
means that the finite transducer T’ obtained by ignoring the registers of 7' is not
functional. By Proposition 8, such property can be decided in NLOGSPACE, so
let us focus on the second case: dt(y[i]) # dt(z][i]).

y -
) 4m\3>/”
W7o
r Easgn;, r € asgn; //’// r' € o,
z =
T] _ . 1
T~ r is not reassigned
2[z, \\\\\~\
R

Fig. 6. A situation characterising the existence of a mismatch over data. Since acceptance
does not depend on data, we can always choose z such that dt(z[j]) # dt(z[j']). Here,
we assume that the labels of x,y and z range over a unary alphabet; in particular
yli] = z[5] iff dt(y[z]) = dt(z[;j]). Finally, for readability, we did not write that v’ should
not be reassigned between j' and I’. Note that the position of i with regards to j,5,1
and !’ does not matter; nor does the position of [w.r.t. I’.

We here give a sketch of the proof: observe that an input x admits two outputs
which mismatch over data if and only if it admits two runs which respectively
store z[j] and x[j’] such that x[j] # x[j'] and output them later at the same
output position i; the outputs y and z are then such that dt(y[¢]) # dt(z[i]). Since
T is test-free, the existence of two runs over the same input z only depends on
its finite labels. Then, the registers containing respectively z[j] and z[j'] should
not be reassigned before being output, and should indeed output their content
at the same position i (cf Figure 6). Besides, again because of test-freeness, we
can always assume that x is such that z[j] # z[j’]. Overall, such pattern can
be checked by a 2-counter Parikh automaton, whose emptiness is decidable in
PTIME [8] (under conditions that are satisfied here). O

Now, let us move to the case of continuity. Here again, the fact that test-free
NRT conduct no test over the input data allows to focus on the only two registers
that are responsible for the mismatch, the existence of an accepting run being
only determined by finite labels.

234 L. Exibard et al.

Theorem 24. Deciding whether a test-free NRT defines a continuous function
s in PTIME.

Proof. Let T be a test-free NRT. First, it can be shown that T is continuous if
and only if T has the pattern of Figure 7, where r is coaccessible (since acceptance
only depends on finite labels, T can be trimmed?® in polynomial time).

u|u v| v u|u” v | v’ 2| 2"
~(2) ©)

Fig. 7. A pattern characterising non-continuity of functions defined by NRT, where
we ask that there exist some states gy, ¢ and r, where gy is accepting, as well as
finite input data words u, v, z and finite output data words u’,v’,u”,v"”, 2"’ such that
mismatch(u’, v)V (v = € A mismatch(u’,u”2"")). Register assignments are not depicted,
as there are no conditions on them. We unrolled the loops to highlight the fact that

they do not necessarily loop back to the same configuration.

Now, it remains to show that such simpler pattern can be checked in PTIME.
We treat each part of the disjunction separately:

" "

(a) there exists w, v, u” v, 0", 0" s.t. iy M qf % qf and i ﬂ) q L
g, where ¢y € F and mismatch(v',v”). Then, as shown in the proof of
Theorem 23, there exists a mismatch between some v’ and u” produced by
the same input v if and only if there exists two runs and two registers r and
r’ assigned at two distinct positions, and later on output at the same position.
Such pattern can similarly be checked by a 2-counter Parikh automaton; the
only difference is that here, instead of checking that the two end states are
coaccessible with a common w-word, we only need to check that ¢y € F' and
that there is a synchronised loop over q; and g, which are regular properties

that can be checked by the Parikh automaton with only a polynomial increase.
ulu |v’ " vle

. . v|v . u|u
(b) there exists w,u’, v, v,v, z,2" s.t. igp — ¢ — ¢y and iy — ¢ —

q 2 r, where ¢y € F and mismatch(v/,u”2"). By examining again the

proof of Theorem 23, it can be shown that to obtain a mismatch, it suffices
that the input is the same for both runs only up to position max(j, j'). More
precisely, there is a mismatch between u’ and u”2” if and only if there exists

two registers r and r’ and two positions j,j" € {1,...,||u|} such that j # j/,
r is stored at position j, r’ is stored at position j/, r and r’ are respectively
output at input positions I € {1,...,||ul|} and I’ € {1,...,|uz|} and they

are not reassigned in the meantime. Again, such property, along with the
fact that ¢y € F' and the existence of a synchronised loop can be checked by
a 2-counter Parikh automaton of polynomial size.

Overall, deciding whether a test-free NRT is continuous is in PTIME. 0O

3 We say that T is trim when all its states are both accessible and coaccessible.

On Computability of Data Word Functions Defined by Transducers 235

References

1.

2.

10.

11.

12.

13.

14.

Berstel, J.: Transductions and Context-free Languages. Teubner Verlag (1979), http:
//www-igm.univ-mlv.fr/~berstel /LivreTransductions/LivreTransductions.html
Carayol, A., Loding, C.: Uniformization in Automata Theory. In: Proceedings
of the 14th Congress of Logic, Methodology and Philosophy of Science, Nancy,
July 19-26, 2011. pp. 153-178. London: College Publications (2014), https://hal.
archives-ouvertes.fr/hal-01806575

Dave, V., Filiot, E., Krishna, S.N., Lhote, N.: Deciding the computability of regular
functions over infinite words. CoRR abs/1906.04199 (2019), http://arxiv.org/
abs/1906.04199

Demri, S., Lazic, R.: LTL with the freeze quantifier and regis-
ter automata. ACM Trans. Comput. Log. 10(3), 16:1-16:30 (2009).
https://doi.org/10.1145/1507244.1507246

Durand-Gasselin, A., Habermehl, P.: Regular transformations of data words
through origin information. In: Foundations of Software Science and Computa-
tion Structures - 19th International Conference, FOSSACS 2016, Held as Part
of the FEuropean Joint Conferences on Theory and Practice of Software, ETAPS
2016, Eindhoven, The Netherlands, April 2-8, Proceedings. pp. 285-300 (2016).
https://doi.org/10.1007/978-3-662-49630-5 17

Ehlers, R., Seshia, S.A., Kress-Gazit, H.: Synthesis with identifiers. In: Pro-
ceedings of the 15th International Conference on Verification, Model Checking,
and Abstract Interpretation - Volume 8318. pp. 415-433. VMCAI 2014 (2014).
https://doi.org/10.1007/978-3-642-54013-4 23

Exibard, L., Filiot, E., Reynier, P.: Synthesis of data word transduc-
ers. In: 30th International Conference on Concurrency Theory, CONCUR
2019, August 27-30, Amsterdam, the Netherlands. pp. 24:1-24:15 (2019).
https://doi.org/10.4230/LIPIcs. CONCUR.2019.24

Figueira, D., Libkin, L.: Path logics for querying graphs: Combining expres-
siveness and efficiency. In: 30th Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2015, Kyoto, Japan, July 6-10. pp. 329-340 (2015).
https://doi.org/10.1109/LICS.2015.39

Filiot, E., Jecker, 1., Léding, C., Winter, S.: On equivalence and uniformisation
problems for finite transducers. In: 43rd International Colloquium on Automata,
Languages, and Programming, ICALP 2016, July 11-15, Rome, Italy. pp. 125:1—
125:14 (2016). https://doi.org/10.4230/LIPIcs.ICALP.2016.125

Filiot, E., Mazzocchi, N., Raskin, J.: A pattern logic for automata with out-
puts. In: Developments in Language Theory - 22nd International Conference,
DLT 2018, Tokyo, Japan, September 10-14, Proceedings. pp. 304-317 (2018).
https://doi.org/10.1007/978-3-319-98654-8 25

Gire, F.: Two decidability problems for infinite words. Inf. Process. Lett. 22(3),
135-140 (1986). https://doi.org/10.1016/0020-0190(86)90058-X

Holtmann, M., Kaiser, L., Thomas, W.: Degrees of lookahead in reg-
ular infinite games. Logical Methods in Computer Science 8(3) (2012).
https://doi.org/10.2168/LMCS-8(3:24)2012

II, K.C., Pachl, J.K.: Equivalence problems for mappings on
infinite strings. Information and Control 49(1), 5263 (1981).
https://doi.org/10.1016/S0019-9958(81)90444-7

J.R. Biichi, L.H. Landweber: Solving sequential conditions finite-state strate-
gies. Transactions of the American Mathematical Society 138, 295-311 (1969).
https://doi.org/10.2307/1994916

http://www-igm.univ-mlv.fr/~berstel/LivreTransductions/LivreTransductions.html
http://www-igm.univ-mlv.fr/~berstel/LivreTransductions/LivreTransductions.html
https://hal.archives-ouvertes.fr/hal-01806575
https://hal.archives-ouvertes.fr/hal-01806575
http://arxiv.org/abs/1906.04199
http://arxiv.org/abs/1906.04199
https://doi.org/10.1145/1507244.1507246
https://doi.org/10.1007/978-3-662-49630-5_17
https://doi.org/10.1007/978-3-642-54013-4_23
https://doi.org/10.4230/LIPIcs.CONCUR.2019.24
https://doi.org/10.1109/LICS.2015.39
https://doi.org/10.4230/LIPIcs.ICALP.2016.125
https://doi.org/10.1007/978-3-319-98654-8_25
https://doi.org/10.1016/0020-0190(86)90058-X
https://doi.org/10.2168/LMCS-8(3:24)2012
https://doi.org/10.1016/S0019-9958(81)90444-7
https://doi.org/10.2307/1994916

236

15.

16.

17.

18.

19.

20.

21.

L. Exibard et al.

Kaminski, M., Francez, N.: Finite-memory automata. Theor. Comput. Sci. 134(2),
329-363 (Nov 1994). https://doi.org/10.1016,/0304-3975(94)90242-9

Khalimov, A., Kupferman, O.: Register-bounded synthesis. In: 30th
International =~ Conference on Concurrency Theory, CONCUR 2019,
August 27-30, Amsterdam, the Netherlands. pp. 25:1-25:16 (2019).
https://doi.org/10.4230/LIPIcs. CONCUR.2019.25

Khalimov, A., Maderbacher, B., Bloem, R.: Bounded synthesis of register trans-
ducers. In: Automated Technology for Verification and Analysis, 16th Interna-
tional Symposium, ATVA 2018, Los Angeles, October 7-10. Proceedings (2018).
https://doi.org/10.1007/978-3-030-01090-4 29

Libkin, L., Tan, T., Vrgoc, D.: Regular expressions for data words. J. Comput. Syst.
Sci. 81(7), 1278-1297 (2015). https://doi.org/10.1016/j.jcss.2015.03.005

Neven, F., Schwentick, T., Vianu, V.: Finite state machines for strings over
infinite alphabets. ACM Trans. Comput. Logic 5(3), 403-435 (Jul 2004).
https://doi.org/10.1145/1013560.1013562

Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: ACM
Symposium on Principles of Programming Languages, POPL. ACM (1989).
https://doi.org/10.1145/75277.75293

Prieur, C.: How to decide continuity of rational functions on infinite words.
Theor. Comput. Sci. 276(1-2), 445-447 (2002). https://doi.org/10.1016,/S0304-
3975(01)00307-3

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

https://doi.org/10.1016/0304-3975(94)90242-9
https://doi.org/10.4230/LIPIcs.CONCUR.2019.25
https://doi.org/10.1007/978-3-030-01090-4_29
https://doi.org/10.1016/j.jcss.2015.03.005
https://doi.org/10.1145/1013560.1013562
https://doi.org/10.1145/75277.75293
https://doi.org/10.1016/S0304-3975(01)00307-3
https://doi.org/10.1016/S0304-3975(01)00307-3
http://creativecommons.org/licenses/by/4.0/

®

Check for
updates

Minimal Coverability Tree Construction
Made Complete and Efficient *

Alain Finkel*3, Serge Haddad?, and Igor Khmelnitsky!? (=)

1 LSV, ENS Paris-Saclay, CNRS, Université Paris-Saclay, Cachan, France
{finkel,haddad,khmelnitsky}@lsv.fr
2 Inria, France
3 Institut Universitaire de France, France

Abstract. Downward closures of Petri net reachability sets can be finitely
represented by their set of maximal elements called the minimal cover-
ability set or Clover. Many properties (coverability, boundedness, ...) can
be decided using Clover, in a time proportional to the size of Clover. So
it is crucial to design algorithms that compute it efficiently. We present a
simple modification of the original but incomplete Minimal Coverability
Tree algorithm (MCT), computing Clover, which makes it complete: it
memorizes accelerations and fires them as ordinary transitions. Contrary
to the other alternative algorithms for which no bound on the size of the
required additional memory is known, we establish that the additional
space of our algorithm is at most doubly exponential. Furthermore we
have implemented a prototype MinCov which is already very competi-
tive: on benchmarks it uses less space than all the other tools and its
execution time is close to the one of the fastest tool.

Keywords: Petri nets - Karp-Miller tree algorithm - Coverability - Min-
imal coverability set - Clover - Minimal coverability tree.

1 Introduction

Coverability and coverability set in Petri nets. Petri nets are iconic as
an infinite-state model used for verifying concurrent systems. Coverability, in
Petri nets, is the most studied property for several reasons: (1) many properties
like mutual exclusion, safety, control-state reachability reduce to coverability, (2)
the coverability problem is EXPSPACE-complete (while reachability is non ele-
mentary), and (3) there exist efficient prototypes and numerous case studies. To
solve the coverability problem, there are backward and forward algorithms. But
these algorithms do not address relevant problems like the repeated coverability
problem, the LTL model-checking, the boundedness problem and regularity of
the traces.

However these problems are EXPSPACE-complete [4, 1] and are also decid-
able using the Karp-Miller tree algorithm (KMT) [11] that computes a finite tree

* The work was carried out in the framework of ReLaX, UMI2000 and also supported
by ANR-17-CE40-0028 project BRAVAS.

© The Author(s) 2020
J. Goubault-Larrecq and B. Konig (Eds.): FOSSACS 2020, LNCS 12077, pp. 237-256, 2020.
https://doi.org/10.1007/978-3-030-45231-5_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45231-5_13&domain=pdf

238 A. Finkel et al.

labeled by a set of w-markings C C NI (where N, is the set of naturals enlarged
with an upper bound w and P is the set of places) such that the reachability set
and the finite set C' have the same downward closure in N. Thus a marking m is
coverable if there exists some m’ > m with m’ € C. Hence, C can be seen as one
among all the possible finite representations of the infinite downward closure of
the reachability set. This set C allows, for instance, to solve multiple instances
of coverability in linear time linear w.r.t. the size of C avoiding to call many
times a costly algorithm. Informally the KMT algorithm builds a reachability
tree but, in order to ensure termination, substitutes w to some finite components
of a marking of a vertex when some marking of an ancestor is smaller.

Unfortunately C' may contain comparable markings while only the maximal
elements are important. The set of maximal elements of C' can be defined in-
dependently of the KMT algorithm and was called the minimal coverability set
(MCS) in [6] and abbreviated as the Clover in the more general framework of
Well Structured Transition Systems (WSTS) [7].

The minimal coverability tree algorithm. So in [5, 6] the author computes
the minimal coverability set by modifying the KMT algorithm in such a way
that at each step of the algorithm, the set of w-markings labelling vertices is an
antichain. But this aggressive strategy, implemented by the so-called Minimal
Coverability Tree algorithm (MCT), contains a subtle bug and it may compute
a strict under-approximation of Clover as shown in [8,10].

Alternative minimal coverability set algorithms. Since the discovery of
this bug, three algorithms (with variants) [10, 14, 13] have been designed for
computing the minimal coverability set without building the full Karp-Miller
tree. In [10] the authors proposed a minimal coverability set algorithm (called
CovProc) that is not based on the Karp-Miller tree algorithm but uses a similar
but restricted introduction of w’s. In [14], Reynier and Servais proposed a mod-
ification of the MCT, called the Monotone-Pruning algorithm (called MP), that
keeps but “deactivates” vertices labeled with smaller w-markings while MCT
would have deleted them. Recently in [15], the authors simplified their original
proof of correctness. In [16], Valmari and Hansen proposed another algorithm
(denoted below as VH) for constructing the minimal coverability set without
deleting vertices. Their algorithm builds a graph and not a tree as usual. In [13],
Piipponen and Valmari improved this algorithm by designing appropriate data
structures and heuristics for exploration strategy that may significantly decrease
the size of the graph.

Our contributions.

1. We introduce the concept of abstraction as an w-transition that mimics the
effect of an infinite family of firing sequences of markings w.r.t. coverabil-
ity. As a consequence adding abstractions to the net does not modify its
coverability set. Moreover, the classical Karp-Miller acceleration can be for-
malized as an abstraction whose incidence on places is either w or null. The
set of accelerations of a net is upward closed and well-ordered. Hence there
exists a finite subset of minimal accelerations and we show that the size of
all minimal acceleration is bounded by a double exponential.

Minimal Coverability Tree Construction Made Complete and Efficient 239

2. Despite the current opinion that ”"The flaw is intricate and we do mot see
an easy way to get rid of it.... Thus, from our point of view, fizing the bug
of the MCT algorithm seems to be a difficult task” [10], we have found a
simple modification of MCT which makes it correct. It mainly consists in
memorizing discovered accelerations and using them as ordinary transitions.

3. Contrary to all existing minimal coverability set algorithms that use an un-
known additional memory that could be non primitive recursive, we show, by
applying a recent result of Leroux [12], that the additional memory required
for accelerations, is at most doubly exponential.

4. We have developed a prototype in order to also empirically evaluate the
efficiency of our algorithm and the benchmarks (either from the literature or
random ones) have confirmed that our algorithm requires significantly less
memory than the other algorithms and is close to the fastest tool w.r.t. the
execution time.

Organization. Section 2 introduces abstractions and accelerations and studies
their properties. Section 3 presents our algorithm and establishes its correctness.
Section 4 describes our tool and discusses the results of the benchmarks. We
conclude and give some perspectives to this work in Section 5. One can find all
the missing proofs and an illustration of the behavior of the algorithm in [9].

2 Covering abstractions

2.1 Petri nets: reachability and covering

Here we define Petri nets differently from the usual way but in an equivalent
manner. i.e. based on the backward incidence matrix Pre and the incidence
matrix C. The forward incidence matrix is implicitly defined by C + Pre. Such
a choice is motivated by the introduction of abstractions in section 2.2.

Definition 1. A Petri net (PN) is a tuple N = (P,T,Pre, C) where:

— P is a finite set of places;

T is a finite set of transitions, with PNT = (;

— Pre € NPXT s the backward incidence matrix;

— C € ZP*T s the incidence matrix which fulfills:
forallpe P andt €T, C(p,t) + Pre(p,t) > 0.

A marked Petri net (N, mg) is a Petri net N equipped with an initial marking
my € NP,

The column vector of matrix Pre (resp. C) indexed by t € T is denoted

Pre(t) (resp. C(t)). A transition t € T is fireable from a marking m € N¥ if m >
Pre(t). When t is fireable from m, its firing leads to marking m’ m + C(t),

denoted by m %y m’. One extends fireability and firing to a sequence o € T*
by recurrence on its length. The empty sequence ¢ is always fireable and let the
marking unchanged. Let o = to’ be a sequence with ¢t € T and ¢’ € T*. Then o

240 A. Finkel et al.

is fireable from m if m —*y m’ and ¢’ is fireable from m’. The firing of ¢ from
m leads to the marking m” reached by ¢’ from m’. One also denotes this firing
by m -2y m”.

Definition 2. Let (N, my) be a marked net. The reachability set Reach(N, my)
is defined by:
Reach(N,mg) = {m |Jo € T* mg 25 m}

In order to introduce the coverability set of a Petri net, let us recall some
definitions and results related to ordered sets. Let (X, <) be an ordered set. The
downward (resp. upward) closure of a subset E C X is denoted by | E (resp.
1 E) and defined by:

lE={zeX |FyeFEFy>uz} (resp. t1E={zeX|JyeFEy<uz})

A subset E C X is downward (resp. upward) closed if E =|E (resp. E =T E).

An antichain E is a set which fulfills: Vo £y € E -(z <yVy < z). X is
said FAC (for Finite AntiChains) if all its antichains are finite. A non empty
set £ C X is directed if for all x,y € E there exists z € E such that < z and
y < z. An ideal is a set which is downward closed and directed. There exists
an equivalent characterization of FAC sets which provides a finite description of
any downward closed set: a set is FAC if and only if every downward closed set
admits a finite decomposition in ideals (a proof of this well-known result can be
found in [3]).

X is well founded if all its (strictly) decreasing sequences are finite. X is well
ordered if it is FAC and well founded. There are many equivalent characteriza-
tions of well order. For instance, a set X is well ordered if and only if for all
sequence (&,)nen in X, there exists a non decreasing infinite subsequence. This
characterization allows to design algorithms that computes trees whose finiteness
is ensured by well order. Let us recall that (N, <) and (N”, <) are well ordered
sets.

We are now ready to introduce the cover (also called the coverability set) of
a net and to state some of its properties.

Definition 3. Let (N, mg) be a marked Petri net. Cover(N', my), its coverabil-
ity set, is defined by:

Cover(N,mg) =] Reach(N, my)

Since the coverability set is downward closed and N” is FAC, it admits a
finite decomposition in ideals. The ideals of N¥ can be defined in an elegant way
as follows. One first extends the sets of naturals and integers: N,, = N U {w}
et Z, = Z U {w}. Then one extends the order relation and the addition to Z,:
foralln € Z, w > n and for all n € Z,, n+w = w+n = w. NI is also a
well ordered set and its members are called w-markings. There is a one-to-one
mapping between ideals of N and w-markings. Let m € NZ. Define [m] by:

[m] = {m’ € N | m’ < m}

Minimal Coverability Tree Construction Made Complete and Efficient 241

[m] is an ideal of N (and all ideal can be defined in such a way). Let 2 be a
set of w-markings, [{2] denotes the set J,,,c,[m]. Due to the above properties,
there exists a unique finite set with minimal size Clover(N, mo) C NP such that:

Cover(N,mg) = [Clover(N,my)]
A more general result can be found in [3] for well structured transition systems.

Example 1. The marked net of Figure 1 is unbounded. Its Clover is the following
set:
{Pi, Pok + Py Pt + P+ WPba, i+ Pok + WPha + wpe}

For instance, the marking p;+ppi +appe + 5pc is reached thus covered by sequence
it oLl

t1 Pt ts
bk

OCl—ﬁ) Pba

Pi (o) O/_\ g

ta
O—k—0O P
Pm
Fig. 1. An unbounded Petri net

2.2 Abstraction and acceleration

In order to introduce abstractions and accelerations, we generalize the transitions
to allow the capability to mark a place with w tokens.

Definition 4. Let P be a set of places. An w-transition a is defined by:

— Pre(a) € NZ jts backward incidence;
— C(a) € ZF its incidence with Pre(a) + C(a) > 0.

For sake of homogeneity, one denotes Pre(a)(p) (resp. C(a)(p)) by Pre(p,a)

(resp. C(p,a)). An w-transition a is fireable from an w-marking m € NZ if
m > Pre(a). When a is fireable from m, its firing leads to the w-marking m’ def

m + C(a), denoted as previously m —25 m’. One observes that if Pre(p,a) = w
then for all values of C(p,a), m'(a) = w. So without loss of generality, one
assumes that for all w-transition a, Pre(p,a) = w implies C(p,a) = w.

In order to define abstractions, we first define the incidences of a sequence o of

w-transitions by recurrence on its length. As previously, we denote Pre(p, o) def

242 A. Finkel et al.

Pre(o)(p) and C(p, o) Lef C(0)(p). The base case corresponds to the definition

of an w-transition. Let ¢ = to’, with ¢ an w-transition and o’ a sequence of
w-transitions, then:

— C(o) = C(t) + C(o");
— forallpe P
e if C(p,t) = w then Pre(p, o) = Pre(p,t);
e else Pre(p, o) = max(Pre(p,t), Pre(p,o’) — C(p,1)).

One checks by recurrence that o is firable from m if and only if m > Pre(o)
and in this case, m -2y m + C(0).

An abstraction of a net is an w-transition which concisely expresses the be-
haviour of the net w.r.t. covering (see Proposition 1). One will observe that a
transition ¢ of a net is by construction (with o,, = ¢ for all n) an abstraction.

Definition 5. Let N = (P,T,Pre, C) be a Petri net and a be an w-transition.
a is an abstraction if for all n > 0, there exists o, € T such that for allp € P
with Pre(p,a) € N:

1. Pre(pa O'n) < PI'e(p7);
2. If C(p,a) € Z then C(p,0,) > (,a);
3. If C(p,a) = w then C(p n) >N

The following proposition justifies the interest of abstractions.

Proposition 1. Let (N, mg) be a marked Petri net, a be an abstraction and m
be an w-marking such that: [m] C Cover(N,mg) and m 25 m’. Then [m'] C
Cover(N,my).

Proof. Pick some m* € [m’]. Denote n = max(m*(p) | m’(p) = w)
and ¢ = max(Pre(p,c,),n — C(p,0,) | m(p) = w). Let us define m* € [m] by:

— If m(p) < w then m*(p) = m(p);
— Else m*(p) = /.

Let us check that o, is fireable from m®. Let p € P,

— If m(p) < w then m¥(p) = m(p) > Pre(p,a) > Pre(p,0,);
— Else m¥(p) = ¢ > Pre(p, 0,,).

Let us show that m* + C(c,,) > m*. Let p € P,

u r(n() £ w(ind C(p,a) < w then m*(p) + C(p,0,) > m(p) + C(p,a) =

— If m(p) < w and C(p,a) = w then m*(p) + C(p,0,,) > C(p,0n) > n >

m*(p) ;
— If m(p) = w then m*(p) + C(p,0,,) > n— C(p,0,) + C(p,0,,) = n > m*(p).
[|

An easy way to build new abstractions consists in concatenating them.

Minimal Coverability Tree Construction Made Complete and Efficient 243

Proposition 2. Let N' = (P,T,Pre,C) be a Petri net and o be a sequence of
abstractions. Then the w-transition a defined by Pre(a) = Pre(o) and C(a) =
C(o) is an abstraction.

We now introduce the underlying concept of the Karp and Miller construc-
tion.

Definition 6. Let N' = (P,T,Pre,C) be a Petri net. One says that a is an
acceleration if a is an abstraction such that C(a) € {0,w}’.

The following proposition provides a way to get an acceleration from an
arbitrary abstraction.

Proposition 3. Let N = (P, T,Pre, C) be a Petri net and a be an abstraction.
Define &’ an w-transition as follows. For all p € P:

— If C(p,a) < 0 then Pre(p,a’) = C(p,a’) = w;
— If C(p,a) =0 then Pre(p,a’) = Pre(p,a) and C(p,a’) = 0;
— If C(p,a) > 0 then Pre(p,a’) = Pre(p,a) and C(p,a’) = w.

Then a’ is an acceleration.

Let us study more deeply the set of accelerations. First we equip the set of
w-transitions with a“natural” order w.r.t. covering.

Definition 7. Let P be a set of places and two w-transitions a and a’.
a < a’ if and only if Pre(a) < Pre(a’) A C(a) > C(a’)

In other words, a < a’ if given any w-marking m, if a’ is fireable from m
then a is also fireable and its firing leads to a marking greater or equal that the
one reached by the firing of a’.

Proposition 4. Let N be a Petri net. Then the set of abstractions of N is
upward closed. Similarly, the set of accelerations is upward closed in the set of
w-transitions whose incidence belongs to {0,w}’.

Proposition 5. The set of accelerations of a Petri net is well ordered.

Proof. The set of accelerations is a subset of N x {0,w}? (where P is the set
of places) with the order obtained by iterating cartesian products of sets (N, <)
and ({0,w},>). These sets are well ordered and the cartesian product preserves
this property. So we are done. [|

Since the set of accelerations is well ordered and it is upward closed, it is equal
to the upward closure of the finite set of minimal accelerations. Let us study the
size of a minimal acceleration. Given some Petri net, one denotes d = |P| and
e = max, ;(max(Pre(p, t), Pre(p, t) + C(p,1)).

We are going to use the following result of Jérome Leroux (published on
HAL in June 2019) which provides a bound for the lengths of shortest sequences
between two markings m; and my mutually reachable.

244 A. Finkel et al.

Theorem 1. (Theorem 2, [12]) Let N be a Petri net, m;,my be markings,
01,092 be sequences of transitions such that my 2 my 22 my. Then there exist

o}, o such that my 2 my 2 my fulfilling:
o1 05] < [l — my[oc (3de) DT

One deduces an upper bound on the size of minimal accelerations.
Let v € NI. One denotes ||v||o = max(v(p) | v(p) € N).

Proposition 6. Let N be a Petri net and a be a minimal acceleration.
Then ||Pre(a)||oe < e(3de)@+D* ",

Proof. Let us consider the net A/ = (P',7’, Pre/,C’) obtained from N by
deleting the set of places {p | Pre(p,a) = w} and adding the set of transitions
T, = {t, | p € P’} with Pre(t,) = p et C(t,) = —p. Observe that d’ < d and
e =e.

One denotes P, = {p | Pre(p,a) < w = C(p,a)}. One introduces m; the
marking obtained by restricting Pre(a) to P’ and my =m; +3_ p p.

Let {0, }nen be a family of sequences associated with a. Let n* = ||Pre(a)||+1.
Then o,,- is fireable in A/’ from m; and its firing leads to a marking that covers
ms. By concatenating some occurrences of transitions of 77, one gets a firing
sequence in A m; 2% my. Using the same process, one gets a firing sequence
mso E) mj.

Let us apply Theorem 1. There exists a sequence o7 with m; o, m; and || <
(?;de)(d“)zd+4 since || m; —ms||s = 1. By deleting the transitions of T} occurring

in o}, one gets a sequence of € T* such that m; o, m)H > my with |of] <
(3d€)(d+1)2d+4.
The w-transition a’, defined by Pre(p,a’) = Pre(p, o) for all p € P/, Pre(p,a’) =
w for all p € P\ P’ and C(a’) = C(a), is an acceleration whose associated
family is {0}" }nen. By definition of m;, a’ < a. Since a is minimal, a’ = a.
Observing that 07| < (3de)*D**™ one gets |[Pre(a)|| = |[Pre(@)]s <
e(3de) D>,
|

Thus given any acceleration, one can easily obtain a smaller acceleration

whose (representation) size is exponential.

Proposition 7. Let N be a Petri net and a be an acceleration.
Then the w-transition trunc(a) defined by:
— C(trunc(a)) = C(a);
— for all p such that Pre(p,a) # w,
Pre(p, trunc(a)) = min(Pre(p,a), e(3de) @+
— for all p such that Pre(p,a) = w, Pre(p, trunc(a)) = w.

2d+4
DY

1s an acceleration.

Proof. Let a’ < a, be a minimal acceleration. For all p such that Pre(p,a) # w,

Pre(p,a’) < e(3de)@D*™ S0 a’ < trunc(a). Since the set of accelerations is
upward closed, one gets that trunc(a) is an acceleration.]

Minimal Coverability Tree Construction Made Complete and Efficient 245

3 A coverability tree algorithm

3.1 Specification and illustration

As discussed in the introduction, to compute the clover of a Petri net, most
algorithms build coverability trees (or graphs), which are variants of the Karp
and Miller tree with the aim of reducing the peak memory during the execution.
The seminal algorithm [6] is characterized by a main difference with the KMT
construction: when finding that the marking associated with the current vertex
strictly covers the marking of another vertex, it deletes the subtree issued from
this vertex, and when the current vertex belonged to the removed subtree it sub-
stitutes it to the root of the deleted subtree. This operation drastically reduces
the peak memory but as shown in [8] entails incompleteness of the algorithm.

Like the previous algorithms that ensure completeness with deletions, our
algorithm also needs additional memory. However unlike the other algorithms,
it memorizes accelerations instead of w-markings. This approach has two advan-
tages. First, we are able to exhibit a theoretical upper bound on the additional
memory which is doubly exponential, while the other algorithms do not have
such a bound. Furthermore, accelerations are reused in the construction and
thus may even shorten the execution time and peak space w.r.t. the algorithm
in [6].

Before we delve into a high level description of this algorithm, let us present
some of the variables, functions, and definitions used by the algorithm. Algorithm
1, denoted from now on as MinCov takes as an input a marked net (N, mg)
and constructs a directed labeled tree CT = (V, E,\,0), and a set Acc of w-
transitions (which by Lemma 2 are accelerations). Each v € V' is labeled by an
w-marking, A(v) € NE. Since CT is a directed tree, every vertex v € V, has
a predecessor (except the root r) denoted by prd(v) and a set of descendants
denoted by Des(v). By convention, prd(r) = r. Each edge e € F is labeled by a
firing sequence d(e) € T, -Acc”, consisting of an ordinary transition followed by a

sequence of accelerations (which by Lemma 1 fulfills A(prd(v)) Serd)v), A(v)).

5(r,r
In addition, again by Lemma 1, mg g) A(r). Let v = ejea...ep € E* be

a path in the tree, we denote by d(7) := d(e1)d(ea)...d(ex) € (T'U Acc)*. The
subset Front C V is the set of vertices ‘to be processed’.

MinCov may call function Delete(v) that removes from V a leaf v of C'T and
function Prune(v) that removes from V' all descendants of v € V' except v itself
as illustrated in the following figure:

v R})\Ou_ﬁe}?ﬁ@_, ' /O\/O _fmely) UOP

o O o O

First MinCov does some initializations, and sets the tree CT to be a single
vertex r with marking A\(r) = mg and Front = {r}. Afterwards the main loop

246 A. Finkel et al.

builds the tree, where each iteration consists in processing some vertex in Front
as follows.

MinCov picks a vertex u € Front (line 3). From A(u), MinCov fires a sequence
o € Acc* reaching some m, that maximizes the number of w produced, i.e.
Hp € P | AMu)(p) # w A m,(p) = w}|. Thus in o, no acceleration occurs twice
and its length is bounded by | P|. Then MinCov updates A(u) with m,, (line 5) and
the label of the edge incoming to u by concatenating o. Afterwards it performs
one of the following actions according to the marking A(u):

— Cleaning (line 7): If there exists /' € V \ Front with A(u') > A(u). The
vertex u is redundant and MinCov calls Delete(u)

— Accelerating (lines 8-16): If there exists v/, an ancestor of u with A(u') <
A(u) then an acceleration can be computed. The acceleration a is deduced
from the firing sequence labeling the path from u’ to u. MinCov inserts a into
Acc, calls Prune(u’) and pushes back v’ in Front.

— Exploring (lines 18 - 25): Otherwise MinCov calls Prune(u’) followed by
Delete(u') for all v/ € V with A(u') < A(u) since they are redundant.
Afterwards, it removes u from Front and for all fireable transition ¢t € T
from A(u), it creates a new child for u in C'T and inserts it into Front.

For a detailed example of a run of the algorithm see Example 2 in [9].

3.2 Correctness Proof

We now establish the correctness of Algorithm 1 by proving the following prop-
erties (where for all W C V', A(W) denotes J,cy A(v)):

— its termination;

the incomparability of w-markings associated with vertices in V:
A(V) is an antichain;

— its consistency: [A(V)] C Cover(N,my);

its completeness: Cover(N,mg) C [A(V)].

We get termination by using the well order of NI and Koenig Lemma.
Proposition 8. MinCov terminates.

Proof. Consider the following variation of the algorithm.

Instead of deleting the current vertex when its marking is smaller or equal than
the marking of a vertex, one marks it as ‘cut’ and extract it from Front.

Instead of cutting a subtree when the marking of the current vertex v is greater
than the marking of a vertex which is not an ancestor of v, one marks them as
‘cut’ and extract from Front those who are inside.

Instead of cutting a subtree when the marking of the current vertex v is greater
than the marking of a vertex which is an ancestor of v, say v*, one marks those
on the path from v* to v (except v) as ‘accelerated’, one marks the other vertices

Minimal Coverability Tree Construction Made Complete and Efficient 247

Algorithm 1: Computing the minimal coverability set

MinCov(N, mg)
Input: A marked Petri net (A, mg)
Data: V set of vertices; ECV x V; Front CV; A\:V = NE: §: E — T,Acc”;
CT = (V,E, \,d) a labeled tree; Acc a set of w-transitions;
Output: A labeled tree CT = (V, E, \,)
1 V<« {r}; E «+ 0; Front < {r}; A(r) - mo; Acc < 0; 6(r,7) ¢
2 while Front # 0 do

3 Select u € Front
4 Let 0 € Acc® a maximal fireable sequence of accelerations from A(u)
// Maximal w.r.t. the number of w’s produced
5 Au) <= A(u) + C(o)
6 | S((prd(),w) « 8((prd(u),u)) - o
7 if Ju’ € V' \ Front s.t. A(u') > A(u) then Delete(u) // A(u) is covered
8 else if Ju’ € Anc(V) s.t. A(u) > A(u') then
// An acceleration was found between u and one of u’s
ancestors
9 Let v € E* the path from v’ to u in CT
10 a < NewAcceleration()
11 foreach p € P do
12 if C(p,d(7)) < 0 then Pre(p,a) < w; C(p,a) + w
13 if C(p,d(y)) = 0 then Pre(p,a) < Pre(p,d(v)); C(p,a) < 0
14 if C(p,d(v)) > 0 then Pre(p,a) + Pre(p,d(7)); C(p,a) + w
15 end
16 a « trunc(a); Acc < Acc U {a}; Prune(u’); Front = Front U {u'} ;
17 else
18 for v’ € V do
// Remove vertices labeled by markings covered by A(u)
19 if A(v') < A(u) then Prune(u’); Delete(u’)
20 end
21 Front < Front \ {u}
22 foreach t € T'A A(u) > Pre(t) do
// Add the children of u
23 u’ < NewNode(); V < V U {u'}; Front < Front U {u});
E«+ Eu{(u,u)}
24 Au') < A(u) + C(t); 6((u,u')) <t
25 end
26 end
27 end

28 return CT

248 A. Finkel et al.

of the subtree as ‘cut’ and inserts v again in Front with the marking of v*. All
the markings of the subtree in Front are extracted from it.

All the vertices marked as ‘cut’ or ‘accelerated’ are ignored for comparisons and
discovering accelerations. This alternative algorithm behaves as the original one
except that the size of the tree never decreases and so if the algorithm does
not terminate the tree is infinite. Since this tree is finitely branching, due to
Koenig Lemma it contains an infinite path. On this infinite path, no vertex can
be marked as ‘cut’ since it would belong to a finite subtree. Observe that the
marking labelling the vertex following an accelerated subpath has at least one
more w than the marking of the first vertex of this subpath. So there is an infinite
subpath with unmarked vertices in V. But NI is well-ordered, so there should
be two vertices v and v’, where v’ is a descendant of v with A(v") > A(v), which
contradicts the behaviour of the algorithm.
|
Since we are going to use recurrence on the number of iterations of the main
loop of Algorithm 1, we introduce the following notations: CT,, = (V,,, Ey, An, 0n),
Front,,, and Acc,, are the the values of variables CT, Front, and Acc at line 2
when n iterations have been executed.

Proposition 9. For all n € N, \(V,, \ Front,,) is an antichain. Thus on termi-
nation, A(V') is an antichain.

Proof. Let us introduce V' := V' \ Front and V,, := V,, \ Front,,. We are going
to prove by induction on the number n of iterations of the while-loop that V! is
an antichain. MinCov initializes variables V and Front at line 1. So V5 = {r} and
Fronty = {r}, therefore Vj =V \ Fronty =) is an antichain.

Assume that V;) = V,, \ Front, is an antichain. Modifying V,! can be done by
adding or removing vertices from V,, and removing vertices from Front,, while
keeping them in V;,. The actions that MinCov may perform in order to modify the
sets V' and Front are: Delete (lines 7 and 19), Prune (lines 16 and 19), adding
vertices to V (line 23), adding vertices to Front (lines 16 and 23), and removing
vertices from Front (line 21).

e Both Delete and Prune do not add new vertices to V’. Thus the antichain
feature is preserved.

e MinCov may add vertices to V only at line 23 where it simultaneously adds
them to Front and therefore does not add new vertices to V’. Thus the antichain
feature is preserved.

e Adding vertices to Front may only remove vertices from V,!. Thus the antichain
feature is preserved.

e MinCov can only add a vertex to V'’ when it removes it from Front while keeping
it in V. This is done only at line 21. There the only vertex MinCov may remove
(line 21) is the working vertex u. However if (in the iteration) MinCov reaches
line 21 then it did not reach line 7 hence, (1) all markings of A(V,)) C A(V,,) are
either smaller or incomparable to A,41(u). Moreover, MinCov has also reached
line 18-20, where (2) it performs Delete on all vertices v’ € V| C V,, with
An(v') < Apy1(u). Let us denote by V,) C V! the set V' at the end of line

Minimal Coverability Tree Construction Made Complete and Efficient 249

20. Due to (1) and (2), marking A,41(u) is incomparable to any marking in

A1 (V). Since V! C V! Ap41(V))) is an antichain. Combining this fact with

the 1ncomparab1hty between An+t1(u) and any marking in A, 11 (V}), we conclude

that the set Ay 1(Vy, 1) = A1 (V) U {Anq1(w)} is an antichain.

|

In order to establish consistency, we prove that the labelling of vertices and
edges is compatible with the firing rule and that Acc is a set of accelerations.

(prd(u),u)

Lemma 1. For all n € N, for all u € V, \ {r}, Au(prd(u)) ———=

andmoﬁ)\ (r).

An (1)

Proof. Let us prove by induction on the number n of iterations of the main loop
that for all v € V,,, the assertions of the lemma hold. Initially, V5 = {r} and
Ao(r) = myg. Since my —£5 my = A\g(r) the base case is established.
Assume that the assertions hold for C'7T;,. Observe that MinCov may change the
labeling function A and/or add new vertices in exactly two places: at lines 4-6
and at lines 22-25. Therefore in order to prove the assertion, we show that after
each group of lines it still holds.
o After lines 4-6: MinCov computes (1) a maximal fireable sequence o € Acc,
from A, (u) (line 4), and updates u’s marking to m, = A, (u) + C(o) (line 5).
Since the assertions hold for CT,,, (2) if u # r, A, (prd(u)) Serdw)w), An(u) else
my LIGIER An(r). By concatenation, we get A, (prd(u)) prd) o, m, if us#r
and otherwise my, &) m, which establishes that the assertions hold after
line 6.
e After lines 22-25: The vertices for which A is updated at these lines are the
children of u that are added to the tree. For every fireable transition ¢t € T from
A(u), MinCov creates a child v; for u (lines 22-23). The marking of any child
vy is set to my,11(v) := my,41(u) + C(t) (line 24). Therefore since Aj,41(u) 4
An+1(vt), the assertions hold.

|

Lemma 2. At any execution point of MinCov, Acc is a set of accelerations.

Proof. At most one acceleration is added per iteration. Let us prove by induction
on the number n of iterations of the main loop that Acc, is a set of accelerations.
Since Accy = 0, the base case is straightforward.

Assume that Acc, is a set of accelerations and consider Acc, 1. In an itera-
tion, MinCov may add an w-transition a to Acc. Due to the inductive hypothe-
sis, d(7) is a sequence of abstractions where ~ is defined at line 9. Consider b,
the w-transition defined by Pre(b) = Pre(d(v)) and C(b) = C(4(7)). Due to
Proposition 2, b is an abstraction. Due to Proposition 3, the loop of lines 11-15
transforms b into an acceleration a. Due to Proposition 7, after truncation at
line 16, a is still an acceleration. [|

Proposition 10. [A(V)] € Cover(N, mg).

250 A. Finkel et al.

Proof. Let v € V. Consider the path uy,...,ur of CT from the root r = ug
to up = v. Let 0 € (T U Acc)* denote 6(prd(ug), uo) - - - 0(prd(ux), ux). Due to
Lemma 1, mg —-Zs A(v). Due to Lemma 2, ¢ is a sequence of abstractions. Due to
Proposition 2, the w-transition a defined by Pre(a) = Pre(o) and C(a) = C(0)
is an abstraction. Due to Proposition 1, [A(v)] € Cover(N, my). [

The following definitions are related to an arbitrary execution point of MinCov
and are introduced to establish its completeness.

Definition 8. Let 0 = ogt107 ... tyop with for alli, t; € T and o; € Acc™. Then
the firing sequence m —%s m’ is an exploring sequence if:

— There exists v € Front with A(v) = m
— For all 0 < i <k, there does not exist v' € V'\ Front
with m + C(Uotldl e tigi) S)\(U’).

Definition 9. Let m be a marking. Then m is quasi-covered if:

— either there exists v € V' \ Front with A(v) > m;
— or there exists an exploring sequence m —Zs m’ > m.

In order to prove completeness of the algorithm, we want to prove that at
the beginning of every iteration, any m € Cover(N, mg) is quasi-covered. To
establish this assertion, we introduce several lemmas showing that this assertion
is preserved by some actions of the algorithm with some prerequisites. More pre-
cisely, Lemma 3 corresponds to the deletion of the current vertex, Lemma 4 to the
discovery of an acceleration, Lemma 5 to the deletion of a subtree whose mark-
ing of the root is smaller than the marking of the current vertex and Lemma 6
to the creation of the children of the current vertex.

Lemma 3. Let C'T, Front and Acc be the values of corresponding variables at
some execution point of MinCov and uw € V' be a leaf in C'T' such that the following
items hold:

1. Allm € Cover(N,mg) are quasi-covered;

2. MV \ Front) is an antichain,

3. For all a € Acc fireable from A(u), Mu) = A(u) + C(a);
4. There exists v € V \ {u} such that A(v) > A(u).

Then all m € Cover(N,mg) are quasi-covered after performing Delete(u).

Lemma 4. Let C'T, Front and Acc be the values of corresponding variables at
some execution point of MinCov. and u € V' such that the following items hold:

1. Allm € Cover(N,my) are quasi-covered;
2. MV \ Front) is an antichain;
3. For allv e V\{r}, Mprd(v)) Sprdw).v), A(v).

Then all m € Cover(N,my) are quasi-covered after performing Prune(u) and
then adding u to Front.

Minimal Coverability Tree Construction Made Complete and Efficient 251

Lemma 5. Let CT, Front and Acc be the values of corresponding variables at
some execution point of MinCov, u € Front and u' € V such that the following
items hold:

1. All m € Cover(N,mg) are quasi-covered;
2. M(V '\ Front) is an antichain;

3. For allv e V\ {r}, Aprd(v)) prd@).v), A(v);
4. AMu') < Mu) and u is not a descendant of u’.

Then after performing Prune(u’); Delete(u’),

1. All m € Cover(N,my) are quasi-covered;
2. M(V '\ Front) is an antichain;

3. For allv e V\ {r}, A(prd(v)) Aprd)0), A(v).

Lemma 6. Let C'T, Front and Acc be the values of corresponding variables at
some execution point of MinCov. and uw € Front such that the following items

hold:

1. All m € Cover(N,mg) are quasi-covered;
2. M(V'\ Front) U {\(u)} is an antichain;
3. For all a € Acc fireable from A(u), Mu) = A(u) + C(a).

Then after removing u from Front and for allt € T fireable from A(u), adding
a child vy to w in Front with marking of vy defined by A, (v¢) = A(u) + C(t), all
m € Cover(N,mq) are quasi-covered.

Proposition 11. At the beginning of every iteration, all m € Cover(N,my)
are quasi-covered.

Proof. Let us prove by induction on the number of iterations that all m €
Cover(N, my) are quasi-covered.

Let us consider the base case. MinCov initializes V' and Front to {r} and A(r) to
my. By definition, for all m € Cov(N, my) there exists o = t1ts - -ty € T* such
that mg = m’ > m. Since V \ Front = (), this firing sequence is an exploring
sequence.

Assume that all m € Cover(N, mg) are quasi-covered at the beginning of some
iteration. Let us examine what may happen during the iteration. In lines 4-6,
MinCov computes the maximal fireable sequence o € Acc) from A, (u) (line 4)
and sets u’s marking to m, := A,(u) + C(o) (line 5). Afterwards, there are
three possible cases: (1) either m,, is covered by some marking associated with a
vertex out of Front, (2) either an acceleration is found, (3) or MinCov computes
the successors of u and removes v from Front.

Line 7. MinCov calls Delete(u). So CT,,41 is obtained by deleting u. More-
over, A(v') > m,. Let us check the hypotheses of Lemma 3. Assertion 1
follows from induction since (1) the only change in the data is the increas-
ing of A(u) by firing some accelerations and (2) u belongs to Front so cannot

252 A. Finkel et al.

cover intermediate markings of exploring sequences. Assertion 2 follows from
Proposition 9 since V' \ Front is unchanged. Assertion 3 follows immediately
from lines 4-6. Assertion 4 follows with v = «’. Thus using this lemma the
induction is proved in this case.

Lines 8-16. Let us check the hypotheses of Lemma 4. Assertions 1 and 2 are
established as in the previous case. Assertion 3 holds due to Lemma 1, and
the fact that no edge has been added since the beginning of iteration. Thus
using this lemma the induction is proved in this case.

Lines 18-25. We first show that the hypotheses of Lemma 6 hold before line 21.
Let us denote the values of C'T" and Front after line 20 by ﬁn and Iﬁo\ntn.
Observe that for all iteration of Line 19 in the inner loop, the hypotheses
of Lemma 5 are satisfied. Therefore, in order to apply Lemma 6 it remains
only to check assertions 2 and 3 of this lemma. Assertion 2 holds since (1)
A(V '\ Front) is an antichain, (2) due to Line 7 there is no w € V'\ Front such
that A(w) > A(u), and (3) by iteration of Line 19 all w € V'\ Front such that
AMw) < A(u) have been deleted. Assertion 3 holds due to Line 5 (all useful
enabled accelerations have been fired) and Line 8 (no acceleration has been
added).

Lines 21-25 correspond to the operations related to Lemma 6. Thus using
this lemma, the induction is proved in this case.

|
The completeness of MinCov is an immediate consequence of the previous
proposition.

Corollary 1. When MinCov terminates, Cover(N,mg) C [A(V)].

Proof. By Proposition 11 all m € Cover(N,my) are quasi-covered. Since on
termination, Front is empty for all m € Cover(N, my), there exists v € V such
that m < A(v). [|

4 Tool and benchmarks

In order to empirically evaluate our algorithm, we have implemented a prototype
tool which computes the clover and solves the coverability problem. This tool is
developed in the programming language Python, using the Numpy library. It can
be found on GitHub?. All benchmarks were performed on a computer equipped
by Intel i5-8250U CPU with 4 cores, 16GB of memory and Ubuntu Linux 18.03.

Minimal coverability set. We compare MinCov with the tool MP [14], the tool
VH [16], and the tool CovProc [10]. We have also implemented the (incomplete)
minimal coverability tree algorithm denoted by AF in order to measure the ad-
ditional memory needed for the (complete) tools. Both MP and VH tools were
sent to us by the courtesy of the authors. The tool MP has an implementation

3 https://github.com/IgorKhm/MinCov

Minimal Coverability Tree Construction Made Complete and Efficient 253

in Python and another in C++. For comparison we selected the Python one to
avoid biases due to programming language.

We ran two kinds of benchmarks: (1) 123 standard benchmarks from the
literature in Table 1, (which were taken from [2]), (2) 100 randomly generated
Petri nets also in Table 1, since the benchmarks from the literature do not
present all the features that lead to infinite state systems. These random Petri
nets have the following properties: (1) 50 < |P|,|T| < 100, (2) the number
of places connected of each transition is bounded by 10, and (3) they are not
structurally bounded. The execution time of the tools was limited to 900 seconds.

Table 1 contains a summary of all the instances of the benchmarks. The first
column shows the number of instances on which the tool timed out. The time
column consists of the total time on instances that did not time out plus 900
seconds for any instance that led to a time out. The #Nodes column consists of
the peak number of nodes in instances that did not time out on any of the tools
(except CovProc which does not provide this number). For MinCov we take the
peak number of nodes plus accelerations. In the benchmarks from the literature

Table 1. Benchmarks for clover

123 benchmarks from the literature 100 random benchmarks

T/O Time #Nodes T/O Time #Nodes
MinCov 16 18127 48218 MinCov 14 13989 61164
VH 15 14873 75225 VH 15 13692 208134
MP 24 23904 478681 MP 21 21726 755129
CovProc 49 47081 N/A CovProc 80 TAT67 N/A
AF 19 19223 45660 AF 16 15888 63275

we observed that the instances that timed out from MinCov are included in
those of AF and MP. However there were instances the timed out on VH but did
not time out on MinCov and vice versa. MinCov is the second fastest tool, and
compared to VH it is 1.2 times slower. A possible explanation would be that VH is
implemented in C++. As could be expected, w.r.t. memory requirements MinCov
has the least number of nodes. In the benchmarks from the literature MinCov
has approximately 10 times less nodes then MP and 1.6 times less then VH. In the
random benchmarks these ratio are significantly higher.
Coverability. We compare MinCov to the tool gCover [2] on the set of bench-
marks from the literature in Table 2. In [2], qCover is compared to the most
competitive tools for coverability and achieves a score of 142 solved instances
while the second best tool achieves a score of 122. We split the results into
safe instances (not coverable) and unsafe ones (coverable). In both categories we
counted the number of instances on which the tools failed (columns T/O) and
the total time (columns Time) as in Table 1.

We observed that the tools are complementary, i.e. qCover is faster at proving
that an instance is safe and MinCov is faster at proving that an instance is unsafe.

254 A. Finkel et al.

Table 2. Benchmarks for the coverability problem (60 unsafe and 115 safe)

Time Unsafe T/O Unsafe Time safe T/Osafe T/O Time

MinCov 1754 1 51323 53 54 53077
qCover 26467 26 11865 11 37 38332
MinCov || qCover 1841 2 13493 11 13 15334

Therefore, by splitting the processing time between them we get better results.
The third row of Table 2 represents a parallel execution of the tools, where the
time for each instance is computed as follows:

Time(MinCov || gCover) = 2 min (Time(MinCov), Time(qCover)) .

Combining both tools is 2.5 times faster than qCover and 3.5 times faster than
MinCov. This confirms the above statement. We could still get better results by
dynamically deciding which ratio of CPU to share between the tools depending
on some predicted status of the instance.

5 Conclusion

We have proposed a simple and efficient modification of the incomplete mini-
mal coverability tree algorithm for building the clover of a net. Our algorithm
is based on the introduction of the concepts of covering abstractions and accel-
erations. Compared to the alternative algorithms previously designed, we have
theoretically bounded the size of the additional space. Furthermore we have
implemented a prototype which is already very competitive.

From a theoretical point of view, we plan to study how abstractions and
accelerations, could be defined in the more general context of well structured
transition systems. From an experimental point of view, we will follow three
directions in order to increase the performance of our tool. First as in [13], we
have to select appropriate data structures to minimize the number of compar-
isons between w-markings. Then we want to precompute a set of accelerations
using linear programming as the correctness of the algorithm is preserved and
the efficiency could be significantly improved. Last we want to take advantage
of parallelism in a more general way than simultaneously running several tools.

Minimal Coverability Tree Construction Made Complete and Efficient 255

References

10.

11.

12.

13.

14.

15.

16.

Blockelet, M., Schmitz, S.: Model checking coverability graphs of vector addition
systems. In: Proceedings of MFCS 2011. LNCS, vol. 6907, pp. 108-119 (2011)
Blondin, M., Finkel, A., Haase, C., Haddad, S.: Approaching the coverability prob-
lem continuously. In: Proceedings of TACAS 2016. LNCS, vol. 9636, pp. 480-496.
Springer (2016)

Blondin, M., Finkel, A., McKenzie, P.: Well behaved transition systems. Logical
Methods in Computer Science 13(3), 1-19 (2017)

Demri, S.: On selective unboundedness of VASS. J. Comput. Syst. Sci. 79(5), 689—
713 (2013)

Finkel, A.: Reduction and covering of infinite reachability trees. Information and
Computation 89(2), 144-179 (1990)

Finkel, A.: The minimal coverability graph for Petri nets. In: Advances in Petri
Nets. LNCS, vol. 674, pp. 210-243 (1993)

Finkel, A., Goubault-Larrecq, J.: Forward analysis for WSTS, part II: Complete
WSTS. Logical Methods in Computer Science 8(4), 1-35 (2012)

Finkel, A., Geeraerts, G., Raskin, J.F.; Van Begin, L.: A counter-example to the
minimal coverability tree algorithm. Tech. rep., Université Libre de Bruxelles, Bel-
gium (2005), http://www.lsv.fr/Publis/PAPERS/PDF /FGRV-ulb05.pdf

Finkel, A., Haddad, S., Khmelnitsky, I.: Minimal coverability tree construction
made complete and efficient (2020), https://hal.inria.fr/hal-02479879

Geeraerts, G., Raskin, J.F., Van Begin, L.: On the efficient computation of the min-
imal coverability set of Petri nets. International Journal of Fundamental Computer
Science 21(2), 135-165 (2010)

Karp, R.M., Miller, R.E.: Parallel program schemata. J. Comput. Syst. Sci. 3(2),
147-195 (1969)

Leroux, J.: Distance between mutually reachable Petri net configurations (Jun
2019), https://hal.archives-ouvertes.fr/hal-02156549, preprint

Piipponen, A., Valmari, A.: Constructing minimal coverability sets. Fundamenta
Informaticae 143(3-4), 393-414 (2016)

Reynier, P.A., Servais, F.: Minimal coverability set for Petri nets: Karp and Miller
algorithm with pruning. Fundamenta Informaticae 122(1-2), 1-30 (2013)
Reynier, P.A., Servais, F.: On the computation of the minimal coverability set of
Petri nets. In: Proceedings of Reachability Problems 2019. LNCS, vol. 11674, pp.
164-177 (2019)

Valmari, A., Hansen, H.: Old and new algorithms for minimal coverability sets.
Fundamenta Informaticae 131(1), 1-25 (2014)

256 A. Finkel et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

®

Check for
updates

Constructing Infinitary Quotient-Inductive Types

Marcelo P. Fiore®, Andrew M. Pitts®, and S. C. Steenkamp (™)

Department of Computer Science and Technology
University of Cambridge, Cambridge CB3 OFD, UK
s.c.steenkamp@cl.cam.ac.uk

Abstract This paper introduces an expressive class of quotient-induct-
ive types, called QW-types. We show that in dependent type theory
with uniqueness of identity proofs, even the infinitary case of QW-types
can be encoded using the combination of inductive-inductive definitions
involving strictly positive occurrences of Hofmann-style quotient types,
and Abel’s size types. The latter, which provide a convenient constructive
abstraction of what classically would be accomplished with transfinite
ordinals, are used to prove termination of the recursive definitions of the
elimination and computation properties of our encoding of QW-types.
The development is formalized using the Agda theorem prover.

Keywords: dependent type theory - higher inductive types - induct-
ive-inductive definitions - quotient types - sized types - category theory

1 Introduction

One of the key features of proof assistants based on dependent type theory such
as Agda, Coq and Lean is their support for inductive definitions of families of
types. Homotopy Type Theory [29] introduces a potentially very useful extension
of the notion of inductive definition, the higher inductive types (HITs). To define
an ordinary inductive type one declares how its elements are constructed. To
define a HIT one not only declares element constructors, but also declares
equality constructors in identity types (possibly iterated ones), specifying how
the constructed elements and identities are to be equated. In this paper we work
in a dependent type theory satisfying uniqueness of identity proofs (UIP), so
that identity types are trivial in dimensions higher than one. Nevertheless, as
Altenkirch and Kaposi [5] point out, HITs are still useful in such a one-dimensional
setting. They introduce the term quotient inductive type (QIT) for this truncated
form of HIT.

Figure 1 gives two examples of QITs, using Agda-style notation for dependent
type theory; in particular, Set denotes a universe of types and = denotes the
identity type. The first example specifies the element and equality constructors
for the type Bag X of finite multisets of elements from a type X. The second
example, adapted from [5], specifies the element and equality constructors for the
type wTree X of trees whose nodes are labelled with elements of X and that have
unordered countably infinite branching. Both examples illustrate the nice feature

© The Author(s) 2020
J. Goubault-Larrecq and B. Konig (Eds.): FOSSACS 2020, LNCS 12077, pp. 257-276, 2020.
https://doi.org/10.1007/978-3-030-45231-5_14

http://orcid.org/0000-0001-8558-3492
http://orcid.org/0000-0001-7775-3471
http://orcid.org/0000-0003-3105-4098
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45231-5_14&domain=pdf

258 M. P. Fiore et al.

Finite multisets:
data Bag(X : Set) : Set where

[] : Bag X
X -5 BagX — BagX
swap: (zy: X)(ys:BagX) vz uynys=yxiys

Unordered countably branching trees (elements of islso f witness that f is a bijection):
data wTree(X : Set) : Set where

leaf : wTree X
node: X — (N — wTree X) — wTree X

perm: (x: X)(f: N = N)(_ :islso f)(g: N — wTree X) —
nodex g = nodez (go f)

Figure 1. Two examples of QITs

of QITs that users only have to specify the particular identifications between
data needed for their applications. Thus the standard property of equality that it
is an equivalence relation respecting the constructors is inherited by construction
from the usual properties of identity types, without the need to say so in the
declaration of the QIT.

The second example also illustrates a more technical aspect of QITs, that they
enable constructive versions of structures that classically use non-constructive
choice principles. The first example in Figure 1 only involves element constructors
of finite arity ([] is nullary and x :: _ is unary) and consequently BagX is
isomorphic to the type obtained from the ordinary inductive type of finite lists
over X by quotienting by the congruence generated by swap. Of course this
assumes, as we do in this paper, that the type theory comes with Hofmann-style
quotient types [18, Section 3.2.6.1]. By contrast, the second example in the figure
involves an element constructor with countably infinite arity. So if one first forms
the ordinary inductive type of ordered countably branching trees (by dropping
the equality constructor perm from the declaration) and then quotients by a
suitable relation to get the equalities specified by perm, one needs the axiom of
countable choice to be able to lift the node element constructor to the quotient;
see [5, Section 2.2] for a detailed discussion. The construction of the Cauchy
reals as a higher inductive-inductive type [29, Section 11.3] provides a similar,
but more complicated example where use of countable choice is avoided. Such
examples have led to the folklore that as far as constructive type theories go,
infinitary QITs are more expressive than the combination of ordinary inductive (or
inductive-recursive, or inductive-inductive) types with quotient types. In this
paper we use Abel’s sized types [2] to show that, for a wide class of QITs, this
view is not justified. Thus we make two main contributions:

First we define a family of QITs called Q W-types and give elimination and
computation rules for them (Section 2). The usual W-types of Martin-Lof [22]
are inductive types giving the algebraic terms over a possibly infinitary signature.

Constructing Infinitary Quotient-Inductive Types 259

One specifies a QW-type by giving a family of equations between such terms.
So such QITs give initial algebras for possibly infinitary algebraic theories. As
we indicate in Section 3, they can encode a very wide range of examples of
possibly infinitary quotient-inductive types, namely those that do not involve
constructors taking previously constructed equalities as arguments (so do not
cover the infinitary extension of the very general scheme considered by Dybjer
and Moeneclaey [12]). In set theory with the Axiom of Choice (AC), QW-types
can be constructed simply as Quotients of the underlying W-type—hence the
name.

Secondly, we prove that contrary to expectation, without AC it is still possible
to construct QW-types using quotients, but not simply by quotienting a W-type.
Instead, the type to be quotiented and the relation by which to quotient are given
simultaneously by definitions that refer to each other. Thus our construction (in
Section 4) involves inductive-inductive definitions [15]. The elimination and
computation functions which witness that the quotiented type correctly represents
the required QW-type are defined recursively. In order to prove that our recursive
definitions terminate we combine the use of inductive definitions involving strictly
positive occurrences of quotient types with sized types (currently, we do not know
whether it is possible to avoid sizing in favour of, say, a suitable well-founded
termination ordering). Sized types provide a convenient constructive abstraction
of what classically would be accomplished with sequences of transfinite ordinal
length.

The type theory in which we work

To present our results we need a version of Martin-L6f Type Theory with
(1) uniqueness of identity proofs, (2) quotient types and hence also function ex-
tensionality, (3) inductive-inductive datatypes (with strictly positive occurrences
of quotient types) and (4) sized types. Lean 3 provides (1) and (2) out of the
box, but also the Axiom of Choice, unfortunately. Neither it, nor Coq provide (3)
and (4). Agda provides (1) via unrestricted dependent pattern-matching, (2) via
a combination of postulates and the rewriting mechanism of Cockx and Abel
[8], (3) via its very liberal mechanism for mutual definitions and (4) thanks to
the work of Abel [2]. Therefore we make use of the type theory implemented by
Agda (version 2.6.0.1) to give formal proofs of our results. The Agda code can
be found at por: 10.17863/CAM.48187. In this paper we describe the results
informally, using Agda-style notation for dependent type theory. In particular
we use Set to denote the universe at the lowest level of a countable hierarchy of
(Russell-style) universes. We also use Agda’s convention that an implicit argument
of an operation can be made explicit by enclosing it in {braces}.

Acknowledgement We would like to acknowledge the contribution Ian Orton made
to the initial development of the work described here. He and the first author
supervised the third author’s Master’s dissertation Quotient Inductive Types: A
Schema, Encoding and Interpretation, in which the notion of QW-type (there
called a W-type) was introduced.

https://doi.org/10.17863/CAM.48187

260 M. P. Fiore et al.
2 QW-types

We begin by recalling some facts about types of well-founded trees, the W-types
of Martin-Lof [22]. We take signatures to be elements of the dependent product

Sig=> A: Set, (A — Set) (1)

So a signature is given by a pair ¥ = (A, B) consisting of a type A : Set and
a family of types B : A — Set. Each such signature determines a polynomial
endofunctor 1, 16] S{X} : Set — Set whose value at X : Set is the following
dependent product

S{Z}X =>a:A (Ba—X) (2)

An S-algebra is by definition an element of the dependent product
Alg{X} =5 X :Set, (SX — X) (3)

S-algebra morphisms (X,s) — (X', s’) are given by functions h : X — X’
together with an element of the type

isHomh = (a: A)(b: Ba — X) — s'(a,hob) = h(s(a,b)) (4)

Then the W-type W{X} determined by ¥ is the underlying type of an initial
S-algebra. More generally, Dybjer [11] shows that the initial algebra of any non-
nested, strictly positive endofunctor on Set is given by a W-type; and Abbott,
Altenkirch, and Ghani [1] extend this to the case with nested uses of W-types as
part of their work on containers. (These proofs take place in extensional type
theory [22], but work just as well in the intensional type theory with uniqueness
of identity proofs and function extensionality that we are using here.)

More concretely, given a signature X' = (A, B), if one thinks of elements a : A
as names of operation symbols whose (not necessarily finite) arity is given by
the type Ba : Set, then the elements of W{X} represent the closed algebraic
terms (i.e. well-founded trees) over the signature. From this point of view it is
natural to consider not only closed terms solely built up from operations, but
also open terms additionally built up with variables drawn from some type X. As
well as allowing operators of possibly infinite arity, we also allow terms involving
possibly infinitely many variables (the second example in Figure 1 involves such
terms). Categorically, the type T{E}X of such open terms is the free S-algebra
on X and is another W-type, for the signature obtained from ¥ by adding the
elements of X as nullary operations. Nevertheless, it is convenient to give a direct
inductive definition:

data : T{X : Sig}(X : Set) : Set where
n: X —->TX (5)
o:S(TX)—->TX

Given an S-algebra (Y)s) : Alg{X} and a function f : X — Y, the unique
morphism of S-algebras from the free S-algebra (T X,o) on X to (Y,s) has

Constructing Infinitary Quotient-Inductive Types 261

underlying function T X — Y mapping each ¢ : T X to the element ¢t >= f in Y
defined! by recursion on the structure of ¢:

nr>=f =fx (6)
o(a,b) >= f = s(a,\v — bx>=f)

As the notation suggests, >= is the Kleisli lifting operation (“bind”) for a monad
structure on T; indeed, it is the free monad on the endofunctor S.

The notion of “QW-type” that we introduce in this section is obtained from
that of W-type by considering not only the algebraic terms over a given signature,
but also equations between terms. To code equations we use a type-theoretic
rendering of a categorical notion of equational system introduced by Fiore and Hur,
referred to as term equational system [14, Section 2| and as monadic equational
system [13, Section 5|, here instantiated to free monads on signatures.

Definition 1. A system of equations over a signature X : Sig is specified by

— a type E : Set (whose elements e : E name the equations)

— a family of types V : E — Set (Ve : Set contains the variables used in the
equation named e : E)

— for each e : E, elements le and re of type T(V e), the free S-algebra on Ve
(the terms with variables from V e that are equated by the equation named e).

Thus a system of equations over % is an element of the dependent product

Syseq{X} => E :Set,> V : (E — Set), (7)
((e: E)=T(Ve)) x((e: E)y = T(Ve))

An S{X}-algebra SX — X satisfies the system of equations ¢ = (E,V,l,r) :
Syseq{X} if there is an element of type

Sat{e} X =(e: E)(p: Ve—= X)— ((le)>=p) = ((re) >=p) (8)
The category-theoretic view of QW-types is that they are simply S-algebras that
are initial among those satisfying a given system of equations:

Definition 2. A QW-type for a signature ¥ = (A, B) : Sig and system of
equations € = (E,V,1,r) : Syseq{X} is given by a type QW{X}{e} : Set equipped
with an S-algebra structure and a proof that it satisfies the equations

gwintro : S(QW) — QW (9)
qwequ : Sat{e}(QW) (10)
together with functions that witness that it is the initial such algebra:
gwrec: (X :Set)(s:SX — X) > SatX - QW = X (11)
gwrechom : (X : Set)(s:SX — X)(p:SatX) — isHom(qwrec X sp) (12)
gwuniq : (X :Set)(s:SX = X)(p:Sat X)(f : QW — X) — (13)

isHom f — qwrec X sp = f
! Note that the definition of >>= depends on the S-algebra structure s; in Agda we use
instance arguments to hide this dependence.

262 M. P. Fiore et al.

Given the definitions of S{¥} in (2) and Sat{e} in (8), properties (9) and (10)
suggest that a QW-type is an instance of the notion of quotient-inductive type [5]
with element constructor qwintro and equality constructor qwequ. For this to
be so, QW{X}{e} needs to have the requisite dependently-typed elimination
and computation? properties for these element and equality constructors. As
Proposition 1 below shows, these follow from (11)-(13), because we are working
in a type theory with function extensionality (by virtue of assuming quotient
types). To state the proposition we need a dependent version of (6). For each

P: QW — Set (14)
p:(a:A)(b:Ba— QW) — ((z: Ba) = P(bx)) — P(qwintro(a,b))
type X : Set, function f : X — Y : QW, Pz and term ¢ : T(X), we get an
element lift Pp f ¢ : P(t >=fst o f) defined by recursion on the structure of t:

lift Ppf(nx) =snd(fzx) (15)
lift Pp f (o(a,b)) =pa(Ax — bx>>= (fsto f))(lift Pp fob)
Proposition 1. For a QW-type as in the above definition, given P and p as in
(14) and a term of type

(e:E)f:Ve—=>uz:QW,Px) = lift Ppf(le)==Ilift Pp f(re) (16)
there are elimination and computation terms:

gwelim: (z: QW) —» Pz
gweomp : (a: A)(b: Ba — QW) — qwelim(qwintro(a,b)) = pab (qwelim o b)

(Note that (16) uses McBride’s heterogeneous equality type [23], which we denote
by ==, because lift Pp f (le) and lift Pp f (re) inhabit different types, namely
P(le=fsto f) and P(re>=fsto f) respectively.) O

The proof of the proposition can be found in the accompanying Agda code
(por: 10.17863/CAM.48187).

So QW-types are in particular quotient-inductive types (QITs). Conversely, in
the next section we show that a wide range of QITs can be encoded as QW-types.
Then in Section 4 we prove:

Theorem 1. In constructive dependent type theory with uniqueness of identity
proofs (or equivalently the Aziom K of Streicher [27]) and universes with induct-
iwe-inductive datatypes [15] permitting strictly positive occurrences of quotient
types [18] and sized types [2], for every signature and system of equations (Defin-
ition 1) there is a QW-type as in Definition 2.

2 We only establish the computation property up to propositional rather than defini-
tional equality; so, using the terminology of Shulman [25], these are typal quotient-in-
ductive types.

https://doi.org/10.17863/CAM.48187

Constructing Infinitary Quotient-Inductive Types 263

Remark 1 (Free algebras). Definition 2 defines QW-types as initial algebras. A
corollary of Theorem 1 is that free-algebras also exist. In other words, given a
signature ¥ and a type X : Set, there is an S-algebra

(F{EHer X, SIEHF{EHe}X) = F{EHelX)

satisfying a system of equations ¢ and equipped with a function X — F{¥}{e} X,
and which is universal among such S-algebras. Thus QW{X}{e} is isomorphic to
F{X}{c}@, where & is the empty datatype.

To see that such free algebras can be constructed as QW-types, given a
signature ¥ = (A4, B), let X x be the signature (X W A, B"), where X W A is the
coproduct datatype (with constructors inl : X — X WA and inr: A —» X W A)
and where B’ : X W A — Set maps each inlz to @ and each inra to Ba. Given
a system of equations € = (E,V,l,r), let ex be the system (E,V,lx,rx) where
foreache: E lxe=le>=nandrxe=re>=n (usingn: Ve — T{Ex}(Ve)
as in (5) and the S{X¥}-algebra structure s on T{Xx}(V e) given by s(a,b) =
o(inra,b)). Then one can show that the QW-type QW{Xx }{ex} is the free
algebra F{X}{e} X, with the function X — F{X}{e}X sending each z : X to
gwintro(inlz,) : QW{Xx }{ex}, and the S{X}-algebra structure on F{X}{s} X
being given by the function sending (a,b) : S(QW{Xx }{ex}) to qwintro(inra,b).

Remark 2 (Strictly positive equational systems). A very general, categorical
notion of equational system was introduced by Fiore and Hur [14, Section 3.
They regard any endofunctor S : Set — Set as a functorial signature. A functorial
term over such a signature, S > G + L, is specified by another functorial signature
G : Set — Set (the term’s context) together with a functor L from S-algebras to
G-algebras that commutes with the forgetful functors to Set. Then an equational
system is given by a pair of such terms in the same context, S > G F L and
S > G R say. An S-algebra s : S X — X satisfies the equational system if
L(X,s) and R(X,s) are equal G-algebras.

Taking the strictly positive endofunctors Set — Set to be the smallest collec-
tion containing the identity and constant endofunctors and closed under forming
dependent products and dependent functions over fixed types then, as in [11]
(and also in the type theory in which we work), up to isomorphism every such
endofunctor is of the form S{X} for some signature ¥ : Sig. If we restrict atten-
tion to equational systems S > G F L, R with S and G strictly positive, then
it turns out that such equational systems are in bijection with the systems of
equations from Definition 1, and the two notions of satisfaction for an algebra
coincide in that case. (See our Agda development for a proof of this.) So Dybjer’s
characterisation of W-types as initial algebras for strictly positive endofunctors
generalises to the fact that QW-types are initial among the algebras satisfying
strictly positive equational systems in the sense of Fiore and Hur.

3 Quotient-inductive types

Higher inductive types (HITs) are originally motivated by their use in homotopy
type theory to construct homotopical cell complexes, such as spheres, tori, and

264 M. P. Fiore et al.

so on [29]. Intuitively, a higher inductive type is an inductive type with point
constructors also allowing for path constructors, surface constructors, etc., which
are represented as elements of (iterated) identity types. For example, the sphere
is given by the HIT3:

data S? : Set where
base : §? (17)

surf : refl Sbase=gzbase refl

In the presence of the UIP axiom we will refer to HITs as quotient inductive
types (QITs) [5], since all paths beyond the first level are trivial and any HIT
is truncated to an h-set. We use the terms element constructor and equality
constructor to refer to the point constructors and the only non-trivial level of
path constructors.

We believe that QW-types can be used to encode a wide range of QITs: see
Conjecture 1 below. As evidence, we give several examples of QITs encoded
as QW-types, beginning with the two examples of QITs in Figure 1, giving
the corresponding signature (A, B) and system of equations (E,V,l,r) as in
Definition 2.

Ezample 1 (Finite multisets). The element constructors for finite multisets are
encoded exactly as with a W-type: the constructors are [| and = :: _ for each
2 : X. So we take A to be 1W X, the coproduct of the unit type 1 (whose single
constructor is denoted tt) with X. The arity of [| is zero, and the arity of each
x::_ is one, represented by the empty type @ and unit type 1 respectively; so we
take B : A — Set to be the function [\ —0 | A —1]: 1w X — Set mapping
inltt to @ and each inrx to 1.

The swap equality constructor is parameterised by elements of £ = X x X.
For each (z,y) : E, swapzy yields an equation involving a single free vari-
able (called ys : Bag X in Figure 1); so we take V : E — Set to be A _— 1.
Each side of the equation named by swapxzy is coded by an element of
T{Z}(V(x,y)) = T{Z}(1). Recalling the definition of T from (5), the single
free variable corresponds to ntt : T{X}(1) and then the left-hand side of
the equation is o(inrz, (A _—o(inry, (A_—ntt)))) and the right-hand side is
o(inry,(A_—o(inrz, (A_—ntt)))).

So, altogether, the signature and system of equations for the QW-type corres-
ponding to the first example in Figure 1 is:

A=16 X E=XxX
B=A 0| —=1] V=X —1
l=Xxz,y) = o(inrz,(A_—o(inry, (A_—ntt))))
r=A(z,y) = olinry, A_—o(inrz,(A_—ntt))))

3 The subscript on = will be treated as an implicit argument and omitted when clear.

Constructing Infinitary Quotient-Inductive Types 265

Ezample 2 (Unordered countably-branching trees). Here the element constructors
are leaf of arity zero and, for each x : X, node z of arity N. So we use the signature
with A=1WX and B=[A_ —-@|A_—N]

The perm equality constructor is parameterised by elements of

E=XxY f:(N-N),islso f

For each element (z, f,4) of that type, perma f i yields an equation involving
an N-indexed family of variables (called g : N — wTree X in Figure 1); so we
take V' : £ — Set to be A_— N. Each side of the equation named by permz f i
is coded by an element of T{X}(V(x, f,i)) = T{E}(N). The N-indexed family
of variables is represented by the function 7 : N — T{X}(N) and its permuted
version by 7o f. Thus the left- and right-hand sides of the equation named by
permz f i are coded respectively by the elements o(inrz,n) and o(inrz,no f) of
T{Z}(N).

So, altogether, the signature and system of equations for the QW-type corres-
ponding to the second example in Figure 1 is:

A=1wX E=Xx>Y f:(N—N),islso f
B=A\ -2 |X_—=N V=X _—N

=Xz, ,)—o(inrz,n)

r=Az, f,)—olinrz,nof)

That unordered countably-branching trees are a QW-type is significant since no
previous work on various subclasses of QITs (or indeed QIITs [19, 10]) supports
infinitary QITs [6, 26, 28, 12, 19, 10]. See Example 5 for another, more substantial
infinitary QW-type. So this extension represents one of our main contributions.
QW-types generalise prior developments; the internal encodings for particular
subclasses of 1-HITs given by Sojakova [26] and Swan [28] are direct instances of
QW-types, as the next two examples show.

Ezample 8. W-suspensions [26] are an instance of QW-types. The data for
a W-suspension is: A’,C’ : Set, a type family B’ : A’ — Set and functions
U',r":C" — A’. The equivalent QW-type is:

A=A E=C' l=Xc—a((l'c),n)
B=0p V=Xc— (B (I'c)) x (B (r'c)) r=Xc—o((r'e),n)

Ezample 4. The non-indexed case of W-types with reductions [28] are QW-types.
The data of such a type is: Y : Set, X : Y — Set and a reindexing map
R: (y:Y)— Xy. The reindexing map identifies a term o (y,«) with some
a (R y) used to construct it. The equivalent QW-type is given by:

A=Y E=Y L=y =0 (y,7)
B=X V=X r=Ay—n(Ri)

266 M. P. Fiore et al.

Ezample 5. Lumsdaine and Shulman [21, Section 9| give an example of a HIT
not constructible in type theory from only pushouts and N. Their HIT F' can
be thought of as a set of notations for countable ordinals. It consists of three
point constructors: 0 : F; S : F — F, and sup : (N - F) — F, and five path
constructors which are omitted here for brevity. It is inspired by the infinitary
algebraic theory of Blass |7, Section 9| and hence it is not surprising that it can
be encoded by a QW-type; the details can be found in our Agda code.

3.1 General QIT schemas

Basold, Geuvers, and van der Weide [6] present a schema (though not a model)
for infinitary QITs that do not support conditional path equations. Constructors
are defined by arbitrary polynomial endofunctors built up using (non-dependent)
products and sums, which means in particular that parameters and arguments
can occur in any order. They require constructors to be in uncurried form.

Dybjer and Moeneclaey [12, Sections 3.1 and 3.2| present a schema for finitary
QITs that supports conditional path equations, where constructors are allowed
to take inductive arguments not just of the datatype being declared, but also
of its identity type. This schema can be generalised to infinitary QITs with
conditional path equations. We believe this extension of their schema to be the
most general schema for QITs. The schema requires all parameters to appear
before all arguments, whereas the schema for regular inductive types in Agda is
more flexible, allowing parameters and arguments in any order.

We wish to combine the schema for infinitary QITs of Basold, Geuvers, and
van der Weide [6] with the schema for QITs with conditional path equations of
Dybjer and Moeneclaey [12] to provide a general schema. Moreover, we would
like to combine the arbitrarily ordered parameters and arguments of the former
with the curried constructors of the latter in order to support flexible pattern
matching.

For consistency with the definition of inductive types in Agda [9, equation (25)
and figure 1] we will define strictly positive (i.e. polynomial) endofunctors in
terms of strictly positive telescopes.

A telescope is given by the grammar:

A empty telescope

=€
| (z:A)A (x ¢ dom(A)) non-empty telescope (18)

A telescope extension (2 : A)A binds (free) occurrences of x inside the tail A.
The type A may contain free variables that are later bound by further telescope
extensions on the left. A telescope can also exist in a context which binds any
free variables not already bound in the telescope. Such a context is implicit in
the following definitions. A function type A — C' from a telescope A to a type C'
is defined as an iterated dependent function type by:

e C=C

» (19)
(z: A)A = C % (z: A) = (A — C)

Constructing Infinitary Quotient-Inductive Types 267

A strictly positive endofunctor on a variable Y is presented by a strictly positive
telescope

A=(x1:P1(Y))(xg: P(Y)) -+ (2 : Pp(Y))e (20)

where each type scheme ®; is described by a expression on Y made up of II-types,
Y-types, and any (previously defined “constant”) types A not containing Y,
according to the grammar:

DY), U(Y) = (y:A) = dY) | Sp:dY),¥(Y) | A | Y (21)

For example, A = (z : X)(f : N — Y)e is the strictly positive telescope for the
node constructor in Figure 1. In this instance, reordering x and f is permitted by
exchange. Note that the variable Y can never appear in the argument position of
a II-type.

Now it is possible to define the form of the endpoints of an equality (within
the context of a strictly positive telescope), corresponding to the notion of an
abstract syntax tree with free variables. With this intuition in mind, we can take
the definition in Dybjer and Moeneclaey’s presentation [12] of endpoints given
by point constructor patterns:

Lrps= ¢k | gy (22)

Where y : Y is in the context of the telescope for the equality constructor, and k
is a term built without any rule for Y, but which may use other point constructor
patterns p : Y. (That is, any sub-term of type ¥ must either be a variable y : Y
found in the telescope, or a constructor for Y applied to further point constructor
patterns and earlier defined constants. It could not, for instance, use the function
application rule for Y with some function g : M — Y, not least since such
functions cannot be defined before defining Y'.) Note that this exactly matches
the type T in (5).

Basold, Geuvers, and van der Weide’s presentation has a sightly more general
notion of constructor term [6, Definition 6] (Dybjer and Moeneclaey’s presentation
[12] has more restricted telescopes). It is defined by rules which operate in the
context of a strictly positive (polynomial) telescope and permit use of its bound
variables, and the use of constructors ¢;, but not any other rules for Y. We take
the dependent form of their rules for products and functions. Note that these
rules do not allow the use of terms of type =y in the endpoints.

As with inductive types, the element constructors of QITs are specified by
strictly positive telescopes. The equality constructors also permit conditions
to appear in strictly positive positions, where [and r are constructor terms
according to grammar (22):

O(Y),U(Y) == (same grammar as in (21)) |l =y r (23)

268 M. P. Fiore et al.

Definition 3. A QIT is defined by a list of named element constructors and
equality constructors:

data Y : Set where
Cy: Al =Y

é:n:An—>Y
p1:01 =l =ym

Pm : ®m — lm =Y 'm

where A; are strictly positive telescopes on Y according to (21), and ©; are
strictly positive telescopes on' Y and =y in which conditions may also occur in
strictly positive positions according to (23).

QITs without equality constructors are inductive types. If none of the equality
constructors contain Y in an argument position then it is called non-recursive,
otherwise it is called recursive [6]. If none of the equality constructors contain an
equality in Y then we call it a non-conditional, or equational, QIT, otherwise it is
called a conditional [12], or quasi-equational, QIT. If all of the constant types A in
any of the constructors are finite (isomorphic to Fin n for n : N) then it is called
a finitary QIT [12]. Otherwise, it is called a generalised [12], or infinitary, QIT.
We are not aware of any existing examples in the literature of HI'Ts which allow
the point constructors to be conditional (though it is not difficult to imagine),
nor any schemes for HITs that allow such definitions. However, we do believe
this is worth investigating further.

Conjecture 1. Any equational QIT can be encoded as a QW-type.

We believe this can be proved analogously to the approach of Dybjer [11] for
inductive types, though the endpoints still need to be considered and we have
not yet translated the schema in definition 3 into Agda.

Remark 3. Assuming Conjecture 1, Basold, Geuvers, and van der Weide’s schema
[6], being an equational (non-conditional) instance of Definition 3, can be encoded
as a QW-type.

4 Construction of QW-types

In Section 2 we defined a QW-type to be initial among algebras over a given
(possibly infinitary) signature satisfying a given systems of equations (Definition 2).
If one interprets these notions in classical Zermelo-Fraenkel set theory with the
axiom of Choice (ZFC), one regains the usual notion from universal algebra
of initial algebras for infinitary equational theories. Since in the set-theoretic
interpretation there is an upper bound on the cardinality of arities of operators
in a given signature 3, the ordinal-indexed sequence S%(&) of iterations of the
functor in (2) starting from the empty set eventually becomes stationary; and

Constructing Infinitary Quotient-Inductive Types 269

so the sequence has a small colimit, namely the set W{X} of well-founded trees
over Y. A system of equations £ (Definition 1) over 3 generates a Y-congruence
relation ~ on W{X}. The quotient set W{X}/~ yields the desired initial algebra
for (X,) provided the S-algebra structure on W{X} induces one on the quotient
set. It does so, because for each operator, using AC one can pick representatives
of the (possibly infinitely many) equivalence classes that are the arguments of
the operator, apply the interpretation of the operator in W{X} and then take
the equivalence class of that. So the set-theoretic model of type theory in ZFC
models QW-types.

Is this use of choice really necessary? Blass [7, Section 9] shows that if one
drops AC and just works in ZF, then provided a certain large cardinal axiom is
consistent with ZFC, it is consistent with ZF that there is an infinitary equational
theory with no initial algebra. He shows this by first exhibiting a countably
presented equational theory whose initial algebra has to be an uncountable
regular cardinal; and secondly appealing to the construction of Gitik [17] of a
model of ZF with no uncountable regular cardinals (assuming a certain large
cardinal axiom). Lumsdaine and Shulman [21]| turn the infinitary equational
theory of Blass into a higher-inductive type that cannot be proved to exist in
ZF (and hence cannot be constructed in type theory just using pushouts and the
natural numbers). We noted in Example 5 that this higher inductive type can be
presented as a QW-type.

So one cannot hope to construct QW-types using a type theory which is
interpretable in just ZF. However, the type theory in which we work, with its
universes closed under inductive-inductive definitions, already requires going
beyond ZF to be able to give it a naive, classical set-theoretic interpretation (by
assuming the existence of enough strongly inaccessible cardinals, for example). So
the above considerations about initial algebras for infinitary equational theories
in classical set theory do not rule out the construction of QW-types in the type
theory in which we work. However, something more than just quotienting a
Wh-type is needed in order to prove Theorem 1.

Figure 2 gives a first attempt to do this (which later we will modify using sized
types to get around a termination problem). The definition is relative to a given
signature X : Sig and system of equations € = (E, V,l,r) : Syseq X. It makes use
of quotient types, which we add to Agda via postulates, as shown in Figure 3.4
The REWRITE pragma makes elim R B f e (mk Rx) definitionally equal to f
and is not merely a computational convenience—this is what allows function
extensionality to be proved from these postulated quotient types. The POLARITY
pragmas enable the postulated quotients to be used in datatype declarations
at positions that Adga deems to be strictly positive; a case in point being the
definitions of Qp and Q; in Figure 2. Agda’s test for strict positivity is sound
with respect to a set-theoretic semantics of inductively defined datatypes that
are built up using strictly positive uses of dependent functions; the semantics of
such datatypes uses initial algebras for endofunctors possessing a rank. Here we

4 The actual implementation is polymorphic in universe levels, but for simplicity here
we just give the level-zero version.

270 M. P. Fiore et al.

mutual
data Qo : Set where
sq: TQ— Qo

data Q1 : Qo — Qo — Set where
sqeq: (e: E)(p:Ve—=Q)—= Qi (sq(T'p(le))) (sa(T'p(re)))
sqn : (z: Qo) — Q1 (sa(n(quz))) =
sqo : (s:S(TQ)) = Qi (sq(o s)) (sq(e(S'(quosa)s)))

Q : Set

Q= Qo/Q

qu:Qo — Q
qu = quot.mk Q1

QW{ZHe} =Q

Figure 2. First attempt at constructing QW-types

are allowing the inductively defined datatypes to be built up using quotients as
well, but this is semantically unproblematic, since quotienting does not increase
rank. (Later we need to combine the use of POLARITY with sized types; the
semantics of this has been studied for System F,, [3], but needs to be explored
further for Agda.)

We build up the underlying inductive type Qp to be quotiented using a
constructor sq that takes well-founded trees T(Qp/Qi1) of whole equivalence
classes with respect to a relation Q; that is mutually inductively defined with
Qo—an instance of an inductive-inductive definition [15]. The definition of Q;
makes use of the actions on functions of the signature endofunctor S and its
associated free monad T (Section 2); those actions are defined as follows:

S {XY:Set} (X —-Y)—>SX —>SY
S'f(a,b) = (a, fob)
T:{XY:Set} > (X =Y)->TX>TY
T ft=t>=(nof)

(24)
(25)

The definition of Q; also uses the natural transformation ¢ : {X : Set} - SX —
T X defined by ¢ =0 0S'.

Turning to the proof of Theorem 1 using the definitions in Figure 2, the
S-algebra structure (9) is easy to define without using any form of choice, because
of the type of Qu’s constructor sq. Indeed, we can just take qwintro to be
quosqgot : S(QW) — QW.5 The first constructor sqeq of the data type Q; ensures
that the quotient Qp/Q; satisfies the equations in £, so that we get qwequ as
in (10); and the other two constructors, sqn and sqo make identifications that

® The use of the free monad T{X} in the domain of sq, rather than just S{}, seems
necessary in order to define Q: with the properties needed for (10)—(13).

Constructing Infinitary Quotient-Inductive Types 271

module quot where
postulate
ty:{A:Set}(R: A— A — Set) — Set
mk:{A:Set}(R: A— A—Set) > A—tyR
eq: {A:Set}(R: A— A—Set){zy: A} - Rey > mkRz=mkRy
elim: {A:Set}(R: A— A — Set)(B:tyR — Set)(f : (x : A) = B(mk Rx))
(e:{zy: A} > Rzy— fz==fy)(z:tyR) —» Bz
comp: {A:Set}(R: A— A— Set)(B:tyR — Set)(f: (z: A) — B(mkRx))
(e:{zy: A} > Rexy— fe==fy)(z: A) - elmRBfe(mkRx)=fx
{-# REWRITE comp -#3}
{-# POLARITY ty ++ ++ -#}
{-# POLARITY mk _ _ * -#}

/ :(A:Set)(R: A— A — Set) — Set
A/R = quot.ty R

Figure 3. Quotient types

enable the construction of functions qwrec, gwrechom and qwuniq as in (11)—(13).
However, there is a problem. Given X : Set, s : SX — X and e : Sat X, for
gwrec X se we have to construct a function r : Q — X. Since Q = Qp/Q; is a
quotient, we will have to use the eliminator quot.elim from Figure 3 to define r.
The following is an obvious candidate definition

mutual (26)
r:Q— X
r=quotelimQ (A — X)ror

roiQo—)X
ro(sqt) =t>=r

r:{zy: Qo= Quey > rpx=ryy
r=---

(where we have elided the details of the invariance proof ry). The problem with
this mutually recursive definition is that it is not clear to us (and certainly not
to Agda) whether it gives totally defined functions: although the value of ry at a
typical element sq ¢ is explained in terms of the structurally smaller element ¢, the
explanation involves r, whose definition uses the whole function ry rather than
some application of it at a structurally smaller argument. Agda’s termination
checker rejects the definition.

We get around this problem by using a type-based termination method,
namely Agda’s implementation of sized types [2]. Intuitively, this provides a type
Size of “sizes” which give a constructive abstraction of features of ordinals in ZF
when they are used to index sequences of sets that eventually become stationary,
such as in various transfinite constructions of free algebras [20, 14]. In Agda,
the type Size comes equipped with various relations and functions: given sizes

272 M. P. Fiore et al.

mutual
data Qo(i : Size) : Set where
sq:{j:Size<i} - T(Qj) = Qo

data Q1 (i : Size) : Qoi — Qo i — Set where
sqeq : {7+ Size< i} (e : B)(p: V e — Q) = Qui (sa(T'p (Le))) (sa(T'p (re))
sqn s {j : Size< bz : Qo j) — Qui (sa(n(qujz))) (o)
sqo : {j : Size<i}{k : Size< j}(s: S(T(Qk))) —
Qui (sq(os)) (sq(e(S'(quj o sq) s)))
Q : Size — Set
Qi=(Qoi)/Q1i

qu: (i:Size) > Qoi — Qi
qui = quot.mk (Q1 %)

¢o : (i :Size){j : Size<i} - Qoj — Qo
Poi(sqz) =sqz

QW{Z}e} = Qoo

Figure 4. Construction of QW-types using sized types

i,7 : Size, there is a relation i : Size< j to indicate strictly increasing size (so
the type Size< j is treated as a subtype of Size); there is a successor operation
1 : Size — Size (and also a join operation _LI° : Size — Size — Size, but we
do not need it here); and a size oo : Size to indicate where a sequence becomes
stationary. Thus we construct the QW-type QW{X}{e} as Qoo for a suitable
size-indexed sequence of types Q : Size — Set, shown in Figure 4.

For each size i : Size, the type Qi is a quotient Qg i/Q; 7, where the construct-
ors of the data types Qg7 and Q¢ take arguments of smaller sizes j : Size< i.
Consequently in the following sized version of (26)

mutual (27)
r:{i:Size} - Qi — X
r{i} = quot.elim (Q14) (A — X) (ro {i}) (r1 {3})
ro:{i:Size} - Qi - X
ro{i}(sa{s}t) =t >=r{j}

ri:{i:Size}{zy: Qui} - Qrizy > rox=roy
rl T e e .

the definition of ro{i} involves a recursive call via r to the whole function ry, but
at a size j which is smaller than 7. So now Agda accepts that the definition of
gwrec X se as roo, with r as in (27), is terminating.

Thus we get a function qwrec for (11). We still have (9), but now with
qwintro = quooosq {oco} or; and as before, the constructor sqeq of Qq in Figure 4
ensures that QW = (Qp 00)/Q; oo satisfies the equations €. With these definitions
it turns out that each qwrec X se is an S-algebra morphism up to definitional

Constructing Infinitary Quotient-Inductive Types 273

equality, so that the function qwrechom needed for (12) is straightforward to
define. Finally, the function qwuniq needed for (13) can be constructed via a
sequence of lemmas making use of the other two constructors of the data type
Q1, namely sqn, which makes use of an auxiliary function for coercing between
different size instances of Qg, and sqo. We refer the reader to the accompanying
Agda code (DoI: 10.17863/CAM.48187) for the details of the construction of
qwuniq. Altogether, the sized definitions in Figure 4 allow us to complete a proof
of Theorem 1.

5 Conclusion

QW-types are a general form of QIT that capture many examples, including simple
1-cell complexes and non-recursive QITs [6], non-structural QITs [26], W-types
with reductions [28], and also infinitary QITs (e.g. unordered infinitely branching
trees [5], and ordinals [21]). They also capture the notion of initial (and free)
algebras for strictly positive equational systems [14], analogously to how W-types
capture the notion of initial (and free) algebras for strictly positive endofunctors
(see Remark 2). Using Agda to formalise our results, we have shown that it
is possible to construct any QW-type, even infinitary ones, in intensional type
theory satisfying UIP, using inductive-inductive definitions permitting strictly
positive occurrences of quotients and sized types (see Theorem 1 and Section 4).
We conclude by mentioning related work and some possible directions for future
work.

Quotients of monads. In view of Remark 2, Section 4 gives a construction of
initial algebras for equational systems [14] on the free monad T{X} generated by
a signature Y. By a suitable change of signature (see Remark 1) this extends to
a construction of free algebras, rather than just initial ones. We can show that
the construction works for an arbitrary strictly positive monad and not just for
free ones. Given such a construction one gets a quotient monad morphism from
the base monad to the quotient monad. This contravariantly induces a forgetful
functor from the algebras of the latter to that of the former. Using the adjoint
triangle theorem, one should be able to construct a left adjoint. This would then
cover examples such as the free group over a monoid, free ring over a group, etc.

Quotient inductive-inductive types. The notion of QW-type generalises to indexed
QW-types, analogously to the generalisation of W-types to Petersson-Synek trees
for inductively defined indexed families of types [24, Chapter 16], and we will
consider it in subsequent work. More generally, we wonder whether our analysis
of QITs using quotients, inductive-inductive and sized types can be extended to
cover the notion of quotient inductive-inductive type (QIIT) [4, 19]. Dijkstra [10]
studies such types in depth and in Chapter 6 of his thesis gives a construction
for finitary ones in terms of countable colimits, and hence in terms of countable
coproducts and quotients. One could hope to pass to the infinitary case by using
sized types as we have done, provided an analogue for QIITs can be found of

https://doi.org/10.17863/CAM.48187

274 M. P. Fiore et al.

the monadic construction in Section 4 for our class of QITs, the QW-types.
Kaposi, Kovacs, and Altenkirch [19] give a specification of finitary QIITS using a
domain-specific type theory called the theory of signatures and prove existence of
QIITs matching this specification. It might be possible to encode their theory of
signatures using QW-types (it can already be encoded as a QIIT), or to extend
QW-types making this possible. This would allow infinitary QIITs.

Schemas for QITs. We have shown by example that QW-types can encode a wide
range of QITs. However, we have yet to extend this to a proof of Conjecture 1
that every instance of the schema for QITs considered in Section 3 can be so
encoded.

Conditional path equations. In Section 3 we mentioned the fact that Dybjer and
Moeneclaey [12] give a model for finitary 1-HITs and 2-HITs in which constructors
are allowed to take arguments involving the identity type of the datatype being
declared. On the face of it, QW-types are not able to encode such condition