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Foreword

In the past decades, rapid advances in digital IC (integrated circuit) tech-
nology have caused a “digital revolution” in the field of signal processing.
These days, almost any real-world signal is represented and processed digi-
tally, from physiological vital signs via camera pictures, audio signals, video
signals, and radar signals to the massive four-dimensional datasets pro-
duced by modern medical imaging equipment. The rapid growth of the fixed
and mobile Internet, combined with the insatiable appetite of mankind for
information, will further add fuel to this revolution.

When real-world signals are converted into a digital form, they are com-
monly split into discrete blocks for further processing. To avoid the edge
effects across the blocks, the blocks are often weighted by a window function
that tapers the signal off toward both ends of the block. A window function
is a mathematical function that is zero-valued outside some chosen interval.
When a signal is multiplied by a window function, the product is also zero-
valued outside this interval. Effectively, we are viewing the signal through a
“window,” hence the name of the function.

Window functions are explicitly or implicitly used in many, if not most,
digital signal processing systems, and as such are genuinely important. Even
so, the vast signal processing literature contains a few, if any, of books or
monographs that are dedicated to this topic. This monograph is a welcome
exception. To the best of my knowledge, it provides the most comprehensive
treatment of window functions and their applications available to date. The
author, Professor dr. ir. K.M.M. Prabhu, has been affiliated since the mid-
1970s with the prestigious Indian Institute of Technology Madras, Chennai,
India. He has made significant contributions to the development of window
functions and their implementation intricacies in the mid-1970s and early
1980s and has maintained an active interest in window functions ever since.
Hence, he is very well placed to provide an authoritative treatment on the
topic.

Window functions have a strong impact on the spectrum of the signal
and essentially permit a trade-off between time and frequency resolu-
tion. Accordingly, the monograph starts with a review of continuous and
discrete-time Fourier analysis techniques and of key artifacts such as spectral
aliasing and leakage. The core of the monograph consists of a survey and
a detailed feature analysis of an extensive set of continuous and discrete-
time window functions. This is supplemented by a treatment of efficient
time- and frequency-domain window implementation approaches. The final
chapters zoom in on the key applications of window functions, such as dig-
ital filter design, spectral analysis, and applications in fields such as radar

xiii
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signal processing, biomedical engineering, and audio, speech, and image
processing.

I would like to congratulate the author on this valuable addition to the
signal processing literature.

Professor dr. ir. J.W.M. Bergmans
Chairman, Signal Processing Systems Group

Eindhoven University of Technology
The Netherlands



Preface

This monograph presents an exhaustive and detailed account of window
functions and their applications in signal processing. Window functions,
otherwise known as weighting functions, tapering functions or apodization
functions, are mathematical functions that are zero-valued outside the chosen
interval. As a popular quote goes, there are as many numbers of windows as
the number of people working in signal processing.

Chapter 1 deals with the Fourier analysis techniques. First, the basic sig-
nals and systems in the continuous time-domain are introduced, followed
by the continuous-time Fourier transform (CTFT). Its properties and some
examples are discussed next. We then move on to the discrete-time Fourier
transform (DTFT), the first transform encountered in digital signal process-
ing, to convert a discrete-time signal into its frequency-domain counterpart.
The Fourier transform to handle sequences of finite length, called the discrete
Fourier transform (DFT), is discussed next and its properties and applications
are highlighted. Finally, the algorithms to compute the DFT faster, namely,
the fast Fourier transform (FFT) based on decimation-in-time (DIT) and
decimation-in-frequency (DIF), are described. This chapter concludes with
an efficient technique to compute linear convolution via circular convolution
using the DIT and DIF algorithms.

In Chapter 2, we discuss the pitfalls in the computation of the DFT. There are
two processes involved while computing the DFT of an analog (continuous-
time) signal: sampling and truncation. While sampling introduces a distortion
called aliasing, the truncation operation due to the finite length data intro-
duces two other effects known as the frequency leakage and picket-fence
effect. In this chapter, these effects and the manner in which they can be
eliminated/reduced are also detailed. The DFT functioning as a bank of
band-pass filters is also demonstrated.

Chapter 3 introduces the commonly used window functions in the
continuous-time-domain, rather than in the discrete-time-domain. The char-
acteristics which qualify a function to be called as a window function are given
next. The plots of the window functions are provided in the time-domain as
well as in the frequency-domain. The two near-optimum Kaiser–Bessel win-
dow function families are also discussed in detail. The main characteristics
of a window function such as normalized half-main-lobe width (NHMLW),
first side-lobe level (FSLL), maximum side-lobe level (MSLL), ratio of main-
lobe energy to the total energy (MLE), and rate of fall-off of side-lobe levels
(RFSLL) are also enlisted for all the windows considered here. This chapter
concludes with a rigorous comparison of all the window parameters.

xv
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Chapter 4, titled as the performance comparison of data windows, defines
a number of parameters, once again in the continuous-time-domain. These
parameters are computed either analytically or numerically for all the win-
dows which were introduced in Chapter 3. Finally, directions for the choice
of an appropriate window function for specific applications are provided.

Discrete-time windows and their figures of merit are discussed in Chapter 5.
The four different classifications of windows are presented. The discrete-time
versions of all the windows from Chapter 3, as well as some more popular
windows discussed in the literature, are reviewed here. Definitions of win-
dow parameters and a discussion on the window selection process are also
outlined. Finally, the chapter concludes with the two important applications
of windows; namely, finite impulse response (FIR) digital filter design and
spectral analysis.

The two implementation strategies of window functions in the time-domain
and frequency-domain are dealt with in Chapter 6. A novel scheme to imple-
ment certain types of windows in the frequency-domain is derived and a
structure called binary windowing structure to implement it is also presented.
The computational error performance in terms of signal-to-computational
error ratio (SCER) in both the domains is tabulated and their performances are
compared. Finally, novel binary windowing structures called canonic signed
digit (CSD) windowing are presented for all the binary windows considered
in this chapter.

FIR filter design using windows is considered in Chapter 7. This chapter
deals with the different types of ideal filters: lowpass, highpass, bandpass,
and bandstop filters. A discussion on linear phase filters, followed by the
four types of filters is presented next. A clear design procedure is given for
FIR filters. Furthermore, FIR filter design using zeroth-order and first-order
Kaiser–Bessel windows is presented. These use closed-form expressions in
determining the filter order as well as the window shape parameter. The
design of differentiators and Hilbert transformers are also outlined.

Window functions are vital in nonparametric methods of spectral estima-
tion as well. They are classified as: periodogram PSD estimators, modified
periodogram PSD estimators, and correlogram estimators. These methods
and the requirement for window functions are discussed in detail in Chap-
ter 8. This chapter also gives the application of Kaiser–Bessel window in
spectral analysis. Closed-form expressions are available to compute the win-
dow length and the variable parameter alpha of the Kaiser–Bessel window.
Besides, we introduce short-time Fourier transform (STFT), which is also
known as time-dependent Fourier transform, in analyzing nonstationary sig-
nals, such as speech. Several examples are discussed which clearly brings out
the power of window functions in nonparametric spectral analysis.

Chapter 9 discusses well-known applications of window functions in the
fields of radar, sonar, biomedical signal analysis, audio processing, and
synthetic aperture radar. In the context of radar, the cases considered are high-
range resolution radars, the effect of range side-lobe reduction on SNR and in
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stretch processing. In biomedical signal processing, we consider FIR/moving
average filtering of biomedical signals, QRS detection of ECG signals using
STFT, and so on. Audio de-noising using time–frequency plane, effect of
windows on linear prediction of speech, and so on are dealt with in the
audio-processing section. Finally the chapter concludes with topics such as
the effect of windows in ISAR (inverse synthetic aperture radar) images and
the usage of windows in improving the contrast ratio in imaging systems.
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1
Fourier Analysis Techniques for Signal
Processing

There are several methods to transform a time-domain signal into frequency-
domain. The motivation for transforming a signal from one domain to another
is that the characteristics of a signal are visible directly and can be easily
extracted from such a representation. For instance, from a signal represented
in time-domain, we can only extract some features such as the exact start-
ing time instant of the signal or the duration for which the signal existed.
However, other useful features such as bandwidth and frequency occupied
by the signal are not directly visible unless we convert it into the frequency-
domain. Another advantage of transforming a signal into the Fourier domain
is that the convolution operation gets simplified to multiplication. We can use
Fourier analysis techniques to identify and separate the frequency bands of
interest from noisy observations. Transforms are vital in many speech appli-
cations (recognition, synthesis, and coding), radio communications, vibration
analysis, and so on. Some specific areas where Fourier transforms (FTs) are
applied include steady-state and resonance analysis of signals, modulation,
filter design, sampling rate selection, stability analysis, correlations by block
processing, and pitch period estimation.

In this chapter, we begin by describing the continuous-time Fourier trans-
form (CTFT) technique for continuous-time (CT) signals and then proceed to
the discrete-time Fourier transform (DTFT) for discrete-time (DT) sequences.
The DTFT has been developed from the CTFT by utilizing the similarities
between analyzing continuous- and discrete-time signals. The concept of
z-transform is introduced next, which is useful in analyzing and synthesizing
discrete-time signals and systems. However, for present-day applications, the
DTFT is not amenable to digital computations, since in the forward DTFT, we
require infinitely many number of computations; while in the inverse DTFT
(IDTFT), we have an integral notation to deal with.

Therefore, we resort to the discrete Fourier transform (DFT) which is a
uniformly sampled version of the DTFT. In the case of DFT, both the forward
and inverse DFT (IDFT) expressions are discrete as well as finite. Therefore the
DFT and IDFT remove the restrictions associated with the DTFT and IDTFT,
respectively. Finally, we discuss the fast Fourier transform (FFT), which is a
computationally efficient tool to compute the DFT of a signal with a reduced
number of arithmetic operations. The FFT is commonly used in all digital
signal processors (DSPs) and general purpose digital computers.

1



2 Window Functions and Their Applications in Signal Processing

1.1 Review of Basic Signals and Systems

In this section, we start our study of signals which are commonly encountered
in signal processing. We also enlist the important properties of systems.

1.1.1 Basic Continuous-Time Signals

1. Unit step signal: This signal is defined for a time instant ‘t’ as follows:

u(t) =
{

0, t < 0
1, t > 0.

(1.1)

This signal is shown in Figure 1.1.
2. Unit impulse function: It is not appropriate to give a duration for

the impulse function; instead we can say that the area under the
unit impulse is unity. It can be graphically represented as shown in
Figure 1.2. It can be assumed as a limiting case of the delta function:

δ(t) = lim
�→0

δ�(t). (1.2)

We note that the unit impulse function can be related to the unit step
signal as:

δ(t) = du(t)
dt

. (1.3)

3. Complex exponential signal: This is represented by the following
function:

x(t) = ceat, (1.4)

where c and a can represent complex numbers, in general.

u(t)

t
0

1

FIGURE 1.1
Unit step signal.
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t

δ (t)

0

1

(a)

t

1/Δ

(b)

Δ

δΔ(t)

0

FIGURE 1.2
(a) Unit impulse signal. (b) Unit delta function.

4. Sinusoidal signal: The sine function with amplitude A and frequency
of oscillation �0 is given by:

x(t) = A sin(�0t + φ), (1.5)

where φ represents the phase of the sinusoidal signal.

1.1.2 Basic Discrete-Time Signals

These signals are similar to their CT counterparts, but defined with respect
to an integer-valued variable ‘n’.

1. Unit impulse sequence:

δ[n] =
{

0, n �= 0
1, n = 0

(1.6)

2. Unit step sequence:

u[n] =
{

0, n < 0
1, n ≥ 0

(1.7)
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3. Complex exponential:

x[n] = cαn (1.8)

where c and α are, in general, complex numbers.
4. Sinusoidal signal:

x[n] = A cos[ω0n + φ] (1.9)

where ω0 is the frequency, φ represents the phase and A is the
amplitude of the sinusoidal signal. The difference between the CT
sinusoidal signal and its DT domain is that the equivalent frequency
in the DT domain lies in the range [−π , π ], whereas in the CT domain,
it varies in the broad range [−∞, ∞].

1.1.3 System and Its Properties

A discrete-time system can be defined as a transformer from the input space to
a transformed space. It can schematically be described as shown in Figure 1.3
and it is mathematically described by the following relation:

y[n] = T{x[n]}. (1.10)

Some useful properties of general systems are described below.

1. Linearity property: If we consider two output sequences y1[n] and y2[n]
which are defined as the transformations of x1[n] and x2[n]:

x1[n] T←→ y1[n] = T(x1[n]) (1.11)

x2[n] T←→ y2[n] = T(x2[n]) (1.12)

Then, the system is said to be linear if

ax1[n] + bx2[n] T←→ y3[n] = T(ax1[n] + bx2[n]) (1.13)

and if y3[n] = ay1[n] + by2[n]. Here, a and b are any arbitrary con-
stants.

Systemx[n] y[n]

FIGURE 1.3
System.
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2. Time invariance property: If the transformation of a signal does not
vary with time, then the system is said to be time invariant. Let us
consider a signal x[n] and its delayed version x[n − n0] as

x[n] T←→ y[n] (1.14)

x[n − n0] T←→ y1[n]. (1.15)

If y1[n] = y[n − n0], then the discrete-time system is said to be time
invariant.

3. Causality property: If the output of a system at any time instant
depends only on the present and past values of the input (and past
values of the output), then the system is said to be causal. Hence, the
output at any time does not depend on future values of input and
output.

4. Stability property: We consider bounded-input bounded-output
(BIBO) stability. When a bounded-input is applied to the system and
if the output is bounded, then the system is said to be BIBO stable.

|x[n]| ≤ Bx ∀n, 0 ≤ Bx < ∞ (1.16)

and ∣∣y[n]∣∣ ≤ By ∀n, 0 ≤ By < ∞. (1.17)

It should be noted that only a causal and stable system is physically
realizable.

1.1.4 LTI Systems

An important class of systems which obeys the linearity and time-invariance
properties is called the linear time-invariant (LTI) system. An LTI system
is uniquely represented by its impulse response h(t) or h[n] (in CT domain
and in DT domain), which is the output of the system to an unit impulse
signal. For an LTI system, the output of the system can be uniquely expressed
as a convolution of the input with the impulse response of the system. The
continuous-time convolution integral is defined as

y(t) =
∫∞

−∞
x(τ )h(t − τ) dτ (1.18)

and the discrete-time convolution sum is defined as

y[n] =
∞∑

k=−∞
x[k]h[n − k]. (1.19)
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The above-defined convolution operations are called linear convolution
operations and, in general, are represented in short-hand notations as

y(t) = x(t) ∗ h(t) (1.20)

y[n] = x[n] ∗ h[n]. (1.21)

This section has provided a brief overview of the signals and systems needed
to understand the following chapters. In case the reader is interested in more
details, refer to Refs. [1–4].

1.2 Continuous-Time Fourier Transform

We can represent the output of an LTI system to an input signal in terms of the
shifted orthogonal basis signals for the ease of mathematical calculations as
well as for visualization. The continuous-time periodic signal can be simply
characterized as a sum of harmonically related sine and cosine waveforms.
This is popularly known as the Fourier series expansion of the signal, which
involves the decomposition of the periodic signals into their frequency com-
ponents. To analytically represent an aperiodic signal in a similar manner,
we need to make an assumption that an aperiodic signal is actually a periodic
signal with infinite period. This type of time-domain to frequency-domain
transformation is called the continuous-time Fourier transform (CTFT). There
are few restrictions, known as the Dirichlet conditions, which a given signal
should satisfy to be represented in the Fourier domain. These are stated as
follows: it is sufficient that the signal be absolutely integrable (i.e., bounded
signal) and it should have a finite number of maxima, minima and disconti-
nuities in finite time. This encompasses a wide variety of signals which can be
decomposed into a superposition integral of exponentials of infinite duration.
Complex exponential functions, ejk�0t, are common periodic signals that can
be used as the orthogonal basis functions. The complex exponential formula
for continuous-time Fourier series of a periodic signal, x̃(t) (with period T) is
given by

x̃(t) =
∞∑

k=−∞
akejk�0t, �0 = 2π

T
(1.22)

ak = 1
T

∫ T/2

−T/2
x̃(t)e−jk�0t dt, (1.23)

where ak denotes the Fourier series coefficients, and �0 is the fundamental
angular frequency in rad/s. This transform pair is quite a significant tool,
as it states that even arbitrary discontinuous signals can be expressed in
terms of simple smooth basis functions. Discontinuous parts of the signal
are represented by the higher-order harmonics in the Fourier series.
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This can analogously be extended to aperiodic signals by assuming that the
period T is infinity. This generalization enables frequency-domain conversion
of a much wider class of signals of interest. Increasing the T results in two
effects: (i) the magnitude of the spectrum decreases by an order of 1/T, and
(ii) the spacing between the line spectra decreases with respect to �0. Let
X(j�) denote the CTFT of x(t).

When T → ∞, X(j�) approaches a continuous magnitude spectrum (rather
than a line spectrum in the case of periodic signals). Note that X(j�) is actually
the envelope of Tak, which is defined as

X(j�) =
∫∞

−∞
x(t)e−j�tdt (1.24)

x(t) = 1
2π

∫∞

−∞
X(j�)ej�td�. (1.25)

Equations (1.24) and (1.25) together are known as the continuous-time Fourier
transform (CTFT) pair.

We can construct the FT of a periodic signal directly from its Fourier series
representation. The resulting transform, given below, consists of a train of
impulses in the frequency-domain.

X(j�) =
∞∑

k=−∞
2πakδ(� − k�0). (1.26)

1.2.1 Properties of the CTFT

We now enlist some of the useful properties of the CTFT, which can simplify
the solution of many problems. Let x(t) and y(t) be the time-domain signals
and their CTFTs be X(j�) and Y(j�), respectively. The FT pair is expressed

as x(t)
F←→ X(j�) and y(t)

F←→ Y(j�).

1. Linearity property: This results directly from the linearity property of
integration.

ax(t) + by(t)
F←→ aX(j�) + bY(j�). (1.27)

Here, a and b represent arbitrary constants. This simply means that
the FT of a linear combination of two arbitrary signals is the same as
the linear combinations of the transforms of individual components.
It can be easily extended to linear sum of any arbitrary number of
signals.

2. Time and frequency shifting property: The shift in time-domain by a
duration t0 is given by

x(t − t0)
F←→ e−j�t0 X(j�). (1.28)
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It shows that shifting the time-domain signal by an amount t0 results
in a phase shift in the Fourier domain, while the magnitude response
remains unchanged. We also note that the higher the frequency, the
greater the phase shift it experiences. This is obvious from the fact
that, in the same span of time, a higher frequency signal covers more
number of cycles. Similarly, we can state the corresponding dual
property of shifting in the frequency-domain as

x(t)ej�0t F←→ X(j(� − �0)). (1.29)

3. Conjugation and conjugate symmetry property: For a complex signal x(t):

x∗(t)
F←→ X∗(−j�). (1.30)

This property directly follows from the evaluation of the complex
conjugate of Equation (1.24).

4. Differentiation and integration property: The CTFT of dx(t)/dt can be
found by differentiating Equation 1.25 with respect to t. After differ-
entiation, we find that the higher frequency components of the signal
become more pronounced. This property can be stated as follows:

dx(t)
dt

F←→ j�X(j�). (1.31)

In a similar manner, integrating the time-domain signal results in the
following:

∫ t

−∞
x(t) dt

F←→ 1
j�

X(j�) + πX(0)δ(�). (1.32)

Integration attenuates the magnitude of the signal at higher fre-
quencies and thus acts like a low-pass filter. If X(0) is nonzero, the
signal contains a DC component, which introduces an impulse in the
frequency-domain.

5. Time and frequency scaling property: For a scaling factor ‘a’, this property
can be given as follows:

x(at)
F←→ 1

|a|X
(

j�
a

)
. (1.33)

For instance, if a = −1 then

x(−t)
F←→ X(−j�). (1.34)

If the scaling factor has a magnitude greater than unity, then the signal
is compressed in the time-domain, while its frequency spectrum gets
expanded. For |a| < 1, exactly the converse happens, that is, the time-
domain signal is expanded and the spectrum is scaled down.
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6. Duality property: This property reveals the effect when we interchange
the roles of t and �. This helps in finding the CTFTs of some sig-
nals directly from a table of transforms. It simply states that every
property of CTFT has a dual function, given as follows:

X(t)
F←→ 2πx(−j�). (1.35)

7. Parseval’s theorem: This gives the relation between the energy (E) of
a signal in the time-domain and the frequency-domain. We can use
this property to easily compute the energy of a signal by integrating
the squared magnitude of its FT.

E =
∫∞

−∞
|x(t)|2 dt = 1

2π

∫∞

−∞

∣∣X(j�)
∣∣2 d�. (1.36)

8. Convolution property: Convolution in the time-domain is equivalent
to multiplication in the frequency-domain and vice versa.

x(t) ∗ h(t)
F←→ X(j�)H(j�). (1.37)

This property is vital especially in the analysis of linear time-invariant
(LTI) systems.

9. Modulation property: This is the dual of the convolution property
stated above and can be given as follows:

x(t)y(t)
F←→ 1

2π
[X(j�) ∗ Y(j�)] = 1

2π

∫∞

−∞
X(jθ)Y(j(� − θ)) dθ .

Here, we must recall that multiplication of one signal by another
amounts to modulation. The modulation property is extensively used
in communications.

1.2.2 Examples of CTFT

1. Find the CTFT of a complex one-sided exponential signal given by:
x(t) = e−atu(t), a > 0.

The CTFT of this signal can be determined only if a > 0, since if
a < 0, the signal fails to be absolutely integrable. Using the CTFT
Equation (1.24), we obtain

X(j�) =
∫∞

∞
[e−atu(t)]e−j�tdt =

∫∞

0
e−ate−j�tdt

=
∫∞

0
e−(a+j�)tdt = 1

a + j�
, a > 0.
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x(t)

1

(a)

0 t

X( jΩ )

Ω 

1/a

0

(b)

π/2

(c)

−π/2

Ω

arg[X( jΩ)]

FIGURE 1.4
FT pair of e−atu(t). (a) Time-domain signal. (b) Frequency-domain magnitude plot. (c) Frequency-
domain phase plot.

Figure 1.4 shows the signal x(t), the magnitude, and phase responses
of the CTFT of e−atu(t).

2. Determine the CTFT of a two-sided exponential signal given by:
x(t) = e−a|t|, a > 0.

X(j�) =
∫∞

−∞
e−a|t|e−j�tdt

=
∫ 0

−∞
eate−j�tdt +

∫∞

0
e−ate−j�tdt

=
∫ 0

−∞
e(a−j�)tdt +

∫∞

0
e−(a+j�)tdt

= 1
a − j�

+ 1
a + j�

= 2a
a2 + �2

.
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x(t)

1

0

(a)

t

2/a

(b)

1/a

0 a–a

X( jΩ )

Ω 

FIGURE 1.5
FT pair of e−a|t|. (a) Time-domain. (b) Frequency-domain.

The signal x(t) and the magnitude response of the FT of e−a|t| are
depicted in Figure 1.5. The phase is zero, since the signal is even
symmetric in the time-domain.

3. Find the Fourier transform of the sinusoidal signals:
a. x(t) = cos(�0t)

b. x(t) = sin(�0t)

Note that signals such as sinusoids that exist for all time are not
absolutely integrable. Absolute integrability is a sufficient condition
for the existence of FT, but it is not a necessary condition. These
difficulties can be solved by introducing Dirac delta function in the
frequency-domain as detailed below.
a. x(t) = cos(�0t)

x(t) = 1
2

[
ej�0t + e−j�0t

] = 1
2

ej�0t + 1
2

e−j�0t.

On comparing the above equation with the expression of the
Fourier series of a continuous-time periodic signal, we obtain the
Fourier series coefficients of x(t) as

a1 = a−1 = 0.5, for k = ±1 and ak = 0, for k �= ±1. (1.38)
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Therefore, using Equation 1.26

X(j�) = 2π

∞∑
k=−∞

akδ(� − k�0)

= πδ(� − �0) + πδ(� + �0).

The above CTFT result is depicted in Figure 1.6(a).
b. x(t) = sin(�0t)

x(t) = 1
2j

[
ej�0t − e−j�0t

] = 1
2j

ej�0t − 1
2j

e−j�0t.

From the above results, the Fourier series coefficients are

a1 = 1
2j

, a−1 = − 1
2j

for k = ±1 and ak = 0, for k �= ±1. (1.39)

Therefore,

X(j�) = 2π

∞∑
k=−∞

akδ(� − k�0)

= π

j
δ(� − �0) − π

j
δ(� + �0).

The CTFT of the sine signal is shown in Figure 1.6(b).

4. Determine the CTFT of a rectangular signal given by

x(t) =

⎧⎪⎪⎨
⎪⎪⎩

1, |t| ≤ τ

2

0, |t| >
τ

2
.

X(j�) =
∫∞

−∞
x(t)e−j�tdt = ej�τ/2 − e−j�τ/2

j�

= 2
sin(�τ/2)

�
= τ sinc

(
�τ

2π

)
.

Here, we have used the fact that sinc(t) = sin(π t)/(π t). The time-
domain and frequency-domain plots are shown in Figure 1.7.
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FIGURE 1.6
CTFT of sinusoidal signals. (a) CTFT of cosine signal. (b) CTFT of sine signal.

5. Determine the CTFT of a shifted rectangular pulse signal

x(t) =
{

1, 0 ≤ t ≤ τ

0, otherwise.

X(j�) =
∫∞

−∞
x(t)e−j�tdt =

∫ τ

0
1.e−j�tdt = e−j�τ/2

j�

[
ej�τ/2 − e−j�τ/2

]

= 2e−j�τ/2 sin(�τ/2)

�

= τ e−j�τ/2sinc
(

�τ

2π

)
.

Here also, we have used the fact that sinc(t) = sin(π t)/(π t). By com-
paring the above result with the result of the previous example, it can
be observed that there is only a phase shift involved in the FT. The
same result can also be obtained by using the time-shifting property
of the CTFT.
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FIGURE 1.7
FT of a rectangular pulse. (a) Time-domain. (b) Frequency-domain.

6. Consider a signal whose CTFT is given by

X(j�) =
{

1, |�| ≤ W
0, |�| > W.

Then, using the synthesis relation given in Equation (1.25), we can
obtain the time-domain signal as

x(t) = 1
2π

∫W

−W
ej�td� = 1

2π

[
2 sin(Wt)

t

]
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FIGURE 1.8
Figure for Example 7. (a) Input x(t). (b) dx(t)/dt.

= sin(Wt)
π t

= W
π

sinc
(

Wt
π

)
.

We can observe the duality of this result with that of Example 4.
7. An application of differentiation property: Consider a signal x(t)

displayed in Figure 1.8(a).
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Differentiating the signal x(t), we get an impulse train given in
Equation 1.40 below. When we take the derivative of x(t) which is
a piecewise constant signal, the constant region goes to zero. The
infinite slope that occurs during the transition is represented by a.δ(t),
where a is the magnitude of transition. In this example, a = 1 for all
the transitions. Therefore,

dx(t)
dt

= [δ(t) − δ(t − 1) − δ(t − 3) + δ(t − 4)] . (1.40)

The impulse train is shown in Figure 1.8(b). Now taking the CTFT
on either side of the above relation, and applying the differentiation
property, we obtain

j�X(j�) = [1 − e−j� − e−j3� + e−j4�
]

= e−j2�
[
ej2� − ej� − e−j� + e−j2�

]
= e−j2�

[
ej2� + e−j2� − (ej� + e−j�)

]
.

Upon simplification, the FT of x(t) turns out to be

X(j�) = 2e−j2�

[
cos(2�) − cos(�)

j�

]
.

Thus, the differentiation property can be used to simplify computa-
tions.

8. An application of duality property: Consider the following signal:

x(t) = 2
t2 + 1

.

Using the result of Example 2 and recalling the duality property
(Equation 1.35), we obtain (see Table 1.1)

e−a|t| F←→ 2a
a2 + �2

.

Now with a = 1 and using the duality property, we get

2
t2 + 1

F←→ 2πe−|�| .

In order to summarize the results of this section, Table 1.1 contains a
list of some useful CTFT pairs.
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TABLE 1.1

Basic CTFT Pairs

Signal Fourier Transform∑∞
k=−∞ akejk�0 t 2π

∑∞
k=−∞ akδ(� − k�0)

ej�0 t 2πδ(� − �0)

cos(�0t) π [δ(� − �0) + δ(� + �0)]
sin(�0t) π

j [δ(� − �0) − δ(� + �0)]

x(t) = 1 2πδ(�)

δ(t) 1
δ(t − t0) e−j�t0∑∞

n=−∞ δ(t − nT)
2π

T
∑∞

k=−∞ δ(� − �0)

x(t) =

⎧⎪⎨
⎪⎩

1, |t| ≤ τ

2

0, |t| >
τ

2

τ sinc
(

�τ

2π

)

x(t) =
⎧⎨
⎩1, 0 ≤ t ≤ τ

0, otherwise
τ e−j�τ/2sinc

(
�τ

2π

)

W
π

sinc
(

Wt
π

)
X(j�) =

⎧⎨
⎩1, |�| ≤ W

0, |�| > W

u(t)
1

j�
+ πδ(�)

e−atu(t)
1

a + j�
, Re{a} > 0

te−atu(t)
1

(a + j�)2
, Re{a} > 0

tn−1

(n − 1)! e−atu(t)
1

(a + j�)n
, Re{a} > 0

e−a|t| 2a
a2 + �2

, Re{a} > 0

x(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−1, t < 0

0, t = 0

1, t > 0

2
j�

2
t2 + 1

2πe−|�|

1.3 Discrete-Time Fourier Transform

The DTFT is the counterpart of CTFT for handling discrete-time signals. The
basic concepts of FT are common to both the continuous- and discrete-time
signals. In discrete time also, any periodic signal x̃[n] (with period N) can be
represented in terms of its discrete Fourier series representation, given by the
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sum of complex exponentials,

x̃[n] =
∑

k=<N>

akej 2π
N kn (1.41)

ak = 1
N

∑
n=<N>

x̃[n]e−j 2π
N kn. (1.42)

Here, k = <N> denotes that k can take any N consecutive values. The terms
in the series are harmonics of the fundamental frequency, 2π/N. For the
discrete-time case, the Fourier series is always convergent, since it is only
a finite summation.

We now extend the frequency-domain representation to include more
general aperiodic signals. Let us define a function X(ejω) as

X(ejω) =
∞∑

n=−∞
x[n]e−jωn. (1.43)

Comparing Equations 1.42 and 1.43, we can see that a′
ks are the samples of

X(ejω), spaced at ω0 = 2π/N in the frequency-domain as

ak = 1
N

X(ejkω0). (1.44)

As N → ∞, ω0 becomes infinitesimally small. This indicates that X(ejω) is
sampled with spacing ω0 → 0. Thus, X(ejω) can be viewed as a continuous
function. Similarly, the summation in Equation 1.41 is carried out over N
consecutive intervals of width ω0 = 2π/N and the total interval of integration
has a width of 2π . Hence, unlike the CTFT where � range is over the whole
real axis, the DTFT requires only ω values in the interval [0, 2π ].

The DTFT can be derived by taking the CTFT of a sampled signal. The
IDTFT and the DTFT expressions are given by

x[n] = 1
2π

∫ π

−π

X(ejω)ejωndω . (1.45)

X(ejω) =
∞∑

n=−∞
x[n]e−jωn . (1.46)

Equation 1.45 represents the inverse DTFT (IDTFT), also known as the syn-
thesis formula, while Equation 1.46 gives the DTFT, known as the analysis
formula. The discrete-time periodic signals can be included within the frame-
work of DTFT by interpreting the transform of a periodic signal as an impulse
train in the frequency-domain as

X(ejω) =
∞∑

l=−∞

∑
k=<N>

2πakδ

(
ω − 2π

N
k − 2π l

)
. (1.47)
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The DTFT of x[n] is said to exist only if Equation 1.46 converges in some sense.
There are two types of convergence (also known as summability) which are
defined as follows.

• Absolute summability: If x[n] is an absolute summable sequence, then

∞∑
n=−∞

|x[n]| < ∞. (1.48)

Absolute summability is a sufficient condition for the existence of the
DTFT.

• Square summability: Some sequences may not be absolutely
summable, but they may be square summable, that is,

lim
M→∞

∫ π

−π

∣∣X(ejω) − XM(ejω)
∣∣2 dω = 0, (1.49)

wherein XM(ejω), we consider only a finite sequence of length M. Thus,
the sequence is square summable if the mean square error between
X(ejω) and XM(ejω) tends to zero as M → ∞. The DTFT of a sequence
can exist under square summability condition as well.

1.3.1 Properties of DTFT

Many of the DTFT properties are exact parallels of the properties of
continuous-time case, except for a few differences (which we shall indicate).
The commonly used properties of DTFT are described in this section. Let x[n]
and y[n] be time-domain signals and their corresponding DTFTs be X(ejω)

and Y(ejω), respectively. The DTFT pairs can be expressed as

x[n] F←→ X(ejω) and y[n] F←→ Y(ejω). (1.50)

1. Periodicity property: Since the DTFT is periodic in ω with a period 2π ,
we can write

X(ej(ω+2π)) = X(ejω) . (1.51)

2. Linearity property: For any arbitrary constants a and b, the DTFT of
the weighted sum of two sequences is

ax[n] + by[n] F←→ aX(ejω) + bY(ejω) . (1.52)
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3. Time shifting property:

x[n − n0] F←→ e−jωn0 X(ejω) . (1.53)

However, note that both X(ejω) and e−jωn0 X(ejω) have the same mag-
nitude responses with only a phase shift introduced due to the
time-shifting property. Therefore, delaying the time sequence has
the effect of shifting the phase of its transformed version, while the
magnitude response remains the same.

4. Frequency shifting property:

ejω0nx[n] F←→ X(ej(ω−ω0)) . (1.54)

5. Time reversal property: When the sequence x[n] is flipped (i.e., mirror
image over −n), then

x[−n] F←→ X(e−jω) and (1.55)

x[−n] F←→ X∗(ejω), only if x[n] is real. (1.56)

6. Convolution property: The convolution of two sequences corresponds
to multiplication of their corresponding DTFTs.

x[n] ∗ y[n] F←→ X(ejω)Y(ejω). (1.57)

We will now proceed to illustrate that the time-shifting property is a
special case of the convolution property. According to Equation 1.46,
the shifted impulse has the following frequency response:

δ[n − nd] F←→ e−jωnd . (1.58)

For any arbitrary input signal x[n] and the impulse response h[n] of
an LTI system defined as

h[n] = δ[n − nd] F←→ H(ejω) = e−jωnd , (1.59)

then the output is

y[n] = x[n] ∗ δ[n − nd] F←→ Y(ejω) = e−jωnd X(ejω) . (1.60)
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7. Differentiation in the frequency-domain: Multiplication of x[n] by n
results in

nx[n] F←→ j
d

dω
X(ejω) . (1.61)

8. Windowing or modulation property: Let w[n] be a window sequence,
while x[n] is the input.

If w[n] F←→ W(ejω) (1.62)

and y[n] = x[n].w[n] (1.63)

then, Y(ejω) = 1
2π

∫ π

−π

X(ejθ )W(ej(ω−θ))dθ . (1.64)

Equation 1.64 represents a periodic convolution, that is, convolution
of two periodic functions with the limits of integration extending
over one period (either −π to π or 0 to 2π ). The duality in the FT
theorems is evident when we compare the convolution and modula-
tion theorems. In the continuous-time case, this duality is complete.
We have stated that the convolution in the time-domain is equiv-
alent to multiplication in the frequency-domain (and vice versa)
for continuous-time signals. However, in the discrete-time case, this
gets slightly modified. In the discrete time, fundamental differences
arise because the DTFT is a sum, whereas the inverse transform is
an integral over a continuous-time period (−π to π ) or (0 to 2π ).
The convolution of two sequences is equivalent to multiplication
of the corresponding periodic FTs. Conversely, the multiplication of
discrete-time sequences leads to the periodic convolution of their indi-
vidual DTFTs. This is an essential distinction between the properties
of the CTFT and the DTFT.

9. Parseval’s Theorem: This theorem essentially relates the energy (E) in
the time- and the frequency-domains. For a sequence x[n],

E =
∞∑

n=−∞
|x[n]|2 = 1

2π

∫ π

−π

∣∣X(ejω)
∣∣2 dω. (1.65)

The generalized Parseval’s relation for two signals x[n] and y[n] is
given by

∞∑
k=−∞

x[k]y∗[k] = 1
2π

∫ π

−π

X(ejω)Y∗(ejω)dω. (1.66)
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10. Symmetry properties: Some of the symmetry properties of the DTFT
are presented below:

x∗[n] F←→ X∗(e−jω). (1.67)

x∗[−n] F←→ X∗(ejω). (1.68)

Real part: Re{x[n]} = x[n] + x∗[n]
2

F←→ Xe(ejω) = X(ejω) + X∗(e−jω)

2
.

(1.69)

Imaginary part: jIm{x[n]} = x[n] − x∗[n]
2

F←→ Xo(ejω) = X(ejω) − X∗(e−jω)

2
.

(1.70)

Even part: xe[n] = x[n] + x∗[−n]
2

F←→ XR(ejω) = X(ejω) + X∗(ejω)

2
.

(1.71)

Odd part: xo[n] = x[n] − x∗[−n]
2

F←→ jXI(ejω) = X(ejω) − X∗(ejω)

2
.

(1.72)

When x[n] is real, its DTFT exhibits the following characteristics:

X(ejω) = X∗(e−jω). (1.73)

Real part: XR(ejω) = XR(e−jω), Imaginary part: XI(ejω) = −XI(e−jω).
(1.74)

Magnitude:
∣∣X(ejω)

∣∣ = ∣∣X(e−jω)
∣∣ , Phase: �X(ejω) = −�X(e−jω).

(1.75)

1.3.2 Examples of DTFT

1. Find the DTFT of the signal x[n] = cos(ω0n).
The given signal can be expanded as

x[n] = 1
2

ejω0n + 1
2

e−jω0n.

Comparing the above equation with the Fourier series expansion in
Equation (1.22), we observe that a1 = 1

2 and a−1 = 1
2 . Thus, the DTFT

of x[n] can be written as a sum of weighted and shifted impulse trains
as follows:

X(ejω) =
∞∑

l=−∞
π [δ(ω − ω0 + 2π l) + δ(ω + ω0 + 2π l)].
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2. Find the DTFT of the signal x[n] = sin(ω0n).
Now x[n] can be expanded as

x[n] = 1
2j

ejω0n − 1
2j

e−jω0n.

We obtain the Fourier series coefficients as a1 = 1/2j and a−1 = −1/2j.
Thus, the DTFT of x[n] can be written as

X(ejω) =
∞∑

l=−∞

π

j
[δ(ω − ω0 + 2π l) − δ(ω + ω0 + 2π l)] .

3. Determine the DTFT of a rectangular pulse signal defined as

x[n] =
{

1, |n| ≤ N1

0, |n| > N1

.

X(ejω) =
∞∑

n=−∞
x[n]e−jωn =

N1∑
n=−N1

e−jωn.

Let m = (n + N1) then, we can write n = (m − N1) and substitute as

X(ejω) =
2N1∑
m=0

e−jωmejωN1 = ejωN1

[
1 − e−jω(2N1+1)

]
1 − e−jω

= ejω(N1+ 1
2 ) − e−jω(N1+ 1

2 )

ejω/2 − e−jω/2

= sin(ω(2N1 + 1)/2)

sin(ω/2)
.

The time function x[n] and the DTFT are shown in Figure 1.9.
4. Find the DTFT of a shifted rectangular pulse signal defined as

x[n] =
{

1, 0 ≤ n ≤ 2N1

0, otherwise.
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FIGURE 1.9
Rectangular pulse and its DTFT for N1 = 3. (a) Input x(n). (b) DTFT X(ejω).

We can write,

X(ejω) =
2N1∑
n=0

e−jωn

= 1 + e−jω + · · · + e−jω(2N1)

= 1 − e−jω(2N1+1)

1 − e−jω

= e−j(ωN1)
sin(ω(2N1 + 1)/2)

sin(ω/2)
.

Here, (2N1 + 1) is the length of the sequence and N1 is the symmetry
point. The closed-form expression is obtained by using the geometric
summation formula. We could also obtain the same result by apply-
ing the time-shifting property of the DTFT to the signal considered
in Example 3.
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5. Determine the DTFT of a triangular pulse signal

x[n] =

⎧⎪⎨
⎪⎩

n + 1, 0 ≤ n ≤ N1 − 1
2N1 − 1 − n, N1 ≤ n ≤ 2N1 − 1
0, otherwise.

A sample triangular pulse signal for N1 = 6 is shown in Figure 1.10.
We can simplify the calculations by expressing this sequence as the
self-convolution of a rectangular pulse with itself, given as follows:

x1[n] =
{

1, 0 ≤ n ≤ N1 − 1
0, otherwise

and x[n] = x1[n] ∗ x1[n] ⇔ X(ejω) = X1(ejω)X1(ejω). (1.76)

Applying the result considered in Example 4 (shifted rectangular
pulses), we obtain

X1(ejω) = e−jω(N1−1)/2 sin(ωN1/2)

sin(ω/2)
. (1.77)

Using the result from Equation 1.77 and substituting into Equa-
tion 1.76, we can obtain X(ejω) as

X(ejω) = e−jω(N1−1)

[
sin(ωN1/2)

sin(ω/2)

]2

.
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FIGURE 1.10
Figure for Example 5.
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6. Consider the signal x[n] = anu[n], |a| < 1. Its DTFT is given by

X(ejω) =
∞∑

n=−∞
anu[n]e−jωn =

∞∑
n=0

(ae−jω)n

= 1
1 − ae−jω

.

7. Consider the signal x[n] = a|n|, |a| < 1. The DTFT of this signal is
evaluated as follows:

X(ejω) =
∞∑

n=−∞
a|n|e−jωn

=
−1∑

n=−∞
a−ne−jωn +

∞∑
n=0

ane−jωn

=
∞∑

n=1

anejωn +
∞∑

n=0

ane−jωn

= 1
1 − aejω

− 1 + 1
1 − ae−jω

= (1 − a2)

1 − 2a cos(ω) + a2
.

8. An application of differentiation property: Find the DTFT of the
signal

y[n] = (n + 1)anu[n], |a| < 1.

Let x[n] = anu[n], then y[n] can be written in terms of x[n] as

y[n] = nx[n] + x[n].

We know from Example 6 that X(ejω) = 1/(1 − ae−jω). Then, from
the differentiation property given in Equation 1.61, we can obtain
Y(ejω) as

nx[n] F←→ j
d

dω
X(ejω) = ae−jω

(1 − ae−jω)2

Y(ejω) = ae−jω

(1 − ae−jω)2
+ 1

(1 − ae−jω)

= 1
(1 − ae−jω)2

.
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9. Compute the DTFT of a finite-length exponential sequence (with
|a| < 1).

x[n] =
{

an, 0 ≤ n ≤ N − 1
0, otherwise.

We can rewrite x[n] as the difference of two unit step functions as
follows:

x[n] = anu[n] − anu[n − N]
= anu[n] − aNan−Nu[n − N] .

Now computing the DTFT for |a| < 1 and applying the result of
Example 6, as well as the time-shifting property, we get

X(ejω) = 1
1 − ae−jω

− aNe−jωN

1 − ae−jω

= 1 − aNe−jωN

1 − ae−jω
.

10. Compute the impulse response of an ideal discrete-time differentiator
whose frequency response is given by

Hd(ejω) = jω, |ω| ≤ π .

Now using the synthesis equation (IDTFT), we get

hd[n] = 1
2π

∫ π

−π

jωejωndω

= j
2π

[
ω

ejωn

jn
− ejωn

(jn)2

]π

−π

= j
2π

[
π

ejπn

jn
+ ejπn

n2
+ π

e−jπn

jn
− e−jπn

n2

]

= cos(πn)

n
− sin(πn)

πn2

hd[n] =
⎧⎨
⎩

(−1)n

n
, n �= 0

0, n = 0
.

which is the impulse response of an ideal differentiator.
11. Compute the impulse response of an ideal Hilbert transformer

defined by

H(ejω) =
{

j, −π ≤ ω ≤ 0
−j, 0 ≤ ω ≤ π

.
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Using the IDTFT equation

h[n] = 1
2π

∫ π

−π

H(ejω)ejωndω

= 1
2π

∫ 0

−π

jejωndω − 1
2π

∫ π

0
jejωndω

= 1
2π

[
jejωn

jn

]0

−π

− 1
2π

[
jejωn

jn

]π

0

= 1
2π

[
2
n

− 2 cos(πn)

n

]

= 1 − cos(πn)

πn
.

h[n] =
⎧⎨
⎩

2
nπ

, n = odd

0, n = even
.

which gives the impulse response of an ideal Hilbert transformer.
12. Determine the DTFT of the following sequence. (Note: This repre-

sents Hann window which will be discussed later.)

wH[n] = 0.5
[

1 − cos
(

2πn
N − 1

)]
, 0 ≤ n ≤ N − 1. (1.78)

This sequence can be represented as

wH[n] = 0.5
[

1 − cos
(

2πn
N − 1

)]
wR[n],

where the rectangular window is wR[n] = 1, is defined in the range
0 ≤ n ≤ N − 1. The DTFT of the rectangular window can be obtained
from Example 4 as

WR(ejω) = e−jω(N−1)/2 sin(ωN/2)

sin(ω/2)
.
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Now applying the frequency-shifting property of the DTFT to
WR(eiω), we can compute the DTFT of Equation 1.78 as

WH

(
ejω
) = 0.5WR

(
ejω
)− 0.25WR

(
ej(ω− 2π

N−1 )
)

− 0.25WR

(
ej(ω+ 2π

N−1 )
)

where, WR

(
ej(ω− 2π

N−1 )
)

= e−j(ω− 2π
N−1 )

(N−1)
2

sin
[

N
2

(
ω − 2π

N−1

)]
sin
[

1
2

(
ω − 2π

N−1

)]
= e−jω (N−1)

2 ejπ
sin
[

N
2

(
ω − 2π

N−1

)]
sin
[

1
2

(
ω − 2π

N−1

)]
WR

(
ej(ω− 2π

N−1 )
)

= −e−jω (N−1)
2

sin
[

N
2

(
ω − 2π

N−1

)]
sin
[

1
2

(
ω − 2π

N−1

)] .

Similarly, WR

(
ej(ω+ 2π

N−1 )
)

= −e−jω (N−1)
2

sin
[

N
2

(
ω + 2π

N−1

)]
sin
[

1
2

(
ω + 2π

N−1

)] .

On adding the above terms, and applying the linearity property, we
obtain the final expression for the DTFT of a Hann window as

WH(ejω) = 0.5e−jω(N−1)/2

{
sin(ωN/2)

sin(ω/2)
− 0.5

[
sin
[

N
2

(
ω − 2π

N−1

)]
sin
[

1
2

(
ω − 2π

N−1

)]
+sin

[
N
2

(
ω + 2π

N−1

)]
sin
[

1
2

(
ω + 2π

N−1

)]
]}

.

13. Determine the DTFT of the following sequence, which represents
Hanning window,

wH[n] =
[

0.54 − 0.46 cos
(

2πn
N − 1

)]
, 0 ≤ n ≤ N − 1 .

Using the results of Example 12, we can directly write the DTFT of
the sequence as

WH(ejω) = e−jω(N−1)/2

{
0.54

sin(ωN/2)

sin(ω/2)
− 0.23

[
sin
[

N
2

(
ω − 2π

N−1

)]
sin
[

1
2

(
ω − 2π

N−1

)]
+sin

[
N
2

(
ω + 2π

N−1

)]
sin
[

1
2

(
ω + 2π

N−1

)]
]}

.

This expression is different from Example 12 only in terms of the
coefficients.
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TABLE 1.2

Basic DTFT Pairs

Signal Fourier Transform∑
k=〈N〉 akejkω0n 2π

∑∞
l=−∞

∑
k=<N>

akδ (ω − ω0k − 2π l)

ejω0n 2π
∑∞

l=−∞ δ(ω − ω0 − 2π l)

cos(ω0n) π
∑∞

l=−∞[δ(ω − ω0 + 2π l) + δ(ω + ω0 + 2π l)]
sin(ω0n)

π

j
∑∞

l=−∞ [δ(ω − ω0 + 2π l) − δ(ω + ω0 + 2π l)]

x[n] = 1 2π
∑∞

l=−∞ δ(ω − 2π l)

δ[n] 1

δ[n − n0] e−jωn0

∑∞
k=−∞ δ[n − kN] 2π

N
∑∞

k=−∞ δ(ω − kω0)

x[n] =
⎧⎨
⎩1, |n| ≤ N1

0, |n| > N1

sin
[
ω
(
N1 + 1

2

)]
sin (ω/2)

x[n] =
⎧⎨
⎩1, 0 ≤ n ≤ N1 − 1

0, otherwise
e−jω (N1−1)

2
sin(ωN1/2)

sin(ω/2)

W
π

sinc
(

Wn
π

)
X(ejω) =

⎧⎨
⎩1, |ω| ≤ W

0, W < |ω| ≤ π

u[n] 1
1 − e−jω

+ π
∑∞

l=−∞ δ(ω − 2π l)

anu[n], |a| < 1
1

1 − ae−jω

a|n|, |a| < 1
1 − a2

1 − 2a cos(ω) + a2

(n + 1)anu[n], |a| < 1
1

(1 − ae−jω)2

hd[n] =

⎧⎪⎨
⎪⎩

(−1)n

n
, n �= 0

0, n = 0
Hd(ejω) = jω, |ω| ≤ π

h[n] =
⎧⎨
⎩

2
nπ

, n = odd

0, n = even
H(ejω) =

⎧⎨
⎩j, −π ≤ ω ≤ 0

−j, 0 ≤ ω ≤ π

The FTs of the commonly used signals are presented in Table 1.2.

1.4 Z-transform

As we have discussed in the previous sections, the transform-domain analysis
of a signal is important in any signal processing application. In this section, we
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introduce another transform-domain, which is a complex frequency-domain,
called the z-plane. The transformation of a signal into the z-plane is called
z-transform. The z-transform is a more generalized transformation when
compared to the DTFT and is applicable to broader classes of signals. The
z-transform of a signal x[n] is defined as

X(z) =
∞∑

n=−∞
x[n]z−n, (1.79)

where z = rejω. Another advantage of z-transform is that it allows us to bring in
the power of complex variable theory on problems of discrete-time signals.
The primary roles of the z-transform in engineering practice are the study
of system characteristics and the derivation of computational structures for
implementing discrete-time systems on computers.

Figure 1.11 shows the z-plane which extends from −∞ < |z| < ∞. The circle
shown in the z-plane is called the unit circle, where |z| = 1. On this circle,
z = ejω, hence the z-transform evaluated on the unit circle converges to the FT
of the signal. Equation 1.79 is a power series, hence the power series converges
under the criterion

∞∑
n=−∞

∣∣x[n]r−n
∣∣ < ∞. (1.80)

The region in the z-plane where Equation 1.80 converges or z-transform con-
verges is called the region of convergence (ROC). Owing to the multiplication
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of the sequence by the real exponential r−n, it is possible for the z-transform
to converge even if the corresponding DTFT does not. The FT can be consid-
ered as a special case of z-transform and it exists only if the ROC contains the
unit circle. The z-transform is always specified with a ROC. Consider a signal
anu[n] whose z-transform is given by

X(z) =
∞∑

n=0

(az−1)n

= 1 + az−1 + (az−1)2 + (az−1)3 + · · ·

= 1
1 − az−1

, |z| > |a|. (1.81)

Now consider another signal −anu(−n − 1), the z-transform of which is
given by

X(z) =
−1∑

n=−∞
− (az−1)n

= −a−1z − (a−1z)2 − (a−1z)3 . . .

= 1
1 − az−1

, |z| < |a|. (1.82)

By comparing the z-transforms in the above two examples, we can see that the
expressions are the same and the only difference is in their ROCs. Hence, ROC
is required to uniquely represent the z-transform of a signal. The convergence
of Equation 1.79 is dependent only on |z|, since

|X(z)| < ∞, if
∞∑

n=−∞
|x[n]| ∣∣z−n

∣∣ < ∞. (1.83)

Hence, the ROC of the z-transform consists of all the values of z in the complex
plane where the inequality in Equation 1.83 is satisfied. As a consequence of
this, the ROC will be an annular region of the entire complex z-plane given by

Rx− < |z| < Rx+. (1.84)

The lower limit Rx− may be zero and Rx+ could possibly be ∞.
The inverse z-transform of X(z) can be obtained by the expression

x[n] = 1
2π j

∮
c
X(z)zn−1dz, (1.85)
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TABLE 1.3

Basic z-Transform Pairs

Signal z-Transform ROC

δ[n] 1 Entire z-plane

u[n] 1
1 − z−1

|z| > 1

−u[−n − 1] 1
1 − z−1

|z| < 1

δ[n − m] z−m All z, except at z = 0 or z = ∞
anu[n] 1

1 − az−1
|z| > |a|

−anu[−n − 1] 1
1 − az−1

|z| < |a|

nanu[n] az−1

(1 − az−1)2
|z| > |a|

−nanu[−n − 1] az−1

(1 − az−1)2
|z| < |a|

cos(ω0n)u[n] 1 − cos(ω0)z−1

1 − 2 cos(ω0)z−1 + z−2
|z| > 1

sin(ω0n)u[n] sin(ω0)z−1

1 − 2 cos(ω0)z−1 + z−2
|z| > 1

rn cos(ω0n)u[n] 1 − r cos(ω0)z−1

1 − 2r cos(ω0)z−1 + r2z−2
|z| > |r|

rn sin(ω0n)u[n] r sin(ω0)z−1

1 − 2r cos(ω0)z−1 + r2z−2
|z| > |r|

an, 0 ≤ n ≤ N − 1
1 − aNz−N

1 − az−1
Entire z-plane

where the symbol
∮

c denotes a contour integral in the z-plane over a counter-
clockwise arbitrary closed path in the region of convergence and enclosing
the origin z = 0. In practice, we will not evaluate this integral directly, since
that would require the knowledge of complex-function theory. Instead, we
will evaluate the inverse z-transform by inspection using the one-to-one rela-
tionship between x[n] and X(z). To facilitate this, the z-transform of some
standard sequences are tabulated in Table 1.3.

A class of z-transform called the rational transforms—which are very
important in signal processing applications—can be represented in the form

X(z) = P(z)
Q(z)

, (1.86)

where P(z) and Q(z) are polynomials in z. These systems can be represented
by linear constant coefficient difference equations (LCCDEs). The roots of the
denominator polynomial Q(z) are called poles and the roots of the numerator
polynomial P(z) are called zeros. In this class of systems, the properties of
the system can be completely interpreted in terms of the position of the poles
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TABLE 1.4

z-Transform Properties

Signal z-Transform ROC

ax1[n] + bx2[n] aX1(z) + bX2(z) Rx1 ∩ Rx2

x[n − n0] z−n0 X(z) Rx except at z = 0 or z = ∞
zn

0x[n] X
(

z
z0

)
|z0|Rx

nx[n] −z
dX(z)

dz
Rx

x∗[n] X∗(z∗) Rx

Re{x[n]} = 1
2
[x[n] + x∗[n]] 1

2
[X(z) + X∗(z∗)] Contains Rx

Im{x[n]} = 1
2j

[x[n] − x∗[n]] 1
2j

[X(z) − X∗(z∗)] Contains Rx

x[−n] X
(

1
z

)
1

Rx

x1[n] ∗ x2[n] X1(z)X2(z) Rx1 ∩ Rx2

and zeroes in the z-plane. These concepts are extensively used in different
domains of signal processing. In the chapter dealing with filter design which
we will come across in more detail.

The properties of the z-transform closely follow those of the DTFT. In addi-
tion, we also need to specify the ROC of the resulting signal. Let x1[n] and x2[n]
be two arbitrary signals with the z-transforms X1(z) and X2(z), respectively,
and let their ROCs be Rx1 and Rx2 , respectively. Let a and b be two arbitrary
constants. The properties of the z-transform are tabulated in Table 1.4.

The other two properties are:

• Initial-value theorem: For a causal signal x[n], it turns out that

x[0] = lim
z→∞

X(z). (1.87)

• Parseval’s theorem: This relates the power or energy of x[n] to that of
its z-transform.

∞∑
n=−∞

|x[n]|2 = 1
2π j

∮
c
X(z)X∗

(
1
z∗

)
z−1dz. (1.88)

1.4.1 Examples of z-Transform

1. Consider a signal that is the sum of two real exponentials:

x[n] =
(

1
2

)n

u[n] +
(

1
3

)n

u[n] (1.89)
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The z-transform is given by

X(z) =
∞∑

n=−∞

{(
1
2

)n

u[n] +
(

1
3

)n

u[n]
}

z−n

=
∞∑

n=−∞

(
1
2

)n

u[n]z−n +
∞∑

n=−∞

(
1
3

)n

u[n]z−n

=
∞∑

n=0

(
1
2

z−1

)n

+
∞∑

n=0

(
1
3

z−1

)n

= 1
1 − 1

2 z−1
+ 1

1 − 1
3 z−1

= 2 − 5
6 z−1(

1 − 1
2 z−1

) (
1 − 1

3 z−1
)

= 2z
(
z − 5

12

)
(
z − 1

2

) (
z − 1

3

) . (1.90)

For the convergence of X(z), both sums must converge. This requires
that

∣∣ 1
2 z−1

∣∣ < 1 and
∣∣ 1

3 z−1
∣∣ < 1, which implies |z| > 1

2 and |z| > 1
3 ,

respectively. Thus, from the properties of z-transform, the ROC is the
region of overlap of both terms. Hence, the ROC of X(z) is given by

|z| >
1
2

. (1.91)

2. Let us consider another signal

x[n] = −
(

1
2

)n

u[−n − 1] +
(

1
3

)n

u[n]. (1.92)

The z-transform can also be obtained in a more straightforward man-
ner as given below: Note that the first sequence grows exponentially
as n → −∞. From Table 1.3, it follows that

(
1
3

)n

u[n] z←→ 1
1 − 1

3 z−1
, |z| >

1
3

−
(

1
2

)n

u[−n − 1] z←→ 1
1 − 1

2 z−1
, |z| <

1
2

.
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By the linearity property of the z-transform,

X(z) = 1
1 − 1

3 z−1
+ 1

1 − 1
2 z−1

, |z| >
1
3

, |z| <
1
2

.

= 2 − 5
6 z−1(

1 − 1
2 z−1

) (
1 − 1

3 z−1
) .

In this case, the ROC is the annular region 1
3 < |z| < 1

2 . Note that the
ROC does not contain the unit circle; hence its FT does not exist (as
it is not absolutely summable).

1.5 Discrete Fourier Transform

In one of the preceding sections, we have discussed the definition and prop-
erties of the DTFT, where ω is a continuous variable. It is apparent that it is
not possible to implement the FT pair for DTFT given in Equations 1.45 and
1.46 on general purpose digital computers or digital signal processors (DSPs).
We see that Equation 1.45 has an integral sign, while Equation 1.46 requires
infinitely several computations. Owing to these two difficulties, we define
a new transform known as the discrete Fourier transform (DFT), which is
amenable to digital implementation.

The DFT is defined for N samples of x[n] at N equally spaced frequencies ωk.
Given the sequence x[n] for all n, its DTFT was defined in Equation 1.46. We
now consider a periodic signal with period N and compute only N samples
of X(ejω) for ω = kω0, for k = 0, 1, 2, ..., N − 1, with ω0 = 2π/N. Then, we can
define DFT as

X[k] =
N−1∑
n=0

x[n]e−j 2π
N kn, k = 0, 1, . . . , N − 1. (1.93)

The inverse DFT (IDFT) can also be defined in a similar way as

x[n] = 1
N

N−1∑
k=0

X[k]ej 2π
N kn, n = 0, 1, . . . , N − 1. (1.94)

Notice that Equations 1.93 and 1.94 have similar forms, except for a scale
factor and different signs of the exponential terms.

Relation between DTFT and DFT: DTFT of a sequence of length N defined
over the range [0, N − 1] can be obtained from DFT using the relation
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x[n] = 1
N

N−1∑
k=0

X[k]ej 2π
N kn

X(ejω) = 1
N

N−1∑
k=0

X[k]φ
(

ω − 2πk
N

)
, (1.95)

where φ(ω) = e−jω(N−1)/2 sin(ωN/2)

sin(ω/2)
.

Proof:

x[n] = 1
N

N−1∑
k=0

X[k]ej 2π
N kn

X(ejω) =
N−1∑
n=0

x[n]e−jωn =
N−1∑
n=0

1
N

N−1∑
k=0

X[k]ej 2π
N kne−jωn

= 1
N

N−1∑
k=0

X[k]
N−1∑
n=0

e−j(ω− 2π
N k)n

= 1
N

N−1∑
k=0

X[k]
[

1 − e−j(ω− 2π
N k)N

1 − e−j(ω− 2π
N k)

]

= 1
N

N−1∑
k=0

X[k]e−j(ω− 2π
N k)( N−1

2 )
sin
[(

ω − 2π

N k
)

N
2

]
sin
[(

ω − 2π

N k
)

1
2

]

= 1
N

N−1∑
k=0

X[k]φ
(

ω − 2πk
N

)
, (1.96)

where, φ(ω) = e−jω(N−1)/2 sin(ωN/2)

sin(ω/2)
.

Equation 1.96 is called the DFT interpolation formula and φ(ω) is known as
the interpolation function.

1.5.1 Properties of the DFT

The DFT of two finite duration sequences of length N, x[n] and y[n], is
represented as

x[n] DFT←−−→ X[k] and y[n] DFT←−−→ Y[k]. (1.97)

Let a and b be any two arbitrary constants.
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1. Linearity property: If two finite-length sequences x1[n] and x2[n] are
linearly combined as

x3[n] = ax1[n] + bx2[n], (1.98)

then the DFT of the resultant X3[k] (i.e., the DFT of x3[n]) can be
written as

X3[k] = aX1[k] + bX2[k]. (1.99)

If the individual sequences x1[n] and x2[n] are not of equal lengths,
but are of lengths N1 and N2, respectively, then the length of x3[n]
will have to be N3 = max(N1, N2). It makes sense only if the DFTs are
computed with the same lengths, that is, N ≥ N3. If N2 > N1, then
X1[k] is the DFT of the sequence x1[n] padded with (N2 − N1) zeros.
Therefore, we have to pad that sequence which is smaller in length
with zeros, such that the lengths of the individual sequences are made
equal.

2. Circular shifting property: When x[n] is shifted by m,

x[(n − m)N] DFT←−−→ e−j 2π
N kmX[k]. (1.100)

We note that n and k must be in the range 0 ≤ n < N − 1, 0 ≤ k <

N − 1. Here, (n − m)N denotes modulo N. This type of shift is known
as circular shift.

3. Duality property:

X[n] DFT←−−→ Nx[(−k)N], 0 ≤ k ≤ N − 1. (1.101)

4. Conjugation property:

x∗[n] DFT←−−→ X∗[(−k)N]. (1.102)

5. Time reversal property: Here, we consider flipping the sequence with
modulo N.

x[(−n)N] DFT←−−→ X[−k], 0 ≤ n ≤ N − 1. (1.103)

6. Symmetry properties: If the even and odd parts of a signal x[n] are

xe[n] = 1
2
[x[n] + x∗[(−n)N] (1.104)

xo[n] = 1
2
[x[n] − x∗[(−n)N], (1.105)
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then, the following relations hold:

Re{x[n]} DFT←−−→ Xe[k] = 1
2
[X[(k)N] + X∗[(−k)N]. (1.106)

jIm{x[n]} DFT←−−→ Xo[k] = 1
2
[X[(k)N] − X∗[(−k)N]. (1.107)

xe[n] DFT←−−→ Re{X[k]}. (1.108)

xo[n] DFT←−−→ jIm{X[k]}. (1.109)

When x[n] is a real sequence, then

X[k] = X∗[(−k)N] (1.110)

Re{X[k]} = Re{X[(−k)N]} and Im{X[k]} = −Im{X[(−k)N]}.
(1.111)

|X[k]| = |X[(−k)N]| and �{X[k]} = −�{X[(−k)N]}. (1.112)

7. Circular convolution property: If x1[n] and x2[n] are N length sequences
and

x1[n] DFT←−−→ X1[k] and x2[n] DFT←−−→ X2[k], (1.113)

then their circular convolution (denoted by ∗©) can be expressed as

x3[n] = x1[n] ∗© x2[n] (1.114)

=
N−1∑
m=0

x1[(m)N]x2[(n − m)N] (1.115)

= x1[n] ∗© x2[n] DFT←−−→ X3[k] = X1[k]X2[k]. (1.116)

8. Multiplication of two sequences: This is the converse of the previous
property, which can be stated as follows:

x1[n]x2[n] DFT←−−→ 1
N

N−1∑
l=0

X1[l]X2[(k − l)N]. (1.117)

9. Linear convolution using circular convolution: Let x1[n] be a sequence of
length L and x2[n] be a sequence of length P, then the length of the
resultant linearly convolved sequence will be N1 = L + P − 1. The
linear convolution expression is given by

x3[n] =
N−1∑
m=0

x1[m]x2[n − m]. (1.118)
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Their circular convolution expression was already given in Equa-
tion 1.115. In the DTFT domain, the linear convolution can be
represented in terms of the multiplication of the individual DTFTs of
x1(n) and x2(n) as follows:

X3(ejω) = X1(ejω)X2(ejω). (1.119)

Therefore, we can define the DFT as

X3[k] = X3(ej 2π
N k) = X1(ej 2π

N k)X2(ej 2π
N k) = X1[k]X2[k], 0 ≤ k ≤ N − 1

(1.120)

where X1[k] and X2[k] are N-point DFTs of x1[n] and x2[n], respec-
tively. Now upon reconstruction of x3[n], we get the following
periodic sequence:

x3p [n] =

⎧⎪⎨
⎪⎩

∞∑
r=−∞

x3[n − rN], 0 ≤ n ≤ N − 1

0, otherwise.

(1.121)

Hence, the circular convolution that corresponds to X1[k]X2[k] is
identical to the linear convolution corresponding to X1(ejω)X2(ejω),
if N, the lengths of X1[k]X2[k], satisfies the condition N ≥
N1. Otherwise, there will be aliasing in x3p [n]. If both the
sequences are padded with zeros, such that the total length
of each sequence becomes (N1 = L + P − 1), then the circu-
lar convolution would be equivalent to the linear convolution.
We require linear convolution in digital signal processing and,
therefore, circular convolution can be used to compute linear
convolution.

1.5.2 Examples of DFT

1. Compute the N-point DFT of a rectangular pulse,

x[n] = 1, 0 ≤ n ≤ 4. (1.122)

The period of x[n] is not mentioned and, therefore, we consider the
following two cases.
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Case 1: Period N = 5

X[k] =
N−1∑
n=0

x[n]e−j 2π
N nk =

4∑
n=0

e−j 2π
5 nk

= 1 − e−j2πk

1 − e−j 2π
5 k

(1.123)

=
{

5, k = 0
0, otherwise

(1.124)

= {5, 0, 0, 0, 0} (1.125)

Case 2: Now let the period be N = 10. Then,

X[k] =
N−1∑
n=0

x[n]e−j 2π
N nk =

4∑
n=0

e−j 2π
10 nk (1.126)

= 1 − e−jπk

1 − e−j 2π
10 k

. (1.127)

The time-domain sequences of cases 1 and 2 are given in Figure 1.12
and their corresponding DFTs are given in Figure 1.13.

For comparing the DFTs of both the sequences, we can consider
the interpretation of the DFT as the periodic sampling of the DTFT.
The DTFT of x[n] is given by

X(ejω) = e−j2ω
sin(5ω/2)

sin(ω/2)
. (1.128)

For N = 5, X(ejω) is sampled at five equidistant points around the unit
circle; if N is doubled (N = 10), it is sampled at 10 equidistant points
around the unit circle. Hence, the second case can be considered as
x[n] padded with five zeros, so as to make N = 10. From this result,
we can conclude that the effect of zero padding of x[n] does not
improve the resolution, but only gives a better picture of the DFT
spectrum.

Case 3: Now consider another sequence

x1[n] = {1, 0, 1, 0, 1, 0, 1, 0, 1, 0}. (1.129)

Find the DFT for N = 10.



42 Window Functions and Their Applications in Signal Processing

0 1 2 3 4
0

1

(a) x[n]

n

0 1 2 3 4 5 6 7 8 9
0

1

(b)

n

x[n]

FIGURE 1.12
Two time-domain sequences. (a) Case 1: N = 5. (b) Case 2: N = 10.

The transform is defined as

X1[k] =
9∑

n=0

x1[n]e−j 2π
10 nk =

9∑
n=0

x1[n]Wnk
N , (1.130)

where the twiddle factor WN = e−j( 2π
10 ). On expanding, we obtain

X1[k] = 1.W0k
10 + 0.W1k

10 + 1.W2k
10 + 0.W3k

10 + 1.W4k
10 + 0.W5k

10 + 1.W6k
10

+ 0.W7k
10 + 1.W8k

10 + 0.W9k
10 . (1.131)

Hence, the alternate terms become zero. By substituting the values
of k, we obtain the complete DFT sequence as

X1[k] = {5, 0, 0, 0, 0, 5, 0, 0, 0, 0}. (1.132)

Note that the given signal x1[n] is actually a zero-interpolated version
of x[n]. It is interesting to note that X1[k] is a repetition of X[k] (in case
1), that is, X1[k] = {X[k], X[k]}.
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|X[k]|

FIGURE 1.13
N-point DFT of a rectangular pulse. (a) Case 1: N = 5. (b) Case 2: N = 10.

2. The DFT of x[n] is X[k] = {1, 2, 3, 4, 5}. Find the DFT of the zero-
interpolated signal g[n], as defined in Equation 1.134:
Given that

x[n] DFT←−−→ {1, 2, 3, 4, 5}, (1.133)

let g[n] be defined as

g[n] =
{

x[n/2], if n multiple of 2
0, otherwise

(1.134)

We can deduce from the previous example that

g(n)
DFT←−−→ {1, 2, 3, 4, 5, 1, 2, 3, 4, 5}. (1.135)

In other words, the N-fold zero-interpolation of x[n] yields a corre-
sponding replication in the DFT domain.
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0 1 2 3 4 5 6 7 8 9
0

5

k

|X[k]|

FIGURE 1.14
DFT of a periodic cosine sequence with length N = 10, r = 2.

3. The DFT of a periodic cosine sequence with period N defined as

x[n] = cos
(

2π

N
rn
)

, 0 ≤ n ≤ N − 1 (1.136)

can be given by, X[k] =
N−1∑
n=0

x[n]Wkn
N , 0 ≤ k ≤ N − 1 (1.137)

where WN = e−j(2π/N) represents the twiddle factor.
x[n] can be expanded in terms of the exponentials as

x[n] = 1
2

[
W−rn

N + Wrn
N

]
(1.138)

X[k] = 1
2

[
N−1∑
n=0

W−rn
N Wkn

N +
N−1∑
n=0

Wrn
N Wkn

N

]
(1.139)

= 1
2

N−1∑
n=0

W(k−r)n
N + 1

2

N−1∑
n=0

W(k+r)n
N . (1.140)

Then, from the orthogonality property of the DFT, we obtain

X[k] =

⎧⎪⎨
⎪⎩

N
2 , if k = r
N
2 , if k = N − r
0, otherwise

. (1.141)

The plot of X[k] is shown in Figure 1.14.
4. Illustration of the comparison between linear and circular con-

volution.
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Figure 1.15 shows two signals x[n] and h[n] of length 3 each. The
linear convolution can be performed as follows:

y[n] =
∞∑

k=−∞
x[k]h[n − k]. (1.142)

The linear convolution can be performed just like ordinary multipli-
cation as illustrated in Table 1.5 [5].
Find the linear and circular convolutions of two sequences x[n] =
{1, 2, 3} and h[n] = {1, 2, 3}.

0 1 20

1

2

3
(a)

Samples (n)

A
m

pl
itu

de

0 1 20

1

2

3
(b)

Samples (n)

A
m

pl
itu

de

FIGURE 1.15
Inputs. (a) Input x(n). (b) Impulse response h(n).

TABLE 1.5

Linear Convolution

1 2 3
* 1 2 3

3 6 9
2 4 6

1 2 3

1 4 10 12 9
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The result of the linear convolution is shown in Figure 1.16(a) and
the sequence is

x[n] = {1, 4, 10, 12, 9}.

The circular convolution of the two sequences is given in Figure
1.16(b). The circular convolution can be computed by the two
concentric circle approach as illustrated in Figure 1.17.
(a) First, overlay the sequence x[n] on an outer circle in an anticlock-

wise direction and then overlay the sequence h[n] in an inner
circle in a clockwise direction as illustrated in Figure 1.17(a).
Perform point-by-point multiplication and add to give:

y′[0] = 1 + 6 + 6 = 13. (1.143)

(b) Then, rotate the inner circle in an anticlockwise direction by one
sample and then again do the point-by-point multiplication as

0 1 2 3 4
0

2
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14(a)
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14
(b)
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FIGURE 1.16
Linear and circular convolutions of x[n] and h[n]. (a) Linear convolution. (b) Circular convolution.
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2(a)

12
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3

3

2(b)

13

2

1

3

2(c)

FIGURE 1.17
Circular convolution of x[n] and h[n]. (a) Stage 1. (b) Stage 2. (c) Stage 3.

shown in Figure 1.17(b), which will give us:

y′[1] = 2 + 2 + 9 = 13. (1.144)

(c) Then, once again, rotate the inner circle (anticlockwise), multiply
and add the result as shown in Figure 1.17(c) to get:

y′[2] = 3 + 4 + 3 = 10. (1.145)

Therefore, the circular convolution of x[n] and h[n] gives the
following result:

y′[n] = x[n] � h[n] = {13, 13, 10}. (1.146)

Upon comparing y[n] and y′[n], we can see that not only the
numerical values of the convolution are different but also the
length of the sequences are not as same as the linear convolution.
Suppose, we augment the two sequences with zeros, such that the
length of each sequence is (N1 + N2 − 1), that is, in this example
(3 + 3 − 1 = 5), then each sequence can be thought as extended
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sequences, xe[n] and he[n], as follows:

xe[n] = {1, 2, 3, 0, 0} (1.147)

he[n] = {1, 2, 3, 0, 0}. (1.148)

If we now perform the circular convolution operation using the
two concentric circle approach discussed above, we obtain the
following result:

y[n] = {1, 4, 10, 12, 9}, (1.149)

which is the same as linear convolution. The fact that circular
convolution equals linear convolution is extremely important in
many signal processing applications. The linear convolution of
a sequence x[n] having N1 (i.e., 0 to (N1 − 1)) samples with a
sequence of N2 samples will result in a sequence of (N1 + N2 − 1)
samples in length. Thus, the linear convolution will have all of
its nonzero values in the interval 0 ≤ n ≤ (N1 + N2 − 2) points.

We can conclude from the above example that if a sequence of
length N1 is followed by (N2 − 1) zero-valued sequence, then the
resulting sequence which has (N1 + N2 − 1) points can be circu-
larly convolved with another sequence of length N2, augmented by
(N1 − 1) zeros. The result thus obtained will be the same if we perform
linear convolution. Linear convolution can be obtained via circular
convolution, provided a proper choice is made for the number of
points (in circular convolution). Therefore, both the sequences should
be padded with zeros such that the total length of each sequence
(xe[n] and he[n]) becomes (N1 + N2 − 1) samples. If N1 = N2 = N, then
the total length of the sequence is (2N − 1). We can compute the linear
convolution of x[n] and h[n] via DFT as follows:

y[n] = xe[n] � he[n] = IDFT [Xe[k].He[k]] = DFT−1 [Xe[k].He[k]] ,
(1.150)

0 1
0

1

N1–1

xe(n)

nN1 + N2 – 2
 Input xe (n)
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0 1

Input he(n)

0

1

N2–1

he(n)

nN1 + N2 –2

where Xe[k] and He[k] are the DFTs of xe[n] and he[n], respectively.
Equation 1.150 can be represented in terms of a block schematic as
given in Figure 1.18. The output y[n] will be the linear convolution
of x[n] and h[n]. The procedure discussed above is attractive since
there is an algorithm called the fast Fourier transform (FFT) which
can compute the DFT much faster and it is efficient, especially if the

DFT

DFT

xe[n]

he[n]

(2N – 1) point

(2N – 1) point

(2N – 1) point

IDFT
y[n] = x[n]*h[n]

Xe(k)

He(k)

FIGURE 1.18
Linear convolution via DFT and IDFT.

TABLE 1.6

Summary of Properties of DFT

Finite-Length Sequence (Length N) N-Point DFT (Length N)

x[N + n] = x[n] X[k + N] = X[k]
ax1[n] + bx2[n] aX1[k] + bX2[k]
x[(n − m)N] e−j 2π

N kmX[k]
X[n] Nx[(−k)N]
x∗[n] X∗[(−k)N]
x[(−n)N] X[−k]
x1[n] ∗©x2[n] X1[k]X2[k]
x1[n]x2[n] 1

N

∑N−1
l=0 X1[l]X2[(k − l)N]
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TABLE 1.7

Summary of Symmetry Properties of DFT

Finite-Length Sequence (Length N) N-Point DFT (Length N)

Re{x[n]} 1
2 [X[(k)N] + X∗[(−k)N]

jIm{x[n]} 1
2 [X[(k)N] − X∗[(−k)N]

xe[n] = 1
2 [x[n] + x∗[(−n)N] Re{X[k]}

xo[n] = 1
2 [x[n] − x∗[(−n)N] jIm{X[k]}

When x[n] is real X[k] = X∗[(−k)N]
Re{X[k]} = Re{X[(−k)N]}
Im{X[k]} = −Im{X[(−k)N]}
|X[k]| = |X(−k)N |
�{X[k]} = −�{X[(−k)N]}

sequence length is large. The FFT algorithm is discussed in the next
section.

The properties of DFT are summarized and presented in Tables 1.6 and 1.7.

1.6 Fast Fourier Transform

So far, we have seen how to compute the DFT of a signal. Now we will
introduce an efficient tool for the computation of the DFT termed as FFT.
This can be done by exploiting the periodicity and symmetry properties of
the twiddle factors Wkn

N , which are given as follows:

1. Wk(N−n)

N = W−kn
N = (Wkn

N )∗, complex conjugate property
2. Wkn

N = Wk(n+N)

N = W(k+N)n
N , periodicity in n and k

There are several algorithms available for the efficient computation of the DFT
and these have come to be known as fast Fourier transform (FFT) algorithms.
All these algorithms are based on the fundamental principle of decomposing
the computation of the DFT of a sequence of length N into successively smaller
DFTs (known as the “divide and conquer” approach).

In this section, we will discuss in detail two such popular algorithms:

1. Decimation-in-time FFT algorithm
2. Decimation-in-frequency FFT algorithm

1.6.1 Decimation-in-Time FFT (DIT-FFT)

The decimation-in-time FFT (DIT-FFT) algorithm is based on decomposing
the time sequence x[n] into successively smaller sub-sequences and hence its
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name. Here, we consider only a radix-2 FFT algorithm, where N is a power
of 2. We now explain the process of DIT-FFT in detail. The DFT of x[n] is

X[k] =
N−1∑
n=0

x[n]Wnk
N , k = 0, 1, . . . , N − 1. (1.151)

We can separate x[n] into even- and odd-numbered samples as

X[k] =
∑

n=even

x[n]Wnk
N +

∑
n=odd

x[n]Wnk
N . (1.152)

On substituting the variables n = 2r for n-even and n = 2r + 1 for n-odd, we
obtain

X[k] =
N
2 −1∑
r=0

x[2r]W2rk
N +

N
2 −1∑
r=0

x[2r + 1]W(2r+1)k
N (1.153)

=
N
2 −1∑
r=0

x[2r](W2
N)rk + Wk

N

N
2 −1∑
r=0

x[2r + 1](W2
N)rk. (1.154)

But, we can prove that (W2
N)kn = Wkn

N
2

. By substituting this result into Equa-
tion 1.154, we get

X[k] =
N
2 −1∑
r=0

x[2r]Wrk
N
2

+ Wk
N

N
2 −1∑
r=0

x[2r + 1]Wrk
N
2

(1.155)

= Xe[k] + Wk
NXo[k], k = 0, 1, . . . , N − 1 (1.156)

where Xe[k] and Xo[k] are N/2-point DFTs of the even-numbered and the odd-
numbered samples of x[n], respectively. This procedure of decomposing the
sequence into smaller sequences can be continued, since the new N/2-point
DFT blocks generated are again periodic in k with period N/2. Hence, these
blocks can be further divided into two N/4-point DFT blocks (by decomposing
again into even and odd parts). We proceed in this way till the blocks are
reduced to two input blocks.

We will now consider an example for a sequence of length N = 4, which is
shown in Figure 1.19. Let us apply the DIT-FFT algorithm by decomposing
the inputs of Figure 1.19 into two N/2-point DFT computations of even- and
odd-numbered samples, as shown in Figure 1.20.

For a generalized case, we can draw the elementary computation, called
a butterfly, as shown in Figure 1.21(a). From the symmetry and periodicity
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FIGURE 1.19
Example of a 4-point DFT.
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FIGURE 1.20
Decomposition of a 4-point FFT into two 2-point FFT blocks. (a) Block diagram. (b) Butterfly
structure.

properties of Wr
N , we can deduce that

Wr+ N
2

N = Wr
NW

N
2

N = −Wr
N . (1.157)

In particular, the number of complex multiplications has been reduced by
half when compared to the number presented in Figure 1.21(a). With this
observation, the butterfly computation of Figure 1.21(a) can be simplified to
a form shown in Figure 1.21(b), which requires only one complex multipli-
cation instead of two (see Equation 1.157). The basic signal flow graph of
Figure 1.21(b) is an efficient replacement for the butterflies of the form of
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FIGURE 1.21
Butterfly structures. (a) Butterfly structure. (b) Efficient butterfly structure.
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FIGURE 1.22
Complete butterfly diagram for a 4-point FFT.

Figure 1.21(a). We can obtain the signal flow graph of Figure 1.22 from Fig-
ure 1.20(b) and 1.21(b). Now using this, we complete the butterfly diagram
for a 4-point DFT as shown in Figure 1.22.

1.6.1.1 Computational Savings

Let us now examine the computational savings provided by the FFT tech-
nique. In the case of an N-point DFT as given by Equation 1.93, the
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computation of each term requires the sum of N products. Hence, for the
computation of N-point DFT, we require N2 complex multiplications and
N(N − 1) complex additions.

In the case of N-point FFT, there are r = log2 N stages. Each stage requires
N/2 complex multiplications by twiddle factors and N complex additions.
Hence, the total number of complex multiplications is of the order of
(N/2 log2 N) and the total number of complex additions is of the order of
(N log2 N).

1.6.1.2 In-Place Computation

In the case of DFT computations using FFT, the complex coefficients are stored
in memory and read out for multiplication when required. Similarly, the
intermediate stage results also need to be stored for the computation of the
output of the next stage. An intermediate stage is shown in Figure 1.23.

Xm[p] = Xm−1[p] + Wr
NXm−1[q] (1.158)

Xm[q] = Xm−1[p] − Wr
NXm−1[q] (1.159)

However, the intermediate results Xm−1[p] and Xm−1[q] are used only for the
computation of the next stage Xm[p] and Xm[q], and they are never used later.
Hence, instead of using new memory locations for Xm[p] and Xm[q], we can
keep these results in place of Xm−1[p] and Xm−1[q], and thus the memory can
be saved. This is called in-place computation.

1.6.2 Decimation-in-Frequency FFT (DIF-FFT)

In the previous subsection, for the case of DIT-FFT algorithm, we have divided
the input sequence x[n] into smaller sequences. Now in the case of decimation-
in-frequency (DIF-FFT) algorithm, we decompose the output sequence X[k]
into smaller subsequences in an analogous manner and hence its name.

Xm–1[p]

Xm–1[q]

Xm [p]

Xm [q]
WN

r –1

FIGURE 1.23
rth Stage butterfly.
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2-Point
DFT

2-Point
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FIGURE 1.24
4-point FFT using DIF-FFT.

Here, we consider computing the even- and odd-numbered frequency
samples separately as follows:

X[2r] =
N
2 −1∑
n=0

[
x[n] + x

[
n + N

2

]]
Wrn

N
2
, r = 0, 1, . . . ,

N
2

− 1 (1.160)

X[2r + 1] =
N
2 −1∑
n=0

[
x[n] − x

[
n + N

2

]]
W(2r+1)n

N

=
N
2 −1∑
n=0

[
x[n] − x

[
n + N

2

]]
Wn

NWrn
N
2
, r = 0, 1, . . . ,

N
2

− 1.

(1.161)

Hence, we can decompose the output sequence as shown in Figure 1.24 for
a 4-point case. Now we can proceed on similar lines by dividing the output
sequence into progressively smaller blocks (just as was done in the case of
DIT-FFT for the input sequence, x[n]). The elementary butterfly structure for
DIF-FFT is presented in Figure 1.25.

The concept of in-place computation can be used in the DIF-FFT as well,
since

Xm[p] = Xm−1[p] + Xm−1[q] (1.162)

Xm[q] = [Xm−1[p] − Xm−1[q]]Wr
N . (1.163)

The complete butterfly diagram for a 4-point DIF-FFT is given in Figure 1.26.
Now on comparing the 4-point butterfly structures for DIT-FFT and DIF-FFT,
we can observe that in DIT-FFT, the inputs were given in the bit-reversed
order; whereas for the latter, the outputs appear in the bit-reversed order.
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FIGURE 1.25
mth Stage butterfly of DIF-FFT.
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FIGURE 1.26
Flow graph of a 4-point DIF-FFT.

We can also observe that DIT-FFT and DIF-FFT flowgraphs are transposes of
each other (see Figures 1.22 and 1.26).

1.6.3 Inverse DFT from FFT

The expression for the DFT and the inverse DFT (IDFT) are reproduced below
(as discussed in Section 1.5):

X[k] =
N−1∑
n=0

x[n]Wkn
N , k = 0, 1, . . . , N − 1 (1.164)

x[n] = 1
N

N−1∑
k=0

X[k]W−kn
N , n = 0, 1, . . . , N − 1 (1.165)

where WN = e−j(2π/N) is called the twiddle factor.
We note that in both Equations 1.164 and 1.165, the expressions differ only

in the sign of the power of WN and the presence of a scale factor 1/N in the
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Conjugation Conjugation x[n]x[k] N-Point
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1
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Re{x[n]}

Im{x[n]}
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Im{x[k]}
–1
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FIGURE 1.27
Block diagram for inverse DFT using FFT. (a) Inverse DFT. (b) Simplified inverse DFT.

IDFT expression. Thus, it is possible to compute the inverse DFT using the
forward FFT technique with some modifications of the input and output.

From Equation 1.165, we can write

x∗[n] = 1
N

N−1∑
k=0

X∗[k]Wkn
N , n = 0, 1, . . . , N − 1 (1.166)

Nx∗[n] =
N−1∑
k=0

X∗[k]Wkn
N (1.167)

= DFT{X∗[k]}. (1.168)

Therefore, we can recover x[n] as follows:

x[n] = 1
N

[DFT{X∗[k]}]∗ , n = 0, 1, . . . , N − 1. (1.169)

The basic block diagrams are given in Figure 1.27.

1.6.4 Linear Convolution Using DIT-FFT and DIF-FFT

Since FFT computes the DFT faster, we can use the FFT algorithm to compute
the linear convolution. It has been shown earlier that the input to the DIT-FFT
is in bit-reversed order, while the output is in natural order. However, in the
case of DIF-FFT, it is just the reverse, that is, the input will be in natural order
while the output will be in bit-reversed order. We can use these two algo-
rithms to compute the linear convolution very efficiently as detailed below.

Since the DIF-FFT takes the input in natural order and gives the output in
bit-reversed order, this scheme can be used to compute the forward DFTs
of the two sequences. Since the outputs Xe[k] and He[k] are in bit-reversed
order, we use DIT-IFFT to compute the inverse DFT after the point-by-point
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xe[n]

DIF-FFT

DIF-FFT

y[n]

xe[n]

He[k]

Xe[k]

DIT-IFFT

FIGURE 1.28
Linear convolution via. DIF-FFT and DIT-IFFT.

multiplication. This is illustrated in Figure 1.28. Therefore, if we use the above
scheme, we need not do any bit reversal in computing the linear convolution
via the FFT approach. Here, xe[n] and he[n] represent the extended sequences,
since we will have to pad the original sequences x[n] and h[n] with appro-
priate number of zeros, in order to obtain linear convolution from circular
convolution.

In this chapter, we have considered different Fourier analysis methods, their
properties and applications. We have considered the digital implementation
of Fourier transform in detail.
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2
Pitfalls in the Computation of DFT

In this chapter, we turn our attention to the issues in spectral estimation and
FIR filter design. Quite often, the DFT is used as an approximation to the
CTFT. However, we should be aware of the fact that there are several pit-
falls associated with this approximation. The discrepancies between the DFT
and the CTFT arise because DFT requires sampling and truncation. Improper
sampling gives rise to “aliasing errors.” Aliasing refers to the distortion of the
signal spectrum due to the introduction of spurious low-frequency compo-
nents owing to a combination of a very low sampling rate and an improper
anti-aliasing filter. Section 2.1 briefly describes sampling, reconstruction, and
the associated distortion called aliasing.

The other two types of pitfalls arise due to the truncation of the data while
applying the DFT. These distortions are called (i) frequency leakage (or just
leakage) and (ii) picket-fence effect (or scalloping loss). These are discussed
in detail in Sections 2.2 and 2.4, respectively. However, before we discuss
the picket-fence effect, we will introduce the representation of the DFT as a
bank of bandpass filters, in Section 2.3. DFT resolution, zero-padding, and
frequency-domain sampling are discussed in Section 2.5.

2.1 Sampling, Reconstruction, and Aliasing

The concepts of sampling, reconstruction, and aliasing can be demonstrated
by means of a familiar example. While capturing motion pictures, the cam-
era converts the dynamic scene into a sequence of frames. These frames
are usually taken at regular time intervals of 24 frames/second. The frame
rate has been chosen by taking into account the persistence of vision of the
human eye. Sampling essentially selects a set of finite data points as a repre-
sentation of the continuous-time signal at the corresponding time duration.
Movie frames thus take samples of the scene information during each sec-
ond. When it is played, our eyes and brain fill the missing data between
the frames and thus provide the illusion of a continuously varying video.
This operation of filling the breaks between the sampled data points is called
reconstruction.

59
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In general terms, reconstruction converts a sampled sequence back into
a continuous-time signal. It generates an infinite amount of data from the
samples. In the motion picture example, the reconstructed signal is a hal-
lucination of our brain. What are the problems associated with sampling?
Naturally, one cannot expect the reconstructed signal to be an exact copy
of the original. Sampling often yields a type of distortion that is called as
aliasing. Let us explain this distortion by an example. Imagine the scene of
a clockwise rotating wheel. As long as its speed of rotation is less than half
the number of frames/second, we perceive it correctly. However, when the
speed increases beyond this value, the wheel actually appears to rotate anti-
clockwise, that too at a reduced speed! Its apparent speed is now the number
of frames/second minus its real speed. Another observation we can make is
that, when the speed is exactly equal to the number of frames/second, the
wheel is seemingly stationary. This occurs because the wheel is now sam-
pled at an identical position. Now, if the speed is increased further, the wheel
apparently rotates clockwise again, but at a reduced speed. To generalize, the
wheel always appears to rotate at a speed not higher than half the number of
frames/second (in either direction).

Sampling is the basis of DSP and, hence, a thorough understanding of sam-
pling is necessary for practical applications. Minimizing the phenomenon of
aliasing is one of the vital problems. Engineering applications often provide
the continuous-time signal in the form of a voltage wave, and sampling is
carried out using electronic circuitry. Reconstruction is also performed in
a similar manner. Further, the distortion of the sequence is caused by the
physical limitations of electronic circuitry.

History of sampling theorem: The sampling theorem is usually attributed
to Shannon who introduced it in the field of information theory in 1949
[1]. However, a Russian scientist named Kotelnikov had found it inde-
pendently around the same time. The credit for first discovering the
theorem and its importance should be given to E.T. Whittaker who pub-
lished a remarkable paper [2] on the sampling theorem in 1915, wherein
he also discloses a formula for reconstructing the waveform from its
samples. This laid the foundation for modern digital signal process-
ing. We thereby refer to sampling as the Whittaker Kotelnikov Shan-
non or WKS sampling theorem, using the first letters of all three sur-
names.

There are several ways to sample an analog or a continuous-time signal,
xc(t). We will consider the most general method called periodic or uniform
sampling. This is described by the following relationship:

xc(t)|t=nTs = xc(nTs) = x[n], (2.1)

where x[n] represents the uniformly sampled discrete-time signal obtained
after sampling a continuous-time signal xc(t) and Ts represents the sampling
period or sampling time in seconds. Here, Fs = 1

Ts
is called the sampling
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rate (in samples per second) or the sampling frequency, expressed in Hertz
(Hz). Therefore, the uniform sampling establishes a relationship between
the time variables t and n of the continuous-time and discrete-time signals,
respectively, as follows:

t = nTs = n
Fs

. (2.2)

In view of Equation 2.2, there exists a linear relationship between the
continuous-time frequency variable Fs (or �s = 2πFs, where the unit of �s

is radians/second) in Hertz and the discrete-time frequency variable f (or ω,
where the unit of ω is radians/sample) is dimensionless. This relation can be
established by considering a continuous-time signal given by

xc(t) = sin(�t + θ) = sin(2πFt + θ). (2.3)

If xc(t) is sampled uniformly at a rate of Fs = 1
Ts

samples/second, we obtain

xc(t)|t=nTs = xc(nTs) ≡ x[n]
= sin(�t + θ)|t=nTs = sin(2πFnTs + θ)

= sin
(

2πnF
Fs

+ θ

)
. (2.4)

A discrete-time sinusoidal signal can be represented as

x[n] = sin[ωn + θ ] = sin[2π fn + θ ], (2.5)

where n is an integer variable called the sample number, θ is the phase in
radians, and ω is the frequency in radians/sample (or if we use f , then in
cycles/sample).

Now, if we compare Equations 2.4 and 2.5, we note that the frequency
variables F and f are related by

f = F
Fs

, (2.6)

or, equivalently, � and ω are related by the following:

ω = �Ts. (2.7)

Therefore, the relationship given in Equation 2.6 justifies the name relative
or normalized frequency, which is sometimes used to describe the frequency
variable f . As implied by Equation 2.6, we can use f to determine the frequency
F (in hertz) only if the sampling frequency Fs is known.
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FIGURE 2.1
Sampled data.

Now, let us consider a continuous-time signal:

xc(t) = sin(2πFot), −∞ < t < ∞.

If this signal is sampled at a rate of Fs (or 1
Ts

) samples/second, the resulting
discrete-time sequence, x[n] can be represented as in Figure 2.1. Now, if we
are asked to reconstruct the signal from these samples, we may end up with
many possibilities. Two of such representations are given in Figure 2.2. In this
figure, the frequencies of the two sinusoids are (Fo + Fs) and Fo. These two
sinusoids share the same samples since, by expansion, we obtain

sin[2π(Fo + Fs)nTs] = sin[2πFonTs + 2πFsnTs]
= sin[2πFonTs + 2πn]
= sin[2πFonTs].

In fact, any sinusoid with frequency (Fo + lFs), where l is an integer, fits exactly
into these sampled values. Thus, an infinite number of continuous-time

−1

−0.5

0

0.5

1

Time (s)

sin(2πFot) sin(2π(Fo + Fs)t)

FIGURE 2.2
Possible signal reconstructions.
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sinusoids can be obtained from the same set of discrete-time signal samples.
Equivalently, we can say that the frequencies Fk = (Fo + lFs), −∞ < l < ∞,
are indistinguishable from the frequency Fo after sampling and hence they
are the aliases of Fo. Hence, sampling a continuous-time signal introduces a
distortion called aliasing. This uncertainty arises because the sinusoid with
frequency (Fo + Fs) does not have enough number of samples per period.
Therefore, to uniquely reconstruct the signal the sampling frequency should
be selected such that the sinusoid with maximum frequency (denoted as Fmax)
has at least two samples per period. In other words, if the sampling period
Ts < To

2 , where To is the time period of the signal, then we must choose the sam-
pling frequency Fs > 2Fmax. This ensures that we can reconstruct the original
signal without aliasing.

2.1.1 WKS Sampling Theorem

Further insight can be gained by representing Equation 2.1 as a two-stage
process, as depicted in Figure 2.3 [3]. The first stage is the modulation process,
where the continuous-time signal xc(t) is multiplied with the impulse train
s(t) given by

s(t) =
∞∑

n=−∞
δ(t − nT). (2.8)

The output of the modulator (or multiplier) is

xs(t) = xc(t)s(t)

= xc(t)
∞∑

n=−∞
δ(t − nT). (2.9)

The conversion from impulse train xs(t) to discrete-time sequence x[n] is given
in Figure 2.3 only to make the process complete [3]. In practice, the entire
system is replaced with an analog-to-digital converter (ADC). Since xs(t) is
the product of xc(t) and s(t), the Fourier transform of xs(t) is the convolu-
tion of their Fourier transforms, Xc(j�) and S(j�), respectively. The Fourier

xs(t)

s(t)

Conversion from
impulse train to

discrete-time
sequence

x[n] = xc(nT )xc(t)

FIGURE 2.3
C/D converter.
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transform of s(t) is again an impulse train given by

S(j�) = 2π

T

∞∑
k=−∞

δ(� − k�s). (2.10)

where �s is the sampling frequency.
Therefore, using Equations 2.9 and 2.10, we get

Xs(j�) = 1
2π

Xc(j�) ∗ S(j�)

= 1
2π

Xc(j�) ∗ 2π

T

∞∑
k=−∞

δ(� − k�s)

= 1
T

∞∑
k=−∞

Xc(j(� − k�s)). (2.11)

We note that Equation 2.11 gives the mathematical relationship between the
Fourier transform of a continuous-time signal xc(t) and the Fourier trans-
form of the sampled signal xs(t). If we assume that Xc(j�) is a lowpass signal
band-limited to �N rad/sec, then Xs(j�) contains the replicas of Xc(j�) placed
at integer multiples of the sampling frequency �s. The entire operation is
illustrated in Figure 2.4, where Xc(j�), S(j�), and Xs(j�) are shown in Fig-
ures 2.4(a), (b), and (c), respectively. From Figure 2.4(c), we can observe that
the replicas of Xc(j�) are placed at . . . , −2�s, −�s, 0, �s, 2�s, . . .. These repli-
cas do not overlap if (�s − �N) > �N or equivalently, (�s > 2�N). In such a
case, the continuous-time signal can be exactly reconstructed without any
loss of information using an ideal lowpass filter, as depicted in Figure 2.5.
The cutoff frequency of such a lowpass filter (�c) should be carefully selected
such that

�N < �c < (�s − �N). (2.12)

On the other hand, if the sampling frequency is selected such that �s < 2�N ,
then the replicas of Xc(j�) overlap as shown in Figure 2.4(d), thereby pro-
ducing a distortion called aliasing. Here, the high-frequency components
get folded into the lower frequencies of other replicas. In this case, the
continuous-time signal cannot be reconstructed completely. To avoid this,
we should ensure that xc(t) is band-limited and is sampled with a frequency
�s > 2�N . Here, �N is called the Nyquist frequency, while 2�N is referred to
as the Nyquist rate. The above discussion leads us to the Nyquist–Shannon
sampling theorem that is stated as follows.

Nyquist–Shannon Sampling Theorem

If Xc(j�), the CTFT of xc(t), is band-limited, that is, Xc(j�) = 0 for |�| > �N ,
then xc(t) can be exactly reconstructed from its samples x[n] = xc(nT), n =
0, ±1, ±2, . . . , if we choose �s = 2π

T > 2�N .
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FIGURE 2.4
(a) FT of xc(t), (b) FT of the impulse train, and (c) and (d) FTs of xs(t) with sampling frequencies
�s > 2�N and �s < 2�N , respectively.

Relationship between the Input and Output of C/D Converter

To obtain the relation between Xs(j�), Xc(j�), and X(ej�T) (which is the DTFT
of x[n]), we start by taking the CTFT of xs(t) as follows [3]. From the earlier
discussion, we can write

Xs(j�) =
∫∞

t=−∞
xc(t)

∞∑
n=−∞

δ(t − nT)e−j�tdt

=
∫∞

t=−∞

∞∑
n=−∞

xc(t)e−j�tδ(t − nT)dt. (2.13)
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FIGURE 2.5
(a) FT of sampled signal, (b) frequency response of an ideal lowpass filter, and (c) frequency
response of the reconstructed signal.

From the sifting theorem, we have

∫∞

t=−∞
x(t)δ(t − τ)dτ = x(τ ). (2.14)

If we interchange the integration and summation in Equation 2.13 and if we
use the sifting theorem, we get

Xs(j�) =
∞∑

n=−∞
xc(nT)e−j�nT . (2.15)

Note that the summation and integration in Equation 2.13 can be interchanged
only if the infinite summation converges uniformly for all values of t [3].

We know that the DTFT of a sequence x[n] is defined as

X(ejω) =
∞∑

n=−∞
x[n]e−jωn. (2.16)
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We can relate X(ejω) and Xs(j�) using Equations 2.15 and 2.16 as

Xs(j�) = X(ejω)|ω=�T = X(ej�T). (2.17)

Therefore, from Equations 2.11 and 2.17, we can relate X(ejω) and Xc(j�) as
follows:

X(ej�T) = 1
T

∞∑
k=−∞

Xc(j(� − k�s)) (2.18)

or equivalently

X(ejω) = 1
T

∞∑
k=−∞

Xc

(
j
(

ω

T
− 2πk

T

))
. (2.19)

From Equation 2.19, we can observe that X(ejω) is the frequency-scaled ver-
sion of Xs(j�). This is because all the samples in the discrete-time signal are
spaced by unity, irrespective of the sampling period T. The discrete-time sig-
nal can be obtained by time-scaling the impulse-modulated signal xs(t) by T.
Consequently, the frequency axis is scaled by a factor of

(
1
T

)
.

2.1.2 Reconstruction of Continuous-Time Signals from
Discrete-Time Samples

When we generate the discrete-time signal from the impulse-modulated sig-
nal xs(t), the implicit time period information present in the signal is lost.
Therefore, we need both the discrete-time sequence x[n] and the sampling
frequency Fs for the reconstruction of the continuous-time signal from its
samples. The reconstruction process is depicted as a two-stage process as
shown in Figure 2.6 [3].

The first step is the conversion of the sequence to an impulse train by using
the information of the sampling period T. This process can be mathematically
represented as in Equation 2.20 below:

xs(t) =
∞∑

n=−∞
x[n]δ(t − nT). (2.20)

T

Conversion
from sequence

to impulse train

x[n]
xr(t)

Ideal
reconstruction

filter Hr( jΩ )xs(t)

FIGURE 2.6
Reconstruction of xc(t).
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If xc(t) is band-limited and sampled with a frequency greater than the Nyquist
rate, then the continuous-time signal xc(t) can be exactly reconstructed with-
out any loss of information by passing xs(t) through an ideal lowpass filter
with frequency response Hr(j�). The cutoff frequency �c of the lowpass filter
should be selected such that (�N < �c ≤ �s − �N). The impulse response of
the ideal lowpass reconstruction filter with the cutoff frequency π

T is given by

hr(t) = sin(π t/T)

(π t/T)
. (2.21)

We shall see the characteristics of hr(t) given by Equation 2.21. First, we note
that

hr(0) = 1. (2.22)

This directly follows from the small angle approximation. Second

hr(nT) = 0, for n = ±1, ±2, . . . . (2.23)

The output of the reconstruction filter will be the convolution of xs(t) with
hr(t). This is given by the following relationship:

xr(t) =
∫∞

τ=−∞
xs(τ )hr(t − τ)dτ

=
∫∞

τ=−∞

∞∑
n=−∞

x[n]δ(τ − nT)hr(t − τ)dτ . (2.24)

Interchanging the order of integration and summation and using the sifting
theorem given in Equation 2.14 in the above equation (Equation 2.24), we
obtain

xr(t) =
∞∑

n=−∞
x[n]hr(t − nT). (2.25)

Substituting hr(t) (see Equation 2.21) in Equation 2.25, we get

xr(t) =
∞∑

n=−∞
x[n]sin(π(t − nT)/T)

π(t − nT)/T
. (2.26)

The filtering process is very obvious in the frequency-domain, where the filter
allows exactly one replica as shown in Figure 2.5(c). In the time-domain, the
same process can be explained in terms of sinc interpolation, as illustrated
below.

Figure 2.7 shows an impulse train obtained by assigning the strength of
impulse at nT to nth discrete sample (shown as dotted lines). This signal is
convolved with the impulse response of an ideal lowpass filter (sinc function)
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xs(t)
xc(t)

t

FIGURE 2.7
Impulse train-modulated signal.

t

xr(t)

FIGURE 2.8
Reconstruction of continuous-time signal.

to obtain the continuous-time signal. The impulse response of the ideal low-
pass filter is shifted by integer multiples of T and scaled by the corresponding
strengths of the impulses in xs(t). This is shown in Figure 2.8. From this plot,
we can observe that exactly one sinc function contributes to the interpolated
continuous-time signal at the sampling points.

The Fourier transform of the reconstructed signal xr(t) is related to the
transformed input signal xc(t) as

Xr(j�) = Xc(j�)Hr(j�). (2.27)

If the reconstruction filter is ideal and the cutoff frequency is selected appro-
priately, then the reconstructed signal, Xr(j�), will be the same as the input
signal, Xc(j�).

2.2 Frequency Leakage Effect

The effect of frequency leakage can be illustrated using a continuous-time
cosine signal given by

x(t) = cos(�ot), −∞ < t < ∞.
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FIGURE 2.9
Rectangular data window implied when a finite record of data is analyzed. (a) Signal,
(b) rectangular window, and (c) finite-length record.

This is sketched in Figure 2.9a. The CTFT of this signal is given by

X(j�) = π [δ(� + �o) + δ(� − �o)]. (2.28)

The CTFT of this signal can be considered as two impulses located at ±�o

and weighted by π , as shown in Figure 2.10(a). While computing the finite
Fourier transform, we are forced to take only a finite number of data sam-
ples covering a time duration of T seconds and neglect everything that has
happened before (and after) this period. In effect, the infinitely ranged sig-
nal x(t) is multiplied by a rectangular window w(t) = 1, 0 ≤ t ≤ T (shown in
Figure 2.9(b)) to obtain

xw(t) = x(t)w(t) = cos(�ot), 0 ≤ t ≤ T. (2.29)

The resulting signal xw(t) is shown in Figure 2.9(c). Multiplication in the time-
domain is equivalent to the convolution in the frequency-domain. Hence, the
finite Fourier transform of any finite record of data is equivalent to convolving
the CTFT of the actual signal with the CTFT of the rectangular window. The
transform of a rectangular window is given by

W(j�) = T sinc
(

�T
2π

)
e

−j�T
2 , −∞ < � < ∞. (2.30)

Thus, the CTFT of an infinitely ranged pure cosine wave, x(t), gives rise to
two impulses at frequencies ±�0, as shown in Figure 2.10(a). However, in
the case of the finite Fourier transform of a cosine wave, the impulse function
is convolved with the infinitely ranged Fourier transform of the rectangular
window. The resulting Fourier transform of xw(t) is given by

Xw(j�) = X(j�) ∗ W(j�)

= π [δ(� + �o) + δ(� − �o)] ∗ T sinc
(

�T
2π

)
e

−j�T
2
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FIGURE 2.10
(a) Magnitude response of a cosine signal. (b) Leakage in finite extent data.

= πT [sinc((� + �o)T/2π) + sinc((� − �o)T/2π)] e
−j�T

2 ,

− ∞ < � < ∞. (2.31)

The magnitude response of the resulting function |Xw(j�)|, shown in Fig-
ure 2.10(b), are two sinc functions centered at ±�o. This function is not
localized on the frequency axis and in fact has a series of spurious peaks
called side lobes, that decay quite slowly (−6 dB/octave). This effect is due to
the truncation, which is unavoidable while applying the finite DTFT. Owing
to these side lobes, it is possible for the finite DTFT to exhibit a number of
frequency components instead of only one. To localize the contribution of a
given frequency, the usual approach is to apply a different data window to
the time series that has lower side lobes in the frequency-domain than that
of a rectangular window. However, this will give rise to yet another effect in
terms of loss of frequency resolution.

Alternatively, if the input frequency components are integer multiples of
the reciprocal of the sample length, then the leakage will be zero (only in
discrete-time case). The response is zero at adjacent points, because the zeros
of the

(
sin x

x

)
response exactly coincide with the location of the DFT output

points.

2.2.1 Zero Leakage Case

We will now show that the leakage is produced due to the combination of the
sinc side-lobe amplitudes and the transform of the sinusoidal components,
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whose frequencies are not integer multiples of the reciprocal of the sample
length T [4].

Let the input sequence to the DFT be x[n] = Aejω0n�T , where �T = T/N,
while T is the sampling interval (in seconds) and N is the sequence length.
The DFT can be computed as follows:

X[k] =
N−1∑
n=0

x[n]e −j2πnk
N , k = 0, 1, . . . , (N − 1)

=
N−1∑
n=0

Aejω0n�Te
−j2πnk

N

= A
N−1∑
n=0

e(jnα), where α =
(

ω0�T − 2πk
N

)
.

The above expression is actually a geometric summation. Therefore, this can
be written as a quotient of two terms as follows:

= A
1 − e(jNα)

1 − e(jα)
= A

ej Nα
2

ej α
2

[
ej Nα

2 − e−j Nα
2

ej α
2 − e−j α

2

]

= A ej (N−1)α
2 .

sin
(

Nα

2

)
sin
(

α

2

) . (2.32)

Substituting back the value of α, we obtain the following expression:

X[k] = A e[j (N−1)
2 (ω0�T− 2πk

N )].
sin
[

N
2

(
ω0�T − 2πk

N

)]
sin
[

1
2

(
ω0�T − 2πk

N

)] . (2.33)

If ω0�T = 2πm
N or ω0 = 2πm

T , then f0 (ω0 = 2π f0) is an integer multiple of the
reciprocal of the sample length T. Then, we find that X[k] can be expressed
as follows:

X[k] = A e[j (N−1)
N (π(m−k))].

sin [π(m − k)]
sin
[

π

N (m − k)
] . (2.34)

As m → k, the expression for X[k] becomes

X[k] = A lim
m→k

sin(π(m − k))

sin(π(m − k)/N)
. (2.35)

By applying L’Hospital’s rule, we obtain

X[k] = A lim
m→k

N
cos(π(m − k))

cos(π(m − k)/N)
. (2.36)
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FIGURE 2.11
DFT output response to demonstrate zero leakage case.

Therefore

X[k] =
{

AN, k = m
0, k �= m.

(2.37)

The above result produces the response in the frequency-domain as shown
in Figure 2.11. For the sake of comparison, we have shown the sinc function
response as dotted lines. Note that the response is zero at adjacent output
points. This is true because the zeros of the

(
sin x

x

)
response exactly coincide

with the location of the DFT output points.

2.2.2 Maximum Leakage Case

If f0 is not an integer (m) multiple of the reciprocal of the sample length, but

rather
(
m + 1

2

)
, then f0 =

(
m+ 1

2
T

)
and we obtain the plot of X[k] as demonstrated

in Figure 2.12. From Figure 2.12, it can be seen that the amplitude of X[m − 1]
and X[m + 2] is approximately equal to AN

5 . Calculating the ratio of the ampli-
tude at these points and the peak center point, we get, 20 log

∣∣AN/5
AN

∣∣ � −13 dB.
Therefore, the quantity −13 dB corresponds to the peak side-lobe level of
a rectangular window. In this case, it can be seen that the response at the
adjacent points (near the main output point) is nonzero. In this example,
the zeros of the sinc response no longer line up with the adjacent output
points, since the input frequency is not an integer multiple of the recip-
rocal of the sample length. Consequently, we observe that in the overall
DFT, the output has energy at frequencies that are not present in the DFT
input. This spreading or smearing of energy is referred to as frequency leakage
or simply leakage. It can be shown that for a single frequency component
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FIGURE 2.12
Spectral leakage.

input, at a frequency midway between two DFT bins, the leakage is sig-
nificant (−25 dB) for about eight output points (on either side of the DFT
bins) [4].

From the above discussion, we see that to reduce or minimize the leakage
problem, we must either limit the frequency components of the input signal
to be only integer multiples of 1

T or reduce the side-lobe amplitudes by using
appropriate windows, having lower side-lobe amplitudes in the frequency-
domain. It is obvious that the first choice is not practical and, therefore, we
must find a way to reduce the side-lobe levels.

In the above example, we took a signal having a single frequency com-
ponent. However, the leakage problem increases significantly as the input
waveform progresses in complexity from a single frequency component to
a waveform with many frequency components having differing amplitudes
buried in noise. For this case, the leakage will produce nonzero Fourier coef-
ficients throughout the output band. Therefore, these leakage components
could be of sufficient amplitudes so as to mask the desired low-amplitude fre-
quency components that are present in the input signal. Hence, the problem
of leakage is quite significant in spectral analysis.

Example

The following example illustrates the leakage effect. Consider the follow-
ing two discrete-time sequences:

1. x1[n] = cos
(

2πn
5

)
, 0 ≤ n ≤ 4.

2. x2[n] = cos
(

2πn(1.5)

5

)
, 0 ≤ n ≤ 4.

The periodic extension of these two sequences are given in Figures 2.13
and 2.14. From the last section, we have seen that there are only N dis-
tinguishable frequencies for which we get zero leakage when we take the



Pitfalls in the Computation of DFT 75

0 5 10 15
−1

−0.5

0

0.5

1

n

x1[n]

FIGURE 2.13
x1[n] extended up to three periods.

N-point DFT of the sequence. One set of these frequencies is

ωk = 2πk
N

, k = 0, 1, 2, . . . , N − 1. (2.38)

In this example, x1[n] has a frequency component corresponding to one
of these frequencies, resulting in no-leakage case as shown in Figure 2.15.
On the other hand, frequency of x2[n] does not correspond to any of the
DFT bins, resulting in the spread of energy throughout the spectrum, as
given in Figure 2.16. In Figures 2.15 and 2.16, the dotted lines represent
the DTFT of the sequence. We can see that, owing to the proper choice of
N, the DFT of x1[n] obtained by sampling the DTFT has only zeros at all
the frequencies, other than at the signal frequency components, 2π

5 and 8π

5
or 2πk

5 , with k = 1 and k = 4.
Another intuitive approach to study the effect of leakage is to observe

the periodic repetition of the sequences. The periodic repetition of x2[n]
shows clear discontinuities (Figure 2.14) at n = 5, 10, 15, . . . , unlike

Discontinuities

0 5 10 15
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−0.5

0

0.5

1

n

x2[n]

FIGURE 2.14
x2[n] extended up to three periods.
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FIGURE 2.15
DFT of x1[n] (zero leakage case).
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FIGURE 2.16
DFT of x2[n] (leakage case).

the extended signal of x1[n] (Figure 2.13). These discontinuities are
responsible for the nonzero leakage in the case of x2[n].

2.3 DFT as a Filter Bank

In an earlier chapter, we have seen how we can relate the DTFT with the DFT
of a finite-length sequence x[n]. If the DTFT of a sequence x[n], represented
as X(ejω), is a function of a continuous variable ω, then the DFT itself is a
sequence. They can be related as follows:

X[k] =
N−1∑
n=0

x[n]e−jωn|ω= 2πk
N

=
N−1∑
n=0

x[n]e−j 2πkn
N , k = 0, 1, . . . , N − 1. (2.39)
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Therefore, the DFT of a sequence is a sampled form of the DTFT. The DFT
can be considered as the bank of bandpass filters [5], tuned to frequencies
corresponding to the DFT bins. Let the discrete-time signal be x[n] = ejωn. Let
us observe the DFT output sequences, X(0), X(1), . . . , X(N − 1), as ω is varied
from 0 to 2π .

X(0) =
N−1∑
n=0

x[n]W0
N =

N−1∑
n=0

ejωn = 1 − ejωN

1 − ejω

= sin
(

ωN
2

)
sin
(

ω

2

) .ej(N−1)ω/2.

In Figure 2.17(a), we show the plot of |X(0)| versus ω, assuming that N = 5.
Now, let us compute X(1) as illustrated below:

X(1) =
N−1∑
n=0

ejωn.Wn
N =

N−1∑
n=0

ejωn.e−j 2π
N n

=
N−1∑
n=0

ej(ω− 2π
N )n = 1 − ej(ω− 2π

N )N

1 − ej(ω− 2π
N )

= sin
(

ωN
2

)
sin
(

ω

2 − π

N

) ejω( N−1
2 ) ej π

N .

The corresponding plot is given in Figure 2.17(b) for N = 5. In general, we
can express X[k] as follows:

X[k] = sin( ωN
2 )

sin( ω

2 − πk
N )

ejω( N−1
2 ) ej πk

N , k = 0, 1, . . . , (N − 1). (2.40)

If we choose N = 5, then the magnitude responses of X(0), X(1), . . . , X(4) can
be sketched as given in Figures 2.17(a) through (e).

Figure 2.17(f) combines all the elemental plots of Figures 2.17(a) through
(e), but the side lobes are omitted for the sake of clarity. Therefore, from
Figure 2.17, we can conclude that the DFT represents (or is analogous to) a
bank of bandpass filters. Hence, the DFT can be interpreted in the following
three ways:

1. A reversible transformation that converts one complex sequence into
another.

2. It corresponds to samples of the z-transform of the sequence,
equispaced on the unit circle (i.e., z = ej 2π

N k).
3. A bank of bandpass filters.
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FIGURE 2.17
Magnitude response plots at DFT bins as ω is varied from 0 to 2π . (a) |X(0)|. (b) |X(1)|. (c) |X(2)|.
(d) |X(3)|. (e) |X(4)|. (f) Main lobes of X(k).

2.4 Picket-Fence Effect or Scalloping Loss

The picket-fence effect is produced by the inability of the DFT to observe the
spectrum as a continuous function since the computation of the spectrum
is limited to integer multiples of the fundamental frequency [5,6]. From the
discussion of the previous section, we can say that the Fourier transformation
of the discrete data can be viewed as passing the data through a bank of
bandpass filters. Ideally, each Fourier coefficient would act as a complex filter
(the absolute values of all the coefficients are equal to one). However, because
of the finite-length data, which is equivalent to multiplying the data by a
rectangular window, the amplitude response of the filter is in the form of the
main lobes of

(
sin x

x

)
functions. The normalized frequency response is shown
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in Figure 2.18 (side lobes are not shown for the sake of clarity). Note that the
amplitude axis is normalized to unity.

Therefore, at the frequencies computed, these main lobes appear to be inde-
pendent filters, with unity magnitude response. However, if the data consist
of a spectral component that lies, say, for example, between the fourth and
fifth harmonic frequencies, then the component is seen by both the filters
centered at the fourth and fifth harmonics, but at a value less than unity. In
the worst case, when the spectral component lies exactly half-way between
the computed harmonics, the amplitude of the signal is reduced to 0.637 [7],
which represents the worst case. When this value is squared, the apparent
peak power of the signal is only 0.406. Thus, the power spectrum seen by
this set of bandpass filters has a ripple that varies by a factor of 2.5 to 1. The
rippled curve (shown in the second plot of Figure 2.18), also known as the
picket-fence effect, is responsible for the processing loss of input frequencies
between the bin centers. Therefore, one seems to be viewing the true spec-
trum (using the DFT) through a “picket-fence” [7], since we can observe the
exact behavior only at discrete points. This effect can be reduced by applying
a data window that has a broader main-lobe width (in the frequency-domain)
but a larger attenuation in the side lobes than that of a rectangular window.

The picket-fence effect occurs because the N-point DFT cannot resolve the
spectral components any closer than the spacing
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FIGURE 2.18
Picket-fence effect: DFT coefficients as a set of bandpass filters. (Redrawn from G.D. Bergland,
A guided tour of the fast fourier transform, IEEE Spectrum, Vol. 6, pp. 41–52, July 1969.)



80 Window Functions and Their Applications in Signal Processing

If the sampling rate is fixed, �f can be decreased by increasing the number
of points in the DFT.

2.5 Zero-Padding and Frequency Resolution

If the data length is limited to T s, where T < To, then the data may be
extended to To by adding additional zero-valued sampling points. This is
called zero-padding and is explained below.

2.5.1 Zero-Padding

In this section, we look at the necessity and applications in which zero-
padding is employed [8]. It is used in the following scenarios:

1. Filling the sequence with zeros to utilize the radix-2 FFT algorithm: Suffi-
cient number of zeros (Nz) are added to the N-point data to satisfy
the requirement that

(N + Nz) = 2m (2.41)

for a radix-2 FFT, where m is an integer that represents the number of
stages of the FFT algorithm. Besides, the harmonics of the frequency

1
(N + Nz)T

(where T is the sampling interval) coincides with the signal frequen-
cies.

2. Implementing linear convolution through circular convolution: The circu-
lar convolution of the two sequences x1[n] and x2[n] is computed as
follows:

yc[n] =
N−1∑
m=0

x1[(m)N]x2[(n − m)N] (2.42)

where (-)N denotes the modulo N operation.
As stated in the properties of the DFT, the circular convolution is

directly related to the DFTs of x1[n] and x2[n] as

Yc[k] = X1[k]X2[k]. (2.43)

Therefore, the circular convolution (denoted as x1[n] � x2[n]) can
be computed as

yc[n] = x1[n] � x2[n] = IDFT{X1[k]X2[k]}, (2.44)
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where X1[k] and X2[k] are the DFTs of x1[n] and x2[n], respec-
tively. It was found that the circular convolution calculated from the
DFTs is computationally efficient rather than using Equation 2.42
directly. This will be evident if sequences of very large lengths
are considered.

The linear convolution of sequences x1[n] and x2[n] is defined as

yl[n] =
∞∑

m=−∞
x1[m]x2[n − m]. (2.45)

If one sequence is of length N1 and the other sequence is of length N2,
then yl[n] will be of length L = (N1 + N2 − 1). Circular convolution
can be considered as the aliased version of the linear convolu-
tion. In fact, the circular and linear convolutions are related (see
Section 1.5.2) by

yc[n] =
∞∑

k=−∞
yl[n − kN], n = 0, 1, . . . , N − 1. (2.46)

where N is the length of each sequence and L is the length of linear
convolution. From the relation, yc[n] will be equal to yl[n] when the
shifts N is equal to L.

If the sequences are padded with sufficient number of zeros, i.e.,
(L – N) then we can use IDFT to compute the linear convolution. This
is illustrated by the following example.

Example

Consider the sequences x1[n] = x2[n] = {1, 1, 1}.
Here, N1 = N2 = 3. The linear convolution of these two
sequences is

yl[n] = {1, 2, 3, 2, 1},

and the result of the circular convolution is

yc[n] = {3, 3, 3}.

In this example, N = 3. The circular convolution obtained using
the linear convolution from Equation 2.46 is graphically depicted
in Figure 2.19. We now pad the sequences x1[n] and x2[n] with
(N2 − 1) and (N1 − 1) zeros, respectively, to make them equal to
(N1 + N2 − 1) in length. We then compute the circular convolu-
tion to obtain the linear convolution. From Figure 2.20, we can
see that there is no aliasing, and the circular convolution is the
same as the linear convolution for the zero-padded case. There-
fore, once we pad the sequences with the required number of
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zeros, we can compute the circular convolution using the IDFT
of the product of the DFTs of individual sequences to get the
linear convolution.

3. Providing a better display of the spectrum of a finite-length sequence: We
consider an example where Nz zeros are added to a sequence (which
originally had a nonzero length of Nf ) to give a sequence of N values,
and then an N-point DFT is computed. The sampled values of the

DFT spectrum are spaced
(

2π

Nf +Nz

)
apart. For a sequence x[n] defined

as

x[n] =
{

1, n = 0, 1, 2, 3
0, otherwise,

(2.47)
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FIGURE 2.19
Circular convolution as aliased form of linear convolution.
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FIGURE 2.20
Circular convolution by linear convolution (after zero-padding).

the DTFT magnitude response |X(ejω)| of the above sequence x[n] is
shown in Figure 2.21. While Figure 2.22(a) shows the DFT of a four-
point sequence without any zero-padding, Figures 2.22(b) and 2.22(c)
show the 8-point and 16-point DFTs of the zero-padded sequences,
respectively. From these plots, we can observe that as more num-
ber of zeros are added, the DFT provides closely spaced samples of
its Fourier transform of the original sequence and thus generates a
better-looking display [9]. However, it must be mentioned here that
we do not have any additional information that could be obtained by
sampling the interpolation formula, which is given by

X(ejω) =
N−1∑
k=0

X[k]φ
(

ω − 2πk
N

)
, (2.48)

where

φ(ω) = e−jω( N−1
2 )

N
· sin(ωN/2)

(ω/2)
. (2.49)
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FIGURE 2.21
DTFT of x[n].

Here, Equations 2.48 and 2.49 provide the interpolation formula and
the interpolation function, respectively. We emphasize that zero-
padding does not actually improve the frequency resolution but only
gives a better-looking display of the available data (without addi-
tional calculations) to evaluate the values of the DFT through the
interpolation formula.

2.5.2 Frequency Resolution

The sequence x[n] is often produced by sampling a continuous-time signal
xc(t), resulting in the sequence xc(nT). The DFT coefficients for this sampled
signal can be written as X[k�f ] rather than simply X[k], where �f represents
the frequency spacing of the coefficients. This is the same as T in x(nT) rep-
resenting the time spacing of the sampled signal. Therefore, the frequency
components in the DFT are spaced apart according to the following relations:

�f = Fs

N
or �f = 1

NT
= 1

To
, (2.50)

where Fs is the sampling frequency (or T is the sampling interval, T = 1
Fs

)
and N is the period of the resulting sequence, �f is the frequency spacing
(also called as frequency resolution) and To is the record length (To = NT).
To resolve closely spaced frequencies, or in other words to increase the
resolution, we need to make �f appropriately smaller.

As discussed before, the application of DFT to a finite-length data gives rise
to leakage and picket-fence effects. These effects can be reduced by weighting
the data with suitable windows. However, the use of data windows (other
than rectangular window) affects the bias, variance, and frequency resolution
of the spectral estimates. In general, the variance of the estimates increases
with the use of windows. An estimate is said to be consistent if both the bias
and the variance of the estimate tend to zero as the number of observations
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FIGURE 2.22
x[n] and its DFTs: (a) No zero-padding. (b) Padding with four zeros. (c) Padding with 12 zeros.

is increased. Hence, the issues associated with the spectral estimation of a
random data by the DFT technique reduce to the problem of establishing effi-
cient data windows or data-smoothing schemes. This topic shall be discussed
in detail in a forthcoming chapter.
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3
Review of Window Functions

3.1 Introduction

This chapter presents a concise review of all popular window functions that
are commonly employed in digital signal processing. Since no window is the
best in all aspects, it should be selected according to the user’s requirements.
First, the characteristics that qualify a function to be a window function are
outlined in Section 3.2. In Section 3.3, almost all the window functions are cat-
aloged, along with their time-domain and frequency-domain representations.
The Fourier domain representations of these windows are also discussed at
length. Section 3.4 provides theorems relating to the rate of fall-off side-lobe
levels (RFSLL) of windows. We then describe the various basic parameters of
the windows that are useful in choosing an efficient window for a particular
application. Finally, a comprehensive comparison of all the windows in terms
of their computed parameters is provided in Section 3.5.

3.2 Characteristics of a Window Function

In this section, we list some of the desirable characteristics of a window
function. For ease of discussion, we describe the window functions in the
continuous domain in time and frequency. Here, f (t) represents the window
of length 2τ in the time-domain and F(j�) represents its continuous Fourier
transform, that is,

F(j�) =
∫ τ

−τ

f (t)e−j�tdt. (3.1)

In the rest of this chapter, the main lobes and the side lobes refer to those
of the Fourier transform F(j�) of the window. Every window, f (t), and its
Fourier transform, F(j�), are required to possess the following properties:

87
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1. f (t) should be real and nonnegative.
2. f (t) should be an even function, that is, f (t) = f (−t) and therefore

F(j�) is real.
3. f (t) should attain its maximum at t = 0, that is,

∣∣f (t)∣∣ ≤ f (0), for all t
and f (t) = 0 for |t| > τ , where τ represents the one-sided duration of
the window.

4. F(j�) should have a main lobe about the origin and side lobes on
either side.

5. The main-lobe width should be as narrow as possible.
6. The main lobe must contain a large part of the total energy.
7. The maximum side-lobe level (MSLL) should be as small as possible,

relative to the main-lobe peak.
8. If the mth derivative of f (t) is impulsive, then the peak of the side

lobes of |F(j�)| decays asymptotically as 6m dB/octave. The proof of
this property is presented in Section 3.4.

On the basis of the above characteristics, a number of windows have been
proposed by researchers and are detailed below. Each window is illustrated
by the plots of the time function and its Fourier transform.

3.3 List of Windows

We shall now briefly present some of the well-known window functions
used in the signal processing literature. Each window is described by its
functional form in the continuous time-domain, f (t), and its CTFT, F(j�).
In the following discussion, τ represents the one-sided duration of the win-
dow in the time-domain. Figures 3.1 through 3.16 (except for Figures 3.5
and 3.8) present the plots of window functions in the time-domain and their
CTFTs. The time-domain function is plotted as a function of the normalized
time parameter, (t/τ ). The normalized magnitude of the Fourier transform
is plotted as a function of the normalized frequency parameter (�τ/2π ),
where the normalization is carried out with respect to the amplitude at the
origin, F(0). The normalized magnitude is expressed in dB scale, that is,

20 log10

∣∣∣ F(j�)

F(0)

∣∣∣. We also provide vital parameters such as (i) normalized half
main-lobe width (NHMLW), (ii) first side-lobe level (FSLL), (iii) maximum
SLL (MSLL), (iv) ratio of main-lobe energy to total energy (MLE), and (v)
rate of fall-off side-lobe level (RFSLL). The same terminology is followed for
all the windows discussed in this chapter. In Table 3.1, all the main proper-
ties of the window functions described in Sections 3.3.1 through 3.3.18 are
summarized.
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3.3.1 Rectangular (Box Car) Window

The rectangular window [1], which is also called a uniform window or a box
car window due to its shape, is defined as follows:

f (t) =
{

1, |t| ≤ τ

0, elsewhere
(3.2)

and its CTFT is

F(j�) = 2τ sin(�τ)

�τ
, −∞ < � < ∞. (3.3)

Therefore, the CTFT of a rectangular window function represents a sinc
function.

The rectangular window results from the direct truncation of the signal.
The Fourier transform of this window shows that the first side lobe of this
window is about one-fifth of the main-lobe peak and the side lobes fall at a
rate of 1

�
. The time-domain (i.e., f (t) vs. t/τ ) and the frequency-domain (i.e.,

F(j�) vs. �τ/2π ) plots of a rectangular window are given in Figure 3.1(a).
In the frequency-domain plot, the abscissa (x-axis) is given by

(
�τ

2π

)
and the

ordinate (y-axis) is given by 20 log10

∣∣∣ F(j�)

F(0)

∣∣∣. Thus, both the amplitude and the
frequency axes display normalized values. Therefore, the normalized half
main-lobe width (NHMLW) of the rectangular window is 0.5. The MSLL of
this window, which is also the same as the first side-lobe level (FSLL), is about
−13 dB.

3.3.2 Triangular (Bartlett) Window

The triangular window [1] is derived by linearly convolving two rectangular
windows of half the duration (i.e., τ/2). This window is specified by the time-
domain function

f (t) =
⎧⎨
⎩1 − |t|

τ
, |t| ≤ τ

0, elsewhere
(3.4)

and its corresponding Fourier transform is

F(j�) = τ

⎡
⎢⎢⎣

sin
(

�τ

2

)
(

�τ

2

)
⎤
⎥⎥⎦

2

, −∞ < � < ∞. (3.5)
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Therefore, the Fourier transform pair of the Bartlett window can be repre-
sented as follows: (

1 − |t|
τ

)
|t|≤τ

F←→ 4 sin2 (�τ

2

)
(�2τ)

. (3.6)

The relevant plots are shown in Figure 3.1(b). We can observe that the half
main-lobe width of this window is twice that of the rectangular window (i.e.,
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Window functions (time- and frequency-domain plots). (a) Rectangular (box car) window. (b)
Triangular (Bartlett) window.
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1.0) and that the side lobes fall at the rate of 1
�2 (since F(j�) � 4

�2τ
as � → ∞).

It can be noted that this is the simplest window that exhibits a nonnegative
Fourier transform. This happens due to the self-convolution property, which
can always be achieved by convolving any window by itself.

3.3.3 Cos(x) Window

The time function of this window [2] and its Fourier transform are given by

f (t) =
⎧⎨
⎩cos

(
π t
2τ

)
, |t| ≤ τ

0, elsewhere
(3.7)

and

F(j�) = sin
((

� + π

2τ

)
τ
)

(
� + π

2τ

) + sin
((

� − π

2τ

)
τ
)

(
� − π

2τ

) ,

− ∞ < � < ∞. (3.8)

The Fourier transform pair for this window can be expressed as follows:

(
cos
(

π t
2τ

))
|t|≤τ

F←→ 4πτ
cos(�τ)

(π 2 − 4�2τ 2)
. (3.9)

The advantage of this window is the ease with which the term can be gen-
erated. This window is depicted in Figure 3.2(a). Note that the NHMLW of
this window is 0.75, (i.e., one and a half times that of the rectangular win-
dow), while the RFSLL is 1

�2 (see Equation 3.9). As shown in Table 3.1, the
FSLL is about 23 dB down. The side-lobe levels for all the window functions
discussed in the rest of the section are also given in this table.

3.3.4 Hann (Raised-Cosine) Window

This window was proposed by the Austrian meteorologist Julius von Hann. It
is also known by different names: the raised-cosine, von Hann window [1,2],
and so on. It is defined by the Fourier transform pair

f (t) =
⎧⎨
⎩0.5 + 0.5 cos

(
π t
τ

)
, |t| ≤ τ

0, elsewhere
(3.10)
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FIGURE 3.2
Window functions (time- and frequency-domain plots). (a) Cosine window. (b) Hann window.

and

F(j�) = sin(�τ)

�
+ 0.5

[
sin
((

� + π

τ

)
τ
)

(
� + π

τ

) + sin
((

� − π

τ

)
τ
)

(
� − π

τ

)
]

,

− ∞ < � < ∞. (3.11)
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The Hann window can be represented in a short-hand notation as

(
1
2

+ 1
2

cos
(

π t
τ

))
|t|≤τ

F←→ π 2 sin(�τ)

�(π 2 − �2τ 2)
. (3.12)

From Equation 3.11, it is obvious that the Fourier transform of the Hann

window is the sum of three sin(x)
x terms. The function at the origin is assigned

a weight of unity and the other two are shifted sinc functions on either side
of the origin by

(± π

τ

)
with an assigned weight of 0.5 each. This yields sig-

nificantly reduced side lobes over that of the rectangular window, but at the
expense of the main-lobe width (which is twice that of the rectangular win-

dow). The side lobes fall off at a rate 1
�3 (since F(j�) � π2

τ 2�3 as � → ∞). The
corresponding plots of the Hann window are shown in Figure 3.2(b). This
window is also called a cos2(x) window, since it results by just expanding the
square of a cosine function.

3.3.5 Truncated Taylor Family

Taylor functions are obtained by adding a weighted-cosine series to a constant
(called a pedestal). A simpler form of these functions can be obtained by
dropping some of the higher-order terms in the Taylor series expansion. If all
other terms, except for the first two significant ones, are dropped, a truncated
Taylor function is obtained, which can be expressed as [3]

f (t) =

⎧⎪⎨
⎪⎩

(1 + k)

2
+ (1 − k)

2
cos
(

π t
τ

)
, |t| ≤ τ

0, elsewhere

(3.13)

whose Fourier transform is

F(j�) = (1 + k)
sin(�τ)

�
+ (1 − k)

2

[
sin
((

� + π

τ

)
τ
)

(
� + π

τ

) + sin
((

� − π

τ

)
τ
)

(
� − π

τ

)
]

,

− ∞ < � < ∞. (3.14)

Equation 3.13 can be interpreted as a cosine-squared response, weighted by a
factor (1 − k) and sitting on a pedestal of height k, where k ≤ 1. Equation 3.14
can be simplified and written as follows:

F(j�) = [π 2(1 + k) − 2k�2τ 2] sin(�τ)

�(π 2 − �2τ 2)
. (3.15)

It can be seen that F(j�) → 0 with the rate of �
(

2k
�

)
, as � → ∞.
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FIGURE 3.3
Window functions (time-domain and frequency-domain plots). (a) Truncated Taylor window
with k = 0.072. (b) Hamming window.

The range of side-lobe levels varies as a function of the pedestal height (see
Figures 3.2(b) and 3.3(a)). Figures 3.2(b) and 3.3(a) represent the plots for the
values of k = 0 (Hann window) and k = 0.072, respectively. It is interesting
to point out that the truncated Taylor family is closely related to two other
functions: the Hann window results when k = 0 and the Hamming window
(discussed below), which is a truncated Taylor window with k = 0.08 (see
Figure 3.3(b)).
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3.3.6 Hamming Window

This window can be thought of as an optimized form of the Hann window,
and it was proposed by Hamming [1,4]. The coefficients of this window are
optimized so as to obtain the minimum FSLL. The Hamming window finds
applications in optics for apodization, which smoothens the input intensity
or transmission profile, such that it approaches almost zero at the edges. Its
functional form is represented by

f (t) =

⎧⎪⎨
⎪⎩

0.54 + 0.46 cos
(

π t
τ

)
, |t| ≤ τ

0, elsewhere

(3.16)

whose Fourier transform can be written as follows:

F(j�) = 1.08
[

sin(�τ)

�

]
+ 0.46

[
sin
((

� + π

τ

)
τ
)

(
� + π

τ

) + sin
((

� − π

τ

)
τ
)

(
� − π

τ

)
]

,

− ∞ < � < ∞. (3.17)

Equations 3.16 and 3.17 together can be represented by a Fourier transform
pair as follows:

(
0.54 + 0.46 cos

(
π t
τ

))
|t|≤τ

F←→ [1.08π 2 − 0.16�2τ 2] sin(�τ)

�(π 2 − �2τ 2)
. (3.18)

It can be seen that the asymptotic attenuation in the case of Hamming window
is
(

0.16
�

)
.

The time- and Fourier-domain plots are shown in Figure 3.3(b). From these
plots, we can see that the MSLL is about −42 dB and the side lobes fall at the
rate of 1

�
. This slow fall-off rate is due to the small discontinuity (0.08) at the

edges of the window. However, the FSLL of this window is about −44 dB.
Following the discussion in Section 3.3.5, we must point out here that the
Hamming window yields the lowest side-lobe levels for the truncated Taylor
class of window functions (with k = 0.08).

3.3.7 Cos3(x) Window

The time function of this window [2] is obtained by expanding the cos3(x)

function (hence its name) and it can be rewritten as

f (t) =

⎧⎪⎨
⎪⎩

0.75 cos
(

π t
2τ

)
+ 0.25 cos

(
3π t
2τ

)
, |t| ≤ τ

0, elsewhere.

(3.19)
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FIGURE 3.4
Cos3(x) Window (time and frequency-domain).

and its Fourier domain representation is expressed as

F(j�) = 0.75

[
sin
((

� + π

2τ

)
τ
)

(
� + π

2τ

) + sin
((

� − π

2τ

)
τ
)

(
� − π

2τ

)
]

+ 0.25

[
sin
((

� + 3π

2τ

)
τ
)

(
� + 3π

2τ

) + sin
((

� − 3π

2τ

)
τ
)

(
� − 3π

2τ

)
]

, −∞ < � < ∞.

(3.20)

The NHMLW of this window is 1.25 and the side-lobe fall-off rate can be
proven to be of the order of 1

�4 (see Figure 3.4).

3.3.8 Sum-Cosine Window

This function can be considered as an optimized form of the cos3(x) window
(similar to that of the Hamming and Hann windows) [5]. It is expressed as

f (t) =

⎧⎪⎨
⎪⎩

(1 − 2B) cos
(

π t
2τ

)
+ 2B cos

(
3π t
2τ

)
, |t| ≤ τ

0, elsewhere

(3.21)
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where B is a constant and the Fourier representation of f (t) is

F(j�) = (1 − 2B)

[
sin
((

� + π

2τ

)
τ
)

(
� + π

2τ

) + sin
((

� − π

2τ

)
τ
)

(
� − π

2τ

)
]

+ 2B

[
sin
((

� + 3π

2τ

)
τ
)

(
� + 3π

2τ

) + sin
((

� − 3π

2τ

)
τ
)

(
� − 3π

2τ

)
]

, −∞ < � < ∞.

(3.22)

We will now discuss in detail how a sum-cosine window is synthesized [5,6].
Recall the time function of the rectangular window:

fr(t) =
{

1, |t| ≤ τ

0, elsewhere
(3.23)

and that of the cosine window:

fc(t) =

⎧⎪⎨
⎪⎩

cos
(

π t
2τ

)
, |t| ≤ τ

0, elsewhere.

(3.24)

The Fourier transforms of the rectangular and cosine windows are given by

Fr(j�) = 2 sin(�τ)

�
, −∞ < � < ∞. (3.25)

and

Fc(j�) = sin
((

� + π

2τ

)
τ
)

(
� + π

2τ

) + sin
((

� − π

2τ

)
τ
)

(
� − π

2τ

) , −∞ < � < ∞, (3.26)

respectively.
Consider A and B to be two real constants and let the Fourier transform

of the rectangular window be shifted to the right (and left) of the origin by
an amount

(
3π

2τ

)
[5]. The resulting waveforms of the three elemental Fourier

transforms, namely, BFr(j(� + 3π

2τ
)), BFr(j(� − 3π

2τ
)), and AFc(j�), are displayed

in Figure 3.5. Therefore, a linear combination of these three waveforms gives

Fsc(j�) = AFc(j�) + BFr

(
j
(

� + 3π

2τ

))
+ BFr

(
j
(

� − 3π

2τ

))
, (3.27)

whose inverse CTFT can be shown to be

fsc(t) = A cos
(

π t
2τ

)
+ 2B cos

(
3π t
2τ

)
, |t| ≤ τ . (3.28)



Review of Window Functions 99

AFc (Ω  )

τ
–5π

τ
–4π

τ
–3π

τ
–2π

τ
–π

τ
π

τ
2π

τ
3π

τ
4π

τ
5πΩ 

0

A
m

pl
itu

de

BFr    Ω  + 2τ
3π )( BFr    Ω  – 2τ

3π )( 

FIGURE 3.5
Fourier transforms of cosine and rectangular windows.

Since the window functions are required to be even, without the loss of gener-
ality, fsc(t) can be assumed to be unity at the origin (i.e., A + 2B = 1), in which
case Equation 3.28 reduces to

fsc(t) = (1 − 2B) cos
(

π t
2τ

)
+ 2B cos

(
3π t
2τ

)
, |t| ≤ τ . (3.29)

It can be noticed from Figure 3.5 that the side-lobe ripples from the func-
tions BFr(� ± 3π

2τ
) tend to cancel the side-lobe ripples from AFc(�), thereby

considerably reducing the overall side-lobe levels of the resulting Fourier
transform, Fsc(j�). However, this will be at the expense of the main-lobe
width. To achieve the minimum side-lobe level, constant B is evaluated under
two different constraints, specified by the following criterion:

∣∣∣∣ Fsc(0)

Fsc(j�1)

∣∣∣∣ = Maximum (3.30)

and ∣∣∣∣ Fsc(0)

Fsc(j�p)

∣∣∣∣ = Maximum, (3.31)

where |Fsc(j�1)| is the peak magnitude of the first side-lobe of Equation 3.27,
that is, its peak magnitude in the interval ( 5π

2τ
, 7π

2τ
). Here |Fsc(j�p)| is the largest

peak magnitude of the first two side lobes of Equation 3.27 [5]. The synthesis
problem can now proceed in two ways:

i. Choose the value of B in Equation 3.29 to satisfy the condition of
Equation 3.30.

ii. Select B in Equation 3.29 such that it satisfies Equation 3.31.
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Consequently, two values of B are obtained using the conditions in (i)
and (ii). Using numerical techniques, the values of B are determined to be
0.100 and 0.103, respectively, corresponding to the above two conditions [5].
Figures 3.6(a) and (b) show the plots of normalized magnitudes of the Fourier
transforms of the sum-cosine window for these values of B, together with their
corresponding time functions. The graphs shown are drawn as a function of
the normalized time and frequency parameters.

1.0

0.6

0.2A
m

pl
itu

de

–1.0 –0.6 –0.2 0 0.2 0.6 1.0
Window t/τ

–20

0

–40

–60

Fourier transform
5.04.54.03.53.02.52.01.51.00.50

Ω τ
2π

M
ag

ni
tu

de
 (d

B)

(a)

1.0

0.6

0.2A
m

pl
itu

de

–1.0 –0.6 –0.2 0 0.2 0.6 1.0
Window t/τ

–20

0

–40

–60

Fourier transform
5.04.54.03.53.02.52.01.51.00.50

Ω τ
2π

M
ag

ni
tu

de
 (d

B)

(b)

FIGURE 3.6
Sum-cosine windows (time- and frequency-domain plots). (a) Sum-cosine window with B =
0.100. (b) Sum-cosine window with B = 0.103.



Review of Window Functions 101

The Fourier transform pair in the case of the sum-cosine window is

(
(1 − 2B) cos

(
π t
2τ

)
+ 2B cos

(
3π t
2τ

))
|t|≤τ

F←→
[
4�2τ 3(8B − 1) + 3π 2(3 − 8B)

]
4πτ cos(�τ)

[16�4τ 4 − 40�2π 2τ 2 + 94π 4]
. (3.32)

The asymptotic attenuation of side lobes for large � is given by � π(8B−1)

�2 .
The distinct feature of the sum-cosine window is its simple form (similar
to that of the Hamming window). From the plots of Figure 3.6(b) and the
corresponding results given in Table 3.1, it is clear that further modifications
to Equation 3.31 to include more side lobes still yields a value of B = 0.103.
For this family of windows, the side-lobe fall-off rate in both the cases is 1

�2 ,
which is better than the rectangular window, but not as good as the cos3(x)

window discussed earlier. The performance comparison of this window with
the near-optimum window is done in Section 3.5 of this chapter.

3.3.9 Cos4(x) Window

It should be noted that this window is the product of two Hann windows [2].
Therefore, the cos4(x) window (see Figure 3.7) is defined by

f (t) =

⎧⎪⎨
⎪⎩

0.375 + 0.5 cos
(

π t
τ

)
+ 0.125 cos

(
2π t
τ

)
, |t| ≤ τ

0, elsewhere,

(3.33)

whose Fourier transform can be expressed as

F(j�) = 0.75
sin(�τ)

�
+ 0.5

[
sin
((

� + π

τ

)
τ
)

(
� + π

τ

) + sin
((

� − π

τ

)
τ
)

(
� − π

τ

)
]

+ 0.125

[
sin
((

� + 2π

τ

)
τ
)

(
� + 2π

τ

) + sin
((

� − 2π

τ

)
τ
)

(
� − 2π

τ

)
]

, −∞ < � < ∞.

(3.34)

The plots for this window function are shown in Figure 3.7. The side lobes
fall at a rate of 1

�5 from the main lobe. However, the FSLL of this window is
only about −47 dB and the NHMLW is 1.5.
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FIGURE 3.7
Cos4

(x) Window (time- and frequency-domain plots).

3.3.10 Raised-Cosine Family

The normalized main-lobe widths of the synthesized window functions
[5,7] detailed below fall in between those of the Hamming and sum-cosine
windows. This family of window functions is defined as

f (t) =

⎧⎪⎨
⎪⎩

(1 − 2D)

2

(
1 + cos

(
π t
τ

))
+ 2D cos

(
2π t
τ

)
, |t| ≤ τ

0, elsewhere,

(3.35)

with its Fourier representation given by the expression

F(j�) = (1 − 2D)
sin (�τ)

�
+ (1 − 2D)

2

⎡
⎢⎣sin

((
� + π

τ

)
τ
)

(
� + π

τ

) + sin
((

� − π

τ

)
τ
)

(
� − π

τ

)
⎤
⎥⎦

+ 2D

[
sin
((

� + 2π

τ

)
τ
)

(
� + 2π

τ

) + sin
((

� − 2π

τ

)
τ
)

(
� − 2π

τ

)
]

, −∞ < � < ∞.

(3.36)

The raised-cosine set of windows [7] is synthesized by adopting a procedure
similar to the one presented in Section 3.3.8 (for the sum-cosine window) and
is detailed below:
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Consider the rectangular window

fr(t) =
{

1, |t| ≤ τ

0, elsewhere
(3.37)

and the raised-cosine (Hann) window

frc(t) =
⎧⎨
⎩0.5 + 0.5 cos

(
π t
τ

)
, |t| ≤ τ

0, elsewhere
(3.38)

whose Fourier transforms, respectively, are given by

Fr(j�) = 2 sin(�τ)

�
, −∞ < � < ∞. (3.39)

and

Frc(j�) = sin(�τ)

�
+ 0.5

[
sin
((

� + π

τ

)
τ
)

(
� + π

τ

) + sin
((

� − π

τ

)
τ
)

(
� − π

τ

)
]

,

− ∞ < � < ∞. (3.40)

Consider Figure 3.8, which shows the scaled and shifted waveforms of
AFrc(j�), DFr(j(� + 2π

τ
)) and DFr(j(� − 2π

τ
)) [5]. Here, A and D are real

constants. Adding these terms, we obtain

Frcf (j�) = AFrc(j�) + DFr

[
j
(

� + 2π

τ

)]
+ DFr

[
j
(

� − 2π

τ

)]
, (3.41)
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Fourier transforms of raised-cosine and rectangular windows.
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whose inverse Fourier transform can be shown to be

frcf (t) = A
2

[
1 + cos

(
π t
τ

)]
+ 2D cos

(
2π t
τ

)
, |t| ≤ τ . (3.42)

By restricting the function frcf (t) to be unity at the origin (i.e., (A + 2D) = 1),
which is in accordance with the basic properties of windows, we slightly
modify Equation 3.42 as follows:

frcf (t) = (0.5 − D)

[
1 + cos

(
π t
τ

)]
+ 2D cos

(
2π t
τ

)
, |t| ≤ τ . (3.43)

We now need a scheme to choose an optimum value of D [5]. Let φ be
the NHMLW of the window to be synthesized. Select D in Equation 3.43 in
accordance with the following set of conditions [5]. Let Frcf (j�) be the Fourier
transform of frcf (t).

i. The difference between the first zero of Frcf (j�) and φ is less than a
small specified value δ.

ii. ∣∣∣∣ Frcf (0)

Frcf (j�p)

∣∣∣∣ = Maximum, (3.44)

where Frcf (j�p) is the peak magnitude of Frcf (j�) in the interval
(
φ, 5π

τ

)
.

Using numerical techniques, the values of D are determined for the nor-
malized values of φ = 1.10, 1.15, 1.20, and 1.245 (while δ = 0.005) [5]. This
set of windows is named as raised-cosine family, since one of the func-
tions used is the raised-cosine pulse. The plots of Figures 3.9(a) through (d)
depict the normalized magnitudes of the Fourier transforms of raised-cosine
family for four different values D = 0.0113, 0.0138, 0.0155, and 0.0165, respec-
tively, together with their corresponding normalized time functions. For the
above-mentioned values of D, the NHMLW are 1.10, 1.15, 1.20, and 1.245,
respectively.

The Fourier transform pair of this family of window is given as follows:

(
(0.5 − D)

[
1 + cos

(
π t
τ

)]
+ 2D cos

(
2π t
τ

))
|t|≤τ

F←→
[
4π 4(1 − 2D) − π 2�2τ 2(1 + 2D) + 4D�4τ 4

]
sin(�τ)

�(�4τ 4 − 5π 2�2τ 2 + 4π 4)
. (3.45)

The asymptotic attenuation of F(j�) for large values of � is given by
(

4D
�

)
.

From Equation 3.43, it is clear that the Hann window is a special case of
the raised-cosine family when D = 0. The above family of windows, apart
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FIGURE 3.9
Raised-cosine window family (time- and frequency-domain plots). (a) Raised-cosine window
with D = 0.0113. (b) Raised-cosine window with D = 0.0138.

from being simple in form, has the slight advantage of obtaining a variable
main-lobe width (though to a limited extent) by choosing different values of
the constant D. A comparison of how this family of windows performs with
respect to the near-optimum window family is made in Section 3.5.
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FIGURE 3.9
(Continued). Raised-cosine window family (time- and frequency-domain plots). (c) Raised-cosine
window with D = 0.0155. (d) Raised-cosine window with D = 0.0165.

3.3.11 Blackman Window

The Blackman window [1,2] is defined by the following Fourier transforma-
tion pair:

f (t) =
⎧⎨
⎩0.42 + 0.5 cos

(
π t
τ

)
+ 0.08 cos

(
2π t
τ

)
, |t| ≤ τ

0, elsewhere
(3.46)
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and

F(j�) = 0.84
[

sin(�τ)

�

]
+ 0.5

[
sin
((

� + π

τ

)
τ
)

(
� + π

τ

) + sin
((

� − π

τ

)
τ
)

(
� − π

τ

)
]

+ 0.08

[
sin
((

� + 2π

τ

)
τ
)

(
� + 2π

τ

) + sin
((

� − 2π

τ

)
τ
)

(
� − 2π

τ

)
]

, −∞ < � < ∞.

(3.47)

The Fourier transform pair of the Blackman window can be given as follows:

(
0.42 + 0.5 cos

(
π t
τ

)
+ 0.08 cos

(
2π t
τ

))
|t|≤τ

F←→ (3.36π 4 − 0.36π 2�2τ 2) sin(�τ)

�(�4τ 4 − 5π 2�2τ 2 + 4π 4)
. (3.48)

Therefore, F(j�) �
(

0.36π 2

�3τ 2

)
as � → ∞. The plots for this window are shown

in Figure 3.10(a). We note here that the MSLL of this window is as low as 0.001
of the main-lobe peak (which is about −60 dB). The side-lobe fall-off rate is 1

�3

(see Equation 3.48). However, the main-lobe width of this window is thrice
that of the rectangular window. This window can be considered as a special
case of the cos4(x) window which was described in Section 3.3.9.

3.3.12 Optimized Blackman Window

It can be seen that the window function described in Section 3.3.11 has not been
optimized. We discuss the optimization procedure here [5,8]. A generalized
form of the Blackman window [1,2] can be represented by

f (t) =

⎧⎪⎨
⎪⎩

A + 2B cos
(

π t
τ

)
+ 2C cos

(
2π t
τ

)
, |t| ≤ τ

0, elsewhere

(3.49)

where A, B, and C are real constants. Restricting the function to be unity at
the origin, but keeping the constant B = 0.25, Equation 3.49 gives

f (t) = (0.5 − 2C) + 0.5 cos
(

π t
τ

)
+ 2C cos

(
2π t
τ

)
, |t| ≤ τ (3.50)
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FIGURE 3.10
Blackman window functions (time- and frequency-domain plots). (a) Blackman window. (b)
Optimized Blackman window.

whose Fourier transform is

F(j�) = (1 − 4C)
sin(�τ)

�
+ 0.5

[
sin
((

� + π

τ

)
τ
)

(
� + π

τ

) + sin
((

� − π

τ

)
τ
)

(
� − π

τ

)
]

+ 2C

[
sin
((

� + 2π

τ

)
τ
)

(
� + 2π

τ

) + sin
((

� − 2π

τ

)
τ
)

(
� − 2π

τ

)
]

, −∞ < � < ∞.

(3.51)
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We set the coefficient B = 0.25 (which is the same as in the case of the
Blackman window) itself, since it is easier to implement this coefficient in
the frequency-domain [5]. The implementation of windows is discussed in
Chapter 6. The optimization of the constant C is performed, such that the
ratio

∣∣∣∣ F(0)

F(j�1)

∣∣∣∣ = Maximum, (3.52)

where F(j�1) is the peak magnitude of the first side lobe [5]. Using numerical
techniques, the value of C was found to be 0.044, which satisfies Equation 3.52.
The important parameters of the Blackman and the optimized Blackman
windows are provided in Table 3.1. Figure 3.10(b) shows the plots of the nor-
malized log-magnitude of F(j�) as a function of the normalized frequency,
along with the normalized time function of the window.

The results given in Table 3.1 show that the new coefficients of the opti-
mized Blackman window yield about 10 dB improvement in the FSLL and
4.5 dB improvement in the MSLL, over that of the Blackman window. How-
ever, the main-lobe width remains the same as in the case of the Blackman
window. Therefore, if an application demands immediate side-lobe rejection,
this optimized window offers a better solution.

3.3.13 Blackman–Harris Window

The Blackman–Harris window [2] is defined as the sum of four terms (as
against three terms in the Blackman window). It is described below:

f (t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0.35875 + 0.48829 cos
(

π t
τ

)

+0.14128 cos
(

2π t
τ

)
+ 0.01168 cos

(
3π t
τ

)
, |t| ≤ τ

0, elsewhere

(3.53)

whose Fourier transform is given by the expression

F(j�) = 0.7175
sin(�τ)

�
+ 0.48829

[
sin ((� + π/τ)τ)

(� + π/τ)
+ sin ((� − π/τ)τ)

(� − π/τ)

]

+ 0.14128
[

sin ((� + 2π/τ)τ)

(� + 2π/τ)
+ sin ((� − 2π/τ)τ)

(� − 2π/τ)

]
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FIGURE 3.11
Blackman–Harris window function (time- and frequency-domain plots).

+ 0.01168
[

sin ((� + 3π/τ)τ)

(� + 3π/τ)
+ sin ((� − 3π/τ)τ)

(� − 3π/τ)

]
,

− ∞ < � < ∞. (3.54)

This window achieves a trade-off between the main-lobe width and the side
lobe level. It exhibits side lobes just shy of −92 dB from the main lobe. How-
ever, the main-lobe width of this window is four times that of the rectangular
window, while the side lobes fall at the same rate as the original Black-
man window (in Section 3.3.11). The reader can refer to Figure 3.11 for the
corresponding plots.

3.3.14 Parabolic Window

The parabolic window [2] is similar to the cosine lobe discussed in Section
3.3.3. This window has the time-domain form

f (t) =

⎧⎪⎨
⎪⎩

1 −
( |t|

τ

)2

, |t| ≤ τ

0, elsewhere

(3.55)
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and the corresponding spectral window is given by

F(j�) = 4τ

(�τ)2

(
sin (�τ)

�τ

)
− cos (�τ). (3.56)

This exhibits a discontinuous first derivative at the boundaries (see Section
3.4). Owing to this property, its transform has a fall-off side-lobe rate of the
order of 1/�2 only (see Equation 3.56). The FSLL of this window is about
−22 dB from the main-lobe peak (see Figure 3.12(a)).

3.3.15 Papoulis Window

The time-limited function of the Papoulis window [9] is represented by

f (t) =

⎧⎪⎨
⎪⎩

1
π

∣∣∣∣sin
(

π t
τ

)∣∣∣∣+
(

1 − |t|
τ

)
cos
(

π t
τ

)
, |t| ≤ τ

0, elsewhere

(3.57)

whose Fourier transform yields the following optimum spectral window:

F(j�) = 4π 2τ
(1 + cos �τ)

(π 2 − �2τ 2)2
, −∞ < � < ∞. (3.58)

In our context, the “optimum” window is meant in the sense that it has
the largest energy content in the main lobe of its Fourier transform (simi-
lar to Kaiser’s modified zeroth-order Bessel window function family, to be
discussed in Section 3.3.19), while the side lobes contain less energy. The
main-lobe width of this window is almost the same as that of the Blackman
window. The FSLL of this window is −46 dB. Nevertheless, the side lobes fall

at a much faster rate of 1
�4 (since F(j�) �

(
4π 2

�4τ 3

)
, as � → ∞) than in any

other case, as can be observed from Figure 3.12(b).

3.3.16 Tukey Window

This is also known as the cosine-tapered window and can be expressed as
a cosine-lobe convolved with a rectangular window. This window [10] is
defined as

f (t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, |t| ≤ βτ

0.5 + 0.5 cos
π(|t| − βτ)

(1 − β)τ
, βτ ≤ |t| ≤ τ

0, elsewhere.

(3.59)
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FIGURE 3.12
Window functions (time- and frequency-domain plots). (a) Parabolic window. (b) Papoulis
window.

The resultant Fourier transform is consequently the product of two individual
transforms given below:

F(j�) = sin [�(1 + β)/2] cos [�(1 − β)/2]
� [1 − (1 − β)2(�/π)2]

. (3.60)

This window represents an attempt to smoothly set the data to zero at the
boundaries (see Figure 3.13). The value of β used in both the time- and
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FIGURE 3.13
Tukey window function (time- and frequency-domain plots, with β = 0.5).

frequency-domain plots is 0.5. The window evolves from the rectangular to
the Hann window, as the parameter β varies from zero to unity (0 ≤ β ≤ 1)
(Figure 3.13).

3.3.17 Parzen (Jackson) Window

The Parzen window [10] function is defined in three different ranges and is
presented as follows:

f (t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 − 6
( |t|

τ

)2 (
1 − |t|

τ

)
, |t| ≤ τ

2

2
(

1 − |t|
τ

)3

,
τ

2
≤ |t| ≤ τ

0, elsewhere.

(3.61)

Its Fourier transform can be shown to be

F(j�) = 3τ

4

[
sin
(

�τ

4

)
�τ

4

]4

, −∞ < � < ∞. (3.62)

The NHMLW of this window is two, which is four times that of the rect-

angular window. The side-lobe fall-off rate is 1
�4 (since F(j�) �

(
192
�4τ 3

)
as
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FIGURE 3.14
Parzen window function (time- and frequency-domain plots).

� → ∞), similar to the Papoulis window discussed in Section 3.3.15 (see Fig-
ures 3.12(b) and 3.14 for details). Since the side-lobe fall-off rate of the Parzen
window is quite rapid, we cannot observe other side lobes (beyond the first)
in Figure 3.14. It is a nonnegative window and it is similar to the Bartlett
window by virtue of its self-convolution construction.

3.3.18 Dolph–Chebyshev Window

The class of window functions with the minimum main-lobe width for a given
side-lobe amplitude is known as the continuous-time Dolph–Chebyshev
weighting functions [11]. The Fourier transform of the weights is chosen to
be the Dolph–Chebyshev function given by

F(j�) = cos
[

P cos−1

(
cos π�

cos πB/2

)]
, (3.63)

where � is the normalized frequency, such that |�| ≤ 1/2. Then the side lobes
of the Fourier transform of any sine wave in the input will be minimax [12]. In
Equation 3.63, P is one less than the number of weights and B is the normal-
ized bandwidth [13]. The discrete-time Dolph–Chebyshev window function
is discussed in Chapter 5 (Section 5.2.23).
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3.3.19 Kaiser’s Modified Zeroth-Order Bessel Window Function Family

Optimum window function: The function f (t), whose CTFT is F(j�) that max-
imizes the energy inside some selected frequency interval (−�1, �1) with
respect to the total energy can be represented by

∫�1

−�1

|F(j�)|2d�

∫∞

−∞
|F(j�)|2d�

= Maximum. (3.64)

Such a function f (t) is called the optimum window function. A window which
obeys such a condition was derived by Slepian and Pollak (1961) and is called
prolate-spheroidal wave function [14]. However, the two sets of modified Bessel
window function families, namely, the modified zeroth-order (this section)
and the modified first-order Kaiser–Bessel (Section 3.3.20), are simple approx-
imations to these quite complicated functions. These windows were proposed
by Kaiser [15] and are described in this section and the next.

Kaiser has introduced a set of windows that are relatively simple but closely
approximate the zeroth-order prolate-spheroidal wave functions [14], which
are known to be optimum spectral windows. The two sets of Kaiser windows
described here and in Section 3.3.20 are known to be near-optimum. The first
family of time-limited functions suggested by Kaiser is given by the Fourier
transform pair [15]

f (t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

I0

⎡
⎣α

√
1 −

(
t
τ

)2
⎤
⎦

I0(α)
, |t| ≤ τ

0, elsewhere

(3.65)

and

F(j�) =
sinh

[
α

√
1 − (�

α

)2
]

(sinh α)

√
1 − (�

α

)2
, −∞ < � < ∞, (3.66)

where I0(x) is the modified zeroth-order Bessel function of the first kind and
α is a variable parameter. The function I0(x) can be generated by means of the
rapidly convergent series approximation:

I0(x) = 1 +
∞∑

k=1

[
1
k!
(x

2

)k
]2

. (3.67)

In practice, we require no more than 15–25 terms of this series. It can be
shown that by adjusting the parameter α within the usual range of 4 ≤ α ≤ 9
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FIGURE 3.15
Dolph–Chebyshev window (time- and frequency-domain plots).

for optimum results, the side-lobe levels can be minimized at the expense of
the main-lobe widths [15–17]. The above-mentioned choice of α values corre-
spond to a range of maximum side-lobe amplitudes of about 30 dB down to
67 dB, with respect to the main-lobe peak. We have provided the plots for this
window family for two different values of α (see Figure 3.16). For this family of
windows, the side-lobes fall at a rate of −6dB/octave. The figures presented
give an idea of how the behavior of the window parameters changes with
the α values. Since the modified zeroth-order Bessel window family closely
approximates the zeroth-order prolate-spheroidal wave functions (which are
proven to be optimum) the zeroth-order Bessel family is also called the near-
optimum window function family. However, the computational complexity of
the modified zeroth-order Bessel function is relatively low, when compared
to prolate-spheroidal wave functions [15]. The results of this window function
family are summarized in Table 3.2.

3.3.20 Kaiser’s Modified First-Order Bessel Window Function Family

The second set of windows again propounded by Kaiser [15] is given by the
time function

f (t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

I1

[
γ

√
1 − ( t

τ

)2
]

I1(γ )

√
1 − ( t

τ

)2
, |t| ≤ τ

0, elsewhere,

(3.68)
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FIGURE 3.16
Window functions (time- and frequency-domain plots). (a) Modified Bessel window of zeroth-
order with α = 5.4413981. (b) Modified Bessel window of zeroth-order with α = 6.5.

and its corresponding Fourier transform is given by

F(j�) =
cosh

[
γ

√
1 −

(
�

γ

)2
]

− cos �τ

(cosh γ − 1)
, −∞ < � < ∞. (3.69)
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TABLE 3.2

Parameters of Kaiser’s Modified Zeroth-Order Bessel Family

Normalized Ratio of Main-Lobe

Half Main-Lobe First Side-Lobe Maximum Side-Lobe Energy to

α Value Width (NHMLW) Level (FSLL) (dB) Level (MSLL) (dB) Total Energy (MLE)

5 0.94 −36.73 −36.73 0.999741
π

√
3 1.0 −39.79 −39.79 0.999881

6 1.078 −43.82 −43.82 0.999956
π

√
3.84 1.100 −44.93 −44.93 0.9999654

6.5 1.149 −47.44 −47.44 0.999982
π

√
4.29 1.150 −47.49 −47.49 0.9999819

π
√

4.76 1.200 −50.07 −50.07 0.9999894
7 1.221 −51.15 −51.15 0.999993
π

√
5.25 1.250 −52.62 −52.62 0.9999944

7.5 1.294 −54.93 −54.93 0.999997
8 1.368 −58.67 −58.67 0.9999989
8.5 1.442 −62.55 −62.55 0.99999996

Here, I1(x) represents the modified first-order Bessel function of the first kind
and it is defined as

I1(x) =
∞∑

m=0

1
m!(m + 1)!

(x
2

)2m+1

. (3.70)

Again, the side lobes can be varied by choosing different values of the win-
dow function parameter, γ [15]. The time- and frequency-domain plots of the
first-order Kaiser–Bessel family for two different values of γ are shown in
Figure 3.17. However, of the two families proposed by Kaiser, the modified
zeroth-order Bessel family is closer to the optimum zeroth-order prolate-
spheroidal wave functions [14]. The modified first-order Bessel family has the
slight advantage of smaller first side lobes when compared to either zeroth-
order Bessel window family or prolate-spheroidal wave functions, but its
side-lobe fall-off rate is slower (see Figures 3.16 and 3.17) [15]. These obser-
vations can be easily verified from the plots given in Figures 3.16 and 3.17 as
well as from Tables 3.2 and 3.3.

3.4 Rate of Fall-Off Side-Lobe Level

This is one of the vital parameters associated with the Fourier transform of a
window in detecting weak harmonics. A theorem relating the time function
f (t) and the RFSLL is stated and proved in the next section.
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FIGURE 3.17
Window functions (time- and frequency-domain plots). (a) Modified Bessel window of first-order
with γ = 6.1296883. (b) Modified Bessel window of first-order with γ = 8.0451893.

3.4.1 Theorem

If the time function of a window f (t) is continuous and bounded for the first
n derivatives, then its side lobes will fall off at the rate of 1

�n+1 [18].
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TABLE 3.3

Parameters of Kaiser’s Modified First-Order Bessel Family

Normalized Ratio of Main-Lobe

Half Main-Lobe First Side-Lobe Maximum Side-Lobe Energy to

γ Width Level (FSLL) Level (MSLL) Total Energy

Value (NHMLW) (dB) (dB) (MLE)

6.129688 0.976 −41.84 −41.79 0.999789
6.565842 1.046 −46.91 −45.14 0.999902
7.103980 1.139 −54.43 −49.67 0.999962
7.576740 1.227 −62.67 −54.05 0.999984
8.045189 1.320 −58.86 −57.88 0.999993
8.513068 1.418 −64.25 −61.93 0.999997
8.983568 1.511 −70.54 −66.08 0.9999986
9.458593 1.567 −78.21 −70.12 0.9999993

Proof:

This theorem can be proved for the first derivative and can be extended to
higher derivatives using the Fourier transform properties. If a function f (t)
of bounded variation is Riemann integrable, then its transform F(j�) falls at
least as fast as 1

�
.

F(j�) =
∫ τ

−τ

f (t)e−j�t dt

=
∫ τ

−τ

f (t) cos(�t) dt − j
∫ τ

−τ

f (t) sin(�t) dt. (3.71)

If f (t) is a monotonically increasing (or decreasing) function, then

∫ b

a
f (t)g(t) dt = f (a)

∫ ε

a
g(t) dt + f (b)

∫ b

ε

g(t) dt, (3.72)

where g(t) can be any arbitrary function. The window function f (t) can be
written as the difference of two monotonically increasing functions, f1(t)
and f2(t) as depicted in Figure 3.18. Hence, all the windows will satisfy

τ τ τ−τ −τ −τt t t

= –

f (t) f1(t) f2(t)

FIGURE 3.18
Decomposition of a window function into two monotonically increasing functions.
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Equation 3.72. We consider only the first term, that is,
∫τ

−τ
f (t) cos(�t) dt of

Equation 3.71. Using Equation 3.72, we can rewrite the first term as

∫ τ

−τ

f1(t) cos(�t) dt = f1(−τ)

∫ ε

−τ

cos(�t) dt + f1(τ )

∫ τ

ε

cos(�t) dt (3.73)

∣∣∣∣
∫ β

α

cos(�t)dt
∣∣∣∣ = | sin(�α) − sin(�β)|

|�| ≤ 2
|�| (3.74)

∣∣∣∣
∫ τ

−τ

f1(t) cos(�t)dt
∣∣∣∣ ≤ 4M

|�| , where M = max{f1(−τ), f1(τ )}. (3.75)

Now, considering both f1(t) and f2(t), we obtain∣∣∣∣
∫ τ

−τ

f (t) cos(�t)dt
∣∣∣∣ ≤ 4M

|�| , where M = max{f1(−τ), f1(τ ), f2(−τ), f2(τ )}.
(3.76)

Following a similar approach for the second term with sin(�t), we obtain∣∣∣∣
∫ τ

−τ

f (t) sin(�t)dt
∣∣∣∣ ≤ 4M

|�| . (3.77)

From Equations 3.76 and 3.77, it is clear that F(j�) falls at least as fast as 1
�

.
If the first derivative is bounded, then f (1)(t) falls at the rate of 1

�
, which

in turn implies that F(j�) falls at the rate of 1
�2 (since the Fourier transform

of f (1)(t) is j�F(j�)). Therefore, if the function f (t) and its n derivatives are
of bounded variation, then the above procedure can be repeated upto the
nth derivative to obtain F(j�), which tends to zero at least as fast as 1

�n+1 , as
|�| → ∞.

3.4.2 Side-Lobe Fall-Off Rate in the Time-domain

We now look at the computation of side-lobe fall-off rate in the time-
domain [19]. The continuous-time version of a generalized window function
of interest sometimes can be expressed in a generalized form as

f (t) =
K∑

k=0

akcos
(

πkt
τ

)
, |t| ≤ τ (3.78)

where ak represents real constants. Without the loss of generality, f (0) can be
set to be unity. In such a case, all the coefficients of a window will add up to
unity as follows:

K∑
k=0

ak = 1. (3.79)
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We find from Equation 3.78 that

f (±τ) = lim
|t|→τ

f (t) =
K∑

k=0

(−1)kak. (3.80)

If f (±τ) is nonzero, then the weighting function f (t) is said to be discontinuous
at t = ±τ and hence the asymptotic decay rate of F(j�) will be according to
1
�

for large �. Conversely, if Equation 3.80 is zero, then f (t) is continuous for
all t. Furthermore, f (1)(t) is continuous for all t, since we have

f (1)(t) = −π

τ

K∑
k=0

kak sin
(

πkt
τ

)
, |t| < τ , (3.81)

and

lim
|t|→τ

f (1)(t) = 0; f (1)(t) = 0, |t| > τ . (3.82)

Thus, when the weighting function values f (±τ) in Equation 3.80 are zero,
f (t) and f (1)(t) are both continuous for all t.

However, f (2)(t) may not be continuous at t = ±τ . Therefore, we have from
Equation 3.81 that

f (2)(t) = −π 2

τ 2

K∑
k=0

k2ak cos
(

πkt
τ

)
, |t| < τ , (3.83)

and

lim
|t|→τ

f (2)(t) = −π 2

τ 2

K∑
k=0

(−1)kk2ak. (3.84)

If Equation 3.84 is not zero, then f (2)(t) is discontinuous at t = ±τ and F(j�)

will decay as 1
�3 , for large values of �. However, if Equation 3.84 is zero, then

f (2)(t) is continuous for all t, and it follows that f (3)(t) is continuous for all t.
Consequently, F(j�) decays at least as quick as 1

�5 for large �, following the
arguments presented above (similar to Equation 3.84). The side-lobe fall-off
rate calculations for the Hamming and Hann windows using this method are
presented below:

Hamming Window: The Hamming window is defined as

f (t) =
⎧⎨
⎩0.54 + 0.46 cos

(
π t
τ

)
, |t| ≤ τ

0, otherwise
.
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Comparing Equation 3.78 with the Hamming window definition, we get

K = 1, a0 = 0.54 and a1 = 0.46

The weighting function value at t = ±τ can be calculated using Equa-
tion 3.80 as

f (±τ) = lim
|t|→τ

f (t) = a0 − a1 = 0.08. (3.85)

The Hamming window has nonzero value at t = ±τ . Therefore, its side lobes
decay at the rate of 1

�
(i.e., −6 dB/octave) only.

Hann Window: As defined previously, the Hann window function is given by

f (t) =
⎧⎨
⎩0.5 + 0.5 cos

(
π t
τ

)
, |t| ≤ τ

0, otherwise
.

The coefficients a0 and a1 in this case are 0.5 (see Equation 3.78).
Using Equation 3.80, we can calculate f (t) at t = ±τ as

f (±τ) = lim
|t|→τ

= a0 − a1 = 0. (3.86)

Hence the Hann window is continuous at the boundaries.
From Equations 3.81 and 3.82, we saw that the first derivative f (1)(t) con-

tains only sine terms and is equal to zero at t = ±τ . Therefore, f (1)(t) is also
continuous.
At t = ±τ , the second derivative values can be found using Equation 3.84 as
follows:

f (2)(±τ) = −π 2

τ 2

K∑
k=0

(−1)kk2ak = π 2

2τ 2
. (3.87)

f (2)(t) is nonzero at t = ±τ , and therefore its side lobes decay at 1
�3

(−18 dB/octave).

3.5 Comparison of Windows

We can now proceed to compare the various windows based on their param-
eters such as FSLL, MSLL, NHMLW, the ratio of the main-lobe energy to the
total energy (MLE), and the RFSLL. The half main-lobe width refers to the
width of half the central lobe of the Fourier transform of the window. Since a
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window is real and even, its Fourier transform is also real and even. For any
comparison to be meaningful, it would be appropriate if one of the parame-
ters of the window is kept constant. Hence, we can use the NHMLW for the
purpose of comparison. The ratio of the peak of the FSLL to that of the main
lobe is yet another useful parameter. The magnitude of this ratio is referred
to as the FSLL. MSLL refers to the ratio between the maximum of the peak
magnitudes of all side lobes and the absolute value of the main-lobe peak
itself. While the NHMLW is dimensionless (since it is normalized), the MSLL
and the FSLL are expressed in decibels (dB), that is 20 log10

∣∣∣ F(j�)

F(0)

∣∣∣.
The above-mentioned parameters are computed for almost all the windows

described in the previous section and are listed in Tables 3.1 through 3.3. To
make a proper comparison among different windows, it is necessary to keep
the main-lobe widths of the windows the same. We now provide a detailed
analysis of the parameters of some interesting windows. Since the modified
zeroth-order Bessel windows with variable parameters are near-optimum, it
is only natural to compare all the other windows with this family.

To find the value of α corresponding to a particular value of the NHMLW,
the following relationship has been arrived at by the author of this mono-
graph, given by

α2 = (�2 − π 2) (3.88)

where � = 2πY and Y is the required NHMLW. Therefore, to obtain the
value of α for Y = 1 (NHMLW for the Hann or Hamming case), the value
of α2 = (2πY)2 − π 2 = (4π 2 − π 2) = 3π 2 or α = π

√
3 = 5.4413981. On sim-

ilar lines, for an NHMLW, y = 1.5, the value of α = √
(2π × 1.5)2 − π 2 =√

9π 2 − π 2 = √
8π 2 = π

√
8. Therefore, considering the Hamming window

and the modified zeroth-order Bessel window with α = 5.4413981, we find
that both have the same NHMLW of unity (refer Figures 3.3(b) and 3.16(a)).
The NHMLWs of the Hann, Hamming, and modified zeroth-order Bessel fam-
ily with α = 5.4413981 can be verified from Figures 3.2(b), 3.3(b), and 3.16(a),
respectively. From Tables 3.1 and 3.2, it is clear that the Hamming window
yields the lowest FSLL and the lowest MSLL than that of the correspond-
ing modified zeroth-order Bessel or Hann window. However, by observing
the plots of Figures 3.3(b) and Figure 3.16(a), for the Hamming and zeroth-
order Bessel window with α = 5.4413981, respectively, it is seen that Kaiser’s
window has lower side-lobe peaks from the third lobe onwards. In contrast,
the Hamming window (omitting the first two side lobes), continues to oscil-
late approximately sinusoidally, with slowly diminishing amplitudes. On the
other hand, the amplitudes of the side lobes of Kaiser’s modified zeroth-order
Bessel window diminish much more rapidly. The large main-lobe energy of
Kaiser’s window explains this faster fall-off rate of the side lobes. Further, it
can be shown that the RSFLL is 1

�
for both the Hamming and Kaiser’s zeroth-

order Bessel family. However, in the case of the Hann window, the FSLL is
only about −31.5 dB, which is also the MSLL, while the rate of fall-off for
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the side lobes is 1
�3 (refer Figure 3.2(b)). This rate of fall-off side lobes is much

faster than either the Hamming or modified zeroth-order Bessel window with
α = π

√
3. Kaiser et al. have considered the use of the I0−sinh window family

for spectral analysis and non-recursive digital filter design, respectively, in
Refs. [16,17].

To determine how good the synthesized sum-cosine windows are, we com-
pare them with Kaiser’s near-optimum modified zeroth-order Bessel family.
For a meaningful comparison, we choose the parameter α, such that the
NHMLW of the Bessel window is also the same as that of the sum-cosine
window, which is equal to 1.25. It can be shown that α = π

√
5.25 yields an

NHMLW of 1.25 for the modified zeroth-order Bessel window. The impor-
tant parameters of the sum-cosine window and the Bessel window are given
in Tables 3.1 and 3.2, respectively. The results show that the FSLL of the sum-
cosine window, with B = 0.100, is 6 dB lower than that of Kaiser’s window,
whereas the MSLL remains almost the same in both the cases. However,
the main-lobe energy of the sum-cosine window is slightly smaller than
that of Kaiser’s zeroth-order Bessel window, but the difference is only about
0.00078%. Therefore, the energy ratios indicate that the side lobes of the mod-
ified zeroth-order Bessel window fall almost at the same rate as those of
the sum-cosine windows. It is also seen that the sum-cosine window (with
B = 0.103) yields an improvement of nearly 1.5 dB in the FSLL (which is also
equal to the MSLL in this case) over that of Kaiser’s window. Nevertheless,
the difference in the main-lobe energies is about the same as before.

To compare the performance of the raised-cosine family of windows with
those of Kaiser’s modified zeroth-order Bessel windows, the values of α are
determined such that the NHMLW are 1.10, 1.15, 1.20, and 1.25. The important
parameters of the raised-cosine family and the Bessel windows are listed in
Tables 3.1 and 3.2, respectively. These results show that the raised-cosine
family of windows yield about 4–9 dB improvement in the FSLL and the
improvement in the MSLL varies from +2.8 dB to −0.85 dB, when compared
to Kaiser’s windows. However, the window with D = 0.0113 yields a loss of
about 3 dB in both cases. The energy ratios indicate that the energy in the
main lobe of the modified zeroth-order Bessel window is only slightly larger
than that of the corresponding windows of the raised-cosine family (about
0.005%). This is similar to the case of the Hamming window, that is, the main-
lobe energy of the Hamming window is less than that of the corresponding
Kaiser–Bessel window.

Table 3.3 provides similar parameters for the modified first-order Bessel
family of windows for different values of γ . The author has also developed a
mathematical relationship to obtain the value of γ for a specified NHMLW.
It is given by the relation γ = 2π

√
2Y − 1, where Y is the required NHMLW.

We consider two cases: (i) for an NHMLW of 1, the value of γ = 2π , (ii)
for an NHMLW of 1.5, the value of γ is 2

√
2π (γ = 8.885765). As discussed

earlier, for the same value of the NHMLW, this family of windows has the
slight advantage of having lower FSLL than the corresponding zeroth-order
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Bessel window family, but the RFSLL is slower. Besides, the computational
complexity of the first-order Bessel family is much higher than the modified
zeroth-order Bessel family of windows. To conclude, from the basic compar-
ison presented in this chapter, we further point out from Table 3.1 that the
Hann, Hamming, and the truncated Taylor windows belong to the same class
of window functions. Among these, the Hamming window has the advantage
of exhibiting the lowest side-lobe levels.

It is to be noted that the parameters of almost all the window functions
described in Section 3.3 are given in Tables 3.1 through 3.3 in the increasing
order of NHMLW. The window functions presented in Table 3.1 are called
fixed windows, while those presented in Tables 3.2 and 3.3 are called variable
window function families.
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4
Performance Comparison of Data Windows

In this chapter, we compute several parameters of a window that are useful
in choosing a suitable window for particular applications, such as power
spectral estimation via discrete Fourier transform (DFT) and the design of
FIR digital filters. A comprehensive comparison of the windows that were
introduced in Chapter 3 is made based on the computed parameters. All
the parameters listed are computed using the properties of windows in the
continuous-time-domain.

The leakage that occurs in spectral estimation (via DFT) due to the promi-
nent side lobes of the spectral window obviously degrades the accuracy of
the results. Windows are weighting functions applied to the finite observa-
tion data to reduce the spectral leakage. There are four basic factors that need
to be considered while choosing a window: (a) resolution or bandwidth, (b)
stability, (c) leakage, and (d) smoothness. We shall now examine each of them
in detail.

(a) Resolution refers to the ability of a spectrum estimate to represent fine
structures in the frequency properties of the data, such as narrow peaks in
the spectrum. Owing to the averaging involved in computing a spectrum
estimate, a narrow peak in the periodogram is spread out into a broader
peak. The width is roughly an image of the spectral window used in the
estimate. Note that the width of the suitably defined spectral window is the
bandwidth of the estimate. If the spectrum of a time series consists of two
narrow peaks that are closer together than the bandwidth of the estimate
used, we find that the two narrow peaks overlap, resulting in a single peak
(which is broader). Thus, the estimate fails to resolve two narrow peaks that
occur in close proximity to each other in the true spectrum.

(b) Stability of a spectrum estimate refers to the extent to which the esti-
mates computed from different segments of a series concur, or the extent to
which irrelevant fine structures in the periodogram are eliminated. Actually,
resolution and stability are conflicting requirements since a high stabil-
ity requires averaging over many periodograms, whereas this results in a
reduced resolution.

(c) As discussed in one of the earlier chapters, leakage occurs because of the
side lobes in the spectral window. This could be reduced by applying appro-
priate window functions. The smoothness of a spectrum is a less tangible
property that would add a further conflict in requirements.

129
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(d) Smoothing the input observations by a data window has three detrimen-
tal effects on the spectral estimates:

i. Attenuation of the amplitudes
ii. Loss of statistical stability

iii. Loss in bandwidth of analysis

It is well known that applying windows on the data tapers the amplitude
and thus introduces an attenuation of the spectral estimates [1–6]. A weighting
factor, known as variance compensation factor (Q), salvages against this loss
and produces a window that has unit area in the frequency-domain. The
effective attenuation of the spectrum values due to data smoothing is reduced
by dividing the spectrum estimates (obtained from DFT) by the compensating
factor. This can be computed easily (for a specific data window) and the
procedure to obtain Q is described in the next section.

The loss of statistical accuracy due to windowing is automatically overcome
by the cyclic nature of the algorithm [1], as this produces increasingly stable
estimates. The reduction of bandwidth is unavoidable when applying data
windows. A measure of this loss can be obtained a priori from the dispersion
factor (to be defined later) and the frequency resolution is adjusted to provide
a suitable bandwidth of analysis.

When a data window is applied, it causes an increase in the bandwidth of
analysis. This, in turn, reduces the effective length of data over which it is
applied. Therefore, the period of the data should be enhanced by some factor
when the leakage is to be reduced and a specific 3 dB frequency has to be main-
tained. The half-power bandwidths of various windows are related to that of
the rectangular window by means of the 3 dB ratios. These ratios also give a
measure of the increase in the main-lobe width caused by data smoothing.

4.1 Definition of Window Parameters

It is to be noted that all the parameters are defined and computed in the
continuous-time and continuous-frequency-domains. The important win-
dow parameters (apart from the ones discussed in the previous chapter) in
the context of performance, following the definitions of Refs. [1–6], are listed
below:

i. Variance compensation factor (Q): The variance compensation factor
of a window is computed by the following definition:

Q = 1
2τ

∫ τ

−τ

f 2(t) dt. (4.1)

As is evident, this quantity is unity in the case of uniformly
weighted data window and is less in the case of other windows.
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The attenuation caused due to data smoothing can be compensated
by normalizing the spectrum estimates obtained from the DFT by
the value of the variance compensating factor, Q.

ii. Dispersion factor (η): This factor is defined as follows:

η =

∫ τ

−τ

f 2(t) dt

1
2τ

[∫ τ

−τ

f (t) dt
]2 . (4.2)

It is also known as the equivalent noise bandwidth of the window.
A study of the dispersion factor indicates that windows that cause
severe tapering of the data result in a spectral response, which
has a wider main-lobe width when compared to the rectangular
window (for which η = 1). However, the side lobes are drastically
reduced. Therefore, the application of a data window is a judicious
compromise between the smearing effect caused by the window
broadening and the leakage suppression that it provides.

iii. Coherent gain (G): The coherent gain factor is defined as

G = 1
2τ

∫ τ

−τ

f (t) dt. (4.3)

Only in the case of a rectangular window, this factor is unity,
while for all other windows the gain is reduced since the window
smoothly tapers to zero near the boundaries. This reduction in pro-
portionality is quite vital as it presents a known bias on spectral
amplitudes.

iv. Total energy (E): The total energy in the time-domain is represented
by the following definition:

E =
∫ τ

−τ

f 2(t) dt. (4.4)

This parameter is also important since the variance of the smoothed
spectral estimate depends on E.

v. Major-lobe energy (MLE) content: The MLE content is defined as
the ratio of the energy contained in the main lobe of the Fourier
transform of the window to its total energy in the time-domain,
computed with τ = 1. It also provides an idea of the energy that is
contained in the side lobes of the Fourier transform of the window.

vi. Half-power bandwidth: This is also known as the 3 dB bandwidth
and is yet another criterion that we should consider in the win-
dow selection process. It is the width of the window at half-power
points. This criterion reflects the fact that two equal-strength main
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lobes that are separated in frequency by an amount less than
their corresponding 3 dB bandwidths will essentially exhibit a sin-
gle spectral peak, and thus cannot be resolved as two distinct
peaks. Therefore, this parameter indicates the resolution that can
be obtained while applying a particular window.

vii. Peak side-lobe level (PSLL) or maximum side-lobe level (MSLL): It rep-
resents the ratio of the peak magnitude of the side lobe to the
magnitude of the main lobe at zero frequency (DC). This parameter
is expressed in dB.

viii. Normalized half-power bandwidth (�BW): This can be defined as

�BW =
Half-power bandwidth of the window

under consideration
Half-power bandwidth of the rectangular window

.

ix. Normalized half main-lobe width (�W): This ratio is defined as
follows:

�W = Main-lobe width of the window under consideration
Main-lobe width of the rectangular window

.

x. 6 dB bandwidth.
xi. Rate of fall-off of side-lobe levels (RFSLL).

xii. Degradation loss (L): This is the reciprocal of the dispersion factor,
which is expressed in dB.

Note that the half-power bandwidth (�BW), 6 dB bandwidth, MLE content,
PSLL, normalized half main-lobe width (�W), and RFSLL are all parameters
concerned with the Fourier transform of the data window. Therefore, these
parameters are all computed numerically, except for the RFSLL. The pro-
cedure for computing the RFSLL was already detailed in Chapter 3. Other
parameters such as variance compensation factor (Q), dispersion factor (η),
coherent gain (G), and total energy (E) can be computed using the expressions
given in Equations 4.1 through 4.4, respectively.

4.2 Computation of Window Parameters

We will now proceed to compute each of the parameters described in
Equations 4.1 through 4.4 for the truncated Taylor family of windows [2,3]
considered in the previous chapter.
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The expression for the truncated Taylor family of windows [3] is repro-
duced below:

f (t) = (1 + K)

2
+ (1 − K)

2
cos
(

π t
τ

)
, |t| ≤ τ . (4.5)

From the definition of the variance compensation factor given in Equation 4.1,
we obtain

(Q)TTF = 1
2τ

∫ τ

−τ

[
(1 + K)

2
+ (1 − K)

2
cos
(

π t
τ

)]2

dt. (4.6)

Expanding Equation 4.6, we obtain

(Q)TTF = 1
2τ

∫ τ

−τ

[
(1 + K)2

4
+ (1 − K)2

4
cos2

(
π t
τ

)

+ (1 + K)(1 − K)

2
cos
(

π t
τ

)]
dt. (4.7)

Using trigonometric identities, we can simplify Equation 4.7 as follows:

(Q)TTF = 1
2τ

∫ τ

−τ

{
(1 + K)2

4
+ (1 − K2)

2
cos
(

π t
τ

)

+ (1 − K)2

8

[
1 + cos

(
2π t
τ

)]}
dt.

Upon integration and simplification, we obtain the following result:

(Q)TTF = 1
τ

[
τ

(1 + K)2

4
+ τ

(1 − K)2

8

]

= 1
τ

[
τ

(3 + 2K + 3K2)

8

]

= (3 + 2K + 3K2)

8
. (4.8)

Equation 4.8 provides the expression for the variance compensation factor
(Q). If we set K = 0 in Equation 4.5, it represents the Hann window and
its corresponding Q � 0.375. The Hamming window results when K = 0.08
and in this case, Q � 0.4. The variance compensation factor for all the other
windows considered in the previous chapter are presented in Tables 4.1
through 4.3. Now, consider the expression for the dispersion factor, η, given
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by Equation 4.2, which can be expressed as

η = 2τQ

1
2τ

[∫ τ

−τ

f (t) dt
]2 = 2τQ

DEN
. (4.9)

The denominator (DEN) of Equation 4.9 is computed for the truncated Taylor
family (using Equation 4.5) as follows:

DEN = 1
2τ

[∫ τ

−τ

(1 + K)

2
+ (1 − K)

2
cos
(

π t
τ

)
dt
]2

= 1
2τ

[(1 + K)τ ]2

= (1 + K)2τ

2
. (4.10)

The substitution of Equations 4.8 and 4.10 into Equation 4.9 yields the
following expression for the dispersion factor for the truncated Taylor family:

(η)TTF = (3 + 2K + 3K2)

2(1 + K)2
.

Noting that the energy, E = 2τQ, we have

(E)TTF = (3 + 2K + 3K2)τ

4
.

We recall that the coherent gain G by definition is

G = 1
2τ

∫ τ

−τ

f (t) dt.

For the truncated Taylor family, G is given by

(G)TTF = 1
2τ

∫ τ

−τ

[
(1 + K)

2
+ (1 − K)

2
cos
(

π t
τ

)]
dt

= 1
2τ

[(1 + K)τ ]

= (1 + K)

2
.

The rest of the parameters are computed numerically, assuming the value of
τ to be unity.
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Following the above steps, all the parameters [4–6] are computed for the
remaining data windows considered in Section 3.3 of the previous chapter. It
must be emphasized that in the case of Kaiser’s modified zeroth-order Bessel
family [7] as well as Kaiser’s modified first-order Bessel family [7], all the
parameters have to be computed numerically. Tables 4.1 through 4.3 pro-
vide the computed values of the parameters. For the purpose of comparison,
the corresponding values of the rectangular window are also included in
Table 4.1.

Figure 4.1(a) shows the plots of NHMLW versus MSLL in dB, for various
data windows, including that of Kaiser’s modified zeroth-order and first-
order Bessel families of windows. It is interesting to note that these plots
are straight lines in the case of the Kaiser–Bessel windows. An approximate
linear relationship between the side-lobe levels and the main-lobe widths is
obtained for Kaiser’s modified zeroth-order Bessel family and is given by

y � −52x + 12.4,

where x represents the NHMLW and y gives the MSLL in dB. The main-lobe
width for this class of windows can be changed by varying the value of α

(the parameter of the window family), which usually lies within the range
4 ≤ α ≤ 9 for optimum results [7]. A similar relationship can be obtained for
Kaiser’s modified first-order Bessel family of windows, which can be given
as follows:

y � −47.68x + 4.68,

where x again represents the NHMLW of Kaiser’s modified first-order Bessel
family and y gives the corresponding MSLL in dB. The NHMLW and the
MSLL for these two families of windows are also included in Tables 4.2
and 4.3 for the sake of comparison.

Figure 4.1(b) shows the plot of the NHMLW versus the side-lobe energy
(SLE), for different data windows. Again, in the case of the modified zeroth-
order Bessel family, this follows a regular shape. For a given main-lobe width,
the modified zeroth-order Bessel window contains maximum energy in the
main lobe of its Fourier transform and, consequently, the minimum in the
side lobes of its Fourier transform. Therefore, Kaiser’s modified zeroth-order
Bessel windows are called near-optimum windows since they closely approx-
imate the optimum prolate-spheroidal wave functions whose band-limiting
properties are well known [8].

4.3 Discussion on Window Selection

In spectral estimation, a desirable window is the one that yields small values
of the variance compensation factor (Q), dispersion factor (η), total energy (E),
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PSLL, �W and �BW, and a large value of the main-lobe energy (MLE) con-
tent. However, the results of Tables 4.1 through 4.3 show that the decrease in
the PSLL is associated with an increase in both �W and η, which is a measure
of the increase in the main-lobe width. Similarly, a smaller value of the PSLL
leads to a higher leakage suppression. A rise in η implies a corresponding
increase in the loss of frequency resolution. The variance of the smoothed
spectral estimate is proportional to the total energy, E, when the data are sim-
ple functions of a Gaussian process. It is to be noted that the variance of any
estimate is a measure of its reliability: the smaller the value of E, the higher
is its reliability. Therefore, it is necessary to make a compromise between the
variance and the bias of an estimator of a spectrum. The bias can only be made
small by making the main lobe as narrow (and as close to a delta function)
as possible. On the other hand, a narrow spectral window results in a large
variance. Thus, the selection of an optimal data window for spectral estima-
tion turns out to be a judicious compromise among the various parameters
presented in these Tables.

For the purpose of designing FIR digital filters, a window with the smallest
main-lobe width and the lowest PSLL is best suited for weighting the Fourier
coefficients, h(n). However, these conditions cannot be met simultaneously.
Therefore, the selection of a window for this application is again a trade-off
between these two parameters.

The graphs presented in Figures 4.1(a) and (b) are useful in selecting a data
window that is closest to the near-optimum Kaiser–Bessel window, namely,
the modified zeroth-order Bessel family. A window that lies very close to the
straight line (corresponding to the zeroth-order Kaiser–Bessel window) of
Figure 4.1(a) and the curve (again corresponding to the zeroth-order Kaiser–
Bessel window) of Figure 4.1(b) is desirable. The graphs indicate that the
sum-cosine window satisfies these conditions simultaneously. From the above
discussions, it is clear that there is no unique window that has universal
applications for optimum results.
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5
Discrete-Time Windows and Their Figures
of Merit

Having introduced a variety of popular windows in the continuous-time-
domain in Chapter 3, we will now discuss their discrete-time counterparts,
so that they can be implemented in several digital signal processing appli-
cations. To have a wider choice, we have also included few more windows
in this chapter, the characteristics of which were not discussed in Chapter 3.
We have also defined a number of parameters that will enable the user to
select appropriate windows, depending on the application. Finally, based on
the parameters computed, we compare the performance of the discrete-time
window functions. Section 5.1 presents different classes of window func-
tions. Discrete-time windows are discussed in Section 5.2. Different figures
of merit, which will enable proper window selection, are defined in Section
5.3. The concept of time–bandwidth product is introduced in Section 5.4.
Finally, Section 5.5 gives applications of windows in finite impulse response
filter design and power spectral estimation.

5.1 Different Classes of Windows

As we have seen in the earlier chapters, window functions are weighting func-
tions associated with the spectral analysis of a time series. They act as either
intrinsive parameters or externally applied kernels of the spectral estimation
techniques, thereby improving the statistical characteristics of the spectrum.

We can classify windows into four different categories that are incorporated
in time series analysis as well as in power spectrum estimation techniques.
The four different classes are detailed below:

i. Data windows: As the name indicates, this is a time function that
is directly applied to the data or a time series. It may be a set of
weighting coefficients or a smoothing time function, depending on
the format of the data.

ii. Frequency window: This is a weighting function applied in the
frequency-domain on the Fourier transform of the data. This amounts
to the convolution (or multiplication) of the data windows and the

145
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Freqency
window function

Lag window
function

Spectral window
function

FT—Fourier transform
IFT—Inverse Fourier transform

IFT

IFT

Spectrum ProductCorrelation

Data window
function

FT

FT

FIGURE 5.1
Interplay between different forms of window functions.

Fourier transform of the data. Taking inverse Fourier transform of a
frequency window yields its time-domain counterpart.

iii. Lag window: This is a sequence with which the covariance function
of an observed process is weighted. The rectangular lag window is
given by

f (n) =
{

1, −M ≤ n ≤ M
0, otherwise.

(5.1)

where (2M + 1) is the window length. All the lag windows here
are defined for the interval [−M, M], and are symmetrical about the
origin.

iv. Spectral window: This is obtained by taking the Fourier transform of
the lag window. This can be considered as a filter through which the
true spectrum of a process is estimated.

Figure 5.1 represents the inter-relationships between the various forms of
windows described above. Lag windows are generally applied to the covari-
ance estimate of an input process. This in turn reduces the variance of the
resulting spectral estimate. Data windowing (or data smoothing) is employed
to minimize the frequency leakage effects, which is similar to the Gibbs
phenomenon occurring in approximation theory.

Example

We illustrate the four different categories of windows by means of some
examples.
Data window: As an example, a rectangular data window is used.

f [n] =
{

1, n = 0, 1, . . . , (N − 1)

0, otherwise.
(5.2)
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0 n

f [n]
(a)

–π 0

(b) F(e jω)

π ω

0 k

d[k]
(c)

0

D(e jω)(d)

ωπ–π

FIGURE 5.2
Interplay between various window functions. (a) Data window. (b) Frequency window. (c) Lag
window. (d) Spectral window.

For the data window represented in Equation 5.2 and shown in
Figure 5.2(a), the corresponding, lag, frequency and spectral windows
are obtained as follows:

Lag window: Using the relationships given in Figure 5.1, we can generate
the corresponding lag window as the autocorrelation of the data window.
Thus, for a rectangular window, it generates a corresponding triangular
lag window as shown in Figure 5.2(c). The amplitude of this triangular
window is normalized to unity. This gives

d[k] =
{

1 − |k|
N , k = 0, ±1, . . . , ±(N − 1)

0, otherwise.
(5.3)

Frequency window: This is obtained as the Fourier transform of the rectan-
gular data window, which is shown in Figure 5.2(b), and is given by the
following expression:

∣∣F(ejω)
∣∣ = ∣∣∣∣ sin(Nω/2)

sin(ω/2)

∣∣∣∣ . (5.4)

Spectral window: It is the Fourier transform of the above lag window (see
Equation 5.3). This is shown in Figure 5.2(d) and is equal to

∣∣D(ejω)
∣∣ = 1

N

∣∣∣∣ sin(Nω/2)

sin(ω/2)

∣∣∣∣
2

. (5.5)
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5.2 Discrete-Time Windows

In this section, we will catalog some popular windows as well as some not-so-
well-known windows, in the discrete-time-domain. Most of the windows are
the sampled versions of the continuous-time windows described in Section
3.3. We will provide the discrete form of each window and also its important
characteristics. All the windows are presented as even functions (symmetric
about the origin), while their lengths (N + 1) are odd.

5.2.1 Rectangular (Box Car) Window

This is the simplest window since the truncation of the input data amounts to
applying the rectangular window. It is otherwise called the Dirichlet window.
It is defined as

f [n] = 1, 0 ≤ |n| ≤ N
2

. (5.6)

5.2.2 Triangular (Bartlett) Window

An (N + 1)-length triangular window (including zeros at the edges) is
obtained by linearly convolving two rectangular windows of lengths N

2 each.
Therefore, the transform of this window is obviously the square of the Dirich-
let kernel. It is the simplest among those windows that exhibit a nonnegative
Fourier transform due to its self-convolution property. Its functional form is
given as follows:

f [n] = 1 − |2n|
N

, 0 ≤ |n| ≤ N
2

. (5.7)

5.2.3 Cosαx Window Family

In this family of windows, changing the value of the parameter α generates
different windows.

f [n] = cosα

(πn
N

)
, 0 ≤ |n| ≤ N

2
, (5.8)

where α takes on integer values.

5.2.4 Hann Window

The Hann window is actually a special case of the cosα x window, with α = 2,
that is,

f [n] = 0.5 + 0.5 cos
(

2πn
N

)
, 0 ≤ |n| ≤ N

2
. (5.9)
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5.2.5 Truncated Taylor Family of Windows

This is a generalized window that is expressed as

f [n] =
(

1 + k
2

)
+
(

1 − k
2

)
cos
(

2πn
N

)
, 0 ≤ |n| ≤ N

2
. (5.10)

Here k can take the values in the range 0 ≤ k ≤ 1. We note that the Hann
window is a special case of the truncated Taylor family with k = 0.

5.2.6 Hamming Window

This window is again a special case of the truncated Taylor family with
k = 0.08.

f [n] = 0.54 + 0.46 cos
(

2πn
N

)
, 0 ≤ |n| ≤ N

2
. (5.11)

In the case of the Hamming window, the value of k is selected such that the
peak side-lobe level (PSLL) is minimized.

5.2.7 Sum-Cosine Window

This is an optimized form of the cos3 x window.

f [n] = (1 − 2B) cos
(πn

N

)
+ 2B cos

(
3πn
N

)
, 0 ≤ |n| ≤ N

2
. (5.12)

It is to be noted that we discuss the figures of merit of various windows,
including the sum-cosine window, in Section 5.3. Further, in Table 5.3, we
summarize the results with B = 0.1 and 0.103, for the sum-cosine window.
The reason for obtaining two optimum values of B for the sum-cosine window
was already given in Section 3.3.8. The values of the PSLL are, respectively,
52 and 54 dB, for the B = 0.1 and 0.103 [1].

5.2.8 Raised-Cosine Window Family

In this class of windows, changing the value of the parameter D results in
windows with slightly different main-lobe widths that lie in between the
Hann (or Hamming) and sum-cosine windows.

f [n] = 1 − 2D
2

(
1 + cos

(
2πn
N

))
+ 2D cos

(
4πn
N

)
, 0 ≤ |n| ≤ N

2
. (5.13)

If D = 0, then f [n] gives the Hann window. As was done for the previ-
ous window, in Section 5.3 and Table 5.3, we summarize the results for
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D = 0.0113, 0.0138, 0.0155, and 0.0165 [1]. The rationale behind four different
optimum values of D for the raised-cosine family of windows was provided in
Section 3.3.10 (for its continuous–time counterpart). The PSLL varies between
−42 and −51 dB, respectively.

5.2.9 Blackman Window

This belongs to the more general class of the Blackman–Harris window family
(see Section 5.2.12) consisting of only two cosine terms and a constant.

f [n] = 0.42 + 0.5 cos
(

2πn
N

)
+ 0.08 cos

(
4πn
N

)
, 0 ≤ |n| ≤ N

2
. (5.14)

5.2.10 Optimized Blackman Window

The coefficients of the Blackman window given in Equation 5.14 were found
to be not optimal. The optimized form of the Blackman window is given by

f [n] = 0.412 + 0.5 cos
(

2πn
N

)
+ 0.088 cos

(
4πn
N

)
, 0 ≤ |n| ≤ N

2
. (5.15)

While optimizing the PSLL, the second coefficient is kept to be the same
(0.5) as the original Blackman window [1]. This is because the coefficient 0.5
has a special significance while implementing this window in the frequency-
domain. We shall provide more details on this topic in chapter 6 (see Section
6.4).

5.2.11 Tukey Window

This window can be generated by convolving a cosine lobe of length ( αN
2 )

with a rectangular window of length (1 − α

2 )N. The Tukey window is also
referred to as a tapered cosine window. Its time-domain expression is given by

f [n] =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, 0 ≤ |n| ≤ (1 − α)
N
2

0.5

⎡
⎢⎢⎣1 + cos

⎛
⎜⎜⎝

π

(
n − (1 − α)

N
2

)
αN/2

⎞
⎟⎟⎠
⎤
⎥⎥⎦ , (1 − α)

N
2

≤ |n| ≤ N
2

.

(5.16)

If α = 0, then the Tukey window reduces to a rectangular window and when
α = 1, it takes the form of the Hann window.
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5.2.12 Blackman–Harris Window

There are several variations of the Blackman–Harris window depending on
the coefficients chosen. Four examples are listed in Table 5.1 given below [2,3].
The general expression is given as

f [n] = a0 + a1 cos
(

2πn
N

)
+ a2 cos

(
4πn
N

)
+ a3 cos

(
6πn
N

)
, 0 ≤ |n| ≤ N

2
.

(5.17)
It has been found that the minimum three-term window can give a side-lobe
level of −70.83 dB, whereas the minimum four-term window can achieve a
side-lobe level as low as −92.01 dB for large values of window length.

5.2.13 Nuttall Window Family

The Nuttall window family has better side-lobe structure when compared to
the Blackman–Harris windows for large values of window lengths. The win-
dow definition is similar to the sum-cosine expression given in Equation 5.18
with coefficients given in Table 5.2 [3]. The minimum three-term Nuttall win-
dow can achieve a PSLL as low as −71.48 dB and the four-term can reach upto
−98.17 dB, maintaining the same rate of fall-off of side-lobe level (RFSLL) of
the Blackman–Harris window (−6 dB/octave), for large values of window
length.

TABLE 5.1

Blackman–Harris Window Family

Minimum Minimum

Three-Term Three-Term Four-Term Four-Term

(−70.83 dB) (−62.05 dB) (−92.01 dB) (−74 dB)

a0 0.42323 0.44959 0.35875 0.40217
a1 0.49755 0.49364 0.48829 0.49703
a2 0.07922 0.05677 0.14128 0.09892
a3 – – 0.01168 0.00188

TABLE 5.2

Nuttall Window Family

Nuttall Window a0 a1 a2 a3

Three-term with continuous third derivative 0.375 0.5 0.125 –
Three-term with continuous first derivative 0.40897 0.5 0.09103 –
Four-term with continuous fifth derivative 0.3125 0.46875 0.1875 0.03125
Four-term with continuous third derivative 0.338946 0.481973 0.161054 0.018027
Four-term with continuous first derivative 0.355768 0.487396 0.144232 0.012604
Minimum three-term 0.4243801 0.4973406 0.0782793 –
Minimum four-term 0.3635819 0.4891775 0.1365995 0.0106411
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5.2.14 Flat-Top Window

Flat-top window got its name from the maximally flat structure of the main
lobe. Here, we discuss only the third-order and fifth-order flat-top windows.
They can be defined as follows:

f [n] = a0 + a1 cos
(

2πn
N

)
+ a2 cos

(
4πn
N

)

+ a3 cos
(

6πn
N

)
+ a4 cos

(
8πn
N

)
, 0 ≤ |n| ≤ N

2
. (5.18)

where a0 = 0.2811, a1 = 0.5209, and a2 = 0.198 for the third-order flat-
top window, and a0 = 0.21557895, a1 = 0.41663158, a2 = 0.277263158, a3 =
0.083578947, and a4 = 0.006947368 for the fifth-order flat-top window [4].

The time-domain and frequency-domain plots for the fifth-order flat-top
window are given in Figures 5.3(a) and (b), respectively. From Figures 5.3(a),
we can see that the flat-top window exhibits negative weights. This is an
exception from the windows discussed earlier. The maximally flat main-lobe
structure can be obtained by equating derivatives of F(ejω) at ω = 0 to zero [4].
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0
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2

N−1
2

–

FIGURE 5.3
(a) Fifth-order flat-top window weights for N = 41. (b) Magnitude response of f [n].
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Due to the flat and wide main-lobe structure, the scalloping loss (discussed
in Section 5.3) is very small for this window.

5.2.15 Parabolic Window

This window is described as follows:

f [n] = 1 −
(

2n
N

)2

, 0 ≤ |n| ≤ N
2

. (5.19)

It exhibits a discontinuous first derivative at the edges and therefore its side
lobes fall off at −12 dB/octave.

5.2.16 Riemann Window

This is defined as the central lobe of the sinc kernel.

f [n] = sin
(

2πn
N

)
2πn
N

, 0 ≤ |n| ≤ N
2

. (5.20)

It is similar to the cos αx window discussed in Section 5.2.3, when α = 1 value
is substituted.

5.2.17 Poisson Window

This is actually a family of windows with α being the variable parameter. It
has the general form

f [n] = e−α
|n|

N/2 , 0 ≤ |n| ≤ N
2

(5.21)

The usual α values are 2, 3, and 4. It has a discontinuity at the boundaries and
therefore the transform falls off at a rate of −6 dB/octave only.

5.2.18 Gaussian Window

We know that the frequency response of a Gaussian time function is also a
Gaussian. Since the time span of a Gaussian function is infinity, it must be
truncated at the ends to use it as a window function. This window has the
following form:

f [n] = e− 1
2 [α n

N/2 ]2

, 0 ≤ |n| ≤ N
2

. (5.22)

It should be noted that as we increase the value of α, the width of the window
decreases, and this will in turn reduce the severity of the discontinuity at the
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edges. However, this will increase the main-lobe width, and consequently
reduce the side-lobe levels, in the transform domain. The commonly used
values of α are 2.5, 3, and 3.5.

5.2.19 Cauchy Window

This window is also a family with the variable parameter α. It is given by

f [n] = 1

1 +
[
α n

N/2

]2 , 0 ≤ |n| ≤ N
2

. (5.23)

The usual values of α used in practice are 3, 4, and 5. The Fourier transform
of the Cauchy window turns out to be a two-sided exponential function.

5.2.20 Hann–Poisson Window

This window can be constructed as the product of the Hann and the Poisson
windows (which were introduced in Sections 5.2.4 and 5.2.17).

f [n] = 0.5
[

1 + cos
(

π
n

N/2

)]
e(−α

|n|
N/2 ), 0 ≤ |n| ≤ N

2
. (5.24)

The usual values of α are 0.5, 1, and 2. The RFSLL in the Hann–Poisson win-
dow is −18 dB/octave, which is the same as the Hann window. This window
is actually similar to the Poisson window family. This set of windows exhibit
a very large main-lobe width.

5.2.21 Papoulis (Bohman) Window

This window is a result of the convolution of the half-duration cosine-lobe
with itself.

f [n] =
(

1 − |n|
N/2

)
cos
(

πn
N/2

)
+ 1

π
sin
(

π |n|
N/2

)
, 0 ≤ |n| ≤ N

2
. (5.25)

Naturally, the Fourier transform of this window is the square of the cosine
lobe’s Fourier transform. The Papoulis window can alternatively be expressed
as the product of the triangular window with a single cycle of a cosine window
of the same period. The second term appearing in the above window function
acts as a correction term. This is added so that the first derivative is set to zero at
the boundaries. The third derivative of the Papoulis window is discontinuous
and therefore the RFSLL is 1

ω4 or −24 dB/octave.
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5.2.22 Jackson (Parzen) Window

The Jackson window is obtained by convolving two triangular windows of
one-half extent and is given by

f [n] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − 6
[

n
N/2

]2 [
1 − |n|

N/2

]
, 0 ≤ |n| ≤ N

4

2
[

1 − |n|
N/2

]3

,
N
4

≤ |n| ≤ N
2

.

(5.26)

The Fourier transform of this window is the square of the Fourier transform
of the triangular window. Therefore, the RFSLL of the side lobes in the case of
the Parzen window will be 1

ω4 . The transform of this window is non-negative,
just like the triangular window, because of its self-convolution construction.

5.2.23 Dolph–Chebyshev Window

In signal processing applications, we always look for a window that exhibits
a narrow bandwidth for a known finite duration. A similar problem is faced
by the antenna design community. In the antenna context, the problem is
to illuminate an antenna of finite aperture to obtain a narrow main-lobe
beam, while restricting the side-lobe levels. The closed-form solution to
the minimum main-lobe width for a given side-lobe level is offered by the
Dolph–Chebyshev window. The DFT of this window is given by

F[k] = cos
[
N cos−1

[
β cos

(
πk
N

)]]
cosh

[
N cosh−1

(β)
] , 0 ≤ k ≤ N − 1 (5.27)

where β = cosh[cosh−1
(10α)/N] (5.28)

and cos−1(X) =
⎧⎨
⎩

π

2
− tan−1[X/

√
1 − X2], |X| ≤ 1

ln[X + √
X2 − 1], |X| ≥ 1

.

To obtain the corresponding window samples f [n] in the time-domain, we
simply perform an IDFT on the Dolph–Chebyshev window samples F[k] and
scale the amplitude, such that the peak value is unity, like in the case of other
window time samples.

5.2.24 Modified Zeroth-Order Kaiser–Bessel Window Family

The modified zeroth-order Kaiser–Bessel window is defined as

f [n] =
Io

[
α

√
1 − ( 2n

N

)2
]

Io[α] , 0 ≤ |n| ≤ N
2

. (5.29)
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where Io(x) is the modified Bessel function of zeroth-order and first kind,
defined as

Io(x) =
∞∑

m=0

1
(m!)2

(x
2

)2m

. (5.30)

Kaiser had discovered a simple approximation to the prolate-spheroidal
wave function of order zero, which is difficult to compute. Since the prolate-
spheroidal wave function maximizes the energy in a band of frequencies, say
W, such a function is said to be optimum. As the zeroth-order Kaiser–Bessel
family approximates this property of the zeroth-order prolate-spheroidal
wave function, it is also called the near-optimum window family.

5.2.25 Modified First-Order Kaiser–Bessel Window Family

f [n] =
I1

[
γ

√
1 − ( 2n

N

)2
]

I1[γ ]
√

1 − ( 2n
N

)2
, 0 ≤ |n| ≤ N

2
. (5.31)

In the above expression, I1(x) represents the modified first-order Bessel
function of the first kind. It is defined as

I1(x) =
∞∑

m=0

1
m!(m + 1)!

(x
2

)2m+1

. (5.32)

As in the case of the modified zeroth-order Kaiser–Bessel family, the side-lobe
level can be varied by choosing different values of γ . The modified first-order
Bessel family has the slight advantage of smaller first side-lobe compared
to either the zeroth-order Bessel windows or the prolate-spheroidal wave
functions, but on the other hand, the RFSLL is a bit slower.

5.2.26 Saramäki Window Family

This is a new class of window functions that are found to be a closer approx-
imation to the prolate-spheroidal wave functions than the Kaiser–Bessel
window family. These windows are derived using frequency transforma-
tion that maps the frequency response of a rectangular window to another
frequency response having wider main-lobe width [5].

The Saramäki window function is defined as

f̂ [n] = f̂0[n] + 2
N/2∑
k=1

f̂k[n], (5.33)
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where f̂0 = δ[n] and f̂k

′
s can be calculated using the recursive relation as

follows:

f̂1[n] =

⎧⎪⎨
⎪⎩

γ − 1, n = 0
γ /2, |n| = 1
0, otherwise

(5.34)

f̂k[n] =
{

2(γ − 1)f̂k−1[n] − f̂k−2[n] + γ [f̂k−1[n − 1] + f̂k−1[n + 1]], −k ≤ n ≤ k
0, otherwise.

(5.35)

If we compute f̂ [n], we find a window function for which f̂ [0] is not equal to
1. We therefore scale this function using the relation

f [n] =
{

f̂ [n]/f̂ [0], 0 ≤ |n| ≤ N
2

0, otherwise.
(5.36)

5.2.27 Ultraspherical Window

The ultraspherical window is one of the newly introduced windows, which
has wide applications in signal processing. We note that the Kaiser–Bessel
window, the Dolph–Chebyshev window, and the Saramäki window dis-
cussed earlier have a variable parameter in addition to the window length.
This is to control the PSLL of the window. Apart from these two parameters,
the ultraspherical window has a third parameter that controls the RFSLL. The
ultraspherical window coefficients in the range of −M to M, for a window of
length N = 2M + 1 can be calculated as follows [6]:

f [n] = μx2M
μ

M + |n|
(

μ + M + |n| − 1
M + |n| − 1

)M−|n|∑
m=0

(
μ + M − |n| − 1

M − |n| − m

)

×
(

M + |n|
m

)
(1 − x−2

μ
)

m. (5.37)

The binomial coefficients can be calculated as(
α

0

)
= 1,

(
α

p

)
= α(α − 1)...(α − p + 1)

p! , p ≥ 1.

The parameter xμ given in the window definition (see Equation 5.37) can
be used to adjust the width of the main lobe and μ controls the RFSLL. Figure
5.4 shows the ultraspherical window magnitude response for μ = 1.2, 0, and
−0.9 with fixed xμ. From this figure, we can see that
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FIGURE 5.4
Ultraspherical window magnitude response for xμ = 1.1, N = 31, and μ taking the values 0, 1.2,
and −0.9.

i. For positive values of μ, the side lobes decrease as we go from 0 to π .
ii. For negative values of μ, the side lobes increases.

iii. For μ = 0, we get the Dolph–Chebyshev window, where all the side
lobes are equal.

iv. For μ = 1, the Saramäki window is also a special case of ultraspheri-
cal window [6]. The coefficients calculated from Equation 5.37 are not
normalized. The normalized ultraspherical window can be obtained
by dividing f [n] by f [0] for odd N, or by f [0.5] for even N.

5.2.28 Odd and Even-Length Windows

The windows defined in this section can be obtained from the continuous-time
windows (introduced in Chapter 3) by taking samples at

t = nT = 2nτ

N
, |n| ≤ N

2
,

where τ is the one-sided duration of the window and N is an even number
(but length is odd). This is depicted in Figure 5.5 for the Hann window. These
are odd length windows and therefore the point of symmetry is always an
integer. However, in practice, we may come across many applications that
uses radix-2 FFT and thus require even-length windows.

Even-length windows can be obtained by shifting the continuous-time
windows by T

2 and sampling the shifted window at

t = nT = 2nτ

N
, −N

2
≤ n ≤

(
N
2

− 1
)

(5.38)

as shown in Figure 5.6. Equivalently, we can replace n by (n + 1
2 ) in all

the discrete-time window definitions for odd lengths and compute the
coefficients, with n taking the values −N

2 ≤ n ≤ (N
2 − 1).
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FIGURE 5.5
Odd-length window.
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FIGURE 5.6
Even-length window.

Note: Windows such as rectangular, Hann, Blackman, and so on have zeros at
the edges. These zeros do not contribute to the output. They are included only
to maintain consistency in the discrete-time and continuous-time window
definitions. In the hardware implementation, we generally take only nonzero
coefficients to reduce unnecessary computations.

5.3 Figures of Merit

The most important application of window functions is in spectral analysis.
They are sometimes used in the design of linear-phase FIR filters. In both
these applications, the reduction of spectral leakage is one of the vital factors
in choosing a window from among several window functions. In this section,
various parameters of windows are defined that pertain to the time-domain
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as well as to the frequency-domain [1,2]. All these parameters will help us in
selecting an appropriate window function for a particular application. The
computed parameters for all the window functions are presented in Tables
5.3, 5.4 and 5.5 at the end of this section.

1. Equivalent noise bandwidth (B): Owing to spectral leakage, impulse
functions are replaced by broader bandwidth sampling functions. As
the side lobes of these functions contribute to noise, the window must
be designed so as to reduce these side lobes. The Equivalent noise
bandwidth (ENBW) measures the noise performance of the window
function. The magnitude, say at a frequency ωo, is computed by tak-
ing the weighted sum of the contributions from all the frequencies.
Therefore, the value at ωo is biased by its own frequency, broadband
noise, and other interfering harmonics.

Consider the case of a signal having a single tone at ωo and
the broadband white noise spread over the entire spectrum. The
accumulated noise at this frequency can be minimized by using win-
dows having lower bandwidths. The parameter ENBW is defined as
the bandwidth of a hypothetical (ideal) rectangular filter that has the
same root mean square (RMS) value of noise signal as that of the win-
dow of interest (shown in Figure 5.7) [7]. Here, the peak powers of the
rectangular filter and that of the window under consideration must
be the same. Let No be the noise power spectral density (PSD). Then,
the noise power Pn, accumulated by the window, can be defined as

Pn = No

2π

∫ π

−π

|F(ejω)|2dω. (5.39)

PSD of window
PSD of hypothetical
rectangular filter

ENBW

ω

|F(e jω )|2

FIGURE 5.7
Equivalent noise bandwidth.
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From Parseval’s theorem, this can also be computed in the time-
domain using the expression

Pn = No

N−1∑
n=0

|f [n]|2. (5.40)

The noise power collected by the rectangular filter is

Pn = No F2(0) B (5.41)

= No

[
N−1∑
n=0

|f [n]|
]2

B

Therefore, the ENBW measure is given by B =
∑N−1

n=0 |f [n]|2[∑N−1
n=0 f [n]

]2 .

(5.42)

The ENBW is easy to compute and this definition can be used to
compare the side-lobe behavior of different windows. The smaller
the value of ENBW, the better the performance of the window, in the
presence of broadband noise. We note that the ENBW of the rectan-
gular window is 1

N bins. Using the Schwartz inequality, it is possible to
prove that no other window can have a smaller ENBW than 1

N bins.
The parameter ENBW (normalized to 1

N ) for all windows considered
in this chapter is presented in Tables 5.3 through 5.5. Owing to the
normalization factor, the value of ENBW for a rectangular window
is unity.

2. Coherent gain (G): When a window is applied on a signal, it tends to
taper the signal to zero near the boundaries or edges of the observa-
tion interval. This happens because of the effect of applying the data
window, which smoothly approaches zero at the edges. The signal
power gets reduced due to this tapering. The magnitudes at the fre-
quency bins will no longer be equal to its true values. Coherent gain
(G) gives a known scaling factor to get the absolute values at these
frequencies. This is also known as the DC gain of the window. It is
defined as

G =
N−1∑
n=0

f [n].

For a rectangular window, the DC gain is N, the number of terms in
the window. However, for any other window, the DC gain will be
reduced, since it tapers down to zero at the edges. This reduction in
the DC gain is important since it accounts for a definite scaling of the
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amplitudes of the signal spectrum. Coherent power gain is the square
of the sum of the window terms, given by

G2 =
(

N−1∑
n=0

f [n]
)2

.

The values of G for different windows are also presented in Tables 5.3
through 5.5. Note that the coherent gain is normalized by dividing
with N. Therefore, the coherent gain (G) of a rectangular window is
unity and for all other windows, it is less than one.

3. Degradation loss (L): This is also known as the processing gain, and
it indicates the degradation of the signal-to-noise ratio (SNR) due to
windowing. It depends on the shape of the window (since that in turn
determines the ENBW). This loss L is the ratio of the output SNR of
the signal after windowing [(SNR)O] to the input SNR of the original
sequence [(SNR)I)]:

L = (SNR)O

(SNR)I
.

The use of window functions effectively results in the reduction of
signal power and the accumulation of noise from the neighboring
frequencies. The degradation loss (L) can alternatively be defined as

L = Coherent power gain
B

.

Coherent power gain is a measure of reduction in signal power,
whereas B (which denotes the ENBW) measures the noise from other
frequency components. If there is only one coherent component, then
the coherent power gain will be unity. In such a case

L = 1
B

=
(∑N−1

n=0 f [n]
)2

∑N−1
n=0 f 2[n] . (5.43)

The degradation loss is computed for all the windows, by assuming
only one coherent component, and this is presented in Tables 5.3
through 5.5.

4. 3 dB and 6 dB bandwidths: These are important metrics that determine
the minimum separation required between two frequency compo-
nents of equal amplitudes, such that they can be resolved. In other
words, resolution means that there should be a local minimum
between the two peaks. The rectangular window has excellent reso-
lution characteristics for signals of comparable strengths. In the case
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of DFT, the neighboring components are weighted by the window
and added coherently including the side lobes. As a rule of thumb
for resolvability, the gain at the crossover of the kernel must be less
than 0.5 [7]. This implies that 6 dB bandwidth is the deciding factor of
spectral resolution rather than the 3 dB bandwidth. The comparison
between 6-dB and 3-dB bandwidths is given in Figure 5.8. However,
the difference between the 3 dB bandwidth and noise power band-
width is a good indicator to study the performance of the windows.
The 3 dB bandwidth, 6 dB bandwidth, and �BW (normalized with
respect to the rectangular window’s 3 dB bandwidth) are all included
in Tables 5.3 through 5.5. The parameter �BW is defined as

�BW = 3 dB bandwidth of window
3 dB bandwidth of rectangular window

.

An example of the 6-dB and 3-dB bandwidths of the Hamming
window is provided in Figure 5.8.
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FIGURE 5.8
Minimum resolution bandwidth. (a) Nonresolvable peaks. (b) Resolvable peaks.
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5. Main-lobe width (�W): To represent fine structures in the spectrum,
it is essential that the kernel should have a very narrow main-
lobe width. This parameter (�W) determines the extent to which
the visibility of a weak component is affected by the presence of a
nearby strong coherent component. We note here that the rectan-
gular window exhibits the smallest main-lobe width and therefore
gives excellent frequency resolution capability. Hence, this param-
eter is also normalized with respect to the rectangular window’s
main-lobe width. The parameter �W for all the windows are pre-
sented in Tables 5.3 through 5.5. Owing to the scaling factor, �W for
a rectangular window is 1.0.

6. Scalloping loss or picket-fence effect: In the DFT spectrum, all the fre-
quency bins are equally spaced by the reciprocal of the length of the
data. If the frequency of the signal falls exactly in between two bins,
then its energy is distributed between these two bins, resulting in the
distortion of the spectrum. This type of distortion is called the scallop-
ing loss or picket-fence effect. This parameter is obviously maximum if
it falls exactly halfway between any two frequency bins as shown in
Figure 5.9. Scalloping loss can be defined as the ratio of the coherent
gain (G) for a signal frequency component located exactly midway
between two DFT bins to the coherent gain of a signal frequency
component located exactly at a DFT bin. It is defined as [2].

Scalloping loss =
∣∣∣∑N−1

n=0 f [n]e−j πn
N

∣∣∣∑N−1
n=0 f [n] = |F( ωs

2N )|
F(0)

. (5.44)

This can be reduced either by selecting a proper value of the length
of finite extent data or by increasing the length of the observation

k
m m + 1

Signal frequency halfway
 between two bins

FIGURE 5.9
Frequency of signal halfway between two bins.
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interval. Yet another solution involves arranging the harmonic fre-
quencies to be more closely spaced and coincident with the signal
frequencies. This may be achieved by zero-padding (adding zeros)
the true data. However, these additional zeros will not contribute to
any new information.

7. Worst-case processing loss (WCPL): The WCPL is the sum of maximum
scalloping loss due to the worst-case frequency allocation and the
degradation loss due to the window. Therefore, this is a measure
of the reduction of output SNR resulting from the combination of
the window function and the worst-case frequency locations. This
is essentially a measure of the worst-case reduction of SNR, and for
any good window this must be less than 3.8 dB. Therefore, from Table
5.3, it can be seen that the windows such as rectangular, Cauchy (α ≥
4), Gaussian (α = 3.5), Poisson (α = 4), and Blackman–Harris (four-
term, −92 dB) are to be avoided. It can be observed from Table 5.3 that
the WCPL value for these cases ranges from 3 to 4.3. It is interesting to
note that the WCPL is always less than 3.8 for all the other windows
considered here, including the modified zeroth-order Kaiser–Bessel
window family and the modified first-order Kaiser–Bessel window
family. The performance of the parameters of these two Kaiser–Bessel
window families is compared in Tables 5.4 and 5.5.

8. Overlap correlation: When a window is applied to a signal, the data
sequence gets tapered to zero at the edges, which will obviously
lead to loss of information. Short-duration events occurring at the
ends of the observation window will be neglected, if the nonover-
lapped window is considered. This can be avoided by processing
the sequence with overlapping windows. The amount of overlap
required varies from 20% in the case of the rectangular window to
76% in the Blackman–Harris window case. However, in general, 50%
or 75% overlap is necessary to retain most of the information in the
signal. We obtain more number of segments for averaging in the over-
lapped case, which reduces the variance of the signal’s spectrum. This
also has the effect of the reduction of noise power to some extent.

9. Peak side-lobe level (PSLL) and first side-lobe level (FSLL): We have seen in
Chapter 2 that the noncoherent component causes spectral leakage.
This leakage might sometimes dominate nearby weak harmonics.
The parameters that helps in the selection of a window to detect
these weak harmonics are (i) the RFSLL, (ii) the PSLL, and (iii) the
first side-lobe level (FSLL). It is to be noted that for some windows, the
PSLL need not necessarily be the first side-lobe level. For example,
the Hamming window has a first side-lobe level −44 dB while its
PSLL is about −42 dB. Therefore, the PSLL is higher than the FSLL
(see Figure 5.10). Therefore, the Hamming window is a preferred
choice in applications where the immediate side-lobe rejection is of
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FIGURE 5.10
DTFT of Hamming window.

major concern. The PSLL for all the windows mentioned are listed in
Tables 5.3 through 5.5.

10. Rate of fall-off of side-lobe level (RFSLL): The RFSLL is yet another
parameter with which we must be concerned with. The unit of RFSLL
is in terms of decibels per octane (dB/oct). The graphical computa-
tion of RFSLL for the rectangular window is illustrated in Figure 5.11.
This figure shows that for higher frequencies, the side lobe goes
down by about −6 dB/octave. If we require attenuation at higher
frequencies, then we should select a window that has a more rapid
RFSLL. For example, the Hann window is better suited in such an
application than a Hamming window, since the RFSLL in this case is
−18 dB/octave.
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FIGURE 5.11
RFSLL for rectangular window.
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11. Variance compensation factor (Q): The variance compensation factor,
Q, is defined as follows:

Q = 1
N

N−1∑
n=0

f 2[n]. (5.45)

The attenuation caused due to data smoothing can be compensated
by dividing the spectral estimates from the DFT by the value of the
compensating factor, Q. The value of Q in the case of the rectangular
window is unity and is always less in the case of other windows.

All the above-mentioned parameters are also computed for the variable
window function families, namely, the modified zeroth-order Kaiser–Bessel
and the modified first-order Kaiser–Bessel families, and are presented in
Tables 5.4 and 5.5, respectively. The parameters given in Table 5.3 through
5.5 are calculated for a window length of N = 57. Owing to aliasing in the
frequency-domain, these parameters vary slightly with N.

5.4 Time–Bandwidth Product

The time–bandwidth product is usually defined for deterministic and finite
energy signals. Although a signal f [n] cannot be both time-limited and
band-limited simultaneously, its characteristics can be defined by using an
equivalent time width and bandwidth. These definitions hold for signals that
are real, nonnegative, and symmetric, and which exhibit maximum value at
n = 0 [8]. Therefore, this is applicable for almost all the window functions.
The equivalent time width Ne is defined as

Ne =
∑∞

n=−∞ f [n]
f [0] . (5.46)

The time width is defined as the width of the rectangular signal with height
f [0] and area equal to that of the signal f [n]. Similarly, the equivalent
bandwidth Be can be defined in the frequency-domain as

Be =
1

2π

∫π

−π
F(ejω) dω

F(0)
. (5.47)
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From the definition of the DTFT and IDTFT expressions, we obtain the
following relationships:

f [0] = 1
2π

∫ π

−π

F(ejω) dω, (5.48)

F(0) =
∞∑

n=−∞
f [n]. (5.49)

By substituting the expressions for f [0] and F(0) in Equations 5.46 and 5.47
and after canceling the common terms in the product of Ne and Be, we obtain

NeBe = 1. (5.50)

From the equivalent time–bandwidth product, it is clear that the spectral
resolution is approximately the reciprocal of the observation interval. Hence,
the length of the finite extent data (N) can be selected from Equation 5.50 to
meet the required spectral resolution as well as variance.

5.5 Applications of Windows

In present-day applications, we rely more on DSPs rather than their ana-
log counterparts. We now consider two important applications of windows,
namely, filter design and spectral analysis.

5.5.1 FIR Filter Design Using Windows

For implementing a filter in a DSP, we often prefer to use linear-phase FIR
filters instead of infinite impulse response (IIR) filters [9,10]. However, the dis-
continuities in the frequency response of ideal filters result in infinite length
impulse response. The desired frequency response of an ideal lowpass filter
is given by

Hd(ejω) =
{

1, 0 ≤ |ω| ≤ ωc

0, ωc < |ω| < π
(5.51)

and its impulse response is given by

hd[n] = sin(ωcn)

πn
, −∞ ≤ n ≤ ∞. (5.52)

Figure 5.12 shows the ideal lowpass filter frequency response and its impulse
response. The method of FIR filter design from the ideal IIR filter involves
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ωc/π

FIGURE 5.12
Ideal lowpass filter and its impulse response.

an approximation of the ideal filter response by a practically realizable filter.
There are many techniques available for the design of a linear-phase FIR filter.
All these techniques are based on some approximation criterion or a measure
of goodness for the response of a designed filter, in comparison to the ideal
desired response. The most popular design uses direct optimization tech-
niques [11,12]. However, the simplest method for FIR filter design is called
the impulse response truncation (IRT) method or the windowing method. The
major drawback of this method in contrast to the optimization method is that
in IRT it is impossible to design a filter of minimal length that meets the fre-
quency response requirements in the passband and stopband. This method
is based on the truncation of the Fourier series of the input sequence. Every
desired filter response Hd(ejω) of a nonrecursive filter is a periodic function in
ω with period 2π . Therefore, Hd(ejω) can be represented as a Fourier series as
follows:

Hd(ejω) =
∞∑

n=−∞
hd[n]e−jωn. (5.53)

The coefficients of this Fourier series can be recognized as being equal to the
impulse response of a digital filter given by

hd[n] = 1
2π

∫ π

−π

Hd(ejω)ejωndω. (5.54)

In general, the function hd[n] designed is of infinite length and is noncausal
(see Figure 5.12). The simplest method to design an FIR filter is to truncate
the Fourier series for a desired length of the filter (as shown in Figure 5.13)
and then apply a right shift of ( N−1

2 ) samples to make it causal, as depicted in
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hd(n)

0 Samples n−(N−1)/2 (N−1)/2

FIGURE 5.13
Truncation of impulse response.

Figure 5.14. Hence, we can obtain the impulse response of the desired filter as

h[n] =
{

hd[n], 0 ≤ n ≤ N − 1
0, otherwise.

(5.55)

If we carefully examine Equation 5.55, we can conclude that this is nothing
but a rectangular windowing operation. Hence, the impulse response of the
filter can be rewritten as

h[n] = hd[n]w[n], (5.56)

where w[n] is a rectangular window defined as

w[n] =
{

1, 0 ≤ n ≤ N − 1
0, otherwise.

(5.57)

To understand the characteristics of the frequency response of the designed
filter, it would be easier if we investigate the effect of this windowing oper-
ation in the frequency-domain. In the frequency-domain, this operation is
represented by a convolution operation of Hd(ejω) and the frequency response

N−10

h(n)

Samples n

FIGURE 5.14
Shifted impulse response.



Discrete-Time Windows and Their Figures of Merit 175

of the rectangular window W(ejω) as follows:

H(ejω) = 1
2π

∫ π

−π

Hd(ejθ )W(ej(ω−θ))dθ . (5.58)

This convolution operation is depicted pictorially in Figure 5.15.
Let us now take an example of the FIR filter design using the window-

ing approach. The frequency response and the impulse response of an ideal
lowpass filter were given in Figure 5.12. The magnitude response of the rect-
angular window is provided in Figure 5.16. The rectangular window has
a narrower main lobe and larger side lobes when compared to the other
common windows.

The frequency response of the resulting lowpass filter is shown in
Figure 5.17. Here, we can see that the frequency response of the filter is not
flat since it has ripples in the passband and the stopband. Besides, the tran-
sition between the passband and the stopband is not sharp. There is a large
transition band in between. These features of the filter are due to the direct
truncation of the IIR. When we convolve Hd(ejω) with the window response,
the main lobe of the window results in a transition band between the pass-
band and the stopband. The side-lobes of the window give rise to the ripples
in the passband and stopband. Hence, the transition width of an FIR lowpass
filter designed using the windowing method is proportional to the main-lobe
width of the window and the ripples are proportional to the side-lobe levels
of the window.

To compare the performance of the FIR lowpass filter designed using dif-
ferent windows, we show the effects of the Hann and Hamming windows.
The Hann window and its Fourier transform are shown in Figure 5.18. The
Hann window and the Hamming window have larger main-lobe widths and
smaller side-lobe levels when compared to the rectangular window.

Hence, the FIR lowpass filter designed using the Hann window and the
Hamming window have a larger transition bandwidth and smaller ripples.
Figures 5.19 and 5.20 show the frequency responses of FIR lowpass filters

−ω c−π π

W (e j(ω−θ ))

Hd(e jθ)

θωcω

H (e jω)

FIGURE 5.15
Convolution of the desired frequency response and the rectangular window response.
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–π π0 ω

n

1

N

W(e jω)

w [n]

FIGURE 5.16
Rectangular window in time-domain and frequency-domain.

designed using these two windows. The transition bandwidth of both are
almost equal, but the ripples due to the Hamming window are lower, as
expected.

The log magnitude frequency response of FIR lowpass filter using rectan-
gular, Hann, and Hamming windows are shown in Figures 5.21 through 5.23.

−ωc ωc

1.09
1

0.083 π−π 0 ω

H (e jω)

FIGURE 5.17
Response of FIR lowpass filter using rectangular window.
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N

FIGURE 5.18
Hann window in time-domain and in frequency-domain.

5.5.2 Spectral Analysis

The PSD of a random signal can be estimated by using two classical techniques
based on Fourier analysis, called the periodogram and the correlogram [8,13,14].
In the periodogram method, the PSD is calculated from

Pxx(f ) = lim
M→∞

ξ

⎡
⎣ 1

2M + 1

∣∣∣∣∣
M∑

n=−M

x[n]e−j2π fn

∣∣∣∣∣
2
⎤
⎦ . (5.59)

As M → ∞, the periodogram approaches to its original PSD. However, in
practical applications, we have access to only one set of samples for the esti-
mation of PSD. Therefore, we can assume that the random signal is ergodic,
that is, the time series properties are assumed to remain the same. Now, the
PSD of the periodogram can be computed as

PPER(f ) = 1
N

∣∣∣∣∣
N−1∑
n=0

x[n]e−j2π fn

∣∣∣∣∣
2

. (5.60)

Although the bias in the estimated PSD tends to zero as the length of the
finite extent data increases, the variance of the estimate remains unchanged
because of the ergodicity assumption. In fact, the variance here will be very
high and comparable to the mean itself.
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FIGURE 5.19
Response of FIR lowpass filter (a) using Hann window. (b) Zoomed plot of passband. (c) Zoomed
plot of stopband.

The variance of the signal can be reduced to some extent using the Welch
method of periodogram. Here, the entire available data is divided into L seg-
ments, of N length each. The periodogram is computed using Equation 5.60
for each segment and finally averaged using the following expression:

Pavg(f ) = 1
L

∣∣∣∣∣
L−1∑
m=0

P(m)

PER(f )

∣∣∣∣∣ , (5.61)
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FIGURE 5.20
Response of FIR lowpass filter (a) using Hamming window. (b) Zoomed plot of passband. (c)
Zoomed plot of stopband.

to obtain a better variance. Here, P(m)

PER(f ) is the periodogram of the mth
segment. The variance in this case is reduced by 1

L .
The sharp truncation of the segments leads to spurious peaks in the peri-

odogram, thus increasing the bias. By changing the number of segments,
either the bias or the variance can be controlled, but not both simultaneously.
To reduce the bias in the estimate, each segment is multiplied with a data
window. Data windows taper the data near the edges of the segments slowly
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FIGURE 5.21
Log magnitude response due to rectangular window.

to zero, which reduces the bias. In general, overlapped segments are used to
obtain more segments for averaging, thereby reducing the variance.

From the Wiener–Khinchin theorem, the PSD can also be estimated using the
autocorrelation function as follows:

PCOR(f ) =
N−1∑

k=−(N−1)

rxx[k]e−j2π fk, (5.62)

where rxx is the autocorrelation function, computed as

rxx[k] =

⎧⎪⎨
⎪⎩

1
N

N−1−k∑
n=0

x∗[n]x[n + k], k = 0, 1, . . . , N − 1

r∗
xx[k], k = −(N − 1), −(N − 2), . . . , −1.

(5.63)
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FIGURE 5.22
Log magnitude response due to Hann window.
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FIGURE 5.23
Log magnitude response due to Hamming window.

The problems of high bias and variance exist even in this method. To alleviate
these effects, the data is first segmented and the autocorrelation is computed
for individual sections. Here, both the bias and variance problems arise due
to the autocorrelation estimator. As the lag increases, the number of product
terms used for averaging will decrease, thereby increasing the variance. For
k = N − 1, only one product term (x∗[0]x[N − 1]/N) is used for averaging.
Hence, the autocorrelation at these lags must be given less weightage. This
can be done by multiplying the autocorrelation function with a lag window
(w[k]) and the expression for this is given by

PCOR(f ) =
N−1∑

k=−(N−1)

w[k]rxx[k]e−j2π fk. (5.64)

This method of estimating the PSD is called the Blackman–Tukey spectral esti-
mation [15]. The lag window is always defined to be symmetrical about
zero.

5.5.3 Window Selection for Spectral Analysis

In this section, we provide some guidelines that will enable the user to select
appropriate windows for spectral analysis. In spectral analysis, the side lobes
cause smearing or spreading of energy, while the main lobe is responsible
for appropriate smoothing effects. Since the energy of a spectral window is
constant, if the side lobes are to be reduced, the main-lobe width has to be
increased and vice versa. The side-lobe level and the main-lobe width cannot
be reduced simultaneously for a fixed window length. Thus, the shape of the
spectral window should be selected appropriately to meet the desired speci-
fications. A prior knowledge of the PSD is required for better estimation. Let
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us consider different applications and study the effect of different windows
(rectangular, Hann, and Hamming windows) for each of the following cases.

Case 1: Two closely spaced frequency components of almost equal strengths— If there
are two frequency components that are closely spaced with equal strengths,
then the appropriate window function to resolve both the frequency compo-
nents is the rectangular window. This is due to the fact that the rectangular
window has the smallest main-lobe width; hence, the smoothing effect will
be minimum and both the spectral peaks can be seen distinctly. In the case of
the Hann and Hamming windows, owing to wider main lobes, the smooth-
ing effects will be quite significant and the two spectral peaks may merge
into a single peak. For this application, the Hamming window gives a better
result than the Hann window because of a smaller first side-lobe level than
the PSLL. This advantage will become more clear in Case 2. For example, let
us take a signal

x[n] = cos(2πn5/50) + cos(2πn6.81/50), n = 0, 1, 2, . . . , 49.

The spectral response of this signal using the rectangular, Hann, and Ham-
ming windows is shown in Figure 5.24. Here, we can see that the rectangular
window resolves both the spectral components distinctly, whereas the Hann
and Hamming windows show it as a single component. However, in the
Hamming case, we can still see a small separation at the top of the peak.

Case 2: Two closely spaced frequency components with unequal strengths—In this
case, the PSLL of the window also plays an important role. If one of the com-
ponents is very weak in magnitude, then it gets submerged in the side lobes
of the strong component. This happens in the case of a rectangular window,
since its side lobe levels are much higher. Hence, the rectangular window may
not even detect the weak spectral component. Thus, the Hamming window
is preferred in this application. Even though both the Hamming and Hann
windows have the same main-lobe widths, the fact that the first side-lobe
level of the Hamming window is smaller than the PSLL will prove to be an
advantage. Here, the high side-lobe roll-off rate of the Hann window will not
have much effect in resolving the weaker spectral component. For instance,
let us consider the signal

x[n] = cos(2πn5/50) + 0.05 cos(2πn7.81/50), n = 0, 1, 2, . . . , 49.

The spectral response of this signal using the rectangular, Hann, and Ham-
ming windows is shown in Figure 5.25. Here, we can clearly observe that the
rectangular window cannot detect the presence of the weak spectral compo-
nent, whereas the Hamming window detects it clearly. The Hann window can
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FIGURE 5.24
Response of two closely spaced equal-strength signal components. (a) Using rectangular window.
(b) Using Hann window. (c) Using Hamming window.



184 Window Functions and Their Applications in Signal Processing

0 0.2 0.4 0.6 0.8 1
−60

−50

−40

−30

−20

−10

0(a)

Normalized frequency

M
ag

ni
tu

de
 (d

B)

0.3124

0 0.2 0.4 0.6 0.8 1
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0(b)

Normalized frequency

M
ag

ni
tu

de
 (d

B)

0.3124

0 0.2 0.4 0.6 0.8 1−70

−60

−50

−40

−30

−20

−10

0(c)

Normalized frequency

M
ag

ni
tu

de
 (d

B)

0.3124

FIGURE 5.25
Magnitude response of signal with two closely spaced, unequal-strength components. (a) Using
rectangular window. (b) Using Hann window. (c) Using Hamming window.



Discrete-Time Windows and Their Figures of Merit 185

also detect it but the spectral estimate is very poor when compared to the Ham-
ming window. However, as the separation between the spectral components
increases, the situation changes, which is discussed in the next case.

Case 3: Two far-away frequency components with unequal strengths—In the pres-
ence of a very weak spectral component that is far away from the stronger
spectral component, the Hann window turns out to be most appropriate. In
such an application, the high side-lobe roll-off rate of the Hann window will be
advantageous. As discussed before, the rectangular window will submerge
the weak spectral component in the side lobes of the stronger component,
since the sidelobe level is very high (and its falloff rate is slower). In the case
of the Hamming window, although the side-lobe levels are lower than the
Hann window, it takes longer time for the side lobes to fall off as its rate is
slower. The Hann window has high RFSLL, which makes the side lobes to fall
faster, even though the PSLL is slightly higher than the Hamming window.
For example, let us consider a signal

x[n] = cos(2πn5/50) + 0.005 cos(2πn17.26/50), n = 0, 1, 2, . . . , 49.

The spectral response of this signal using the rectangular, Hann, and Ham-
ming windows is shown in Figure 5.26. Here, we can clearly see that only
the Hann window is able to detect the weak spectral component clearly. In
short, if the immediate side-lobe rejection is important in an application, then
using the Hamming window is the best option. Instead, if the far-off side-lobe
rejection is the desired criterion, then the Hann window is the most preferred
choice.

Case 4: Weak component in the presence of moderate signal component, both close and
distant in frequency—The spectral response for case 4 is shown in Figure 5.27.
We can observe that there are frequency components both nearby and distant;
hence, a window with equiripple side lobes around the main lobe is required
to keep the bias small. In this case, the side-lobe falloff rate is not important
because of the presence of the nearby component. Hence, for this application,
the Dolph–Chebyshev window is preferred because of its equiripple charac-
teristics. Figure 5.27 clearly shows that only the Dolph–Chebyshev window
can resolve the weak component in the presence of a moderately near and a
far-away component.

In conclusion, we use window functions, other than rectangular, to obtain
a compromise between a narrow main lobe (for high resolution) and low
side lobes (for low spectral leakage). High resolution provides accurate esti-
mates of the frequency of a sinusoid and results in the separation of two
sinusoids that are closely spaced in frequency. Low spectral leakage improves
the detectability of a weak sinusoid in the presence of a strong sinusoid that is
not bin-centered. A detailed procedure for the FIR filter design using the win-
dow method is presented in Chapter 7. All the issues discussed with respect
to spectral analysis will be detailed in Chapter 8.
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FIGURE 5.26
Magnitude response of signal having two far-off, unequal-strength components. (a) Using
rectangular window. (b) Using Hann window. (c) Using Hamming window.
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FIGURE 5.27
Response of weak component in the presence of moderate component (both close and distant
in frequency). (a) Using rectangular window. (b) Using Hann window. (c) Using Hamming
window. (d) Using Dolph-Chebyshev window.
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6
Time- and Frequency-Domain
Implementations of Windows

This chapter presents the implementation details of windows in the time
and frequency-domains. While computing the discrete Fourier transform
(DFT), the inevitable truncation of the input time sequence causes all the
frequency components of the input signal to interfere with one another [1–4].
This phenomenon is often called frequency leakage or smearing, as it leads
to the spreading of energy. Owing to this leakage, the computed spectrum
differs from the true spectrum. To reduce this unwanted effect, the input
data is usually multiplied by a suitable window function before performing
the DFT [5–9]. For a special class of windows, windowing can alternatively
be implemented in the frequency-domain [7–10]. We consider the imple-
mentation of many windows which belong to that class of windows such
as Hann, Hamming, Blackman, raised-cosine, and so on, both in the time
and in the frequency-domains. Computer simulation studies have been car-
ried out to determine the error performance of these implementations in
both the domains [10,11]. Efficient hardware structures for windowing in
the frequency-domain are also presented [7,8].

6.1 Time-Domain Implementation

In the time-domain scheme, a block of N data samples, x[n], is multiplied
by N window samples, f [n], before performing the DFT. The fast Fourier
transform (FFT) is an efficient tool to compute the DFT. The special-purpose
hardware that implements the FFT algorithm is called the FFT processor. The
time-domain windowing technique is illustrated in Figure 6.1. The realization
given in Figure 6.1 requires (N + 1)/2 stored samples (since the window is
symmetric) of the window with an odd length N, or ( N

2 + 1) samples with an
even length N, and N number of multiplications [9]. Since there is no single
efficient window that could be used in spectral estimation for all types of data,
samples of several windows may be stored in a read-only memory (ROM) or
in a programmable ROM. A special class of programmable windowing schemes

189
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x[n]

Input data samples
×

f [n]
window samples

DFT processor Output

FIGURE 6.1
Time-domain scheme.

that can be used to implement several windows in the frequency-domain is
outlined in the next section.

6.2 A Programmable Windowing Technique

In this section, we describe the implementation of a special class of windows
[9]. Its discrete version of the time function can be represented in the form:

f [n] = a − 2b cos
(

2πn
N

)
+ 2c cos

(
4πn
N

)
− 2d cos

(
6πn
N

)
,

n = 0, 1, . . . , (N − 1) (6.1)

If the sample f (N/2) has to be unity, we must have (a + 2b + 2c + 2d) = 1.
The values of these constants a, b, c, and d can be chosen depending on the
type of window preferred: for example,

i. a = 0.5, b = 0.25, c = 0, and d = 0 gives the Hann window;
ii. a = 0.54, b = 0.23, c = 0, and d = 0 yields the Hamming window and

iii. a = 0.42, b = 0.25, c = 0.04, and d = 0 gives the Blackman window.

We now consider a finite-valued sequence, x[n] = {x[0], x[1], x[2], . . . ,
x[N − 1]}. The DFT of this sequence x[n] is given by

A[r] =
N−1∑
n=0

x[n] exp(−j2πrn/N), r = 0, 1, . . . , (N − 1). (6.2)

The DFT coefficients, A[r], represent the unsmoothed spectrum of x[n].
Multiplying the data with a window, f [n], and computing the DFT yields
the smoothed spectrum, F[r], which is given by

F[r] =
N−1∑
n=0

{x[n]f [n]} exp(−j2πrn/N), r = 0, 1, . . . , (N − 1). (6.3)
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Substituting Equation 6.1 in Equation 6.3, we get

F[r] =
N−1∑
n=0

x[n]
[

a − 2b cos
(

2πn
N

)
+ 2c cos

(
4πn
N

)
− 2d cos

(
6πn
N

)]

× exp(−j2πrn/N), r = 0, 1, . . . , (N − 1). (6.4)

By expressing the cosine terms in their exponential forms as

cos
(

2πn
N

)
= exp(−j2πn/N) + exp(j2πn/N)

2
,

cos
(

4πn
N

)
= exp(−j4πn/N) + exp(j4πn/N)

2
, and

cos
(

6πn
N

)
= exp(−j6πn/N) + exp(j6πn/N)

2
,

(6.5)

and substituting these terms in Equation 6.4 and collecting the appropriate
exponential terms, we obtain the following expression:

F[r] = a
N−1∑
n=0

x[n] exp(−j2πrn/N)

− b
N−1∑
n=0

x[n] {exp
(−j2πn(r + 1)/N

)+ exp
(−j2πn(r − 1)/N

)}

+ c
N−1∑
n=0

x[n] {exp
(−j2πn(r + 2)/N

)+ exp
(−j2πn(r − 2)/N

)}

− d
N−1∑
n=0

x[n] {exp
(−j2πn(r + 3)/N

)+ exp
(−j2πn(r − 3)/N

)}
,

r = 0, 1, . . . , (N − 1). (6.6)

By using the definition of the DFT as given in Equation 6.2, we can reduce
Equation 6.6 as follows:

F[r] = aA[r] − b{A[r + 1] + A[r − 1]} + c{A[r + 2] + A[r − 2]}
− d{A[r + 3] + A[r − 3]}. (6.7)

Owing to the periodicity property of the DFT, A[−1] = A[N − 1], A[−2] =
A[N − 2], A[N] = A[0], and in general A[±r] = A[N ± r]. Thus, Equation 6.7
gives F[r] for all values of r, where r = 0, 1, . . . , (N − 1). We can now say that
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FIGURE 6.2
Frequency-domain implementation of windows.

F[r] gives a smoothed spectrum. An efficient scheme for implementing differ-
ent windows based on the operation given above is shown in Figure 6.2 [9].

The number of multiplications required for the scheme in Figure 6.2 is equal
to 4N instead of N for the block diagram of Figure 6.1. Although this seems
to be a serious drawback for the frequency-domain implementation (FDI),
it is however not the case. In the circuit of Figure 6.1, one needs a general-
purpose multiplier where both inputs have to be represented by a relatively
large number of bits. As will be shown in this chapter, for the windows defined
in Equation 6.1, the multiplications by a, b, c, and d can be implemented by a
very small number of shift and add/subtract operations.

6.3 Computational Error in Time and Frequency-Domains

In this section, the error performance of the implementation schemes of win-
dows are computed as explained below [9]. In the following discussion, the
time-domain implementation (TDI) is carried out as shown in Figure 6.1 and
the FDI is realized by the scheme shown in Figure 6.2.

Throughout the computations, the input data samples are quantized to 12
bits and the FFT is computed with fixed-point arithmetic, by choosing the
word length to be 12 bits. It may be noted that white Gaussian data is used
as the input. The quantized data is multiplied by the unquantized samples of
the window and then the FFT is performed. This resulting sequence is taken
as the reference (for both the domains). In the TDI, the window samples
are represented by L bits. The quantized data samples are multiplied by the
quantized window samples and the FFT of the product is computed. This
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result is subtracted from the above reference and the difference is recorded
as the error. This is repeated several times (β) and the variance of the error
is computed from these trials, for various values of the number of bits L and
data lengths (N).

In case of the FDI, the FFT is performed on the input Gaussian data samples.
The resulting DFT coefficients are multiplied by the coefficients a, b, c, and
d (depending on the type of window employed) according to Equation 6.7.
These coefficients are represented by L bits, where L is varied from 7 to 12
bits. In each case, the result obtained from Equation 6.7 is subtracted from
the above-mentioned reference and the difference is taken as the error. This
procedure is repeated over β number of trials and from the resulting errors,
the variance is computed [9].

The signal-to-computational error ratio (SCER) is defined as the ratio of the
input signal variance to the output error variance. This ratio is computed in
dB, for various word lengths, and they are tabulated in Tables 6.1 through 6.4
for the different windows, namely, Hann, Hamming, Blackman, and raised-
cosine windows, respectively. It must be noted that the higher the SCER, the
more accurate is the performance.

As seen from Table 6.1, the FDI of the Hann window is far superior to
its time-domain counterpart, for all the coefficient word lengths considered
[9,10]. This is because the coefficients (0.5 and 0.25) of the Hann window can
be represented exactly, whenever the word length is greater than or equal to
two bits.

In the case of the Hamming window (Table 6.2), both the TDI and the FDI
seem to provide mixed SCER performance for different word lengths and
window coefficient lengths [9]. From the results of Table 6.3, which corre-
spond to the Blackman window, it can be observed that the time-domain
version yields better SCER for word lengths of 8 bits or less [9,10]. However,
for the raised-cosine family, with D = 0.0113 (Table 6.4), the implementation
in the time-domain apparently provides better SCER when the word length

TABLE 6.1

SCER (in dB) Performance of Hann Window

N 16 32 64 128 256 512

L (β) (500) (275) (125) (50) (25) (10)

7 TDI 37.86 35.14 33.21 33.41 30.95 30.50
8 TDI 42.29 40.69 37.00 35.82 33.22 32.21
9 TDI 46.40 44.74 40.15 37.76 34.44 33.44
10 TDI 49.74 45.53 41.45 38.07 35.45 33.95
11 TDI 52.35 45.72 41.36 39.38 35.45 34.15
12 TDI 51.62 46.17 42.58 39.91 35.72 34.32

FDI 57.95 51.61 46.38 43.54 39.86 38.22

Note: L: window coefficient length, β: number of FFTs averaged.
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TABLE 6.2

SCER (in dB) Performance of Hamming Window

N 16 32 64 128 256 512

L (β) (500) (275) (125) (50) (25) (10)

7 TDI 35.22 34.07 34.35 33.44 30.95 30.64
FDI 30.42 30.73 30.10 29.45 28.85 28.23

8 TDI 40.26 38.85 37.57 36.35 33.38 32.31
FDI 41.44 41.07 39.27 37.96 36.06 34.88

9 TDI 45.58 42.91 40.10 38.20 34.64 33.89
FDI 41.44 41.07 39.27 37.96 36.06 34.88

10 TDI 49.09 45.87 40.87 39.51 35.19 34.09
FDI 46.70 45.13 42.45 40.46 37.81 36.42

11 TDI 49.45 47.41 41.52 39.54 35.31 34.15
FDI 50.45 47.36 43.87 41.68 38.60 37.14

12 TDI 50.97 48.18 41.85 39.73 35.69 34.25
FDI 54.80 49.86 45.38 42.87 39.42 37.85

Note: L: window coefficient length, β: number of FFTs averaged.

is 9 bits or less [9]. We must note that the above-mentioned results are only
approximations [9,10].

From these experiments, it is seen that in most of the cases, the differ-
ence in SCER comes down with the increase in data size (N). This happens
because, with increase in N, the number of arithmetic operations increases
and the round-off errors contributed by these operations will supercede the

TABLE 6.3

SCER (in dB) Performance of Blackman Window

N 16 32 64 128 256 512

L (β) (500) (275) (125) (50) (25) (10)

7 TDI 36.90 33.70 31.78 32.08 30.09 29.94
FDI 30.54 30.40 28.92 28.68 28.50 27.86

8 TDI 43.17 38.44 35.57 35.03 32.61 31.73
FDI 39.38 38.00 36.25 36.06 34.37 33.68

9 TDI 45.95 40.83 37.62 36.80 33.54 32.71
FDI 46.37 44.89 41.94 40.14 37.69 36.35

10 TDI 47.87 43.79 39.92 38.95 34.04 33.40
FDI 52.37 49.86 45.88 42.54 39.56 37.80

11 TDI 50.33 44.39 40.91 38.14 34.48 33.46
FDI 52.37 49.86 45.88 42.54 39.56 37.80

12 TDI 52.93 45.58 40.83 38.65 34.60 33.48
FDI 55.21 51.39 46.34 43.07 39.71 38.03

Note: L: window coefficient length, β: number of FFTs averaged.
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TABLE 6.4

SCER (in dB) Performance of Raised-Cosine Family (D = 0.0113)

N 16 32 64 128 256 512

L (β) (500) (275) (125) (50) (25) (10)

7 TDI 39.40 36.33 33.05 32.23 30.81 30.15
FDI 29.21 29.36 29.49 28.01 28.16 27.10

8 TDI 41.28 39.70 36.29 35.50 32.63 32.10
FDI 38.03 38.47 37.35 35.37 34.38 33.02

9 TDI 43.97 39.19 43.50 37.32 34.02 33.08
FDI 40.83 39.71 40.28 37.40 36.34 34.72

10 TDI 48.55 43.59 40.03 38.45 34.93 34.09
FDI 48.86 47.65 44.70 41.55 39.05 37.23

11 TDI 51.00 45.24 40.86 38.75 35.28 33.97
FDI 52.38 49.81 45.64 42.45 39.28 37.60

12 TDI 51.44 45.05 41.98 39.46 35.31 34.38
FDI 53.81 49.57 45.21 42.63 39.26 37.71

Note: L: window coefficient length, β: number of FFTs averaged.

quantization errors. In the following section, we shall describe an approach
that improves the efficiency of the schemes in Figures 6.1 and 6.2.

6.4 Canonic Signed Digit Windowing

We illustrate that the block diagrams of Section 6.2 become very efficient if we
use the canonic signed digits (CSD) technique. The CSD technique code is a
ternary code where we use 0, +1, and−1, rather than 0 and 1 in a binary window
[8]. This is particularly beneficial since we can construct efficient windows by
reducing the number of additions using the simple geometrical progression

N2∑
n=N1

2−n = 2−N1+1 − 2−N2 , N1, N2 ∈ Z+, N2 > N1. (6.8)

Here, Z+ is the positive integer set.
As an example, consider the equation

2−3 + 2−4 + 2−5 + 2−6 + 2−7 + 2−8 + 2−9 = 0.248046875. (6.9)

We note that Equation 6.9 needs six adders to compute the sum. The same
result can be obtained using just one adder, as given below:

2−2 + (−2−9) = 0.248046875. (6.10)
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This is possible using Equation 6.8, since the summation terms are in series. In
an implementation, the complexity of an adder is the same as the complexity
of a subtractor.

Certain simplifications can be done to obtain a redundant form, even if the
sequence is not in series, such as

2−2 + 2−3 + 2−4 + 2−6 + 2−7 + 2−8 + 2−9 = 0.466796875. (6.11)

Again, Equation 6.11 has six adders in series, except for the missing 2−5. This
can be computed either using a set of two different summations

2−2 + 2−3 + 2−4 + 2−6 + 2−7 + 2−8 + 2−9 = [2−1 − 2−4] + [2−5 − 2−9], (6.12)

or by adding and subtracting the missing term as follows:

2−2 + 2−3 + 2−4 + 2−6 + 2−7 + 2−8 + 2−9

= 2−2 + 2−3 + 2−4 + 2−5 + 2−6 + 2−7 + 2−8 + 2−9 − 2−5.

= 2−1 − 2−9 − 2−5.

Here, the number of adders have been reduced to two when compared to
three in Equation 6.12. These concepts are demonstrated later.

As discussed earlier, the discrete version of a generalized data window,
involving cosine terms, can be represented by (N = even):

f [n] =
K∑

k=0

(−1)kak cos
(

2πnk
N

)
, n = 0, 1, . . . , (N − 1), (6.13)

where {ak}K
k=0 represents real constants. The negative sign results from the shift

in the origin of the window. We note that the function is centered around N/2.
We recall that a four-term window can be represented by Equation 6.1, which
is reproduced below [9] for clarity:

f [n] = a − 2b cos
(

2πn
N

)
+ 2c cos

(
4πn
N

)
− 2d cos

(
6πn
N

)
,

n = 0, 1, . . . , (N − 1).

We also recall that A[r] is the DFT of a data sequence x[n], n = 0, 1, . . . , (N − 1)

(see Section 6.2 for details). If f [n] is used to smooth the spectrum A[r], the
resulting smoothed spectrum is given by Equation 6.7, which is

F[r] = aA[r] − b {A[r + 1] + A[r − 1]} + c {A[r + 2] + A[r − 2]}
− d {A[r + 3] + A[r − 3]} ,
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where a, b, c, and d are real constants. By expressing these constants in terms
of the negative powers of two, the multiplications are carried out by right
shifts. Further reduction in hardware complexity is obtained by expressing
F[r] in Equation 6.7 as

F[r] = 2−μF
′ [r], (6.14)

where 2−μ represents the common factor of all constants used in Equation 6.7
[8,9]. As will be shown, the schemes proposed in this section do not require
any multiplication, except by 2−n, which amounts to only scaling or shifting
by n bits to the right. Also, in the scheme proposed, we need not recompute
the DFT again if we decide to change the window function. Furthermore,
these schemes do not require storage for coefficients.

We shall now describe some of the typical CSD window implementations.
These CSD windows have been derived by approximating the coefficients of
the data windows in terms of the binary fractions and optimizing them with
respect to their side-lobe performance. Hence, most of the CSD windows
proposed perform at least equal or sometimes even better than the other
known windows. The CSD window structures for a number of windows are
presented in the following pages. Continuous-time frequency response plots
have also been included to understand its frequency-domain behavior. In the
frequency response plot, the y-axis shows the normalized magnitude of the
Fourier transform (in dB), while the x-axis gives the normalized frequency.

6.4.1 Window 1

The first set of weights that we consider corresponds to the well-known
Hann window, for which there are only two nonzero coefficients a0 = 0.5
and a1 = 0.5 (see Equation 6.13) [9]. Therefore, the coefficients for the FDI
are a = 0.5 and b = 0.25 (Equation 6.4), which can be expressed in the binary
form as 2−1 and 2−2, respectively. The peak side-lobe level (PSLL) which is
also the FSLL for this window, is −31.47 dB, but its asymptotic decay rate is
18 dB/octave. The structure for implementing this window in the frequency-
domain is shown in Figure 6.3(a) and its frequency response is shown in
Figure 6.3(b). The normalized half main-lobe width (NHMLW) of this CSD
window is unity. Figure 6.3(b) shows the normalized values of frequency
(x-axis) and the y-axis gives normalized values of the Fourier transform
magnitude (expressed in dB).

6.4.2 Window 2

The second weighting function to be considered is the Hamming win-
dow, whose coefficients for FDI are a = 0.546875 = 2−1 + 2−5 + 2−6 and
b = 0.2265625 = 2−3 + 2−4 + 2−5 + 2−7 = 2−2 − 2−5 + 2−7, which is again a two-
term CSD window. The structure for implementing this window is shown
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FIGURE 6.3
Illustration of window 1. (a) Binary window structure. (b) Frequency response plot.

in Figure 6.4(a) and the frequency response of this CSD window is plot-
ted in Figure 6.4(b). The peak side-lobe level (PSLL) and the first side-lobe
level (FSLL) are −40.84 dB and −48.23 dB, respectively. The NHMLW of this
window is unity. However, its asymptotic decay rate of the side-lobe envelope
is only 6 dB/octave.

6.4.3 Window 3

The next set of CSD windows proposed are shown in Figures 6.5(a) and 6.6(a),
whose main-lobe widths fall in between the windows discussed above and
the Blackman window.
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The set of binary coefficients chosen are

a = 0.4921875 = 2−2 + 2−3 + 2−4 + 2−5 + 2−6 + 2−7 = 2−1 − 2−7,

b = 0.24609375 = 2−3 + 2−4 + 2−5 + 2−6 + 2−7 + 2−8 = 2−2 − 2−8, and

c = 0.0078125 = 2−7. (6.15)



200 Window Functions and Their Applications in Signal Processing

0

(b)

(a)

–20

–40

–60

–80

–100

–120
0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

Frequency

M
ag

ni
tu

de
 (d

B)

x[n]
DFT

2−7

A[r + 2]
z−1

A[r + 1]
z−1

A[r]

2−1 2−7

z−1
A[r − 1]

2−2 2−8

z−1
A[r − 2]

−1

F [r]

−1 −1

+

+

++

+

FIGURE 6.5
Illustration of window 3 (for a = 0.4921875, b = 0.24609375, c = 0.0078125). (a) Binary window
structure. (b) Frequency response plot

We also consider another set of slightly modified coefficients for the three-
term CSD window as follows:

a = 0.484375 = 2−2 + 2−3 + 2−4 + 2−5 + 2−6 = 2−1 − 2−6,

b = 0.2421875 = 2−3 + 2−4 + 2−5 + 2−6 + 2−7 = 2−2 − 2−7, and

c = 0.015625 = 2−6. (6.16)
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The frequency response plots of these windows, the coefficients of which
are given in Equations 6.15 and 6.16, are given in Figures 6.5(b) and 6.6(b),
respectively. The NHMLWs of these windows are 1.06 and 1.20, respectively,
and the asymptotic decay rate of the side-lobe envelope is only 6 dB/octave
in each case. For the first set of coefficients (Equation 6.15), the FSLL (which
also happens to be the maximum side-lobe level) is −37.41 dB. For the second
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set of coefficients given by Equation 6.16, the first and maximum side lobes
are −54.82 and −52.69 dB, respectively.

6.4.4 Window 4

We now describe an equivalent of the Blackman window, which is another
three-term CSD window. This window has an increased main-lobe width
of 1.5. Its corresponding asymptotic decay rate is 30 dB/octave, which is
considered to be excellent. The binary coefficients in this case are

a = 0.375 = 2−2 + 2−3; b = 0.25 = 2−2; and c = 0.0625 = 2−4.

The first (as well as the maximum side-lobe level) is only −46.74 dB. The
implementation scheme is shown in Figure 6.7(a) and the corresponding
Fourier transform is given in Figure 6.7(b).

6.4.5 Window 5

The second set of CSD windows in the category of Blackman windows with
NHMLW of 1.5 has the following set of coefficients:

a = 0.42578125 = 2−2 + 2−3 + 2−5 + 2−6 + 2−8 = 2−1 − 2−4 − 2−6 + 2−8,

b = 0.248046875 = 2−3 + 2−4 + 2−5 + 2−6 + 2−7 + 2−8 + 2−9 = 2−2 − 2−9, and

c = 0.0390625 = 2−5 + 2−7.

The scheme for the FDI of this window is shown in Figure 6.8(a) and its DTFT
in Figure 6.8(b). This window yields an FSLL of −64.73 dB, which is also
the same as the maximum side-lobe level, giving us a 6.5 dB improvement
over the original Blackman window. However, the side-lobe decay rate of
the proposed window is only 6 dB/octave.

6.4.6 Window 6

This CSD window, which again falls in the category of a three-term window,
has NHMLW of 1.42 and its coefficients are:

a = 0.453125 = 2−2 + 2−3 + 2−4 + 2−6 = 2−1 − 2−4 + 2−6,

b = 0.24609375 = 2−3 + 2−4 + 2−5 + 2−6 + 2−7 + 2−8 = 2−2 − 2−8, and

c = 0.02734375 = 2−6 + 2−7 + 2−8 = 2−5 − 2−8.

The FSLL and the maximum side-lobe level are −67.60 and −59.86 dB, respec-
tively. Figure 6.9(a) shows the FDI of this window and Figure 6.9(b) displays
its spectrum.
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6.4.7 Window 7

The next window function that we consider has the following set of coeffi-
cients:

a = 0.44921875 = 2−2 + 2−3 + 2−4 + 2−7 + 2−8 = 2−1 − 2−4 + 2−7 + 2−8,

b = 0.24609375 = 2−3 + 2−4 + 2−5 + 2−6 + 2−7 + 2−8 = 2−2 − 2−8, and

c = 0.029296875 = 2−6 + 2−7 + 2−8 + 2−9 = 2−5 − 2−9.
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This three-term CSD window offers an excellent FSLL of −93.50 dB, but the
decay rate of the Fourier transform of the window is only 6 dB/octave. The
structure of this window is shown in Figure 6.10(a) and its frequency-domain
plot is given in Figure 6.10(b).

We note that for all the windows considered in the three-term category
(except for window 4), the asymptotic decay rate of the side-lobe envelope
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Illustration of window 6. (a) Binary window structure. (b) Frequency response plot.

is only 6 dB/octave. However, we present some more windows that offer a
much better side-lobe decay rate.

6.4.8 Window 8

The first set of coefficients in this category of windows is

a = 0.40625 = 2−2 + 2−3 + 2−5; b = 0.25 = 2−2; and c = 0.046875 = 2−5 + 2−6.
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The structure of this window is depicted in Figure 6.11(a), with its fre-
quency response in Figure 6.11(b). This window has a side-lobe fall-off rate
of 18 dB/octave, which is the same as the original continuous-time Blackman
window (introduced in Chapter 3). However, the first (and maximum) side-
lobe level in this case is −61.30 dB, which is in fact better than the original
Blackman window by about 3 dB.
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Illustration of window 8. (a) Binary window structure. (b) Frequency response plot.

6.4.9 Window 9

In the next three-term CSD window, the coefficients are set as follows:

a = 0.4140625 = 2−2 + 2−3 + 2−5 + 2−7, b = 0.25 = 2−2,

c = 0.04296875 = 2−5 + 2−7 + 2−8.
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FIGURE 6.12
Illustration of window 9. (a) Binary window structure. (b) Frequency response plot.

The structure is shown in Figure 6.12(a) and its response in Figure 6.12(b).
This window offers FSLL of −72.22 dB, while its peak side-lobe level is
−61.65 dB. The asymptotic decay rate of this window is 18 dB/octave. There-
fore, this window offers excellent immediate side-lobe rejection as well as far-off
side-lobe rejection. The performance of this window is much better than the
continuous-time Blackman window (presented in an earlier chapter).
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6.4.10 Window 10

The last set of binary coefficients to be considered in the three-term window
category is the one with the following constants:

a = 0.41015625 = 2−2 + 2−3 + 2−5 + 2−8, b = 0.25 = 2−2, and

c = 0.044921875 = 2−5 + 2−7 + 2−8 + 2−9 = 2−6 − 2−9 + 2−5.

Its FSLL is −65.68 dB, while the PSLL is −63.52 dB. The FDI is shown in
Figure 6.13(a) and its frequency response in Figure 6.13(b). However, the
side-lobes falloff rate is 18 dB/octave like in the previous two cases.

The third category of CSD windows is the four-term windows, which have
excellent side-lobe behavior, but at the expense of increased main-lobe widths.
We have obtained four sets of four-term CSD windows that are considered to
be optimum with respect to the side-lobe levels and their asymptotic decay
rates. These sets of windows are considered next.

6.4.11 Window 11

The first set of binary coefficients are

a = 0.3125 = 2−2 + 2−4; b = 0.234375 = 2−3 + 2−4 + 2−5 + 2−6 = 2−2 − 2−6,

c = 0.09375 = 2−4 + 2−5, and d = 0.015625 = 2−6.

This window has an asymptotic decay rate of 42 dB/octave. The frequency
response plot depicted in Figure 6.14(b) shows its maximum side lobe to be
−60.96 dB and its FDI structure is given in Figure 6.14(a).

6.4.12 Window 12

The optimized binary coefficients in this four-term window are

a = 0.3515625 = 2−2 + 2−4 + 2−5 + 2−7;

b = 0.2421875 = 2−3 + 2−4 + 2−5 + 2−6 + 2−7 = 2−2 − 2−7

c = 0.07421875 = 2−4 + 2−7 + 2−8, and d = 0.0078125 = 2−7.

In this case, the FSLL and the maximum side-lobe levels are the same, that is,
−71.63 dB, but its asymptotic decay rate is 18 dB/octave. This CSD window
is depicted in Figure 6.15(a) and its frequency response plot in Figure 6.15(b).
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Illustration of window 10. (a) Binary window structure. (b) Frequency response plot.

6.4.13 Window 13

This CSD window has four coefficients that are given by

a = 0.35546875 = 2−2 + 2−4 + 2−5 + 2−7 + 2−8 = 2−2 + 2−3 − 2−6 − 2−8,

b = 0.244140625 = 2−3 + 2−4 + 2−5 + 2−6 + 2−7 + 2−9 = 2−2 − 2−7 + 2−9,

c = 0.072265625 = 2−4 + 2−7 + 2−9, and d = 0.005859375 = 2−8 + 2−9.
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Illustration of window 11. (a) Binary window structure. (b) Frequency response plot.

This results in a frequency response as indicated in Figure 6.16(b). The FSLL
of this window is −75.42 dB. However, this window has a wide NHMLW of
1.92, while the asymptotic decay rate is still 18 dB/octave. The discrete-time
structure of this window is given in Figure 6.16(a).

6.4.14 Window 14

The last CSD window we discuss in this chapter has the set of optimized
binary coefficients as follows:

a = 0.359375 = 2−2 + 2−4 + 2−5 + 2−6 = 2−2 + 2−3 − 2−6,
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Illustration of window 12. (a) Binary window structure. (b) Frequency response plot.

b = 0.244140625 = 2−3 + 2−4 + 2−5 + 2−6 + 2−7 + 2−9 = 2−2 − 2−7 + 2−9,

c = 0.0703125 = 2−4 + 2−7, and d = 0.005859375 = 2−8 + 2−9.

From Figure 6.17(b), it is seen that this window gives excellent side-lobe atten-
uation, which is nearly −88 dB. The structure for implementing this window
is shown in Figure 6.17(a). Its asymptotic decay rate of the side-lobe envelope
is still 18 dB/octave. However, the NHMLW of this window is 2.0, which is
rather large.
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Illustration of window 13. (a) Binary window structure. (b) Frequency response plot.

6.5 Modified Zeroth-Order Kaiser–Bessel Window Family

As discussed in an earlier chapter, the near-optimum modified zeroth-order
Bessel window invented by Kaiser has a continuous-time Fourier transform
pair given by

f (t) = Io[α
√

1 − (t/τ)2]
Io(α)

, |t| ≤ τ and

F(j�) = sinh[α√1 − (�/α)2]
(sinh α)

√
1 − (�/α)2

, −∞ ≤ � ≤ ∞.
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FIGURE 6.17
Illustration of Window 14. (a) Binary window structure. (b) Frequency response plot.

where α is the parameter controlling the main-lobe width and consequently
the side-lobe level. We have chosen the values of α to be π

√
3 , π

√
8, and

π
√

15, such that the normalized half main-lobe widths are 1.0, 1.5, and 2.0,
respectively.

The normalized magnitude plots of the Fourier transform of these windows
are shown in Figure 6.18. The asymptotic decay rate of the side-lobe envelope
for the modified zeroth-order Kaiser–Bessel family is only 6 dB/octave. The
performance of each CSD window proposed can be easily compared with
respect to the near-optimum Kaiser–Bessel windows having nearly the same
main-lobe widths. It should, however, be noted that the sum-cosine windows
discussed in Section 5.2.7 and presented in refs. [9,11] cannot be implemented
using the CSD structure.
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6.6 Summary

In this chapter, we have presented a number of windows with excellent
side-lobe behavior for implementation in the frequency-domain. Their PSLL
ranges from −31.47 dB to −87.69 dB, while the asymptotic decay rate of the
side-lobe envelope varies from 6 dB/octave to 42 dB/octave. The variation in
the FSLL is from −31.47 dB to −93.50 dB. Table 6.5 presents all the parameters
of the CSD windows, considered in Section 6.4 as well as the Kaiser–Bessel
windows of Section 6.5. The distinct advantage of using the proposed CSD
windows is the ease with which they can be implemented in the frequency-
domain. Conventional time-domain windowing requires (N/2 + 1) stored
values of the window samples for even N and (N + 1)/2 for odd N, with
N multiplications. In the scheme suggested, these are replaced by shifts and
add operations. Yet another advantage of frequency-domain windowing is
that more than one window may be applied to the same spectrum without the
need of computing the DFT more than once. To choose appropriate windows

TABLE 6.5

Performance of Binary Windows

Normalized Half First Peak Asymptotic Decay

Main-Lobe Side-Lobe Side-Lobe Rate of SLL

Window Width Level (dB) Level (dB) (dB/Octave)

Window 1 1.0 −31.47 −31.47 18
Window 2 1.0 −48.23 −40.84 6
Window 3 1.06 −37.41 −37.41 6

1.20 −54.82 −52.69 6
Window 4 1.50 −46.74 −46.74 30
Window 5 1.50 −64.73 −64.73 6
Window 6 1.42 −67.60 −59.86 6
Window 7 1.50 −93.50 −59.42 6
Window 8 1.50 −61.30 −61.30 18
Window 9 1.50 −72.22 −61.65 18
Window 10 1.50 −65.68 −63.52 18
Window 11 2.0 −60.96 −60.96 42
Window 12 2.0 −71.63 −71.63 18
Window 13 1.92 −75.42 −75.42 18
Window 14 2.0 −88.42 −87.69 18

Kaiser–Bessel with α

π
√

3 1.0 −39.79 −39.79 6
π

√
8 1.5 −65.47 −65.47 6

π
√

15 2.0 −91.25 −91.25 6
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depending on the application of interest, efficient and economical structures
are suggested for frequency-domain windowing. To illustrate the frequency-
domain behavior, we have also included the plots of the continuous-time
Fourier transforms of the windows.
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7
FIR Filter Design Using Windows

7.1 Ideal Filters

Filtering refers to the time or frequency-domain processing of a signal, which
is performed to enhance the required features or to remove unwanted fre-
quency components. Ideal filters allow a band of frequencies and reject
all other frequencies. Depending on their frequency-domain characteristics,
filters can be classified as

i. Lowpass
ii. Highpass

iii. Bandstop
iv. Bandpass

The magnitude responses of these ideal filters are shown in Figure 7.1 (for
positive frequencies only). For real filters, the magnitude response is symmet-
ric around ω = 0. In this section, we define the magnitude response of these
ideal filters and compute their impulse responses, assuming that the phase
responses are equal to zero (zero-phase filters).

7.1.1 Lowpass Filter

The frequency response of a zero-phase ideal lowpass filter (LPF) can be
defined as

Hlp(ejω) =
{

1, 0 ≤ |ω| ≤ ωc

0, ωc < |ω| ≤ π ,
(7.1)

where ωc is the cut-off frequency of this LPF. It allows only low-frequency
components that are less than the cut-off frequency ωc to pass and to fully
reject all the frequencies above ωc. The impulse response of the ideal LPF

219
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FIGURE 7.1
Magnitude response of ideal (a) lowpass, (b) highpass, (c) bandpass, and (d) bandstop filters.

hlp[n] can be obtained by taking the inverse DTFT of Hlp(ejω) as given below:

hlp[n] = 1
2π

∫ π

−π

Hlp(ejω)ejωndω

= 1
2π

∫ωc

−ωc

ejωndω = 1
2π

[
ejωn

jn

]ωc

−ωc

= 1
2π

(
ejωcn

jn
− e−jωcn

jn

)

=

⎧⎪⎨
⎪⎩

sin(ωcn)

πn
, −∞ < n < ∞, n �= 0

ωc

π
, n = 0.

(7.2)

7.1.2 Highpass Filter

The frequency response of the ideal highpass filter (HPF) can be defined as

Hhp(ejω) =
{

0, 0 ≤ |ω| ≤ ωc

1, ωc < |ω| ≤ π .
(7.3)

The HPF rejects the frequencies less than the cut-off frequency ωc and allows
all the frequencies between ωc and π to pass. From Figure 7.1, we can easily
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relate the attenuation characteristics of the zero-phase highpass and the zero-
phase LPFs as

Hhp(ejω) = 1 − Hlp(ejω). (7.4)

From this relation, we can now obtain the impulse response of the HPF by
taking the inverse DTFT on both sides of Equation 7.4.

hhp[n] = δ[n] − hlp[n] =

⎧⎪⎨
⎪⎩

−sin(ωcn)

(πn)
, −∞ < n < ∞, n �= 0.

1 − ωc

π
, n = 0.

(7.5)

7.1.3 Bandpass Filter

The bandpass filter (BPF) passes frequencies only in the interval (ω1, ω2).

Hbp(ejω) =
{

1, ω1 ≤ ω ≤ ω2

0, elsewhere.
(7.6)

The impulse response of a BPF can be described as the difference between
the impulse responses of an LPF with a cut-off frequency ω2 and a second
lowpass with a cut-off ω1. The corresponding impulse response can thus be
given by

hbp[n] =

⎧⎪⎨
⎪⎩

sin(ω2n)

πn
− sin(ω1n)

πn
, −∞ < n < ∞, n �= 0

ω2 − ω1

π
, n = 0.

(7.7)

7.1.4 Bandstop Filter

In this case, the filter blocks (or stops) the frequency components in the
interval (ω1, ω2).

Hbs(ejω) =
{

0, ω1 ≤ ω ≤ ω2

1, elsewhere.
(7.8)

The impulse response of a bandstop filter (BSF) can be described as the dif-
ference between the impulse responses of an all-pass filter and the BPF in
Figure 7.1(c). Using Equation 7.7, we obtain

hbs[n] = δ[n] − hbp[n] =

⎧⎪⎨
⎪⎩

sin(ω1n)

πn
− sin(ω2n)

πn
, −∞ < n < ∞, n �= 0

1 − ω2 − ω1

π
, n = 0.

(7.9)
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7.2 Linear Time Invariant Systems

To define FIR and IIR systems, let us first introduce linear constant coefficient
difference equations (LCCDEs) in the context of discrete-time systems. The
LCCDE describes an important subclass of discrete-time systems called linear
time invariant (LTI) systems, or also called as linear shift invariant (LSI) sys-
tems, whose input x[n] and output y[n] (see Figure 7.2) satisfy an Nth-order
LCCDE defined in the following form:

N∑
k=0

aky[n − k] =
M∑

r=0

brx[n − r]. (7.10)

We assume real LTI systems for which the coefficients of the LCCDE are real.
Since the system discussed before is causal, we can rearrange Equation 7.10
in the following way, such that we can compute the present sample y[n] in
terms of (i) the past output samples y[n − k] and (ii) the present and the past
input samples x[n] and x[n − k], respectively. This formulation gives us the
following form:

a0y[n] +
N∑

k=1

aky[n − k] =
M∑

r=0

brx[n − r]. (7.11)

We can modify Equation 7.11 by normalizing the coefficient of y[n] to be unity
(i.e., a0 = 1). Also, the coefficients of the delayed output samples, y[n − k] are
modified into negative coefficients −ak so that after they are moved to right
side of Equation 7.11, they become positive. The rearranged LCCDE is of
the form

y[n] −
N∑

k=1

aky[n − k] =
M∑

r=0

brx[n − r]. (7.12)

Therefore

y[n] =
N∑

k=1

aky[n − k] +
M∑

r=0

brx[n − r]. (7.13)

The system function or the transfer function H(z), which turns out to be the
z-transform of h[n], can be computed by taking the z-transform of the LCCDE;

LTI system
h[n]x[n] y[n]

FIGURE 7.2
An LTI system.
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from Equation 7.12, we obtain

Y(z) −
N∑

k=1

akz−kY(z) =
M∑

r=0

brz−rX(z). (7.14)

Rearranging and using the definition of the system function

H(z) = Y(z)
X(z)

, (7.15)

we then obtain

Y(z)

[
1 −

N∑
k=1

akz−k

]
= X(z)

M∑
r=0

brz−r (7.16)

H(z) = Y(z)
X(z)

=

M∑
r=0

brz−r

1 −
N∑

k=1

akz−k

, (7.17)

or equivalently, we can also factor the numerator and denominator polyno-
mials of H(z) as [1]

H(z) = b0

M1∏
r=1

(1 − crz−1)

M2∏
r=1

(1 − frz−1)(1 − f ∗
r z−1)

N1∏
k=1

(1 − dkz−1)

N2∏
k=1

(1 − gkz−1)(1 − g∗
k z−1)

, (7.18)

where M = M1 + 2M2 and N = N1 + 2N2. In this expression, cr and dk are
real zeros and real poles, respectively. The zeros fr, f ∗

r are complex conjugate
pairs of zeros and gk, g∗

k are complex conjugate pairs of poles. If we observe
the right-hand side of Equation 7.13, the first sum corresponds to feedback
terms and the second sum corresponds to feed-forward terms. Digital filters
without feedback (i.e., all coefficients ak are equal to zero) are called FIR filters.
Equivalently, FIR filters can also be defined as digital filters having zeros and
no poles except at the origin z = 0. If the input of such a filter is an isolated
impulse, the output is nonzero only for (M + 1) samples, where M represents
the order of the filter. In a similar way, digital filters with feedback terms also
included are called IIR digital filters. The reason is that the nonzero outputs act
as forcing terms when fed back to the input, thereby generating the possibility
of infinite ringing.
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Digital filters are characterized by their coefficients ak and br. However, the
rate at which the samples are given as inputs (i.e., sampling rate) is not vital.
Only the time number n of the incoming samples of the signal is important.
Therefore, digital filter coefficients are a function of only normalized fre-
quencies (normalized with respect to the sampling frequency). This unique
property of digital filters make them suitable for applications such as zooming
or multirate filtering (i.e., changing the sampling rate at will), where the same
digital filters are used, but at different sampling rates.

7.3 FIR Filters

The general equation relating the input and output of an LTI system is again
reproduced below:

y[n] =
N∑

k=1

aky[n − k] +
M∑

r=0

brx[n − r]. (7.19)

If we set all ak coefficients to zero, then Equation 7.19 reduces to

y[n] =
M∑

r=0

brx[n − r]. (7.20)

Now, if we compare Equation 7.20 with the convolution sum expression for
an LTI system, (reproduced from Chapter 1) which is given by

y[n] =
M∑

r=0

x[r]h[n − r] =
M∑

r=0

h[r]x[n − r] (7.21)

= h[n] ∗ x[n], (7.22)

then Equation 7.20 is in the form of a convolution sum. By setting x[n] = δ[n]
in Equation 7.20, we see that the impulse response is

h[n] =
M∑

r=0

brδ(n − r) (7.23)

or

h[n] =
{

bn, 0 ≤ n ≤ M
0, elsewhere.

(7.24)
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The impulse response given in Equation 7.24 is obviously of finite duration.
Nevertheless, the output of any FIR system can be computed nonrecursively
using Equation 7.20, wherein the coefficients are the values of the impulse
response. In Equation 7.24, M represents the order of the filter. A direct imple-
mentation of an FIR filter would require M delayed samples of the input
signal x[n], to produce a single output y[n]. Following the analog delay-line
terminology, M is also known as the number of taps.

7.3.1 Advantages of FIR Filters

FIR filters are nonrecursive, that is, they have no feedback terms. Therefore,
the outputs are a function of a finite number of previous input signals. The
major advantages of FIR filters are

1. FIR filters are easy to understand, easy to design and to implement,
and amenable to being made adaptive. The simple implementation
of adaptive FIR filters requires the filters to change their coefficients
in real time to accomodate changes in external conditions. For exam-
ple, the equalization filters in modems change their characteristics in
response to trasmission-line degradations.

2. Since FIR filters do not contain feedback terms, they have no poles
in their transfer function. Therefore, FIR filters are guaranteed to
be stable (unconditionally). The guaranteed FIR stability is vital for
adaptive filter design.

3. FIR filters can be designed to have a perfectly linear phase, which
implies that such filters will have a constant time or group delay with
respect to the input signal. Linear phase is guaranteed as long as the
FIR coefficients are symmetrical (or antisymmetrical) with respect
to the center point of the impulse response. This is important in
applications such as speech processing, sonar, and radar, where the
knowledge of the time delay is necessary.

4. FIR filters have low sensitivity to coefficient accuracy. This feature
allows FIR filter implementation with small word lengths. A typical
range of FIR coefficient accuracy is 12–16 bits, while IIR filters require
16–24 bits per coefficient.

5. Using the symmetry or antisymmetry property of the linear-phase
FIR filters, the number of multiplications per output sample roughly
gets reduced by a factor of two.

6. Yet another advantage of FIR filters (over IIR filters) is the flex-
ibility they offer in the desired frequency response. FIR filter fre-
quency response magnitudes can be easily designed to approximate
any specified function of frequency with a sufficient number of
coefficients.



226 Window Functions and Their Applications in Signal Processing

7.4 IIR Filters

IIR systems are described by Equations 7.13 and 7.17, wherein at least one of
the feedback coefficients ak is nonzero. The order of the system depends on
the number of feedback terms and, therefore, from Equations 7.13 and 7.17,
we can say that they represent an Nth-order system.

7.4.1 Properties of IIR Filters

1. Unlike FIR filters, IIR filters can become unstable due to the presence
of poles in the structure. Besides that, finite word length effects can
also make them unstable.

2. No IIR filters does have a perfect linear-phase characteristic. Never-
theless, one can design IIR filters with very good phase linearity.

3. Since IIR filters are basically recursive, they tend to be more sensi-
tive to round-off noise. Such noise can actually introduce spurious
oscillations known as limit cycles.

4. IIR filters must be implemented more carefully than FIR. Delay-free
loops can cause instability.

5. However, the major advantage of IIR filters is that for the same fre-
quency characteristic, H(ejω), they require lesser coefficients than FIR
filters. This leads to fewer operations, thus being able to achieve
higher throughput.

6. IIR filters require the smallest storage requirement, since they need
a least number of coefficients for achieving specified characteristics.
For example, an IIR highpass filter typically requires only one-third
of the coefficients of an equivalent FIR filter.

7.5 Structure of an FIR Filter

We will reproduce here the difference equation for an FIR filter as follows:

y[n] =
M∑

k=0

bkx[n − k]. (7.25)

This can be recognized as the discrete-time convolution of x[n] with the
impulse response h[n] given as follows:

h[n] =
{

bn, 0 ≤ n ≤ M
0, elsewhere.

(7.26)
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h[0] h[1] h[2] h[3] h[M−1] h[M]

+ +

FIGURE 7.3
Realization of FIR filter.

The signal flow graph representation of one of the possible structures is shown
in Figure 7.3. This structure is commonly referred to as tapped-delay line
structure because of the presence of a chain of delay elements, represented by
z−1. It is also known as a transversal filter. The signal at each tap along the chain
is multiplied by the coefficients of the impulse response, and the resulting
products are summed to form the output y[n]. Often, the comparison between
FIR and IIR or even better the various algorithms within each category may
not be always clear-cut. Quite often, the available hardware, software, and
brainware (know-how) may override some of the considerations while making
a decision concerning whether to use an IIR or an FIR filter.

7.5.1 Filter Specifications

Ideal filters have a zero transition bandwidth, a constant passband, and a
stopband with an infinite attenuation. In practice, we cannot achieve these
specifications and we must allow some amount of tolerance. The permissible
tolerances should be specified before designing the filter. For an LPF, we often
have the following frequency response specifications:

δp: Peak passband deviation
δs: Stopband deviation
ωp: Passband cut-off frequency
ωs: Stopband cut-off frequency
N: Filter length

All these specifications are depicted in Figure 7.4. In general, δp and δs on a
linear scale are very small and it is often convenient to express them in dB.
Therefore, they are expressed in terms of Ap and As (defined in Equations 7.27
and 7.28), respectively, as follows:

Ap = 20 log10

1 + δp

1 − δp
. (7.27)

and

As = −20 log10 δs. (7.28)
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FIGURE 7.4
FIR filter specifications.

Here δp and δs can be different for designing FIR filters. However, FIR filters
designed using impulse response truncation (IRT) have the same passband
and stopband ripples, that is, δ = δs = δp. This is a serious drawback of the IRT
technique. Very often, we have frequency response requirements on a linear
scale where the ripples in the passband are allowed to be much larger than
in the stopband. Also, we have equiripple requirements in both the bands.
The IRT technique leads to filters where most ripples in both the bands are
smaller than needed. These two requirements lead to a filter length that is
larger than that found with digital optimization techniques. Here ωp and ωs

are the passband and stopband cut-off frequencies, respectively, normalized
with respect to the sampling frequency fsamp.

ωp = 2π fp

fsamp
and ωs = 2π fs

fsamp
.

The difference between passband and stopband cut-off frequencies, �ω, is
approximately equal to the main-lobe width, �F, of the window. This approx-
imation is vital in calculating the time span of the window to obtain the
required transition bandwidth.

7.6 FIR Filter Design

Any of the following three methods can be used to design FIR filters:

1. Impulse response truncation (windowing method)
2. Frequency sampling
3. Optimal method
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Although frequency sampling and optimal methods give much better results
for the given filter specifications, IRT (otherwise termed as windowing
method) is considered as the simplest approach to design FIR filters. Before
proceeding to the actual filter design procedure, we must first introduce the
four types of linear-phase FIR filters.

7.6.1 Linear-Phase Filters

The frequency response of an ideal LPF with linear phase can be defined as

Hlp(ejω) =
{

e−jωα, |ω| ≤ ωc

0, ωc < |ω| ≤ π .
(7.29)

The magnitude response of this filter is

|Hlp(ejω)| =
{

1, |ω| ≤ ωc

0, ωc < |ω| ≤ π ,
(7.30)

and the phase response is

arg Hlp(ejω) = −αω. (7.31)

The magnitude response and the phase response of the ideal LPF, with linear
phase, are given in Figure 7.5. The impulse response corresponding to this
ideal filter was derived earlier for α = 0. The phase factor, however, only
gives a shift over α in the time-domain as follows:

hlp[n] = sin ωc(n − α)

π(n − α)
, −∞ < n < ∞. (7.32)

An additional phase of −αω relates to the time shift of α in the time-domain.
Group delay (dg(ω)) is one of the parameters used to measure the linearity of
phase. It is defined as

dg(ω) = − d
dω

arg H(ejω). (7.33)

In this example, the group delay turns out to be

dg(ω) = − d
dω

(−αω) = α. (7.34)

Observe that the group delay is linearly independent of ω. This will result in
the frequency components of the signal delayed by the same amount, thereby
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FIGURE 7.5
Ideal LPF with linear phase: (a) magnitude response and (b) phase response.

avoiding the phase (or delay) distortion [2]. Also, note that the group delay for
linear phase filters is nothing but the point of symmetry of impulse response.

Although there is no phase (or delay) distortion in either zero delay or
constant group delay systems, these filters are nonrealizable due to their infi-
nite extent. To get the finite duration causal linear-phase filter, we consider
only the coefficients ranging from 0 to N − 1. Note that the truncated impulse
response with zero delay is no more symmetric, resulting in the nonlinear-
phase response. Therefore, we can always anticipate a small group delay α

as given in Equation 7.32. The impulse response of all the basic filters are
shifted by α and are given in Table 7.1 [3]. In the filter design procedures,
these impulse responses are preferred rather than the one with zero delay.
The number of coefficients that should be considered to design a causal filter
depends on the specifications. Once the filter length is calculated, we can find
the value of α using the relation

α = N − 1
2

. (7.35)

The coefficients of the FIR filter are therefore given by

h[n] = hd[n]f [n] (7.36)

= sin ωc(n − α)

π(n − α)
f [n]. (7.37)
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TABLE 7.1

Impulse Response of Linear-Phase Filters

Filter Impulse Response (h[n] , n �= α) h[α]

Lowpass
sin(ωc(n − α))

π(n − α)

ωc

π

Highpass − sin(ωc(n − α))

π(n − α)
1 − ωc

π

Bandpass
sin(ω2(n − α))

π(n − α)
− sin(ω1(n − α))

π(n − α)

ω2 − ω1

π

Bandstop
sin(ω1(n − α))

π(n − α)
− sin(ω2(n − α))

π(n − α)
1 − ω2 − ω1

π

In Equation 7.37, f [n] represents the samples of the discrete-time data win-
dow that extends from 0 to N − 1 and hd[n] represents the desired impulse
response. In this case, f [n] is a rectangular window. The frequency response
of the filter, which is the periodic convolution of the DTFTs of hd[n] and f [n],
is given by

H(ejω) = 1
2π

∫ π

−π

Hd(ejθ )F(ej(ω−θ))dθ . (7.38)

This can be written in short hand notation as

H(ejω) = 1
2π

Hd(ejω) ∗ F(ejω). (7.39)

Here, H(ejω) represents the periodic convolution of the desired ideal frequency
response with the Fourier transform of the window. Figure 7.6(a) shows the
ideal frequency response of a LPF with cut-off frequency ωc. To obtain the
frequency response of the FIR filter, the desired frequency response Hd(ejω)

is convolved with the frequency response of the window F(ejω) (shown in
Figure 7.6(b)). The resulting response H(ejω) is depicted in Figure 7.6(c).

From Figure 7.6(c), we can observe that the passband and stopband rip-
ples are no longer constant and the transition width is not equal to zero. The
side lobes present in the frequency window are responsible for the ripples in
the stopband and passband, whereas the main-lobe width of the frequency
response of the window is responsible for the nonzero transition width. In
general, the larger the main-lobe width of the frequency window, the more the
smearing of the filter response. In fact, the transition bandwidth is approxi-
mately equal to the main-lobe width ( 4π

N in the case of the rectangular window)
as shown in Figure 7.4. To obtain a sharp transition band, we have to increase
the value of N (i.e., number of coefficients in the filter response). However,
higher values of N require more computations. Therefore, we are always left
with a trade-off between smearing of the desired response and the compu-
tational complexity. Another important point to note is that the minimum
attenuation remains constant irrespective of the filter length chosen for a
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FIGURE 7.6
Truncation of impulse response using the rectangular window. (a) Desired frequency response.
(b) Frequency response of rectangular window. (c) Frequency response of truncated signal.

given window. This minimum attenuation is termed as Gibbs number. Gibbs
number for the rectangular window is 0.0895 [4]. This is illustrated in Fig-
ure 7.7. Observe that the transition bandwidth of the filter designed with
N = 101 has a steeper transition band than the one designed with N = 21.
However, the maximum ripple remains the same in both the cases.
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FIGURE 7.7
FIR filters designed with direct truncation with filter lengths N = 21 and N = 101.

Although a rectangular window gives the smallest transition width for a
given value of N, its side lobes are much larger. By tapering the window at
both ends, we can reduce the side-lobe levels, but at the expense of increased
main-lobe widths, thereby increasing the transition bandwidth.

The peak side-lobe level (PSLL) of the window, the transition bandwidth,
and the minimum stopband attenuation of the filter designed with some com-
mon windows are given in Table 7.2 [5]. From Table 7.2, we can see that there
are two values for the side-lobe level, namely, PSLL and minimum stopband
attenuation. We have seen that in the case of the rectangular window, it was
mentioned in an earlier chapter that it has a PSLL of −13 dB. For the design of
the filter as described here, this results in a first stopband side lobe of −21 dB.

TABLE 7.2

Filter Characteristics Using Different Windows

Peak Minimum

Side-Lobe Transition Stopband

Window Level Width Attenuation

Rectangular −13 4π/N −21
Bartlett −26 8π/N −25
Riesz −21 5.72π/N −31
Riemann −27 6.56π/N −39
Hann −31 8π/N −44
Bohman −46 12π/N −52
Hamming −41 8π/N −53
de la Vallé-Poussin −53 16π/N −57
Blackman −57 12π/N −74
Exact Blackman −51 12π/N −85
Blackman–Harris (minimum three-term) −71 12π/N −86
Blackman–Harris (minimum four-term) −92 16π/N −109
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If the cut-off frequency goes to zero, this first side-lobe level of the result-
ing frequency response gradually tends to −13 dB. This is because Hd(ejω) in
this case approaches an impulse function. Similar values for the minimum
stopband attenuation for other windows are presented in Table 7.2.

7.6.2 Types of FIR Filters

Let h[n] be the causal finite length impulse response of the filter. Then, the
frequency response of the filter is given by

H(ejω) =
N−1∑
n=0

h[n]e−jωn. (7.40)

This can be expressed in terms of the amplitude response A(ejω) and the phase
response θ(ω) as follows:

H(ejω) = A(ejω)ejθ(ω). (7.41)

The amplitude response A(ejω) can take both positive and negative real val-
ues. Phase response θ(ω) should be piece-wise linear to avoid group delay
distortions, that is,

θ(ω) = αω − β, (7.42)

where α and β are arbitrary constants. Equation 7.40 can be rewritten by
expressing e−jωn as the sum of sine and cosine terms to give

H(ejω) =
N−1∑
n=0

h[n] cos(ωn) + j
N−1∑
n=0

h[n] sin(ωn). (7.43)

The phase response can also be computed from Equation 7.43 using the
following expression:

θ(ω) = tan−1

⎡
⎢⎢⎢⎢⎣

N−1∑
n=0

h[n] sin(ωn)

N−1∑
n=0

h[n] cos(ωn)

⎤
⎥⎥⎥⎥⎦ . (7.44)
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Equating the phase response that we obtained in Equations 7.42 and 7.44,
we get

(αω − β) = tan−1

⎡
⎢⎢⎢⎢⎣

N−1∑
n=0

h[n] sin(ωn)

N−1∑
n=0

h[n] cos(ωn)

⎤
⎥⎥⎥⎥⎦ . (7.45)

Taking tan on both sides of Equation 7.45, we obtain

tan(αω − β) = sin(αω − β)

cos(αω − β)
=

N−1∑
n=0

h[n] sin(ωn)

N−1∑
n=0

h[n] cos(ωn)

. (7.46)

After cross-multiplying and simplifying the above equation, we obtain

N−1∑
n=0

h[n] sin(ω(α − n) + β) = 0. (7.47)

The solutions of this equation are given by [5,6]

1. β = 0, α = (N − 1)/2 and h[n] = h[N − 1 − n], 0 ≤ n ≤ N − 1.
2. β = ± π

2 , α = (N − 1)/2 and h[n] = −h[N − 1 − n], 0 ≤ n ≤ N − 1.

Note that here α is the total group delay and can be either an integer or
(integer + 1

2 ), depending on the value of N. Then, depending on whether h[n]
is even symmetric or odd symmetric, and N being odd or even, four types of
linear-phase FIR filters can be defined as follows:

1. Type 1: Even symmetric impulse response with odd filter length
2. Type 2: Even symmetric impulse response with even filter length
3. Type 3: Odd symmetric impulse response with odd filter length
4. Type 4: Odd symmetric impulse response with even filter length

The group delay is an integer for types 1 and 3, whereas it is (integer+ 1
2 ) for

types 2 and 4. This additional half group delay obtained for type 2 and type
4 FIR filters actually turns out to be useful in some applications. The impulse
response of the LPF for these four FIR filter types are shown in Figures 7.8
through 7.11. It should be noted that in the case of antisymmetric impulse
response with N odd (type 3), h[n] is always zero at the center point.
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FIGURE 7.8
Type 1 FIR impulse response.

7.6.3 Frequency Response of Type 1 FIR Filter

In this section, we will actually derive the expression for the frequency
response of type 1 FIR filter. Since the impulse response is symmetric and
the filter length is odd, the frequency response of type 1 FIR filter can be
written as follows:

H(ejω) =
N−1∑
n=0

h[n]e−jωn

=
(N−3)/2∑

n=0

h[n]e−jωn + h
[

N − 1
2

]
e−jω(N−1)/2 +

N−1∑
n=(N+1)/2

h[n]e−jωn. (7.48)
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FIGURE 7.9
Type 2 FIR impulse response.
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Type 3 FIR impulse response.

Replacing n with (N − 1 − m) in the third term, we obtain

H(ejω) =
(N−3)/2∑

n=0

h[n]e−jωn + h
[
N − 1

2

]
e−jω(N−1)/2 +

(N−3)/2∑
m=0

h[N − 1 − m]e−jω(N−1−m).

(7.49)

Since h[n] = h[N − 1 − n], we get

H(ejω) =
(N−3)/2∑

m=0

h[m]
(

ejω( N−1
2 −m) + ejω( N−1

2 −m)
)

+ h
[

N − 1
2

]
e−jω(N−1)/2. (7.50)
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FIGURE 7.11
Type 4 FIR impulse response.
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Replacing m with [(N − 1)/2 − n] in the above equation and on simplifying,
we obtain

H(ejω) = e−jω(N−1)/2

[
(N−3)/2∑

n=0

2h
[

N − 1
2

− n
]

cos(ωn) + h
[

N − 1
2

]]
(7.51)

or, equivalently

H(ejω) = ejω(N−1)/2

[
(N−1)/2∑

n=0

a[n] cos(ωn)

]
(7.52)

where

a[n] =
{

2h
[

N−1
2 − n

]
, n = 1, 2, . . . , (N − 1)/2

h
[

N−1
2

]
, n = 0.

(7.53)

Similarly, the frequency responses of the other three FIR filter types can be
derived. The filter types, along with the corresponding frequency responses,
are listed in Table 7.3. b[n] given for frequency responses of type 2 and type
4 filters in the table is defined as follows:

b[n] = 2h[N/2 − n]. (7.54)

TABLE 7.3

Linear-Phase FIR Filter Types

Filter Frequency Constrained Filters That Can

Type N Symmetry Response H(ejω) Zeros Be Designed

1 Odd Even ejω(N−1)/2
(N−1)/2∑

n=0

a[n] cos(ωn) — Any filter

2 Even Even ejω(N−1)/2
N/2∑
n=1

b[n] cos
(

ω

(
n − 1

2

))
ω = π LPF, BPF

3 Odd Odd je−jω(N−1)/2
(N−1)/2∑

n=0

a[n] sin(ωn) ω = 0, π BPF,
differentiator,
Hilbert
transformer

4 Even Odd je−jω(N−1)/2
N/2∑
n=1

b[n] sin
(

ω

(
n − 1

2

))
ω = 0 HPF, BPF,

differentiator,
Hilbert
transformer
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FIGURE 7.12
Pole-zero plots of the four FIR filter types. (a) Type 1. (b) Type 2. (c) Type 3. (d) Type 4.

The frequency response of type 2 FIR filter is zero at ω = π , irrespective
of the filter coefficients. Hence, there is a constrained zero at ω = π , which
implies that we cannot design filters with nonzero attenuation at ω = π . For
instance, we cannot design highpass or bandstop filters using type 2 FIR fil-
ter. Similarly, we find that type 3 FIR filter has constrained zeros at ω = 0
and ω = π , whereas type 4 FIR filter has constrained zero at ω = 0. There-
fore, type 3 FIR filter can be used for designing BPFs. Type 4 is useful for
designing highpass, bandpass, differentiators, and Hilbert transformers (see
Section 7.9). Note that type 1 FIR filter is the most versatile one as it has
no constrained zeros. Therefore, it can be used for designing any type of
filter. The typical pole-zero plots of the four FIR filter types are given in
Figure 7.12.

7.6.4 Design Procedure for Filters

1. First, we design an ideal filter with the given specifications, by
assuming the cut-off frequency (ωc) to be the mean of passband and
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stopband cut-off frequencies, that is,

ωc = (ωp + ωs)

2
.

2. Determine the impulse response hd[n] of the ideal filter from Table 7.1.
3. From Table 7.2, we can select the window that has the smallest

main-lobe width and can satisfy the minimum stopband attenua-
tion requirement. Note that the stopband and passband ripples are
equally affected by the side lobes of the window. Therefore, the max-
imum passband attenuation (or the minimum stopband attenuation)
is selected to be

20 log10[min{δp, δs}]. (7.55)

4. Find the number of filter coefficients (N) using the relation between
transition bandwidth and N given in Table 7.2.

5. Truncate the impulse response using the selected window to obtain
the symmetric filter coefficients.

Note that the value N computed in step 4 is only an approximate value.
Therefore, if the desired filter specifications are not met, then we repeat the
procedure with a different value of N.

Example 1

Design an HPF using the IRT method with the following specifications:

ωp = 0.65πrad/sample ωs = 0.55πrad/sample A = 54 dB

From the windows listed in Table 7.2, the Hamming window satisfies
the minimum attenuation criterion and it has the narrowest main-lobe
width (for the given attenuation), when compared to other windows.
Therefore, we choose the Hamming window to design this filter with
the above specifications.

Transition bandwidth of the filter (�ω) = (ωp − ωs) = 0.1π

The main-lobe width of the Hamming window is 8π

N .
As stated earlier, the transition bandwidth is approximately equal to

the main-lobe width of the window. Therefore, we can calculate the filter
length (N) from this approximation.

8π

N
≈ 0.1π

=⇒ N ≈ 80.

Since we cannot use type 2 FIR filter for designing HPF, we select N = 81
and we use a type 1 linear-phase filter. Now, we can obtain the filter coef-
ficients by truncating the impulse response with the Hamming window
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f [n] of length N = 81.

hd[n] = δ[n] − sin(0.6πn)

πn
, −∞ < n < ∞

h[n] = hd[n − 40]f [n], 0 � n � 80.

The magnitude response of the filter designed with the Hamming window
is given in Figure 7.13. To understand the effect of windows on filter atten-
uation characteristics, let us design the filter with the same specifications
using the Hann and Blackman windows as well.

Since the main-lobe width of the Hann window is the same as that of the
Hamming window, for a given transition width, the filter length remains
the same. The frequency response of the filter truncated with the Hann
window is given in Figure 7.14. Observe that the minimum stopband
attenuation is only −44 dB. Even if we decrease the transition width by
taking a higher filter order, we cannot meet the required minimum stop-
band attenuation. Therefore, we can use the Hann window for the filter
design only if the stopband attenuation is less than −44 dB (see Table 7.2).

Now, let us design the filter using the Blackman window. The main-
lobe width of the Blackman window is 12π

N . Therefore, the filter length N
is given by

12π

N
≈ 0.1π

=⇒ N ≈ 120.

The filter length is increased by one to design the filter with type 1 (odd
length) FIR filter. Filter coefficients can be obtained by truncating the
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FIGURE 7.13
Magnitude response of the filter designed with the Hamming window.



242 Window Functions and Their Applications in Signal Processing

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−140

−120

−100

−80

−60

−40

−20

0

−44 dB

20
 lo

g (
|H

(e
jω

)|)

Normalized frequency (ω /π)

FIGURE 7.14
Magnitude response of the filter designed with the Hann window.

impulse response as follows:

h[n] = hd[n − 60]f [n], 0 � n � 120 (7.56)

where the window function f [n] used is the Blackman window of length
N = 121. From the magnitude response plot of the filter designed using
the Blackman window (Figure 7.15), we can observe that the minimum
side-lobe attenuation is −75 dB, that is, the designed filter has outper-
formed the required specifications. However, we make an observation
at this juncture that to obtain the same transition bandwidth, the Black-
man window approach requires a larger filter length than the Hann or the
Hamming window.
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FIGURE 7.15
Magnitude response of the filter designed with the Blackman window.
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7.7 Kaiser–Bessel Windows for FIR Filter Design

From the above example, we have seen that the filters designed using the
window functions given in Table 7.2 have fixed values of δ. Therefore, in
many cases, these windows may not satisfy (or even outperform) the required
specifications. Kaiser–Bessel windows (both I0–sinh and I1–cosh families) do
not suffer from the above limitations. These windows have adjustable shape
parameters (α andγ ) that allow us to choose the appropriate window to obtain
any desired value of ripple δ or attenuation. Such windows are called variable
windows. The filter design procedure using the Kaiser–Bessel zeroth-order
(I0–sinh) and first-order (I1–cosh) windows are discussed in this section.

7.7.1 Filter Design Using Kaiser–Bessel Zeroth-Order (I0–Sinh) Window

The I0–sinh window is unique in the above class since it has a near-optimum
performance, in the sense that it has maximum energy in the main-lobe of its
Fourier transform as well as a relatively simple implementation. This window
depends on two parameters: the shape parameter α and its length N. For an
odd length N = 2M + 1, the I0–sinh window is defined, for n = 0, 1, . . . , (N −
1), as follows:

f [n] =
I0

[
α
√

1 − (n − M)2/M2
]

I0(α)
, 0 ≤ n ≤ 2M (7.57)

where I0(x) is the modified Bessel function of the first kind and order zero.
The numerator of Equation 7.57 can be rewritten in the following form. This
form is more convenient for the purpose of numerical evaluation:

f [n] = I0

[
α
√

n(2M − n)/M
]

I0(α)
. (7.58)

The I0–sinh window is symmetric about its center point, that is, n = M, and
has the value f [M] = 1. At the edges of the window, that is, at n = 0 and
n = (N − 1), it has the value 1

I0(α)
, since I0(0) = 1. Note that the case α = 0 in

Equation 7.58 reduces to the rectangular window. Figure 7.16 shows the time
function of the I0–sinh window for α = 0, 4, and 8. Figure 7.17 displays the
magnitude of the frequency response of the I0–sinh window for α = 0, 4, and
8, with N being constant. Figure 7.18 shows the magnitude response of the
I0–sinh window for N = 11, 21, and 41, with α held constant, that is, α = 8.
It can be clearly observed from Figure 7.17 that by increasing α, the side-
lobe level decreases, at the expense of increased main-lobe width. Similarly,
from Figure 7.18, we can see that the resolution is increased by varying the
filter length from N = 11 to 41, but the side-lobe levels remain the same in all
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FIGURE 7.16
Kaiser window with α = 0, 4, and 8.

the cases. Therefore, we note that the desired trade-off between the side-lobe
amplitude and the main-lobe width can be achieved by varying N and α. Also
note that if a window in the time-domain is tapered more, the side lobes of the
Fourier transform becomes smaller, but the main-lobe width gets broader.

Kaiser had proposed a pair of equations that allow the filter designer to
predict the values N and α required to meet certain given frequency-selective
filter specifications [7,8]. The window parameters (N, α) can be computed
in terms of the filter specifications, namely the ripple δ and the transition
width �ω. The design equations developed by Kaiser [7,8] are given in the
remaining section.
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Magnitude Responses of I0–sinh window with α = 0, 4, and 8, and N = 21.
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FIGURE 7.18
Magnitude responses of I0–sinh window with parameters N = 11, 21, and 41, and α = 8.

We define

�ω = (ωs − ωp) and

δ = δs = δp.
(7.59)

Therefore, the resulting filter will have passband and stopband ripples equal
to δ. This value of δ is usually expressed in dB as follows:

A = −20 log10 δ or δ = 10−A/20. (7.60)

The shape parameter α of the I0–sinh window was determined empirically
by Kaiser and can be calculated from Equation 7.61 as follows:

α =

⎧⎪⎨
⎪⎩

0.1102(A − 8.7), A > 50
0.5842(A − 21)0.4 + 0.07886(A − 21), 21 ≤ A ≤ 50
0, A < 21.

(7.61)

Recall that when α = 0, the I0–sinh window becomes a rectangular window
for which A = 21. Note that A represents the ripple in dB given by Equa-
tion 7.60. The filter order N can also be calculated from A. We know that
the filter order is related to the transition width. Kaiser has also found that
to achieve the prescribed values of A and �ω, N must satisfy the relation as
follows:

N = (A − 7.95)

2.285 �ω
. (7.62)
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Equation 7.62 predicts N to be within ±2 over a wide range of values of �ω

and A. Therefore, by using the closed-form expressions, the I0–sinh window
method avoids the trial-and-error approach.

In most of the practical applications, the value of the attenuation A is always
greater than 50 dB, and therefore we generally use the following formulae for
calculating α and M:

α = 0.1102(A − 8.7), N = (A − 7.95)

2.285 �ω
. (7.63)

For designing an LPF using the I0–sinh window, we summarize the procedure
as follows:

1. Find the passband ripple (δp) and the stopband ripple (δs) from
the actual passband attenuation (Ap) and the minimum stopband
attenuation (As) using the following formulae:

δp = 100.05Ap − 1
100.05Ap + 1

and δs = 10−0.05As . (7.64)

2. Determine the stopband attenuation (A) using the following equa-
tion:

A = −20 log10 min{δp, δs}. (7.65)

3. Calculate the shape parameter (α) of the I0–sinh window and filter
length (N) from Equations 7.61 and 7.62, respectively.

4. Plug in the values of N and α in Equation 7.57 to obtain I0–sinh
window coefficients.

5. Truncate the ideal impulse response hd[n] using the I0–sinh window
coefficients (obtained in step 4) to get the required filter coefficients.

Example 2

Design an LPF using the I0–sinh window with the following filter
specifications:

ωp = 0.2πrad/sample Ap = 0.1 dB

ωs = 0.3πrad/sample As = 43 dB
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We can calculate δp and δs using Equations 7.27 and 7.28, respectively,
as follows:

δp = 100.05Ap − 1
100.05Ap + 1

= 0.0058

δs = 10−0.05As = 0.0071.

The passband ripple is less than the stopband ripple. Therefore, choose

δ = min{δp, δs} = δp = 0.0058.

Minimum stopband attenuation: A = −20 log δ = 44.797 dB.
The filter length N can be calculated using Equation 7.62 as follows:

N = (44.797 − 7.95)

2.285(0.1π)
≈ 52.

Substituting the value of A in Equation 7.61 yields

α = 0.5842(44.797 − 21)0.4 + 0.07886(44.797 − 21) = 3.9524.

Compute the filter coefficients as stated in steps 4 and 5 in the design
procedure. The frequency response of the designed FIR filter is shown in
Figure 7.19. To observe the ripples in the passband, the error between the
desired frequency response and the frequency response of the designed
FIR filter is also provided in Figure 7.20. It is clear from this plot that the
maximum passband and stopband ripples are equal in magnitude but less
than 0.0058.
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FIGURE 7.19
Magnitude response of the filter designed with the Kaiser–Bessel window (N = 59, α = 3.9524).
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FIGURE 7.20
Error plot.

Example 3

Design a BPF using the I0–sinh window with the following specifications:

ωs1 = 0.35πrad/sample ωp1 = 0.44πrad/sample

ωp2 = 0.72πrad/sample ωs2 = 0.83πrad/sample

Ap = 0.1 dB, As = 56 dB.

The transition widths are �ω1 = ωp1 − ωs1 = 0.09π and �ω2 = ωs2 − ωp2 =
0.11π .

Since the transition width of the filter depends on the main-lobe width,
we cannot have different transition widths in a window-based filter
design. Therefore, we always choose the minimum transition bandwidth
for designing multiband filters. In this example, we choose �ω = 0.09π .

Since the transition width is changed, the cut-off frequency is no longer
the mean of the passband and the stopband frequencies. The new cut-off
frequencies can be computed as follows:

ωc1 = ωp1 − �ω/2 = 0.395π

ωc2 = ωp2 + �ω/2 = 0.765π .

The ripples δp and δs can be calculated using Equations 7.27 and 7.28 as
follows:

δp = 100.05Ap − 1
100.05Ap + 1

= 0.0058

and

δs = 10−0.05As = 0.00158.

Minimum stopband attenuation A = −20 log δ = 56 dB.
Filter length N can be calculated as

N = (56 − 7.95)

2.285(0.09π)
= 75.
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FIGURE 7.21
Magnitude response of the bandpass filter designed with the I0–sinh window.

The shape parameter can be obtained from Equation 7.61 as

α = 0.1102(56 − 8.7) = 5.2125.

The magnitude response of the designed filter is given in Figure 7.21. From
the figure, we can see that this filter satisfies all the given specifications.
From these two examples, we can conclude that the I0–sinh window can
be used to design any filter with arbitrary minimum side-lobe attenuation
and transition width, by selecting appropriate values of α and N.

7.7.2 Filter Design Using Kaiser–Bessel First-Order (I1-Cosh) Window

The time-domain expression for the I1-cosh window [9] is

f [n] =
I1

[
γ

√
1 −

(
n−N/2

N/2

)2
]

I1[γ ]
√

1 −
(

n−N/2
N/2

)2
, 0 ≤ n ≤ N (7.66)

where I1[γ ] is the modified Bessel function of the first kind and first order,
and γ is the shape parameter of the window. Similar to the Kaiser–Bessel
zeroth-order window, by adjusting the values of N and γ , we can get the
desired main-lobe width and minimum stopband attenuation in the case of
the Kaiser–Bessel first-order window [9].
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The first three steps in the filter design procedure using the I1-cosh win-
dow are similar to the design procedure outlined for the I0–sinh windows in
Section 7.7.1. Once we get the attenuation A from step 3, we can calculate γ

and the filter length using the relations given below:

γ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0.1095(A − 0.9703), A > 37.5

0.5106(A − 20)0.7262, 20 ≤ A ≤ 37.5

0, A < 20

(7.67)

and

N = A − 6.9539
2.285�ω

. (7.68)

Example 4

Now, let us design an LPF using the I1-cosh window with the same
specifications as in Example 2.

ωp = 0.2πrad/sample Ap = 0.1 dB

ωs = 0.3πrad/sample As = 43 dB

The passband ripple is smaller than the stopband ripple in this example.
So we design the filter that meets the passband attenuation. Attenuation
A can be obtained as

A = −20 log δ = 44.797 dB.

For this value of attenuation and the required transition bandwidth
(0.1π ), we can compute the filter order N and shape parameter γ using
Equations 7.68 and 7.67, respectively, as

N = 44.797 − 6.9539
2.285(0.1π)

= 53

and

γ = 0.1095(44.797 − 0.9703) = 4.799.

Since the filter length is even, we design the LPF using the type 2 filter.
From these values of N and γ , we can get the I1-cosh window coefficients
and use it to truncate the impulse response of the ideal LPF. The mag-
nitude response of this filter is given in Figure 7.22 to verify whether it
meets the required specifications. It is to be observed that the filter length
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FIGURE 7.22
Magnitude response of lowpass filter designed using the I1-cosh window.

required to design a filter for the given specifications is almost the same
for both the I1-cosh and the I0-sinh windows. In almost all the cases, the
filter designed with the I0-sinh window outperforms the one designed
using the I1-cosh window. For the purpose of comparison of the zeroth
and the first-order Kaiser–Bessel windows, the minimum side-lobe atten-
uation (Gibbs number) that can be attained for a given shape parameter
is given in Figure 7.23.
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FIGURE 7.23
Comparison of I1-cosh and I0-sinh filters.
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7.8 Design of Differentiator by Impulse Response
Truncation

In signal processing applications, we usually come across many situations
where we need to differentiate a time signal to find the rate of change of a
signal. The differentiator can be represented using the difference equation,
which can be easily implemented by a general-purpose digital computer or a
special-purpose digital hardware. The procedure for finding the differentiator
coefficients for the hardware implementation is given in this section.

We now proceed with the frequency response of a discrete-time differen-
tiator

Hd(ejω) = jω, −π ≤ ω ≤ π . (7.69)

The impulse response of the differentiator was derived in Chapter 1 (see
Section 1.3.2), which is reproduced below:

hd[n] = cos πn
πn

− sin πn
πn2

. (7.70)

Figure 7.24 shows the impulse response of the differentiator. Clearly, the
impulse response is anti-symmetric. We can see from Table 7.3 that the filters
having antisymmetric impulse response can be designed with type 3 or type 4
FIR filters.

The design procedure of a differentiator is similar to the design of other
filters. The impulse response is truncated by an appropriate window function
to make it realizable. The differentiators designed with type 3 and type 4
FIR filters, using the rectangular window, are shown in Figures 7.25 and
7.26, respectively. From these figures, it is clear that type 4 gives a closer
approximation to the ideal differentiator. This is because type 3 filter has a
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FIGURE 7.24
Impulse response of differentiator.
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0 π–π ω

H(e jω )

FIGURE 7.25
Frequency response of a differentiator designed with type 3 FIR filter.

0 π–π

H(e jω )

ω

FIGURE 7.26
Frequency response of differentiator designed with type 4 FIR filter.

constrained zero atω = π , which is responsible for bringing down the impulse
response to zero at both the edges.

We also note that we get a better approximation of the differentiator using
type 4 at the expense of (integer + 1

2 ) group delay. This half-delay can be
compensated at other parts of the system.

7.9 Design of Hilbert Transformer Using Impulse Response
Truncation

Quite often, a Hilbert transformer is used in communication systems to
eliminate either the negative or the positive frequency components from the
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FIGURE 7.27
Frequency response of ideal Hilbert transform.

real signals.∗ It can also be used as an ideal 90◦ phase shifter. It only alters the
phase response of the signal by keeping the magnitude response unchanged.
The frequency response of the Hilbert transformer (depicted in Figure 7.27)
can be defined as follows:

H(ejω) =

⎧⎪⎨
⎪⎩

j, ω < 0
0, ω = 0
−j, ω > 0.

(7.71)

The impulse response of the Hilbert transformer h[n] can now be obtained
by taking the inverse DTFT of H(ejω), as described below:

h[n] = 1
2π

∫ π

−π

H(ejω)ejωndω

= 1
2π

∫ 0

−π

jejωndω + 1
2π

∫ π

0
−jejωndω

= 1
2π

[
jejωn

jn

]0

−π

− 1
2π

[
jejωn

jn

]π

0

= 1
2π

[
2
n

− 2 cos(πn)

n

]
= 1 − cos(πn)

πn

=
{

2
πn , n = odd
0, n = even.

(7.72)

∗ Signals having only positive or negative frequencies are called analytic signals.
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FIGURE 7.28
Frequency response of the Hilbert transformer designed using type 3 and type 4. (a) Type 3
frequency response. (b) Type 4 frequency response. (c) Type 3 impulse response.
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FIGURE 7.28
(Continued). Frequency response of the Hilbert transformer designed using type 3 and type 4.
(d) Type 4 impulse response.

Observe that the impulse response is antisymmetric in nature, leaving us with
only type 3 or type 4 FIR filters to design a Hilbert transformer. The design
procedure is straightforward. Once we obtain the impulse response, it is trun-
cated to a suitable length using a window. Figures 7.28(a) and (b) display the
frequency response plots of the Hilbert transformer designed with type 3
and type 4 filters, with lengths N = 31 and N = 30, respectively. The impulse
response given in Equation 7.72 is for odd lengths. Refer to Section 5.2.28 to
find the impulse response of the Hilbert transformer for even lengths. In Fig-
ures 7.28(c) and (d), the corresponding impulse responses are shown. Similar
to the case of a differentiator design discussed earlier, type 4 seems to be a
better approximation in the case of the Hilbert transformer, when compared
to type 3. However, in practice, type 3 filter requires lesser number of com-
putations and can generate the output at twice the speed, when compared to
type 4 filter. This is evident once we observe the impulse responses of the type
3 and type 4 Hilbert transformer. Type 3 impulse response has zeros for all
even values of n (see Figure 7.28(a)), whereas to design a Hilbert tranformer
with type 4 impulse response, it is sampled at (integer+ 1

2 ) values making all
the coefficients nonzero, as shown in Figure 7.28(b). The number of multipli-
cations required reduces to (N/2) in type 3 design, making it a better choice
from the implementation point of view.
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8
Application of Windows in Spectral Analysis

Every signal obtained from nature can be considered as a realization of a ran-
dom process, but in practice, we will only have finite number of samples of
this process. Therefore, to characterize this process, we need to estimate its
statistical parameters from the available data samples. Power spectral estima-
tion is a process of estimating the different frequency components contained
in a signal. Spectral estimation methods can be broadly classified into two
categories: nonparametric estimators and parametric estimators. Since win-
dow functions are only applicable to nonparametric methods, we will only
concentrate on this category of spectral analysis.

The performance of any power spectral estimator is evaluated based on
several goodness measures that are outlined below:

• Bias: It is defined as the difference between the mean or expected
value ε[x̂] of the estimates and its true mean:

bias(X̂(ω)) = ε{X̂(ω) − X(ω)}. (8.1)

If the bias is zero, then it is called an unbiased estimator.
• Variance: It denotes the spread of the power spectral density (PSD)

about its mean value. It is expressed as

var(X̂(ω)) = ε{(X̂(ω) − ε{X̂(ω)})2}. (8.2)

A good estimator should have a small variance, in addition to having
a small bias.

• Mean square error (MSE): It is a measure that combines the bias and
variance associated with the estimator. It is defined as

MSE(X̂(ω)) = ε{(X̂(ω) − X(ω))2}
= ε{(X̂(ω) − ε{X̂(ω)})2} + (ε{X̂(ω) − X(ω)})2

= var(X̂(ω)) + (bias(X̂(ω)))2. (8.3)

259
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• Consistency: If the bias and variance both tend to zero as the num-
ber of observations becomes large, then the estimator is said to be
consistent.

• Resolution: This corresponds to the ability of an estimator to provide
fine details of the random process. For example, suppose the PSD
of the random process has two peaks with the same amplitude at
frequencies ω1 and ω2. Then, the resolution of the estimator is mea-
sured by the minimum separation between ω1 and ω2 for which the
estimator still reproduces two distinct peaks at those frequencies.

Spectral estimation aims at finding the PSD or spectral information of a
signal on an average basis, such that the estimate has less bias and variance,
apart from having the required frequency resolution. In general, a signal can
be obtained as an output sequence of a system where the input can be an
impulse train (as in the case of voiced speech) or white noise input for cases
such as seismic signals (reflections from the layers of the earth). Signals are
generally associated with noise, which inevitably introduces variance. Any
attempt to acheive more frequency resolution than a limit also increases the
variance as it picks up undesired noise. It is very difficult to achieve the twin
goals of reducing both bias and variance.

8.1 Nonparametric Methods

The nonparametric methods are based on Fourier transform techniques to
find the PSD estimate [1]. There are two basic PSD estimators:

i. Periodogram methods: They are based on the direct transformation of
the data, followed by averaging.

ii. Correlogram methods: These methods first formulate the correlation
estimates from the given data.

8.1.1 Periodogram PSD Estimator

The introduction to the periodogram method was given in Chapter 5. Here,
we will discuss the concept in detail. The power spectral density (PSD) is
defined as in [2] by

Pxx(ejω) = lim
N→∞

ε

⎧⎨
⎩ 1

2N + 1

∣∣∣∣∣
N∑

n=−N

x[n]e−jωn

∣∣∣∣∣
2
⎫⎬
⎭ . (8.4)
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where 2N + 1 is the length of the signal window. We can define a periodogram
in two ways. Taking the Fourier transform of the autocorrelation estimate
results in an estimate of the PSD, which is known as the periodogram:

PPER(ejω) =
N−1∑

k=−(N−1)

rxx[k]e−jkω. (8.5)

The autocorrelation estimate rxx[k] is the autocorrelation of the rectangu-
lar windowed version of the sequence x[n] of length N. Let us define this
windowed sequence as xR[n]. Then rxx[k] is defined as

rxx[k] = 1
N

xR[k] ∗ x∗
R[−k]. (8.6)

Taking the Fourier transform of Equation 8.6, we get

PPER(ejω) = 1
N

XR(ejω)X∗
R(e

jω) = 1
N

∣∣XR(ejω)
∣∣2

= 1
N

∣∣∣∣∣
N−1∑
n=0

x[n]e−jωn

∣∣∣∣∣
2

, (8.7)

where XR(ejω) is the DFT of xR[n], which is in turn equal to the N point DFT of
x[n], thus giving an alternate expression for periodogram. Now let us examine
the value of the estimate at a particular frequency ω0. Then, the periodogram
can be expressed as

PPER(ejω0) = 1
N

∣∣∣∣∣
N−1∑
n=0

x[n]e−jω0n

∣∣∣∣∣
2

. (8.8)

Therefore, Equation 8.8 represents the power of the frequency component ω0

in that signal. This is just an inner product of two data sequences. Hence,
Equation 8.8 can be expressed as a convolution operation with a filter which
has an impulse response h[n]. Let the impulse response of the filter be

h[n] =
{

1
N ejω0n, for n = −(N − 1), −(N − 2), . . . , −1, 0
0, otherwise.

(8.9)

The sequence h[n] is time-reversed and hence, after convolution, becomes the
inner product expression. This operation can be expressed as

PPER(ejω0) = N

∣∣∣∣∣
N−1∑
k=0

h[n − k]x[k]
∣∣∣∣∣

2

n=0

. (8.10)
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The DTFT of h[n] is given as

H(ejω) =
∞∑

n=−∞
h[n]e−jωn =

0∑
n=−(N−1)

1
N

ejω0ne−jωn

= e(j(ω−ω0)(N−1))

N

[
1 − e−j(ω−ω0)N

1 − e−j(ω−ω0)

]

= 1
N

e(j(ω−ω0)(N−1)/2)
sin((ω − ω0)N/2)

sin((ω − ω0)/2)
. (8.11)

The scale factor N is necessary to account for the filter bandwidth. To obtain
the spectral density, the power is divided by the length of the data, which
gives the PSD estimate. By examining Equation 8.11, we infer that it is the
frequency response of a shifted rectangular window. Hence, the convolution
operation is just a set of bandpass filtering operations to give the amount
of power in that particular frequency band. Therefore, we can say that the
periodogram method generates the PSD estimate of the given signal.

Bias of periodogram: The expected value of the periodogram can now be
calculated as in Ref. [3]:

ε{PPER(ejω)} = ε

{
N−1∑

k=−(N−1)

rxx[k]e−jωk

}

=
N−1∑

k=−(N−1)

ε{rxx[k]}e−jωk, (8.12)

where

ε{rxx[k]} = 1
N

N−1−k∑
n=0

ε{x[n + k]x∗[n]}

=
(

N − k
N

)
rx[k]. (8.13)

In Equation 8.13, rx[k] represents the unbiased estimate of the true auto-
correlation of the signal x[n]. Therefore, the autocorrelation estimate of the
rectangular windowed signal is weighted with a Bartlett (triangular) window.
Thus, Equation 8.13 can be written as

ε{rxx[k]} = fB[k]rx[k], (8.14)

where

fB[k] =
⎧⎨
⎩

N − |k|
N

, |k| ≤ N − 1

0, otherwise.
(8.15)
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Equation 8.15 represents a triangular or Bartlett window in the time-domain.
Substituting Equation 8.14 into Equation 8.12, we obtain

ε{PPER(ejω)} =
∞∑

k=−∞
rxx[k]fB[k]e−jωk. (8.16)

Equation 8.16 can be interpreted as a convolution operation, and using the
properties of the Fourier transform we can represent it as

ε{rxx[k]} = 1
2π

Pxx(ejω) ∗ FB(ejω), (8.17)

where FB(ejω) is the Fourier transform of the Bartlett window, represented as

FB(ejω) = 1
N

[
sin(Nω/2)

sin(ω/2)

]2

. (8.18)

Now, as N → ∞, the sinc-squared pulse converges toward a Dirac delta func-
tion in the frequency-domain. Hence, the expected value of the periodogram
estimate approaches the true PSD, and thereby the bias tends to zero, as given
below:

lim
N→∞

ε{PPER(ejω)} = Pxx(ejω). (8.19)

Variance of periodogram: The variance of the periodogram method [3] can be
calculated as follows:

PPER(ejω) = 1
N

∣∣∣∣∣
N−1∑
k=0

x[k]e−jωk

∣∣∣∣∣
2

= 1
N

N−1∑
k=0

N−1∑
l=0

x[k]x∗[l]e−j(k−l)ω. (8.20)

The variance can be determined from the covariance expression given by

cov{PPER(ejω1)PPER(ejω2)} = ε{PPER(ejω1)PPER(ejω2)} − ε{PPER(ejω1)}ε{PPER(ejω2)}.
(8.21)

The second moment of the periodogram can be computed as

ε{PPER(ejω1)PPER(ejω2)} = 1
N2

N−1∑
k=0

N−1∑
l=0

N−1∑
m=0

N−1∑
n=0

ε{x[k]x∗[l]x[m]x∗[n]}e−j(k−l)ω1 e−j(m−n)ω2 .

(8.22)
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Now, assuming x[n] as a Gaussian random process, we can make use of the
moment factorizing theorem, which is given by

ε{x[k]x∗[l]x[m]x∗[n]} = ε{x[k]x∗[l]}ε{x[m]x∗[n]} + ε{x[k]x∗[n]}ε{x[m]x∗[l]}.
(8.23)

Thus, using Equation 8.23, we can simplify Equation 8.22 as

ε{PPER(ejω1)PPER(ejω2)} = σ 4
x

[
1 +

(
sin(N(ω1 − ω2)/2)

N sin((ω1 − ω2)/2)

)2
]

, (8.24)

where σ 2
x is the variance of x[n], when assumed that x[n] is a Gaussian random

process. For a Gaussian signal x[n], the variance is ε{PPER(ejω)} = σ 2
x . Therefore,

the covariance of the periodogram is given by

cov{PPER(ejω1)PPER(ejω2)} = σ 4
x

[
sin(N(ω1 − ω2)/2)

N sin((ω1 − ω2)/2)

]2

. (8.25)

Finally, the variance of the periodogram estimate is obtained from Equa-
tion 8.25 by setting ω1 = ω2.

var{PPER(ejω)} = σ 4
x . (8.26)

However, as N → ∞, the variance does not go to zero. For the Gaussian
process

lim
N→∞

ε{PPER(ejω)} = Pxx(ejω) = σ 2
x

=⇒ var{PPER(ejω)} = P2
xx(e

jω). (8.27)

Resolution of periodogram estimate: For a fixed value of N, there is a limit
on the proximity of the two sinusoids such that they can be resolved as two
distinct peaks. This is usually given by the 6 dB bandwidth of the window.
Hence, for periodogram PSD estimate, the resolution is the 6 dB bandwidth
of the Bartlett window [3]:

Res{PPER(ejω)} = 0.89
(

2π

N

)
. (8.28)

The technique described above was the original unmodified periodogram
PSD estimate [2]. However, this method produces statistically inconsistent
PSD estimates, that is, as the length of the data increases (N → ∞), the mean
converges to the true PSD, but the variance does not tend to zero. This problem
arises because of the fact that the expectation operation was ignored in the
PSD computation. To overcome this, it is necessary to average the PSD of
many outputs to cause the variance to decrease.
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In many cases of practical interest, the data consist of sinusoidal inputs
or white noise-like inputs. In such a case, the application of an appropriate
window is essential. The effect of different windows on spectral estimation
will be discussed in the following sections. Presently, let us discuss in detail
the effect of the length of the sequence on the bias and variance of the peri-
odogram. Let us consider a signal having three sinusoidal components: two
of which are closely spaced ones and the third component is distant from
them, described as follows:

x[n] = sin[0.15625πn] + 0.01 sin[0.21875πn] + 0.00316 sin[0.46875πn].
(8.29)

To the signal x[n], white noise with a variance of 0.002 is added.
From Figure 8.1, we can say that the bias is reduced as the value of win-

dow length N is increased, giving us an accurate spectral estimate, but the
variance does not reduce. Figures 8.2 and 8.3 show the superimposed figures
of 50 iterations of the PSD estimate using the periodogram method. Here,
we can see that the width of the dark region (in Figures 8.2 and 8.3) remains
constant with an increase in N. This dark region corresponds to the spread
of the periodogram PSD estimate curves. Hence, we can conclude that the
periodogram is not a consistent estimation of the PSD.

8.1.2 Modified Periodogram PSD Estimator

The periodogram estimate of a random process that is windowed with any
general window (other than the rectangular window) is called modified peri-
odogram. This method uses a window to smooth a single periodogram to
obtain a better spectral estimate [2]. The operation of windowing in the time-
domain is equivalent to convolution in the frequency-domain. We note that
all the windows presented in the previous chapters have a lowpass filtering
effect. Thus, it will result a smoothing of the periodogram, in based on the
type of window selected [4]. This smoothing effect of the window reduces
the variance of the PSD estimate. At the same time, it improves the resolution
of the PSD estimate. This is because even in the absence of a window in the
periodogram PSD estimator, a rectangular window was present implicitly.
The rectangular window has a more narrow main-lobe width, but has higher
side-lobe levels, which causes the main lobes of the weaker signal compo-
nents to be masked by the side lobes of a stronger signal component. In this
case, we can use an effective window function, f [n], which has lower side-lobe
levels, such as Hann, Hamming, Blackman, or Kaiser window. The effect of
different windows on a periodogram PSD estimator is shown in Figures 8.4
and 8.5. The modified periodogram estimate is given by

PM(ejω) = 1
NU

∣∣∣∣∣
∞∑

n=−∞
x[n]f [n]e−jωn

∣∣∣∣∣
2

, (8.30)
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FIGURE 8.1
Periodogram estimate for increasing N (no noise added). (a) N = 64. (b) N = 256. (c) N = 1024.

where N is the length of the window and U (which is defined in Equation 8.31)
is a constant that makes the modified periodogram asymptotically unbiased:

U = 1
N

N−1∑
n=0

∣∣f [n]∣∣2 . (8.31)
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FIGURE 8.2
Periodogram for several values of N (with additive white noise). (a) N = 128. (b) N = 256.

Bias of modified periodogram: Using the procedure for calculating the bias of
the periodogram estimate, we can get the expected value of the modified
periodogram as

ε{PM(ejω)} = 1
2πNU

Pxx(ejω) ∗ ∣∣F(ejω)
∣∣2 . (8.32)

As N → ∞, the term |F(ejω)|
NU in Equation 8.32 will converge to an impulse

function. This will result in ε{PM(ejω)} approaching close to Pxx(ejω), which in
turn causes the bias to tend to zero.

Variance of modified periodogram: The variance of the modified periodogram
does not change much, since it is just a periodogram of a windowed sequence.
Hence

var{PM(ejω)} ≈ P2
xx(e

jω). (8.33)
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FIGURE 8.3
Periodogram for several values of N (with additive white noise). (a) N = 512. (b) N = 1024.

Resolution of modified periodogram: The spectral resolution of the peri-
odogram is the 6 dB bandwidth of the lag window, which will be applied
onto the autocorrelation function (ACF). The resolution can be defined as the
3 dB bandwidth of the data window since it transforms into the 6 dB band-
width of the lag window. The 3 dB as well as the 6 dB bandwidths of all
common windows were already presented in Chapter 5 (see Table 5.3).

Figures 8.4 and 8.5 display the modified periodogram PSD estimates using
different windows. The signal contains three sinusoidal components: one
strong signal component, next a weak signal component, and then a third
much weaker component that is farther away from the other two compo-
nents, as given in Equation 8.29. Here, the length of the sequence N is fixed
as 256. In Figure 8.2(b), we found that the periodogram with N = 256 was
unable to resolve the nearby weak signal components. Also, the estimation
of the far-off weaker signal component was not accurate. However, with the
aid of windowing, these components can be resolved better. In Figure 8.4(a),
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FIGURE 8.4
Modified periodogram estimate. (a) Using Bartlett window. (b) Using Hann window.

the Bartlett window was unable to resolve the nearby weak signal compo-
nent, but surprisingly, it could resolve the far-off weaker component better.
This is due to the faster decay rate of the side lobes of the Bartlett window.
In the case of Hann and Hamming windows, both the weaker components
could be resolved properly for this example (see Figures 8.4(b) and 8.5(a)). The
Blackman window also resolves all the spectral components in this case (see
Figure 8.5(b)), but due to the larger main-lobe width, the spectral resolution
is less than that obtained using Hann and Hamming windows. The applica-
tion of Hann, Hamming and Blackman windows in spectral estimation were
already discussed in Chapter 5.

The modified periodogram is still not a consistent estimator, since the vari-
ance of the estimator does not go to zero as N → ∞. Thus, the advantage
of windowing is to provide a trade-off between resolution and the spectral
masking provided by the side lobes of the window functions.
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FIGURE 8.5
Modified periodogram estimate (continued). (a) Using Hamming window. (b) Using Blackman
window.

Figures 8.6 through 8.10 show the effect of noise on the modified peri-
odogram estimator. In all the examples illustrated in these figures, we have
considered white noise with a variance of 0.01, which is −40 dB in magnitude.
In Figures 8.6 through 8.10, each has two subplots: one showing the overlaid
plots of 50 iterations of the modified periodogram method on the signal (with
random white noise added) and the second subplot showing the average of
all the 50 plots. From these plots, we can conclude that if the noise level is close
to the PSLL of the window used, then the effect of noise on spectral estimation
will be greater. Thus, all the windows that have PSLL less than this value will
give poorer estimates. Hence, in this example, the performance of rectangu-
lar, Bartlett, and Hann windows (in the presence of white noise) is poor when
compared to the other windows, since their PSLL is close to −40 dB.
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FIGURE 8.6
Effect of noise on modified periodogram using rectangular window. (a) Overlaid plots.
(b) Averaged plots.

8.1.3 Spectral Analysis Using Kaiser–Bessel Window

In the previous sub-section, we have used only the common fixed parameter
windows. For such windows, we are unable to fix the required resolution and
frequency leakage simultaneously. When we try to improve the resolution
using a window with a narrow main lobe, we will have more spectral leakage
due to the high side-lobe levels. Hence, we often prefer variable parameter
windows, where both these parameters can be controlled simultaneously [5].
One among them is the Kaiser–Bessel window with a variable parameter α.



272 Window Functions and Their Applications in Signal Processing

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1−80

−70

−60

−40

−50

−30

−10

−20

0

10

20(a)

Normalized frequency (ω/π ) 

Po
w

er
 sp

ec
tr

al
 d

en
sit

y (
dB

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−60

−50

−40

−30

−10

−20

10

(b)

0

20

Normalized frequency (ω/π ) 

Po
w

er
 sp

ec
tr

al
 d

en
sit

y (
dB

)

FIGURE 8.7
Effect of noise on modified periodogram using Bartlett window. (a) Overlaid plots. (b) Averaged
plots.

In the recent times, the Kaiser window has become popular for FIR filter
design. In the case of FIR filter design problem, a convolution of the frequency
response of the window with a “brick-wall” ideal filter response is important.
However, in spectral analysis, the frequency response of the window is more
vital. Hence, the formula used for calculating the Kaiser window parameters
(as used for FIR filter design) are not appropriate for the spectral analysis
applications. Kaiser and Schafer [6] have further developed simple design
formulae that facilitate the usage of the Kaiser window for spectral analysis.
These equations are used in computing accurate values for the window length
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FIGURE 8.8
Effect of noise on modified periodogram using Hann window. (a) Overlaid plots. (b) Averaged
plots.

N and the shape factor α, for a given side-lobe level R in dB, as well as the
frequency resolution �ω. The expression for the length (N) is given as

(N − 1) = c
(

2π

�ω

)
, (8.34)

where c is a factor that depends on the type of window. For the Kaiser window,
c is given by

c = 6(R + 12)

155
. (8.35)
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FIGURE 8.9
Effect of noise on modified periodogram using Hamming window. (a) Overlaid plots.
(b) Averaged plots.

The window shape parameter α can be obtained in terms of R as
follows:

α =

⎧⎪⎨
⎪⎩

0, R ≤ 13.26
0.76609(R − 13.26)0.4 + 0.09834(R − 13.26), 13.26 < R ≤ 60
0.12438(R + 6.3), 60 < R ≤ 120.

(8.36)
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FIGURE 8.10
Effect of noise on modified periodogram using Blackman window. (a) Overlaid plots.
(b) Averaged plots.

Incidentally, when α = 0, the Kaiser–Bessel window becomes rectangu-
lar and 13.26 dB represents the attenuation of the first side-lobe level of
the rectangular window. Once the window length N and α are computed,
we can generate the desired Kaiser window in the time-domain using the
expression

f [n] = I0(α
√

1 − (n − M)2/M2)

I0(α)
, n = 0, 1, . . . , N − 1 (8.37)
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where M = (N − 1)/2. The given data can then be windowed by f [n]. Let us
now demonstrate the procedure by considering a signal

x[n] = sin[0.4πn] + 0.00316 sin[0.5πn] + 0.8 sin[0.6πn]. (8.38)

Since the magnitude of the second sinusoidal component is approximately
about −50 dB, we have to use a window with side-lobe levels less than −50 dB.
However, to be on the safe side, we can choose R = 70 dB, and the resolution
can be computed by the formula

�ω = ω2 − ω1

3

= 0.6π − 0.5π

3
= 0.0333π .

Now, we can compute the values of N, c, and α using the expression given in
Equations 8.34 through 8.36, respectively, as

α = 0.12438(70 + 6.3) = 9.490,

c = 6(70 + 12)

155
= 3.174,

and N = 1 + 3.174 × 2π

�ω
= 191.44.

From Figures 8.11 and 8.12, we can clearly observe that the Kaiser–Bessel
window is one of the most suitable windows for the spectral analysis of the
above signal. We can also see that the Hamming window is not even able
to resolve the weak signal component. The Hann window is able to detect
the weak component, but the peak is smaller in magnitude and hence, under
noisy conditions, the peak may not be detected and this window may also not
perform well. Hence, we can confirm that for spectral analysis requiring high
resolution and lower side-lobe levels, the Kaiser window is a better choice.

Now, let us consider the signal defined in Equation 8.29 (in the previous
sub-section). The modified periodogram estimate using the Kaiser window is
given below. The weakest signal component has a magnitude −50 dB. Now,
let us calculate the required values of N, c, and α for this signal. To make
a comparison with other windows, let us take R = 50. Then, we find from
Equations 8.34 to Equation 8.36 that

�ω = (0.21875π − 0.15625π)

3
= π

48
, (8.39)
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FIGURE 8.11
Spectral analysis using Hamming, Hann, and Kaiser–Bessel windows. (a) Using Hamming
window. (b) Using Hann window. (c) Using Kaiser–Bessel window with α = 9.49.



278 Window Functions and Their Applications in Signal Processing

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−80

−100

−60

−40

−20

0

20

Normalized frequency (ω/π )

Po
w

er
 sp

ec
tr

al
 d

en
sit

y (
dB

)

FIGURE 8.12
Spectral analysis using Kaiser–Bessel window (second example).

α = 0.76609(50 − 13.26)0.4 + 0.09834(50 − 13.26) = 6.85, (8.40)

c = 6(50 + 12)

155
= 2.4, (8.41)

and N = 1 + 2.4 × 2π

�ω
= 231. (8.42)

By comparing the plot given in Figure 8.12 with those of Figures 8.4 and
8.5, we can clearly see that the Kaiser window is a better choice for spectral
analysis purposes because of the fact that the side-lobe attenuation as well as
the resolution required can be simultaneously achieved, for a wide range of
signals, by varying the parameter α. Similar to the FIR filter design problem,
the periodogram using the Kaiser–Bessel window requires lower lengths of
the data to provide better spectral estimates when compared to the other
windows.

8.1.4 Bartlett Periodogram

The main drawback of the periodogram PSD estimate is its high variance
since we have neglected the expectation operation. Therefore, we create a
pseudo-ensemble by dividing the input signal into non-overlapping segments
of length L [1]. Then, we individually compute the periodogram estimate for
each of these segments and finally average the periodogram estimates with
respect to the frequency points as follows:

PB(ejω) = 1
P

P−1∑
i=0

P(i)
PER(e

jω), (8.43)
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where P is the number of segments and P(i)
PER represents the individual

segment’s periodogram estimate given by

P(i)
PER(e

jω) = 1
L

∣∣∣∣∣
L−1∑
n=0

xi[n]e−jωn

∣∣∣∣∣
2

. (8.44)

Bias of Bartlett periodogram: The bias of the Bartlett periodogram is computed
as follows:

ε{PB(ejω)} = 1
P

P−1∑
p=0

ε{P(i)
PER(e

jω)} = ε{PPER(ejω)}. (8.45)

This is because all the segments have identical and independent peri-
odograms.

Variance of Bartlett periodogram: Its variance is given by

var{PB(ejω)} ∝ P2
xx(e

jω)

P
. (8.46)

Thus, the variance of the spectral estimate is reduced as P is increased. How-
ever, the decrease in variance may be much less than desired, if the segments
are not statistically independent.

By comparing the Bartlett periodogram estimate given in Figure 8.13 with
the periodogram estimate given in Figure 8.3(b), we can observe that the
variance is reduced considerably. This reduction in variance is due to averag-
ing of the periodograms of P sub-sequences. In this case, the length of window
N = 1024 and P = 4 was used, but the reduction in variance is less than a factor
of four because of the correlation existing between the sub-sequences. Thus,
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FIGURE 8.13
Bartlett periodogram for N = 1024.
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as N → ∞, with both P → ∞ and L → ∞, the bias as well as the variance of
the Bartlett periodogram approaches zero. Hence, it can be considered as a
consistent estimator.

In Figure 8.14, Bartlett periodograms with P = 4 and P = 16, with N = 2048
are shown. Larger length of data has been used to make the difference more
clear. In the case of P = 4, we can see that the variance of the periodogram
for 50 iterations (with noise added) produces more variance than in the
case when P = 16. The variance accounts for the darker regions of the plot
due to the overlaying of different plots. For the P = 16 case, the variance
is comparatively reduced, because 16 different periodograms are averaged
out. However, the reduction in variance is not as good as that given by
Equation 8.46. In this method, the reduction in variance is achieved at the
expense of loss in resolution. This is because, as the value of P increases, the
segment length reduces; hence, the individual periodograms will have low
resolution.

Resolution of Bartlett periodogram: The expression for the resolution of the
Bartlett method is similar to the periodogram estimate, except that the length
of the data is changed with respect to the length of the segment [3]. Therefore,
the resolution of the Bartlett method is poorer, that is,

Res{PB(ejω)} = 0.89
(

2π

L

)
= 0.89P

(
2π

N

)
, (8.47)

where L = N
P . In Figure 8.15, Bartlett periodograms with P = 4 and P = 16

(with N = 1024) are shown. From these plots, we can clearly see that the
resolution gets reduced dramatically when averaging is done over P peri-
odograms. The disadvantage of this method is that the spectral resolution is
reduced due to the fact that we divide the input signal into segments. Hence,
a trade-off should be maintained between the number of segments P and the
number of data samples within a segment N as LP ≤ N, the length of the
input sequence.

8.1.5 Welch Periodogram Method

This is a modified version of the Bartlett periodogram in which a data win-
dow is applied on each of the segments before computing the periodogram.
The segments are allowed to overlap, and hence the number of segments
over which averaging is done can be increased, thereby giving a better esti-
mate with reduced variance. The effect of applying a data window is to
suppress the effects of side lobes. However, this results in smearing of peaks,
which inevitably reduces the resolution [1]. The expression for the Welch
periodogram estimate is given by

PW(ejω) = 1
PLU

P−1∑
i=0

∣∣∣∣∣
L−1∑
n=0

f [n]x[n + iD]e−jωn

∣∣∣∣∣
2

, (8.48)
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FIGURE 8.14
Effect of P on variance of Bartlett periodogram (for N = 2048). (a) P = 4. (b) P = 16.

where P is the number of sub-sequences of length L and D is the off-
set between data points in x[n], which goes to a particular point in two
adjacent subsequences. Hence, (L − D) represents the number of overlap-
ping segments. We recall that U is a normalization constant defined in
Equation 8.31 (see modified periodogram discussed in Section 8.1.2).

Bias of Welch periodogram: The Welch periodogram can be represented in
terms of the modified periodogram as

PW(ejω) = 1
P

P−1∑
i=0

P(i)
M (ejω), (8.49)
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FIGURE 8.15
Effect of different values of P on resolution of Bartlett periodogram (N = 1024). (a) P = 4.
(b) P = 16.

where P(i)
M (ejω) is the modified periodogram of each sub-sequence. The

expected value of the Welch estimate is given as

ε{PW(ejω)} = ε{PM(ejω)}

= 1
2πLU

Pxx(ejω) ∗ ∣∣F(ejω)
∣∣2 , (8.50)

where F(ejω) is the Fourier transform of the L-point data window. The Welch
periodogram estimator is an asymptotically unbiased estimator, similar to
the case of the modified periodogram.

Variance of Welch periodogram: The variance is difficult to compute because
the overlapping introduces a correlation between different subsequences.
Hence, similar to the Bartlett periodogram, the variance of the Welch peri-
odogram is also inversely proportional to the number of sub-sequences, as



Application of Windows in Spectral Analysis 283

shown below:

var{PW(ejω)} ∝ P2
xx(e

jω)

P
. (8.51)

For an overlap of 50%, the variance of the Welch periodogram estimate is

var{PW(ejω)} ≈ 9
16

L
N

P2
xx(e

jω). (8.52)

Thus, as N → ∞, the variance of the Welch periodogram estimate tends to
zero. Hence, it can be called a consistent PSD estimator.

Resolution of Welch periodogram: The resolution of PW(ejω) is determined by
the spectral resolution of each sub-sequence of x[n]. Now, similar to the
modified periodogram, the resolution of the Welch method is also window-
dependent. However, the resolution of the Welch method will be poorer
because the sub-sequences have smaller lengths.

From Figures 8.16 and 8.17, we can observe that as the overlap is increased,
and the variance of the Welch estimator using the Hann window is reduced.
This reduction in variance arises because a larger number of segmental peri-
odograms are available for averaging (than without overlap) as in the case of
Bartlett method. However, we can see that as the overlap increases beyond
70%, there is not much reduction in the variance, since the segments become
more correlated. Hence, we commonly use an overlap of 50–75%, as increasing
the overlap beyond this does not improve the variance.

Figures 8.18 through 8.20 display the effect of applying different window
functions for the Welch method. The introduction of windows in the Welch
periodogram method has the same advantage as given in the case of the mod-
ified periodogram. In these figures, an overlap of 50% is used with N = 1024.
We can clearly see that the resolution of the Welch periodogram depends on
the data window used.

8.1.6 Blackman–Tukey Method

Another method to compute PSD is through the correlogram method, where
we compute a PSD estimate as the Fourier transform of the ACF as shown
below:

PPER(ω) =
(N−1)∑

−(N−1)

rxx[k]e−jωk, (8.53)

where

rxx[k] =
⎧⎨
⎩

1
N
∑N−1−k

n=0 x∗[n]x[n + k], for k = 0, 1, . . . , (N − 1).

r∗
xx[−k], for k = −(N − 1), . . . , −1.

(8.54)
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FIGURE 8.16
Welch periodogram with different overlapping (with Hann window). (a) Overlap of 10%. (b)
Overlap of 20%. (c) Overlap of 40%.
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FIGURE 8.17
Welch periodogram with different overlapping (with Hann window). (a) Overlap of 50%. (b)
Overlap of 70%. (c) Overlap of 90%.
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FIGURE 8.18
Welch periodogram with different windows. (a) Hamming window. (b) Bartlett window.

Poor estimates of the ACF leads to inferior performance of the periodogram
method. The ACF estimate with smaller lags can be estimated more accurately
than the ones with lags close to N. This is because a smaller number of terms
are used in the summation. Therefore, the large variance of the periodogram
is due to the high weightage given to the flawed autocorrelation estimate
used in its evaluation.

Blackman and Tukey [7] have proposed a weighting scheme, such that
the autocorrelations with greater lags are associated with lower weights. The
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FIGURE 8.19
Welch periodogram with different windows. (a) Hann window. (b) Blackman window.

expression for this estimator is given by

PBT(ω) =
(N−1)∑

−(N−1)

f [k]rxx[k]e−jωk, (8.55)

where f [k] is a window function that is non-negative, symmetric, and non-
increasing with respect to |k|, that is,
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FIGURE 8.20
Welch periodogram with Kaiser–Bessel window with α = 7.

1. 0 ≤ f [k] ≤ f [0] = 1
2. f [−k] = f [k]
3. f [0] = 0, for |k| > M, where M ≤ N − 1

This scheme is called the Blackman–Tukey spectral estimator. This happens
to be equivalent to the periodogram method, if

f [k] = 1, for |k| ≤ M = N − 1. (8.56)

The weighting of ACF will reduce the variance of the spectral estimator
but this is at the expense of increasing the bias. There are several lag win-
dows available in the literature [8] but only a certain class of windows is used
for computing the PSD using the Blackman–Tukey method. This arises from
the fact that when we represent Equation 8.55 in the frequency-domain, it
becomes a convolution operation of the lag window with PPER, which can be
expressed as

PBT =
∫ π

−π

F(ω − ξ)PPER(ξ)dξ . (8.57)

Thus, owing to the convolution operation, we can use the spectral window
function, which has the property

F(ejω) ≥ 0, −π ≤ ω ≤ π . (8.58)
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This constraint is set to avoid a negative spectral estimate due to the appli-
cation of the lag window. Hence, only certain window functions such as the
Bartlett, Parzen (Jackson), Bohman windows are used.

Bias of Blackman–Tukey method: In the Blackman–Tukey method, we apply a
lag window to the ACF. Hence, the expectation of PBT(ejω) is obtained as

ε{PBT(ejω)} = ε

{
M∑

k=−M

fBT[k]rxx[k]e−jωk

}

=
M∑

k=−M

fBT[k]
(

N − |k|
N

)
rx[k]e−jωk, (8.59)

where fBT[k] denotes the lag window and fB[k] = N−|k|
N is the Bartlett window.

The length of the lag window is 2M. Now, applying the modulation property
of the Fourier transform in Equation 8.59, we obtain

ε{PBT(ejω)} = 1
2π

FBT(ejω) ∗ FB(ejω) ∗ Pxx(ejω). (8.60)

Owing to the presence of the explicit window term FB(ejω), we will get the
effect of applying both the lag window and the implicit Bartlett window
on the autocorrelation sequence. As N → ∞, the expression FBT(ejω) ∗ FB(ejω)

tends to an impulse function. Therefore

lim
N→∞

ε{PBT(ejω)} = Pxx(ejω). (8.61)

Thus, the Blackman–Tukey method is asymptotically unbiased.
Variance of Blackman–Tukey method: The variance of the Blackman–Tukey

method is given by

var{PBT(ejω)} ≈ P2
xx(e

jω)

N

M∑
k=−M

fBT[k], N � M. (8.62)

Thus, the higher the value of M, the higher the variance.
Resolution of Blackman–Tukey method: The spectral estimate of the PBT(ejω) is

dependent on the window function used. Since the length of the lag window
is 2M, the spectral resolution is given by

Res{PBT(ejω)} = b
2π

2M
, (8.63)

where b is a parameter that depends on the 6 dB bandwidth of the window.
Hence, as the value of M increases, the resolution gets better.
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Figures 8.21 and 8.22 show the Blackman–Tukey PSD estimate, each with a
Bartlett lag window of different lengths. A typical composite signal consisting
of three sinusoidal components can be represented as

x[n] = sin[0.15625πn] + 0.8 sin[0.25πn] + 0.2 sin[0.46875πn], (8.64)

White noise with a variance of 0.2 is added to the above signal.
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FIGURE 8.21
Effect of varying M on variance and resolution of Blackman–Tukey method. (a) M = N.
(b) M = 0.6N.
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FIGURE 8.22
Effect of varying M on variance and resolution of Blackman–Tukey method (continued).
(a) M = 0.5N. (b) M = 0.2N.

In Figure 8.21(a), we have used M = N. Hence, it includes the complete
autocorrelation sequence, thereby resulting in a higher resolution of the spec-
tral estimate. However, this resolution is obtained at the expense of higher
variance, which is apparent from the plot. Now, as the value of M is reduced,
the variance of the Blackman–Tukey estimate also gets reduced (see Fig-
ure 8.21(b)). The plots given in Figure 8.21 have very high variance, whereas
the result shown in Figure 8.22 has a reduced variance (without much effect on
resolution). Hence, the preferred value of M is less than N/2. In Figure 8.23,
the plots have a much lower variance, but the resolution of the estimate is
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FIGURE 8.23
Effect of varying M on variance and resolution of Blackman–Tukey method (continued). (a)
M = 0.1N. (b) M = 0.08N.

poorer. Therefore, the recommended value of M can be taken to be greater
than N/5.

8.1.7 Daniel Periodogram

This is an approach to obtain a smooth periodogram estimate by averaging
over the adjacent spectral frequencies [1]. Hence, we can define the expression
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for averaging over P points on either side of the frequency axis, ωi, as

PD(ejωi) = 1
2P + 1

i+P∑
n=i−P

Pxx(ejωn). (8.65)

This approach is a special case of the Blackman–Tukey method, where the
window used is rectangular. We notice that this operation is just lowpass
filtering.

8.1.8 Application of the FFT to the Computation of a Periodogram

The computation of a periodogram using a digital computer can be simplified
by the use of an FFT algorithm. In case of FFT computation, we sample the
frequency range [−π , π ] into N equidistant discrete-frequency points spaced
at 2π

N . This was already described in Chapter 1. An interesting fact is that here
the frequency at the kth sample point is 2π

N k. We find that the frequencies can
have finer spacing if N is increased (since the spacing is 2π

N ). This can be done
by padding (N1 − N) zeros to the right of x[n], thereby increasing the length
to N1. However, we can see from practical results that this modification only
improves the computation of periodogram but not the actual resolution (see
Chapter 1).

In Figure 8.24, we have shown the effect of increasing the number of
FFT points around the unit circle. From these plots, we can conclude that
the increase in frequency sampling points by padding with zeros does not
increase the resolution; instead, it only improves the visual representation of
the periodogram. The finer details are revealed better in Figure 8.24(c) than
in Figure 8.24(a).

8.1.9 Short-Time Fourier Transform

We can define the time-dependent or short-time Fourier transform (STFT)
[9] as

Xn(ejω) =
∞∑

k=−∞
f [n − k]x[k]e−jωk. (8.66)

The STFT can be interpreted in two different ways: either as the Fourier
transform of a windowed sequence or as a linear filtering operation. From
Equation 8.66, it is clear that STFT is the Fourier transform of a windowed
sequence x[k]f [n − k], where f [n] represents a window function. Using this
approach, we can obtain a localization in time of the signal as well. This
method is used in the case of nonstationary signals, such as speech signals.
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FIGURE 8.24
Effect of increasing the number of FFT points. (a) N1 = 256. (b) N1 = 1024. (c) N1 = 4096.

In this approach, we localize the signal in time by applying a window. The
window length has to be chosen in such a way that the signal within that
period can be assumed to be stationary.
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The spectrogram is a graphical representation of the magnitude response
of the STFT. Figures 8.25 through 8.27 show the spectrograms using some
common windows such as rectangular, Hamming, Hann, triangular, and
Blackman. The DTFTs of these windows, their main-lobe widths, side-lobe
attenuation levels, and other properties have already been discussed in
Chapters 3 and 5. All these characteristics can be clearly verified from the
spectrogram plots. In these figures, the magnitude of the STFT is shown as
a color gradient. The spectrogram is computed for a nonstationary signal
having three signal components, which occur for only a short duration. The
signal consists of two short-duration sinusoidal components separated by
white noise in time.

Using rectangular window: For this window, the main-lobe width is very nar-
row, but the side-lobe attenuation is quite low (around −13 dB) and remains
constant irrespective of the length of the window. Only the main-lobe width
becomes much sharper when the window length increases. However, the
high side-lobe levels will lead to spectral leakage. Since this window has
high spectral resolution, it can be used in problems where we need to resolve
very closely spaced spectral peaks with high amplitudes. One such appli-
cation is formant extraction in a speech signal. In the spectrogram shown in
Figure 8.25(a), we can see that due to spectral leakage, the energy is spread
over the entire spectrum, but with narrow lines at the actual frequencies (due
to the high resolution).

Using Hamming window: In this case, the main-lobe width is twice that of
the rectangular window, but the side-lobe attenuation is more than −40 dB.
Therefore, the spectral resolution obtained due to this window is poorer when
compared to the rectangular window case, but it has less spectral leakage.
Another additional feature of this window is that it provides a smoother
spectrum when compared to a spiky spectrum exhibited by the rectangu-
lar window. Hence, it is mainly used in speech applications as a trade-off
between resolution and spectral leakage. In the spectrogram, we can see
that the frequency lines have concentrated energy and the spectral leakage
is less.

Using Hann window: The spectral resolution that can be obtained by the
Hann window is almost the same as the Hamming window case, but the
side-lobe attenuation is much higher. We can also observe from the spec-
trogram that the spectral leakage is quite less than that of the Hamming
window (Figure 8.26(a)). Since the Hann window is a very smooth filter, it
undesirably distorts the time-domain signal waveform (more than the Ham-
ming window case) because of its shape. However, the Hann window is
preferred over the Hamming window because of its high side-lobe fall-off
rate.

Using Blackman window: For this window, the spectral bandwidth is very
large and the side-lobe attenuation is very high. Hence, we can see from the
spectrogram that the spectral leakage is very low compared to the above
windows, but the spectral resolution is poorer (Figure 8.27(a)). This window
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FIGURE 8.25
Spectrograms. (a) Using rectangular window. (b) Using Bartlett window.

is not preferred for spectral estimation applications, since it smoothens out
the spectral peaks.

Using Kaiser–Bessel window (with α = 7): From the spectrogram plots, it
is clear that a Kaiser–Bessel window (Figure 8.27(b)), with an appropriate
value of α, is optimum for spectral estimation. The Kaiser–Bessel window
is a variable-parameter window and we can choose α depending on the
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FIGURE 8.26
Spectrograms. (a) Using Hamming window. (b) Using Hann window.

requirements. This is, of course, an advantage when compared to all the other
standard fixed windows.

8.1.10 Conclusions

By comparing all the methods that make use of windows for spectral esti-
mation, it is not easy to converge on a single window that is the best in
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FIGURE 8.27
Spectrograms. (a) Using Blackman window. (b) Using Kaiser–Bessel window with α = 7.

all applications. However, we can say that one of the appropriate fixed-
parameter windows for most applications is the Hann window due to its
higher side-lobe roll-off rate. The Kaiser–Bessel window has the advantage
of being a variable-parameter window which makes it amenable for good
performance in most applications. Hence, for the same window length, we
can achieve lower PSLL using Kaiser–Bessel window, which will enable us
to detect weaker signal components even better than the Hann window.
Under certain conditions, the Hann window turns out to be superior to the
Kaiser–Bessel window. One such case is illustrated in the following example.
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Consider a signal

x[n] = sin[0.15625πn] + 0.1 sin[0.1875πn] + 0.0001 sin[0.46875πn] + η,
(8.67)

where η is additive white noise with a variance of 0.00009.
From Figures 8.28 through 8.30, we can observe that the Hann window

performs better than all the other commonly used windows. By using a
Kaiser–Bessel window with α = π

√
3, we obtain the same main-lobe width

as that of the Hann or Hamming window. Under this constraint and for a
fixed window length N = 256, only the Hann window is able to resolve all
the spectral components perfectly. In the case of Kaiser and Hamming win-
dows, they can still resolve the closely spaced frequency components (since
their main-lobe widths are smaller), but both fail to detect the far away weak
signal component. This failure is due to the high side-lobe level as well as
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FIGURE 8.28
Comparison of performance of spectral estimator using different windows. (a) Hann window.
(b) Zeroth-order Kaiser window (with α = π

√
3).
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FIGURE 8.29
Comparison of performance of spectral estimator using different windows. (a) Hamming
window. (b) Zeroth-order Kaiser–Bessel window (with α = 10.73).
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FIGURE 8.30
Performance of spectral estimator using first-order Kaiser–Bessel window.
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low side-lobe roll-off rate of Hamming and Kaiser–Bessel windows. How-
ever, in the case of the Kaiser–Bessel window, we can change the parameter
α such that the required side-lobe level can detect the weaker signal com-
ponent. This is shown in Figure 8.29(b), where it is clear that as the value
of α is increased, the side-lobe level reduces at the expense of increased
main-lobe width, which in turn results in merging of the nearby signal
components. This reduces the resolution of the spectral estimation method.
Figure 8.30 presents the spectrum of the signal given in Equation 8.67 using
the first-order Kaiser–Bessel window (with γ = 2π ). This window has the
same main-lobe width as that of the Hann and Hamming windows. Under
such circumstances, this window also fails to detect all the spectral compo-
nents distinctly. The superior performance of the Hann window is due to
the fact that the side-lobe roll-off rate is −18 dB/octave, when compared to
−6 dB/octave for the Kaiser–Bessel window. Therefore, in most of the spec-
tral analysis applications, the Hann window is preferred especially when the
signal contains a weak signal component, which is farther away from the
other components.
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9
Applications of Windows

9.1 Windows in High Range Resolution Radars

The term “radar” stands for radio detection and ranging. As the name sug-
gests, the primary function of most of the radars is to find the range of certain
target objects. When two or more such targets are very close, it becomes dif-
ficult to identify them as individual targets. Radar that overcomes such a
difficulty is said to have good range resolution capability. In radar applica-
tions, it is desirable to have high range resolution (HRR) [1], while maintaining
adequate average transmitted power (ATP). This is accomplished by a tech-
nique called pulse compression, as a part of which, either the frequency
modulation (FM) or the phase modulation (PM), is employed. FM can in turn
have variants that use one of the following waveforms: linear FM (LFM) wave-
form, frequency-modulated continuous waveform, and stepped frequency
waveform (SFW). One undesirable effect of pulse compression is that side
lobes appear at the output. This problem can be solved by making use of win-
dow functions. It is known from the earlier chapters that a proper choice of
a window can considerably reduce the side-lobe effect. LFM pulse compres-
sion can be implemented either by correlation processing (mainly used for
narrow-band and some medium-band applications) or by stretch processing
(used for wideband applications). The use of SFW is known to produce HRR
target profiles. We will now proceed to see how exactly windowing is used
in (i) obtaining HRR target profiles and (ii) stretch processing. Furthermore,
we shall illustrate the effect of different windows on pulse compression using
computer simulations for various scenarios.

9.1.1 HRR Target Profiling

Consider a case where a series of N narrow-band pulses are transmitted, such
that the frequency is stepped up or down by a fixed-value δf from pulse to
pulse. Each group of N pulses can be referred to as a burst. Let τ ′ and T denote
the pulse width and pulse repetition interval (PRI), respectively.

Each pulse may employ some form of modulation, say LFM or PM. Let the
center frequency of the nth pulse of a burst be given by

fn = f0 + n(δf ), n ∈ [0, N − 1] . (9.1)

303
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Then, the corresponding transmitted waveform is given by

Sn(t) =
{

Cn cos(2π fnt + θn), t ∈ [nT, nT + τ ′]
0, otherwise

where Cn is a constant and θn is the relative phase. A target located at range
R0 and at time t = 0, with a radial velocity v has a round-trip delay of τ(t),
which is given by

τ(t) = R0 − vt
0.5c

, (9.2)

where c is the velocity of light (3 × 108 m/s). Then, the received signal from
such a target is given by

Srn(t) = C′
ncos(2π fn(t − τ(t)) + θn), t ∈ [nT + τ(t), nT + τ(t) + τ ′], (9.3)

where C′
n is a constant.

Before we can analyze the received signal, it has to be first down-
converted to base-band. By mixing the received signals with the waveform
yn = Ccos(2π fnt + θn), we obtain

Srnyn = C′
nC
2

[cos(2π fn(2t − τ) + 2θn) + cos(2π fnτ)]. (9.4)

Upon lowpass filtering, it will result in the following in-phase component:

XI = C′
nC
2

cos
(

2π fn

(
2R0 − 2vt

c

))
. (9.5)

The quadrature component can be obtained by considering the product of
Srn with yn phase-shifted by 90◦, that is, −C sin(2π fnt + θn) which results in

−C′
nC
2

[sin(2π fn(2t − τ) + 2θn) + sin(2π fnτ)]. (9.6)

After applying a lowpass filter, we obtain the quadrature component as

XQ = −C′
nC
2

sin(2π fnτ). (9.7)

The samples of the target’s reflection due to a single burst is given by

Xn = 0.5C′
nC(XI + jXQ), (9.8)
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whose IDFT is defined as

Hl = 1
N

N−1∑
n=0

0.5C′
nCej2π

(
ln
N −2 fn

c (R0−vt)
)
, 0 ≤ l < N − 1. (9.9)

This provides information about the range profile. Normalizing Hl, by
taking 0.5C′

nC = 1 and substituting n(δfn) for fn, we obtain

Hl =
N−1∑
n=0

e(
j2πn

N )
(

l− 2NR0(δfn)

c

)
. (9.10)

Denoting η =
(

l − 2NR0(δfn)

c

)
in the previous equation, we arrive at the

following geometric series:

Hl =
N−1∑
n=0

e(
j2πnη

N ), (9.11)

with the first term being unity and having a common ratio of e(
j2πη

N ). Therefore

Hl = 1 − ej2πη

1 − e
j2πη

N

= sin πη

sin πη

N

ejπη(1− 1
N ). (9.12)

From this, it can easily be seen that the synthesized range profile,
∣∣∣ sin πη

sin πη
N

∣∣∣ ,
has high side-lobe amplitudes, which can be reduced by performing the
windowing operation, prior to taking the IDFT.

9.1.2 Simulation Results

Simulations have been carried out to plot the range profiles of targets for two
specific cases, where the relative distances between the three targets is taken
as follows:

Case 1: (908, 910, 910.2) m (two of the targets very close)
Case 2: (908, 910, 912) m (targets reasonably apart)

Among the various window functions discussed in ref. [2], we now use the
following: rectangular, triangular, Hamming, Hann, Blackman, and Nuttall
window functions, to study the relative performance. The Nuttall window
function [3] that is in-built in MATLAB is in fact the minimum four-term
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Blackman–Harris window, which is given by

f [n] = a0 + a1 cos
(

2πn
N

)
+ a2 cos

(
4πn
N

)
+ a3 cos

(
6πn
N

)
, 0 ≤ n ≤ N

(9.13)

where (a0, a1, a2, a3) = (0.3635819, −0.4891775, 0.1365995, −0.0106411).
The simulation results are shown in Figures 9.1(a) through (f) for Case

1 and in Figures 9.2(a) through (f) for Case 2. The subplots shown in
Figure 9.1 are supposed to show the three peaks corresponding to the
three targets. However, we note in the subplots (other than the rectangu-
lar case in Figure 9.1(a)) that the small amplitude corresponding to the
third target makes it very difficult to distinguish it from the peak due
to the presence of target 2. This can be attributed to the following two
reasons:

1. The radar cross section (RCS) for the three targets are taken as
(100, 10, 1) m2, and hence the amplitudes of the peaks appear to be
decreasing from the left to the right in each subplot of Figure 9.1.

2. The side lobes associated with the second target suppress the peak
of the third target. This can be clearly observed in Figure 9.1.

In Figure 9.2 (corresponding to Case 2), where the targets are reason-
ably apart, all the windows considered are capable of resolving the three
targets. However, we observe from Figures 9.2(a) through (d) that the
Hann window (Figure 9.2(d)) has some advantage over the rectangu-
lar, triangular, and Hamming windows in such a scenario, since the
side-lobe roll-off rate is relatively higher in the case of the Hann win-
dow.

9.2 Effect of Range Side Lobe Reduction on SNR

Pulse compression is required to achieve the twin goals of HRR [1] and the
maintenance of adequate ATP. LFM waveform is used often in several appli-
cations that rely on pulse compression. It is well known that the matched
filter waveform associated with the LFM pulse compression signal essen-
tially has the sinc shape, with range side lobes extending on either side of
the compressed pulse. These Doppler side lobes may be partially controlled
by varying the amplitudes of the pulses upon transmission and/or recep-
tion. However, this reduces the SNR as well as range resolution, under
peak power limitations. In this section, we provide the general expres-
sions for the loss factor for all the three cases. The numerical results are
presented for physically realizable weighting functions that possess desirable
characteristics.



Applications of Windows 307

0 20 40 60 80 100 120 140−80

−70

−60

−50

−40

−30

−20

−10

0
(a)

FFT bin

Ra
ng

e p
ro

fil
e (

dB
)

Rectangular

0 20 40 60 80 100 120 140−80

−70

−60

−50

−40

−30

−20

−10

0
(b)

FFT bin

Ra
ng

e p
ro

fil
e (

dB
)

Triangular

0 20 40 60 80 100 120 140
−80

−70

−60

−50

−40

−30

−20

−10

0
(c)

FFT bin

Ra
ng

e p
ro

fil
e (

dB
)

Hamming

0 20 40 60 80 100 120 140−80

−70

−60

−50

−40

−30

−20

−10

0
(d)

FFT bin

Ra
ng

e p
ro

fil
e (

dB
)

Hann

40 50 60 70 80 90 100 110−80

−70

−60

−50

−40

−30

−20

−10

0(e)

FFT bin

Ra
ng

e p
ro

fil
e (

dB
)

Blackman

60 65 70 75 80 85 90 95 100
−80

−70

−60

−50

−40

−30

−20

−10

0
(f)

FFT bin

Ra
ng

e p
ro

fil
e (

dB
)

Nuttall

FIGURE 9.1
Range profiles for various windows when the relative distance of three targets is taken as [908,
910, 910.2] m. (Targets 2 and 3 are very close.) (a) Rectangular. (b) Triangular. (c) Hamming. (d)
Hann. (e) Blackman. (f) Nuttall.

9.2.1 Introduction

The matched filters for a linear FM pulse compression radar are designed to
yield a sharp pulse output. The peak amplitude of the pulse depends upon
the target cross section. In a multiple-target environment, N targets of dif-
ferent cross sections must be observed by the pulse compression radar. The
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FIGURE 9.2
Range profiles for various windows when the relative distance of three targets is taken as
[908, 910, 912] m. (Targets are reasonably apart.) (a) Rectangular. (b) Triangular. (c) Hamming.
(d) Hann. (e) Blackman. (f) Nuttall.

matched filter generates N sharp pulses; the peak amplitude of the nth pulse
being proportional to the cross section of the nth target. However, owing to
the finite-duration nature of the input data, each sharp pulse (main lobe) is
surrounded by secondary side lobes (minor lobes). These are also called range
side lobes in this context, which can be fairly high in amplitude.
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Consider, for example, a uniform weighting function f [n] of unit
height and length N. The magnitude function of the DTFT of f [n] is
(sin(0.5ωN))/(sin(0.5ω)), from which it can be shown that the first (and the
largest) of the range side lobes is 13.2 dB below the peak of the compressed
pulse. It has a decay rate of 6 dB/octave (or equivalently 20 dB/decade),
which is rather slow. Hence, when a radar is processing signals from sev-
eral targets of different cross sections, the main lobes of smaller targets can
be masked by the side lobes of a stronger target. This obviously makes the
detection of smaller targets difficult.

The situation could be improved by appropriately weighting either the
transmitted or the received waveform. However, there is a trade-off in terms
of loss in SNR and range resolution. A better control of the side lobes may be
obtained by time-weighting the transmitted waveform, as well as weighting
upon reception [4]. However, weighting at both sides will lead to greater loss
in SNR when compared to only receiver weighting, in obtaining the same
range side lobes [3]. Urkowitz et al. [4] have extended the results of Ref. [5]
to a sequence of pulses, in which the pulse height (amplitude of the pulse)
is weighted, again with peak height limitation. The purpose of this section
is to apply the formulae given by Urkowitz to several realizable weighting
functions [4,5], which provide excellent characteristics. A general expression
is derived for the loss factor under peak power limitations. The loss factor
formulae are provided for the following three cases:

Case A: Full weighting upon reception, with uniform weighting on
transmission

Case B: Square root of the nominal weighting on transmission and
reception

Case C: Full weighting on both transmission and reception

The loss factor is defined as the ratio of the maximum achievable SNR to the
actual SNR. We have experimented with many weighting functions that are
simple to implement. The general characteristics of the weighting functions
pertaining to range side lobe reduction are also tabulated.

9.2.2 Loss Factor

To obtain the general expression for the loss factor (LF) [4], it is necessary
to get the actual SNR as well as the maximum possible SNR. The maximum
SNR is obtained when the weighting is uniform (or no weighting), both upon
transmission and reception. The loss factor is computed as detailed below:

Consider a sequence of N transmitted pulses of amplitudes a[k], k =
1, 2, . . . , N, occurring at the time instances t[k] (Figure 9.3). One of the pulses
will have the maximum amplitude such that a[k] = amax, for some k. The pulse
sequence might undergo pulse compression. The sequence of the compressed
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a(3) = amax

a(1)

t(1) t(2) t(3) t(4) t(k)

a(2)
a(4)

a(k)

FIGURE 9.3
Typical sequence of pulses.

pulse is given by

a [1] a
[
p
]

, a [2] a
[
p
]

, . . . , a [N] a
[
p
]

. (9.14)

Some amount of noise, having a variance of σ 2
0 , may also get added to the

sequence above. This process is illustrated in Figure 9.4. These pulses will
be again weighted by the reference sequence r[k]. With n[k] representing the
noise, the final output of this scheme will be of the form:

N∑
k=1

b[k] =
N∑

k=1

r[k](a[k]a[p] + n[k]). (9.15)

The output signal component is

Signal = a[p]
N∑

k=1

a[k]r[k] (9.16)

and the output noise variance, since all are statistically independent, is

Noise = σ 2
0

N∑
k=1

r2[k]. (9.17)

Pulse
compression

a[p]a[k] b[k]

Input Output
sequence

sequence (n[k]) sequence (r[k])
Noise Reference

×+ b[k]N
k=1

∑

FIGURE 9.4
Weighting and summing of received pulse sequence. (Redrawn from C.L. Temes, Side lobe
suppression in a range-channel pube-compression radars, IRE Transcations on Military Electronics,
vol. MIL-6, pp. 162–169 April, 1962.)
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The SNR ratio is defined by the ratio of square of Equations 9.16 and 9.17,
which is given by

SNR = a2[p]
σ 2

0

(∑N
k=1 a[k]r[k]

)2

∑N
k=1 r2[k] . (9.18)

The maximum SNR is obtained by substituting a[k] = amax and r[k] = 1,
that is

(SNR)max = Na2
max

a2[p]
σ 2

0

, (9.19)

and the LF is obtained by taking the ratio of Equation 9.19 to Equation 9.18
and is obtained as

LF = Na2
max

∑N
k=1 r2[k](∑N

k=1 a[k]r[k]
)2 . (9.20)

Note that LF is always >1. The loss factor is calculated from Equation 9.20
for the following three cases.

Case A: Full nominal weights upon reception and uniform weighting
on transmission, that is

a[k] = 1 and r[k] = f [k], (9.21)

where f [k] represents nominal weights. The LF is given by

LF1 = N
∑N

k=1 f 2[k](∑N
k=1 f [k]

)2 . (9.22)

Case B: Square root of the nominal weights upon transmission and
reception, that is

a[k] = amax

√
f [k]/fmax and r[k] =

√
f [k]. (9.23)

Then, we obtain the corresponding loss factor as

LF2 = N
∑N

k=1 fmax∑N
k=1 f [k] . (9.24)

Here, fmax represents the maximum value of f [k].
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Case C: Full nominal weights on both transmission and reception. In
this case

a[k] = amaxf [k]/fmax and r[k] = f [k]. (9.25)

In such a situation, we obtain the loss factor LF3 as

LF3 = Nf 2
max∑N

k=1 f 2[k] . (9.26)

It has been shown in Ref. [4] that LF1 ≤ LF2 ≤ LF3. which can easily be
verified from Tables 9.1 and 9.2. It is interesting to note that LF1, LF2, and LF3

TABLE 9.1

Loss Factor for Different Weighting Functions

Function Weighting Number of

Number Constants Pulses LF1 (dB) LF2 (dB) LF3 (dB)

1 A = 0.5 4 1.7609 2.3226 2.8843
B = 0.5 8 1.7609 2.8418 3.9226
C = 0.0 16 1.7609 2.9684 4.1758
D = 0.0 32 1.7609 2.9998 4.2388

2 A = 0.54 4 1.3444 2.0476 2.7507
B = 0.46 8 1.3444 2.5213 3.6981
C = 0.0 16 1.3444 2.6375 3.9306
D = 0.0 32 1.3444 2.6664 3.9885

3 A = 0.53836 4 1.3597 2.0584 2.7570
B = 0.46164 8 1.3597 2.5339 3.7081
C = 0.0 16 1.3597 2.6506 3.9414
D = 0.0 32 1.3597 2.6796 3.9995

4 A = 0.42 4 2.3264 2.6524 2.9784
B = 0.5 8 2.3723 3.4919 4.6115
C = 0.08 16 2.3723 3.6988 5.0253
D = 0.0 32 2.3723 3.7503 5.1284

5 A = 0.375 4 2.7621 2.8843 3.0065
B = 0.5 8 2.8880 3.9226 4.9573
C = 0.125 16 2.8880 4.1758 5.4637
D = 0.0 32 2.8880 4.2388 5.5895

6 A = 0.44959 4 2.0487 2.4954 2.9420
B = 0.49364 8 2.0703 3.2298 4.3893
C = 0.05677 16 2.0703 3.4115 4.7526
D = 0.0 32 2.0703 3.4567 4.8432

continued
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TABLE 9.1 (continued)

Loss Factor for Different Weighting Functions

Function Weighting Number of

Number Constants Pulses LF1 (dB) LF2 (dB) LF3 (dB)

7 A = 0.4243801 4 2.2704 2.6214 2.9724
B = 0.497396 8 2.3140 3.4501 4.5862
C = 0.0782793 16 2.3140 3.6545 4.9951
D = 0.0 32 2.3140 3.7055 5.0970

8 A = 0.355768 4 2.7658 2.8862 3.0067
B = 0.487396 8 3.0562 4.0924 5.1287
C = 0.144232 16 3.0562 4.3896 5.7231
D = 0.012604 32 3.0562 4.4637 5.8712

9 A = 0.3635819 4 2.7095 2.8571 3.0047
B = 0.4891775 8 2.9581 4.0138 5.0695
C = 0.1365995 16 2.9581 4.2992 5.6403
D = 0.0106411 32 2.9581 4.3703 5.7825

TABLE 9.2

Loss Factor of Some Additional Weighting Functions

Function Weighting Number of

Number Constants Pulses LF1 (dB) LF2 (dB) LF3 (dB)

1 A = 0.42323 4 2.2815 2.6275 2.9736
B = 0.49755 8 2.3262 3.4605 4.5948
C = 0.07922 16 2.3262 3.6660 5.0057
D = 0.0 32 2.3262 3.7172 5.1081

2 A = 0.35875 4 2.8958 2.9527 3.0095
B = 0.48829 8 2.9704 3.9933 5.0162
C = 0.14128 16 2.9704 4.2411 5.5118
D = 0.01168 32 2.9704 4.3023 5.6342

3 A = 0.40217 4 2.4784 2.7351 2.9918
B = 0.49703 8 2.5309 3.6270 4.7231
C = 0.09392 16 2.5309 3.8453 5.1598
D = 0.00188 32 2.5309 3.8996 5.2684

4 A = 0.40897 4 2.4238 2.7056 2.9874
B = 0.5 8 2.4849 3.5925 4.7000
C = 0.09103 16 2.4849 3.8107 5.1364
D = 0.0 32 2.4849 3.8650 5.2450

5 A = 0.338946 4 3.1974 3.1029 3.0084
B = 0.481973 8 3.2742 4.1985 5.1228
C = 0.161054 16 3.2742 4.4551 5.6361
D = 0.018027 32 3.2742 4.5183 5.7623
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are in geometric progressions, with LF2 being the geometric mean of the other
two, that is LF1 and LF3.

9.2.3 Weighting Function

The generalized weighting function is given by

f (t) = A − B cos
(

2π t
T

)
+ C cos

(
4π t
T

)
− D cos

(
6π t
T

)
, 0 ≤ t ≤ T. (9.27)

The minus sign results due to the shift in the origin of the weighting function.
A typical weighting function is shown in Figure 9.5. Here, T represents the
duration of the weighting function and T ′ is the burst duration. The sampling
instances are represented by t(1), t(2), . . . , t(N). The kth sampling time, for
uniform spacing, is given by

t[k] = (2k − 1)

2N
, k = 1, 2, . . . , N. (9.28)

Using Equation 9.28 in Equation 9.27, we get

f [k] = f [t[k]] = A − B cos
[
π(2k − 1)

N

]
+ C cos

[
2π(2k − 1)

N

]

− D cos
[

3π(2k − 1)

N

]
, k = 1, 2, . . . , N. (9.29)

T/N

t(1) t(2)

1

t(N)
t

T′= Burst duration

T

FIGURE 9.5
A typical weighting function.
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For regular spacing and when N is even, fmax is given by

fmax = A − B cos
[
π(N + 1)

N

]
+ C cos

[
2π(N + 1)

N

]
− D cos

[
3π(N + 1)

N

]
.

(9.30)

The loss factors for all the three cases considered are calculated for different
weighting constants, A, B, C, and D, and are given in Tables 9.1 and 9.2. The
loss factors are expressed in dB, that is, 10 log10(LF). These values are tabulated
for different numbers of pulses as well. As an illustration to compute various
entries of Table 9.1, we consider the Hamming window of size N = 4. Then,
Equation 9.29 can be written as

f [k] = 0.54 − 0.46 cos
π(2k − 1)

N
, k = 1, 2, 3, 4. (9.31)

f [1] = f [4] = 0.2147; f [2] = f [3] = 0.8653 = fmax.

Using Equation 9.22,

LF1 = 4
(

1.5896
4.6656

)
= 1.3628. (9.32)

This is equivalent to 1.3444 dB. From Equation 9.24, we get

LF2 = 4
(

0.8653
2.1600

)
= 1.6024, (9.33)

which when expressed in dB corresponds to 2.0476 dB. These values are tabu-
lated in Table 9.1, under function no. 2. The other entries of Tables 9.1 and 9.2
can be computed on similar lines. The various combinations of the quadlet (A,
B, C, D) have been taken from Refs. [2,3]. For example, function nos. 1, 2, and
4 correspond to the Hann, Hamming, and Blackman windows, respectively.
Apart from LF, the other factors to be considered in the selection of weighting
function in the range side lobe reduction are

1. Main-lobe broadening factor given by the ratio

Half-power bandwidth of weighting function
Half-power bandwidth of uniform weighting

2. First side-lobe and peak side-lobe levels.
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TABLE 9.3

Weighting Function Data

Main-Lobe Side-Lobe

Broadening First Side Lobe Peak Integration Decay Rate

S. No. Factor (dB) Side Lobe (dB) Loss (dB) (dB/octave)

1 1.63 −31.47 −31.47 −1.76 18
2 1.48 −44.05 42.69 −1.34 6
3 1.48 −43.19 −43.19 −1.36 6
4 1.86 −58.12 −58.12 −2.37 18
5 2.12 −46.75 −46.75 −2.89 30
6 1.73 −74.52 −62.05 −2.07 6
7 1.83 −71.48 −71.48 −2.31 6
8 2.17 −93.36 −93.32 −3.06 18
9 2.12 −98.34 −98.14 −2.96 6

3. The integration loss defined as

10 log10

⎡
⎢⎣

1
2T

(
∫2T

0 f (t) dt)2

∫2T

0 f 2(t) dt

⎤
⎥⎦ . (9.34)

4. The decay rate of the side lobes, which can be expressed in dB/octave.
These are given in Table 9.3 for all the cases considered in Table 9.1.

9.2.4 Results and Discussions

A larger loss factor indicates a smaller SNR. The three cases considered here
are in the order of increasing loss functions. The main-lobe-broadening fac-
tor indicates the loss in frequency resolution due to the effect of weighting
functions. Hence, a weighting function having better side-lobe rejection and
minimum main-lobe-broadening factor will be desirable. The integration loss
is another factor that indicates the loss in SNR incurred due to weighting. The
side-lobe decay rate is also yet another powerful indicator that must be con-
sidered. It is desirable that the side-lobes decay at a faster rate, to preserve the
dynamic range between the two targets widely spaced in frequency. In con-
clusion, a weighting function having low loss factor (for a particular case),
low side-lobe level, smaller main-lobe broadening factor, and faster decay
rate of the side-lobe envelope is required for range side-lobe reduction in a
linear FM pulse compression radar. Though Hamming window is considered
as a reasonable choice on an average, the choice of a window for a particular
application has to be decided on a case-to-case basis, keeping in view the
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window properties. The Kaiser and ultraspherical windows have the addi-
tional advantage that there is a flexibility to vary the different parameters and
get closer to the desired characteristics.

9.3 Window Functions in Stretch Processing

In radar applications that employ extremely high-bandwidth LFM signals,
a technique called stretch processing is used at the receiving end [1]. This
facilitates proper decision making (such as the presence/absence of targets,
their count, etc.) based on which subsequent action can be taken. The term
“proper decision making” here refers to the ability to correctly detect the
presence of targets, along with other desired parameters (say, range, radial
velocity, etc.). As seen from the block diagram given in Figure 9.6, the received
signal is mixed with a reference signal (which is a replica of the transmitted
signal) and is passed through a lowpass filter.

This results in constant tones corresponding to the positions of the targets.
Let the reference signal be an LFM waveform and the starting frequency of
the chirp signal used be fr. The instantaneous frequency after lowpass filter-
ing will be proportional to the target range. Hence, if a peak at frequency
f1 implies the presence of a target at range R, then the presence of a peak

at frequency f2 indicates that a target at a range
(

Rf2
f1

)
is present. In case

the radar receives echoes from some targets that are very close (in time or

Reference chirp

Local oscillator

Antenna

Mixer LPF
Coherent

detection and A/D
Side-lobe
weighing FFT

R3 = return 3
R2 = return 2

R1 = return 1f1 
f2 
f3 
f

1
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de

T1 T2 t

T1t1 tt2 t1,1 t3

R3R2R1f

f0

t3,3 T2 t

f

f

fr

2 3

FIGURE 9.6
Block diagram of stretch processing. (Redrawn from B.R. Mahafza, Radar Systems Analysis and
Design Using MATLAB, CRC Press, 2nd edn., 2005.)



318 Window Functions and Their Applications in Signal Processing

range), then identifying them as separate targets depends on the resolution
capability of the system. The task of identifying relatively close objects is often
difficult.

Let the normalized transmitted signal be of the form:

s(t) = cos
(
2π
(
frt + 0.5μt2

))
, t ∈ [0, τ ′] , (9.35)

where fr = starting frequency of the chirp signal, μ = B
τ ′ is the LFM coefficient,

τ ′ is the chirp duration, and B is the chirp bandwidth. Assuming the range of
the nth scatterer be Rn, the output of the lowpass filter will be

so(t) =
N∑

n=1

an cos
(

4π

(
2RnBt

cτ ′ + foRi

c
− R2

i B
c2τ ′

))
, (9.36)

where an is proportional to the nth target’s cross section, antenna gain, and
range attenuation. τ ′ is relatively larger when compared to 2Ri

c . To study
the effect of various windows on detection, simulations are carried out to
implement stretch processing using the following specifications [1]:

i. Number of scatterers = 3
ii. Uncompressed pulse width, τ = 0.01 s

iii. fo = 5.6 GHz
iv. Chirp bandwidth = 1 GHz
v. Range receive window, R = 30 m

vi. Vector of scatterer’s range
Case 1: Targets spaced at (3, 6, 11) m (reasonably apart), RCS =

(1, 1, 1) m2 (Figure 9.7)
Case 2: Targets spacing is (3, 11, 11.12) m (two of them are close, i.e.,

11.12 − 11 < Rτ

2 ), RCS = (1, 1, 1) m2 (Figure 9.8)
Case 3: Targets spaced reasonably apart at (3, 6, 11) m, RCS =

(1, 1, 2) m2 (Figure 9.9)
Case 4: Targets spaced at (3, 11, 11.12) m (two of them are close)

RCS = (1, 1, 2) m2 (Figure 9.10)

The corresponding results are shown in Figures 9.7 through 9.10, wherein
subfigures (a) through (f) correspond to different window functions. From
Figure 9.7, it can be seen that the peak locations obtained (3.015, 6.03, 11.08) m
differ from the actual values (3, 6, 11) m. A similar shift can also be inferred
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FIGURE 9.7
Compressed echo signals with relative ranges of three targets being (3, 6, 11) m (targets are rea-
sonably apart) and their RCS given by (1, 1, 1) m2. (a) Rectangular. (b) Triangular. (c) Hamming.
(d) Hann. (e) Blackman. (f) Nuttall.

from Figure 9.10. One of the reasons for such a shift can be attributed to the
finite precision aithmetic used in the computations. When the relative range
tuple is (3, 6, 11) m, such that all the targets are well apart, then all the window
functions considered (rectangular, triangular, Hamming, Hann, Blackman,
and Nuttall) are capable of identifying each target distinctly (Figures 9.7 and
9.9). However, when the two targets are closer and are of equal strengths,
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FIGURE 9.8
Compressed echo signals with relative ranges of three targets being (3, 11, 11.12) m (two of them
very close) and their RCS given by (1, 1, 1) m2. (a) Rectangular. (b) Triangular. (c) Hamming. (d)
Hann. (e) Blackman. (f) Nuttall.

then, as can be seen in Figure 9.8(a), one of the peaks (the right-most in this
case) is considerably smaller than the other peak. This can be attributed to the
stronger side lobe of the rectangular window. Such a phenomenon cannot be
observed in Figure 9.8(b) through (f). From Figures 9.8(c) and (d), Hamming
window is preferred over the Hann window, as the difference (peak − valley)
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FIGURE 9.9
Compressed echo signals with relative ranges of three targets being (3, 6, 11) m (reasonably apart)
and their RCS given by (1, 1, 2) m2. (a) Rectangular. (b) Triangular. (c) Hamming. (d) Hann. (e)
Blackman. (f) Nuttall.

is more in the case of the former than the latter. It is interesting to note that if
closely spaced targets of unequal strengths are considered (Figure 9.10), then
for the rectangular case, the two peaks are distinctly seen (due to the narrow
main-lobe width), while the two peaks seem to merge into a single peak in
the case of other window functions (which have relatively wider main-lobe
widths).
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FIGURE 9.10
Compressed echo signals (as obtained by using various windows) with relative ranges of three
targets being (3, 11, 11.12) m (two of them very close) and the corresponding RCS is given by
the tuple (1, 1, 2) m2. (a) Rectangular. (b) Triangular. (c) Hamming. (d) Hann. (e) Blackman. (f)
Nuttall.

9.4 Application of Window Functions in Biomedical
Signal Processing

Organisms have many complex systems, which are in turn made up of sev-
eral subsystems that carry out different physiological processes. Biomedical



Applications of Windows 323

signals are observations of these physiological processes, gene to pro-
tein sequences, neural to cardiac rhythms, and tissues and organ images.
They convey the information about the corresponding biological system.
Some of the commonly studied biomedical signals are action potential (AP)
of cells, electroneurogram (ENG), electromyogram (EMG), electrocardio-
gram (ECG), electroencephalogram (EEG), event-related potential (ERP),
electrogastrogram (EGG), phonocardiogram (PCG), vibromyogram (VMG),
vibroarthogram (VAG), electro-oculogram (EOG), electroretinogram (ERG),
and so on. Table 9.4 lists the frequency ranges and dynamic ranges of a few
biomedical signals [6].

In biomedical applications, mere acquisition of the signals is not sufficient;
it is also required to process it to extract the relevant information. Biomed-
ical signals get corrupted by several sources of errors such as the addition
of noise due to imprecision of instruments or interference from power lines.
Besides, the measured signal may also contain the interference from other sys-
tems, which may also be a complex function of the required and unnecessary
signals. For example, in measuring the ECG of a fetus, the signal acquired is
correlated with the mother’s ECG. There are more complex processes that cor-
rupt the relevant signal for diagnosis. Therefore, accurate processing of these
signals is necessary for an optimal estimation of the signal and its parameters
for proper diagnosis.

9.4.1 Biomedical Signal Processing

By now it is quite obvious that the processing of biomedical signals is
extremely important. Even though these signals differ only in application,
the processing has to be done with utmost care because making errors in

TABLE 9.4

List of Biomedical Signals, Their Frequency Ranges, and Their Dynamic Ranges

Signals Frequency Range Dynamic Range Comments

AP 100 Hz–2 kHz 10 μV–100 mV Cell membrane potential
ENG 100 Hz–1 kHz 5 μV–10 mV Nerve bundle potential
ERG 0.2 Hz–200 Hz 0.5 μV–1 mV Evoked flash potential
EOG 0 Hz–100 Hz 10 μV–5 mV Corneal retinal potential
EEG (surface) 0.5 Hz–100 Hz 2 μV–100 μV Scalp potential
EMG (single fiber) 500 Hz–10 kHz 1 μV–10 μV AP from single muscle fiber
Surface EMG (skeletal) 2 Hz–500 Hz 50 μV–5 mV AP from skeletal muscle

fiber
Surface EMG (smooth) 0.01 Hz–1 Hz 50 μV–5 mV AP from smooth muscle

fiber
ECG 0.05 Hz–100 Hz 1 μV–10 mV AP from heart potential
High-frequency ECG 100 Hz–1 kHz 100 μV–2 mV Notchs and slus superim-

posed on the ECG
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normal signals may lead to a minor damage (cost or product), but making
errors in biomedical signal processing may lead to irreparable losses (may
cost a life in the worst circumstances). The success of the application depends
on the origin and knowledge of the signal. It requires special treatment and
demands a clear understanding of the biomedical signal characteristics.

Biomedical signals are stochastic in nature and hence they cannot be pre-
dicted. With the acquired signal (discrete-time), processing has to be done
to extract its information. There are several techniques that are directly used
in biomedical signal processing. These include sampling, frequency-domain
analysis, windowing, short-time Fourier transform (STFT), spectral estima-
tion, signal enhancement, optimal filtering, adaptive filtering, segmentation
of nonstationary signals, and so on. Of these techniques, we have considered
only the applications that use window functions. The calculation of various
functions that are used as major tools such as the power spectral density, auto-
correlation, and cross-correlation requires the knowledge of the signal from
−∞ to +∞. This is, of course, impractical because the signal is not available
for long durations. Therefore, we do not use the signal itself but a windowed
signal. For computing STFT, windowing is used for breaking down long-
duration signals into signals of shorter duration, thereby the characteristics
of the signals during these intervals can be assumed to be stationary.

9.4.2 FIR Filtering of Biomedical Signals

During acquisition, the biomedical signals get corrupted by different types
of artifacts and interferences such as power line interference, electrode con-
tact noise, motion artifacts, muscle contraction, and so on. For a meaningful
analysis of these signals, steps have to be taken to filter out all these noise
sources. Here, we consider the effect of FIR filters designed from various
window functions under additive white Gaussian noise (AWGN) conditions.

We consider an example of an ECG signal that is taken from the MIT-BIH
Arrhythmia Database [7] and the signal used here is the modified limb lead
II (MLII), obtained by placing the electrodes on the chest. The ECG signal is
sampled at a rate of 360 Hz and then corrupted by white Gaussian noise at
different SNR levels. To denoise the ECG signal, FIR bandpass filters with
different window functions at the sampling frequency of 360 Hz have been
designed. The filter passband was set at 3–55 Hz, the transition bandwidths
are 0.1–3 Hz on the lower side and 56–58.9 Hz on the upper side, with a pass-
band attenuation of 0.01 dB and a stop-band attenuation of 80 dB [8]. The
length of all the designed FIR filters is 1001. The flat-top window and its fre-
quency response are shown in Figure 9.11. Figure 9.11 also shows the FIR
filter coefficients and the frequency response of the filter designed using the
flat-top window. Figures 9.12 through 9.16 show the noisy ECG signal and
the bandpass-filtered ECG signal using various window functions. Table 9.5
shows the SNR of the noisy ECG signal and the FIR-filtered ECG signal using
various windows. The first row in Table 9.5 represents the SNR of the noisy
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FIGURE 9.11
Time-domain and frequency-domain representations of flat-top window (dashed line) and
bandpass filter designed using flat-top window (solid line).

ECG signals subjected to different noise levels. The remaining rows repre-
sent the corresponding SNR after bandpass FIR filtering using the various
window functions.

To conclude, from the results shown in Table 9.5, we can observe that at
high SNRs, the FIR filter designed using flat-top window performs better
than other FIR filters. However, at low SNRs, all the FIR filters designed
using different windows are almost identical in their performance.

An EEG signal example is taken from the CHB-MIT Scalp EEG Database [7],
and this signal is sampled at 256 Hz. The EEG signal was subjected to additive
white Gaussian noise at different SNR levels to obtain noisy EEG signals.
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FIGURE 9.12
(a) Noisy ECG signal and bandpass-filtered ECG signals using (b) rectangular, (c) triangular,
and (d) Hann windows.
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FIGURE 9.13
(a) Noisy ECG signal and bandpass-filtered ECG signals using (b) Hamming, (c) Parzen, and
(d) Tukey windows.

To denoise the EEG signal, FIR lowpass filters with different windows at
a sampling frequency of 256 Hz have been designed. The filter cut-off was
set at 40 Hz, the transition bandwidth is from 40 to 42.8 Hz with a passband
attenuation of 0.01 dB and a stop-band attenuation of 80 dB. The length of all
the FIR filters that have been designed is 1001. Table 9.6 shows the SNRs of the
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FIGURE 9.14
(a) Noisy ECG signal and bandpass-filtered ECG signals using (b) Bohman, (c) Gaussian, and
(d) Kaiser–Bessel windows.
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FIGURE 9.15
(a) Noisy ECG signal and bandpass-filtered ECG signals using (b) Bartlett, (c) Blackman, and
(d) flat-top windows.

noisy EEG signal and the FIR-filtered EEG signal using various windows. The
first row in Table 9.6 represents the SNR of the EEG signals that are subjected
to different noise levels and subsequent rows represent the corresponding
SNR after lowpass FIR filtering using various window functions.

From the results shown in Table 9.6, we can observe that the triangular
window-based FIR filter performs slightly better than the other windows
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FIGURE 9.16
(a) Noisy ECG signal and bandpass-filtered ECG signals using (b) Blackman–Harris, (c) four-term
Blackman–Harris, and (d) Bartlett–Hann windows.
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TABLE 9.5

Signal-to-Noise Ratio (SNR) of Bandpass-Filtered ECG Signals Using
Various Windows

Signal SNR at Different Levels of Noise

Noisy ECG 0.1268 0.0529 −1.0303 −2.526 −4.9923
Rectangular −0.0254 −0.0487 −0.4027 −0.9913 −2.2384
Triangular 0.7308 0.7041 −0.4027 −0.3883 −1.7843
Hann 0.4027 0.3775 −0.0112 −0.6511 −1.9849
Hamming 0.3681 0.3430 −0.0427 −0.6783 −2.0051
Parzen 0.6524 0.6259 0.2157 −0.4554 −1.8408
Tukey 0.0815 0.0577 −0.3047 −0.9059 −2.1746
Bohman 0.5856 0.5594 0.1551 −0.5075 −1.8791
Gaussian 0.446 0.4206 0.0283 −0.6169 −1.9596
Kaiser–Bessel −0.0113 −0.0347 −0.3897 −0.9800 −2.2299
Blackman 0.5477 0.5218 0.1207 −0.5372 −1.901
Flat-top 1.095 1.0661 0.6151 −0.1144 −1.5937
Blackman–Harris 0.6806 0.6539 0.2412 −0.4335 −1.8249
Four-term 0.6699 0.6433 0.2316 −0.4418 −1.831
Blackman–Harris
Bartlett–Hann 0.4812 0.4556 0.0609 −0.5879 −1.9364

considered. However, the improvement in the performance is not significant.
In both the cases (bandpass and lowpass) considered here, it is clearly evi-
dent that the use of window functions in the FIR filter design improves the
performance.

9.4.3 Moving Average Filtering of Biomedical Signals

The measured biomedical signals are usually corrupted by random noise.
Moving average (MA) filter can be used to denoise the corrupted biomedical
signals before analyzing them. In MA filtering, the value at each sample is
obtained as a weighted sum of neighboring samples. The number of neigh-
boring samples used depends on the length of the window. The MA filter can
be considered as an FIR type, lowpass filter that removes the high-frequency
noise present in the signal. These are also called as smoothing filters, which
increase the SNR. The length of the window roughly determines the cut-off
frequency of this filter. A long smoothing window reduces the variance in
the EEG amplitude estimate, but at the cost of increased bias. On the other
hand, a short smoothing filter has low bias, but the variance is increased.
Generally, weighted windows are used (i.e, nonrectangular). The windows
we considered to average the signals are: rectangular, triangular, Hann, Ham-
ming, Parzen, Tukey, Bohman, Gaussian, Kaiser–Bessel, Blackman, flat-top,
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TABLE 9.6

Signal-to-Noise Ratio (SNR) of Lowpass-Filtered EEG Signals Using Various Windows

Signal SNR at Different Levels of Noise

Noisy EEG 5.0524 2.5171 0.0024 −2.0545 −4.9546
Rectangular 9.0622 6.9292 4.6376 2.7053 −0.0948
Triangular 9.0916 6.9576 4.6651 2.7324 −0.0679
Hann 9.064 6.9309 4.6392 2.7067 −0.0933
Hamming 9.0639 6.9307 4.639 2.7066 −0.0935
Parzen 9.0665 6.933 4.6411 2.7086 −0.0916
Tukey 9.0621 6.9291 4.6376 2.7053 −0.0948
Bohman 9.0658 6.9324 4.6406 2.708 −0.0921
Gaussian 9.0645 6.9313 4.6396 2.7071 −0.093
Kaiser–Bessel 9.0623 6.9292 4.6377 2.7053 −0.0948
Blackman 9.0652 6.9319 4.6401 2.7076 −0.0925
Flat-top 9.071 6.937 4.6447 2.7119 −0.0884
Blackman–Harris 9.0665 6.9331 4.6412 2.7086 −0.0915
Four-term Blackman–Harris 9.0664 6.933 4.6411 2.7085 −0.0916
Bartlett–Hann 9.0707 6.9373 4.6454 2.7129 −0.0872

Blackman–Harris, four-term Blackman–Harris, and Bartlett–Hann. A win-
dow length of seven is used in this moving average filter. To compare the
performance of the moving average filter using various windows, we use
EEG signals to which synthetic AWGN has been added. Figures 9.17 through
9.21 show the noisy EEG signal and the moving average filtered EEG signal
using various windows. Table 9.7 shows the SNR of the noisy EEG signal and
the moving average filtered EEG signal using various windows. From the
results shown in Table 9.7, we can observe that at high SNRs, rectangular and
Kaiser-Bessel windows perform better than all the other windows. However,
at low SNRs, triangular and Hamming windows perform better than other
windows.

Another performance evaluation measure of moving average filter using
different windows is carried out using EMG signal from muscles. Table 9.8
shows the SNRs of the noisy EMG signal and the moving average filtered EMG
signal using various windows. The first row shows the SNRs of the noisy EMG
signals (for various noise levels) and the remaining rows represent the corre-
sponding SNRs after applying various windows for moving average filtering.
The results shown in Table 9.8 indicate that at high SNRs, the rectangular
and Kaiser–Bessel windows perform better than other windows. However,
at low SNRs, the triangular and Hamming windows perform better than other
windows. In both the cases (EEG and EMG) considered here, at high SNRs,
the performance of the rectangular and Kaiser-Bessel windows does not dif-
fer significantly when compared to the triangular window. Therefore, using
windows in moving average filter will improve its performance.
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FIGURE 9.17
(a) Noisy EEG signal and moving average-filtered EEG signals using (b) rectangular, (c) trian-
gular, and (d) Hann windows.
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FIGURE 9.18
(a) Noisy EEG signal and moving average filtered EEG signals using (b) Hamming, (c) Parzen,
and (d) Tukey windows.
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FIGURE 9.19
(a) Noisy EEG signal and moving average filtered EEG signals using (b) Bohman, (c) Gaussian,
and (d) Kaiser–Bessel windows.
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FIGURE 9.20
(a) Noisy EEG signal and moving average filtered EEG signals using (b) Bartlett, (c) Blackman,
and (d) flat-top windows.
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FIGURE 9.21
(a) Noisy EEG signal and moving average filtered EEG signals using (b) Blackman–Harris,
(c) four-term Blackman–Harris, and (d) Bartlett–Hann windows.

TABLE 9.7

Signal-to-Noise Ratio (SNR) of Moving Averaged Filtered EEG Signal
Using Various Windows

Noisy EEG 1.2042 −0.0597 −2.8092 −5.257 −7.2061
Rectangular 2.3077 2.0621 1.2361 0.2011 −0.9327
Triangular 2.0752 1.9732 1.6358 1.1407 0.5328
Hann 1.5429 1.4672 1.2178 0.8347 0.3603
Hamming 1.7205 1.6372 1.363 0.9474 0.4339
Parzen 1.4005 1.3373 1.1312 0.8081 0.4027
Tukey 1.8919 1.7518 1.2804 0.6153 −0.1588
Bohman 1.3094 1.2512 1.0618 0.7625 0.3854
Gaussian 1.5851 1.5122 1.2734 0.9054 0.4466
Kaiser–Bessel 2.3446 2.1087 1.3141 0.3102 −0.7967
Bartlett 1.5808 1.5088 1.2718 0.9066 0.4501
Blackman 1.3479 1.2874 1.0902 0.7799 0.3897
Flat top 0.7223 0.689 0.5813 0.4045 0.1755
Blackman–Harris 1.1648 1.1063 0.9197 0.6246 0.2504
Four-term Blackman−Harris 1.1774 1.1181 0.9287 0.6298 0.2511
Bartlett–Hann 1.5525 1.4779 1.232 0.8537 0.3844



Applications of Windows 333

TABLE 9.8

Signal-to-Noise Ratio (SNR) of Moving Averaged Filtered EMG Signal
Using Various Windows

Noisy EMG 1.4044 0.0538 −1.0107 −3.0366 −4.9888
Rectangular 3.3907 3.0354 2.7034 1.8937 0.9799
Triangular 2.9111 2.7791 2.6515 2.3051 1.9068
Hann 2.18 2.0883 1.997 1.7494 1.4602
Hamming 2.4238 2.3210 2.2194 1.9436 1.6233
Parzen 1.9474 1.8734 1.7989 1.5978 1.3626
Tukey 2.8459 2.6562 2.4726 1.9905 1.4335
Bohman 1.8121 1.745 1.6769 1.4942 1.28
Gaussian 2.2155 2.1276 2.0403 1.8029 1.527
Kaiser–Bessel 3.4395 3.0978 2.7781 1.9933 1.1065
Bartlett 2.2101 2.1226 2.0363 1.8006 1.5274
Blackman 1.8704 1.8002 1.7292 1.538 1.3141
Flat top 0.9583 0.9228 0.885 0.7916 0.6778
Blackman–Harris 1.6574 1.5912 1.5249 1.3451 1.1346
Four-term Blackman−Harris 1.6785 1.6112 1.5438 1.3611 1.1471
Bartlett–Hann 2.1878 2.0973 2.0074 1.7631 1.4783

9.4.4 QRS Detection in ECG Based on STFT

The STFT finds several applications in biomedical signal processing. In the
case of an ECG signal, it is used to detect the location of the QRS complex.
The QRS complex denotes the deflections on an ECG signal; it is a combina-
tion of Q wave, R wave and S wave (see Figure 9.22). The morphology of an
ECG signal mainly consists of a P wave, a QRS complex, and a T wave for
each cardiovascular cycle. Figure 9.22 shows a synthetic ECG signal for one
cardiac cycle. The QRS complex locations are useful in determining the heart
rate variability. Here, the STFT is employed to remove the unwanted infor-
mation such as the P wave, the T wave, and the noise, and the STFT temporal
information at 45 Hz is used to detect the QRS complex [9].

The STFT of an input signal x(t) is defined as

T(f , τ) =
∫−∞

−∞
[x(t)f (t − τ)]e−j2π ftdt,

where f (t − τ) denotes the shifted window function and x(t) is the input
signal. The temporal information located at 45 Hz is obtained as described
below (see also Ref. [9]):

E(τ ) = log(|T(45, τ)|2).
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FIGURE 9.22
Synthetic ECG signal.

To detect the QRS complex, adaptive thresholding is done on the temporal
information. Finally, the locations of QRS complexes have been evaluated
from the position of local maxima.

Figures 9.23 through 9.28 show the STFT temporal information at 45 Hz
and the complete STFT using various windows. From these figures, we can
observe that the STFT temporal information at 45 Hz is different for these
windows. Therefore, the performance of the QRS detection algorithm will
also vary with the type of window used.

Figures 9.29 through 9.33 show a portion of the ECG signal and the corre-
sponding locations of the QRS complex that have been detected using various
window functions that are used to calculate STFT. By observing these fig-
ures, we conclude that the use of Hamming, Hann, and Bartlett window
functions for computing the STFT will result in a much accurate detection of
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FIGURE 9.23
STFT and its temporal information at 45 Hz using rectangular window.
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FIGURE 9.24
STFT and its temporal information at 45 Hz using Kaiser–Bessel window.
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FIGURE 9.25
STFT and its temporal information at 45 Hz using Blackman window.
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FIGURE 9.26
STFT and its temporal information at 45 Hz using Hamming window.

the QRS complex than the other windows. When no window is used (i.e., in
effect applying a rectangular window) in the STFT, the QRS locations are not
detected correctly. This can be clearly seen in Figure 9.29(b). Therefore, the use
of window functions plays a significant role in biomedical signal processing.
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FIGURE 9.27
STFT and its temporal information at 45 Hz using Hann window.
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FIGURE 9.28
STFT and STFT magnitude at 45 Hz using Gaussian window.

9.5 Audio Denoising Using the Time–Frequency Plane

Music and other audio signals such as speech are often susceptible to back-
ground noise from audio equipments and surrounding environment. Several
methods such as power subtraction and processing in wavelet and Fourier
domains have been tried to address this problem. These methods, in addi-
tion to removing noise, create isolated time–frequency structures, which are
known as “musical noise.”

9.5.1 Time–Frequency Plane

Signals are generally analyzed either in the time-domain (the zero crossing
rate) or in the frequency-domain (Fourier analysis, subband energy, etc.).
Joint time and frequency analysis gives critical information of signals whose
frequency varies with time and is generally used in the analysis of human
speech, multicomponent signals, and source separation among others. A
time–frequency (TF) plane, X[l, k] is a two-dimensional plane obtained by
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FIGURE 9.29
(a) ECG signal and detected QRS locations using (b) rectangular, (c) triangular, and (d) Hann
windows.
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FIGURE 9.30
(a) ECG signal and detected QRS locations using (b) Hamming, (c) Parzen, and (d) Tukey
windows.
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FIGURE 9.31
(a) ECG signal and detected QRS locations using (b) Bohman, (c) Gaussian, and (d) Kaiser–Bessel
windows.

20 21 22 23 24 25 26 27 28 29 30−1

0

1

Time (s)M
ag

ni
tu

de
 (m

v)

20 21 22 23 24 25 26 27 28 29 30
0

0.5

1

Time (s)

20 21 22 23 24 25 26 27 28 29 30
0

0.5

1

Time (s)

20 21 22 23 24 25 26 27 28 29 30
0

0.5

1

Time (s)

(a)

(b)

(c)

(d)

FIGURE 9.32
(a) ECG signal and detected QRS locations using (b) Bartlett, (c) Blackman, and (d) flat-top
windows.
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FIGURE 9.33
(a) ECG signal and detected QRS locations using (b) Blackman–Harris, (c) four-term Blackman–
Harris, and (d) Bartlett–Hanning windows.

transforming a signal x[n] using a set of time–frequency atoms gl,k, where
l and k, respectively, are the time and frequency scale parameters given as
follows:

X[l, k] = 〈x, gl,k〉 =
N−1∑
n=0

x[n]g∗
l,k[n].

The commonly used TF atoms are the Fourier, Gabor, or Gammatone
atoms. The T-F plane obtained using the Fourier atom is called a spectrogram
and the plane obtained using Gammatone atoms is called the cochleagram
[10]. To reconstruct the signal back to x[n] from the TF plane, the TF atoms
must be on a tight frame, which implies that there exists some A > 0 such that

||x||2 = 1
A

∑
l,k

|〈x, gl,k〉|2.

Given one such A, the reconstruction of the signal is

x[n] = 1
A

∑
l,k

X[l, k]gl,k[n].
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If the atoms are orthogonal, then A = 1 and the reconstruction is unique,
else there are many possible reconstructions for x[n] and are given by

x[n] = 1
A

∑
l,k

C[l, k]gl,k[n],

with the constraint that

||x||2 ≤ 1
A

∑
l.k

|C[l, k]|2, (9.37)

where C[l, k] = 〈x, gl,k〉.

9.5.2 Audio Denoising Using Time–Frequency Plane

Ephraim and Mallah [12] suggested the removal of musical noise using non-
diagonal time–frequency estimators. An improvement in the performance
of the algorithm was observed using a block thresholding technique. This
section details the diagonal estimator method leading to the power subtrac-
tion technique for noise reduction and concludes with the more recent block
thresholding technique as detailed in Ref. [11].

Consider a noisy signal y[n] given by

y[n] = x[n] + e[n],

where x[n] is the true signal and e[n] is the noise component. The time–
frequency transform decomposition of y[n] over the set of time–frequency
atoms gl,k[n] results in coefficients written as

Y[l, k] = 〈y, gl,k〉 =
N−1∑
n=0

y[n]g∗
l,k[n].

Assuming that gl,k[n] defines a tight frame, y[n] can be reconstructed by

y[n] = 1
A

∑
l,k

Y[l, k]gl,k[n].

The denoising algorithm reconstructs the signal by attenuating the individ-
ual TF units using a factor a[l, k]. The denoised signal is then given by

x̂[n] = 1
A

∑
l,k

a[l, k]Y[l, k]gl,k[n],
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where x̂[n] is the estimated denoised signal. We use X̂[l, k] = a[l, k]Y[l, k] to
denote its corresponding time–frequency coefficients.

Following from Equation 9.37, the quadratic estimation risk, r, associated
while reconstructing the signal is given by

r = E{||x − x̂||2} ≤ 1
A

∑
l,k

E{|X[l, k] − X̂[l, k]|2}, (9.38)

where E{θ} is the estimate of θ . The upper bound on r, called the oracle risk,
ro, can be found by differentiating Equation 9.38 with respect to a. The risk ro

can be evaluated to occur at

a[l, k] = 1 − 1

ξ̂ [l, k] + 1
, (9.39)

where ξ̂ [l, k] = X2[l, k]/σ 2[l, k] is the a priori SNR, which unfortunately is an
unknown quantity.

To overcome this, we use diagonal estimators of the SNR ξ [l, k] that are
computed from the a posteriori SNR defined by γ [l, k] = |Y[l, k]|2/σ 2[l, k]. The
empirical Weiner estimator is then defined as

a[l, k] =
(

1 − 1

ξ̂ [l, k] + 1

)
+

, (9.40)

where (z)+ = max(z, 0) and ξ̂ [l, k] = γ [l, k] − 1.
A more generalized form of the Weiner estimator is

a[l, k] =
(

1 − λ

[
1

ξ̂ [l, k] + 1

]β1
)β2

+
(9.41)

where β1, β2 ≥ 0, and λ ≥ 1 is the over-subtraction factor. This is generally
observed as the power subtraction method for noise reduction.

9.5.3 Block Thresholding

To minimize the musical noise, we divide the time–frequency plane into I
blocks of Bi. The resulting estimator depends on the TF units in a neighbor-
hood. The signal estimated x̂ from y using the block thresholding estimator
is calculated by

x̂[n] =
I∑

i=1

∑
(l,k)∈Bi

aiY[l, k]gl,k[n].
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To find ai, we again minimize the risk r

r = E{||x − x̂||2} ≤ 1
A

I∑
i=1

∑
(l,k)∈Bi

E{|aiY[l, k] − X[l, k]|2}. (9.42)

Differentiation of Equation 9.42 with respect to ai and equating it to zero,
we find r to have a maximum value at

ai = 1 − 1
ξi + 1

, (9.43)

where ξi = F̄2
i /σ̄

2
i is the average a priori SNR in Bi. Note that F̄2

i is obtained as

F̄2
i = 1

B#
i

∑
(l,k)∈Bi

|F[l, k]|2,

where B#
i is the number of TF units in the ith block.

We can estimate ξi using the a posteriori SNR by using the relation

ξ̂i = Ȳ2
i

σ̄ 2
i

− 1,

where

σ̄ 2
i = 1

B#
i

∑
(l,k)∈Bi

|σ [l, k]|2

and

Ȳ2
i = 1

B#
i

∑
(l,k)∈Bi

|Y[l, k]|2.

If the noise is stationary, the noise variance does not depend upon time:
σ 2[l, k] = σ 2[k]. Generalizing Equation 9.43, ai can be written as

ai =
(

1 − λ

ξ̂i + 1

)
+

. (9.44)

Adaptive Block Thresholding: Better denoising performance can be achieved by
adaptively choosing the block size of block Bi by minimizing the risk defined
in Equation 9.42. This approach requires the estimation of the attenuating
factor ai using the Stein unbiased risk estimate (SURE) [13].

9.5.4 Effect of Windows

In this section, we use Fourier atoms to obtain the TF plane. The windowed
Fourier atoms can be written as gl,k[n] = w[n − lu] exp (i2πkn/K), where w[n]
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is the window. The resulting TF plane, called the spectrogram, is given by

X[l, k] =
N−1∑
n=0

x[n]w[n − lu] exp (i2πkn/K). (9.45)

The signal x[n] chosen for this experiment is a musical signal having an
SNR of −5 dB and sampled at 11 KHz. The objective of this experiment is to
improve the SNR of the signal using a block thresholding technique.

Since windowing in the time-domain results in convolution in the
frequency-domain, disturbing the spectral characteristics of the signal, the
choice of the window w[n] becomes very important. Neglecting the sinu-
soidal component in Equation 9.45, the windowed signal, xw[n] = x[n]w[n],
in the frequency-domain is

Xw(ejω) = 1
2π

∫ π

−π

W(e−jω′
)X(e−j(ω−ω′))dω′.

For a proper representation of the signal, W(ejω) should be highly concen-
trated around ω = 0. A rectangular window, for example, has a main-lobe
width that is inversely proportional to the window length, with a substan-
tial energy spread in the side lobe. Windows such as Hamming, Hann and
triangular have a very high energy concentration in the main lobe when com-
pared to the side lobes. The localization of energy around ω = 0 for Hann
and other similar windows ensures minimum spectral leakage across the
time–frequency units. This property of the Hann window gives an improved
denoising performance when compared to other windows.

A summary of the results obtained by using different windows is displayed
in the form of a bar chart (shown in Figure 9.34). As expected, the performance
of the rectangular window is poor, due to spectral leakages. It results in a
very low SNR of only −2.51 dB, when compared to 15.53 dB using the Hann
window. The best SNR result was obtained using the Hann window, with
comparable results using Hamming, triangular, and Kaiser windows.

9.6 Effect of Windows on Linear Prediction of Speech

One of the breakthroughs of automatic speech recognition research is in
speech coding. Human speech transmission through mobile networks, in its
current form, owes its existence to speech-coding techniques, without which
the cost of a phone call through a mobile network would be prohibitively
high. To reduce the amount of data transmitted through a network, the
raw human speech is encoded using algorithms such as linear predictive
coding.
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FIGURE 9.34
Signal-to-noise ratio comparison of various windows.

9.6.1 Linear Prediction Coder

The most commonly used speech-coding algorithm is the lossy linear pre-
dictive coding (LPC). This uses an Nth order autoregressive (AR) or all-pole
model to represent speech frame using N coefficients. The LPC algorithm
models the spectral envelope of the signal and gives lesser importance to
details as shown in Figure 9.35. The reconstructed signal from LPC coef-
ficients has a different temporal structure when compared to the original
signal. However, it still retains the vital aspects of the speech data, such as
pitch and spectral peaks, which are critical to understand the human speech.

To compute the LPC coefficients [14], the digital signal, x[n], is segmented
using a window, w[n]. Each windowed frame is given by

y[n] = x[n]w[n].

The Nth order linear predictor of y[n] is defined using N previous
components as

ỹ[n] =
N∑

k=1

αky[n − k].

where αk is the weight associated with the kth previous sample. When viewed
as a system, the linear predictor has a system function defined as
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FIGURE 9.35
Magnitude response comparison of the original signal and its estimate using LPC coefficients.

P(z) = Ỹ(z)
Y(z)

=
N∑

k=1

αkz−k.

The error obtained using the Nth-order all-pole model is computed as

e[n] = y[n] − ỹ[n] = y[n] −
N∑

k=1

αky[n − k]. (9.46)

Representing Equation 9.46 as a system, the error e[n] is obtained by passing
the signal y[n] through a system A(z) defined by

A(z) = E(z)
Y(z)

= Y(z) − Ỹ(z)
Y(z)

= 1 − P(z) = 1 −
N∑

k=1

αkz−k. (9.47)

We note that A(z) is called the LPC polynomial. The all-pole system, H(z),
is then denoted as

H(z) = 1
A(z)

= 1

1 −
N∑

k=1

αkz−k

. (9.48)
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Here, H(z) represents the LPC model and the N values of αk are known as
the LPC coefficients.

Advantages of using LPC

A speech signal is generally sampled at 8000 samples per second. Each frame
is represented by 10 all-pole spectrum parameters. Furthermore, we have
three parameters: the pitch frequency, voicing versus nonvoicing decision,
and gain [17], making a total of 13 parameters. Assuming 100 frames/s and
N = 10 gives a total of 1300 parameters, which have to be transmitted every
second, when compared to 8000 samples of uncompressed speech. From this,
the reduction in the data and bandwidth requirement associated with LPC is
apparent.

Limitations of LPC

Though LPC gives a concise representation of a speech signal, it is highly
sensitive to noise. Small errors in LPC coefficients, which often occur while
transmitting data through a noisy wireless channel, destroy speech properties
and render the reconstructed speech signal illegible.

9.6.2 Line Spectral Frequencies

We shall now introduce line spectral frequencies (LSF). To make speech
representation coefficients more robust to noise, we split each pole of the
LPC transfer function into two separate poles as shown in Figure 9.36 for a
segment of speech signal.

The LPC polynomial, A(z), which generates the prediction error sequence,
Equation 9.47 on expansion gives

A(z) = 1 − α1z−1 − α2z−2 − α3z−3 − α4z−4 − · · · − αNz−N . (9.49)

The reciprocal polynomial Ã(z) is then formed by

Ã(z) = z−(N+1)A(z−1) = −αNz−1 − · · · − α2z−N+1 − α1z−N + z−(N+1), (9.50)

where the roots of Ã(z) are the inverse of the roots of A(z).
The line spectral pairs P(z) and Q(z) corresponding to vocal tract models

[14] are now defined by

P(z) = A(z) + Ã(z) = A(z) + z−(p+1)A(z−1),

Q(z) = A(z) − Ã(z) = A(z) − z−(p+1)A(z−1).

Polynomials P(z) and Q(z) have their roots on the unit circle. These roots,
ordered in ascending order of frequencies, are called the line spectral frequencies
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(LSF) [16]. Polynomial A(z) can be reconstructed from P(z) and Q(z) by

A(z) = P(z) + Q(z)
2

.

The reconstructed A(z) is stable and is robust to errors.

9.6.3 LSF Variation due to Windows

A speech signal is generally broken into a set of frames using windows for
further processing. Windows play an important role in the linear analysis
of speech signal and several factors need to be taken into account before
choosing the right window. Here, we analyze the effect of windows on LSF
coefficients.

For speech analysis, an important aspect of a window is its length. A
window of 30 ms duration is considered to be optimal in speech-processing
applications [14]. This window length is optimum, since it is not so long as
to lose the local statistical properties of the signal such as stationarity. It is
also not so short that the autocorrelation values can no longer be estimated
by averaging lagged values [15]. Since multiplication in the time-domain is
convolution in the frequency-domain, the convolution smears the frequency
features, depending on the width of the main lobe of the window frequency
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FIGURE 9.36
Pole zero plot of LPC (N = 9) and LSF transfer functions.
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TABLE 9.9

Pedestal Heights of Different Windows

Window Pedestal (%)

Rectangular 100
Hann 0
Modified Hann 0
Hamming 8
Modified Hamming 8
Ultraspherical (α = 0.8) 1.35
Kaiser (α = π

√
3) 2.47

Blackman 0
Blackman–Harris 0

response. Selecting the appropriate window, therefore, depends on choos-
ing a window with the right main-lobe width. Another important aspect of
windows is the pedestal height, which is the difference between the value of
the first and the last sample of the window function. Pedestal height has an
effect on the attenuation of the side lobes in the frequency response and sig-
nificantly impacts the estimation of linear parameters. The pedestal heights
for different windows are provided in Table 9.9.

LSF comparison using a Hamming window (with a pedestal height of 8%),
a Hann window (zero pedestal height), and a rectangular window are shown
in Figures 9.37(a) through (c). These coefficients were obtained for a speech
segment “This was easy for me” spoken by a male that was sampled at 8000 Hz.
Windows were advanced one sample at a time.

A modified Hann window [15] is given by

w[n] =
⎧⎨
⎩

1 + α

2
− 1 − α

2
cos
(

π(2n + 1)

N

)
, 0 ≤ n ≤ N − 1

0, elsewhere
(9.51)

We observe smooth variations as the Hann window (with α = 0)
advances (Figure 9.37(a)), mainly due to the zero pedestal property of the
Hann window.

A slightly more perturbed LSF variation can be observed while using the
Hamming window. A Hamming window [15] can be obtained from Equa-
tion 9.51 using α = 0.08. The glitches in the LSF variation (Figure 9.37(b))
occur due the small pedestal height of the Hamming window.

A rectangular window has a high pedestal that gives heavy oscillations in
LSF estimation as shown in Figure 9.37(c). LSF variation as a function of time
for the Blackman, flat-top, Kaiser, triangular, and ultraspherical windows are
shown in Figures 9.37(d) through 9.38(d).
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FIGURE 9.37
LSF coefficients using different windows. (a) Hann window. (b) Hamming window. (c)
Rectangular window. (d) Blackman window.

9.7 Application of Windows in Image Processing

Since its origin in the 1950s, microwave imaging systems have been widely
exploited in applications such as target identification, remote sensing,
nondestructive testing, and the military. Two systems of this kind are the syn-
thetic aperture radar (SAR) and the inverse synthetic aperture radar (ISAR).
SAR is a high-resolution remote sensing technique carried on a moving plat-
form such as a satellite or an airplane and it is intended for imaging remote
terrains. SAR is applied mainly in surveillance, archaeology, mining, agri-
culture, ecology, and geophysics. Inverse SAR is quite similar, but it is a
stationary radar system that captures images of moving targets like aircraft,
ship, or tank. ISAR is generally used for the identification and classification
of targets, especially in airborne maritime surveillance. In a common sce-
nario, aerial targets are imaged via a ground-based radar, whereas ground-
or sea-based targets are imaged with the help of an airborne radar. In this
study, we focus on aircraft ISAR imaging via ground-based radar.
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FIGURE 9.38
LSF coefficients using different windows. (a) Flat-top window. (b) Triangular window. (c) Kaiser
window (α = π

√
3). (d) Ultraspherical window (α = 0.8).

9.7.1 Windows for ISAR Images

The basic principle of ISAR imaging is to coherently collect the scattered large
bandwidth echoes produced due to the rotation of the object, which brings
about a change in the viewing angle to the radar. By processing the echo
signals collected, information of the individual point scatterers on the target
object and their relative range can be derived. Therefore, the radar image can
be assumed to consist of many energy points called scattering centers. ISAR
signal processing consists of the following steps [18]:

i. Range compression deconvolves the echoed signal from the trans-
mitted signal, thereby forming the range profile.

ii. Motion compensation registers the moving targets with respect to
the radar.

iii. Next, the image is constructed by arranging the received signal
samples in a polar grid of different viewing angles and Doppler
frequencies in frequency spatial domain.
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The radar image resolution is decided collectively in range and cross-
range directions [19]. The range resolution is inversely proportional to the
transmitted electromagnetic signal bandwidth and the cross-range resolu-
tion is inversely proportional to the radar antenna aperture size. Finally, the
range and cross-range mapped ISAR image is formed by taking the inverse
two-dimensional FFT of the sample signals interpolated on the grid. The ISAR
technique requires the phase of the received signal to be in coherence. The
ISAR processing steps involved in ISAR are shown sequentially in Figure 9.39.

Several algorithms for the ISAR image reconstruction have been proposed
in Refs. [20–22]. The simplest of them is the range-Doppler (or range vs. cross-
range) technique, which is applicable when the effective rotation vector does
not vary with the integration time. The range is defined as the axis parallel to
the direction of propagation from the radar to the target. Cross-range is the
axis perpendicular to the range direction. If the target is moving or rotating
at a constant speed relative to the radar, then the Doppler spectral analysis
of the time history of range profiles provides information regarding the tar-
get’s scattering centers. Thus, the Doppler frequency content and the relative
position of scatterers can be determined. While generating range profiles,
the location of target scatterers upto within one range cell is obtained. On
the other hand, by cross-range processing, the targets residing even within
the same range cell can also be separated. In this manner, the range versus
cross-range map of the target’s scattering centers is formed.

Raw ISAR readings

Generate range profiles
via range compression

Motion compensation

Doppler windowing

Doppler processing

ISAR IMAGE

FIGURE 9.39
ISAR processing steps.
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While constructing ISAR images, certain parameters need to be controlled to
obtain a good quality image. One such enhancement technique is windowing,
which smoothens the point spread function (PSF) of the ISAR image [23]. The
PSF is the impulse response of an ISAR imaging system to a point scatterer.
In the Cartesian coordinate system, if Bx is the aspect bandwidth and By is the
frequency bandwidth, then the PSF is given by

PSF(x, y) = sinc((Bx/π)x)sinc((By/π)y) (9.52)

The physical meaning of PSF is illustrated in Figures 9.40(a) through (f).
Here, seven point scatterers are shown in Figure 9.40(a), and the correspond-
ing PSF in Figure 9.40(b). The resultant ISAR image is the convolution of the
point scatterers with the 2-D PSF, shown in Figure 9.40(c). The image in the
2-D range versus cross-range planes is shown in Figure 9.40(e). When a suit-
able window is applied, the image gets smoothened out as in Figure 9.40(d)
and its convolved plot is shown in Figure 9.40(f).

The tails in the PSF that represent the side lobes in the sinc functions (in
range and cross-range directions) must be suppressed and this is accom-
plished by the process of windowing. Prior to windowing, we perform
zero-padding on the ISAR readings, which boosts the image quality by
interpolating the image data in the frequency-domain. Zero-padding in the
time-domain increases the number of sample points (in between the actual
samples) in the frequency-domain, and thus makes the reconstruction better
by allowing continuous transition. For a 2-D ISAR image, the zero-padding is
performed in both the directions. After zero-padding, various window func-
tions are applied with suitable parameters. It is to be noted that though the
windows make the ISAR image smoother, the resolution of the image gets
poorer.

9.7.2 Experimental Analysis

The ISAR image readings are taken corresponding to ISAR aircraft image [23].
The Cartesian coordinate system (X–Y) is fixed on the object with range given
along the Y-axis and cross-range along the X-axis. The center frequency is
taken as ( fc) and the speed of light is denoted by c with a value 3 × 108 m/s.
After range compression, 32 range profiles (M) and 64 cross-range profiles
(N) are taken. The range frequency bandwidth is denoted by By and the
cross-range frequency bandwidth by Bx. Using these, the range/frequency
resolution (�f ) and cross-range/aspect resolution (�φ), which decide the
resultant image quality, can be found by

�f = c/2Bx (9.53)

and �φ = (π/kc)By, (9.54)
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FIGURE 9.40
(a) Point scatterers. (b) Point spread function. (c) Convolved image. (d) Convolved windowed
image. (e) 2-D ISAR image. (f) Windowed ISAR image.

where kc is the wave number for fc given by

kc = 2π fc/c. (9.55)
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Using these, the frequencies ( f ) and the look-angles (φ) are selected as
follows:

f = [(fc − �fM/2), (fc − �f (M/2 − 1)), . . . , fc, . . . , (fc + �f (M/2 − 1))]
(9.56)

and φ = [(φc − �φN/2), (φc − �φ(N/2 − 1)), . . . , φc, . . . , (φc + �φ(N/2 − 1))]
(9.57)

The Equations 9.56 and 9.57 are used for obtaining the backscattered electric
field samples denoted by E(f , φ). Then, the two-dimensional inverse Fourier
transform integral is applied as

ISAR(x, y) =
∫∞

−∞

∫∞

−∞
E(f , φ)ej2π(2f /c)xej2π(kcφ/π)yd(2f /c)d(kcφ/π). (9.58)

Since, in this study, the backscattered electric field samples are collected
within a small frequency and aspect angle bandwidth, inverse fast Fourier
transform (IFFT) can be easily applied. The final ISAR image thus formed is
shown in Figure 9.41. The backscattered electric field samples for the three
radar images are obtained from Ref. [23]. The ISAR images formed are rep-
resented in a logarithmic scale of around 20 dB dynamic range. It is observed
in the ISAR images that the main backscattering centers are present in the
wings, propellers, tires, nose and tail of the aircrafts. The ISAR images are
now interpolated by zero-padding four times, which provides continuity in
the values of the 2-D ISAR image. On the zero-padded ISAR images, we
have tested many windows to observe their performance. On the three ISAR
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ISAR image of an aircraft.
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FIGURE 9.42
Results of windowing on the ISAR image. (a) Rectangular window. (b) Blackman window. (c)
Triangular window. (d) Blackman–Harris window. (e) Gaussian window. (f) Bartlett window.

images formed, the windows used are rectangular, Blackman, triangular,
Blackman–Harris, Gaussian, Bartlett, Dolph–Chebyshev, Hamming, Hann,
Kaiser, ultraspherical, and exponential. The ISAR example in Figure 9.41
is zero-padded and then a window is applied. The results are shown in
Figures 9.42 and 9.43.
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FIGURE 9.43
Results of windowing on the ISAR image (continued). (a) Dolph–Chebyshev window. (b) Ham-
ming window. (c) Hann window. (d) Kaiser window (α = 4.71). (e) Ultraspherical window
(x0 = 1.007, β = 0.95). (f) Exponential window (α = 4.71).

9.7.3 Results and Conclusions

From Figures 9.42 and 9.43, it can be seen that Hamming, Kaiser, exponen-
tial, and ultraspherical windows offer comparatively better performance for
ISAR images, since they provide the desired smoothing and suppression of
unwanted side lobes. We can observe from these figures that Blackman,
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Blackman–Harris, and Dolph–Chebyshev windows provide a smudging
effect on the ISAR images, thereby drastically decreasing the resolution.
Hence, these windows are not preferred. The rectangular window has the
least smoothing effect on the ISAR images and, therefore, can be ruled out. If
we compare the rest of the windows, it turns out that the Hamming window
provides an increase in the contrast ratio of the ISAR image.

Although the triangular and Bartlett windows provide more contrast to
the ISAR images than the Hamming window, their smoothing performance
is not satisfactory. Gaussian window decreases the resolution of ISAR images
considerably (compared to the triangular and Bartlett windows), so using this
window is not advisable.

For Kaiser windows, the range of α that gives better performance is
observed to be 4 ≤ α ≤ 5. The optimum can be chosen to be α = 4.71 (1.5π).
The same is true for the exponential window. The Kaiser window compar-
isons for different values of α are shown in Figure 9.44. The parameters for
the ultraspherical window can be flexibly chosen in accordance with the posi-
tion and nature of the target. The optimum values chosen here are x0 = 1.007
and α = 0.95 as they provide the optimum results required in our applica-
tion. Thus, the ultraspherical window provides a more compact ISAR image
compared to all the other windows considered in this study.

All the windows and their parameters are compared in terms of their
smoothing effect on three 2-D ISAR images, taking into consideration the
loss of resolution. The specific characteristics of each window on the ISAR
images are observed and noted, thereby making it possible for the ISAR image
interpreter to apply the desired window depending on the requirement.

9.8 Windows to Improve Contrast Ratio in Imaging Systems

Image processing has widespread applications in the fields of computer
vision, medical imaging, microscope imaging, and radar imaging, wherein
the image data can take various forms such as a video sequence, views from
multiple cameras, or multidimensional data from a medical scanner. The
quality of an image measures the perceived image’s degradation. It is very
much dependent on the imaging systems used, as they generate distortions or
artifacts in the signal readings. Therefore, image quality assessment is quite
relevant. One of the image quality metrics that is of utmost significance is the
contrast ratio (CR) [24].

An imaging system’s CR is defined as the difference between the whitest
and the blackest pixel values, in terms of brightness or luminescence, and is
usually expressed as a ratio of an integer to unity (integer:1). The CR measure
allows an imaging system to detect low-contrast objects lying next to high-
contrast objects, which is quite useful in medical imaging applications.
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FIGURE 9.44
Results of using Kaiser window for different values of α. (a) α = 2. (b) α = 2.5. (c) α = 3. (d) α = 4.
(e) α = 5. (f) α = 6.

Imaging systems [25], such as SAR/ISAR, computerized tomography, and
charge coupled device-based x-rays construct images using inverse 2-D win-
dowed DFTs on spatial frequency domain data. They are highly influenced
by the windows used, as the characteristic of the window has a direct
consequence on the contrast of the image.
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The frequency response of a window, f (n), is given by

F
(
ejω
) =

N−1∑
n=0

f (n)e−jωn . (9.59)

A vital characteristic of a window that is often overlooked is the main-lobe
to side-lobe energy ratio (MSR). The MSR of a window is a very important
image quality measure as it describes the worst-case energy leakage from
the bright to the dark area of the image. Thus, it has a direct impact on the
CR tolerance of the imaging systems. For describing the MSR, we consider
the parameter of the window (ωm), which corresponds to the frequency in
the main-lobe region with an amplitude equal to the highest side lobe of the
window. It is depicted in Figure 9.45 for the ease of understanding. The MSR
is represented as

MSR =
∫ωm

0 |F (ejω
)|2dω∫π

ωm
|F (ejω)|2dω

. (9.60)

The side-lobe energy is given by

Es = 2
∫ π

ωm

|F (ejω
) |2dω . (9.61)

The main-lobe energy is defined as

Em = 2
∫ωm

0
|F (ejω

) |2dω . (9.62)
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Position of ωm in a Blackman window.
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Hence, the total energy is

Et = Es + Em . (9.63)

Therefore, the contrast ratio can be defined as

CR = Es + Em

Es
= 1 + MSR. (9.64)

Now, the design and analysis of the windows’ parameters affecting the CR
is performed by considering the following equation [26]:

CR = fTf
fTQf

, (9.65)

TABLE 9.10

CR Values for Different Window Functions

Window Function CR (in dB)

Rectangular 19.9059
Kaiser–Bessel, α = 2 31.4298
Exponential, α = 2 40.6247
Kaiser–Bessel, α = 3 43.6460
Triangular 50.2682
Bartlett 50.1182
Exponential, α = 3 52.1751
Kaiser–Bessel, α = 4 57.7346
Exponential, α = 4 64.3444
Hann 65.5163
Hamming 68.7951
Kaiser–Bessel, α = 5 72.6151
Gaussian 76.6924
Exponential, α = 5 77.3568
Kaiser–Bessel, α = 6 88.0623
Exponential, α = 6 91.2039
Kaiser–Bessel, α = 7 103.8475
Exponential, α = 7 105.6402
Exact Blackman 114.2239
Kaiser–Bessel, α = 8 119.7239
Exponential, α = 8 120.6123
Kaiser–Bessel, α = 9 135.9583
Exponential, α = 9 135.9805
Dolph–Chebyshev 170.0871
Blackman–Harris 178.1653
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where F(ejω) = fTv such that fT = [f (0), f (1), f (2), . . . , f (N − 1)] and v =
[1, e−jω, e−j2ω, . . . , e−j(N−1)ω]T .

Q is a real, symmetric, and a positive-definite Toeplitz matrix whose
elements are given by

q(m, n) =

⎧⎪⎨
⎪⎩

−ωm

π
sinc (ωs(m − n)), for m �= n

1 − ωm

π
, for m = n

. (9.66)

In this manner, by choosing the appropriate window length (N), different
windows can be substituted in Equation 9.65 and analyzed for their CR value
measurement. The ultraspherical window, which has three parameters, has
an advantage over the other windows due to its adjustable side-lobe pattern.
This can alter the energy contained in the side lobes, and consequently the
CR measure.

9.8.1 Experimental Analysis

The contrast ratio of various windows are tabulated so that we can compare
their performance. The analysis is performed by applying different windows
in Equation 9.65 and comparing their CR performance. The value of N is 131
in all the cases, while ωm for each window is found independently. Table 9.10
contains all CR values in the ascending order. We seek a window that exhibits
the maximum contrast ratio.

9.8.2 Results and Conclusions

From Table 9.10, it can be observed that the Blackman–Harris window gives
the maximum contrast ratio, whereas the rectangular window provides the
least. Among Kaiser–Bessel and exponential windows, for the same value of
α, the exponential window gives a better CR, with 2 ≤ α ≤ 9. Therefore, from
the point of view of contrast ratio, the Blackman–Harris window is found to
be the optimum window for imaging systems.

References

1. B.R. Mahafza, Radar Systems Analysis and Design Using MATLAB, CRC Press,
2nd edn., Florida, USA, 2005.

2. F.J. Harris, On the use of windows for harmonic analysis with the discrete Fourier
transform, IEEE Proceedings, vol. 66, pp. 51–83, January 1978.



362 Window Functions and Their Applications in Signal Processing

3. H. Urkowitz, J.D. Geisler, and N.A. Ricciardi Jr., The effect of weighing upon
signal-to-noise ratio in pulse bursts, IRE Transactions on Aerospace and Electronic
Systems, vol. AES–9, pp. 486–494, July 1973.

4. C.L. Temes, Side lobe suppression in a range-channel pulse-compression radar,
IRE Transactions on Military Electronics, vol. MIL–6, pp. 162–169, April 1962.

5. A.H. Nuttall, Some windows with very good side lobe behavior, IEEE Transactions
on Acoustic and Speech Signal Processing, vol. ASSP–29, pp. 84–91, February 1981.

6. J.D. Bronzino, The Biomedical Engineering Handbook, CRC Press, 2nd Edn., Florida,
USA, 1999.

7. A.L. Goldberger, L.A.N. Amaral, L. Glass, J.M. Hausdorff, P.C. Ivanov, R.G. Mark,
J.E. Mietus, G.B. Moody, C.-K. Peng, and H.E. Stanley, PhysioBank, PhysioToolkit,
and PhysioNet: Components of a new research resource for complex physio-
logic signals, Circulation, vol. 101, no. 23, pp. e215–e220, 2000, circulation elec-
tronic pages: http://circ.ahajournals.org/cgi/content/full/101/23/e215 PMID:
1085218; doi: 10.1161/01.CIR.101.23.e215.

8. K.D. Chinchkhede, S.Y. Govind, S.R. Hirekhan, and D.R. Solanke, On the imple-
mentation of FIR filter with various windows for enhancement of ECG signal,
International Journal of Engineering Science and Technology, vol. 3, pp. 2031–2040,
2011.

9. S. Inban and N. Uchaipichat, Development of QRS detection using short-time
Fourier transform based technique, IJCA, Special Issue on CASCT, no. 1, pp. 7–10,
2010, published by Foundation of Computer Science.

10. E. de Boer and H.R. de Jongh, On cochlear encoding: Potentialities and limitations
of the reverse-correlation technique, The Journal of the Acoustical Society of America,
vol. 63, no. 1, pp. 115–135, January 1978.

11. G. Yu, S. Mallat, and E. Bacry, Audio denoising by time-frequency block thresh-
olding, IEEE Transactions on Signal Processing, vol. 56, no. 5, pp. 1830–1839,
2008.

12. Y. Ephraim and D. Malah, Speech enhancement using MMSE short time spectral
amplitude estimator, IEEE Transactions on Audio, Speech, and Signal Processing, vol.
ASSP32, pp. 1109–1121, 1984.

13. C.M. Stein, Estimation of the mean of a multivariate normal distribution,
The Annals of Statistics, vol. 9, no. 6, pp. 1135–1151, November 1981.

14. L.R. Rabiner and R.W. Schafer, Theory and Applications of Digital Speech Processing,
Pearson, 1st Edn., New Jersey, USA, 2010.

15. P. Kabal, Time Windows for Linear Prediction of Speech, Technical Report,
Department of Electrical & Computer Engineering, McGill University, 2009, Ver-
sion 2a [online at http://www-mmsp.ece.mcgill.ca/Documents/Reports/2009/
KabalR2009b.pdf].

16. P. Kabal and R.P. Ramachandran, The computation of line spectral frequencies
using Chebyshev polynomials, IEEE Transactions on Acoustics, Speech, and Signal
Processing, vol. 34, no. 6, pp. 1419–1426, December 1986.

17. T.F. Quatieri, Discrete-Time Speech Signal Processing: Principles and Practice, Prentice
Hall, New Jersey, USA, 3rd Edn., 2009.

18. B. Haywood, R. Kyprianou, C. Fantarella, and J. McCarthy, ISARLAB—Inverse
Synthetic Aperture Radar Simulation and Processing Tool, Surveillance Systems Divi-
sion, Electronics and Surveillance Research Laboratory, Canberra, Australia, June
1999.



Applications of Windows 363

19. D.R. Wehner, High-Resolution Radar (2nd Edition), Artech House, Boston, Nor-
wood, Massachusetts, 1994.

20. W.C. Carrara, R.S. Goodman, and R.M. Majewsky, Spotlight Synthetic Aper-
ture Radar: Signal Processing Algorithms, Artech House, Boston, Norwood, Mas-
sachusetts, 1995.

21. J. Li, R. Wu, and V.C. Chen, Robust autofocus algorithm for ISAR imaging of
moving targets, IEEE Transactions on Aerospace and Electronic Systems, vol. 37, no. 3,
pp. 1056–1069, July 2001.

22. F. Berizzi, E. Dalle Mese, and M. Martorella, Performance analysis of a contrast-
based ISAR autofocusing algorithm, In Proceedings of the 2002 IEEE Radar
Conference, Long Beach, CA, pp. 200–205, April 2002.

23. C. Ozdemir, Inverse Synthetic Aperture Radar Imaging with MATLAB Algorithms,
Wiley, New Jersey, 2012.

24. G.G. Kuperman and T.D. Penrod, Evaluation of compressed synthetic aperture
radar imagery, IEEE National Aerospace and Electronics Conference, vol. 1, pp. 319–
326, May 1994.

25. S. William and A. Bergen, Design of ultraspherical window function with pre-
scribed spectral characteristics, EURASIP Journal on Applied Signal Processing,
vol. 13, pp. 2053–2065, 2004.

26. J.W. Adams, A new optimal window, IEEE Transactions on Signal Processing, vol. 39,
no. 8, pp. 1753–1769, August 1991.





Index

A

Action potential (AP), 323
Additive white Gaussian noise

(AWGN), 324
EEG signal, 325
synthetic, 329

Aliasing, 40, 59, 60, 63, 64; see also
Reconstruction

All-pole model, see Autoregressive
model (AR model)

Amplitude response, 234
of bandpass filters, 78

Analysis formula, see Discrete-time
Fourier transform (DTFT)

Antenna design community, 155
Apodization, 96
AR model, see Autoregressive model

(AR model)
Audio denoising

SNR comparison, 344
using time–frequency plane, 336–340
windows effect, 342–343

Autocorrelation function (ACF), 180, 268
Autoregressive model (AR model), 344
Average transmitted power (ATP), 303

B

Bandpass filter (BPF), 221
impulse response of, 221
type 3 FIR filter, 239

Bandstop filter (BSF), 221
Bandwidths, 3 dB and 6 dB, 166–167
Bartlett periodogram; see also Welch

periodogram method
bias of, 279
high variance, 278
resolution of, 280, 282
variance of, 279, 281

Bartlett windows, 89, 148, 357
ISAR image, 355

Jackson window, 155
LSF coefficients, 350
parameters, 93
self-convolution property, 91
window functions, 90

Bias, 259
of Bartlett periodogram, 279
of Blackman–Tukey method, 289
modified periodogram, 267
MSE, 259
of periodogram, 262
problems of, 181
on spectral amplitudes, 131
of Welch periodogram, 281

Biomedical signal processing, 322; see
also Stretch processing

applications, 323
FIR filtering, 324–328
frequency and dynamic ranges, 323
MA filter, 328–333
QRS detection, 333–336
techniques, 324

Blackman–Harris window, 93, 109
Nuttall window family, 151
rectangular window to, 169
simulation results, 306
time-and frequency-domain plots, 110
variations of, 151
windowing on ISAR image, 355

Blackman–Tukey method
ACF estimate, 286
autocorrelation sequence, 291
bias of, 289
PSD estimate, 283
resolution of, 289, 290, 291, 292
sinusoidal components, 290
spectral estimation, 181
spectral estimator, 288
variance of, 289, 290, 291, 292

Blackman window, 106–107
Blackman–Harris window

family, 150
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Blackman window, 106–107 (Continued)
CSD window, 202
Fourier transformation, 106
functions, 108
MSR, 359
parameters, 93
SCER performance, 194

Block thresholding technique, 340
adaptive, 342
musical noise, 341
noise variance, 342

Bohman window, see Papoulis window
Box car window, see Rectangular

window
BPF, see Bandpass filter (BPF)
BSF, see Bandstop filter (BSF)
Burst, 303, 304, 314

C

Canonic signed digit windowing (CSD
windowing), 195–196

binary windows performance, 216
implementations, 197
using smoothed spectrum, 196–197
technique code, 195
window 10, 209, 210
window 11, 209, 211
window 1, 197, 198
window 12, 209, 212
window 13, 210, 211, 213
window 14, 211, 212, 214
window 2, 197, 198, 199
window 3, 198, 199, 200, 201–202
window 4, 202, 203
window 5, 202, 204
window 6, 202, 205
window 7, 203, 204, 205, 206
window 8, 205, 206, 207
window 9, 207, 208

Cauchy window, 154
C/D converter, 63, 65
Characteristics, window functions, 87–88
Circular convolution, 39, 80–81

by linear convolution, 83
linear convolution aliased form, 82

Circular shifting property, 38
Cochleagram, 339
Coherent gain, 131, 161, 166

Coherent power gain, 166
Computational error

arithmetic operations, 194
input data samples, 192
quantization errors, 195
quantized data samples, 192–193
SCER, 193, 194
in time and frequency-domains, 192

Computational savings, DIT-FFT, 53–54
Computation, window parameters,

132–139
denominator, 138
NHMLW vs. MSLL, 139, 140
performance comparison, 134–135,

136, 137
rest of parameters, 138
using trigonometric identities, 133
truncated Taylor family, 133
variance compensation factor, 133

Conjugation property, 38
Consistency, 260
Continuous-time Dolph–Chebyshev

weighting functions, 114
Continuous-time Fourier transform

(CTFT), 1; see also Discrete-time
Fourier transform (DTFT)

basic CTFT pairs, 17
complex exponential formula, 6–7
complex one-sided exponential

signal, 9, 10
conjugation and conjugate symmetry

property, 8
convolution property, 9
differentiation and integration

property, 8
differentiation property application,

15–16
duality property application, 9, 16
exponential signal

determination, 10, 11
frequency-domain conversion, 7
linearity property, 7
modulation property, 9
Parseval’s theorem, 9
rectangular signal

determination, 12, 13
scaling property, time and

frequency, 8
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shifted rectangular pulse
signal, 13, 14

shifting property, time and frequency,
7–8

sinusoidal signals, 11–12, 13
time-domain signal, 14, 15

Continuous-time signal (CT signal), 1
engineering applications, 60
Fourier transform of, 64
frequency-domain, 21
Nyquist rate, 68
reconstruction of, 69
sampling, 59, 63

Contrast ratio (CR), 357
experimental analysis, 361
results, 361
values for window functions, 360

Convergence, 19, 32, 33
Convolution property, 9

circular, 39
DTFTs, 20

Correlogram methods, 177, 260, 283
Cos (x) window, 91, 92, 93
Cos3x window, see Sum-cosine window
Cos4(x) window, 101, 102
Cosine-tapered window, see Tukey

window
Cosαx window family, 148
CR, see Contrast ratio (CR)
CSD windowing, see Canonic signed

digit windowing (CSD
windowing)

CTFT, see Continuous-time Fourier
transform (CTFT)

CT signal, see Continuous-time signal
(CT signal)

D

Daniel periodogram, 292–293
Data smoothing, see Data windowing
Data window, 130, 145, 146, 147

application of, 131
coefficients of, 197
discrete-time, 231
Fourier transform of, 132
input observations, 130
optimal, 142
performance comparison, 141

rectangular, 70
use of, 84

Data windowing, 146
Decibels (dB), 124
Decibels per octane (dB/oct), 170
Decimation-in-frequency FFT

(DIF-FFT), 54
4-point FFT using, 55
even-and frequency sample, 55
flow graph, 56
in-place computation, 55
linear convolution, 57, 58
mth Stage butterfly, 56
odd-numbered frequency samples, 55

Decimation-in-time FFT (DIT-FFT),
50–51

butterfly structures, 51, 53
computational savings, 53–54
decomposition, 52
elementary computation, 51, 52
in-place computation, 54
linear convolution, 57, 58

Degradation loss, 132, 166, 169
Denominator (DEN), 138
DFT, see Discrete Fourier transform

(DFT)
DIF-FFT, see Decimation-in-frequency

FFT (DIF-FFT)
Differentiation property, 8

application, 15–16, 26
in frequency-domain, 21

Digital filters, 224
coefficients, 224
design of FIR, 129
with feedback terms, 223
purpose of, 142

Digital signal processors (DSPs), 1, 36
Dirichlet conditions, 6
Discrete-time (DT), 1

data window, 231
discrete-time system, 4
Fourier transform, 17
LTI systems, 222
periodic signals, 18
sequences, 21
signals, 3
sinusoidal signal, 61
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Discrete-time Fourier transform (DTFT),
1, 17

application of differentiation
property, 26

basic DTFT pairs, 30
discrete-time periodic signals, 18–19
finite-length exponential sequence, 27
Fourier series expansion, 22
frequency-domain representation, 18
of Hamming window, 170
Hann window, 28–29
impulse response, 27–28
properties, 19–22
rectangular pulse signal

determination, 23, 24, 25
sum of complex exponentials, 18
types of convergence, 19

Discrete-time windows, 145, 148; see also
Window functions

Blackman–Harris window, 151
Blackman window, 150
Cauchy window, 154
Cosαx window family, 148
Dolph–Chebyshev window, 155
even-length windows, 158, 159
flat-top window, 152–153
Gaussian window, 153–154
Hamming window, 149
Hann window, 148
Hann–Poisson window, 154
Jackson window, 155
modified first-order Kaiser–Bessel

function, 156
modified zeroth-order Kaiser–Bessel

window, 155–156
Nuttall window family, 151
odd length windows, 158, 159
optimized Blackman window, 150
Papoulis window, 154
Parabolic window, 153
Poisson window, 153
raised-cosine window family, 149–150
rectangular window, 148
Riemann window, 153
Saramäki window family, 156–157
sum-cosine window, 149
triangular window, 148
truncated Taylor family, 149

Tukey window, 150
ultraspherical window, 157–158

Discrete Fourier transform (DFT), 1, 36,
129; see also Fast Fourier
Transform (FFT)

circular convolution, 46, 47–48
comparison, 44–45, 46
filter bank, 76–77
frequency components, 189
interpolation formula, 37
linear convolution, 45, 49
magnitude response plots, 78
output response, 73
periodic cosine sequence, 44
pitfalls, 59
properties, 37–40, 49
rectangular pulse, 40–41, 43
relation between DTFT and 36–37
sampling and truncation, 59
symmetry properties, 50
two time-domain sequences, 42
zero-interpolated signal, 43, 44
zero leakage case, 76

Dispersion factor, 131, 132, 138
DIT-FFT, see Decimation-in-time FFT

(DIT-FFT)
Dolph–Chebyshev window, 155

equiripple characteristics, 185
Fourier transform, 114
side-lobe level, 155
smudging effect, 357
time-and frequency-domain plots, 116
variable parameter, 157
weak component response, 187
windowing on ISAR image, 356

Doppler side lobes, 306
DSPs, see Digital signal processors

(DSPs)
DT, see Discrete-time (DT)
DTFT, see Discrete-time Fourier

transform (DTFT)
Duality property, 9

application, 16
DFT, 38

E

Electro-oculogram (EOG), 323
Electrocardiogram (ECG), 323
Electroencephalogram (EEG), 323
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Electrogastrogram (EGG), 323
Electromyogram (EMG), 323
Electroneurogram (ENG), 323
Electroretinogram (ERG), 323
Equivalent bandwidth, 171
Equivalent noise bandwidth (ENBW),

160–161
Equivalent noise bandwidth, 131
Equivalent time width, 171
Even symmetric impulse response

with even filter length, 235
with odd filter length, 235

Even-length windows, 158, 159
Event-related potential (ERP), 323

F

Fast Fourier Transform (FFT), 1, 50; see
also Continuous-time Fourier
transform (CTFT)

decimation-in-time FFT, 50–54
DFT, 49, 50
inverse DFT from FFT, 56, 57
linear convolution, 57, 58
processor, 189

FDI, see Frequency-domain
implementation (FDI)

Filter length, 227
data, 78, 84
digital optimization techniques, 228
direct truncation with, 233
even, 235
odd, 235

Filtering, 219
bandpass, 262
biomedical signals, 324
frequency-domain, 68
linear, 293
lowpass, 265
MA filter, 328–333
multirate, 224
optimal, 324

Finite impulse response filter design, 178
advantages of, 225
amplitude response, 234
artifacts and interferences, 324
convolution operation, 175
digital filters, 142
discrete-time convolution, 226

filter cut-off, 326
filter specifications, 227–228
flat-top window, 325
frequency response, 236
Hamming window, 175, 179
Hann window, 175, 177, 178
HPF design, 240
ideal filters, 219–221, 239, 240
impulse response, 173, 174, 236, 237
IRT method, 173, 174
linear time invariant systems, 222–224
linear-phase filters, 172, 229–234, 238
log magnitude frequency response,

176, 180, 181
lowpass filter frequency response,

172–173, 175
LTI system, 224
magnitude response, 241, 242
methods, 228
noisy and bandpass-filtered ECG

signals, 325, 326, 327
nonrecursive filter response, 173
number of taps, 225
pole-zero plots, 239
realization of, 227
rectangular window, 174, 175, 176
response using rectangular window,

176
shifted impulse response, 174
SNR, 328
time-domain and frequency-domain

representations, 325
triangular window-based FIR filter,

327
using windowing approach, 175

Finite-length sequence, 82
DFT properties, 49, 50
DTFT, 76
linearity property, 38

First side-lobe level (FSLL), 88, 170, 198
data window parameter, 93
Hamming window, 182
Hann window, 182
MSLL, 89
rectangular window, 275
weak harmonics, 169

Fixed windows, 93, 126
Flat-top window

fifth-order, 152
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Flat-top window (Continued)
frequency response, 324
LSF coefficients, 350
time-domain and frequency-domain,

325
FM, see Frequency modulation (FM)
Formant extraction, 295
Fourier atom, 339, 342
Fourier series, 6

coefficients, 12
continuous-time periodic signal, 11
convergent, 18
representation, 17
truncation of, 173

Fourier transforms (FTs), 1
convolution, 63
raised-cosine and rectangular

windows, 103
rectangular and cosine windows,

98, 99
sum-cosine window, 100

Frequency leakage, 59, 189
data windowing, 146
smearing of energy, 73

Frequency leakage effect, 69; see also
Picket-fence effect

CTFT, 70
example, 74–76
magnitude response and leakage, 71
maximum leakage case, 73, 74
rectangular data window, 70
spectral leakage, 74
zero leakage case, 71–72, 73

Frequency modulation (FM), 303
Frequency resolution, 84, 85

dispersion factor, 130
loss of, 71
main-lobe-broadening factor, 316
signals, 260
spectral estimates, 84
zeropadding, 84

Frequency sampling, 228, 293
Frequency scaling property, 8
Frequency shifting property, 7–8, 20
Frequency window, 145

inverse Fourier transform, 146
side lobes, 231
window functions, 147

Frequency-domain implementation
(FDI), 192

arithmetic operations, 194
computational error in, 192
input data samples, 192
quantization errors, 195
quantized data samples, 192–193
SCER, 193, 194

FSLL, see First side-lobe level (FSLL)
FTs, see Fourier transforms (FTs)

G

Gammatone atoms, 339
Gaussian process

functions of, 142
random process, 264

Gaussian window
ISAR image, 355, 357
main-lobe width, 154
STFT magnitude, 336
time function, 153

Gibbs number, 232, 251

H

Half-power bandwidth
main-lobe broadening factor, 315
normalized, 132
3 dB bandwidth, 131

Hamming window, 93, 95, 96, 122–123
DTFT of, 170
effect, 175
FIR lowpass filter response, 179
ISAR images, 357
log magnitude response, 181
magnitude response of signal, 186
PSLL, 149
SCER performance, 194
weak component response, 187
window 2, 197

Hann window, 123, 148
effect, 175
FIR lowpass filter response, 178
Fourier transform pair, 91
log magnitude response, 180
magnitude response of signal, 186
parameters, 93
SCER performance, 193
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in short-hand notation, 94
in time and frequency-domain, 177
transition bandwidth and ripples, 175
weak component response, 187
window functions, 92, 197

Hann–Poisson window, 154
Hertz (Hz), 61
High range resolution (HRR), 303

HRR radars, 303
HRR target profiling, 303–305
IDFT, 305
pulse of burst, 303
simulation results, 305–306
target’s reflection, 304
windows in, 303

Highpass filter (HPF), 220; see also
Lowpass filter (LPF)

frequency response of, 220
impulse response, 221

Hilbert transformer design
filter types, 256
frequency response, 254, 255
using impulse response truncation,

253
HPF, see Highpass filter (HPF)
HRR, see High range resolution (HRR)

I

Ideal filters
BPF, 221
BSF, 221
HPF, 220–221
LPF, 219–220

IDFT, see Inverse discrete Fourier
transform (IDFT)

IDTFT, see Inverse discrete-time Fourier
transform (IDTFT)

IFFT, see Inverse fast Fourier transform
(IFFT)

IIR filters, see Infinite impulse response
filters (IIR filters)

Image processing, 349
CR in, 357–361
experimental analysis, 352–356
results, 356–357
windows for ISAR images, 350–352

Impulse response
antisymmetric, 235

BSF, 221
coefficients of, 227
design of differentiator, 252, 253
design of Hilbert transformer, 253–256
discrete-time convolution, 226
FIR filters, 228
of HPF, 221
ideal discrete-time differentiator, 27
ideal Hilbert transformer, 27
ideal lowpass filter and, 173
infinite length, 172
of linear-phase filters, 231
LTI system, 5, 20
PSF, 352
shifted, 174
truncation of, 174
type 2 FIR, 236
type 3 FIR, 237
type 4 FIR, 237

Impulse response truncation method
(IRT method), 173, 228

design of differentiator, 252
frequency response, 253
half-delay, 253
Hilbert transformer design, 253–256

In-place computation, 54, 55
Infinite impulse response filters

(IIR filters), 172; see also Finite
impulse response filters
(FIR filters)

coefficient, 225
properties of, 226

Initial-value theorem, 34
Integration loss, 316
Integration property, 8
Interpolation formula, 83

DFT, 37, 84
sampling, 83

Inverse discrete Fourier transform
(IDFT), 1, 36

block diagram for, 57
from FFT, 56
synthesis formula, 18

Inverse discrete-time Fourier transform
(IDTFT), 1, 18, 27, 28

Inverse fast Fourier transform (IFFT),
354
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Inverse synthetic aperture radar (ISAR),
349

aircraft image, 354
image readings, 352
processing steps, 351
signal processing, 350
windowing results, 355, 356
windows for, 350

IRT method, see Impulse response
truncation method (IRT
method)

J

Jackson window, see Parzen window
Just leakage, see Frequency leakage

K

Kaiser–Bessel first-order window
comparison with Zeroth-order

window, 251
filter design procedure, 250
time-domain expression, 249

Kaiser–Bessel window
FIR filter design, 272
first-order window, 249–251
using Hamming window, 277
using Hann window, 277
spectral analysis using, 271, 278
time-domain, 275
weakest signal component, 276
window shape parameter, 274

Kaiser–Bessel zeroth-order window
bandpass filter design, 249
BPF design, 248
error plot, 248
LPF design, 246, 247
magnitude responses, 244, 245, 247
pair of equations, 244
parameters, 243
shape parameter, 245

Kaiser windows, 357, 358
Kaiser’s modified first-order Bessel

window function
family, 116, 117

parameters, 120
time-and frequency-domain plots, 118
window functions, 119

Kaiser’s modified zeroth-order
Bessel window function
family, 116

optimum window function, 115
parameters, 118
window functions, 117

L

Lag window, 146
autocorrelation of data window, 147
Bartlett, 290
Blackman–Tukey method, 288
effect of, 289
rectangular, 146
6 dB bandwidth, 268
symmetrical, 181

LCCDE, see Linear constant coefficient
difference equation (LCCDE)

Leakage
in finite extent data, 71
frequency, 59, 189
low spectral, 185
maximum leakage case, 73–76
spectral, 129, 343
worst-case energy, 359
zero leakage case, 71–73

LF, see Loss factor (LF)
LFM, see Linear frequency modulation

(LFM)
Line spectral frequencies (LSFS), 346

coefficients, 349, 350
pedestal height, 348
polynomial, 347
speech signal, 347
vocal tract models, 346

Linear constant coefficient difference
equation (LCCDE), 34

discrete-time systems, 222
rational transforms, 33

Linear convolution
using circular convolution, 39–40, 83
DFT and IDFT, 49, 81
using DIT-FFT and DIF-FFT, 57–58
multiplication, 45
result, 46
sequence samples, 48, 81

Linear frequency modulation (LFM), 303
coefficient, 318
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high-bandwidth, 317
pulse compression, 303, 306

Linear prediction of speech, 343
LPC, 344–346
LSFS, 346–347
LSF variation, 347–349

Linear predictive coding (LPC), 344
advantages of, 346
coefficients, 346
limitations of, 346
magnitude response comparison, 345
pole zero plot of, 347
polynomial, 345
windowed frame, 344

Linear shift invariant systems (LSI
systems), 222

Linear time invariant systems (LTI
systems), 222

analysis of, 9
convolution sum expression, 224
digital filters, 224
FIR filters, 223
impulse response, 5, 20
input and output, 224
LCCDE, 222
orthogonal basis signals, 6

Linear-phase filters
filter characteristics, 233
filter length, 230
FIR filters, 233
frequency response, 229
ideal LPF with, 230
impulse response of, 231
periodic convolution, 231
truncation of impulse response, 232
types, 238

Linearity property, 19
DFT, 38
DTFT, 19, 29
finite-length sequences, 38
integration, 7
transformations, 4
z-transform, 36

Loss factor (LF), 309
expression for, 306, 309
output signal component, 310
sequence of pulses, 310
SNR ratio, 311
weighting functions, 312, 313, 316

Lowpass filter (LPF), 219; see also
Highpass filter (HPF)

cutoff frequency, 68
DTFT, 220
frequency response, 176, 219, 220
using Hamming window, 179
using Hann window, 178
ideal, 64
impulse response, 175
MA filter, 328
magnitude response of, 251
using rectangular window, 176
SNR, 329
windowing method, 175

LPC, see Linear predictive coding (LPC)
LPF, see Lowpass filter (LPF)
LSFS, see Line spectral frequencies

(LSFS)
LSI systems, see Linear shift invariant

systems (LSI systems)
LTI systems, see Linear time invariant

systems (LTI systems)

M

MA filter, see Moving average filter
(MA filter)

Magnitude response, 241
of bandpass filter, 249
with Blackman window, 242
cosine signal, 71
DTFT, 83
FT, 11
with Hamming window, 181, 241
with Hann window, 180, 242
of lowpass filter, 251
rectangular window, 175, 180
spectrogram, 295
time-shifting property, 20
ultraspherical window, 158

Main-lobe broadening factor, 315, 316
Main-lobe energy (MLE), 88, 93,

142, 359
Kaiser’s window, 124
ratio of, 88, 123
sum-cosine window, 125

Main-lobe peak, 107
Fourier transform, 89
FSLL, 111
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Main-lobe peak (Continued)
maximum side-lobe amplitudes, 116
MSLL, 88, 124

Main-lobe to side-lobe energy ratio
(MSR), 359

Main-lobe width, 131, 168
Blackman window, 109
data window, 79
dispersion factor, 131
Dolph–Chebyshev window, 114
expense of, 94
FIR lowpass filter, 175
frequency response, 156
frequency window, 231
Hann window, 241
Kaiser’s modified zeroth-order Bessel

family, 139
normalized, 102
PSLL, 142
rectangular window, 182, 343
transition bandwidth, 240
variable, 105

Maximum leakage case
frequency leakage, 73
leakage effect, 74–76
leakage problem, 74
spectral leakage, 74

Maximum side-lobe level (MSLL), 132;
see also Peak side-lobe level
(PSLL)

data windows parameters, 93
Kaiser’s modified zeroth-order bessel

family, 118
main-lobe peak, 88, 107
NHMLW, 139
parameters, 142
time-and Fourier-domain plots, 96

Mean square error (MSE), 259
Microwave imaging systems, 349
MLE, see Main-lobe energy (MLE)
Modified first-order Bessel family, 171

Kaiser–Bessel function, 156
parameters of Kaiser’s, 120, 125
performance comparison of, 137, 165

Modified limb lead II (MLII), 324
Modified periodogram, 265

using Bartlett window, 269, 272
bias of, 267
using Blackman window, 270, 275

using Hamming window, 270, 274
using Hann window, 269, 273
PSD estimator, 265
using rectangular window, 271
resolution of, 268
sinusoidal components, 268
variance of, 267

Modified zeroth-order Bessel family,
142, 171

binary windows performance, 216
continuous-time Fourier transform

pair, 213
frequency response, 215
Kaiser–Bessel window family,

155–156, 213
normalized magnitude plots, 214
performance comparison of, 136, 164

Modulation property, 9
dual of convolution property, 9
of Fourier transform, 289
window sequence, 21

Moment factorizing theorem, 264
Moving average filter (MA filter), 328

EMG signal, 329
neighboring samples, 328
noisy and MA-filtered EEG signals,

330, 331, 332
SNR, 332

MSE, see Mean square error (MSE)
MSLL, see Maximum side-lobe

level (MSLL)
MSR, see Main-lobe to side-lobe energy

ratio (MSR)
Multirate filtering, see Zooming filtering
Musical noise, 336, 340, 341

N

Near-optimum Kaiser–Bessel window,
142, 214

Near-optimum window family, 105, 156
Near-optimum window function family,

see Zeroth-order Bessel family
NHMLW, see Normalized half

main-lobe width (NHMLW)
Nonparametric methods, 260

Bartlett Periodogram, 278–280
Daniel periodogram, 292–293
FFT computation, 293, 294
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Fourier transform techniques, 260
modified periodogram PSD estimator,

265–271
periodogram PSD estimator, 260–265
spectral analysis, 271–278
STFT, 293–297
Welch periodogram method, 280–283

Normalized half-power bandwidth,
132, 167

Normalized half main-lobe width
(NHMLW), 88, 197

Bessel window, 125
Blackman windows, 202
data windows comparison, 140, 141
data windows parameters, 93
Fourier transform, 132
Kaiser’s modified first-order Bessel

family, 139
rectangular window, 89

Nuttall window family, 151
Nyquist frequency, 64
Nyquist rate, 64
Nyquist–Shannon sampling theorem,

64, 65
frequency-scaled version, 67
FT, 66
relationship, 65
summation and integration, 66

O

Odd length windows, 158, 159
Odd symmetric impulse responses, 235
Optimal method, 228, 229
Optimized Blackman window, 107

coefficients, 150
Fourier transform, 108
using numerical techniques, 109
parameters, 93

Optimum window function, 115
Overlap correlation, 169

P

Papoulis window, 93
discontinuous, 154
time-limited function of, 111
window functions, 112

Parabolic window, 93, 110–111
discontinuous first derivative, 153
window functions, 112

Parseval’s theorem
CTFT, 9
DTFT, 21
time-domain, 161
Z-transform, 34

Parzen window, 93, 113, 114
Passband cut-off frequency, 227
Passband ripple, 250
PCG, see Phonocardiogram (PCG)
Peak passband deviation, 227
Peak side-lobe level (PSLL), 170, 197, 198

asymptotic decay rate, 197
decrease in, 142
filter characteristics, 233
Hamming window, 149
using Kaiser–Bessel window, 298
rectangular window, 73
weak harmonics, 169
zero frequency, 132

Pedestal height, 348
function of, 95
of windows, 348

Performance comparison
data windows, 140, 141
modified first-order Bessel family, 137
modified zeroth-order Bessel family,

136
windows, 134

Periodic cosine sequence, 44
Periodic sampling, 41, 60
Periodicity property, 19, 191
Periodogram methods, 177, 260, 267, 268;

see also Modified periodogram
autocorrelation estimate, 261
bias of, 262
Gaussian random process, 264
peaks in, 179
PSD, 260
resolution of, 264
sinusoidal components, 265
spectral estimation, 266
variance of, 263
Welch method of, 178

Phase modulation (PM), 303
Phase response

FIR filters, 234
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Phase response (Continued)
of FT, 10
of ideal LPF, 229, 230
zero-phase filters, 219

Phonocardiogram (PCG), 323
Picket-fence effect, 59, 168, 169; see also

Frequency leakage effect
finite-length data, 84
inability of DFT, 78
rippled curve, 79

PM, see Phase modulation (PM)
Point spread function (PSF), 352, 353
Poisson window, 153, 154
Power spectral density (PSD), 160

Blackman–Tukey spectral
estimation, 181

modified periodogram estimate, 270
of periodogram, 177, 260
variance, 259
Wiener–Khinchin theorem, 180, 181

Power spectral estimator, 259
PRI, see Pulse repetition interval (PRI)
Processing gain, see Degradation loss
Programmable windowing technique

DFT, 191
frequency-domain

implementation, 192
time function, 190

Prolate-spheroidal wave function, 115
modified first-order Bessel family, 118
near-optimum windows, 139
zeroth-order, 116, 156

PSD, see Power spectral density (PSD)
PSF, see Point spread function (PSF)
PSLL, see Peak side-lobe level (PSLL)
Pulse compression, 303

goals of HRR, 306
LFM, 306
linear FM, 307
radar applications, 303
range side-lobe reduction, 316

Pulse repetition interval (PRI), 303
Pulse sequence

pulse compression, 309
weighting and summing of, 310

Q

QRS wave detection
adaptive thresholding, 334

ECG signal, 334, 337, 338, 339
QRS locations, 337, 338, 339
STFT, 333

R

Radar cross section (RCS), 306
Radar image, 350

backscattered electric field
samples, 354

resolution, 351
Radix-2 FFT algorithm, 51, 80
Raised-cosine family, 105, 106

asymptotic attenuation, 104, 105
Fourier transforms, 103
inverse Fourier transform, 104
using numerical techniques, 104
parameters, 93
rectangular window, 103
SCER performance, 195
synthesized window functions, 102
window family, 149–150

Raised-cosine window, see Hann
window

Range side lobe reduction effect, 306
FM pulse compression radar,

307, 308
loss factor, 309–314
results, 316–317
on SNR, 306
uniform weighting function, 309
weighting function, 314–316

Range-Doppler technique, 351
Rate of fall-off of side-lobe level

(RFSLL), 93, 151, 170
decomposition, 120
Fourier transform, 118, 119
in Hann–Poisson window, 154
for rectangular window, 170
theorem, 119, 120–121
in time-domain, 121–123
window function decomposition, 120

Rational transforms, 33
RCS, see Radar cross section (RCS)
Read-only memory (ROM), 189
Reconstructed signal, 60

Fourier transform of, 69
frequency response, 66
from LPC coefficients, 344
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Reconstruction, 59
characteristics, 68
continuous-time signals, 67, 69
cutoff frequency, 69
impulse train-modulated signal, 69
integration and summation, 68

Rectangular window
CTFT of, 89
data window, 70, 147
Dirichlet window, 148
in FIR filter design, 174, 175
half main-lobe width, 90
log magnitude response, 180
magnitude response of signal, 186
resolution characteristics, 166–167
RFSLL for, 170
3 dB bandwidth, 167
in time and frequency-domain, 176
transition bandwidth and ripples, 175
weak component response, 187

Region of convergence (ROC), 31–32
Resolution, 129, 260

Bartlett periodogram, 280, 282
Blackman–Tukey method, 289, 292
frequency, 84
high resolution, 185
HRR, 303
ISAR images, 357
loss of frequency, 71, 142
periodogram estimate, 264
PSD estimate, 265
radar image, 351
random process, 260
rectangular window, 166, 167
spectrum estimate, 129, 167
speech applications, 295

RFSH, see Rate of fall-off side-lobe level
(RFSLL)

RFSLL, see Rate of fall-off of side-lobe
level (RFSLL)

Riemann window, 153
ROC, see Region of convergence (ROC)
ROM, see Read-only memory (ROM)
Root mean square (RMS), 160

S

Sampling, 60
discrete-time signal, 60–61
linear relationship, 61

normalized frequency, 61, 62
Nyquist–shannon sampling theorem,

64, 65
relationship, 65–67
sampled data, 62
signal reconstructions, 62
WKS sampling theorem, 60, 63, 64

SAR, see Synthetic aperture radar (SAR)
Saramäki window family, 156–157
Scaling factor, 8–9, 161
Scalloping loss, see Picket-fence effect
Scattering centers, 350

Doppler spectral analysis, 351
ISAR images, 354

SCER, see Signal-to-computational error
ratio (SCER)

Schwartz inequality, 161
Self-convolution property, 91, 148
SFW, see Stepped frequency waveform

(SFW)
Short-time Fourier transform (STFT),

293, 324
using Bartlett window, 296
using Blackman window, 295, 296, 298
using Gaussian window, 336
using Hamming window, 295, 296
using Hann window, 295, 296, 299, 335
using Kaiser–Bessel window, 296, 297,

298
using rectangular window, 295, 296,

334
window length, 294

Side lobes, 71
asymptotic attenuation of, 101
of Bartlett window, 269
decay rate of, 316
Dolph–Chebyshev window, 155
Doppler, 306
first side-lobe and peak, 315
Fourier transform, 87, 114
FSLL, 89
in frequency window, 231
Hamming window, 182
modified first-order Bessel family, 118
MSLL, 88
peak magnitude, 99, 124
PSLL, 132
PSF, 352
range of, 95
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Side lobes (Continued)
rate of fall-off, 118, 125
rectangular window, 73, 79, 275
RFSLL, 87, 155
in spectral window, 129
weak spectral component, 185

Side-lobe fall-off rate, 97
Blackman window, 206
Hann window, 295
NHMLW, 113
of Parzen window, 114
in time-domain, 121–123

Signal processing
biomedical, 324
characteristics, 1
continuous-time signals, 2, 3
discrete-time signals, 3–4
FT, 1
linear convolution, 48
LTI systems, 5–6
system and properties, 4, 5

Signal-to-computational error ratio
(SCER), 193

Blackman window performance, 194
Hamming window performance, 194
Hann window performance, 193
raised-cosine family performance, 195

Signal-to-Noise Ratio (SNR), 166, 328
of bandpass-filtered ECG signals, 328
of lowpass-Filtered EEG signals, 329
of MA filtered EEG signal, 332
of MA filtered EMG signal, 333

Simulations
Blackman–Harris window, 306
range profiles of windows, 305,

307, 308
Smearing, 189

DFT, 189
effect, 131
of energy, 73
filter response, 231
side lobes, 181

Smoothing, 130
effects, 182
performance, 357
periodogram, 265
time function, 145

Smoothing filters, see Moving average
filter (MA filter)

SNR, see Signal-to-Noise Ratio (SNR)
Spectral analysis, 159–160; see also Finite

impulse response filters (FIR
filters)

autocorrelation function, 180
Blackman–Tukey spectral estimation,

181
correlogram, 177
equal strengths, frequency

components of, 182, 183
far-away frequency components with

unequal strengths, 185, 186
periodogram, 177, 178, 178
PSD calculation, 177
spectral estimation, 260
unequal strengths, frequency

components of, 182, 184–185
weak component in signal

component, 185, 187
Welch method, 178
Wiener–Khinchin theorem, 180, 181
window selection, 181–182
windows application in, 259

Spectral estimator
Blackman–Tukey, 288
Hamming window, 300
Hann window, 299
Zeroth-order Kaiser–Bessel window,

300
Zeroth-order Kaiser window, 299

Spectral leakage, 74
high side-lobe levels, 295
impulse functions, 160
low spectral leakage, 185
minimum, 343
noncoherent component, 169
reduction of, 159
weighting functions, 129

Spectral response, 131
Spectral window, 129

convolution operation, 288
data window, 147
energy of, 181
Fourier transform, 111, 146
side lobes, 129

Spectrogram, 295, 339
using Blackman window, 298
using Hamming window, 297
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using Kaiser–Bessel window,
296

TF plane, 343
Speech analysis, 347
Square summability, 19
Stability, 129

guaranteed FIR, 225
IIR filters, 226
property, 5

Stein unbiased risk estimate
(SURE), 342

Stepped frequency waveform (SFW), 303
STFT, see Short-time Fourier transform

(STFT)
Stopband

cut-off frequency, 227
deviation, 227
FIR lowpass filter, 178
passband and, 175
passband ripple, 250
PSLL, 233

Stretch processing
block diagram of, 317
echo signals compression, 319, 320,

321, 322
specifications, 318
window functions in, 317

Summability, absolute, 19
Sum-cosine window, 96, 97–98

asymptotic attenuation, 101
Bessel window, 125
cos3x window, 149
Fourier transforms, 98, 99, 101
linear combination, 98
normalized time and frequency

parameters, 100
parameters, 93
side-lobe ripples, 99
synthesis problem, 99–100
window functions, 102

Summability, see Convergence
SURE, see Stein unbiased risk estimate

(SURE)
Symmetry properties

DFT, 38–39, 50
DTFT, 22
FFT, 50

Synthesis formula, see Inverse DTFT
(IDTFT)

Synthesized sum-cosine windows, 125
Synthetic aperture radar (SAR),

349, 358

T

Tapered cosine window, see Tukey
window

Tapped-delay line structure, 227
Taylor functions, 94
TDI, see Time-domain implementation

(TDI)
Ternary code, 195
TF plane, see Time–frequency plane

(TF plane)
3 dB bandwidth, see Half-power
bandwidth
Time reversal property, 20, 38
Time scaling property, 8
Time shifting property, 7–8, 20
Time-domain function, 88
Time-domain implementation (TDI),

189, 190, 192
arithmetic operations, 194
computational error in, 192
input data samples, 192
quantization errors, 195
quantized data samples, 192–193
SCER, 193, 194
scheme, 190
windows, 192

Time–bandwidth product, 171–172
Time–frequency plane (TF plane), 336

block thresholding technique, 340
diagonal estimators of SNR, 341
Fourier atom, 339
reconstructions, 340

Total energy, 131
half-power bandwidth, 132
optimum window function, 115
parameters, 123

Transforms, 1
duality property, 9
rectangular and cosine windows, 98
sum-cosine window, 100
z-transform, 33

Transversal filter, 227
Triangular window, see Bartlett

windows
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Truncated Taylor family, 94, 95
dispersion factor for, 138
Hamming window, 149
parameters, 93, 130–131
performance comparison, 134
of windows, 149

Truncation, 71
DFT, 59
Fourier series, 173
impulse response, 174, 232
input time sequence, 189
rectangular window, 89

Tukey window, 111, 150
ECG signal and QRS locations, 337
Fourier transform, 112
frequency-domain plots, 113
functions, 113
noisy ECG signal, 326
noisy EEG signal, 330
parameters, 93

U

Ultraspherical window, 157, 158, 361
LSF variation, 348, 350
magnitude response, 158
parameters for, 357

Unbiased estimator, 259, 282
Uniform sampling, see Periodic

sampling
Uniform window, see Rectangular

window

V

Variable window, 118, 126, 243
Variance, 259

Bartlett periodogram, 279
Blackman–Tukey method, 289
lag window, 146
LTI systems, 5–6
narrow spectral window, 142
SCER, 193
Welch periodogram, 282–283

Variance compensation factor, 130–131
DFT, 171
expression for, 133
window selection, 139, 142

Vibroarthogram (VAG), 323
Vibromyogram (VMG), 323

Vocal tract models, 346
Von Hann window, see Hann window

W

WCPL, see Worst-case processing loss
(WCPL)

Weighting function
data, 316
Dolph–Chebyshev window, 114
factors, 315
frequency window, 145
loss factor for, 312
uniform spacing, 314
windows, 129

Welch method
periodogram, 178
resolution, 283

Welch periodogram method
with Bartlett window, 286
bias of, 281
with Blackman window, 287
expression for, 280
with Hamming window, 286
with Hann window, 287
with Kaiser–Bessel window, 288
with overlapping, 284, 285
resolution of, 283
variance of, 282, 283
window dependent, 283

Whittaker Kotelnikov Shannon
sampling theorem (WKS
sampling theorem), 60

C/D converter, 63
modulator output, 63
sampling frequency, 64
two-stage process, 63

Wiener–Khinchin theorem, 180, 181
Window functions, 87

bandwidths, 3 dB and 6 dB, 166–167
Blackman window, 106–107
Blackman–Harris window, 109, 110
characteristics, 87–88
coherent gain, 161, 166
comparison, 123–126
Cos (x) window, 91, 92
Cos3(x) window, 96, 97
Cos4(x) window, 101, 102
data windows, 145, 146, 147
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degradation loss, 166
Dolph–Chebyshev window, 114
ENBW, 160–161
frequency window, 145, 146, 147
Hamming window, 95, 96
Hann window, 91, 92, 93, 94
interplay between window functions,

146, 147
Kaiser’s modified first-order Bessel

window function family, 116,
117, 118

Kaiser’s modified zeroth-order Bessel
window function family, 115,
116

lag window, 146, 147
list of windows, 88
main-lobe width, 168
optimized Blackman window, 107,

108–109
overlap correlation, 169
Papoulis window, 111
parabolic window, 110–111
Parzen window, 113, 114
performance comparison of windows,

162–165
picket-fence effect, 168, 169
PSLL and FSLL, 169, 170
raised-cosine family, 102–103, 104,

105, 106
rectangular window, 89, 90
RFSLL, 118, 119, 121–123, 170
scalloping loss, 168
spectral analysis, 159–160
spectral window, 146, 147
sum-cosine window, 97–98, 99–100,

101
triangular window, 89–90, 91
truncated Taylor family, 94, 95
Tukey window, 111, 112, 113
variance compensation factor, 171
WCPL, 169

Window parameters, 130
coherent gain, 131
computation, 132–139
dispersion factor, 131
half-power bandwidth, 131–132
MLE content, 131
normalized half main-lobe width, 132

normalized half-power bandwidth,
132

PSLL or MSLL, 132
total energy, 131
variance compensation factor, 130–131

Window selection, 139–142
almost equal strengths, 182
for spectral analysis, 181–182
unequal strengths, 182, 185
weak component, 185

Window shape parameter, 274, 275
Windows, 129

classes, 145, 146, 147
CSD window structures, 197
Dolph–Chebyshev, 357
filter characteristics, 233
in HRR radars, 303–306
list, 88
parameters of data, 93
pedestal heights, 348
performance comparison, 134–135, 141
performance of binary, 216
picket-fence effects, 84
raised-cosine set, 102
synthesized sum-cosine, 125

Windowing method, see Impulse
response truncation method
(IRT method)

Windowing or modulation property, 21
WKS sampling theorem, see Whittaker

Kotelnikov Shannon sampling
theorem (WKS sampling
theorem)

Worst-case processing loss (WCPL), 169

Z

z-plane, 31–32
position, 33, 34
z-transform pairs, 33

Z-transform, 1
advantage, 31
basic z-transform pairs, 33
examples, 34–36
LCCDE, 33, 34
properties, 34
rational transforms, 33
ROC, 31–32
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Z-transform, 1 (Continued)
system function, 222–223
transform-domain analysis,

30–31
Zero leakage case, 71–72

DFT output response, 73
frequency-domain, 73
geometric summation, 72
in time-domain, 352

Zero-padding
filling sequence, 80
interpolation formula, 83, 84

Zero-padding
ISAR images, 354
linear convolution implementation,

80–82
spectrum display, 82–83

Zooming filtering, 224


	9781466515833
	9781466515833_text


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




