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Preface

This book is a theoretical introduction to the optics of charged par-
ticle beams. The purpose is to identify the most important ideas
and derive them mathematically from first principles of physics.
It is a teaching document, intended for an audience of students in
the broad sense. As a science book, it focuses on basic principles in
a connected way. It is intended for the intelligent non-expert who
is comfortable with calculus at an advanced undergraduate level.
Experts, including experimentalists, instrument designers, and in-
strument users, will also find it to be a convenient reference for
understanding the theoretical origins of the subject.

Enormous experimental progress has been made in recent years,
culminating in commercial availability of aberration-corrected
transmission electron microscopes with resolution below 0.1 nm,
energy analyzers with resolution in the meV range, and gas field
ion microscopes with resolution below 1.0 nm, to name a few ex-
amples. These innovations are built upon the ongoing efforts of
pioneers over the past decades. These advances enable an ever-
growing array of applications at the atomic scale of dimensions.
Unfortunately, the underlying theory can appear arcane and baf-
fling to someone who is new to the field. One cannot possibly un-
derstand aberration correction without first having a firm grasp
on optics in the paraxial approximation, and the origin of the pri-
mary aberrations, for example.

This book is intended to convey an intuitive understanding of the

basics, as opposed to presenting a comprehensive compendium of
the detailed subject. It is meant to be logical, with each step fol-

1X
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lowing directly from the preceding step, insofar as this is possible.
For this reason, it is highly recommended that the reader adhere
to the logical sequence, and make the effort to follow the mathe-
matical steps along the way. Problems are included to amplify and
fill in the theoretical details, and to provide practical examples.

Many excellent books have been written over the years on this
general topic. Indeed we have attempted to include these in the
references. As the subject has matured, the various topics have
been treated in increasing detail and precision in the literature. In
order to present an up-to-date review of the subject, it is common
practice for authors to present the main results only, referring the
reader to a list of earlier references for detailed derivations and
justifications. The methodology here is quite different. All of the
ideas presented are derived from first principles of physics. In some
instances this excludes the most recent detailed and precise results
of others. The idea is to convey an intuitive scientific feel for the
subject.

It is standard practice in physics research that, if a particular prob-
lem cannot be solved, a related problem is identified which can be
solved. This inevitably involves approximation. This approach is
used here in several instances, most notably in the descriptions of
particle scattering and electron emission from solids.

We begin with a general introduction in Chapter 1, consisting
of a non-mathematical survey of the optical nature of a charged
particle beam. A number of practical systems are described that
highlight the enormous breadth and depth of present-day applica-
tions.

Next, Chapter 2 describes geometrical optics. This begins with a
review of relativistic classical mechanics for the motion of a single
particle with general charge ¢ and rest mass m. Based on this, the
principles underlying geometrical optics are then derived, includ-
ing a prescription for solving for the ray path, which is the physical
path taken by a single particle. This chapter is completely accurate
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with respect to the special theory of relativity. Interestingly, this
adds no significant complexity over the historical non-relativistic
treatments, but does lead to a more accurate mathematical de-
scription. We therefore keep everything relativistically correct to
the extent possible.

Chapter 3 describes wave optics. We begin with a review of quan-
tum mechanics, limited to only those ideas that impact the motion
of a single charged particle. We begin with the non-relativistic ap-
proximation and Schrodinger’s equation. Relativity is introduced
later in the form of the Klein—-Gordon equation. This skirts a
rigorous treatment of spin, but keeps things from becoming too
abstract, while producing a practical result. The discussion culmi-
nates with the quantum mechanical solution for the propagation of
the single-particle wave function in a general electromagnetic po-
tential. The correspondence between wave optics and geometrical
optics in the classical limit emerges naturally from this discussion.

We then discuss diffraction and interference, starting with Huy-
gens’ principle, and proceeding through the scalar Helmholtz equa-
tion, the Huygens—Fresnel relation, the Fresnel approximation, and
the Fraunhofer approximation. Next we discuss a number of useful
examples, including formation of an image and a diffraction pat-
tern, the general optical transformation from object to image, and
the fundamental relationship between diffraction and Heisenberg’s
uncertainty principle.

Chapter 4 describes the two-body scattering problem, which is ba-
sic to the interaction of a fast charged particle with matter. Most
of the relevant information about the scattering process is con-
tained in the scattering cross section, which is derived first in the
classical approximation, and then in the quantum mechanically.
Chapter 5 describes electron emission as a practical consequence
of quantum mechanics. Finally, the appendices contain two essen-
tial mathematical topics, which are repeatedly referred to in the
main text.
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All useful information about the motion of a single charged parti-
cle is contained in the integral of the classical Lagrangian function
between two arbitrary points in time. This integral is known his-
torically as Hamilton’s principal function, and alternatively as the
etkonal function. The actual path taken by the particle, chosen
among a multiplicity of mathematically possible paths, is the path
for which this integral has an extremum. In the important special
case where the general electromagnetic potential has no explicit
time dependence, the action integral reduces to a line integral of
the canonical momentum component along the ray path. This is
a considerable simplification in problems where one is only inter-
ested in the spatial coordinates of a ray, without the need to know
the arrival time at any given point. The extremum condition is
generally known as the principle of least action, which is express-
ible in concise and precise mathematical terms.

In quantum mechanics all relevant information about the motion
of a single particle is contained in the wave function, for which
the same action integral in units of Planck’s constant A is the
phase. It follows that all possible paths in the immediate vicinity
of the classical path interfere constructively. The classical path is
thus the path that maximizes the probability. This clarifies the
particle-wave duality in concise and elegant mathematical terms.
A close analogy exists between Fermat’s principle of light optics
and the principle of least action for a charged particle. The anal-
ogy between light optics and charged particle optics is deep, and
is manifested in quite practical ways, including diffraction and in-
terference. These ideas are derived mathematically from first prin-
ciples.

The literature of this mature field is extensive. Several books are
of particular interest. The three-volume set by Hawkes and Kasper
[43, 44, 45] describes the main principles in precise and compre-
hensive detail, with reference to the work of many authors over the
decades. There is arguably no better review of the enormous body
of work that brought the field to its present state. Geometrical
Charged-Particle Optics by Rose [75] is both general and compre-
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hensive in its mathematical description of systems with general
curvilinear axes. This includes the straight optic axis and axial
symmetry as special cases, and also includes the theory of cor-
rection of geometrical aberrations. Correction of spherical aberra-
tion in electron microscopes is described in a detailed, up-to-date
way. This book also derives the main ideas from first principles
of physics. The book Handbook of Charged Particle Optics, edited
by Orloff [67], describes a variety of experimental and theoretical
topics in a way that is accessible to readers with a range of expe-
rience. It also describes correction of spherical aberration.

The present book complements these in several important ways.
It is an introductory textbook that prepares the student to tackle
the detailed and comprehensive literature. It proceeds from first
principles of physics in a structured way, including geometrical op-
tics (classical mechanics), wave optics (quantum mechnics), and
the correspondence between them. Finally, it includes several top-
ics not normally included in other books on charged particle op-
tics, but that are essential to practical systems. These include a
first-principles theory of Coulomb interaction in charged particle
beams, particle scattering by materials, and electron emission from
materials.






Chapter 1

Introduction: The optical
nature of a charged
particle beam

Modern physics teaches that all matter is made of particles which
interact with one another. Every particle is characterized by its
intrinsic charge, mass, and spin. These quantities govern all inter-
actions which a particle can have. For example, an atom consists
of a cloud of negatively charged electrons orbiting a compact, pos-
itively charged nucleus. The establishment of this fact in quanti-
tative terms has a fascinating history. It originates with the early
hypothesis of Democritas, proceeds through the origins of quanti-
tative chemistry in the seventeenth century, and culminates with
the elucidation of quantum mechanics in the twentieth century.
Only during the last few decades has it become possible to cap-
ture an actual image of a single atom.

Atoms are charge-neutral in their normal state, with the positive
charge of the nucleus precisely offset by negative charge of the or-
biting electrons. By bombarding an atom with a beam of light or
charged particles, it is possible to remove one or more electrons
from an atom or molecule. This forms a positively charged ion.
Under special circumstances it is also possible to add electrons to
form a negatively charged ion. Electric and magnetic fields act on
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the intrinsic charge of electrons and ions through the force known
as the Lorentz force, after the physicist who first identified it in
the nineteenth century. By bombarding with a very high energy
beam, the atomic nucleus can dissociate into its constituent ele-
mentary particles. This is the mechanism by which a high energy
particle accelerator is used to probe the fundamental makeup of
matter.

Many examples of free charged particles exist in nature. Ener-
getic ions appear as cosmic rays which pervade interstellar space,
and bombard the earth’s atmosphere in large numbers. A large va-
riety of subnuclear particles are produced in high energy particle
accelerators. Many of these also appear as cosmic rays. The beam
inside an electron microscope or a cathode ray tube consists of
free, energetic electrons in a vacuum. Indeed, it is not difficult to
form a beam of charged particles in a vacuum by making use of the
intrinsic properties of matter, together with electric and magnetic
fields to focus and steer the beam.

According to the laws of classical physics, a single charged par-
ticle traces out a path of motion under the influence of electric
and magnetic fields. A collection of many particles emitted from
a source, each with its own trajectory, form a beam.

Two common sources are shown schematically in Figure 1.1. In
(a) a hot tungsten wire at the top of the figure, with a tem-
perature of about 2000 degrees Kelvin is placed opposite a pla-
nar electrode called the anode. The anode is typically electrically
grounded. Electrons are spontaneously emitted from the hot wire
by the process of thermionic emission. By means of an external
power supply, the tungsten wire is elevated to a negative voltage
which can be anywhere between a few volts to a few millions of
volts relative to the anode. This voltage is called the accelerating
voltage, because the resulting electric field accelerates the parti-
cles. This forms a beam, which is analogous in several fundamental
ways to a beam of light. Each trajectory in the figure corresponds
to the path of a single charged particle.
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Figure 1.1: (a) electron source, and (b) positive ion source.

In (b) a tungsten wire is formed into a very sharp tip. The tip
is elevated to a positive voltage, typically a few thousand to a few
tens of thousands of volts, relative to the planar electrode. A small
amount of helium gas is admitted into the system. Helium atoms
diffuse toward the vicinity of the tip, where they are ionized in
the very high electric field. This is known as a gas field ionization
source. lon sources of other chemical species exist as well. Prac-
tically any material which can be ionized can be used to form an
ion beam. This enables a rich variety of species of ion beams to be
formed.

In all cases, an electric field accelerates the charged particles. Each
particle acquires an energy equal to its charge times the acceler-
ating voltage. A natural unit of energy is the electron-Volt, abbre-
viated as eV. It is the energy which a particle with one electronic
charge acquires when accelerated through one volt. The beam en-
ergy is thus easily tuned to almost any desired value by simply
controlling the accelerating voltage. This turns out to have con-
siderable practical utility. Practical charged particle beams range
in energy from a few eV to about fourteen trillion eV. This is the



4 Introduction: The optical nature of a charged particle beam

design energy of the Large Hadron Collider (LHC) at CERN, the
world’s most energetic particle accelerator, located on the France-
Switzerland border. Incidentally, the beam must be in a vacuum
chamber in all useful particle beam instruments, since the parti-
cles would immediately be absorbed in air at normal atmospheric
pressure, regardless of their energy.

A charged particle beam is conceptually similar in many respects
to a beam of light. It is therefore interesting to think about charged
particle optics in an analogous way to light optics. This forms a
central theme in the present study. For example, electric and mag-
netic fields can be configured to form a lens, which focuses the
charged particle beam. An example of a magnetic lens is shown
schematically in Figure 1.2. A current-carrying solenoid is depicted
in the figure by the two rectangles, which represent the cross sec-

Figure 1.2: Magnetic focusing of a beam of electrons.
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tion. The solenoid is surrounded by a shroud of soft iron, which
concentrates the magnetic field. The magnetic field lines bulge into
the region of the electron beam, which is incident from the top of
the figure. The beam is focused to a small probe at the target
plane, shown at the bottom of the figure. Such an arrangement is
used in a scanning electron microscope. The magnetic field lines
and the electron trajectories are generated in a computer simula-
tion by MEBS, Ltd. [63]. The beam path is 100 mm long in the
figure, the beam energy is 10 KeV, and the solenoid carries 550
ampere-turns. In reality, the electrons spiral around the central
optic axis. The figure is plotted in a coordinate system which ro-
tates about the axis with the beam, so that the trajectories appear
not to rotate. This is for clarity.

An example of an electrostatic lens is shown schematically in Fig-
ure 1.3. Electrons are emitted from a heated flat surface at zero

Figure 1.3: Electrostatic acceleration and focusing of a beam of
electrons.

volts relative potential on the left of the figure, and are acceler-
ated to the right. An aperture at —10 volts forms a grid to control
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the total beam current. A second aperture at +600 volts forms
an extraction field for emission. Finally, a high voltage electrode
at 418,000 volts is located far to the right, out of the figure. The
apertures both have diameter 0.6 mm, and the other dimensions
in the figure scale proportionally. The curved equipotentials pen-
etrate the space occupied by the beam, and are separated by 100
volts in the figure. These equipotentials can be regarded as form-
ing a lens, which focuses the beam to a crossover at the right of
the figure. Such an arrangement is used in a cathode ray tube.
The electrostatic equipotential surfaces and the electron trajecto-
ries are generated in a computer simulation by MEBS, Ltd. [63].

In addition to focusing a beam to a pointlike spot, a lens can
also be used to form a magnified image of an extended object.
This is shown schematically in Figure 1.4. Every object point in

‘4— f —»

A

Figure 1.4: Imaging an off-axis point by a lens.

the plane located at zp emits a cone of rays into the lens at plane
zr. A particular object point is located a vertical distance ro from
the central axis in the figure. A ray which is emitted in a direction
parallel with the central axis is deflected by the lens, and intersects
the central axis at the focal point located an axial distance f from
the lens. A second ray passes through the center of the lens, and
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is undeflected. These two rays are depicted as bold lines in the
figure. They intersect in a distant plane located at z;, at a point
which is located at a distance r; from the central axis. In fact, all
rays emitted from this object point, regardless of their angle of
emission, are focused by the lens to the same image point. Since
all rays converge to a single point, it is apparent that a one-to-one
mapping of the object point into an image point exists. In order
for this to happen, each ray must experience a change in slope
which is proportional to the distance from the central axis. This
is the remarkable focusing action of an ideal lens.

Since this works for any point in the object plane zp, we deduce
that all object points are imaged simultaneously, each to a unique
point in the image plane. This is the mechanism by which a mag-
nified image of an extended object is formed. The negative of the
ratio of r; to ro is called the magnification of the image relative
to the object. By convention, the magnification is negative in this
case, because the image is inverted relative to the object. By per-
forming the construction in Figure 1.4 for multiple object points
ro, it is easy to convince oneself that this magnification is the
same for all object points. The magnification depends only on the
relative positions of the object plane zp and the lens plane 2z, and
on the focal length f. The smaller the focal length f, the more the
rays are deflected, and the stronger is the lens. The focal length
is the same for all object points ro. For a charged particle beam,
the focal length also depends on the particle energy. The higher
the particle energy, the longer is the focal length. This is a direct
result of the fact that a faster particle spends less time in the lens
field, and is therefore deflected less than a slower particle.

The construction in Figure 1.4 works for both charged particles
and light. Many striking similarities exist between light optics and
charged particle optics. In both cases, no optical system is capable
of forming a perfect image. Blur and distortion are always present
to some degree. These imperfections are called aberrations. An
important example is the so-called spherical aberration, in which
the outermost rays are focused more strongly than the innermost
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rays. As a result, the beam is not focused to a point, but rather
is blurred. This is readily apparent in Figure 1.3. Spherical aber-
ration occurs in light optical lenses as well as charged particle
lenses. In light optics, it arises from the fact that ordinary lenses
have spherical surfaces, hence the name spherical aberration. It is
substantially corrected in light optics by grinding the lens surfaces
to a particular aspherical shape. It is not possible to shape the elec-
tric and magnetic fields of a charged particle lens in an analogous
way, because the fields always obey Maxwell’s equations. Signifi-
cant progress has been made over the last two decades in correcting
the aberrations of charged particle lenses. The details are beyond
the scope of this study. The reader is referred to two excellent
references by Rose [75] and by Krivanek, et. al. [54] for precise
details. Indeed, it is hoped that the present study will provide the
background needed to approach this advanced topic expeditiously.

It is apparent from Figure 1.3 that the innermost rays close to
the central axis are less aberrated than the outermost rays. Se-
lecting the inner rays and blocking the outer rays would improve
the quality of the focusing. This suggests a simple way of mitigat-
ing the effect of the spherical aberration for a given optical system,
namely, by using an aperture to admit the inner rays, while block-
ing the outer rays. Conceptually, one could add an aperture in the
lens plane of Figure 1.4, thus limiting the cone of rays. A conve-
nient measure of the constriction is given by the index of refraction
times the sine of the angle which the extreme ray makes with the
central axis at an object point on the axis. This product is known
as the numerical aperture. The larger the aberration, the smaller
the numerical aperture must be to obtain the desired image qual-
ity. In fact, the size of the numerical aperture can be used as a
useful estimate of the quality of the optical system. In practice,
the numerical aperture is typically in the range of 0.3 to 1.3 for
light optical lenses, and 0.001 to 0.1 for charged particle lenses,
in order to achieve optimal imaging conditions. This expresses the
fact that charged particle lenses have significantly worse aberra-
tion than light optical lenses.
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Classical mechanics regards a single particle as a hypothetical
point, with the position and velocity known in principle at any
given instant in time. In reality, a single particle also behaves like
a wave. The wavelength is is equal to Planck’s constant h divided
by the particle momentum, where h = 6.6261 x 10~3*Joule- sec. A
faster particle thus has a shorter wavelength than a slower parti-
cle. This so-called wave-particle duality is a hallmark of quantum
mechanics, which is a more accurate description of nature than
classical mechanics on the atomic and subatomic scale of dimen-
sions. Classical mechanics is sufficiently accurate for many pur-
poses, however, so it is worth retaining. Quantum mechanics has a
very specific correspondence with classical mechanics for a charged
particle in the limit of high energy. This will prove to be a central
theme in the present study.

Quantum mechanics teaches that the absolute square of the wave
amplitude is equal to the probability that a single measurement
finds the particle at a given position at any given instant in time.
Because this probability is described by a propagating wave, it is
not possible to know the position and momentum simultaneously
with perfect precision. This is known as the Heisenberg uncer-
tainty principle, after the physicist who first elucidated it in the
1920s. A remarkable consequence of quantum mechanics, and one
which may appear counterintuitive at first, is that a single particle
can be described by two or more waves which interfere construc-
tively or destructively with one another. Each wave corresponds to
a particular alternative path of motion of the particle, where the
actual path of motion is fundamentally unknowable. For example,
it is impossible to know which path in Figure 1.4 is the actual path
taken by the charged particle. Each possible path can be described
by a separate wave, where all of the waves corresponding to the
different paths propagate coherently, with a particular phase rela-
tionship to one another. They all interfere at the image plane to
cause a blurred spot (not depicted in the figure).

This interference is intimately related to diffraction, which re-
sults from the propagation, spreading, and interference of waves.
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Diffraction is familiar in light optics. For example, it imposes a
fundamental limit on the resolution of a microscope. Because of
diffraction, it is not possible in a conventional microscope to re-
solve any object which is appreciably smaller than the wavelength.
This turns out to be true for both a light microscope and an elec-
tron microscope. It is another example of the close analogy that
exists between charged particle optics and light optics. Since the
wavelength of a fast charged particle is much smaller than that of
visible light, it is expected that the resolving power of a charged
particle microscope should be much better than a light microscope.
This is indeed verified in practice. A modern electron microscope
can resolve a single atom, a feat which is in no way possible with
visible light.

Charged particles interact strongly with matter. This forms the
basis of many useful instruments. For example, a fast electron can
be scattered by an atomic nucleus of the target material, with
little energy transferred to the material. This is known as elastic
scattering, and forms the basis of contrast in a transmission elec-
tron microscope. Alternatively, the incident particle can transfer
energy to the sample material, giving rise to secondary processes.
For example, a secondary electron or ion can be ejected. By mea-
suring the charge and mass of the ejected particle, useful chemical
and physical information about the sample is obtained.

Three generic types of electron microscopes exist. These are shown
schematically in Figure 1.5. A conventional transmission electron
microscope (TEM) is shown in (a). A transparent specimen S is
illuminated from above, where the illumination is omitted for sim-
plicity. Some electrons are elastically scattered at the object point,
and some remain unscattered. The unscattered current passes
through an aperture A, and is imaged by a lens L onto the record-
ing plane P, where P typically consists of an array of charged
coupled devices. Some fraction of the scattered current is stopped
by the aperture A. Areas of the specimen which scatter strongly
thus appear dark in the image, and areas which scatter weakly
appear bright. The object point is depicted as being off the cen-
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Figure 1.5: Types of electron microscopes, schematic.

tral axis. Actually, all object points in the specimen S are imaged
simultaneously.

A scanning transmission electron microscope (STEM) is shown
in (b). An aperture A is illuminated from above. The transmitted
current is focused by a lens L onto a transparent specimen S, and is
scanned sequentially over the specimen in a raster pattern. Again,
some electrons are elastically scattered by the specimen, and some
remain unscattered. Some fraction of the scattered current is mea-
sured on the annular dark field detector D, and the resulting signal
sent to a display which is scanned synchronously with the beam of
the microscope. Areas of the specimen which scatter strongly thus
appear bright on the display, and areas which scatter weakly ap-
pear dark. This is not an image in the sense of Figure 1.4, because
the intensity of each pixel is determined sequentially. However,
it does produce an intensity map of the specimen which is just
as useful as an optically formed image. The current which passes
through the annular dark field detector D is measured on a bright
field detector B. This signal can alternatively be displayed, with
strongly scattering regions appearing dark, and weakly scatter-
ing regions appearing bright. The ultimate resolution of the TEM
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and STEM is the same, but the contrast differs in the two cases,
depending on the accelerating voltage and numerical aperture cho-
sen. In both cases, the numerical aperture is equal to the beam
semi-angle subtended by the aperture A at the specimen S.

A scanning electron microscope (SEM) is shown in (c¢). An aper-
ture A is illuminated from above. The transmitted current is fo-
cused by a lens L onto an opaque bulk specimen S, and is scanned
sequentially over the specimen in a raster pattern. Low energy sec-
ondary electrons are excited by the beam in the interaction volume
depicted by the darker area of the specimen S. These secondary
electrons are accelerated to a collector C) and the current thus
detected is used to form a signal which is sent to the display.

The ultimate resolution of the SEM is roughly equal to the size
of the interaction volume, which is typically on the order of a few
nanometers. One nanometer is one-billionth of a meter, and will
be abbreviated 1 nm throughout the text. This is a very good res-
olution, compared with a typical light microscope, for which the
resolution is typically a few hundred nm. In addition, an SEM
has superior depth of focus. This means that one need not focus
precisely, in order to obtain a sharp image, allowing a seemingly
three-dimensional depiction of a bulk sample. This is shown in Fig-
ure 1.6, courtesy of L.T. Varghese and L. Fan, Purdue University
[90].

The schematic depiction in Figure 1.5(c) applies equally well to
a scanning ion microscope (SIM), where the beam consists of ions
rather than electrons. A bright source of helium ions can be formed
using a sharp tip in a low pressure helium gas. The tip is elevated
to a potential of a few tens of kilovolts relative to the surrounding
chamber, causing a high electric field around the tip. Helium gas
atoms are polarized in the field gradient, and attracted to the tip,
where they dissociate to form positive helium ions. The ions are
accelerated away from the tip by the electric field to form the ion
beam.
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Figure 1.6: SEM picture of self-assembled silica spheres, showing
high depth of focus.

A scanning helium ion micrograph is shown in Figure 1.7, obtained
using an Orion SIM available commercially from Carl Zeiss SMT.
A scannng electron micrograph of the same specimen is shown
for comparison, obtained using a Leo SEM also available com-
mercially from Carl Zeiss SMT. The full-scale vertical dimension
is 6 um, and the beam energy is 20 KeV in both cases. The he-
lium ion micrograph shows striking surface detail. This is due to
the fact that the helium ions are stopped within a few tens of
nanometers of the surface, while the electrons penetrate several
microns into the material. As a result, the material appears more
transparent to electrons than to helium ions. The electron micro-
graph shows more contrast due to the different materials present.
This is due to the fact that materials with high atomic number and
high mass density preferentially scatter the electrons much more
strongly than low atomic number and low mass density materials.
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Figure 1.7: (Top) Scanning helium ion micrograph, (bottom) scan-
ning electron micrograph.

This gives rise to high material contrast in the scanning electron
microscope.
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The ultimate resolution of the TEM and STEM is limited by
spherical aberration and diffraction. The spherical aberration can
be substantially corrected in a modern TEM and STEM, making
both instruments capable of resolution in the range of 0.05 nm.
This is more than sufficient to form an image of a single atom.
An example of a corrected STEM image is shown in Figure 1.8.
The specimen is graphene, which consists of one or more atomic

Figure 1.8: Aberration-corrected STEM images of graphene.

layers of graphite. A single layer of graphene is one atomic layer
of carbon in its hexagonal crystalline form. The image on the left
is a single scan recorded at 60 KV accelerating voltage in a Nion
aberration-corrected STEM. The bright spots are single carbon
atoms with nearest-neighbor spacing of 0.14 nm. The image on
the right is derived by digitally superimposing 350 different areas
of the larger image, with each area consisting of 128 x 128 pix-
els. This averages out the noise in the individual scans, without
having to resort to smoothing algorithms. (The individual pixels
are visible in the two images). This annular dark field image is
remarkable in several respects. First, single atoms of carbon are
clearly resolved with resolution better than 0.1 nm. Second, the
atomic number of carbon is six, which is low relative to most solid
materials. The specimen is therefore weakly scattering everywhere,
thus limiting the available contrast. The fact that the contrast is
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adequate is remarkable. Third, the fragile graphene structure is
undamaged by the beam. It would not be possible to obtain such
an image without spherical aberration correction.

Figure 1.9: SIMS images of chromosomes.

Alternatively, a beam of ions can be used to perform chemical
analysis of a material. The ion beam is focused and scanned over
the surface of the material to be analyzed. Atoms are removed from
the surface and ionized. These secondary ions then pass through a
spectrometer which separates the various ionic species according to
their masses. An image is formed synchronously, consisting of any
chosen individual chemical species. This is called Secondary Ion
Mass Spectrometry or SIMS. An example is shown in Figure 1.9
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[58]. The sample consists of chromosomes of the fruit fly Drosophila
melanogaster. Four different chemical species are shown, giving
detailed spatially resolved chemical information about the chro-
mosomes. These images were obtained using the SIMS tool at the
University of Chicago, which uses a focused primary ion beam con-
sisting of gallium ions from a liquid metal ion source. This method
can be used to analyze an enormous variety of samples at the mi-
croscopic level.

Alternatively, an electron or ion beam can physically or chemically
alter the target material locally. The writing substrate is coated
with a thin film of organic material. Bombarding the film with a
focused electron or ion beam renders the film either more soluble
(positive-tone process) or less soluble (negative-tone process) in
the developer. The organic film is thus patterned, and forms a bi-
nary mask for subsequent process steps. Creating fine patterns on
a substrate is commonly referred to as lithography. An enormous
variety of useful devices can be fabricated with high areal density
and very small feature sizes.

Two patterns written by electron beam lithography are shown in
Figure 1.10. The top pattern shows the negative-tone resist which
is left behind after the development step. It is an electronic circuit
pattern with 30 nm features, courtesy of Vistec Lithography. The
bottom pattern shows pillars of silicon which are 0.5 ym in diame-
ter and 1.5 ym high. They were written using a Vistec SB352 HR
electron beam system, courtesy of IMS CHIPS, Stuttgart, Ger-
many.

A focused electron beam is the smallest, finest practical writing
pencil known. An arbitrary pattern can be created and stored
using standardized computer-aided design software, and subse-
quently transmitted to the electron beam writer for one or more
exposures. This flexibility, together with the high resolution, make
electron beam lithography the method of choice for creating pat-
terns on the nanometer scale of dimensions in low volume.
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Figure 1.10: Electron beam lithography patterns.

In summary, the inherent high resolution, together with the unique
interactivity with matter thus constitute two fundamental ad-
vantages of charged particle beams. They make charged particle
beams indispensible to science and technology on the nanometer
scale of dimensions. With this introduction, we are now in a posi-
tion to begin our analytical study in detail.



Chapter 2

Geometrical optics

Geometrical optics of charged particle beams begins with rela-
tivistic classical mechanics, specifically, the motion of a charged
particle in the presence of external electric and magnetic fields.
The fields exert an instantaneous resultant force on the particle,
which determines the path of motion. Mathematically, the solution
consists of finding the three-vectors for position x and velocity v
at any time ¢, given initial values at time zero, taking account of
the influence of the fields.

Having found a prescription for solving a general particle trajec-
tory, we can then apply this to families of trajectories. This permits
us to delineate the geometrical optical properties of a beam of par-
ticles. We begin with a review of relativistic classical mechanics,
focusing only on those specific topics which will lead directly to
geometrical optics.

19
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2.1 Relativistic classical mechanics

In classical mechanics, a system is described by one or more gen-
eralized coordinates ();, where

{Qj} = Q1,Q2,...,Qn, (2.1)

and n is the number of degrees of freedom needed to completely
specify the system. For example, a three-dimensional Cartesian
coordinate system can be used to completely specify position in
ordinary space, and has three degrees of freedom.

The @); evolve under the influence of forces, and therefore depend
implicitly on the time t. There exist velocities ); given by

{Qi} = Q1,Qa, ..., Qn, (2.2)

where the dot denotes differentiation with respect to time, i.e.,

. d
Q; = %Qj (2.3)

This is quite general, since n can take on any positive integral
value. For example, a system of /V interacting particles has n = 3N
degrees of freedom.

The central problem of classical mechanics can be stated as fol-
lows: given a set of coordinates (); and velocities Qj at an initial
time ¢, calculate the @); and Qj at any time ¢. The result of this
calculation represents a complete specification of the system. In
the present study, we will confine our attention to a single par-
ticle of rest mass m and charge ¢ under the influence of electric
and magnetic forces. We therefore define generalized coordinates
x; = (x1,22,23) with corresponding velocities v; = (vy,vg,v3),
where the six-vector components are functions of time ¢. In this
case the central problem is to calculate these quantities. The pre-
scription is general with respect to the choice of coordinate sys-
tems. For example, one could use Cartesian, cylindrical, spherical,
or other coordinates with three degrees of freedom to specify the
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position. The reader is referred to the book by Goldstein [35] for
a thorough and detailed discussion of classical mechanics.

2.1.1 Hamilton’s principle of least action

We seek a general condition governing the motion of a particle
with charge ¢ and rest mass m in external electric and magnetic
fields. We require that this condition be covariant with respect
to the Lorentz transformation of special relativity. This ensures
that the equations of motion have the same form in all frames of
reference in uniform motion with respect to one another. To this
end, following Goldstein, et. al. [35], we define a function £, called
the invariant Lagrangian, as

4
L=> (mU,U,+qA,U,). (2.4)
pn=1

Here U, and A, are the four-vector velocity and electromagnetic
potential, respectively, given by

U = (vv,ivc)
A, = (A, ig)c), (2.5)

where v is the three-vector particle velocity, A is the magnetic
three-vector potential, and ¢ is the electrostatic scalar potential.
We have defined a quantity v as

1
' /1 —v2/c2‘

We notice from the form of (2.4) that the invariant Lagrangian L is
a sum of inner products of two four-vectors. It is straightforward to
show that the inner product of two four-vectors is invariant under
a Lorentz transformation. It follows that £ is Lorentz invariant,
and has the same value in every uniformly moving reference frame.
The proof of this is left to the reader in the problems.

(2.6)
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All relevant information about the magnetic and electric fields
is contained in the magnetic vector potential A(x,t) and elec-
trostatic scalar potential ¢(x,t), respectively. In general they are
functions of position x and time ¢, measured in the particular ref-
erence frame of interest. The potentials arise from source currents
and charges which are distributed in proximity to the charged par-
ticle of interest. They also include the effects of magnetic materials
and dielectrics. We assume in the following analysis that the po-
tentials A(x,t) and ¢(x,t) are known. The reader is referred to a
definitive text by Jackson [48], which describes how to calculate
these potentials, given a known distribution of charges, currents,
conductors, dielectrics, and magnetic materials.

At this point we form a key postulate, namely, for physically allow-
able motion of the particle, the integral of £ over time is stationary
with respect to first-order variation as follows:

5/“ Ldr =0, (2.7)

where 7 is the time measured in the rest frame of the particle, com-
monly known as the proper time. We assume that the end times 7,
and 7, remain fixed with respect to the variation. This expression
is also Lorentz invariant, because it is constructed wholly from
Lorentz-invariant quantities.

It is possible to construct a general covariant theory which de-
scribes the motion in every reference frame. However, for our pur-
pose here we are interested in the particle motion in a single ref-
erence frame which is at rest relative to the laboratory, commonly
known as the lab frame. It greatly simplifies the discussion if we
confine our attention to this single frame. In the lab frame we can
express (2.7) in the equivalent form

t
5 [ Ldt=o, (2.8)
tq

where we have defined L = £/v and t = y7 as the Lagrangian
and time, respectively, expressed in the lab frame. The time ¢ is
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related to the proper time 7 by a Lorentz transformation, where
we assume the particle coordinate is zero in the particle rest frame.
Substituting (2.5) into (2.4), it follows that

L(x,v;t) = —mc* /1 —v2/c2+qv-A(x,t) — qo(x,t) (2.9)

in the lab frame. We have made use of the vector notation v - A
to express the inner product of the two three-vectors v and A. In
Cartesian coordinates this is v - A = v, A, + v, A, + v A,.

The Lagrangian L is a scalar function of the position x, and the
velocity v. The time t is regarded as a parameter which uniquely
specifies a point along the particle trajectory. The position and
velocity depend implicitly on the time. Indeed, the central prob-
lem is to solve for this dependence. In the case where the electric
and magnetic fields vary with time, the electromagnetic potentials
have explicit time dependence. For static fields, these potentials
have no explicit time dependence. The Lagrangian therefore has
no explicit time dependence in this case.

The integral in (2.8) can be abbreviated as
ty
Sy = / L(x,v; 1) dt. (2.10)
la

It is a scalar quantity with units of energy times time, or action.
The integral S, is therefore known as the action integral. The ex-
pression (2.8) says that the action integral has an extremum for
the physically allowable trajectory. This trajectory exists among
many hypothetical trajectories, each displaced infinitesimally from
the physical trajectory. The expression (2.8) is known as Hamil-
ton’s principle of least action.

Forming a Taylor expansion of the variation (2.7) in the lab frame,
and retaining only terms to first order in dz; and dv;, we find

5 | Ldt / ( +3L5vi> dt. (2.11)
t

a ;=1 avi
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Making use of the chain rule for partial derivatives, we have

d (0L d (0L oL

where dv; = (d/dt)dz;. It follows (2.11, 2.12) that

0 N 7Y N L A L d OL
) | Ldt = ; [avi 5a:z]ta +Z:/t ox; (axi yy av) dt = 0.
(2.13)
Now dt, = dt, = 0, because the end times ¢, and ¢, are assumed to
be fixed. This in turn demands dz; = v; 6t = 0 at the end times ¢,
and ¢,. Consequently, the first term on the right of (2.13) is zero.
Since dx; inside the integral is arbitrary, it is a necessary condition

that

oL d OL

@l’i dt 81}1‘ o
where ¢ =1, ..., 3. This is a set of three coupled equations, known
as the Euler-Lagrange equations of motion. Given the Lagrangian
(2.9) and the initial conditions for position z; and velocity v; at
time zero, these equations can be solved in principle for the com-
ponents z; and v; as functions of time. This represents a solution
to the central dynamical problem for a single particle. We will in-
vestigate the solution in more detail in the coming sections.

(2.14)

It is straightforward to show (2.9, 2.14) that
d
a(fymv):q(E—i—va) (2.15)

where we have defined the three-vector electric and magnetic fields,
respectively, as

0A
E = — - —
ng at )
B = VxA, (2.16)
and we have made use of the total time derivative
d 0
—=—+4v-V. (2.17)
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The proof of (2.15) is left to the reader in the problems.

We define the three-vector kinetic momentum p as
p=7ymv. (2.18)

Equation (2.15) is an expression of Newton’s law of motion for a
charged particle, where the left side is the time rate of change of
the kinetic momentum, and the right side is known as the Lorentz
force.

In principle it is possible to calculate all of particle optics by solv-
ing (2.15), for the position x and the velocity v as functions of
time ¢, but further considerations will lead to a more detailed un-
derstanding, and to greater computational efficiency.

Problems

1. An arbitrary four-vector A, = (A1, Az, A3, Ay) is defined in
terms of its four components. For two reference frames in relative
uniform motion with velocity v along the z-direction, the compo-
nents of A, are related in the two frames by

A= 4

AL — 4,

Ay = (A3 +iBA)
Ay = v (—ifAs + Ay,

where v is given by (2.9) and 5 = v/c. This is known as a Lorentz
transformation. Show that the inner product of any two four-
vectors A, and B, satisfies

4 4
Z A;A BZL = Z Au B,,.
p=1 p=1

An inner product of two four-vectors is thus said to be invariant
under a Lorentz transformation.
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2. Derive the Lorentz force law (2.15) from the Euler-Lagrange
equations of motion (2.14).

2.1.2 The Hamiltonian function and energy
conservation

We define a new function H by
H(x,P;t) ZP v; — L(x,v;t), (2.19)

where P is an arbitrary three-vector, whose meaning will become
clear in the following. The scalar function H is derived from the
Lagrangian L by a specific transformation called a Legendre trans-
formation [72]. We form the total time derivative of H by invoking
the chain rule,

3 H H dP, H
(8 d:cl 0 dl> 0 (2.20)

=2 Ox; dt aB- dt o’

i=1

recalling that v; = dz;/dt. From the definition (2.19) we obtain
the identities

oH 0L oH o _, oH L
or. Oz op, b v, P ot ot
(2.21)

The third of these, together with (2.14) leads to

oL dP;
= . 2.22

It follows that the large parenthesis in (2.20) vanishes identically,

and
dH oL

o
The function H is called the Hamiltonian functon, and the three-
vector P is called the canonical momentum. From (2.9) and the

(2.23)



2.1. Relativistic classical mechanics 27

third identity (2.21), the canonical momentum components can be
written as

P, = ymuv; 4+ qA;, 1=1,...,3. (2.24)
Equivalently, from (2.18), this is
P=p;+qA (2.25)

The canonical momentum is thus the sum of the kinetic momen-
tum plus the charge times the magnetic vector potential. Obvi-
ously, the canonical momentum and kinetic momentum are iden-
tical in the case where the magnetic vector potential is zero.

Next we consider the special case where the potentials A and ¢
have no explicit time dependence; i.e., the fields are static. From
(2.9) it follows that the right side of (2.23) vanishes, and

dH
— = 0. 2.26

This means that H is a conserved quantity in this case. From (2.9,
2.19, 2.24, 2.26) it follows that

H = ymc* + q¢ = const, (2.27)

and H is a constant of the motion. We will see in the following
that H can be identified with the total energy.

The energy H does not depend on the magnetic vector potential
A, because the magnetic Lorentz force in (2.15) acts in a direction
perpendicular to the particle velocity v. As a result, the magnetic
force alters the direction of the velocity v, but not the magnitude.
Consequently, the magnetic force cannot cause a change in energy.

We now proceed to define two quantities which will prove very
useful later. We define a quantity E by

E = ymc?, (2.28)

where mc? is the rest energy. We further define the kinetic energy
T by
E =T+ mc. (2.29)
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By this definition, the energy E is the sum of the kinetic energy
plus the rest energy. The Hamiltonian H is then

H =T+ mc* + q¢. (2.30)

The Hamiltonian is the sum of the kinetic energy plus the rest en-
ergy plus the potential energy. The Hamiltonian H thus represents
the total energy. It is conserved in the case where the potentials ¢
and A have no explicit time dependence. Any force which acts in
such a way that the total energy is constant is called a conserva-
tive force.

Problems

1. Show from the above analysis that
E? = p*c® + m*c?, (2.31)
where p> = p - p.

2. Prove the identity
pc = BFE, (2.32)

where § =v/c.

2.1.3 Mechanical analog of Fermat’s principle

We now concentrate on the important special case where the elec-
tric and magnetic fields are constant in time. Mathematically, this
is equivalent to the potentials A(x,t) = A(x) and ¢(x,t) = ¢(x)
having no explicit time dependence. We showed in the preceding
section that the Hamiltonian represents the conserved total energy
in this case (2.27). We now define a quantity Wy, as the compo-
nent of the canonical momentum P along the trajectory path,
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integrated over the path between the two endpoints x, and x,. It
is given by
Xb
W = P - ds, (2.33)
where the integration path is assumed to be the path of physically
allowable particle motion, satisfying (2.14, 2.27). Equivalently,

Wy = /tt (ij P vi> dt. (2.34)

i=1

The function W, is the integral of the action along the path. It
is also known as the eikonal function. From (2.19),

t t
Wab:/b(L+H)dt: "Lt + H(t,— t), (2.35)
ta ta

where, in the rightmost equality, we only consider possible motion
for which H = const. The variation is

Wy = 6 ttb Lt + H (5, — 6t,). (2.36)
This variation is shown schematically in Figure 2.1, where the solid
curve represents the physically allowable path, and the broken
curve represents an infinitesimally displaced path, which is not
physically allowable. The endpoints are held fixed by assumption
in the variation. In order that H = const, it is necessary to allow
the end times t, and t, to vary. This is different from Hamilton’s
principle (2.7), where the end times ¢, and ¢, are assumed to be
fixed. Consequently, in the present case,

t t
s Lat = <5taa+5tba> "Ldt

ta Ot, oty ta
th 3 (0L OL
dx; + — dv; | dt 2.
+/ta ; (&m it ov; UZ) (2.37)

where the first term on the right accounts for the variation of the
end times t, and t;, and the second term accounts for the variation
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Figure 2.1: Variation of the particle trajectory for fixed endpoints

of the integrand. The integrand of the second term on the right
can be rewritten (2.14) as

oL oL d (0L oL d d (0L

(2.38)
From the third identity of (2.21) together with (2.37, 2.38),

tp tp 3 tp
5 Ldt:[Lét} +Z[P¢5xi} . (2.39)

la ta =1 ta

We now impose the condition that the endpoints x, and x;, remain
fixed. To ensure this, we require that dx; = —wv; dt at the end times
t, and tp, to compensate for what would otherwise be an offset of



2.1. Relativistic classical mechanics 31

the endpoints. From (2.36, 2.39)

3 t

OWap = [<_Zﬂvi+L+H> 6t1 =0, (2.40)
=1 ta

where the large parenthesis vanishes identically from (2.19). This

is the principle of least action for the special case where the po-

tentials A(x) and ¢(x) contain no explicit time dependence. This

can also be written (2.33) as

5 [P ds,=0 (2.41)
where the endpoints x, and x;, are assumed to be fixed. The in-
tegral has units of action. The equation (2.41) can be regarded
as the principle of least action for the case where the potentials
have no explicit time dependence. We have shown that this is a
necessary condition for physically allowable motion.

We define a scalar quantity n as the component of canonical mo-
mentum along the path of motion (2.25):

n=P-s=p+qA-s, (2.42)

where § is the unit vector along the direction of motion, locally
tangent to the trajectory, and p is the scalar kinetic momentum.
From (2.41, 2.42), the principle of least action can also be written
as

5/”nds=o. (2.43)

A close analogy exists with light optics. Fermat’s principle states
that light propagates along that path which minimizes the transit
time between two points. This can be written as a variational
principle as follows:

tp

) dt = 0. (2.44)

ta
The speed of light is path length traversed per unit time, or ds/dt,
where ds is the element of path length. From the Maxwell theory,
an electromagnetic wave travels with phase velocity v given by

Cc
v =

(2.45)

VR
n/
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where n' is the index of refraction of the medium, and n’ = 1 in
vacuum. Substituting,

5/Xb n' ds = 0. (2.46)

The physical path taken by the light is that path for which in-
tegral in (2.46) is a minimum. The equations (2.43) and (2.46)
are formally identical, expressing a close analogy between light
propagation and particle propagation. The index of refraction n’
for light varies in general with position within the medium. The
quantity n in (2.42) is identified with an index of refraction for a
particle. It depends on the electrostatic potential ¢(x) through the
momentum p, and depends on the magnetic vector potential A(x)
explicitly. The electromagnetic potential varies slowly in space, as
governed by Maxwell’s equations.

Formulation of the dynamical problem in this way has the ad-
vantage that it does not rely on time as an explicit parameter, as
long as the potentials are time independent. This greatly simpli-
fies the discussion of geometrical optics for this important class of
problems. For example, in many particle beam instruments we are
only interested in where the ray ends, but not in the time at which
the particle arrives.

In the following sections, we will make use of the variational prin-
ciple (2.43) to solve for the detailed physical trajectory.

2.2 Exact trajectory equation for a sin-
gle particle

We now make use of the preceding analysis to find an explicit dif-
ferential equation governing particle motion for time independent
potentials. The following analysis closely follows that of Sturrock
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[86]. We seek a condition, based on the principle of least action
for time independent potentials, which will allow a solution for the
position x at all points along a physical trajectory. Expanding the
variation (2.43) we have

Xp Xp d
Wap =16 g nds = /x [(571 + nds(és)] ds, (2.47)
where we assume the endpoints x, and x, remain fixed. The first
term in the square bracket is the variation of the refractive index,
and the second term is the variation of the path of integration. We
assume for now that this applies to an arbitrary path, not neces-
sarily a physically allowable trajectory.

Expanding the differential path length ds in terms of the posi-
tion dx, we find

(ds)? = dx - dx. (2.48)
Taking the differential of both sides
(ds) d(ds) = dx - 6(dx). (2.49)
The unit vector s along the path can be written as
dx
S = —. 2.50
§=—- (2.50)

Interchanging the order of differentials in (2.49), it follows (2.50)
that

d . d
T (0s) =§- I (0x), (2.51)
from which
. dx d . d
Expanding the variation dn,
on = Vxn - 0x + Vgn - 08, (2.53)

where (2.42)
Vin = g A. (2.54)
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We obtain an expression (2.42, 2.52, 2.53, 2.54) for the integrand
in (2.48) as

d d
n+n £(58) = (Vxn)-ox+P- —S(éx). (2.55)
The chain rule gives
d d apP
from which it follows (2.47, 2.55, 2.56)
xb Xp dP
IWap = {P - 0x } + 0X - <Vxn — d) ds. (2.57)
Xa Xa S

We now invoke the principle of least action (2.43), namely, 6W,;, =
0. The first term on the right is zero, as the endpoints are assumed
to be fixed, i.e., 0x, = dx;, = 0. As dx under the integral on the
right is arbitrary, it becomes a necessary condition that the large
parenthesis in (2.57) must vanish, i.e.,

dp
ds
This represents the exact trajectory equation, relativistically cor-
rect in the lab frame, where we recall (2.18, 2.25, 2.42). For spec-
ified endpoints x, and x,, this equation can be solved in principle
to find the position x everywhere along a single trajectory of a
single particle.

Vyn — 0. (2.58)

2.3 Conservation laws

We showed previously that, in the case where the potentials A (x)
and ¢(x) have no explicit time dependence, the total energy H is
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a constant of the motion. In this section, we show that other in-
variant quantities exist, as a direct consequence of the least action
principle. As in the preceding section, the reader is referred to the
book by Sturrock [86] for a detailed discussion.

2.3.1 The Lagrange invariant

In the preceding sections, we derived the necessary conditions for a
single trajectory to represent physically allowable motion. Hence-
forth we refer to a physically allowable trajectory satisfying (2.43,
2.58) as a ray. In this section, we consider the behavior of rays
which are infinitesimally displaced from one another. This is shown
schematically in Figure 2.2. From (2.57) the variation in optical
path length between two neighboring rays is given by

5Wab = Pb : 5Xb - Pa . 5Xa. (259)

This infinitesimal quantity is nonzero in general, since the end-
points x, and x; of the two rays are assumed in general to be
displaced from one another. It can be shown that 6W,, is an
exact differential [72], in which case

Py = Vo, Wa, P, = -V, Wa. (2.60)

Geometrically, this means that the canonical momentum P is nor-
mal to surfaces of constant optical path length, W, = const at
the endpoints, where we note that the endpoints can be chosen to
be anywhere along the ray path.

We now consider a second perturbation, independent from the
first. It follows that (2.59):

d((;Wab) = de . (5Xb + Pb : d(6xb) — dPa . (5Xa — Pa . d(éxa). (261)

Interchanging the order of perturbations and subtracting, we ob-
tain

dPa : (SXa — 5Pa . an = de . 5Xb — 5Pb . de. (262)
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Figure 2.2: Two rays, infinitesimally displaced from one another.

Since x, and x; can be any two points connected by a ray, it follows
that
dP - 6x — 6P - dx = const, (2.63)

where the d- and d-variations refer to two separate rays, each de-
rived by an independent perturbation from the original ray. This
quantity is known as the Lagrange invariant. To appreciate the
meaning of the Lagrange invariant, we consider a special case for
which dx, = 0x;, = 0. In this case (2.62) reduces to

—5Pa : an = de : 5Xb. (264)

This is shown schematically in Figure 2.3 , where the unperturbed
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Figure 2.3: Perturbed rays for case dx, = dx;, = 0.

ray is represented by a straight line connecting the beginning point
a and the endpoint b. We now choose local z-axes codirectional
with P, and P, at the respective endpoints x, and x;. We further
choose %, colinear (either codirectional or antidirectional) with
dP, and dx; colinear with 0P, in the respective transverse end
planes. Since dP,, is perpendicular to P,, this represents a change
in direction, but not magnitude of P,. A similar statement holds
for Py,. The Lagrange invariant (2.62) reduces to

—5Pa dl’a = de (51’1). (265)

We notice (2.25) that 6P, = p, 90, and dP, = p,db, since the
magnetic vector potential A is assumed to be unchanged in the
perturbation. Recalling that p is the scalar kinetic momentum, it
follows that

—Pq 00, dxy = pp, dby Oy, (2.66)

where dz;, is proportional to df,, and 06, is proportional to dx,.
Repeating this variation process in the orthogonal transverse axis,
and multiplying,

P2 60, dA, = pi dQy 6 Ay, (2.67)

where dQ) = db,, df, is the solid angle element, and dA = dz dy is
the transverse area element.
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oP

Figure 2.4: Perturbed rays for case dx, = dx; = 0.

Next we consider the special case where 0x, = 0x; = 0. This is
shown schematically in Figure 2.4, where, again, the unperturbed
ray is represented by a straight line connecting the beginning point
a and the endpoint b. The two neighboring rays emanating from a
single point, with infinitesimally differing directions intersect the
same endpoint. In this case the endpoints x, and x; are said to
be optically conjugate. Because 6x, = 0x;, = 0, it follows directly
from (2.59) that 6W,, = 0. This means that the two rays have
identical optical path length W,,. This is equivalent to the state-
ment that 0Wy;, is a perfect differential, since the line integral of
W around the closed path of the two rays is zero.

The Lagrange invariant (2.62) reduces in this case to

dP, - 6x, = dPy - 6. (2.68)
Applying the preceding method,

Pa A0, 04 = pp dby Oy (2.69)

This is known as the law of Helmholtz—Lagrange [86]. We define
the magnification M = §z},/0x,, in which case the angular mag-
nification is given by df,/df, = p./(Mps). Repeating this in the
orthogonal axis as before, it follows that

Py dQ 6 A, = py dS% 0 Ay, (2.70)

The product of transverse area element times solid angle element
is called the emittance. Equation (2.70) shows that the product
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of the emittance times the square of the momentum is conserved.
For a ray bundle, the current divided by the emittance is called
the brightness. It follows from (2.67, 2.70) that the ratio of the
brightness £ divided by the square of the momentum is conserved,
assuming constant current. This can be written as

% = const, (2.71)
p
where p is the relativistic scalar kinetic momentum. It does not re-
quire that the two end planes be optically conjugate, as it applies
to both of the above special cases. It follows that it is impossible
to focus any beam to a spot which is brighter than the source.
These arguments apply strictly only over infinitesimal regions. It
is common practice to apply brightness conservation to a finite
region, such as a whole beam. This is only approximate, however,
and becomes less accurate as the whole beam becomes larger.

Next it is interesting to consider the special case where P, is in-
clined by an angle 6 to local z-axis. The above case becomes

Do €08 0, db, = M py cos 0, dby,. (2.72)

To this point, we have considered only infinitesimal perturbations
of first order. It is interesting to consider the case in which rays
inclined at finite angle 6 intersect the same image point x, for all
0. This corresponds to perfect imaging, without aberration. We
integrate as follows:

0a 9
Pa / COS ea dea - Mpb / ' COSs Gb d@b,
0 0
PasSinf, = M p,sin by, (2.73)

for all 6, and 6,. This is presumed true independent of dx,, in
which case it represents perfect imaging with regard to all aber-
rations which are linear in X,; i.e., coma. This is known as the
Abbe-Helmholtz sine condition for coma-free imaging [86].
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An analogous case exists where we assume 0x, to be parallel with
the axis, and P, inclined at angle 6,. We find that

Pa sin Ga d@a = ML Do sin Qb de, (274)

where My = §2,/0z, is defined as the longitudinal magnification.
Assuming perfect imaging as before, it follows that

0q 0
Da / sinf,df, = Myppy / ' sin 0y, dOy,,
0 0
pasin? (0,/2) = My pysin® (6,/2), (2.75)

for all 6, and 6. This is known as Herschel’s condition for vanishing
spherical aberration [86]. It follows from the preceding that the
longitudinal and transverse magnifications are related by

My = M?py/p,. (2.76)

By successive applications of the Legendre transformation, it
is possible to construct other characteristic functions from
W (X4, Xp). For example, let

V(Xa, Pb) = Pb Xy — W(Xa, Xb)' (277)

It follows that
oV = Pa . 5Xa + Xp - (SPb (278)

Continuing this procedure, we define
X(Pu,xp) =P - x4+ V(Xq,Xp). (2.79)

It follows that
0X = Xag * 5Pa + Pb . 5Xb. (280)

Similarly we define
Y(P,,Py) = —P,-x,+ V(xq, Pp). (2.81)

It follows that
Y = — Xq * (SPa + Xp - (SPb (282)
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The functions V, W, X, and Y represent a way to describe the op-
tical coupling between the space (x,,P,) and the space (xy, Py)
in an infinitesimal region surrounding a ray.

Problem

Show that the functions V, W, X, and Y all lead to the same La-
grange invariant.

2.3.2 Liouville’s theorem and brightness con-
servation

The motion of a particle can be considered to trace out a trajectory
in a six-dimensional space, for which the coordinates are labeled
by the three position components of x and the three canonical mo-
mentum components of P. This is called phase space. The reader
is referred to Goldstein et. al. [35] for background and further
details.

To introduce this description, we notice (2.14, 2.19) that

0H oL d (0L dP;
== [ = | ==, (2.83)
8xj axj dt 8vj dt
and (2.19) that
8H d[Ej
— =, = — 2.84
or, 7T at’ (2.84)
for j = 1,...,3. Summarizing, this yields a coupled set of six
first-order equations as follows:
H dP; H  dx;
on _ _d; Of _ dz; (2.85)

e, = dt 0P~ dt
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where j = 1,...,3. These are known as Hamilton’s equations of
motion. Given the Hamiltonian function (2.9, 2.19) together with
an initial condition (x¢, Py) at any single phase space point along
the trajectory, Hamilton’s equations can be solved in principle to
find the entire phase space trajectory of a single particle.

We imagine a family of trajectories, all infinitesimally displaced
from one another, with each corresponding to a slightly differ-
ent initial condition. These trajectories cannot intersect in phase
space, as to do so would imply that a single initial condition would
give rise to multiple end conditions. As such, an analogy exists with
fluid flow, where the trajectories can be described by a flux j and
a density p of points in phase space. As trajectories are conserved,
these quantities obey a continuity equation

Op
=0 2.86
where
j=pv, (2.87)

and v is the six-dimensional velocity. Expanding the six-
divergence,

V.j = Z[ j,o:l,’] ;)P(PPJ)]

7=1
=y (2 @P Op dz; | Op dP;
o 8$] dx; dt ~ OP; dt )|’

(2.88)

where the dot signifies total time derivative. The first term on the
right vanishes by Hamilton’s equations (2.85). It follows that

dp Op dx;  Op dP; ap
el i N A R 2.
Vit = ;def%gﬁ T or (2.89)

where we recognize the right side as the total time derivative dp/dt.
From (2.86, 2.89) it follows that

dp

=0 2.90
7 (2.90)
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This is called Liouville’s theorem. It means that p = const, and
the density of trajectory points in phase space is conserved.

Applying this to a beam, the geometry is shown schematically
in Figure 2.5. We imagine particles emitted from an infinitesimal

p

Figure 2.5: Geometry for brightness conservation.

area element dA into an infinitesimal solid angle element df) cen-
tered around the kinetic momentum vector p. The phase space
density is given locally by

dSN

p(x,P)= Y const, (2.91)

where

d*r = v cosOdtdA, d*P = p*dpdS, (2.92)

and the scalar kinetic momentum p is related to the velocity v
by (2.18). Passing to the limit of an infinitesimally thin volume
element in the z-axis, the density p is a delta function in z. Inte-
grating over all z, the result is unity, by the property of the delta
function. It follows that

1 dN

—_ = = t. 2.
2 dpdAd0 cons (2.93)
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We consider the special case of a monoenergetic beam with single
value p. In this case the density is a delta function in p. Integrating
over all p, we obtain

1 dN

]? m = const. (294)

We define the brightness 3 as the density of trajectories per unit
transverse area per unit solid angle,

52 = const. (2.95)

The ratio of brightness to square of the relativistic kinetic momen-
tum is conserved. This reproduces the result (2.71) found above.

Solving (2.29) for the scalar kinetic momentum p in terms of the
kinetic energy 7',

2

P> =2m (T + ) = 2meV’™, (2.96)

2mc?

where we have defined a quantity V*, referred to by many authors
as the relativistic beam voltage, in which case

‘f* = const. (2.97)

As a result of this, it follows that a beam can never be focused
to a spot which is brighter than the source. This has the practical
consequence that the source brightness represents a fundamentally
important property of any optical system.
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2.4 General curvilinear axis

For many systems, it is convenient to formulate the optics in terms
of transverse coordinates in a plane which is locally perpendicular
to a central optic axis. As this axis need not be a straight line,
we designate it a general curvilinear axis. We designate an axial
coordinate z, and transverse Cartesian coordinates z; = (z,y) for
j = (1,2) in a plane locally perpendicular to the axis. We further
designate ray slope components z/; = (2,y') = dx;/dz. A ray is
completely specified at any plane z by its two-vector transverse
position x and its two-vector slope x’.

The central problem in this formulation may be stated as fol-
lows: given the transverse position x, and slope x/, at an arbitrary
starting axial coordinate z,, find the transverse position x;, and
slope x} at an arbitrary ending axial coordinate z;. This is shown
schematically in Figure 2.6. It is implicit here and in the following

Figure 2.6: General curvilinear axis.

that the slope xj be finite. This excludes the case of a particle
mirror, for which the slope is infinite where the ray turns around.
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In fact, both the position and slope are considered small in the
following. Equivalently, we will only investigate rays that remain
close to the central axis.

Our purpose here is to identify the equations of motion, and de-
scribe a general methodology for solving them. This solution can
later be applied to a large variety of specific cases, describing a
similar variety of phenomena observed in practice. The reader is
referred to the references by Sturrock [86], Rose [75], Hawkes and
Kasper [43, 44, 45], and Wollnik [93] for further detail and elabo-
ration. The present analysis is based on the earlier works of Glaser
[33] and Sturrock [86].

2.4.1 Equation of motion in terms of trans-
verse coordinates and slopes

We found previously that the optical path length along a ray join-
ing two endpoints x, and x; is given by the action integral (2.33)
as

Wy = /ands - /medz, (2.98)

Xa

where we have defined a modified refractive index m as

d
m(x,x';z) =n d—s =ny/1+ 2?2 +y?, (2.99)
z

where x and x’ are the two-dimensional vector position and slope
components in the transverse plane, respectively, and where the
prime represents differentiation with respect to z. The variation of
optical path length is given by

W, = 5/2,, mdz = /Zb((Sm) dz = 0. (2.100)
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We have purposely excluded the second term in square brackets
of (2.47). This is equivalent to assuming the variation of the path
length along the optic axis is zero. In order for this to be mean-
ingful, the optic axis must itself be a physical ray in the sense of
satisfying (2.58).

Expanding the variation dm,

2
om=3" (am 5z, 4 O™ 593") . (2.101)

: 00
o\ 0z o

Using the chain rule, we find that

d [Om d [Om om

“ =85 [ 222 — 5. 2.102

dz <8x3 5x]> 0z dz (83:3) + (9.233- &EJ (2.102)
This leads to

2 Om *
6Wab = [Z w (SfL’j
J

Jj=1

2 2 om d Om
ox; | =— — — dz = 0.
* %a ]; K (8:)3]- dz 81‘2) ‘
(2.103)
Assuming the endpoints are fixed, dz; = 0 at z, and 2, the square

bracket vanishes. Furthermore, since dz; under the integral is ar-
bitrary, the large parenthesis must vanish, and

om d (Om
w0 (81'9) =0 (2.104)

Za

for j = 1,2. This represents a coupled pair of Euler-Lagrange
equations. They are the exact ray equations for a single particle in
the case of a general curvilinear axis. They can be solved in prin-
ciple for the transverse position x and the transverse component
of the ray slope x’ in terms of the axial coordinate z. This is a
necessary condition for a path of physically allowable motion; i.e.,
for the path to be a ray.

The choice of coordinates x; and slopes ', remains arbitrary.
For example, one could choose Cartesian coordinates z(z) and
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y(z) in the local transverse plane. Alternatively, one could treat
the local transverse plane as the complex plane with coordinates
u(z) = z(z) + iy(z) and u(z) = x(z) — iy(z). Alternatively, one
could choose polar coordinates r(z) and 6(z) in the local trans-
verse plane. The best choice is the one which allows one to express
the problem in the simplest possible way.

We can write

d
n = P-é:P-di;
dx dy dz
= P, P,—=+ P, —
ds+ yds+ ds
= (P2’ + P, ’+P)@
N v vl * ds
ds , ,
m = nd—:Pxx + P,y + P, (2.105)
z
from which it follows p
m

for j = 1,2, where P, and P, are the transverse components of
canonical momentum. The FEuler-Lagrange equations can therefore
be written as 5 P
m j
———=0 2.107
in analogy with (2.58). Considering two rays which are infinitesi-
mally displaced from one another, the differential in optical path
between the rays is (2.103, 2.106)
2
Wy =Y (P 05 — Puj 04;). (2.108)
j=1
In general 0W,;, is non-zero, since the endpoints z,; and z;; can be
independently displaced between the two rays by dz,; and dxy;,
respectively.

Since 0W,, is an exact differential, it follows that

8Wab 8Wab
- P, = — : 2.109
81‘1,]' ’ J 8:caj ( )

Py;
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Physically, this means that the transverse component of canoni-
cal momentum is perpendicular to the contour lines of constant
optical path W,, in any transverse plane. Again, the coordinates
7;(2) and slopes 2,(z) in (2.104) should be regarded as completely
general. In the following sections it will prove expedient to move
freely between alternative coordinate systems.

2.4.2 Natural units

The discussion in the following few sections will be somewhat sim-
plified by expressing the variables in alternative units, which are
derived from SI units. The scalar kinetic momentum p can be writ-
ten as

=2 >0 (2.110)

mc

Since the total energy needs only to be expressed to within an arbi-
trary, additive constant, we are free to define the zero of potential
energy. Let

T+q¢=0, (2.111)

where T is the kinetic energy, and where ¢ = —e for the electron
charge. This is consistent with energy conservation in the case
where the electromagnetic potentials have no explicit time depen-
dence. Physically, the zero of potential energy is here defined at a
position where the particle has zero kinetic energy, i.e., is at rest.
This position might coincide with the emission surface, but this
need not necessarily be the case. The quantity ¢ thus represents
both the electrostatic potential, and the kinetic energy of the par-
ticle, only for this particular choice of the zero of potential energy.
Many workers call ¢ the beam voltage at any given position in the
optical system. We define a dimensionless quantity

go_40 T 5 (2.112)
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The magnetic vector potential can be written in dimensionless
form as

12 (2.113)

The velocity, space charge density, and space current density can
be written as

.V ~ qg p T q . T .~
V=, pP=— 2 J=— HoJ, J=pV,
& mce €g mc

respectively, where p < 0, regardless of sign of charge q.

The rest energy plus the kinetic energy is given in dimensionless

units by
y=1+¢=1/14+p? (2.115)

where the rest energy mc? is unity in these units. Solving this for
the scalar kinetic momentum p, we obtain (2.115)

p=1/20+¢?, (2.116)

where ¢ and p can be regarded as functions of the coordinates
x;j only. This is due to the fact that the zero of potential energy
is fixed (2.111). In the nonrelativistic limit, the kinetic energy is
small relative to the rest mass, as follows:

¢ < 1. (2.117)

In the following discussion, we will not make this approximation,
but rather retain the full relativistic form throughout.

All quantities are dimensionless except coordinates and time,
which retain their SI units of meters and seconds, respectively.
One can easily return to SI units at any point in a calculation by
inverting the above transformations. Many calculations seek posi-
tion, such as the path of a ray, or the deviation of the path from its
paraxial or Gaussian approximation. In such cases, it is not neces-
sary to convert back to SI units for the result to be practical. We



2.5. Axial symmetry 51

therefore refer to these units as natural units. Unless specifically
noted, we will use these units throughout the following section de-
scribing the special case with axial symmetry, and drop the tilde.

2.5 Axial symmetry

Systems with a straight optic axis, where the potentials A and
¢ are axially symmetric, represent an important special case of
the general curvilinear axis. This includes a large class of useful
instruments, including electron and ion microscopes. It excludes
curved-axis energy analyzers. The reader is referred to Rose [75],
Hawkes and Kasper [43, 44|, and Wollnik [93] for further detail
and elaboration, both of axially symmetric and nonsymmetric sys-
tems.

2.5.1 Exact equations of motion for axially
symmetric fields

In the absence of space charge, the electrostatic potential ¢ satis-
fies Laplace’s equation,

V¢ = 0. (2.118)
In cylindrical coordinates this becomes

”? 190 0?
2 22 % )e=0. 2.11
<6T2+T87‘+622>¢ 0 (2.119)
We propose a series solution by the method of undetermined co-
efficients [74]. We assume that ¢ can be expanded in a series rep-

resentation given by

B(r, 2) = ao(2) + ag(2) r* +ag(2)r* + ..., (2.120)
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where we will now proceed to solve for the coefficients a;. The
kinetic energy of a particle on axis is

ap(z) = (0, z) = ¢(z). (2.121)
From (2.119, 2.120, 2.121) it follows that
P(r,z) =0 — 20" r? + LoVt (2.122)

where primes indicate differentiation with respect to z. Expanding
the scalar kinetic momentum p we obtain (2.116, 2.122):

p(r,z) = /20 + ¢
= p—3p " (1+ )
+[6—Zp‘1¢>"/(1+®)—3i2p‘3<1>”2}r4+...,
(2.123)

where we have defined a quantity p(z) as the scalar kinetic mo-
mentum on axis as follows (2.121, 2.122):

p(z) = p(0,2) = V2D + P2 (2.124)

Separately, the magnetic field B is given in terms of the magnetic
vector potential A as

~ aAH ~ 8A9 Ag
B = A=—-1— — 4+ — . 2.125
VX "oz T ( or * r ( )
In the absence of space current, Maxwell’s equation is
VxB=0, (2.126)

from which it follows that (2.125, 2.126)

2 2
—9(8 10 1+8>A9:0. (2.127)

or?2  ror r?2 02?2
We assume a series representation for Ay as follows:

Ap(r,2) = by(2)r +b3(2) r® + bs(2)r° + .. ., (2.128)
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where we now proceed to solve for the coefficients b;. We define a
function B(z) as the magnetic field on axis,

B(z) = B.(0,2) = 2b, (2.129)
leading to
Ag(r,z) =3Br— LB"r®+ LBV o4+ . . (2.130)

The modified refractive index m is written as

m = nﬁ
N dz
ds
p— —A-A E—
(p 8) 7.
UgAg ds
— 1 /2 29/2_ _
pVI+r 2ty ds/dt dz
= pV1+7r'24720'2 —rf’ A, (2.131)

Euler-Lagrange equation for angular coordinate is (2.104, 2.131)

om d Om
— = — = 1
00  dz 00’ 0 (2132)
where, because of axial symmetry,
om
— =0. 2.133
From (2.131) we obtain
20/
om _ o —1rAy = C = const, (2.134)

0 1+r2+120'2

where C' is identified (2.106, 2.134) as the conserved canonical an-
gular momentum. In the case where C' = 0, the ray intersects the
optic axis at some point. Such a ray has no angular momentum,
and is called a meridional ray. In the case where C' # 0, the ray
has angular momentum, and does not intersect the optic axis. Such
a ray is called a skew ray, with C' as a measure of skewness.



o4 Chapter 2. Geometrical optics

The Euler-Lagrange equation for the radial coordinate is (2.104)

om d Om
S 5 =0 (2.135)

This leads (2.131, 2.135) to the exact ray equation for the radial
coordinate in the case of axial symmetry as follows:

dz 147’2 P2 (Cfr+ Ap)?

(A2 () (42|

(2.136)

recalling that p is the scalar kinetic momentum (2.123), and Ay is
the magnitude of the magnetic vector potential (2.130). Both p
and Ay are assumed to be known functions of the coordinates.

The differential equations (2.134, 2.136) are a coupled pair, for
which the desired solutions 7(z) and 6(z) are exact in principle.
These equations were derived by Sturrock [86]. Because the equa-
tions are nonlinear, the solutions r(z) and 6(z) cannot be expressed
in a simple, closed form. Consequently, an analytical solution must
rely on finding a suitable approximation. Alternatively, these equa-
tions are amenable to exact numerical solution.

2.5.2 Paraxial approximation, Gaussian optics

Assuming
r'?<«1, C=0 (2.137)
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in (2.136), and retaining only terms through order r, one obtains
(2.123, 2.130, 2.136, 2.137) the approximation

2+ B2
s 4+ + 1P —7r =0. 2.138
73 4+ O+ 3 r+4(1+q))r ( )

This is a linear second order equation for the radial position r(z)
of a meridional ray. It is only accurate for rays close to the optic
axis, and this approximation is therefore known as the paraxial ap-
proximation. A purely electrostatic field has B = 0, and a purely
magnetic field has ® = const.

This equation can be integrated in principle by first seeking an
integrating factor. To this end we define a reduced ray [33, 71]

R(z) = [®(2) Y47 (2). (2.139)
Substituting this into (2.138), we obtain a reduced equation

R"(2) +Q(z) R(z) =0, (2.140)
where we have defined a function Q(z) as

3(@)21+@ B2

Q(2) (2.141)

"6 \9) Tre2 81+ 0/2)

The region where () is non-zero constitutes a lens, completely anal-
ogous to a lens in light optics, with the difference that the bound-
aries for the focusing region are not sharply delineated.

Since @(z) is positive-definite, it follows that R”(z) < 0. The re-
duced ray R(z) therefore always bends toward the optic axis. This
is not necessarily true for the actual ray r(z), which can curve
away from the axis within a region with electric field.

We can define a forward focal length f, for the lens, where rays
enter parallel to the optic axis at radius r_.,, and exit with slope

— =, where r’_ . =0. (2.142)
f+ T—oo =
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For many systems it is the case that the radial position of the
ray is roughly constant within the lens field, i.e., R(z) ~ const.
Such a lens is called a thin lens. It is also often the case that the
electrostatic component of the focusing is weak or nonexistent;
ie., "~ ® 4R’ Such a lens is called a weak lens. Using these
approximations, we obtain (2.139)

1 d_ N\ R,
ﬁz—(q) ) o (2.143)
From (2.140) we obtain

R;o:/oo R”dz:—/oo QRdzz—R,OO/OO Qdz.  (2.144)

From (2.141, 2.144, 2.145) we obtain

1 (D N e (3 (P 140 B’ ;
[ ( Do ) /_oo 16 <c1>> 1132 8otz ®
(2.145)
where the first term on the right represents the electrostatic focus-
ing, and the second term represents the magnetic focusing. Simi-
larly, we define a reverse focal length f_, where rays enter parallel
to the optic axis at radius r.,, and exit with slope r’ _:
!/
LT here =0 (2.146)
[~ e
The axial positions of principal planes follow directly from f, and

F

The quantity 1/f represents the focal strength of a lens. In the
purely electrostatic case where B = 0, the focal strength is pro-
portional to the charge ¢, and independent of the mass m, taking
account of the dimensionless units. In the purely magnetic case
where & = 0, the focal strength is proportional to the ratio of
g/m. Consequently, it is more efficient to use electrostatic lenses
for heavier particles, such as ions, and magnetic lenses for lighter
particles, such as electrons.



2.5. Axial symmetry 57

2.5.3 Series solution for the general ray equa-
tion

We now seck a general solution to the exact ray equation (2.104).
This must include all rays, including meridional and skew rays.
Because the exact trajectory equations (2.134, 2.136) are nonlin-
ear, they cannot be solved in closed form. Consequently, we seek
an approximate solution by series expansion [33].

Recalling the modified refractive index for the general curvilinear
axis,

m=pV1+r'24+7r20'2—r0' Ay, (2.147)

where the scalar kinetic momentum p(r, z) is given by (2.123) and
the magnetic vector potential Ay is given by (2.130).

We define a complex transverse coordinate
u=X+iY =re”, =X —iY =re ™ (2.148)

where X (z) and Y (z) are Cartesian coordinates in a transverse
plane at axial coordinate z. It follows that

i(@u—au)=2(XY - X'Y)=2r%, (2.149)

and

VIHr2 40202 =VI4+wu =1+ a0 — ;0% + ...
(2.150)
We can write a power series expansion for the refractive index,
making use of the axial symmetry of the scalar kinetic momentum
p(r, z) and the magnetic vector potential Ay(r, z) in (2.123, 2.130)
as follows:

m = mog+mog+my+...
= P
+ {—i p1o"(1+ d))} uu
—i—{%p} a'u
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[—iB] i (u'u — uu')
_—%P} @22
——é pt®"(1+ @)} 'y’

[épﬂ <I>IV(1+q>) — 3712p73q)//2} 20

+ o+ o+ o+ o+

?%2 B"} i (W' —uu') uu
¥, (2.151)
where the various orders of m are defined by the power of the co-

ordinates and slope components. The quantities in square brackets
depend only on the fields on axis, embodied in ®(z) and B(z).

The paraxial term is given by (2.151)
mo=—1p " (14+®)au+ ipu'v — 1Bi(a'v—uu). (2.152)

We now define the paraxial approximation by retaining only terms
through order my in (2.104, 2.151). The paraxial ray equation is

then given by
8m2 d 8m2

— — =0. 2.1
ou  dz ou’ 0 (2.153)
Substituting (2.152) into (2.153) we obtain
d
—(pu’) —iBu'+3 (P 0" (1+®) —iB|u=0. (2154)

The imaginary terms correspond physically to a rotation of the
bundle of rays about the optic axis as a function of the axial co-
ordinate z. Physically, this arises from the Lorentz force (2.15),
where the axial component of the magnetic field acts on the trans-
verse component of the particle velocity.

It is possible to rotate the coordinate system to compensate for
this. We define a rotated complex coordinate v(z) = x(z) + i y(z)
as follows:

u(z) = v(z) X&), (2.155)

where, by definition,
dx 1
— == B. 2.156
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The rotation angle is then given by
1 [
Xab = 5/ p Bdz. (2.157)

This gives rise to the following useful transformations:

uu = Vv
w'u’ = v'v'+LipT'Bi(0'v—v0v')+ip?B* 00
i(w'u—uu') = i(®'v—0vv')+p 'Bov. (2.158)

Substituting these into (2.151) we obtain the modified refractive
index in the rotated coordinates as

m = Mg+ Mo+MmMy+...
= P
—l—[ p} v'v
+[—ip_1<1>”(1—|—<1>)—%p_le}T)v
+[6*14p_1®1v<1+®>_3*12p_3¢)/,2+3i2p_188//
_Hls prB4—$p*3<I>”(1+CI)) 82]1721}2
+——§p_1®”(1+®)—%p_182} vvo' v

/

N

4 :_ép} 7202

+|—5p "B’ - %p_2¢"(1+@)5+?§8"]
i (0'v—vv) oW

+ ——éB] i(v'v—ovv)o'v’

+[-%p B [i (7/v—70)]
+... (2.159)

The paraxial term is given in the rotated system by
my = 1p0'v + [—i pro"(1+®)—Lp! Bﬂ . (2.160)
The paraxial approximation to (2.104) is then

Gmg _iamg
ov dz Ov'

= 0. (2.161)
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Substituting (2.160) into (2.161) we obtain the paraxial ray equa-
tion in the rotated system as follows:

d _ —1R2
£(pv')+{%p1®”(l+®)+ip18 v=0. (2.162)
The absence of imaginary terms shows that the rotation has been
removed. It is simpler to work in the rotated system than the un-
rotated system, as the image has the same rotation as the object
in the rotated coordinates.

As a second-order linear differential equation, (2.162) has two lin-
early independent solutions, which we denote g(z) and h(z). By
substituting these in turn into (2.162) for v(z) and subtracting the
two equations, it is straightforward to show that

d d n_
ho(pg’) =g (ph') =0, (2.163)

from which it follows that

L otgh' —g'm)] =0 (2164)

The quantity in square brackets is, therefore, conserved. We denote
this quantity as k, defined as

k=p(z)[g(z)h'(2) — g'(2) h(z)] = const. (2.165)

The conserved quantity £ is called the Wronskian. A more general
expression for the Wronskian exists for a general curvilinear axis.
The reader is referred to Rose [75] for details. It is closely related
to the Lagrange invariant discussed earlier.

In order to fully determine the solutions g(z) and h(z), it is neces-
sary to specify boundary conditions. We choose these arbitrarily
as

9(z0) = 1, g(za) =0,
h(zo) = 0, h(za) =1, (2.166)
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where zp and z4 are the axial coordinates of the object and aper-
ture planes, respectively. Given this, a general solution for the
paraxial ray v(z) can be written as

v(z) = woyg(z) +vah(z)
V'(z) = wvog'(z) +vah'(2). (2.167)

Remembering v = = + iy in the rotated system, it follows that

zj(2) = w0;9(2) + 2