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Preface

This volume summarizes the research done and results obtained in the second
funding phase of the Priority Program 1648 “Software for Exascale Computing”
(SPPEXA) of the German Research Foundation (DFG). In that respect, it both
provides an overview of SPPEXA’s achievements and represents a continuation
of Vol. 113 in Springer’s series “Lecture Notes in Computational Science and
Engineering”, the corresponding report of SPPEXA’s first funding phase.

For some general remarks on the uniqueness of SPPEXA—as the first strategic,
i.e. board-initiated Priority Program of DFG; as the first tri-national Priority
Program with synchronized collaborative research in Germany, France, and Japan;
as a multi-disciplinary endeavor involving informatics and mathematics, but also
various fields from engineering, the sciences, and the life sciences; and as the first
holistic approach to research on High-Performance Computing (HPC) software
at the level of fundamental research—we refer to the overview contribution of
Bungartz et al. (see chapter “Software for Exascale Computing: Some Remarks
on the Priority Program SPPEXA”) in this volume. There, also some statistics are
provided.

The spirit of the international collaboration, whether in a bi-lateral (German–
Japanese) or in a tri-lateral (French–Japanese–German) setting, can be found and
felt in several of the reports of 16 out of 17 SPPEXA consortia. This structured
and institutionalized collaboration was not easy to establish, and we are grateful
for the shared enthusiasm, commitment, and support of the three involved funding
agencies: the German Research Foundation (DFG), the Agence Nationale de la
Recherche (ANR), and the Japan Science and Technology Agency (JST). The
synergies emerging from bringing together the expertise of groups from three
countries did not only boost the respective project work itself, it also prepared
the ground for ongoing partnerships as well as for a topical extension towards the
interplay of HPC and Artificial Intelligence—a field that both benefits tremendously
from HPC and, at the same time, fosters HPC with new concepts.

As always, many people helped to make SPPEXA in general and this volume
in particular a great success. Concerning the first, our thanks go to the agencies
already mentioned and their responsible officers; then to all the SPPEXA researchers
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vi Preface

in 17 consortia who made SPPEXA such a wonderful and productive research
experience; and finally to all helping hands that supported SPPEXA in terms of
organizing and hosting events such as workshops, doctoral retreats, minisymposia,
gender workshops, annual plenary meetings, and so forth. Moreover, concerning the
preparation of this volume, we are grateful to Dr. Martin Peters and Leonie Kunz
from Springer for their support—as in previous cases, it was again a pleasure to
collaborate. Finally, we thank Mirco Troue, Tina Angerer, and Michael Obersteiner
for their support in proofreading and compiling this book.

The first exascale systems are expected to be available in about one year. For sure,
there is still a lot of work to be done to let cutting-edge science applications fully
exploit their potential. However, we are fully convinced that SPPEXA contributed
significantly to pave the way towards exascale computers and their usage.

Garching, Germany Hans-Joachim Bungartz
Garching, Germany Severin Reiz
Eindhoven, Netherlands Benjamin Uekermann
Hamburg, Germany Philipp Neumann
Dresden, Germany Wolfgang E. Nagel
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Software for Exascale Computing: Some
Remarks on the Priority Program
SPPEXA

Hans-Joachim Bungartz, Wolfgang E. Nagel, Philipp Neumann, Severin Reiz,
and Benjamin Uekermann

Abstract SPPEXA, the Priority Program 1648 “Software for Exa-scale Comput-
ing” of the German Research Foundation (DFG), was established in 2012. SPPEXA
was DFG’s first strategic Priority Program—strategic in the sense that it had been
the initiative of DFG’s board to suggest a larger and trans-disciplinary funding
scheme to support the development of software at all levels that would be able
to benefit from future exa-scale systems. A proposal had been formulated by a
team of scientists representing domains across the STEM fields, evaluated in the
standard format for Priority Programs, and financed via special funds. Operations
started in January 2013, and after two 3-year funding phases and a cost-neutral
extension, SPPEXA’s activities will come to an end by end of April, 2020. A final
international symposium took place on October 21–23, 2019, in Dresden, and this
volume of Springer’s Lecture Notes in Computational Science and Engineering—
the second SPPEXA-related one after the corresponding report of Phase 1 (see
Appendix 3 in [1])—contains reports of 16 out of 17 SPPEXA projects (the project
ExaSolvers will deliver its report as a special issue of Springer’s journal Computing
and Visualization in Science) and is, thus, a comprehensive overview of research
within SPPEXA.

While each single project report emphasizes the respective project’s individual
research outcomes and, thus, provides one perspective of research in SPPEXA,
this contribution, co-authored by the two scientific coordinators—Hans-Joachim

H.-J. Bungartz · S. Reiz (�)
Technical University of Munich, Garching, Germany
e-mail: bungartz@in.tum.de; reiz@in.tum.de

W. E. Nagel
Technical University of Dresden, Dresden, Germany

P. Neumann
Helmut-Schmidt-Universität Hamburg, Hamburg, Germany
e-mail: philipp.neumann@hsu-hh.de

B. Uekermann
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4 H.-J. Bungartz et al.

Bungartz and Wolfgang E. Nagel—and by three of the four researchers that
have served as program coordinator over the years—Philipp Neumann, Benjamin
Uekermann, and Severin Reiz—emphasizes the program SPPEXA itself. It provides
an overview of the design and implementation of SPPEXA, it highlights its
accompanying and supporting activities (internationalization, in particular with
France and Japan; workshops; doctoral retreats; diversity-related measures), and it
provides some statistics. It, thus, complements the papers from SPPEXA’s research
consortia collected in this volume.

1 Preparation

While supercomputers were recognized early as an important research infrastructure
for German science and have been since then on the agenda (recommendations of
the German Science Council (Wissenschaftsrat), introduction of the performance
pyramid, Gauss Centre for Supercomputing, Gauss Alliance, NHR—Nationales
Hochleistungsrechnen), the situation for supercomputing has always been quite
different. First, the funds for HPC systems are typically limited to investments,
i.e. the machinery; the current NHR initiative takes a more comprehensive view.
Second, software development is frequently not considered as “science”, which
entails that neither typical projects in informatics or mathematics nor their coun-
terparts in fields of application cover more than prototype development. Recently,
BMBF’s HPC software program and DFG’s sustainable scientific software initiative,
fortunately, have acknowledged the crucial role of software for HPC and support
software development explicitly. Third, HPC software development has happened in
Collaborative Research Centers or similar formats before, but mostly in an isolated
way: an informatics initiative contained an HPC software project as an application,
or a physics initiative contained a simulation- or HPC-oriented project. But all this
hardly ever looked at more than one peculiar aspect at a time, and it was at most an
interdisciplinary endeavor of two fields.

However, when Moore’s law at least gets exhausted a bit and performance
gains are more and more achievable through a more and more massive parallelism
only, it is obvious that software and its performance and scalability play an
increasingly crucial part. Therefore, the challenges at the eve of the exa-scale era
required more—and that’s actually what happened elsewhere, for example in the
U.S. or in Japan: a significant, concerted initiative, bringing together informatics,
mathematics, and several domains of application, comprising all relevant aspects of
HPC software. That’s where SPPEXA entered the stage.

2 Design Principles

SPPEXA was designed to provide a holistic approach to HPC software, comprising
the aspects most relevant for ensuring the efficient use of current and upcoming
high-end supercomputers, and to do this via exploring both evolutionary and
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disruptive research threads. Six research directions were identified as crucial ones:
(1) Computational Algorithms, (2) Application Software, (3) System Software and
Runtime Libraries, (4) Programming, (5) Software Tools, and (6) Data Manage-
ment. Computational algorithms, such as fast linear solvers or eigensolvers, are a
core numerical component of many large-scale application codes—both classical
simulation-driven and recent data analytics-oriented ones. If scalability cannot be
ensured here, the battle is already almost lost. Application software is the “user” of
HPC systems, typically appearing as legacy codes that have been developed over
many years. Increasing their performance via a co-design that addresses both the
“systems—algorithms” and the “algorithms—applications/models” interfaces and
combines algorithm and performance engineering is vital. Performance engineering
can’t succeed without progress in compilers, monitoring, code optimization, verifi-
cation support, and parallelization support (such as auto-tuning)—which underlines
the importance of system software and runtime libraries as well as of tools.
Programming, including programming models, is probably the topic where the need
for a balance of evolutionary research (improve and extend existing programming
models, e.g.) and revolutionary approaches (explore new programming models,
new language concepts such as Domain-Specific Languages) gets most obvious.
Data management, finally, has always been HPC-relevant in terms of I/O or post-
processing and visualization, and it is of ever-increasing importance since more and
more HPC applications are on the data side.

To ensure the impact of this holistic idea, it was clear that having a set of
projects in our Priority Program where some address this issue and others that one,
and where they may collaborate or not, would not suffice. Therefore, SPPEXA’s
concept was to have a set of larger projects, or project consortia (research units—
Forschergruppen), that would all have to address at least two of the six big topics
with their research agenda; and that would all have to combine a relevant large-scale
application with HPC-methodical advancements. This means that neither a merely
domain-driven research (“improve my code, and this is a contribution to HPC in
itself”), as we see it frequently in domain-driven research initiatives (Collaborative
Research Centers in physics, life sciences, or engineering, e.g.), nor a generic purely
algorithmic research (“if I improve my solver, this will help everyone”), as we see
it frequently in mathematics- or informatics-driven research initiatives, would be
allowed to find their place in SPPEXA. This was somewhat challenging, since we
had to communicate this concept clearly and to convince potential applicants and
reviewers that everyone should really comply with this agenda.

Furthermore, there is one property better known from Collaborative Research
Centers than from Priority Programs: program-wide joint activities. For example,
we wanted to have a vivid collaboration framework of cross-project workshops;
networking with the big international programs; a focus on education also through
fostering novel teaching formats or coding weeks and doctoral retreats for the
doctoral candidates; gender-related activities to understand, evaluate and work
towards a more gender-balanced research community; etc. This allowed for sharing
mutual best practices in HPC for the mathematics- or informatics- or application-
driven areas. Therefore, there was more coordination than we see in typical Priority
Programs.
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3 Funded Projects and Internal Structure

In the first funding phase, the following thirteen projects or project consortia were
funded:1

CATWALK—A Quick Development Path for Performance Models. Felix Wolf
(Darmstadt), Christian Bischof (Darmstadt), Torsten Hoefler (Zürich), Bernd Mohr (Jülich),
and Gabriel Wittum (Frankfurt)

ESSEX—Equipping Sparse Solvers for Exa-scale. Gerhard Wellein (Erlangen), Achim
Basermann (Köln), Holger Fehske (Greifswald), Georg Hager (Erlangen), and Bruno Lang
(Wuppertal)

Exa-Dune—Flexible PDE Solvers, Numerical Methods, and Applications. Peter Bastian
(Heidelberg), Olaf Ippisch (Clausthal), Mario Ohlberger (Münster), Christian Engwer
(Münster), Stefan Turek (Dortmund), Dominik Göddeke (Stuttgart), and Oleg Iliev
(Kaiserslautern)

ExaFSA—Exa-scale Simulation of Fluid-Structure-Acoustics Interactions. Miriam Mehl
(Stuttgart), Hester Bijl (Delft), Sabine Roller (Siegen), Dörte Sternel (Darmstadt), and Thomas
Ertl (Stuttgart)

EXAHD—An Exa-Scalable 2-Level Sparse Grid Approach for Higher-Dimensional
Problems in Plasma Physics and Beyond. Dirk Pflüger (Stuttgart), Hans-Joachim Bungartz
(München), Michael Griebel (Bonn), Markus Hegland (Canberra), Frank Jenko (Garching),
and Hermann Lederer (Garching)

EXAMAG—Exa-scale Simulations of the Evolution of the Universe Including Magnetic
Fields. Volker Springel (Heidelberg) and Christian Klingenberg (Würzburg)

ExaSolvers—Extreme-scale Solvers for Coupled Problems. Lars Grasedyck (Aachen),
Wolfgang Hackbusch (Leipzig), Rolf Krause (Lugano), Michael Resch (Stuttgart), Volker
Schulz (Trier), and Gabriel Wittum (Frankfurt)

EXASTEEL—Bridging Scales for Multiphase Steels. Daniel Balzani (Bochum), Axel
Klawonn (Köln), Oliver Rheinbach (Freiberg), Jörg Schröder (Duisburg-Essen), and Gerhard
Wellein (Erlangen)

ExaStencils—Advanced Stencil-Code Engineering. Christian Lengauer (Passau), Armin
Größlinger (Passau), Ulrich Rüde (Erlangen), Harald Köstler (Erlangen), Sven Apel
(Saarbrücken), Jürgen Teich (Erlangen), Frank Hannig (Erlangen), and Matthias Bolten
(Wuppertal)

FFMK—A Fast and Fault-tolerant Microkernel-Based System for Exa-scale Computing.
Hermann Härtig (Dresden), Alexander Reinefeld (Berlin), Amnon Barak (Jerusalem), and
Wolfgang E. Nagel (Dresden)

GROMEX—Unified Long-range Electrostatics and Dynamic Protonation for Realistic
Biomolecular Simulations on the Exa-scale. Helmut Grubmüller (Göttingen), Holger
Dachsel (Jülich), and Berk Hess (Stockholm)

DASH—Smart Data Structures and Algorithms with Support for Hierarchical Locality.
Karl Fürlinger (München), Colin W. Glass (Stuttgart), José Gracia (Stuttgart), and Andreas
Knüpfer (Dresden)

Terra-Neo—Integrated Co-Design of an Exa-scale Earth Mantle Modeling Framework.
Hans-Peter Bunge (München), Ulrich Rüde (Erlangen), Gerhard Wellein (Erlangen), and
Barbara Wohlmuth (München)

1Some Principal Investigators have changed affiliation during the SPPEXA program. We specified
the most recent main affiliation here.
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After 3 years, twelve of those got a prolongation for the second funding phase,
some with an “international extension” (bi-national with Japanese partners or tri-
national with French and Japanese partners):

ESSEX-2—Equipping Sparse Solvers for Exa-scale. Gerhard Wellein (Erlangen), Achim
Basermann (Köln), Holger Fehske (Greifswald), Georg Hager (Erlangen), Bruno Lang
(Wuppertal), Tetsuya Sakurai (Tsukuba; Japanese partner), and Kengo Nakajima (Tokyo;
Japanese partner)

Exa-Dune—Flexible PDE Solvers, Numerical Methods, and Applications. Peter Bastian
(Heidelberg), Olaf Ippisch (Clausthal), Mario Ohlberger (Münster), Christian Engwer
(Münster), Stefan Turek (Dortmund), Dominik Göddeke (Stuttgart), and Oleg Iliev
(Kaiserslautern)

ExaFSA—Exa-scale Simulation of Fluid-Structure-Acoustics Interactions. Miriam Mehl
(Stuttgart), Alexander van Zuijlen (Delft), Thomas Ertl (Stuttgart), Sabine Roller (Siegen),
Dörte Sternel (Darmstadt), and Hiroyuki Takizawa (Tohoku; Japanese partner)

EXAHD—An Exa-Scalable 2-Level Sparse Grid Approach for Higher-Dimensional
Problems in Plasma Physics and Beyond. Dirk Pflüger (Stuttgart), Hans-Joachim Bungartz
(München), Michael Griebel (Bonn), Markus Hegland (Canberra), Frank Jenko (Garching),
and Tilman Dannert (Garching)

EXAMAG—Exa-scale Simulations of the Magnetic Universe. Volker Springel
(Heidelberg), Christian Klingenberg (Würzburg), Naoki Yoshida (Tokyo; Japanese partner),
and Philippe Helluy (Strasbourg; French partner)

ExaSolvers—Extreme-scale Solvers for Coupeld Problems. Lars Grasedyck (Aachen), Rolf
Krause (Lugano), Michael Resch (Stuttgart), Volker Schulz (Trier), Gabriel Wittum
(Frankfurt), Arne Nägel (Frankfurt), Hiroshi Kawai (Tokyo; Japanese partner), and Ryuji
Shioya (Toyo; Japanese partner)

EXASTEEL-2—Dual Phase Steels—From Micro to Macro Properties. Daniel Balzani
(Bochum), Axel Klawonn (Köln), Oliver Rheinbach (Freiberg), Jörg Schröder
(Duisburg-Essen), Olaf Schenk (Lugano), and Gerhard Wellein (Erlangen)

ExaStencils—Advanced Stencil-Code Engineering. Christian Lengauer (Passau), Ulrich
Rüde (Erlangen), Harald Köstler (Erlangen), Sven Apel (Saarbrücken), Jürgen Teich
(Erlangen), Frank Hannig (Erlangen), Matthias Bolten (Wuppertal), and Shigeru Chiba (Tokyo;
Japanese partner)

FFMK—A Fast and Fault-tolerant Microkernel-Based System for Exa-scale Computing.
Hermann Härtig (Dresden), Alexander Reinefeld (Berlin), Amnon Barak (Jerusalem), and
Wolfgang E. Nagel (Dresden)

GROMEX—Unified Long-range Electrostatics and Dynamic Protonation for Realistic
Biomolecular Simulations on the Exa-scale. Helmut Grubmüller (Göttingen), Holger
Dachsel (Jülich), and Berk Hess (Stockholm)

DASH—Smart Data Structures and Algorithms with Support for Hierarchical Locality.
Karl Fürlinger (München), Colin W. Glass (Stuttgart), José Gracia (Stuttgart), and Andreas
Knüpfer (Dresden)

Terra-Neo—Integrated Co-Design of an Exa-scale Earth Mantle Modeling Framework.
Hans-Peter Bunge (München), Ulrich Rüde (Erlangen), and Barbara Wohlmuth (München)
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Furthermore, four new project consortia joined SPPEXA:

ADA-FS—Advanced Data Placement via Ad-hoc File Systems at Extreme Scales.
Wolfgang E. Nagel (Dresden), André Brinkmann (Mainz), and Achim Streit (Karlsruhe)

AIMES—Advanced Computation and I/O Methods for Earth-System Simulations.
Thomas Ludwig (Hamburg), Thomas Dubos (Versailles; French partner), Naoya Maruyama
(RIKEN; Japanese partner), and Takayuki Aoki (Tokyo; Japanese partner)

ExaDG—High-order Discontinuous Galerkin for the Exa-scale. Guido Kanschat
(Heidelberg), Katharina Kormann (München), Martin Kronbichler (München), and Wolfgang
A. Wall (München)

MYX—MUST Correctness Checking for YML and XMP Programs. Matthias S. Müller
(Aachen), Serge Petiton (Lille; French partner), Nahid Emad (Versailles; French partner),
Taisuke Boku (Tsukuba; Japanese partner), and Hitoshi Murai (RIKEN; Japanese partner)

Finally, 1 year later, a seventeenth project joined SPPEXA as associated project:

ExtraPeak—Automatic Performance Modeling of HPC Applications. Felix Wolf
(Darmstadt) and Torsten Hoefler (Zürich)

Hence, overall, there have been four Japanese-German and three French-
Japanese-German consortia within SPPEXA. On the German side, an overall sum
of 57 principal investigators from 39 institutions have been involved, representing
informatics (25), mathematics (19), engineering (8), natural sciences (4), and life
sciences (1).

Concerning governance, SPPEXA was headed by its two Spokespersons Hans-
Joachim Bungartz (Technical University of Munich—TUM) and Wolfgang E.
Nagel (Technical University of Dresden). For the everyday organization, a Program
Coordinator (in chronological order: Benjamin Peherstorfer, now professor at New
York University; Philipp Neumann, now professor at Helmut-Schmidt-University
Hamburg; Benjamin Uekermann, now with Eindhoven University of Technology;
and Severin Reiz, TUM) as well as an Office were established (both at TUM).
Strategic decisions in SPPEXA were taken by the Steering Committee, consisting of
H.-J. Bungartz, W. E. Nagel, as well as Sabine Roller (Siegen), Christian Lengauer
(Passau), Hans-Peter Bunge (München), Dörte Sternel (Darmstadt), and—in the
second funding phase—Nahid Emad (France) and Takayuki Aoki (Japan). Finally,
a Scientific Advisory Board supported our activities and planning: George Biros
(University of Texas at Austin), Rupak Biswas (NASA), Klaus Becker (Airbus),
Rob Schreiber (at that time HP Labs), and Craig Stewart (University of Indiana at
Bloomington).
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4 SPPEXA Goes International

Extreme-scale HPC has always been an international endeavor. In 2010, as the
first call in the framework of the G8 Research Councils’ Initiative on Multilateral
Research Funding, the topic Application Software towards Exa-scale Computing
for Global Scale Issues had been selected. In the sequel of that initiative, the idea
arose to give SPPEXA in its second funding phase a more international flavor,
beyond the individual international partners present in some of the consortia. DFG’s
head office contacted several of their partner institutions in other countries. While
it turned out to be complicated to synchronize activities with the National Science
Foundation (NSF) in the U.S., the discussions with the French Agence Nationale
de la Recherche (ANR) and the Japan Science and Technology Agency (JST)
became very concrete. Finally, for the first time, a funding phase of a complete
DFG Priority Program was linked to funding formats from two other countries, and
the three agencies combined their forces in a joint call run by DFG. Due to formal
restrictions, two new types of SPPEXA consortia were open for application: bi-
national Japanese-German or tri-national French-Japanese-German ones.

Overall, the following French institutions participated in SPPEXA projects:
Université de Versailles, Université de Strasbourg, and Maison de la Simulation,
Saclay. From the Japanese side, the involved partner institutions involved were
RIKEN, Tokyo University of Technology, University of Tsukuba, University of
Tokyo, Tohoku University, Tokyo University of Science, and Toyo University.
Beyond research in the single consortia, one SPPEXA doctoral retreat was held in
France, and SPPEXA co-organized three French-Japanese-German workshops—the
first one 2017 in the French embassy in Tokyo, the second one in 2018 in the German
embassy in Tokyo, and the third one in 2019, again in the French embassy. The
first two focused on exa-scale computing, while the third one did a move towards
artificial intelligence (AI) and, in particular, addressed the convergence of AI and
HPC.

Further internationalization measures were the SPPEXA guest program, the
research stays for doctoral candidates (up to 3 months; overall 25 taken in funding
phase 2), and our PR activities at the big international meetings. For example,
SPPEXA organized panels or sessions at the Supercomputing Conference (SC) and
the International Supercomputing Conference (ISC HPC) and participated in the
session and poster exhibition on DFG-funded collaborative research at DATE 2019.

5 Joint Coordinated Activities

As mentioned above, SPPEXA featured a rich program of joint cross-consortium
activities (the following numbers refer to funding phase 2, 2016–2019):

Guests Overall, more than 85 guest researchers visited one or more SPPEXA
projects.
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Workshops Workshops were a particular format to foster exchange and collab-
oration across project consortia. Central funds had been established for that, and
each SPPEXA PI could hand in proposals (two calls per year). The proposal had to
depict how the cross-consortium effect was to be ensured (more than one organizing
consortium, etc.). Overall, 41 SPPEXA workshops, held at conferences or stand-
alone, were supported via this channel.

Doctoral Retreats The SPPEXA Doctoral Retreat had two main goals—first, to
offer an additional educational component to our doctoral candidates; second, to
overcome the sometimes narrow borders of research by connecting with interna-
tional researchers on a doctoral level (guest lectures, own contributions, hands-on
sessions, . . .). Overall, three doctoral retreats were organized: Strasbourg (2016),
Dresden (2017), and Wuppertal (2018).

Doctoral Research Stays Following the successful model of TUM Graduate
School, where each doctoral candidate university-wide can get funds for an
international research stay of up to 3 months, we encouraged our doctoral candidates
SPPEXA-wide to enrich their PhD phase with such an international component.
Overall, 25 such research interns were funded, examples for destinations being ETH
Zurich, NORCE Bergen, or University of Tennessee.

Gender Activities Looking at the gender situation in HPC, it is obvious that
the presence of women is even worse than in general in informatics. To improve
that situation and to provide a more open atmosphere, a couple of measures
were taken. At every Annual Plenary Meeting (2016, 2017, 2018, and 2019), we
organized gender trainings by external coaches to raise awareness of gender biases
in academia, each with 25 participants. Additionally, SPPEXA members organized
workshop-like events such as student MINT mentoring days (2016–2018) and
women’s networking events in 2019. Moreover, we connected to industry (Bosch
and IBM) via gender bias discussion days called “Equality at Exascale”. Exceptional
at this event was that not only women participated, but we had an ideal gender-parity
in participants.

Impact on Education As a side effect, HPC education also got a boost by
SPPEXA. Numerous lectures and lab courses were updated, and a lot of student
theses had topics directly related to SPPEXA projects.

Prizes During the second phase of SPPEXA, every year, the best student and
doctoral theses SPPEXA-wide were awarded a prize. Over the years, the winners
were:

2016: Klaudius Scheufele (Stuttgart, master’s thesis) and Benjamin Uekermann
(Munich, PhD thesis);

2017: Sebastian Schweikl (Passau, bachelor’s thesis), Simon Schwitanski (Aachen,
master’s thesis), and Moritz Kreutzer (Erlangen, PhD thesis);

2018/2019: Piet Jarmatz (Munich/Hamburg, master’s thesis) and Sebastian Kuckuk
and Christian Schmitt (Erlangen, PhD thesis).
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Support of Young Researchers For sustainability in academia, supporting young
aspiring researchers is indispensable. We took measures by funding research stays
for doctoral candidates and awarding prizes for exceptional theses. Additionally, we
also supported bachelor and master students for the student cluster competition at
the (international) supercomputing conferences SC and ISC HPC 2016–2019.

Public Relations Dissemination of research becomes more and more important.
Continuing efforts from the first phase, SPPEXA featured articles in the InSiDE
magazine, published by the GAUSS Center for Supercomputing, twice per year in
2016, 2017, and 2018 introducing one project each time. Furthermore, starting 2018,
SPPEXA contributed five articles to the online platform Science Node.2 Last, in
2018, SPPEXA also featured an article in the EU Research magazine.

Internationalisation See previous Sect. 4.

6 HPC Goes Data

The computational revolution goes on! Computers and sophisticated computational
methods have shaped the “third paradigm”, the third path to insight in science,
complementing the classical approaches, theory and experiment, but also building
a bridge and providing the missing link between those two. An early incarna-
tion of “computational” were numerical simulations, later expanded by so-called
“outer-loop scenarios”, in which repeated simulations allow for enhanced results:
optimization, parameter identification, stochastics, or uncertainty quantification.
All of this, basically, was model-driven, following a deductive regime of model
hypotheses and derivations from them. The latest appearance of “computational”
can be characterized by the focus on data: data-enhanced simulation, data analytics,
machine learning, or artificial intelligence. Instead of being based on models, this
approach is much more data-driven, following an inductive regime of collecting
data and drawing conclusions from them. In simplified words, the “data from
models” turned into, or was complemented by, a “models from data”. Despite
that shift of focus, the basic underlying principle did not change: state-of-the-art
computer systems and state-of-the-art computational methods are combined and
used to advance the frontier of science. Something new is maybe the fact that the
club of scientific domains that benefit from the “third paradigm” has become bigger:
While numerical simulation was, more or less, driven by natural, engineering, and
life sciences, the data-centered approach comprises all domains, including social
sciences and humanities.

Of course, this development has a huge impact on HPC. In particular, new fields
and new types of applications popped up, as well as new lines of architectures
and systems. For example, in 2018, the majority of finalists for the Gordon Bell

2https://sciencenode.org/feature/the-race-to-exascale.php.

https://sciencenode.org/feature/the-race-to-exascale.php


12 H.-J. Bungartz et al.

Award, the most renowned prize in HPC, already had a significant amount of
machine learning in their papers. World-wide, HPC centers observe an increasing
share of data-driven jobs on their machines. This is not surprising: as science
and science methodology evolve, the kind of studies done in that context also
does. Despite all those changes, the role of HPC is astonishingly stable: HPC is
a core enabling technology of “computational”. It was and still is an enabler of
numerical simulation, and it has become a crucial enabler of data analytics and
artificial intelligence. If artificial intelligence, machine learning, or deep learning
have become so popular recently, this is much more due to the fact that established
methodology can succeed due to HPC, than due to new AI/ML/DL methodology
itself.

These developments are also visible at the end of SPPEXA. Several consortia
already are on that “data-driven track”, as, for example, our third French-Japanese-
German workshop in Tokyo showed.

7 Shaping the Landscape

When SPPEXA started in 2013, the core idea was to significantly improve algo-
rithms, software, and tools, in order to be prepared for the exa-scale age. In the
meantime, we are at the eve of exa-scale systems, as the co-design developments
in the U.S. and in Japan (Fugaku) or the discussions in the European Union on
exa-scale and pre-exa-scale systems show. And research in SPPEXA has definitely
contributed to the application landscape in Germany being much closer to “exa-
scale-readiness” than before. Several leading application software packages were
involved, and significant progress in terms of scalability and parallel efficiency could
be achieved. Furthermore, and maybe even more important, the SPPEXA consortia
showed the advantages of the multi-disciplinary engagement, brought together a lot
of groups and ideas disconnected before, and, thus, justified the concept of larger,
cross-institutional, and cross-disciplinary teams instead of single-PI projects.

The visibility SPPEXA got is stunning. SPPEXA was present at the leading
international conferences (Euro-Par, Supercomputing, ISC HPC)—through individ-
ual presentations and special events, such as minisymposia or panels. But also at
“neighboring” events, such as the DATE 2019 (Design, Automation, and Test in
Europe), SPPEXA had a presentation slot and a booth. SPPEXA was involved in
the activities (workshops, white papers, etc.) of the BDEC Community (Big Data
and Extreme-Scale Computing) as well as in the organization of the Long Program
“Science at Extreme Scales: Where Big Data Meets Large-scale Computing” at the
Institute for Pure and Applied Mathematics (IPAM) in Los Angeles, and it co-
organized a French-Japanese-German workshop series in Tokyo (cf. the section
on internationalization). Thus, at an international scale, SPPEXA was generally
perceived as the “German player” in the HPC software concert.
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8 Concluding Remarks

Without any doubt, SPPEXA has written a success story: in terms of its research,
concerning the innovative funding format, with its multi-disciplinary approach, its
multi-national facets, and—last, but not least—its huge visibility. We are grateful for
all the support we got from the German Research Foundation (DFG): the funding,
but also for the encouragement during the preparation of SPPEXA and the continued
advice during its runtime.

Appendix 1: Qualification

The following achievements have been completed in the SPPEXA program within
1.1.2016 and 30.04.2020:

Projects Completed PhD theses Completed habilitations Calls to professorship

AIMES 0 0 1

ADA-FS 0 0 0

DASH 1 0 1

ESSEX 1 1 0

ExaDG 4 0 1

Exa-Dune 4 0 1

ExaFSA 2 0 0

EXAHD 3 0 0

EXAMAG 9 0 0

ExaSolvers 1 0 1

EXASTEEL 2 0 1

ExaStencils 5 2 4

ExtraPeak 3 0 0

FFMK 1 0 0

GROMEX 2 0 0

MYX 0 0 0

Terra-Neo 3 0 0

Coordination 1 1 2

Overall 43 3 12

The previous table follows the DFG requirements for final reports in priority
programs. At least 25 additional PhD candidates are close to being finished;
however, due to the lengthy defense procedure they are not counted here.

Also, please take into account that project consortia vary in size (regarding
Principal Investigators and PhD candidates) and their start/end date.
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Appendix 2: Software from Project Consortia

In the following, a table with links to software that has been developed by the project
consortia in SPPEXA Phase-II is given.

Project Software developed

AIMES SCIL

github.com/JulianKunkel/scil

ADA-FS GekkoFS

tu-dresden.de/zih/forschung/projekte/ada-fs

DASH DASH

www.dash-project.org/

ESSEX PHIST, GHOST, CRAFT, RACE, ScaMaC

bitbucket.org/essex/{PHIST, ..., RACE, matrixcollection}

ExaDG deal.II

github.com/dealii/dealii

EXA-Dune DUNE

gitlab.dune-project.org/exadune

ExaFSA preCICE

github.com/precice/precice

Ateles

apes.osdn.io/pages/ateles

EXAHD SG++
github.com/SGpp/SGpp

EXAMAG AREPO

arepo-code.org/

ExaSolvers utopia

bitbucket.org/zulianp/utopia/src/master/

EXASTEEL FE2TI

www.numerik.uni-koeln.de/14079.html

ExaStencils LFA Lab

hrittich.github.io/lfa-lab/

ExaSlang

i10git.cs.fau.de/exastencils/release

ExtraPeak Extra-P

www.scalasca.org/scalasca/software/extra-p/

FFMK FFMK

ffmk.tudos.org/

GROMEX GROMACS

www.gromacs.org

github.com/JulianKunkel/scil
tu-dresden.de/zih/forschung/projekte/ada-fs
www.dash-project.org/
bitbucket.org/essex/
github.com/dealii/dealii
gitlab.dune-project.org/exadune
github.com/precice/precice
apes.osdn.io/pages/ateles
github.com/SGpp/SGpp
arepo-code.org/
bitbucket.org/zulianp/utopia/src/master/
www.numerik.uni-koeln.de/14079.html
hrittich.github.io/lfa-lab/
i10git.cs.fau.de/exastencils/release
www.scalasca.org/scalasca/software/extra-p/
ffmk.tudos.org/
www.gromacs.org
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MYX MUST

doc.itc.rwth-aachen.de/display/CCP/Project+MUST

Terra-Neo HyTeG

i10git.cs.fau.de/hyteg/hyteg

waLBerla

www.walberla.net/

TerraNeo

terraneo.fau.de/

Appendix 3: Project Consortia Key Publications

This volume represents a continuation of the corresponding report in SPPEXA
Phase-I, which is referenced several times in the text above:

1. Bungartz, H.-J., Neumann, P., Nagel, W.E.: Software for Exascale Computing-
SPPEXA 2013–2015, vol. 113. Springer, Berlin (2016)

SPPEXA Phase-II showed visibility in the research community with numerous
publications. In the following we provide a list of two key publications for each
project consortium:3

AIMES
1. Jum’ah, N., Kunkel, J.: Performance portability of earth system models with

user-controlled GGDML code translation. In: International Conference on High
Performance Computing, pp. 693–710. Springer, Berlin (2018)

2. Kunkel, J., Novikova, A., Betke, E., Schaare, A.: Toward decoupling the
selection of compression algorithms from quality constraints. In: International
Conference on High Performance Computing, pp. 3–14. Springer, Berlin (2017)

ADA-FS
1. Vef, M.A., Moti, N., Süß, T., Tocci, T., Nou, R., Miranda, A., Cortes, T.,

Brinkmann, A.: GekkoFS—a temporary distributed file system for HPC appli-
cations. In: 2018 IEEE International Conference on Cluster Computing (CLUS-
TER), pp. 319–324. IEEE, Piscataway (2018)

2. Soysal, M., Berghoff, M., Klusáček, D., Streit, A.: On the quality of wall
time estimates for resource allocation prediction. In: Proceedings of the 48th
International Conference on Parallel Processing: Workshops, pp. 1–8. ACM,
New York (2019)

DASH
1. Kowalewski, R., Jungblut, P., Fürlinger, K.: Engineering a distributed histogram

sort. In: 2019 IEEE International Conference on Cluster Computing (CLUS-
TER), pp. 1–11. IEEE, Piscataway (2019)

3Following the DFG requirements for final reports in priority programs.

doc.itc.rwth-aachen.de/display/CCP/Project+MUST
i10git.cs.fau.de/hyteg/hyteg
www.walberla.net/
terraneo.fau.de/
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2. Fürlinger, K., Glass, C., Gracia, J., Knüpfer, A., Tao, J., HHünichnich, D.,
Idrees, K., Maiterth, M., Mhedheb, Y., Zhou, H.: DASH: data structures and
algorithms with support for hierarchical locality. In: European Conference on
Parallel Processing, pp. 542–552. Springer, Berlin (2014)

ESSEX
1. Pieper, A., Kreutzer, M., Alvermann, A., Galgon, M., Fehske, H., Hager, G.,

Lang, B., Wellein, G.: High-performance implementation of Chebyshev filter
diagonalization for interior eigenvalue computations. J. Comput. Phys. 325, 226–
243 (2016)

2. Röhrig-Zöllner, M., Thies, J., Kreutzer, M., Alvermann, A., Pieper, A., Baser-
mann, A., Hager, G., Wellein, G., Fehske, H.: Increasing the performance of the
Jacobi–Davidson method by blocking. SIAM J. Sci. Comput. 37(6), C697–C722
(2015)

ExaDG
1. Kronbichler, M., Kormann, K.: Fast matrix-free evaluation of discontinuous

Galerkin finite element operators. ACM Trans. Math. Softw. 45(3), 1–40 (2019)
2. Fehn, N., Wall, W.A., Kronbichler, M.: Efficiency of high-performance dis-

continuous Galerkin spectral element methods for under-resolved turbulent
incompressible flows. Int. J. Numer. Methods Fluids 88(1), 32–54 (2018)

EXA-Dune
1. Bastian, P., Engwer, C., Göddeke, D., Iliev, O., Ippisch, O., Ohlberger, M., Turek,

S., Fahlke, J., Kaulmann, S., Steffen Müthing, S., et al.: EXA-DUNE: flexible
PDE solvers, numerical methods and applications. In: European Conference on
Parallel Processing, pp. 530–541. Springer, Berlin (2014)

2. Engwer, C., Altenbernd, M., Dreier, N.A., Göddeke, D.: A high-level C++
approach to manage local errors, asynchrony and faults in an MPI application.
In: 2018 26th Euromicro International Conference on Parallel, Distributed and
Network-based Processing (PDP), pp. 714–721. IEEE, Piscataway (2018)

ExaFSA
1. Mehl, M., Uekermann, B., Bijl, H., Blom, D., Gatzhammer, B., Van Zuijlen,

A.: Parallel coupling numerics for partitioned fluid–structure interaction simula-
tions. Comput. Math. Appl. 71(4), 869–891 (2016)

2. Totounferoush, A., Pour, N.E., Schröder, J., Roller, S., Mehl, M.: A new load
balancing approach for coupled multi-physics simulations. In: 2019 IEEE Inter-
national Parallel and Distributed Processing Symposium Workshops (IPDPSW),
pp. 676–682. IEEE, Piscataway (2019)

EXAHD
1. Obersteiner, M., Hinojosa, A.P., Heene, M., Bungartz, H.J., Pflüger, D.: A

highly scalable, algorithm-based fault-tolerant solver for gyrokinetic plasma
simulations. In: Proceedings of the 8th Workshop on Latest Advances in Scalable
Algorithms for Large-Scale Systems, pp. 1–8 (2017)
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2. Hupp, P., Heene, M., Jacob, R., Pflüger, D.: Global communication schemes for
the numerical solution of high-dimensional PDEs. Parallel Comput. 52, 78–105
(2016)

ExaSolvers
1. Benedusi, P., Garoni, C., Krause, R., Li, X., Serra-Capizzano, S.: Space-time

FE-DG Discretization of the anisotropic diffusion equation in any dimension:
the spectral symbol. SIAM J. Matrix Anal. Appl. 39(3), 1383–1420 (2018)

2. Kreienbuehl, A., Benedusi, P., Ruprecht, D., Krause, R.: Time-parallel gravita-
tional collapse simulation. Commun. Appl. Math. Comput. Sci. 12(1), 109–128
(2015)

ExaStencils
1. Köstler, H., Schmitt, C., Kuckuk, S., Kronawitter, S., Hannig, F., Teich, J., Rüde,

U., Lengauer, C.: A scala prototype to generate multigrid solver implementations
for different problems and target multi-core platforms. Int. J. Comput. Sci. Eng.
14(2), 150–163 (2017). https://doi.org/10.1504/IJCSE.2017.082879

2. Schmitt, C., Kronawitter, S., Hannig, F., Teich, J., Lengauer, C.: Automating the
development of high-performance multigrid solvers. Proc. IEEE 106(11), 1969–
1984 (2018)

ExtraPeak
1. Shudler, S., Calotoiu, A., Hoefler, T., Wolf, F.: Isoefficiency in practice: config-

uring and understanding the performance of task-based applications. In: ACM
SIGPLAN Notices, vol. 52, pp. 131–143. ACM, New York (2017)

2. Calotoiu, A., Hoefler, T., Poke, M., Wolf, F.: Using automated performance
modeling to find scalability bugs in complex codes. In: Proceedings of the
International Conference on High Performance Computing, Networking, Storage
and Analysis, p. 45. IEEE, Piscataway (2013)

FFMK
1. Weinhold, C., Lackorzynski, A., Härtig, H.: FFMK: an HPC OS based on

the L4Re microkernel. In: Operating Systems for Supercomputers and High
Performance Computing, pp. 335–357. Springer, Berlin (2019)

2. Gholami, M., Schintke, F.: Multilevel checkpoint/restart for large computational
jobs on distributed computing resources. In: IEEE 38th Symposium on Reliable
Distributed System (SRDS) (2019)

GROMEX
1. Beckmann, A., Kabadshow, I.: Portable node-level performance optimization for

the fast multipole method. In: Recent Trends in Computational Engineering-
CE2014, pp. 29–46. Springer, Berlin (2015)

2. Kutzner, C., Páll, S., Fechner, M., Esztermann, A., de Groot, B.L., Grubmüller,
H.: More bang for your buck: Improved use of GPU nodes for GROMACS 2018.
J. comput. chem. 40(27), 2418–2431 (2019)

https://doi.org/10.1504/IJCSE.2017.082879
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MYX
1. Protze, J., Tsuji, M., Terboven, C., Dufaud, T., Murai, H., Petiton, S., Emad, N.,

Müller, M., Boku, T.: Myx—runtime correctness analysis for multi-level parallel
programming paradigms. In: Software for Exascale Computing: SPPEXA 2016–
2019. Lecture Notes in Computational Science and Engineering. Springer, Berlin
(2020)

2. Protze, J., Schulz, M., Ahn, D.H., Müller, M.S.: Thread-local concurrency: a
technique to handle data race detection at programming model abstraction. In:
Proceedings of the 27th International Symposium on High-Performance Parallel
and Distributed Computing, pp. 144–155 (2018)

Terra-Neo
1. Bauer, S., Huber, M., Ghelichkhan, S., Mohr, M., Rüde, U., Wohlmuth, B.:

Large-scale simulation of mantle convection based on a new matrix-free
approach. J. Comput. Sci. 31, 60–76 (2019)

2. Huber, M., Gmeiner, B., Rüde, U., Wohlmuth, B.: Resilience for massively
parallel multigrid solvers. SIAM J. Sci. Comput. 38(5), S217–S239 (2016)
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A Perspective on the SPPEXA
Collaboration from France

Nahid Emad

As the French member of the Steering Committee of SPPEXA, it is my great
pleasure to give a short address to this volume from the perspective of the
French partners in this German-French-Japanese cooperation. To highlight the
types of software supported by SPPEXA, we first present a classification of high-
performance software types. We then take a look at the recent activities of HPC
software in France under the SPPEXA umbrella. Next, some local impacts of the
SPPEXA collaboration on the French HPC community is provided, and lastly, an
outlook to future collaborations.

1 HPC Software in Three Phases

High-performance numerical software targets at obtaining relevant scalability in
space and time for large-size applications by using a large number of cores/pro-
cessors/nodes of powerful computers. They can be classified into three phases:
pre-treatment, treatment, and post-treatment. Obviously, such a software often
belongs to more than one of the categories mentioned.

Pre-processing Software The precise definition of these phases depends on the
context, but the main role of pre-treatment software is the preparation of the
input data for the treatment phase. This preparation sometimes consists of a rather
complex parallel algorithmic and programming processing. Big data compression,
uniform data formatting, and conditioning improvement of data matrices are some
examples of the pre-treatment phase.
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Treatment Software The HPC software in the processing phase concerns mainly
high-performance numerical simulation of physical phenomena, social networks,
etc. These softwares could be classified as (1) “standard” libraries and (2) ad-hoc
libraries done by application field programmers, which implement their application
by making use of building blocks (partially or totally) of the libraries of class (1).
The latter implement numerical methods with the main parallel/distributed program-
ming methodologies, such as ScaLAPACK, PETSc, SLEPc, ATLAS, etc. In the
fields of application , HPC ad-hoc software targets epidemiology, electromagnetism,
gamma astronomy, safety, or health and nutrition. Some ad-hoc software examples
are CEDRE which targets simulation for energy and propulsion, CELESTIA and
STELLARIUM which is a space simulator and a planetarium for observing the solar
system and the rest of the universe in real time and in 3D, GAUSS, which is a flexible
platform for data analysis, and AREPO, which is a cosmological hydrodynamical
simulation code on a dynamic unstructured mesh.

Post-processing Software Post-processing software essentially involves the anal-
ysis, visualization, and performance evaluation of the treatment phase results.
Some examples of such software are ParaView (a multi-platform data analysis and
visualization application), VisIt (an interactive platform for visualization, animation
and data analysis), MAQAO (sets of software tools for code optimization in the
core or node level of a parallel architecture), and Maya (a software for modeling,
simulation, and 3D animation).

All these software packages generally translate a physical phenomenon, social
behaviour, etc. into mathematical equations. Their high-performance implementa-
tion on parallel and/or distributed systems is a delicate task and requires a huge
ecosystem with people having interdisciplinary skills. This makes the existence
and use of accompanying software necessary, which provides the logistics of high-
performance computing. These software frameworks provide the environment for
high-performance programming and often conceal the complexity of underlying
parallel and/or distributed architectures. As a consequence this allows the users to
focus on main objectives. MPI, OpenMP, Globus, Condor, XMP, YML, MUST, etc.
are very few examples of this kind of software.

2 Trilateral Projects in SPPEXA and Their Impact

SPPEXA targeted fundamental research on different aspects of HPC software and
covered software categories cited before with a co-design approach. Thanks to
ANR, DFG, and JST, the trilateral French/German/Japanese projects have been
funded within SPPEXA. Some of these projects, such as MYX, have benefited
from pre-existing bilateral collaborations. This allowed a dynamical and productive
work from the beginning and for a rapid progress towards the objectives set. In
addition to project meetings, the cross-project SPPEXA workshops have given a
new dynamic to the trilateral collaborations paving the way for the organization of
other conferences, workshops or seminars.
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The EXAMAG (Exascale Simulations of the Magnetic Universe) project is an
example of an SPPEXA trilateral French/German/Japanese project with the aim of
improving the astrophysical moving-mesh code AREPO and extending its range
of applicability for high scale computing platforms. EXAMAG is an ad-hoc HPC
software of the processing category of the classification given in the previous
section.

MYX (MUST Correctness Checking for YML and XMP Programs) also is a
trilateral French/German/Japanese project which aims to offer a guideline how to
limit the risk to introduce errors and how to best express the parallelism to catch
errors at runtime. From a practical viewpoint, MYX aims at the design and the
application of a scalable correctness checking tool MUST to YML and XMP. In
the MYX project, the main developed software packages (YML, XMP and MUST)
belong to the last category of HPC software; the ones providing the logistics of high-
performance application programs. However, in order to validate the design and
development of these softwares, many other benchmarks and/or real applications
are developed. Among them are the multiple restarted Krylov methods/HPCS ad-
hoc, matrix generator/pretreatment , epidemic HPCS ad-hoc, etc.

The SPPEXA funding of workshops with several projects involved added an
extra dimension of interdisciplinarity. In collaboration with the DASH and ESSEX-
II projects, MYX members organized four trilateral (German/Japanese/French)
workshops. Two of them have been hold at university of Paris Saclay/Versailles
in France. With the prominent invited speakers and the talks of SPPEXA-involved
project members, these workshops have been very attractive (40 and 60 attendees,
respectively). An important number of indirect outcomes of SPPEXA activities
(workshops, “open” trilateral meetings, doctoral retreats, etc.) generated new
connections between German and French colleagues and students. A few examples
are� the review of the PhD dissertation of a non-SPPEXA funded French student by
Sabine Roller, professor at Siegen University, Germany,� Xinzhe Wu, who finished
recently his PhD, funded by ANR part of ANR/DFG/JST MYX project and, who
is currently in a post-doctoral position at Jülich Research Centre in Germany, �
M.A. Diop, currently PhD student, funded by a French CIFRE followship (with
ATOS/EVIDIAN company), who participated in SPPEXA doctoral retreats as well
as several SPPEXA workshops, � a workhop organised by Sabine Roller and Nahid
Emad at HPC Asia, or a large number of BSc and MSc students benefiting from the
collaboration.

3 What Will Be Next?

The on-going convergence between machine learning, data analysis, and high-
performance computing is creating new algorithmic and co-design approaches that
need to be taken into account for the future. With the three tri-national workshops
in Tokyo, SPPEXA has contributed to this on-going development, and we are all
looking forward to a continued collaboration in the future.
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A Perspective on the SPPEXA
Collaboration from Japan

Takayuki Aoki

A national research project was running in Japan from 2010 to 2017 named “Devel-
opment of System Software Technologies for Post-Peta Scheme High Performance
Computing” (so called Post-Peta CREST) . It was supported by JST (Japan Science
and Technology Agency), which is the Japanese counterpart to DFG (“Deutsche
Forschungsgemeinschaft”). The Post-Peta CREST project was similar to the first
funding phase of SPPEXA in the sense that it had a primarily national scope.
Then, the Post-Peta CREST project opened up to international collaboration, and
some projects were extended for two more years, where they formed collaborative
research groups with SPPEXA phase-II projects. Projects with contributions from
Japan are ExaFSA, ExaStencils, EXAMAG, ESSEX-II, EXASOLVERS, AIMES, and
MYX, with more than 10 researchers in the second phase of SPPEXA. To highlight
the success of the Japanese collaboration with SPPEXA, we have a brief look at two
working groups.

ppOpen-HPC and ESSEX-II

As a part of Post-Peta CREST projects between 2011 and 2015, a group at the
University of Tokyo developed ppOpen-HPC, which is an open source infrastructure
for the development and execution of optimized and reliable simulation code on
post-peta-scale (pp) parallel computers based on many-core architectures. The
framework covers various types of procedures for scientific computations in various
types of computational models, such as FEM, FDM, FVM, BEM, and DEM.
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Automatic tuning (AT) technology enables automatic generation of optimized
libraries and applications under various types of environments. The most updated
version of ppOpen-HPC was released as open source software, which is available at
https://github.com/Post-Peta-Crest/ppOpenHPC.

In 2016, the team of ppOpen-HPC joined the SPPEXA phase-II project ESSEX-
II including members from the University of Erlangen-Nuremberg, which is funded
by JST-CREST and SPPEXA under Japan (JST)-Germany (DFG) collaboration
until 2018. ESSEX-II developed pK-Open-HPC (extended version of ppOpen-HPC,
a framework for exa-feasible applications), such as preconditioned iterative solvers
for quantum science.

Sparse coefficient matrices derived from applications in quantum science have
generally relatively very small diagonal components, and they are generally ill-
conditioned. Therefore, it is difficult to apply preconditioned iterative methods
developed in ppOpen-HPC directly to such applications. The ESSEX-II team
developed a regularization method for robustness based on blocking and diagonal
shifting, which provide efficient and robust convergence of ill-conditioned problems
in quantum science. Preconditioning methods with the regularization method are
implemented in GHOST/PHIST libraries for solving matrices, which integrates
all linear solvers and related methods developed in ESSEX/ESSEX-II projects.
Moreover, they proposed a new method for global parallel reordering, which
provides robust and efficient convergence of parallel iterative solvers with ILU-
based preconditioning for very ill-conditioned problems. The developed method
kept iteration number constant in strong scaling cases up to O(104) MPI processes
for very ill-conditioned problems. This is the first method for global parallel
reordering.

In the ESSEX-II project, CRAFT (A library for application-level Check-
point/Restart and Automatic Fault Tolerance) has been developed for fault resilience
on exascale systems by checkpointing. ESSEX-II integrated the dynamic load
balancing function and CRAFT, and developed a prototype of a fault-resilient
framework for parallel FEM applications. Parallel FEM codes can continue
computations by this framework, when some of the computing nodes fail. This
framework does not need spare nodes for fault resilience. This idea can be extended
to various types of procedures for dynamic scheduling on exascale systems.

Collaborations in ESSEX-II project have been continuing in the JHPCN projects
(“Numerical Library with High-Performance/Adaptive-Precision/High-Reliability”
(starting in 2018), “Innovative Multigrid Methods” (starting in 2018)), and in
“Innovative Methods for Scientific Computing in the Exascale Era by Integrations
of (Simulation+Data+Learning)” funded by “Grant-in-Aid for Scientific Research
(S) (KAKENHI S)” (2019-2023)
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Xevolver and ExaFSA

The so-called Xevolver project is one of the Post-Peta CREST projects from 2011
to 2017. A group at the Tohoku University discussed how they could help in legacy
code migration to future-generation extreme-scale computing systems that will be
massively parallel and heterogeneous. Even today an HPC application code is likely
optimized assuming a particular system configuration, and hence specialized only
for its target system. In general, such an application is not performance-portable
at all. As the HPC system architectures are now diverging and also getting more
complicated in terms of accelerators, it will require more time and effort to migrate
or re-optimize the code to another system in the future. To make matters worse,
system-specific code optimizations are tightly interwoven with the computation
and thereby degrade the code readability and maintainability, even though HPC
applications need to evolve not only for achieving high performance, but also for
advancing computational science. Therefore, in the project, our team has developed
a code transformation framework, Xevolver, so that users can define their own
code transformations and thus express system-specific code optimizations as code
transformation rules. Since code transformation rules can be defined separately from
application codes themselves, the Xevolver framework can contribute to separation
of system-specific performance concerns from application codes, and hence prevent
overcomplicating the codes.

In 2016, core members of the Xevolver research team joined the second phase of
the ExaFSA project in order to demonstrate that the Xevolver approach is effective
for optimizing real-world applications in practice. The Xevolver approach assumes
that an HPC application is developed by a team work of at least two kinds of
programmers. One is application developers and the other is performance engineers.
Application developers are interested in simulation results rather than performance,
while performance engineers are mainly focusing on sustained simulation perfor-
mance. Therefore, Japanese researchers have worked as performance engineers
using Xevolver by considering German research groups as application developers.

The ExaFSA project focused on engineering two solvers, FASTEST and Ateles,
which have been developed in the ExaFSA project as primary building blocks of a
practical coupled simulation. An incompressible flow solver, FASTEST, has a long
history of development and was once optimized for classic vector machines. Thus,
some of important kernels still have two versions, default version and its vector-
optimized version. In the ExaFSA project, hence, they used the Xevolver framework
to express the differences between the two versions, and demonstrated that the
vector-optimized version can be generated by transforming the default version.
That is, the Xevolver approach can express the system-specific code optimizations
as code transformation rules, and thus even simplify the code while achieving
high performance and portability. Ateles is based on based on Discontinuous
Galerkin (DG) discretization method, and a part of the simulation framework,
APES, was developed at the University of Siegen in Germany. Unlike FASTEST,
Ateles is written using modern Fortran language features to hide the implementation
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details. However, the kernel loops still need to be optimized in different ways for
individual system architectures to achieve high performance. For example, some
loop optimizations with compiler directives are mandatory for the NEC SX-ACE
vector computing system to properly vectorize and thus efficiently execute the
loops. In this project, Xevolver is used to apply the loop optimizations without
major modifications of the original code. Accordingly, the ExaFSA project was a
very good opportunity for us to demonstrate that the Xevolver approach can help
an appropriate division of labor between application developers and performance
engineers by achieving separation of concerns. This clarification of role-sharing will
be very helpful for long-term application development especially in an upcoming
extreme-scale computing era.

The Role of Japan in HPC Collaborations

The SPPEXA program was unique in the sense that it established sustainable
connections in the field of HPC between France, Germany, and Japan. With the
supercomputing infrastructure in Japan (and its upcoming flagship supercomputer
Fugaku), the three countries are suitable partners for portability and methodology
comparisons and, thus, synergistic research developments (such as within SPPEXA
connection).

A new field of interest in Japan, Germany, and France is data science and its
connection to HPC. SPPEXA participated in the tri-lateral workshop in Tokyo
“Convergence of HPC and Data Science for Future Extreme Scale Intelligent
Applications”, where we discussed new possible collaborations in the fields of HPC
and Big Data. Looking back at SPPEXA, we see many success stories, and hope for
a lot of continuing collaborations.
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ADA-FS—Advanced Data Placement via
Ad hoc File Systems at Extreme Scales

Sebastian Oeste, Marc-André Vef, Mehmet Soysal, Wolfgang E. Nagel,
André Brinkmann, and Achim Streit

Abstract Today’s High-Performance Computing (HPC) environments increasingly
have to manage relatively new access patterns (e.g., large numbers of metadata
operations) which general-purpose parallel file systems (PFS) were not optimized
for. Burst-buffer file systems aim to solve that challenge by spanning an ad hoc file
system across node-local flash storage at compute nodes to relief the PFS from such
access patterns. However, existing burst-buffer file systems still support many of the
traditional file system features, which are often not required in HPC applications, at
the cost of file system performance.

The ADA-FS project aims to solve that challenge by providing a temporary burst-
buffer file system—GekkoFS—which relaxes POSIX, based on previous usage
studies of how HPC applications use file systems. Due to a highly distributed and
decentralized design GekkoFS reaches scalable data and metadata performance with
tens of millions of metadata operations per second on a 512 node cluster. The
ADA-FS project further investigated the benefits of using ad hoc file systems and
how they can be integrated into the workflow of supercomputing environments. In
addition, we explored how to gather application-specific information to optimize the
file system for an individual application.
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1 Introduction

Application-imposed workloads on High-Performance computing (HPC) environ-
ments have considerably changed in the past decade. While traditional HPC applica-
tions have been compute-bound, large-scale simulations, today’s HPC applications
are also generating, processing, and analyzing massive amounts of experimen-
tal data—known as data-driven science applications—affecting several scientific
fields. Some of which have already made significant progress in previously unad-
dressable challenges due to newly discovered techniques [27, 55].

Many data-driven workloads are based on new algorithms and data structures
which impose new requirements on HPC file systems [45, 77]. Particularly, large
numbers of metadata operations, data synchronization, non-contiguous and random
access patterns, and small I/O requests [14, 45], used in data-driven science
applications, are challenging for today’s general-parallel file systems (PFSs) to
handle since past workloads mostly perform sequential I/O operations on large
files. Not only are such applications disruptive to the shared storage system but
also heavily interfere with other applications which access the same shared storage
system [18, 68]. As a result, many workloads which impose these new types of I/O
operations suffer from prolonged I/O latencies, reduced file system performance,
and occasional long wait times.

Software-based approaches, e.g., application modifications or middleware and
high-level libraries [21, 39], and hardware-based approaches, moving from mag-
netic disks to NAND-based solid-state drives (SSDs) within PFSs, are attempts to
mitigate the impact of these new access patterns on the HPC system. However,
software-based approaches often suffer from time-consuming adaptations within
applications and are sometimes (based on the underlying algorithms) even impos-
sible to adapt to. One of the hardware-based approaches leverages on, nowadays,
existing SSDs, installed within a compute node, in order to use them as node-
local burst buffers. To achieve high metadata performance, they can be deployed
in combination with a dynamic burst buffer file system [5, 78]. Nonetheless, existing
burst buffer file systems have been mostly POSIX compliant which can severely
reduce a file system’s peak performance [75].

The ADA-FS project, funded by the German Research Foundation (DFG)
through the Priority Programme 1648 “Software for Exascale Computing”, aims
to further explore the possibilities of burst buffer file systems in this context while
investigating how they can be used in a modern HPC system. The developed burst
buffer file system—GekkoFS—acts as ADA-FS’ main component. GekkoFS is a
temporarily deployed, highly-scalable distributed file system for HPC applications
which aims to accelerate I/O operations of common HPC workloads that are
challenging for modern PFSs. As such, it can be used in several temporary use cases,
such as the lifetime of a compute job or in longer-term use cases, e.g., campaigns.
Unlike previous works on burst buffer file systems, it relaxes POSIX by removing
some of the semantics that most impair I/O performance in a distributed context
and takes previous studies on the behavior of HPC applications into account [37] to
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optimize the most used file system operations. As a result, GekkoFS reaches scalable
data and metadata performance with tens of millions of metadata operations per
second on a 512 node cluster while still providing strong consistency for file system
operations that target a specific file or directory. In fact, due to its highly distributed
and decentralized file system design, GekkoFS is built to perform on even bigger
supercomputers, as exascale environments are right around the corner.

While GekkoFS provides the core building block within ADA-FS, it relies and
benefits from further information of the application it is used with. Application-
specific information that we gather can then further optimize the file system (e.g.,
the used file system block size) and therefore may increase the file system’s
performance in terms of latency and throughput. In addition, the ADA-FS project
investigated how such a temporary and on demand burst buffer file system can be
integrated into the workflow of batch systems in supercomputing environments.
Although it is hard to reliably predict when compute jobs finish to prematurely
deploy GekkoFS for a following ADA-FS job, for instance, we investigated and
showed the benefits of on demand burst buffer file systems concerning both
application performance and the reduction of the PFS load as a result of using such
a file system.

The article is structured as follows: first, we describe GekkoFS’ design and its
evaluation of nowadays common and challenging HPC workloads on a 512 node
cluster in Sect. 2. Section 3 discusses the existing challenges when data is staged
in advance and how we solved the challenge, through implementing a plugin for
the batch system. Section 4 discusses how we can detect system resources like the
amount of node local storage or the NUMA configuration of a node which can be
used for the deployment of the GekkoFS file system even on heterogenous compute
nodes. In Sect. 5 we show how the option for an on demand file system, can be added
to an HPC system. We follow with an evaluation of the performance of GekkoFS
for new NVME based storage systems in Sect. 6. Finally, we conclude in Sect. 7.

2 GekkoFS—A Temporary Burst Buffer File System
for HPC

In this section, we present the main component of ADA-FS—GekkoFS. GekkoFS
is a temporarily deployed, highly-scalable burst buffer file system for HPC appli-
cations. In general, the goal of GekkoFS is to accelerate I/O operations in common
HPC workloads that are challenging for modern PFSs while offering the combined
storage capabilities of node-local storage devices. Further, it does not only aim for
providing scalable I/O performance, but, in particular, focuses on offering scalable
metadata performance by departing from traditional ways of handling metadata in
distributed file systems. To provide a single, global namespace, accessible to all file
system nodes, the file system pools together fast node-local storage resources of all
participating file system nodes.
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Based on previous studies [37] on the behavior of HPC applications, GekkoFS
relaxes or removes some of the POSIX semantics, known to heavily impact I/O
performance in a distributed environment. As a result, it is able to optimize for the
most used file system operations, achieving tens of millions of metadata operations
per second on a 512 node cluster. At the same time, GekkoFS is able to run complex
applications, such as OpenFOAM solvers [32], and since the file system runs in user-
space and it can be easily deployed in under 20 s on a 512 node cluster, it is usable
by any user. Consequently, GekkoFS can be used for several use cases which require
an ephemeral distributed file system, such as during the lifetime of a compute job or
campaigns where data is simultaneously accessed by many nodes in short bursts.

Parts of this section’s contents is build on the conference paper by the authors M.-
A. Vef et al. [72] and the journal article by the authors M.-A. Vef et al. [71] which
both discuss each of the system components of GekkoFS in more detail and provide
an in-depth investigation into the performance of GekkoFS compared to other file
systems in various HPC environments. First, Sect. 2.1 provides a background on
parallel and distributed file systems and discusses some of the related work in the
context of burst buffer file systems. Section 2.2 presents the file system’s core
architecture and design to achieve scalable data and metadata performance in a
distributed environment. Finally, in Sect. 2.3 we demonstrate GekkoFS data and
metadata performances.

2.1 Related Work

In this section, we give an overview over existing HPC file systems and discuss the
differences to GekkoFS.

2.1.1 General-Purpose Parallel File Systems

Most HPC systems are equipped with a backend storage system which is globally
accessible using a parallel file system (e.g., GPFS [57], Lustre [7, 53], BeeGFS [26],
or PVFS [56]). These file systems offer a POSIX-like interface and focus on data
consistency and long-term storage. However, due to the nature of the file system
being globally accessible, single applications can disrupt the I/O performance of
other applications as well. In addition, these file systems are not well suited for small
file accesses, in particular on shared files, often found in scientific applications [45].

The design of GekkoFS does not focus on long-term storage and aims for
temporary use cases, such as in the context of compute jobs or campaigns. In
addition, since GekkoFS relaxes POSIX semantics, it is able to provide a significant
increase in metadata performance.
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2.1.2 Node-Local Burst Buffers

Burst buffers are fast, intermediate storage systems that aim to reduce the load on
the global file system and on reducing an applications’ I/O overhead [38]. Such
burst buffers can be categorized into two groups [78]: remote-shared and node-
local. Remote-shared burst buffers are generally dedicated I/O nodes to forward
application I/O to the underlying PFS, e.g., DDN’s IME1 and Cray’s DataWarp.2

Node-local burst buffers, on the other hand, are collocated with compute nodes,
using existing node-local storage. This node-local storage is then used to create a
(distributed) file system which spans over a number of nodes for the lifetime of a
compute job, for example. Node-local burst buffers can also be dependent on the
PFS (e.g., PLFS [5]) or are sometimes even managed directly by the PFS [49].

BurstFS [78], perhaps the most related work to ours, is a standalone burst buffer
file system which does not require a centralized instance as well. However, GekkoFS
is not limited to writing data locally like BurstFS. Instead, all data is distributed
across all participating file system nodes to balance data workloads for write and
read operations without sacrificing scalability. BeeOND [26] can create a job-
temporal file system on a number of nodes similar to GekkoFS. BeeOND is, in
contrast to our file system, POSIX compliant and our GekkoFS measurements show
a much higher metadata throughput than offered by BeeOND [69, 71].

2.1.3 Metadata Scalability

The management of inodes (containing a file’s metadata) and related directory
blocks (containing data about which files belong to the directory) are the main
scalability limitations of file systems in a distributed environment [73]. Typically,
general-purpose PFSs distribute data across all available storage targets. While
this technique works well for data, it does not achieve the same throughput when
handling metadata [11, 54], although the file system community presented various
techniques to tackle this challenge [5, 22, 50, 51, 79, 80]. The performance limitation
can be attributed to the sequentialization enforced by underlying POSIX semantics
which is particularly degrading throughput when an extremely large number of files
is created in a single directory from multiple processes. This workload, common
to HPC environments [5, 49, 50, 74], can become an even bigger challenge for
upcoming data-science applications. GekkoFS handles directories and replaces
directory entries by objects, stored within a strongly consistent key-value store
which helps to achieve tens of millions of metadata operations for billions of files.

1IME: https://www.ddn.com/products/ime-flash-native-data-cache/.
2Datawarp: https://www.cray.com/datawarp.

https://www.ddn.com/products/ime-flash-native-data-cache/
https://www.cray.com/datawarp
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2.2 Design

In this section, we present goals, architecture, and general design of GekkoFS
which allows scalable data and metadata performance. In general, any user without
administrative access should be able to deploy GekkoFS. The user dictates on
how many compute nodes and at which path the mountpoint of GekkoFS and
its metadata and data is stored. The user is then presented with a single global
namespace, consisting of the aggregated node-local storage of each node. To provide
this functionality GekkoFS aims to achieve four core goals:

Scalability: GekkoFS should be able to scale with an arbitrary number of nodes
and efficiently use available hardware.

Consistency model: GekkoFS should provide the same strong consistency as
POSIX for common file system operations that access a specific data file.
However, the consistency of directory operations, for example, can be relaxed.

Fast deployment: To avoid wasting valuable and expensive resources in HPC
environments, the file system should startup within a minute and be ready for
usage immediately by applications after the startup succeeds.

Hardware independence: GekkoFS should be able to support networking hard-
ware that is commonly used in HPC environments, e.g., Omni-Path or Infiniband.
The file system should be able to use the native networking protocols to
efficiently move data between file system nodes. Finally, GekkoFS should work
with modern and future storage technologies that are accessible to a user at an
existing file system path.

2.2.1 POSIX Semantics

Similarly to PVFS [12] and OrangeFS [42], GekkoFS does not provide complex
global locking mechanisms. In this sense, applications should be responsible to
ensure that no conflicts occur, in particular, concerning overlapping file regions.
However, the lack of distributed locking has consequences for operations where the
number of affected file system objects is unknown beforehand, e.g., readdir()
called by the ls -l command. In these indirect file system operations, GekkoFS
does not guarantee to return the current state of the directory and follows the
eventual-consistency model. Furthermore, each file system operation is synchronous
without any form of caching to reduce file system complexity and to allow for an
evaluation of its raw performance capabilities.

Further, GekkoFS does not support move or rename operations or linking
functionality as HPC application studies have shown that these features are rarely
or not used at all during the execution of a parallel job [37]. Such unsupported file
system operations then trigger an I/O error to notify an application. Finally, security
management in the form of access permissions is not maintained by GekkoFS since
it already implicitly follows the security protocols of the node-local file system.
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Fig. 1 GekkoFS architecture

2.2.2 Architecture

The architecture of GekkoFS (see Fig. 1) consists of two main components: a client
library and a server process. An application that uses GekkoFS must first preload the
client interposition library which intercepts all file system operations and forwards
them to a server (GekkoFS daemon), if necessary. The GekkoFS daemon, which runs
on each file system node, receives forwarded file system operations from clients and
processes them independently, sending a response when finished. In the following
paragraphs, we describe the client and daemon in more detail.

2.2.3 GekkoFS Client

The client consists of three components: (1) An interception interface that catches
relevant calls to GekkoFS and forwards unrelated calls to the node-local file system;
(2) a file map that manages the file descriptors of open files and directories,
independently of the kernel; and (3) an RPC-based communication layer that
forwards file system requests to local/remote GekkoFS daemons.

Each file system operation is forwarded via an RPC message to a specific daemon
(determined by hashing of the file’s path, similar to Lustre DNE 23 ) where it is
directly executed. In other words, GekkoFS uses a pseudo-random distribution to
spread data and metadata across all nodes, also known as wide-striping. Because
each client is able to independently resolve the responsible node for a file system
operation, GekkoFS does not require central data structures that keep track of where
metadata or data is located. To achieve a balanced data distribution for large files,

3https://lustre.ornl.gov/ecosystem-2016/documents/papers/LustreEco2016-Simmons-DNE.pdf.

https://lustre.ornl.gov/ecosystem-2016/documents/papers/LustreEco2016-Simmons-DNE.pdf
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data requests are split into equally sized chunks before they are distributed across
file system nodes (or GekkoFS daemons). The GekkoFS daemons then store each
received chunk in a separate file (so-called chunk files) in its underlying node-
local storage. If supported by the underlying network fabric protocol, the client
exposes the relevant chunk memory region to the daemon, accessed via remote-
direct-memory-access (RDMA).

2.2.4 GekkoFS Daemon

GekkoFS daemons consist of three parts: (1) A key-value store (KV store) used
for storing metadata; (2) an I/O persistence layer that reads/writes data from/to the
underlying local storage system; and (3) an RPC-based communication layer that
accepts local and remote connections to handle file system operations.

Each daemon operates a single local RocksDB KV store [17]. RocksDB is
optimized for NAND storage technologies with low latencies and fits GekkoFS’
needs as SSDs are primarily used as node-local storage in today’s HPC clusters.
While RocksDB fits this use case well, the component is replaceable by other
software or hardware solutions. Therefore, GekkoFS may introduce various choices
for backends in the future to, for example, support recent key-value SSDs4

For the communication layer, we leverage on the Mercury RPC framework [62].
It allows GekkoFS to be network-independent and to efficiently transfer large data
within the file system. Within GekkoFS, Mercury is interfaced indirectly through
the Margo library which provides Argobots-aware wrappers to Mercury’s API with
the goal to provide a simple multi-threaded execution model [13, 58]. Using Margo
allows GekkoFS daemons to minimize resource consumption of Margo’s progress
threads and handlers which accept and handle RPC requests [13].

Further, as indicated in Sect. 2.1.3, GekkoFS does not use a global locking man-
ager. Therefore, when multiple processes write to the same file region concurrently,
they may cause a shared write conflict with resulting undefined behavior with
regards to which data is written to the underlying node-local storage. Such conflicts
can, however, be handled locally by any GekkoFS daemon because it is using a
POSIX-compliant node-local file system to store the corresponding data chunks,
serializing access to the same chunk file. Note that such conflicts in a single file
only affect one chunk at a time since the file’s data is spread across many chunk
files in the file system. As a result, chunks of that file are not disrupted during such
a potential shared write conflict.

4https://www.samsung.com/semiconductor/global.semi.static/Samsung_Key_Value_SSD_enables
_High_Performance_Scaling-0.pdf.

https://www.samsung.com/semiconductor/global.semi.static/Samsung_Key_Value_SSD_enables_High_Performance_Scaling-0.pdf
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2.3 Evaluation

In this section, we evaluate the performance of GekkoFS based on various unmod-
ified microbenchmarks which catch access patterns that are common in HPC
applications. First, we describe the experimental setup and introduce the workloads
that we simulate with microbenchmark applications. Then, we investigate the startup
time of GekkoFS and compare metadata performance against a Lustre parallel
file system. Although GekkoFS and Lustre have different goals, we point out the
performances that can be gained by using GekkoFS as a burst buffer file system.
Finally, we evaluate the data performance of GekkoFS and discuss the measured
results.

2.3.1 Experimental Setup

We evaluated the performance of GekkoFS based on various unmodified
microbenchmarks which catch access patterns that are common in HPC
applications. Our experiments were conducted on the MOGON II supercomputer,
located at the Johannes Gutenberg University Mainz in Germany. All experiments
were performed on Intel 2630v4 Intel Broadwell processors (two sockets each).
The node main memory capacity ranges from 64 GiB up to 512 GiB. MOGON II
uses 100 Gbit/s Intel Omni-Path to establish a fat-tree network between all compute
nodes. In addition, each node provides a data center Intel SATA SSD DC S3700
Series as scratch-space (XFS formatted) usable within a compute job. We used these
SSDs for storing data and metadata of GekkoFS which uses an internal chunk size
of 512 KiB. All Lustre experiments were performed on a Lustre scratch file system
with 12 Object Storage Targets (OSTs), 2 Object Storage Servers (OSSs), and 1
Metadata Service (MDS) with a total of 1.2 PiB of storage.

Before each experiment iteration, GekkoFS daemons are restarted (requiring less
than 20 s for 512 nodes), all SSD content is removed, and kernel buffer, inode, and
dentry caches are flushed. The GekkoFS daemon and the application under test are
pinned to separate processor sockets to ensure that file system and application do
not interfere with each other.

2.3.2 Metadata Performance

We simulated common metadata intensive HPC workloads using the unmodified
mdtest microbenchmark [41] to evaluate GekkoFS’ metadata performance and
compare it against a Lustre parallel file system. Although GekkoFS and Lustre have
different goals, we point out the performances that can be gained by using GekkoFS
as a burst buffer file system. In our experiments, mdtest performs create, stat, and
remove operations in parallel in a single directory—an important workload in many
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Fig. 2 GekkoFS’ file create, stat, and remove throughput for an increasing number of nodes
compared to a Lustre file system

HPC applications and among the most difficult workloads for a general-purpose
PFS [74].

Each operation on GekkoFS was performed using 100,000 zero-byte files per
process (16 processes per node). From the user application’s perspective, all created
files are stored within a single directory. However, due to GekkoFS’ internally
kept flat namespace, there is conceptually no difference in which directory files
are created. This is in contrast to a traditional PFS that may perform better if the
workload is distributed among many directories instead of in a single directory.

Figure 2 compares GekkoFS with Lustre in three scenarios with up to 512
nodes: file creation, file stat, and file removal. The y-axis depicts the corresponding
operations per second that were achieved for a particular workload on a logarithmic
scale. Each experiment was run at least five times with each data point representing
the mean of all iterations. GekkoFS’ workload scaled with 100,000 files per process,
while Lustre’s workload was fixed to four million files for all experiments. We fixed
the number of files for Lustre’s metadata experiments because Lustre was otherwise
detecting hanging nodes when scaling to too many files.

Lustre experiments were run in two configurations: All processes operated in
a single directory (single dir) or each process worked in its own directory
(unique dir). Moreover, Lustre’s metadata performance was evaluated while the
system was accessible by other applications as well.

As seen in Fig. 2, GekkoFS outperforms Lustre by a large margin in all scenarios
and shows close to linear scaling, regardless of whether Lustre processes operated
in a single or in an isolated directory. Compared to Lustre, GekkoFS achieved
around 46 million creates/s (∼1405×), 44 million stats/s (∼359×), and 22 million
removes/s (∼453×) on 512 nodes. The standard deviation was less than 3.5%
which was computed as the percentage of the mean. Therefore, we achieve our
scalability goal, demonstrating the performance benefits of distributing metadata
and decoupling directory entries from non-scalable directory blocks (see Sect. 2.2).

Additional GekkoFS experiments were also run while Mogon II was used by
other users during production, revealing network interference within the cluster.
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With up to 128 nodes we were unable to measure a difference in metadata operation
throughput outside of the margin for error compared to the experiments in an
undisturbed environment (see Fig. 2). For 256 and 512, we measured a reduced
metadata operation throughput between 10 and 20% for create and stat operations.
Remove operation throughput remained unaffected.

Lustre’s metadata performance did not scale beyond approximately 32 nodes,
demonstrating the aforementioned metadata scalability challenges in such a general-
purpose PFS. Moreover, processes in Lustre experiments that operated within their
own directory achieved a higher performance in most cases, except for the remove
case where Lustre’s unique dir remove throughput is reduced by over 70% at
512 nodes compared to Lustre’s single dir throughput. This is because the time
required to remove the directory of each process (in which it creates its workload) is
included in the remove throughput and the number of created unique directories
increases with the number of used processes in an experiment. Similarly, the time to
create the process directories is also included in the create throughput but does not
show similar behavior to the case of the remove throughput, indicating optimizations
towards create operations.

2.3.3 Data Performance

We used the unmodified IOR [31] microbenchmark to evaluate GekkoFS’ I/O
performance for sequential and random access patterns in two scenarios: Each
process is accessing its own file (file-per-process) and all processes access a single
file (shared file). We used 8 KiB, 64 KiB, 1 MiB, and 64 MiB transfer sizes to assess
the performances for many small I/O accesses and for few large I/O requests. We
ran 16 processes on each client, each process writing and reading 4 GiB in total.

GekkoFS data performance is not compared with the Lustre scratch file system
as the peak performance of the used Lustre partition, around 12 GiB/s, is already
reached for ≤10 nodes for sequential I/O patterns. Moreover, Lustre has shown to
scale linearly in larger deployments with more OSSs and OSTs being available [48].

Figure 3 shows GekkoFS’ sequential I/O throughput in MiB/s, representing the
mean of at least five iterations, for an increasing number of nodes for different
transfer sizes. In addition, each data point is compared to the peak performance
that all aggregated SSDs could deliver for a given node configuration, visualized
as a white rectangle, indicating GekkoFS’ SSD usage efficiency. In general, every
result demonstrates GekkoFS’ close to linear scalability, achieving about 141 GiB/s
(∼80% of the aggregated SSD peak bandwidth) and 204 GiB/s (∼70% of the
aggregated SSD peak bandwidth) for write and read operations for a transfer size of
64 MiB for 512 nodes.

Figure 4 shows GekkoFS’ throughput for random accesses for an increasing
number of nodes, showing close to linear scalability in all cases. The file system
achieved up to 141 GiB/s write throughput and up to 204 GiB/s read throughput for
64 MiB transfer sizes at 512 nodes.
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(a)

(b)

Fig. 3 GekkoFS’ sequential throughput for each process operating on its own file compared to the
plain SSD peak throughput. (a) Write throughput. (b) Read throughput

For the file-per-process cases, sequential and random access I/O throughput are
similar for transfer sizes larger than the file system’s chunk size (512 KiB). This is
due to transfer sizes larger than the chunk size internally access whole chunk files
while smaller transfer sizes access one chunk at a random offset. Consequently,
random accesses for large transfer sizes are conceptually the same as sequential
accesses. For smaller transfer sizes, e.g., 8 KiB, random write and read throughput
decreased by approximately 33 and 60%, respectively, for 512 nodes owing to the
resulting random access to positions within the chunks.

For the shared file cases, a drawback of GekkoFS’ synchronous and cache-
less design becomes visible. No more than approximately 150 K write operations
per second were achieved. This was due to network contention on the daemon
which maintains the shared file’s metadata whose size needs to be constantly
updated. To overcome this limitation, we added a rudimentary client cache to locally
buffer size updates of a number of write operations before they are sent to the
node that manages the file’s metadata. As a result, shared file I/O throughput for
sequential and random access were similar to file-per-process performances since
chunk management on the daemon is then conceptually indifferent in both cases.
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(a)

(b)

Fig. 4 GekkoFS’ random throughput for each process operating on its own file. (a) Write
throughput. (b) Read throughput

3 Scheduling and Deployment

In order to transfer the data to a previously generated on demand file system in
time, the nodes that will be allocated to a job must be known in advance. Today’s
schedulers plan the resources of a supercomputer. The schedule is based on user
requested wall times. Reality shows that the users requested wall times are very
inaccurate, and thus the scheduler’s predictions are unreliable.

Here two investigations were made and published. In the first work, we have
shown that we can improve wall time estimates based on simple job metadata. We
also used unconsidered metadata that is usually not publicly available [65].

Predicting the run times of jobs is only one aspect of the challenge. However,
the essential factor is the prediction of node allocation to a job. In this second
investigation, we have determined the influence of the wall-time on the node
prediction [64]. The question we wanted to answer—How good do wall time
predictions have to be to predict the allocated nodes accurately?
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3.1 Walltime Prediction

One of the challenges is to know which nodes are going to be allocated to a queued
job. The HPC scheduler predicts these nodes based on the user given wall times.
Therefore, we have decided to evaluate whether there is an easy way to predict such
wall time automatically. Our proposed approach for wall time prediction is to train
an individual model for every user. For this, we used methods from the machine
learning domain and added job metadata, which was in previous work unconsidered.
As historical data, we used workloads from two HPC-systems at the Karlsruhe
Institute for Technology/Steinbuch Centre for Computing [66], the ForHLR I +
II [34, 35] clusters. To train the model, we used automatic machine learning
(AUTOML). AUTOML automates the process of hyperparameter optimization and
selecting the correct model. We have chosen the auto ML library auto-sklearn [20],
which is based on scikit-learn [9, 52].

In Fig. 5 the comparison of the user given wall times and the wall time prediction
is shown. As a metric, the median absolute error (medAE) in hours is depicted as
cumulative distribution. A model trained with AUTOML shows for 60% of the users
a medAE of approximately 1 h on the ForHLR I and 1.4 h for the ForHLR II. The
user estimations show a medAE deviation of about 7.4 h on both clusters. So we
are able to reduce the median absolute deviation from 7.4 down to 1.4 h in average.
Considering the fact that simple methods were used and no insight was provided
into the job payload, this result is very good.

Fig. 5 Comparison of median absolute error (medAE) for ForHLR I+II. X-axis Median absolute
error in hours, Y-Axis cumulative distribution
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3.2 Node Prediction

As mentioned before predicting the run times of jobs is only one aspect of the
challenge. However, the decisive factor is the accuracy of node allocation prediction.
In this subsequent investigation, we have determined the impact on the node
allocation accuracy with improved wall times. Therefore the ALEA Simulator [2]
has been extended to simulate the time of the node allocation list [64].

We have conducted several simulations with subsequently improved job run time
estimates, from inaccurate wall times as provided by users to fully accurate job run
time estimates. For this purpose, we introduce T̃Req, the “refined” requested wall
time,

T̃Req = TRun + λ(TReq − TRun) with λ ∈ [0, 1], (1)

where TReq is the user requested wall time and TRun is the run time of the job.
To effectively simulate different precision of requested wall times, each job in the
workload is modified by the same λ.

The result of the simulation is shown in Fig. 6, each bar represents a simulation
with a different λ value. The bars are categorized into four groups based on the valid
node allocation prediction (TNAP). The blue part represents the jobs that are started
immediately (instant) execution after the job is submitted to the batch system. These
instantly started jobs offer of course no time to create a file system or even stage
data. The orange part represents queued jobs with a TNAP between 0 and 1 s. The
green part shows jobs with a TNAP from one second up to 10 min and red indicates
long term prediction with a valid node allocation prediction over 10 min. The class
of jobs with long-term predictions (red) is in our focus. This long-term predictions

Fig. 6 Job distributions of ForHLR II workload with back-filling (CONS). Blue color denotes
instant jobs, orange color means job having prediction ≤1 s, green color denotes jobs with 1 and
600 s and red color denotes long-term predictions(<600 s)
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increase significantly only at very small λ ≤ 0.1 which proves that very good run
time estimates are needed.

3.3 On Demand Burst Buffer Plugin

From both evaluations, it is clear, that advanced data staging based on the scheduler
prediction is not possible. Also, by using state-of-the-art methods such as machine
learning, the accuracy is not sufficient. Therefore we decided to extend the
functionality of the SLURM [15] scheduler. Slurm has a feature to manage burst
buffers [16]. However, the current implementation status only includes support
for the Cray DataWarp solution. Management of burst buffers using other storage
technologies is documented, but not yet implemented. With the developed plugin,
we extend the functionality of SLURM to create a file system on demand. For
the prototype implementation, we also developed tools which deploy BeeOND
(BeeGFS On Demand) as an on demand file system per job. Other parallel file
systems,e.g. Lustre [7] or GekkoFS, can be added easily. The user requests an on
demand file system by a job flag. He can also specify if data should be staged in
and out. The SLURM controller marks the jobs and then does the corresponding
operations [76].

3.4 Related Work

The requested wall times are unfortunately far away from the real used wall time.
Gibbons [23, 24], and Downey [19] used historical workloads to predict the wall
times of parallel applications. They predict wall times based on templates. These
templates are created by analyzing previously collected metadata and grouped
according to similarities. However, both approaches are restricted to simple defi-
nitions.

In the recent years, machine learning algorithms have been used to predict
resource consumption in several studies [33, 40, 43, 44, 61, 70].

Predicting the run-time of jobs is also important in different topics, like for
energy aware scheduling [3]. Here the applications’ power and performance char-
acteristics are considered to provide an optimized trade off between energy savings
and job execution time.

However, all of the above mentioned studies do not try to evaluate the accuracy
of the node allocation predictions. Most of the publications focus on observing the
utilization of the HPC system and the reliability of the scheduler estimated job start
times. In our work, we focus on the node allocation prediction and how good wall
time estimates have to be. This directly affects, whether a cross-node, on demand,
independent parallel FS can be deployed, and data can be pre-staged, or not.
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4 Resource and Topology Detection

Compute nodes of modern HPC systems tend to get more heterogeneous. To plan
a proper deployment of the GekkoFS file system on the compute nodes, knowledge
of the underlying storage components are vital. This section describes what kind
of resource information is of interest and shows possible ways to gather this
information. Further, we discuss the architecture of the sysmap tool that we build to
collect relevant information.

When thinking about the resources of a compute node, we distinguish between
static and dynamic resource usage. Static resource information describes compo-
nents that do not change frequently and are often similar between nodes. This
includes the number of CPU cores, the amount of main memory, the number and
capacity of node-local storage devices, or the type of file system. It is unlikely that
this kind of hardware is replaced frequently. Otherwise different parts of a Cluster
may have different configurations, e.g., one island of a Cluster may have more
RAM than another island. On the other hand, dynamic resource usage describes
the available resources at a certain point in time.

The goal is to hold a map of the resources available on a system. On the one hand,
this can be used as an input for the data staging. On the other hand, such information
is useful for the deployment of the file system. When the job scheduler has decided
on which set of nodes a job will run, available hardware resources can be queried
and an appropriate configuration to deploy the file system can be selected.

The sysmap tool can utilize existing hardware discovery libraries such as
hwloc [8, 25] by using their interface. While hwloc does an excellent job for
computing-related artifacts like the number of CPUs or cache sizes, it does not
focus on the storage subsystem. Therefore, we use information from the /proc
and /sys pseudo file systems to get information about the system. By reading
the system configuration, the sysmap tool gathers information about partitions,
mountpoints, file systems but also about available kernel modules and I/O-scheduler
configuration. Moreover, we gather network information for InfiniBand networks by
utilizing the well-known ibnetdiscover tool from the OFED distribution [47].

4.1 Design and Implementation

We have designed an extensible architecture for our sysmap tool. Each
resource of interest is captured by a so-called extractor. Figure 7 shows a
schematic UML-diagram of two extractors. Each extractor module consists
of an abstract part, which defines the structure of the data that will be
gathered and a specialized part which implements the logic to read the
data from a specific source, by overriding the abstract interface. In Fig. 7,
the Filesystem_Extractor and the Disk_Extractor are examples
of the abstract parts. The Linux::Filesystem_Extractor and the
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Fig. 7 Simple UML-Diagram for two example extractor modules of our system-map tool

AIX::Filesystem_Extractor are the specialized parts for extracting
information of mountpoints and partitions of a specific system [46]. This is useful
because the same information may be available on different systems through
different sources. On the one hand, the user has to define the abstract extractor he
wants, and the sysmap tool selects the source depending on what is available on the
target system. On the other hand, we can implement specialized extractor modules
for different sources resulting in an equivalent representation of the data for our
tool. After gathering the data, the sysmap tool provides a wide variety of output
formats presenting the data to the user. Since the tool is mentioned to be executed
on multiple compute nodes, the recommended way is to store the results in a central
database. Figure 8 depicts an overview of the general workflow of the resource
discovery process. The sysmap tool runs on the compute nodes and gathers the
resource information. Afterwards, the collected data is stored in a central resource
database. For our working prototype, we use a sqlite5 database. The information
can be queried by the sysquery tool, which queries the resource database and
outputs the selected data in JSON format. This way the querying component gets
a machine-readable section of the required data which can be easy post-processed
for they need. Further, the particular database query remains hidden from the user
inside the sysquery tool. The datamodel of the resource database is shown in Fig. 9
and consists of four simple tables. The HostTable and ExtractorTable are to map
the hostname or the extractor name to a numerical ID. Information extracted by an
extractor is stored as JSON string in the DataTable. Further, a DataID is maintained
to reference the data from an extractor. In the Host2Data table, the DataID is

5https://www.sqlite.org/index.html.

https://www.sqlite.org/index.html
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Fig. 8 Overview of resource discovery components, the blue components are part of the sysmap
tool suite, the resource database is highlighted as the yellow box, the red box represents the
querying component, in this case the Job-Scheduler
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Fig. 9 The datamodel of the resource database

mapped with the corresponding HostID. This way, data that is equal across multiple
nodes do not need to be stored multiple times but are easy to query. Since, the
output of a query is a JSON string, it makes further processing and output easy for
the calling script.

5 On Demand File System in HPC Environment

When using on demand file systems in HPC environments, the premise is that the
normal operation should not be affected by the use of on demand file systems. The
interference on other jobs should be avoided or even reduced. There should be also
no modifications, that have a negative impact on the performance or utilization, of
the system.
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5.1 Deploying on Demand File System

Usually HPC systems use a batch system, such as SLURM [60], MOAB [1], or
LSF [30]. The batch system manages the resources of the cluster and starts the user
jobs on allocated nodes. Before a job is started, a prologue script may be started on
one or all allocated nodes and, if necessary, an epilogue script at the end of a job.
These scripts are used to clean, prepare, or test the full functionality of the nodes. We
modified these scripts to start the on demand file system upon request. During job
submission, a user can request an on demand file system for the job. This solution
has minimal impact on the HPC system operation. Users without the need for an on
demand file system are not affected. An alternative way of deploying a on demand
file system we have described in Sect. 3.3

5.2 Benchmarks

As initial benchmarks we tested the startup and shutdown time of the on demand
file system (cf. Table 1). Comparing the startup time of BeeGFS on demand to the
startup time of GekkoFS (512 Nodes under 20 s) it is clear, that BeeGFS takes too
much time for startup and shutdown at larger scales. BeeGFS has a serial section in
its startup where a status file is created on every node sequentially. This was also
discussed on the mailing list [63] with a possible solution to improve the behavior
in future releases.

In Fig. 10 we show the IoZone [10] benchmark to measure the read and
write throughput of the on demand file system (solid line). The figure shows
that performance increases linearly with the number of used compute nodes. The
limiting factor here is the aggregate throughout of the used SATA-SSDs. A small
throughput variation can be observed due to normal performance scattering of
SSDs [36]. The dotted line indicates the theoretical throughput with NVMe devices.
Here we assumed the performance for today’s common PCIe×4 NVM devices [29]
with a throughput of 3500/2000 MB/s of read/write performance.

In a further test, we evaluated the storage pooling feature of BeeGFS [4]. We
created a storage pool for each switch according to the network topology.In other
words, when writing to a storage pool, the data is distributed via the stripe count
and chunk size, but remains within the storage pool and thus on a switch. Figure 11
shows the write throughput for three scenarios. Each scenario uses a different
number of core switches with six being the full network capacity. In the first

Table 1 BeeGFS startup and shutwdown

Nodes 8 16 32 64 128 256

Startup (s) 10.2 16.7 29.3 56.5 152.1 222.4

Shutdown (s) 11.9 12.1 9.4 15.9 36.1 81.0
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Fig. 10 Solid line: Read/write throughput. Dashed line: extrapolation with the theoretical peak of
NVMe-SSDs

Fig. 11 IoZone write throughput with reduced number of core switches on 240 nodes

experiment, with all six core switches, there is only a minimal performance loss,
which indicates a small overhead when using storage pools. In the second case we
turned off three switches, and in the last case we turned off five switches. With
reduced number of core switches the write throughput drops due to the reduced
network capacity. If storage pools are created according to the topology, it is possible
to achieve the same performance as with all six switches.
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5.3 Concurrent Data Staging

We also considered the case of copying data back to the PFS while an application is
running. For this purpose, we evaluated NAStJA [6] with concurrent data staging. To
stage the data, during the NAStJA execution, we used the parallel copy tool dcp [59].
The configuration for this use-case:

• We used 24 nodes with 20 cores per node.
• NAStJA was executed on 23 nodes with 20 tasks per node.
• BeeOND was started on all 24 nodes using the idle node as metadata server.
• Three different scenarios were evaluated during the application execution:

– without data staging,
– data staging using every node with one task per node for data staging,
– data staging using the node, where only the meta-data server is running, with

4 tasks executed on this node.

Figure 12 shows the average execution time per time-step of five runs in our different
scenarios. In the beginning, the slowdown is significant (orange line) due to the high
amount of metadata operations. In this case, a portion of the data is indexed on every
node. This indexing is causing interference with the application. When using only
the MDS-server to copy the data (green line), the indexing is done only on the MDS-
server.

Fig. 12 Average execution time per time-step (5 runs). Without data staging(blue). Concurrent
data staging using the meta-data node (green) and using every node (orange)
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6 GekkoFS on NVME Based Storage Systems

Recently, new storage technologies such as NVME SSDs have been introduced to
modern HPC systems. To evaluate the GekkoFS file system, for future systems, we
performed some benchmarks using NVME SSDs. For demonstration we installed
GekkoFS on the cluster Taurus [67] of TU Dresden. Taurus consists of ca. 47,000
cores of different architectures. For the demonstration, we use 8 NVME nodes of
the HPC-DA [28] extension of Taurus. This extension consists of 90 nodes, and a
single node has 8 Intel SSD DC P4610 Series NVME storage with 3.2 TB capacity
and a peak bandwidth of 3.2 GB/s. Each node has 2 sockets Intel Xeon E5-2620
v4 with 32 cores and 64 GB main memory. Further, the NVME nodes are equipped
with two 100 Gbit/s EDR Infiniband links with a peak bandwidth of 25 GB/s each.
This experiment aims to investigate how well GekkoFS performs on new storage
architectures.

We installed GekkoFS on Taurus using the Infiniband network provider. For
our demonstration, we use 8 NVME nodes in this setup. The nodes are client
and server in one. We assign one NVME card per node as backing storage to the
GekkoFS daemon. This results in a distributed file system with a total capacity of
25.6 TB and a theoretical maximum bandwidth of 8 × 3.2 GB/s = 25.6 GB/s for
this configuration. To measure the data throughput of GekkoFS and investigate the
impact of different access patterns to the file system we utilize the IOR benchmark.

We perform strong scaling tests with 8, 16, 32 and 64 processes writing and
reading 1 TB of data. Therefore, we adjust the block size and transfer size for a
different number of processes. To avoid interference, we pin the IOR processes to
one socket while the GekkoFS daemon is pinned to the other. Before the creation
of the GekkoFS file system the NVME devices were cleared, and a new Ext4 file
system was created as an underlying file system on the block device. We measure
different access patterns, file per process with sequential and random accesses and
shared file with sequential access. To avoid measuring cache effects, we flush the
page, inode and dentry caches of the operating system before each run.

Figure 13 shows the sequential access pattern. In the figure, one can see that the
write bandwidth is stable at around 22 GB/s for all runs. The variation is small, and
the values are near to the peak bandwidth of 25 GB/s for this setup. The suitable
write bandwidths came from the relatively large transfer sizes of 64 MB to benefit
from RDMA. For the read bandwidth, we get values between 13 and 17 GB/s. Also
the read bandwidth first decreases when more processes are used and then increases
again at the 64 processes. Such a poor read bandwidth is a behavior which could
not be observed for the other measurements on MOGON II, where read and write
bandwidth are almost equal, and is certainly a point of further investigation.

Figure 14 depicts the random access case. The results are similar to the sequential
access pattern, which was expected because the internal handling of GekkoFS makes
no difference for these cases. The write bandwidth is stable between 22 and 23 GB/s
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Fig. 13 IOR on GekkoFS on 8 NVME nodes performing a sequential file per process access
pattern

and saturates the NVME SSD quite well. For the read, the achieved bandwidth is
around 14 GB/s, the values are more stable than for the sequential case, which might
be some cache effects.

In Fig. 15 we can see, that even for shared access pattern the results are similar
to the file per process access pattern. The write bandwidth is again stable at 22 GB/s
and the read bandwidth is around 16 GB/s except for the configuration with 32
processes where the read bandwidth is lower. This is also similar to the sequential
file per process configuration in Fig. 13. As a result, we can see that GekkoFS
can utilize NVME SSDs and is, therefore, ready for the next generation of storage
systems. We could figure out that the different access patterns make no difference
for the write bandwidth. For the read bandwidth, there is some bottleneck which
needs further investigation. At the time of writing, multiple causes are imaginable;
for example, the network layer for Infiniband might be an issue. This could also
explain why this problem does not occur for the tests in Mainz because they have
other network types.
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Fig. 14 IOR on GekkoFS on 8 NVME nodes performing a random file per process access pattern

Fig. 15 IOR on GekkoFS on 8 NVME nodes performing a sequential shared file access pattern
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7 Conclusion

The goal of the ADA-FS project was to improve I/O performance for parallel appli-
cations. Therefore, a distributed burst buffer file system, and several components
for deployment and data management were developed. The GekkoFS distributed
burst buffer file system as the central part of the project was presented as a
scalable and very flexible alternative to handle the challenging I/O patterns of
scientific applications. Primarily through the innovative metadata management, it
beats conservative shared parallel file systems for metadata intensive workloads by
a margin. Thanks to its flexibility, GekkoFS offers the user an exclusive file system
for his applications and eliminates several bottlenecks caused by the contention of
a shared resource. In addition, GekkoFS has become a basis in the EU-funded Next
Generation I/O for Exascale (NEXTGenIO) project where it will be continuously
and collaboratively developed to support future storage technologies as well, such
as persistent memory.

For successful data staging, investigations about the precision of the user-
provided wallclock time of jobs were made. We could show how to improve
wallclock estimates by considering the metadata of a job, and show a way to
integrate the process of deployment and data staging into the job scheduler. Further,
we present a tool suite to collect information about hardware resources of a compute
node to support the deployment in a flexible manner.

Another topic that was not covered here is the analysis of the required POSIX
semantics of parallel applications. These insights show during the design of the file
system which operations are required to run scientific workloads. Further, its results
can help the user to decide for a storage system that fits his needs best.

The evaluations showed that GekkoFS provides close to linear data and metadata
scalability up to 512 nodes with tens of millions of metadata operations. Due to the
decentralized and distributed design, the file system is set to be used in even larger
environments as exascale environments are in close reach. Even on the latest storage
infrastructure, GekkoFS can operate out of the box at the peak bandwidth at least
for write operations.

Following this project, we plan further improvements on GekkoFS, for example,
caching offers possibilities to gain even more performance. Another topic that we
want to keep working on is the integration of GekkoFS into the job schedulers of
the systems and the workflows of the user.

Conclusively, the project reached its goals by improving I/O performance of
parallel applications, especially in the field of metadata intensive workloads where
traditional parallel file systems are lacking performance.
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Abstract Dealing with extreme scale earth system models is challenging from the
computer science perspective, as the required computing power and storage capacity
are steadily increasing. Scientists perform runs with growing resolution or aggregate
results from many similar smaller-scale runs with slightly different initial conditions
(the so-called ensemble runs). In the fifth Coupled Model Intercomparison Project
(CMIP5), the produced datasets require more than three Petabytes of storage and
the compute and storage requirements are increasing significantly for CMIP6.
Climate scientists across the globe are developing next-generation models based on
improved numerical formulation leading to grids that are discretized in alternative
forms such as an icosahedral (geodesic) grid. The developers of these models face
similar problems in scaling, maintaining and optimizing code. Performance porta-
bility and the maintainability of code are key concerns of scientists as, compared to
industry projects, model code is continuously revised and extended to incorporate
further levels of detail. This leads to a rapidly growing code base that is rarely
refactored. However, code modernization is important to maintain productivity
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of the scientist working with the code and for utilizing performance provided
by modern and future architectures. The need for performance optimization is
motivated by the evolution of the parallel architecture landscape from homogeneous
flat machines to heterogeneous combinations of processors with deep memory
hierarchy. Notably, the rise of many-core, throughput-oriented accelerators, such
as GPUs, requires non-trivial code changes at minimum and, even worse, may
necessitate a substantial rewrite of the existing codebase. At the same time, the code
complexity increases the difficulty for computer scientists and vendors to understand
and optimize the code for a given system. Storing the products of climate predictions
requires a large storage and archival system which is expensive. Often, scientists
restrict the number of scientific variables and write interval to keep the costs
balanced. Compression algorithms can reduce the costs significantly but can also
increase the scientific yield of simulation runs. In the AIMES project, we addressed
the key issues of programmability, computational efficiency and I/O limitations
that are common in next-generation icosahedral earth-system models. The project
focused on the separation of concerns between domain scientist, computational
scientists, and computer scientists.The key outcomes of the project described in this
article are the design of a model-independent Domain-Specific Language (DSL) to
formulate scientific codes that can then be mapped to architecture specific code and
the integration of a compression library for lossy compression schemes that allow
scientists to specify the acceptable level of loss in precision according to various
metrics. Additional research covered the exploration of third-party DSL solutions
and the development of joint benchmarks (mini-applications) that represent the
icosahedral models. The resulting prototypes were run on several architectures at
different data centers.

1 Introduction

The problems on the frontier of science requires extreme computational resources
and data volumes across the disciplines. Examples of processes include the under-
standing of the earth mantle [10], plasma fusion [24], properties of steel [5], and the
simulation of weather and climate. The simulation of weather and climate requires
to model many physical processes such as the influence of radiation from the sun and
the transport of air and water in atmosphere and ocean [8]. As these processes are
complex, scientists from different fields collaborate to develop models for climate
and weather simulations.

The mathematical model of such processes is discretized and encoded as
computer model using numerical methods [53]. Different numerical methods can
be used to approximate the mathematical models. A range of different numerical
methods are used, including finite differences, finite volumes, and finite elements.
All of these methods partition the domain of interest into small regions and apply
stencil computations to approximate operations such as derivatives.
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The necessary computations include variables (fields) like temperature or pres-
sure distributed spatially over some surface or space—the problem domain. Simple
techniques divide a surface into rectangular smaller regions covering the whole
domain. Such rectangular grids have a simple regular structure. Those grids fit
computations well as the grid structure simply corresponds to the array notation
of the programming languages. However, applying this grid to the globe leads to
variable sizes of grid cells, e.g., the equator region has a coarse grid while the polar
regions are a singularity. With such a shortcoming, rectangular grids are well suited
for regional models but not for a global model.

Therefore, recent models targeting global simulations are developed using differ-
ent grids. Moving to such alternative grids allows to solve the cell area problem for
global models, but the formulation of the models is more complicated. Icosahedral
grids are examples of such alternatives. An icosahedral grid results from projecting
an icosahedron onto the surface of the globe. The surface of the globe is then
divided into twenty spherical triangles with equal areas. Grid refinement is achieved
with recursive division of the spherical arcs into halves. The resulting points of the
division form four smaller spherical triangles within each spherical triangle. Such
refinement is repeated until the needed resolution is reached. Icosahedral grids can
be used with the triangles as the basic cell, but also hexagons can be synthesized.

Icosahedral grids have approximately uniform cell area and can be used for
global models avoiding the cell area differences in contrast to the rectangular grids.
However, complications arise when thinking of the technical side, where we need
to know how to map the field data into data structures. Such technical details are
challenging with the performance demand for the models.

The values of a field in the simulation is localized with respect to the grid
cell depending on the numerical formulation. In one method, values of a field
are localized at the centers of the cells—this can be a single value or multiple
values with higher order methods. However, other methods localize values on the
vertices, while others reside on the edges separating the cells (see Fig. 1). How the
cells are connected to each other, i.e., the neighbors and orientation of the cells,
is defined in the connectivity. A problem domain can be organized in a regular

Fig. 1 Icosahedral grids and variables. (a) Triangular grid. (b) Hexagonal grid
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fashion into so-called structured grids—following an easy schema to identify (left,
right, . . . ) neighbors. Unstructured grids can follow a complex connectivity, e.g.,
using smaller and larger cells, or covering complex surfaces but require to store the
connectivity information explicitly. The modern models explore both schemes due
to their benefit; for instance, the structured grid can utilize compiler optimizations
more effectively, while unstructured grids allow local refinement around areas of
interest.

General-purpose languages (GPL), e.g., Fortran, are widely used to encode the
discretized computer model. The simulation of the earth with a high resolution like
1 km2 that is necessary to cover many smaller-scale physical processes, requires a
huge computation effort and likewise storage capacity to preserve the results for
later analysis. Due to uncertainty, scientists run a single experiment many times,
multiplying the demand for compute and storage resources. Thus, the optimization
of the codes for different architectures and efficiency is of prime importance to
enable the simulations.

With existing solutions, scientists rewrite some code sections repeatedly with dif-
ferent optimization techniques that utilize the capabilities of the different machines.
Hence, scientists must learn different optimization techniques for different archi-
tectures. The code duplication brings new issues and complexities concerning the
development and the maintainability of the code.

Thus, the effort from the maintainers and developers of the models, who are nor-
mally scientists and not computer scientists, is substantial. Scientists’ productivity
is an important point to consider as they do activities that should not be their focus.
Maintaining model codes throughout the lifecycle of the model is a demanding
effort under all the mentioned challenges.

The structure of the icosahedral grids brings complications not only to the
computation, but also to the storage of the field data. In contrast to regular grids,
where multi-dimensional array notation fits to hold the data, icosahedral grids do
not necessarily map directly to simple data structures. Besides the challenge of
file format support, modern models generate large amounts of data that impose
pressure on storage systems. Recent models are developed with higher-resolution
grids, and include more fields and processes. Simulations writing terabytes of data
to the storage system push towards optimizing the use of the storage by applying
data-reduction techniques.

The development of simulation models unfolds many challenges for the scientific
community. Relevant challenges for this project are:

• Long life: The lifecycle of earth system models is long in comparison to the
turnover of the computer technology mainly in terms of processor architectures.

• Performance and efficiency: The need for performance and the optimal use of
the hardware resources is an important issue.

• Performance-portability: Models are run on different machines and on different
architectures. They must use the available capabilities effectively.
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• Collaboration: Another point is the collaborative efforts to develop models—
involving PhD students to contribute pieces of science code to a large software
project—that complicates the maintenance and software engineering of the
models.

• Data volume: the large amounts of data must be handled efficiently.

1.1 The AIMES Project

To address challenges facing earth system modeling, especially for icosahedral
models, the project Advanced Computation and I/O Methods for Earth-System
Simulations (AIMES) investigated approaches to mitigate the aforementioned
programming and storage challenges.

The AIMES project is part of the SPPEXA program and consisted of the
consortium:

• Universität Hamburg, Germany
• Institut Pierre Simon Laplace (IPSL), Université Versailles Saint-Quentin-en-

Yvelines, France
• RIKEN Advanced Institute for Computational Science, Japan
• Global Scientific Information and Computing Center, Tokyo Institute of Technol-

ogy, Japan

The project started in March 2016 with plans for 3 years.
The main objectives of the project were: (1) enhance programmability; (2)

increase storage efficiency; (3) provide a common benchmark for icosahedral
models. The project was organized in three work packages covering these aspects
and a supplementary project management work package to achieve the three project
objectives. The strategy of the work packages is layed out in the following.

Under the first work package, higher-level scientific concepts are used to develop
a dialect for each of three icosahedral models: DYNAMICO [17], ICON [54],
and NICAM [47]. A domain-specific language (DSL) is the result of finding
commonalities in the three dialects. Also, a light weight source-to-source translation
tool is developed. Targeting different architectures to run the high-level code is
an important aspect of the translation process. Optimizations include applying
parallelization to the different architectures. Also, providing a memory layout that
fits the different architectures is considered.

Under the second work package, data formats for icosahedral models are
investigated to deal with the I/O limitations. Lossy compression methods are
developed to increase storage efficiency for icosahedral models. The compression
is guided with user-provided configuration to allow to use suitable compression
according to the required data properties.

Under the third work package, relevant kernels are selected from the three
icosahedral models. A mini-IGCM is developed based on each of the three models
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to offer a benchmark for icosahedral models. Developed code is used to evaluate the
DSL and the compression of icosahedral global modeling.

The key outcomes of the project described in this article are: (1) the design
of an effective light-weight DSL that is able to abstract the scientific formulation
from architecture-specific capabilities; (2) the development of a compression library
that separates the specification of various qualities that define the tolerable error
of data from the implementation. We provide some further large-scale results of
our compression library for large scale runs extending our papers about the library
[36, 37]; (3) the development of benchmarks for the icosahedral models that are
mini-applications of the models.

Various additional contributions were made that are summarized briefly with
citations to the respective papers:

• We researched the impact of lossless data compression on energy consumption in
[2]. In general, the energy consumption increases with the computational intensity
of the compression algorithm. However, there are algorithms that are efficient and
less computational intense that can improve the energy-efficiency.

• We researched compilation time of code that is generated from the DSL using
alternative optimization options on different compilers [20]. Different optimiza-
tion options for different files allow different levels of performance, however,
compilation time is also an important point to consider. Results show that
some files need less optimization focus while others need further care. Small
performance drops are measured with considerable reduction in compile times
when the suitable compilation options are chosen.

• We researched annotating code for instrumentation automatically by our transla-
tion tool, to identify resource consuming kernels [21]. Instrumentation allows to
better find where to focus the optimization efforts. We used the DSL translation
tool to annotate kernels and make generated code ready for instrumentation. As
a result performance measurements were recorded with reduced effort as manual
preparations are not needed anymore.

• We researched applying vector folding to icosahedral grid codes in a bachelor
thesis [49]. Vector folding allows to improve use of caches by structuring data in
a way accounting for caches and data dimensionality. Results show that vector
folding was difficult to apply manually to icosahedral grids. Performance was
raised but not significantly as a result of the needed effort that should be invested
to rewrite kernels with this kind of optimization.

• We involved ASUCA and the use of Hybrid Fortran [43] to port original CPU
code to GPUs, to look at a different model with different requirements.

This article is structured as follows: first, the scope of the state-of-the-art and
related work is sketched in Sect. 2. In Sect. 3, an alternative development approach
for code-modernization is introduced. Various experiments to evaluate the benefit of
the approach are shown in Sect. 4. The compression strategy is described in Sect. 5
and evaluated in Sect. 6. The benchmarks for the icosahedral models are discussed
in Sect. 7. Finally, the article is concluded in Sect. 8.
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2 Related Work

The related work covers research closely related to domain-specific languages in
climate and weather and the scientific data compression.

2.1 Domain-Specific Languages

DSLs represent an important approach to provide performance portability and
support model development. A DSL is always developed having a particular domain
in mind. Some approaches support multiple layers of abstraction. A high-level
abstraction for the finite element method is provided with Firedrake [44]. The
ExaStencils pipeline generally addresses stencil codes and their operations [18, 33]
and many research works introduce sophisticated schemes for the optimization of
stencils [7, 9].

One of the first DSLs which were developed to support atmospheric modeling
is Atmol [52]. Atmol provided a DSL to allow scientists to describe their models
using partial differential equations operators. Later, Liszt [14] provided a DSL for
constructing mesh-based PDE solvers targeting heterogeneous systems.

Multi-target support was also provided by Physis [42]. Physis is a C-based DSL
which allows developing models using structured grids.

Another form of DSL is Icon DSL [50]. Icon DSL was developed to apply index
interchanges based on described swapping on Fortran-based models.

Further work based on C++ constructs and generic programming to improve
performance portability is Stella [23] and later GridTools [13]. Computations are
specified with a C++-based DSL and the tools generate code for CPUs or GPUs.
GridTools are used to port some kernels from the NICAM model in our project
AIMES to evaluate existing DSLs.

Although C++ provides strong features through generic programming allowing
to avoid performance portability issues, scientists are reluctant to utilize alternative
programming languages as the existing codes are huge. Normally scientists prefer
to keep using preferred languages, e.g. Fortran, rather than moving to learning C++
features.

Other forms of DSLs used directives to drive code porting or optimization.
Hybrid Fortran [43], HMPP [16], Mint [51], CLAW [12] are examples of directive-
based approach. Such solutions allow adding directives to code to guide some
optimization. Scientists write code in some form and add directives that allow tools
to provide specific features, e.g., CLAW allows writing code for one column and
allows using directives to apply simulations over the set of columns in parallel.

In the MetOffice’s LFRic model [1], a DSL is embedded into the Fortran code
that provides an abstraction level suitable for the model. The model ships with
the PSyclone code-generator that is able to transform the code for different target
platforms. In contrast to our lightweight solution, these DSLs are statically defined
and require a big translation layer.
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2.2 Compression

Data-reduction techniques related to our work can be structured into: (1) algorithms
for the lossless data compression; (2) lossy algorithms designed for scientific
(floating-point) data and the HPC environment; (3) methods to identify necessary
data precision and for large-scale evaluation.

Lossless Algorithms There exist various lossless algorithms and tools, for exam-
ple, the LZ77 [55] algorithm which utilizes dictionaries. By using sliding windows,
it scans uncompressed data for two largest windows containing the same data
and replaces the second occurrence with a pointer to the compressed data of the
first. The different lossless algorithms vary in their performance characteristics and
ability to compress data depending on its characteristics. A key limitation is that
users have to pick an algorithm depending on the use case. In [25], we presented
compression results for the analysis of typical climate data. Within that work, the
lossless compression scheme MAFISC with preconditioners was introduced. With
MAFISC, we also explored the automatic selection of algorithms by compressing
each block with two algorithms, the best compression chain so far and one randomly
chosen. It compresses data 10% more than the second best algorithm (e.g., standard
compression tools).

Lossy Algorithms for Floating-Point Data SZ [15] and ZFP [41] are the de-
facto standard for compressing floating-point data in lossy mode. Both provide a
way of bounding the error (either bit precision or absolute error quantities) but
only one quantity can be selected at a time. ZFP [41] can be applied up to three
dimensions. SZ is a newer and effective HPC data compression method; it uses
a predictor and the lossless compression algorithm GZIP. Its compression ratio is
typically significantly better than the second-best solution of ZFP. In [26], two lossy
compression algorithms (GRIB2, APAX) were evaluated regarding the loss of data
precision, compression ratio, and processing time on synthetic and climate dataset.
These two algorithms have equivalent compression ratios and depending on the
dataset APAX signal quality may exceed GRIB2 and vice versa.

Methods The application of lossy techniques to scientific (floating-point) datasets
is discussed in [11, 22, 27, 38–40]. A statistical method to predict characteristics
(such as proportions of file types and compression ratio) of stored data based on
representative samples was introduced in [34] and the corresponding tool in [35]. It
can be used to determine compression ratio by scanning a fraction of the data, thus
reducing costs.

Efforts for determination of appropriate levels of precision for lossy compression
methods for climate and weather data were presented in [3] and in [4]. The basic
idea is to compare the statistics derived from the data before and after applying lossy
compression schemes; if the scientific conclusions drawn from the data are similar
and indistinguishable without the compression, the loss of precision is acceptable.
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3 Towards Higher-Level Code Design

Computations in earth system modeling run hundreds or thousands of stencil
computations over wide grids with huge numbers of points. Such computations are
time consuming and are sensitive to optimal use of computer resources. Compilers
usually apply a set of optimizations while compiling code. Semantical rules of
the general purpose language (GPL) can be applied to the source code and used
within compilers to translate the code to semantically equivalent code that runs
more efficiently. However, often the semantical information extracted from the
source code are not enough to apply all relevant optimizations as some high-
level optimizations would alter the semantics—and the rules of the GPL forbid
such changes. As mostly code from GPLs is at a lower semantical level than the
abstraction level of the developers, opportunity of optimization is lost. Such lost
opportunities are a main obstacle to develop software in a performance-portable
way in earth system modeling.

To address the lost opportunities of optimization, different techniques are applied
by the scientists directly to the source code. Thus, it is the responsibility of
the scientists who develop the models to write the code with those decisions
and guidelines on optimizations in mind. Drawbacks of this strategy include
pushing scientists to focus on machine details and optimal code design to use
hardware resources. Scientists need to learn the relevant optimization techniques
from computer science such as, e.g., cache blocking.

3.1 Our Approach

To solve the issues with the manual code optimization, we suggest using an addi-
tional set of language constructs which exhibit higher-level semantics. This way,
tools can be used to apply optimizations based on those semantics. Optimization
responsibilities are moved again from scientists to tools.

As usually, the source code is developed by scientists, however, in our approach,
instead of coding on low-level and caring for optimization strategies, a DSL is used
as abstraction. Machine-specific or computer scientific concepts are not needed to
write the source code of a model. This is enabled by increasing the abstraction level
of a GPL by providing a language extension with semantics based on the scientific
concepts from the domain science itself.

The DSL implements a template mechanism to simplify and abstract the code.
For the purpose of this project, it was designed to abstract climate and weather
scientific concepts but other domains and models could be supported. Therefore,
stencils and grids are used as the basis in the DSL. The language extensions hide
the memory access and array notations. They also hide the details of applying the
stencils and the traversal of the grids. The grid structure itself is hidden in the source
code. A model’s code uses the grid without specifying the locations of the grid
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points in memory or how neighbors are accessed. All such details are specified in
the configuration files. Lower details are neglected at the DSL level.

Translation tools handle the processing of the higher-level source code and
converting it to compatible GPL code. The semantics of the added language exten-
sions are extracted from the source code and are used to apply further high-level
transformations to the code. Applied transformations are guided by configuration
files that allow users to control the optimization process and may convert the
code to various back-end representations that, in-turn, can be converted to code
that is executed on a machine. A key benefit of this strategy is that it increases
the performance-portability: A configuration can apply optimization techniques
exploiting features of a specific architecture. Therefore, a single scientific code base
can be used to target multiple different machines with different architectures.

Model-specific configuration files are provided separately to guide the code
translation and optimization process. Those files are developed by scientific pro-
grammers rather than domain scientists. In contrast to domain scientists, the
scientific programmers must have an intermediate understanding of the scientific
domain but also understand the hardware architecture of a target machine. They use
their experience to generate code that uses the machine’s resources, and write the
configurations that serve the purpose of optimal use of that specific machine to run
the selected model.

Our approach offers separation of concerns between the parties. Scientific work
is done by scientists and optimization is done by scientific programmers. The
concept of the approach is illustrated in Fig. 2. For the icosahedral models, a single
intermediate domain language is derived that can be adjusted for the needs of each
model individually (dialects). From this single source various code representations
(back-ends) could be generated according to configuration, e.g., MPI+OpenMP or
GASPI.

ICONICONICONICON

Dialects

DYNAMICODYNAMICO NICAMNICAM

Meta-DSLMeta-DSL

......

back-ends

Domain science Scientific programmer

GRIDToolsGRIDTools

Computer science

compilers ...compilers ...

DSL tools &
infrastructure
DSL tools &

infrastructure

CPUMPI+OpenMP

OpenACCOpenACC

PhysisGASPI

existing tools

Tools

Fig. 2 Separation of concerns
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3.2 Extending Modeling Language

An important point we consider in our approach is keeping the general-purpose
language, e.g. Fortran, that the scientists prefer to use to develop their model.
We add additional language constructs to the GPL. This simplifies the mission
to port existing models which could include hundreds of thousands of lines of
code. The majority of the code is kept, while porting some parts incrementally;
by providing templates in the configuration files, code can be simplified while it
still produces equivalent GPL constructs: Changes are replacements of loop details
and field access into alternative form using the added extensions. A drawback
of the incremental approach is that the full beauty of optimizations like memory
adjustments requires to have ported the complete model.

Our plan to develop such language extensions was to start with the three existing
modern icosahedral models of the project partners. In the first phase, special dialects
were proposed to support each model. Then, we identified common concepts and
defined a set of language extensions that support the domain with domain-specific
language constructs. We collected requirements, and worked in collaboration with
scientists from the three models to reach at the language extensions, in detail:

1. The domain scientists suggested compute-intensive and time-consuming code
parts.

2. We analyzed the chosen code parts to find out possibilities to use scientific terms
instead of existing code. We always kept in mind that finding a common repre-
sentation across the three models leads to domain-specific language extensions.

3. We replaced codes with suggested extensions.
4. We discussed the suggestions with the scientists. Discussions and improvements

were done iteratively. The result of those discussions lead to the GGDML
language extensions.

3.2.1 Extensions and Domain-Specific Concepts

The General Grid Definition and Manipulation Language (GGDML) language
extensions provide a set of constructs for:

• Grid definition
• Declaration of fields over grids
• Field access and update
• Grid traversal to apply stencils
• Stencil reduction expressions

GGDML code provides an abstraction including the order of the computation of
elementary operators. Therefore, optimizations can result in minor changes of the
computed result of floating-point operations; this is intentional as bit-reproducibility
constraints the optimization potential.
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In code that is written with GGDML, scientists can specify the name of the
grid that should be traversed when applying a stencil. The definitions of the grids
are provided globally through the configuration files. GGDML allows to specify
a modified set of grid points rather than the whole set of grid points as provided
through the grid definition grid, e.g., traversing a specific vertical level. Such
possibilities are offered through naming a grid and using operators that allow
adding, dropping, or modifying dimensions of that grid. Operators could change
the dimensionality of the grid or override the existing dimensions.

Fields are declared over different grids through declaration specifiers. GGDML
provides a flexible solution to support application requirements. A basic set of
declaration specifiers allows to control the dimensionality of the grid, and the
localization of the field with respect to the grid. Such declaration specifiers allow
applications to deal with surfaces and spaces, and also supports using staggered as
well as collocated grids.

Access specifiers provide tools the necessary information that will be used to
allocate/deallocate and access the fields. Field access is an important part of stencil
operations. GGDML provides an iterator statement to apply the stencil operations
over a set of grid points. The GGDML iterator statement replaces loops and the
necessary optimization to apply stencils. It provides the user an index that refers to
the current grid point. Using this index, scientists can write their stencils without
the need to deal with the actual data structures that hold the field data. The iterator
applies the body to each grid point that is specified in the grid expression, which is
one part of the iterator statement. This expression is composed from the name of a
grid, and possibly a set of modifications using operators as mentioned above.

The iterator’s index alone is not sufficient to write stencil operations, as stencils
include access to neighboring points. For this purpose, GGDML uses access
operators, which represent the spatial relationships between the grid points. This
allows to access the fields that need to be read or written within a stencil operation
using spatial terms instead of arrays and memory addresses. To support different
kinds of grids, GGDML allows users to define those access operators according to
the application needs.

Repetitions of the same mathematical expressions over different neighbors is
common in stencil operations. To simplify writing stencils, GGDML provides a
reduction expression. Reduction expressions apply a given sub-expression over
multiple neighbors along with a mathematical operator applied to the set of the
subexpressions.

3.3 Code Example

To demonstrate the code written with extensions, a sample code from the NICAM
model written with Fortran is given in Listing 1. As we can see from the original
NICAM code, a pattern is repeated in the code: the same field is accessed multiple
times over multiple indices. Optimization is limited as firstly, the memory layout
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is hardcoded in the fields cgrad and scl, secondly the iteration order is fixed.
Integrating blocking for cache optimization in this schema would increase the
complexity further.

Listing 1 NICAM Fortran code

do d = 1, ADM_nxyz
do l = 1, ADM_lall

!OCL PARALLEL
! support indices to address neighbors
do k = 1, ADM_kall

do n = OPRT_nstart, OPRT_nend
ij = n
ip1j = n + 1
ijp1 = n + ADM_gall_1d
ip1jp1 = n + 1 + ADM_gall_1d
im1j = n - 1
ijm1 = n - ADM_gall_1d
im1jm1 = n - 1 - ADM_gall_1d

grad(n,k,l,d) = cgrad(n,l,0,d) * scl(ij ,k,l) &
+ cgrad(n,l,1,d) * scl(ip1j ,k,l) &
+ cgrad(n,l,2,d) * scl(ip1jp1,k,l) &
+ cgrad(n,l,3,d) * scl(ijp1 ,k,l) &
+ cgrad(n,l,4,d) * scl(im1j ,k,l) &
+ cgrad(n,l,5,d) * scl(im1jm1,k,l) &
+ cgrad(n,l,6,d) * scl(ijm1 ,k,l)

enddo
grad( 1:OPRT_nstart-1,k,l,d) = 0.0_RP
grad(OPRT_nend+1:ADM_gall ,k,l,d) = 0.0_RP

enddo
enddo

enddo

The same semantics rewritten with the DSL is shown in Listing 2. Instead of
iterating across the grid explicitly, a FOREACH loop specifies to run on each
element of the grid, the coordinates are encoded in the new cell variable. We reduced
the repeated occurrences of the fields with the indices with a ‘REDUCE’ expression.
The Fortran indices are replaced with DSL indices that made it possible to simplify
the field access expressions.

Listing 2 NICAM DSL code

FOREACH cell in grid | g{OPRT_nstart..OPRT_nend}
do d = 1, ADM_nxyz

grad(cell,d) = REDUCE(+,N={0..6},
cgrad(cell%g,cell%l,N,d) * scl(cell%neighbor(N))

↪→ )
enddo

END FOREACH
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FOREACH cell in GRID%cells | g{1..OPRT_nstart-1 , OPRT_nend+1
↪→ .. gall}

do d = 1, ADM_nxyz
grad(cell,d) = 0.0_PRECISION

enddo
END FOREACH

3.4 Workflow and Tool Design

Model code that is based on the DSL along with code of the model in general-
purpose language goes through a source-to-source translation process. This step is
essential to make the higher-level code ready for processing by the compilers. Our
tool is designed in a modular architecture. By applying a configuration, it translates
code in a file or a source tree and generates a version of the transformed code.
The generated code is the optimized version for a specific machine/architecture
according to the configuration. Inter-file optimizations in code trees can also be
detected and applied.

The tool is implemented with Python3. Users call the main module with
parameters that allow them to control the translation process, e.g. to specify a
language module. The code tree is provided to the main module also as an argument.

The main module loads the other necessary modules. The DSL handler module
constructs the necessary data structures according to the user-provided configuration
file. The source code tree is then parsed into abstract syntax trees (AST). The
generated ASTs can be analyzed for optimization among the source files. After all
the optimizations/transformations are applied, the resulting code tree is serialized to
the output file. Figure 3 shows the design of the translation process.

Fig. 3 Translation process. Yellow components are influenced by the user options
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3.5 Configuration

Configuration files include multiple sections, among which some are essential and
others can be added only if needed. Optimization procedures are driven by those
configuration sections. The translation tool uses defaults in case optional sections
are missing.

Blocking Among the important optimizations that help improve the performance
of stencil computations is the optimal use of the caches and memory access. Reusing
the data in the caches eliminates the need to read the same data elements repeatedly
from memory. Often, data locality can be exploited in stencil computations, allowing
for performance improvements.

Cache blocking is a technique to improve the data reuse in caches. Our
translation process can apply cache blocking based on the scientific programmer’s
recommendations. One configuration section is used to allow to specify cache
blocking information. The default when this section is missing in a configuration
file is to not apply cache blocking.

An example kernel using GGDML in the C programming language is shown in
Listing 3.

Listing 3 Example kernel using C with GGDML

foreach c in grid
{

float df=(f_F[c.east_edge()]-f_F[c.west_edge()])/dx;
float dg=(f_G[c.north_edge()]-f_G[c.south_edge()])/dy;
f_HT[c]=df+dg;

}

Applying cache blocking using a configuration file defining 10,000 elements per
block generates the loop code shown in Listing 4. The first loop handles completely
occupied blocks with 10 k elements and the second loop the remainder. In both
cases, the loop body (not shown) contains the generated stencil code.

Listing 4 Example loop structure for blocking

for (size_t blk_start = (0); blk_start < (GRIDX); blk_start
↪→ +=10000){
size_t blk_end = GRIDX;
if ((blk_end - blk_start) > 10000)

blk_end = blk_start + 10000;
// Generated loop body

}
#pragma omp simd
for (size_t XD_index = blk_start; XD_index < blk_end;

↪→ XD_index++) {
// Generated loop body

}
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Memory Layout Another important point to optimize memory bandwidth is to
optimize the data layout in memory. The temporal and spacial locality of data
should lead to access of data in complete cache lines such that it can be prefetched
and cached effectively. Thus, data that is accessed in short time frames should be
stored closer in memory. To exploit such possibilities, our translation tool provides
a flexible layout transformation procedure. The DSL itself abstracts from data
placement, however, the translation process generates the actual data accesses. This
layout specification is described in configuration files.

Besides to data layout control, the loop nests that access the field data are also
subject to user control. The order of the loops that form a nested loop is critical for
the optimal data access. Loop order of loops that apply the stencils is also controlled
by configuration files.

Listing 5 illustrates the resulting code after using a data layout transformation. In
this case, a 2D grid is stored in a single-dimensional array.

Listing 5 Example code generated with index transformation

[...]
#pragma omp for
for (size_t YD_index = (0); YD_index < (local_Y_Cregion);

↪→ YD_index++){
#pragma omp simd

for (size_t XD_index = blk_start; XD_index < blk_end;
↪→ XD_index++){

float df = (f_F[(YD_index + 1) * (GRIDX + 3) + (XD_index
↪→ + 1)+1]
- f_F[(YD_index + 1) * (GRIDX + 3) + (XD_index) + 1])

↪→ * invdx;
float dg = (f_G[((YD_index + 1)+1) * (GRIDX + 3) + (

↪→ XD_index)+1]
- f_G[(YD_index + 1) * (GRIDX + 3) + (XD_index) + 1])

↪→ * invdy;
f_HT[(YD_index + 1) * (GRIDX + 3) + (XD_index) + 1] = df

↪→ + dg;
}

}
[...]

Inter-Kernel Optimization Cache blocking and memory layout allow improving
the use of the caches and memory bandwidth at the level of the kernel. However,
the optimal code at the kernel level does not yet guarantee optimal use of caches
and memory bandwidth at the application level. Consider the example where two
kernels share most of their input data but compute different outputs independently
from each other. These kernels could be fused together and benefit from reusing
cached data. Note that the benefit is system specific, as the size of the cache and
application kernel determine the optimal size for blocking and fusion.
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The inter-kernel optimization allows exploiting such data reuse across kernels.
To exploit such potential, our translation tool can run an optimizer procedure to
detect such opportunities and to apply them according to user decision of whether
to apply any of those optimizations or not.

Therefore, the tool analyzes the calls among the code files within the code
tree. This analysis leads to a list of call inlining possibilities. The inlining could
lead to further optimization through loop fusions. The tool runs automatic analysis
including data dependency and code consistency. This analysis detects possible
loop fusions that still keep computations consistent. Such loop fusion may lead
to optimized use of memory bandwidth and caches. We tested the technique
experimentally (refer to Sect. 4.5) to merge kernels in the application. We could
improve the use of caches and hence the performance of the application with 30–
48% on different architectures.

The tool provides a list of possible inlining and loop fusion cases. Users choose
from the list which case to apply—we anticipate that scientific programmers will
make an informed choice for a target platform based on performance analysis tools.
According to the choice that the user makes, the tool applies the corresponding
transformations automatically.

Listing 6 shows two kernels to compute the two components of the flux.

Listing 6 Example code with two kernels to compute flux components

[...]
#pragma omp parallel for
for(size_t YD_index = (0); YD_index < (local_Y_Eregion);

↪→ YD_index++){
#pragma omp simd

for (size_t XD_index = blk_start; XD_index < blk_end;
XD_index++) {
f_F[YD_index][XD_index] = f_U[YD_index][XD_index] *
(f_H[YD_index][XD_index] +f_H[YD_index][XD_index -1])

↪→ /2.0;
}

}
[...]
#pragma omp parallel for
for(size_t YD_index = (0); YD_index < (local_Y_Eregion);

↪→ YD_index++){
#pragma omp simd

for (size_t XD_index = blk_start; XD_index < blk_end;
↪→ XD_index++){

f_G[YD_index][XD_index] = f_V[YD_index][XD_index] *
(f_H[YD_index][(XD_index] + f_H[YD_index -1][XD_index])

↪→ /2.0;
}

}
[...]
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Listing 7 shows the resulting code when the two kernels are merged.

Listing 7 Merged version of the flux computation kernels

[...]
#pragma omp parallel for
for (size_t YD_index = 0; YD_index < (local_Y_Eregion);

↪→ YD_index++){
#pragma omp simd

for (size_t XD_index = blk_start; XD_index < blk_end;
↪→ XD_index++) {

f_F[YD_index][XD_index] = f_U[YD_index][XD_index] *
(f_H[YD_index][XD_index] + f_H[YD_index][(XD_index) +

↪→ (-1)])/2.0;

f_G[YD_index][XD_index] = f_V[YD_index][XD_index] *
(f_H[YD_index][(XD_index] + f_H[(YD_index) + (-1)][

↪→ XD_index])/2.0;
}

}
[...]

Utilizing Distributed Memory Beyond parallelization on the node resources, our
techniques allow scaling the same source code that uses GGDML over multiple
nodes utilizing distributed memory. This is essential to run modern models on
modern supercomputer machines.

The GGDML code is unaware of underlying hardware, and does not need to
be modified to run on multiple nodes. Rather, configuration files are prepared to
translate the GGDML code into code that is ready to be run on multiple nodes.
Configuration files allow domain decomposition to distribute the data and the
computation over the nodes. Necessary communication of halo regions is also
enabled through configuration files. Scientific programmers can generate simple
parallelization schemes, e.g., MPI using blocking communication or sophisticated
alternatives like non-blocking communication. When using non-blocking communi-
cation, a further optimization is to decouple the computation of the inner region that
can be calculated without needing updated halo data and outer regions that require
data from another process to be computed.

The translation tool extracts neighborhood information from the GGDML
extensions. Such extracted information is analyzed by the tool to decide which
halo regions should be exchanged between which nodes. Decisions and information
from configuration files allow to generate the necessary code that handles the
communication and the synchronization. This guarantees that the necessary data
are consistent on the node where the computation takes place.

The parallelization is a flexible technique. No single library is used to handle the
parallelization, rather, the communication library is provided through configuration
files. Thus, different libraries or library versions can be used for this purpose. We
have examined the use of MPI and GASPI as libraries for parallelization.
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Listing 8 shows the resulting communication code of halo regions between
multiple processes—in this case without decoupling of inner and outer area,
code with decoupled areas is longer. In this listing, dirty flags are generated to
communicate only necessary data. Flags are set global to all processes, and can
be checked by each process such that processes that need to do communication can
make use of them. This way we guarantee to handle communication properly.

Listing 8 Example generated code to handle communication of halo data

[...]
//part of the halo exchange code
if (f_G_dirty_flag[11] == 1) {

if (mpi_world_size > 1) {
comm_tag++;
int pp = mpi_rank != 0 ? mpi_rank - 1 : mpi_world_size -

↪→ 1;
int np = mpi_rank != mpi_world_size - 1 ? mpi_rank + 1 :

↪→ 0;
MPI_Isend(f_G[0], GRIDX + 1, MPI_FLOAT, pp,

comm_tag, MPI_COMM_WORLD, &mpi_requests[0]);
MPI_Irecv(f_G[local_Y_Eregion], GRIDX + 1, MPI_FLOAT, np,

comm_tag, MPI_COMM_WORLD, &mpi_requests[1]);
MPI_Waitall(2, mpi_requests, MPI_STATUSES_IGNORE);

[...]

#pragma omp parallel for
for(size_t YD_index = (0); YD_index < (local_Y_Cregion);

↪→ YD_index++){
#pragma omp simd

for (size_t XD_index = blk_start; XD_index < blk_end;
↪→ XD_index++){

float df = (f_F[YD_index][(XD_index) + (1)]
- f_F[YD_index][XD_index]) * invdx;

float dg = (f_G[(YD_index) + (1)][XD_index]
- f_G[YD_index][XD_index]) * invdy;

f_HT[YD_index][XD_index] = df + dg;
}

}
[...]

3.6 Estimating DSL Impact on Code Quality and Development
Costs

To estimate the impact of using the DSL on the quality of the code and the
costs of model development, we took two relevant kernels from each of the three
icosahedral models, and analyzed the achieved code reduction in terms of lines
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Fig. 4 GGDML impact on
the LOC on several scientific
kernels [32]
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of code (LOC) [32]. We rewrote the kernels (originally written in Fortran) using
GGDML + Fortran. Results are shown in Fig. 4.

The average reduction in terms of LOC is 70%, i.e. LOC in GGDML+Fortran
in comparison to original Fortran code is 30%. More reduction is noticed in some
stencils (NICAM example No.2, reduced to 12%).

Influence on readability and maintainability: Using COCOMO [6] as a model
to estimate complexity of development effort and costs, we estimated in Table 1
the benefits as a result of the code reductions when applying GGDML to develop a
model comparable to the ICON model. The table shows the effort in person month,
development time and average number of people (rounded) for three development
modes: the embedded model is typically for large project teams a big and complex
code base, the organic model for small code and the semi-detached mode for in-
between. We assume the semi-detached model is appropriate but as COCOMO
was developed for industry projects, we don’t want to restrict the development
model. The estimations are based on a code with 400KLOC, where 300KLOC of
the code are the scientific portion that allows for code reduction while 100KLOC
are infrastructure.

From the predicted developed effort, it is apparent that the code reductions
would be leading to a significant effort and cost reduction that would justify the
development and investment in DSL concepts and tools.

4 Evaluating Performance of our DSL

To illustrate the performance benefits of using the DSL for modeling, we present
some performance measurements that were measured for example codes written
with the DSL and translated considering different optimization aspects (configura-
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tions). Two different testcodes were used to evaluate the DSL’s support for different
types of grids: One application uses an unstructured triangular grid, and the other
uses a structured rectangular grid that could be applied for code in cubic sphere.
Both were written using GGDML (our DSL) in addition to C as the host modeling
language.

4.1 Test Applications

Laplacian Solver The first application code uses an unstructured triangular grid
covering the surface of the globe. The application was used in the experiments
to apply the Laplacian operator of a field at the cell centers based on field values
at neighboring cells. Generally, this code includes fields that are localized at the
cell centers, and on the edges of the cells. The horizontal grid of the globe surface
is mapped to a one dimensional array using Hilbert space-filling-curve. We used
1,048,576 grid points (and more points over multiple-node runs) to discretize the
surface of the globe. The code is written with 64 vertical levels. The surface is
divided into blocks. The kernels are organized into components, each of which
resembles a scientific process.

Shallow Water Model The other code is a shallow water equation solver. It is
developed with a structured grid. Structured grids are also important to study
for icosahedral modeling, as some icosahedral grids can be structured. Fields are
located at centers of cells and on edges between cells. This solver uses the finite
difference method. The test code is available online.1 As part of the testing, we
investigate performance portability of code developed using the DSL.

4.2 Test Systems

The experiments were executed in different times during the course of the project
and used different machines based on availability and architectural features.

• Mistral
The German Climate Computing Center provides nodes with Intel(R) Xeon(R)
E5-2695 v4 (Broadwell) @ 2.1 GHz processors.

• Piz Daint
The Swiss supercomputer provides nodes equipped with two Intel(R) Xeon(R)
CPU E5-2690 v3 @ 2.60 GHz processors and NVIDIA(R) Tesla(R) P100 GPUs.

1https://github.com/aimes-project/ShallowWaterEquations.

https://github.com/aimes-project/ShallowWaterEquations
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Fig. 5 Impact of blocking: Performance measurements with variable grid width. (a) Broadwell
CPU. (b) P100 GPU

• NEC test system
Intel(R) Xeon(R) CPU E5-2697 v4 @ 2.30 GHz Broadwell processors with
Aurora vector engines.

4.3 Evaluating Blocking

To explore the benefit of organizing memory accesses efficiently across architec-
tures, experiments using the shallow water equation solver code were conducted
on Piz Daint. First, we generated code versions with and without blocking for the
Broadwell processor and the P100 GPU. An excerpt of results presented for different
size of grids is shown in [29] and in Fig. 5a. The experiment was done with grid
width of 200K. In the paper, we investigated the influence of the blocking factor on
the application kernel further revealing that modest block sizes are leading to best
performance (256 to 10 k for CPU and 2–10 k for GPU). On both architectures,
wider grids run less efficiently as a result of an inefficient use of caches. The
GPU implies additional overhead for the blocked version, requiring to run with a
sufficiently large grid to benefit from it. This also shows the need to dynamically
turn on/off blocking factors depending on the system capabilities.

4.4 Evaluating Vectorization and Memory Layout Optimization

As part of [28], we evaluated techniques to apply memory layout transformations.
The experiments were done on two architectures, the Broadwell multi-core proces-
sors and the Aurora vector engine on the NEC test platform using the shallow water
equation solver code.
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Table 2 Performance of memory layout variants on CPU and the NEC vector architec-
ture

Architecture Scattered
Short

distance
Contiguous

Broadwell 3 GFlops 13 GFlops 25 GFlops
NEC Aurora 80 GFlops 161 GFlops spolFG 2 23

We used alternative layouts with different distances between data elements to
investigate the impact of the data layout on the performance. The explored data
alternatives were data accesses to

• contiguous unit stride arrays,
• interleaved data with constant short distance separating data elements, 4 bytes

separating consecutive elements. This allowed to emulate array of structures
(AoS) layouts,

• scattered data elements separated with long distances.

The results are listed in brief in Table 2. Using memory profilers, we found that
the contiguous unit-stride code allowed to use the memory throughput efficiently
on both architectures. In the emulated AoS codes, the efficiency dropped on both
architectures. The worst measurements were taken for the scattered data elements.

Besides the impact of the optimization on the use of the memory bandwidth,
vectorization is also affected by those alternatives. AVX2 was used for all kernels
on Broadwell for the unit-stride code. Similarly, the vector units of the vector engine
showed best results with this layout. Again the use of the vectorization was degraded
with the emulated AoS, and was even worse with the scattered data elements.

4.5 Evaluating Inter-Kernel Optimization

To explore the benefit of kernel merging, experiments were done using the shallow
water equation solver code on the NEC test system (for vector engines) and Piz
Daint (for GPUs and CPUs) [29]. The performance of regular and merged kernels
are shown in Table 3. The code achieves near optimal use of the memory bandwidth
already before the merge and actually decreases slightly after the merge. Exploiting
the inter-kernel cache reuse allowed to reduce the data access in memory and
increased the total performance of the application by 30–50%.

4.6 Scaling with Multiple-Node Runs

To demonstrate the ability of the DSL to support global icosahedral models, we
carried out experiments using the two applications. Scalability experiments of
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Table 3 Performance and efficiency of the kernel fusioning on all three architectures

Before merge With Inter-Kernel Merging

Architecture

Theoretical
Memory

bandwidth
(GB/s)

Measured
memory

throughput
GFlops

Measured
memory

throughput
GFflops

Broadwell 77 62 (80%) 24 60 (78%) 31 (+30%)
P100 GPU 500 380 (76%) 149 389 (78%) 221 (+48%)
NEC Aurora 1,200 961 (80%) 322 911 (76%) 453 (+40%)

(GB/s) and peak (GB/s) and peak

Fig. 6 Scalability of the two different models (measured on Mistral; P100 on Piz Daint). (a)
Icosahedral code [30]. (b) Shallow water solver [31]

unstructured grid code were run on Mistral. Shallow water equation solver code
experiments were run on Mistral for CPU tests, and on Piz Daint for GPU tests.

In the experiment using the unstructured grid, we use the global grid of the
application and apply a three-dimensional Laplacian stencil. We varied the number
of nodes that we use to run the code up to 48 nodes. The minimum number of the
grid points we used is 1,048,576. We used this number of points for the strong-scale
analysis. Weak scalability experiments were based on this number of points for each
node. Figure 6a shows the results.

We could do further numbers of nodes, however, we found that the code was
scaling with the tested cases and further experiments needed resources and time to
get jobs to run on the test machine. For the measured cases, the weak scalability of
the code is close to optimal. Thus, increasing the resolution of the grids and running
the code on more nodes is achieved efficiently. This is an important point as higher
resolution grids are essential for recent and future global simulations.

We also carried out experiments to scale the shallow water equation solver on
both Broadwell multi-core processors and on the P100 GPUs at Piz Daint. We
generated code for Broadwell experiments with OpenMP as well as MPI, and for
the GPUs with OpenACC as well as MPI. Figure 6b shows the measured results of
scaling the code. On the Broadwell processor, we used 36 OpenMP threads on each
node.
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While the performance of the GPU code scaled well, it loses quite some
efficiency when running on two processes as the halo communication involves the
host code. In general, the code that the tools generate for multiple nodes shows to
be scalable, both on CPUs and GPUs. The DSL code does not include any details
regarding single or multiple node configuration, so users do not need to care about
multiple node parallelization. However, the parallelization can still be applied by
the tool and the users can still control the parallelization process.

4.7 Exploring the Use of Alternative DSLs: GridTools

The GridTools framework is a set of libraries and utilities to develop performance-
portable weather and climate applications. It is developed at The Swiss National
Supercomputing Center [13]. To achieve the goal of performance portability, the
user code is written in a generic form which is then optimized for a given archi-
tecture at compile time. The core of GridTools is the stencil composition module
which implements a DSL embedded in C++ for stencils and stencil-like patterns.
Further, GridTools provides modules for halo exchanges, boundary conditions, data
management and bindings to C and Fortran. GridTools is successfully used to
accelerate the dynamical core of the COSMO model with improved performance on
CUDA-GPUs compared to the current official version, demonstrating production
quality and feature-completeness of the library for models on lat-lon grids [48].
Although GridTools was developed for weather and climate applications it might be
applicable for other domains with a focus on stencil-like computations.

In the context of the AIMES project, we evaluated the viability of using
GridTools for the dynamical core of NICAM: namely NICAM-DC. Since NICAM-
DC is written in Fortan, we first had to port the code to C++, which includes
also changing the build systems. Figures 9 and 10 show simple example codes
extracted from NICAM-DC and ported to GridTools, respectively. We ported the
dynamical core using the following incremental approach. First, each operator was
ported individually to GridTools, i.e. re-written from Fortran to C++. Next, we used
a verification tool to assure that the same input to the C++ and Fortran version gives
the same output. Next we move on to the following operator. Table 4 shows results
from benchmarks extracted from NICAM-DC. It provides good speedup on GPU,
and speed on CPU (in OpenMP) comparable to the hand-written version. Figure 7
shows results for running all operators of NICAM-DC on 10 nodes. It is worth
mentioning that the most time consuming operator is more than 7x faster on GPU
versus CPU.

GridTools demonstrates good GPU performance and acceptable CPU perfor-
mance. The functionalities and features included in GridTools were enough to
support the regular mesh code of NICAM-DC without friction (i.e. no custom
features were required in GridTools to support the requirements of NICAM-DC).
In addition, GridTools are transparent in the sense that no information about the
platform is exposed to the end-user. On the other hand, following is a list of issues



AIMES 87

Table 4 Execution time (seconds) of different benchmarks extracted from NICAM-DC. This
includes the regular regions only, using 1 region, a single MPI rank for a 130× 130 × 42 grid

Fig. 7 NICAM-DC operators. Running on 10 nodes with one MPI rank per node. P100 is running
GridTools generated kernels and Xeon uses the original Fortran code. Total grid is 32 × 32 × 10
using 40 vertical layers

that requires one’s consideration when using GridTools: first, the requirement of
rewriting the entire dynamical core in C++ is not a trivial task, especially since C++
templates make the code more convoluted, in comparison to Fortran. Second, while
GridTools as a stencil framework does a good job for the dynamical core, separate
solutions are required for the physics modules, the communicator module, and the
non-regular compute modules (e.g. polar regions). Using different solutions inside
the same code base typically increases the friction between code modules. Third,
the interfacing between Fortran and C++ is non-trivial and can be troublesome
considering that not all end-users are willing to change their build process.
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Listing 9 Example of the diffusion operator extracted from NICAM-DC

1 do d = XDIR, ZDIR
2 do j = jmin-1, jmax
3 do i = imin-1, imax
4 vt(i,j,d) = (( + 2.0_RP * coef(i,j,d,1) &
5 - 1.0_RP * coef(i,j,d,2) &
6 - 1.0_RP * coef(i,j,d,3) ) * scl(i,j,d) &
7 + ( - 1.0_RP * coef(i,j,d,1) &
8 + 2.0_RP * coef(i,j,d,2) &
9 - 1.0_RP * coef(i,j,d,3) ) * scl(i+1,j,d)

↪→ &
10 + ( - 1.0_RP * coef(i,j,d,1) &
11 - 1.0_RP * coef(i,j,d,2) &
12 + 2.0_RP * coef(i,j,d,3) ) * scl(i,j+1,d)

↪→ &
13 ) / 3.0_RP
14 enddo
15 enddo
16 enddo

Listing 10 Example of the diffusion operator ported to GridTools

1 template <typename evaluation>
2 GT_FUNCTION
3 static void Do(evaluation const & eval, x_interval) {
4 eval(vt{}) = (( + 2.0 * eval(coef{})
5 - 1.0 * eval(coef{a+1})
6 - 1.0 * eval(coef{a+2}) ) * eval(scl

↪→ {})
7 + ( - 1.0 * eval(coef{})
8 + 2.0 * eval(coef{a+1})
9 - 1.0 * eval(coef{a+2}) ) * eval(scl{

↪→ i+1})
10 + ( - 1.0 * eval(coef{})
11 - 1.0 * eval(coef{a+1})
12 + 2.0 * eval(coef{a+2}) ) * eval(scl{

↪→ j+1})
13 ) / 3.0;
14 }

5 Massive I/O and Compression

5.1 The Scientific Compression Library (SCIL)

The developed compression library SCIL [36] provides a framework to compress
structured and unstructured data using the best available (lossless or lossy) compres-



AIMES 89

SCIL

Application

NetCDF4
+ Quantities support

HDF5
+ Quantities support

+ SCIL Filter

SCIL
C-API

SCIL Tools

HDF5-File

ZFP

...

abstol

reltol

allquant

LZ4

delta

1
quantities
and data

6 direct use

2
quantities
and data

3

quantities
and data

4
compressed

data
5compressed

data

Fig. 8 SCIL compression path and components (extended)[36]

sion algorithms according to the definition of tolerable loss of accuracy and required
performance. SCIL acts as a meta-compressor providing various backends such as
algorithms like LZ4, ZFP, SZ but also integrates some alternative algorithms.

The data path of SCIL is illustrated in Fig. 8. An application can either use
NetCDF4 [45],2 HDF5 [19] or directly the C-interface of SCIL. Based on the
defined quantities, the values and the characteristics of the data to compress, the
appropriate compression algorithm is chosen. SCIL also comes with a library to
generate various synthetic test patterns for compression studies, i.e., well-defined
multi-dimensional data patterns of any size. Further tools are provided to plot, to
add noise or to compress CSV and NetCDF3 files.

5.2 Supported Quantities

There are three types of quantities supported:

Accuracy Quantities define the tolerable error on lossy compression. When
compressing the value v to v̂ it bounds the residual error (r = v − v̂):
• absolute tolerance: v − abstol ≤ v̂ ≤ v + abstol
• relative tolerance: v/(1 + reltol) ≤ v̂ ≤ v · (1+ reltol)

2HDF5 and NetCDF4 are APIs and self-describing data formats for storing multi-dimensional data
with user-relevant metadata.
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• relative error finest tolerance: used together with relative tolerance; absolute
tolerable error for small v’s. If relfinest > |v · (1± reltol)|, then v − relfinest ≤
v̂ ≤ v + relfinest

• significant digits: number of significant decimal digits
• significant bits: number of significant digits in bits

SCIL must ensure that all the set accuracy quantities are honored regardless of
the algorithm chosen, meaning that one can set, e.g., absolute and relative tolerance
and the strictest of the criteria is satisfied.

Performance Quantities These quantities define the expected performance behav-
ior for both compression and decompression (on the same system). The value can
be defined according to: (1) absolute throughput in MiB or GiB; or (2) relative to
network or storage speed. It is considered to be the expected performance for SCIL
but it may not be as strictly handled as the qualities—there may be some cases in
which performance is lower. Thus, SCIL must estimate the compression rates for
the data.

Supplementary Quantities An orthogonal quantity that can be set is the so called
fill value, a value that scientists use to mark special data points. This value must be
preserved accurately and usually is a specific high or low value that may disturb a
smooth compression algorithm.

5.3 Compression Chain

Internally, SCIL creates a compression chain which can involve several compression
algorithms as illustrated in Fig. 9. Based on the basic datatype that is supplied, the
initial stage of the chain is entered. Algorithms may be preconditioners to optimize
data layout for subsequent compression algorithms, converters from one data format
to another, or, on the final stage, a lossless compressor. Floating-point data can be
first mapped to integer data and then to a byte stream. Intermediate steps can be
skipped.

Array of
Type-To-Type

Preconditioners

Type-To-Integer
Converter

Array of
Integer-To-Integer
Preconditioners

Type-To-Byte
Compressor

Byte-To-Byte
Compressor

compr.
data

process data process data

float float int any anydata

Fig. 9 SCIL compression chain. The data path depends on the input data type [36]
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5.4 Algorithms

SCIL comes with additional algorithms that are derived to support one or multiple
accuracy quantities set by the user. For example, the algorithms Abstol (for absolute
tolerance), Sigbits (for significant bits/digits), and Allquant. These algorithms aim to
pack the number of required bits as tightly as possible into the data buffer but operate
on each value independently. While Abstol and Sigbits just consider one quantity,
Allquant considers all quantities together and chooses the required operation for
a data point depending on the highest precision needed. We also consider these
algorithms to be useful baselines when comparing any other algorithm. ZFP and
SZ, for example, work on one quantity, too.

During the project, we explored the implementation for the automatic algorithm
selection but only integrated a trivial scheme for the following reasons: if only a
single quantity is set, we found out that the optimal parameter depends on many
factors (features); the resulting optimal choice is embedded in a multi-dimensional
space—this made it infeasible to identify the optimal algorithm. Once more than a
single quantity is set, only one of the newly integrated algorithms can perform the
compression, which eliminates any choice. As the decoupling of SCIL enables to
integrate algorithms in the future, we hope that more algorithms will be developed
that can then benefit from implementing the automatic selection.

6 Evaluation of the Compression Library SCIL

We evaluated the performance and compression ratio of SCIL against several
scientific data sets and the synthetic test patterns generated by SCIL itself [36].

6.1 Single Core Performance

In the following, an excerpt of the experiments conducted with SCIL on a single core
is shown. These results help to understand the performance behavior of compression
algorithms and their general characteristics.

Four data sets were used each with precision floating-point data (32 bit): (1) the
data created with the SCIL pattern library (10 data sets each with different random
seed numbers). The synthetic data has the dimensionality of (300× 300 × 100 =
36 MB); (2) the output of the ECHAM atmospheric model [46] which stored 123
different scientific variables for a single timestep as NetCDF; (3) the output of the
hurricane Isabel model which stored 633 variables for a single timestep as binary;3
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Table 5 Harmonic mean
compression performance for
different scientific data sets

Compr. Decomp.

Algorithm Ratio MiB/s MiB/s

(a) 1% absolute tolerance

NICAM abstol 0.206 499 683

abstol,lz4 0.015 458 643

sz 0.008 122 313

zfp-abstol 0.129 302 503

ECHAM abstol 0.190 260 456

abstol,lz4 0.062 196 400

sz 0.078 81 169

zfp-abstol 0.239 185 301

Isabel abstol 0.190 352 403

abstol,lz4 0.029 279 356

sz 0.016 70 187

zfp-abstol 0.039 239 428

Random abstol 0.190 365 382

abstol,lz4 0.194 356 382

sz 0.242 54 125

zfp-abstol 0.355 145 241

(b) 9 bits precision

NICAM sigbits 0.439 257 414

sigbits,lz4 0.216 182 341

zfp-precision 0.302 126 182

ECHAM sigbits 0.448 462 615

sigbits,lz4 0.228 227 479

zfp-precision 0.299 155 252

Isabel sigbits 0.467 301 506

sigbits,lz4 0.329 197 366

zfp-precision 0.202 133 281

Random sigbits 0.346 358 511

sigbits,lz4 0.348 346 459

zfp-precision 0.252 151 251

(4) the output of the NICAM Icosahedral Global Atmospheric model which stored
83 variables as NetCDF.

The characteristics of the scientific data varies and so does data locality within
the data sets. For example, in the Isabel data many variables are between 0 and 0.02,
many between −80 and+80 and some are between −5000 and 3000.

We set only one quantity to allow using ZFP and SZ for comparison. Table 5
shows the harmonic mean compression ratio4 for setting an absolute error of 1% of

3http://vis.computer.org/vis2004contest/data.html.
4The ratio is the resulting file size divided by the original file size.

http://vis.computer.org/vis2004contest/data.html
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Fig. 10 Compressing various climate variables with absolute tolerance 1%

the maximum value or setting precision to 9 bit accuracy. The harmonic mean cor-
responds to the total reduction and performance when compressing/decompressing
all the data.

The results for compressing 11 variables of the whole NICAM model via the
NetCDF API are shown in Fig. 10. The x-axis represents the different data files, as
each file consists of several chunks, a point in the y-axis represents one chunk. It
can be observed that generally the SZ algorithm yields the best compression ratio
but Abstol+LZ4 yields the second best ratio providing much better and predictable
compression and decompression speeds.

Note that for some individual variables, one algorithm may supersede another in
terms of ratio. As expected there are cases in which one algorithm is outperforming
the other algorithms in terms of compression ratio which justifies the need for a
metacompressor like SCIL that can make smart choices on behalf of the users. Some
algorithms perform generally better than others in terms of performance. Since in
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our use cases, users define the tolerable error, we did not investigate metrics that
compare the precision for a fixed compression ratio (e.g., the signal to noise ratio).

While a performance of 200 MB/s may look insufficient for a single core, with
24 cores per node a good speed per node can be achieved that is still beneficial
for medium large runs on shared storage. For instance, consider a storage system
that can achieve 500 GB/s. Considering that one node with typical Infiniband
configuration can transfer at least 5 GB/s, 100 client nodes saturate the storage.
By compressing 5:1 (or ratio of 0.2), virtually, the storage could achieve a peak
performance of 2500 GB/s, and, thus, can serve up to 500 client nodes with
(theoretical) maximum performance.

Trading of storage capacity vs. space is an elementary issue to optimize bigger
workflows. By separating the concerns between the necessary data quality as defined
by scientists and compression library, site-specific policies could be employed that
depend also on the available hardware.

6.2 Compression in HDF5 and NetCDF

We tested the compression library SCIL using the icosahedral grid code. The code
can use NetCDF to output the generated data periodically. In this experiment, a
high-resolution grid with 268 million grid cells (single precision floating point) in
the horizontal times 64 vertical levels was used and executed on the supercomputer
Mistral. The code was run on 128 nodes, with one MPI process per node. It wrote
one field to the output file in one timestep. The field values range between −10 to
+55 which is important for understanding the impact of the compression.

The experiments varied the basic compression algorithms and parameters pro-
vided by SCIL. Compression is done with the algorithms

• memcopy: does not do any real compression, but allows to measure the overhead
of the usage of enabling HDF5 compression and SCIL.

• lz4: the well-known compression algorithm. It is unable to compress floating-
point data but slows down the execution.

• abstol,lz4: processes data elements based on the absolute value of each point, we
control the tolerance by the parameter absolute_tolerance, after quantization an
LZ4 compression step is added.

• sigbits,lz4: processes data elements based on a percentage of the value being pro-
cessed, we control the tolerance by the parameter relative_tolerance_percent ,
after quantization an LZ4 compression step is added.

The results of this selection of compression methods is shown in Table 6, it
shows the write time in seconds and resulting data size in GB, a virtual throughput
relative to the uncompressed file size, and the speedup. Without compression the
performance is quite poor: achieving only 432 MB/s on Mistral on 128 nodes,
while an optimal benchmark can achieve 100 GB/s. The HDF5 compression is
not yet optimally parallelized and requires certain collective operations to update
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Table 6 Compression results of 128 processes on Mistral

Write time Data size Throughput*

Compression method Parameter in s in GB in MB/s Speedup

No-compression 165.3 71.4 432 1.0

memcopy 570.1 71.4 125 0.3

lz4 795.3 71.9 90 0.2

absolute_tolerance=1 12.8 2.7 5578 12.9abstol,lz4

absolute_tolerance=.1 72.6 2.8 983 2.3

relative_tolerance_percent=1 12.9 2.9 5535 12.8sigbits,lz4

relative_tolerance_percent=.1 18.3 3.2 3902 9.0

the metadata. Internally, HDF5 requires additional data buffers. This leads to extra
overhead in the compression slowing down the I/O (see the memcopy and and LZ4
results which serve as baselines). By activating lossy compression and accepting an
accuracy of 1% or 0.1%, the performance can be improved in this example up to
13x.

Remember that these results serve as feasibility study. One of our goals was
to provide a NetCDF backwards compatible compression method not to optimize
the compression data path inside HDF5. The SCIL library can be used directly by
existing models avoiding the overhead and leading to the results as shown above.

7 Standardized Icosahedral Benchmarks

Our research on DSL and I/O is more practical. We started with real-world appli-
cations, namely three global atmospheric models developed by the participating
countries. The global atmospheric model with the icosahedral grid system is one
of the new generation global climate/weather models. The grid-point calculations,
which are less computational intense than the spherical harmonics transformation,
are used in the model. On the other hand, patterns of the data access in differential
operators are more complicated than the traditional limited-area atmospheric model
with the Cartesian grid system.

There are different implementations of the dynamical core on the icosahedral
grid: direct vs. indirect memory access, staggered vs. co-located data distribution,
and so on. The objective of standardization of benchmarks is to provide a variety
of computational patterns of the icosahedral atmospheric models. The kernels are
useful for evaluating the performance of new machines and new programming
models. Not only for our studies but also for the existing/future DSL studies, this
benchmark set provides various samples of the source code. The icosahedral grid
system is an unstructured grid coordinate, and there are a lot of challenging issues
about data decomposition, data layout, loop structures, cache blocking, threading,
offloading the accelerators, and so on. By applying DSLs or frameworks to the
kernels, the developers can try the detailed, practical evaluation of their software.
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Fig. 11 Overview of IcoAtmosBenchmark v1

The benchmarks were used in the final evaluation of SCIL and they steered the DSL
development by providing the relevant patterns.

7.1 IcoAtmosBenchmark v1: Kernels from Icosahedral
Atmospheric Models

IcoAtmosBenchmark v1 is the package of kernels extracted from three Icosahedral
Global Atmospheric models, NICAM, ICON, DYNAMICO. As shown in Fig. 11,
we prepared input data and reference output data for easy validation of results. We
also arranged documentation about the kernels. The package is available online.5

5https://aimes-project.github.io/IcoAtmosBenchmark_v1/.

https://aimes-project.github.io/IcoAtmosBenchmark_v1/
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7.1.1 Documentation

An excerpt to the NICAM kernel serves as an example. The icosahedral grid on the
sphere of NICAM is the unstructured grid system. In NICAM code, the complex
topology of the grid system is separated into the structured and unstructured part.
The grids are decomposed into tiles, and one or more tiles are allocated to each
MPI process. The horizontal grids in the tile are kept in a 2-dimensional structure.
On the other hand, a topology of the network of the tiles is complex. We selected
and extracted 6+1 computational kernels from the dynamical core of NICAM, as
samples of the stencil calculation on the structured grid system. We also extracted a
communication kernel, as a sample of halo exchange in the complex node topology.
The features of each kernel are documented on the GitHub page.

All kernels are single subroutines and almost the same as the source codes in
the original model, except for the ICON kernels. They are put into the wrapper
for the kernel program. Values of input variables in the argument list of the kernel
subroutine are stored as a data file, just before the call in the execution of the
original model. They are read and given to the subroutine in the kernel program.
Similarly, the values of output variables in the argument list are stored, just after
the call in execution. They are read and compared to the actual output values of
kernel subroutine. The differences are written to the standard output for validation.
For easy handling of the input/reference data by both the Fortran program and C
program, we prepared an I/O routine written in C.

We provided a user manual, which contains the brief introduction of each model,
the description of each kernel, usage of kernel programs, and sample results. This
information is helpful for users of this kernel suite in the future.

8 Summary and Conclusion

The numerical simulation of climate and weather is demanding for computational
and I/O resources. Within the AIMES project, we addressed those challenges and
researched approaches that foster the separation of concerns. This idea unites
our approaches for the DSL and the compression library. While a higher level
of abstraction can improve the productivity for scientists, most importantly the
decoupling of requirements from the implementation allows scientific programmers
to develop and improve architecture-specific optimizations.

Promising candidates for DSLs have been explored and with GGDML an alter-
native has been developed that covers the most relevant formulations of the three
icosahedral models: DYNAMICO, ICON, and NICAM. The DSL and toolchain we
developed integrates into existing code bases and suits for incremental reformulation
of the code. We estimated the benefit for code reduction and demonstrated several
optimizations for CPU, GPU, and vector architectures. Our DSL allows to reduce
code to around 30% of the LOC in comparison to code written with GPL code.



98 J. Kunkel et al.

With the semantics of GGDML, we could achieve near optimal use of memory
hierarchies and memory throughput which is critical for the family of computations
in hand. Our experiments show running codes with around 80% of achievable
memory throughput on different archiectures. Furthermore, we could scale models
to multiple nodes, which is essential for exascale computing, using the same code
that is used for a single node. The separation of concerns in our approach allowed us
to keep models code separate of underlying hardware changes. The single GGDML
source code is used to generate code for the different architectures and on single vs.
multiple nodes.

To address the I/O challenge, we developed the library SCIL, a metacompressor
supporting various lossy and lossless algorithms. It allows users to specify various
quantities for the tolerable error and expected performance, and allows the library
to chose a suitable algorithm. SCIL is a stand-alone library but also integrates
into NetCDF and HDF5 allowing users to explore the benefits of using alternative
compression algorithms with their existing middleware. We evaluated the perfor-
mance and compression ratio for various scientific data sets and on moderate scale.
The results show that the choice of the best algorithm depends on the data and
performance expectation which, in turn, motivates the need for the decoupling of
quantities from the selection of the algorithm. A blocker for applying parallel large-
scale compression in existing NetCDF workflows is the performance limitation of
the current HDF5 stack.

Finally, benchmarks and mini-applications were created that represent the key
features of the icosahedral applications.

Beside the achieved research in the AIMES project, the work done opens the door
for further research in the software engineering of climate and weather prediction
models. The performance portability, where we used the same code to run on
different architectures and machines, including single and multiple nodes, shows
that techniques are viable to continue the research in this direction. The code
reduction offered by DSLs promises to save millions in development cost that
can be used to contribute to the DSL development. During the runtime of the
project, it became apparent that the concurrently developed solutions GridTools and
PSYclone that also provide such features are preferred by most scientists as they are
developed by a bigger community and supported by national centers. We still believe
that the developed light-weight DSL solution provides more flexibility particularly
for smaller-sized models and can be maintained as part of the development of
the models itself. It also can be used in other contexts providing domain-specific
templates to arbitrary codes.

In the future, we aim to extend the DSL semantics to also address I/O relevant
specifications. This would allow to unify the effort towards optimal storage and
computation.
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DASH: Distributed Data Structures
and Parallel Algorithms in a Global
Address Space
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Pascal Jungblut, Roger Kowalewski, and Joseph Schuchart

Abstract DASH is a new programming approach offering distributed data struc-
tures and parallel algorithms in the form of a C++ template library. This article
describes recent developments in the context of DASH concerning the ability to exe-
cute tasks with remote dependencies, the exploitation of dynamic hardware locality,
smart data structures, and advanced algorithms. We also present a performance
and productivity study where we compare DASH with a set of established parallel
programming models.

1 Introduction

DASH is a parallel programming approach that realizes the PGAS (partitioned
global address space) model and is implemented as a C++ template library.
DASH tries to reconcile the productivity advantages of shared memory parallel
programming with the physical realities of distributed memory hardware. To achieve
this goal, DASH provides the abstraction of globally accessible memory that
spans multiple interconnected nodes. For performance reasons, this global memory
is partitioned and data locality is not hidden but explicitly exploitable by the
application developer.

DASH is realized as a C++ template library, obviating the need for a custom
language and compiler. By relying on modern C++ abstraction and implementation
techniques, a productive programming environment can be built solely based on
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standard components. For many application developers in HPC and in general, a big
part of the appeal of the C++ programming language stems from the availability
of high performance generic data structures and algorithms in the C++ standard
template library (STL).

DASH can be seen as a generalization of concepts found in the STL to the
distributed memory case and efforts have been made to keep DASH compatible
with components of the STL. In many cases it is thus possible to mix and match
algorithms and data structures freely between DASH and the STL.

DASH is developed in the context of the SPPEXA priority programme for
Exascale computing since 2013. In this paper we give an overview of DASH and
report on activities within the project focusing on the second half of the funding
period. We first give an overview of the DASH Runtime System (DART) in Sect. 2,
focusing on features related to task execution with global dependencies and dynamic
hardware topology discovery. In Sect. 3 we describe two components of the DASH
C++ template library, a smart data structure that offers support for productive
development of stencil codes and an efficient implementation of parallel sorting.
In Sect. 4 we provide an evaluation of DASH testing the feasibility of our approach.
We provide an outlook on future developments in Sect. 5.

2 The DASH Runtime System

The DASH Runtime System (DART) is implemented in C and provides an abstrac-
tion layer on top of distributed computing hardware and one-sided communication
substrates. The main functionality provided by DART is memory allocation and
addressing as well as communication in a global address space. In DASH parlance
the individual participants in an application are called units mapped to MPI
processes in the MPI-3 remote memory access based implementation of DART.

Early versions of DASH/DART focused on data distribution and access and
offered no explicit compute model. This has changed with the support for tasks
in DASH and DART. We start with a discussion of these new features, followed by
a description of efforts to tackle increasing hardware complexity in Sect. 2.2.

2.1 Tasks with Global Dependencies

The benefit of decoupled transfer and synchronization in the PGAS programming
model promises to provide improved scalability and better exploit hardware capa-
bilities. However, proper synchronization of local and global memory accesses is
essential for the development of correct applications. So far, the synchronization
constructs in DASH were limited to collective synchronization using barriers and
reduction operations as well as an implementation of the MCS lock. Using atomic
RMA operations, users could also create custom synchronization schemes using
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point-to-point signaling, i.e., by setting a flag at the target after completion of a
transfer. While this approach might work for simple examples, it hardly scales to
more complex examples where reads and writes from multiple processes need to be
synchronized.

The need for a more fine-grained way of synchronization that allows to cre-
ate more complex synchronization patterns was thus imminent. The data-centric
programming model of DASH with the distributed data structure at its core lead
motivated us to create a synchronization that centers around these global data
structures, i.e., which is data-centric itself. At the same time, the essential property
of PGAS needed to be preserved: the synchronization had to remain decoupled
from data transfers, thus not forcing users to rely solely on the new synchronization
mechanism for data transfers.

At the same time, the rise of task-based programming models inspired us to
investigate the use of tasks as a synchronization vehicle, i.e., by encapsulating local
and global memory accesses into tasks that are synchronized using a data-centric
approach. Examples of widely known data-centric task-based synchronization
models are OpenMPI with its task data dependencies, OmpSs, and PaRSEC.
While PaRSEC uses data dependencies to express both synchronization and actual
data flow between tasks, OpenMP and OmpSs use data dependencies solely for
synchronization without affecting data movement. In contrast to PaRSEC, however,
OpenMP and OmpSs only support shared memory parallelization.

A different approach has been taken by HPX, which facilitates synchronization
through the use of future/promise pairs, which form a channel between two or
more tasks and are a concept that has been well established in the C++ community.
However, this synchronization concept with it’s inherent communication channel
hardly fits into the concept of a PGAS abstraction built around data structures in the
global memory space. Moreover, DASH provides a locality-aware programming,
in which processes know their location in the global address and can diverge their
control accordingly, whereas HPX is a locality-agnostic programming model.

We thus decided to focus our research efforts on distributed data dependencies,
extending the shared memory capabilities of task data dependencies into the global
memory space while keeping synchronization and data transfer decoupled.

2.1.1 Distributed Data Dependencies

Tasks in DASH are created using the async function call and passing it an action
that will be executed by a worker thread at a later point in time. Additionally, the
async function accepts an arbitrary number of dependency definitions of the form
in(memory_location) and out(memory_location) to define input and output
dependencies, respectively. In the DASH tasking model, each unit discovers it’s
local task graph by creating tasks operating mainly in the local portion of the
global memory space, i.e., tasks are never transferred to other units. This locality-
awareness limits the number of tasks to be discovered to only the tasks that will
eventually be executed in that unit: as depicted in Fig. 1.
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Fig. 2 Scheduler interaction required for handling remote task data dependencies

The discovery of the local task graphs thus happens in parallel and without
immediate synchronization between the units, i.e., only the bold edges in Fig. 1 are
immediately visible to the individual scheduler instances. In order to connect these
trimmed task graphs, the schedulers need to exchange information on dependencies
crossing its process boundary, i.e., dependencies referencing non-local global mem-
ory locations. The required interaction between the schedulers is depicted in Fig. 2.
During the discovery of the trimmed local task graphs, schedulers communicate
any encountered dependencies that reference non-local global memory to the
unit owning the referenced memory 1 . As soon as all dependencies have been
communicated, the schedulers extend their local task graphs with the dependency
information received from other units 2 . A synchronization across all units is
required to ensure that all relevant dependency information has been exchanged.

After the extension of the local task graphs, the units start the execution of the
tasks. As soon as a task with a dependency to a task on a remote unit, e.g., through
an input dependency previously communicated by the remote unit, has completed,
the dependency release is communicated to the remote unit 3 , where the task will
eventually be executed. The completion of the execution is then communicated
back to the first scheduler 4 to release any write-after-read dependency, e.g., the
dependency C2 → B3 in Fig. 1.
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2.1.2 Ordering of Dependencies

As described in Sect. 2.1.1, the local task graphs are discovered by each unit
separately. Local edges in the local task graph are discovered similar to the matching
rules of OpenMP, i.e., an input dependency refers to the previous output dependency
referencing the same memory location (read-after-write), which in turn match with
previous input and output dependencies on the same memory location (write-after-
read and write-after-write).

However, since the local task graphs are discovered in parallel, the sched-
ulers cannot infer any partial ordering of tasks and dependencies across process
boundaries. More specifically, the blue scheduler in Fig. 1 cannot determine the
relationship between the dependencies of tasks B1, B2, C2, C4. The schedulers thus
have to rely on additional information provided by the user in the form of phases (as
depicted in Fig. 1). A task and its output dependencies are assigned to the current
phase upon their discovery. Input dependencies always refer to the last matching
output dependency in any previous phase while output dependencies match with any
previous local input dependency in the same or earlier phase and any remote input
dependency in any earlier phase, up to and including the previous output dependency
on the same memory location.

As an example, the input dependency of C2 is assigned the phase N + 1 whereas
the input dependency of C4 is assigned the phase N + 3. This information can be
used to match the output dependency of B1 in phase N to the input dependency of
C2 and the output dependency of B2 in phase N + 2 to the input dependency of
C4, creating the edges B1 → C2 and B2 → C4. The handling of write-after-read
dependencies described in Sect. 2.1.1 creates the edge C2 → B2. The handling of
local dependencies happens independent of the phase.

In our model, conflicting remote dependencies in the same phase are erroneous
as the scheduler is unable to reliably match the dependencies. Two dependencies
are conflicting if at least one of them is non-local and at least one is an output
dependency. This restriction allows the schedulers to detect synchronization errors
such as underdefined phases and report them to the user. This is in contrast to the
collective synchronization through barriers traditionally used in DASH, in which
synchronization errors cannot be easily detected and often go unnoticed unless the
resulting non-deterministic behavior leads to deviations in the application’s results.

2.1.3 Implementation

A single task is created using the async function in DASH, which accepts both an
action to be performed when the task is executed and a set of dependencies that
describe the expected inputs and outputs of the task. In the example provided in
Listing 1, every call to async (lines 5, 11, 19, and 27) is passed a C++ lambda in
addition to input and output dependencies.

Instead of pure input dependencies, the example uses copyin dependencies,
which combine an input dependency with the transfer of the remote memory range
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into a local buffer. This allows for both a more precise expression of the algorithms
and allows the scheduler to map the transfer onto two-sided MPI communication
primitives, which may be beneficial on systems that do not efficiently support MPI
RMA. The action performed by the task could still access any global memory
location, keeping communication and synchronization decoupled in principle and
retaining a one-sided programming model while allowing the use of two-sided
communication in the background.
� �

1 das h : : Matr ix <2 , double > m a t r i x {N, N, das h : : TILE (NB) , das h : : TILE (NB) } ;
2

3 f o r ( i n t k = 0 ; k < num_blocks ; ++k ) {
4 i f ( mat . b l o c k ( k , k ) . i s _ l o c a l ( ) ) {
5 das h : : t a s k s : : a s ync ( [ & ] ( ) { p o t r f ( m a t r i x . b l o c k ( k , k ) ) ; } ,
6 das h : : t a s k s : : o u t ( mat . b l o c k ( k , k ) ) ) ;
7 }
8 das h : : t a s k s : : a s y n c _ f e n c e ( ) ; / / <− advance t o n e x t phas e
9 f o r ( i n t i = k +1 ; i < num_blocks ; ++ i )

10 i f ( mat . b l o c k ( k , i ) . i s _ l o c a l ( ) )
11 das h : : t a s k s : : a s ync ( [ & ] ( ) {
12 t r sm ( cache [ k ] , m a t r i x . b l o c k ( k , i ) ) ; } ,
13 das h : : t a s k s : : copy in ( mat . b l o c k ( k , k ) , cache [ k ] ) ,
14 das h : : t a s k s : : o u t ( mat . b l o c k ( k , i ) ) ) ;
15 das h : : t a s k s : : a s y n c _ f e n c e ( ) ; / / <− advance t o n e x t phas e
16 f o r ( i n t i = k +1 ; i < num_blocks ; ++ i ) {
17 f o r ( i n t j = k +1 ; j < i ; ++ j ) {
18 i f ( mat . b l o c k ( j , i ) . i s _ l o c a l ( ) ) {
19 das h : : t a s k s : : a s ync ( [ & ] ( ) {

↪→
20 gemm( cache [ i ] , c ache [ j ] , mat . b l o c k ( j , i ) ) ; } ,
21 das h : : t a s k s : : copy in ( mat . b l o c k ( k , i ) , c ache [ i ] ) ,
22 das h : : t a s k s : : copy in ( mat . b l o c k ( k , j ) , c ache [ j ] ) ,
23 das h : : t a s k s : : o u t ( mat . b l o c k ( j , i ) ) ) ;
24 }
25 }
26 i f ( mat . b l o c k ( i , i ) . i s _ l o c a l ( ) ) {
27 das h : : t a s k s : : a s ync ( [ & ] ( ) {
28 s y r k ( cache [ i ] , mat . b l o c k ( i , i ) ) ; } ,
29 das h : : t a s k s : : copy in ( mat . b l o c k ( k , i ) , c ache [ i ] ) ,
30 das h : : t a s k s : : o u t ( mat . b l o c k ( i , i ) ) ) ;
31 }
32 }
33 das h : : t a s k s : : a s y n c _ f e n c e ( ) ; / / <− advance t o n e x t phas e
34 }
35 das h : : t a s k s : : comple te ( ) ; / / <− w a i t f o r a l l t a s k s t o e x e c u t e

� �

Listing 1 Implementation of Blocked Cholesky Factorization using global task data dependencies
in DASH. Some optimizations omitted for clarity

The specification of phases is done through calls to the async_fence function
(lines 8, 15, and 33 in Listing 1). Similar to a barrier, it is the user’s responsibility
to ensure that all units advance phases in lock-step. However, the phase transition
triggered by async_fence does not incur any communication. Instead, the call
causes an increment of the phase counter, whose new value will be assigned to
all ensuing tasks.

Eventually, the application waits for the completion of the execution of the global
task graph in the call to complete(). Due to the required internal synchronization
and the matching of remote task dependencies, the execution of all but the tasks in
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the first phase has to be post-poned until all its dependencies in the global task-graph
are known. DASH, however, provides the option to trigger intermediate matching
steps triggered by a phase increment and allows the specification of a an upper
bound on the number of active phases1 to avoid the need for discovering the full
local task graph before execution starts. This way the worker threads executing
threads may be kept busy while the main thread continues discovering the next
window in the task graph.

In addition to the single task creation construct described above, DASH also
provides the taskloop() construct, for which an example is provided in Listing 2.
The taskloop function divides the iteration space [begin, end) into chunks that
are assigned to tasks, which perform the provided action on the assigned subrange
(lines 7–9). The user may control the size of each chunk (or the overall number of
chunks to be created) by passing an instance of chunk_size (or num_chunks) to the
call (Line 5). In addition, the call accepts a second lambda that is used to specify the
dependencies of each task assigned a chunk (lines 11–14), which allows a depth-
first scheduler to chain the execution of chunks of multiple data-dependent loops,
effectively improving cache locality without changing the structure of the loops.
� �

1 dash::Array<int> arr(N);
2

3 if (dash::myid() == 0) {
4 dash::tasks::taskloop(
5 arr.begin(), arr.end(), dash::tasks::chunk_size(10),
6 // task action
7 [&] (auto begin, auto end) {
8 // perform action on elements in [begin, end)
9 },

10 // generate out dependencies on elements in [begin, end)
11 [&] (auto begin, auto end, auto deps) {
12 for (auto it = begin; it != end; ++it)
13 *deps = dash::tasks::out(it);
14 });
15 }

� �

Listing 2 Example of using the dash::taskloop in combination with a dependency generator

2.1.4 Results: Blocked Cholesky Factorization

The implementation of the Blocked Cholesky Factorization discussed in Sect. 2.1.3
has been compared against two implementations in PaRSEC. The first implementa-
tion uses the parameterized task graph (PTG), in which the problem is described as
an directed acyclic graph in a domain-specific language called JDF. In this version,

1A phase is considered active while a task discovered in that phase has not completed execution.
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Fig. 3 Per-node
weak-scaling performance of
Blocked Cholesky
Factorization of a matrix with
leading dimension
N = 25k/node and block
size NB = 320 on a Cray
XC40 (higher is better)

 0

 200

 400

 600

 800

 1000

 1200

 1  16  64  100  144

Theoretical DGEMM peak

Pe
r-n

od
e 

Pe
rf

or
m

an
ce

 [G
flo

p/
s]

Number of nodes (x24 cores)

DASH Tasks
PaRSEC PTG
PaRSEC DTD

the task graph is not dynamically discovered but is instead inherently contained
within the resulting binary.

The second PaRSEC version uses the Dynamic Task Discovery (DTD) interface
of PaRSEC, in which problems are expressed with a global view, i.e., all processes
discover the global task graph to discover the dependencies to tasks executing on
remote processes.

For all runs, a background communication thread has been employed, each time
running on a dedicated core, leading to one main thread and 22 worker threads
executing the application tasks on the Cray XC40.

The results presented in Fig. 3 indicate that PaRSEC PTG outperforms both DTD
and DASH, due to the missing discovery of tasks and their dependencies. DTD
exhibits a drop in per-node performance above 64 nodes, which may be explained
with the global task graph discovery. Although the per-node performance of DASH
does not exhibit perfect scaling, it still achieves about 80% of the performance of
PaRSEC PTG at 144 nodes.

2.1.5 Related Work

HPX [18] is an implementation of the ParalleX [17] programming paradigm, in
which tasks are spawned dynamically and moved to the data, instead of the data
being moved to where the task is being executed. HPX is locality-agnostic in that
distributed parallelism capabilities are implicit in the programming model, rather
than explicitly exposed to the user. An Active Global Address Space (AGAS) is
used to transparently manage the locality of global objects. Synchronization of tasks
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is expressed using futures and continuations, which are also used to exchange data
between tasks.

In the Active Partitioned Global Address Space (APGAS) [27], in contrast, the
locality of so-called places is explicitly exposed to the user, who is responsible for
selecting the place at which a task is to be executed. Implementations of the APGAS
model can be found in the X10 [9] and Chapel [8] languages as well as part of UPC
and UPC++ [21].

The Charm++ programming system encapsulates computation in objects that
can communicate using message objects and can be migrated between localities
to achieve load balancing.

Several approaches have been proposed to facilitate dynamic synchronization
by waiting for events to occur. AsyncShmem is an extension of the OpenShmem
standard, which allows dynamic synchronization of tasks across process boundaries
by blocking tasks waiting for a state change in the global address space [14]. The
concept of phasers has been introduced into the X10 language to implement non-
blocking barrier-like synchronization, with the distinction of readers and writers
contributing to the phaser [29].

Tasklets have recently been introduced to the XcalableMP programming
model [35]. The synchronization is modeled to resemble message-based
communication, using data dependencies for tasks on the same location and notify-
wait with explicitly specified target and tags.

Regent is a region- and task-based programming language that is compiled
into C++ code using the Legion programming model to automatically partition the
computation into logical regions [4, 30].

The PaRSEC programming system uses a domain specific language called JDF
to express computational problems in the form of a parameterized task graph
(PTG) [7]. The PTG is implicitly contained in the application and not discovered
dynamically at runtime. In contrast to that, the dynamic task discovery (DTD)
frontend of PaRSEC dynamically discovers the global task-graph, i.e., each process
is aware of all nodes and edges in the graph.

A similar approach is taken by the sequential task flow (STF) frontend of StarPU,
which complements the explicit MPI send/recv tasks to encapsulate communication
in tasks and implicitly express dependencies across process boundaries [1].

Several task-based parallelization models have been proposed for shared memory
concurrency, including OpenMP [3, 24], Intel thread building blocks (TBB) [25] and
Cilk++ [26] as well as SuperGlue [34]. With ClusterSs, an approach has been made
to introduce the APGAS model into OmpSs [32].

2.2 Dynamic Hardware Topology

Portable applications for heterogeneous hosts adapt communication schemes and
virtual process topologies depending on system components and the algorithm
scenario. This involves concepts of vertical and horizontal locality that are not based
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Fig. 4 Strong scaling of matrix multiplication on single node for 4 to 32 cores with increasing
matrix size N×N on Cori phase 1, Cray MPICH

on latency and throughput as distance measure. For example in a typical accelerator-
offloading scenario, data distribution to processes optimizes for horizontal locality
to reduce communication distance between collaborating tasks. For communication
in the reduction phase, distance is measured based on vertical locality.

The goal to provide a domain-agnostic replacement for the C++ Standard
Template Library (STL) implies portability as a crucial criterion for every model
and implementation of the DASH library. This includes additional programming
abstractions provided in DASH, such as n-dimensional containers which are
commonly used in HPC. These are not part of the C++ standard specifications but
comply with its concepts. Achieving portable efficiency of PGAS algorithms and
containers that satisfy semantics of their conventional counterparts is a multivariate,
hard problem, even for the seemingly most simple use cases.

Performance evaluation of the of the DASH NArray and dense matrix-matrix
multiplication abstractions on different system configurations substantiated the
portable efficiency of DASH. The comparison also revealed drastic performance
variance of the established solutions, for example node-local DGEMM of Intel
MKL on Cori phase 1 shown in Fig. 4 which apparently expected a power of two
amount of processing cores for multi-threaded scenarios.

The DASH variant of DGEMM internally uses the identical Intel MKL distribu-
tion for multiplication of partitioned matrix blocks but still achieves robust scaling.
This is because DASH implements a custom, adaptive variant of the SUMMA
algorithm for matrix-matrix multiplication and assigns one process per core, each
using MKL in sequential mode. This finding motivated to find abstractions that
allow expressions for domain decomposition and process placement depending on
machine component topology. In this case: to group processes by NUMA domains
with one process per physical core.

2.2.1 Locality-Aware Virtual Process Topology

In the DASH execution model, individual computation entities are called units. In
the MPI-based implementation of the DASH runtime, a unit corresponds to an MPI
rank but may occupy a locality domain containing several CPU cores or, in principle,
multiple compute nodes.
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Units are organized in hierarchical teams to match the logical structure of
algorithms and machine components. Each unit is an immediate member of exactly
one team at any time, initially in the predefined team ALL. Units in a team can be
partitioned into child teams using the team’s split operation which also supports
locality-aware parameters.

On systems with asymmetric or deep memory hierarchies, it is highly desirable
to split a team such that locality of units within every child team is optimized. A
locality-aware split at node level could group units by affinity to the same NUMA
domain, for example. For this, locality discovery has been added to the DASH
runtime. Local hardware information from hwloc, PAPI, libnuma, and LIKWID
of all nodes is collected into a global, uniform data structure that allows to query
locality information by process ID or scope in the memory hierarchy.

This query interface proved to be useful for static load balancing on heteroge-
neous systems where team are split depending on the machine component capacities
and capabilities. These are stored in a hierarchy of domains with two property maps:

Capabilities invariant hardware locality properties that do not depend on the
locality graph’s structure, like the number of threads per core, cache sizes, or
SIMD width

Capacities derivative properties that might become invalid when the graph
structure is modified, like memory in a NUMA domain available per unit

Figure 5 outlines the data structure and its concept of hardware abstraction in a
simplified example of a topology-aware split. Domain capacities are accumulated
from its subdomains and recalculated on restructuring. Team 1 and 2 both contain
twelve cores but a different number of units. A specific unit’s maximum number of
threads is determined by the number of cores assigned to the unit and the number of
threads per core.

Fig. 5 Domains in a locality hierarchy with domain attributes in dynamically accumulated
capacities and invariant capabilities
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2.2.2 Locality Domain Graph

The machine component topology of the DASH runtime to support queries and
topology-aware restructuring extends the tree-based hwloc topology model to
represent properties and relations of machine components in a graph structure. It
evolved to the Locality Domain Graph (LDG) concept which is available as the
standalone library dyloc.2

In formal terms, a locality domain graph models hardware topology as directed,
multi-indexed multigraph. In this, nodes represent Locality Domains that refer
to any physical or logical component of a distributed system with memory and
computation capabilities, corresponding to places in X10 or Chapel’s locales [8].
Edges in the graph are directed and denote the following relationships, for example:

• Containment indicating that the target domain is logically or physically contained
in the source domain

• Alias source and target domains are only logically separated and refer to the same
physical domain; this is relevant when searching for a shortest path, for example

• Leader the source domain is restricted to communication with the target domain

2.2.3 Dynamic Hardware Locality

Dynamic locality support requires means to specify transformations on the physical
topology graph as views. Views realize a projection but must not actually modify the
original graph data. Invariant properties are therefore stored separately and assigned
to domains by reference only.

Conceptually, multi-index graph algebra can express any operation on a locality
domain graph, but complex to formulate. When a topology is projected to an acyclic
hierarchy, transformations like partitioning, selection and grouping of domains can
be expressed in conventional relational or set semantics. A partition or contraction
of a topology graph can be projected to a tree data structure and converted to a hwloc
topology object (Fig. 6).

A locality domain topology is specific to a team and only contains domains that
are populated by the team’s units. At initialization, the runtime initializes the default
team ALL as root of the team hierarchy with all units and associates the team with
the global locality graph containing all domains of the machine topology. When a
team is split, its locality graph is partitioned among child teams such that a single
partition is coherent and only contains domains with at least one leaf occupied by a
unit in the child team.

In a map-reduce scenario, dynamic views on machine topology to express for
domain decomposition and process placement depending on machine component

2https://github.com/dash-project/dyloc.

https://github.com/dash-project/dyloc
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Fig. 6 Illustration of a hardware locality domain graph as a model of node-level system architec-
tures that cannot be correctly or unambiguously represented in a single tree structure. (a) Cluster
in Intel Knights Landing, configured in Sub-NUMA clustering, Hybrid mode. Contains a quarter
of the processor’s cores, MCDRAM local memory, affine to DDR NUMA domain. (b) Exemplary
graph representation of Knights Landing topology in (a). Vertex categories model different aspects
of component relationships, like cache-coherence and adjacency

Fig. 7 Illustration of the domain grouping algorithm to define a leader group for vertical
communication. One core is selected as leader in domains 100 and 110 and separated into a group.
To preserve the original topology structure, the group includes their parent domains and is added
as a subdomain of their lowest common ancestor

topology and improve portable efficiency. In the map phase, the algorithm is
mostly concerned with horizontal locality in domain decomposition to distribute
data according to the physical arrangement of cooperating processes. In the reduce
phase, vertical locality of processes in the component topology determines efficient
upwards communication of partial results. The locality domain graph can be used to
project hardware topology to tree views for both cases. Figure 7 illustrates a locality-
aware split of units in two modules such that one unit per module is selected for
upwards communication. This principle is known as leader communication scheme.
Partial results of units are then first reduced at the unit in the respective leader team.
This drastically reduces communication overhead as the physical bus between the
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Fig. 8 Using dyloc as intermediate process in locality discovery

modules and their NUMA node is only shared by two leader processes instead of all
processes in the modules (Fig. 8).

2.2.4 Supporting Portable Efficiency

As an example of both increased depth of the machine hierarchy and heterogeneous
node-level architecture, the SuperMIC system3 consists of 32 compute nodes with
symmetric hardware configuration of two NUMA domains, each containing an Ivy
Bridge (8 cores) host processor and a Xeon Phi “Knights Corner” coprocessors
(Intel MIC 5110P) as illustrated in Fig. 9.

For portable work load balancing on heterogeneous systems, domain decomposi-
tion and virtual process topology must dynamically adapt the machine components’
inter-connectivity, capacities and capabilities.

Capacities: Total memory capacity on MIC modules is 8 GB for 60 cores,
significantly less than 64 GB for 32 cores on host level

Capabilities: MIC cores have a base clock frequency of 1.1 GHz and 4 SMT
threads, with 2.8 GHz and 2 SMT threads on host level

To illustrate the benefit of dynamic locality, we briefly discuss the implementa-
tion of the min_element algorithm in DASH. Its original variant is implemented
as follows: domain decomposition divides the element range into contiguous blocks
of identical size. All units then run a thread-parallel scan on their local block for a
local minimum and enter a collective barrier once it has been found. Once all units
finished their local work load, local results are reduced to the global minimum.

Listing 3 contains the abbreviated implementation of the min_element sce-
nario utilizing runtime support based on a dynamic hardware locality graph.

3https://www.lrz.de/services/compute/supermuc/supermic.

https://www.lrz.de/services/compute/supermuc/supermic
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Fig. 9 SuperMIC node

Dynamic topology queries are utilized in three essential ways to improve overall
load-balance: In domain decomposition (lines 3–6), to determine the number of
threads available to the respective unit (line 19) and for a simple leader-based
communication scheme (lines 8–10, 26).

This implementation achieves portable efficiency across systems with different
memory hierarchies and hardware component properties, and dynamically adapts to
runtime-specific team size, range size, and available hardware components assigned
to the team. Figure 10 shows timeline plots comparing time to completion and
process idle time from a benchmark run executed on SuperMIC.
� �

1 // Dynamic topology-aware domain decomposition depending on
2 // machine component properties and number of units in team:
3 TeamLocality tloc(dash::Team::All());
4 LocBalancedPattern pattern(array_size, tloc);
5 dash::Array<T> array(pattern);
6

7 GlobIt min_element(GlobIt first, GlobIt last) {
8 auto uloc = UnitLocality(myid());
9 auto leader = uloc.at_scope(scope::MODULE)

10 .unit_ids()[0];
11 auto loc_min = first;
12

13 // Allocate shared variable for reduction result at leader:
14 dash::Shared<GlobIt> glob_min(leader);
15 // Allocate shared array for local minimum values:
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16 dash::Array<GlobIt>(dash::Team::All().size()) loc_mins;
17

18 // Dynamic query of locality runtime for number of threads:
19 auto nthreads = uloc.num_threads();
20 #pragma omp parallel for num_threads(nthreads)
21 for (...) { /* ... find local result ... */ }
22 // Local write, no communication
23 loc_mins[my_id] = loc_min;
24 dash::barrier();
25

26 if (myid() == leader) {
27 // leader reduces local results (instead of all-to-all
28 // reduction)
29 glob_min = std::min_element(loc_mins.begin(),
30 loc_mins.end());
31

32 }
33 // ...
34 }

� �

Listing 3 Code excerpt of the modified min_element algorithm

Fig. 10 Trace of process activities in the min_element algorithm exposing the effect of load
balancing based on dynamic hardware locality
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3 DASH C++ Data Structures and Algorithms

The core of DASH is formed by data structures and algorithms implemented as
C++ templates. These components are conceptually modeled after their equivalents
in the C++ standard template library, shortening learning curves and increasing
programmer productivity. A basic DASH data structure is the distributed array
with configurable data distribution (dash::Array) which closely follows the
functionality of a STL vector except for the lack of runtime resizing. DASH
also offers a multidimensional array and supports a rich variety of data distribution
patterns [11]. A focus of the second half of the funding period was placed on smart
data structures which are more specialized and support users in the development
of certain types of applications. One such data structures for the development of
stencil-based applications is described in Sect. 3.1.

Similar to data structures, DASH also offers generalized parallel algorithms.
Many of the over 100 generic algorithms contained in the STL have an equivalent
in DASH (e.g., dash::fill). One of the most useful but also challenging algo-
rithms is sorting and Sect. 3.2 describes our implementation of scalable distributed
sorting in the DASH library.

3.1 Smart Data Structures: Halo

Typical data structure used in ODE/PDE solvers or 2D/3D image analyzers
are multi-dimensional arrays. The DASH NArray distributes data elements of a
structured data grid and can be used similar to STL containers. But PDE solvers
use stencil operations, not using the current data elements (center), but surrounding
data elements (neighbors) as well. The use of the NArray it self is highly inefficient
with stencil operations, because neighbors located in another sub-arrays may require
remote access (via RDMA or otherwise). A more efficient approach is the use of so
called “halo areas”. These areas contain copies of all required neighbor elements
located on other compute nodes. The halo area width depends on the shape of the
stencils and is determined by the largest distance from the center (per dimension).
The stencil shape defines all participating data elements—center and neighbors.
Figure 11 shows two 9-point stencils with different shapes. The first stencil shape (a)
accesses ±2 data elements in both horizontal and vertical direction and the second
one (b) accesses ±1 stencil point in each direction. While the stencil shape Fig. 11a
needs four halo areas with a width of two data elements. The other stencil shape
requires eight halo areas with a width one data elements. Using halo areas ensures
local data access for all stencil operations used on each sub-array.

The Dash NArray Halo Wrapper wraps the local part of the NArray and
automatically sets up a halo environment for stencil codes and halo accesses.
Figure 12 shows an overview about all main components, which are explained in
the following.
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Fig. 11 Two shapes of a 9-point stencil. (a) ±2 center stencil in horizontal and vertical directions.
(b) Center ±1 stencil point in each direction

Fig. 12 Architecture of the DASH Halo NArray Wrapper
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3.1.1 Stencil Specification

The discretization of the problem to be solved always determines the stencil shape
to be applied on the structured grid. For a DASH based code this has to be specified
as a stencil specification (StencilSpec), which is a collection of stencil points
(StencilPoint). A StencilPoint consists of coordinates relative to the center and an
optional weight (coefficient). The StencilSpec specified in Listing 4 describes the
stencil shown in Fig. 11b. The center doesn’t have to be declared directly.

1 using PointT = dash::halo::StencilPoint<2>;
2 dash::halo::StencilSpec<PointT,6> stencil_spec(
3 PointT(-1,-1), PointT(-1, 0), PointT(-1,1),
4 PointT( 0,-1), , PointT( 0,1),
5 PointT( 1,-1), PointT( 1, 0), PointT( 1,1));

Listing 4 Stencil specification for an 9-point stencil

3.1.2 Region and Halo Specifications

The region specification (RegionSpec) defines the location of all neighboring
partitions. Every unit keeps 3n regions representing neighbor partitions for “left”,
“middle”, and “right” in each of the n dimensions. All regions are identified by a
region index and a corresponding region coordinate. Indexing are done with the Row
Major linearization (last index grows fastest). Figure 13 shows all possible regions
with its indexes and coordinates for a two dimensional scenario. Region 4 with the
coordinates (1,1) is mapped to the center region and represents the local partition.
Region 6 (2,0) points to a remote partition located in the south west.

Fig. 13 Mapping of region
coordinates and indexes
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The halo specification (HaloSpec) uses the RegionSpec to map neighbor par-
titions which are the origins for halo copies to the local halo areas. From one or
multiple StencilSpecs it infers which neighbor partitions are necessary. In case no
StencilPoint has a negative offset from the center in horizontal direction, no halo
regions for the ‘NW’, ‘W’, and ‘SW’ (Fig. 13) need to be created. If no StencilPoint
has diagonal offsets (i.e. only one non-zero coordinate in the offsets) the diagonal
regions ‘NW’,‘NE’, ‘SW’, and ‘SE’ can be omitted.

3.1.3 Global Boundary Specification

Additionally, the global boundary specification (GlobalBoundarySpec) allows to
control the behavior at the outside of the global grid. For convenience, three different
scenarios are supported. The default setting is NONE meaning that there are no
halo areas in this direction. Therefore, the stencil operations are not applied in
the respective boundary region where the stencil would require the halo to be
present. As an alternative, the setting CYCLIC can be set. This will wrap around
the simulation grid, so that logically the minimum coordinate becomes a neighbor
to the maximum coordinate. Furthermore, the setting CUSTOM creates a halo area
but never performs automatic update of its elements from any neighbors. Instead,
this special halo area can be written by the simulation (initially only or updated
regularly). This offers a convenient way to provide boundary conditions to a PDE
solver. The GlobalBoundarySpec can be defined separately per dimension.

3.1.4 Halo Wrapper

Finally, using the aforementioned specifications as inputs, the halo wrapper
(HaloWrapper) creates HaloBlocks for all local sub-arrays. The halo area extension
is derived from all declared StencilSpecs by determining the maximum offset of
any StencilPoint in the given direction.

The mapping between the local HaloBlocks and the halo regions pointing to
the remote neighbor data elements is subjected to the HaloWrapper, as well as
the orchestration of efficient data transfers for halo data element updates. The
data transfer has to be done block-wise instead of element-wise to gain decent
performance. While the HaloBlock can access contiguous memory, the part of the
neighbor partition marked as halo area, usually can’t be accessed contiguously—
compare Fig. 14. Therefore, the HaloWrapper relies on DART’s support for efficient
strided data transfers.

The halo data exchange can be done per region or for all regions at once. It can be
called asynchronously and operates independent between all processes and doesn’t
use process synchronization. The required subsequent wait operation waits for local
completion only.
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Fig. 14 Halo data exchange of remote strided data to contiguous memory: (a) in 2D a corner halo
region has a fixed stride, whereas (b) in 3D the corner halo region has two different strides

3.1.5 Stencil Operator and Stencil Iterator

So far, the HaloWrapper was used to create HaloBlocks to fit all given StencilSpecs.
Besides that, the HaloWrapper also provides specific views and operations for each
StencilSpec.

First, for every StencilSpec the HaloWrapper provides a StencilOperator with
adapted inner and boundary views. The inner view contains all data elements
that don’t need a halo area when using the given stencil operation. All other data
elements are marked via the boundary view. These two kind of views are necessary
to overlap the halo data transfer with the inner computation. The individual view per
StencilSpec allows to make the inner view as large as possible, regardless of other
StencilSpecs.

Second, the HaloWrapper offers StencilSpec specific StencilIterators. They
iterate over all elements assigned by a given view (inner) or a set of views
(boundary). With these iterators center elements can be accessed—equivalent to
STL iterators—via the dereference operator. Neighboring data elements can be
accessed with a provided method. Stencil points pointing to elements within a
halo area, are resolved automatically without conditionals in the surrounding code.
StencilIterators can be used with random access, but are optimized for the increment
operator.
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3.1.6 Performance Comparison

A code abstraction hiding complexity is useful only, if no or minor performance
impact is added. Therefore, a plain MPI implementation of a heat equation was
compared to a DASH based one regarding weak and strong scaling behavior. All
measurements were performed on the Bull HPC-Cluster “Taurus” at ZIH, TU
Dresden. Each compute node has two Haswell E5-2680 v3 CPUs at 2.50 GHz with
12 physical cores each and 64 GB memory. Both implementations were built with
gcc 7.1.0 and OpenMPI 3.0.0.

The weak scaling scenario increases the number of grid elements proportional
to the number of compute nodes. The accumulated main memory is almost entirely
used up by each compute grid. Figure 15 shows that both implementations almost
have identical and perfect weak scaling behavior. Note that the accumulated waiting
times differ significantly. This is due to two effects. One is contiguous halo areas
(north and south) vs. strided halo areas (east and west). The other is intra node vs.
inter node communication.

The strong scaling scenario uses 55,0002 grid elements to fit into the main
memory of a single compute node. It is solved with 1 to 768 CPU cores (== MPI
ranks), where 24 cores equals to one full compute node and 768 cores to 32 compute
nodes. Figure 16 shows again an almost identical performance behavior between
DASH and MPI for the total runtime. Notably, both show the same performance
artifact around 16 to 24 cores. This can be ascribed to an increased number of
last level cache load misses which indicates that both implementations are memory
bound at this number of cores per node.

Fig. 15 Weak scaling in DASH vs. MPI
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Fig. 16 Strong scaling for 55,000 × 55,000 elements in DASH vs. MPI. Effective wait time for
asynchronous halo exchanges is shown in addition

3.2 Parallel Algorithms: Sort

Sorting is one of the most important and well studied non-numerical algorithms
in computer science and serves as a basic building block in a wide spectrum of
applications. A notable example in the scientific domain are N-Body particle simu-
lations which are inherently communication bound due to load imbalance. Common
strategies to mitigate this problem include redistributing particles according to a
space filling curve (e.g., Morton Order) which can be achieved with sorting. Other
interesting use cases which can be addressed using DASH are Big Data applications,
e.g., Google PageRank.

Key to achieve performance is obviously to minimize communication. This
applies not only to distributed memory machines but to shared memory architectures
as well. Current supercomputers facilitate nodes with large memory hierarchies
organized in a growing number of NUMA domains. Depending on the data
distribution, sorting is subject to a high fraction of data movement and the more we
communicate across NUMA boundaries the more negative the result performance
impact becomes.

In the remainder of this section we briefly describe the problem of sorting in
a more formal manner and summarize the basic approaches in related work. It
follows a more detailed elaboration of our sorting algorithm [20]. Case studies
on both distributed and shared memory demonstrate our performance efficiency.
Results reveal that we can outperform state of the art implementations with our
PGAS algorithm.
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3.2.1 Preliminaries

Let X be a set of N keys evenly partitioned among P processors, thus, each
processor contributes ni ∼ N/P keys. We further assume there are no duplicate
keys which can technically be achieved in a straightforward manner. Sorting
permutes all keys by a predicate which is a binary relation in set X. Recursively
applying this predicate to any ordered pair (x, y) drawn fromX enables to determine
the rank of an element I (x) = k with x as the k-th order statistic in X. Assuming
our predicate is less than (i.e., <) the output invariant after sorting guarantees that
for any two subsequent elements x, y ∈ X

x < y ⇔ I (x) < I (y).

Scientific applications usually require a balanced load to maximize performance.
Given a load balance threshold ε, local balancing means that in the sorted sequence
each processor Pi owns at most N(1 + ε)/P keys. This does not always result in a
globally balanced load which is an even stronger guarantee.

Definition 1 For all i ∈ {1..P } we have to determine splitter Si to partition the
input sequence into P subsequences such that

Ni

P
− Nε

2P
≤ I (si ) ≤ Ni

P
+ Nε

2P

Determining these splitters boils down to the k-way selection problem which is a
core algorithm in this work. If ε = 0 we need to perfectly partition the input which
increases communication complexity. However, it often is the easiest solution in
terms of programming productivity which is a major goal of the DASH library.

3.2.2 Related Work

Sorting large inputs can be achieved through parallel sample sort which is a
generalization of Quicksort with multiple pivots [5]. Each processor partitions local
elements into p pieces which are obtained out of a sufficiently large sample of
the input. Then, all processors exchange elements among each other such that
piece i is copied to processor i. In a final step, all processors sort received pieces
locally, resulting in a globally sorted sequence. Perfect partitioning can be difficult
to achieve as splitter selection is based only on a sample of the input.

In parallel p-way mergesort each processor first sorts the local data portion and
subsequently partitions it, similar to sample sort, into p pieces. Using an ALL-
TO-ALL exchange all pieces are copied to the destination processors which finally
merge them to obtain a globally sorted sequence. Although this algorithm has worse
isoefficiency due to the partitioning overhead compared to sample sort, perfect
partitioning becomes feasible since data is locally sorted.
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Scalable sorting algorithms are compromises between these two extremes and
apply various strategies to mitigate negative performance impacts of splitter selec-
tion (partitioning) and ALL-TO-ALL communication [2, 15, 16, 31]. Instead of
communicating data only once, partitioning is done recursively from a coarse-
grained to a more fine-grained solution. Each recursion leads to independent
subpartitions until the solution is found. Ideally, the level of recursion maps to the
underlying hardware resources and network topology.

This work presents two contributions. First, we generalize a distributed selection
algorithm to achieve scalable partitioning [28]. Second, we address the problem
of communication-computation overlap in the ALL-TO-ALL exchange, which is
conceptually limited in MPI as the underlying communication substrate.

3.2.3 Histogram Sort

The presented sorting algorithm consists of four supersteps as delineated in Fig. 17.

Local Sort Sorts the local portion using a fast shared memory algorithm.
Splitting Each processor partitions the local array into p pieces. We generalize

distributed selection to a p-way multiselect.
Data Exchange Each processor exchanges piece i with processor i according to

the splitter boundaries.
Local Merge Each processor merges the received sorted pieces.

Splitting is based on distributed selection [28]. Instead of finding one pivot we
collect multiple pivots (splitters) in a single iteration, one for each active range. If
a pivot matches a specific rank we do not consider this range anymore and discard
it from the set of active ranges. Otherwise, we examine each of the two resulting

Ex
ec

ut
io

n

Fig. 17 Algorithmic schema of dash::sort with four processors (P = 4)
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subranges whether they need to be considered in future iterations and add them to
the set of active ranges. The vector of splitters follows from Definition 1 (page 126)
and is the result of a prefix sum over the local capacities of all processors.

Another difference compared to the original algorithm [28] is that in our case
we replace the local partition with binary search which is possible due to our
initial sorting step in all processors. Thus, to determine a local histogram over p
pieces requires logarithmic computation complexity instead of linear complexity.
A global histogram to determine if all splitters are valid (or if we need to refine
the boundaries) requires a single REDUCE over all processors with logarithmic
communication complexity.

The question how many iterations we need is answered as follows. We know
that for the base case with only two processors (i.e., only one splitter) distributed
selection has a recursive depth of O(logp). This follows from the weighted median
for the pivot selection which guarantees a reduction of the working set by at least
one quarter each iteration. As described earlier instead of a single pivot we collect
multiple pivots in a single iteration which we achieve by a list of active ranges.
Although the local computation complexity increases by a factor of O(logp) the
recursion depth does not change. Hence, the overall communication complexity is
O(log2 p) including the REDUCE call each iteration.

After successfully determining the splitters all processors communicate the
locally partitioned pieces with an ALL-TO-ALL exchange. Merging all received
pieces leads to a globally sorted sequence over all processors. Due to the high
communication volume communication-computation overlap is required to achieve
good scaling efficiency. However, for collective operations MPI provides a very
limited interface. While we can use a non-blocking ALL-TO-ALL we cannot
operate on partially received pieces. For this reason we designed our own ALL-
TO-ALL algorithm to pipeline communication and merging. Similar to the Butterfly
algorithm processor i sends to destination (i + r) (mod p) and receives from
(i − r) (mod p) in round r [33]. However we schedule communication requests
only as long as a communication buffer of a fixed length is not completely allocated.
As soon as some communication requests complete we schedule new requests
while merging the received chunks. PGAS provides additional optimizations. For
communication within a shared memory node we use a cache-efficient ALL-TO-
ALL algorithm to minimize negative cache effects among the involved processors.
Instead of scheduling send receive pairs processor ranks are reordered according
to a Morton order. Data transfer is performed using one-sided communication
mechanisms. Similar optimizations can be applied to processor pairs running on
nearby nodes. We are preparing a paper to describe the involved optimizations in
more detail. First experimental evaluations reveal that we can achieve up to 22%
speedup compared to a single ALL-TO-ALL followed by a p-way local merge.

In the next section we demonstrate our performance scalability against a state-
of-the-art implementation in Charm++.



DASH: Distributed Data Structures and Parallel Algorithms in a Global Address Space 129

 0.1

 1

 10

 100

 1  2  4  8  16  32  64  128  256

Ti
m

e 
(s

ec
)

Number of Nodes (x28 Cores)

DASH
Charm++

Linear Scaling

(a)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 1  2  4  8  16  32  64  128

Pe
rc

en
t o

f T
ot

al
 R

un
tim

e

Number of Nodes (x28 Cores)

Initial Sort
Histogramming

All-to-All
Final Sort

Other

(b)

Fig. 18 Strong scaling study with Charm++ and DASH. (a) Median execution time. (b) Strong
scaling behavior of dash::sort

3.2.4 Evaluation and Conclusion

We conducted the experiments on SuperMUC Phase 2 hosted at the Leibnitz Super-
computing Center. This system is an island-based computing cluster, each equipped
with 512 nodes. Each node has two Intel Xeon E5-2697v3 14-core processors with
a nominal frequency of 2.6 GHZ and 64 GB of memory, although only 56 GB are
usable due to the operating system. Computation nodes are interconnected in a non-
blocking fat tree with Infiniband FDR14 which achieves a peak bisection bandwidth
of 5.1 TB/s. We compiled our binaries with Intel ICC 18.0.2 and linked the Intel MPI
2018.2 library for communication. The Charm++ implementation was executed
using the most recent stable release.4 On each node we scheduled only 16 MPI ranks
(28 cores available) because the Charm++ implementation requires the number of
ranks to be a power of two. We emphasize that our implementation in DASH does
not rely on such constraints.

The strong scaling performance results are depicted in Fig. 18a. We sort 28
GBytes of uniformly distributed 64-bit signed integers. This is the maximum
memory capacity on a single node because our algorithm is not in-place. We always
report the median time out of 10 executions along with the 95% confidence interval,
excluding an initial warmup run. For Charm++ we can see wider confidence
intervals. We attribute this to a volatile histogramming phase which we can see after
analyzing generated log files in the Charm++ experiments. Overall, we observe that
both implementations achieve nearly linear speedup with a low number of cores.
Starting from 32–64 nodes scalability gets worse. DASH still achieves a scaling
efficiency of ≈0.6 on 3500 cores while Charm++ is slightly below. Figure 18b
visualizes the relative fraction of the most relevant algorithm phases in a single run.
It clearly identifies histogramming as the bottleneck if we scale up the number of
processors. This is not surprising because with 128 nodes (2048 ranks) each rank
operates on only 8 MB of memory.

4v6.9.0, http://charmplusplus.org/download/.

http://charmplusplus.org/download/
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Fig. 19 Weak scaling study with Charm++ and DASH. (a) Weak scaling efficiency. (b) Weak
scaling behavior of dash::sort

Figure 19a depicts the weak scaling efficiency. The absolute median execution
time for DASH started from 2.3 s on one node and ended with 4.6 s if we
scale to 128 nodes (3584 cores). As expected, the largest fraction of time is
consumed in local sorting and the ALL-TO-ALL data exchange because we have to
communicate 256 GB across the network. Figure 19b confirms this. The collective
ALLREDUCE of P − 1 splitters among all processors in histogramming overhead is
almost amortized from the data exchange which gives an overall good scalability for
DASH. The Charm++ histogramming algorithm again shows high volatility with
running times from 5–25 s, resulting in drastic performance degradation.

Our implementation shows good scalability on parallel machines with a large
processor count. Compared to other algorithms we do not pose any assumptions on
the number of ranks, the globally allocated memory volume or the key distribution.
Performance measurements reveal that our general purpose approach does not
result in performance degradation compare to other state-of-the-art algorithms. Our
optimized MPI ALL-TO-ALL exchange with advanced PGAS techniques shows
how we can significantly improve communication-computation overlap. Finally, the
STL compliant interface enables programmers to easily integrate a scalable sorting
algorithm into scientific implementations.

4 Use Cases and Applications

4.1 A Productivity Study: The Cowichan Benchmarks

In this section we present an evaluation of DASH focusing on productivity and
performance by comparison with four established parallel programming approaches
(Go, Chapel, Cilk, TBB) using the Cowichan set of benchmark kernels.
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4.1.1 The Cowichan Problems

The Cowichan problems [36], named after a tribal area in the Canadian Northwest,
is a set of small benchmark kernels that have been developed primarily for the
purpose of assessing the usability of parallel programming systems. There are two
versions of the Cowichan problems and here we restrict ourselves to a subset of the
problems found in the second set. The comparison presented in this section is based
on previous work by Nanz et al. [23] as we use their publicly available code5 to
compare with our own implementation of the Cowichan benchmarks using DASH.
The code developed as part of a study by Nanz et al. has been created by expert
programmers in Go, Chapel, Cilk and TBB and can thus be regarded as idiomatic
for each approach and free of obvious performance defects.

The five (plus one) problems we consider in our comparison are the following:

randmat: Generate a (nrows × ncols) matrix mat of random integers in the
range 0, . . . ,max − 1 using a deterministic pseudo-random number generator
(PRNG).

thresh: Given an integer matrix mat, and a thresholding percentage p, compute
a boolean matrix mask of similar size, such that mask selects p percent of the
largest values of mat.

winnow: Given an integer matrix mat, a boolean matrix mask, and a desired
number of target elements nelem, perform a weighted point selection operation
using sorting and selection.

outer: Given a vector of nelem (row, col) points, compute an (nelem ×
nelem) outer product matrix omat and a vector vec of floating point values
based on the Euclidean distance between the points and the origin, respectively.

matvec: Given an nelem × nelem matrix mat and a vector vec, compute the
matrix-vector product (row-by-row inner product) res.

chain: Combine the kernels in a sequence such that the output of one becomes
the input for the next. I.e., chain = randmat ◦ thresh ◦ winnow ◦ outer ◦ matvec.

4.1.2 The Parallel Programming Approaches Compared

We compare our implementation of the Cowichan problems with existing solutions
in the following four programming approaches.

Chapel [8] is an object-oriented partitioned global address space (PGAS)
programming language developed since the early 2000s by Cray, originally as part
of DARPA’s High Productivity Computing Systems (HPCS) program. We have used
Chapel version 1.15.0 in our experiments.

Go [10] is a general-purpose systems-level programming language developed
at Google in the late 2000s that focuses on concurrency as a first-class concern.
Go supports lightweight threads called goroutines which are invoked by prefixing

5https://bitbucket.org/nanzs/multicore-languages/src.

https://bitbucket.org/nanzs/multicore-languages/src
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a function call with the go keyword. Channels provide the idiomatic way for
communication between goroutines but since all goroutines share a single address
space, pointers can also be used for data sharing. We have used Go version 1.8 in
our experiments.

Cilk [6] started as an academic project at MIT in the 1990s. Since the late 2000s
the technology has been extended and integrated as Cilk Plus into the commercial
compiler offerings from Intel and more recently open source implementations for
the GNU Compiler Collection (GCC) and LLVM became available. Cilk’s initial
focus was on lightweight tasks invoked using the spawn keyword and dynamic
workstealing. Later a parallel loop construct (cilk_for) was added. We have used
Cilk as integrated in Intel C/C++ compilers version 18.0.2.

Intel Threading Building Blocks (TBB) [25] is a C++ template library for
parallel programming that provides tasks, parallel algorithms and containers using
a work-stealing approach that was inspired by the early work on Cilk. We have used
TBB version 2018.0 in our experiments, which is part of Intel Parallel Studio XE
2018.

4.1.3 Implementation Challenges and DASH Features Used

In this section we briefly describe the challenges encountered when implementing
the Cowichan problems, a more detailed discussion can be found in a recent
publication [13]. Naturally this small set of benchmarks only exercises a limited
set of the features offered by either programming approach. However, we believe
that the requirements embedded in the Cowichan problems are relevant to a wide
set of other uses cases, including the classic HPC application areas.

Memory Allocation and Data Structure Instantiation The Cowichan problems
use one- and two-dimensional arrays as the main data structures. 1D arrays are
widely supported by all programming systems. True multidimensional arrays, how-
ever, are not universally available and as a consequence workarounds are commonly
used. The Cilk and TBB implementation both adopt a linearized representation of
the 2D matrix and use a single malloc call to allocate the whole matrix. Element-
wise access is performed by explicitly computing the offset of the element in the
linearized representation by mat[i ∗ ncols + j ]. Go uses a similar approach but
bundles the dimensions together with the allocated memory in a custom type. In
contrast, Chapel and DASH support a concise and elegant syntax for the allocation
and direct element-wise access of their built-in multidimensional arrays. In the case
of DASH, the distributed multidimensional array is realized as a C++ template
class that follows the container concept of the standard template library (STL) [11].

Work Sharing In all benchmarks, work has to be distributed between multiple
processes or threads, for example when computing the random values in randmat in
parallel. randmat requires that the result be independent of the degree of parallelism
used and all implementations solve this issue by using a separate deterministic seed
value for each row of the matrix. A whole matrix row is the unit of work that is
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distributed among the processes or threads. The same strategy is also used for outer
and product.

Cilk uses cilk_for to automatically partition the matrix rows and TBB uses
C++ template mechanisms to achieve a similar goal. Go does not offer built-
in constructs for simple work sharing and the functionality has to be laboriously
created manually using goroutines, channels, and ranges.

In Chapel this type of work distribution can simply be expressed as a parallel
loop (forall).

In DASH, the work distribution follows the data distribution. I.e., each unit is
responsible for computing on the data that is locally resident, the owner computes
model. Each unit determines its locally stored portion of the matrix (guaranteed to
be a set of rows by the data distribution pattern used) and works on it independently.

Global Max Reduction In thresh, the largest matrix entry has to be determined to
initialize other data structures to their correct size. The Go reference implementation
doesn’t actually perform this step and instead just uses a default size of 100, Go is
thus not discussed further in this section.

In Cilk a reducer_max object together with a parallel loop over the rows is
employed to find the maximum. Local maximal values are computed in parallel
and then the global maximum is found using the reducer object. In TBB a similar
construct is used (tbb::parallel_reduce). In these approaches finding the
local maximum and computing the global maximum are separate steps that require
a considerable amount of code (several 10s of lines of code).

Chapel again has the most concise syntax of all approaches, the maximum value
is found simply by nmax = max reduce matrix. The code in the DASH
solution is nearly as compact, by using the max_element() algorithm to find
the maximum. Instead of specifying the matrix object directly, in DASH we have
to couple the algorithm and the container using the iterator interface by passing
mat.begin() and mat.end() to denote the range of elements to be processed.

Parallel Histogramming thresh requires the computation of a global cumulative
histogram over an integer matrix. Thus, for each integer value 0, . . . ,nmax− 1 we
need to determine the number of occurrences in the given matrix in parallel. The
strategy used by all implementations is to compute one or multiple histograms by
each thread in parallel and to later combine them into a single global histogram.

In DASH we use a distributed array to compute the histogram. First, each
unit computes the histogram for the locally stored data, by simply iterating over
all local matrix elements and updating the local histogram (histo.local).
Then dash::transform is used to combine the local histograms into a sin-
gle global histogram located at unit 0. dash::transform is modeled after
std::transform, a mutating sequence algorithm. Like the STL variant, the
algorithm works with two input ranges that are combined using the specified
operation into an output range.

Parallel Sorting winnow requires the sorting of 3-tuples using a custom compar-
ison operator. Cilk and TBB use a parallel shared memory sort. Go and Chapel
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call their respective internal sort implementations (quicksort in the case of Chapel)
which appears to be unparallelized. DASH can take advantage of a parallel and
distributed sort implementation based on histogram sort cf. 3.2.

4.1.4 Evaluation

We first compare the productivity of DASH compared to the other parallel program-
ming approaches before analyzing the performance differences.

Productivity We evaluate programmer productivity by analyzing source code
complexity. Table 1 shows the lines of code (LOC) used in the implementation
for each kernel, counting only lines that are not empty or comments. Of course,
LOC is a crude approximation for source code complexity but few other metrics
are universally accepted or available for different programming languages. LOC
at least gives a rough idea for source code size, and, as a proxy, development
time, likelihood for programming errors and productivity. The overall winners in
the productivity category are Chapel and Cilk, which achieve the smallest source
code size for three benchmark kernels. For most kernels, DASH also achieves a
remarkably small source code size considering that the same source code can run
on shared memory as well as on distributed memory machines.

Performance As the hardware platform for our experiments we have used one
or more nodes of SuperMUC Phase 2 (SuperMUC-HW) with Intel Xeon E5-2697
(Haswell) CPUs with 2.6 GHz, 28 cores and 64 GB of main memory per node.

Single Node Comparison We first investigate the performance differences between
DASH and the four established parallel programming models on a single Haswell
node. We select a problem size of nrows= ncols= 30,000 because this is the largest
size that successfully ran with all programming approaches.

Table 2 shows the absolute performance (runtime in seconds) and relative
runtime (compared to DASH) when using all 28 cores of a single node. Evidently,
DASH is the fastest implementation, followed by Cilk and TBB. Chapel and
especially Go can not deliver competitive performance in this setting.

Analyzing the scaling behavior in more detail (not shown graphically due to
space restrictions) by increasing the number of cores used on the system from 1
to 28 reveals a few interesting trends. For outer and randmat, DASH, Cilk and TBB

Table 1 Lines-of-code
(LOC) measure for each
kernel and programming
approach, counting
non-empty and non-comment
lines only

DASH Go Chapel TBB Cilk

Randmat 18 29 14 15 12

Thresh 31 63 30 56 52

Winnow 67 94 31 74 78

Outer 23 38 15 19 15

Product 19 27 11 14 10
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Table 2 Performance comparison for each kernel and programming approach using all cores on
one node of SuperMUC-HW

Absolute runtime (sec.) Relative runtime

DASH Go Chapel TBB Cilk DASH Go Chapel TBB Cilk

Randmat 0.12 5.84 0.36 0.15 0.19 1.00 48.69 3.03 1.26 1.58

Thresh 0.20 0.64 0.53 0.41 0.40 1.00 3.19 2.64 2.06 2.00

Winnow 2.99 366.13 256.40 9.45 4.28 1.00 122.45 85.75 3.16 1.43

Outer 0.25 1.18 0.39 0.27 0.31 1.00 4.70 1.56 1.06 1.24

Product 0.06 0.46 0.19 0.12 0.13 1.00 7.66 3.15 2.01 2.16

behave nearly identical in terms of absolute performance and scaling behavior. The
small performance advantage of DASH can be attributed to better NUMA locality of
DASH, where all work is done on process-local data. For thresh and winnow DASH
can take advantage of optimized parallel algorithms (for global max reduction and
sorting, respectively) whereas these operations are performed sequentially in some
of the other approaches. For product the DASH implementation takes advantage of
a local copy optimization to improve data locality. The scaling study reveals that
this optimization at first costs performance but pays off at larger core counts.

Multinode Scaling We next investigate the scaling of the DASH implementation on
up to 16 nodes (448 total cores) of SuperMUC-HW. None of the other approaches
can be compared with DASH in this scenario. Cilk and TBB are naturally restricted
to shared memory systems by their threading-based nature. Go realizes the CSP
(communicating sequential processes) model that would, in principle, allow for a
distributed memory implementation but since data sharing via pointers is allowed,
Go is also restricted to a single shared memory node. Finally, Chapel targets both
shared and distributed memory systems, but the implementation of the Cowichan
problems available in this study is not prepared to be used with multiple locales
and cannot make use of multiple nodes (it lacks the dmapped specification for data
distribution).

The scaling results are shown in Fig. 20 for two data set sizes. In Fig. 20
(left) we show the speedup relative to one node for a small problem size
(nrows= ncols= 30,000) and in Fig. 20 (right) we show the speedup of a larger
problem size (nrows= ncols= 80,000) relative to two nodes, since this problem is
too big to fit into the memory of a single node.

Evidently for the smaller problem size, the benchmark implementations reach
their scaling limit at about 10 nodes, whereas the larger problem sizes manage to
scale well even to 16 nodes, with the exception of the product benchmark which
shows the worst scaling behavior. This behavior can be explained by the relatively
large communication requirement of the product benchmark kernel.
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Fig. 20 Scaling behavior of the Cowichan benchmarks with up to 16 nodes on SuperMUC-HW.
(a) Multinode Scaling, 30× 30 k Matrix. (b) Multinode Scaling: 80k × 80k Matrix

4.1.5 Summary

In this section we have evaluated DASH, a new realization of the PGAS approach
in the form of a C++ template library by comparing our implementation of the
Cowichan problems with those developed by expert programmers in Cilk, TBB,
Chapel, and Go. We were able to show that DASH achieves both remarkable
performance and productivity that is comparable with established shared memory
programming approaches. DASH is also the only approach in our study where the
same source code can be used both on shared memory systems and on scalable
distributed memory systems. This step, from shared memory to distributed memory
systems is often the most difficult for parallel programmers because it frequently
goes hand in hand with a re-structuring of the entire data distribution layout of the
application. With DASH the same application can seamlessly scale from a single
shared memory node to multiple interconnecting nodes.

4.2 Task-Based Application Study: LULESH

The Livermore Unstructured Lagrangian Explicit Shock Hydrodynamics
(LULESH) is part of the Department of Energy’s Coral proxy application
benchmark suite [19]. The domain typically scales with the number of processes and
is divided into a grid of nodes, elements, and regions of elements. The distribution
and data exchange follows a 27-point stencil with three communication steps per
timestep.

The reference implementation of LULESH uses MPI send/recv communication
to facilitate the boundary exchange between neighboring processes and OpenMP
worksharing constructs are used for shared memory parallelization. Instead, we
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Fig. 21 Lulesh reference implementation and Lulesh using DASH tasks running on a Cray XC40

iteratively ported LULESH to use DASH distributed data structures for neighbor
communication and DASH tasks for shared memory parallelization, with the ability
to partially overlap communication and computation.

The first step was to adapt the communication to use DASH distributed data
structures instead of MPI [12]. In order to gradually introduce tasks, we started
by porting the OpenMP worksharing loop constructs with to use the DASH task-
loop construct discussed in Sect. 2.1.3. In a second step, the iteration chunks of the
taskloops were connected through dependencies, allowing a breadth-first scheduler
to execute tasks from different task-loop statements concurrently. In a last step, a
set of high-level tasks has been introduced that encapsulate the task-loop statements
and coordinate the computation and communication tasks.

The resulting performance at scale on a Cray XC40 is shown in Fig. 21. For
larger problem sizes (s = 3003 elements per node), the speedup at scale of the
DASH port over the reference implementation is about 25%. For smaller problem
sizes (s = 2003), the speedup is significantly smaller at about 5%. We believe that
further optimizations in the tasking scheduler may yield improvements even for
smaller problem sizes.

5 Outlook and Conclusion

We have presented an overview of our parallel programming approach DASH,
focusing on recent activities in the areas of support for task-based execution,
dynamic locality, parallel algorithms, and smart data structures. Our results show
that DASH offers a productive programming environment that also allows program-
mers to write highly efficient and scalable programs with performance on-par or
exceeding solutions relying on established programming systems.
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Work on DASH is not finished. The hardware landscape in high performance
computing is getting still more complex, while the application areas are getting
more diverse. Heterogeneous compute resources are common, nonvolatile memories
are making their appearance and domain specific architectures are on the horizon.
These and other challenges must be addressed by DASH to be a viable parallel
programming approach for many users.

The challenge of utilizing heterogeneous computing resources, primarily in the
form of graphics processing units (GPUs) used in high performance computing
systems, is addressed in a project building on DASH funded by the German Federal
Ministry of Education and Research (BMBF) called MEPHISTO. We close our
report on DASH with a short discussion of MEPHISTO.

5.1 MEPHISTO

The PGAS model simplifies the implementation of programs for distributed memory
plattforms, but data locality plays an important role for performance critical
applications. The owner-computes paradigm aims to maximize the performance by
minimizing the intra-node data movement. This focus on locality also encourages
the usage of shared memory parallelism. During the DASH project the partners
already experimented with shared memory parallelism and how it can be integrated
into the DASH ecosystem. OpenMP was integrated into suitable algorithms,
experiments with Intel’s Thread Building Blocks as well as conventional POSIX-
thread-based parallelism were conducted. These, however, had to be fixed for a
given algorithm: a user had no control over the acceleration and the library authors
had to find sensible configurations (e.g. level of parallelism, striding, scheduling).
Giving users of the DASH library more possibilities and flexibility is a focus of the
MEPHISTO project.

The MEPHISTO project partly builds on the work that has been done in DASH.
One of its goal is to integrate abstractions for better data locality and heterogeneous
programming with DASH. Within the scope of MEPHISTO two further projects are
being integrated with DASH:

• Abstraction Library for Parallel Kernel Acceleration (ALPAKA) [22]
• Low Level Abstraction of Memory Access6 (LLAMA)

ALPAKA is a library that adds abstractions for node-level parallelism for C++
programs. Once a kernel is written with ALPAKA, it can be easily ported to
different accelerators and setups. For example a kernel written with ALPAKA can
be executed in a multi-threaded CPU environment as well as on a GPU, for example
using the CUDA backend. ALPAKA provides optimized code for each accelerator
that can be further customized by developers. To switch from one back end to

6https://github.com/mephisto-hpc/llama.

https://github.com/mephisto-hpc/llama
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another requires just the change of one type definition in the code so that the code
is portable.

Integrating ALPAKA and DASH brings flexibility for node-level parallelism
within a PGAS environment: switching an algorithm from a multi threaded CPU
implementation to an accelerator now only requires passing one more param-
eter to the function call. It also gives the developer an interface to control
how and where the computation should happen. The kernels of algorithms like
dash::transform_reduce are currently extended to work with external
executors like ALPAKA. Listing 5 shows how executors are used to offload
computation using ALPAKA. Note that the interface allows offloading to other
implementations as well. In the future DASH will support any accelerator that
implements a simple standard interface for node-level parallelism.
� �

1 policy.executor().bulk_twoway_execute(
2 [=](size_t block_index,
3 size_t element_index,
4 T* res,
5 value_type* block_first) {
6 res[block_index] = binary_op(
7 res[block_index],
8 unary_op(block_first[element_index])

↪→ );
9 },

10 in_first, // a "shape"
11 [&]() -> std::vector<std::future<T>>& {
12 return results;
13 },
14 std::ignore); // shared state (unused)

� �

Listing 5 Offloading using an executor inside dash::transform_reduce. The executor can
be provided by MEPHISTO

LLAMA on the other hand focuses solely on the format of data in memory.
DASH already provides a flexible Pattern Concept to define the data placement for
a distributed container. However, LLAMA gives developers finer grained control
over the data layout. DASH’s patterns map elements of a container to locations in
memory, but the layout of the elements itself is fixed. With LLAMA, developers
can specify the data layout with a C++ Domain Specific Language (DSL) to
fit the application’s needs. A typical example is a conversion from Structure of
Arrays (SoA) to Array of Structures (AoS) and vice versa. But also more complex
transformations like projections are being evaluated.

Additionally to the integration of LLAMA, a more flexible, hierarchical and
context-sensitive pattern concept is being evaluated. Since the current patterns map
elements to memory locations in terms of units (i.e., MPI processes), using other
sources for parallelism can be a complex task. Mapping elements to (possibly
multiple) accelerators was not easily possible. Local patterns extend the existing
patterns. By matching elements with entities (e.g. a GPU), the node-local data may
be assigned to other compute units beside processes.
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Both projects are currently evaluated in the context of DASH to explore how the
PGAS programming model can be used more flexibly and efficiently.
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Abstract The ESSEX project has investigated programming concepts, data struc-
tures, and numerical algorithms for scalable, efficient, and robust sparse eigenvalue
solvers on future heterogeneous exascale systems. Starting without the burden
of legacy code, a holistic performance engineering process could be deployed
across the traditional software layers to identify efficient implementations and guide
sustainable software development. At the basic building blocks level, a flexible
MPI+X programming approach was implemented together with a new sparse data
structure (SELL-C-σ ) to support heterogeneous architectures by design. Further-
more, ESSEX focused on hardware-efficient kernels for all relevant architectures
and efficient data structures for block vector formulations of the eigensolvers.
The algorithm layer addressed standard, generalized, and nonlinear eigenvalue
problems and provided some widely usable solver implementations including a
block Jacobi–Davidson algorithm, contour-based integration schemes, and filter
polynomial approaches. Adding to the highly efficient kernel implementations,
algorithmic advances such as adaptive precision, optimized filtering coefficients,
and preconditioning have further improved time to solution. These developments
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were guided by quantum physics applications, especially from the field of topo-
logical insulator- or graphene-based systems. For these, ScaMaC, a scalable matrix
generation framework for a broad set of quantum physics problems, was developed.
As the central software core of ESSEX, the PHIST library for sparse systems
of linear equations and eigenvalue problems has been established. It abstracts
algorithmic developments from low-level optimization. Finally, central ESSEX
software components and solvers have demonstrated scalability and hardware
efficiency on up to 256 K cores using million-way process/thread-level parallelism.

1 Introduction

The efficient solution of linear systems or eigenvalue problems involving large
sparse matrices has been an active research field in parallel and high performance
computing for many decades. Software packages like Trilinos [33] or PETSc [9]
have been developed to great maturity, and algorithmic improvements were accom-
panied by advances in programming abstractions addressing, e.g., node-level
heterogeneity (cf. Kokkos [19]). Completely new developments such as Ginkgo1

are rare and do not focus on large-scale applications or node-level efficiency.
Despite projections from the late 2000s, hardware architectures have not devel-

oped away from traditional clustered multicore systems. However, a clear trend of
increased node-level parallelism and heterogeneity has been observed. Although
several new architectures entered the field (and some vanished again), the basic
concepts of core-level code execution and data parallelism have not changed. This
is why the MPI+X concept is still a viable response to the challenge of hardware
diversity.

Performance analysis of highly parallel code typically concentrated on scalabil-
ity, but provably optimal node-level performance was rarely an issue. Moreover,
strong abstraction boundaries between linear algebra building blocks, solvers, and
applications made it hard to get a holistic view on a minimization of time to solution,
encompassing optimizations in the algorithmic and implementation dimensions.

In this setting, the ESSEX project took the opportunity to start from a clean
slate, deliberately breaking said abstraction boundaries to investigate performance
bottlenecks together with algorithmic improvements from the core to the highly
parallel level. Driven by the targeted application fields, bespoke solutions were
developed for selected algorithms and applications. The experience gained in the
development process will lead the way towards more generic approaches rather
than compete with established libraries in terms of generality. The overarching motif
was a consistent performance engineering process that coordinated all performance-
relevant activities across the different software layers [1, 3, 4, 20, 52–54, 56, 62, 64].

1https://github.com/ginkgo-project/ginkgo.

https://github.com/ginkgo-project/ginkgo
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Consequently, the ESSEX parallel building blocks layer implemented in the
GHOST library [55] supports MPI+X, with X being a combination of node-
level programming models able to fully exploit hardware heterogeneity, functional
parallelism, and data parallelism. Despite fluctuations in hardware architectures and
new programming models hitting the market every year, OpenMP or CUDA is still
the most promising and probably most sustainable choice for X, and ESSEX-II
adhered to it. In addition, engineering highly specialized kernels including sparse-
matrix multiple-vector operations and appropriate data structures for all relevant
compute architectures provided the foundation for hardware- and energy-efficient
large-scale computations.

Building on these high-performance building blocks, one focus of the algorithm
layer was put on the block formulation of Jacobi–Davidson [64] and filter diago-
nalization [56] methods, the hardware efficiency of preconditioners [46–48], and
the development of hardware-aware coloring schemes [1]. In terms of scalability,
the project has investigated new contour-based integration eigensolvers [23, 24]
that can exploit additional parallelism layers beyond the usual data parallelism.
The solvers developed in ESSEX can tackle standard, generalized, and nonlinear
eigenvalue problems and may also be used to extract large bulks of extremal and
inner eigenvalues.

The applications layer applies the algorithms and building blocks to deliver
scalable solutions for topical quantum materials like graphene, topological insu-
lators, or superconductors, and nonlinear dynamical systems like reaction-diffusion
systems. A key issue for large-scale simulations is the scalable (in terms of size and
parallelism) generation of the sparse matrix representing the model Hamiltonian.
Our matrix generation framework ScaMaC can be integrated into application code to
allow the on-the-fly, in-place construction of the sparse matrix. Beyond the ESSEX
application fields, matrices from many other relevant areas can be produced by
ScaMaC.

The PHIST library [78] is the sustainable outcome of the performance-centric
efforts in ESSEX. It is built on a rigorous software and performance engineering
process, comprises diverse solver components, and supports multiple backends (e.g.,
Trilinos, PETSc, ESSEX kernels). It also interfaces to multiple languages such as
C, C++, Fortran 2003, and Python. The CRAFT library [73] provides user-friendly
access to fault tolerance via checkpoint/restart and automatic recovery for iterative
codes using standard C++.

Scalabilty, performance, and portability have been tested on three top-10 super-
computers covering the full range of architecures available during the ESSEX
project time frame: Piz Daint2 (heterogeneous CPU-GPU), OakForest-PACS3

(many-core), and SuperMUC-NG4 (standard multi-core).

2https://www.cscs.ch/computers/piz-daint/.
3https://www.cc.u-tokyo.ac.jp/en/supercomputer/ofp/service/.
4https://doku.lrz.de/display/PUBLIC/SuperMUC-NG.

https://www.cscs.ch/computers/piz-daint/
https://www.cc.u-tokyo.ac.jp/en/supercomputer/ofp/service/
https://doku.lrz.de/display/PUBLIC/SuperMUC-NG


146 C. L. Alappat et al.

This review focuses on important developments in ESSEX-II. After presenting a
brief overview of the most relevant achievements in the first project phase ESSEX-I
in Sects. 2 and 3 details algorithmic developments in ESSEX-II, notably with respect
to preconditioners and projection-based methods for obtaining inner eigenvalues.
Moreover, we present the RACE (Recursive Algebraic Coloring Engine) method,
which delivers hardware-efficient graph colorings for parallelization of algorithms
and kernels with data dependencies. In Sect. 4 we showcase performance and
parallel efficiency numbers for library components developed in ESSEX-II that are
of paramount importance for the application work packages: GPGPU-based tall and
skinny matrix-matrix multiplication and the computation of inner eigenvalues using
polynomial filter techniques. Section 5 describes the software packages that were
developed to a usable and sustainable state, together with their areas of applicability.
In Sect. 6 we show application results from the important areas of quantum physics
and nonlinear dynamical systems. Finally, in Sect. 7 we highlight the collaborations
sparked and supported by SPPEXA through the ESSEX-II project.

2 Summary of the ESSEX-I Software Structure

The Exascale-enabled Sparse Solver Repository (ESSR) was developed along the
requirements of the algorithms and applications under investigation in ESSEX. It
was not intended as a full-fledged replacement of existing libraries like Trilinos5

[33], but rather as a toolbox that can supply developers with blueprints as a starting
point for their own developments. In ESSEX-I, the foundations for a sustainable
software framework were laid. See Sect. 5 for developments in ESSEX-II.

The initial version of the ESSR [77] comprised four components:

• GHOST (General, Hybrid and Optimized Sparse Toolkit) [55], a library of basic
sparse and dense linear algebra building blocks that are not available in this form
in other software packages. The development of GHOST was strictly guided by
performance engineering techniques; implementations of standard kernels such as
sparse matrix-vector multiplication (spMVM) and sparse matrix-multiple-vector
multiplication (spMMVM) as well as tailor-made fused kernels, for instance
those employed in the Kernel Polynomial Method (KPM) [81], were modeled
using the roofline model. GHOST supports, by design, strongly heterogeneous
environments using the MPI+X approach. See [51] for a comprehensive overview
of GHOST and its building blocks.

• ESSEX-Physics, a collection of prototype implementations of polynomial eigen-
solvers such as the KPM and Chebyshev Filter Diagonalization (ChebFD). These
were implemented on top of GHOST using tailored kernels and were shown to
perform well on heterogeneous CPU-GPU systems [53].

5https://trilinos.org/.

https://trilinos.org/
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• PHIST (Pipelined Hybrid-parallel Iterative Solver Toolkit), which comprises
Jacobi–Davidson type eigensolvers and Krylov methods for linear systems. One
important component is a test framework that allows for continuous integration
(CI) throughout the development cycle. PHIST can not only use plain GHOST as
its basic linear algebra layer; it is also equipped with fallback kernel implemen-
tations and adapters for the Trilinos and Anasazi libraries. A major achievement
in the development of PHIST was an efficient block Jacobi–Davidson eigenvalue
solver, which could be shown to have significant performance advantages over
nonblocked versions when using optimized building blocks from GHOST [64].

• BEAST (Beyond fEAST), which implements innovative projection-based eigen-
solvers motivated by the contour integration-based FEAST method [23]. The
ESSEX-I project has contributed to improving FEAST in two ways: by proposing
techniques for solving or avoiding the linear systems that arise, and by improving
robustness and performance of the algorithmic scheme.

A pivotal choice for any sparse algorithm implementation is the sparse matrix
storage format. In order to avoid data conversion and the need to support mul-
tiple hardware-specific formats in a single code, we developed the SELL-C-
σ format [52]. It shows competitive performance on the dominating processor
architectures in HPC: standard multicore server CPUs with short-vector single
instruction multiple data (SIMD) capabilities, general-purpose graphics processing
units (GPGPUs), and many-core designs with rather weak cores such as the Intel
Xeon Phi. SELL-C-σ circumvents the performance penalties of matrices with few
nonzero entries per row on architectures on which SIMD vectorization is a key
element for performance even with memory-bound workloads.

In order to convert a sparse matrix to SELL-C-σ , its rows are first sorted
according to their respective numbers of nonzeros. This sorting is performed across
row blocks of length σ . After that, the matrix is cut into row blocks of length C.
Within each block, rows are padded with zeros to equal length and then stored
in column-major order. See Fig. 1 for visualizations of SELL-C-σ with C = 6
and σ ∈ {1, 12, 24}. Incidentally, known and popular formats can be recovered as
corner cases: SELL-1-1 is the well-known CSR storage format and SELL-N-1 is
ELLPACK. The particular choice of C and σ influences the performance of the
spMVM operation; optimal values are typically matrix- and hardware-dependent.
However, in practice one can usually find parameters that yield good performance
across architectures for a particular matrix. A roofline performance model was
constructed in [52] that sets an upper limit for the spMVM performance for any
combination of matrix and architecture. This way, “bad” performance is easily
identified. SELL-C-σ was quickly adopted by the community and is in use, in pure
or adapted form, in many performance-oriented projects [5, 6, 28, 60, 80].
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Fig. 1 Variants of the SELL-C-σ storage format. Arrows indicate the storage order of matrix
values and column indices. Image from [52]. (a) SELL-6-1, β = 0.51. (b) SELL-6-12, β = 0.66.
(c) SELL-6-24, β = 0.84

3 Algorithmic Developments

In this section we describe selected developments within ESSEX-II on the algo-
rithmic level, in particular preconditioners for the solution of linear systems that
occur in the eigensolvers, a versatile framework for computing inner eigenvalues,
and a nonlinear eigensolver. We also cover a systematic comparison of contour-
based methods. We close the section with the introduction of RACE, which is an
algorithmic development for graph coloring guided by the constraints of hardware
efficiency.

3.1 Preconditioners (ppOpen-SOL)

Two kinds of solvers have been developed: a preconditioner targeting the ill-
conditioned large scale problems arising in the BEAST-C method (cf. Sect. 3.2) and
a multigrid solver targeting problems arising from finite difference discretizations
of partial differential equations (PDEs).
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3.1.1 Regularization

The BEAST-C method leads to a large number of ill-conditioned linear systems with
complex diagonal shifts [24]. Furthermore, in many of our quantum physics applica-
tions, the system matrices have small (and sometimes random) diagonal elements. In
order to apply a classic incomplete Cholesky (IC) factorization preconditioner, we
used two types of regularization to achieve robustness: a blocking technique (BIC)
and an additional diagonal shift [47]. Using this approach, we solved a set of 120
prototypical linear systems from this context (e.g., BEAST-C applied to quantum
physics applications). Due to the complex shift, the system matrix is symmetric but
not Hermitian. Hence we use an adaptation of the Conjugate Gradient (CG) method
for complex symmetric matrices called COCG (conjugate orthogonal conjugate
gradient [79]).

The blocking technique is a well-known approach for improving the convergence
rate. In this study, we apply the technique not only for better convergence but also
for more robustness. The diagonal entries in the target equations are small. By
applying the blocking technique, the diagonal blocks to be inverted include larger
off-diagonal entries.

The diagonal shifting is a direct measure for transforming the ill-conditioned
matrices to be more diagonally dominant before performing the incomplete fac-
torization. On the other hand, this may deteriorate the convergence of the overall
method. We therefore investigate the best value for the diagonal shifting for our
applications.

Figure 2 shows the effect of the regularized IC preconditioner with the COCG
method. By using the diagonal shifted block IC-COCG (BIC-COCG), we solve all
target linear systems.

Fig. 2 Effect of the regularized IC preconditioner with the COCG method. By using the diagonal
shifted block IC-COCG (BIC-COCG), we can solve all test problems from our benchmark set
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3.1.2 Hierarchical Parallel Reordering

In this section, we present scalability results for the BIC preconditioner parallelized
by a hierarchical parallel graph coloring algorithm. This approach yields an almost
constant convergence rate with respect to the number of compute nodes, and good
parallel performance.

Node-wise multi-coloring (with domain decomposition between nodes) is widely
used for parallelizing IC preconditioners on clusters of shared memory CPUs. Such
“localized” multi-coloring leads to a loss of robustness of the regularized IC-COCG
method, and the convergence rate decreases at high levels of parallelism. To solve
this problem, we parallelize the block IC preconditioner for the hybrid-parallel
cluster system. In addition, we proposed the hierarchical parallelization for the
multi-coloring algorithms [46]. This versatile scheme allows us to parallelize almost
any multi-coloring algorithm.

Figure 3 shows the number of iterations and computational time of the BIC-
COCG method on the Oakleaf-FX cluster, using up to 4,800 nodes. The benchmark
matrix is the Hamiltonian of a graphene sheet simulation with more than 500 million
linear equations, for which interior eigenvalues are of interest [24]. Hierarchical
parallelization yields almost constant convergence with respect to the number of
nodes. The computational time with 4,600 nodes is 30 times smaller than with 128
nodes, amounting to a parallel efficiency of 83.5% if the 128-node case is taken as
the baseline.

3.1.3 Multiplicative Schwarz-Type Block Red-Black Gauß–Seidel
Smoother

Multigrid methods are among the most useful preconditioners for elliptic PDEs.
In [45] we proposed a multiplicative Schwarz block red/black Gauß–Seidel (MS-

Fig. 3 Computational time and convergence of BIC-COCG for a graphene benchmark problem
(strong scaling)
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Fig. 4 Computational time and number of iterations of a geometric multigrid solver with the MS-
BRB-GS(α) smoother

BRB-GS) smoother for geometric multigrid methods. It is a modified version of the
block red-black Gauß–Seidel (BRB-GS) smoother that improves convergence rate
and data locality by applying multiple consecutive Gauß–Seidel sweeps on each
block.

The unknowns are divided into blocks so that the amount of data for processing
each block fits into the cache, and α Gauß–Seidel iterations are applied to the block
per smoother step. The computational cost for the additional iterations is much lower
than for the first iteration because of data locality.

Figure 4 shows the effect of the MS-BRB-GS(α) smoother on a single node of
the ITO system (Intel Xeon Gold 6154 (Skylake-SP) Cluster at Kyushu University).
By increasing the number of both pre- and post-smoothing steps, the number of
iterations is decreased. In the best case, MS-BRB-GS is 1.64× faster than BRB-GS.

3.2 The BEAST Framework for Interior Definite Generalized
Eigenproblems

The BEAST framework targets the solution of interior definite eigenproblems

AX = BX� ,

i.e., for finding all eigenvectors and eigenvalues of a definite matrix pair (A,B),
with A and B Hermitian and B additionally positive definite, within a given interval
[λ, λ]. The framework is based on the Rayleigh–Ritz subspace iteration procedure,
in particular the spectral filtering approach: Arbitrary continuous portions of the
spectrum may be selected for computation with appropriate filtering functions that
are applied via an implicit approximate projector to compute a suitable subspace
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basis. Starting with an initial subspace Y , the following three main steps are repeated
until a suitable convergence criterion is met:

Compute a subspace U by approximately projecting Y
Rayleigh–Ritz extraction: solve the reduced eigenproblemAUV = BUV�,

where AU = UHAU,BU = UHBU, and let X = UV
Obtain new Y from X or U

In the following we highlight some of BEAST’s algorithmic features, skipping
other topics such as locking converged eigenpairs, adjusting the dimension of the
subspace, and others.

3.2.1 Projector Types

BEAST provides three variants of approximate projectors. First, polynomial approx-
imation (BEAST-P) using Chebyshev polynomials, which only requires matrix
vector multiplications but is restricted to standard eigenproblems. Second, Cauchy
integral-based contour integration (BEAST-C), as in the FEAST method [63]. As
a third method, an iterative implementation of the Sakurai–Sugiura method [65] is
available (BEAST-M), which shares algorithmic similarities with FEAST. In the
following we briefly elaborate on the algorithmic ideas.

• In BEAST-P, we have U = p(A) · Y with a polynomial p(z) =∑d
k=0 ckTk(z) of

suitable degree d . Here, Tk denotes the kth Chebyshev polynomial,

T0(z) ≡ 1, T1(z) = z, Tk(z) = 2z · Tk−1(z)− Tk−2(z), k ≥ 2.

Due to the use of the Tk , this method is also known as Chebyshev filter
diagonalization.
In addition to well-known methods for computing the coefficients ck [18, 62],
BEAST also provides the option of using new, improved coefficients [25]. Their
computation depends on two parameters, μ and σ , and for suitable combinations
of these, the filtering quality of the polynomial can be improved significantly;
see Fig. 5, which shows the “gain,” i.e., the reduction of the width of those
λ values outside the search interval, for which a damping of corresponding
eigenvectors by at least a factor 100 cannot be guaranteed. For some combinations
(σ, μ), marked red in the picture, this “no guarantee” area can be reduced by
a factor of more than 2, which in turn allows using lower-degree polynomials
to achieve comparable overall convergence. A parallelized method for finding
suitable parameter combinations and computing the ck is included with BEAST.
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• In BEAST-C, the exact projection

1

2π i

∫




dz (zB − A)−1BY

(integration is over a contour 
 in the complex plane that encloses the eigenvalues
λ ∈ [λ, λ], but no others) is approximated using an N-point quadrature rule,

U =
N∑

j=1

ωj (zjB − A)−1BY,

leading to N linear systems, where the number of right-hand sides (RHS)
corresponds to the dimension of the current subspace U (and Y ).

• BEAST-M is also based on contour integration, but moments are used to reduce
the number of RHS in the linear systems. TakingM moments, we have

U = [U0, . . . , UM−1] with Uk =
N∑

j=1

ωj z
k
j (zjB − A)−1BY,

and thus an M times smaller number of RHS (dimension of Y ) is sufficient to
achieve the same dimension of U .

The linear systems in the contour-based schemes may be ill-conditioned if the
integration points zj are close to the spectrum (this happens, e.g., for narrow search
intervals [λ, λ]); cf. also Sects. 3.1 and 3.4 for approaches to address this issue.

3.2.2 Flexibility, Adaptivity and Auto-Tuning

The BEAST framework provides flexibility at the algorithmic, parameter, and
working precision levels, which we describe in detail in the following.

Algorithmic Level

The projector can be chosen from the three types described above, and the type
may even be changed between iterations. In particular, an innovative subspace-
iterative version of Sakurai–Sugiura methods (SSM) has been investigated for
possible cost savings in the solution of linear systems via a limited subspace size
and the overall reduction of number of right hand sides over iterations by using
moments. Given, however, the potentially reduced convergence threshold with a
constrained subspace size, we support switching from the multi-moment method,
BEAST-M, to a single-moment method, BEAST-C. The efficiency, robustness, and
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Fig. 5 Base-2 log of the “gain” from using modified coefficients with parameters (σ, μ) for the
interval [λ, λ] = [−0.584,−0.560] (matrix scaled such that spec(A) = [−1,+1]) and degree
d = 1600

accuracy of this approach in comparison with traditional SSM and FEAST has been
explored [35].

We further studied this scheme along with another performance-based imple-
mentation of SSM, z-PARES [65, 67]. These investigations considered the scaling
and computational cost of the libraries as well as heuristics for parameter choice,
in particular with respect to the number of quadrature nodes. We observed that the
scaling behavior improved when the number of quadrature nodes increased, as seen
in Fig. 6. As the linear systems solved at each quadrature node are independent
and the quality of numerical integration improves with increased quadrature degree,
exploiting this property makes sense, particularly within the context of exascale
computations. However, it is a slightly surprising result, as previous experiments
with FEAST showed diminishing returns for convergence with increased quadrature
degree [23], something we do not observe here.

Parameter Level

In addition to the projector type, several algorithmic parameters determine the
efficiency of the overall method, most notably the dimension of the subspace and the
degree of the polynomial (BEAST-P) or the number of integration nodes (BEAST-C
and BEAST-M).

With certain assumptions on the overall distribution of the eigenvalues, clear
recommendations for optimum subspace size (as a multiple of the number of
expected eigenvalues) and the degree can be given, in the sense that overall work
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Fig. 6 Strong scaling of BEAST and z-Pares for a 1M × 1M standard eigenproblem based on
a graphene sheet of dimension 2000 × 500. Both solvers found 260 eigenpairs in the interval
[−0.01, 0.01] to a tolerance of 1 × 10−8. Both methods used 4 moments and began with random
initial block vector Y . For BEAST, Y contained 100 columns; for z-Pares, 130. Testing performed
on the Emmy HPC cluster at RRZE. MUMPS was used for the direct solution of all linear systems.
N refers to the number of quadrature nodes along a circular contour, NP to the number of
processes

is minimized. For more details, together with a description of a performance-tuned
kernel for the evaluation of p(A) · Y , the reader is referred to [62].

If such information is not available, or for the contour integration-type projectors,
a heuristic has been developed that automatically adjusts the degree (or number of
integration nodes) during successive iterations in order to achieve a damping of
the unwanted components by a factor of 100 per iteration, which leads to close-to-
optimum overall effort; cf. [26].

Working Precision Level

Given the iterative nature of BEAST, with one iteration being comparatively
expensive, the possibility to reduce the cost of at least some of these iterations is
attractive. We have observed that before a given residual tolerance is surpassed,
systematic errors in the computation of the projector and other operations do not
impair convergence speed per se, but impose a limit on what residual can be
reached before progress stagnates. One such systematic error is the finite accuracy
of floating-point computations, which typically are available in single and double
precision. In the light of the aforementioned behavior, it seems natural to perform
initial iterations in single precision and thereby save on computation time before a
switch to double precision becomes inevitable; cf. Fig. 7.
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mixed(7) 333 s 265 s
mixed(9) 316 s 257 s
mixed(11) 301 s 245 s
single 266 s 225 s

Fig. 7 Left: average residual over the BEAST iterations for using double or single precision
throughout, and for switching from single to double precision in the 7th, 9th, or 11th iteration,
respectively. Right: time (in seconds) to convergence for a size 1,048,576 topological insulator
(complex values) with a search space size of 256 and a polynomial degree of 135 on 8 nodes of
the Emmy-cluster at RRZE. Convergence is reached after identical numbers of iterations (with
the exception of pure single precision, of course). The timings can vary for different ratios of
polynomial degree and search space size and depend on the single precision performance of the
underlying libraries

Therefore, mixed precision has been implemented in all BEAST schemes
mentioned above, allowing an adaptive strategy to automatically switch from single
to double precision after a given residual tolerance is reached. A comprehensive
description and results are presented in [4]. These results and our initial investi-
gations also suggest that increased precision beyond double precision (i.e., quad
precision) will have no benefit for the convergence rate until a certain double
precision specific threshold is reached; convergence beyond this point would require
all operations to be carried out with increased precision.

3.2.3 Levels of Parallelism

The BEAST framework exploits multiple levels of parallelism using an MPI+X par-
adigm. We rely on the GHOST and PHIST libraries for efficient sparse matrix/dense
vector storage and computation; cf. Sect. 5. The operations implemented therein are
themselves hybrid parallel and constitute the lowest level of parallelism in BEAST.
Additional levels are addressed by parallelizing over blocks of vectors in Y and,
for BEAST-C and BEAST-M, over integration nodes during the application of the
approximate projector. A final level is added by exploiting the ability of the method
to subdivide the search interval [λ, λ] and to process the subintervals independently
and in parallel. Making use of these properties, however, may lead to non-orthogonal
eigenvectors, which necessitates postprocessing as explained in the following.
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3.2.4 A Posteriori Cross-Interval Orthogonalization

Rayleigh–Ritz-based subspace iteration algorithms naturally produce a B-
orthogonal set of eigenvectorsX, i.e., orth(X) is small, where

orth(X) = max
{
orth(xi, xj )|i �= j

}
with orth(x, y) = 〈y, x〉

‖x‖‖y‖ .

By contrast, the orthogonality

orth(X, Y ) = max
{
orth(xi, yj )

}

between two or more independently computed sets of eigenvectors may suffer if
the distance between the involved eigenvalues is small [49, 50]. Simultaneous re-
orthogonalization of evolving approximate eigenvectors during subspace iteration
has proven ineffective unless the vectors have advanced reasonably far. A large scale
re-orthogonalization of finished eigenvector blocks, on the other hand, requires a
careful choice of methodology in order to not diminish the quality of the previously
established residual.

Orthogonalization of multiple vector blocks implies Gram–Schmidt style propa-
gation of orthogonality, assuming orth(X, Y ) can be arbitrarily poor. In practice, the
independently computed eigenvectors will exhibit multiple grades of orthogonality,
but rarely will there be no orthogonality (in the sense above) at all. This, in turn,
allows for the use of less strict orthogonalization methods. While, in theory, the
orthogonalization of p blocks requires at least p(p− 1)/2+ (p− 1) block-block or
intra-block orthogonalizations and ensures global orthogonality, an iterative scheme
allows for more educated choices on the ordering of orthogonalizations in order
to reduce losses in residual and improve the communication pattern, eliminating
the need for broadcasts of vector blocks at the cost of additional orthogonalization
operations in the form of multiple sweeps. In practice, very few sweeps (∼2) are
sufficient in most cases.

Every block-block orthogonalization X = X − Y (YHBX) disturbs the
orthogonality orth(X) of the modified block, as well as its residual. Local
re-orthogonalization of X disturbs the residual further. We have identified
orthogonalization patterns and selected orthogonalization algorithms that reduce
the loss of residual accuracy to a degree that essentially eliminates the need for
additional post-iteration.

The implementation of an all-to-all interaction of many participating vector
blocks can be performed in multiple ways with different requirements regarding
storage, communication, runtime, and with different implications on accuracy and
loss of residual. Among several such strategies and algorithms that have been
implemented and tested, the most promising is a purely iterative scheme, both
for global and local orthogonalization operations. It is based on a comparison of
interval properties, most notably the achieved residual from the subspace iteration.
We are continuing to explore the possibility to detect certain orthogonalizations as
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unnecessary without computing the associated inner products in order to further
reduce the workload without sacrificing orthogonality.

3.2.5 Robustness and Resilience

In the advent of large scale HPC clusters, hardware faults, both detectable an
undetectable, have to be expected.

Detectable hardware faults, e.g., the outage of a component that violently halts
execution, can typically only be mitigated by frequent on-the-fly storage of the most
vital information. In the case of subspace iteration, as is used in BEAST, almost
all required information for being able to resume computation is encoded in the
iterated subspace basis in form of the approximate eigenvectors, besides runtime
information about the general program flow. Relying on the CRAFT library [73], a
per-iteration checkpointing mechanism has been implemented in BEAST.

Additionally, for also being able to react to “silent” computation errors that
merely distort the results but do not halt execution, the most expensive operation
(application of the approximate projector) has been augmented to monitor the sanity
of the results. This can be done in two ways: A checksum-style entrainment of
additional vectors, linear combinations of the right-hand sides, can be checked
during and after the application of the projector to detect errors and allow for
the re-computation of the incorrect parts. The comparison of approximate filter
values obtained from the computed basis and the expected values obtained from
the scalar representation of the filter function, on the other hand, gives an additional
a posteriori test for the overall plausibility of the basis.

Practical tests have shown that small distortions of the subspace basis have not
enough impact on the overall process in order to justify expensive measures. If the
error is not recurring, just continuing the subspace iteration is often the best and
most cost-efficient option. This is particularly true in early iterations, where small
errors have no effect at all.

3.3 Further Progress on Contour Integral-Based Eigensolvers

3.3.1 Relationship Among Contour Integral-Based Eigensolvers

The complex moment-based eigensolvers such as the Sakurai–Sugiura method can
be regarded as projection methods using a subspace constructed by the contour
integral

1

2π i

∫




dz zk(zB − A)−1BY.
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Fig. 8 A map of the relationships among the contour integral-based eigensolvers

The property of the subspace is well analyzed by using a filter function

f (λ) :=
d∑

j=1

ωj

zj − λ,

which approximates a band-pass filter for the target region where the wanted
eigenvalues are located. Using the filter function, error analyses of the complex
moment-based eigensolvers were shown in [30, 41, 42, 66, 76]. By using the results
of the error analyses, an error resilience technique and an accuracy deterioration
technique have also been given in [32, 43].

The relationship between typical complex moment-based eigensolvers was also
analyzed in [42] focusing on the subspace. The block SS-RR method [36] and the
FEAST algorithm [76] are projection methods for solving the target generalized
eigenvalue problem, whereas the block SS-Hankel method [37], Beyn [12], the
block SS-Arnoldi methods [40] and its improvements [38] are projection methods
for solving an implicitly constructed standard eigenvalue problem; see [42] for
details. Figure 8 shows a map of the relationships among the contour integral-based
eigensolvers.

3.3.2 Extension to Nonlinear Eigenvalue Problems

The complex moment-based eigensolvers were extended to nonlinear eigenvalue
problems (NEPs):

T (λi)xi = 0, xi ∈ C
n \ {0}, λi ∈ � ⊂ C,
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where the matrix-valued function T : �→ C
n×n is holomorphic in an open domain

�. The projection for a nonlinear matrix function T (λ) is given by

1

2π i

∫




dz zkT (z)−1Y.

This projection is approximated by

Uk =
N∑

j=1

ωj z
k
jT (zj )

−1Y, k = 0, 1, . . . ,m− 1.

The block SS-Hankel [7, 8], block SS-RR [83], and block SS-CAA methods [39]
are simple extensions of the GEP solvers. A technique for improving the numerical
stability of the block SS-RR method for NEP was developed in [15, 16].

Beyn proposed a method using Keldysh’s theorem and the singular value
decomposition [12]. Van Barel and Kravanja proposed an improvement of the Beyn
method using the canonical polyadic (CP) decomposition [10].

3.4 Recursive Algebraic Coloring Engine (RACE)

The standard approach to solve the ill-conditioned linear systems arising in BEAST-
C or FEAST is to use direct solvers. However, in [24] it was shown that the
Kaczmarz iterative solver accelerated by a Conjugate Gradient (CG) method (the
so-called CGMN solver [29]) is a robust alternative to direct solvers. Standard
multicoloring (MC) was used in [29] for the parallelization of the CGMN kernels.
After analyzing the shortcomings of this strategy in view of hardware efficiency, we
developed in collaboration with the EXASTEEL-II project the Recursive Algebraic
Coloring Engine (RACE) [1]. It is an alternative to the well-known MC and
algebraic block multicoloring (ABMC) algorithms [44], which have the problem
that their matrix reordering can adversely affect data access locality. RACE aims
at improving data locality, reducing synchronization, and generating sufficient
parallelism while still retaining simple matrix storage formats such as compressed
row storage (CRS). We further identified distance-2 coloring of the underlying
graph as an opportunity for parallelization of the symmetric spMVM (SymmSpMV)
kernel.

RACE is a sequential, recursive, level-based algorithm that is applicable to
general distance-k dependencies. It is currently limited to matrices with symmetric
structure (undirected graph), but possibly nonsymmetric entries. The algorithm
comprises four steps: level construction, permutation, distance-k coloring, and load
balancing. If these steps do not generate sufficient parallelism, recursion on sub-
graphs can be applied. Using RACE implies a pre-processing and a processing
phase. In pre-processing, the user supplies the matrix, the kernel requirements
(e.g., distance-1 or distance-2) and hardware settings (number of threads, affinity
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strategy). The library generates a permutation and stores the recursive coloring
information in a level tree. It also creates a pool of pinned threads to be used later.
In the processing phase, the user provides a sequential kernel function which the
library executes in parallel as a callback using the thread pool.

Figure 9 shows the performance of SymmSpMV on a 24-core Intel Xeon
Skylake CPU for a range of sparse symmetric matrices. In Fig. 9a we compare
RACE against Intel’s implementation in the MKL library, and with roofline limits
obtained via bandwidth measurements using array copy and read-only kernels,
respectively. RACE outperforms MKL by far. In Fig. 9b we compare against
standard multicoloring (MC) and algebraic block multicoloring (ABMC). The
advantage of RACE is especially pronounced with large matrices, where data traffic
and locality of access is pivotal. One has to be aware that some algorithms may
exhibit a change in convergence behavior due to the reordering. This has to be taken
into account when benchmarking whole program performance instead of kernels.
Details can be found in [1].

In order to show the advantages of RACE in the context of a relevant algorithm,
we chose FEAST [63] for computing inner eigenvalues. The hot spot of the
algorithm (more than 95%) is a solver for shifted linear systems (A−σI = b). These
systems are, however, highly ill-conditioned, posing severe convergence problems
for most linear iterative solvers. We use the FEAST implementation of Intel
MKL, which by default employs the PARDISO direct solver [69], but its Reverse
Communication Interface (RCI) allows us to plug our CGMN implementation
instead. In the following experiment we find ten inner eigenvalues of a simple
discrete Laplacian matrix to an accuracy of 10−8. Figure 10 shows the measured
time and memory footprint of the default MKL version (using PARDISO) and the
CGMN versions parallelized using both RACE and ABMC for different matrix
sizes. ABMC is a factor of 4× slower than RACE. The time required by the default
MKL with PARDISO is smaller than with CGMN using RACE for small sizes;
however, the gap gets smaller as the size grows due to the direct solvers having a
higher time complexity (here≈ O(n2)) compared to iterative methods (≈ O(n1.56)).
Moreover, the direct solver requires more memory, and the memory requirement
grows much faster (see Fig. 10b) than with CGMN. In our experiment the direct
solver ran out of memory at problem sizes beyond 1403, while CGMN using RACE
used less than 10% of space at this point. Thus, CGMN with RACE can solve much
larger problems compared to direct solvers, which is a major advantage in fields like
quantum physics.

4 Hardware Efficiency and Scalability

In this section we showcase performance and parallel efficiency numbers for
library components developed in ESSEX-II that are of paramount importance
for the application work packages: GPGPU-based tall and skinny matrix-matrix
multiplication and the computation of inner eigenvalues using polynomial filter
techniques.
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Fig. 9 SymmSpMV performance of RACE compared to other methods. The roofline model
for SymmSpMV is shown in Fig. 9a for reference. Representative matrices from [17] and
ScaMaC (see Sect. 5.5) were used. Note that the matrices are ordered according to increasing
number of rows. (One Skylake Platinum 8160 CPU [24 threads]). (a) Performance of RACE
compared with MKL. (b) Performance of RACE compared to other coloring approaches
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Fig. 10 Comparison of FEAST with default MKL direct solver and iterative solver CGMN,
parallelized using RACE. (One Skylake Platinum 8160 CPU [24 threads]). (a) Time to solution.
(b) Memory requirement

4.1 Tall and Skinny Matrix-Matrix Multiplication (TSMM) on
GPGPUs

Orthogonalization algorithms frequently require the multiplication of matrices that
are strongly nonsquare. Vendor-supplied optimized BLAS libraries often yield sub-
optimal performance in this case. “Sub-optimal” is a well-defined term here since
the multiplication of anM×K matrixAwith aK×N matrixB withK � M,N and
smallM,N is a memory-bound operation: AtM = N , its computational intensity is
just M/8 flop/byte. In ESSEX-I, efficient implementations of TSMM on multicore
CPUs were developed [51].

The naive roofline model predicts memory-bound execution for M � 64 on
a modern Volta-class GPGPU. See Fig. 11 for a comparison of optimal (roofline)
performance and measured performance for TSMM on an Nvidia Tesla V100
GPGPU using the cuBLAS library.6 We have developed an implementation of
TSMM for GPGPUs [20], investigating various optimization techniques such as
different thread mappings, overlapping long-latency loads with computation via
leapfrogging7 and unrolling, options for global reductions, and register tiling. Due

6https://docs.nvidia.com/cuda/cublas (May 2019).
7Leapfrogging in this context means that memory loads to operands are initiated one loop iteration
before the data is actually needed, allowing for improved overlap between data transfers and
computations.

https://docs.nvidia.com/cuda/cublas
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Fig. 11 Percentage of roofline predicted performance achieved by cuBLAS for the range M =
N ∈ [1, 64] on a Tesla V100 with 16 GB of memory. (From [20])

Fig. 12 Best achieved performance for each matrix size with M = N in comparison with the
roofline limit, cuBLAS and CUTLASS, withK = 223. (From [20])

to the large and multi-dimensional parameter space, the kernel code is generated
using a python script.

Figure 12 shows a comparison between our best implementations obtained
via parameter search (labeled “leap frog” and “no leap frog,” respectively) with
cuBLAS and CUTLASS,8 which is a collection of CUDA C++ template abstrac-
tions for high-performance matrix multiplications. Up to M = N = 36, our
implementation stays within 95% of the bandwidth limit. Although the performance

8https://github.com/NVIDIA/cutlass (May 2019).

https://github.com/NVIDIA/cutlass
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levels off at largerM,N , which is due to insufficient memory parallelism, it is still
significantly better than with cuBLAS or CUTLASS.

4.2 BEAST Performance and Scalability on Modern Hardware

4.2.1 Node-Level Performance

Single-device benchmark tests for BEAST-P were performed on an Intel Knights
Landing (KNL), an Nvidia Tesla P100, and an Nvidia Tesla V100 accelerator, com-
paring implementations based on vendor libraries (MKL and cuBLAS/cuSPARSE,
respectively) with two versions based on GHOST: one with and one without tailored
fused kernels. The GPGPUs showed performance levels expected from a bandwidth-
limited code, while on KNL the bottleneck was located in the core (see Fig. 13a).
Overall, the concept of fused optimized kernels provided speedups of up to 2×
compared to baseline versions. Details can be found in [56].
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Fig. 13 BEAST-P performance for a topological insulator problem of dimensions 128×64×64
with np = 500 using different implementations on KNL, P100, and V100. Performance of a dual
Xeon E5-2697v3 node (Haswell) is shown for reference. Note the different y axis scaling of the
V100 results. (From [56]; for details see therein). (a) KNL. (b) P100. (c) V100
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4.2.2 Massively Parallel Performance

Scaling tests for BEAST-P were performed on the “Oakforest-PACS” (OFP) at the
University of Tokyo, “Piz Daint” at CSCS in Lugano, and on the “SuperMUC-
NG” (SNG) at Leibniz Supercomputing Centre (LRZ) in Garching.9 While the
OFP nodes comprise Intel “Knights Landing” (KNL) many-core CPUs, SNG has
CPU-only dual-socket nodes with Intel Skylake-SP, and Piz Daint is equipped with
single-socket Xeon “Haswell” nodes, each of which has an Nvidia Tesla P100
accelerator attached. Weak and strong scaling tests were done with topological
insulator (TI) matrices generated by the ScaMaC library. Flops were calculated for
the computation of the approximate eigenspace, U , averaged over the four BEAST
iterations it took to find the 148 eigenvalues in each interval to a tolerance of
1 × 10−10. The subspace contained 256 columns, and spMMVs were performed
in blocks of size 32 for best performance. Optimized coefficients [25] were used
for the Chebyshev polynomial approximation, resulting in a lower overall required
polynomial degree. Weak and strong scaling results are shown in Fig. 14a through d.

OFP and SNG show similar weak scaling efficiency due to comparable single-
node performance and network characteristics. Piz Daint, owing to its superior
single-node performance of beyond 400 Gflop/s, achieves only 60% of parallel
efficiency at 2048 nodes. A peculiar observation was made on the CPU-only
SNG system: Although the code runs fastest with pure OpenMP on a single node
(223 Gflop/s), scaled performance was observed to be better with one MPI process
per socket. The ideal scaling and efficiency numbers in Fig. 14a–c use the best value
on the smallest number of nodes in the set as a reference. The largest matrix on SNG
had 6.6× 109 rows.

5 Scalable and Sustainable Software

It was a central goal of the ESSEX-II project to consolidate our software efforts and
provide a library of solvers for sparse eigenvalue problems on extreme-scale HPC
systems. This section gives an overview of the status of our software, most of which
is now publicly available under a three-clause BSD license. Many of the efforts
have been integrated in the PHIST library so that they can easily be used together,
and we made part of the software available in larger contexts like Spack [27] and
the extreme-scale scientific software development kit xSDK [11]. The xSDK is an
effort to define common standards for high-performance, scientific software in terms
of software engineering and interoperability.

9Runs on OFP and SNG were made possible during the “Large-scale HPC Challenge” Project on
OFP and the “Friendly-User Phase” of SNG.
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Fig. 14 Weak scaling of BEAST-P on OFP, Piz Daint, and SNG, and strong scaling on SNG.
Dashed lines denote ideal scaling with respect to the smallest number of nodes in the set. (a) Weak
scaling of BEAST-P on OFP for problems of size 220 (2 nodes) to 230 (2048 nodes, about one
quarter of the full machine). (b) Weak scaling of BEAST-P on Piz Daint for problems of size 221

(1 node) to 232 (2048 nodes). (From [56]). (c) Weak scaling of BEAST-P on SNG for problems of
size 221 (1 node) to 1.53 × 232 (3136 nodes, about half of the full machine). (d) Strong scaling of
BEAST-P on SNG for problems of size 228 (crosses) and 230 (triangles)

The current status of the software developed in the ESSEX-II project is summa-
rized as follows.

• BEAST is available via bitbucket,10 and can be compiled either using the PHIST
kernel interface or the GHOST library directly. The former allows using it with
any backend supported by PHIST.

• CRAFT is available stand-alone11 or (in a fixed version) as part of PHIST.
• ScaMaC is available stand-alone12 or (in a fixed version) as part of PHIST.

10https://bitbucket.org/essex/beast/.
11https://bitbucket.org/essex/craft/.
12https://bitbucket.org/essex/matrixcollection/.

https://bitbucket.org/essex/beast/
https://bitbucket.org/essex/craft/
https://bitbucket.org/essex/matrixcollection/
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• GHOST is available via bitbucket.13 The functionality which is required to
provide the PHIST interface can be tested via PHIST. Achieving full (or even
substantial) test coverage of the GHOST-functionality would require a very large
number of tests (in addition to what the PHIST interface provides, GHOST allows
mixing data types, and it uses automatic code generation, which leads to an
exponentially growing number of possible code paths with every new kernel,
supported processor and data type). It is, however, possible to create a basic
GHOST installation via the Spack package manager (since March 2018, commit
bcde376).

• PHIST is available via bitbucket14 and Spack (since commit 2e4378b).
Furthermore, PHIST 1.7.5 is part of xSDK 0.4.0. The version distributed with
the xSDK is restricted to use the Tpetra kernels to maximize the interoperability
of the package.

5.1 PHIST and the Block-ILU

In ESSEX-I we addressed mostly node-level performance [77] on multi-core CPUs.
The main publication of ESSEX-II concerning the PHIST library [78] presents
performance results for the block Jacobi–Davidson QR (BJDQR) solver on various
platforms, including recent CPUs, many-core processors and GPUs. It was also
shown in this work that the block variant has a clear performance advantage over
the single-vector algorithm in the strong scaling limit. The reason is that, while
the number of matrix-vector multiplications increases with the block size (see
also [64]), the total number of reductions decreases. In order to demonstrate the
performance portability of PHIST, we show in Fig. 15 a weak scaling experiment
on the recent SuperMUC-NG machine.

For the block size 4, we roughly match the performance it achieves in the
memory-bounded HPCCG benchmark (207 TFlop/s),15 but using only half of the
machine. This gives a clear indication that our node-level performance engineering
and multi-node implementation are highly successful: after all, we do not optimize
for the specific operator application (a simple structured grid, 3D Laplace operator),
which the HPCCG code does. On the other hand, we have an increased compu-
tational intensity for some of the operations due to the blocking, which increases
the performance over a single-vector CG solver. The single-vector BJDQR solver
achieves 98 TFlop/s on half of the machine.

13https://bitbucket.org/essex/ghost/.
14https://bitbucket.org/essex/phist.
15See https://www.top500.org/system/179566.

https://bitbucket.org/essex/ghost/
https://bitbucket.org/essex/phist
https://www.top500.org/system/179566
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Fig. 15 Weak scaling behavior of the PHIST BJDQR solver for a symmetric PDE benchmark
problem and different block sizes

5.1.1 Integration of the Block-ILU Preconditioning Technique

Initial steps have been taken to make the Block-ILU preconditioner (cf. Sect. 3.1)
available via the PHIST preconditioning interface. At the time of writing, there is
an experimental implementation of a block CRS sparse matrix format in the PHIST
builtin kernel library, including parallel conversion and matrix-vector product rou-
tines and the possibility to construct and apply the block Cholesky preconditioner.
Furthermore, the interfaces necessary to allow using the preconditioner within
the BJDQR eigensolver have been implemented. These features are available for
experimenting in a branch of the PHIST git repository because they do not yet meet
the high demands on maintainability (especially unit testing) and documentation of
a publicly available library. Integration of the method with the BEAST eigensolver
is not yet possible because the builtin kernel library does not support complex
arithmetic. As mentioned in Sect. 3.2, the complex version will be integrated directly
into the BEAST software, instead.

5.2 BEAST

BEAST combines implementations of spectral filtering methods for Rayleigh–
Ritz type subspace iteration in a generalized framework to provide facilities for
improving performance and robustness. The algorithmic foundation allows for the
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solution of interior Hermitian definite eigenproblems of standard and generalized
form via an iterative eigensolver, unveiling all eigenpairs in one or many specified
intervals. The software is designed as hybrid parallel library, written in C/C++,
and relying on GHOST and PHIST to provide basic operations, parallelism, and
data types. Beyond the excellent scalability of the underlying kernel libraries,
multiple additional levels of parallelism allow for computing larger portions of the
spectrum and/or utilizing a larger number of computing cores. The inherent ability
of the underlying algorithm to compute separate intervals independently offers wide
potential but requires careful handling of cross-interval interactions to ensure the
desired quality of results, which is well supported by BEAST.

The BEAST library interface comes in variations for the common floating point
formats (real and complex, single and double precision) for standard and gener-
alized eigenproblems. Additionally, the software offers the possibility to switch
precisions on-the-fly, from single to double precision, in order to further improve
performance. While BEAST offers an algorithm for standard eigenproblems that
completely bypasses the need for linear system solves, other setups typically require
a suitable linear solver. Besides a builtin parallel sparse direct solver for banded
systems, BEAST includes interfaces to MUMPS and Strumpack, as well as a
flexible callback-driven interface for the inclusion of arbitrary linear solvers. It also
interfaces with CRAFT and ScaMaC, which provide fault tolerance and dynamic
matrix generation, respectively. While working out of the box for many problems,
BEAST offers a vast amount of options to tweak the software for the specific
problem at hand. A builtin command line parser allows for easy modification. The
included application bundles the several capabilities of BEAST in form of a stand-
alone tool that reads or generates matrices and solves the specified eigenproblem.
As such, it acts as comprehensive example for the usage of BEAST.

The library is still in a development state, and interface and option sets may
change. A more comprehensive overview over a selection of features is provided in
Sect. 3.2.

5.3 CRAFT

The CRAFT library [73] covers two essential aspects of fault tolerance namely
communication, and data recovery of an MPI application in case of process-failures.

In the Checkpoint/Restart part of the library, it provides an easier and extensible
interface for making application-level checkpoint/restart. A CRAFT checkpoint
can be defined simply by defining a Checkpoint object and adding the restart-
relevant data in it, as shown in Listing 1. By default, the Checkpoint::add()
function supports the most frequently used data formats, e.g., “plain old data”
(POD), i.e., int, double, float, etc., POD 1D- and 2D-arrays, MPI data-types,
etc.. However, it can be easily extended to support any user defined data-types.
The Checkpoint::read(), write() and update() methods can then be
used to read/write all added checkpoint’s data. The library supports asynchronous-



ESSEX: Equipping Sparse Solvers For Exascale 171

1 # i n c l u d e <mpi . h>
2 # i n c l u d e < c r a f t . h>
3 i n t main ( i n t a rgc , c h a r ∗ a rgv [ ] ) {
4 . . .
5 s i z e _ t n =5 , myrank , i t e r a t i o n =1 , cpFreq =10;
6 doub le d b l = 0 . 0 ;
7 i n t ∗ d a t a A r r = new i n t [ n ] ;
8 MPI_Comm FT_Comm;
9 MPI_Comm_dup (MPI_COMM_WORLD, &FT_Comm) ;

10 AFT_BEGIN (FT_Comm, &myrank , a rgv ) ;
11 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
12 Checkpo in t myCP ( "myCP" , FT_Comm) ; ∗ / / d e f i n e c h e c k p o i n t
13 myCP . add ( " d b l " , &d b l ) ; ∗
14 myCP . add ( " i t e r a t i o n " , &i t e r a t i o n ) ; ∗
15 myCP . add ( " d a t a A r r " , da taArr , &n ) ; AFT Zone
16 myCP . commit ( ) ; ∗
17 myCP . r e s t a r t I f N e e d e d (& i t e r a t i o n ) ; ∗
18 f o r ( ; i t e r a t i o n <= 100 ; i t e r a t i o n ++) { ∗
19 Computa t ion_communica t ion ( ) ; ∗
20 modifyData (& dbl , d a t a A r r ) ; ∗
21 myCP . upda teAndWri t e ( i t e r a t i o n , cpFreq ) ; ∗
22 } ∗
23 . . . ∗
24 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
25 AFT_END ( ) ;
26 }

Listing 1 A toy-code that demonstrates the simplicity of CRAFT’s checkpoint/restart and
automatic fault tolerace features in a typical iterative-style scientific application

checkpointing as well as node-level checkpointing using the SCR library [68].
Moreover it supports multi-staged, nested-, and signal-checkpointing.

The Automatic Fault Tolerance (AFT) part of CRAFT provides an easier
interface for a dynamic process-failure recovery and management. CRAFT uses
the ULFM-MPI implementation for process-failure detection, propagation, and
communication recovery procedures, however it considerably reduces the user’s
effort by hiding these details behind AFT_BEGIN() and AFT_END() functions
as shown in Listing 1. After a process failure, the library recovers the broken
communicator (shrinking or non-shrinking by process-spawning), and returns the
control back to the program at AFT_BEGIN(), where the data can be recovered.
Both of these CRAFT functionalities are designed to complement each other,
however they can be used independently as well. For detailed explanation of the
features included in CRAFT, check [73]. Moreover, the library is available at [72].

5.4 CRAFT Benchmark Application

Within the scope of ESSEX, we have integrated CRAFT in the GHOST and PHIST
libraries, and the BEAST algorithm.

Figure 16 shows a benchmark comparing the overhead of three different check-
pointing strategies for the Lanczos algorithm (GHOST-based eigensolver), Jacobi–
Davidson (PHIST-based eigensolver), and the BEAST algorithm. The important
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Fig. 16 CRAFT checkpointing overhead comparison for the Lanczos, Jacobi–Davidson, and
BEAST eigenvalue solvers using three checkpointing methods of CRAFT, namely, node-level
checkpointing with SCR, asynchronous PFS, and synchronous PFS checkpoints. The overhead for
each checkpoint case is shown as a percentage. (Number of nodes=128, number of processes=256,
Intel MPI)

parameters for these benchmarks are listed in Table 1. The benchmark shows that
the node-level and asynchronous checkpointing significantly reduces the checkpoint
overhead despite a very high checkpoint frequency.

The benchmark presented in Fig. 17 demonstrates the overhead caused by
checkpoint/restart as well as by the communication recovery after process failures
for the Lanczos application. The first two bars, namely ‘No CP Intel MPI’ and
‘No CP ULFM-MPI’ show the runtime between non-fault-tolerant (Intel-MPI) vs. a
fault-tolerant MPI implementation (ULFM-MPI), and creates a baseline for ULFM-
MPI implementation without any failures. The next two groups of bars show the
application runtime with 0-,1-, and 2-failures with checkpoints taken on PFS- and
node-level. The failures are triggered at the mid-point of two successive checkpoints
from within the application to have a deterministic re-computation time, where
each failure simulates a complete node-crash (2 simultaneous process failures)
and recovery is performed in a non-shrinking fashion on spare nodes. The largest
contribution to the overhead is caused by the re-computation part, whereas the
communication repair overhead takes an average of ≈ 2.6 s only.

Besides ESSEX, CRAFT has been utilized in [22] to create a process-level fault
tolerant FEM code based on the shrinking recovery style. Moreover, CRAFT has
been recently integrated in the EXASTEEL [21] project.



ESSEX: Equipping Sparse Solvers For Exascale 173

Table 1 The parameter values for Lanczos, JD, and Beast benchmarks

Lanczos parameters

Matrix Graphene-3000-
3000

Number of rows and
columns

9.0 · 108

Number of non-zeros 11.7 · 109 Global checkpoint size ≈14.4 GB

Number of iterations 3000 Checkpoint frequency 500

Jacobi–Davidson parameters (using Phist)

Matrix spinSZ30 Number of rows and
columns

1.6 · 108

Number of non-zeros 2.6 · 109 Number of sought
eigenvalues

20

Number of checkpoints 10

Global checkpoint size ≈32 GB Backend support library GHOST

Beast parameters

Matrix tgraphene: 12000,
12000, 0

Number rows and
columns

1.44 · 108

Beast iterations 9 Checkpoint frequency 2

Global checkpoint size ≈65 GB Backend support library GHOST

Fig. 17 Lanczos application with various checkpoint/restart and process failure recovery scenarios
using 128 nodes (256 processes) on the RRZE Emmy cluster. On average the communication
recovery time is 2.6 s (ULFM-MPI v1.1)
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5.5 ScaMaC

Sparse matrices are central objects in the ESSEX project because of its focus on
large-scale numerical linear algebra problems. A sparse matrix, whether derived
from the Hamiltonian of a quantum mechanical system, from the Laplacian in a
partial differential equation, or simply given as an abstract entity with unknown
properties, defines a problem to be solved. The solution may then consist of a set
of eigenvalues and eigenvectors computed with the BEAST or Jacobi–Davidson
algorithms or, more moderately, of an estimate of some matrix norm or the spectral
radius.

Testing and benchmarking of linear algebra algorithms, but also of computational
kernels such as spMVM, requires matrices of different type and different size.
Standard collections such as the Matrix Market [58] or Florida Sparse Matrix
Collection [17] cover a wide range of examples, but mainly provide matrices of
fixed moderate size. As algorithms and implementations improve, such matrices
become readily too small and limited to serve as realistic test and benchmark cases.

We therefore decided in the ESSEX project to establish a collection of scalable
matrices—the ScaMaC. Every matrix in ScaMaC is parameterized by individual
parameters that allow the user to scale up the matrix dimension and to modify
other, for example spectral, properties of the matrix. ScaMaC includes simple
test and benchmark matrices but also ‘real-world’ matrices from research studies
and applications. A major goal of ScaMaC is to provide a flexible yet generic
interface for matrix generation, together with the necessary infrastructure to allow
for immediate access to the collection irrespective of the concrete usage case.

The ScaMaC approach to matrix generation is straightforward and simple:
Matrices are generated row-by-row (or column-by-column). The entire complexity
of the actual generation technique, which depends on the specific matrix example,
is encapsulated in a ScamacGenerator type and hidden from the user. ScaMaC
provides routines to create and destroy such a matrix generator, to query matrix
parameters prior to the actual matrix generation, and to obtain each row of the
matrix. The ScaMaC interface is entirely generic and identical for all matrices in
the collection.

A minimal code example is given in Fig. 18. In this example, the matrix and
its parameters are set by parsing an argument string of the form "MatrixName,
parameter=...,..." in line 3, before all rows are generated in the loop in
lines 12–17. As this examples shows, parallelization of matrix generation is not
part of the ScaMaC, but lies within the responsibility of the calling program. All
ScaMaC routines are thread-safe and can be embedded directly into MPI processes
and OpenMP threads. This approach guarantees full flexibility for the user and is
easily integrated into existing parallel matrix frameworks such as PETSc or Trilinos.
Both BEAST and PHIST provide direct access to the ScaMaC, therefore freeing the
user from any additional considerations when using ESSEX software.
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1 // step 1: obtain a generator - per process
2 ScamacGenerator * my_gen;
3 err = scamac_parse_argstr("Hubbard,n_sites=20", &my_gen, &errstr);
4 err = scamac_generator_finalize(my_gen);
5 ................
6 // step 2: allocate workspace - per thread
7 ScamacWorkspace * my_ws;
8 err = scamac_workspace_alloc(my_gen, &my_ws);
9 ................

10 // step 3: generate the matrix row by row
11 ScamacIdx nrow = scamac_generator_query_nrow(my_gen);
12 for (idx=0; idx<nrow; idx++) { // parallelize loop with OpenMP, MPI, ...
13 // obtain the column indices and values of one row
14 err = scamac_generate_row(my_gen, my_ws, idx, SCAMAC_DEFAULT, &nz, cind, val);
15 // store or process the row
16 ................
17 }
18 // step 4: clean up
19 err = scamac_workspace_free(my_ws); // in each thread
20 err = scamac_generator_destroy(my_gen); // in each process
21 // step 5: use matrix
22 ................

Fig. 18 Code example for row-by-row matrix generation with the generic ScaMaC generators

ScaMaC is written in plain C. Auto-generated code is included already in the
release, such that requirements at compile time are minimal. Interoperability with
other programming languages is straightforward, e.g., by using the ISO C bindings
of the FORTRAN 2003 standard. Runtime requirements are equally minimal.
Matrix generation has negligible memory overhead, requiring only a few KiB
workspace to store lookup tables and similar information.

The key feature of ScaMaC is scalability, since the matrix rows (or columns) can
be generated independently and in arbitrary order. For example at Oakforest-PACS
(see Sect. 4.2.2), a Hubbard matrix (see below) with dimension ≥9 × 109 and
≥1.5× 1011 non-zeros is generated in less than a minute, using 210 MPI processes
each of which generates an average of 1.5× 105 rows per second. As explained, the
task of efficiently storing or using the matrix is left to the calling program.

ScaMaC is accompanied by a small toolkit for exploration of the collection. The
toolkit addresses some basic tasks such as querying matrix information or plotting
the sparsity pattern, but is not intended to compete with production-level code
or full-fledged solver libraries, which the ESSEX project provides with BEAST,
GHOST, and PHIST.

At the moment,16 the matrix generators included in ScaMaC strongly reflect
our personal research interests in quantum physics, but the ScaMaC framework is
entirely flexible and allows for easy inclusion of new types of matrices, provided
that they can be generated in a scalable way. The next update (scheduled for 2020)
will extend ScaMaC primarily with matrix generators for standard partial differ-

16In version 0.8.2, ScaMaC contains 15 different matrix generators with a total of 95 parameters.
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ential equations, including stencil matrices and finite element discretizations for
advection-diffusion and elasticity problems, wave propagation, and the Schrödinger
equation. Additional examples that are well suited for scalable generation are
regular and irregular graph Laplacians, which have gained renewed interest in the
context of machine learning [14, 59].

To obtain an idea of the ‘real-world’ application matrices already contained in
ScaMaC, consider two examples: The celebrated Hubbard model of condensed
matter physics (Hubbard) [34] and a theoretical model for excitons in the cuprous
oxide from our own research in this field (Exciton) [2]. These matrices appear
as Hamiltonians in the Schrödinger equation, and thus are either symmetric real
(Hubbard) or Hermitian complex (Exciton). The respective application requires
a moderate number (typically, 10–1000) of extremal or interior eigenpairs, which
is less than 0.1% of the spectrum. Other ScaMaC generators provide general
(non-symmetric or non-Hermitian) matrices, with a variety of sparsity patterns,
spectral properties, etc. All generators depend on a number of application-specific
parameters,17 which are partly listed in Table 2 for the Hubbard and Exciton
generator.

For the Hubbard example, two parameters determine the matrix dimension and
sparsity pattern: n_fermions gives the number electrons per spin orientation (up or
down), n_sites the number of orbitals occupied by the electrons. In terms of these

parameters, the matrix dimension is D = ( n_sites
n_fermions

)2
. This dependency results in

the rapid growth of D shown in Table 3. In the physically very interesting case of
half-filling (n_fermions = n_sites/2 = n) we have asymptoticallyD � 2n/

√
(π/2)n,

that is, exponential growth of D.
The Exciton example has the more moderate dependence D = 3(2L + 1)3

(see Table 3). Here, the parameter L is a geometric cutoff that limits the maximal
distance between the electron and hole that constitute the exciton. This example has
a number of other parameters that are adapted literally from [2]. These parameters
enter into the matrix entries, and thus affect the matrix spectrum and, finally, the
algorithmic hardness of computing the eigenvalues of interest that determine the
physical properties of the exciton.

Both Hubbard and Exciton are examples of difficult matrices, albeit for
different reasons. For Hubbard, one unresolved challenge is to compute multiple
interior eigenvalues for large n_fermions, n_sites, which becomes extremely diffi-
cult because of the rapid growth of the matrix dimension (specialized techniques for
the Hubbard model such as the density-matrix renormalization group [70] cannot
compute interior eigenvalues). Due to the irregular sparsity pattern of the Hubbard
matrices (see Fig. 19 below), already the communication overhead of spMVM
poses a serious obstacle to scalability and parallel efficiency. For Exciton, which
are essentially stencil-like matrices of moderate size, the challenge is to compute
some hundred eigenvalues out of a strongly clustered spectrum. Here, it is the

17For a full list of generators and parameters, consult the ScaMaC documentation included with
the code, or at https://alvbit.bitbucket.io/scamac_docs/_matrices_page.html.

https://alvbit.bitbucket.io/scamac_docs/_matrices_page.html
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Table 2 Parameters of the Hubbard and Exciton matrix generator in the ScaMaC

Table 3 Matrix dimension D for the Hubbard and Exciton exam-
ple, as a function of the respective parameter n_sites (and default value
n_fermions = 5) or L

Fig. 19 Sparsity pattern of the Hubbard (Hubbard,n_sites=40,n_fermions=20) and
spin chain (SpinChainXXZ,n_sites=32,n_up=8) example

poor convergence of iterative eigenvalue solvers for nearly degenerate eigenvalues
that renders this problem hard. Thanks to the algorithmic advances in the ESSEX
project, we now have reached a position that allows for future progress on these
problems.

ScaMaC comes with several convenient features. For example, the Hubbard
matrix includes the parameter ranpot to switch on a random potential. Random
numbers in ScaMaC are entirely reproducible, and independent of the number of
threads or processes that call the ScaMaC routines, or of the order in which the
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matrix rows are generated. An identical random seed gives the same matrix under
all circumstances. In particular, individual matrix rows can be reconstructed at
any time, which simplifies a fault-tolerant program design (see Sect. 5.3). Another
feature is the possibility to effortlessly generate the (conjugate) transpose of non-
symmetric (non-Hermitian) matrices, which is considerably easier than constructing
the transpose of a (distributed) sparse matrix after generation.

6 Application Results

6.1 Eigensolvers in Quantum Physics: Graphene, Topological
Insulators, and Beyond

Because of the linearity of the Schrödinger equation, quantum physics is a paradigm
for numerical linear algebra applications. Historically, some application cases, such
as the computation of the ground state (i.e. of the eigenvector to the minimal
eigenvalue), have received so much attention that only gradual progress remains
possible nowadays. In the ESSEX project we instead address two major cases
where novel algorithmic improvements and systematic utilization of large-scale
computing resources through state-of-the-art implementations still result in sub-
stantial qualitative progress. These two cases are the computation of (i) extreme
eigenvalues with high degeneracy, which is addressed with a block Jacobi–Davidson
algorithm, (ii) multiple interior eigenvalues, which is addressed by various filter
diagonalization techniques. Application case (i) has been documented in [64],
including the example of spin chain matrices (SpinChainXXZ in the ScaMaC).
For application case (ii) the primary quantum physics example are graphene [13]
and topological insulators [31] (Graphene and TopIns in the ScaMaC). For these
examples, eigenvalues towards the center of the spectrum, near the Fermi energy of
the material, are those of interest. This situation is similar to applications in quantum
chemistry and density functional theory, but in our case the matrices represent a full
(disordered or structured) two or three-dimensional domain, and are usually larger
than those considered elsewhere [57].

Starting with the paper [62] on Chebyshev filter diagonalization (ChebFD) and
culminating in the BEAST software package (see Sect. 3.2), the computation of
interior eigenvalues of large-to-huge graphene and topological insulator matrices
has been successfully demonstrated with ESSEX algorithms, using polynomial
filters derived from Chebyshev polynomials. Already with the simple ChebFD
algorithm we could compute NT � 100 eigenvectors from the center of the
spectrum of a matrix with dimension D � 109 (i.e. an effective problem size
NT × D � 1011), in order to understand the electronic properties of a structured
topological insulator (see Figure 13 in [62]). With improved filter coefficients and
a more sophisticated implementation, the polynomial filters in the (P-) BEAST
package deal with such problems at reduced computational cost (see Sect. 3.2).
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Such large-scale computations heavily rely on the optimized spMMVM and TSMM
kernels of the GHOST library (see Sect. 5).

To appreciate the numerical progress reflected in these numbers one should
note the different scaling of the numerical effort NMVM (measured in terms of
the dominant operation of spMVM) for the computation of extreme and interior
eigenvalues (cf. the discussion in [62]). In an idealized situation with equidistant
eigenvalues, we have roughly NMVM ∼ D1/2 for extreme but NMVM ∼ D for
interior eigenvalues. For the D � 109 example, we have to compensate for a factor
104–105 to enable computation of interior instead of extreme eigenvalues.

Algorithm and software development in ESSEX has been to a large degree
application-driven. Now, at the end of the ESSEX project, where the algorithms
for our main application cases have become available, we follow two ways to go
beyond the initial quantum physics applications. First, entirely new applications
can now be addressed with ESSEX software, extending our efforts to non-linear
and non-Hermitian problems (see Sect. 6.2). Second, relevant applications such
as the Hubbard and Exciton examples (see Sect. 5.5) still fit into the two
major application areas already addressed in ESSEX, but further increase the
computational complexity. For Exciton, the strongly clustered spectrum with
many nearly-degenerate eigenvalues leads to a numerical effort NMVM � D1/2

already for extreme eigenvalues. For Hubbard, the huge matrix dimension D is a
serious obstacle for the computation of interior eigenvalues.

The Hubbard matrices also hint at an application-specific issue of general
interest that we encountered but could not solve within ESSEX. Specifically, it is
the complicated sparsity pattern of many of our quantum physics matrices (see
Fig. 19) that adversely affects the parallel efficiency of distributed spMVM, and thus
of our entire software solutions. Node-level performance engineering is here easily
overcompensated by communication overhead. Unfortunately, the communication
overhead is not reduced by standard matrix reordering strategies [61, 71, 84].
This problem can be partially alleviated by overlapping communication with
computation, as in the spMMVM (see Sect. 2), but a full solution to restore
parallel efficiency is not yet available. Clearly, our different application scenarios
still provide enough incentive to think about future numerical, algorithmic, and
computational developments beyond the ESSEX project.

6.2 New Applications in Nonlinear Dynamical Systems

The block Jacobi–Davidson QR eigensolver in PHIST is capable of solving non-
symmetric and generalized eigenvalue problems of the form

Ax = λBx, (1)

where B should be symmetric and positive definite. In [75], we exploited sev-
eral unique features of this implementation to study the linear stability of a
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three-dimensional reaction-diffusion equation: the Jacobian is non-symmetric, the
preconditioner was implemented in Epetra (which can be used directly as a backend
for PHIST), and the high degree of symmetry in the model yields eigenvalues with
high geometric multiplicity (up to 24). We therefore use a relatively large block size
of 8 for these computations to achieve convergence to the desired 20–50 eigenpairs
(λi , xi ), with the real part of λi near 0. In a recent Ph.D. thesis [74], the solver was
also used for studying the linear stability of incompressible flow problems. Here B is
in fact only semi-definite, and the preconditioner has to make sure that the solution
stays in the ‘divergence-free space’, in which the velocity field satisfies ∇ · u = 0
and B induces a norm.

Another ongoing effort concerning dynamical systems is the use of PHIST to
parallelize the dynamical systems analysis tool PyNCT, which has as its main
application the study of superconductors [82]. We have taken first steps to use
PHIST as backend for the Python-based algorithms in PyNCT. Furthermore, it
is possible to solve the eigenvalue problems arising in PyNCT directly by the
BJDQR method in PHIST. Our goal here is the scalable parallel and fully automatic
computation of bifurcation diagrams using PyNCT and any backend supported by
PHIST.

The Statistical Learning Lab led by Dr. Marina Meila at the University of
Washington started to use the PHIST eigensolver to compute spectral gaps for
Laplacian matrices obtained from conformation trajectories in molecular dynamics
simulations, and other scientific data [14, 59]. These are symmetric positive definite
matrices whose dimensions equal the number of simulation steps, typically of the
order of n = 106. When the data intrinsic dimension d is fixed, and much smaller
than n (in our examples d < 10 ), the Laplacian is a sparse matrix. The sparsity
pattern is not regular, and it is data dependent, as it reflects the neighborhood
relationships in the data. Hence, in densely sampled regions rows will have many
more non-zeros than in the sparsely populated regions of the data. In a manifold
embedding algorithm, the eigengaps identify the optimal number of coordinates in
which to embed the data. Furthermore, for data sizes n � 106, PHIST is used to
compute the diffusion map embedding itself for the higher frequency coordinates
for which existing methods are prohibitively slow.

7 International Collaborations

The internationalisation effort in the second phase of SPPEXA has fostered the
ESSEX-II activities in several directions. First and foremost it amplified the sci-
entific expertise in the project. Soon it became clear that complementing knowledge
and developments could be leveraged across the partners. A specific benefit of
the collaboration between German and Japanese partners is their very different
background in terms of HPC infrastructures.Through close personal collaboration
within the project all partners could easily access and use latest supercomputers on
either side (see Sect. 4.2 and note that the BEAST framework has also been ported
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to the K-computer). Together with the joint collaboration on scientific problems and
software development a steady exchange evolved with many personal research visits
which also opened up collaboration with partners not involved directly in ESSEX-II.

The results described in Sect. 3.1 on preconditioners are a direct result of the
collaboration of ESSEX-II with the ppOpen-HPC18 project led by Univ. of Tokyo.
On the other hand, the CRAFT library developed at Univ. of Erlangen is utilized in
an FEM code of Univ. of Tokyo and is part of a follow on JHPCN project with the
German partner involved as associated partner.

Collaboration between Japanese and German working groups made possible the
expansion of the BEAST framework for projection based eigensolvers to include
Sakurai–Sugiura methods. Various numerical and theoretical issues associated with
the implementation of the solver within an iterative framework were resolved, and
new ideas explored during research visits. Results based on this collaboration have
so far been presented in multiple conferences and a paper in preparation [35].

The linear systems arising from numerical quadrature in the BEAST-C and
BEAST-M framework were used in the testing and development of a Block
Cholesky-based ILU preconditioner. The integration of an interface to this solver
into BEAST has begun. Examining strategies and expectations for solving these
extreme ill-conditioned problems was a point of intense discussion and collab-
oration between working groups. One results was the development of RACE
(see Sect. 3.4). Beyond the discussion between several Japanese and German
ESSEX-II partners also a strong collaboration with the Swiss partner (O. Schenk) of
EXASTEEL-II evolved, who is an expert on direct solvers and graph partitioning.
In this context also a collaboration with T. Iwashita (Hokkaido Univ., Japan) started
in terms of hardware efficient coloring.

Throughout the project, the variety of large matrices continuously added to
the ScaMaC library allowed for testing with a variety of realistically challenging
problems of both real and complex types in all ESSEX-II working groups.
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Abstract This text presents contributions to efficient high-order finite element
solvers in the context of the project ExaDG, part of the DFG priority program 1648
Software for Exascale Computing (SPPEXA). The main algorithmic components
are the matrix-free evaluation of finite element and discontinuous Galerkin operators
with sum factorization to reach a high node-level performance and parallel scalabil-
ity, a massively parallel multigrid framework, and efficient multigrid smoothers.
The algorithms have been applied in a computational fluid dynamics context. The
software contributions of the project have led to a speedup by a factor 3 − 4
depending on the hardware. Our implementations are available via the deal.II finite
element library.
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1 Introduction

Exa-scale performance of numerical algorithms is determined by two factors, node-
level performance and distributed-memory scalability to thousands of nodes over an
Infiniband-type fabric. Additionally, the final application efficiency in terms of time-
to-solution is strongly influenced by the choice of numerical methods, where a high
sequential efficiency is essential. The project ExaDG aims to bring together these
three pillars to create an algorithmic framework for the next generation of solvers
for partial differential equations (PDEs). The guiding principles of the project are as
follows:

ExaDG – PDE Solvers at Exascale

:Efficient discretization
few spatial unknowns,

few time steps

:Efficient solvers
few iterations, i.e., few

operator evaluations

Efficient implementation:
fast operator evaluation

If we define the overall goal to be a minimum of computational cost to reach
a predefined accuracy, this aim can be split into three components, namely the
efficiency of the discretization in terms of the number of degrees of freedom (DoFs)
and time steps, the efficiency of the solvers in terms of iteration counts, and the
efficiency of the implementation [22]:

E = accuracy

computational cost

= accuracy

DoFs · timesteps
︸ ︷︷ ︸

discretization

· 1

iterations︸ ︷︷ ︸
solvers/preconditioners

· DoFs · timesteps · iterations

computational cost
︸ ︷︷ ︸

implementation

.

(1)

We define computational cost as the product of compute resources (cores, nodes)
times the wall time resulting in the metric of CPUh, the typical currency of
supercomputing facilities.

Regarding the first metric, the type of discretizations in space and time are often
the first decision to be made. Numerical schemes that involve as few unknowns
and as few time steps as possible to reach the desired accuracy will be more
efficient. This goal can be reached by using higher order methods which have a
higher resolution capability, especially for problems with a large range of scales
and some regularity in the solution [19]. However several possibilities and profound
knowledge regarding the performance capability of potential algorithms on modern
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hardware are still required to select those algorithms and implementations that are
optimal with respect to the guiding metric of accuracy versus time-to-solution.
High-order (dis-)continuous finite element methods are the basic building block of
the ExaDG project due to their generality and geometric flexibility.

Regarding the second metric, solvers are deemed efficient if they keep the
number of iterations minimal. We emphasize that “iterations” are defined in a
low-level way as the number of operator evaluations, which is also accurate when
nesting several iterative schemes within each other. Note that we assume that large-
scale systems must be addressed by iterative solvers; in a finite element context
sparse direct solvers are not scalable due to fill-in and complex dependencies
during factorizations. One class of efficient solvers of particular interest to ExaDG
are multigrid methods with suitable smoothers, which have developed to be the
gold standard of solvers for elliptic and parabolic differential equations over the
last decades. Here, the concept of iterations would accumulate several matrix-
vector products within a multigrid cycle that in turn is applied in an outer Krylov
subspace solver. Due to the grid transfer and the coarse grid solver, such methods
are inherently challenging for highly parallel environments. As part of our efforts
in ExaDG, we have developed an efficient yet flexible implementation in the deal.II
finite element library [1, 15].

Third, the evaluation of discretized operators and smoothers remains the key
component determining computational efficiency of a PDE solver. The relevant
metric in this context is the throughput measured as the number of degrees of
freedom (unknowns) processed per second (DoFs/s). An important contribution of
our efforts is to both tune the implementation of a specific algorithm, but more
importantly to also adapt algorithms towards a higher throughput. This means that
an algorithm is preferred if it increases the DoFs/s metric, even if it leads to lower
arithmetic performance in GFlop/s or lower memory throughput in GB/s. Operator
evaluation in PDE solvers only involves communication with the nearest neighbors
in terms of a domain decomposition of the mesh, which makes the node-level
performance the primary concern in this regard. Since iterative solvers only require
the action of the matrix on a vector (and a preconditioner), they are amenable to
matrix-free evaluation where the final matrix entries are neither computed nor stored
globally in memory in some generic sparse matrix format (e.g., compressed row
storage). While matrix-free methods were historically often considered because they
lower main memory requirements and allow to fit larger problems in memory [8],
their popularity is currently increasing because they need to move less memory:
Sparse matrix-vector products are limited by the memory bandwidth on all major
computing platforms, so a matrix-free alternative promises to deliver a (much)
higher performance.

The outline of this article is as follows. We begin with an introduction of matrix-
free algorithms and a presentation of node-level performance results in Sect. 2. In
Sect. 3, we describe optimizations of the conjugate gradient method for efficient
memory access and communication. Next, we detail our multigrid developments,
focusing on performance numbers and the massively parallel setup in Sect. 4 and
on the development of better smoothers in Sect. 5. Application results in the field



192 D. Arndt et al.

of computational fluid dynamics are presented in Sect. 6, where the efficiency and
parallel scalability of our discontinuous Galerkin incompressbile turbulent flow
solver are shown. An extension of the kernels to up to 6D PDEs is briefly presented
in Sect. 7. We conclude with an outlook in Sect. 8.

2 Node-Level Performance Through Matrix-Free
Implementation

An intuitive example of a matrix-free implementation is a finite difference method
implemented by its stencil rather than an assembled sparse matrix [33]. For finite
element discretizations with sufficient structure of the underlying mesh and low-
order shape functions, a small number of stencils allows to represent the operator of
a large-scale problem [8]. Such methods are used in the German exascale project
TerraNeo, utilizing the regular data structures in hierarchical hybrid grids and
embedded into a highly scalable multigrid solver for Stokes systems [31, 32]. By
suitable interpolations, the stencils can be extended from the affine coarse grid
assumption to also treat smoothly deformed geometries and variable coefficients [7].

For higher-order methods, finite element discretizations lead to fat stencils,
making the direct evaluation inefficient even when done through stencils. An
alternative matrix-free scheme used in ExaDG is to not compute the explicit DoF
coupling and instead turn to integrals underlying the finite element scheme. As an
example, we consider the constant-coefficient Laplacian

−∇2u = f in �, u = g on ∂�, (2)

whose weak form in a finite-dimensional setting is

(∇ϕi,∇uh)�h = (ϕi, f )�h, (3)

where uh(x) = ∑
j=1:n ϕj (x)uj is the finite element interpolant of the solution

with n degrees of freedom, ϕi denotes the test functions with i = 1, . . . , n,
f is some right hand side, and �h is the finite element representation of the
computational domain �. The left-hand side of this equation represents a finite
element operator, mapping a vector of coefficients u = [ui]i to an output vector
v = [vi ]i by evaluating the weak form for all test functions ϕi separately. A matrix-
free implementation is obtained by evaluating the element-wise integrals

[
(∇ϕi,∇uh)�h

]
i=1:n =

∑

K

∫

K̂

(
J−TK ∇̂ϕi

)T
⎛

⎝J−TK
ndof,ele∑

j=1

∇̂ϕju(K)j

⎞

⎠ det(JK) dx̂

≈
∑

K

ITK

[ nq∑

q=1

(∇̂ϕiK (x̂q))T J−1
K J−TK det(JK)wq

︸ ︷︷ ︸
physics at quadrature point

ndof,ele∑

j=1

∇̂ϕj (x̂q)u(K)j
]

iK=1:ndof,ele

(4)
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by quadrature on nq points per cell K . Here, K denotes the elements in the mesh,
x̂ the coordinates of the reference element K̂ = (0, 1)d , JK denotes the Jacobian
of the mapping from the reference to the real cell, and wq the quadrature weight.
The operator IK denotes the index mapping from ndof,ele element-local to global
unknowns and defines the element-related unknowns u(K) = IKu.

On element K , the formulation of Eq. (4) consists of two nested sums over the
elemental unknowns u(K)j , j ∈ ndof,ele, and the quadrature points q . The result is
tested against all test functions ϕiK on the reference element, which are related to
the global test functions ϕi through IK . Since the metric terms do not depend on
the shape function indices iK and j , and the sum over j does not depend on iK ,
the summations in the equation can be broken up into (1) an dnq × ndof,ele matrix
operation to evaluate the reference element derivative of u(K) at the quadrature
points, (2) the application of metric terms as well as other physics terms at nq
quadrature points, and (3) an ndof,ele × dnq matrix operation to test by all ndof,ele
test functions and perform the summation over the quadrature points. The separation
of point-wise physics evaluation at quadrature points is a common abstraction in
integration-based matrix-free methods [29, 41, 49, 50].

For high-order finite element methods, the naive evaluation would involve
all shape functions at all quadrature points, which is of complexity O(k2d) for
polynomials of degree k in d dimensions per element, or O(kd) per unknown,
similarly to the fat stencil of the final matrix.

At this point, the structure in the reference-cell shape function and quadra-
ture points can be utilized to lower the computational complexity. If the multi-
dimensional shape functions are the tensor product of 1D shape functions, and
if the quadrature formula is a tensor product of 1D formulas, the so-called sum-
factorization algorithm can be used to group common factors along the various
dimensions and break down the work into one-dimensional interpolations. Figure 1
visualizes the process of computing the interpolation of nodal values, visualized
by black disks, to the values at the quadrature points. Rather than using a naive
interpolation of cost 2(k+1)2d operations, it can be done in 2d(k+1)d+1 operations
instead. In matrix-vector notation, the interpolation of the gradient with respect to

Vector values on nodes at quadrature points
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•
•

•
•
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• •
• •

Fig. 1 Illustration of sum factorization for interpolation from node values on the left to the values
in quadrature points (right)
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x̂, evaluated at quadrature points, can be written as

⎡

⎢
⎢
⎢
⎣

∂uh/∂x̂1

∂uh/∂x̂2

...

∂uh/∂x̂d

⎤

⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎣

I ⊗ . . .⊗ I ⊗D1

I ⊗ . . .⊗D2 ⊗ I
...

Dd ⊗ I ⊗ . . .⊗ I

⎤

⎥
⎥
⎥
⎦

[
Sd ⊗ . . .⊗ S2 ⊗ S1

]
u(K). (5)

Here, S1, . . . , Sd denote the n1D
q × (k + 1) interpolation matrices from the nodal

values to the quadrature points, obtained by evaluating the 1D basis at all 1D
quadrature points, and D1, . . . ,Dd the n1D

q × n1D
q matrices of the derivatives of the

Lagrangian basis in quadrature points. In this form, the multiplication by Kronecker
matrices is implemented by small matrix-matrix multiplications.

Sum factorization was initially developed in the context of spectral element
methods by Orszag [61], see [19] for an overview of the developments. In [12],
sum factorization was compared against assembled matrices with the goal to find
the best evaluation strategy among assembled matrices and matrix-free schemes.
For hexahedral elements considered in this work, the memory consumption and
arithmetic complexity indicate that this is the case already for quadratic basis
functions [11, 49], with a growing gap for higher polynomial degrees.

2.1 Implementation of Sum Factorization in the deal.II Library

As part of the ExaDG project, we have developed efficient implementations in the
deal.II finite element library [1, 4] with the following main features, see [50] for a
detailed performance analysis:

• support for both continuous [49] and discontinuous finite elements on uniform
and adaptively refined meshes with hanging nodes and deformed elements,

• support for arbitrary polynomial expansions on quadrilateral and hexahedral
element shapes as well as tensor product quadrature rules,

• minimization of arithmetic operations by using available symmetries, such as the
even-odd decomposition [69] and a switch between the collocation derivative (5)
for n1D

q ≈ k + 1 quadrature points or an alternative variant based on derivatives
of the original polynomials as used in [49] and discussed in [29],

• flexible implementation of operations at quadrature points,
• vectorization across several elements to optimally use SIMD units (AVX, AVX-

512, AltiVec) of modern processors,
• applicability to modern multi-core CPUs as well as GPUs [51, 57],
• data access optimizations such as element-based loops for DG elements [50, 56],
• and MPI implementation with tight data exchange as well as MPI-only and

shared-memory models [43, 48, 54].
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The concept of matrix-free evaluation with sum factorization has been widely
adopted by now, like in the deal.II [1], DUNE [5, 40, 60], Firedrake [63], mfem [2],
Nek5000 [28] or Nektar++ [13] projects. These fast evaluation techniques are
directly applicable to explicit time stepping schemes, as we have demonstrated
for wave propagation in [42, 53, 65–68] and the compressible Navier–Stokes
equations [24]. The proposed developments make matrix-free evaluation of high-
order DG operators reach a throughput in unknowns per second almost as high as for
optimized 5-wide finite difference stencils in a CFD context [75], despite delivering
much higher accuracy.

2.2 Efficiency of Matrix-Free Implementation

In Fig. 2, we give an overview of the achieved performance with our framework
applied to the discontinuous Galerkin interior penalty (IPDG) discretization of the
3D Laplacian on an affine geometry. The most advanced implementation presented
in [50] is used, namely a cell-based loop with a Hermite-like basis for minimal
data access [56]. The figure lists the throughput, which is measured by recording
the run time of the matrix-vector product in an experiment with around 50 million
DoFs (too large to fit into caches), and reporting the normalized quantity DoFs/s
obtained by dividing the number of DoFs by the measured run time. The code is
run on a single node of six dual-socket HPC systems from the last decade with a
shared-memory parallelization with OpenMP, threads pinned to logical cores with
the close affinity rule, and using streaming stores to avoid the read-for-ownership
data transfer [33] on the result vector. As systems, we consider a 2 × 8 core AMD
Opteron 6128 system from 2010, a 2 × 8 core Intel Xeon 2680 Sandy Bridge from
2012 (as used in the SuperMUC phase 1 installation in Garching, Germany), a 2×8
core Intel Xeon 2630 v3 (Haswell) representing a medium-core count chip from
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Fig. 2 Throughput of matrix-free evaluation of the IPDG discretization of the 3D Laplacian on an
affine grid
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2014, a 2 × 14 core Intel Xeon 2697 v3 (Haswell) representing a high-core count
chip of the same generation (as used in the SuperMUC phase 2 installation), a 2 ×
20 core Intel Xeon 2698 v4 (Broadwell) system from 2016, and a 2 × 24 core
Intel Xeon Platinum 8174 from 2017, labeled ‘Skylake’ in the remainder of this
work, and installed in the SuperMUC-NG supercomputer. The chips are operated
at 2.0 GHz, 2.7 GHz, 2.4 GHz, 2.6 GHz, 2.2 GHz, and 2.3 GHz, respectively, and all
run with fully populated memory interfaces. The Intel machines are run with 2-way
hyperthreading, e.g. with 96 threads for the Xeon Platinum Skylake.

The throughput results in Fig. 2 demonstrate the advancements of hardware
during the last decade. In particular the increased width of vectorization, from 2 to 4
doubles with Sandy Bridge and from 4 to 8 doubles with Skylake, are clearly visible.
Furthermore, the comparison between Sandy Bridge and the smaller Haswell system
reveals the benefit of fused multiply-add (FMA) instructions and higher L1 cache
bandwidth of the latter: For low polynomial degrees with a modest number of
FMA instructions, Sandy Bridge with its higher frequency can approximately
deliver the same performance as Haswell. As the polynomial degree is increased,
the arithmetic work is increasingly dominated by FMAs in the sum factorization
sweeps similar to (5) as shown in [50], and Haswell pulls ahead. Finally, while
we observe a throughput of up to 5.7 billion DoFs/s on Skylake (with up to 1.35
TFlop/s for k = 8), we observe a relatively strong decrease of performance for
polynomial degrees k ≥ 13: This is because the vectorization across elements
leads to an excessive size of the temporary data within sum factorization—here,
a different vectorization strategy could lead to better results. However, we consider
the polynomial degrees 3 ≤ k ≤ 8 most interesting for practical simulations, where
almost constant throughput in terms of DoFs/s is reached. This somewhat surprising
result, given the expected O(1/k) complexity of throughput for sum factorization, is
because face integrals and memory access with an O(1) complexity are dominant.
Compared to our initial implementation in 2015, which achieved a throughput of
0.32 billion DoFs/s on Sandy Bridge with degree k = 3, the progress in software
technologies allowed us to reach 1.02 billion DoFs/s on the same system. For Intel
Skylake, where memory access is more important, the software progress of our
project is more than 4×.

Figure 3 shows the throughput normalized by the number of cores for polynomial
degree k = 4 over the different hardware generations. For operator evaluation
with discontinuous elements and face integrals, approximately 200 floating point
operations per unknown are involved with our optimized implementations [50]. At
the same time, we must access at least 16 byte (read one double, write one double)
plus some neighbors that are not cached, so the arithmetic intensity is around 8–12
Flop/Byte, close to the machine balance of the Skylake Xeon. This means that both
memory bandwidth and arithmetic performance are relevant for performance (on
one Skylake node, we measured memory throughput of around 160 GB/s, compared
to the STREAM limit of 205 GB/s). Likewise, continuous elements evaluated on
an affine mesh have seen a considerable increase in throughput per core (arithmetic
intensity of 7 Flop/Byte). However, the improvement has been much more modest
for continuous elements evaluated on curved elements. In this setting, separate
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matrix-vector product with continuous linear elements on various hardware

metric terms for all quadrature points and all elements are needed (as opposed to
a single term per element in the affine mesh case), reducing the arithmetic intensity
to around 1.2 Flop/Byte.1

Figure 3 also contains the evolution of performance of a sparse matrix-vector
product for tri-linear continuous finite elements. The performance is much lower
due to the aforementioned memory bandwidth limit, and has hardly improved per
core on Skylake over the dated Opteron architecture. This illustrates the effect of
the so-called memory wall. We emphasize that the sparse matrix-vector product for
k = 1 is more than three times slower than even the matrix-free evaluation for k = 4
on curved elements. Hence, high-order methods with matrix-free implementations
are faster per unknown on newer hardware, in addition to their higher accuracy.

3 Performance-Optimized Conjugate Gradient Methods

The developments of matrix-free implementations presented in the previous section
result in a throughput for evaluation of the IPDG operator in Fig. 2 of up to 5.7
billion DoFs/s on Skylake. This is equivalent in time to the mere access of 4.5
doubles per DoF (either reading or writing). In other words, our developments
have made the operator evaluation so fast that the matrix-vector product may no
longer be the dominant operation in algorithms like the conjugate gradient (CG)
method preconditioned by the diagonal, or Chebyshev smoothers. These algorithms

1The merged final coefficient tensor J−1
K J−TK det(JK)wq is used for the present results, i.e., 6

doubles per quadrature point [29, 51].
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involve access to between 6 and 18 vectors for vector updates, the application of the
diagonal preconditioner, and inner products. For optimal application performance
it is therefore necessary to look into the access to vectors. As proposed in our
work [51, 56, 65], merging the vector operations can improve throughput by up
to a factor of two, and in particular for the DG case with cell-based loops which
allow for a single pass through data [48, 56]. Fusion of different steps of a scheme
has also been proposed for explicit time integrators in [14].

For the assessment of optimization opportunities on the algorithm level that
goes beyond the matrix-vector product, we consider a high-order finite element
benchmark problem suggested by the US exascale initiative “Center for Efficient
Exascale Discretization” (CEED). The benchmark involves a continuous finite
element discretization of the Laplacian (3), using matrix-free operator evaluation
within a conjugate gradient solver preconditioned by the matrix diagonal. In this
study, we consider the case BP5 [29], see also https://ceed.exascaleproject.org/bps/,
which integrates the weak form (4) of polynomial degree k using a Gauss–Lobatto
quadrature formula with n1D

q = k + 1 quadrature points on a cube with deformed
elements. While this integration is not exact, it is the typical spectral element setup
with an identity interpolation matrix Si = I in Eq. (5).

Figure 4 lists the contributors to run time for the plain conjugate gradient method
preconditioned by the point-Jacobi method as a function of the problem size for
the polynomial degree k = 6. Here, the metric terms JK are computed on the
fly from a tri-linear representation of the geometry. Three different performance
regimes can be distinguished in the graph: To the left, there is not enough parallelism
given the domain decomposition on 48 MPI ranks and batches of 8 elements due to
vectorization—indeed, at least 85,000 DoFs are needed to saturate all cores and
SIMD lanes. Furthermore, the synchronization barriers due to the inner products in
the conjugate gradient method also lead to a slowdown. As the problem size and
parallelism increase, the run times decrease significantly and reach a minimum for
a problem size around one million DoFs. Here, all data involved in the algorithm

104 105 106 107 108
0

0.2

0.4

0.6

0.8

1

1.2

DoFs per node

s/
[b

ill
io

n
D

oF
s

CG
its

]

mat-vec
inner products
diagonal precond.
vector updates

aaloaadddd imbalanceiiiiiiimii a all caached fror m RAM

Fig. 4 Breakdown of times per CG iteration in CEED benchmark problem BP5 [29] for the plain
conjugate gradient method with k = 6 on one node of dual-socket Intel Skylake

https://ceed.exascaleproject.org/bps/


ExaDG 199

103 104 105 106 107 108
0

1

2

3

4

DoFs per node

[b
ill

io
n

D
oF

s�
CG

its
]/

s plain CG
merged dot products
fully merged
Nvidia V100 plain CG

Fig. 5 Study of merged vector operations for conjugate gradient solver for the CEED benchmark
problem BP5 [29] on one node of dual-socket Intel Skylake for k = 6

fits into the approximately 110 MB of L2+L3 cache on the processors. As the size
is further increased, caches are exhausted and most data must be fetched from slow
main memory. As a consequence, the run time of the solver increases significantly,
and the vector updates, the diagonal preconditioner, and the inner products take a
significant share. Note that all vector operations use the hardware optimally with a
memory throughput of 205 GB/s.

In order to improve performance, we have therefore developed conjugate gradient
implementations with merged vector operations by loop fusion. Figure 5 compares
three variants of the conjugate gradient solver: the plain conjugate gradient method
runs all vector operations through high-level vector interfaces with separate loops
for addition and inner products. In the “merged dot products”, we have merged
the dot product pTAp following the matrix-vector product into the loop over the
elements, and merged the vector updates to the residual and solution with the dot
product for rTP−1r . Here, r denotes the residual vector, p the search direction of
the conjugate gradient method, A the matrix operator (represented in a matrix-free
way), and P−1 the diagonal preconditioner. However, the improvements with this
algorithm are relatively modest.

Much more performance can be gained by creating a conjugate gradient variant
we call “fully merged”: Here, each CG iteration performs a single loop through
all vector entries and ideally reads 5 vectors (solution, residual, search direction,
temporary vector to hold the matrix-vector product, and diagonal of preconditioner)
and writes four (solution, residual, search direction, temporary vector). All vector
updates of the previous CG iteration are scheduled before the matrix-vector product
and all inner products are scheduled after the matrix-vector product. The vector
operations are interleaved with the loop over elements, ensuring that dependencies
due to the access pattern of the loop and the MPI communication are fulfilled (this
leads to slightly more access in practice). This approach applies the preconditioner
several times with partial sums to construct the inner products with a single
MPI_Allreduce, trading some local computations for the decreased memory
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access. Of course, fusing the preconditioner into the loop assumes that it is both
cheap to apply and does not involve long-range coupling between the DoFs. The
results in Fig. 5 show that performance in the saturated limit, i.e., for large sizes
beyond 107 DoFs, is 2.5 times faster than with the plain CG iteration. Interestingly,
this also improves performance for the sizes fitting into caches, which is due to less
synchronization and reducing access to the slower L3 cache.

To put the performance of the fully merged case on Intel Skylake into perspective,
we compare with executing the plain CG method on an Nvidia V100 GPU using the
implementation from [51, 57]: even though the GPU runs with around 700 GB/s of
memory throughput, the performance is higher on Intel Skylake with only 200 GB/s
from RAM memory because the merged loops significantly increase data locality.
Furthermore, on the GPU we do not compute the metric terms on the fly, but
load a precomputed tensor J−1

K J−TK det(JK)wq which is faster due to reduced
register pressure, see also the analysis for BP5 in [71]. We also note that the
GPU results with our implementation are faster than an implementation with the
OCCA library described in [29] with up to 0.6 billion DoFs/s on a V100 of the
Summit supercomputer. The reason is that our implementation uses a continuous
finite element storage that does not duplicate the unknowns at shared vertices, edges
and faces, which reduces the memory access by about a factor of two. Furthermore,
the results from [29] involve a separate gather/scatter step with additional memory
transfer to enforce continuity, while this is part of the operator evaluation within a
single loop in our code.

Figure 6 lists the achieved throughput with a fully merged conjugate gradient
solver for polynomial degrees k = 2, . . . , 8, the most interesting regime for our
solvers. We use a tri-linear representation of geometry and compute the geometric
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factors on the fly. Throughput is somewhat lower for quadratic and cubic elements
because the geometry data located in the vertices is still noticable.

The results in Fig. 3 motivate the analysis of the representation of the geometry
in the matrix-vector product, with results presented in Fig. 7. The figure lists both
the throughput of the matrix-vector product in the left panel and the throughput
of the complete CG iteration with merged vector operations. Highest performance
is obtained for the affine mesh case where our implementation can compress the
memory access of the Jacobian. While this case is excluded from the CEED BP5
specification that requires a deformed geometry [29], it is an interesting baseline
to compare against. Using separate tensors for each quadrature point, “variable
tensor cached”, is equally fast as the affine case as long as data fits into caches.
However, performance drops once the big geometric arrays must be fetched from
main memory. For the case the geometry is computed on the fly from a tri-linear
representation of the mesh, i.e., the vertices, the matrix-vector product is slower
than the affine variant. For the conjugate gradient solver, however, we observe that
the two reach essentially the same performance for five million and more DoFs,
as they are both limited by the memory bandwidth from vector access. The “tri-
linear compute” case involves a higher Flop/s rate with almost 700 GFlop/s, as
compared to the throughput of 330 GFlop/s for the affine mesh case. This means
that the merged vector operations allow us to fit additional computations behind the
unavoidable memory transfer without affecting application performance. Finally,
an isoparametric representation of the geometry (labeled “isopara compute” in
Fig. 7) can also be computed on the fly by sum factorization from a kth degree
polynomial [50]. While this case is obviously slower than the precomputed variable-
tensor case from caches, it leverages higher performance when data must be fetched
from main memory.
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The tri-linear and isoparametric cases are not equivalent, as only the latter
represents higher order curved boundaries. Intermediate polynomial degrees for the
geometry are conceivable, which would land between the two in terms of application
throughput. To combine the higher performance of the former, we plan to investigate
the tradeoffs in more detail in the future, e.g. by using a k-degree representation on
a single layer of elements at the boundary and a tri-quadratic representation in the
domain’s interior.

Finally, Fig. 8 shows the weak scaling of the BP5 benchmark problem up to the
full size of the SuperMUC-NG machine with 6336 nodes and 304,128 cores. The
data is normalized by reporting the number of DoF per node, so ideal weak scaling
would correspond to coinciding lines. While the saturated performance is scaling
well, giving a sustained performance of up to 4.4 PFlop/s,2 most of the in-cache
performance advantage is lost due to the communication latency over MPI, see
also [62] for limits with MPI in PDE solvers. Defining the strong scaling limit as the
point where throughput reduces to 80% of saturated performance [29], it is reached
for wall times of 56 μs on 1 node. On 512 nodes, the strong scaling limit is already
around 180 μs, whereas it is 245 μs on the full SuperMUC-NG machine. Note that
even though most optimizations presented in this section have addressed the node-
level performance, we have also considered the strong scaling in our work—indeed,
the strong scaling on SuperMUC-NG is excellent with a limit around 5 times lower
than the BlueGene-Q results presented in [29].

2The LINPACK performance of SuperMUC-NG according to the top500 list is 19.4 PFlop/s.
Considering that we use an iterative solver for PDE with optimization of throughput, this is an
extremely good value.
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4 Geometric Multigrid Methods in Distributed
Environments

Multigrid methods are efficient solvers for the linear systems arising from the
discretization of elliptic problems, see [30] for a recent efficiency evaluation
and [35] for a projection of elliptic solver performance to the exascale setting. They
apply simple iterative schemes called smoothers on a hierarchy of coarser problem
representations. On each level of the hierarchy, the smoothers address the high-
frequency content of the solution by smoothening the error. On a sufficiently coarse
level with a small number of unknowns, a direct solver can be applied. The multigrid
algorithm can be realized by a V-cycle as illustrated in Fig. 9 or some related cycle
(W-cycle or F-cycle). In the matrix-free high-order finite element context, variants
of the Chebyshev iteration around a simple additive scheme, such as point-Jacobi or
approximate block-Jacobi with some rank-d approximation of the cell matrix, are
state of the art. The results in this section are based on this selection. Overlapping
Schwarz schemes are a new development detailed in Sect. 5 below.

In terms of finding the coarser representations for the multigrid hierarchy, high-
order finite element and discontinuous Galerkin methods permit a range of options.
The hierarchy can both be constructed by coarser meshes (h-multigrid), by lowering
the polynomial degree (p-multigrid), by a discontinuous-continuous transfer as well
as algebraically based on the matrix entries only (algebraic multigrid). The latter do
not fit into a matrix-free context, since they explicitly rely on a sparse matrix and
also often are not robust enough as the degree increases. As it has been shown by
the work [70], scalability to the largest supercomputers is much more favorable if
knowledge about coarsening by a mesh can be provided. In other words, geometric
multigrid is to be preferred over algebraic multigrid in case there is such structure
in the problem.

smoothen

smoothen smoothen

smoothen

coarse solve

restrict

restrict

prolongate

prolongate

active cells level = 2

level = 1

level = 0

Fig. 9 Illustration of multigrid V-cycle with smoothing on each level and restriction/prolongation
between the levels (left) and exemplary partitioning of a grid with adaptive refinement partitioned
among 3 processors. The partitioning of the active cells is shown in the mid panel and on the
various multigrid levels on the right panel
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For these reasons, we have developed a comprehensive geometric multigrid
framework with deal.II. In [27], a hybrid multigrid solver with all possibilities of h-,
p-, and algebraic coarsening has been combined in a flexible framework, with the
possibility to perform an additional c-transfer from discontinuous to continuous
function spaces for the DG case. In terms of the h-MG method on adaptive meshes,
the deal.II library implements the local smoothing algorithm [9, 36, 37] where
smoothing is done level by level. Our work [15] developed a communication-
efficient coarsening strategy for this setup, at the cost of a load imbalance for
smoothing on the multigrid levels with adaptively refined meshes. The tradeoffs
in this choice and the associated costs have been quantified by a performance model
in [15].

Figure 10 shows the results of two strong scaling experiments of the multigrid
V-cycle with the h-multigrid infrastructure of the deal.II library. The uniform grid
and a typical adaptively refined case are compared for the same problem size of 137
million and 46 billion DoFs, respectively, see [15] for details on the experiment.
Differences in run time are primarily due to the load imbalance for the level
operations. The results demonstrate optimal parallel scaling of both the uniform
and adaptively refined cases down to around 10−2 s, with a slightly better strong
scaling of the adaptive case due to the slower baseline. This performance barrier—
typical for strong scaling of multigrid schemes in general—can be explained by
the specific type of global communication in this algorithm: from the fine mesh
level with many unknowns distributed among a large number of cores, we transfer
residuals to coarser meshes with restriction operators until the coarse grid solver is
either run on a single core or with few cores in a tightly coupled manner. Then, the
coarse-grid corrections are broadcast during prolongation, involving all processors
again. The communication pattern of a multigrid V-cycle thus relates to a tree-based
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Fig. 10 Strong scaling of geometric multigrid V-cycle for 3D Laplacian on uniform and adaptively
refined mesh using continuous Q2 elements with matrix-free evaluation on up to 4096 nodes (64k
cores) of 2× 8 core Intel Sandy Bridge (SuperMUC phase 1). Adapted from [15]
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implementation of MPI_Allreduce, with the difference that the communication
tree is induced by the grid and substantial operations, namely smoothing and level
transfer, are intermixed with the communication. In this particular case, nine matrix-
vector products with nearest-neighbor communication are performed per level (eight
in the smoother and one for the residual before restriction). In addition, two vertical
nearest-neighbor exchange operations are done in restriction and prolongation. A
typical matrix-vector product with up to 26 neighbors takes around 10−4 s on the
chosen Intel Sandy Bridge system when run on a few thousands of nodes [52]. When
done on seven levels plus the coarse mesh for the uniformly refined 137 million
DoFs case, the expected saturated limit of around 8 ms is exactly seen in the figure.
On the newer SuperMUC-NG machine, a latency barrier per V-cycle of around 2–
4 ms per V-cycle has been measured, depending on the number of matrix-vector
products for the level smoothers. This limit is attractive compared to alternative
solvers for elliptic problems such as the fast multipole method or the fast Fourier
transform [30, 35].

Multigrid schemes are at the heart of incompressible flow solvers through the
pressure Poisson equation, as detailed in Sect. 6 below. Applications of matrix-
free geometric multigrid to continuum mechanics were presented in [18] and to
electronic calculations with sparse multivectors in [16, 17].

As an example of the large-scale suitability of the developed multigrid frame-
work, Fig. 11 shows two scaling experiments on the SuperMUC-NG supercomputer
with up to 304,128 cores of Intel Skylake. Black dashed lines denote ideal strong
scaling along a line and weak scaling with a factor of 8 between the lines. The com-
putational domain is a cube meshed by hexahedral elements, using the affine mesh
code path for matrix-free algorithms discussed in Sect. 2. A consistent Gaussian
quadrature with n1D

q = k + 1 points is chosen. We run a conjugate gradient solver

to a relative tolerance of 10−3 compared to the initial unpreconditioned residual.
This setup is motivated by applications where a very good initial guess is already
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Fig. 11 Multigrid strong scaling analysis for tolerance 10−3 with 2 CG iterations
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available, e.g. by extrapolation of solutions from the old time step [22, 45], and only
a correction is needed. More accurate solves are obtained by tighter tolerances or
by full multigrid setups [51]. The multigrid V-cycle is run in single precision to
increase throughput, together with a double precision correction through the outer
CG solver. This setup has been shown in [51] to increase throughput by around 1.8×
without affecting the multigrid convergence.

In the left panel of Fig. 11, we present results for a continuous Galerkin
discretization with a polynomial degree k = 4. A pure geometric coarsening
down to a single mesh element is used. A Chebyshev iteration of degree five
based on the matrix diagonal, i.e., point Jacobi, is used on all levels for pre- and
post-smoothing. The maximal eigenvalue λ̃max is estimated by 15 iterations of a
conjugate gradient solver and the Chebyshev parameters are set to smoothen in a
range [0.06λ̃max , 1.2λ̃max ]. As a coarse solver, we use a Chebyshev iteration with
the degree set to reduce the residual by 103 in terms of the Chebyshev a-priori error
estimate [74]. We observe ideal weak scaling and strong scaling to around 10−2 s.
More importantly, the absolute run time is excellent: For instance, the 8.6 billion
DoF case on 1536 cores is solved in 1.4 s, i.e., 4.0 million DoFs are solved per core
per second.

The right panel of Fig. 11 shows the result for multigrid applied to an IPDG
discretization with k = 5. Here, we use a transfer from the discontinuous space to
the associated continuous finite element space with k = 5 on the finest mesh level
(see [3] for the theoretical background and [27] for the multigrid context) and then
progress by h-coarsening to a single element. On the DG level, we use a Chebyshev
smoother around a block-Jacobi method, with the block-Jacobi problems inverted
by the fast diagonalization method [58]. On all continuous finite element levels,
a Chebyshev iteration around the point-Jacobi method is used. The degree of the
Chebyshev polynomial is six. This solver setup achieves a multigrid convergence
rate of about 0.025, i.e., reduces the residual by 3 orders of magnitude with two
V-cycles. If used in a full multigrid setting [51], a single V-cycle on the finest
level would suffice to solve the problem to discretization accuracy. Merged vector
operations with a Hermite-like basis for the Chebyshev iteration are used according
to [56]. The final application performance of the largest computation on 1.9 trillion
DoFs is 5.9 PFlop/s, with 5.6 PFlop/s done in single precision and 0.27 PFlop/s
in double precision. The limiting factor is mostly memory transfer, however, with
an application throughput of around 175 GB/s per node (the STREAM limit of one
node is 205 GB/s).

5 Fast Tensor Product Schwarz Smoothers

In Sect. 4, we have discussed a scalable implementation of geometric multigrid
methods, obtaining an efficient solver in the sense of cost per iteration. It employs
the matrix-free operator implementation from Sect. 2 in order to reduce the compu-
tational cost for residuals and grid transfer. The missing building block for our cost
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model in Eq. (1) is an efficient implementation (in terms of computational cost per
DoF) of an efficient smoother (in terms of number of multigrid iterations).

The main challenge consists of finding preconditioners whose cost is similar to
operator evaluation. So far, we have discussed Chebyshev smoothers, which can be
implemented matrix-free in a straight-forward fashion. Alas, their performance is
not robust for higher order elements. Likewise, from an arithmetic cost point of view
sparse matrices can be competitive at most for moderate polynomial degrees k =
2, 3 [55] or when done via auxiliary spaces of linear elements on a subdivided grid
using some matrix-based preconditioner. However, Fig. 3 shows that even sparse
matrices for linear elements are up to 10 times slower than the matrix-free operator
evaluation. It seems that only the two SPPEXA projects ExaDUNE and ExaDG
have addressed this question in [6, 76]. While [6] focuses on iterative solution of
cell problems for multigrid smoothing, we consider domain decomposition based
smoothers in the form of multilevel additive and multiplicative Schwarz methods
based on low-rank tensor approximations. They consist of a subdivision of the mesh
on each level into small subdomains consisting either of a single cell, or of the patch
of cells sharing a common vertex. On each of these subdomains, local finite element
problems are solved. Comparing with operator application, these smoothers share
the structural property of evaluation of local operators on mesh cells or on a patch
of cells. They differ by the fact that the smoothers involve local inverses instead of
local forward operators, and that these local inverses in general are not amenable
to a tensor decomposition like sum factorization. There is one exception though,
namely separable differential operators. In d dimensions these can be written in the
form

L = Id ⊗ · · · ⊗ I2 ⊗ L1 + · · · + Ld ⊗ Id−1 ⊗ · · · ⊗ I1, (6)

where Lk are one-dimensional differential operators and Ik are identity operators
in directions k = 1, . . . , d . This representation transfers to finite element operators
with tensor product shape functions in a straight-forward way, reading Ik as one-
dimensional mass matricesMk .

Due to [58], the inverse of L can be represented as the product

L−1 = Q�−1QT, (7)

with the diagonal matrix � = Id ⊗ · · · ⊗ I2 ⊗�1 + · · · + �d ⊗ Id−1 ⊗ · · · ⊗ I1,
where Ik denote identity matrices, and a rank-1 decompositionQ = Qd⊗· · ·⊗Q1.
The tensor factors are obtained by solving d generalized eigenvalue problems

�k = QT
k LkQk,

Ik = QT
kMkQk, k = 1, . . . , d.

(8)

Thus, the computational effort for computing the inverse has been reduced from
O(k3d) to O(dk3) and for the application of local solvers from O(k2d) to O(dkd+1)
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by exploiting sum factorization. Based on this technique, we have implemented a
geometric multigrid method in [76] based on earlier work in [37–39].

5.1 The Laplacian on Cartesian Meshes

In order to test our concept and to obtain a performance baseline for more
complicated cases, we first attend to the case where the decomposition described
above can be applied in a straightforward way, namely the additive Schwarz method
with subdomains equal to mesh cells. As Table 1 shows, it yields an efficient
preconditioner with less than 25 conjugate gradient steps for a gain of accuracy
of 108. While it is uniform in the mesh level, it is not uniform in the polynomial
degree due to the increasing penalty parameter of the interior penalty method. The
computational effort for a smoothing step based on local solvers in the form (7)
is below the effort for a matrix-free operator application for polynomial degrees
between 3 and 15 in three dimensions because it only involves operations on cells.
The setup time for computing Q and � is even less. Thus, in the context of the
performance analysis of the conjugate gradient method in Sect. 2, it barely adds to
the cost per iteration step, but reduces the number of matrix-vector products when
comparing to the accumulated numbers within a Chebyshev/point Jacobi method,
and almost independently of polynomial degree.

In view of application to incompressible flow, we also study vertex patches as
typical subdomains for smoothing. First, we observe that a regular vertex patch with
2d cells attached to a vertex inherits the low-rank tensor product structure from
its cells, possibly after renumbering due to changes in orientation. Thus, we can
apply the same method as on a single cell, resulting effectively in a factor 2d in the
complexity estimates above. Patches around vertices with irregular topology like 3
or 5 cells in two dimensions do not possess a tensor product structure. Fortunately,

Table 1 Fractional CG
iterations, preconditioned by
h-MG with additive Schwarz
smoother on cells

Levels Convergence steps

2D k = 3 k = 4 k = 7 k = 10

7 14.5 14.3 18.8 20.9

8 14.5 14.3 18.8 20.9

9 14.5 14.3 18.8 20.9

10 14.5 14.3 18.8 20.9

3D k = 3 k = 4 k = 7 k = 10

3 16.7 16.8 22.0 24.5

4 17.1 17.0 22.0 24.5

5 17.2 17.0 22.1 24.6

6 17.1 17.0 22.1 24.7

Relative solver tolerance of 10−8 and relax-
ation parameter ω̂ = 0.7
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on meshes obtained by refinement of a coarse mesh, they are all determined by
irregularities of the coarse mesh and thus small in number.

Vertex patches lead to overlapping decompositions with overlap of at least 4
and 8 in two and three dimensions, respectively. From the analysis of Schwarz
methods, it becomes clear that a multiplicative method is required for highest
multigrid convergence rates. In order to parallelize such a smoother and to avoid
race conditions, mesh cells are colorized, that is, they are separated into “colors”
such that patches of the same “color” do not share any common face or cell.
As a consequence, the multiplicative method coincides with an additive method
within each color, such that we can execute the local solvers in parallel within each
color, and the colors sequentially. Typical convergence results for the Laplacian are
reported in Table 2, suggesting that this scheme is almost a direct solver.

The vertex patch has 4 and 8 times as many unknowns as a single mesh cell
in two and three dimensions, respectively. Thus, the effort for a smoothing step
with 16 colors and the optimizations described above turns out to be about 20 to
24 times the effort of a matrix-free operator application, measured over polynomial
degrees from 3 to 15. This seems excessive at first glance, but it must be kept in mind
that the Chebyshev smoother of degree 6 used in Fig. 11 also involves 12 matrix-
vector products for pre- and post-smooting. Futhermore, the current scheme comes
with a reduction of the number of steps by a factor 10 compared to the additive
cell smoother for the Laplacian, which makes it almost competitive [76]. Finally,
the iteration counts are independent of the polynomial degree, making the scheme
attractive for higher degrees. Moreover, we point out that this smoother also allows
for the solution of a Stokes problem in four iteration steps [39].

Table 2 Fractional GMRES iterations, preconditioned by h-MG with multiplicative Schwarz
smoothers on vertex patches

Levels Convergence steps Colors

2D k = 3 k = 4 k = 7 k = 10

7 2.5 2.5 2.1 2.1 8

8 2.5 2.5 2.1 2.0 8

9 2.5 2.4 2.1 2.0 8

10 2.5 2.4 2.0 2.0 8

3D k = 3 k = 4 k = 7 k = 10

3 2.4 2.5 2.1 1.8 16

4 2.4 2.5 2.1 1.9 16

5 2.4 2.5 2.1 1.9 16

6 2.4 2.5 2.1 1.9 16

Levels Convergence steps Colors

2D k = 3 k = 4 k = 7 k = 10

7 2.9 2.9 2.6 2.5 17

8 2.9 2.9 2.6 2.5 17

9 2.9 2.9 2.6 2.5 17

10 2.9 2.9 2.6 2.4 17

3D k = 3 k = 4 k = 7 k = 10

3 2.6 2.7 2.4 2.4 35

4 2.8 2.8 2.5 2.4 49

5 2.8 2.8 2.5 2.4 51

6 2.8 2.8 2.5 2.4 52

Based on minimal coloring (left) and graph coloring (right) with a relative solver tolerance of 10−8
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5.2 General Geometry

As soon as the mesh cells are not Cartesian anymore, the special structure of
separable operators in (6) is lost and the inverse cannot be computed according
to (7). In this case, we have two options: solving the local problems iteratively,
as in [6], or approximately. A possible approximation which recovers the situation
of the previous subsection consists of replacing a non-Cartesian mesh cell by an
approximating (hyper-)rectangle, then inverting the separable differential operator
on the rectangle (omitting the prefix hyper from here on).

Such a surrogate rectangle can be obtained from the following procedure: first,
we compute the arc length of all edges. From these, we obtain the length of the
rectangle in each of its natural directions by averaging over all parallel edges (in
a topological sense). Thus, the geometry of the rectangle is determined up to its
position and orientation in space. Given the fact that the Laplacian is invariant under
translation and rotation, these do not matter and we can choose a rectangle centered
at the origin with edges parallel to the coordinate directions. Different differential
operators may require different approximations here.

The convergence theory of Schwarz methods allows for inexact local solvers as
long as they are spectrally equivalent. Naturally, the deviation from exactness enters
into the convergence speed of the method. Additionally, inexact local solvers can
amplify the solution, such that a smaller relaxation parameter may be necessary.
This is exhibited in Table 3, where we compare the efficiency of multigrid with
exact local solvers and the method with surrogate rectangles as described above.
We see that a reduction of the relaxation parameter ω̂ = 0.7 for exact local solvers
to ω̂ = 0.49 is necessary for robust convergence. We point out though, that while
the inexact methods need more iteration steps, they are much faster than exact
inverses, since they use the Kronecker representation (7) of the approximate inverse.
For instance, the setup cost is 3000 times higher, with a growing gap for higher
polynomial degrees.

Table 3 Fractional CG iterations with addditive cell-based Schwarz smoothers, exact as well as
inexact local solution with varying damping factors ω̂

Levels Convergence steps to 10−8

2D exact (ω̂ = 0.7) ω̂ = 0.35 ω̂ = 0.42 ω̂ = 0.49 ω̂ = 0.56 ω̂ = 0.63

4 17.8 28.4 24.8 24.3 30.8 >100

5 17.3 27.1 23.9 23.8 40.7 >100

6 17.2 26.8 23.7 23.9 58.1 >100

3D exact (ω̂ = 0.7) ω̂ = 0.35 ω̂ = 0.42 ω̂ = 0.49 ω̂ = 0.56 ω̂ = 0.63

2 20.6 31.8 28.5 25.8 25.0 28.5

3 20.6 33.3 29.1 26.5 27.4 74.8

4 20.6 32.4 28.6 26.6 47.0 >100

Two pre- and post-smoothing steps are used, respectively, and the polynomial degree is k = 4
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5.3 Linear Elasticitiy

In order to provide an outlook on how to apply this concept to more general
problems, we consider linear elasticity, namely the Lamé-Navier equations, with
the bilinear form

a(u, v) = 2μ
(
ε(u), ε(v)

) + λ(∇ · u,∇ · v). (9)

Here, ε(u) = 1
2 (∇u+∇uT) is the strain tensor of the displacement field u and

(·, ·)
denote the appropriate DG discretization with interior penalty terms.

Consider a Cartesian vertex patch, that is, a patch with all faces aligned with
the coordinate planes and with tensor product shape functions on each cell. As
before, letMk be the one-dimensional mass matrix in direction k and Lk the matrix
representing the Laplacian including all face terms introduced by the interior penalty
formulation. Furthermore, let Gk be the matrix associated to the first derivative,
again including the DG interface terms which arise in products of the formGT

k⊗Gl .
With these notions and the three-dimensional Laplacian

L = M3 ⊗M2 ⊗ L1 +M3 ⊗ L2 ⊗M1 + L3 ⊗M2 ⊗M1, (10)

we can write the bilinear form a(., .) on the patch in matrix form

Ap = μ
⎡

⎣
L+M3 ⊗M2 ⊗ L1 M3 ⊗GT

2 ⊗G1 GT
3 ⊗M2 ⊗G1

M3 ⊗G2 ⊗GT
1 L+M3 ⊗ L2 ⊗M1 GT

3 ⊗G2 ⊗M1

G3 ⊗M2 ⊗GT
1 G3 ⊗GT

2 ⊗M1 L+ L3 ⊗M2 ⊗M1

⎤

⎦

+ λ
⎡

⎣
M3 ⊗M2 ⊗ L1 M3 ⊗G2 ⊗GT

1 G3 ⊗M2 ⊗GT
1

M3 ⊗GT
2 ⊗G1 M3 ⊗ L2 ⊗M1 G3 ⊗GT

2 ⊗M1

GT
3 ⊗M2 ⊗G1 G

T
3 ⊗G2 ⊗M1 L3 ⊗M2 ⊗M1

⎤

⎦ (11)

Clearly, this matrix lacks the simple structure of Kronecker products we
employed in the previous subsections. Nevertheless, we have Korn’s inequality [10],
and thus the block diagonal of the left matrix is spectrally equivalent to the matrix
itself. Consequently, we expect that

Ãp = μ
⎡

⎣
L+M3 ⊗M2 ⊗ L1

L+M3 ⊗ L2 ⊗M1

L+ L3 ⊗M2 ⊗M1

⎤

⎦ ,

(12)

which has the desired Kronecker product structure, is a good local solver. Indeed,
Table 4 confirms this expectation. Iteration counts remain almost constant over a
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Table 4 Solver performance depending on level and polynomial degree k

Levels k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9

3 – – – – – – – 4.0 4.1

4 – – – 3.7 3.9 3.9 4.0 4.1 4.1

5 – 3.7 3.7 3.7 3.8 3.9 3.9 3.9 3.9

6 5.1 3.7 3.8 3.6 3.8 3.9 3.9 3.9 3.9

7 5.2 3.8 3.9 3.7 3.7 3.8 3.7 3.8 3.8

8 5.5 3.9 3.9 3.8 3.8 3.7 3.8 – –

9 5.4 3.9 4.0 – – – – – –

CG iterations to reduce the residual by 108 preconditioned by h-MG with multiplicative vertex
patch smoother and approximate local solvers Ã−1

p . Only levels with 104 to 107 degrees of freedom
are shown. μ = 1, λ = 1 and the coarse grid consists of 2× 2 cells

Table 5 Solver performance depending on Lamé parameters μ and λ

(μ, λ)

Levels (100, 1) (10, 1) (1, 1) (1, 5) (1, 10) (1, 25)

6 3.4 3.4 3.6 6.3 19.5 >200

7 3.6 3.6 3.7 6.2 19.9 >200

8 3.7 3.7 3.8 6.0 20.2 >200

9 3.8 3.8 3.9 5.9 20.2 >200

10 3.8 3.8 3.9 5.9 20.3 >200

11 3.8 3.8 3.9 5.8 19.9 >200

CG iterations to reduce the residual by 108 preconditioned by h-MG with block-diagonal smoother.
Shape functions of degree k = 4 are used. The coarse grid consists of 2× 2 cells

wide range of mesh levels and polynomial degrees. Comparing to Table 2, we lose
less than a factor two, typically requiring 4 steps instead of 3.

While Korn’s inequality helped us with the left matrix in (11), the matrix
corresponding to the “grad-div” term in the Lamé–Navier equations has a nontrivial
kernel and thus its inverse cannot be approximated by a block diagonal. We confirm
this in Table 5. After augmenting Ãp by the diagonal terms of the grad-div matrix,
we vary μ and λ. As expected, iteration counts increase when λ � μ to the point,
where the method becomes infeasible.

The case λ � μ corresponds to an almost incompressible material. Thus,
this behavior has to be addressed from two sides. First, the discretization must
be suitable [34]. Then, the local solvers must be able to reduce the divergence
sufficiently. Here, we have to find ways to implement a smoother like in [39] in an
efficient way. Its structure prevents us from utilizing the tensor product techniques,
namely the fast diagonalization method, used so far.
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As an outlook, we describe a solution approach for two dimensions, which has
been developed in a recent bachelor’s thesis [64]. The diagonal blocks of the matrix
Ap are

A1 = (2μ+ λ)M2⊗L1+μL2⊗M1, A2 = μM2⊗L1+ (2μ+ λ)L2⊗M1. (13)

Both A1 and A2 admit a fast diagonalization, for instance

A−1
2 = (

Q2 ⊗Q1
)(
I2 ⊗�1 +�2 ⊗ I1

)−1(
Q2 ⊗Q1

)T
. (14)

Given the off-diagonal block B = μGT
2 ⊗G1 + λG2 ⊗GT

1 , the Schur complement
of Ap is

S = A1 − BTA−1
2 B. (15)

While this is not a sum of Kronecker products, Kronecker singular value decom-
position (KSVD), see [72, 73], can be utilized to construct an approximation of the
Schur complement which is fast diagonalizable. We proceed as follows:

A.1 compute the fast diagonalizations of A1 and A2
A.2 compute the rank-ρ� KSVD of the inverse diagonal matrix in Eq. 14

(
I ⊗�(1) +�(2) ⊗ I)−1 ≈

ρ�∑

i=1

Ci ⊗Di (16)

A.3 compute the rank-2 KSVD

Ŝ := E1 ⊗ F1 + E2 ⊗ F2 ≈ S̃ (17)

of the approximate Schur complement

S̃ := A1 − BT

[
ρ�∑

i=1

Q2C
−1
i Q

T
2 ⊗Q1D

−1
i Q

T
1

]

B (18)

A.4 compute the fast diagonalization of Ŝ.

Then, Gaussian block elimination provides an approximate inverse

A−1
p ≈

[
I −A−1

1 B

0 I

] [
A−1

1 0
0 Ŝ−1

] [
I 0

−BTA−1
1 I

]

. (19)



214 D. Arndt et al.

Implementation and evaluation of these smoothers are still work in progress, but
the thesis [64] suggests fast and robust convergence at least in a finite difference
context.

The take-home message from this section is that an efficient approximate solution
of the local problems in Schwarz smoothers is possible using low-rank tensor
representations and can be achieved with effort similar to a matrix-free operator
application in the best case. Finding such low-rank representations is nevertheless
highly dependent on the differential equation and geometry. Further investigation
will be directed in particular at dealing with the grad-div operator.

6 High-performance Simulations of Incompressible Flows

Computational fluid dynamics (CFD) simulations of turbulent flows at large
Reynolds number, e.g., Re > 106, are among those problems that typically require
a huge amount of computational resources in order to resolve the turbulent flow
structures in space and time, and have been addressed as an application by the
ExaDG project. The underlying model problem is given by the incompressible
Navier–Stokes equations

∂u

∂t
+∇ · (u⊗ u)− ν∇2u+∇p = f , (20)

∇ · u = 0 . (21)

Scale-resolving simulations for engineering applications typically involve beyond
O(1010 − 1011) unknowns (DoFs) and O(105 − 107) time steps. High-performance
implementations for this type of problem are therefore of paramount importance for
the CFD community. It is important to stress that implementing a given algorithm
optimally for a given hardware, i.e., an implementation that performs close to
the hardware limits, is only one step to achieve the goal of providing efficient
flow solvers for engineering problems as emphasized in the introduction. While
the previous sections discussed the second and third term in Eq. (1), namely the
performance of matrix-free evaluation routines and fast multigrid solvers for high-
order discretizations, we now also include discretization aspects into the discussion.
The implementation makes use of the fast matrix-free evaluation routines and
multigrid solvers discussed in previous sections.

We use a method of lines approach with high-order DG discretizations in space
and splitting methods with BDF time integration. Splitting methods separate the
solution of the incompressible Navier–Stokes equations into sub-problems such
as a Poisson equation for the pressure and a (convection–)diffusion equation
for the velocity and are among the most efficient solvers currently known. In a
first contribution [45], we highlighted that previous discretization methods lack
robustness, on the one hand in the limit of small time step sizes, and on the other
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hand in under-resolved scenarios where the spatial discretization only resolves the
largest scales of the flow. The stability problem for small time step sizes has been
addressed in detail in [21] where we found that a proper DG discretization of
velocity-pressure coupling terms is essential to achieve robustness at small time
steps. In [23], we presented the first high-order DG incompressible flow solver
that is robust in the under-resolved regime and that relies completely on efficient
matrix-free evaluation routines. The developed discretization approach is attractive
as it provides a generic solver for turbulent flow simulations that is robust and
accurate without the use of explicit turbulence models. Such a technique is known
as implicit large-eddy simulation in the literature and has the advantage that it
does not require turbulence model parameters. While this property of high-order
DG discretizations is already known from discontinuous Galerkin discretizations
of the compressible Navier–Stokes equations, the work [23] has been the first
demonstrating this property for DG discretizations of the incompressible Navier–
Stokes equations. The key ingredient for a robust high-order, L2-conforming
DG discretization for incompressible flows turns out to be the use of consistent
stabilization terms that enforce the divergence-free constraint and inter-element
mass conservation in a weak sense. These requirements can also be included into
the finite element function spaces by using so-called H(div)-conforming (normal-
continuous) discretizations that are exactly (pointwise) divergence-free by using
Raviart–Thomas elements. As investigated in detail in [26], such an approach has
indeed very similar discretization properties when compared with the stabilized L2-
conforming approach in practically relevant, under-resolved application scenarios.
The model has been extended to moving meshes in [20].

A detailed performance analysis has been undertaken in [22] where we discuss
the incompressible flow solver w.r.t. its efficiency according to Eq. (1). Based
on this efficiency model, we have then compared matrix-free solvers based on
incompressible and compressible Navier–Stokes formulations in [24] for under-
resolved turbulent incompressible flows. The compressible solver uses explicit time
integration and therefore only requires one operator evaluation in every Runge–
Kutta stage as opposed to the incompressible solver involving the solution of
linear system of equations such as a pressure Poisson equation within every
time step. Simple explicit solvers are often considered efficient due to better
parallel scalability since implicit Krylov solvers with multigrid preconditioning
involve global communication. However, our work shows a significant performance
advantage of the incompressible formulation over the compressible one on the node-
level for sufficient workload. Albeit speed-up factors are higher, it is difficult to
achieve a performance advantage for the algorithmically simple, explicit-in-time
compressible solver in the strong-scaling limit in terms of absolute run time. In
our experience, the potential to outperform an implicit solver at some point in the
strong-scaling limit has not materialized. We see it as a future challenge to devise
optimal PDE solvers providing good performance over a wide range of problems
and hardware platforms due to this high degree of interdisciplinarity.

We have applied this solver framework to conduct direct numerical simulations of
turbulent channel flow in [45], the first direct numerical simulation of the turbulent
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flow over a periodic hill at Re ≈ 104 in [46], and to large-eddy simulation of
the FDA benchmark nozzle problem in [25]. Furthermore, we have developed
multiscale wall modeling approaches that allow to use the proposed highly efficient
schemes also for industrial cases with even higher Reynolds numbers than what is
feasible for wall-resolved large eddy simulation [47].

Here, we show performance results obtained on SuperMUC-NG with Intel
Skylake CPUs. We study the three-dimensional Taylor–Green vortex problem as
a standard benchmark to assess the accuracy and computational efficiency of
incompressible turbulent flow solvers. Regarding discretization accuracy and from
a physical point of view, the quantity of interest is the kinetic energy dissipation
rate shown in Fig. 12 as a function of time 0 ≤ t ≤ T = 20 for increasing
Reynolds numbers Re = 100, 200, 400, 800, 1600, 3000, 10,000,∞. The first
direct numerical simulation for the Re = 1600 case with a high-order DG scheme
of the incompressible Navier–Stokes equations with a resolution of 10243 and
polynomial degrees k = 3, 7 has been shown in [22]. Here, we show results
for effective resolutions up to 30723 (corresponding to 0.99 · 1011 DoFs) for the
highest Reynolds number cases. Despite these fine resolutions, grid-converged
results are achieved only up to Re = 3000. The inviscid problem (Re = ∞) is
most challenging, and the results in Fig. 12 suggest that even finer resolutions are
required for grid-convergence, a goal that might be achievable in the foreseeable
future. The largest problem with 0.99 · 1011 DoFs involved 6.6 · 104 time steps and
required 11.4 h of wall time on 152,064 cores. In terms of degrees of freedom solved
per time step per core, this results in a throughput of 1.05 MDoFs/s/core.

Fig. 12 Taylor–Green vortex: Kinetic energy dissipation rates for two different problem sizes (fine
mesh as solid line and coarse mesh as dashed-dotted line) for each Re number: The polynomial
degree is k = 3 and the effective resolutions Neff = (Nele,1d(k + 1))3 considered are Neff =
643, 1283 for Re = 100, Neff = 1283, 2563 for Re = 200, 400, Neff = 2563, 5123 for Re =
800, Neff = 10243, 20483 for Re = 1600, and Neff = 20483, 30723 for Re = 3000, 10000,∞
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Fig. 13 Scaling analysis for incompressible flow solver on 3D Taylor–Green vortex with polyno-
mial degree k = 3 at Re = 1600 and spatial resolutions of 1283, 2563, 5123, 10243, 20483

Figure 13 shows strong scaling results for the TGV problem at Re = 1600 for
effective resolutions of 1283, 2563, 10243, 20483 and polynomial degree k = 3. We
assess strong scalability in terms of absolute run times for the whole application
(including mesh-generation, setup of data structures, solvers, preconditioners, and
postprocessing) rather than normalized speed-up factors as the aim of strong scala-
bility is not only reducing but also minimizing time-to-solution, i.e., demonstrating
strong-scalability of a code with poor serial performance is meaningless. The results
in Fig. 13 reveal that we are able to perform the TGV simulations in realtime (twall ≤
T = 20s) for spatial resolutions up to 1283. These numbers can be considered
outstanding and we are not aware of other high-order DG solvers achieving this
performance, see also the discussions in [22, 24]. The minimum wall time in the
strong-scaling limit increases on finer meshes due to more time steps (the time step
size is restricted according to the CFL condition,�t ∼ 1/h, for the mixed explicit–
implicit splitting solver used here). For this reason, we also show strong scalability
in terms of the wall time per time step, to allow extrapolations of how many time
steps can be solved within a given wall time limit which is the typical use case for
large-eddy and direct numerical simulations of turbulent flows. In this metric, the
curves level off around 0.02 − 0.03 s of wall time per time step, independently of
the spatial resolution. The SuperMUC-NG machine with 3 · 105 cores is too small
to show the strong scaling limit for the largest problem size with 20483 resolution
considered here. A parallel efficiency of 80.6% is achieved with a speed-up factor
of 79.8 when scaling from 3072 cores to 304,128 cores.
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7 hyper.deal: Extending the Matrix-Free Kernels to Higher
Dimensions

The matrix-free kernels developed within the ExaDG project have been imple-
mented in a recursive manner which enables compilation with arbitrary spatial
dimension. In order to be compatible with the mesh infrastructure of deal.II which
is restricted to dimensions up to 3, we have developed schemes working on a
tensor product of two deal.II meshes. This allows extension to 2+2, 2+3, and 3+3
dimensions. The corresponding framework is currently under development as the
deal.II-extension hyper.deal [59].

The major application that we have in mind are kinetic problems in phase space
where we use the tensor product of a spatial and a velocity mesh. However, other
applications might arise such as parameter-dependent flow problems. Table 6 gives
an overview of computational times on a six-dimensional Vlasov–Poisson problem,
which involves an advection in the 6D space of the particle density in x and v space
and the solution of a 3D Poisson equation for finding the electric potential that in
turn specifies the electric field that transports the density field (cf. [44] for the same
application tackled with a semi-Lagrangian solver).

Figure 14 lists the throughput of the matrix-free evaluation of cell integrals for
the multi-dimensional advection in three to six spatial dimensions for polynomial
degrees k = 2, 3, 4, 5 for AVX2 and AVX-512 vectorization over elements,
respectively, without any application-specific tuning at this stage. While throughput
is very good in 3D and 4D as well as 5D up to k = 4, performance drops
significantly in 6D because the local arrays in sum factorization exhaust caches,

Table 6 Contributions to run time on 6D Vlasov–Poisson system on 320 cores with 8.6 billion
spatial DoFs over 42 time steps

Category 6D advect total (of which MPI exchange) integrate v 3D Poisson + electric field

time [s] 560 (130) 13.0 35.9
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Fig. 14 Throughput of cell term for advection as a function of the spatial dimension on Intel
Skylake with 4-wide vectorization (left) and 8-wide vectorization (right)
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especially with AVX-512. Vectorization strategies within an element [50] are
currently under development.

8 Outlook

Our work in the ExaDG project presented in this text has resulted in a highly
competitive finite element framework. We have demonstrated excellent performance
both for the pure operator evaluation, demonstrated e.g. by the CEED benchmark
problems, as well as on an application level in computational fluid dynamics. We
plan to engage in benchmarking also in the future to establish best-practices for the
high-order finite element community. Furthermore, the evolving hardware landscape
requires a continued effort, with increasing pressure to additional performance
improvements on throughput architectures such as GPUs and FPGAs. In addition,
we plan to extend our hybrid hp-multigrid framework to also handle hp-adaptive
meshes. Finally, while the results from the Schwarz-based multigrid smoothers are
very promising from a mathematical point of view, further steps are necessary to
make them perform optimally on massively parallel hardware, and it is not yet clear
how an optimal implementation compares in time-to-solution against the simpler
Chebyshev-based ingredients we have considered on the large scale so far.
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1 Introduction

In the EXA-DUNE project we extend the Distributed and Unified Numerics Envi-
ronment (DUNE)1 [6, 7] by hardware-oriented numerical methods and hardware-
aware implementation techniques developed in the (now) FEAT32 [55] project to
provide an exascale-ready software framework for the numerical solution of a large
variety of partial differential equation (PDE) systems with state-of-the-art numerical
methods including higher-order discretisation schemes, multi-level iterative solvers,
unstructured and locally-refined meshes, multiscale methods and uncertainty quan-
tification, while achieving close-to-peak performance and exploiting the underlying
hardware.

In the first funding period we concentrated on the node-level performance as the
framework and in particular its algebraic multigrid solver already show very good
scalability in MPI-only mode as documented by the inclusion of DUNE’s solver
library in the High-Q-Club, the codes scaling to the full machine in Jülich at the
time, with close to half a million cores. Improving the node-level performance
in light of future exascale hardware involved multithreading (“MPI+X”) and in
particular exploiting SIMD parallelism (vector extensions of modern CPUs and
accelerator architectures). These aspects were addressed within the finite element
assembly and iterative solution phases. Matrix-free methods evaluate the discrete
operator without storing a matrix, as the name implies, and promise to be able to
achieve a substantial fraction of peak performance. Matrix-based approaches on the
other hand are limited by memory bandwidth (at least) in the solution phase and
thus typically exhibit only a small fraction of the peak (GFLOP/s) performance of
a node, but decades of research have led to robust and efficient (in terms of number
of iterations) iterative linear solvers for practically relevant systems. Importantly, a
consideration of matrix-free and matrix-based methods needs to take the order of
the method into account. For low-order methods it is imperative that a matrix entry
can be recomputed in less time than it takes to read it from memory, to counteract
the memory wall problem. This requires to exploit the problem structure as much
as possible, i.e., to rely on constant coefficients, (locally) regular mesh structure and
linear element transformations [28, 37]. In these cases it is even possible to apply
stencil type techniques, like developed in the EXA-STENCIL project [40]. On the
other hand, for high-order methods with tensor-product structure the complexity
of matrix-free operator evaluation can be much less than that of matrix-vector
multiplication, meaning that less floating-point operations have to be performed
which at the same time can be executed at a higher rate due to reduced memory
pressure and better suitability for vectorization [12, 39, 50]. This makes high-order
methods extremely attractive for exascale machines [48, 51].

1http://www.dune-project.org/.
2http://feast.tu-dortmund.de/.

http://www.dune-project.org/
http://feast.tu-dortmund.de/
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In the second funding phase we have mostly concentrated on the following
aspects:

1. Asynchronicity and fault tolerance: High-level C++ abstractions form the
basis of transparent error handling using exceptions in a parallel environment,
fault-tolerant multigrid solvers as well as communication hiding Krylov methods.

2. Hardware-aware solvers for PDEs: We investigated matrix-based sparse-
approximate inverse preconditioners including novel machine-learning
approaches, vectorization through multiple right-hand sides as well as matrix-
free high-order Discontinous Galerkin (DG) methods and partially matrix-free
robust preconditioners based on algebraic multigrid (AMG).

3. Multiscale (MS) and uncertainty quantification (UQ) methods: These meth-
ods provide an additional layer of embarrassingly parallel tasks on top of the
efficiently parallelized forward solvers. A challenge here is load balancing of the
asynchronous tasks which has been investigated in the context of the localized
reduced basis multiscale method and multilevel Monte Carlo methods.

4. Applications: We have considered large-scale water transport in the subsurface
coupled to surface flow as an application where the discretization and solver
components can be applied.

In the community, there is broad consensus on the assumptions about exascale
systems that did not change much during the course of this 6 year project. A
report by the Exascale Mathematics Working Group to the U.S. Department of
Energy’s Advanced Scientific Computing Research Program [16] summarises these
challenges as follows, in line with [35] and more recently the Exascale Computing
Project:3 (1) The anticipated power envelope of 20 MW implies strong limitations
on the amount and organisation of the hardware components, an even stronger
necessity to fully exploit them, and eventually even power-awareness in algorithms
and software. (2) The main performance difference from peta- to exascale will
be through a 100–1000 fold increase in parallelism at the node level, leading to
extreme levels of concurrency and increasing heterogeneity through specialised
accelerator cores and wide vector instructions. (3) The amount of memory per
‘core’ and the memory and interconnect bandwidth/latency will only increase at
a much smaller rate, hence increasing the demand for lower memory footprints and
higher data locality. (4) Finally, hardware failures, and thus the mean-time-between-
failure (MTBF), were expected to increase proportionally (or worse) corresponding
to the increasing number of components. Recent studies have indeed confirmed
this expectation [30], although not at the projected rate. First exascale systems are
scheduled for 2020 in China [42], 2021 in the US and 2023 [25] in Europe. Although
the details are not yet fully disclosed, it seems that the number of nodes will not be
larger than 105 and will thus remain in the range of previous machines such as the

3https://www.exascaleproject.org/.

https://www.exascaleproject.org/
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BlueGene. The major challenge will thus be to exploit the node level performance
of more than 10 TFLOP/s.

The rest of this paper is organized as follows. In Sect. 2 we lay the foundations of
asynchronicity and resilience, while Sect. 3 discusses several aspects of hardware-
aware and scalable iterative linear solvers. These building blocks will then be used in
Sects. 4 and 5 to drive localized reduced basis and multilevel Monte-Carlo methods.
Finally, Sect. 6 covers our surface-subsurface flow application.

2 Asynchronicity and Fault Tolerance

As predicted in the first funding period, latency has indeed become a major issue,
both within a single node as well as between different MPI ranks. The core concept
underlying all latency- and communication-hiding techniques is asynchronicity.
This is also crucial to efficiently implement certain local-failure local-recovery
methods. Following the DUNE philosophy, we have designed a generic layer that
abstracts the use of asynchronicity in MPI from the user. In the following, we first
describe this layer and its implementation, followed by representative examples
on how to build middleware infrastructure on it, and on its use for s-step Krylov
methods and fault tolerance beyond global checkpoint-restart techniques.

2.1 Abstract Layer for Asynchronicity

We first introduce a general abstraction for asynchronicity in parallel MPI appli-
cations, which we developed for DUNE. While we integrated these abstractions
with the DUNE framework, most of the code can easily be imported into other
applications, and is available as a standalone library.

The C++ API for MPI was dropped from MPI-3 since it offered no real
advantage over the C bindings, beyond being a simple wrapper layer. Most MPI
users coding in C++ are still using the C bindings, writing their own C++
interface/layer, in particular in more generic software frameworks. At the same time
the C++11 standard introduced high-level concurrency concepts, in particular the
future/promise construct to enable an asynchronous program flow while maintaining
value semantics. We adopt this approach as a first principle in our MPI layer to
handle asynchronous MPI operations and propose a high-level C++MPI interface,
which we provide in DUNE under the generic interface of Dune::Communication

and a specific implementation Dune::MPICommunication.
An additional issue of the concrete MPI library in conjunction with C++ is the

error handling concept. In C++, exceptions are the advocated approach to handle
error propagation. As exceptions change the local code path on the, e.g., failing
process in a hard fault scenario, exceptions can easily lead to a deadlock. As we
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discuss later, the introduction of our asynchronous abstraction layer enables global
error handling in an exception friendly manner.

In concurrent environments a C++ future decouples values from the actual
computation (promise). The program flow can continue while a thread is computing
the actual result and promotes this via promise to the future. The MPI C and Fortran
interfaces offer asynchronous operations, but in contrast to thread parallel, the user
does not specify the operation within the concurrent operation. Actually, MPI on
its own does not offer any real concurrency at all, and provides instead a handle-
based programming interface to avoid certain cases of deadlocks: the control flow is
allowed to continue without finishing the communication, while the communication
usually only proceeds when calls into the MPI library are executed.

We developed a C++ layer on top of the asynchronous MPI operations, which
follows the design of the C++11 future. Note that the actual std::future class
cannot be used for this purpose.
� �

template<typename T>
class Future{

void wait();
bool ready() const;
bool valid() const;
T get();

};
� �

As different implementations like thread-based std::future, task-based TBB

::future, and our new MPIFuture are available, usability greatly benefits from
a dynamically typed interface. This is a reasonable approach, as std::future

is using a dynamical interface already and also the MPI operations are coarse
grained, so that the additional overhead of virtual function calls is negligible. At the
same time the user expects a future to offer value semantics, which contradicts the
usual pointer semantics used for dynamic polymorphism. In EXA-DUNE we decided
to implement type-erasure to offer a clean and still flexible user interface. An
MPIFuture is responsible for handling all states associated with an MPI operation.
� �

class MPIFuture{
private:

mutable MPI_Request req_;
mutable MPI_Status status_;
impl::Buffer<R> data_;
impl::Buffer<S> send_data_;

public:
...

};
� �

The future holds a mutable MPI_Request and MPI_Status to access information
on the current operation and it holds buffer objects, which manage the actual data.
These buffers offer a great additional value, as we do not access the raw data
directly, but can include data transformation and varying ownership. For example
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it is now possible to directly send an std::vector<double>, where the receiver
automatically resizes the std::vector according to the incoming data stream.

This abstraction layer enables different use cases, highlighted below:

1. Parallel C++ exception handling: Exceptions are the recommended way to
handle faults in C++ programs. As exceptions alter the execution path of a single
node, they are not suitable for parallel programs. As asynchronicity allows for
moderately diverging execution paths, we can use it to implement parallel error
propagation using exceptions.

2. Solvers and preconditioners tolerant to hard and soft faults: This functional-
ity is used for failure propagation, restoration of MPI in case of a hard fault, and
asynchronous in-memory checkpointing.

3. Asynchronous Krylov solvers: Scalar products in Krylov methods require
global communication. Asynchronicity can be used to hide the latency and
improve strong scalability.

4. Asynchronous parallel IO: The layer allows to transform any non-blocking
MPI operation into a really asynchronous operation. This allows also to support
asynchronous IO, to hide the latency of write operations and overlap with the
computation of the next iteration or time step.

5. Parallel localized reduced basis methods: Asynchronicity will be used to
mitigate the load-imbalance inherent in the error estimator guided adaptive online
enrichment of local reduced bases.

2.2 Parallel C++ Exception Handling

In parallel numerical algorithms, unexpected behaviour can occur quite frequently:
a solver could diverge, the input of a component (e.g., the mesher) could be
inappropriate for another component (e.g., the discretiser), etc. A well-written code
should detect unexpected behaviour and provide users with a possibility to react
appropriately in their own programs, instead of simply terminating with some error
code. For C++, exceptions are the recommended method to handle this. With well
placed exceptions and corresponding try-catch blocks, it is possible to accomplish
a more robust program behaviour. However, the current MPI specification [44]
does not define any way to propagate exceptions from one rank (process) to
another. In the case of unexpected behaviour within the MPI layer itself, MPI
programs simply terminate, maybe after a time-out. This is a design decision that
unfortunately implies a severe disadvantage in C++, when combined with the
ideally asynchronous progress of computation and communication: an exception
that is thrown locally by some rank can currently lead to a communication deadlock,
or ultimately even to undesired program termination. Even though exceptions are
technically an illegal use of the MPI standard (a peer no longer participates in a
communication), it undesirably conflicts with the C++ concept of error handling.

Building on top of the asynchronicity layer, we have developed an approach to
enable parallel C++ exceptions. We follow C++11 techniques, e.g., use future-like
abstractions to handle asynchronous communication. Our currently implemented
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interface requires ULFM [11], an MPI extension to restore communicators after
rank losses, which is scheduled for inclusion into MPI-4. We also provide a fallback
solution for non-ULFM MPI installations, that employs an additional communicator
for propagation and can, by construction, not handle hard faults, i.e., the loss of a
node resulting in the loss of rank(s) in some communicator.

To detect exceptions in the code we have extended the Dune::MPIGuard,
that previously only implemented the scope guard concept to detect and react
on local exceptions. Our extension revokes the MPI communicator using the
ULFM functionality if an exception is detected, so that it is now possible to use
communication inside a block with scope guard. This makes it superfluous to call
the finalize and reactivate methods of the MPIGuard before and after each
communication.
� �

try{
MPIGuard guard(comm);
do_something();
communicate(comm);

}catch(...){
comm.shrink();
recover(comm);

}
� �

Listing 1 MPIGuard

Listing 1 shows an example how to use the MPIGuard and recover the communicator
in a node loss scenario. In this example, an exception that is thrown only on a
few ranks in do_something() will not lead to a deadlock, since the MPIGuard

would revoke the communicator. Details of the implementation and further
descriptions are available in a previous publication [18]. We provide the “black-
channel” fallback implementation as a standalone version.4 This library uses
the P-interface of the MPI standard, which makes it possible to redefine MPI
functions. At the initialization of the MPI setting the library creates an opaque
communicator, called blackchannel, on which a pending MPI_Irecv request is
waiting. Once a communicator is revoked, the revoking rank sends messages to
the pending blackchannel request. To avoid deadlocks, we use MPI_Waitany to
wait for a request, which listens also for the blackchannel request. All blocking
communication is redirected to non-blocking calls using the P-interface. The library
is linked via LD_PRELOAD which makes it usable without recompilation and could
be removed easily once a proper ULFM implementation is available in MPI.

Figure 1 shows a benchmark comparing the time which is used for duplicating a
communicator, revoking it and restore a valid state. The benchmark was performed
on PALMA2, the HPC cluster of the University of Muenster. Three implementations
are compared; OpenMPI_BC and IntelMPI_BC are using the blackchannel library
based on OpenMPI and IntelMPI, respectively. OpenMPI_ULFM uses the ULFM

4https://gitlab.dune-project.org/exadune/blackchannel-ulfm.

https://gitlab.dune-project.org/exadune/blackchannel-ulfm
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Fig. 1 Benchmark of different MPI implementations: 12 nodes with 36 processes (left), 48 nodes
with 36 processes (right), cf. [18]

implementation provided by fault-tolerance.org, which is based on OpenMPI.
We performed 100 measurements for each implementation. The blackchannel
implementation is competitive to the ULFM implementation. As OpenMPI is in
this configuration not optimized and does not use the RDMA capabilities of the
interconnect, it is slower than the IntelMPI implementation. The speed up of the
OpenMPI_ULFM version compared to the OpenMPI_BC version is due to the better
communication strategy.

2.3 Compressed in-Memory Checkpointing for Linear Solvers

The previously described parallel exception propagation, rank loss detection and
communicator restoration by using the ULFM extension, allow us to implement a
flexible in-memory checkpointing technique which has the potential to recover from
hard faults on-the-fly without any user interaction. Our implementation establishes a
backup and recovery strategy which in part is based on a local-failure local-recovery
(LFLR) [54] approach, and involves lossy compression techniques to reduce the
memory footprint as well as bandwidth pressure. The contents of this subsection
have not been published previously.

Modified Solver Interface To enable the use of exception propagation as
illustrated in the previous section and to implement different backup recovery
approaches we kept all necessary modifications to DUNE-ISTL, the linear solver
library. We embed the solver initialisation and the iterative loop in a try-catch block,
and provide additional entry and execution points for recovery and backup, see
Listing 2 for details. Default settings are provided on the user level, i.e., DUNE-
PDELAB.

http://fault-tolerance.org
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� �

1 init_variables();
2 done = false;
3 while (!done) try {
4 MPIGuard guard(comm);
5 if (this->processRecovery(...))
6 reinit_execution();
7 } else {
8 init_execution();
9 }

10 for (i=0 ; i<=maxit; i++ ) {
11 do_iteration();
12 if (converged) {
13 done = true;
14 break;
15 }
16 this->processBackup(...);
17 }
18 } catch(Exception & e) {
19 done = false;
20 comm.reconstitute();
21 if (!this->processOnException(...))
22 throw;
23 }

� �

Listing 2 Solver modifications

This implementation ensures that the iterative solving process is active until the
convergence criterion is reached. An exception inside the try-block on any rank is
detected by the MPIGuard and propagated to all other ranks, so that all ranks will
jump to the catch-block.

This catch-block can be specialised for different kind of exceptions, e.g., if a
solver has diverged and a corresponding exception is thrown it could define some
specific routine to define a modified restart with a possibly more robust setting
and/or initial guess. The catch-block in Listing 2 exemplarily shows a possible
solution in the scenario of a communicator failure, e.g., a node loss which is
detected by using the ULFM extension to MPI, encapsulated by our wrapper for
MPI exceptions. Following the detection and propagation, all still valid ranks end
up in the catch-block and the communicator must be re-established in some way
(Listing 2, line 20). This can be done by shrinking the communicator or replacing
lost nodes by some previously allocated spare ones. After the communicator
reconstitution a user-provided stack of functions can be executed (Listing 2, line 21)
to react on the exception. If there is no on-exception-function or neither of them
returns true the exception is re-thrown to the next higher level, e.g., from the linear
solver to the application level, or in case of nested solvers, e.g. in optimisation or
uncertainty quantification.

Furthermore, there are two additional entry points for user provided function
stacks: In line 5 of Listing 2 a stack of recovery functions is executed and if it
returns true, the solver expects that some modification, i.e., recovery, has been done.
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In this case it could be necessary that the other participating ranks have to update
some data, like resetting their local right hand side to the initial values. The backup
function stack in line 16 allows the user to provide functions for backup creation
etc., after an iteration finished successfully.

Recovery Approaches First, regardless of these solver modifications, we describe
the recovery concepts which are implemented into an exemplary recovery inter-
face class providing functions that can be passed to the entry points within the
modified solver. The interoperability of these components and the available backup
techniques are described later. Our recovery class supports three different methods
to recover from a data loss. The first approach is a global rollback to a backup,
potentially involving lossy compression: progress on non-faulty ranks may be lost
but the restored data originate from the same state, i.e., iteration. This means there
is no asynchronous progression in the recovered iterative process but possibly
just an error introduced through the used backup technique, e.g., through lossy
compression. This compression error can reduce the quality of the recovery and
lead to additional iterations of the solver, but is still superior to a restart, as seen
later. For the second and third approaches, we follow the local-failure local-recovery
strategy and re-initialize the data which are lost on the faulty rank by using a
backup. The second, slightly simpler strategy uses these data to continue with solver
iterations. The third method additionally smoothes out the probably deteriorated
(because of compression) data by solving a local auxiliary problem [29, 31]. This
problem is set up by restricting the global operator to its purely local degrees of
freedom with indices F ⊂ N and a Dirichlet boundary layer. The boundary layer
can be obtained by extending F to some set J using the ghost layer, or possibly
the connectivity pattern of the operator A. The Dirichlet values on the boundary
layer are set to their corresponding values xN on the neighbouring ranks and thus
additional communication is necessary:

A(F,F)x̃(F) = b(F) in F

x̃ = xN on J\F

If this problem is solved iteratively and backup data are available, the computa-
tion speed can be improved by initializing x̃ with the data from the backup.

Backup Techniques Our current implementation provides two different techniques
for compressed backups as well as a basic class which allows ‘zero’-recovery
(zeroeing of lost data) if the user wants to use the auxiliary solver in case of data
loss without storing any additional data during the iterative procedure.

The next backup class uses a multigrid hierarchy for lossy data compression.
Thus it should only be used if a multigrid operator is already in use within
the solving process because otherwise the hierarchy has to be built beforehand
and introduces additional overhead. Compressing the iterative vector with the
multigrid hierarchy currently involves a global communication. In addition there
is no adaptive control of the compression depth (i.e., hierarchy level where the



Exa-Dune—Flexible PDE Solvers, Numerical Methods and Applications 235

backup is stored), but it has to be specified by the user, see a previous publication
for details [29].

We also implemented a compressed backup technique based on SZ compres-
sion [41]. SZ allows compression to a specified accuracy target and can yield better
compression rates than multigrid compression. The compression itself is purely
local and does not involve any additional communication. We provide an SZ backup
with a fixed user-specified compression target as well as a fully adaptive one which
couples the compression target to the residual norm within the iterative solver. For
the first we achieve an increased rate while we approach the approximate solution,
as seen in Fig. 2 (top, pink lines), at the price of an increased overhead in case of a
data loss (cf. Fig. 3). The backup with adaptive compression target (blue lines) gives
more constant compression rates, and a better recovery in case of faults in particular
in the second half of the iterative procedure of the solver.

The increased compression rate for the fixed SZ backup is obtained because, dur-
ing the iterative process, the solution gets more smooth and thus can be compressed
better by the algorithm. For the adaptive method this gain is counteracted by the
demand of a higher compression accuracy.

All backup techniques require to communicate a data volume smaller than the
volume of four full checkpoints, see Fig. 2 (bottom). Furthermore this bandwidth
requirement is distributed over all 68 iterations (in the fault-free scenario) and could
be decreased further by a lower checkpoint frequency.

The chosen backup technique is initiated before the recovery class and passed to
it. Further backup techniques can be implemented by using the provided base class
and overloading the virtual functions.

Bringing the Approaches Together The recovery class provides three functions
which are added to the function stacks within the modified solver interface. The

Fig. 2 Compression rate in the iterative solution for an anisotropic Poisson problem on 52 cores
with approximately 480 K DOF per core
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backup routine is added to the stack of backup functions of the specified iterative
solver and generates backups of the current iterative solution by using the provided
backup class.
� �

SomeSolver solver;
SomeBackup backup;
Recovery recovery(backup);
solver.addBackupFunction(&Recovery::backup, &recovery);

� �

To adapt numerical as well as communication overhead for different fault
scenarios and machine characteristics, the backup creation frequency can be varied.
After the creation of the backup it is sent to a remote rank where it is kept in memory
but never written to disk. In the following this is called ‘remote backup’. Currently
the backup propagation happens circular by rank. It is also possible to trigger writing
a backup to disk.

In the near future we will implement an on-the-fly recovery if an exception
is thrown. These will be provided to the other two function stacks and will
differ depending on the availability of the ULFM extensions: if the extension
is not available we can only detect and propagate exceptions but not recover a
communicator in case of hard faults, i.e., node losses (cf. Sect. 2.2). In this scenario
the function provided to the on-exception stack will only write out the global state.
Fault-free nodes will write the data of the current iterative vector, whereas for
faulty nodes the corresponding remote backup is written. In the following the user
will be able to provide a flag to the executable which modifies the backup object
initiation to read in the stored checkpoint data. Afterwards the recovery function of
our interface will overwrite the initial values of the solver with the checkpointed and
possibly smoothed data like described above. If the ULFM extensions are available,
the recovery can be realised without any user interaction: during the backup class
initiation a global communication ensures that it is the first and therefore fault-free
start of the parallel execution. If the process is a respawned one which replaces a
lost rank, this communication is matched by a send communication created from
the rank which holds the corresponding remote backup. This communication will
be initiated by the on-exception function. In addition to this message the remote
backup rank sends the stored compressed backup so that the respawned rank can
use this backup to recover the lost data.

So far, we have not fully implemented rebuilding the solver and preconditioner
hierarchy, and the re-assembly of the local systems, in case of a node loss.
This can be done with, e.g., message logging [13], or similar techniques which
allow recomputing the individual data on the respawned rank without additional
communication.

Figure 3 shows the effect of various combinations of different backup and
recovery techniques in case of a data loss on one rank after iteration 60. The problem
is an anisotropic Poisson problem with zero Dirichlet boundary conditions which
reaches the convergence criterion after 68 iterations in a fault-free scenario (black
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Fig. 3 Convergence history in case of data loss and recovery on one rank, same setting as in Fig. 2.
Bottom left: number of iterations to solve the auxiliary problem when using the backups as initial
guess. Note that the groups of the same colour are important, not the individual graphs

line). It is executed in parallel on 52 ranks with approximately 480,000 degrees of
freedom per rank. Thus one rank loss corresponds to a loss of around 2% of data.
For solving a conjugate gradient solver with an algebraic multigrid preconditioner
is applied. In addition to the residual norm we show the number of iterations which
are needed to solve the auxiliary problem when using different backups as initial
guess at the bottom left.

The different backup techniques are colour-coded (multigrid: red; adaptive SZ
compression: blue; fixed SZ compression: pink; no backup: green). For the SZ
techniques we consider two cases, each with a different compression accuracy
(fixed compression), respectively a different additional scaling coefficient (SZ).
Recovery techniques are coded with different line styles: global roll-back recovery
is indicated by straight lines; simple local recovery is shown with dotted lines
and if an auxiliary problem is solved to improve the quality of the recovery it
is drawn with a dashed line style. We observe that a zero recovery, multigrid
compression and a fixed SZ backup with a low accuracy target are not competitive if
no auxiliary problem is solved. The number of iterations needed until convergence
then increases significantly. By applying an auxiliary solver the convergence can be
almost fully restored (one additional global iteration) but the auxiliary solver needs
a high amount of iterations (multigrid: 28; sz: 70; no backup: 132). Other backup
techniques only need 8 auxiliary solver iterations. When using adaptive or very
accurate fixed SZ compression the convergence behaviour can be nearly preserved
even when only a local recovery or a global roll-back is applied. The adaptive
compression technique has similar data overhead as the fixed SZ compression



238 P. Bastian et al.

(cf. Fig. 2, bottom) but gives slightly better results: both adaptive SZ compression
approaches introduce only one additional iteration for all recovery approaches.
For the accurate fixed SZ compression (SZfixed_*_1e-7) we have two additional
iterations when using local or global recovery but if we apply the auxiliary solver
we also have only one additional iteration until convergence.

2.4 Communication Aware Krylov Solvers

In Krylov methods multiple scalar products per iteration must be computed. This
involves global sums in a parallel setting. As a first improvement we merged the
evaluation of the convergence criterion to the computation of a scalar product.
Obviously this does not effect the computed values, but the iteration terminates one
iteration later. However this reduces the number of global reductions per iteration
from 3 to 2 and thus already saves communication overhead.

As a second step we modify the algorithm, such that only one global com-
munication is performed per iteration. This algorithm can also be found in the
paper of Chronopoulos and Gear [15]. Another optimization is to overlap the two
scalar products with the application of the operator and preconditioner, respectively.
This algorithm was first proposed by Gropp [27]. A fully elaborate version was
then presented by Ghysels and Vanroose [27]. This version only needs one global
reduction per iteration, which is overlapped with both the application of the
preconditioner and operator. This algorithm is shown in Algorithm 2.

Algorithm 1 PCG
r0 = b − Ax0
p1 = Mr0
ρ1 = 〈p1, r0〉
for i = 1, . . . do
qi = Api
αi = 〈pi, qi〉
xi = xi−1 + ρi

αi
pi

ri = ri−1 − ρi
αi
qi

zi+1 = Mri
break if ‖ri‖ < ε
ρi+1 = 〈zi+1, ri〉
pi+1 = ρi+1

ρi
pi + zi+1
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Algorithm 2 Pipelined CG
r0 = b − Ax0
p1 = Mr0
q1 = Ap1
ρ1 = 〈p1, r0〉
α1 = 〈p1, q1〉
s1 = Mq1
t1 = As1
for i = 1, . . . do
xi = xi−1 + ρi

αi
pi

ri = ri−1 − ρi
αi
qi

break if ‖ri‖ < ε
zi+1 = zi − ρi

αi
si

wi+1 = wi − ρi
αi
ti

ρi+1 = 〈zi+1, ri〉
α̃i+1 = 〈zi+1, wi+1〉
αi+1 = αiρ

2
i+1

ρ2
i

+ α̃i+1

vi+1 = Mwi+1
ui+1 = Avi+1
si+1 = ρi+1

ρi
si + vi+1

ti+1 = ρi+1
ρi
ti + ui+1

pi+1 = ρi+1
ρi
pi + zi+1

qi+1 = ρi+1
ρi
qi + wi+1

With the new communication interface, described above, we are able to compute
multiple sums in one reduction pattern and overlap the communication with
computation. To apply these improvements in Krylov solvers the algorithm must
be adapted, such that the communication is independent of the overlapping com-
putation. For this adaption we extend the ScalarProduct interface by a function
which can be passed multiple pairs of vectors for which the scalar product should
be computed. The function returns a Future which contains a std::vector<

field_type>, once it has finished.
� �

Future<vector<field_type>>
dots(initializer_list<tuple<X&, X&>> pairs);

� �

The function can be used in the Krylov methods like this:
� �

scalarproduct_future = sp.dot_norm({{p,q}, {z, b}, {b,b}});
// compute while communicate
auto result = scalarproduct_future.get();
field_type p_dot_q = result[0];
field_type z_dot_b = result[1];
field_type norm_b = std::sqrt(result[2]);

� �

The runtime improvement of the algorithm strongly depends on the problem size
and on the hardware. On large systems the communication overhead makes up a
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Table 1 Memory requirement, computational effort and global reductions per iteration for
different versions of the preconditioned conjugate gradients method

Required memory Additional computational effort Global reductions

PCG 4N – 2

Chronopoulos and Gear 6N 1N 1

Gropp 6N 2N 2 overlapped

Ghysels and Vanroose 10N 5N 1 overlapped

Fig. 4 Strong scaling for (pipelined) Krylov subspace methods

large part of the runtime. However, the maximum speedup is 3 for reducing the
number of global reductions and 2 for overlapping communication and computation,
compared to the standard version, so that a maximum speedup of 6 is possible.
The optimization also increases the memory requirements and vector operations per
iteration. An overview of runtime and memory requirements of the methods can be
found in Table 1.

Figure 4 shows strong scaling for different methods. The shown speedup is
per iteration and with respect to the Dune::CGSolver, which is the current CG
implementation in DUNE. We use an SSOR preconditoner in an additive overlapping
Schwarz setup. The problem matrix is generated from a 5-star Finite Difference
model problem. With less cores the current implementation is faster than our
optimized one. But with higher core count our optimized version outperforms it.
The test was executed on the helics3 cluster of the University on Heidelberg,
with 5600 cores on 350 nodes. We expect that on larger systems the speedup
will further increase, since the communication is more expensive. The overlap of
communication and computation does not really come into play, since the currently
used MPI version does not support it completely.
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3 Hardware-Aware, Robust and Scalable Linear Solvers

In this section we highlight improved concepts for high-performance iterative
solvers. We provide matrix-based robust solvers on GPUs using sparse approximate
inverses and optimize algorithm parameters using machine learning. On CPUs
we significantly improve the node-level performance by using optimal matrix-
free operators for Discontinous Galerkin methods, specialized partially matrix-free
preconditioners as well as vectorized linear solvers.

3.1 Strong Smoothers on the GPU: Fast Approximate Inverses
with Conventional and Machine Learning Approaches

In continuation of the first project phase, we enhanced the assembly of sparse
approximate inverses (SPAI), a kind of preconditioner that we had shown to be
very effective within the DUNE solver before [9, 26]. Concerning the assembly
of such matrices we have investigated three strategies regarding their numerical
efficacy (that is their quality in approximating A−1), the computational complexity
of the actual assembly and ultimately, the total efficiency of the amortised assembly
combined with all applications during a system solution. For both strategies, this
includes a decisive performance engineering for different hardware architectures
with focus on the exploitation of GPUs.

SPAI-1 As a starting point we have developed, implemented and tuned a fast
SPAI-1 assembly routine based on MKL/LAPACK routines (CPU) and on the
cuBlas/cuSparse libraries, performing up to four times faster on the GPU. This
implementation is based on the batched solution of QR decompositions that arise in
Householder transformations during the SPAI minimisation process. In many cases,
we observe that the resulting preconditioner features a high quality comparable to
Gauss–Seidel methods. Most importantly, this result still holds true when taking
into account the total time-to-solution, which includes the assembly time of the
SPAI, even on a single core where the advantages of SPAI preconditioning over
forward/backward substitution during the iterative solution process are not yet
exploited. More systematic experiments with respect to these statements as well
as their extension to larger test architectures are currently being conducted.

SAINV This preconditioner creates an approximation of the factorised inverse
A−1 = ZDR of a matrixA ∈ R

N×N withD being a diagonal,Z an upper triangular
and R a lower triangular Matrix.

To describe our new GPU implementation, we write the row-wise updates in
the right-looking, outer product form of the A-biconjugation-process of the SAINV
factorisation as follows: The assembly of the preconditioner is based on a loop over
the existing rows i ∈ {1, . . . , N} of Z (initialised as unit matrix IN ), where in every
iteration the loop generally calls three operations, namely a sparse-matrix vector
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Algorithm 3 Algorithm of the row-wise updates
for (j = i + 1, . . . , N) do

if Djj �= 0 then � check if the fraction is unequal to zero

α←−Djj
Dii
zzz
(i−1)
i

for n = 1, . . . ,nnz(α) do
if αn > ε ∗maxi,j (Aij ) then � here αn is the n-th entry of the vector α

if check(zni ,znj ) then � Has zj already an entry at the columnindex of the n-th entry of α ?

add(znj ,αn)
update_minimum(zj ) � get new min. value of j-th row

else if nnz(zj ) < ω × nnz(A)
dim(A)

then � maximum number of rowentries already reached?

insert(zj ,αn) � insert the value αn at the fitting position

update_minimum(zj )
else if αn > min(zj ) then � check if the value of αn is bigger than the minimum of zj

replace(min(zj ),αn) � replace the old minimum with the value of αn
update_minimum(zj )

multiplication, a dot product and an update of the remaining rows i + 1, . . . , N
based on a drop-parameter ε.

In our implementation we use the ELLPACK and CSR formats, pre-allocating
a fixed amount of nonzeros of the matrix Z using ω times the average number of
nonzeros per row of A. Having a fixed row size, no reallocation of the arrays of the
matrix format is needed and the row-wise update can be computed in parallel. This
idea is based on the observation that while the density ω for typical drop tolerances
is not strictly limited, it generally falls into the interval ]0, 3[. As the SpMV and
the dot kernels are well established, we take a closer look at the row-wise update,
which is described more detailed in Algorithm 3. We first compute the values to be
added and store them in a variable α. Then we iterate over all nonzero entries of α
(which of course has the same sparsity pattern as zi ) and check if the computed value
exceeds a certain drop-tolerance. If this condition is met, we have three conditions
for an insertion into the matrix Z:

1. Check if there is already an existing nonzero value in the j -th row at the column
index of the value αn and search for the new minimal entry of this row.

2. Else check if there is still place in the j -th row, so we can simply insert the value
αn into that row and search for the new minimal entry of this row.

3. Else check if the value αn is greater than the current minimum. If this condition
is satisfied, then switch the old minimal value with αn and search for the new
minimal entry of this row.

If none of these conditions is met, we drop the computed value without updating
the current column and repeat these steps for the next values unequal to zero of the
current row. This cap of values for each row also has the following disadvantages: by
having a too small maximum of nonzeros per row, a qualitativeA-orthogonalization
cannot be performed. To avoid this case we only take values of ω greater than one,
which seems to be sufficient. Also, if a row has already reached the maximum
number of nonzeros, additional but relatively small values may be dropped. This
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Fig. 5 GPU smoother comparison, isotropic and anisotropic Poisson benchmarks

can become an issue if the sum of these small numbers leads to a relevant entry
in a later iteration. For a comparison, Fig. 5 depicts the time-to-solution for V-
cycle multigrid using different strong smoothers on a P100 GPU. All smoothers are
constructed using 8 Richardson iterations with (reasonably damped if necessary)
preconditioners such as Jacobi, Gauss–Seidel, ILU-0, SPAI-1, SPAI-ε and SAINV.
We set up the benchmark case from a 2D Poisson problem in the isotropic case and
with two-sided anisotropies in the grid to harden the problem even for well-ordered
ILU approaches. The SPAI approaches are the best choice for the smoother on the
GPU.

Machine Learning Finally we started investigating how to construct approximate
inverses using methods from Machine Learning [53]. The basic idea here is to
treat A−1 as a discrete function in the course of a function regression process. The
neural network therefore learns how to deduct (extrapolate) an approximation of
the inverse. Once trained with many data pairs of matrices and their inverse (a
sparse representation of it) a neural network like a multilayer perceptron can be
able to approximate inverses rapidly. As a starting point we have employed the
finite element method for the Poisson equation on different domains with linear
basis functions and have used it to generate expedient systems of equations to solve.
Problems of this kind are usually based on sparse M-matrices with characteristics
that can be used to reduce the calculation time and effort of the neural network
training and evaluation. Our results show that given the pre-defined quality of the
preconditioner (equivalent to the ε in a SPAI-ε method), we can by far numerically
outperform even Gauss–Seidel. Using Tensorflow [1] and numpy [4], the learning
algorithm can even be performed on the GPU. Here we have used a three-layered
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fully-connected perceptron with fifty neurons in each layer plus input and output
layers, and employed the resulting preconditioners in a Richardson method to solve
the mentioned problem on a three times refined L-domain with a fixed number of
degrees of freedom. The numerical effort of each evaluation of the neural network
is basically the effort of a matrix-vector-multiplication for each layer in which the
matrix size depends on the number of neurons per layer (M) and the non zero
entries (N) of the input matrix, like O(NM) for the first layer. The inner layers’
effort, without input and output layer, just depends on the number of neurons. The
crucial task now is to balance the quality of the resulting approximation and the
effort to evaluate the network. We use fully connected feed-forward multilayer
perceptrons as a starting point. Fully connected means that every neuron in the
network is connected to each neuron of the next layer. Moreover there are no
backward connections between the different layers (feed-forward). The evaluation
of such neural networks is a sequence of chained matrix-vector products.

The entries of the system matrix are represented vector-wise in the input layer
(cf. Fig. 6). In the same way, our output layer contains the entries of the approximate
inverse. Between these layers we can add a number of hidden layers consisting of
hidden neurons. How many hidden neurons we need to create strong approximate
inverses is a key design decision and we discuss this below. In general our
supervised training algorithm is a backward propagation with random initialisation.
Alongside a linear propagation function itotal = W · ototal + b with the total (layer)
net input itotal, the weight matrix W, the vector for the bias weights b and the total
output of the previous layer ototal, we use the rectified linear unit (ReLu) function as
activation function α(x) and thus we can calculate the output y of each neuron as
y := α(∑j oj · wij). Here oj is the output of the preceding sending units and wij are
the corresponding weights between the neurons.

For the optimization we use the L2 error function and update the weights with
w
(t+1)
ij = w(t)ij + γ · oi · δj, with the output oi of the sending unit and learning rate
γ . δj symbolises the gradient decent method:

δj =
{
f ′(ij) · (ôj − oj) if neuron j is an output neuron
f ′(ij) ·∑k∈S(δk ·wkj ) if neuron j is a hidden neuron.

Fig. 6 Model of a neural network for matrix inversion, cf. [53]



Exa-Dune—Flexible PDE Solvers, Numerical Methods and Applications 245

0.04

0.02

0.06

0

8.5

8

7.5

7

6.5

6

5.5

9

86

tol in 10 (–�)

tim
e 

in
 s

sp
ee

d-
up

4

Jac - NN 50
GS - NN 50GS

Jac

NN 50
NN 225

2 10 86

tol in 10 (–�)

42 10

Fig. 7 Results for the defect correction with the neural network, cf. [53]

For details concerning the test/training algorithm we refer to a previous publica-
tion [53]. For the defect correction prototype, we find a significant speedup for a
moderately anisotropic Poisson problem, see Fig. 7.

3.2 Autotuning with Artificial Neural Networks

Inspired by our usage of Approximate Inverses generated by artificial neural
networks (ANNs), we exploit (Feed Forward-) neural networks (FNN) for the
automatic tuning of solver parameters. We were able to show that it is possible to
use such an approach to provide much better a-priori choices for the parametrisation
of iterative linear solvers. In detailed studies for 2D Poisson problems we conducted
benchmarks for many test matrices and autotuning systems using FNNs as well as
convolutionary neural networks (CNNs) to predict the ω parameter in a SOR solver.
In Fig. 8 we depict 100 randomly choosen samples of this study. It can be seen that
even for good a-priori choices of ω the NN-driven system can compete whilst ‘bad’
choices (labeled constant) might lead to a stalling solver.

3.3 Further Development of Sum-Factorized Matrix-Free DG
Methods

While we were able to achieve good node-level performance with our matrix-free
DG methods in the first funding period, our initial implementations still did not
utilize more than about 10% of the theoretical peak FLOP throughput. In the second
funding period, we systematically improved on those results by focusing on several
aspects of our implementation:
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Fig. 8 Result for 100 samples of the FNN-based autotuning system for the ω parameter in SOR

Introduction of Block-Based DOF Processing Our implementation is based
on DUNE-PDELAB, a very flexible discretization framework for both continuous
and discontinuous discretizations of PDEs. In order to support a wide range of
discretizations, PDELab has a powerful system for mapping DOFs to vector and
matrix entries. Due to this flexibility, the mapping process is rather expensive. On
the other hand, Discontinuous Galerkin values will always be blocked in a cell-wise
manner. This can be exploited by only ever mapping the first degree of freedom
associated with each cell and then assuming that all subsequent values for this cell
are directly adjacent to the first entry. We have added a special ‘DG codepath’ to
DUNE-PDELAB which implements this optimization.

Avoiding Unnecessary Memory Transfers As all of the values for each cell are
stored in consecutive locations in memory, we can further optimize the framework
behavior by skipping the customary gather/scatter steps before and after the
assembly of each cell and facet integral. This is implemented by replacing the
data buffer normally passed to the integration kernels with a dummy buffer that
stores a pointer to the first entry in the global vector/matrix and directly operates on
the global values. This is completely transparent to the integration kernels, as they
only ever access the global data through a well-defined interface on these buffer
objects. Together with the previous optimization, these two changes have allowed
us to reduce the overhead of the framework infrastructure on assembly times from
more than 100% to less than 5%.

Explicit Vectorization The DG implementation used in the first phase of the
project was written as scalar code and relied on the compiler’s auto vectorization
support to utilize the SIMD instruction set of the processor, which we tried to
facilitate by providing compile time loop bounds and aligned data structures. In
the second phase, we have switched to explicit vectorization with a focus on AVX2,
which is a common foundation instruction set across all current ×86-based HPC
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processors. We exploit the possibilities of our C++ code base and use a well-
abstracted library which wraps the underlying compiler intrinsic calls [23]. In a
separate project [34], we are extending this functionality to other SIMD instruction
sets like AVX512.

Loop Reordering and Fusion While vectorization is required to fully utilize
modern CPU architectures, it is not sufficient. We also have to feed the execution
units with a substantial number of mutually independent chains of computation
(≈40–50 on current CPUs). This amount of parallelism can only be extracted from
typical DG integration kernels by fusing and reordering computational loops. In
contrast to other implementations of matrix-free DG assembly [22, 43], we do not
group computations across multiple cells or facets, but instead across quadrature
points and multiple input/output variables. In 3D, this works very well for scalar
PDEs that contain both the solution itself and its gradient, which adds up to four
quantities that exactly fit into an AVX2 register.

Results Table 2 compares the throughput and the hardware efficiency of our
matrix-free code for two diffusion-reaction problems A (axis-parallel grid, constant
coefficients per cell) and B (affine geometries, variable coefficients per cell) with
a matrix-based implementation. Figure 9 compares throughput and floating point
performance of our implementation for these problems as well as an additional
problem C with multi-linear geometries, demonstrating that we are able to achieve
more than 50% of theoretical peak FLOP rate on this machine as well as a good
computational processing rate as measured in DOFs/s.

While our work in this project was mostly focused on scalar diffusion-advection-
reaction problems, we have also applied the techniques shown here to projection-
based Navier–Stokes solvers [51]. One important lesson learned was the unsustain-
able amount of work required to extend our approach to different problems and/or
hardware architectures. This led us to develop a Python-based code generator in
a new project [34], which provides powerful abstractions for the building blocks
listed above. This toolbox can be extended and combined in new ways to achieve
performance comparable to hand-optimized code. Especially for more complex
problems involving systems of equations, there are a large number of possible ways
to group variables and their derivatives into sum factorization kernels due to our
approach of vectorizing over multiple quantities within a single cell. The resulting
search space is too large for manual exploration, which the above project solved by
the addition of benchmark-driven automatic comparison of those variants. Finally,
initial results show good scalability of our code as shown by the strong scaling
results in Fig. 10. Our implementation shows good scalability until we reach a local
problem size of just 18 cells, where we still need to improve the asynchronicity of
ghost data communication and assembly.
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Fig. 9 Floating point performance in GFLOPs/s and throughput in MDOFs/s for full operator
application, 2× Intel Xeon E5-2698v3 2.3 GHz for all model problems
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Fig. 10 Runtimes for strong scalability on IWR compute cluster (416 nodes with 2× E5-2630 v3
each, 64 GiB/node, QDR Infiniband)

3.4 Hybrid Solvers for Discontinuous Galerkin Schemes

In Sect. 3.3 we concentrated on the performance of matrix-free operator appli-
cation. This is sufficient for instationary problems with explicit time integration,
but in case of stationary problems or implicit time integration, (linear) algebraic
systems need to be solved. This requires operator application and robust, scalable
preconditioners.

For this we extended hybrid AMG-DG preconditioners [8] in a joint work with
Eike Müller from Bath University, UK, [10]. In a solver for matrices arising from
higher order DG discretizations the basic idea is to perform all computations on
the DG system in a matrix-free fashion and to explicitly assemble only a matrix
in a low-order subspace which is significantly smaller. In the sense of subspace
correction methods [58] we employ a splitting

V
p
DG =

∑

T ∈Th
V
p
T + Vc
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where V pT is the finite element space of polynomial degree p on element T and the
coarse space Vc is either the lowest-order conforming finite element space V 1

h on the
mesh Th, or the space of piecewise constants V 0

h . Note that the symmetric weighted
interior penalty DG method from [21] reduces to the cell-centered finite volume
method with two-point flux approximation on V 0

h . Note also, that the system on Vc
can be assembled without assembling the large DG system.

For solving the blocks related to V pT , two approaches have been implemented.
In the first (named partially matrix-free), these diagonal blocks are factorized using
LAPACK and each iteration uses a backsolve. In the second approach the diagonal
blocks are solved iteratively to low accuracy using matrix-free sum factorization.
Both variants can be used in additive and multiplicative fashion. Figure 11 shows
that the partially matrix-free variant is optimal for polynomial degree p ≤ 5, but
starting from p = 6, the fully matrix-free version starts to outperform all other
options.

In order to demonstrate the robustness of our hybrid AMG-DG method we use
the permeability field of the SPE10 benchmark problem [14] within a heterogeneous
elliptic problem. This is considered to be a hard test problem in the porous media
community. The DG method from [21] is employed. Figure 12 depicts results for
different variants and polynomial degrees run in parallel on 20 cores. A moderate
increase with the polynomial degree can be observed. With respect to time-to-
solution (not reported) the additive (block Jacobi) partially matrix-free variant is
to be preferred for polynomial degree larger than one.

Fig. 11 Total solution time for different implementations and a range of block-solver tolerances ε
for the Poisson problem (left) and the diffusion problem with spatially varying coefficients (right),
cf. [10]
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10

Fig. 12 Convergence history for SPE10 benchmark. The relative energy norm is shown for
polynomial degrees 1 (red squares), 2 (blue upward triangles) and 3 (green downward triangles).
Results for the block-SSOR smoother are marked by filled symbols and results for the block-Jacobi
smoother by empty symbols. cf. [10]

3.5 Horizontal Vectorization of Block Krylov Methods

Methods like Multiscale FEM (see Sect. 4), optimization and inverse problems need
to invert the same operator for many right-hand-side vectors. This leads to a block
problem, by the following conceptual reformulation:

foreach i ∈ [0, N] : solve Axi = bi → solve AX = B,

with matrices X = (x0, . . . xN), B = (b0, . . . bN). Such problems can be solved
using Block Krylov solvers. The benefit is that the approximation space can grow
faster, as the solver orthogonalizes the updates for all right-hand-sides. Even for a
single right-hand-side Block Krylov based enriched Krylov methods can be used to
accelerate the solution process.

Preconditioners and the actual Krylov solver can be sped up using horizontal
vectorization. Assuming k right-hand-sides we observe that the scalar product
yields a k × k dense matrix and has O(k2) complexity. While the mentioned
larger approximation space should improve the convergence rate, this is only
true for weaker preconditioners, therefore we pursued a different strategy and
approximate the scalar product matrix by a sparse matrix, so that we again retain
O(k) complexity. In particular we consider the case of a diagonal or block-diagonal
matrix. The diagonal matrix basically results in k independent solvers running in
parallel, so that the performance gain is solely based on SIMD vectorization and the
associated favorable memory layout.
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Fig. 13 Horizontal vectorization of a linear solver for 256 right-hand-side vectors. Timings on a
Haswell-EP (E5-2698v3, 16 cores, AVX2, 4 lanes). Comparison with 1–16 cores and no SIMD,
AVX (4 lanes), AVX (4× 4 lanes)

For the implementation in DUNE-ISTL we use platform portable C++ abstrac-
tions of SIMD intrinsics, building on the VC library[38] and some DUNE specific
extensions. We use this to exchange the underlying data type of the right-hand-side
and the solution vector, so that we no longer store scalars, but SIMD vectors. This
is possible when using generic programming techniques, like C++ templates, and
yields a row-wise storage of the dense matrices X and B. This row-wise storage is
optimal and ensures a high arithmetic intensity. The implementations of the Krylov
solvers have to be adapted to the SIMD data types, since some operations, like casts
and branches, are not available generically for SIMD data types. As a side effect, all
preconditioners, including the AMG, are now fully vectorized.

Performance tests using 256 right-hand-side vectors for a 3D Poisson problem
show nearly optimal speedup on a 64 core system (see Fig. 13). The tests are carried
out on a Haswell-EP (E5-2698v3, 16 cores, AVX2, 4 lanes). We observe a speedup
of 50, while the theoretical speedup is 64.

4 Adaptive Multiscale Methods

The main goal in the second funding phase was a distributed adaptive multilevel
implementation of the localized reduced basis multi-scale method (LRBMS [49]).
Like Multiscale FEM (MsFEM), LRBMS is designed to work on heterogenous
multiscale or large scale problems. It performs particularly well for problems that
exhibit scale separation with effects on both a fine and a coarse scale contributing
to the global behavior. Unlike MsFEM, LRBMS is best applied in multi-query
settings in which a parameterized PDE needs to be solved many times for different
parameters. As an amalgam of domain decomposition and model order reduction
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techniques, the computational domain is partitioned into a coarse grid with each
macroscopic grid cell representing a subdomain for which, in an offline pre-compute
stage, local reduced bases are constructed. Appropriate coupling is then applied
to produce a global solution approximation from localized data. For increased
approximation fidelity we can integrate localized global solution snapshots into the
bases, or the local bases can adaptively be enriched in the online stage, controlled
by a localized a-posteriori error estimator.

4.1 Continuous Problem and Discretization

We consider elliptic parametric multi-scale problems on a domain � ⊂ R
d where

we look for p(μ) ∈ Q that satisfy

b(p(μ), q;μ) = l(q) for all q ∈ H 1
0 (�), (1)

μ are parameters with μ ∈ P ⊂ R
p, p ∈ N. We let ε > 0 be the multi-scale

parameter associated with the fine scale. For demonstration purposes we consider
a particular linear elliptic problem setup in � ⊂ R

d (d = 2, 3) that exhibits a
multiplicative splitting in the quantities affected by the multi-scale parameter ε. It
is a model for the so called global pressure p(μ) ∈ H 1

0 (�) in two phase flow in
porous media, where the total scalar mobility λ(μ) is parameterized. κε denotes the
heterogenous permeability tensor and f the external forces. Hence, we seek p that
satisfies weakly in H 1

0 (�),

−∇ · (λ(μ)κε∇p(μ)) = f in �. (2)

With A(x;μ) := λ(μ)κε(x) this gives rise to the following definition of the forms
in (1)

b(p(μ), q;μ) :=
∫

�

A(μ)∇p · ∇q, l(q) :=
∫

�

f q.

For the discretization we first require a triangulation TH of � for the macro
level. We call the elements T ∈ TH subdomains. We then require each subdomain
be covered with a fine partition τh(T ) in a way that TH and τh := �T ∈TH τh(T ) are
nested. We denote by FH the faces of the coarse triangulation and by Fh the faces
of the fine triangulation.

Let V (τh) ⊂ H 2(τh) denote any approximate subset of the broken Sobolev space
H 2(τh) := {q ∈ L2(�) | q|t ∈ H 2(t) ∀t ∈ τh}. We call ph(μ) ∈ V (τh) an
approximate solution of (1), if

bh
(
ph(μ), v;μ

) = lh(v;μ) for all v ∈ V (τh). (3)
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Here, the DG bilinear form bh and the right hand side lh are chosen according to the
SWIPDG method [20], i.e.

bh(v,w;μ) :=
∑

t∈τh

∫

t

A(μ)∇v · ∇w +
∑

e∈F(τh)
beh(v,w;μ)

lh(v;μ) :=
∑

t∈τh

∫

t

f v,

where the DG coupling bilinear forms beh for a face e is given by

beh(v,w;μ) :=
∫

e

〈
A(μ)∇v · ne

〉[w] + 〈
A(μ)∇w · ne

〉[v] + σe(μ)|e|β [v][w].

The LRBMS method allows for a variety of discretizations, i.e. approximation
spaces V (τh). As a particular choice of an underlying high dimensional approxima-
tion space we choose V (τh) = Qkh :=

⊕
T ∈TH Q

k,T
h , where the discontinuous local

spaces are defined as

Q
k,T
h := Qk,Th (τh(T )) := {q ∈ L2(T ) | q|t ∈ Pk(t) ∀t ∈ τh(T )}.

4.2 Model Reduction

For model order reduction in the LRBMS method we choose the reduced space
Qred := ⊕

T ∈TH Q
T
red ⊂ Qkh with local reduced approximation spaces QTred ⊂

Q
k,T
h . We denote pred(μ) to be the reduced solution of (3) inQred. This formulation

naturally leads to solving a sparse blocked linear system similar to a DG approxi-
mation with high polynomial degree on the coarse subdomain grid.

The construction of subdomain reduced spaces QTred is again very flexible.
Initialization with shape functions on T up to order k ensures a minimum fidelity.
Basis extensions can be driven by a discrete weak greedy approach which incor-
porates localized solutions of the global system. Depending on available com-
putational resources, and given a suitable localizable a-posteriori error estimator
η(pred(μ),μ), we can forego computing global high-dimensional solutions alto-
gether and only rely on online enrichment to extend QTred ‘on the fly’. With online
enrichment, given a reduced solution pred(μ) for some arbitrary μ ∈ P, we first
compute local error indicators ηT (pred(μ),μ) for all T ∈ TH . If ηT (pred(μ),μ)

is greater than some prescribed bound δtol > 0, we solve on a overlay region
N(T ) ⊃ T and extend QTred with pN(T )(μ)|T . Inspired by results in [17] we set
the overlay region’s diameter diam(N(T )) of the order O(diam(T )|log(diam(T ))|).
In practice we use the completely on-line/off-line decomposable error estimator
developed in [49, Sec. 4] which in turn is based on the idea of producing a
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conforming reconstruction of the diffusive flux λ(μ)κε∇hph(μ) in some Raviart-
Thomas-Nédélec space V lh(τh) ⊂ Hdiv(�) presented in [21, 56].

This process is then repeated until either a maximum number of enrichment steps
occur or ηT (pred(μ),μ) ≤ δtol.

Algorithm 4 Schematic representation of the LRBMS pipeline
Require: Ptrain ⊂ P
Require: Reconstruction operator Rh(pred(μ)) : Qred(TH )→ Qkh(τh)

1: function GREEDYBASISGENERATION(δgrdy, η(pred(μ),μ)=None )
2: if η(pred(μ),μ) is not None then
3: E← {η(pred(μi), μi ) |μi ∈ Ptrain}
4: else
5: E← {||Rh(pred(μi ))− ph(μi )|| |μi ∈ Ptrain}
6: while E �= ∅ AND max(E) ≥ δgrdy do
7: i ← argmax(E)
8: compute ph(μi)

9: for all T ∈ TH do
10: extend QTred with ph(μ)|T
11: E← E \ Ei

12: Generate TH � Offline Phase
13: for all T ∈ TH do
14: create τh(T )
15: initQTred with DG shape functions of order k

16: GREEDYBASISGENERATION(· · ·) � Optional
17: compute pred(μ) for arbitraryμ � Online phase
18: for all T ∈ TH do � Optional Adaptive Enrichment
19: η← ηT (pred(μ),μ)

20: while η ≥ δtol do
21: compute pN(T )(μ)
22: QTred ← pN(T )(μ)|T

4.3 Implementation

We base our MPI-parallel implementation of LRBMS on the serial version devel-
oped previously. In this setup the high-dimensional quantities and all grid structures
are implemented in DUNE. The model order reduction as such is implemented in
Python using pyMOR [45]. The model reduction algorithms in pyMOR follow a
solver agnostic design principle. Abstract interfaces allow for example projections,
greedy algorithms or reduced data reconstruction to be written without knowing
details of the PDE solver backend. The global macro grid TH can be any
MPI-enabled DUNE grid manager with adjustable overlap size for the domain
decomposition, we currently use DUNE-YASPGRID. The fine grids τh(T ) are
constructed using the same grid manager as on the macro scale, with MPI subcom-
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municators.These are currently limited to a size of one (rank-local), however the
overall scalability could benefit from dynamically sizing these subcommunicators
to balance communication overhead and computational intensity as demonstrated in
[36, Sec. 2.2]. The assembly of the local (coupling) bilinear forms is done in DUNE-
GDT [24], with pyMOR/Python bindings facilitated through DUNE-XT [46], where
DUNE-GRID-GLUE [19] generates necessary grid views for the SWIPDG coupling
between otherwise unrelated grids. Switching to DUNE-GRID-GLUE constitutes a
major step forward in robustness of the overall algorithm, compared to our previous
manually implemented approach to matching independent local grids for coupling
matrices assembly.

We have identified three major challenges in parallelizing all the steps in
LRBMS:

1. Global solutions ph(μ) of the blocked system in Eq. (3) with an appropriate
MPI-parallel iterative solver. With the serial implementation already using
DUNE-ISTL as the backend for matrix and vector data, we only had to generate
an appropriate communication configuration for the blocked SWIPDG matrix
structure to make the BiCGStab solver usable in our context. We tested this setup
on the SuperMUC Petascale System in Garching. The results in Fig. 14 show very
near ideal speedup from 64 nodes with 1792 MPI ranks up to a full island with
512 nodes and 14336 ranks.

2000 4000 6000 8000 10000 12000 14000
# Cores

2

4

6

8

Sp
ee

du
p

Overall
Assembly
BiCGStab
Ideal

Fig. 14 Localized Reduced Basis Method: Block-SWIPDG speedup results; linear system solve
(green), discretization and system assembly (blue), theoretic ideal speedup (violet) and actual
achieved speedup for the overall run time (red). Simulation on ∼7.9 · 106 cubical cells shows
minimum 94% parallel efficiency, scaling from 64 to 512 nodes (SuperMUC Phase 2)
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2. (Global) Reduced systems also need a distributed solver. By design all
reduced quantities in pyMOR are, at the basic, unabstracted level, NumPy
arrays [57]. Therefore we cannot easily re-use the DUNE-ISTL based solvers for
the high-dimensional systems. Our current implementation gathers these reduced
system matrices from all MPI-ranks to rank 0, recombines them, solves the
system with a direct solver and scatters the solution. There is great potential in
making this step more scalable by either using a distributed sparse direct solver
like Mumps [3] or translating the data into the DUNE-ISTL backend.

3. Adaptive online enrichment is inherently load imbalanced due to its local-
ized error estimator guidance. The load imbalance results from one rank idling
while waiting to receive updates to a basis on a subdomain in its overlap region
from another rank. This idle time can be minimized by encapsulating the update
in a MPIFuture described in Sect. 2.1. This will allow the rank to continue in its
own enrichment process until the updated basis is actually needed in a subsequent
step.

5 Uncertainty Quantification

The solution of stochastic partial differential equations (SPDEs) is characterized by
extremely high dimensions and poses great (computational) challenges. Multilevel
Monte Carlo (MLMC) algorithms attract great interest due to their superiority over
the standard Monte Carlo approach. Based on Monte Carlo (MC), MLMC retains
the properties of independent sampling. To overcome the slow convergence of MC,
where many computationally expensive PDEs have to be solved, MLMC combines
in a proper way cheap MC estimators and expensive MC estimators, achieving
(much) faster convergence. One of the critical components of the MLMC algorithms
is the way in which the coarser levels are selected. The exact definition of the
levels is an open question and different approaches exist. In the first funding phase,
Multiscale FEM was used as a coarser level in MLMC. During the second phase,
the developed parallel MLMC algorithms for uncertainty quantification were further
enhanced. The main focus was on exploring the capabilities of the renormalization
approach for defining the coarser levels in the MLMC algorithm, and on using
MLMC as a coarse grained parallelization approach.

Here, we employ MLMC to exemplarily compute the mean flux through
saturated porous media with prescribed pressure drop and known distribution of
the random coefficients.

Mathematical Problem As a model problem in R
2 or R3, we consider steady state

single phase flow in random porous media:

−∇ · [k(x, ω)∇p(x, ω)] = 0 for x ∈ D = (0, 1)d, ω ∈ �
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subject to the boundary conditions px=0 = 1 and px=1 = 0 and zero flux on
other boundaries. Here p is pressure, k is scalar permeability, and ω is a random
vector. The quantity of interest is the mean (expected value) E[Q] of the total flux
Q through the inlet of the unit cube i.e., Q(x,ω) := ∫

x=0 k(x, ω)∂np(x, ω)dx.
Both the coefficient k(x, ω) and the solution p(x, ω) are subject to uncertainty,
characterized by the random vector ω in a properly defined random space �. For
generating permeability fields we consider the practical covariance C(x, y) =
σ 2exp(−||x−y||2/λ). An algorithm based on forward and inverse Fourier transform
over the circulant covariance matrix is used to generate the permeability field. For
solving the deterministic PDEs a Finite Volume method on a cell centered grid is
used [32]. More details and further references can be found in a previous paper [47].

Monte Carlo Simulations To quantify the uncertainty, and compute the mean of
the flux we use a MLMC algorithm. Let ωM be a random vector over a properly
defined probability space, and QM be the corresponding flux. It is known that
E[QM ] can be made arbitrarily close toE[Q] by choosingM sufficiently large. The
standard MC algorithm convergences very slowly, proportionally to the variance
over the square root of the number of samples, which makes it often unfeasible.
MLMC introduces L levels with the L-th level coinciding with the considered
problem, and exploits the telescopic sum identity:

E[QLM(ω)] = E[Q0
M(ω)] + E[Q1

M(ω)−Q0
M(ω)] + . . . E[QLM(ω)−QL−1

M (ω)]

The notation Y l = Q1 − Ql−1 is also used. The main idea of MLMC is to
properly define levels, and combine a large number of cheap simulations, that are
able to approximate the variance well, with a small number of expensive correction
simulations providing the needed accuracy. For details on Monte Carlo and MLMC
we refer to previous publications [32, 47] and the references therein. Here, the target
is to estimate the mean flux on a fine grid, and we define the levels as discretizations
on coarser grids. In order to define the permeability at the coarser levels we use the
renormalization approach.

MLMC has previously run the computations at each level with the same
tolerance. However, in order to evaluate the number of samples needed per level,
one has to know the variance at each level. Because the exact variance is not known
in advance, MLMC starts by performing simulations with a prescribed, moderate
number of samples per level. The results are used to evaluate the variance at each
level, and thus to evaluate the number of samples needed per level. This procedure
can be repeated several times in an Estimate–Solve cycle. At each estimation step,
information from all levels is needed, which leads to a synchronization point in the
parallel realization of the algorithm. This may require dynamic redistribution of the
resources after each new evaluation.

MLMC can provide a coarse graining in the parallelization. A well balanced
algorithm has to account for several factors: (1) How many processes should be
allocated per level; (2) how many processes should be allocated per deterministic
problem including permeability generation; (3) how to parallelize the permeability
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generation; (4) which of the parallelization algorithms for deterministic problems
available in EXA-DUNE should be used; (5) should each level be parallelized
separately and if not, how to group the levels for efficient parallelization. The last
factor is the one giving coarse grain parallelization opportunities. For the generation
of the permeability, we use the parallel MPI implementation of the FFTW library.
As deterministic solver, we use a parallel implementation of the conjugate gradient
scheme preconditioned with AMG, provided by DUNE-ISTL. Both of them have
their own internal domain decomposition.

We shortly discuss one Estimate-Solve cycle of the MLMC algorithm. Without
loss of generality we assume 3-level MLMC. Suppose that we have already
computed the required number of samples per level (i.e., we are after Estimate
and before Solve). Let us denote by Ni, i = {0, 1, 2} the number of required
realizations per level for Ŷl , by pi the number of processes allocated per Ŷi , by
p
g
li

the respective group size of processes working on a single realization, by n
the number of realizations for each group of levels, with ti the respective time for
solving a single problem once, and finally with ptotal the total number of available
processes. Then we can compute the total CPU time for the current Estimate-Solve
cycle as

T total
CPU = N0t0 +N1t1 +N2t2.

Ideally each process should take T pCPU = T total
CPU/p

total. Dividing the CPU time
needed for one Ŷi by T pCPU, we get a continuous value for the number of processes on
a given level pideal

i = Niti/T pCPU for i = {0, 1, 2}. Then we can take pi =
⌊
pideal
i

⌋
.

To obtain an integer value for the number of processes allocated per level, first we
construct a set of all possible splits of the original problem as a combination of
subproblems (e.g., parallelize level 2 separately and the combination of levels 0 and
1, or parallelize all levels simultaneously, etc.). Each element of this set is evaluated
independently, and all combinations of upper and lower bounds are calculated,
such that pideal

i is divisible by pgli ,
∑2
l=0 pi < p

total and pi ≤ Nipgli . Traversing,
computing and summing the computational time needed for each element gives us
a time estimation. Then we select the element (grouping of levels) with minimal
computational time. To tackle the distribution of the work on a single level, a similar
approach can be employed. Due to the large dimension of the search tree a heuristic
technique can be employed. Here we consider a simple predefined group size for
each deterministic problem, having in mind that when using AMG the work for a
single realization at the different levels is proportional to the unknowns at this level.

Numerical Experiments Results for a typical example are shown in Fig. 15. The
parameters are σ = 2.75, λ = 0.3. The tests are done on SuperMUC-NG, LRZ
Munich on a dual Intel Skylake Xeon Platinum 8174 node. Due to the stochasticity
of the problem, we plot the speedup multiplied with the proportion of the tolerance.
The renormalization has shown to be a very good approach for defining the coarser
levels in MLMC. The proposed parallelization algorithm gives promising scalability
results. It is weakly coupled to the number of samples that MLMC estimates.
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Fig. 15 Scalability of the MLMC approach

Although the search for an optimal solution is an NP-hard problem, the small
number of levels enables a full traversing of the search tree. It can be further
improved by automatically selecting the number of processes per group that solves
a single problem. One also may consider introducing interrupts between the MPI
communicators on a level to further improve the performance.

6 Land-Surface Flow Application

To test some of the approaches developed in the EXA-DUNE project, especially
the usage of sum-factorized operator evaluation with more complex problems,
we developed an application to simulate coupled surface-subsurface flow for
larger geographical areas. This is a topic with high relevance for a number of
environmental questions from soil protection and groundwater quality up to weather
and climate prediction.

One of the central aims of the new approach developed in the project is to
be able to relate a physical meaning to the parameter functions used in each
grid cell. This is not possible with the traditional structured grid approaches as
the necessary resolution would be prohibitive. To avoid the excessive memory
requirements of completely unstructured grids we build on previous results for
block-structured meshes and use a two-dimensional unstructured grid on the surface
which is extruded in a structured way in vertical direction. However, more flexible
discretization schemes are needed for such grids, compared to the usual cell-
centered Finite-Volume approaches.
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6.1 Modelling and Numerical Approach

To describe subsurface flow we use the Richards equation [52]

∂θ(ψ)

∂t
−∇ · [k(ψ) (∇ψ + eg

)]+ qw = 0

where θ is the volumetric water content, ψ the soil water potential, k the hydraulic
conductivity, eg the unit vector pointing in the direction of gravity and qw a
volumetric source or sink term.

In nearly all existing models for coupled surface-subsurface flow, the kinematic-
wave approximation is used for surface flow, which only considers surface slope
as driving force and does not even provide a correct approximation of the steady-
state solution. The physically more realistic shallow-water-equations are used rarely,
as they are computationally expensive. We use the diffusive-wave approximation,
which still retains the effects of water height on run-off, yields a realistic steady-
state solution and is a realistic approximation for flow on vegetation covered ground
[2]:

∂h

∂t
− ∇ · [D(h,∇h)∇(h + z)] = fc, (4)

where h is the height of water over the surface level z, fc is a source-sink term
(which is used for the coupling) and the diffusion coefficientD is given by

D(h,∇h) = hα

C · ‖∇(h+ z)‖1−γ

with ‖ · ‖ refering to the Euclidean norm and α, γ and C are empirical constants. In
the following we use α = 5

3 and γ = 1
2 to obtain Manning’s formula and a friction

coefficient of C = 1.
Both equations are discretised with a cell-centered Finite-Volume scheme and

alternatively with a SWIPDG scheme in space (see Sect. 3) and an appropriate
diagonally implicit Runge–Kutta scheme in time for the subsurface and an explicit
Runge–Kutta scheme for the surface flow. Upwinding is used for the calculation of
conductivity in subsurface flow [5] and for the water height in the diffusion term in
surface flow.

First tests have shown that the formulation of the diffusive-wave approximation
from the literature as given by Eq. (4) does not result in a numerically stable solution
if the gradient becomes very small, as then a gradient approaching zero is multiplied
by a diffusion coefficient going to infinity. A much better behaviour is achieved by
rewriting the equation as

∂h

∂t
− ∇ ·

[
hα

C
· ∇(h+ z)
‖∇(h+ z)‖1−γ

]

= fc,
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where the rescaled gradient ∇(h+z)
‖∇(h+z)‖1−γ is always going to zero when ∇(h + z) is

going to zero as long as γ < 1 and the new diffusion coefficient hα/C is bounded.
Due to the very different time-scales for surface and subsurface flow, an operator-

splitting approach is used for the coupled system. A new coupling condition has
been implemented, which is a kind of Dirichlet-Neumann coupling, but guarantees
a mass-conservative solution. With a given height of water on the surface (from the
initial condition or the last time step modified by precipitation and evaporation),
subsurface flow is calculated with a kind of Signorini boundary condition, where
all surface water is infiltrated in one time step as long as the necessary gradient
is not larger than the pressure resulting from the water ponding on the surface (in
infiltration) and potential evaporation rates are maintained as long as the pressure
at the surface is not below a given minimal pressure (during evaporation). The
advantage of the new approach is that it does not require a tracking of the sometimes
complicated boundary between wet and dry surface elements, that it yields no
unphysical results and that the solution is mass-conservative even if not iterated
until convergence.

Parallelisation is obtained by an overlapping or non-overlapping domain-decom-
position (depending on the grid). However, only the two-dimensional surface grid
is partitioned whereas the vertical direction is kept on one process due to the strong
coupling. Thus there is also no need for communication of surface water height
for the coupling, as the relevant data is always stored in the same process. The
linear equation systems are solved with the BiCGstab-solver from DUNE-ISTL with
Block-ILU0 as preconditioner. The much larger mesh size in horizontal direction
compared to the vertical direction results in strong coupling of the unknowns in the
vertical direction. The Block-ILU0 scheme provides an almost exact solver of the
strongly coupled blocks in the vertical direction and is thus a very effective scheme.
Furthermore, one generally has a limited number of cells in the vertical direction
and extends the mesh in horizontal direction to simulate larger regions. Thus the
good properties of the solver are retained when scaling up the size of the system.

6.2 Performance Optimisations

As the time steps in the explicit scheme for surface flow can get very small due to
the stability limit, a significant speedup can be achieved by using a semi-implicit
scheme, where the non-linear coefficients are calculated with the solution from the
previous time step or iteration. However, if the surface is nearly completely dry, this
could lead to numerical problems, thus an explicit scheme is still used under nearly
dry conditions with an automatic switching between both.

While matrix-free DG solvers with sum-factorization can yield excellent per
node performance (Sect. 3.3), it is a rather tedious task to implement them for new
partial differential equations. Therefore, a code-generation framework is currently
being developed in a project related to EXA-DUNE [33]. The framework is used to
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implement an alternative optimized version of the solver for the Richards equation
as this is the computationally most expensive part of the computations. Expensive
material functions like the van Genuchten model including several power functions
are replaced by cubic spline approximations, which allow a fast vectorized incor-
poration of flexible material functions to simulate strongly heterogeneous systems.
Sum-factorisation is used in the operator evaluations for the DG-discretization with
a selectable polynomial degree.

A special pillar grid has been developed as a first realisation of a 2.5D grid
[33]. It adds a vertical dimension to a two-dimensional grid (which is either
structured or unstructured). However, as the current version still produces a full
three-dimensional mesh at the moment, future developments are necessary to exploit
the full possibilities of the approach.

6.3 Scalability and Performance Tests

Extensive tests covering infiltration as well as exfiltration have been performed (e.g.
Fig. 16) to test the implementation and the new coupling condition. Good scalability
is achieved in strong as well as in weak scaling experiments on up to 256 nodes
and 4096 cores of the bwForCluster in Heidelberg (Fig. 17). Simulations for a large
region with topographical data taken from a digital elevation model (Fig. 18) have
been conducted as well.

With the generated code-based solver for the Richards equation a substantial
fraction of the system’s peak performance (up to 60% on a Haswell-CPU) can be

Fig. 16 Surface runoff and infiltration of 5 cm water into a dry coarse sand (top) and the
unstructured 2.5D mesh used for the simulations (bottom)
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Fig. 17 Results of a strong (left) and weak (right) scalability test with a coupled run-off and
infiltration experiment on 1 to 256 nodes (16 to 4096 Intel Xeon E5-2630 v3 2.4 GHz CPU cores)
of the bwForCluster at IWR in Heidelberg

Fig. 18 Pressure distribution with an overlay of the landscape taken from Google Earth calculated
in a simulation of water transport in a real landscape south of Brunswick simulated on 30 nodes
with 1200 cores of HLRN-IV in Göttingen (2× Intel Skylake Gold 6148 2.4 GHz CPUs)

utilized due to the combination of sum factorization and vectorisation (Fig. 19).
For the Richards equation (as for other PDEs before) the number of millions of
degrees of freedom per second is independent of the polynomial degree with this
approach. We measure a total speedup of 3 compared to the naive implementation
in test simulations on a Intel Haswell Core i7-5600U 2.6 GHz CPU with first order
DG base functions on a structured 32 × 32× 32 mesh for subsurface and 32× 32
grid for surface flow. Even higher speedups are expected with higher-order base
functions and matrix-free iterative solvers. The fully-coupled combination of the
Richards solver obtained with the code generation framework and surface-runoff is
tested with DG up to fourth order on structured as well as on unstructured grids.
Parallel simulations are possible as well.
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Fig. 19 Performance of the Richards solver implemented with the code generation framework for
EXA-DUNE

7 Conclusion

In EXA-DUNE we extended the DUNE software framework in several directions
to make it ready for the exascale architectures of the future which will exhibit a
significant increase in node level performance through massive parallelism in form
of cores and vector instructions. Software abstractions are now available that enable
asynchronicity as well as parallel exception handling and several use cases for these
abstractions have been demonstrated in this paper: resilience in multigrid solvers
and several variants of asynchronous Krylov methods. Significant progress has been
achieved in hardware-aware iterative linear solvers: we developed preconditioners
for the GPU based on approximate sparse inverses, developed matrix-free operator
application and preconditioners for higher-order DG methods and our solvers are
now able to vectorize over multiple right hand sides. These building blocks have
then been used to implement adaptive localized reduced basis methods, multilevel
Monte-Carlo methods and a coupled surface-subsurface flow solver on up to 14k
cores. The EXA-DUNE project has spawned a multitude of research projects, running
and planned, as well as further collaborations in each of the participating groups. We
conclude that the DUNE framework has made a major leap forward due to the EXA-
DUNE project and work on the methods investigated here will continue in future
research projects.
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Abstract In this paper, we present results of the second phase of the project
ExaFSA within the priority program SPP1648—Software for Exascale Computing.
Our task was to establish a simulation environment consisting of specialized
highly efficient and scalable solvers for the involved physical aspects with a
particular focus on the computationally challenging simulation of turbulent flow and
propagation of the induced acoustic perturbations. These solvers are then coupled
in a modular, robust, numerically efficient and fully parallel way, via the open
source coupling library preCICE. Whereas we made a first proof of concept for
a three-field simulation (elastic structure, surrounding turbulent acoustic flow in the
near-field, and pure acoustic wave propagation in the far-field) in the first phase,
we removed several scalability limits in the second phase. In particular, we present
new contributions to (a) the initialization of communication between processes of
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the involved independent solvers, (b) optimization of the parallelization of data
mapping, (c) solver-specific white-box data mapping providing higher efficiency
but less flexibility, (d) portability and scalability of the flow and acoustic solvers
FASTEST and Ateles on vector architectures by means of code transformation,
(e) physically correct information transfer between near-field acoustic flow and far-
field acoustic propagation.

1 Introduction

The simulation of fluid-structure-acoustic interactions is a typical example for multi-
physics simulations. Two fundamentally different physical sound sources can be
distinguished: structural noise and flow-induced noise. As we are interested in
accurate results for the resulting sound emissions induced from the turbulent flow, it
is decisive to include not only the turbulent flow, but also the structure deformation
and the interaction between both. High accuracy requires the use of highly resolved
grids. As a consequence, the use of massively parallel supercomputers is inevitable.
When we are interested in the sound effects far away from a flow induced
fluttering structure, the simulation becomes too expensive, even for supercomputing
architectures. Hence, we introduce an assumption, we call it the “far-field”. Far from
the structure and, thus, the noise generation, we assume a homogeneous background
flow and restrict the simulation in this part of the domain to the propagation
of acoustic waves. This results in an overall setup with two coupling surfaces—
between the elastic structure and the surrounding flow, and between the near-field
and the far-field in the flow domain (see Fig. 1 for an illustrative example). Such
a complex simulation environment implies several new challenges compared to

Far-Field Acoustics ΩFA

Coupling Interface Γ FA

Fluid Flow ΩF & Near-Field Accoustics ΩNA

Γ SF

S
tr
u
ct
u
re

Ω
S

Displacements

Forces

Velocity, Pressure, Density

Inflow Outflow

Fig. 1 Multiphysics fluid-structure-acoustic scenario as used in our simulations in Sect. 6. The
domain is decomposed into a near-field ‘incompressible flow region’ �F = �NA, a far-field
‘acoustic only region’ �FA, and an ‘elastic structure region’ �S. Note that the geometry is not
scaled correctly for better illustration
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“single-physics” simulations: (a) multi-scale properties in space and time (small-
scale processes around the structure, multi-scale turbulent flow in the near-field, and
large-scale processes in the acoustic far-field), (b) different optimal discretization
and solver choices for the three fields, (c) highly ill-conditioned problem, if
formulated and discretized as a single large system of equations, (d) challenging
load-balancing due to different computational load per grid unit depending on the
local physics.

Application examples for fluid-structure-acoustic simulations can be found in
several technical systems: wind power plants, fans in air conditioning systems of
buildings, cars or airplanes, car mirrors and other design details of a car frame,
turbines, airfoil design, etc.

Fluid-structure interaction simulations as a sub-problem of our target system
have been in the focus of research in computational engineering for many years,
mainly aiming at capturing stresses in the structure more realistically than with
a pure flow simulation. A main point of discussion in this field is the question
whether monolithic approaches—treating the coupled problem as a single large
system of equations—or partitioned methods—glueing together separate simulation
modules for structures and fluid flow by means of suitable coupling numerics and
tools—are more appropriate and efficient. Monolithic approaches require a new
implementation of the simulation code as well as the development of specialized
iterative solvers for the ill-conditioned overall system of equations, but can achieve
very high efficiency and accuracy [3, 12, 19, 23, 38]. Partitioned approaches, on the
other hand, offer large flexibility in choosing optimal solvers for each field, adding
additional fields, or exchanging solvers. The difficulty here lies in both a stable,
accurate, and efficient coupling between independent solvers applying different
numerical methods and in establishing efficient communication and load balancing
between the used parallel codes. For numerical coupling, numerous efficient data
mapping methods [5, 26, 27, 32] have been published along with efficient iterative
solvers [2, 7, 13, 20, 29, 35, 39, 41]. In [6], various monolithic and partitioned
approaches have been proposed and evaluated in terms of a common benchmark
problem. Three-field fluid-structure-acoustic interaction in the literature has so far
been restricted to near-field simulations due to the intense computational load
[28, 33].

To realize a three-field fluid-structure-acoustic interaction including the far-field,
we use a partitioned approach and couple existing established “single-physics”
solvers in a black-box fashion. We couple the finite volume solver FASTEST [18],
the discontinuous Galerkin solver Ateles [42], and the finite element solver CalculiX
[14] by means of the coupling library preCICE [8]. We compare this approach to
a less flexible white-box coupling implemented in APESmate [15] as part of the
APES framework and make use of the common data-structure within APES [31].
The assumption which is confirmed in this paper is, that the white-box approach is
more efficient, but puts some strict requirements on the codes to be coupled, while
the black-box approach is a bit less efficient, but much more flexible with respect to
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the codes that can be used. Our contributions to the field of fluid-structure-acoustic
interaction, which we summarize in this paper, include:

1. For the near-field flow, we introduce a volume coupling between background
flow and acoustic perturbations in FASTEST accounting for the multi-scale
properties in space and time by means of different spatial and time resolution.

2. For both near-field flow and far-field acoustics, we achieved portability and
performance optimization of Ateles and FASTEST for vector machines by means
of code transformation.

3. In terms of inter-field coupling, we

(a) increased the efficiency of inter-code communication by means of a new
hierarchical implementation of communication initialization and a modified
communicator concept,

(b) we improved the robustness and efficiency of radial basis function mapping,
(c) we identified correct interface conditions between near-field and far-field,

optimized the position of the interface, and ensured correct boundary
conditions by overlapping near-field and far-field,

(d) we developed and implemented implicit quasi-Newton coupling numerics
that allow for a simultaneous execution of all involved solvers.

4. For a substantially improved inter-code load balancing, we use a regression-
based performance model for all involved solvers and perform an optimization
of assigned cores.

5. We present a comparison of our black-box and to the white-box approach for
multi-physics coupling.

These contributions have been achieved as a result of the project ExaFSA—
a cooperation between the Technische Universität Darmstadt, the University of
Siegen, the University of Stuttgart, and the Tohoku University (Japan) in the
Priority Program SPP 1648—Software for Exascale Computing of the German
Research Foundation (DFG) in close collaboration with the Technical University
of Munich. In the first funding phase (2013–2016), we showed that efficient
yet robust coupled simulations are feasible and can be enhanced with an in-situ
visualization component as an additional software part, but we still reached limits
in terms of scalability and load balancing [4, 9]. This paper focuses on results of
the second funding phase (2016–2019) and demonstrates significant improvements
in scalability and accuracy as well as robustness based on the above-mentioned
contributions.

In the following, we introduce the underlying model equations of our target
scenarios in Sect. 2 and present our solvers and their optimization in Sect. 3 as well
as the black-box coupling approach and new contributions in terms of coupling in
Sect. 4. In Sect. 5, we compare black-box coupling to an alternative, efficient, but
solver-specific and, thus, less flexible white-box coupling for uni-directional flow-
acoustic coupling. Finally, results for a turbulent flow over a fence scenario are
presented in Sect. 6.



ExaFSA: Parallel Fluid-Structure-Acoustic Simulation 275

2 Model

In this section, we shortly introduce the underlying flow, acoustic and structure
models of our target application. We use the Einstein summation convention
throughout this section.

2.1 Governing Equations

The multi-physics scenario we investigate describes an elastic structure embedded
in a turbulent flow field. The latter is artificially decomposed into a near-field and a
far-field. See Fig. 1 for an example.

Near-Field Flow In the near-field region�F = �NA, the compressible fluid flow is
modeled by means of the density ρ, the velocity ui and the pressure p. As we focus
on a low Mach number regime, we can split these variables into an incompressible
part ρ, ui, p, and acoustic perturbations ρ′, u′i , p′:

ρ = ρ + ρ′, ui = ui + u′i , p = p + p′ . (1)

The incompressible flow is described by the Navier-Stokes equations1

∂ui

∂xi
= 0, (2a)

∂

∂t
(ρui)+ ∂

∂xj

(
ρuiuj − τij

) = ρfi , (2b)

where ρ is the density of the fluid, and fi summarizes external force density terms.
The incompressible stress tensor τij for a Newtonian fluid is described by

τij = −pδij + μ
(
∂ui

∂xj
+ ∂uj
∂xi

)

, (3)

with μ representing the dynamic viscosity and δij the Kronecker-Delta.

1To capture the moving structure within the near-field, we actually formulate all near-field
equations in an arbitrary Lagrian-Eulerian perspective. For the relative mesh velocity, we use
a block-wise elliptic mesh movement as described in [30]. As we do not show fluid-structure
interaction in this contribution, however, we formulate all near-field equations in a pure Eulerian
perspective for the sake of simplicity.
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Acoustic Wave Propagation The propagation of acoustic perturbations in both the
near-field and the far-field is modeled by the linearized Euler equations, where in
the far-field a constant background state is assumed (which implies ∂p

∂t
= 0).

∂ρ′

∂t
+ ρ ∂u

′
i

∂xi
+ ui ∂ρ

′

∂xi
= 0 (4a)

ρ
∂u′i
∂t
+ ρuj ∂u

′
i

∂xj
+ ∂p

′

∂xi
= 0 (4b)

∂p′

∂t
+ ρc2 ∂u

′
i

∂xi
+ ui ∂p

′

∂xi
= −∂p

∂t
(4c)

Here c is the speed of sound. In the near-field, the background flow quantities ui
and p are calculated from (2), whereas they are assumed to be constant in the
acoustic far-field. The respective constant value is read from the coupling interface
with the near-field, which implies that the interface has to be chosen such that the
background flow values are (almost) constant at the coupling interface. In both
cases, the coupling between background-flow and acoustic perturbations is uni-
directional from the background flow to the acoustic equations (4) by means of
p and ui .

Elastic Structure The structural subdomain �S is governed by the equations of
motion, here in Lagrangian description:

ρS ∂
2ϑi

∂t2
= ∂SjkFik

∂XS
j

+ ρSf S
i . (5)

With xS
i = XS

i + ϑi being the position of a particle in the current configuration,XS
i

is the position of a particle in the reference configuration, and ϑi the displacement.
Fij is the deformation gradient. Sij is the second Piola-Kirchhoff tensor, and ρS

describes the structural density. The Cauchy stress tensor τS
ij relates to Sij via

τS
ij =

1

det
(
Fij

)FikSklFjl . (6)

We assume linear elasticity to describe the stress-strain relation.
The coupling between fluid and structure is bi-directional by means of dynamic

and kinematic conditions, i.e., equality of interface displacements/velocities and
stresses, i.e.,

u

F

i = ∂ϑ

S

i

∂t
, τ


F

ij = τ
S

ij (7)

at 
I = 
S ∩ 
F with 
F = ∂�F and 
S = ∂�S.
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3 Solvers and Their Optimization

Following a partitioned approach, the respective subdomains of the multi-physics
model as described in Sect. 2 (elastic structure domain, near-field, and far-field)
are treated by different solvers. We employ the flow solver FASTEST presented
in Sect. 3.1 to solve for the incompressible flow equations, Eq. (2), and near-field
acoustics equations, Eq. (4), the Ateles solver described in Sect. 3.2 for the far-field
acoustics equations, Eq. (4), and finally the structural solver CalculiX introduced in
Sect. 3.3 for the deformation of the obstacle, Eq. (5). For performance optimization
of FASTEST and Ateles, we make use of the Xevolver framework, which has
been developed to separate system-specific performance concerns from application
codes. We report on the optimization of both solvers further below.

3.1 FASTEST

FASTEST is used to solve both the incompressible Navier-Stokes equations (2) and
the linearized Euler equations (4) in the near-field.

Capabilities and Numerical Methods The flow solver FASTEST [24] solves
the three-dimensional incompressible Navier-Stokes equations. The equations are
discretized utilizing a second-order finite-volume approach with implicit time-
stepping, which is also second order accurate. Field data are evaluated on a
non-staggered, body-fitted, and block-structured grid. The equations are solved
according to the SIMPLE scheme [11], and the resulting linear equation system
is solved by ILU factorization [36]. Geometrical multi-grid is employed for con-
vergence acceleration. The code generally follows a hybrid parallelization strategy
employing MPI and OpenMP. FASTEST can account for different flow phenomena,
and has the capability to model turbulent flow with different approaches. In our test
case example, we employ a detached-eddy simulation (DES) based on the ζ − f
turbulence model [30].

In addition, FASTEST contains a module to solve the linearized Euler equations
to describe low Mach number aeroacoustic scenarios, which are solved by a second
order Lax-Wendroff scheme with various limiters.

Since all equation sets are discretized on the same numerical grid, advantage can
be taken from the multi-grid capabilities to account for the scale discrepancies of the
fluid flow and the acoustics. Since the spatial scales of the acoustics are considerably
larger than those of the flow, a coarser grid level can be used for them. In return, the
finer temporal scales can be considered by sub-cycling a CFD time step with various
CAA time steps. This way a very efficient implementation of the viscous/acoustic
splitting approach can be realized.
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Performance Optimization Concerning performance optimization, one interest-
ing point of FASTEST is that some of its kernels were once optimized for old vector
machines, and thus important kernels have their vector versions in addition to the
default ones. The main difference between the two versions is that nested loops in
the default version are collapsed into one loop in the vector version. Since the loops
skip accessing halo regions, the compiler is not able to automatically collapse the
loops, resulting in short vector lengths even if the compiler can vectorize them. To
efficiently run the solver on a vector system, performance engineers usually need to
manually change the loop structures. In this project, Xevolver is used to express
the differences between the vector and default versions as code transformation
rules. In other words, vectorization-aware loop optimizations are expressed as code
transformations. As a result, the default version can be transformed to its vector
version, and the vector version does not need to be maintained any longer to
achieve high performance on vector systems. That is, the FASTEST code can be
simplified without reducing the vector performance by using the Xevolver approach.
Ten rules are defined to transform the default kernels in FASTEST to their vector
kernels. Those code transformations plus some system-independent minor code
modifications for removing vectorization obstacles can reduce the execution time
on the NEC SX-ACE vector system by about 85%, when executing a simple test
case that models a three-dimensional Poiseuille flow through a channel based on the
Navier-Stokes equations, in which the mesh contains two blocks with 426,000 cells
each. The code execution on the SX-ACE vector processor works about 2.7 times
faster than on the Xeon E5-2695v2 processor, since the kernel is memory-intensive
and the memory bandwidth of SX-ACE is 4× higher than that of Xeon. Therefore, it
is clearly demonstrated that the Xevolver approach is effective to achieve both high
performance portability and high code maintainability for FASTEST.

3.2 Ateles

In our project, Ateles is used for the simulation of the acoustic far-field. Since
acoustics scales need to be transported over a large distance, Ateles’ high-order DG
scheme can show its particular advantages of low dissipation and dispersion error in
this test case.

Capabilities and Numerical Methods The solver Ateles is integrated in the
simulation framework APES [31]. Ateles is based on the Discontinuous Galerkin
(DG) discretization method, which can be seen as a hybrid method, combining
the finite-volume and finite-element methods. DG is well suited for parallelization
and the simulation of aero-acoustic problems, due to its inherent dissipation and
dispersion properties. This method has several outstanding advantages, that are
among others the high-order accuracy, the faster convergence of the solution with
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increasing scheme order and fewer elements compared to a low order scheme
with a higher number of elements, the local h-p refinement as well as orthogonal
hierarchical bases. The DG solver Ateles includes different equation systems,
among others the compressible Navier-Stokes equations, the compressible inviscid
Euler equations and the linearized Euler equations (used in this work for the
acoustics far-field). For the time discretization, Ateles makes use of the explicit
Runge-Kutta time stepping scheme, which can be either second or fourth order.

Performance Optimization Analyzing the performance of Ateles, originally
developed assuming x86 systems, we found out that four kinds of code optimization
techniques are needed for a total of 18 locations of the code in order to migrate
the code to the SX-ACE system. Those techniques are mostly for collapsing the
kernel loop and also for directing the NEC compiler to vectorize the loop. In this
project, all the techniques are expressed as one common code transformation rule.
The rule can take the option to change its transformation behaviors appropriately
for each code location. This means that, to achieve performance portability between
SX-ACE and x86 systems, only one rule needs to be maintained in addition to the
Ateles application code. We executed a small testcase solving Maxwell equations
with an 8th order DG scheme on 64 grid cells. The code transformation leads to
7.5× higher performance. The significant performance improvement is attributed
to loop collapse and insertion of appropriate compiler directives, which increases
the vectorization length by a factor of 2 and the vectorization ratio from 71.35%
to 96.72%. Finally, in terms of the execution time, the SX-ACE performance is
19% the performance of Xeon E5-2695v2. The code optimizations for SX-ACE
reduce the performances of Xeon and Power8 by 14% and 6%, respectively. In this
way, code optimizations for a specific system are often harmful to other systems.
However, by using Xevolver, such a system-specific code optimization is expressed
separately from the application code. Therefore, the Xevolver approach is obviously
useful for achieving high performance portability across various systems without
complicating the application code.

3.3 CalculiX

As structure solver, we use the well-established finite element solver CalculiX[14],
developed by Guido Dhont und Klaus Wittig.2 While CalculiX also supports static
and thermal analysis, we only use it for dynamic non-linear structural mechanics.
As our main research focus is not the structural computation per se, but the coupling
within a fluid-structure-acoustic framework, we merely regard CalculiX as a black
box. The preCICE adapter of CalculiX has been developed in [40].

2www.calculix.de.

www.calculix.de
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4 A Black-Box Partitioned Coupling Approach Using
preCICE

Our first and general coupling approach for the three-field simulation comprising
(a) the elastic structure, (b) the near-field flow with acoustic equations, and (c) the
far-field acoustic propagation follows a black-box idea, i.e., we only use input
and output data of dedicated solvers at the interfaces between the respective
domains for numerical coupling. Such a black-box coupling requires three main
functional coupling components: intercode-communication, data-mapping between
non-matching grids of independent solvers, and iterative coupling in cases with
strong bi-directional coupling. preCICE is an open source library3 that provides
software modules for all three components. In the first phase of the ExaFSA project,
we ported preCICE from a server-based to a fully peer-to-peer communication
architecture [9, 39], increasing the scalability of the software from moderately to
massively parallel. To this end, all coupling numerics needed to be parallelized on
distributed data. During the second phase of the ExaFSA project, we focused on
several costly initialization steps and further necessary algorithmic optimizations.
In the following, we shortly sketch all components of preCICE with a particular
focus on innovations introduced in the second phase of the ExaFSA project and on
the actual realization of the fluid-acoustic coupling between near-field and far-field
and the fluid-structure coupling.

4.1 (Iterative) Coupling

To simulate fluid-structure-acoustic interactions such as in the scenario shown in
Fig. 1, two coupling interfaces have to be considered with different numerical and
physical properties: (a) the coupling between fluid flow and the elastic structure
requires an implicit bi-directional coupling, i.e., we exchange data in both directions
and iterate in each time step until convergence; (b) the coupling between fluid flow
and the acoustic far-field is uni-directional (neglecting reflections back into the near-
field domain), i.e., results of the near-field fluid flow simulation are propagated to the
far-field solver as boundary values once per time step. In order to fulfil the coupling
conditions at the fluid-structure interface as given in Sect. 2, we iteratively solve the
fixed-point equation

(
S(f )

F (u)

)

=
(
u

f

)

, (8)

3www.precice.org.

www.precice.org
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where f represents the stresses, u the velocities at the interface 
FS , S the effects
of the structure solver on the interface (with stresses as an input and velocities as an
output), F the effects of the fluid solver on the interface (with interface velocities as
an input and stresses as an output). preCICE provides a choice of iterative methods
accelerating the plain fixed-point iteration on Eq. (8). The most efficient and robust
schemes are our quasi-Newton methods that are provided in a linear complexity (in
terms of interface degrees of freedom) and fully parallel optimized versions [35].
As most of our achievements concerning iterative methods fall within the first phase
of the ExaFSA project, we omit a more detailed description and refer to previous
reports instead [9].

For the uni-directional coupling between the fluid flow in the near-field and the
acoustic far-field, we transfer perturbation in density, pressure, and velocity from
the flow domain to the far-field as boundary conditions at the interface. We do this
once per acoustic time step, which is chosen to be the same for near-field and far-
field acoustics, but which is much smaller than the fluid time step size (and the
fluid-structure coupling), as described in Sect. 3.1.

Both domains are time-dependent and subject to mutual influence.
In an aeroacoustic setting, the near-field subdomain�NA and far-field subdomain

�FA, with boundaries 
NA = ∂�NA and 
FA = ∂�FA are fixed, which means, all
background information in the far-field are fixed to a certain value. Therefore there
is only influence of�NA onto�FA, as backward propagation can be neglected. Then
the continuity of shared state variables on the interface boundary 
IA = 
NA ∩
FA

is

ρ′
FA

i = ρ′
NA

i , u′
FA

i = u′
NA

i , p′
FA

i = p′
NA

i . (9)

4.2 Data Mapping

Our three solvers use different meshes adapted to their specific problem domain.
To map data between the meshes, preCICE offers three different interpolation
algorithms: (a) Nearest-neighbor interpolation is based on finding the geometrically
nearest neighbor, i.e. the vertex with the shortest distance from the target or
source vertex. It excels in its ease of implementation, perfect parallelizability, and
low memory consumption. (b) Nearest-projection mapping can be regarded as an
extension to the nearest-neighbor interpolation, working on nearest mesh elements
(such as edges, triangles or quads) instead of merely vertices and interpolating
values to the projection points. The method requires a suitable triangulation to
be provided by the solver. (c) Interpolation by radial-basis functions is provided.
This method works purely on vertex data and is a flexible choice for arbitrary mesh
combinations with overlaps and gaps alike.

In the second phase of the ExaFSA project, we improved the performance of the
data mapping schemes in various ways. All three interpolation algorithms contain
a lookup-phase which searches for vertices or mesh elements near a given set of
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positions. As there is no guarantee regarding ordering of vertices, this resulted in
O (n ·m) lookup operations, n,m ∈ N being the size of the respective meshes. In
the second phase, we introduced a tree-based data structure to facilitate efficient
spatial queries. The implementation utilizes the library Boost Geometry4 and
uses an rtree in conjunction with the r-star insertion algorithm. The integration
of the tree is designed to fit seamlessly into preCICE and avoids expensive copy
operations for vertices and mesh elements of higher dimensionality. Consequently,
the complexity of the lookup-phase was reduced to O

(
loga n

) · m with a being a
parameter of the tree, set to ≈5. The tree index is used by nearest-neighbor, nearest-
projection, and RBF interpolation as well as other parts in preCICE and provides a
tremendous speedup in the initialization phase of the simulation.

In the course of integrating the index, the RBF interpolation profited from a
second performance improvement. In contrast to the nearest-neighbor and nearest-
projection schemes it creates an explicit interpolation matrix. Setting values one by
one results in a large number of small memory allocations with a relatively large per-
call overhead. To remedy this, a preallocation pattern is computed with the help of
the tree index. This results in a single memory allocation, speeding up the process
of filling the matrix. A comparison of the accuracy and runtime of the latter two
interpolation methods is provided in Sect. 5.

4.3 Communication

Smart and efficient communication is paramount in a partitioned multi-physics
scenario. As preCICE is targeted at HPC systems, a central communication instance
would constitute a bottleneck and has to be avoided. At the end of phase one,
we implemented a distributed application architecture. The main objective in its
design is not a classical speed-up (as it is for parallelism) but not to deteriorate
the scalability of the solvers and rendering a central instance unnecessary. Still,
a so-called master process exists, which has a special purpose mainly during the
initialization phase.

At initialization time, each solver gives its local portion of the interface mesh to
preCICE. By a process called re-partitioning, the mesh is transferred to the coupling
partner and partitioned there, i.e., the coupling partner’s processes select interface
data portions that are relevant for their own calculations. The partitioning pattern is
determined by the requirements of the selected mapping scheme. The outcome of
this process is a sparse communication graph, where only links between participants
exist that share a common portion of the interface. While this process was basically
in place at the end of phase one, it was refined in several ways.

MPI connections are managed by means of a communicator which represents an
n-to-m connection including an arbitrary number of participants. The first imple-

4www.boost.org.

www.boost.org
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mentation used only one communication partner per communicator, essentially
creating only 1-to-1 connections. To establish the connections, every connected
pair of ranks had to exchange a connection token generated by the accepting side.
This exchange is performed using the network file system, as the only a-priori
existing communication space common to both participants. However, network file
systems tend to perform badly with many files written to a single directory. To
reduce the load on the file system, a hash-based scheme was introduced as part of
the optimizations in phase two. With that, writing of the files is distributed among
several directories, as presented in [26]. This scheme features a uniform distribution
of files over different directories and, thus, minimizes the files per directory.

However, this obviously resulted in a large number of communicators to be
created. As a consequence, large runs hit system limits regarding the number of
communicators. Therefore, a new MPI communication scheme was created as an
alternative. It uses only one communicator for an all-to-all communication, resulting
in significant performance improvements for the generation of the connections.
This approach also solves the problem of the high number of connection tokens
to be published, though only for MPI. As MPI is not always available or the
implementation is lacking, the hash-based scheme of publishing connection tokens
is still required for TCP based connections.

4.4 Load Balancing

In a partitioned coupled simulation solvers need to exchange boundary data at the
beginning of each iteration, which implies a synchronization point. If computational
cores are not distributed in an optimal way among solvers, one solver will have to
wait for the other one to finish its time step. Thus, the load imbalance reduces the
computational performance. In addition, in a one way coupling scenario, if the data
receiving solver is much slower than the other one, the sending partner has to wait
until the other one is ready to receive (in synchronized communication) or store the
data in a buffer (in asynchronous communication). In the first phase, the distribution
of cores over solvers was adjusted manually and only synchronized communication
was implemented, resulting in idle times.

Regression Based Load Balancing We use the load balancing approach proposed
in [37] to find the optimal core distribution among solvers: we first model the solver
performance against the number of cores for each domain and then optimize the
core distribution to minimize the waiting time. Since mathematical modeling of the
solvers’ performance can be very complicated, we use an empirical approach as
proposed in [37], first introduced in [10], to find an appropriate model.

Assuming we have a given set of m data points, consisting of pairs (p, fp)
mapping the number of ranks p to the run-time fp, we want to find a function f (p)
which predicts the run-time against p. Therefore, we use the Performance Model
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Normal Form (PMNF) [10] as a basis for our prediction model:

f i(p) =
n∑

k=1

ckp
ik logjk2 (p), (10)

where the superscript i denotes the respective solver, n is a a-priori chosen number
of terms, ik, jk ∈ N0 and ck is the coefficient for the kth regression term. The next
step is to optimize the core distribution such that we achieve minimal overall run
time which can be expressed by the following optimization problem:

minimize
p1,...,pl

F (p1, . . . , pl) with F(p1, . . . pl) = max
i
(f i(pi))

subject to
l∑

i=1

pi ≤ P.

This optimization problem is a nonlinear, possibly non-convex integer program.
It can be solved by the use of branch and bound techniques. But, if we assume that
the f i are all monotonically decreasing, i.e., assigning more cores to a solver never
increases the run-time, we can simplify the constraints to P = ∑l

i=0 pi and solve
the problem by brute-forcing all possible choices for pi . That is, we iterate over all
possible combinations of core numbers and choose the pair that minimizes the total
run-time. For more details, please refer to [37].

Asynchronous Communication and Buffering For our fluid-structure-acoustic
scenario shown in Fig. 1, we perform an implicitly coupled simulation of the elastic
structure interacting with the incompressible flow over a given discrete time step
(marked simply as ‘Fluid’ in Fig. 2). This is followed by many small time steps for
the acoustic wave propagation in the near-field, which are coupled in a loose, uni-
directional way to the far-field acoustic solver (executing the same small time steps).
To avoid waiting times of the far-field solver while we compute the fluid-structure
interactions in the near-field, we would like to ‘stretch’ the far-field calculations
such that they consume the same time as the sum of fluid-structure time steps and
acoustic steps in the near-field (see Fig. 2). To achieve this, we introduced a fully
asynchronous buffer layer, by which the sending participant was decoupled from
the receiving participant, as shown in Fig. 2. Special challenges to tackle were the
preservation of the correct ordering of messages, especially for TCP communication
which does not implement such guarantees in the protocol.

4.5 Isolated Performance of preCICE

In this section, we show numerical results for preCICE only. This isolated approach
is used to show the efficiency of the communication initialization. In addition,
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Fig. 2 Coupling scenario between participant A (performing a time step for the incompressible
fluid (or fluid-structure interaction) followed by many time steps of the near-field acoustic
simulation (NFA)) and participant B (performing the same small acoustic steps for the far-field
(FFA) after receiving acoustic data from the near-field solver). Without buffering, inevitable idle
times for participant B are created. NFA is linked to FFA through send operations. Therefore, the
runtimes of NFA and FFA are matched through careful load-balancing. Shown here: A send buffer
decouples NFA and FFA solver for send operations, prevents idle times, and allows for a more
flexible processor assignment

we show stand-alone upscaling results. Other aspects are considered elsewhere:
(a) the mapping accuracy is analyzed in Sect. 5, (b) the effectiveness of our load
balancing approach as well as the buffering for uni-directional coupling are covered
in Sect. 6. If not denoted otherwise, the following measurements are performed on
the supercomputing systems SuperMUC5 and HazelHen.6

Mapping Initialization: Preallocation and Matrix Filling As described previ-
ously, one of the key components of mapping initialization is the spatial tree
which allows for performance improvements by accelerating the interpolation
matrix construction. Figure 3 compares different approaches to matrix filling and
preallocation: (a) no preallocation: using no preallocation at all, i.e., allocating each
entry separately, (b) explicitly computed: calculate matrix sparsity pattern in a first
mesh traversal, allocate entries afterwards, and finally fill the matrix in a second
mesh traversal, (c) computed and saved: additionally cache mesh element/data point
relations from the first mesh traversal and use them in the second traversal to fill
the matrix with less computation, (d) spatial tree: use the spatial tree instead of
brute-force pairwaise comparisons to determine mesh components relevant for the

528× Intel-Xeon-E5-2697 cores, 64 GB memory per node.
624× Intel Xeon-E5-2680 cores, 128 GB memory per node.
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Fig. 3 Mapping initialization. Comparison of different preallocations methods for mesh sizes
6400 (left sub-figure) and 10,000 (right sub-figure) on two ranks per participant. The plot compares
times spent in the stages of preallocation and filling of matrices for both the evaluation matrix and
the interpolation matrix of an RBF mapping with localized Gaussian basis functions including 6
vertices of the mesh. The total time required is the sum of all bars of one measurement. Note the
logarithmic scaling of the y-axis. The measurements were performed on one node of the sgscl1
cluster, using 4× Intel Xeon E3-1585 CPUs

mapping. Each method can be considered as an enhancement of the previous one.
As it becomes obvious from Fig. 3, the spatial tree was able to provide us a with an
acceleration of more than two orders of magnitude.

Communication For communication and its initialization, we only present results
for the new single-communicator MPI based solution. For TCP socket communica-
tion that still requires the exchange of many connection tokens by means of the file
system, we only give a rough factor of 2.5 that we observed in terms of acceleration
of communication initialization. Note that this factor can be potentially higher as
the number of processes and, thus, connections grows larger, and that the hash-
based approach removed the hard limit of ranks per participant inherent to the old
approach.

In Figs. 4, 5 and 6, we compare performance results for establishing an MPI
connection among different ranks using many-communicators for 1-to-1 connec-
tions with using a single communicator representing an n-to-m connection. In our
academic setting, both Artificial Solver Testing Environment (ASTE) participants
run on n cores. On SuperMUC, each rank connects to 0.4n ranks, on HazelHen, with
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Fig. 4 Communication. Publishing of MPI connection information from participant A for the
many-communicator approach. The timings of the new single-communicator approach are not
shown, as they are almost negligible with a maximum of 2 ms
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Fig. 5 Communication. Runtime for establishing the connection between the participants using
MPI_Comm_accept and MPI_Comm_connect

a higher number of ranks per node, each rank connects to 0.3n ranks. The amount
of data transferred between each connected pair of ranks is held constant with 1000
rounds of transfer of an array of 500, and 4000 double values from participant B
to participant A. Each measurement is performed five times of which the fastest
and the slowest runs are ignored and the remaining three are averaged. We present
timings from rank zero, which is synchronized with all other ranks by a barrier,
making the measurements from each rank identical. Note, that the measurements
are not directly comparable between SuperMUC and HazelHen due to the different
number of cores per node and that the test case is even more challenging than actual
coupled simulations. In an actual simulation, the number of partner ranks per rank
of a participant is constant with increasing number of cores on both sides.

Figure 4 shows the time to publish the connection token. The old approach
requires to publish many tokens, which obviously becomes a performance bottle-
neck as the simulation setup moves to higher number of ranks. The new approach,
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Fig. 6 Communication. Times for 1000 rounds of data transfer of a vector of 500 or 4000 doubles,
respectively, from participant B to A. For the transfer, the synchronous MPI routines (MPI_Send
and MPI_Recv) have been used

on the other hand, only publishes one token. It is omitted in the plot, as the times are
negligible (<2 ms). In Fig. 5, the time for the actual creation of the communicator
is presented. The total number of communication partners per communicator is
smaller with the old many-communicator concept (as the communication topology
is sparse). However, the creation of many 1-to-1 communicators is substantially
slower than the creation of one all-to-all communicator for both HPC systems.
Finally, in Fig. 6 the performance for an exchange of data sets of two different
sizes is presented. The results for single- and many-communicator approaches are
mostly on par with the notable exception of the SuperMUC system. There, the new
approach suffers a small but systematic slow-down for small message sizes. We
argue that this is a result of vendor specific settings of the MPI implementation.

Data Mapping As described above, we have further improved the mapping
initialization, in particular by applying a tree-based approach to identify data
dependencies induced by the mapping between grid points of the non-matching
solver grids and to assemble the interpolation matrix for RBF mapping. Accord-
ingly, we show both the reduction of the matrix assembly runtime (Fig. 3) and the
scalability of the mapping, including setting up the interpolation system and the
communication initialization.

These performance tests of preCICE are measured using a special testing
application called ASTE.7 This application behaves like a solver to preCICE but
provides artificial data. It is used to quickly generate input data and decompose it
for upscaling tests. ASTE generates uniform, rectangular, two-dimensional meshes
on [0, 1]×[0, 1] embedded in three-dimensional space with the z-dimension always

7https://github.com/precice/aste.

https://github.com/precice/aste
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Fig. 7 Data mapping initialization. Strong scaling of the initialization of the interpolation matrix
C and the evaluation matrixA for RBF interpolation on mesh sizes 12002 and 20002 with Gaussian
(m = 6) basis functions on up to 4224 processors on the HazelHen HPC system

set to zero. The mesh is then decomposed using a uniform approach, thus producing
partitions of same size as far as possible. Since we mainly look at the mapping part
which is only executed as one of the participants, we limit the upscaling to this
participant. The other participant always uses one node (28 resp. 24 processors).
The mesh size is kept constant, i.e., we perform a strong scaling. The upscaling of
an RBF mapping with Gaussian basis functions is shown in Fig. 7.

5 Black-Box Coupling Versus White-Box Coupling
with APESMate

In the above section, we have evaluated the performance of the black-box coupling
tool preCICE. In this section, we introduce an alternative approach that allows
to couple different solvers provided within the framework APES [31]. Black-
box data mapping in preCICE only requires point values (nearest neighbor and
RBF mapping), and in some cases (nearest projection) connectivity information on
the coupling interface. The white-box coupling approach of APESmate [25] has
knowledge about the numerical schemes within the domain, since it is integrated
in the APES suite, and has access to the common data-structure TreELM [22].
APESmate can directly evaluate the high order polynomials of the underlying
Discontinuous Galerkin scheme. Thus, the mapping in preCICE is more generally
applicable, while the approach in APESmate is more efficient in the context of
high order scheme. Furthermore, APESmate allows the coupling of all solvers of
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the APES framework, both in terms of surface and in terms of volume coupling.
The communication between solvers can be done in a straightforward way as all
coupling participants can be compiled as modules into one single application. Each
subdomain defines its own MPI sub-communicator, a global communicator is used
for the communication between the subdomains. During the initialization process,
coupling requests are locally gathered from all subdomains and exchanged in a
round-robin fashion. As all solvers in APES are based on an octree data-structure
and a space-filling curve for partitioning, it is rather easy to get information about
the location of each coupling point on the involved MPI ranks. In the following, we
compare both accuracy and runtime of the two coupling approaches for a simple
academic test case that allows to control the ‘difficulty’ of the mapping by adjusting
order and resolution of the two participants.

Test Case Setup We consider the spreading of a Gaussian pressure pulse over a
cubic domain of size 5× 5× 5 unit length, with an ambient pressure of 100,000 Pa
and a density of 1.0 kg/m3. The velocity vector is set to 0.0 for all spatial directions.
To generate a reference solution, this test case is computed monolithically using the
inviscid Euler equations.

For the coupled simulations, we decompose the monolithic test case domain into
an inner and an outer domain. The resolution and the discretization order of the
inner domain are kept unchanged. In the outer domain, we choose the resolution
and the order such that the error is balanced with that of the inner domain. See
[15] for the respective convergence study. To be able to determine the mapping
error at the coupling interface between inner and outer domain, we choose the time
horizon such that the pressure pulse reaches the outer domain, but is still away from
the outer boundaries to avoid any influences from the outer boundaries. The test
case is chosen in a way, that the differences between the meshes at the coupling
interface increase, thus increasing the difficulty to maintain the overall accuracy in
a black-box coupling approach. Table 1 provides an overview of all combinations of
resolution and order in the outer domain used for our numerical experiments, where
the total number of elements per subdomain is given as nElements, the number
of coupling points with nCoupling points and the scheme order by nScheme order,
respectively. For time discretization, we consider the explicit two stage Runge-Kutta
scheme with a time step size of 10−6 for all simulations.

Table 1 White-box coupling test scenario with Gaussian pressure pulse combinations of orders
and resolution used for the evaluation of the mapping methods

Test case a Test case b Test case c Test case d

Inner Outer Inner Outer Inner Outer Inner Outer

nElements 32,768 124,000 32,768 7936 32,768 992 32,768 124

nCoupling points 55,296 9600 55,296 3456 55,296 1536 55,296 1176

nScheme order 3 4 3 6 3 8 3 14
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Fig. 8 Mapping accuracy black-box (APESmate) versus white-box (preCICE) approach. Com-
parison of the L2 error (with the analytical solution as reference) for the Gaussian pressure
pulse test case variants and exemplary illustration of the coupling point distribution when using
DG for test case (right figure). We compare the black-box data mapping methods Radial-Basis
Functions (RBF) interpolation and Nearest Projection (NP) with the direct white-box evaluation of
APESmate. The RBF mapping uses local Gaussian basis functions covering three mesh points in
every direction

Mapping Accuracy In terms of mapping accuracy, it is expected, that the APES-
mate coupling is order-preserving, and by that not (much) affected by the increasing
differences between the non-matching grids at the coupling interface, while pre-
CICE should show an increasing accuracy drop when the points become less and
less matching. This is the case for increasing order of the discretization in the
outer domain. Figure 8 illustrates first results. As can be clearly seen, the white-
box coupling approach APESmate provides outstanding results by maintaining
the overall accuracy of the monolithic solution for all different variations of the
coupled simulations, independent of the degree to which the grids are non-matching
(increasing with increasing order used in the outer domain). For the interpolation
methods provided by preCICE, the error increases considerably with increasing
differences between the grids at the interface. As the error of the interpolation
methods depends on the distances of the points (see Fig. 8), the error is dominated
by the large distance of the integration points in the middle of the surface of an
octree grid cell in the High Order Discontinuous Galerkin discretization.

Accuracy Improvement by Regular Subsampling We can decrease the L2 error
of NP and RBF and improve the solution of the coupled simulation by providing
values at equidistant points on the Ateles side as interpolation support points. The
number of equidistant points is equal to the number of coupling points, hence
as high as the scheme order. With this new implementation, the error shown in
Fig. 9a decreases considerably compared to the results in Fig. 8. We achieve an
acceptable accuracy for all discretization order combinations. However, the regular
subsampling of values in the Ateles solver increases the overall computational time
substantially as can be seen in Fig. 9b.
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Fig. 9 Mapping accuracy and runtime of black-box with equidistant subsampling versus white-
box approach. L2 error behavior (a) and computational time (b) for the RBF interpolation, when
using equidistant (RBFEQ) and non-equidistant (RBF) point distributions for data mapping

To improve the NP interpolation, it turned out that in addition to providing
equidistant points, oversampling was required to increase the accuracy. Our inves-
tigation showed, that an oversampling factor of 3 is needed to achieve almost the
same accuracy as APESmate. In spite of the additional cost of many newly generated
support points, the runtime does not increase as much as for RBF, since for the RBF
a linear equation system has to be computed, while for NP a simple projection needs
to be done.

Summary and Runtime Comparison Figure 10 shows a summary of all tested
methods for the interpolation/evaluation before and after improvements. The inte-
grated coupling approach APESmate provides not just very accurate results, but also
low runtimes. At this point, we want to recall that this is as expected—the white-
box approach makes use of all internal knowledge, which gives it advantages in
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Fig. 10 Mapping accuracy and runtime summary of black-box versus white-box approach. L2
error and computational time for all methods



ExaFSA: Parallel Fluid-Structure-Acoustic Simulation 293

terms of accuracy and efficiency. On the other hand, this internal knowledge binds
it to the solvers available in the framework, while preCICE can be applied to almost
all available solvers. Further details regarding this investigation can be found in
[15, 16].

6 Results

This section presents a more realistic test case, the turbulent flow over a fence, to
assess the overall performance of our approach. Analyses for accuracy and specific
isolated aspects are integrated in the sections above.

6.1 Flow over a Fence Test Case Setup

As a test case to assess the overall scalability, we simulate the turbulent flow over
a (flexible) fence and the induced acoustic far-field as already shown schematically
in Fig. 1. The FSI functionality of FASTEST has been demonstrated earlier many
times, e.g. in [34]. Thus we focus on the acoustic coupling.

As boundary conditions, we use a no-slip wall at the bottom and the fence
surface, an inflow on the left with ubulk, outflow convective boundary conditions
on the right, periodic boundary conditions in y-directions, and slip conditions at
the upper boundary for the near-field flow. For the acoustic perturbation, we apply
reflection conditions at the bottom and the fence surface, zero-gradient condition at
all other boundaries. The acoustic far-field solver uses Dirichlet boundary conditions
at its lower boundary (see also Eq. (9)). Therefore, the upper near-field boundary is
not the coupling interface, but we instead overlap near-field and far-field as shown in
Fig. 11. Figures 12 and 13 show a snapshot of the near-field flow and the near-field
and far-field acoustic pressure, respectively.

6.2 Fluid-Acoustics Coupling with FASTEST and Ateles

To demonstrate the computational performance of our framework using FASTEST
for the flow simulation in the near-field, the high-order DG solver Ateles for the
far-field acoustic wave propagation, and preCICE for coupling, we show weak
scalability measurements for the interaction between near-field flow simulation and
far-field acoustics. We keep both the mesh and the number of MPI ranks in the
near-field flow simulation fixed. In the far-field computed with Ateles, we refine the
mesh to better capture the acoustic wave propagation. We use a multi-level mesh
with a fine mesh at the coupling interface to allow a smooth solution at the coupling
interface between the near-field and the far-field. We refine the far-field mesh in
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Fig. 11 Flow over a fence test case. Schematic view of the computational domain (left) and
applied parameters (right). Colors indicate spatial discretization order in the various regions: The
FV domain is completely second order, while the DG domain has second order at the coupling
interface for reduced coupling interpolation errors, and subsequently increases the order in various
layers for the far-field transport

Fig. 12 Flow over a fence test case with FASTEST. Snapshot of the flow in the recirculation area
behind the fence. Red/blue indicate acoustic pressure, grey shades show the modelled turbulent
kinetic energy (for a ζ − f DES model)

two main steps: in the first step, we only refine the mesh at the coupling interface.
In the next step, we first refine the whole mesh, and again the mesh at the coupling
interface in the third and fourth step. Due to the refinement at the coupling interface,
the number of Ateles ranks participating in the interface increases such that this
study also shows that the preCICE communication does not deteriorate scalability.
Table 2 gives an overview of the configurations used for the weak scaling study.

To find the optimal core distribution for all setups, the load balancing approach
proposed in Sect. 4 is used. This analysis shows that for the smallest mesh resolution
with 24,864 elements in the far-field, the optimal core distribution is 424 cores for
the near-field domain and 196 cores for the far-field. For all other setups, we assume
perfect scalability, i.e., we choose the number of cores proportional to the number
of degrees of freedom in the weak scaling study and increase the number of cores
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Fig. 13 Flow over a fence test case. Snapshot of the acoustic pressure in a coupled simplified
setup

Table 2 Flow over a fence test case

Cores in FASTEST/Ateles Ateles degrees of freedom Ateles elements

424/196 16,116,480 24,864

424/756 62,535,840 89,376

424/1428 116,524,800 177,408

424/3136 254,150,400 607,488

424/15,372 1,245,054,720 3,704,064

Scalability study for the interaction between the near-field flow simulation and the far-field
acoustics: Summary of mesh details and core numbers for weak scaling. In the FASTEST
simulation of the near-field flow simulation, we use 52,822,016 elements. In the far-field, Ateles
uses discretization order 9

simultaneously by a factor of two in both fields for strong scaling. The scalability
measurements are shown in Fig. 14. The results show that the framework scales
almost perfectly up to 6528 cores.

6.3 Fluid-Acoustics Coupling with Only Ateles

In Sect. 5 we investigated the suitability of different interpolation methods for our
simulations. In this section, we present a strong scaling study for an Ateles-Ateles
coupled simulation of the flow over a fence test case. The fence is modelled in
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Fig. 14 Flow over a fence test case. Weak scalability measurement of the fluid-acoustic interaction
simulation for the fence test case

Ateles using the newly implemented immersed boundary method, enabling high-
order representation of complex geometries in Ateles [1]. We solve the compressible
Navier-Stokes equations in the flow domain with a scheme order of 4 and a four step
mixed implicit-explicit Runge-Kutta time stepping scheme, with a time step size of
10−7. The total number of elements in the flow domain is 192,000. For the far-field,
we use the same setup as for the FASTEST-Ateles coupling.

The linearized Euler equations in the far-field can be solved in a DG setting in
the modal formulation, which makes the solver very cheap even for very high order.
In the near-field domain, the non-linear Navier-Stokes equations are solved with a
more expensive hybrid nodal-modal approach. Due to this, and the different spatial
discretizations and scheme orders, both domains have different computational load,
which requires load balancing. We use static load balancing, since neither the mesh
nor the scheme order vary during runtime. As both solvers are instances of Ateles,
we apply the SpartA algorithm [21], which allows re-partitioning of the workload
according to weights per elements, which are computed during runtime. Those
weights are then used to re-distribute the elements according to the workload among
available processes (see [17] for more details). The total number of processes used
for this test case are 14,336 processes, which is equal to one island on the system. As
mentioned previously, the total workload per subdomain does not change, therefore
we start our measurements by providing the lower subdomain 100 processes and
the upper subdomain 12 processes, which is equal to 4 nodes on the system. This
number per subdomain is then doubled for each run, the ratio is kept the same.

Figure 15 shows the strong scaling measurements for both coupling approaches
(APESmate and preCICE) executed on the SuperMUC Phase2 system. As can be
clearly seen, both coupling setups Ateles-APESmate-Ateles and Ateles-preCICE-
Ateles scale almost ideally, however with a lower absolute runtime for the APES-
mate coupling as expected.
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Fig. 15 Flow over a fence test case. Strong scaling measurement for Ateles-Ateles coupling using
both APESmate and preCICE—and the ideal linear scaling as reference

7 Summary and Conclusion

We have presented a partitioned simulation environment for the massively parallel
simulation of fluid-structure-acoustic interactions. Our setup uses the flow and
acoustic solvers in the finite volume software FASTEST, the acoustic solvers in
the discontinuous Galerkin framework Ateles as well as the black-box fully parallel
coupling library preCICE. In particular, we could show that with a careful design
of the coupling tool as well as of solver details, we can achieve a bottleneck-free
numerically and technically highly scalable solution. It turned out that efficient ini-
tialization of point-to-point communication relations and mapping matrices between
the involved participants, sophisticated inter-code load balancing and asynchronous
communication using message buffering are crucial for large-scale scenarios. With
these improvements, we advanced the limits of scalability of partitioned multi-
physics simulations from less than a hundred cores to more than 10,000 cores.
Beyond that, we reach a problem size that is not required by the given problem
as well as scalability limits of the solvers. The coupling itself is not the limiting
factor for the given problem size and degree of parallelism. To be able to use also
vector architectures in an efficient sustainable way, we adapted our solvers with a
highly effective code transformation approach.
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EXAHD: A Massively Parallel Fault
Tolerant Sparse Grid Approach
for High-Dimensional Turbulent Plasma
Simulations
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and Dirk Pflüger

Abstract Plasma fusion is one of the promising candidates for an emission-free
energy source and is heavily investigated with high-resolution numerical simula-
tions. Unfortunately, these simulations suffer from the curse of dimensionality due
to the five-plus-one-dimensionalnature of the equations. Hence, we propose a sparse
grid approach based on the sparse grid combination technique which splits the
simulation grid into multiple smaller grids of varying resolution. This enables us
to increase the maximum resolution as well as the parallel efficiency of the current
solvers. At the same time we introduce fault tolerance within the algorithmic design
and increase the resilience of the application code. We base our implementation
on a manager-worker approach which computes multiple solver runs in parallel
by distributing tasks to different process groups. Our results demonstrate good
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convergence for linear fusion runs and show high parallel efficiency up to 180k
cores. In addition, our framework achieves accurate results with low overhead in
faulty environments. Moreover, for nonlinear fusion runs, we show the effectiveness
of the combination technique and discuss existing shortcomings that are still under
investigation.

1 Introduction

Scientists widely agree that the human-made climate change due to CO2 emission
will pose severe challenges for the future. Hence, to reduce the overall emission
of greenhouse gases, carbon free energy sources will be required. Nuclear fusion
is one candidate which offers abundant fuel with a large energy output. However,
there are still many difficulties to overcome in the task to build an energy-positive
fusion reactor. A major challenge are micro-instabilities caused by turbulent plasma
flow. These can be studied by numerical simulations to further improve the design of
fusion reactors. One of the codes dedicated to tackle this problem is GENE, which
solves the gyrokinetic Vlasov-Maxwell equations.

Unfortunately, the computational costs of these simulations are enormous. Since
they involve calculations on a five-dimensional spatial grid, they suffer from the
curse of dimensionality, i.e. from the exponential dependence of the grid size on
dimension. In our project, we overcome this issue with the help of the sparse grid
combination technique. This method splits a simulation into several independent
runs on coarser anisotropic grids and then aggregates the results on a sparse grid.
As a consequence, the curse of dimensionality is alleviated, which makes larger
simulations feasible. In addition, the arising subproblems can be computed in
parallel which allows for scaling to larger processor numbers. This enables the use
of future exascale computers. Finally, the method opens up an algorithmic approach
to fault tolerance, which will be a key requirement for exascale computing.

In this paper, we report on the main contributions of the two funding periods of
our project EXAHD within the priority program Software for Exascale Computing
of the DFG, with an emphasis on the second funding period. Partners in this joint
project were the Institute for Parallel and Distributed Systems at the University
of Stuttgart (PI Pflüger), the Institute for Numerical Simulations at the University
of Bonn (PI Griebel), the Institute for Informatics at the Technical University of
Munich (PI Bungartz), the Max-Planck Institute for Plasma Physics (PI Jenko), the
Supercomputing Center of the Max-Planck Society Garching (PI Dannert, second
period), and the Center for Mathematics and Its Applications of the Australian
National University (Hegland, external partner).

Our main contributions include significant progress for the solution of higher-
dimensional plasma flow problems. In particular, we addressed several exascale
challenges: we have realized the first-ever massively parallel computations with the
sparse grid combination technique, enabling scalability beyond the petascale for
mesh-based discretizations by numerically decoupling the underlying systems and
by introducing a novel level of parallelism. We tackled load-balancing on massively
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parallel systems, learning from gathered runtime data. And we have developed
new and innovative approaches for fault tolerance on multiple levels, in particular
algorithm-based fault tolerance, which can be a crucial aspect in settings where
checkpoint-restart is infeasible due to the massive amount of data that would have
to be handled.

In the first funding period we have focused on linear simulations of hot fusion
plasma which govern the exponential growth phase of turbulent modes. We have
developed core algorithms for fault tolerance and scalability, including algorithm-
based fault tolerance with the combination technique and optimal communication
schemes.

In the second funding period, we have extended the simulation setting to
fully nonlinear simulations, which pose several hurdles as they do not match the
classical setting for the sparse grid combination technique anymore. We have
further developed a flexible framework for massively parallel simulations with the
combination technique, including software interfaces to GENE and the general PDE
framework DUNE. We have realized fault tolerance within both GENE and the
combination framework, which even allows to detect and mitigate soft faults, for
example due to silent data corruption. Finally, we have extended load balancing to
a fully data-driven approach based on machine learning.

In the following, we first give an introduction to the underlying theory and the
mathematical model. To this end, we describe the sparse grid combination technique
and the gyrokinetic approach to plasma physics underlying GENE. Then, we outline
the principles behind our approach to fault tolerance. The third section focuses on
the implementation while numerical results are presented in section four.

2 Theory and Mathematical Model

2.1 The Sparse Grid Combination Technique

The sparse grid combination technique [10] is a method for approximating high-
dimensional problems based on sparse grids [2]. It yields an alternative representa-
tion of a sparse grid solution, not reliant on hierarchical surpluses but using different
coarse full grid solutions to build a combination solution. The underlying idea
of the sparse grid approximation was first introduced by Smolyak for the case of
quadrature [24] and was since applied to a broad field of applications [7, 21].

Let’s assume we want to approximate a given function u. Furthermore let �n be
the regular Cartesian grid on [0, 1]d with mesh size hn = 2−n := (2−n1, . . . , 2−nd )
resulting in 2ni ± 1 points along the i-th direction, depending on whether there
are points on the left and/or right boundary. Arbitrary rectangular domains can be
treated by scaling them onto the unit hypercube.

Now we can define a piecewise linear approximation of u on �n,

un =
∑

j

un,j φn,j (1)
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where un,j are the function values at the grid points and φn,j are piecewise d-linear
hat functions with support of volume

∏d
i=1(2 hni ) anchored at the grid points, which

we call nodal basis. There are various other types of basis functions one could
choose in order to increase the order of the approximation. For various examples
we refer to [2]. In this presentation, we stick to the piecewise linear case for reasons
of simplicity.

The function Eq. (1) can also be represented in the so called hierarchical basis,

un =
∑

�≤n

∑

j

α�,j φ̂�,j :=
∑

�≤n

û� , (2)

where the hierarchical basis functions φ̂�,j are those hat functions of level � with
odd indices only (for �i > 0). Here, the expression � ≤ n is to be understood
componentwise. We call the linear transformation between the two representations
hierarchization and dehierarchization, respectively.

Now, if u possesses a certain smoothness property, namely (for our case of
piecewise d-linear hierarchical basis functions) that its second mixed derivative
is bounded, then the size of the coefficients α�,j decays as ∼2−2|�|1 . Hence, they
are called hierarchical surplusses. This leads to the idea of approximating un by
truncating the sum in Eq. (2). Compared to the full Cartesian grid, merely a subset of
points carries a basis function, which is called a sparse grid. This can be formalized
as follows: For any multi-index set I that is downward-closed (for any � ∈ I all
�′ ≤ � are in the set as well) we set

un =
∑

�∈I
û� (3)

with ni = max{�i : � ∈ I} defining the target level. The classical sparse
grid found in the literature for an isotropic grid with n = n · 1 is given by
I = {� ∈ N

d
0 : |�|1 ≤ n}, i.e. only a standard simplex of levels instead of the full

hyperrectangle is taken into account. In this case, as shown in [2], the number of
points is drastically reduced, from Nd to O(N (logN)d−1), where N = 2n ± 1.
Furthermore, for functions from Sobolev spaces with dominating mixed derivatives
H 2

mix the asymptotic approximation error with regard to the exact function u is only
slightly worse, O(N−2(logN)d−1) compared to the usual O(N−2). Generalized
sparse grids [4] are defined by means of general downward-closed index sets I
and its associated truncation (3).

Due to the fact that the hierarchical increments û� can be expressed as differences
of full grid functions u�, Eq. (3) yields a telescopic sum that evaluates to

u(c)n =
∑

�∈I
c� u� , c� =

∑

z≤1

(−1)|z|1 χI(�+ z) , (4)
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with χI being the characteristic function of I. We call this equivalent representa-
tion the (generalized) combination technique. Note that most of the combination
coefficients c� vanish, except the ones whose upper neighbors are not all included
in I (i.e. the ones near the upper boundary of I). The combination technique is
advantageous in practical applications, since code that produces full grid solutions
can be readily used as a black box and different component solutions u� can be
computed independently from each other, thus introducing a coarse grain layer of
parallelism. The point set produced by the union of all component grids is a sparse
grid as before. In practice, if one wants to evaluate the combination solution at a
point that is not shared by all component grids, the respective component functions
have to be interpolated according to the basis used.

The specific combination scheme used throughout this work is the truncated
planar combination technique, introducing a minimal level �min and a maximal level
�max ≡ n. The formula for the index set reads

I�min,�max =
{
� ∈ N

d
0 : � ∈ conv

(
�min , �min + �̂

(1)
, . . . , �min + �̂

(d)
)}
, (5)

where �̂
(i) = (0, . . . , �i,max − �i,min, . . . , 0), i.e. it includes all level indices that lie

inside the simplex spanned by �min and its adjacent corners of the hyperrectangle
defined by �min and �max. For example, the 2D sparse grid constructed with �min =
(1, 1) and �max = (3, 3) is shown in Fig. 1, where the simplex is just a shifted
triangle.

As a remark, the approximation rate shown above does not, in general, hold in the
case of solving PDEs with the combination technique, which we are interested in.
However, it can be shown [3] that the combination technique produces the same rate,
as long as a certain ANOVA-like error expansion exists. In fact, the combination
technique is applicable to any quantity (not just functions) that is the solution to
a problem depending on some discretization parameters, provided there is such an
error expansion. Alternatively, there is a second route to proof that the sparse grid
Galerkin approximation and the combination method for a PDE possess errors of
the same order. To this end, in [8] optimal convergence rates of the combination
technique for elliptic operators acting on arbitrary Gelfant triples were shown.

Fig. 1 Grids resulting from a 2D combination technique with �min = (1, 1) and �max = (3, 3).
The result of the combination is the sparse grid �(c)

(1,1),(3,3)
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Nevertheless, since it may be too hard to proof for a given case that the
necessary error expansion exists, or that the respective Gelfand triple indeed leads
to equal approximation rates between the sparse grid Galerkin approach and the
combination method, this motivates the use of numerical experiments to determine
the applicability of the combination technique.

The type of PDE we will be concerned with is a time-dependent initial value
problem. We will, however, not include the time direction as a dimension of the
sparse grid approximation, but rather treat it as a parameter. The reason is that the
solver we will mainly deal with employs an explicit time stepping method, which
means that anisotropic grids with large time steps may be forbidden by a CFL
condition. The solver also dynamically adapts the time step size, so that it may
be disadvantageous to interfere with its capabilities.

Another difficulty is that the global truncation error introduced by a time stepping
scheme usually grows exponentially in time and, for a nonlinear PDE, even the exact
solution may be highly sensitive to perturbations in the initial condition (which are
always present due to different spatial discretizations). In consequence, we cannot
expect the component solutions to stay similar for long simulation times and so the
combination technique would break down.

Hence, we will look for the solution after some interval �T , starting at time t ,
then repeat the process beginning at time t+�T and so forth. Using the combination
technique for the remaining (spatial) dimensions, the solution is constructed from
the time evolution of the component solutions:

u(c)n (t +�T ) :=
∑

�∈I
c� Tt→t+�T [u�(t)] (6)

with the time evolution operator T. The initial values are set by interpolating the
combination solution from the previous time step onto the different component
grids. Once in the beginning they are set by discretizing a known initial function
u0:

u�(t) := I�
[
u(c)n (t)

]
, u�(0) := I� [u0] , (7)

where I� denotes the interpolation operator onto grid��. The interval�T has to be
chosen sufficiently small, so that the error introduced by the time evolution is small
compared to the spatial discretization error (which we want to optimize by using the
combination technique). Sensible values for�T depend on the scenario at hand and
will be investigated in our experiments.

2.2 Plasma Physics with GENE

The most common way to study turbulence on a microscopic scale are the
gyrokinetic equations. They are a system of partial integro-differential equations for
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the particle distribution function f in a 5D phase space plus time for every particle
species s in the plasma (typically hydrogen ions and electrons). The model consists
of a Vlasov equation (when neglecting collisions) with Lorentz force,

∂fs

∂t
+ v · ∇xfs + Zse

m

(
E+ v

c
× B

) · ∇vfs = 0 , (8)

coupled with Maxwell’s equations for the electromagnetic fields as well as the self-
consistent computation of charge and current density from the respective moments
of the distribution function [6].

The gyrokinetic approach uses several approximations tailored to the setting of
a suspended plasma in a strong toroidal magnetic field, which is the concept behind
tokamaks and stellarators, the most popular types of fusion reactors. Since charged
particles move on helical trajectories along magnetic field lines, the motion is split
into the direction parallel to the field line, v‖, and the plane perpendicular to it. The
phase information of the rapid circular motion in the perpendicular direction is then
averaged out and its magnitude encoded in the magnetic moment μ ∝ |v⊥|2. Also,
the coordinate system is commonly aligned to the magnetic field lines and, lastly, a
δf -splitting is employed, dividing the distribution function into a static equilibrium
distribution and an unknown turbulent part g.

Eventually one arrives at a 5 + 1 dimensional nonlinear partial differential
equation for g(x, y, z, v‖, μ; t) of the general form

∂g

∂t
= L g +N(g) (9)

where L and N are the linear resp. nonlinear parts of the differential operator.
One of the most widely used codes to solve the gyrokinetic equations is

GENE [17]. It is an Eulerian (fixed grid) solver that uses mostly finite differences
to discretize the spatial domain and an explicit Runge-Kutta scheme of fourth order
for the time evolution. Even though it is highly optimized and employs domain
decomposition to scale well on large computing systems, it still requires huge
amounts of computation time and for some scenarios the desired resolution is still
out of scope. This is why we deem GENE a good candidate to profit from the
combination technique. Not only are the component solutions cheaper in terms of
memory, hence always feasible to compute, but additionally can afford a larger time
step size (due to the CFL condition), reducing the computational cost further. GENE
operates in different modes described here for later reference:

Linear/Nonlinear In the linear mode, N(g) in Eq. (9) is neglected. In this case one
is interested in the growth rate of the turbulence, i.e. the eigenvalue of L with the
largest real part and its corresponding eigenvector. To this end, GENE can either be
used as a direct eigenvalue or as an initial value solver. The nonlinear mode treats the
full equation and is used to study the quasi-stationary state after the initial growth
phase.
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Local/Nonlocal The local case uses the so called flux tube approximation, simu-
lating only a small cross section of the full torus. Periodic boundary conditions are
employed in the x- and y-direction, enabling Fourier transformation. In nonlocal
runs the whole domain along the x-direction is treated, losing periodicity in x.

Adiabatic Electrons Setting the number of species to one (only ions), the electrons
are not treated with the full kinetic model, which reduces the problem size. This
approximation was mostly used for our results.

In order to use GENE within our combination technique framework, several
adjustments to GENE had to be implemented during the project. They are minor
enough to not undermine the black box functionality. First of all, the grid setup
of GENE had to be adjusted so that grids using 2�i grid points in each respective
dimension become nested. This is important because, on the one hand, the com-
bination technique requires nested grids and, on the other hand, powers of two are
necessary for an efficient parallelization in GENE. As a result, only the left boundary
may carry a grid point (cf. Sect. 2.1), which was originally not the case for every
direction. Additionally, the μ-direction uses a Gauss-Laguerre grid by default for
efficient quadrature. Here we had to switch to an equidistant grid, losing accuracy,
but a potential solution to this problem using Clenshaw-Curtis points is discussed
in [18]. Furthermore, GENE requires an unusual quasi-periodic boundary condition
in the z-direction, which we had to incorporate into the interface of our framework.

Finally some performance issues had to be overcome. At every restart, GENE
performs an initialization routine that produces a large overhead when the simula-
tion time itself is short. In particular for nonlocal runs, a large gyromatrix has to be
assembled which is costly. To this end we had to integrate the functionality to store
and reload this matrix from memory. The same had to be done for the checkpoints
which could previously only be written to and read from disk [13].

2.3 Fault Tolerance

2.3.1 Fault Tolerant Combination Technique

The Fault Tolerant Combination Technique (FTCT) is an algorithm-based fault
tolerant version of the Sparse Grid Combination Technique, which was proposed
in the project proposal of phase one of EXAHD and first published in [12]. The
method addresses the problem of both hard faults and soft faults.1 Since these
faults cause a corruption or loss of data on certain processors, it is not guaranteed
that all combination grids can safely contribute to the combination solution. After
identifying such a fault we therefore need to construct a new combination scheme

1Hard faults are detected by the operating system and usually cause the affected system part to fail
while soft faults remain undetected by the system and usually appear in the form of bitflips during
computation or processing of data.
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Fig. 2 Recovering the combination scheme after two failed component grids (middle left). A
new scheme (middle right) is constructed which excludes the failed resources while utilizing a
component grid from the next lower subdiagonal. The resulting sparse grid (right) should be only
slightly less accurate than the original sparse grid (left)

that excludes faulty parts from the original scheme. Ultimately, this modified
scheme should only consist of existing component grids, thus eliminating the
necessity to recompute results. In addition, switching to less and possibly coarser
component grids should only slightly decrease the accuracy compared to the original
scheme. In case of a time-dependent problem with frequent recombination, the
FTCT restores the original combination scheme for all future combinations2 and
continues computation. We will briefly summarize the main steps of the algorithm:
fault detection and reconstruction of a fault-free combination scheme.

Fault detection heavily depends on the class of faults that we experience. For
hard faults or process failures, typically the operating system in combination with
the MPI runtime can be used to identify all processes which are affected by a fault.
These faulty ranks are then removed and computation can be continued. In case of
soft or silent faults it is more challenging to detect a faulty component as the failure
is undetected by the operating system. Therefore, dedicated routines are used to
detect such faults, e.g. running a program multiple times or with different algorithms
or by checking application dependent properties. An example of the latter case
can be found in Sect. 3.3 where we describe our implementation of the silent fault
detection.

Once all faulty component grids are detected, the FTCT constructs a new fault-
free combination scheme (see Fig. 2). The problem of finding such a new scheme
is known as the General Coefficient Problem (GCP). For further information about
the problem and on how to solve it most efficiently we refer to [11, 12]. In order to
increase convergence speed and the probability of finding such a solution we already
compute the component solutions of two additional lower diagonals3 of the level
set from the start, alongside the required ones, even though they originally have
a coefficient of zero. Since the degrees of freedom of component grids decrease

2In case of process failures either failed resources are replaced by spare ranks or the individual
tasks are distributed to the remaining fault-free processes.
3For dimensions d > 2 it is in fact a d − 1 dimensional slice and it might be tilted in general.
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exponentially with the magnitude of the level index, this adds only minor overhead
to the overall computation time. Section 3.3 outlines our implementation of the
FTCT in more detail.

2.3.2 Fault Recovery Algorithms

In addition to the FTCT, a fault tolerant version of GENE was developed (FT-
GENE). The purpose was to allow FT-GENE to tackle small faults, whereas larger
faults would be handled by the FTCT. To that end, an object oriented Fortran
2008 library called libSpina was written. The purpose of this library is to provide
functionalities that aid the implementation of a fault tolerant application. In contrast
to existing tools such as ULFM [1], libSpina does not replace any existing MPI
implementation and does not attempt to extend the MPI standard.

The library is responsible for managing and separating “spare nodes” from
the application, the management of a channel for broadcasting errors, detection
of faulty resources and sanitization of the MPI environment. Instead of forcing a
complete rewriting of the code in order to fit a fault tolerant framework, libSpina
provides several preprocessor macros for encapsulating tasks such as exception
handling and timeout-based error detection. Some checkpointing and message
logging capabilities are available, but mostly for the initialization steps of FT-
GENE. The use of the library causes a negligible overhead (circa 3%).

Since libSpina is just a tool designed to assist in programming, it does not
provide any specific data recovery mechanism. Whenever a fault occurs, the lost data
must be recovered by checkpoint/rollback strategies or an algorithmic/approximate
recovery, which is not addressed by the library.

FT-GENE inherits the exception handling mechanism of libSpina and is fully
written using non-blocking MPI calls thanks to libSpina’s macros. Additionally,
FT-GENE is able to withstand faults and provides two recovery methods: check-
point/rollback and blank recovery (purely for testing purposes) which are discussed
later.

3 Implementation

3.1 Parallel Implementation of the Combination Technique

The main parallelization strategy of our combination framework is the manager-
worker approach. In this strategy, a dedicated process—the manager—distributes
work packages to workers which then process their tasks. Within the combination
technique these tasks consist of solving the respective PDE on a specific component
grid. Since these grids will usually be still too large to be solved on one MPI rank,
we assign the tasks to a group of workers which we will call a process group. To
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Fig. 3 The manager-worker implementation in our combination framework [13]. The manager
assigns tasks to process groups which perform a domain decomposition to work on the tasks in
parallel

avoid a communication bottleneck at the manager, only one dedicated rank in each
process group—the master—communicates with the manager. This master process
then broadcasts all information from the manager to the remaining processes in the
process group. In Fig. 3 one can see an example of the task distribution to individual
process groups.

The main concern of our framework is to achieve high parallel efficiency for
potential exascale computing. Due to the independence of the component grids, we
can solve all tasks independently. Additionally, all process groups compute each
task in parallel by applying domain decomposition. This results in two levels of
parallelism: parallelism between process groups and within process groups.

Unfortunately, in a chaotic time-dependent setting, we cannot completely decou-
ple all tasks, as the individual solutions would eventually drift too far apart from the
exact solution resp. from each other, which would deteriorate the result of the final
combination. To avoid this effect, frequent recombination is applied (see Fig. 4).
Here, we construct the sparse grid solution after a short simulation interval by
gathering all component grids, and then redistribute the aggregated information to
proceed with the computation. This process introduces a global synchronization
point as well as global communication. To ensure high parallel efficiency, we

Fig. 4 Solving time-dependent PDEs with the combination technique [13]. Frequent recombina-
tion is applied in between computation phases to avoid that the individual solutions drift too far
apart from each other
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Fig. 5 The recombination step in detail [13]. After the hierarchization phase (top left), the sparse
grid is globally reduced between process groups (right) and then dehierarchized within each
process group (bottom left)

therefore require efficient load balancing (see Sect. 3.2) as well as an efficient
recombination mechanism.

The recombination (Fig. 5) is split into three phases: hierarchization, global
reduction of the sparse grid and dehierarchization. In the hierarchization step,
each process group transforms the local solutions from its assigned tasks into
the hierarchical basis. These hierarchized solutions are then added locally to the
respective subspaces of the corresponding sparse grid. To this end, each process
holds the part of the sparse grid that corresponds to their geometric subdomain in a
buffer.

Thereafter, the global communication phase begins in which the partial sparse
grid solutions from all process groups are added together with an MPI_Allreduce.
In order to achieve low communication overhead, all process groups are constructed
from the same number of ranks and apply the same domain decomposition on the
sparse grid. A rank therefore directly communicates only with the ranks of other
process groups that are assigned to the same subdomain. This procedure heavily
reduces the number of communications and ensures a low communication overhead.
Once the global communication has finished, the individual process groups extract
the hierarchical information for their component grids from the sparse grid. The
procedure is concluded by the dehierarchization step which transforms the data
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back to the nodal basis. It should be noted that only the second phase requires
global communication while the hierarchization and dehierarchization only require
communication within each process group.

3.2 Load Balancing

Load balancing for HPC simulations is routinely implemented via different standard
techniques, such as domain decomposition or resource assignment. With the mas-
sively parallel distributed combination technique framework, there is an algorithmic
way of performing load balancing. Due to the manager-worker scheme with process
groups, cf. Fig. 3, the manager is free to assign multiple component grids to
different process groups (provided there is enough free memory). In particular, this
assignment can be chosen to balance the runtimes such that process groups do not
have to wait for each other longer than necessary. An illustration is given in Fig. 6.

Of course, this assignment works best if accurate estimates of the individual
grid runtimes can be obtained beforehand; then, we can even statically assign
the grids. Reaching further, this can be improved using the information obtained
in the first solver run: by collecting the runtimes of the (presumably) longest-
running grids, the process groups can be “filled” with work. The initial dynamic
“work-stealing” approach was presented by Heene [14]. The next step, dynamic
reassignment according to load imbalances has not been implemented so far, since
the reassignment of a grid to another process group could become very costly. In
addition to the field grid data, extensive simulation data is required for GENE, such
as the gyromatrix; it would have to be transferred or explicitly recomputed on the
new process group. Now, using the estimates obtained by the model, a decreasingly
ordered list can be created, and the grids can be assigned to the process group. This
means that the relative ordering between tasks is more important than the absolute
accuracy of the model.

t

pg1

pg2

pg3

. . .

. . .

. . .

compute hierarchize, combine, dehierarchize

Fig. 6 Possible parallel computation scheme for different 2D grids, cf. [22]. In principle, the
hierarchization step for a task could happen immediately after its completion, further improving
load balancing. This is not included in our implementation to date, but this does not proof to be a
significant bottleneck
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The simplest approach would be to just take the number of grid points into
account [9], assuming that all grids of the same level sum |�|1 take the same time
to run. In larger scenarios, this will lead to variable results, as the assignment will
be ambiguous. A more expert knowledge based model can be designed by adding
a dependence on grid anisotropy [14]. In this model the runtime contribution of the
number of grid points N is estimated with a function r(N),

r(N) := mNk + b , (10)

where the coefficients m, k and b are fitted to runtime data of isotropic grids.
Moreover, the influence of anisotropy is added through an additional term h(s�),
where s�,i = �i|�|1 . The total runtime estimate t (N, s�) then reads

t (N, s�) = r(N) · h(s�) h(s�) := c +
d−1∑

i=1

cis�,i +
d−1∑

i=1

∑

j≤i
cij s�,is�,j + . . . .

(11)

Again, the coefficients c in the polynomial ansatz for h(s�) are fitted to runtime data,
this time including anisotropic grids.

For nonlinear, global simulations, the load modeling was recently extended
to fully data-driven techniques, such as support vector regression and neural
networks [22].

3.3 Fault Tolerant Combination Technique

Fault tolerance is becoming more and more important in exascale frameworks as the
increasing process number will most certainly also increase the probability for some
components to fail. In our case we assume that such an error will most likely occur
during the computation phase, which takes the majority of the overall runtime. The
computation step will therefore not complete for all affected process groups. In the
next section we briefly summarize the progress made in [15, 16, 19, 20].

Such faulty groups are detected by the manager at the beginning of the global
communication phase with our fault simulation layer. This simulation layer imitates
the behavior of ULFM and returns an error signal if a process has failed that should
interact in a certain communication. It is also possible to simulate the process failure
of specific ranks at specific simulation points. Once the affected groups are known,
the manager process calculates a fault-free combination scheme by solving the GCP
(cf. Sect. 2.3.1). We use GLPK [5] to solve this optimization problem which returns
the new combination scheme.

Unfortunately we cannot proceed directly with the communication at this point
since failed ranks are contained in the MPI communicators. The naive implemen-
tation would just remove all failed process groups and continue computation on
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SP

PG1 PG2 PG3

Fig. 7 If a process failure occurs in one of the process groups, the remaining ranks are declared
as spare processes [19]

PG1 PG2 PG3

SP

SP
PG1 PG2 PG3

Fig. 8 In case all failed ranks can be replaced by spare processes, the process group is restored [19]

the remaining groups. This procedure, however, might waste valuable resources if
only few of the ranks in a process group have failed. We therefore save these non-
faulty ranks and declare them as spare ranks (Fig. 7). For future faults we can now
substitute failed ranks by spare ranks to restore a process group (Fig. 8). This enables
us to simulate high failure rates without quickly losing all process groups.

Once the MPI environment is restored, our implementation proceeds with
the recombination step by applying the global communication to the fault-free
combination scheme. For future computations we restore the original combination
scheme by redistributing failed tasks to the remaining process groups. These tasks
are then initialized by extraction from the sparse grid that results from the temporary
fault-free combination scheme.

4 Numerical Results

4.1 Convergence

A very important task in order to confirm the applicability of the sparse grid
combination technique to GENE is to show that we can produce meaningful results
while reducing the computational cost. This has to be verified in different ways and
for different quantities, depending on the setting of the simulation. Therefore, this
section is split into two parts.

The first one is concerned with convergence results for local linear GENE runs,
where the accuracy of computations of the growth rate λmax and its corresponding
eigenvector g(λmax) is studied. The second part presents results for nonlinear GENE
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simulations, in particular the most recent investigations of nonlocal runs. Here,
one is interested in time averages of certain quantities of interest during the quasi-
stationary phase, mainly the mean heat fluxQes.

4.1.1 Linear Runs

Linear simulations only use the linear part of the gyrokinetic equations,

∂g
∂t
= L g , (12)

according to Eq. (9) (the bold face g signifies the discretized version). The dynamics
of this equation can be understood by considering an eigenvalue decomposition
(assuming every eigenvalue has multiplicity one)

g(t) =
∑

λ∈σ(L)
α(λ)(t) g(λ) , L g(λ) = λ g(λ) . (13)

Note that g is complex valued because a Fourier basis is always used in the y-
direction and, hence, eigenvalues will be complex in general.

Plugging this decomposition into Eq. (12) yields the solution

g(t) =
∑

λ∈σ(L)
α(λ)(0) eλt g(λ) . (14)

The exponential growth (or decay) will, for large times, be dominated by the
eigenvector corresponding to the eigenvalue λmax which has the largest real part.
This growth rate plus eigenmode are the quantities one is interested in. To this end,
GENE can be run either as a direct eigenvalue solver or as an initial value solver. For
the latter case, one initializes a random initial state and simulates long enough, until
the shape of g(t) stays constant and its ratio at subsequent times settles on eλmax�t .

First results for the linear case were obtained during the first funding period
of this project. The combination technique was successfully applied to both the
eigenvalue solver and initial value runs. In each case, combining the eigenvalues as
well as the eigenvectors produced by the component solutions yielded satisfactory
results. We refer to [18] and omit the details here.

Instead we want to focus on results obtained for local linear initial value runs
with the massively parallel framework described in Sect. 3.1, using the possibility
of frequent recombination after short time intervals. The first studies with this
framework were conducted during the first half of the second funding period and
are recorded in [13]. They examined the convergence of the eigenvector in a GENE
test case simulating ion temperature gradient (ITG) driven instabilities.

The following combination schemes were set up for this experiment, always
using the z-, v‖- and μ-directions for combination (the kx- and ky-direction were
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Fig. 9 Error of g(λmax) compared to the reference solution with � = (3, 1, 8, 8, 8). The combined
solutions were obtained by combining after each time step with a total of 6000 time steps

fixed at level 3 and 1, respectively, as not much resolution is needed in these
dimensions in local linear settings): The terms “combi 4 grids” and “combi 10
grids” describe schemes where �min and �max are (0, 0, 1, 1, 1) resp. (0, 0, 2, 2, 2)
apart. This results in the mentioned number of component solutions. Finally, “combi
lmin” means that �min = (3, 1, 4, 4, 4) is kept fix regardless of maximal level. In
order to calculate the error of the obtained eigenvectors, a reference solution was
computed on a high resolution full grid with � = (3, 1, 8, 8, 8). All other solutions
were interpolated to this reference grid and normalized to unity (because only the
shape matters), then the L2-norm of the difference in absolute value was taken as
the error measure.

Figure 9 shows results for all combination schemes as well as single full grid
solutions for comparison. Here, a recombination was applied after each GENE time
step, which turned out to yield the best overall results. One can see that the error
decreases with higher target levels and that the combined solutions compare well to
the full grid convergence. The higher the number of component grids, the worse the
error as interpreted at the target level, but keep in mind that the number of degrees of
freedom is more and more reduced. All combination schemes also beat the best error
achieved with one of their component grids, which is a crucial test, since otherwise
one could be content with that one component solution.

We also have to show that the computational cost is reduced. To this end, different
combination intervals (in number of time steps) have been investigated as shown in
Fig. 10. It turns out that the overhead for recombination after each time step was too
large. There are two main reasons. Firstly, this test case was comparatively small
so that the relative overhead is more significant than for much larger problem sizes.
Secondly, the restart behavior of GENE (as discussed in Sect. 2.2) is still not optimal
so that the pure GENE runtime is much larger for frequent recombination. However,
the figure also shows that there is a middle ground. For example, the run time of
“combi lmin” with n = (3, 1, 8, 8, 8) at a combination interval of 10 is already
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Fig. 10 Left: Computation times for “combi lmin” with n = (3, 1, 8, 8, 8) at different combina-
tion intervals and for the reference full grid solution. Four process groups with 16 processes each
were used. Right: Relative increase of the error for g(λmax) for different combination intervals

lower by a factor 5 than that of the reference solution. At the same time, the error is
only increased by about 25% compared to the optimum.

In conclusion, the applicability of the combination technique with the massively
parallel framework has been demonstrated for a small test case. The benefit is
expected to be even bigger for larger problem sizes.

4.1.2 Nonlinear Runs

In nonlinear simulations the initial exponential growth phase is halted after some
time by the increasingly dominant influence of the nonlinear part of the PDE.
Henceforth, the distribution function is subjected to chaotic dynamics. This means
that slight disturbances will completely alter the trajectory in the long run (butterfly
effect) and, thus, the distribution function itself is not a suitable observable anymore.
Still, distinctive patterns in a typical trajectory can be observed that result in a
quasi-stationary state. Common observables (often averages or moments of the
distribution function) will statistically fluctuate around relatively robust mean values
that only depend on the problem parameters. Hence, the goal of the combination
technique should be to accurately reproduce said quantities of interest with a similar
statistical uncertainty. Throughout this chapter, an ITG test case with adiabatic
electrons is studied. We switched to nonlocal simulations to increase the problem
size in line with the conclusion of the previous section.

In order to familiarize ourselves with the behavior of important quantities of
interest, we initially tested directly combining them instead of g. That is, we choose
a combination scheme and, once all component runs are finished, we calculate
the time averages and linearly combine them with the appropriate combination
coefficients. The method we used to determine when the quasi-stationary phase
begins and to estimate the statistical uncertainty follows [25].

We focused on the mean heat flux Qes because it is one of the most statistically
robust quantities. Results for various combination schemes in different dimensions
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Table 1 Results for direct combination ofQes

�max, �min Reference Direct combination Best component

(10,5,6,5,4), (7,5,3,5,4) 21.7 ± 0.4 23.1 ± 0.9 (6% 0.66) 23.7 ± 0.4 (9% 0.13)

(9,5,5,6,5), (6,5,3,4,3) 20.2 ± 1.0 28.2 ± 8.1 (40% 0.33) 29.9 ± 0.5 (48% 0.04)

(11,5,5,7,4), (7,5,4,4,3) 21.8 ± 0.5 21.6 ± 1.4 (1% 0.37) 22.8 ± 0.4 (5% 0.04)

The two values in parentheses denote the relative error and the fraction of work load (in core-hours)
in relation to the reference solution

are summarized in Table 1. The reference values in each case were computed
with a run at target resolution. Unfortunately, adding and subtracting statistically
independent quantities causes the variance of the resulting quantity to be the sum
of variances of the summands scaled by the square of their combination coefficient.
Since we take the standard deviation as a measure of uncertainty, we get σ (c) =
(
∑
i c

2
i σ

2
i )

1/2. This is why the uncertainty for the second scheme became very high.
Furthermore, the combined values are often not significantly better than the best
component solution.

The problem is that finding an efficient level set is a balancing act. On the one
hand, the minimal level is restricted by GENE simulations becoming erroneous for
too low resolutions when physically relevant scales are no longer resolved. On the
other hand, the maximal level is bounded by running into the statistical uncertainty
so that an increase in accuracy is wasted. This could be addressed by including the
simulation length as another dimension in the combination technique but decreasing
the uncertainty is always expensive since it scales only with the inverse square root
of the simulation length. On top of all this, there is a large discrepancy in the
influence of different dimensions, in particular, the error is mostly dominated by
the resolution in x-direction. The third scheme was chosen in a fashion to address
these issues and it shows the best agreement with the reference. We currently also
work on optimizing index sets with a dimensionally adaptive algorithm [4] to further
mitigate said issues.

Recently, we obtained first results with the massively parallel framework applied
to the nonlinear test case. In this context we turned back to frequently recombining
g even in the nonlinear regime. Much care has to be taken since the trajectories
on different component grids have the tendency to drift apart fairly quickly. Thus,
the combination interval should be chosen sufficiently small. However, in contrast
to the linear case, we found that recombining after each or just a few time steps
leads to the simulation becoming unstable and the distribution function growing
uncontrollably. We had to increase the combination interval until stable trajectories
were achieved. Also, depending on which and how many dimensions were included
in the combination scheme, simulations could become unstable. The causes of these
effects are not yet understood and currently under investigation. We suspect that the
perturbation introduced by distributing the combined checkpoint to the component
grids is large enough so that each trajectory needs a certain relaxation time to reach
the quasi-stationary state again.
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Table 2 Results for frequent recombination of g

�max, �min Reference Recombination of g Direct combination

(10,5,5,4,3), (8,5,3,4,3) 27.3 ± 0.6 28.4 ± 0.5 (4%) 27.4 ± 1.7 (0.3%)

(11,5,5,4,3), (9,5,3,4,3) 28.1 ± 1.1 24.9 ± 0.5 (11%) 27.9 ± 2.2 (0.7%)

(10,5,3,6,3), (8,5,3,4,3) 27.3 ± 1.6 27.9 ± 0.9 (2%) 28.4 ± 1.4 (4.0%)

The values shown are the mean heat flux Qes with relative error to the reference in parentheses.
The alleged outlier is actually closer to the high resolution reference from Table 1

Fig. 11 Time traces of the mean heat flux Qes for the five component grids of the first scheme in
Table 2. One sees the effect of the recombination of g after every two units of time

Nevertheless, results for three 2D combination schemes with a recombination
interval of two units of simulation time are presented in Table 2. The trajectories
ofQes for the different component grids are shown in Fig. 11. They look promising
since one can observe that after a combination step the values “snap” to a similar
value. The remaining discrepancy is solely caused by the influence of different
resolutions during the calculation of Qes. There is no functionality yet to directly
compute this quantity on the underlying sparse grid because its implementation
would have been too time-consuming. Instead, the values at the combination times
were gathered and again linearly combined according to the combination scheme.
With this procedure we achieved results that are in accordance to their reference
solution. Still, the same considerations as for the one-time combination apply here
and we look forward to expanding the tests to more optimized index sets in the
future.

4.2 Scaling Analysis

Scalability is a crucial aspect for an exascale-ready framework. For our framework
this boils down to two aspects: achieving a good load balance to avoid idling process
groups and keeping the overhead of recombination low as the main computation
happens in the black box solver. We expect that the black box solver itself already
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provides good scalability up to a certain number of cores. By parallelizing over
many tasks we can then boost this scalability to reach process counts beyond the
capabilities of the solver. This is based on the fact that the number of cores can be
scaled in two ways: increasing the number of cores in the process groups—scaling
the solver—or increasing the number of process groups while keeping their core
numbers equal.

We will first look at the scalability of the recombination steps [13] for a linear
test case with �max = (14, 6, 6, 8, 7) and �min = (9, 4, 4, 6, 4) on Hazel Hen
(HLRS). In Fig. 12 we can see that the hierarchization scales almost perfectly with
the number of cores as it does not involve computation between process groups.
Moreover, it mainly involves local computation with little communication in the
group. Dehierarchization performs almost identically as it is the inverse function of
the hierarchization. The local reduction step only adds the hierarchical coefficients
of the local component grids to the sparse grid. As we enforce the same domain
decomposition of the sparse grids and the component grids, this introduces no
communication. Consequently, this operation scales perfectly. The global reduction
of the sparse grid, however, involves the communication of the decomposed sparse
grid parts over the process groups. Therefore, it shows no scaling behavior but also
a comparably low runtime.

If we now sum up all components of our recombination step (bottom graph
in Fig. 12), we can see that we can scale up to the whole size of the Hazel Hen
supercomputer if the number of process groups is adjusted well. As a consequence,
the framework introduces only a low overhead compared to the computation time
of GENE itself.

This observation is confirmed by the measurements taken for nonlinear runs
on Hazel Hen, shown in Fig. 13. This scenario consisted of 16 grids at relatively
high resolutions. The optimal linear scaling is reached for moderate numbers of
processes, yet the total scaling capabilities are limited by the solver’s scaling
capabilities. We see again that the sparse grid combination technique can play out
its advantages only if the scenario is chosen to contain many grids, i.e., to have
significant spans between �min and �max. Even then, for our use cases, the overhead
imposed by the combination routines is negligible compared to the total runtime.

4.2.1 Load Balancing

We will see here that, using the algorithmic opportunity for load balancing by grid
assignment based on a good load model, cf. Sect. 3.2, we can achieve good parallel
efficiency for large simulations—applied to both linear and nonlinear GENE runs.

The linear and anisotropy-based models were tested on 32 cores [14]. For this
linear experiment, the scenario was constructed from �min = (3, 1, 3, 3, 3) to
�max = (11, 1, 11, 11, 11), containing 425 grids. Figure 14 shows that the initial
dynamic approach (“work stealing”) is preferable to the static assignment, because
high parallel efficiencies can be sustained as the number of process groups grows.
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Fig. 12 Timings for the individual steps of the distributed recombination step for different sizes
of the process groups. The bottom plot shows the total time of hierarchization, local reduction and
global reduction. We also included a rough estimate of the computation time for one time step of
GENE with process groups of size 4096. Graphs from [13]

We can also conclude that taking the anisotropy into account leads to, on average,
substantial improvements with respect to the parallel efficiencies.

In order to cope with the larger-scale nonlinear GENE simulations, a similar
methodology was used to evaluate data-driven techniques. The methods compared
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Fig. 14 Parallel efficiency for the linear ITG scenario: linear vs. anisotropy-based, static vs. linear

were, again, the anisotropy-based model, nearest neighbor estimates, support vector
regression (SVR) and neural networks [22]. These models were trained on 2048
randomly sampled tasks. As a reference, the best attainable balance that could be
produced by the dynamic filling heuristic (cf. Sect. 3.2)—through an estimate that is
the same as the true runtime—is included in the comparison. This time, the scenario
contained grids from �min = (7, 4, 3, 4, 3) to �max = (12, 8, 6, 8, 6) to account
for the anisotropy in the requirements for different solutions, comprising 237 grids.
Now, the process group size was not fixed to 32 any more, but could reach up to 215

or 32,768 processes.
It is to be noted that Fig. 15 shows regions of high parallel efficiency compared

to Fig. 14. Still, the differences between the different modeling methods are
significant: while the nearest neighbor and SVR models lead to a relatively quick
degradation of parallel efficiency, the expert knowledge-based anisotropy model
performs a lot better, and the neural network can even achieve near-optimal scaling
(the improvements over the optimal estimate are of course lucky guesses). This
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Fig. 15 Parallel efficiencies for the nonlinear, larger ITG scenario: by method and process group
size (upper), and averaged over the different process group sizes for clarity (lower). The legend of
the lower plot applies to the upper one in the same way

advantage is enabled by having enough data samples available. Since GENE is
routinely run on various HPC machines, strong load models could be generated
even across machines from the runtime data through neural networks.

4.3 Fault Tolerance

4.3.1 Fault Tolerant Combination Technique

This chapter briefly summarizes the most recent results with hard faults within the
FTCT from [19]. For further results on hard and soft faults see [15, 16, 20].

To simulate statistical effects on the accuracy with faults in the FTCT, we conduct
a random sampling for generating process failures during the simulation. For this
sampling we choose the commonly used Weibull distribution [23]:

f (t; λ, k) = k
λ

(
t

λ

)k−1

e−(t/λ)k (15)

where k and λ are the shape and scale parameter. λ is used to directly control the
failure rate where smaller λ values cause larger error rates. This distribution is used
to draw a failure time after which an MPI rank will fail. E.g., a failure time of 10s
means that after a wall clock time of 10s a process will fail.
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We show results for one linear test case with a 3D combination in z,μ and v‖
with �max = (8, 8, 8) and �min = (5, 5, 5). The remaining dimensions x an y
are fixed at 9 and 1 grid points, respectively. Statistical results for 100 individual
runs with 512 MPI ranks are shown in Fig. 16 (left). It can be seen that for lower
failure rates the error is almost identical to the base line error without any process
failure (dotted line). In case of larger failure rates the accuracy decreases but the
overall error increase is still tolerable compared to the number of failing ranks. On
average, the error increases by 0.09%, 4% and 20%, respectively, for lambda values
of 107, 106 and 105.

Apart from error analysis, we are interested in the scaling behavior of the FTCT
in the presence of faults. For this analysis we again choose a 3D combination in
z,μ and v‖ with �max = (14, 14, 14) and �min = (4, 4, 4). In this case we simulate
only 300 time steps and apply 3 recombinations, i.e. every 100 steps, and inject a
single fault in one of the process groups. The process group size stays fixed at 1024
cores and only the number of process groups is varied in the scaling experiment
(Fig. 16, right).

In general we observed a very good scaling behavior even in the presence of
faults. Of course, the runtimes are slightly increased due to the fault of one process
group, which reduces the overall process count after the fault occurs. However, the
scaling properties seem to be unaffected by the fault recovery. This can also be seen
in the low overhead of the recovery step which is about two orders of magnitude
lower than the time for solving the PDE. Also the time for the recombination scales
well even though it involves global communication.

All in all, our results with linear GENE simulations have shown that we can
achieve fault tolerance with small computational overhead while keeping a similar
accuracy. For further details about the experiments and results we refer to [19].
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4.3.2 libSpina

We answer here two questions concerning FT-GENE: how its performance com-
pares with the performance of standard GENE and what kind of faults the
framework is able to recognize and tackle. The clusters Hazel Hen, Cobra and Draco
(MPCDF) were used in the tests which follow.

Robustness These tests used realistic parameters (based on the benchmark
ITGTEM) where a random subset of the MPI ranks is selected to fail. Several
combinations of faults were tested (full node failure, partial node failure, multiple
failures in different time steps, etc.) as well as different causes for failure (e.g.
“stop” intrinsic, or externally calling the “pkill” command).

The library libSpina was able to detect the faults, notify FT-GENE, restore the
MPI environment and allow FT-GENE to read the last checkpoint and rollback
the computation. Not all fault types could be handled by libSpina, most notably
faults caused by interrupting the interconnect hardware. Otherwise, the results were
consistent and reproducible.

Performance and Overhead The aim of these tests was to determine the perfor-
mance impact of libSpina on an application, by running both FT-GENE and GENE
“back-to-back” on the same hardware with the same parameter files.

In the following, the grid dimensions are displayed as (x, y, z, v||, μ). The same
notation is used for the MPI partitioning of the domain (that is, n_proc_x, n_proc_y,
and so on). The runtime is shown in seconds and disregards the initialization of
GENE and libSpina. The reason is that the initialization of GENE involves several
performance optimization tests (often lasting several minutes) which would mask
the true difference in runtime.

The first part of the results in Table 3 has been repeated many times for many
different configurations: nonlocal and local, linear and nonlinear, between 1 and 64

Table 3 Cobra performance
comparison

Nodes μ n_proc_μ GENE FT-GENE Loss

2 2 1 379.2 s 386.1 s 1.83%

4 4 2 398.9 s 400.7 s 0.46%

8 8 4 419.6 s 422.4 s 0.67%

16 16 8 414.5 s 416.2 s 0.40%

32 32 16 424.4 s 432.4 s 1.89%

64 64 32 438.0 s 451.4 s 3.06%

150 5 5 568.4 s 565.3 s −0.55%

300 10 10 590.4 s 585.0 s −0.91%

600 20 20 714.6 s 700.4 s −1.99%

Topmost: (512,64,40,*,48) points, (8,1,5,*,1) paralleliza-
tion, nonlocal, kinetic electrons (2 species). Lowermost:
(512,512,20,*,60) grid size, (1,2,20,*,15) parallelization,
local, kinetic electrons. Both are nonlinear runs with 100
time steps and 40 ranks per node
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Table 4 Hazel Hen
performance comparison

Nodes x n_proc_x GENE FT-GENE Loss

1024 576 24 517 s 446 s −13.7%

1024 576 24 469 s 477 s 1.7%

2048 1152 48 1156 s 805 s −30.4%

2048 1152 48 836 s 914 s 9.3%

Grid size: (*,128,32,64,16) points, parallelization:
(*,1,8,8,16), nonlocal, adiabatic electrons (1 species),
nonlinear run, 1000 time steps, 24 ranks per node

nodes, in Cobra and Draco with several different types of parallelization. On all
occasions the result was consistent and the overhead of libSpina lay between −3%
and+3% which is within statistical fluctuations in this case. For the sake of brevity,
only the most recent of these results are shown in Table 3.

There was no deterioration of the performance of FT-GENE for large numbers
of nodes, as it can be seen in the lowermost part of Table 3.

Similar experiments were performed on Hazel Hen but provide largely incon-
clusive results. Small tests (with four nodes) were analogous to the results shown
in Table 3, but tests involving a large number of resources were inconclusive
(see Table 4). The overhead fluctuated between −30% and +15%. One of the
possible explanations is that the job was distributed amongst several islands and
MPI communications had to be passed through switches. Since switches are shared
amongst all running jobs, the communication patterns of GENE and FT-GENE
were disturbed by external factors, causing statistically invalid measurements of
performance.

5 Conclusion

During the EXAHD project a massively parallel software framework for the
sparse grid combination technique was developed and successfully applied to the
gyrokinetic solver GENE, to linear as well as nonlinear, nonlocal settings. While its
functionality has been demonstrated for medium sized test cases we expect an even
greater benefit when applying it to larger simulations in future experiments.

Our implementation shows excellent scaling behavior up to 180k cores, and
allows to scale the application code beyond its specific capabilities, thus making
it ready for exascale computing. At the same time the overhead incurred to the total
runtime is negligible.

The load balancing that can be realized with our approach allows to maintain
parallel efficiencies close to the optimum. This is achieved by incorporating effects
of anisotropy in our cost model and applying dynamic task scheduling. By modeling
the solver loads with neural networks, this scheduling can be further enhanced.
As an outlook, the additional level of parallelism offered by the combination
technique may allow for scaling beyond a single system: the computation may be
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decoupled across compute centers. This would require more advanced distributed
communication, as the combined solutions would have to be updated on both
systems. First tests have been performed for this setup, but the overall performance
and gains of such an approach still need to be evaluated.

We have also shown that the fault tolerant combination technique can be used
to construct a resilient framework, which can tolerate hard and even soft faults.
This algorithm-based fault tolerance introduces only minor effects on the overall
accuracy and runtime while preserving the scaling properties of the framework.
Furthermore, FT-GENE demonstrated a reasonable ability to tolerate faults, even
under the restrictions of relying purely on standard MPI, causing no performance
overhead.

Finally, by implementing specialized interfaces, the software framework can
readily be extended to other codes dealing with high-dimensional functions and we
look forward to seeing it used in many more applications.
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Abstract Simulations of cosmic structure formation address multi-scale, multi-
physics problems of vast proportions. These calculations are presently at the
forefront of today’s use of supercomputers, and are important scientific drivers
for the future use of exaflop computing platforms. However, continued success
in this field requires the development of new numerical methods that excel in
accuracy, robustness, parallel scalability, and physical fidelity to the processes
relevant in galaxy and star formation. In the EXAMAG project, we have worked
on improving and applying the astrophysical moving-mesh code AREPO with
the goal to extend its range of applicability. We have also worked on developing
new, powerful high-order discontinuous Galerkin schemes for astrophysics, on
more efficient solvers for gravity, and on improvements of the accuracy of the
treatment of ideal magnetohydrodynamics. In this context, we have also studied
the applied mathematics required for higher-order discretization on dynamically
moving meshes, thereby providing the foundations for much more efficient and
accurate methods than are presently in use. Finally, we have worked towards
publicly releasing two major community codes, AREPO and GADGET-4, which
represent the state-of-the-art in the field.
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1 Introduction

Hydrodynamical simulations of galaxy formation have significantly matured over
recent years and now enable successful predictions of the build-up of the galaxy
population starting from cosmological initial conditions left behind by the Big Bang.
These simulations can track the non-linearly coupled evolution of both baryons
and dark matter, in principle fully accounting for their mutual influence on each
other and yielding rich predictions for galaxy properties, the diffuse gas in the
circumgalactic and intergalactic media, and cosmic dark matter clustering. Provided
that such hydrodynamic simulations can be pushed to sufficiently large volumes,
they provide the most powerful approach for forecasting non-linear cosmological
observables related to clustering in different regimes and at different epochs.
However, it is extremely challenging to include all the relevant physics, and to
make the simulations accurate, fast, and scalable enough to be able to exploit the
full capacity of today’s supercomputers. The EXAMAG project has been aiming to
advance novel numerical methodologies for astrophysical simulations, and to apply
them right away to timely research questions in astrophysics. A particular focus has
been on magnetic field predictions, and the development of higher-order methods.

In this project review, we report a subset of the results obtained within the
EXAMAG project. In Sect. 2 we describe the IllustrisTNG simulations, the currently
most advanced set of magnetohydrodynamical simulations of galaxy formation,
as well as the Auriga simulations, which focus on predictions for our own Milky
Way galaxy, in particular on the structure and origin of its magnetic field. In
Sect. 3, we turn to our recent developments of discontinuous Galerkin hydro- and
magnetohydrodynamics codes. We also give a short description of some of our
methodological advances in combining the idea of fully dynamic, unstructured
meshes with high-order discontinuous Galerkin approaches to hydrodynamics. We
also report on the application of these higher order methodologies to the problem
of driven isothermal turbulence, where these methods prove to be particularly
powerful. We then recount in Sect. 4 some of our work on the performance and
accuracy of the two cosmological hydrodynamical simulation codes GADGET-4
and AREPO, both of which we have prepared for public release to the community
as part of this project. Finally, we summarize and give an outlook in Sect. 5.

2 The IllustrisTNG and Auriga Simulations

The AREPO code [31] introduced a different approach from the ones so far
commonly adopted in astrophysics to evolve gas on a computer (smoothed particle
hydrodynamics, SPH, and Eulerian mesh-based methods, typically utilizing adap-
tive mesh refinement, AMR). It employs a moving, unstructured mesh where, like
AMR, the volume of space is discretized into many individual cells, but similar to
SPH, these cells move with time, adapting to the flow of gas in their vicinity. As a
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result, the mesh itself, constructed through a Voronoi tessellation of space, has no
preferred directions or regular grid-like structure, and is highly spatially adaptive,
making it ideal, in particular, for studying galaxy formation.

Our ground-breaking “Illustris” hydrodynamical calculation of galaxy formation
[35] demonstrated the utility of the approach for simulations of structure formation.
For the first time ever, it reproduced the observed morphological mix of galaxies
and its dependence on stellar mass. Over the past years we have undertaken
significant efforts to improve the underlying physics models (especially with respect
to magnetic fields, and the processes regulating star formation through energetic
feedback from supernovae and black holes), and the accuracy and scalability of
the numerical algorithms (for example by developing a hierarchical local time-
stepping algorithm for gravity). These efforts culminated in the simulation projects
IllustrisTNG and Auriga.

The Next Generation (TNG) Illustris project1 built on the technical and
scientific achievements of its predecessor and pushed this line of research further. In
particular, it has improved upon Illustris by including our newly developed accurate
solver for ideal magnetohydrodynamics [22, 24], and by extending the dynamic
range and resolution of the simulated galaxies and haloes significantly through an
ambitious suite of simulations carried out on the Hazel-Hen supercomputer at the
High-Performance Computing Center Stuttgart (HLRS) with the help of two large
compute-time grants by the Gauss Centre for Supercomputing (GCS). We have
considered three different box sizes, roughly 300, 100, and 50 Mpc on a side, and
computed extensive resolution studies for each of them, yielding three series or runs,
entitled TNG300, TNG100, and TNG50. The calculations used up to 24,000 cores,
required 100 TB RAM, and produced 660 TB of scientific data. A visual impression
of one of these simulation is given in Fig. 1. As an illustrative result, we show the
clustering statistics of different matter components at the present epoch in TNG300
in Fig. 2 [33]. The calculation is able to probe deeply into the non-linear regime,
over a very large dynamic range, thereby allowing predictions both for the internal
structure of galaxies as well as their large-scale clustering patterns.

The scientific analysis of the IllustrisTNG simulations has started in 2018 and has
already led to many important results for a vast range of scientific questions [e.g. 19,
20, 27, 33, 34], demonstrating the great utility of these methods. At the time of this
writing, the TNG simulations have already produced 67 journal publications, and
about 80 additional papers are currently in preparation by a network of international
collaborators. In December 2018, we publicly released the data of TNG100 and
TNG300 [21], with TNG50 to follow in a year’s time, which will further amplify
the scientific use of the simulations.

The Auriga simulations [11] use a very similar physics and numerical model as
IllustrisTNG, but “zoom-in” on individual Milky Way-sized galaxies that are studied
with much higher resolution. A particular focus here has been on understanding the
origin of the magnetic fields in galaxies, and on predicting their present structure as

1http://www.tng-project.org.

http://www.tng-project.org
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Fig. 1 Thin projections through the TNG100 simulation, showing (from top to bottom) the gas
density field, the metallicity, the magnetic field strength, the dark matter density, and the stellar
density
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Fig. 2 The matter autocorrelation function for different mass components in our high-resolution
TNG300 simulation at redshift z = 0, see [33]. We show results for stellar matter, gas, dark matter,
black holes, and all the matter, as labelled. The linear theory correlation function is shown in grey
for comparison

well as their build-up over cosmic time. In [25] we have shown that the magnetic
fields grow exponentially at early times owing to a small-scale dynamo with an
e-folding time of roughly 100 Myr in the centre of haloes until saturation occurs
around redshift z = 2–3, when the magnetic energy density reaches about 10%
of the turbulent energy density with a typical strength of 10–50 μG. Outside the
galactic centres, differential rotation in the discs leads to linear amplification of
the magnetic fields that typically saturates around z = 0.5–0. The final radial and
vertical variations of the magnetic field strength can be well described by two joint
exponential profiles, and are in good agreement with observational constraints.

We have extended the observational comparisons by computing synthetic Fara-
day rotation maps due to the magnetic fields [26], for different observer positions
within and outside the simulated galaxies. We find that the strength of the Faraday
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Fig. 3 Faraday rotation maps as seen by an external observer for three of the Auriga simulations.
The top and bottom panels show face-on and edge-on Faraday rotation maps due to the magnetic
fields in three different simulated disk galaxies Au-23, Au-24, and Au-27 [26]. These predictions
compare well to observations of real galaxies such as M51

rotation of our simulated galaxies for a hypothetic observer at the solar circle is
broadly consistent with the Faraday rotation seen for the Milky Way. The same holds
for an observer outside the galaxy and the observed signal of the nearby spiral galaxy
M51, see Fig. 3. However, we also find that the structure of the synthetic all-sky
Faraday rotation maps vary strongly with azimuthal position along the solar circle.
This represents a severe obstacle for attempts to reconstruct the global magnetic field
of the Milky Way from Faraday rotation maps alone without including additional
observables.

3 Discontinuous Galerkin Hydrodynamics for Astrophysical
Applications

The AREPO code is based on a second order finite volume method on a moving
mesh. An important part of the EXAMAG project was to develop a higher order
method for AREPO, for which we have chosen to use a discontinuous Galerkin
(DG) method due to the significant promise this class of methods holds for high
performance computing. Here the hydrodynamic or magnetohydrodynamic partial
differential equations are written in a weak form to construct a finite element
method. On each cell, the solution and the test functions are approximated by
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appropriate polynomials. Note that the approximate solution is not required to be
continuous across cell boundaries. The jumps between neighboring cells are taken
into account by a numerical flux function based on an approximate Riemann solver
which provides stability to the method. The time discretisation is performed using a
Runge-Kutta method. For more details, see [29].

Using the discontinuous Galerkin (DG) method brings with it the following
advantages:

• DG works naturally on unstructured meshes which makes it suitable for adaptive
meshes with hanging nodes and for moving mesh methods.

• DG can be made to work for any order of accuracy with a compact stencil and
provides spectral-type accuracy.

• DG is extremely local in data communication, thus ideally suited for efficient
parallelization on current computer hardware.

Due to these advantages and also the ability of DG to compute convection
dominated problems in a stable and accurate manner, the EXAMAG project
worked towards adopting DG methods for astrophysical applications. Our efforts
in this direction followed two main paths that will be presented in the following
subsections. First, in Sect. 3.1, we describe the discontinuous Galerkin method
on a Cartesian mesh with automatic mesh refinement for both the Euler and
magnetohydrodynamics equations. Then, in Sect. 3.2, the discontinuous Galerkin
method on a moving mesh is discussed. Finally, in Sect. 3.3 we present some results
on turbulence simulations with higher order numerics.

3.1 The Discontinuous Galerkin Method on a Cartesian Mesh
with Automatic Mesh Refinement

In a collaboration with the EXA-DUNE project (Peter Bastian, Heidelberg) we
implemented a two-dimensional hydrodynamics code in the DUNE framework
with total variation bounded and positivity preserving limiters. A mesh refinement
triggered by the limiting criteria was also built in, see [9].

In [10], we developed a code based on the DG method for compressible flows to
incorporate and test shock indicators that can determine which cells need limiting.
We showed that the choice of variables that are limited can have a major influence
on accuracy; limiting the characteristic variables was compared to limiting the
conserved variables, with the former being better able to control oscillations. These
limiters were then combined with a shock indicator, yielding the ability to solve
complex flow problems in a more efficient and accurate manner since the costly
limiters need not be applied everywhere.

These investigations provided the foundations for our implementation of the
discontinuous Galerkin approach in a new branch of the AREPO code called
TENET, as presented in [28]. This version of the code supports adaptive mesh
refinement (AMR) and is able to maintain high-order accuracy at AMR refinement
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0.8 1.2 1.7 2.1r

Fig. 4 A Kelvin-Helmholtz simulation with fourth order DG and adaptive mesh refinement (see
[28]). The simulation starts with 642 cells, and refines in selected regions to an effective resolution
of 40962. As can be seen in the bottom panel (white markers indicate regions that are enlarged in
subsequent panels), the solution within every cell contains rich information, consisting of a third
order polynomial

boundaries, unlike finite-volume approaches that typically fall-back to first order
there. As an illustrative example, Fig. 4 depicts a simulation of a Kelvin-Helmholtz
instability using TENET. In [28] we have also shown that DG has significant
advantages over a finite volume method. Given the same accuracy target, a higher
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order DG method requires fewer grid points than a finite volume method, allowing
for much faster run times, especially for smooth solutions. The higher order DG
method of TENET is also better in computing discontinuous solutions, although
the numerical techniques for identifying regions where a limiter has to be applied
are intricate and still not fully mature. We also showed that the DG approach
automatically conserves angular momentum in smooth regions which is beneficial
for many astrophysical problems involving rotating objects.

We next worked towards adding magnetic fields, leading to the model of ideal
magnetohydrodynamics in fully compressible flows. The system of ideal magneto-
hydrodynamical equations poses additional challenges for numerical simulations,
mainly due to the need to preserve the divergence-free condition on the magnetic
field, which requires specialized techniques. In [5] we developed an entropy stable
finite volume scheme based on a symmetrized version of the MHD equations. A
numerical flux is given which allows for the construction of an entropy conservative
and entropy stable scheme. It is demonstrated how this new scheme is robust for
MHD simulations due to its entropy framework, in spite of the divergence condition
not being explicitly satisfied. In [6] this approach was extended to an explicit
high order Runge-Kutta discontinuous Galerkin method. This methodology is then
combined with techniques used to control oscillations near discontinuities, similar
to [10], where these techniques were introduced for the hydrodynamical case. We
assessed a different approach for the divergence constraint in [15], where post-
and pre-processing methods are suggested in order to numerically maintain the
divergence free constraint.

Finally, in [12] we implemented high-order MHD in the AREPO code using two
different approaches for maintaining the divergence constraint, a locally divergence-
free basis combined with Powell terms for stability, and a hyperbolic divergence
cleaning method. Two new numerical ingredients were introduced in the DG
scheme: a non-linear limiting procedure for the magnetic field, and a different
discretization of the Powell terms, which was found to be a key aspect for stability
and accuracy of the method. The beneficial properties of the DG method found
for hydrodynamical simulations were also confirmed by Guillet et al. [12] for
the MHD case. The resulting scheme shows lower advection errors and better
Galilean invariance than a finite volume scheme, and hence constitutes a very
promising approach for more realistic applications in an astrophysical context. In
Fig. 5, we show as an example the DG simulation of a two-dimensional MHD
blast wave, which is a particularly challenging test case in terms of maintaining
positive solutions. In Fig. 6, we demonstrate the convergence of our DG algorithms
when applied to a smooth isodensity MHD vortex problem that is advected at
different angles through a periodic domain. Our numerical solutions reproduce
to good accuracy the expected convergence orders for orders 2–6, both for a
locally divergence-free basis and a Legendre basis. Note that for increasing order
progressively more degrees of freedom per cell are needed, and thus more storage
and computational work per element are required. This enlargement of the cost
per element is a constant factor, however, leaving the slopes of the convergence
order unaffected. The high-order methods hence always win in overall efficiency
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Density Magnetic pressure Mach number

Fig. 5 A two-dimensional MHD blast wave test problem. The density, magnetic pressure and
Mach number contours are shown on a 2562 grid using a third-order discontinuous Galerkin
scheme where the MHD equations are written in symmetrized form using so-called Powell terms,
see [12]

and accuracy once the mesh resolution lies above a finite cross-over point (see
also [12, 28] for an analysis of the accuracy of different DG-order as a function
of invested CPU-time).

3.2 The Discontinuous Galerkin Method on a Moving Mesh

In a parallel endeavour, we have investigated in EXAMAG the general problem of
extending higher-order methods to unstructured meshes that move along with the
flow. The original AREPO approach employed a second order finite volume scheme
for this purpose. As this works quite well and is able to improve the resolution
of flow features by minimizing numerical dissipation from advection, we pursued
extensions of this approach in three different directions.

The DG method can be proven to be entropy stable and convergent on a
fixed grid for a scalar conservation law. In a first line of investigation we have
shown that the entropy stability is maintained on a moving mesh. This was
demonstrated in [16] and [17] for a semidiscrete arbitrary Lagrangian-Eulerian
discontinuous Galerkin method. In [18] these ideas were extended to a fully discrete
method. Numerical experiments have confirmed these properties also for a multi-
dimensional implementation of the hydrodynamical equations.

The above studies were restricted to arbitrary Lagrangian-Eulerian discontinuous
Galerkin methods, where the grid needs no remeshing. In practice, one needs to
remesh the grid once in a while since otherwise the mesh quality degrades to
such an extent that the computations can break down. In [1], a DG method for
2-D Euler equations was developed on triangular grids and the mesh vertices are
moved in an almost Lagrangian manner. To maintain good mesh quality, only a
local remeshing was performed in regions where the mesh quality has become poor.
As an example, Fig. 7 shows an isentropic vortex that is also advecting. Due to the
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Fig. 6 Convergence of the MHD isodensity vortex problem computed for different DG orders.
Solution L2 errors are plotted for Bx (top row) and pressure (bottom row), for both a locally
divergence-free (LDF) basis with Powell terms (left column), and a Legendre basis with hyperbolic
cleaning (right column). Errors are measured at time t = 20 after the vortex has crossed the whole
computational domain. Dotted lines show theoretical slopes for convergence orders 2 to 6. Solid
and dashed lines correspond to errors for an advection angle α = 45◦ and α = 30◦, respectively.
The shaded area corresponds to a range of resolutions for which the vortex is resolved but not
over-resolved (see [12])

high shearing inside the vortex, the mesh would become heavily skewed with time,
but our remeshing scheme is able to maintain good mesh quality over long time
intervals.

Finally, we pursued a third direction. Would it be possible to use a moving mesh
composed of Voronoi cells, as employed by AREPO for a second order finite volume
method, also for a high order DG method? The difficulty here is that this type of
mesh is effectively remeshed everywhere at every time step, implying that the cell
connectivity and their topology can change during a timestep. This represents a
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Fig. 7 A rotating isentropic vortex in two space dimensions: we show the mesh and the pressure
of the solution to the Euler equations at various times: (a) t = 0, (b) t = 6, (c) t = 12, and (d)
t = 20. Notice how the mesh quality does not deteriorate thanks to the local remeshing technique
described in [1]

significant challenge for DG, although some guidance may also be obtained from
high-order curvilinear finite element methods (e.g. [7]). Note that a higher order
method is in particular high order in time, meaning it needs predictor steps between
two consecutive time steps. Thus the connectivity of a cell at one time step with
the cell at the next time step is needed, but a moving Voronoi cell may change the
number of its sides during the step. This leads to significant geometric complications
in formulating a consistent time evolution of the basis function expansion. The
associated challenges were successfully overcome in [8], for the moment in two-
dimensions only. But it appears conceptually straightforward to generalize this



EXAMAG: Simulations of the Magnetic Universe 343

solution to three dimensions, therefore the path to a high order DG method in 3D
using the moving Voronoi mesh of AREPO is now open.

3.3 Turbulence Simulations with Higher Order Numerics

We have applied our hydrodynamic DG code developed in [28] to the simulation
of three-dimensional hydrodynamic subsonic turbulence [4]. This allowed us to
demonstrate that this DG implementation gives accurate results at noticeably less
computational cost than a finite volume method.

Driven magnetohydrodynamical turbulence is an even richer physics problem,
which is of particular importance in a variety of astrophysical contexts, including
star formation in the interstellar medium, stellar atmospheres, and the X-ray
emitting gas in clusters of galaxies. In Pakmor et al. (2019, in prep), we have applied
our DG-MHD code developed in [12] to the problem of isothermal turbulence in a
uniform box, with the goal to test different numerical schemes for preserving the
MHD constraint, and for validating the effectiveness of the high-order DG approach.
Of particular interest is whether there are any systematic differences between a
constrained transport (CT) finite-volume MHD approach, which is able to guarantee
the divergence free constraint to machine precision at all times, and the Powell and
Dedner approaches for divergence control, for which we also have high order DG
formulations. It is sometimes suspected that CT may be required to obtain truly
accurate solutions for this problem. Reassuringly, our results, summarized in Fig. 8,
do not support this view. The statistical properties of the quasi-stationary turbulent
flow are very consistent between the different schemes. As expected, the growth rate
of the turbulent dynamo increases with resolution and order of the scheme. While
the slope of this relation is similar for all schemes, there are interesting differences
in the absolute growth rate at a given resolution between the different schemes.
If anything, here CT appears slightly more dissipative than the Powell approach. In
contrast, the saturated magnetic energy does not seem to depend on the resolution or
scheme, provided a minimum resolution is used that again depends on the scheme.
Interestingly, here the Powell approach is able to numerically represent a working
dynamo already at lower resolution than the CT approach.

4 Performance and Public Release of the Two Cosmological
Hdyrodynamical Simulation Codes GADGET-4 and
AREPO

As part of EXAMAG, we have also developed a memory efficient and fast N-
body/hydrodynamical code, GADGET-4, which is primarily intended for extremely
large simulations of cosmic structure formation (Gpc3 volumes), targeting cos-
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Fig. 8 Growth rate of the magnetic field strength in units of the eddy-turnover time ted =
L/(2M cs ) (top panel) and the ratio of the magnetic to the kinetic energy in the saturated state
(bottom panel) for isothermal turbulence in a uniform box for different numerical schemes and
spatial resolution. N is the number of mesh cells per spatial dimension. The turbulence is driven
by purely solenoidal driving and saturates at a Mach number of M ∼ 0.3. We compare different
numerical schemes to control the divergence of the magnetic field, including constrained transport
(CT), Dedner cleaning, and Powell terms. Also, we compare finite volume on a moving mesh
(MM) with high-order DG on a Cartesian mesh
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mological applications. GADGET-4 (Springel et al., 2019, in prep) represents a
complete rewrite of the successful and widely used GADGET code [30], using C++
and numerous refined algorithms. For example, it supports a variety of additional
gravity solvers, among them a high-order fast multipole method (FMM), as well as
hierarchical local time-integration techniques.

The code is highly scalable, and can be run with two different approaches for
hybrid parallelization, either a mix of MPI and OpenMP parallelization, or a novel
shared memory parallelization model based on MPI-3 where one MPI rank is set
aside on each shared memory node to respond to communication requests from MPI
processes on remote nodes with minimum latency, thereby realizing truly one-sided
communication independent of MPI progress engines. Within each node, the MPI
layer can be bypassed entirely through shared-memory accesses in this method.

Figure 9 shows the effectiveness of this approach on the SuperMUC-NG machine
at the Leibniz Supercomputing Centre (LRZ) in a weak scaling test, where the
TreePM force computation algorithm [2, 30] is used. This approach assembles
the total force as the sum of a short-range gravitational force computed with a
hierarchical multipole expansion (here done with a one-sided tree algorithm, [3]),
and a long-range gravity computed in Fourier space. This approach is particularly
efficient for periodic cosmological simulations at high redshift where the density
fluctuations are small and the large-scale residual forces nearly vanish. In this
regime, pure Tree- or FMM-algorithms need to open many more nodes to accurately
recover the near cancellation of most of the large-scale forces.
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Fig. 9 Scaling of the GADGET-4 code for cosmological simulations of structure formation on
the SuperMUC-NG supercomputer. The scaling of the dominant tree calculation is excellent. The
long-range gravity is done through very large FFT grids, which are communication bound. Our
column-based parallel FFT (solid green) scales beyond the point where the number of MPI ranks
exceeds the number of mesh planes (vertical dotted line), but requires more transpose operations
than a slab-based algorithm (dashed green). For the largest number of nodes, two or more islands
of the machine are needed, reducing the available cross-sectional bandwidth, which impacts the
scaling behavior of the communication heavy long-range gravity and domain decomposition
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The most expensive part of the calculation, the Tree-based computation of the
short-range gravity scales perfectly to 49,152 cores (1024 nodes on SuperMUC-
NG), thanks to the MPI-3 parallelization scheme, which is able to eliminate a
mid-step synchronization point that was still necessary in our older conventional
communication scheme for this algorithm. Because the amount of work per MPI
rank stays constant in the weak scaling regime for the short-range part of the TreePM
algorithm, and the amount of data that needs to be imported from neighboring
ranks stays approximately constant, too, a near perfect scaling should in principle
be reachable. However, because the communication pattern is complex and highly
irregular, this has normally become a bottleneck for the scalability to very large
numbers of MPI ranks. This is here successfully eliminated thanks to our one-sided
(and fully portable) communication approach.

In contrast, the FFT-based calculation of the long-range gravity is communication-
bandwidth bound and shows poorer scalability, as expected, but still stays
subdominant overall. Here for the largest problem sizes an additional scaling
bottleneck is resolved by GADGET-4. For a standard slab-based decomposition
of the FFT (green dashed lines), there comes a point when there are more MPI
ranks than mesh planes (marked by the vertical dotted line), at which point not
only scalability ends, but also memory imbalance will quickly grow. This impasse
is overcome in GADGET-4 with a column-based parallel FFT algorithm (green
solid lines), which maintains scalability and memory balance up to the largest
foreseeable problem sizes in cosmology. However, this algorithm requires twice as
many transpose operations, making it more costly for small problem sizes where the
slab-based approach is still viable. Like the parallel FFT, the domain decomposition
algorithm is also communication bound and thus deviates from ideal scalability, but
this part of GADGET-4 is fast enough to always stay subdominant. We note that
the alternative hybrid parallelization through a combination of MPI and OpenMP
yields very good thread scalability, see Fig. 10 (right panel), but shows slightly
poorer overall scalability when the number of shared-memory nodes becomes large
due to losses in its MPI communication algorithm (which still contains a midstep
synchronization point).

We have also developed new on-the-fly group finding and merger-tree building
techniques for GADGET-4 (which also scale well, see Fig. 10, left panel), as well as
sophisticated outputting strategies for light-cones and high angular resolution maps
of line-of-sight projections of various quantities, such as the total mass (for weak
lensing). These features are designed to support collisionless N-body simulations
with extreme particle numbers in the regime of 1012 particles and beyond. The
huge data volume necessitates that post-processing calculations are done during the
simulation as much as possible to avoid the need for enormous disk storage capacity.
In fact, GADGET-4 in principle removes the need to produce any time-slices of
particle data, thereby eliminating a substantial obstacle to carry out semi-analytic
galaxy formation on merger trees based on simulations in the trillion particle regime.
Attempting this with the same approach as in the Millennium simulation [32],
where of order 100 time slices were produced and merger trees were made in
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Fig. 10 The left panel shows a strong scaling test of the built-in FOF group finder in GADGET-4,
while the right panels shows the speed-up of the gravity calculation in GADGET-4 as a function
of the number of OpenMP threads employed when run in MPI-OpenMP hybrid mode. In the latter
example, a single MPI rank on a single node of Intel Xeon 6138 cluster was used. Even though the
node has two processors with 20 physical cores each, the OpenMP scaling extends well into the
second processor, despite the reduced memory bandwidth this entails. In practice, GADGET-4 is
best run with at least 2 MPI ranks per processor (corresponding to up to 10 OpenMP threads on
this cluster). In this regime, the OpenMP scaling is excellent

post-processing, would require 6 PB of particle storage, something that we can
completely avoid with the new code.

As a legacy of EXAMAG, both the GADGET-4 and AREPO codes are scheduled
for public release in 2019. Weinberger et al. [36] introduces the community version
of the AREPO code, and provides an overview of the available functionality as
well an introduction of AREPO to new users. This is augmented with a suite of
examples of different complexity, a test suite, and a support forum that is hosted
on the code’s website as a platform to ask questions about the code. A similar
release is planned for the GADGET-4 code (Springel et al., 2019, in prep). We hope
that this will foster an active and supportive user community that will contribute
to the further development of these highly parallel simulation codes, preparing for
their eventual use on exascale class computers, as envisioned by SPPEXA and its
EXAMAG subproject.

5 Summary and Discussion

The primary research goals of the EXAMAG project have been to develop new
mathematical methods and physics implementations in state-of-the-art hydrody-
namical codes, allowing them to be used for groundbreaking astrophysical research
that can make full use of the capabilities of current and emerging HPC platforms.
Our approach consisted of leveraging a tight collaboration between applied math-
ematicians and numerical astrophysicists, thereby allowing a quick transfer of new
mathematical ideas into applications at the forefront of today’s supercomputer
applications in astrophysics and cosmology.
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In hindsight, we feel that our strategy to immediately apply new numerical pro-
cedures in large application projects has been successful. This provided immediate
feedback on the most promising development directions, and thus allowed us to
iteratively improve codes used for production science on powerful supercomputers.
Our special focus on treatments of ideal magnetohydrodynamics has allowed us
to make significant progress on the physical fidelity of simulations of galaxy
formation, thereby making the IllustrisTNG and Auriga projects possible in the
first place. The MHD capability also provided the foundations for new solvers
we developed for anisotropic diffusive transport processes, relevant especially for
cosmic rays [23], thermal conduction [13] and radiative transport [14].

There is no shortage of ideas for developing the performance and capabilities
of our AREPO, GADGET-4 and DG codes further in the future. Extending our
DG-MHD techniques to high-order methods for self-gravity and source terms such
as radiative cooling are an obvious direction. Other challenges lie in the techni-
cal aspects of parallelization, where especially the MPI-3 based shared-memory
approach that we have introduced in GADGET-4 looks particularly promising for
adoption in AREPO as well. It is clear that dedicated and sustained research efforts
in numerical method development remain the basis for future scientific progress in
computational astrophysics.
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Abstract We present a numerical two-scale simulation approach of the Nakajima
test for dual-phase steel using the software package FE2TI, a highly scalable
implementation of the well known homogenization method FE2. We consider the
incorporation of contact constraints using the penalty method as well as the sample
sheet geometries and adequate boundary conditions. Additional software features
such as a simple load step strategy and prediction of an initial value by linear
extrapolation are introduced.

The macroscopic material behavior of dual-phase steel strongly depends on its
microstructure and has to be incorporated for an accurate solution. For a reasonable
computational effort, the concept of statistically similar representative volume
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elements (SSRVEs) is presented. Furthermore, the highly scalable nonlinear domain
decomposition methods NL-FETI-DP and nonlinear BDDC are introduced and
weak scaling results are shown. These methods can be used, e.g., for the solution of
the microscopic problems. Additionally, some remarks on sparse direct solvers are
given, especially to PARDISO. Finally, we come up with a computationally derived
Forming Limit Curve (FLC).

1 Introduction

In the EXASTEEL project, we are solving challenging nonlinear multiscale prob-
lems from computational material science showing parallel scalability beyond a
million parallel processes. Our software package FE2TI solves large scale contact
problems in sheet metal forming of microheterogeneous materials and scales
to some of the largest supercomputers available today. Although an exascale
computer is not yet available, FE2TI is exascale ready: For our current production
simulations, we have not pushed the combined parallelism of the FE2 multiscale
computational homogenization method and of our nonlinear solvers to the limit.
Both, i.e., the FE2 method by itself, as well as our nonlinear solvers are scalable
to the largest supercomputers currently in production in the leading international
computing facilities.1

In particular, as a problem, we consider the finite element simulation of sheet
metal forming processes of dual-phase (DP) steels, whose macroscopic material
behavior strongly depends on its microscopic material properties. A brute force
discretization with respect to the microscopic structure would lead to extremely
large systems of equations, which are not feasible, even on the upcoming exascale
supercomputers. To give an example, a reasonable finite element discretization
down to the microscopic scale would require 103–109 finite elements for a three
dimensional cube with a volume of 1 μm3. Extrapolating this to a sheet with an
area of 1 m2 and a thickness of 1 mm would lead to 1018–1024 finite elements. A
brute force simulation would also require knowledge of the complete microstructure
of the steel sheet which is not available. Therefore, an efficient multiscale or
homogenization approach is indispensable to save 3 to 6 orders of magnitude of

1In 2011, the overall scientific goal of the German DFG priority program SPP 1648 “Software
for Exascale Computing” (SPPEXA) was stated as “to master the various challenges related
to [. . . ] [the] paradigm shift from sequential or just moderately parallel to massively parallel
processing” and thereby to “advance the frontier of parallel computing” [4]. From the beginning,
SPPEXA aimed at a true co-design, i.e., closely connecting “computer science with the needs of
Computational Science and Engineering (CSE) and HPC” [4]. The project EXASTEEL addresses
three of the main SPPEXA research areas, namely computational algorithms, application software,
and programming, i.e., we have, e.g., introduced new nonlinear solver algorithms, implemented
our multiscale application software FE2TI, and applied hybrid programming and performance
engineering to our codes. This work was only possible in close collaboration of mathematics,
computer science, and engineering.
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unknowns. Our choice of a computational homogenization approach is the FE2

method which is well established in engineering; see Sect. 3 for a short introduction
and further references. In the FE2 method, the microscopic and macroscopic
level are discretized independently of each other. No material laws are needed
for the macroscopic level, all information needed is obtained from microscopic
computations based on material laws and data on the microscopic level. Let us
note that the microscopic problems can be solved in parallel once the solution of
the macroscopic problem is available as input. The solution of the macroscopic
problem, however, requires the information of all microscopic solutions. Thus,
the FE2 method is not trivially parallelizable but requires a sequential solution
of the microscopic and the macroscopic problems; this is similar to the coarse
level of a hybrid two-level domain decomposition method with multiplicative
coarse level and additive subdomain solvers. The nonlinear problems on both
levels, the macroscopic and the microscopic one, can be solved (after linearization)
using highly parallel scalable and robust implicit solvers such as parallel algebraic
multigrid methods (AMG) or parallel domain decomposition preconditioners such
as FETI-DP (Finite Element Tearing and Interconnecting-Dual-Primal) [27, 28, 47–
50] or BDDC (Balancing Domain Decomposition by Constraints) [20, 24, 71–73]
methods. These preconditioners are usually applied as part of a Newton-Krylov
approach, where the tangent problem in each Newton iteration is solved using
preconditioned Krylov iteration methods. A more recent approach to nonlinear
implicit problems, developed extensively within EXASTEEL, is given by non-
linear parallel domain decomposition methods, which are applied directly to
the nonlinear problem, i.e., before linearization. In such methods, the nonlinear
problem is first decomposed into concurrent nonlinear problems, which are
then solved by (decoupled) Newton’s methods in parallel. In this project,
nonlinear FETI-DP and nonlinear BDDC domain decomposition methods (see
also Sect. 6) have been introduced and have successfully scaled to the largest
supercomputers available—independently of the multiscale context given by the
FE2 homogenization methods, which adds an additional level of parallelism. It was
found that the nonlinear domain decomposition methods can reduce communication
and synchronization and thus time to solution. They can, however, also reduce
the energy to solution; see Sect. 6.1.1 and [63]. These methods can be applied
within our highly scalable software package FE2TI but can also be used for all
problems where implicit nonlinear solvers are needed on extreme scale computers.
For scaling results of the FE2 method to more than one million MPI ranks, see
Fig. 3 in Sect. 3.2 and [64]. Note that these scaling results can be obtained only using
additional parallelization on the macroscopic level. Note also that our new nonlinear
implicit solvers based on nonlinear FETI-DP have scaled to the complete Mira
supercomputer, i.e., 7,58,000 MPI ranks (see Fig. 15 and [57]); on the JUQUEEN
supercomputer [44] (see [60]) our solver based on nonlinear BDDC has scaled to
2,62,000 MPI ranks for a 3D structural mechanics problem as well as 5,24,000
MPI ranks for a 2D problem. In the present article, the software package is used
to derive a virtual forming limit diagram (FLD) by simulating the Nakajima test,
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a standard procedure for the derivation of FLDs. An FLD contains a Cartesian
coordinate system with major and minor strain values and a regression function
of these values, which is called forming limit curve (FLC). An FLC gives the extent
to which the material can be deformed by stretching, drawing or any combination
of stretching and drawing without failing [77, p. v].

The software and algorithms developed here have participated in scaling work-
shops at the Jülich Supercomputing Centre, Forschungszentrum Jülich, Germany
(see the reports [53, 58]), as well as at the Argonne Leadership Computing Facility
(ALCF), Argonne National Laboratory, USA. They have scaled on the following
world-leading supercomputers in Europe, the United States, and Asia (TOP500 rank
given for the time of use):

• JUQUEEN at the Jülich Supercomputing Centre, Germany; European Tier 0;
TOP500 rank 9 in the year 2015 (458,752 cores; 5.8 petaflops); FE2TI and FETI-
DP have scaled to the complete machine [53, 56–58, 64]; since 2015 FE2TI is a
member of the High-Q Club of the highest scaling codes on JUQUEEN [53].

• JUWELS at Jülich Supercomputing Centre, Germany; European Tier 0; TOP500
rank 23 in the year 2018 (114,480 cores; 9.8 petaflops); main source of compute
time for the computation of an FLD; see Sect. 5

• Mira at Argonne Leadership Computing Facility (ALCF), Argonne National
Laboratory (ANL), USA; TOP500 rank 5 in the year 2015 (786,432 cores;
10.1 petaflops); FE2TI and nonlinear FETI-DP have scaled to the complete
machine [54, 57]

• Theta at ALCF, USA; TOP500 rank 18 in the year 2017 (280,320 cores; 9.6
petaflops); is ANL’s bridge to the upcoming first US exascale machine AURORA
(or AURORA21) scheduled for 2021; BDDC domain decomposition solver has
scaled to 193,600 cores [60] and recently to 262,144 cores

• Oakforest-PACS at Joint Center for Advanced High Performance Computing,
Japan; TOP500 rank 6 in the year 2016 (556,104 cores; 24.9 petaflops); first deep
drawing computations using FE2TI

The remainder of the article is organized as follows. In Sect. 2, we introduce
the experimental test setup of the Nakajima test and the evaluation strategy of
major and minor strain values described in DIN EN ISO 12004-2:2008 [77]. In
Sect. 3, we briefly describe the ingredients of our highly scalable software package
FE2TI, including the computational homogenization method FE2 and the contact
formulation which is integrated into the software package FE2TI since the sheet
metal deformation in the Nakajima test is caused by contact. We also present
some strategies to reduce computing time. In Sect. 4, we describe the numerical
realization of the Nakajima test. Then, in Sect. 5, we present numerical results of
several in silico Nakajima simulations with different specimens resulting in a virtual
FLC. In Sect. 6, we give an overview over our highly scalable linear and nonlinear
implicit solvers, including nonlinear FETI-DP and nonlinear BDDC. These methods
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can be used to solve all nonlinear problems occurring in FE2TI, as shown, e.g.,
in [64]. In Sect. 7, performance engineering aspects regarding the sparse direct
solver package PARDISO [81] are discussed. The PARDISO sparse direct solver is a
central building block in our implicit solvers and in FE2TI. In Sect. 8, we introduce
different improvements on the microscopic material model to even better match
some experimental results.

2 Nakajima Test

Stricter CO2 emission regulations in combination with higher passenger safety
norms in the automotive industry requires steel grades with higher toughness and
less weight. The class of DP steels belongs to the advanced high-strength steels and
combines strength and ductility. Its favorable macroscopic properties result from
the microscopic heterogeneous structure; see the beginning of Sect. 8 for further
remarks.

To demonstrate the macroscopic material behavior of a specific steel grade,
different material parameters and forming behaviors have to be proven. A prominent
member of material characterization is the forming limit diagram (FLD). It contains
major and minor strain values at failure initiation in a Cartesian coordinate system
and represents the forming limits of a steel grade for one specific material thickness.
In this context, material failure is already associated with the beginning of local
necking in the direction of thickness and not only with crack formation [77, p. v].
The major and minor strain values vary from uniaxial to equi-biaxial tension.

The Nakajima test is a standard procedure in material testing. In the Nakajima
test, a specimen is clamped between a blank holder and a die and a hemispherical
punch is driven into the specimen until a crack can be observed; see Fig. 1 (left).
Friction between the forming tool and the specimen has to be avoided as much
as possible. Therefore, different lubrication systems can be applied; see [77, Ch.
4.3.3.3]. To get different pairs of major and minor strains, one has to use at least five
different shapes of sample geometries and for each shape, one has to carry out three
different valid tests [77]. The recommended shapes of the sample sheet geometries
are described in [77, Ch. 4.1.2], see also Sect. 4.1 and Fig. 1 (right) for an example
of a permissible sample sheet. In experiments, the surface of a specimen is equipped
with a regular grid or a stochastic pattern and is recorded by one or more cameras
during the deformation process.

There are at least two different strategies to get the pair of major and minor strains
for the FLC, namely the cross section method [77] and a method based on thinning
rates proposed by W. Volk and P. Hora [97]. Since the FLC gives information about
material deformation without failing, we are interested in major and minor strains
just before localized necking occurs.
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Fig. 1 Left: Cross section of the initial test setup of the Nakajima test. Right: Dimensions of a
specimen used for the simulation of the Nakajima test with a shaft length of 25 mm and a parallel
shaft width of 90 mm. The inner (red) circle represents the inner wall of the die and the outer
(green) circle represents the beginning of the clamped part between die and blank holder. Material
outside the outer (green) circle is only considered for a width of the parallel shaft of 90 mm or
more (dark grey)

In the method based on thinning rates, the last recorded image before localized
necking occurs is explicitly determined. This specific image is used to derive major
and minor strains for the FLC.

The cross section method is standardized in DIN EN ISO 12004-2:2008 [77]. It
uses knowledge about the position of the crack and evaluates major and minor strain
values in the last recorded image before crack along cross sections perpendicular to
the crack. Then, from these values, the state immediately before material failure is
interpolated. Cross sections have a length of at least 20 mm at both sides of the crack.
One cross section cuts exactly through the center of the crack and one or two cross
sections are positioned above and below with a distance of about 2 mm. For each
cross section, we want to compute a pair of major and minor strains εFLC

1 and εFLC
2 ,

which represent the major and minor strains just before the beginning of plastic
instability.2 Therefore, we have to fit an inverse second-order polynomial using a
least squares fit; see Figs. 2 and 8 (bottom). Instead of fitting inverse second-order
polynomials to the values along the cross sections we fit second order polynomials
to the inverse of the values. For the least squares fit we have to determine optimal
fit windows for both sides of the crack separately; see Figs. 2 and 8 (bottom). For
a detailed description of the procedure we refer to [77]. Let us note that εFLC

1 and
εFLC

2 in general never exist during the deformation process. Hence, these numbers
do not have a physical meaning [97].

2Note that here and in the following, all macroscopic variables and objects are denoted with an
overline to distinguish them from microscopic variables and objects.
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Fig. 2 Fitted inverse second-order polynomials to the major strain values along the first cross
section just before material failure. See also the description of the cross section method in Sect. 2.
Optimal fit windows are computed as described in [77, Ch. 5.2.3, 5.2.4]. Left: Specimen with a
width of the parallel shaft of 70 mm. Right: Full circular specimen

3 FE2TI: A Highly Scalable Implementation of the FE2

Algorithm

For the finite element simulation of the Nakajima test, we use our FE2TI software
package [9, 52, 57, 64], which is a C/C++ implementation of the FE2 computational
homogenization approach [29–31, 33, 70, 75, 86, 87, 91]. It is based on PETSc
[6] and MPI. The multiscale simulations based on FE2TI and using FETI-DP and
BoomerAMG as solvers are a “CSE Success Story” in SIAM Review [80, p. 736].

3.1 FE2 Algorithm

For DP steel, the overall macroscopic material behavior strongly depends on
its microscopic properties. Assuming that the macroscopic length scale L is
much larger than the length scale l representing the microscopic heterogeneities,
i.e., L� l, the scale separation assumption is satisfied and a scale bridging or
homogenization approach such as the FE2 method can be applied.

The idea of the FE2 approach is to discretize the micro- and macroscopic scale
separately using finite elements. The macroscopic domain is discretized without any
consideration of the microscopic material properties, i.e., the material is assumed to
be homogeneous from a macroscopic point of view. Additionally, a microscopic
boundary value problem is defined on a representative volume element (RVE)
which is assumed to represent the microscopic heterogeneities sufficiently. One
microscopic finite element problem is assigned to each macroscopic Gauß point
and the phenomenological law on the macroscopic level is replaced by volumetric
averages of stresses and associated consistent tangent moduli of the microscopic
solution. Note that the boundary values of the microscopic level are induced through
the macroscopic deformation gradient at the integration point the microscopic
problem is attached to.
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To derive an RVE representing a realistic microstructure, electron backscatter
diffraction is used; see [14]. Note that for DP steel the martensitic inclusions in
the ferrite are quite small and widely spread, which enforces a fine discretization to
incorporate the heterogeneities sufficiently. To overcome this problem, we make use
of so called statistically similar RVEs (SSRVEs) [8, 83], which are constructed in an
optimization process with only inclusions of simple geometry such as ellipsoids, but
describe the mechanical behavior in an approximate way. Note that the constructed
ellipsoids are simpler than the realistic microstructure and hence, the SSRVE can be
discretized with a coarser grid.

For further details such as the derivation of consistent tangent moduli we refer to
the literature [33, 87] and to earlier works on computational homogenization in the
EXASTEEL project [9, 52, 57, 64].

3.2 FE2TI Software Package

The FE2TI software package was developed within the EXASTEEL project and
has been successfully used for the simulation of tension tests of DP steel [9, 52, 57,
64]. It belongs to the highest scaling codes on the European Tier-0-supercomputer
JUQUEEN since 2015.3

For comparably small sizes of microscopic problems, we can solve the resulting
tangent problems with a sparse direct solver such as PARDISO [81], UMFPACK
[22], or MUMPS [2]. For larger sizes of microscopic problems, we have to use
efficient parallel solvers which are also robust for heterogeneous problems. Such
methods are Newton-Krylov methods with appropriate preconditioners such as
domain decomposition or (algebraic) multigrid or nonlinear domain decomposition
methods, possibly, combined with algebraic multigrid.

In our software package, Newton-Krylov-FETI-DP and the more recent highly
scalable nonlinear FETI-DP methods, which were developed in this project (see
[51, 54, 59] and Sect. 6.1), are integrated. Other nonlinear domain decomposition
approaches are the related Nonlinear FETI-1 or Neumann-Neumann approaches
[13, 78] or ASPIN [17, 18, 35–37, 40, 41, 66]. Furthermore, FE2TI can also use
the highly scalable algebraic multigrid implementation BoomerAMG [5, 38] from
the hypre package [25] for micro- as well as macroscopic problems. The scalability
of BoomerAMG was recently improved for problems in elasticity, and scalability
of BoomerAMG to half a million ranks was then achieved within the EXASTEEL
project [5] in close collaboration with the authors of BoomerAMG.

For the contact simulations presented here, we consider problem sizes for which
we can use the direct solver package PARDISO to solve the resulting tangent
problems on the microscopic as well as on the macroscopic level. This limits the

3https://www.fz-juelich.de/ias/jsc/EN/Expertise/High-Q-Club/FE2TI/_node.html and also https://
juser.fz-juelich.de/record/188191.

https://www.fz-juelich.de/ias/jsc/EN/Expertise/High-Q-Club/FE2TI/_node.html
https://juser.fz-juelich.de/record/188191
https://juser.fz-juelich.de/record/188191
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size of our problems but is suitable for mid-sized supercomputers. In our opinion,
this is a relevant criterion for the applicability in industry. Using our parallel
nonlinear solvers, the FE2TI package scales up to the largest machines even without
making use of the full scaling potential of the solvers (see Fig. 3); and for the
combination of large macroscopic problems with large RVEs an exascale computer
will be necessary in the future. While Fig. 3 (left) represents a weak scaling
study with large RVEs and comparably small macroscopic problems, in Fig. 3
(right) the macroscopic problems are larger. Therefore, in the latter case, a parallel
macroscopic solve using GMRES with an AMG preconditioner is beneficial. The
scalability in Fig. 3 (right) somewhat suffers from an increase in the numbers of
Newton iterations. Let us remark that the setup in Fig. 3 (right) is the setup of
a typical production run. The strong scaling potential of FE2TI is also presented
in Fig. 4; see [9] for details. For more scalability results on different architectures
also see [64].

Even if the macroscopic problem is solved with a direct solver, the assembly pro-
cess is parallelized. For the incorporation of a material law on the microscopic level
the software is equipped with an interface to FEAP, and we use an implementation
of a J2 elasto-plasticity model [65]. Material parameters are chosen as in Brands et
al. [14, Fig. 10].

Fig. 3 Weak scalability of the FE2TI software on the JUQUEEN supercomputer [44]. Left: Time
to solution of a single load step solving a three-dimensional heterogeneous hyperelastic model
problem; uses Q1 finite elements (macro) and P2 finite elements (micro); 1.6M d.o.f. on each RVE;
512 FETI-DP subdomains for each RVE; the macroscopic problem size grows proportionally to
the number of MPI ranks while the microscopic problem size is fixed; corresponding data in [57,
Tab. 2]; High-Q club computation in 2015. Right: Total time to solution for 13 load steps solving
3D heterogeneous plasticity; uses Q1 finite elements (macro) and P2 finite elements (micro); 200K
d.o.f. on each RVE; 64 FETI-DP subdomains for each RVE; the macroscopic problem is increased
proportionally to the number of MPI ranks; for the larger problems using parallel AMG for the
problem on the macroscale, instead of a sparse direct solver, is beneficial; see also [64, Fig. 15]
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Fig. 4 Strong scalability of the FE2TI software for a nonlinear elasticity problem. Macroscopic
problem with 32 finite elements; each RVE with 107K degrees of freedom is solved using 512
FETI-DP subdomains. Simulation of one macroscopic load step. Left: Total time to solution;
Right: Speedup. Figures from [9]

3.3 Contact Kinematics and Incorporation of Contact
Constraints for Frictionless Contact in FE2TI

For the simulation of the Nakajima test, we have to consider contact between
the deformable specimen B and different rigid tools Ti , i = 1, 2, 3, namely
the hemispherical punch, blank holder, and die; see Fig. 1 (left). Therefore, we
implemented a contact algorithm on the macroscopic scale in FE2TI. To simplify
the notation, we consider an arbitrary rigid tool T in the following.

A general convention in contact formulations is to consider one contact partner
as the master body and one contact partner as the slave body [68, 99].

Only points of the contact surface of the slave body are allowed to penetrate
into the master body. Following [68], one can choose the rigid surface as slave
surface as well as a master surface, and in [99, Rem. 4.2] it is recommended to
use the rigid surface as master surface; we have applied the latter in our simulations.
Nevertheless, the contact contributions to the stiffness matrix and the right-hand-
side are computed in the coordinate system of the deformable body.

In every iteration, we have to check for all finite element nodes xB ∈ 
B of the
contact surface of B whether it penetrates into T or not; see Fig. 5 for a simplified
illustration. For each xB ∈ 
B we have to determine the related minimum distance
point xmin

T := minxT∈
T ||xB − xT|| of the contact surface of T. Now, we can
formulate a non-penetration condition

gNP = (xB − xmin
T ) · nmin

T ≥ 0, xB ∈ 
B. (1)

Alternatively, for all points xB ∈ 
c :=
{
xB ∈ 
B

∣
∣ gNP < 0

}
which penetrate into

the master body, the amount of penetration can be computed by

gN = (xB − xmin
T ) · nmin

T , xB ∈ 
c, (2)
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gN = �xB − xmin
T � · nmin

T

xB

xmin
T

Rigid tool
surface �T

Sheet metal
surface �B

nmin
T

:= nT �xmin
T �

Point on the rigid tool
surface with minimal
distance to FE-node xB

FE-node with active
contact constraint

FE-node with inactive
contact constraint

Fig. 5 Illustration for the determination of active contact nodes and the amount of penetration

and is set to zero for all other points. Here, nmin
T is the outward normal of the rigid

tool at xmin
T ; see Fig. 5.

Since the contact partners of the sheet metal are assumed to be rigid, the tools
are not discretized by finite elements but the contact surfaces are characterized by
analytical functions. This also simplifies the computation of the related minimum
distance point and, hence, the computation of the outward normal direction as well
as of the amount of penetration. For a detailed description of contact between two
deformable bodies we refer to [99, Ch. 4.1].

As in standard finite element simulations of continuum mechanics problems, we
are interested in the minimization of an energy functional  ̃, but under additional
consideration of an inequality constraint due to the non-penetration condition
(Eq. (1)). Constrained optimization can be performed, e.g., using the (quadratic)
penalty method, where an additional penalty term is added to the objective function
if the constraint is violated; see [76, Ch. 17]. Let us note that the incorporation of
contact constraints into a finite element formulation does not change the equations
describing the behavior of the bodies coming into contact [99].

There are several different strategies to incorporate contact constraints into
finite element formulations, where the penalty method and the Lagrange multiplier
method are the most prominent members; see [99, Ch. 6.3]. The penalty method
is the most widely used strategy to incorporate contact constraints into finite
element simulation software [99, Ch. 10.3.3] because the number of unknowns does
not increase. In comparison to the Lagrange multiplier method [99], the contact
constraints are only resolved approximately and a small penetration depending
on the choice of the penalty parameter εN > 0 is allowed. For εN → ∞, the
exact solution of the Lagrange multiplier method is reached, but for higher penalty
parameters εN , the resulting system of equations becomes ill-conditioned [99]. For
a suggestion of a choice of the penalty parameter εN , see [99, Remark 10.2].
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Using the penalty method, we have to add an additional term

 ̃P =
∫


c

1

2
· εN · g2

N dA

to the energy functional  ̃ for all active contact nodes xB ∈ 
c [99, Ch. 6.3].
The penalty parameter εN can be interpreted as the stiffness of a spring in the
contact interface; see [99, Ch. 2.1.3]. Let us note that the definition of an active
set is different from standard textbooks as [76, Def. 12.1], where points belong
to the active set if they fulfill equality of the inequality constraint. Other authors
like Konyukhov and Schweizerhof considered the Heaviside function to follow the
common definition of an active set; see, e.g., [67, 68]. Since the energy functional is
changed due to the contact constraints, also the resulting stiffness matrix and right-
hand-side are affected.

3.4 Algorithmic Improvements in FE2TI

In simulations making use of load stepping (or pseudo time stepping) as a global-
ization strategy, as is the case in FE2TI (see Sect. 4), the time to solution strongly
depends on the number of load steps as well as on the number of macroscopic
Newton iterations per load step. The required time of a single macroscopic Newton
step again depends on the time to solution of the microscopic problems.

While a large load step may seem desirable, it can lead to slow convergence
or even divergence; convergence can be forced by reducing the load step size thus
increasing the total number of load steps; this can be observed in Table 1. To adapt
the size of the load steps, we use a simple dynamic load step strategy; see Sect. 3.4.1.

Keeping the number of macroscopic Newton iterations as small as possible is
directly related to a good choice of the initial value of a single load step. For a
better prediction of the initial value, we use linear extrapolation; see Sect. 3.4.2.
This is especially relevant for our contact problems where quadratic convergence of
Newton’s method can be lost.

Table 1 First 2 mm displacement of the forming tool with constant load increments l of 3.125e−3
(first row) and 1.0e−1 (second row) for the specimen with a parallel shaft width of 50 mm; two
MPI ranks per core; computed on JUWELS [45]

Cov. dist. Load Newton ∅ Newton its. ∅ Time per ∅ Time per

punch steps its. per load step Runtime load step Newton it.

Load increment 2 mm 640 966 1.51 7595.30 s 11.87 s 7.86 s

3.125e−3

Load increment 2 mm 20 130 6.50 1407.03 s 70.45 s 10.82 s

1.0e−1
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3.4.1 Dynamic Loadstepping

Our load step strategy depends on macroscopic as well as microscopic information.
The macro load increment l is reduced when microscopic stagnation is observed
or when a maximum number of macroscopic Newton iterations per load step is
reached. Stagnation on the RVE level is detected whenever the norm of the current
microscopic Newton iteration compared to the previous one does not reduce after
more than six microscopic Newton iterations or if the number of microscopic
Newton iterations is larger than 20. The load step is increased based on the number
of macroscopic Newton iterations per load step. Note that l is not allowed to exceed
a predefined maximum load increment l

max
. For details, see Fig. 6.

Whenever stagnation in a microscopic problem occurs, the microscopic solver
gives this information to the macroscopic level and the load step is repeated with
a reduced load increment. Otherwise, stagnation of a microscopic problem would
lead to a simulation break down due to a missing tangent modulus and stresses in
the macro Gauß point where the micro problem is attached.

3.4.2 (Linear) Extrapolation

For Newton-type methods, it is important to choose a good initial value. If the initial
value is close to the solution, only a few Newton iterations are necessary. As in [64],

Macroscopic Load Step k

Convergence within
20 Newton iterations

No Convergence within
20 Newton iterations

Not more than 50% of
Newton iterations of

previous load step k − 1

More than 50% of
Newton iterations of

previous load step k − 1

l k +1 = 2 · l k
If l k +1 > l

max
set l k +1 = l

max

Continue with load step k + 1

l k +1 = l k
Continue with
load step k + 1

| |u (20)
k | | < 1.4tol | |u (20)

k | | ≥ 1.4tol

Invest 5 more
Newton iterations

l k = 0.5 · l k
Repeat load step k

Convergence No Convergence

k + 1
l k +1 = 0.5 · l k

Continue with load step
l k = 0.5 · l k

Repeat load step k

Fig. 6 Schematic procedure of reduction and increase of the load increment l depending on
macroscopic events. Here, l

max
is a predefined maximum load, ||u(20)

k || is the norm of the solution
of the 20th Newton iteration of the current load step k, and tol is the Newton tolerance
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we use linear extrapolation based on the converged solutions uk and uk−1 of the
former two load steps to guess a good initial value u(0)k+1,

u
(0)
k+1 = uk−1 + lk+1 − lk−1

lk − lk−1
· (uk − uk−1).

In [64], this technique was already successfully used in the FE2 simulations using
the FE2TI software package without contact constraints. For results using second
order extrapolation, we refer to [95, Ch. 4.2.2].

3.4.3 Checkpoint/Restart

To perform the simulation of the Nakajima test until material failure of a sam-
ple sheet, i.e., until a failure zone occurs in the metal sheet, often significant
computation times are needed, even if the full supercomputer is available. To
reduce the consequences of hardware failures and also to overcome specific wall
time limits on HPC systems, we equipped our FE2TI package with synchronous
Checkpoint/Restart (CR). We integrated the CRAFT library (Checkpoint/Restart
and Automatic Fault Tolerance) [88], which was developed in the second phase
of the SPPEXA project ESSEX. Let us note that we use synchronous application
level checkpointing with different checkpoints for the macroscopic level and the
microscopic level.

In [21], different checkpoint intervals are introduced based on the expected run
time of the simulation and the mean time of hardware failure of the HPC system
the software is performed on, but in all our simulations presented here, we choose
a fixed checkpoint interval of 75 load steps. Here, we do not take into account that
the load increment may change during the simulation and that small load increments
are usually faster. As an improvement, the checkpointing could take into account the
displacement of the forming tool or a fixed wall time interval could be used which
also could depend on the mean time of hardware failure.

4 Numerical Simulation of the Nakajima Test Using FE2TI

For the simulation of the Nakajima test, we use our highly scalable parallel software
package FE2TI; see Sect. 3. For the solution of the boundary value problems on
both scales, we here use the sparse direct solver package PARDISO [81]. Since
we are considering a DP600 grade of steel, we use a fitted J2 elasto-plasticity
model on the microscopic level; see [14, Fig. 10]. Throughout this article, we use
structured Q2 finite element discretizations for the sample sheet and an unstructured
P2 finite element discretization for the RVEs. Both, the macroscopic as well as the
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microscopic meshes, are generated using the open source software package GMSH
[34]. We use the load stepping and extrapolation described in Sects. 3.4.1 and 3.4.2.

In the Nakajima test, the macroscopic deformation is driven by the rigid punch.
Hence, load stepping is applied to the movement of the forming tool, where the
hemispherical punch moves a small step in upward direction in each load step.

Since in reality a tribological system is set up to avoid friction between the
hemispherical punch and the sheet metal [77], we consider frictionless contact.
Hence, we have to deal exclusively with contact conditions in normal direction of
the rigid tools. Considering frictionless contact, we neglect friction between the
specimen and the blank holder or die.

4.1 Description of Specimen Geometry

In our simulations, we consider specimens with a central parallel shaft and also a
completely circular specimen. The length of the parallel shaft is 25 mm and the fillet
radius is 30 mm, which both fit to the normed range in [77]; also see Fig. 1 (right).

For all specimens, the material is assumed to be completely clamped by the
bead, which has a radius of 86.5 mm. We therefore only consider material points
p = (

px, py, pz
)

which have a distance of at most 86.5 mm to the center of the
sample sheet; see Fig. 1 (right) for an example of a sample sheet with a parallel
shaft width of 90 mm. In our simulations, the sample sheet is always 1 mm thick,
and we consider specimens with a parallel shaft width of 30, 50, 70, 90, 100, 110,
125, and 129 mm as well as the completely circular sample sheet. Note that the
center cb = (cx, cy, cbz) of the bottom surface of all sample sheets is placed in the
origin of the coordinate system.

The specifications of the rigid tools are also within the range given in [77]. The
radius of the hemispherical punch is 50 mm. The blank holder is a square plate of
173 mm × 173 mm with a circular hole in the middle with a radius of 55 mm; see
the inner circle in Fig. 1 (right). The die is placed within a distance of 5 mm to the
rigid punch, i.e., the inner wall of the die also has a radius of 55 mm; see, again,
the inner circle in Fig. 1 (right). The die radius (see Fig. 1 (left)) is 10 mm, i.e., all

material points p with
√
p2
x + p2

y ≥ 65 are potentially clamped; see the outer circle
in Fig. 1 (right).

For all sample sheets with a parallel shaft width less than 90 mm as well as
for the completely circular specimen, we only consider material points p with√
p2
x + p2

y ≤ 65 and choose all points with
√
p2
x + p2

y = 65 as Dirichlet boundary
nodes. For specimens with wider parallel shaft widths, we choose boundary
conditions analogously to [43]; see also [95].
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Fig. 7 Left: Symmetric computational domain from the full sample sheet and additional Dirichlet
boundary conditions along the symmetric boundary surfaces. Right: Orientation of the RVEs for
the different quadrants of the full geometry of the sample sheet after mirroring the first quadrant
due to the symmetric assumption

4.2 Exploiting Symmetry

The setup of the Nakajima test is symmetric. Assuming that the failure zone evolves
symmetrically, i.e., along the vertical center line, it is sufficient to only simulate a
quarter of the full geometry and to rebuild the full solution by mirroring; see Fig. 7
(left). This is only exact, if the RVEs are also symmetric, since mirroring of the
macroscopic solution also implies mirroring of the RVEs; see Fig. 7 (right). Hence,
for an asymmetric RVE, we violate the assumption of a periodic unit cell because
mirroring leads to a change in orientation for all four quadrants. In this case, the
solution generated by the symmetric assumption is only an approximation to the
solution of the simulation using the full geometry of the sample sheet, even for the
first quadrant of the full geometry. Nevertheless, we use the symmetric assumption
throughout this article, even when the RVEs are asymmetric, to reduce the number
of MPI ranks by 75%; see Sect. 3.4. As a sanity check, we have also performed
simulations for the full geometry; these will, however, be presented elsewhere due
to space limitations.

For the simulation of one quarter, we have to add further boundary conditions
along the symmetric boundaries of the quarter. Then, we have to fix all y-coordinates
of macroscopic material points p with py = cy . Analogously, we have to fix all x-
coordinates for macroscopic points with px = cx ; see Fig. 7 (left) and Sect. 4.1.

4.3 Failure Criterion

For the detection of macroscopic crack initialization, we have to formulate a failure
criterion and a maximum critical value, which will indicate the initialization of
failure. Note that, for the computation of the forming limit, we do not need to
simulate cracks or crack propagation. Instead, we are only interested to compute
when structural failure occurs.
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We use the Cockcroft and Latham criterion [19],

Wk = W(αk) =
∫ αk

0
max (σ I (α), 0) dα, (3)

which was used by Tarigopula et al. [93] for analyzing large deformation in DP
steels. It depends on the maximum principal stress component σ I and the equivalent
plastic strain αk := α(tk) at load step k (pseudo time tk) and is integrated over α.
Since α depends on the load step, this also holds for the failure criterionW and the
stress σ . In general, in FE2, αk is not known explicitly but can be approximated by
the volumetric average4 α̃k := 〈α(tk)〉 from the microscopic level at load step k.

The value of W is computed at each Gauß point and is accumulated throughout
the loading process until at least one Gauß point exceeds a critical value Wc at
which failure initializes, i.e., W ≥ Wc is fulfilled. Tarigopula et al. provide the
valueWc = 590− 610 MPa for DP800 grade of steel; see [93]. Since we consider
DP600 grade of steel, the critical value should be smaller in our case.

Equation (3) is approximated by numerical integration and using α̃

Wk ≈ W(̃αk) =
∫ α̃k

0
max (σ I (̃α), 0) dα̃ ≈

k∑

i=1

max (σ I (̃αi), 0) · (̃αi − α̃i−1)

= Wk−1 +max (σ I (̃αk), 0) · (̃αk − α̃k−1). (4)

where (̃αi − α̃i−1) is nothing else than the increment of the equivalent plastic strain
from load step i − 1 to load step i and W 0 = α̃0 = 0. Hence, we can sum up the
failure criterionW over all load steps and summation is performed whenever a load
step reached convergence. See Fig. 9 for an example of the evolution of the failure
criterionW during a Nakajima simulation.

Let us note that the failure criterion is formulated such that ductile failure takes
place due to tensile stresses and shear stresses, where the effect of tensile stresses is
considered by usage of the maximum positive principal value of Cauchy stress and
the effect of shear stresses and work-hardening is considered through the equivalent
plastic strain increment.

4.4 Numerical Realization of the Experimental Cross Section
Method

In the experiment, major and minor strains ε1 and ε2 are evaluated at the top surface
of the sample sheets along cross sections. However, the simulation only provides

4Note that here and in the following, all volumetric averages obtained from microscopic level are
in brackets 〈 〉.
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exact macroscopic values in the integration points, which generally do not coincide
with the finite element nodes. Therefore, the simulations do not provide any exact
macroscopic values on the sample sheets surface, and we decided to consider cross
sections along those Gauß points closest to the upper surface.

For the computation of major and minor strains ε1 and ε2 we transform our
resulting 3D strain tensor to the 2D plane strain tensor and then follow the strategy
as described in [97]. For further details, we refer to [95].

In this article, we show results for computations using the symmetric test setup
of the experiment; see Sect. 4.2. This automatically implies that we assume that the
failure zone evolves along the vertical center line and the center of the failure zone
is identical to the center of the upper surface of the sample. For the computations
using symmetry, all discretizations have finite element nodes at the center of the
probe. Keeping in mind that we choose cross sections along Gauß points, no cross
section cuts through the center of the failure zone. To keep the distance between
the first cross section and the center of the failure zone as small as possible, we
consider integration points with the smallest distance to the horizontal center line as
first cross section. For simplicity, the other cross sections are along the remaining
Gauß points of the same finite elements which were used for the first cross section.
Hence, the distance between the cross sections depends on the diameter of those
finite elements and is smaller than 2 mm in our computations.

Due to the symmetric computations, we only have one side of the cross sections
at hand but the other side can be simply generated by mirroring; see Fig. 2 and the
upper pictures in Fig. 8.

Note that the cross section method can only be used for specimens with a single
failure zone. Unfortunately, in our simulations the failure zone does not always
evolve along the vertical center line but parallel to it for sample sheets with a parallel
shaft width of 100 mm or more. Hence, mirroring leads to the occurrence of a
second failure zone; see Figs. 11 (left) and 12. For these specimens, first simulations
using the upper half or the complete domain of the sample sheet also lead to two
failure zones parallel to the vertical center line. For simulations obtaining two failure
zones, we assume that the maximum major strain along the cross section defines the
position of the failure zone. Neglecting all values between the vertical center line
and the maximum major strain and shifting the failure zone to the vertical center
line, we can proceed as before; see Fig. 8.

So far it is not clear, whether the symmetry assumptions hold for specimens with
failure zones parallel to the vertical center line. In future work, we have to perform
a comparison with the full geometry.
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5 The Virtual Forming Limit Diagram Computed with
FE2TI

Since we use the symmetry assumptions for the numerical simulation of an FLC, we
perform our simulations on a quarter of the full specimen and rebuild the solution by
mirroring; see also Sect. 4.2. The computational domain is discretized by structured
Q2 finite elements, where the number of finite elements depends on the width of the
parallel shaft as well as on the chosen boundary conditions; see Sect. 4.1 as well as
Table 2. Note that we use (only) two Q2 finite elements in the direction of thickness
for all specimens.

For the microscopic problems, we consider an SSRVE with two ellipsoidal
inclusions discretized by 1470 P2 finite elements and 7152 d.o.f. in an unstructured
manner. As mentioned before, the resulting tangent problems on the microscopic
level are solved by using the direct solver package PARDISO [81] and each problem
is solved on an individual MPI rank. Hence, the number of macroscopic finite
elements automatically determines the number of required MPI ranks, which is
27 times the number of finite elements. We have performed all our simulations on
JUWELS [45] using 2 MPI ranks per core and a penalty parameter of 500. For the
specifications of the rigid tools, we refer to Sect. 4.1.

As an initial load increment, we choose 0.1 mm and define l
max = 0.2 mm

as maximum allowed load increment. Our stopping criterion is either based on
reaching a predefined covered distance of the forming tool of 40 mm or on the
load increment and not on the failure criterion, since we have only little experience
how to choose the critical value Wc to detect failure. Simulation stops if the
load increment of 10 successive load steps is smaller than a predefined allowed
minimum, which is the initial load increment multiplied by 10−4, or, if the load
increment has to be reduced 7 times within a single load step. This is motivated
by the fact that small load increments indicate hard numerical problems which are
expected in case of material failure.

We have summarized some data on our Nakajima simulations including the
number of restarts in Table 2. Note that most restarts are caused by reaching the
requested wall time and only in few cases, if any, by hardware errors.

For all specimens with a parallel shaft, we obtain comparable results, which are
characterized in the following. After a certain covered distance of the tool, a local
increase in the failure valueW , the major strains ε1, the equivalent plastic strain α̃,
the thinning rate, and the von Mises stress can be detected almost simultaneously
along an area parallel to the vertical center line. Later, the values continue to rise,
especially in this area, so that the degree of localization increases; see Fig. 9. Finally,
some microscopic problems within the aforementioned localized area cause the
simulation to end. At this point, however, a pronounced change in thickness can be
observed within the localized area, which can be associated with material failure;
see cross sections in Figs. 12 and 10 (top right) as well as the upper right picture in
Fig. 11 (left).
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Fig. 9 Evolution of failure criterionW during the simulation for the specimen with a width of the
parallel shaft of 50 mm

Fig. 10 Final solution of the simulation with a specimen with a width of the parallel shaft of
70 mm; z-direction (top left), thickness (top right), von Mises stress (bottom left), major strain
(bottom center), and thinning rate (bottom right). The grey area is not simulated since material is
totally clamped between die and blank holder

For the completely circular specimen we do not observe any localized effects
along an area parallel to the vertical center line, even if we reach the predefined
distance of 40 mm. Instead, we obtain a similar behavior over nearly the complete
contact area; see Fig. 11 (right).

The results for specimens with a parallel shaft can be divided into two groups.
The first group contains all samples with a parallel shaft width of at most 90 mm. For
these specimens material failure occurs along the vertical center line; see Fig. 10.
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Fig. 11 Final solution of the simulation with a specimen with a width of the parallel shaft of
100 mm (left) and the completely circular specimen (right); variables and color bars as in Fig. 10.
Left: Material between blank holder and die is simulated since material movement is allowed.
Right: Material between blank holder and die is assumed to be clamped (dark grey) and hence is
not simulated

Fig. 12 Final results of distribution of Cockcroft and Latham failure value W for all Nakajima
simulations and associated Forming Limit Diagram (FLD) with FLC (black curve) for Wc = 450.
In the cross section, one can identify local necking in thickness for all but the completely circular
specimen

All specimens with a wider parallel shaft belong to the second group, which can
be characterized by material failure parallel to the vertical center line. For these
samples, mirroring of the computed solution leads to the occurrence of a second
failure zone; see Figs. 11 (left) and 12. As mentioned before, first numerical tests
indicate that this also holds when simulating the complete specimen or the upper
half of it. Hence, we decided to use the results to determine an FLC. The adaptions
to evaluate major and minor strains for failure zones parallel to the vertical center
line are mentioned in Sect. 4.4; see also Fig. 8. Without manipulating the values
along the cross sections, we would obtain unphysically high values in the FLD.
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Based on all available results we have subsequently defined a critical value of
Wc = 450 for the failure criterion. Hence, we have to find for all simulations the
corresponding load step for which the failure value in at least one point exceeds the
critical valueWc = 450 for the first time; see Table 3.

When we have found the corresponding load steps, we have to compute the major
and minor strain values along the cross sections perpendicular to the failure zone
and generate for each cross section one point in the FLD. So, we come up with
30 different pairs of major and minor strains wherein each three belong to one
specimen; see Fig. 12. The final FLC is derived by regression; see black curve in
Fig. 12 and [95] for details.

6 Linear and Nonlinear Parallel Solvers

For large scale computations using FE2TI, scalable parallel implicit solver algo-
rithms are needed for the problems on the microscale as well as the macroscale [64].
Another focus of the EXASTEEL project therefore was on solver algorithms,
i.e., efficient and highly parallel scalable implicit solvers for linear and nonlinear
problems arising from a finite element discretization of linear and nonlinear partial
differential equations; see, e.g., [5, 54–57, 59–61, 63].

Here, nonlinear domain decomposition (DD) approaches, namely nonlinear
FETI-DP (Finite Element Tearing and Interconnecting-Dual Primal) and nonlinear
BDDC (Balancing Domain Decomposition by Constraints) methods, have been
introduced in the first phase of EXASTEEL and improved during the second phase,
where also new variants were introduced.

In [64], our new nonlinear FETI-DP solver algorithms were then applied within
large FE2TI simulations for the first time: We have used Nonlinear-FETI-DP-1 as
a parallel implicit solver for the microscopic problems using 114,688 KNL cores
of the Theta many-core supercomputer (Argonne National Laboratory) [64, section
4.9]. However, the nonlinear DD methods developed in the project have a broad
range of applications, e.g., in hyperelasticity, elasto-plasticity, or nonlinear diffusion
problems.

To further improve the performance of the nonlinear solvers, also the efficiency
and parallel scalability of all building blocks was in the focus of the EXASTEEL
project [5, 54–56, 60, 61].

In this section, we describe very briefly our nonlinear domain decomposition
approaches and sum up the achievements and highlights obtained within the past 6
years.
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6.1 Nonlinear FETI-DP Framework

Classical domain decomposition methods are robust and highly scalable divide-and-
conquer algorithms for the iterative solution of discretized linear partial differential
equations. In the case of FETI-DP methods [27, 28, 47–50], the computational
domain is decomposed into nonoverlapping subdomains which are distributed to
the available compute cores. FETI-DP methods are well established in structural
mechanics and have been awarded a Gordon Bell price [10].

The robustness and scalability originates from the sparse direct solvers applied
on the subdomains, combined with a carefully designed coarse problem. The coarse
problem, though necessary for robustness, is a potential scaling bottleneck, since
its size grows with the number of subdomains, i.e., with the number of parallel
cores. In order to retain scalability, the coarse solution can be approximated, e.g.,
by algebraic multigrid methods; see [46, 48]. Finally, to solve nonlinear problems,
a linearization with Newton’s method is usually applied first, and the linearized
tangential systems are then solved, e.g., by FETI-DP. We refer to the latter approach
as Newton-Krylov-FETI-DP.

In contrast, in nonlinear FETI-DP or BDDC methods, first introduced in [51],
the discretized nonlinear partial differential equation is decomposed into small and
independent nonlinear problems before linearization. In the case of nonlinear FETI-
DP, a nonlinear coarse problem is added by strongly coupling the local nonlinear
problems in few variables on the interface of the domain decomposition, as, e.g.,
vertices or averages over edges or faces. This leads to a nonlinear FETI-DP saddle
point system; see, e.g., [51, eq. (3.2)], [54, eq. (3.4)], or [59, eq. (1)]. Also, a
partially nonlinear elimination process of sets of variables from the nonlinear FETI-
DP saddle point system is possible before linearization. The nonlinear elimination
process can be interpreted as a nonlinear right-preconditioner, which we described
in [59, Section 2.5] in detail. There we also introduced a unified framework
to describe different nonlinear FETI-DP and BDDC methods. The selection of
the elimination set finally defines the nonlinear FETI-DP method precisely. We
discussed four canonical choices in [59], but other choices are feasible and possibly
beneficial. Let us briefly repeat the four variants from [59]. In FETI-DP, all degrees
of freedom or variables are divided into three classes. First, all variables belonging
to the interior of the subdomains are grouped into the set I (marked as circles
in Fig. 13), second, all variables of the global coarse problem are grouped into
the set  of so-called primal variables (marked as squares in Fig. 13), and third,
all local degrees of freedom on the interface are grouped into the set � of so-
called dual variables (marked as dots in Fig. 13). Let us remark that continuity of
the solution in the dual degrees of freedom is enforced iteratively by enforcing
zero jump constraints with a Lagrangian approach; see [27] for details. Finally,
Nonlinear-FETI-DP-1 is defined by eliminating nothing, Nonlinear-FETI-DP-2 by
eliminating everything, Nonlinear-FETI-DP-3 by eliminating the interior and dual
variables, and finally Nonlinear-FETI-DP-4 by eliminating the interior variables;
see Fig. 13 for a visualization of the different variants.
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Fig. 13 The coarse problem is marked with squares, the interior degrees of freedom by circles, and
the dual degrees of freedom by dots. The colored degrees of freedom are eliminated nonlinearly
before linearization in the different variants. From left to right: Nonlinear-FETI-DP-1, Nonlinear-
FETI-DP-4, Nonlinear-FETI-DP-3, Nonlinear-FETI-DP-2

Fig. 14 Comparison of classical Newton-Krylov-FETI-DP (NK), Nonlinear-FETI-DP-1 (NL1),
Nonlinear-FETI-DP-2 (NL2), Nonlinear-FETI-DP-3 (NL3), and Nonlinear-FETI-DP-4 (NL4)
using the JUQUEEN supercomputer. Left: Nonlinear p-Laplace inclusions not touching the
interface; 40k d.o.f. per subdomain; Right: Nonlinear p-Laplace channels crossing the interface;
160k d.o.f. per subdomain. For a detailed discussion of the results see also [59, Fig. 10 and 12] and
corresponding descriptions. If an appropriate nonlinear elimination set is chosen for the problem
(as is the case here in NL3) then the nonlinear method outperforms the classical Newton-Krylov
approach significantly

If the elimination set is chosen appropriately, nonlinear FETI-DP methods can
outperform classical methods, i.e., Newton-Krylov-FETI-DP. In [42], a heuristic
approach is suggested to eliminate the areas with strong nonlinear effects. For
illustration let us consider combinations of the nonlinear p-Laplace equation and
the linear Laplace equation, where the nonlinearities either touch the subdomain
interface or are at a distance. In the latter case, we choose nonlinear inclusions
of p-Laplace enclosed in the subdomains and in the first case nonlinear channels
of p-Laplace cutting certain edges. For a detailed description of the chosen
model problem, see [59, Section 5.1, Fig. 7]. Considering the inclusions, all
nonlinear FETI-DP methods work well. Considering the example with channels,
it is necessary to at least eliminate the dual interface variables; see Fig. 14 or [59].
Let us note that Nonlinear-FETI-DP-1 performs well in both cases, which is a result
of a careful choice of the initial value; see [51, Section 3.3] for details.
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Fig. 15 Weak scalability of Nonlinear-FETI-DP-1 for a p-Laplace problem computed on the Mira
supercomputer; largest problem has 62.9 billion d.o.f.; results from [57]; see also [57, Fig. 4 (left)]

Another benefit of nonlinear domain decomposition approaches is the localiza-
tion of work, which increases the scalability of these methods. This can be verified
either in Fig. 14 or in our larger weak scaling experiments on Mira published
in [57] and presented in Fig. 15, where an algebraic multigrid preconditioner from
the BoomerAMG package [38] is used to approximate the coarse solve to obtain
scalability without losing robustness.

We have also considered approaches to improve the convergence of nonlinear
FETI-DP methods. We have introduced heuristics to determine if a nonlinear
elimination is useful in a certain Newton step or not. Additionally, the elimination
process is approximated up to a necessary tolerance to save computational cost.
This approach is called NL-ane (approximate nonlinear elimination) and is also
discussed in [59, 62]. We recently also considered a globalization strategy using
the SQP approach; see Sect. 6.1.2.

Finally, we successfully investigated a hybrid parallelization of FETI-DP using
PARDISO in [55], and also considered nonlinear FETI-DP and BDDC methods
where the sparse direct solvers are replaced by preconditioners; see [56, 60, 61].

6.1.1 Improving Energy Efficiency

In classical Newton-Krylov methods, global synchronization occurs in every Krylov
iteration. Global synchronization can be significantly more coarse-grained in our
nonlinear domain decomposition methods since the Krylov iteration can be asyn-
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Fig. 16 Power per core for Newton-Krylov-FETI-DP (NK) and Nonlinear-FETI-DP-3 (NL3) with
normal barrier (b) and test-sleep approach (b-ts) on Meggie cluster. Each subdomain problem
has 160k d.o.f. Left: Nonlinearity in each of the subdomains; Right: Nonlinearity in a single
subdomain. See also [63, Fig. 10] and corresponding descriptions for details

chronous between subdomains. In this section, we describe how this can be
exploited to save energy when load imbalances occur.

If the nonlinear elimination set in nonlinear FETI-DP is completely local to the
subdomains as, e.g., in Nonlinear-FETI-DP-3, the nonlinear subdomain problems
can be solved in parallel and asynchronously. This solution process using Newton’s
method can introduce a load imbalance, even for perfectly balanced meshes, if the
number of Newton iterations is different between subdomains; see [63, Fig. 7].
Note that even for these cases, Nonlinear-FETI-DP-3 typically has a shorter time
to solution compared with classical approaches; see Fig. 14.

In [63], we have suggested to use a nonblocking barrier in combination with
a sleep statement to set idling cores in deep sleep states, to reduce energy
consumption. This is feasible in nonlinear parallel domain decomposition since
the synchronization between the cores is coarse grained (typically larger than 1 s).
During these phases sleeping cores wake up every 10 ms. The wake-up latency itself
for current Intel processors is significantly below 1 ms. Therefore, the overhead of
the sleep and wake up approach is insignificant compared to the time spawn of
global synchronization and does not impact overall performance or scalability. We
call this method test-sleep approach. To investigate the energy saving potential, we
measured the energy consumption of Nonlinear-FETI-DP-3 in [63] reading out the
RAPL hardware counters with LIKWID [94] on the Meggie5 cluster at Erlangen
Regional Computing Center (RRZE). In Fig. 16, we present the power consumption
per core for two different scenarios, i.e., a single nonlinear inclusion in a single
subdomain or a single nonlinear inclusion in each subdomain. The total energy

5Standard Cluster with Intel Omnipath Interconnect and two Intel Xeon E5-2630 v4 chips per
node.
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Fig. 17 Total energy to solution for Newton-Krylov-FETI-DP (NK) and Nonlinear-FETI-DP-3
(NL3) with normal barrier (b) and test-sleep approach (b-ts). Computation on 5120 Meggie cores.
See also [63, Fig. 9] for a complete weak scaling study

consumed by the nodes during the solution procedure on 5120 cores is shown
in Fig. 17. The test-sleep approach also works for alternative nonlinear domain
decomposition methods, as, e.g., ASPIN [17]; see [63] for a brief discussion using
the ASPIN implementation described in [15] which is provided in PETSc.

6.1.2 Globalization

We consider different globalization strategies for our nonlinear domain decompo-
sition methods. For the different nonlinear FETI-DP methods, we consider trust
region methods and also an approach based on the SQP (sequential quadratic
programming) method using the exact penalty function P 1

β (ũ) = J (ũ)+ β||Bũ||1,
where J denotes the mechanical energy and Bũ are the FETI-DP equality con-
straints; see Table 4 for some results.

Table 4 Number of global iterations for a snap through buckling problem for compressible Neo-
Hookean energy with material parameters E = 210, ν = 0.3 in 2D; 100 subdomains, 20,402
degrees of freedom; − : failed

SQP Trust region Without globalization

Volume force NL-1 NL-4 NL-1 NL-4 NL-1 NL-4
[
0,−20

]T
6 6 321 343 − −

[
0,−40

]T
6 6 298 469 − −

[
0,−80

]T
7 7 258 662 − −
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Fig. 18 Left: Weak scaling experiment on the JUQUEEN supercomputer; deformation of a
hyperelastic cube with 0.7 billion d.o.f. for the largest computation (heterogeneous Neo-Hooke
material model); using Newton-Krylov-BDDC or Nonlinear-BDDC; see [60, Section 4.4, Fig. 15]
for details. For 262,144 subdomains Newton-Krylov-BDDC did not converge within 20 Newton
iterations. Right: Weak scaling of linear BDDC solver with approximate coarse solve (using AMG)
on JUQUEEN (BG/Q) and Theta (KNL) supercomputers for a heterogeneous linear elastic model
problem in two dimensions with 14k d.o.f. per subdomain; see [60, Fig. 7] for details

6.2 Nonlinear BDDC Methods

Using the same elimination set as in Nonlinear-FETI-DP-4, the nonlinear BDDC
method [51] can be derived, which is based on its linear version; see [20, 24, 71–
73]. We presented an efficient and scalable implementation of linear and nonlinear
BDDC avoiding the computation of Schur-complements in [60]. This approach
proved to be faster, more scalable, and more robust for nonlinear hyperelasticity
problems (see Fig. 18 (left)) as well as for elasto-plasticity problems using realistic
RVE microstructures obtained from EBSD measurements; see [60, Table 4.7].
We also studied the scalability of the embedded linear BDDC solver on different
architectures; see Fig. 18 (right).

7 Multicore Performance Engineering of Sparse Triangular
Solves in PARDISO Using the Roofline Performance Model

The PARDISO [12, 23, 69, 96] parallel sparse direct solver is a building block in
FE2TI. As long as the macroscopic problem is small enough, it can be solved
directly by PARDISO; if the microscopic problems are of reasonable size, it is
efficient to use PARDISO concurrently on the microscale problems. For large micro
and macro problems, the direct solver has to be replaced by linear or nonlinear FETI-
DP or BDDC domain decomposition solvers. Here, PARDISO is typically applied
as the subdomain and coarse solver.
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The PARDISO solver has two phases: factorization and forward/backward
substitution, with factorization being more time consuming than substitution.
However, the former is only performed once in a FETI-DP or BDDC domain
decomposition iterative process, whereas the latter is repeated many times. We
are in particular interested in the forward and backward solution process of sparse
direct solvers since they build the computational kernel, e.g., in FETI-DP or BDDC
methods. FETI-DP and BDDC are known to be highly parallelizable, but most
implementations are using sparse direct solvers as building blocks. More precisely,
most domain decomposition implementations use sparse direct solves for the local
subdomain problems to obtain the necessary robustness. Additionally, the coarse
problem is usually solved directly up to a certain size, but for larger problems the
coarse solve is often approximated by, e.g., AMG or recursive applications of the
domain decomposition approach itself. Therefore, we investigate and analyze the
performance of the forward/backward solution process of PARDISO for the local
subdomain solves in FETI-DP and BDDC and present not only numerical results,
but also a detailed performance analysis for a representative sparse solver kernel
based on the roofline model. The goal is to create an analysis of this part of the
algorithm and to establish a roofline performance model [98], which considers
performance bounds given by the memory bandwidth and the processor peak
performance. We modeled both the serial and parallel execution phases. Despite
the fact that the roofline model prediction can be inaccurate in the serial case,
when the in-core execution or in-cache transfers become dominant, it still provides
an easily obtainable upper bound. The simple roofline model brings together the
computational capabilities of the processor and the available memory bandwidth
with the requirements of an algorithm. In our case the relevant quantities are
the number of FLOPs performed and the data transferred between processor and
memory, which we determined by an analysis of the forward/backward substitution.

The performance of the forward and backward substitution process is analyzed
and benchmarked for a representative set of sparse matrices on modern x86-type
multicore architectures. The characteristic quantities of these systems are shown in
Table 5 along with the required machine specific input parameters (lower part of
Table 5) for the roofline model. The measurement approach, its validation, as well
as limitations are discussed in [98]. Our modeling approach covered both the serial
and parallel execution phases, allowing for in-socket performance predictions. The
performance modeling results for a discretized Laplacian matrix (‘lapl2’) and a local
subdomain matrix (‘BDDC’) from the EXASTEEL project are shown in Fig. 19; see
also Table 6 for dimensions and numbers of nonzeros for the considered matrices.
The latter matrix is used in FETI-DP as well as BDDC methods to compute
the discrete harmonic extension from the domain decomposition interface to the
interior of a certain subdomain. The specific problem represents a typical RVE
using the J2 elasto-plasticity model including the material parameters also used in
the computations of the FLD. We verified that the considered subdomain already
showed a plastic behavior.

As opposed to the original roofline model, the modified roofline model covers
also the performance impact of limited scalability imposed by the algorithm, i.e.,
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Table 5 Details of the Intel and AMD hardware systems evaluated

Name IVB BDW SKX ZEN-S

Processor name Intel Xeon Intel Xeon Intel Xeon AMD EPYC

E5-2660 v2 E5-2630 v4 Gold 6148 745

Micro architecture Ivy Bridge Broadwell Skylake Zen

Frequency [GHz] 2.2 2.2 2.4 2.3

Number of cores 10 10 20 24

Vector instruction set AVX AVX2 AVX-512 AVX2

NUMA LDs 1 1 1 4

Scalar read bandwidth

1 core [GB/s] 9.5 11.5 14.5 19.3

NUMA LD [GB/s] 44.4 56.3 108.0 37.6

Scalar ADD+MUL/FMA

1 core [F/cy] 2 4 4 4

NUMA LD [F/cy] 20 40 80 24

Scalar machine balance Bm
1 core [B/F] 2.2 1.3 1.5 2.1

NUMA LD [B/F] 1.0 0.6 0.6 0.7

The NUMA Locality Domain (LD) refers to a number of cores sharing a physical or logical
memory controller

Fig. 19 Performance on
IVB, BDW, SKX, and ZEN-S
(left to right) for two matrices
(upper and lower panel) from
EXASTEEL. (a–d) lapl2.
(e–h) BDDC. Copyright
2019, IEEE, [98]
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Table 6 Dimension (n) and
number of nonzeros (nnz) for
A and L for benchmark
matrices

Matrix n nnz(A) nnz(L)

lapl2 343× 103 1× 106 166× 106

BDDC 750× 103 31× 106 1590× 106

both serial and parallel execution phases of the forward and backward substitution
are considered in the model; see [98] for details. It captures the behavior of the
measured performance quite well compared to the original roofline model.

For Intel Ivy Bridge systems the modified roofline model error is only up to
5%. Further details are given in [98]. During the second phase of EXASTEEL
the close collaboration with ESSEX-II in the context of performance engineering
was also extended to iterative solvers, leading to a new promising recursive
algebraic coloring scheme [1]. The benefits of the recursive algebraic coloring
were demonstrated by applying it to the kernel operation of a symmetric sparse
matrix-vector multiplication (SymmSpMV) on various multicore architectures.
The performance was compared against standard multicoloring and various other
algebraic block multicoloring methods. The coloring implementation resulted in an
average and maximum speedup of 1.4 and 2, respectively. Our entire experimental
and performance analysis process was also backed by the roofline performance
model, corroborating the optimality of the approach in terms of resource utilization
of the SymmSpMV kernel on modern hardware; see the ESSEX-II report in this
book for details.

8 Improvement of the Mechanical Model for Forming
Simulations

In this section, we describe improvements to the modeling developed in the project.
Not all of the techniques described here are currently used in our FE2TI production
simulations, mainly to reduce computational cost.

As mentioned earlier, the favorable macroscopic properties are to a large extent
due to the heterogeneous microstructural features of the DP steels. A sophisti-
cated heat treatment process is used to produce a heterogeneous microstructure
with ferritic matrix and martensitic inclusions. This process is also accompanied
by several effects which then in conjunction with the difference in mechanical
properties of ferrite (soft phase) and martensite (hard phase) generate advantageous
macroscopic properties. In this project, an initial volumetric strains approach, c.f.
[14], was developed to mimic the micromechanical features resulting from the phase
transformations during the production process.

The high yield and work-hardening properties of DP steels, on the other hand,
pose a problem in terms of forming complex geometries and designing the metal
working tools. One of the major issues associated with the forming of DP steels, is
the large springback observed at the end of the forming process, which results in
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undesirable geometries of the formed parts. Here, simulating the forming process
with an accurate material behavior can help to predict springback precisely and
further save valuable resources while optimizing the tooling parameters for the
process. The springback behavior is found to be very closely associated to the
Bauschinger factor of the material. Therefore, within this project a multiscale
modeling strategy to effectively model the DP steel response under cyclic loading
was developed. In this context, an efficient neural network based algorithm is
employed to identify the associated microstructural material parameters, leading
to a reduction in the required computational resources. In order to obtain further
understanding of the correlation of the model parameters on the macroscopic
behavior of DP steels during cyclic loading, uncertainty quantification studies have
been carried out using the developed mechanical models.

Due to their higher accuracy and physical interpretability, crystal plasticity
formulations may be used at the RVE level to directly describe plasticity in a
polycrystal such as multiphase steels. Due to the fact that such formulations are
computationally highly expensive, they may be primarily applied to computationally
identify macroscopic yield surfaces. FE2 simulations of metal forming processes
based on such formulations at the small scale will however hardly be feasible. There-
fore, as part of this project one goal was to improve the quality of micromechanical
models to be used efficiently in the context of FE2. The associated micromechanical
simulations are mainly making use of a classical finite J2 elasto-plasticity material
model, c.f. [79, 87, 89, 90], which is used to model the micro-constituents (ferrite
and martensite) by defining the hardening law

β iso = y iso∞ + (y iso
0 − y iso∞ )exp(−ηisoα)+ hisoα. (5)

Herein, y iso
0 is the initial yield stress, y iso∞ is the saturation yield stress, ηiso is the

exponent,hiso is the linear hardening at saturation yield stress and α is the equivalent
plastic strain variable. The material parameters of the models are calibrated based on
uniaxial tests performed on the pure individual constituents martensite and ferrite.
As representative microstructure a so-called statistically similar RVE was identified;
see [14]. More information on SSRVEs can be obtained in [7, 8], and [83]. Although
the individual phases can be represented accurately and the microstructure is
reflected with high accuracy, still the experimental stress-strain response cannot be
obtained. The main reason is that distributed properties in the ferritic matrix phase,
which however result from the production process, were not yet taken into account.
In addition to that, when focusing on cyclic loading protocols, the macroscopic
kinematic hardening of the real sheet metal cannot be represented. As a suitable
quantitative measure for the kinematic hardening, the so-called Bauschinger factor
can be computed as f B = (|P I| − P II)/|P I|. Herein, P I = P x(�lx/lx,0 = −0.05)
and P II = P x(�lx/lx,0(P x = 0)+ 0.002), where P is the 1st Piola-Kirchoff stress
tensor. Although the Bauschinger factor of the FE2 simulation with f

comp
B = 0.47 is

interestingly high considering that for the individual phases no kinematic hardening
is taken into account up to here, it does not agree well with the experimental value
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f
exp
B = 0.66. Therefore, in this project three major improvements were developed to

enhance the model quality for FE2 simulations of sheet metal forming problems: (i)
A mixed isotropic-kinematic hardening model was implemented at the microscale
for the ferrite phase, (ii) an initial volumetric strains approach was developed to
model the locally distributed plastic properties in the ferrite phase, and (iii) an
implicit fit procedure was constructed based on a neural network to identify the
kinematic hardening parameters.

A mixed hardening model was implemented for the ferritic phase, which consists
of an exponential isotropic hardening law, see Eq. (5) and a linear kinematic
hardening law, c.f. [89]. The yield criterion and the evolution of the back stress ξ

are then given by

φmix = ||devσ − ξ || −
√

2

3
β iso and ξ̇ = 2

3
λ̇H kin devσ − ξ

||devσ − ξ || . (6)

Here, H kin is an additional material parameter, signifying the linear kinematic
hardening. Thus, the material parameters associated with the ferritic phase should be
newly identified for the mixed hardening material model. An appropriate multiscale
approach has been developed which is described in Sect. 8.2.

8.1 Initial Volumetric Strains (IVS) Approach

The IVS approach proposed in [14] allows the modeling of heterogeneous yield
stress distribution in ferrite and results in a good agreement of the predicted stress
values with the experiments. Here, the ferritic yield curve is locally modified using
modification factor γ (X) ∈ [1, 1.6], quantified based on physical and experimental
observations. As a result of this continuous procedure, where the microstructure is
subjected to first IVS, followed by subsequent mechanical loading, for, e.g., uniaxial
tension, not only the distributed properties are obtained but also the eigenstresses
related with the volume expansion of the inclusion phase can be modeled. However,
in the context of FE2 simulations this procedure is rather expensive since the
application of the volumetric strains has to be simulated at each point before the
actual loading can be applied. Due to the fact that the above-mentioned eigenstresses
are not significant to the macroscopic stresses under loading, here a separated
approach is proposed: the first step of applying IVS is considered only to generate
the local ferritic yield modification factors which are saved independently of any
potential subsequent loading. Then, in the second step of mechanical loading these
modification factors are applied to the undeformed microstructure. The main benefit
is the reduction of computing time since the IVS has to be performed only once to
one microstructure. On the other hand, the eigenstresses obtained from the volume
expansion are not included anymore. Note that these eigenstresses are usually
removed from the DP steel sheet by a special heat treatment procedure which is why
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Fig. 20 (a) Illustrations of
the steps involved in the
(modified) initial volumetric
strains approach, (b)
comparison of macroscopic
stress-strain curves for FE2

uniaxial tension calculations
for simplified microstructure
with spherical inclusion: (i)
modified IVS approach, (ii)
IVS approach [14], (iii) no
IVS approach and (iv)
experiment
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the absence of these eigenstresses in the numerical simulation may even be more
realistic. The scheme is illustrated in Fig. 20a. Furthermore, the macroscopic stress
strain curves obtained under uniaxial tension for various IVS considerations are
compared against the experiment in Fig. 20b. Here, it can be seen that the proposed
modified (separated) IVS scheme performs equivalently to the continuous IVS as
given in [14]. However, as seen in Fig. 20b, not using the IVS approach yields a
poor accuracy in representing the experimental curve.

Additionally, it is observed that the choice and extent of ferritic hardening has no
effect on the resulting factors γ and that the same set can be applied in mechanical
loading computations as long as (i) the microstructure, (ii) the amount of martensitic
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volume jump considered (i.e. 4%) and (3) the initial yield stress of ferrite (y iso
0 ),

remain unchanged.
The IVS approach has been implemented in FE2TI but has not been applied in

the production runs in Sect. 5.

8.2 Parameter Identification Approach for Ferritic Mixed
Hardening

The incorporation of the mixed hardening in ferrite along with the initial volumetric
strains approach necessitates the identification of a new set of material parameters
for ferrite, i.e. y iso∞ , ηiso and H kin. Here, y iso

0 and hiso are assumed to be constant.
Since no cyclic stress-strain data is available for the pure ferrite, the ferrite properties
need to be adjusted such that the macroscopic response matches well the experiment.
Due to the micro-macro nature of the computations required for the resulting
inverse problem, this parameter identification problem becomes highly time and
computation intensive. Therefore, to accelerate the process a neural network based
algorithm is proposed.

As illustrated in Fig. 21, a sufficiently trained neural network takes in eight input
values from DP steel experiments and outputs the values for the three parameters to
be identified. These input values are as illustrated in Fig. 21b, i.e. seven macroscopic
stress values and the Bauschinger factor. The neural network consists of one hidden
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Fig. 21 (a) Schematic representation of the neural network with the respective activation functions
at various layers, (b) the input values for the neural network—7 macroscopic stress-strain values
and 1 macroscopic Bauschinger factor
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Table 7 Neural network
training data range for the
identification of ferritic
material parameters

H kin ηiso yiso∞
Range 0.9–2.1 GPa 15.0–25.0 0.35–0.80 GPa

Nos. 5 4 4

Table 8 (a) Target material parameters for the ferritic phase identified with the trained neural
network and (b) Bauschinger factor computed with mixed hardening in ferrite (Sim-mix)

(a) H kin ηiso yiso∞ (b) Exp Sim-mix
1.71 GPa 25.6 0.375 GPa fB 0.66 0.62
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Fig. 22 Stress response comparison between simulation model with mixed hardening for ferrite
and the experiment

layer with tanh type activation functions and one output layer with linear activation
functions. Results from 80 simulations with the choice of target parameters in the
ranges mentioned in Table 7 using the simplified microstructure (spherical inclusion
in a cuboidal matrix) are used as training data. These simulations with different
target parameter combinations can all be executed at once on many core machines
to accelerate the process of gathering training data.

Additionally, a good choice of training range helps to ensure a robust prediction
of the target parameters. The parameters identified by evaluating this algorithm
are given in Table 8a. The macroscopic stresses achieved during compression and
the overall Bauschinger factor obtained with these parameters are in Fig. 22 and
Table 8b, respectively. These indicate a good match with the experimental obser-
vations. Additionally, it is found that the identified material parameters predict a
higher pure ferritic yield curve than observed in experiments on the lab-synthesized
pure ferrite. It is emphasized that it is in principle challenging to synthesize a pure
ferrite which corresponds to the ferrite in the DP steel with respect to similarity in
chemical composition and grain size distribution. Therefore, the experimental data
regarding the pure ferritic behavior should generally be only considered carefully.

8.3 Quantification of Uncertain Material Properties

The material parameters for the micro-constituents of the DP steel are usually
obtained based on experiments on limited numbers of samples. Since the material
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behavior of the constituents depends on the production process parameters, which
may be non-uniform due to the nature of the process over large batch sizes, the
measurements might not accurately represent the complete reality. This holds in
particular for specialized laboratory productions of samples only consisting of the
pure ferrite phase, which matches the microstructure and chemical composition as
closely as possible compared to the ferrite in the DP steel. Due to the fact that
these ferrite properties are however believed to strongly influence the properties
of the overall DP steel behavior an associated uncertainty quantification analysis
was conducted as part of the project. Based on such analysis the sensitivity of the
macroscopic stress-strain response of DP steel for modified ferritic properties can
be investigated. For the analysis employed here, known probability distributions are
assumed for selected ferritic parameters which are (i) y iso

0 and y iso∞ and (ii) H kin. It
should be noted that varying y iso

0 and y iso∞ together for ferrite leads to a change in the
height of the ferritic yield curve. For each of the cases, 15,000 samples are randomly
constructed to generate Gaussian distributions as input uncertainty distributions for
the ferrite parameters y iso

0 and H kin; see Fig. 23.
Based on these assumed input distributions of the ferrite parameters the resulting

distributions of macroscopic properties are to be computed. Trained neural networks
are used here again to evaluate each of these samples and to compute the macro-
scopic DP steel responses for (i) the yield stress in compression (Rp0.25), (ii) the
Bauschinger factor (f B) and (iii) the hardening modulus around 5% compression
(H end).

The output uncertainties in the above mentioned macroscopic measures are
then plotted in the sense of their co-relation with the ferritic yield curve and the
prescribed kinematic hardening parameter in Figs. 24 and 25 respectively. The
correlation between the output macroscopic initial yield stress (Rp0.25) and the
ferritic yield curve as seen in Fig. 24a for the prescribed input, turns out to be a linear
relationship. As evident in Fig. 24b the macroscopic Bauschinger factor, changes
non-linearly with the ferritic yield curve. However, the overall small variations in
the values of the Bauschinger factor suggest that the height of the ferritic yield curve
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Fig. 23 Input uncertainty distributions for (a) variation in yiso
0 and (b) H kin ferritic material

parameters



EXASTEEL: Virtual Laboratory 391

0.32 0.34 0.36 0.38 0.4 0.42
-0.45

-0.4

-0.35

simulated sample
fit result

y iso
0 [GPa]

Rp0.25 [GPa]

(a)
0.32 0.34 0.36 0.38 0.4 0.42

0.624

0.625

0.626

0.627

0.628
simulated sample
fit result

y iso
0 [GPa]

f B

(b)
0.32 0.34 0.36 0.38 0.4 0.42

4.14

4.16

4.18

simulated sample
fit result

y iso
0 [GPa]

H end [GPa]

(c)

Fig. 24 (a) Output uncertainty of (a) Rp0.25 stress, (b) f B and (c) H end based on the variation of
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Fig. 25 (a) Output uncertainty of (a) Rp0.25 stress, (b) f B and (c) H end based on the variation of
H kin

only negligibly influences the macroscopic Bauschinger factor. Thus, it appears that
it is the overall large difference in yield stress between the ferrite and the martensite
rather than moderate changes within the ferrite itself, which is responsible for
the relatively large kinematic hardening of DP steel. Fig. 24c indicates a linear
relationship of H end with the ferritic yield curve height. Again, the values of
macroscopic moduli change only insignificantly, which indicates a small sensitivity
of macroscopic response due to modifications of the ferrite yield stress.

Now, the influence of the kinematic hardening is investigated. The variation in
the above mentioned macroscopic quantities has been considered for a prescribed
uncertainty in the linear kinematic hardening modulusH kin of the pure ferrite phase.
The results for the macroscopic initial yield stress Rp0.25 are plotted in Fig. 25a,
where a linearly reducing correlation is observed with increasing ferritic H kin. As
before, the values indicate a negligible change in Rp0.25 with modifications ofH kin.
This changes significantly for the macroscopic Bauschinger factor, see the results in
Fig. 25b, which indicate a strong influence of the macroscopic Bauschinger factor
due to modifications of the ferritic kinematic hardening modulus. The relationship
is a linearly increasing one. Likewise, an also rather significant, linearly increasing
correlation is observed between H end and H kin, which has been plotted in Fig. 25c.
The results indicate that while the variation in the height of the ferritic yield curve
results in a considerable effect on the macroscopic initial yield stress and hardening
modulus, it only negligibly influences the Bauschinger factor. Whereas, the ferritic
kinematic hardening has a strong influence on the macroscopic response of the DP
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steel, especially the macroscopic Bauschinger factor. This further highlights the
necessity of employing a mixed hardening based ferritic material model for the
micro-macro simulation of relevant DP steel forming problems where effects such
as spring-back are of major importance.

Especially for uncertainty quantification problems, where the variation in the
microstructure’s morphology is considered as source of uncertainty, a high number
of different statistically similar volume elements (SSVEs) needs to be simulated.
For this purpose, an optimal decomposition approach in the context of a finite cell
integration scheme was developed in this project, see [26]. This approach allows for
an automated calculation without the necessity to construct a new mesh for each
SSVE while keeping the overall computing time even lower than for a conforming
(standard) mesh.

8.4 Crystal Plasticity

A better description of certain phenomena, e.g., localization, in crystalline materials
can be achieved by explicitly modeling the polycrystalline structure of the material.

Such materials consist of various single crystals with different orientations
which interact through the granular interfaces. By directly modeling the plastic
behavior of these single crystals, anisotropic yield and complex flow behavior can
be captured directly. As pointed out in Sect. 8, this would lead to computationally
highly expensive simulations, which can be overcome using approximations of the
response of the underlying polycrystal. However, to illustrate the procedure and
complexity of incorporating polycrystalline microstructures directly into multiscale
simulations, a single crystal plasticity model for face-centered cubic (fcc) crystals at
small strains has been implemented, considering an additive decomposition of the
small strain tensor into elastic and plastic part ε = εe + εp where ε̇p = ∑

δ γ̇
δP δ

directly connects the inelastic behavior in the individual grains to the inherent
crystallographic structure through the dependency of the rate of plastic strain on the
projected rate of plastic slip γ̇ δ summed over all systems δ. Therein, the projection
tensor P δ = sym

(
sδ ⊗ nδ

)
is defined based on the orthonormal vectors sδ ⊥ nδ ,

describing the slip system δ. Single crystal plasticity models can be distinguished
into rate-independent and rate-dependent models. Algorithms of the former type
are typically governed by the issue of non-uniqueness of choice of active slip
systems among all possible ones, [3, 16], which adds to the complexity of the
material model. Different approaches exist to handle this intrinsic problem by e.g.
simple perturbation techniques [74], augmented Lagrangian methods [85] or penalty
approaches. Recently, an alternative approach to handle the issue of non-uniqueness
among the activity of slip systems has been proposed in [84], which uses Infeasible
Primal-Dual Interior Point methods for solving the constraint optimization problem.
This method uses barrier functions combined with the given constraints of the
problem in order to penalize the approach of the boundary of the feasible domain. In
contrast to that, rate-dependent algorithms consider all slip systems to be active and
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link the rate of slip γ̇ δ on each system δ directly to the Schmid stress τ δ = σ : P δ .
The kinetic law reads

γ̇ δ = γ̇0

∣
∣
∣
∣
τ δ

gδ

∣
∣
∣
∣

p−1 (
τ δ

gδ

)

with ġδ =
∑

β

hδβ
∣
∣γ̇ β

∣
∣ , (7)

as, e.g., proposed by [39], where the hardening moduli hδβ depends on the strain-
like internal variable A with Ȧ =∑

δ

∣
∣γ̇ δ

∣
∣.

8.5 Macroscopic Yield Surface Based on Polycrystalline RVEs

In this section, we use two-scale simulations using crystal plasticity to compute
macroscopic yield surfaces. These yield surfaces can then be used in FE2TI
simulations without directly incorporating crystal plasticity.

The influence of the microscopic polycrystalline material can be considered
to compute the resulting macroscopic anisotropic yield surfaces, as mentioned
in Sect. 8 and included in a hierarchical multiscale approach, see [32]. In the
following, a microstructure consisting of a polycrystal with multiple grains is
considered to model its macroscopic yield behavior. Here, for the computation of
macroscopic yield surfaces based on the microscopic behavior of polycrystalline
unit cells, the software Neper is used to generate a periodic unit cell with 15 grains.
The geometry is meshed using 10-noded tetrahedral finite elements. In order to
account for an isotropic orientation distribution of the polycrystalline unit cell, each
grain is assigned to a specific orientation following from a geodesic dome. For
details, we refer to [82]. With these unit cells, macroscopic yield curves based on
macroscopic biaxial loading paths, i.e. σ 1 : σ 2, σ 3 = 0, are computed in an FE2

scheme. The stress-driven simulation requires small time steps, which is amplified
by the small time step size required for the rate-dependent formulation of single
crystal plasticity. Figure 26 shows the initial yield surface at 〈α〉 = 3.3 ·10−8 as well
as the distribution of α inside the unit cell. Since the rate-dependent formulation
does not have a distinct yield point and the rate-independent behavior is here
modeled with p = 200, see Eq. (7), this value of equivalent plastic strains has been
arbitrarily chosen by the authors. The evolved macroscopic yield surface based on
a polycrystalline unit cell at 〈α〉 = 4.7 · 10−4 and a respective distribution of α is
shown in Fig. 26. As pointed out in [11], the initial yield surface forms the shape of
a Tresca-type yield criterion, whereas the further evolved yield surface is of typical
elliptical Mises-type.
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Fig. 26 Polycrystal with 15 grains. Distribution of equivalent plastic strains α for loading path
σ 1 : σ 2 = −1 : 0 at α∗1 = 〈α〉 = 3.3 · 10−8 (left) and for loading path σ 1 : σ 2 = 0 : 1 at
α∗2 = 〈α〉 = 4.7 · 10−4 (center). Right: Associated successive yield surfaces; Tresca-type for α∗1
and von Mises type for α∗2

8.6 One-Way Coupled Simulation of Deep-Drawing Using
Polycrystalline Unit Cells

Finally, in this section, we demonstrate a two-scale simulation directly incorporating
crystal plasticity on the micro scale. Such simulations are computationally expen-
sive. Only a one-way coupling is used here, and J2 elasto-plasticity is applied on the
macroscale.

In the following, a sheet metal forming process of deep-drawing of a hat-profile,
adopted from [7], using an Al-Cu alloy is simulated under consideration of the
polycrystalline microstructure in a one-way coupled FE scheme. In Fig. 27, the
finite element mesh (165 linear quadrilateral elements) is shown. The interaction
between the sheet and the tools is realized with a frictionless penalty contact
formulation. The macroscale simulation is carried out using a finite J2 elasto-
plasticity model with isotropic von Mises yield behavior based on an algorithmic
setting by [65]. The material parameters, cf. Eq. (5), were fitted to a macroscopic
uniaxial tension test with the polycrystalline unit cell used on the microscale leading
to κAl-Cu = 50,754 N/mm2, μAl-Cu = 23,425 N/mm2, yAl-Cu

0 = 125 N/mm2,

yAl-Cu∞ = 160 N/mm2, ηAl-Cu = 750 and h
Al-Cu = 1 N/mm2. The final state of

the sheet forming simulation is depicted in Fig. 28 and the distribution of equivalent
plastic strain is shown. Throughout the simulation, the deformation gradient F is
captured at three different positions, marked by �,# and © therein, at the top,
center and bottom of the sheet, respectively, leading to nine evaluation points in
total.

The recorded deformation is applied to a polycrystalline unit cell in a one-way FE
coupling. The single crystal plasticity computation is performed at small strains, as
described in Sect. 8.4. Thereby, the applied material parameters are taken from [92]
with Lamé constant λ = 35,104.88 N/mm2, shear modulus μ = 23,427.25 N/mm2,
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Fig. 27 Discretization of the macroscopic BVP of the deep-drawing of a hat profile under plane
strain conditions. 1: drawing die, 2: blank holder, 3: sheet metal (discretized with 5×33 elements),
4: punch, 5: punch radius of 7 mm, and 6: die radius of 6 mm are used. The contact definitions
between punch, drawing die, blank holder, and sheet metal are realized using a frictionless penalty
formulation. The analyzed RVEs in the macroscopic BVP are located near the punch radius, 7©,
in the vertical section, 8©, and near the die radius, 9©, according to the final deformation, cf. 28
(left). The drawing depth of the hat profile is 45.7 mm with a sheet half width of 100 mm and a
thickness of 1.4 mm

Fig. 28 Distribution of α in sheet metal at final deformed state (t = 50) and strain-like internal
variable A in polycrystalline unit cells at different points
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initial slip resistance τ0 = 60.84 N/mm2, saturation stress τ∞ = 109.51 N/mm2,
initial hardening modulus h0 = 541.48 N/mm2, material rate sensitivity parameter
p = 200, and reference slip rate γ̇0 = 1 · 10−3. The small strain tensor ε is used to
transfer the deformation state from the macroscale to the microscale, however, no
coupling back from micro- to macroscale is considered.

In Fig. 28, the distribution of equivalent plastic strain α in the hat-profile and
the distribution of the strain-like internal variable A as a result of the evaluation
of the one-way coupled polycrystalline unit cells is shown. Differences between the
positions of the polycrystals in the sheet are obvious as well as the nonhomogeneous
distribution of A.

9 Conclusion

The vision of the EXASTEEL project is to develop a virtual HPC laboratory
allowing for predictive virtual material testing of modern steels. On this path, we
have moved forward in several directions: Since the properties of modern dual-phase
steels largely stem from their microstructure, homogenization is indispensable to
achieve our goals. We therefore have developed and implemented the FE2TI library,
a highly scalable software for computational homogenization based on the FE2

approach (Sects. 2–4). This approach was then used, for the first time, to compute a
forming limit diagram for DP600 steel using the JUWELS supercomputer (Sect. 5).
Let us remark that the computation of an FLD is already a step beyond the
achievements envisaged in the original EXASTEEL-2 proposal. We have also
shown scalability of the FE2TI package up to the largest supercomputers currently
available, e.g., using more than one million MPI ranks for nonlinear production
problems, i.e., using unstructured meshes, elasto-plasticity, and full parallel I/O [64]
(Sect. 3). These latter simulations use parallel FETI-DP solvers for the RVE
problems and made use of the full JUQUEEN supercomputer.

To move towards full use of the future exascale supercomputers, we have worked
on extending the parallel scalability of implicit nonlinear FETI-DP and BDDC
domain decomposition solvers (Sect. 6). Scalability to 800,000 parallel tasks was
achieved for our nonlinear solvers [54], outside of our parallel FE2 multiscale
context; see Fig. 15. These simulations used the full Mira supercomputer. We have
also considered techniques to improve the energy efficiency of our nonlinear domain
decomposition solvers (Sect. 6.1.1). Careful performance analysis and engineering
was applied to the FE2TI software building blocks, e.g., for the performance
engineering of the sparse triangular solves of the PARDISO sparse direct solver
(Sect. 7).

For the modeling, considering initial volumetric strains, resulting from the
complex steel production process, has shown to be of interest; therefore, an
efficient algorithmic approach to IVS was proposed (Sects. 8.1 and 8.2). This IVS
approach has been implemented in FE2TI. Further improvements in our modeling
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may be achieved by incorporating effects from crystal plasticity (Sect. 8.4). An
approach to fit macroscopic yield surfaces to crystal plasticity simulations was
presented (Sect. 8.5). The resulting yield surfaces can be used in FE2TI without
using an explicit coupling with crystal plasticity simulations. However, we have
also demonstrated a two-scale simulation using a one-way coupling with crystal
plasticity (Sect. 8.6).

For the quantitatively predictive simulations envisaged in this project, several
improvements are planned for the future. First, realistic material models reproducing
the physics on the microscale are important. Different advanced approaches beyond
the ones considered so far may be of interest, e.g., based on the techniques described
in Sect. 8. Second, for the computation of the FLD, the exploitation of the symmetry
of the Nakajima specimen has to be reviewed and, especially for strongly anisotropic
microstructures, simulations using the full geometry have to be performed for all
specimen. Third, a validation with experiments for steels other than DP600 will be
necessary. Finally, once exascale supercomputers will be available, predictive virtual
steel simulations at the exascale will leverage the combined parallelism of the FE2

algorithm and of the parallel nonlinear domain decomposition solvers.
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Abstract Present-day stencil codes are implemented in general-purpose program-
ming languages, such as Fortran, C, or Java, Python or derivates thereof, and
harnesses for parallelism, such as OpenMP, OpenCL or MPI. Project ExaStencils
pursued a domain-specific approach with a language, called ExaSlang, that is
stratified into four layers of abstraction, the most abstract being the formulation
in continuous mathematics and the most concrete a full, automatically generated
implementation. At every layer, the corresponding language expresses not only
computational directives but also domain knowledge of the problem and platform to
be leveraged for optimization. We describe the approach, the software technology
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behind it and several case studies that demonstrate its feasibility and versatility:
high-performance stencil codes can be engineered, ported and optimized more
easily and effectively.

1 Overview of ExaStencils

1.1 Project Vision

ExaStencils1 takes a revolutionary, rather than evolutionary, approach to software
engineering for high performance. It seeks to provide a proof of concept that
programming can be simplified considerably and that program optimization can be
made much more effective by concentrating on a limited application domain. In the
case of ExaStencils, it is a subdomain of geometric multigrid algorithms [84]. The
idea is to write a program in a domain-specific programming language (DSL). In our
case, it is an external DSL (i.e., a DSL built from scratch rather than embedded in
an existing language), called ExaSlang [72]. ExaSlang is stratified into four layers
of abstraction. Each layer provides a different view of the problem solution and
can be enriched with information to allow for particular optimizations at that layer.
ExaSlang’s most abstract layer specifies the problem as a set of partial differential
equations (PDEs) defined on a continuous domain. The most concrete layer allows
the user to specify low-level details for an efficient implementation on the execution
platform at hand. Ideally, the domain expert should only be dealing with the first
layer (plus some menu-driven options). The ExaStencils code generator should
be able to generate all lower code layers while applying a set of optimizations
autonomously before producing efficient target code.

1.2 Project Results

This subsection summarizes the challenges that drove the development of Exa-
Stencils and how far we got in the period of SPPEXA funding.

We begin with the delineation of the domain and the mathematical challenges,
distinctly from the computer science challenges, that ExaStencils addressed (see
Sect. 2). We restricted our attention to the development of smoothers for geometric
multigrid methods and the required analysis tools. In this domain, local Fourier
analysis (LFA) is the method of choice to analyze the developed smoothers and
the entire multigrid method. To make LFA useful for our purpose, we extended the
method to periodic stencils, covering block smoothers and varying coefficients [10].

1www.exastencils.org.

www.exastencils.org
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The first major computer science challenge was to cover, with one single source
program, a wider range of multigrid solvers than is possible with contemporary
implementations based on general-purpose host languages such as Fortran or C++
(see Sect. 3). To this end, we decided not to build ExaSlang on an existing, general-
purpose host language but to make it an external DSL. We were able to demonstrate
its flexibility already early on in the project by providing a common ExaSlang
program for Jacobi, Gauss-Seidel, and red-black solvers for finite differences and
finite volumes with constant and linear interpolation and with restriction [53].
Later on, we introduced a way to specify data layout transformations simply by a
linear expression—a feature that can aid the development process significantly [46]
(see Sects. 3.1–3.2). A smaller task was to decide how to describe aspects of the
execution platform in a platform-description language (TPDL) [75] (see Sect. 3.3).

The second major computer science challenge was to reach high performance
with our approach to code generation on a wide range of architectures (see Sect. 4).
One important aspect here is what information to provide at which layer (see
Sect. 4.1). While the syntax of ExaSlang is partly inspired by Scala, Matlab and
LaTeX, our target language is C++ with additional features that depend on the
execution platform (see Sect. 4.2). We demonstrated that, with the help of our
optimization techniques (see Sects. 4.3–4.5), weak scaling could be achieved on
traditional cluster architectures such as the JUQUEEN supercomputer at the Jülich
Supercomputing Center (JSC) [48, 72]. We also achieved weak scaling on the
GPU cluster Piz Daint at the Swiss National Supercomputing Centre (CSCS).
Furthermore, we demonstrated the automatic generation of solvers that can be
executed on emerging architectures such as ARM [51] and FPGA platforms [73, 77].

One new concept that ExaStencils introduced into high-performance computing
is that of feature-based domain-specific optimization [5] (see Sect. 4.6). The central
idea is to view a source code, such as a stencil implementation or an application,
as a member of a program family or software product line rather than as an isolated
individual, and to describe the source code by its commonalities and variabilities
with respect to the other family members in terms of features. A feature represents
a concept of the domain (e.g., a type of smoother or grid) that may be selected
and combined with others on demand. With this approach, a large search space of
configuration choices can be reviewed automatically at the level of domain concepts
and the most performant choices for the application and execution platform at hand
can be identified. To this end, we devised a framework of sampling and machine
learning approaches [36, 39, 80] that allow us to derive a performance model of
a given code that is parameterized in terms of its features. This way, we can
express performance behavior in terms of concepts of the domain and automatically
determine optimal configurations that are tailored to the problem at hand, which we
have demonstrated in the domain of stencil codes [29, 30, 32, 36, 39, 59, 80] and
beyond (e.g., databases, video encoders, compilers, and compression tools). Our
framework integrates well with the other parts of ExaStencils that use and gather
domain and configuration knowledge in different phases.

Project ExaStencils came with several case studies whose breadth was to
demonstrate the practicality and flexibility of the approach (see Sect. 5). The case
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studies are a central deliverable of ExaStencils. They include studies close to real-
world problems: the simulation of non-Newtonian and non-isothermal fluids (see
Sect. 5.3) and a molecular dynamics simulation (see Sect. 5.4).

We conducted two additional studies at the fringes of ExaStencils, exploring
alternative approaches (see Sect. 6). In one, the option of an internal rather
than external DSL was explored: ExaSlang 4 was embedded in the mutual host
languages Java and Ruby to study the trade-off between the effort of the language
implementation and the performance gain of the target code [17]. The outcome
was that an embedding is possible but, as expected, with a loss of performance
(see Sect. 6.1). In the second study, we implemented a simple multigrid solver in
SPIRAL [11] (see Sect. 6.2). The success of the SPIRAL project [24, 61] a decade
ago was a strong motivator for project ExaStencils. SPIRAL can handle simple
algebraic multigrid solvers but would have to be extended for more complex ones.

1.3 Project Peripherals

Attempts of abstraction and automation in programming have received increased
attention in the past two decades in the area of software engineering. High-
performance computing has been comparatively conservative in going down this
road. The reason is that the demands on performance are much higher than in
general software engineering, and the architectures used to achieve it are more
complex, notably with large numbers of loosely coupled processors.

The potential of an effective automation grows as the application domain
shrinks. Promising domains are much smaller than those of any general-purpose
programming language. The extreme is the compiler FFTW [25] that targets a
single numerical problem, the fast Fourier transform. As just mentioned, SPIRAL
widened the domain to linear transforms (and, lately, beyond [81]). By now, quite a
number of optimizing code generators have been proposed that target stencil codes.
Patus [18] has a strong focus on autotuning. The strong point of Pochoir [82] is
the cache obliviousness of its target code. Pochoir addresses constant stencils and
is based on the C dialect Intel Cilk with limited portability to other platforms.
Devito [52] performs symbolic computation via SymPy and targets shared-memory
architectures, just like Snowflake [90]. Firedrake [63] is primarily for finite-element
methods and has adopted multigrid lately. One recent component of it is Coffee [54],
which addresses the local assembly in finite-element methods. STELLA [34] and its
spiritual successor GridTools generate code for stencil computations on distributed
structured grids for climate and weather modeling.

For the domain of image processing, many approaches based on code generation
exist that are conceptually similar to the idea behind project ExaStencils. Notable
projects include Halide [62], HIPAcc [57], PolyMage [58], and Mint [85]. The
specification of image filter kernels is related to the concept of stencils, and
many of the basic parallelization techniques are comparable. However, ExaSlang
is fundamentally based on computational domains that are multidimensional, as
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opposed to the usually two-dimensional data structures used to represent images.
Image processing DSLs usually target shared-memory parallel systems, i.e., single
compute nodes such as multi-core CPUs or a single GPU. On the other hand,
ExaStencils aims at the domain of HPC and, consequently, supports distributed-
memory systems and respective parallelization techniques.

2 The Domain of Multigrid Stencil Codes

2.1 Multigrid

The goal of the ExaStencils project has been the automatic generation of efficient
stencil codes for geometric multigrid solvers [84] on (semi-)structured grids.
Multigrid methods form a class of iterative solvers for large and sparse linear
systems. These methods have originally been developed in the context of the
numerical solution of partial differential equations, which often involves the solution
of such linear systems.

Multigrid methods combine two complementary processes: a smoothing process
and a coarse-grid correction. While each of the two processes is by itself not
sufficient to solve the problem efficiently, their combination yields a fast solver.

The smoothing process is usually a straightforward iterative method that con-
verges rather slowly when used on its own. Combining such a process with a
coarse-grid correction accelerates the convergence of the resulting method by
augmenting the iteration with information obtained on a coarser grid. Since the
grid determines the resolution at which the solution is being computed, a multigrid
method considers the problem at different resolutions.

A multigrid method performs stencil computations on a hierarchy of fine to
successively coarser grids. The overall cost of the method can be reduced further by
applying this idea recursively, i.e., instead of two grids, we consider a hierarchy of
successively coarser grids. The recursion follows a so-called cycling strategy, e.g.,
a V -cycle or a W -cycle (see Fig. 1). The cycling strategy determines how much
work is performed at what level of the grid hierarchy, which also has an effect on
the convergence rate of the method. On the coarser grids, less processing power is
required.

In summary, to construct a multigrid method, one must choose a set of compo-
nents: a smoother, an interpolation, a restriction, a coarse-grid approximation, and
a cycling strategy. The choice of components influences the number of iterations
required to obtain an adequate solution, the computational cost per iteration, and
the communication pattern of the method. Furthermore, the behavior of the method
depends on the linear system to be solved.
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Fig. 1 Cycling strategies across the grid hierarchy. The hierarchy levels are denoted by �h, �2h,
and �4h, progressing from the finest to the coarsest grid. Light circles solve the coarse-grid
system directly, and dark circles solve the coarse-grid system recursively. Down arrows symbolize
restrictions, up arrows interpolations. (a) V -cycle. (b)W -cycle

2.2 Advancing the Mathematical Analysis of Multigrid
Methods

At the start of project ExaStencils stood the search for a way to estimate the number
of iterations that a multigrid method requires to produce an adequate solution. The
choice of multigrid components determines the operations that must be performed
per iteration. Hence, to estimate the time required per iteration, one just needs to
place these operations in an appropriate order and estimate the duration time of
their execution. While this is by no means a trivial endeavor, estimating the number
of iterations needed is inherently different. In this section, we deal with the latter
problem.

To estimate the number of iterations, we must consider the mathematical
properties of a given multigrid method for a given set of components and problem.
For this purpose, we must determine the contraction properties of the iteration
operator of the multigrid method for a given configuration. To this end, local
Fourier analysis (LFA) tells us whether the repeated application of the iteration
operator lets the error converge to zero. In particular, we are interested in the
resulting rate of convergence.

For project ExaStencils, we had to extend the capabilities of LFA. We wanted
to analyze block smoothers, which have a higher arithmetic density than standard
smoothers (see Sect. 2.3), and complex problems for which no feasible way of
applying LFA was known. Furthermore, we aimed at an automation of the analysis.

At the beginning of project ExaStencils, we considered using and expanding
an existing LFA software [88]. However, in the course of the project, it became
quickly evident that we needed a more general approach, something beyond a
collection of templates that allow to fill in some blank spots but do not facilitate the
reuse or recombination of components. Since we intended to explore many possible
combinations of various multigrid components, it was not feasible to program an
individual LFA by hand for every combination. We developed the LFA Lab [65],
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which is based on the principle of combining a set of primitive expressions to
complicated ones, enabling a much more flexible analysis.

A multigrid method, as well as its components, can be characterized by their
iteration operators. An iteration operator describes the propagation of the approx-
imation error during the execution of the method. If we denote the error after the
k-th iteration with e(k) and the iteration matrix of the method with E, we have the
following equation:

e(j+1) = Ee(j)

The spectral radius ρ(E) and the operator norm ‖E‖ of E characterize the
asymptotic and worst-case error reduction factors of the method, respectively. LFA
determines these quantities in a simplified setting.

Let h, with 0 < h ∈ R, be the step size of the infinite d-dimensional grid
Gh := h · Zd . We consider stencil operators on the space of bounded grid
functions �2(Gh) := {u : Gh → C | ∑x∈Gh |u|2 < ∞}. A stencil operator
A : �2(Gh)→ �2(Gh) is a linear operator given by a family {sk}k∈Zd , sk ∈ R, such
that

Au (x) :=
∑

k∈Zd
sku(x + hk) for x ∈ Gh and u ∈ �2(Gh) .

Stencil operators have a particularly simple form when transformed via the discrete-
time Fourier transform.

The discrete-time Fourier transform (DTFT) F is a linear isometry that maps the
space �2(Gh) onto L2(!h) := {u : !h → C | ∫

!h
|u(x)|2 dx <∞}, where !h :=

[0, 2π
h
)d . In other words, it represents a function on an infinite grid by a function on

a continuous and bounded interval. A stencil operator A in Fourier space, i.e., the
operator FAF−1, is just the multiplication by a function â : L2(!h)→ C. We call
the function â the symbol of A. Thus, the symbol of a stencil operator is a function
that encodes the entire behavior of the infinite-dimensional operator.

The symbol â of a stencil operator reveals the desired information about the
operator A. We have that

ρ(A) = ess-supθ∈!h |â(θ)| and ‖A‖ = ess-supθ∈!h |â(θ)| ,

where ess-sup denotes the essential supremum. These formulas mean that, to
compute the spectral radius or the operator norm of a stencil operator, we must just
compute the largest value of the absolute modulus of its symbol â. Note that, in the
definition of stencil operators, we have assumed that stencil s does not depend on
position x. However, it can be useful to consider operators whose stencil is allowed
to change with the position.

A stencil that depends arbitrarily on the position has no particularly simple form
in the Fourier domain. However, we were able to show that periodic stencils do have
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a simple representation [10, 66]. A periodic stencil depends on the position, but has
the same entries repeated periodically across the entire domain. While this does not
represent stencils accurately that are variable in the entire domain, at least some
variability is reflected in the analysis. We showed that a periodic stencil operator is
described, after a proper reordering of the frequency domain, by a matrix of ordinary
symbols—more precisely, by matrix symbols from the space Ln×m2 (θh′) for some
appropriate positive h′. Furthermore, we were able to show that there is a one-to-
one relationship between matrix symbols and periodic stencils.

Using matrix symbols, similar results for the spectral radius and operator norm
hold. For an operator given by a periodic stencil, we have that

ρ(A) = ess-supθ∈!h′ ‖â(θ)‖ and ‖A‖ = ess-supθ∈!h′ ρ(â(θ)) .

Thus, to obtain the norm and spectral radius of the operator, we must find the largest
value of the norm and spectral radius of the matrix â(θ).

The framework of periodic stencils and matrix symbols allows for more advanced
problems to be analyzed. It also lends itself to automation via software. Operators
that have a matrix symbol can be combined in many ways such that the combination
also has a matrix symbol. Thus, we can create a flexible LFA software by using the
idea of providing first a set of primitive expressions and then means of combination
and abstraction [1].

For example, the iteration operator of the weighted Jacobi method is

EJ = I −D−1A ,

where A is the system matrix, D the diagonal part of A, I the identity matrix and
ω ∈ R a weighting factor. If we assume that the behavior of A can be modelled
sufficiently accurately by a (periodic) stencil operator on an infinite grid, we can
replace each matrix by the infinite-dimensional operator given by the corresponding
(periodic) stencils to simplify the analysis. Listing 1 shows the computation of the
spectral radius of the iteration operator of the Jacobi method for the stencil resulting
from the discretization of the Poisson equation using our software LFA Lab [65].

LFA Lab can be used as a simple Python [86] library, but it is more or less an
embedded DSL for LFA. The user provides the (periodic) stencils, which yield the
corresponding operators. Then, the user combines these operators with interpolation
and restriction to an expression describing the desired iteration operator.
� �

1from lfa_lab import *
2g = Grid(2, [1.0/32, 1.0/32])
3A = gallery.poisson_2d(g)
4I = operator.identity(g)
5omega = 0.8
6E = I - omega * A.diag().inverse() * A
7print((E.symbol().spectral_radius()))

� �

Listing 1 Implementation of an LFA of the weighted (ω = 0.8) Jacobi smoother for the solution
of the Poisson equation using LFA Lab
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The code in Listing 1 is essentially a direct implementation of the formula for
the iteration operator. However, keep in mind that this formula describes actually a
combination of infinite-dimensional operators. When calling the symbol method,
the software determines automatically a way to represent the given iteration operator
via its Fourier matrix symbol, which is a non-trivial procedure.

To compute the matrix symbol of an expression given by the user, appropriate
sampling parameters must be determined. For this purpose, LFA Lab has two stages.
The first stage extracts and analyzes the expression tree of the formula that the user
entered. The second stage then samples the matrix symbol to obtain the spectral
radius and operator norm. The power of the software lies in the fact that arbitrarily
complex expressions can be analyzed.

A more complex example is the analysis of the two-grid method. It has the
iteration operator

ETG = S (I − PA−1
c RA) S ,

where Ac is the coarse-grid operator, P the interpolation, R the restriction, and S
the iteration operator of the smoother. Assume that we already have an analysis for
the smoother. If we can express P , R, and Ac using Fourier matrix symbols, we
can combine these with the analysis of the smoother we already have to analyze the
two-grid method in its entirety.

In summary, we have constructed a powerful and flexible LFA software. The
flexibility comes from a small set of primitive expressions and means of combina-
tion and abstraction. The periodic stencil operators are the primitive expressions,
mathematical operations are a means of combination, and the Python programming
language provides the opportunity of abstraction. The software is used to estimate
the convergence rate of a multigrid method for a given set of components and a
given problem. The estimate comes as a number of iterations a multigrid method
needs to achieve adequate accuracy.

2.3 Advancing Multigrid Components

The choice of the smoothing component in a multigrid method is not always
straightforward. Some problems require advanced smoothers. This can be easily
appreciated when considering that, since the system contains a zero block, a
pointwise relaxation is not possible [84]. The steady-state Stokes equations can be
written as follows:

−�u+∇p = f, in �

∇ · u = 0, in �
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(a) (b)

Fig. 2 Unknowns that are included in the blocks of the smoothing steps. (a) Vanka smoother. (b)
Triad smoother

for a given domain� with boundary ∂�. Here, u is the vector-valued fluid velocity,
p is the pressure, and f describes an external force.

This linear system of PDEs can be discretized on staggered grids or by using
appropriate finite elements. Here, we consider staggered grids in two dimensions.
For the Stokes equations, the efficient Vanka smoother has a relatively high
computational cost and unsatisfactory parallelization properties due to a process
of overlapping block-smoothing steps (see Fig. 2). This made us consider the Triad
smoother as an alternative: it provides low computational cost in combination with
good parallelization properties [19].

Both block smoothers are based on a collective updating process of unknowns
inside one block [87]. As depicted in Fig. 2, the Vanka blocks consist of five
unknowns including one pressure and two velocity components in each direction
while the Triad smoother comprises the simultaneous update of three unknowns
including one unknown of each kind.

Numerical results for periodic boundary conditions in combination with par-
allelization properties and computational work show the potential of the Triad
relaxation method. However, numerical results for the Stokes system with Dirichlet
boundary conditions show that the Triad method in its original form has one issue:
the convergence rate deteriorates tremendously. To illustrate this, we applied the
method to the Stokes equation discretized on a staggered grid in the unit square,
with periodic and with Dirichlet boundary conditions. As right-hand side, we
chose in both cases fux (x, y) = 2π2 sin(πx) sin(πy) + π cos(πx), fuy (x, y) =
2π2 cos(πx) cos(πy)− π sin(πy), and fp ≡ 0; the initial guess was zero. Figure 3
shows the different convergence behaviors.

The convergence properties of the Triad smoother can be improved with the fol-
lowing idea: repeat the relaxation process four times while changing the unknowns
contained in one block after each iteration, i.e., rotating the “L”-shaped pattern that
describes the block to be relaxed. This algorithm, illustrated in Fig. 4, improves
the convergence significantly. When applying the four iterations of the proposed
smoother, it is very similar to one iteration of Vanka. Thus, a smoother that has not
been considered as an option before becomes a viable alternative to established
smoothers for systems of PDEs. In addition, the order in which the boxes are
updated can be varied. For more details and further results, see the dissertation of
Lisa Claus [19].
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Fig. 3 Convergence behaviors of the two block smoothers applied to the Stokes equations dis-
cretized using staggered grids in the unit square with periodic and Dirichlet boundary conditions.
(a) Dirichlet boundary conditions. (b) Periodic boundary conditions
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Fig. 4 Order of iterations of the advanced block smoother. (a) Step 1. (b) Step 2. (c) Step 3. (d)
Step 4

3 Stencil-Specific Programming in ExaStencils

The central element in the ExaStencils approach is its stencil-specific programming
language ExaSlang and its code generator. Then there is also a language for
specifying properties of the execution platform. The two languages are discussed
in this section. The code generator is the subject of the following section.

3.1 The Domain-Specific Language ExaSlang

The idea of ExaStencils is to support the domain-specific programming and opti-
mization of stencil codes by providing different layers of abstraction, specifying the
various aspects of the stencil code at the respectively suitable layer, and exploiting
domain information available at that layer for an optimization of the specification.
ExaSlang comes in four layers: from ExaSlang 1, the most abstract, to ExaSlang 4,
the most concrete (see Fig. 5).

• Layer 1: the continuous problem
This is the layer for the scientist or engineer who needs the solution of the PDE.
The problem is specified as a continuous equation. The present implementation
supports Unicode and LaTeX symbols. Optional inputs are the specification of
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Fig. 5 ExaSlang layers of abstraction

discretization and solver options used to autogenerate lower layers. There is also
support for an automatic finite-difference discretization of operators.

• Layer 2: the discrete problem
This is the most abstract layer that provides an executable description. Discretized
functions are fields (data type, grid location), tied to a computational domain.
Geometric information is provided in the form of virtual fields resolved to
constants or field accesses. Discretized operators are provided as stencils or stencil
templates.

• Layer 3: the solver
At this layer, multigrid appears in the form of the specification of a solver
for the discrete problem, either provided by hand or set up automatically. The
implementation supports a Matlab-like syntax.

• Layer 4: the application
This layer of ExaSlang can describe a full application, including communication,
input/output, evaluation and visualization, but is still more abstract than C++ or
Java in that it contains language constructs specific to multigrid. Optimizations
at this layer include the tuning of communication patterns and data structure
layouts.
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Yet more concrete, but not accessible to the user, is an intermediate representation
(IR) in which most code refinements take place and which forms the base for the
generating of the target C++ code.

One may write one’s program at the ExaSlang layer of one’s choice and let
the code generator refine it to a more concrete layer. One may also modify
generated code to implement certain aspects that cannot be expressed at the chosen
programming layer. However, the IR representation is not meant to be modified by
the user.

Through its four layers, ExaSlang evolves from a declarative language at layer 1
to an imperative programming language at layer 4. Besides the standard data types
that represent floating-point and integer numbers or strings, domain-specific data
types represent vectors and matrices to be used for coupled systems of equations.
Assembly of global vectors and matrices is not supported since we focus on local
computations using stencils. In contrast, stencils are declared globally in ExaSlang
programs. Furthermore, fields—corresponding to vectors that may represent the
PDE’s right-hand side or an approximation of the unknown function—are declared
globally as well. Via declaration, certain settings important to parallelization may
be specified by the user. One example is the size of ghost layers (also called halo
layers), as depicted in Listing 5 in Sect. 3.2.

3.2 An ExaSlang Example

To illustrate how our language stack can be used to implement different aspects of
partial differential equations (PDEs) solvers, let us take the Poisson equation

−�u = f in � ,

u = g on ∂�

for a given domain �—here the unit square—Dirichlet boundary conditions g =
cos(πx) − sin(2πy) and the right-hand side f = π2cos(πx) − 4π2sin(2πy).
Listing 2 shows an exemplary layer 1 code for this specification. From it, our
generator is able to derive representations at subsequent layers. The refinement
methods employed in this process are described in Sect. 4.1 further below. Listings 3
and 4 illustrate variants similar to the autogenerated ones expressing the discretized
version of the given equation (Listing 3) and the multigrid algorithm used to solve
for it (Listing 4). Based on them, a complete layer 4 program can be assembled,
comparable to the one illustrated in Listing 2. In the example code at the lower
layers, parts of the source code have been omitted for the sake of compactness. A
complete specification and examples of other PDEs are part of Sebastian Kuckuk’s
dissertation [47].
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� �

1� = ( 0, 1 ) × ( 0, 1 )
2

3u ∈ � = 0.0
4u ∈ ∂ � = cos ( π x ) - sin ( 2 π y )
5

6f ∈ � = π^2 cos ( π x ) - 4 π^2 sin ( 2 π y )
7

8op = - �
9

10uEq: op * u == f
11

12/* discretization and solver hints (see Subsection 4.1) */
� �

Listing 2 ExaSlang 1 code for the complete specification of the 2D Poisson problem

� �

1global from [ 0, 0 ] to [ 1, 1 ]
2

3Solution with Real on Node of global = 0.0
4Solution@finest on boundary =
5 cos ( PI * x ) - sin ( 2.0 * PI * y )
6Solution@(all but finest) on boundary = 0.0
7

8RHS with Real on Node of global =
9 PI**2 * cos ( PI * vf_nodePos_x ) -

10 4.0 * PI**2 * sin ( 2.0 * PI * vf_nodePos_y )
11

12Laplace from Stencil {
13 [ 0, 0] => 2.0 / ( vf_gridWidth_x**2 ) +
14 2.0 / ( vf_gridWidth_y**2 )
15 [-1, 0] => -1.0 / ( vf_gridWidth_x**2 )
16 [ 1, 0] => -1.0 / ( vf_gridWidth_x**2 )
17 [ 0, -1] => -1.0 / ( vf_gridWidth_y**2 )
18 [ 0, 1] => -1.0 / ( vf_gridWidth_y**2 )
19}
20

21SolEq {
22 Laplace * Solution == RHS
23}

� �

Listing 3 ExaSlang 2 code for a complete specification of the 2D Poisson problem

� �

1Field Residual from Solution
2override bc for Residual with 0.0
3

4Operator Restriction from default restriction
5 on Node with 'linear'
6Operator Prolongation from default prolongation
7 on Node with 'linear'
8

9Function Smoother@all {
10 repeat 3 times {
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11 Solution += diag_inv ( Laplace ) * ( RHS -
12 Laplace * Solution ) where (i0 + i1) % 2 == 0
13 Solution += diag_inv ( Laplace ) * ( RHS -
14 Laplace * Solution ) where (i0 + i1) % 2 == 1
15 }
16}
17

18Function VCycle@coarsest {
19 /* implementation of a coarse-grid solver */
20}
21

22Function VCycle@(coarsest + 1 to finest) {
23 Smoother ( )
24

25 Residual = RHS - Laplace * Solution
26 RHS@coarser = Restriction * Residual
27

28 Solution@coarser = 0.0
29 VCycle@coarser ( )
30

31 Solution += Prolongation@coarser * Solution@coarser
32

33 Smoother ( )
34}

� �

Listing 4 ExaSlang 3 implementation of a V(3, 3)-cycle using an RBGS smoother

� �

1Layout DefLayout<Real, Node >@all {
2 duplicateLayers = [1, 1] with communication
3 ghostLayers = [1, 1] with communication
4}
5

6Field Solution< global, DefLayout, /* bc's */ >@finest
7Field Solution< global, DefLayout, 0.0 >@(all but finest)
8Field RHS < global, DefLayout, None >
9Field Residual< global, DefLayout, 0.0 >

10

11/* operators as on layers 2 and 3 */
12

13Function Smoother@all {
14 color with (i0 + i1) % 2 {
15 loop over Solution {
16 Solution += omega * diag_inv ( Laplace ) *
17 ( RHS - Laplace * Solution )
18 }
19 communicate Solution
20 }
21}
22

23/* VCycle functions */
24

25Function Application {
26 /* initialization */
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27

28 repeat 10 times {
29 VCycle@finest ( )
30 }
31

32 /* de-initialization */
33}

� �

Listing 5 ExaSlang 4 code of a full application with a fixed number of V-cycles to solve for
Poisson’s equation discretized with finite differences

3.3 The Target-Platform Description Language

To be able to optimize a code adequately, one must know details of the execution
platform. Our code generation process is governed by more than one hundred
parameters that allow to select specific code refinements or to set device-specific
properties. Examples include the use of vector units on CPUs and the corresponding
instruction set to use, e.g., SSE or AVX on×86 CPUs, NEON on ARM-based CPUs
or even QPX for IBM’s POWER architecture. This yields a design space that is too
large for users to be able to specify a (near-)optimal configuration of code generation
settings. However, we may be able to derive sensible parameters from a structured
description of the target platform. To this end, one element of ExaSlang is the so-
called target platform description language (TPDL) [75]. One design goal was to
increase the modularity and reusability of hardware component descriptions, such
as CPUs or accelerators, to let users compose systems based on a repository of
ready-made parametric snippets. By treating these in a fashion similar to the class
concept in object-oriented programming languages, users can infer instantiations
with parameters set appropriately. A short example describing an accelerator card is
provided in Listing 6. It enumerates a number of technical hardware details, but also
contains the important software information on the compute capability, i.e., which
features of the target technology CUDA may be used.
� �

1<gpu name="Tesla_V100" role="worker">
2 <param name="compute_capability" value="7.0" />
3 <param name="api" value="cuda" />
4 <memory size="16" unit="GigaByte" Type="HBM2">
5 <param name="bandwidth" value="900" unit="GigaBps"/>
6 </memory>
7 <core quantity="5120" frequency="1246"
8 frequency_unit="MegaHz" />
9</gpu>

� �

Listing 6 ExaSlang description of an accelerator card
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� �

1val workers = predefinedQuery(tpdlTree, GetWorkingUnits)
2val workers50 = workers.filter(w => w.power > Watt(50))
3workers50.foreach(System.out.println(_))

� �

Listing 7 Query to enumerate working units consuming more than 50 W of power

A small, yet flexible library supports information retrieval from a TPDL specifi-
cation. This enables DSL developers to check for certain information and aggregate
or evaluate characteristics of the target platform. Developers need not worry about
the instantiations and their parameters but may just use the discrete specification,
since all the processing required has already been done. For many recurring tasks,
predefined queries are available. Listing 7 shows a predefined query to return all
working units in a system. Its result is filtered to retain only working units that
consume more than 50 W of electrical power.

4 The ExaSlang Code Generator

4.1 Refinement of ExaSlang Programs

The overall goal of ExaStencils has been to enable users to choose the layer
most appropriate for them and code exclusively at this layer, e.g., by providing a
continuous formulation of the problem to be solved at layer 1 and nothing more.
Ideally, our framework would then automatically derive suitable discretizations
(layer 2), solver components (layer 3) and parallelism particulars (layer 4). However,
in practice, this requires domain knowledge whose automatic inference is beyond the
capabilities of present software technology. We address this issue by introducing
hint specifications which allow us to progress automatically to subsequent layers of
ExaSlang. For example, at layer 1, discretization hints may be supplied. As Listing 8
shows, continuous functions are discretized at certain points of a computational grid,
such as node positions. We also support the specification of operator discretization
using finite differences. An optional renaming is also possible at this stage.
� �

1DiscretizationHints {
2 u => Solution on Node
3 op => Laplace with "FiniteDifferences" on � order 2
4 uEq
5}

� �

Listing 8 A discretization hint block for a scalar equation in ExaSlang 1

Then, we combine the equation provided at layer 1 and the discretization hints to
synthesize a discretized form of the equation at layer 2. While layer 2 expresses the
problem to be solved, its solution is specified at layer 3. This can be achieved either
by implementing a suitable iterative solver by hand or by issuing a directive for our
generate solver interface. Listing 9 illustrates such a directive.
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� �

1generate solver for Solution in SolEq with {
2 solver_smoother_numPre = 3
3 solver_smoother_numPost = 3
4 solver_smoother_coloring = "red-black"
5 solver_cgs = "ConjugateGradient"
6}

� �

Listing 9 A generate solver statement in ExaSlang 3

For cases in which no further modification is required, matching solver hints may be
provided at the upper layers to set up the code in Listing 9 automatically, allowing
users to work exclusively at one layer. The generated solver is by default a geometric
multigrid variant. In the concrete case of Listing 9, our framework would generate
a standard V-cycle using three pre- and post-smoothing steps of a red-black Gauss-
Seidel (RBGS) and a conjugate gradient (CG) coarse-grid solver. Frequently, minor
adaptations of the generated solver are necessary. They can either be implemented
by taking the implementation generated at layer 3, adapting it and replacing the
original generate solver directive with the result. A more generic approach is to add
modifiers to the generate solver directive. They target usually a certain stage of the
multigrid solver, e.g., the restriction or the correction, at one or more levels of the
hierarchy. These stages can either be replaced completely with custom layer 3 code,
or arbitrary layer 3 statements may be added to be executed before or after the stage.
A more complex option exists for smoother stages, as illustrated in Listing 10 for
the case of a block smoother to be used when solving for the Stokes equations on a
staggered grid (see Sect. 5).
� �

1smootherStage {
2 loopBase p solveFor {
3 u@[0, 0] u@[1, 0]
4 v@[0, 0] v@[0, 1]
5 p
6 }
7}

� �

Listing 10 ExaSlang 3 code for a smoother stage for the 2D Stokes problem

After the algorithmic specification at layer 3 is completed, it must be transformed
to a program at layer 4. This requires, most importantly, the addition of data
layout information for fields, loops to compose kernels, and suitable communication
statements. Listings 11 and 12 illustrate the first half of an RBGS smoother.
� �

1Solution += ( diag_inv ( Laplace )
2 * ( RHS - Laplace * Solution )
3 ) where (i0 + i1) % 2 == 0

� �

Listing 11 ExaSlang 3 code for the first half of an RBGS smoother
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� �

1communicate Solution
2loop over Solution where ( i0 + i1 ) % 2 == 0 {
3 Solution += diag_inv ( Laplace ) * ( RHS - Laplace *

Solution )
4}

� �

Listing 12 ExaSlang 4 code for the first half of an RBGS smoother derived from its ExaSlang 3
counterpart in Listing 11

This description of features is by no means complete. More detail is available in
Sebastian Kuckuk’s dissertation [47].

We designed the language stack of ExaSlang to enable maximum flexibility for
users. They can either work at one level exclusively and make use of the hint system
to generate more concrete specifications automatically, or implement different parts
of their application at multiple levels, or mix both approaches.

4.2 Generation of Target Code

After the domain-specific program has been refined to a complete program spec-
ification (ExaSlang 4), the IR code is subjected to many non-algorithmic trans-
formations (recall Fig. 5 on page 416). Among others, parallelization techniques
are applied to the code (see Sect. 4.4), memory layouts are selected and applied
to variables (see Sect. 4.3), required code fragments are inserted, and finally the
program is written to disk as C++ files.

To express all these steps in a short syntax, we developed the code-transformation
framework Athariac [76]. It allows to modify the tree-based representation of a
program—called the abstract syntax tree (AST)—by using simple, yet powerful
rewrite rules. Essentially, we specify a pattern in the AST, such as the node that
represents a certain ExaSlang statement, and then define a structure with which
to replace it. Of course, we can also remove nodes by specifying an empty
replacement. A single rewrite rule is called a transformation, and a group of
transformations is called a strategy. In Listing 13, a simple strategy for code-
generation time evaluation of mathematical expressions is presented. First, the two
identifiers E and PI are replaced by their constant numerical values. Then, we look
for constant numerical values to be summed, e.g., 2.1 + 3.1415, and replace them
with the actual result of the addition. Note that the constant-folding transformation
must be applied multiple times for expressions involving multiple additions.
� �

1var s = new DefaultStrategy("simple strategy")
2s += new Transformation("resolve constants", {
3 case Identifier("PI") => RealConstant(3.1415)
4 case Identifier("E") => RealConstant(2.7183)
5})
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6s += new Transformation("constant folding", {
7 case Addition(a : RealConstant, b : RealConstant)
8 => RealConstant(a + b)
9})

10s.apply
� �

Listing 13 A strategy with two simple transformations

By chaining and conditional execution of strategies in a fixed order, ExaSlang
programs can be refined for specific program configurations. Depending on the
selected code-generation parameters and input-program size, between 200 and 300
transformations are required to generate C++ code. In Fig. 6, the trajectory of a
program from the intermediate representation to C++ output is depicted to illustrate
the basic approach that applies to every program. Most of the optimizations are
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Fig. 6 The transformation trajectory of an ExaSlang program from its IR to C++
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applied in this trajectory. Naturally, a concrete code-generation path may differ, as
users can skip certain optimizations, or transformations may not be applied because
the preconditions required are not satisfied. For example, it does not make sense to
generate code for heterogeneous target devices if none exist.

In Fig. 7, program sizes during the code-refinement process of the three-
dimensional optical flow application (see Sect. 5.3) are depicted for a selection
of different parallelization techniques. For all variants, we see different stages of
the process. First, information on the program is gathered and preparations are
done, i.e., setting array sizes and memory layouts. Next, minor code refinements are
applied, such as the replacement of stencil convolutions with their corresponding
computational rules. Then, depending on the parallelization technique, memory
layouts are imposed and loops are generated, respectively modified. The execution
times of Athariac’s code generator are usually on the same order of magnitude as an
invocation of the target C++ compiler, i.e., within a few seconds to minutes. More
detail on Athariac can be found in a recent issue of the Proceedings of the IEEE [76]
and in Christian Schmitt’s dissertation [71].

4.3 Target-Specific Optimization

Stencil codes have a very simple structure but they are difficult to optimize since
the memory bandwidth usually acts as a performance brake. In project ExaStencils,
a diverse set of optimizations has been developed to overcome this. We describe a
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small selection briefly here. More detail on all implemented techniques, including
those not presented here, can be found in Stefan Kronawitter’s dissertation [43].

Data Layout Transformations Much effort of adapting stencil codes from one
application or execution platform to another goes into making the data layout
fit for best efficiency. One major limiting factor is usually the available memory
bandwidth. Examples of such adaptations are color splitting for multi-color kernels
or switching between an array of structs (AoS) and a struct of arrays (SoA).

ExaSlang admits flexible layout transformation directives for the specification
of arbitrary affine transformations that are then applied automatically by the code
generator [46]. Even though different variants of a color splitting or an SoA-to-
AoS transformation may be most commonly used, the ExaStencils code generator
is by no means restricted to them. Moreover, the only modification required to adapt
the memory layout of any field is the insertion of an affine function that specifies
the transformation. No other part of the application, including data initialization
and communication, must be modified to make the new layout generally available.
Explicit albeit very simple modifications to other parts are only necessary if they
are meant to use different data arrangements. In this case, additional fields must be
inserted for each layout and copy kernels are necessary.

This approach avoids unnecessary changes in the source code and constitutes a
big advance in the ease of testing and evaluating different memory layout schemes in
order to identify the best memory layout. There are other systems that offer similar
transformation devices but not in this generality.

Polyhedral Code Exploration Besides a layout modification, an affine transfor-
mation can lead to the most efficient implementation of a frequent structure in
stencil codes: the loop nest. A popular approach to selecting such transformations
automatically is the polyhedron model for loop optimization [22]. As for the data
layout, the search is also here for best data locality. However, established automatic
transformation techniques based on the PLuTo algorithm [6, 12, 13] fail to yield
optimal results.

Our first attempt to select better transformations was a specialized variant of the
PLuTo algorithm available in the ExaStencils code generator. While it is capable
of detecting very good schedules for some stencil codes, it can also encounter
problematic ones. For example, it fails completely for RBGS kernels. Thus, we
developed a new, optimized, multi-dimensional polyhedral search space exploration
for the ExaStencils code generator [44] that obtains in several cases better results
than existing approaches, such as different PLuTo variants or PolyMage [58]. It
also has the capability of specializing the search for the domain of stencil codes,
which reduces the exploration effort dramatically without significantly impairing
performance. An extreme but still beneficial approach is to choose the first schedule
selected by our specialized search without any further evaluation. This may not lead
to the best performance but it avoids the overhead of a complete exploration—and
the performance improvement is still satisfactory: in most experiments it was only
a few percentage points below the best variant explored.
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Vectorization A third optimization focuses on the vector units available in most
processor architectures that provide single-instruction-multiple-data (SIMD) paral-
lelism. Their use is typically mandatory for highest performance. However, each
architecture comes with its own vector instruction set. Intel×86 features Streaming
SIMD Extensions (SSE) or Advanced Vector Extensions (AVX) in several different
versions, IBM’s BlueGene/Q provides Quad Processing eXtension (QPX), and some
ARM processors implement the Neon instruction set. Even though all of these sets
target the same problem, their implementations differ not only in detail but also in
key aspects, such as the way in which data can be fetched from main memory.

As a remedy, contemporary compilers are equipped with rudimentary automatic
vectorization capabilities most of which are, unfortunately, not very effective. On
top, the more advanced compilers can exclude some popular architectures and be
costly or not widely available. Since the ExaStencils code generator comes with
its own vectorization phase [43, 76], it avoids any dependence on a special target
compiler. Currently, it supports Intel SSE3, AVX, and AVX2, as well as IBM’s QPX
and ARM Neon.

4.4 Parallelization

To parallelize ExaSlang applications automatically, mainly two concepts must be
implemented [48]. First, data must be partitioned and distributed across the available
compute resources and, second, data between the partitions must be synchronized
periodically. We realize the former by splitting our computational domain into
blocks which are further subdivided into fragments. Each fragment holds a part of
the computational grid and all data associated with it. This hierarchical approach is
depicted in Fig. 8 and permits an efficient mapping to different execution platforms.
For instance, blocks can be mapped to MPI ranks while each fragment inside is
handled by a distinct OpenMP thread. Mapping single fragments to accelerators is
also possible, as explained later on. The synchronization of data can be controlled
by users at layer 4 via communicate directives. They specify the field to be
communicated and can additionally be parameterized to communicate only certain
parts, e.g., specific ghost layers. Each communicate directive triggers the generation

Block(s) (regular)
Fragments

Unit
Fragments

Leaf Elements
(Grid Points/Cells)

Fig. 8 Partitioning of the computational domain in ExaStencils [48]
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of a function that implements the corresponding behavior. This permits the reuse of
functions, which can become quite lengthy if the same communication is reissued
throughout an application. The function contains code specifying an MPI exchange
for fragments residing in different blocks and simple copy kernels for fragments
inside the same block. For the interblock case, this includes copying the required
data to buffers, calling the appropriate MPI functions, waiting for their completion
and copying back data received. The communication buffers required are set up
automatically by our framework and, additionally, are shared between multiple
communication routines where possible. This minimizes the memory footprint as
well as the allocation and deallocation overhead.

Kernels updating data in one fragment can additionally be parallelized. This can
be done either with OpenMP or, if available, via an accelerator, e.g., a GPU or
reconfigurable hardware such as an FPGA.

Accelerators To accelerate computations with Nvidia GPUs, we require multiple
steps during code generation and developed a back-end to emit corresponding
CUDA2 code. First, fields must be extended to manage a CPU and a GPU version.
We also introduce flags that keep track of field data being changed on the host or
device side at this point. Next, compute kernels are transformed to their CUDA
counterparts and wrapped by an interface function passing variables and fields,
used inside the kernel, as parameters. Then we replace the original kernel with
a user-controlled condition branching to either the original CPU kernel or the
new GPU kernel. Both variants are extended to set the flags previously described
after execution. The same flags can also be used to control the use of added copy
operations between host and device. This ensures that data is always synchronized
correctly while the overhead is minimized.

As an alternative to CUDA, SYCL is a new technology for the inclusion of
the OpenCL ecosystem into the world of C++. It strives to combine the strengths
of both worlds, e.g., by allowing to use custom data structures and templates
inside computational kernels, or by providing an implementation of the parallel
C++ Standard Template Library that can be executed not only on multicore CPUs,
but also on accelerators. Furthermore, it aims at a reduction of OpenCL boiler-
plate code by enabling the direct issuance of parallel_for statements instead of
forcing the user to declare kernels, map their arguments, etc. Additionally, it detects
automatically and initiates memory transfers between host and device.

We had to specialize our code generation workflow slightly to address the
characteristics of SYCL. While, in ExaSlang, the dimensionality of a kernel can
be arbitrarily large, SYCL only supports up to three-dimensional kernels, i.e., 3D
iteration domains. Because of this, we implemented a custom mapping to linearize
a kernel with more than three dimensions to a single dimension while maintaining
correct indexing. Furthermore, SYCL has currently no built-in support for reduction
operators, such as the sum of all data items. Since multigrid methods depend on

2CUDA is a proprietary application programming interface and de-facto standard for Nvidia GPUs.
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reduction operators for the computation of norms used to approximate the reduction
of the residual, we implemented our own reduction operator and used a template
function that is called in the corresponding places. Our approach uses standard
parallelization techniques that should perform well on CPUs and GPUs.

SYCL separates work items into work groups in the same sense in which these
concepts are used by CUDA and OpenCL. While this concept is not paramount, our
code generator can optionally specify the granularity of work groups and modify
data accesses inside the computational kernels correspondingly.

SYCL is merely a specification, as of yet without a complete and optimized
implementation. We verified our SYCL back-end with the commercial product
ComputeCpp by Codeplay and also with the experimental open-source implemen-
tation triSYCL3 [33]. Although SYCL still needs to mature, it has great potential as
a unified middleware for a multitude of devices: in addition to targeting CPUs and
GPUs, the two major vendors of reconfigurable hardware, Xilinx and Intel/Altera,
are actively working to accept SYCL code. This will allow us to extend the pool
of ExaSlang-supported hardware targets without having to develop a separate code-
generator back-end, such as the one presented in the next paragraph.

Reconfigurable Hardware A particularly interesting target platform for scientific
computing is reconfigurable hardware, such as in field-programmable gate arrays
(FPGAs). They are increasingly used in high-performance computing because of
their high throughput and energy efficiency. We started with extending an existing
code generator for imaging processing to produce a description of a simple V-cycle
for further processing using C/C++-based high-level synthesis via Vivado HLS for
Xilinx FPGAs [69, 70]. This laid the base for a custom Vivado HLS back-end in
our code generator, resulting in the ability to emit algorithm descriptions for Vivado
HLS stemming from user input in ExaSlang [73]. To test the capabilities of the HLS
back-end, we considered a starting grid of size 4096×4096 and used a V(2,2)-cycle.
For the coarse-grid solution at a size of 32× 32, a corresponding number of Jacobi
smoother iterations was applied. The biggest difference to the execution on a CPU
or GPU is that all multigrid operators were laid out spatially on the FPGA chip.
Another essential consideration in mapping algorithms to reconfigurable hardware
is the handling of memory and data transfers. FPGAs provide only very scarce
amounts of on-chip memory, called block RAM, that can be accessed with full
speed. This implies that data needs to be stored off-chip, e.g., in RAM that can be
found on the FPGA board or even in the host computer’s memory. As a consequence,
these transfers need to be supported by the hardware with corresponding buffers,
which are mapped to first-in-first-out (FIFO) hardware buffers. In an FPGA, FIFO
buffers can be either composed of registers or implemented by on-chip block RAM.

Another important concern of designing reconfigurable hardware descriptions is
the usage of computational resources on the chip. For our initial experiments, we
used single-precision floating-point data types and were able to fit the complete

3https://github.com/triSYCL/triSYCL.

https://github.com/triSYCL/triSYCL
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design on a mid-range Kintex 7 FPGA. On this chip, our design was able to
outperform an Intel i7-3770 in terms of throughput by a factor of approximately
3. Switching from single to double precision does not change any performance
aspects but merely requires more chip resources. As a result, we had to switch to the
larger Virtex 7 FPGA to house the design but were able to retain the performance
advantage.

Based on these results, we worked on incorporating a more relevant coarse-
grid solution algorithm into our hardware designs. By a clever arrangement of the
required memory buffers and transfers, we were able to implement a conjugate-
gradient solver and map it to the Virtex 7 using double-precision floating-point
numbers [77]. This algorithm is usually not well-suited for FPGAs because of its
random memory-access patterns that break the preferable pipelining model. As a
consequence, data needs to be stored on-chip in block RAM to retain performance.
However, this takes away resources required by other multigrid components, e.g.,
smoothers and inter-grid operators. We conducted several experiments and were
able to outperform an Intel Xeon E5-1620 v3 in many cases [77]. As an opti-
mization, we overlapped successive V-cycles, i.e., we were able to reuse multigrid
operators on the FPGA when they were no longer required by the previous V-cycle
iteration provided the data dependences were respected. Theoretically, this should
nearly double the throughput, which was confirmed in our numerical experiments.

4.5 Compositional Optimization

The ExaStencils framework enables the automatic generation of geometric multigrid
solvers from a high-level representation either by using the generate solver interface
or by means of a direct specification of its algorithmic components at layer 3. How-
ever, in many cases, the construction of an efficient and scalable multigrid method is
a difficult task requiring extensive knowledge in numerical mathematics. Therefore,
it is typically performed manually by a domain expert. Part of ExaStencils’ vision is
to automate all steps from the specification of a problem in the continuous domain
(layer 1) to the generation of an efficient implementation on the target platform. To
achieve this goal, we construct geometric multigrid methods for solving systems
of linear equations as program optimization tasks. We have developed a context-
free grammar for the automatic construction of solver instances from a given
set of algorithmic options, whose production rules are shown in Fig. 9 for the
case of pointwise smoothers. Each rule defines the list of expressions by which
a certain production symbol, denoted 〈•〉, can be replaced. To generate a multigrid
expression, starting with the symbol 〈S〉, this process is repeated recursively until the
produced expression contains only terminal symbols or the empty string λ. A more
detailed description, including the semantics of the expressions generated following
this grammar, can be found elsewhere [78].

The effectiveness of an iterative method is determined by two objectives: its rate
of convergence and its compute performance on the target platform. To estimate
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Fig. 9 A formal grammar for the generation of multigrid solvers

both objectives for a given multigrid solver expression in reasonable time, we
employ automated local Fourier analysis (LFA), as described in Sect. 2.2, for the
first and a roofline performance model [89] for the second objective. Our goal is
to obtain the set of Pareto-optimal solvers with respect to both objectives. A direct
enumeration and evaluation of all possible configurations leads to an exponential
operation increase with the number of multigrid levels. Thus, a brute-force search
is infeasible in most cases. As a remedy, we employ evolutionary computation,
a family of stochastic optimization methods stemming from the field of artificial
intelligence and inspired by the principle of biological evolution. These methods
evolve a population of candidate solutions, which are iteratively improved through
the use of so-called genetic operators. The operators are specifically designed for
the given problem representation, in our case the set of expressions that can be
generated according to the grammar described in Fig. 9. After the optimization
is completed, we transform the expression of each Pareto-optimal solver to an
algorithmic representation which is emitted in the form of ExaSlang 3 code that can
then serve to evaluate the solver’s rate of convergence and compute performance on
the target hardware. As a first step, we have implemented our optimization approach
in Python,4 using the libraries LFA Lab [65] and DEAP [23]. We point the interested
reader to preliminary results of the optimization of multigrid solvers for the steady-
state heat equation on a multi-core CPU [78].

In the future, we intend to integrate this implementation into the generate solver
interface for the automatic construction of efficient and scalable geometric multigrid
solvers based on a given specification.

4https://github.com/jonas-schmitt/evostencils.

https://github.com/jonas-schmitt/evostencils
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4.6 Feature-Based Domain-Specific Optimization

One new concept that ExaStencils introduced into high-performance computing is
that of feature-based domain-specific optimization [5]. The central idea is to look at
a source program (e.g., a stencil code or application) not as an isolated individual
but as a member of a program family or software product line and to specify it by its
commonalities and variabilities with respect to the other family members in terms
of features. A feature represents a domain concept (e.g., a type of smoother or grid)
that may be selected and combined with others on demand. With this approach, a
wide search space of configuration choices can be reviewed automatically at the
level of domain concepts and the most performant choices for the application and
execution platform at hand can be identified.

Features and configuration options can have a significant influence on the
performance of the generated code. The influences of some might already be
known to the developer of the system, but other influences may be opaque and
likewise may be influences that arise from interactions among features, called
feature interactions. Also, the influences that one may expect based on theory and
domain knowledge may not match the actual influences in the program, which often
depend on implementation details.

Ideally, a developer or user knows the optimal choices for all features. The goal
must then be to exploit domain knowledge to identify the most performant con-
figuration. But since, as just explained, domain knowledge is unevenly developed
and remains often incomplete, ExaStencils resorts to machine learning to derive a
feature-specific performance model [80] that provides a comprehensible description
of the effects of features and feature interactions on performance. The machine-
learning techniques employ a set of configurations, the learning set or sample set,
as input to learn from.

To this end, we have developed a framework of configuration sampling and
machine learning approaches [36, 39, 59, 80] that allow us to derive a performance
model of a given code that is parameterized in terms of its features. This way, we
can express performance behavior in terms of concepts of the domain and determine
automatically optimal configurations that are tailored to the problem at hand, which
we have demonstrated in the domain of stencil codes [29, 30, 32] and beyond (e.g.,
databases, video encoders, compilers, and compression tools) [36, 39, 80]. Our
framework integrates well with the other parts of ExaStencils that use and gather
domain and configuration knowledge in different phases. It is similar in spirit to
the performance modeling tool Extra-P, developed in the SPPEXA projects Catwalk
und ExtraPeak [14], though we concentrate on flexibility in choosing and combining
different sampling and learning techniques.

To demonstrate the usefulness of the machine-learning approach, we performed
experiments on a large number of configurable software systems from different
domains, among them different multigrid solvers including an implementation in
ExaSlang [29, 30, 32]. To settle on a suitable learning set, we analyze the influence
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of different sampling strategies on the accuracy of the performance-influence
models [80].

Performance-influence models are not only meant to determine optimal configu-
ration but also to validate and refine domain knowledge. We must be sure that the
observed influences on the performance of the system match with our postulated
knowledge, otherwise the system or the knowledge base must be revised. In a case
study of a multigrid system working on triangular meshes, albeit not written in
ExaSlang, we were able to validate the domain knowledge of the developers of the
system [32].

For complex systems, learning a performance-influence model that captures
accurately the performance behavior of all individual configurations is often time-
consuming and the resulting models can become very large (i.e., many terms
describing only a small influence on the performance). However, it is not always
necessary to learn such a complex model; it might be beneficial to learn faster a
simpler model that is less accurate but accurate enough for a given use-case [39].
In a set of experiments, we have demonstrated the tradeoff between accuracy,
complexity, and time to learn a performance-influence model and shown that even
simple models can predict all configurations with high accuracy. Depending on the
use case of the performance-influence model, it can be of greater value to get quickly
a rough impression of the most relevant influences of configuration options rather
than waiting for a long time for a more detailed but also more complex model.

5 Case Studies

An essential ingredient of ExaStencils was a collection of case studies to test
our approach for performance, target performance, and versatility. The more
illustrative ones are sketched in this section. Section 5.1 deals with scalar elliptic
PDEs, Sect. 5.2 with image processing applications and Sect. 5.3 with aspects of
computational fluid dynamics. Section 5.4 details how generated solvers can be
coupled with existing code, in our case molecular dynamics simulations. Finally,
Sect. 5.5 goes beyond code generation and discusses a design decision study of
porous media applications.

5.1 Scalar Elliptic Partial Differential Equations

A prominent and well-researched PDEs example that describes the steady state of
the distribution of a physical quantity u : Rd → R, such as heat in a solid medium,
is

−∇ · (a∇u) = f in � ,

u = g on ∂�
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for a given domain� of dimensionality d , suitable boundary conditions, right-hand
side f : Rd → R and a thermal conductivity a : Rd → R of the material to be
simulated. Assuming a finite-difference discretization on a uniform grid, it can be
observed that a constant a leads to a stencil with constant coefficients, whereas a
variable a leads to one with variable coefficients. In the latter case, we always store
all stencil coefficients, rather than values of a, unless specified otherwise. Lastly, if
a is 1, the equation simplifies to the Poisson equation introduced in Sect. 3.2, which
is given by −∇2u = −�u = f .

In previous publications [43, 46, 48, 72], we demonstrated our ability to generate
highly optimized and massively parallel geometric multigrid solvers for this model
problem. For example, we achieve weak scalability up to the full JUQUEEN
supercomputer, i.e., using up to 458,752 cores across 28,867 nodes, for moderately
sized problems of 1–16 million unknowns per core. This is a good result considering
that the ratio of data to be communicated, e.g., via MPI, is quite high compared to
the required amount of computation. Figure 10 summarizes the obtained time to
solution for up to 7.3 · 1012 unknowns using a hybrid MPI/OpenMP parallelization
for which one V(3, 3)-cycle takes about 3.6 s. A similar scaling behavior can also be
observed in a scaling experiment on Piz Daint (see Fig. 11). With a largest problem
of 7.3 · 1012 unknowns solved, the ExaStencils software reaches for the Poisson
equation a size comparable to the finite-element approach [27] developed in the
TerraNeo project [8], where the solution of a stabilized tetrahedral linear finite-
element discretization of a Stokes system is demonstrated with 1.7 ·1013 unknowns.
This is based on a Uzawa-type smoother [20] for the Stokes system. A first direct
comparison has been made recently [41].

In a further single-node case study, we compared ExaStencils against the High-
Performance Geometric Multigrid (HPGMG) benchmark [2]. Here, on one core of
an Intel Xeon E5-2630 v2, the vectorized code generated by Athariac (see Sects. 4.2
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Fig. 10 Weak scaling for generated multigrid solvers using V(3, 3)-cycles to solve for Poisson’s
equation in 3D on JUQUEEN [47, 48]. The largest problem solved consists of 7.3 ·1012 unknowns
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In all cases, the number of iterations required is nearly constant. Performance differences between
CPU and GPU reflect the hardware characteristics

and 4.3) was able to solve 14.6 times as many unknowns per second as HPGMG. A
closer inspection, using LIKWID [83], revealed that this performance gain is mainly
due to a higher MFLOPS rate and a much better memory bandwidth exploitation
of the solvers generated by ExaStencils. Further details, including also software
productivity metrics (e.g., lines of code and Halstead complexity measures), are
available elsewhere [76]. As an example, see also our case study on molecular
dynamics (Sect. 5.4).

5.2 Image Processing

Next, we consider applications in variational image processing. State-of-the-art
denoising algorithms based on total generalized variation have been implemented in
ExaSlang [26] using a preconditioned Douglas-Rachford iteration for the underlying
saddle-point problem. Results show a speedup of more than 4 compared to a
reference Matlab implementation on CPU. As an indication of the capability of
solving systems of PDEs as well, our most prominent imaging case study is the
implementation of optical flow solvers.

Computation of the optical flow refers to the approximation of the apparent
motion between two or more images which are part of an image sequence I . We
used this application to illustrate ExaSlang’s higher-dimensional data types [74].

Let us assume that I (x, y, t) refers to a specific pixel (x, y) in an image sequence
at time t , where t could refer to a certain frame in a video stream. Furthermore, we
assume that a moving object’s intensity does not change over time. Then, for small
movements (corresponding to small time differences between two images), we may
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describe the movement of an intensity value at a pixel (x, y, t) as follows:

I (x, y, t) = I (x + dx, y + dy, t + dt)

After performing a Taylor expansion and reordering factors, we can define the
partial image derivatives Ix = ∂I

∂x
, Iy = ∂I

∂y
and It = ∂I

∂t
. This leads to the temporal

gradient ∇θ I = (Ix, Iy, It )T and the optical flow vector (u, v) =
(
dx
dt
,
dy
dt

)
, which

can be transformed to the following system of PDEs to be solved:

−α�u+ Ix(Ixu+ Iyv) = −IxIt
−α�v + Iy(Ixu+ Iyv) = −IyIt

Here, α denotes the diffusion coefficient, which we set to 1 in this example.
Furthermore, we set the time gradient It also to 1 for simplification purposes. After
discretization, we obtain the following stencil:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(−α
−α

)

(−α
−α

) (
4α + I 2

x IxIy

IxIy 4α + I 2
y

) (−α
−α

)

(−α
−α

)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

This stencil can be directly mapped to Exaslang and used in a smoother kernel, as
illustrated in Listing 14.

All corresponding variables, such as the unknowns u and v, are represented in
ExaSlang as vectors of corresponding dimensionality. Thanks to our code generation
approach, we can easily conduct parameter studies. For example, we varied the
number of pre- and post-smoothing steps between 0 and 6 to study their influence
on the convergence rate (see Christian Schmitt’s dissertation [71] for details).
Furthermore, we switched vectorization for Intel’s AVX2 instruction set on and
off. For our measurements, we used a single compute node equipped with an Intel
i7-6700 CPU. We varied the number of threads between one (1T) and eight (8T)
and used LIKWID [83] for our measurements, which is a supported back-end for
ExaSlang’s profiling capabilities.

A comparison of the energy consumption in relation to the application’s exe-
cution time is depicted in Fig. 12. Clearly, the application is limited by the
available memory bandwidth, as a speedup can be observed when going from one
to two threads, but additional usage of CPU cores does not improve the speedup
further. The use of AVX2 yields a small performance improvement compared to
the scalar variants and, consequently, results in lower energy consumption. The V-
cycle configurations that performed best in this case study are the V(4,2)-cycle, the
V(3,3)-cycle, and the V(2,4)-cycle.
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� �

1loop over fragments {
2loop over Flow@current {
3 Flow[next]@current = Flow[active]@current + (
4 ( inverse ( diag ( SmootherStencil@current ) ) ) *
5 ( RHS@current -
6 SmootherStencil@current * Flow[active]@current )
7 )
8}}
9advance Flow@current

� �

Listing 14 Jacobi smoother definition using slots for the flow field
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Fig. 12 Parameter study of different parallelization approaches and V-cycle configurations for the
two-dimensional optical flow application

5.3 Computational Fluid Dynamics

Our next area of application is computational fluid dynamics (CFD), where we
considered the solution of Stokes and Navier-Stokes equations [47, 50].

Let us turn first to the Stokes equations as introduced in Sect. 2.3. We dis-
cretized the given linear system of PDEs using finite differences and volumes on
staggered grids. Additionally, more advanced multigrid components are required.
This includes overlapping block smoothers that may additionally be colored. In
ExaSlang, both can be expressed concisely and intuitively, as demonstrated in
Sect. 4.1. Choosing a suitable coarse-grid solver is also a highly efficient process in
our framework as it can be configured via our generate solver directive. Currently,
we support conjugate gradient (CG), conjugate residual (CR), biconjugate gradient
stabilized (BiCGSTAB) and minimal residual (MINRES), all with optional restart
mechanisms, as well as simply applying the smoother. Of course, implementing
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one’s own solver at layer 3 or layer 4 is still possible. We found that, in the collection
of variants above, a BiCGSTAB with an added restart mechanism works reasonably
well for the present test case [47].

Extending this work towards the full Navier-Stokes equations is the next step.
For incompressible fluids, they can be given as

∂u

∂t
+ (u · ∇)u− ν∇2u+ 1

ρ
∇p = fu

∇ · u = 0,

on a given domain�, which is square in 2D and cubic in 3D, with suitable boundary
conditions and with u, p and fu as before, ρ as the density and ν as the kinematic
viscosity given by the ratio of the dynamic viscosity μ and ρ. The switch from
Stokes to Navier-Stokes raises two challenges. First, since the equations become
time-dependent, a suitable time integration is required. We choose a traditional
implicit Euler, which can be implemented easily at layer 3 or layer 4. For each time
step, one can then call either a generated solver variant or a custom implementation.
Second, the employed solver has to be able to deal with non-linear equations. To this
end, we allow expressing suitable linearizations, such as those based on Newton’s
method and Picard iterations [21, 47], at layer 2. The linearization chosen can be
applied either locally or globally, and both variants can be expressed in tandem
with the discretization approach at layer 2. Then, non-linear multigrid solvers based
on the full approximation scheme can be tailored at layer 3 automatically. Scaling
tests on the JUWELS supercomputer exhibit good strong scalability for 2.7 · 108

unknowns and good weak scalability on up to 24,576 cores, the largest amount
available to us at the time of the experiment [47]. The results are summarized in
Figs. 13 and 14.

This approach can also be extended to the scope of our most sophisticated
application, namely the simulation of non-Newtonian and non-isothermal fluids.
Originally, we ported a legacy FORTRAN code to ExaSlang 4 [50] resulting not
only in a considerable reduction in code complexity and size of about one order of
magnitude, but also in a reasonable gain in performance of also about one order
of magnitude on average [50]. One prerequisite is the support of staggered non-
uniform grids by our code generation framework and DSL, which we extended
accordingly. After implementing fully parallel grid setup routines, we are now also
able to generate applications executable on GPUs and cluster architectures from
the same ExaSlang code. This application also serves as a motivation to extend
our generator to apply domain-specific optimizations, such as our sophisticated
loop-carried common subexpression elimination [45], which are able to improve
performance even further. Finally, using the previously described layer 2 and layer 3
capabilities allows for even more expressive and concise specifications, which have
moreover a greater ability to reflect concepts familiar to domain scientists.

Lastly, we should mention that we invested some time to explore alternative
approaches, such as the Lattice-Boltzmann method, which can also be implemented
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Fig. 13 Weak scaling of generated multigrid solvers for the Navier-Stokes equations in 2D and
3D on JUWELS [47]
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Fig. 14 Strong scaling of generated multigrid solvers for the Navier-Stokes equations in 2D and
3D on JUWELS [47]

in our DSL [64]. An early evaluation showed that applications generated with the
ExaStencils framework are about a factor of 2 slower compared to the state-of-the-
art multiphysics framework waLBerla.5

5www.walberla.net.

www.walberla.net
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5.4 Molecular Dynamics Simulation

To illustrate the versatility of the ExaStencils approach, we demonstrated that the
ExaStencils compiler could be used to generate a multigrid solver that integrates
into a large, existing simulation code. For this purpose, we considered a molecular
dynamics simulation code used in practice [67, 68], a simulation that computes the
motion of the electrons and nuclei of molecules or groups of molecules.

The simulation is a so-called real-space density functional theory (RSDFT)
simulation. A simulation in real space computes the wave functions on a discretized
Cartesian grid, which avoids costly computations of the fast Fourier transform
(FFT) that methods which work in Fourier space have to perform. The simulation
computes the motion of the particles using the Kohn-Sham density functional
theory, which is implemented using a Car-Parrinello molecular dynamics scheme.

The RSDFT simulation requires the computation of the electron-electron
Coulomb interaction potential of the charge density. This potential is computed
efficiently by solving the corresponding Poisson equation using a multigrid method.
The RSDFT code contains a manually derived multigrid solver, which we wanted
to replace by a solver generated by the ExaStencils compiler.

However, integrating a solver into an existing code base requires some additional
steps above the ones necessary to generate a stand-alone solver. The RSDFT code
has its own set of grid data structures for storage of the wave functions. To obtain
optimal performance, the ExaStencils compiler generates a set of internal data
structures that are the most suitable for the computation (see Sect. 4.3). These data
structures are usually not compatible with the ones an application code uses. While it
would be possible to force the compiler to use the RSDFT data structures, it would
deprive the compiler of some of its optimization opportunities. As a workaround,
we used the compiler to generate a set of data transfer routines that copy the grid
functions from the RSDFT data structures to the internal ones and vice versa.

In Table 1, we compare the performance of the automatically generated multigrid
solver and the legacy solver that was manually written in C. Note that both solvers
implement different coarse-grid solution strategies. Thus, the overall timings are
not directly comparable, because the number of iterations change between the
implementations. However, the time per iteration is indicative for the quality of
the code of the generated solver, and we see that it is comparable to the time per
iteration of the legacy code. The generated code is often slightly faster.

We can conclude that the ExaStencils approach is also feasible in situations that
involve an already existing codebase.

5.5 Porous Media

A further study, in cooperation with SPPEXA project EXA-DUNE [7], concerned
the design decision made for stencil codes in the domain of porous media [31].
The goal of this study was to help application engineers understand the complexity
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Table 1 Timings of the solution of the Poisson equation discretized on a grid of n points on
JURECA [42] using the legacy solver and an automatically generated multigrid solver

Legacy ExaStencils

Cores Iterations Time Time/iteration Iterations Time Time/iteration

n = 1273

1 6 0.87 s 1.4× 10−1 s 6 0.76 s 1.3 × 10−1 s

2 6 0.51 s 8.5× 10−2 s 6 0.39 s 6.4 × 10−2 s

4 6 0.31 s 5.1× 10−2 s 6 0.27 s 4.5 × 10−2 s

8 6 0.27 s 4.4× 10−2 s 6 0.13 s 2.1 × 10−2 s

n = 2553

1 28 32.3 s 1.15 s 6 6.00 s 1.00 s

2 28 17.2 s 0.61 s 6 3.01 s 0.50 s

4 28 9.70 s 0.35 s 6 1.67 s 0.28 s

8 28 5.72 s 0.20 s 6 1.01 s 0.17 s

16 28 3.86 s 0.14 s 6 0.84 s 0.14 s

24 28 2.94 s 0.10 s 6 0.44 s 7.3 × 10−2 s

of stencil computations and the relation between the mathematical model of an
application and the stencil used to solve the partial differential equation underlying
the application. To model these design decisions, we use feature orientation as
introduced in Sect. 4.6. An example of a design decision is the choice of the type of
boundary conditions that have to be satisfied by a given application. We differentiate
between decisions at the mathematical and the stencil level, and we devise one
feature model for each of these levels. Since decisions at the mathematical level
may affect decisions that can be made at the stencil level, we also include constraints
between these two levels.

To demonstrate the usefulness of feature modeling, we considered a set of
applications that deviate from the standard 5-point stencil used in many benchmarks.
We demonstrated that feature models can be used beyond simple mathematical
problems by considering problems of different complexity. Specifically, we started
with the simple heat equation and went on to more complex equations, such as the
advection-diffusion equation with operator splitting or Richard’s equation. For all
of these equations, we were able to express the design decisions at the mathematical
and the stencil level as well as their dependences. The result is a comprehensive
set of feature models that can be uses to formally reason about the variabilities in
stencil codes (e.g., to identify dependencies among configuration decisions).
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6 Variants of the ExaStencils Approach

6.1 ExaSlang 4 Embedded, Not External

In the second funding period, ExaStencils was part of an international collaboration
with Shigeru Chiba, co-funded by the Japan Science and Technology Agency (JST).
This project has already been reported to and reviewed by JST as part of the
Japanese strategic basic research programme CREST [17]. The summary is also
available at the author’s Web site.6

The project aimed at a software architecture for embedded domain-specific
languages. The cooperation of the DFG and JST in SPPEXA gave Chiba’s team
the opportunity to explore the applicability of its software architecture in the
context of ExaStencils. ExaSlang 4 is a stand-alone language that needs its own
compiler and development environments, such as an editor and a debugger, and
that has a relatively large development cost. The principle of embedding is an
approach to reduce the size and cost of the infrastructure needed. An embedded
DSL is implemented on top of a general-purpose host language as a library with
a programming interface that looks like a language. Since an embedded DSL is
a library, its development cost is usually smaller and programmers can reuse the
environments of the host language.

The result of the project was an embedded-DSL architecture based on run-time
metaprogramming. In this architecture, a part of the running program is reified at run
time; that is, its abstract syntax tree is dynamically extracted. Then it is translated to
efficient binary code to be run. For example, the host language could be Java, while
the program is translated to C/C++ and compiled to machine code. The idea is to
view the extracted code as a program not in the host language, but in the DSL with
a slightly different semantics. Hence, we can apply domain-specific optimization,
such as partial evaluation, during translation.

To evaluate this architecture, Chiba’s team developed two software systems.
One is Bytespresso [16], which they used to implement an embedded DSL that
mimics Exaslang 4. They were successful in developing the DSL with a similar
programming interface and then measured the execution performance. Although
the computational part alone experienced a loss by a factor of 3, the total execution
including compilation was twice as fast in the largest case measured: 12 grid levels,7

which is still small-scale. This demonstrates that, for small-scale problems, the
embedded version of Exaslang 4 is more suitable for interactive execution than the
external version.

6https://post-peta-crest.github.io/chiba/.
7Figures of the measurements can be found in the CREST report [17].

https://post-peta-crest.github.io/chiba/
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� �

1Fragments.loop_over do
2 Flow_u.current.loop_over do
3 Flow_u[:next].current = Flow_u[:active].current +
4 ((1.0 / diag(SmootherStencil_u.current)) *
5 (RHS_u.current - SmootherStencil_u.current *
6 Flow_u[:active].current))
7 end
8end

� �

Listing 15 Specification of an optical flow solver in Ruby-embedded ExaSlang 4

Chiba’s team also explored the expressive power of the architecture it proposed
in Yadriggy [15], a framework for embedding DSLs in Ruby. Compared to the
ExaSlang 4 implementation in Java using Bytespresso, exhibiting a source code
syntax far from the original, the Ruby-embedded version on Yadriggy features a
syntax much closer to the original. This is due to the flexible syntax of Ruby and
the development support by Yadriggy. For example, the code fragment depicted in
Listing 15 is ExaSlang 4 code taken from the optical flow case study (Sect. 5.2,
Listing 14) embedded in Ruby. This internal DSL code is not interpreted as Ruby
code and, hence, the language does not have to adhere to Ruby’s semantics.

6.2 A Multigrid Solver in SPIRAL

Forerunner and motivator for the vision of ExaStencils was the US project SPIRAL
[24, 61]. SPIRAL’s initial and foremost domain has been linear transformations.
Recently it went on to small-scale linear algebra [81]. ExaStencils’ domain is a
subdomain of multigrid computations. At project halftime, we put a very simple
case of multigrid on SPIRAL: a solver with a Richardson smoother for a discretized
square 2D Poisson equation with Dirichlet boundary conditions [11]. The central
step is to bring the smoother into an algebraic form of about a dozen rewrite
equations. It was an effort of a few days, but the present implementation of
SPIRAL does not support the broader domain of ExaStencils. For the generation of
efficient code, special adaptations are required as illustrated in the Bachelor thesis
of Sebastian Schweikl [79]. This is a consequence of the fact that SPIRAL’s target
domain has been signal processing and not the solution of PDEs. The applicability
of SPIRAL in its present form to our domain is very limited.
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7 The Legacy of ExaStencils

7.1 Effort

ExaStencils was not the only project in SPPEXA to address the solution of PDEs
via multigrid methods. However, it was the only one that took a revolutionary rather
than evolutionary software approach, i.e., that did not build on existing software
tools or application software but started afresh with the automatic, domain-specific
synthesis and optimization of application software via a set of dedicated domain-
aware software tools. The challenge was to identify the domain knowledge that is
useful in helping an optimization, to build the domain-aware tools and to generate
some target codes that demonstrate that this approach is realistic and promising.

A central ingredient of the approach is the stratification of the DSL ExaSlang into
four layers of abstraction, each addressing a different set of aspects of the stencil
code. The domain knowledge is twofold. Knowledge of the application problem is
provided by hints that enable the ExaSlang compiler to optimize at the next-more
concrete layer. These hints can be supplied as code annotations or conceptually by
other means, e.g., configuration files or GUIs, as is the case in the ExaSlang Level 1
editor documented in Tim Ammenhäuser’s Bachelor’s thesis [4]. Knowledge of the
execution platform is provided by a dedicated platform description language.

The main effort in the project concerned the design and implementation of the
ExaSlang compiler and code generator which had to be built from scratch, since
ExaSlang is an external DSL. This effort led to three dissertations of the six that
emerged from the project [43, 47, 71] and two habilitation theses [35, 40]. In a
sideline, a comparative study was made with an internal DSL mimicking the most
concrete layer of the external ExaSlang, which proved the approach doable but not
the first choice for exascale software.

Another major effort was to drive the development of performance prediction
further. On the software side, this will soon be realized by one cumulative dis-
sertation introducing the, also revolutionary, generation of performance prediction
models via machine learning in the setting of software product line engineering
[28]. On the mathematics side, a dissertation drove local Fourier analysis for the
convergence prediction of multigrid codes further [66]. Another dissertation in the
realm of multigrid math drove the technology of multigrid smoothers forward [19].

The final major element was the case studies conducted to illustrate the impact
of the ExaStencils approach.

7.2 Outreach

Let us sketch how ExaStencils profited from and nurtured other research projects.
There was a bilateral exchange of ideas and best practices with SPPEXA

project TerraNeo [8] that deals with multigrid solvers on block-structured grids



ExaStencils: Advanced Multigrid Solver Generation 445

for applications in geoscience. Both ExaStencils and TerraNeo have dealt in loose
collaboration with high-performance multigrid codes. One result was an evaluation
from the perspective of code generation technology [41]. A further systematic
comparison of the performance regarding the algorithms, data structures and
their implementation is left to the future. However, the generative programming
technologies of ExaStencils are already being leveraged for the redesign of the
TerraNeo code basis [38], where they help to simplify the software structure and
to reduce the coding effort.

In cooperation with SPPEXA project EXA-DUNE [7], we developed a semi-
automatic variability extraction approach that generates a family of applications
based on a given application [31]. An ExaStencils-generated application solves the
same problem as the EXA-DUNE application but uses sets of methods different
from the DUNE framework [9] with the goal of optimizing performance. For exam-
ple, applications might use different grid implementations or different finite-element
maps provided by the DUNE framework. The goal of this approach is to ease
the burden of having to understand the DUNE framework when adapting a given
application to new use cases and optimizing performance. In a first evaluation, the
approach was able to identify over 90% of the alternative but compatible methods a
developer of the framework has identified. Using this automated approach, we were
even able to identify a bug and an inconsistency in the DUNE framework.

A molecular dynamics simulation on the application platform RSDFT [67]
profited from the ExaStencils approach. The port of a development in ExaSlang
to RSDFT was successful.

Applied researchers in triangular meshes profited from the ExaStencils
approach of validating and refining domain knowledge via a performance-influence
model [32]. In simpler words, an automatic learning procedure confirmed their
design choices and their effects on performance and made them aware of others.

In a technically related BMBF-funded project, called HighPerMeshes, which
also aims at creating a DSL but for the scientific-computing domain of unstructured
meshes [37], the parallelization technology SYCL was evaluated [3]. This fueled our
interest in creating a SYCL back-end for our code generator which, in turn, provided
valuable insights into possible code generation strategies and optimizations for
project HighPerMeshes.

SPIRAL [24, 61] was ExaStencils’ main motivator and an orientation point for
positioning its contribution [11]. At present, SPIRAL is not as serious a platform
for multigrid solver development as ExaStencils and it would support the algebraic
rather than the geometric form of multigrid.

Similarly, HIPAcc [55, 57], a DSL embedded in C++ and a source-to-source
translator for image processing applications that can target a wide variety of
parallel accelerator architectures, inspired us on how to deal with both domain and
architecture knowledge. In turn, at the start of ExaStencils, we introduced language
constructs to HIPAcc to process and represent data at different resolutions, which
enables the specification of applications that work on image pyramids as well as 2D
stencil-based multigrid methods. By decoupling the algorithm from its schedule,
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HIPAcc allows the generation of efficient stencil-code implementations for single
accelerators [56].

A recent DFG-funded project on ocean modeling (grant. no 320126236) chal-
lenges the extensibility of ExaStencils’ application domain by considering time-
dependent hyperbolic partial differential equations, discretized using finite-volume
or higher-order discontinuous Galerkin methods on block-structured triangular
grids. Since, so far, an explicit time-stepping scheme is being applied, no solvers
like multigrid are required. However, it has been shown already that the ExaStencils
framework is capable of generating efficient and scalable code for such applications
on GPU clusters [49].

7.3 Potential

The ExaSlang compiler and code generator remain at the stage of a prototype, but
we believe that they have demonstrated that a stratified optimizing DSL approach
can provide dramatically increased convenience for the application programmer and
high flexibility concerning the execution platform. The effort of adapting a complex
code to a different application or platform can be reduced significantly. The price
to be paid is good knowledge of the theory on which the application rests and a
significant development cost in implementing the DSL. The latter can be reduced by
going the internal rather than the external way, at the price of reduced expressiveness
and flexibility in terms of target code optimization.

Our choice not to go with an embedded DSL tends to be not popular in present-
day DSL development but is essential. We did not want to be bound by any language
limitations in exploring the potential of the ExaStencils approach to domain-
specific programming and optimization. To achieve high portability and execution
performance of generated programs, we selected C/C++ as the target language.

Our case studies covered the range from textbook examples to realistic appli-
cations. The latter are represented by a simulation of non-Newtonian flow, fully
developed in the ExaSlang world, and a molecular dynamics simulation which used
an ExaStencils solver through an automatically generated compatibility interface.
We have demonstrated that we can reach the expected performance, achieve porta-
bility to most contemporary HPC platforms, and profit from a substantial decrease
of development time of new PDE models that can be expressed in ExaSlang.

Since the start of our project, code generation has become a standard technique
in many HPC codes and, thus, the concepts developed in ExaStencils are used or
can be adapted to other domains. Currently, a popular approach is the generation of
single compute kernels from an embedded DSL for existing software frameworks.
In addition, C++ template-based embedded DSLs are common. Frequently, both the
concrete DSL and the resulting implementations are very application-specific, but
the intermediate representations and code transforms can be defined quite generally
and then optimized for the specific case. In the future, it should be possible to
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extend the ExaStencils approach to other HPC applications to enable more holistic
optimizations than currently established approaches.
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ExtraPeak: Advanced Automatic
Performance Modeling for HPC
Applications

Alexandru Calotoiu, Marcin Copik, Torsten Hoefler, Marcus Ritter,
Sergei Shudler, and Felix Wolf

Abstract Performance models are powerful tools allowing developers to under-
stand the behavior of their applications, and empower them to address performance
issues already during the design or prototyping phase. Unfortunately, the difficulties
of creating such models manually and the effort involved render performance
modeling a topic limited to a relatively small community of experts. This article
summarizes the results of the two projects Catwalk, which aimed to create tools
that automate key activities of the performance modeling process, and ExtraPeak,
which built upon the results of Catwalk and worked toward making this powerful
methodology more flexible, streamlined and easy to use. The sew projects both
provide accessible tools and methods that bring performance modeling to a wider
audience of HPC application developers. Since its outcome represents the final state
of the two projects, we expand to a greater extent on the results of ExtraPeak.

1 Introduction

High-performance computing (HPC) is a key technology of the twenty-first century.
Numerous application examples, ranging from the improved understanding of
matter to the discovery of new materials and from the study of biological processes
to the analysis of social networks, give evidence of its tremendous potential. Mastery
of this technology will decide not only on the economic competitiveness of a society
but will ultimately influence everything that depends on it, including the society’s
welfare and stability. Moreover, there is broad consensus that high-performance
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computing is indispensable to address major global challenges of humankind such
as climate change and energy consumption. However, the demand for computing
power needed to solve problems of such enormous complexity is almost insatiable.
In their effort to answer this demand, supercomputer vendors work alongside
computing centers to find good compromises between technical requirements, tight
procurement and energy budgets, and market forces that dictate the prices of key
components. The results are sophisticated architectures that combine unprecedented
numbers of processor cores into a single coherent system, leveraging commodity
parts or at least their designs to lower the costs where in agreement with design
objectives.

Exploiting the full power of HPC systems has always been hard and is becoming
even harder as the complexity and size of systems and applications continues to
grow. On the other hand, already today the savings potential in terms of energy and
CPU hours that application optimization can achieve is enormous [5]. As the number
of available cores increases at tremendous speed, reaping this potential is becoming
an economic and scientific obligation. For example, an exascale system with a power
consumption of 20 MW (very optimistic estimate) and 5000 h of operation per year
would—assuming an energy price of 0.1e per kWh—produce an energy bill of
10 Me per year.

Ever-growing application complexity across all domains, including but not lim-
ited to theoretical physics, fluid dynamics, or climate research, requires a continuous
focus on performance to productively use the large-scale machines that are being
procured. However, designing such large applications is a complex task demanding
foresight since they require large time investments in development and verification
and are therefore meant to be used for decades. Thus, it is important that the
applications be efficient and potential bottlenecks are identified early in their design
as well as throughout their whole life cycle. Continuous performance analysis
starting in early stages of the development process is therefore an indispensable
prerequisite to ensure early and sustained productivity.

Tuning an application means finding the sweet spot in its combined design
and configuration space. Unfortunately, the sheer size of this space renders its
exhaustive traversal via performance experiments prohibitive. In the absence of
alternatives, many developers still rely on experiments, trying only a small and not
necessarily representative subset of the available design and configuration options.
Because of their limited view, they more than often overlook valuable optimization
opportunities or miss latent performance limitations whose underlying trend they
did not capture.

Performance models, in contrast, allow the design space to be explored much
faster and much more thoroughly. Although often based on simplifying assump-
tions, they offer tremendous insight at the small cost of evaluating a formula.
A model can be easily used to balance important trade-offs and adjust design
parameters such that close to optimal performance is achieved. Such models
allow problems in applications to be detected early on, long before they manifest
themselves in production runs, and their severity to be determined when the cost of
eliminating the problems is comparably small. If the problem is discovered later,
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dependencies between its source and the rest of the code that have grown over
time can make remediation much harder. However, finding performance models
is both hard and time consuming, which is why many developers shy away from
it. Sometimes such models are simply built on inaccurate back-of-the-envelope
calculations, rough estimates, simple and manual spreadsheet calculations, or even
only developer intuition, which may be misleading.

An analytical performance model expresses the performance of an application
in terms of a purely analytical expression [20, 27, 31]. A target metric m (e.g.,
execution time, energy, or number of floating-point operations) is represented as
a function m = f (x1, . . . , xn) of one or more parameters xi (e.g., the number
of cores or the size of the input problem). To make statements about application
performance that can be relied on under changing conditions, it is usually not
enough to focus on any single parameter in isolation. The effect that one varying
parameter has on performance must be considered in the context of the variation of
other relevant parameters, including algorithm options, tuning parameters such as
tiling, or characteristics of the input data set. However, often it is not obvious which
parameters are truly performance-relevant and should be included. In general, the
decision whether to include a certain parameter or not has to trade off different
criteria. Models with fewer parameters are easier to generate and maintain and
provide more high-level insight, whereas models with more parameters can be
more accurate because they consider more effects. Abstract application performance
models with a reasonably small number of parameters can be designed and
maintained by application developers while a system model can only be provided by
system experts. Simpler models can be used as an interface to application developers
and algorithm designers, while more complex models can be used for detailed tuning
and projections. The task of modeling the performance of an application is rather
complex and time-consuming though. This is why—in spite of its potential—it is
rarely used in practice. However, with the help of automatic tools that support the
creation of accurate performance models, this powerful methodology could spread
across a much wider audience of HPC application developers.

This article summarizes the results of the Catwalk and ExtraPeak projects,
which set out to improve this situation. The main goal of Catwalk, the first of
the two projects, was to make performance modeling more attractive for a broader
audience of HPC application developers by providing a method to create insightful
performance models as automatically as possible, in a simple and intuitive way.
Given the success of Catwalk, the follow-up project ExtraPeak aimed to improve
upon the basic performance modeling method by allowing the models to include
more than one parameter, while preserving the speed and accuracy of the original
model generation process. Since ExtraPeak represents the more advanced state of
our research and the outcome of Catwalk is already summarized elsewhere [47],
we take the liberty of expanding mostly on the achievements of ExtraPeak.
The two projects are part of a wider pioneering effort to construct performance
models automatically in multiple application areas also beyond HPC, ranging from
enterprise systems [7] to databases [15] and software product lines [40].
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2 Overview of Contributions

Although we focus on the contributions of ExtraPeak, we start by offering a short
overview of Catwalk and its achievements, given that the former builds upon the
results of the latter. Figure 1 summarizes the accomplishments of both projects and
their relationship to each other. Results from Catwalk are shown in hatched boxes
while results from ExtraPeak are shown in solid boxes.

2.1 Catwalk

The most important goal of Catwalk was to provide an automated method for
constructing performance models. The focus was on the discovery of scalability
bugs, achieved by creating models describing the performance of different parts
of a program when scaled to larger processor configurations and demonstrated
using several realistic applications, including Sweep3D, MILC, and HOMME [10].
The method is the foundation of the performance modeling tool Extra-P, a major
outcome of Catwalk, which has been released under an open-source license. Extra-
P enabled numerous application case studies to showcase the type of insights
this analysis can provide, including UG4 [44], an unstructured-grid package, as

Ba
se

m
et
ho

ds
Ad

va
nc

ed
m
et
ho

ds
Ca

se
stu

di
es

Automatic empirical modeling [11]

Multiparameter
modeling [9] Iterative refinement [34] Segmented modeling [22]

Requirements
modeling for

co-design [10]

Isoefficiency
modeling for

task-based
programs [39]

Scalability
validation
framework

[38, 37] Compiler driven
modeling [3]

Compilation and
modeling framework

[21]

BOTS, HOMME, Kripke,
LLL, LULESH, MILC, MPI,

OpenFoam, Relearn, sorting algorithms
[8, 9, 22, 34, 35, 37]

HOMME, JuSPIC, MAFIA,
Mantevo, MILC, MPI, MP2C,

NAS, NEST, OpenMP,
Sweep3D, UG4, XNS
[3, 11, 21, 23, 38, 44]

Fig. 1 Main contributions overview. Contributions in boxes with darker shades and solid fill
represent work completed in the ExtraPeak project, whereas contributions in boxes with lighter
shade and hatched fill represent contribution from the Catwalk project
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well as several state-of-the-art MPI [37] and OpenMP implementations [24]. In
Catwalk, we also worked on approaches leveraging the performance-modeling
base method to allow new research avenues to be explored. The results include a
scalability test framework that combines performance modeling with expectations
to systematically validate the scalability of libraries [37], a tool that automatically
instruments applications to generate performance models at runtime [4], and a fully
static method to derive numbers of loop iterations from loops with affine loop
guards and transfer functions that can be used to limit the performance model search
space [22].

2.2 ExtraPeak

In ExtraPeak, we improved the basic modeling approach and expanded it to allow
the analysis of multiple parameters simultaneously, automating the search space
generation for models and even handling discontinuities in the model space. A
continuous goal in the development of our methods was to ensure flexibility and
ease of use. Our main accomplishments can be divided into three categories: new
features for and improvements of the base method, advanced methods building upon
it to explore new ways of expressing and understanding performance, and finally
case studies leveraging Extra-P to gain insights into the performance of specific
applications.

Base Methods The extensions of the base method cover both multiple model
parameters and a refined model search for a single parameter:

• We extended the basic approach to allow insightful modeling of any combination
of application execution parameters while using heuristics to decrease the time to
find the best models quickly without compromising their quality [11].

• We developed an algorithm to detect segmentation in a sequence of performance
measurements and estimate the point where the behavior changes, allowing
complex irregular behaviors to be modeled [23].

• We designed a new model-generation algorithm by which the search space is built
and automatically refined on demand relieving the user from the burden of search
space selection [34].

Advanced Methods The flexibility of Extra-P together with the width of models
it can express and the insight they offer make it easy to tailor it to advanced tasks
related to the exploration of multi-dimensional performance spaces:

• Task-based programming offers an elegant way to express units of computation
and the dependencies among them, making it easier to distribute the computa-
tional load evenly across multiple cores. We introduced an automated empirical
method for finding the isoefficiency function of a task-based program, binding
efficiency, core count, and the input size in one analytical expression. The insights
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gained via these expressions can be used to co-design programs and shared
system resources [38].

• In the co-design process, a fundamental aspect of the application requirements are
the rates at which the demands for different resources grow as a code is scaled
to a larger machine. We showed how automated performance modeling can be
used to quickly predict application requirements for varying scales and problem
sizes [12].

Case Studies In ExtraPeak, we continued the series of case studies started in
Catwalk, in which we confirm prior expectations or discover the existence of
previously unknown scalability bottlenecks—often in collaboration with other
research teams. Many of them were conducted when we extended our base methods
or developed advanced methods and are described in the work cited above. In
addition, we conducted further case studies with the sole aim of better understanding
the performance of their application targets:

• We helped validate the complexity of Relearn, a code that simulates structural
plasticity in the brain. Inspired by hierarchical methods for solving n-body
problems in particle physics, Relearn uses a scalable approximation algorithm
with the complexity O(n · logn), which can simulate the structural plasticity of
up to 109 neurons—four orders of magnitude more than the naïve O(n2) version
previously available [35].

• We investigated two implementations of the LLL lattice basis reduction algorithm
in the popular NTL and fplll libraries, which helps to assess the security of
lattice-based cryptographic schemes, to validate their complexity in practical
usage scenarios. This task reverses the perspective of classic HPC applications.
In the field of cryptography, high algorithmic complexity is a desirable trait that
characterizes the hardness of breaking certain security protocols [9].

• We performed an analysis of parallel sorting algorithms and further MPI imple-
mentations using the framework for continuous scalability validation previously
developed during the Catwalk project [39].

In the remainder of the article, we further describe the extensions of the base
method as well as the advanced methods building upon it. Since this article focuses
on advances in automatic performance modeling, we cover only case studies
conducted alongside these developments, but do not include more details on the
remaining ones listed above. For those, we refer the reader to the cited literature. The
overview of our technological contributions is followed by a summary of ongoing
developments in our project, a review of related approaches, and eventually a brief
conclusion. However, because it is fundamental to everything we did in ExtraPeak,
we first provide a short introduction to Extra-P, the tool whose development was
started in Catwalk.
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3 Extra-P

The key result of Catwalk has been a method to identify scalability bugs. A
scalability bug is a part of the program whose scaling behavior is unintentionally
poor, that is, much worse than expected. As computing hardware moves towards
exascale, developers need early feedback on the scalability of their software design
so that they can adapt it to the requirements of larger problem and machine sizes.
In addition to searching for performance bugs, the models our tool produces also
support projections that can be helpful when applying for the compute time needed
to solve the next larger class of problems. For a detailed description, the reader may
refer to Calotoiu et al. [10].

The usual input of our tool when used as a scalability bug detector is a set
of performance measurements on different processor counts {p1, . . . , pmax} in
the form of parallel profiles. As a rule of thumb, we use five or six different
configurations. The output of our tool is a list of program regions, ranked by their
predicted execution time at a chosen target scale or by their asymptotic execution
time. We call these regions kernels because they define the code granularity at which
we generate our models.

Model Generation When generating performance models, we exploit the obser-
vation that they are usually composed of a finite number n of predefined terms,
involving powers and logarithms of p:

f (p) =
n∑

k=1

ck · pik · logjk2 (p). (1)

This representation is, of course, not exhaustive, but works in most practical
scenarios since it is a consequence of how most computer algorithms are designed.
We call it the performance model normal form (PMNF). Moreover, our experience
suggests that neither the sets I, J ⊂ Q from which the exponents ik and jk are
chosen nor the number of terms n have to be arbitrarily large or random to achieve
a good fit. Thus, instead of deriving the models through reasoning, we only need to
make reasonable choices for n, I , and J and then simply try all assignment options

one by one. For example, a default we often use is n = 3, I =
{

0
2 ,

1
2 ,

2
2 ,

3
2 ,

4
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5
2 ,

6
2

}
,

and J = {0, 1, 2}. A possible assignment of all ik and jk in a PMNF expression is
called a model hypothesis. Trying all hypotheses one by one means that for each
of them we find coefficients ck with optimal fit. Then we apply cross-validation to
select the hypothesis with the best fit across all candidates. As an alternative to the
number of processes p, our method can also support other model parameters such
as the size of the input problem or other algorithmic parameters—as long as we vary
only one parameter at a time.
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Our tool models only behaviors found in the training data. We provide direct
feedback information regarding the number of runs required to ensure statistical
significance of the modeling process itself, but there is no automatic way of
determining at what scale particular behaviors start manifesting themselves. This
version of our method is most effective for regular problems with repetitive
behavior, whereas irregular problems with strong and potentially non-deterministic
dynamic effects require enhancements which we detail in Sect. 4.2.

Open Source Release The Extra-P performance-modeling tool has been made
available online under an open-source license.1 Users have access not only to the
software but also to documentation material describing both our method and its
implementation.2 We have been actively supporting the use of Extra-P at several
organizations, among them the High Performance Computing Center Stuttgart, TU
Darmstadt, Lawrence Livermore National Laboratory, FZ Jülich, and the University
of Washington, just to name a few.

Figure 2 shows how the results of the model generator can be interactively
explored. The GUI annotates each call path with a performance model. The formula
represents a previously selected metric as a function of the number of processes,
and allows other parameters to be represented as well. The user can select one or
more call paths and plot their models on the right. In this way, the user can visually
compare the scalability of different application kernels.

The profiles needed as input for the model generator are created in a series of
performance experiments. To relieve the user from the burden of manually submit-
ting large numbers of jobs and collating their results, we use the Jülich Benchmark
Environment (JUBE) [26], a workflow manager developed at Forschungszentrum
Jülich.

The tool was presented at multiple tutorials at conferences such as EuroMPI and
Supercomputing, as well as at numerous VI-HPS and HKHLR tuning workshops.
Following a 90-min theoretical explanation of the method and the tool, users
were able to model the performance of two example applications, SWEEP3D and
BLAST, in a 90-min practical session. Using previously prepared measurement
data, they were able to generate models for the entire codes, evaluate the results,
and understand the scaling behavior of the two applications. With this knowledge,
attendees are able to apply Extra-P to their own applications, once the required
performance measurements have been gathered. Because Extra-P is compatible
with Score-P an established infrastructure for performance profiling, even collecting
these measurements is straightforward.

1http://www.scalasca.org/software/extra-p/download.html.
2http://www.scalasca.org/software/extra-p/documentation.html.

http://www.scalasca.org/software/extra-p/download.html
http://www.scalasca.org/software/extra-p/documentation.html
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4 Developments of the Base Methods

While the tool created during the Catwalk project is already widely used in the HPC
community and provides meaningful insights to developers seeking to understand
the performance of their codes, we have added significant new features during the
ExtraPeak project which we detail below, most important among them the ability to
model multiple parameters simultaneously.

4.1 Multi-Parameter Modeling

Common questions asked by developers when trying to understand the behavior of
applications are:

• How does application performance change when more processors are used?
• How does application performance change when the problem size is increased or

decreased?

When considering the pressure on applications to judiciously use computing
resources both questions must be answered, and a new vital question arises:

• Are the effects of processor variation and problem-size variation independent of
each other or can they amplify each other?

For example, a weak-scaling run of the kernel SweepSolver in Kripke [28], a
particle transport proxy application, has a runtime model for processor variation
of t (p) = O(p1/3) and a runtime model for varying the number of dimensions of
t (d) = O(d). The number of dimensions influences the problem size proportionally.
It now needs to be determined how these two factors play together. Depending on
their interaction, the application is scalable or not. For example, it would make a
huge difference whether the combined effect of processor variation and number of
dimensions was t (p, d) = O(p1/3 · d) or t (p, d) = O(p1/3 + d).

We expanded the original performance model normal form presented in Sect. 3
to include multiple parameters.

f (x1, . . . , xm) =
n∑

k=1

ck ·
m∏

l=1

x
ikl
l · logjk l2 (xl) (2)

This expanded normal form allows a number m of parameters to be combined in
each of the n terms that are summed up to form the model. Each term allows each
parameter xl to be represented through a combination of monomials and logarithms.
The sets I, J ⊂ Q from which the exponents ikl and jkl , respectively, are chosen
can be defined as in the one-parameter case.

Of course, if multiple parameters are considered, performance experiments have
to be conducted for all combinations of parameter values and the total number of
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experiments that is required grows accordingly. While this might be manageable
if the number of parameters considered is small enough and/or the cost of an
individual experiment is very small, another and more serious problem emerges
even for two and three parameters, namely the combinatorial explosion of the model
search space.

Therefore, multi-parameter modeling was outside the reach of automatic meth-
ods due to the exponential growth of the model search space. We developed a new
technique to traverse the search space rapidly and generate insightful performance
models that enable a wide range of uses from performance predictions for balanced
machine design to performance tuning. The details can be found in the work of
Calotoiu et al. [11], but we present the most important heuristics here, together with
a summary of the evaluation.

Hierarchical Search The idea is to first obtain single parameter models for each
individual parameter. Once we have these models, all that is left is to compare
all additive and multiplicative options of combining said models into one multi-
parameter model and to choose the one with the best fit.

The size of the search space for this approach is as follows, given m parameters
and one n-term model for each of them. We must combine all subsets of terms
of each single-parameter model with each subset of terms of each other single
parameter model. The number of subsets of a set of n elements is 2n, so the total
size of the search space is 2n·m.

Assuming there are three parameters, the single-parameter models for all of them
have been computed and each model has three terms (the worst case scenario for
search space cardinality in this case), the number of hypotheses that have to be
tested is 23∗3 = 512. Adding the 3 times 25 steps needed to generate the single-
parameter models, we will need to look at most at 587 models to find the best fit,
compared to the 6.51 · 1014 in the unoptimized approach.

Evaluation To evaluate the multi-parameter modeling approach we quantify the
speedup of the model search in comparison to an exhaustive traversal of the same
search space. Furthermore, we determine the frequency at which our heuristics lead
to models that differ from the ones the exhaustive search produces. In those cases
where the models we discover are different, we analyze these differences and discuss
their impact on the quality of the results. Because traversing the entire search space
for three or more parameters is prohibitively time consuming even with a very small
number of potential terms, we allow only at most two model parameters for the
purpose of this comparison.

The evaluation is divided into two parts. First, we examine how closely the
models generated both through exhaustive search and with the help of heuristics
resemble inputs derived from synthetically generated functions. This allows our
results to be compared with a known optimal model. Second, we compare the results
of both approaches, when applied to actual performance measurements of scientific
codes, which factors in the effects of run-to-run variation.
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Synthetic Data We generated 100,000 test functions by instantiating our normal
form from Eq. 1 with random coefficients. Our model generator responded in three
different ways:

1. Optimal models. The most common result (ca. 95%) is that the heuristically
determined model, the model determined through an exhaustive search, and the
known optimal model are identical.

2. Lead-order term and its coefficient identified, smaller term not modeled by either
method. In rare cases, neither modeling approach is capable of detecting the
smaller term and they both only model the lead-order term. The effect on the
quality of the resulting models is very small, and an attempt to model such small
influences will often lead to noise being modeled instead.

3. Lead-order term and its coefficient identified, smaller additive term only modeled
by exhaustive search. In this case the heuristic approach fails to identify the
parameter with a much smaller effect. The effect on the quality of the resulting
model is again negligible.

Table 1 displays the number of times the modeling identified the entire function
correctly and the times only the lead-order term was identified correctly. The lead-
order term was correctly identified in all test cases. The difference in time required to
obtain the 100,000 models is significant: 1.5 h when using the heuristics compared
to 107 h when trying out all models.

Application Measurements In addition to synthetic data, we evaluated our heuris-
tics with three scientific applications: Kripke, Cloverleaf, and BLAST. For BLAST
we used two qualitatively different solvers and will therefore present separate
results. Real data sets come with new challenges, such as not knowing the optimal
model, and indeed no guarantees that the assumptions required for our method
hold, namely that the optimal model is described by one and only one function
and that the function is part of the search space. Figure 3 shows the results of both
applying the heuristics and searching the entire solution space. As expected, in the
overwhelming majority of cases the two approaches provide the same result (84%),
or at least present the same lead-order term (14%). In about 2% of the cases the
models differ. The reason is that noise and outliers occurring in real data sets are
not limited to any arbitrary threshold compared to the effect of different parameters
on performance. The projection used by the heuristics to generate single-parameter

Table 1 Evaluation of heuristics using synthetic functions

Search type Heuristic Exhaustive

Optimal models identified 95,480 [95.5%] 96,120 [96.1%]
Lead-order term identified 4,520 [4.5%] 3880 [3.9%]
(including coefficient)
Lead-order term not identified 0 [0%] 0 [0%]

Modeling time 1.5 hrs. 107 hrs.
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Fig. 3 Comparison of performance models obtained for all kernels of scientific applications using
either our heuristics or a full traversal of the search space. For each application, we show the
percentage of times where the resulting models were identical (left bar), where only the lead-order
terms and their coefficients were the same (center bar), and where the lead-order terms were also
different (right bar)

models out of multi-dimensional data reduces noisy behavior to a higher degree than
the exhaustive search does. Therefore, in these rare cases, the heuristic approach
results in models with a slower growth rate than the ones identified through an
exhaustive search. The optimal model is not necessarily the one identified by the
exhaustive search, as noise could be modeled alongside the parameter effects.

In all three cases, the model generation for an entire application took only
seconds and was at least a hundred times faster than the exhaustive search.
Generating performance models for an entire application means one model per call
path and target metric. The search space reduction in all three cases was five orders
of magnitude (from 4,250,070 model hypotheses down to 66 per call path and target
metric).

Discussion The evaluation with synthetic and real data demonstrates that our
heuristics can offer results substantially faster than an exhaustive search—without
significant drawbacks in terms of result quality. For three or more parameters, the
size of the search space would have prevented such a comparison altogether, which
also means that the exhaustive search presents no viable alternative beyond two
parameters.

4.2 Segmented Modeling

Although our method is very powerful it struggles with the situation where perfor-
mance data representing two or more different phenomena need to be combined
into a single performance model, effectively being a function composed of multiple
segments. This not only generates an inaccurate model for the given data, but can
also either fail to point out existing scalability issues or create the appearance of
such issues when none are present.



466 A. Calotoiu et al.

We have developed an algorithm to help Extra-P detect segmentation in the data
before models are generated. Its input is a set of performance measurements, while
the output indicates whether the given measurements show segmented behavior or
not. If the data turns out to be segmented, the algorithm tries to identify the change
point. With this information, Extra-P can generate separate models for each segment
and/or request new measurements if any segment is too small for model generation.
For more information, we refer the reader to Ilyas et al. [23].

Our method correctly identified segmentation in more than 80% of 5.2 million
synthetic tests and confirmed expected segmentation in three application case
studies. The results of this evaluation show that the proposed algorithm can be
used as an effective way to find segmentation in performance data when creating
empirical performance models. The suggested algorithm does not require any extra
effort on the user’s side, and can work very well on as few as six points.

4.3 Iterative Search Space Refinement

While Extra-P strives to be easy to use and provide meaningful insights even to
users without an extensive background in performance modeling, the version we
developed in the Catwalk project still required the manual pre-configuration of the
search space. This adds a layer of complexity to the modeling process, and requires
the user to have an idea of what type of models can be expected from his application.
Should the search space not include a model found in the code, the method will
still try to approximate by selecting the one best fitting the data from the set of
options available, but the result will be less accurate. Furthermore, noise in the
data often leads to models that indicate a worse behavior than there actually is as
sometimes a model in the search space fits not only the behavior we are trying to
capture but also the noise, leading to overfitting. We have developed a new iterative
model-generation approach, where we configure the search space on demand and
iteratively raise the accuracy of the model until no meaningful improvement can be
made. In this way, we increase both the ease of use for Extra-P and its range of
application without sacrificing accuracy. For details, we refer the reader to the work
by Reisert et al. [34]. In the following we show a summary of the results, showing
the improvements that the new approach provides.

We used measurements from previous case studies to evaluate our new algorithm
on measured data. The measurements include a variety of call paths (i.e., kernels)
and different metrics, such as runtime, number of function calls, memory footprint,
and network traffic.

The results of the comparison, which are presented in Table 2, show that, when
the last (i.e., largest) measured data point is excluded from the data used to calculate
the model, the model produced by our new algorithm allows for a better prediction
of the last point in 19–65% of the cases, which corresponds to 53–85% of those
models that changed in each benchmark. Although some predictions do get worse,
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Table 2 Comparison of the original and our improved algorithm, using data from previous case
studies, showing the quality of predictions of the last data point when that point is not used for
modeling

Benchmark Number of
points

Model
count

Model predictions (percent-
age of all models)

Mean relative predic-
tion error [%]

better same worse before now

Sweep3D [11] 7 96 26.04 56.25 17.71 17.26 6.31
HOMME [11] 9 670 18.81 68.51 12.69 3.69 3.03
MILC [11] 9 1496 30.95 56.48 12.57 36.71 14.53
UG4 [44] 5 2026 52.62 38.01 9.38 68.30 15.58
MPI collect. [38] 7–8 26 65.38 7.69 26.92 52.53 15.89
BLAST [9] 5 103 31.07 41.75 27.18 34.92 10.38
Kripke [9] 5 36 36.11 38.89 25.00 33.05 8.32

Total 5–9 4453 39.12 49.11 11.77 45.71 12.97

the mean relative prediction error decreases across all applications, in all but one
case even significantly.

Not shown in the table is the number of models that are constant, which has
considerably increased in every single case study (from 44 to 76% overall). Because
the synthetic evaluation has shown that our new algorithm is able to recognize
constant functions more reliably, this indicates that the previous algorithm might
have modeled noise or tried to fit a PMNF function to inaccurate measurements.

With iterative refinement we remove the need for a predefined search space and
also significantly reduce the number of false positives by being more resilient to
noisy measurements of constant behavior. Most of the models generated with this
new algorithm are able to make predictions that are equally or even more accurate
than before. We therefore open the way for a performance modeling workflow that
is more automated than ever and equips developers with a tool that helps them
efficiently understand the performance of their applications.

5 Developments of the Advanced Methods

Extra-P is at its core a tool to generate a human-readable function out of a set
of inputs. The flexibility it offers and the features we added over time made it
attractive for uses beyond identifying performance bugs in parallel applications.
Some approaches, such as the compilation and modeling framework by Bhat-
tacharyya et al. [4], were developed during the Catwalk project. The scalability
framework [37] was also developed during the Catwalk project, but we have further
refined and expanded it during the ExtraPeak project, and also tested a number
of parallel sorting algorithms using this framework [39]. Two research directions
newly investigated during the ExtraPeak project are requirements engineering and
iso-efficiency modeling, and are discussed below.
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5.1 Lightweight Requirements Engineering

Co-designing applications and the system is a powerful technique to ensure early
and sustained productivity as well as good system design, especially in high-
performance computing where the cost of systems is very high and applications
are expected to remain in use for long periods of time. In their early phases, such
co-designs often rest on back-of-the-envelope (BOE) calculations. In general, such
calculations allow problems in applications to be detected early on and their severity
to be determined years before the machine is installed or the first prototype becomes
available. This is increasingly important since mitigating such problems can often
take several personyears. On the system side, BOE calculations allow designers
to adjust system parameters to target applications, for example, they can be used
to determine the required bytes-to-flop ratio of memory, network, or even the file
system. In addition, they can be used to determine required memory sizes, usability
of accelerators and co-processors, and even the number of sockets and size of
shared-memory domains in the target system.

We automate these BOE calculations in a lightweight requirements analy-
sis for scalable parallel applications. We introduce a minimal set of hardware-
independent application-centric requirements that cover the most significant aspects
of application behavior. Combining performance profiling [1, 8] and stack-distance
sampling [3] with a lightweight automatic performance-modeling method [10, 11],
we generate empirical models of these requirements that allow projections for
different numbers of processes and problem sizes.

As the foundation of our approach, we define a very simple notion of require-
ments that supports their quantification in terms of the amount of data to be stored,
processed, or transferred by an application. Knowing these numbers alone does not
target a precise prediction of application runtime but can serve as an indicator of
the relative importance of certain system resources and how this ratio changes as we
scale a program to a larger system. Ultimately, our requirements are expressed in the
form of empirical models that allow projections for different numbers of processes
and problem sizes.

Application-Centric Requirements We choose requirements to be purely appli-
cation centric, that is, we do not make any assumption about the hardware other
than the ability to run the code as is. Hence, all our requirement metrics refer to
data flow at the interface between hard- and software—not between lower layers of
the hardware. While specific hardware features could improve the rate at which the
requirements are fulfilled, the classes of behavior our requirement models capture
will not change. For example, even if revolutionary hardware features double
the speed at which floating-point computations are performed, if the number of
floating-point computations that need to be performed grows quadratically with the
number or processes, while all other requirements remain constant, the floating-
point requirement will remain the bottleneck for that particular application as it
scales up.
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Table 3 Requirement metrics

Resource Metric
Memory footprint # Bytes used (resident memory size)
Computation # Floating-point operations (#FLOP)
Network communication # Bytes sent / received
Memory access # Loads / stores; stack distance

Since it is currently the predominant programming model and also expected to be
highly influential in the future, we stipulate that of each target application an MPI
version exists. Application requirements are then expressed as a set of functions
r(p, n) that predict the demand for resource r depending on the number of processes
p and the problem size per process n. Because we regard thread-level concurrency
merely as a way to satisfy the requirements, we consider requirements not below the
granularity of processes, which may nevertheless be multithreaded—either locally
or by launching GPU kernels.

Currently, we consider the requirement metrics listed in Table 3, classified
by the resource they refer to. I/O would be handled analogously to the network
communication requirement. None of our analyzed applications includes significant
I/O traffic, we therefore refrain from including I/O metrics in this analysis. Our
metrics characterize application requirements in terms of space (i.e., memory
consumption) and “data metabolism” (i.e., bytes processed in floating-point units or
exchanged via memory and network). Because the amount of data moved between
processor and memory subsystem alone is barely a reliable indicator of the pressure
an application exerts on the memory subsystem, we also consider memory access
locality.

Co-design The key point of our method is to guide the programmer to find
application bottlenecks relative to an architecture as well as to guide the architect to
find system bottlenecks that a given application would experience. Our requirements
models are functions of the number of MPI processes p and the input problem size
n. To compare the requirements of an application on two different architectures,
all we need to do is to calculate the application requirements using the values for
p and n the application would use on these two systems. For details regarding
the collection of requirement metrics and more detailed case-studies we refer the
readers to Calotoiu et al. [12]. In the following we wish to present a brief example
for the types of insights requirements modeling offers.

LULESH is a widely studied proxy application in DOE co-design efforts
for exascale which calculates simplified 3D Lagrangian hydrodynamics on an
unstructured mesh. The problem size per process is defined as the simulated volume
per process. The growth rates of all requirements with respect to both problem
size and process count are very close to ideal. With the current implementation,
the multiplicative effect process count and problem size per process have on
computation and communication for LULESH is a small obstacle in tailoring and
scaling the application to run on different systems. The growth rates are slow enough
to limit these issues at anything except the most extreme scales. Having introduced
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Table 4 Per-process requirements models

the per process requirement models, we can now showcase the workflow to evaluate
a possible system upgrade taking account of these requirements. Let us consider the
scenario where LULESH is working on a given system, but needs to be deployed to
a larger system of the same type, for example one having twice the number or racks.

The requirements of LULESH are listed at the top of the table as part of Step I.
Following this process, we can now draw conclusions regarding system utilization,
requirements balance, and usefulness of a particular upgrade. The ratios between
new and old problem sizes indicate how the largest problem size that can be solved
changes, both per process and overall. The ratios between new and old requirements
indicate which system components will experience an increased load relative to
other components (Table 4).

The requirements of LULESH can be expressed as the product of single-
parameter functions that either depend the problem size per process or the number
of processes. When doubling the racks, only the value of p changes, and in
this particular case, all terms depending on n can be reduced when determining
the ratios of the changing requirements. This means that these ratios are valid
regardless of the problem size per process. This will not generally be true as it
depends on the specific relative upgrade. That the number of processes affects
computation and communication means that these requirements increase slightly.
Luckily, computation and communication only increase by 20% and will therefore
allow LULESH to solve an overall problem twice as large with only a small
performance degradation.

Discussion The workflow we propose leverages these models to enable system
designers and application developers to ponder various upgrade and design options.
We characterize performance in terms of relative requirement changes—from one
system or one application to another. This pattern indeed matches the common case,
where an initial version of an application running on an initial system already exists.
And even if no such system exists, our approach can successfully help compare
design options. The main advantage of our approach in relation to architecture-
specific performance models, which are traditionally hard and laborious to produce
with high accuracy, however, is the small effort on the one hand and the low
complexity of the models on the other, facilitating quick insights at low cost—easily
at the scale of an entire compute-center workload (Table 5).



ExtraPeak: Advanced Automatic Performance Modeling for HPC Applications 471

Table 5 Workflow for determining the requirements of LULESH after doubling the number of
racks
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5.2 Configuring and Understanding the Performance of
Task-Based Applications

Task-based programming models, such as Cilk [6] or OpenMP [32], are well known
and as the number of cores per node continues to increase, they gain more and
more attention. One major advantage of task-based programming is that it allows
parallelism to be expressed in terms of tasks, which are units of computation that
can be either independent, dependent on a previous task, or a prerequisite to a
subsequent task. Explicitly expressing parts of the code as tasks allows the compiler
to take care of all the thread management intricacies, thereby sparing the user from
tedious low-level details.

However, ensuring that that the problem to be solved is large enough to require
a certain number of tasks is a difficult problem, and requires extensive analysis.
The efficiency of the program will decrease as more processing elements are added.
The only way to ensure that efficiency remains constant, as the number of cores
increases, is to increase the input size as well. This concept is embodied in the iso-
efficiency relation [17], which binds the number of processing elements (PEs) the
application uses to the input size. It specifies by which factor the input size has to
increase, with respect to the increase in the number of PEs, to maintain constant
efficiency. Isoefficiency can be generalized to a two-parameter efficiency function
that provides efficiency values as a function of both the PE count and the input size.

Although isoefficiency analysis is useful in understanding the scalability behav-
ior of algorithms, it is not straightforward to apply and requires deep knowledge
of the algorithm. In practice, however, task-based algorithms experience hardware
limitations in the form of resource contention in general and memory contention
in particular. Resources such as cache and memory controllers are limited and
can negatively impact application scalability [46]. These might render theoretical
isoefficiency functions not accurate enough to be used in practice. To be able to
make informed decisions as to how big the input size should be in order to use all of
the allocated cores efficiently, the user not only has to have a realistic isoefficiency
model but also needs to understand the severity of resource contention at higher
scales.

We proposed a novel practical method to automatically model the empirical effi-
ciency functions of task-based applications [38]. Modeling the efficiency function
allows us to easily derive an isoefficiency relation for any realistic target efficiency,
and a carefully designed framework allows replays with different contention
assumptions.

In our approach we identified three different efficiency functions for a task-based
application:

1. Eac(p, n): The actual efficiency function of the application, modeled after the
empirical results of runtime benchmarks. In this case the application runs as it is
and experiences contention. Therefore, this function reflects realistic application
performance including resource contention and scheduling overhead.
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2. Ecf (p, n): The contention-free efficiency function, modeled after the results of
replaying empty task skeletons according to the application’s task dependency
graphs. The replay uses the same task dependency graphs and scheduling policy
as in the original runs that were benchmarked to produce Eac(p, n). Since
the replay is free of resource contention, this efficiency function reflects an
ideal situation in which the application does not experience resource contention
caused by threads accessing the same resource simultaneously.

3. Eub(p, n): An upper bound on the efficiency of the application. Since efficiency

is defined as Sp(n)

p
, an upper bound on the speedup also limits the efficiency.

Considering the average parallelism π(n) for a problem size n, we determined
that Sp(n) ≤ min{p, π(n)}, thus we define Eub(p, n) = min{1, π(n)

p
}. This

function describes an ideal situation of maximum speedup that is hardly
achievable in practice.

Beyond simply uncovering fundamental scalability limitations in an algorithm,
we can provide insights into the impact of resource contention and determine what
input size is required for any given degree of parallelism to reach a given efficiency.
Further questions that our approach can answer are: What is the required core count
for a given input size such that we maintain a constant, given efficiency? Which
efficiency can we expect for a given number of cores and input size? Both questions
are related to the co-design process when hardware designers have to understand
how to make future systems suitable for both existing and future applications.
Details regarding the approach and the framework required can be found in the
work by Shudler et al. [38].

For an idea of the type of insights we provide, we show the summary of results
for a number of task-based benchmark applications. Table 6 presents the efficiency
models of the evaluated applications. There are 3 rows for each application
listing the three efficiency models that we created (i.e., Eub(p, n), Eac(p, n), and
Ecf (p, n)). In all the models the logarithms are binary. The rRMSE column is the
relative root-mean-square error. It is a standard statistical factor that measures the
relative differences between the observed data and the model, and is defined as:

rRMSE= σ/ȳ, where: σ =
√∑n

i=1(f (xi)− yi)2/n, yi are observed data, and ȳ is
the mean of the yi values. The last column shows the input size n, derived from our
models by letting the efficiency E be 0.8 and the core count p be 60.

All of theEac(p, n) andEcf (p, n)models follow the same patternC−A·f (p)+
B ·f (p)g(n) that empirically emerged from our measurements. The interpretation of
this pattern is that the first term, the constantC, is approximately 1 and it denotes the
maximum attainable efficiency. The second term,−A·f (p), reflects the reduction in
efficiency that occurs when we increase the core count. The last term, B ·f (p)g(n),
denotes the efficiency that we gain when we increase the input size. Together these
terms reflect the interplay between the core count and the input size, and the effect it
has on the efficiency. In the case of FFT, the constantB in the last term of Eac(p, n)
is very small, which means that resource contention is a very significant factor
and even large increases of the input size are not enough to offset the drop in the
efficiency.
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Table 6 Efficiency models of the evaluated applications

By analyzing the discrepancies between these efficiency functions, we are able to
provide answers to questions regarding co-design aspects, the connection between
poor scaling and resource contention, optimization potential, and the presence of
scalability bugs.

Discussion Our approach is viable for analyzing both the effects of resource
contention on efficiency and further optimization potential. It provides users with
an insight into whether the obstacle to scaling is resource contention or insufficient
parallelism in the structure of the task dependency graph. In addition, users can also
calculate the required input sizes to keep efficiency constant on a given core count.
This approach can be used in co-design analysis to understand how many processing
elements to put in a future machine, such that we can have high efficiency with
realistic application input.

6 Ongoing Work

While Extra-P is already a powerful and versatile tool, we believe there are still some
areas where we can improve and streamline our approach even more. Our efforts
are currently focused on methods that would make it easier to consider multiple
parameters in the performance modeling process. In the following, we briefly
discuss two promising and so far unpublished approaches, one aiming to reduce



ExtraPeak: Advanced Automatic Performance Modeling for HPC Applications 475

the number of inputs the modeling algorithm requires to generate accurate multi-
parameter models, and another targeting the use of compile-time information to
identify relevant parameters and formulate expectations regarding their interaction,
further reducing the need for measurements while improving the quality of the
resulting models.

6.1 Reducing the Cost of Measurements with Sparse Modeling

We have shown how useful the performance models we generate can be to
developers, but even though the modeling is done cheaply and automatically, we still
require a series of small-scale experiments in order to start the process. Therefore,
the experiment design determines the quality of the model as well as the overall cost
of the modeling process. The current state of the art requires at least five different
values for each parameter, and measurements with all possible combinations of
values for all parameters considered. Therefore, an exponential number of samples
is needed, namely 5n if n parameters are being modeled. For specific applications
this makes it impractical to even create performance models. We are working
on a novel parameter sampling approach that utilizes reinforcement learning, and
leverages a sparse modeling technique, which only needs a polynomial number of
samples and allows a more flexible experiment design.

We have made the observation that Extra-P assumes that there is one and only
one behavior with respect to each parameter across the entire measured space. If
this is true, the same function terms describing the effect of a given parameter
should be identified no matter which sequence of five measurements is considered
as long as the effect of all other parameters are kept constant. Rather than requiring
all combinations of all values for each parameter, it could be sufficient to select
a sequence of five measurements for each parameter to create single-parameter
models, but a thorough analysis is required to ensure that lowering the number
and cost of measurements is not detrimental to the quality of the results. When
considering the interaction of parameters a new challenge arises: the binary decision
of whether effect of any parameter pair is additive or multiplicative cannot be
made with only a sequence of five measurements for each parameter. At least one
additional data point is required, one that is not part of those sequences. In our
evaluation, the addition of this one additional point improves the number of correctly
identified models from 81.1 to 99.9%, while more data points only marginally
improved the results.

Figure 4 shows a set of measurements that is usually sufficient to correctly
identify two-parameter performance models. Of course, any of the columns and
rows could be used to generate the performance model. The question as to how to
select which rows and columns to measure as well as which additional points to
consider such that the best models can be generated with the smallest cost is still
open. While selecting the combination with the smallest cost is appealing, we must
quantify how the quality of the models degrades compared to other strategies. For
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Fig. 4 Example set of performance measurements for a two-parameter analysis. The filled circles
represent a subset that is likely to be sufficient to create a performance model

this purpose, we leverage reinforcement learning to compare and evaluate different
strategies.

Using this approach on some of our existing case studies shows very promising
preliminary results: we were able to reduce the average modeling costs by up to 93%
while maintaining 99% of the model accuracy. We are currently in the process of
analyzing the limits of this approach and trying to define if there are any conditions
required for it to be successful, or if it is a valid solution for most applications.

6.2 Taint Analysis for Many-Parameter Modeling

The current workflow of Extra-P follows three major steps: parameter identification,
designing a set of experiments to measure the influence of changes in the parameters
of interest, and estimating the best model from the provided data. A lot of work in
Catwalk and ExtraPeak focused on automating and improving the third step in this
process, leaving the user to still identify parameters of interest and choose which
values to give these parameters for the subsequent measurements that will serve as
input to Extra-P.

We are prototyping a tool called perf-taint to alleviate this issue. Perf-taint is
an LLVM-based hybrid program analysis integrated with Extra-P that will supply
program information to the modeling process. We use taint analysis [14], a computer
security technique which reliably relates marked input values with the program parts
they potentially affect to determine which parameters influence the performance
critical control-flow in the program and detects functions that are constant with
respect to selected performance parameters.

We have preliminary results using two benchmarks: LULESH and su3_rmd from
the MILC suite. In LULESH, we consider three parameters and prune 303 out
of 347 functions. In su3_rmd, we consider four parameters and prune 364 out of
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621 functions. The instrumentation overhead is decreased 45 times in the case of
LULESH compared to a full instrumentation. While these massive improvements
in runtime overhead are likely specific to object-oriented C++ applications, the
quality of the resulting models is increased across all our experiments. We hope this
approach will allow better models to be generated with even less effort even for
large, complex applications where the importance of individual parameters is not
necessarily well understood.

7 Related Work

Performance analysis and prediction of real-world application workloads is most
important in high-performance computing. Performance tools such as Score-P [1]
allow the programmer to observe the performance of real-world applications at
impressive scales but are often limited to observations of the current configuration
and do not provide insight into their behavior when being scaled further.

Such insights can be obtained with the help of analytical performance models,
which have a long history. Early manual models showed to be very effective in
describing application performance characteristics [27] and understanding complex
behaviors [33]. Hoefler et al. established a simple six-step process to guide the
(manual) creation of analytical performance models [21]. The resulting models
lead to interesting insights into application behavior at scale and on unknown
systems [2]. The six-step process formed the blueprint of our own approach.

Various automated performance modeling methods exist. Tools such as
PALM [43] use extensive and detailed per-function measurements to build structural
performance models of applications. The creation of structural models is also
supported by dedicated languages such as Aspen [42]. These methods are powerful
but require the prior manual annotation of the source code.

Hammer et al. combine static source-code analysis with cache-access simulations
to create ECM and roofline models of steady-state loop kernels [19]. While their
approach uses hardware information gathered on the target machine, it does not
actually run the code but relies on static information instead. Lo et al. create
roofline models for entire applications automatically and attempt to identify the
optimal configuration to run an application on a given system [29]. Extra-P, in
contrast, identifies scalability bugs in individual parts of an application rather than
determining the optimal runtime configuration on a particular system.

Vuduc et al. propose a method of selecting the best implementation for a given
algorithm by automatically generating a large number of candidates for a selected
kernel and then choosing the one offering the best performance according to the
results of an empirical search [45]. Our approach generates performance models for
all kernels in a given application to channel the optimization efforts to where they
will be most effective. Zaparanakus et al. analyze and group loops and repetitions
in applications towards automatically creating performance profiles for sequential
algorithms [49]. Goldsmith et al. use clustering and linear regression analysis to
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derive performance model coefficients from empirical measurements [16]. This
approach requires the user to define either a linear or power law expectation for the
performance model unlike the greater freedom offered by the performance model
normal form defined in our approach. Jayakumar et al. predict runtimes of entire
applications automatically using machine-learning approaches [25].

Zhai, Chen, and Zheng extrapolate single-node performance of applications with
a known regular structure to complex parallel machines via simulation [50], but
require the entire memory that would be needed at the target scale to correctly
extrapolate performance. Wu and Müller [48] showed how to predict the communi-
cation behavior of stencil codes at larger scales by extrapolating their traces. While
still requiring an SPMD-style parallel execution paradigm, Extra-P has proven to
work with general OpenMP or MPI codes beyond pure stencil codes.

Carrington et al. introduced a model-based performance prediction framework
for applications on different computers [13]. Marin and Mellor-Crummey utilize
semi-automatically derived performance models to predict performance on different
architectures [30]. Siegmund et al. analyze the interaction of different configuration
options and model how this affects the performance of an application as a whole
rather than looking at its individual components [18, 41].

Reducing the burden of collecting the measurements required for the empirical
learning process is a research effort in its own right. Sarkar et al. [36] suggest
a powerful sampling approach which can be used if all features of interest are
boolean. Another approach for sampling highly configurable systems with boolean
configuration options by Zhang et al. [51] suggests using the Fourier transform
to select the best samples. However, these methods cannot be directly adapted to
our use case: the features modeled by Extra-P are allowed a much wider range
of expression. They can be not just boolean, but functions with polynomial and
logarithmic terms.

8 Conclusion

In the Catwalk project, we initially set out to prove that automated performance
modeling is feasible and that automatically generated models are accurate enough
to identify scalability bugs. We started by showing that in those cases where
hand-crafted models existed in the literature our models are competitive. Our
interaction with many different users from different fields taught us that approximate
models are acceptable as long as the effort to create them is low and they do not
mislead. Furthermore, being able to produce many performance models cheaply
helps drastically improve code coverage, which is as important as model accuracy.
Having approximate models for all parts of the code can be more useful than having
a model with 100% accuracy for just a tiny portion of the code or no model at all.

Finally, after the public release of the Extra-P software and numerous tutorials
where Extra-P was introduced, we have seen growing interest from HPC application
developers—whether for immediate use or in incorporating Extra-P in their own
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research. The continuous development of Extra-P during the ExtraPeak project
was partly driven by feature requests from the users themselves, and while the
collaboration uncovered many challenges, the results invariably proved useful
beyond the problem they were specifically developed to solve: The capability of
modeling the impact of multiple parameters simultaneously paved the way for
complex approaches such as using application-centric requirements in the co-design
process or determining the iso-efficiency of task-based parallel applications. We
confidently claim that Extra-P is a powerful tool capable of providing insightful
performance information for most developers while requiring only a modicum of
experience in performance analysis and few resources.
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Abstract The FFMK project designs, builds and evaluates a system-software
architecture to address the challenges expected in Exascale systems. In particular,
these challenges include performance losses caused by the much larger impact of
runtime variability within applications, hardware, and operating system (OS), as
well as increased vulnerability to failures. The FFMK OS platform is built upon a
multi-kernel architecture, which combines the L4Re microkernel and a virtualized
Linux kernel into a noise-free, yet feature-rich execution environment. It further
includes global, distributed platform management and system-level optimization
services that transparently minimize checkpoint/restart overhead for applications.
The project also researched algorithms to make collective operations fault tolerant
in presence of failing nodes. In this paper, we describe the basic components,
algorithms, and services we developed in Phase 2 of the project.

1 Introduction

The operating system (OS) abstracts from low-level aspects of a computer system’s
hardware by providing applications with standardized programming interfaces
and common services such as file systems and network access. By design, it

C. Weinhold (�) · A. Lackorzynski · J. Bierbaum · M. Küttler · M. Planeta · H. Weisbach ·
M. Hille · H. Härtig · M. Lieber · W. E. Nagel
TU Dresden, Dresden, Germany
e-mail: carsten.weinhold@tu-dresden.de

A. Margolin · D. Sharf · E. Levy · P. Gak · A. Barak
The Hebrew University of Jerusalem, Jerusalem, Israel

M. Gholami · F. Schintke · T. Schütt · A. Reinefeld
Zuse Institute Berlin, Berlin, Germany

© The Author(s) 2020
H.-J. Bungartz et al. (eds.), Software for Exascale Computing - SPPEXA
2016–2019, Lecture Notes in Computational Science and Engineering 136,
https://doi.org/10.1007/978-3-030-47956-5_16

483

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47956-5_16&domain=pdf
mailto:carsten.weinhold@tu-dresden.de
https://doi.org/10.1007/978-3-030-47956-5_16


484 C. Weinhold et al.

stands between the hardware and all applications. In the high-performance comput-
ing (HPC) community, the OS is therefore sometimes considered to be “in the way”
as applications try to extract maximum performance from the underlying hardware.
Indeed, the OS can introduce overhead, as we will discuss in the following.
But challenges posed by upcoming Exascale systems such as load imbalances or
failures due to increasing component counts can benefit from system-level support.
Therefore, the central goal of the FFMK project has been to investigate how the OS
can actually help, rather than be a source of overhead.

In the following paragraphs, we summarize the general architecture of the
FFMK OS platform and give an overview of its higher-level services. In part, this
description is an overview of results from Phase 1 of the project; but it shall also
help put the results presented in this paper into context. For a much more detailed
discussion of FFMK and the motivation behind it, we refer to our previous project
report [59].

Multi-Kernel Node OS Figure 1 shows the architecture of the FFMK node OS.
It is built on a multi-kernel foundation comprising an L4 microkernel and a
variant of the Linux kernel that is called L4Linux. We aim to support unmodified
HPC applications and they shall have access to the same runtime libraries and
communication drivers that are used on standard Linux-based HPC OSes. We
target noise-sensitive applications by providing jitter-free execution directly on
top our microkernel [33]. In this context, we also investigated the influence of
hardware performance variation [61]. However, our vision for an HPC OS platform
also includes new platform management services to support more complex and

MPI Library

Decision Making

Checkpointing

Gossip

Compute Cores Service Cores

L4Linux

L4 microkernel

MPI

Daemons

gniroti no
M

Monitor Communication Checkpointing

Application

...

Service OS

Global Platform Management

Runtime

...
...

Fig. 1 FFMK software architecture: compute processes with performance-critical parts of (MPI)
runtime and communication driver execute directly on L4 microkernel; functionality that is not
critical for performance is offloaded to the L4Linux kernel, which also hosts global platform
management and fault-tolerance services
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dynamic applications, as well as algorithms and system-level support to address
fault-tolerance challenges posed by Exascale systems with unprecedented hardware
component counts.

Applications, Runtimes, Communication HPC applications are highly special-
ized, but they achieve a certain level of platform independence by using common
runtime and communication APIs such as the Message Passing Interface (MPI) [18].
However, just proving an MPI library and interconnect drivers (e.g., for InfiniBand)
is not sufficient [60], because the majority of HPC codes use many Linux-specific
APIs, too. The same is true for most HPC infrastructure, including parallel file
systems and cluster management solutions. Compatibility to Linux is therefore
essential and this can only be achieved, if applications are in fact compiled for Linux
and started as Linux processes.

Dynamic Platform Management The FFMK OS platform is more than a multi-
kernel architecture. As motivated in the Phase 1 report [59], we include distributed
global management, because the system software is best suited to monitor health
and load of nodes. This is in contrast to the current way of operating HPC
clusters and supercomputers, where load balancing problems and fault tolerance
are tasks that practically every application deals with on its own. In the presence
of frequent component failures, hardware heterogeneity, and dynamic resource
demands, applications can no longer assume that compute resources are assigned
statically.

Load Balancing We aim to shift more coordination and decision making into the
system layer. In the FFMK OS, the necessary monitoring and decision making is
done at three levels: (1) on each node, (2) per application instance across multiple
nodes, and (3) based on a global view by redundant master management nodes. We
published fault-tolerant gossip algorithms [3] suitable for inter-node information
dissemination and found that they have negligible performance overhead [36]. We
further achieved promising results with regard to oversubscribing of cores, which
can improve throughput for some applications [62]. We have since integrated the
gossip algorithm, a per-node monitoring daemon, and a distributed decision making
algorithm aimed at automatic, process-level load balancing for oversubscribed
nodes. However, one key component of this platform management service is still
missing: the ability to migrate processes from overloaded nodes to ones that have
spare CPU cycles. Transparent migration of MPI processes that directly access
InfiniBand hardware has proven to be extremely difficult. We leave this aspect for a
future publication, but do we do summarize our key results on novel diffusion-based
load balancing algorithms [39] in this report. These algorithms could be integrated
into the FFMK load management service once process-level migration is possible.

Fault Tolerance The ability to migrate processes away from failing nodes can also
be used for proactive fault tolerance. However, the focus of our research on system-
level fault tolerance has been in two other areas. First, we published on efficient
collective operations in the presence of failures [27, 31, 43]. Second, we continued
research on scalable checkpointing, where we concentrated on global coordination
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for user-level checkpointing [22] and how to optimize it based on expected failure
rates [21].

In the following two sections of this paper, we discuss how re-architecting the
OS kernel for HPC systems can improve performance and scalability (Sect. 2); we
also present results on how to increase kernel scalability beyond the dozens of cores
found in contemporary systems, as well as new load balancing algorithms. We then
make the case that system-software support is essential to address fault-tolerance
challenges posed by Exascale systems and how new fault-tolerant algorithms can
help improve robustness and performance of collective operations (Sect. 3). Each
individual subsection on these pages summarizes our peer-reviewed work in the
respective area.

2 Building Blocks for a Scalable HPC Operating System

2.1 The Case for a Multi-Kernel Operating System

Noise-Sensitive Applications A widely reported problem in HPC is “OS noise” [5,
16, 26, 49, 53], where sporadic or periodic housekeeping activities of the OS (or
other background tasks) briefly interrupt application threads. These interruptions
can slow down applications based on the bulk-synchronous programming (BSP)
model. BSP applications are parallel programs that are characterized by alternating
computation and communication phases that all participating threads must perform
in perfect synchronization to maximize throughput. If just a few compute threads
are preempted by background activities, all other threads that depend on their input
will waste CPU cycles as they wait for the stragglers to reach the communication
phase. As shown in Fig. 2, delays can amount to hundreds of thousands of cycles,
resulting in a slowdown of up to 9% for a computation that takes 1.5 ms to complete
when there is no interruption.

Fig. 2 OS noise during a run of the fixed work quantum (FWQ) benchmark on a node of a
production HPC cluster with Linux-based vendor OS
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Re-Architecting the Kernel for HPC One way to address the OS noise problem
is to partition the compute resources of each node into two sets of cores: compute
cores that are allocated exclusively to HPC applications and service cores that
run management and maintenance tasks. Multi-kernel OS architectures implement
this approach by assigning the compute cores to a lightweight kernel (LWK); a
traditional kernel such as Linux runs management and node monitoring daemons on
the service cores. The LWK does not preempt compute threads, thereby minimizing
execution-time jitter for applications. However, a LWK for HPC does not replace a
complex kernel such as Linux. It only implements functionality that is critical for
application performance; system calls that do not impact performance are offloaded
to the Linux kernel running on the service cores. The multi-kernel approach gives
HPC applications the best of both worlds: the LWK ensures low noise and high
performance, whereas Linux offers convenience, familiar APIs, a rich feature set,
and compatibility with huge amounts of legacy infrastructure.

A Microkernel as a Universal LWK Multi-kernel OS architectures have received
a lot of attention in recent years and several new LWKs have been developed,
including IHK/McKernel [55] and mOS [63]. However, the maintenance effort for
keeping an HPC-suitable multi-kernel OS up to date and compatible with Linux
must be smaller than constantly patching mainline Linux to make it less noisy.
Arguably, the best way to meet this requirement is to reuse components that already
exist and that are actively maintained. In the FFMK project, we therefore chose
to use the mature L4Re microkernel and L4Linux as the basis of the FFMK node
OS. In contrast to McKernel and mOS, the L4Re microkernel manages not just
the designated compute cores, but all processor resources. The L4Linux kernel runs
virtualized on top of L4Re as shown in Fig. 1 on page 484.

2.2 L4Re Microkernel and L4Linux

In this Subsection, we quote1 from a previous publication [60] an overview of
the L4Re ecosystem, including the L4Re microkernel and the paravirtualized Linux
kernel L4Linux. These two basic building blocks are combined into a foundation of
a highly flexible and low-noise node OS. In Sect. 2.3, we evaluate the main benefits
of this multi-kernel architecture.

L4 Microkernel The L4Re microkernel is a member of the L4 family of micro-
kernels. The core principle of L4 [40] is that the kernel should provide only the
minimal amount of functionality that is necessary to build a complete OS on
top of it. Thus, an L4 microkernel is not intended to be a minimized Unix, but
instead it provides only a few basic abstractions: address spaces, threads, and inter-

1This description has been shortened and slightly edited for brevity; see [60] for the complete
version.



488 C. Weinhold et al.

process communication (IPC). For performance reasons, a thread scheduler is also
implemented within the kernel. However, other OS functionality such as device
drivers, memory management, or file systems are provided by system services
running as user-level programs on top of the microkernel.

Applications and User-Level Services L4Re applications communicate with each
other and with system services by exchanging IPC messages. These IPC messages
can not only carry ordinary data, but they may also transfer access rights for
resources. Being able to map memory pages via IPC allows any two programs
to establish shared memory between their address spaces. Furthermore, because
it is possible to revoke memory mappings at any time, this features enables user-
level services to implement arbitrary memory-management policies. In much the
same way an L4Re program can pass a capability referencing a resource to another
application or service, thereby granting the receiver the permission to access that
resource. A capability can refer to a kernel object such as a Thread or a Task,
representing an independent flow of execution or an address space, respectively. But
they may also point to an Ipc_gate, which is a communication endpoint through
which any user-space program can offer an arbitrary service to whomever possesses
the corresponding capability.

I/O Device Support An important feature of the L4Re microkernel is that it maps
hardware interrupts to IPC messages. A thread running in user space can receive
interrupts by waiting for messages from an Irq kernel object. In conjunction with
the possibility to map I/O memory regions of hardware devices directly into user
address spaces, it is possible to implement device drivers outside the microkernel.

Virtualized Linux The L4Re microkernel is a fully functional hypervisor capable
of hosting virtual machines running unmodified guest operating systems. It employs
hardware-assisted virtualization on instruction set architectures that support it,
including x86, ARM, and MIPS. Device emulation or passthrough is supported
through virtual machine monitors running in user space. However, faithful virtu-
alization is not the only way to run a legacy OS on top of the L4Re microkernel.
L4Linux is a paravirtualized Linux kernel that has been adapted to run on the
interfaces provided by L4Re. It is binary compatible with standard Linux programs,
however, instead of running in the privileged mode of the CPU, the L4Linux kernel
runs as a multi-threaded user-level program. Linux user processes run in their own
L4 tasks (i.e., other address spaces). Linux programs on L4Linux experience the
same protection as on native Linux; they cannot read or write the Linux kernel’s
memory and they are protected from each other like processes on native Linux.

The vCPU Mechanism For execution, L4Linux employs vCPUs, a mechanism
provided by the microkernel that allows for an asynchronous execution model where
a vCPU migrates between executing code in the L4Linux kernel and user code in
Linux processes. For any event that needs to be handled by the Linux kernel, such
as system calls and page faults by processes, or external interrupts by devices, the
vCPU switches to the L4Linux kernel to handle them.
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L4Linux Process Model L4Linux manages the address spaces of Linux user
processes through Task objects provided by the L4Re microkernel. Thus, every
Linux process and the contents of its address space are known to the microkernel.
Furthermore, L4Linux multiplexes all user-level threads executing in such an address
space onto its vCPUs. Thus, the L4Re microkernel is involved in every context
switch of any Linux user thread. In particular, it is responsible for forwarding any
exceptions raised by a Linux program to the L4Linux kernel. Exceptions occur when
a thread makes a system call, when a page fault occurs during its execution, or
when a hardware device signals an interrupt. L4Linux receives these exceptions at
a previously registered vCPU entry point, to which the microkernel switches the
control flow when it migrates the vCPU from the Task of the faulting Linux user
program to the address space of the virtualized Linux kernel.

2.3 Decoupled Execution on L4Linux

Since virtually all HPC codes are developed for Linux and require so many of its
APIs, the only practical option is to execute them on a Linux-based OS. Just running
them on L4Linux yields no benefit. However, the tight interaction between the L4Re
microkernel and L4Linux allows us to conveniently implement a new mechanism
we call decoupling [33].

Decoupling Thread Execution from L4Linux The purpose of decoupling is to
separate execution of a thread in a Linux process from the vCPU it is normally
running on. To this end, we create a separate, native L4Re host thread that runs in
the same L4 Task (i.e., address space) as the Linux process, but not under control
of L4Linux. The original Linux thread context in the L4Linux kernel is suspended
while execution progresses on the native L4Re host thread. The user code running
there will raise exceptions just as if it were executed by a vCPU, except that the
microkernel forwards each of them to L4Linux as an exception IPC message. A
message of this type carries a thread’s register state and fault information as its
payload, and is delivered by the microkernel to an exception handler. We configure
L4Linux to be the exception handler of the “decoupled” Linux user threads. An
attempt to perform a Linux system call will also result in an exception, which the
L4Linux kernel can then handle by briefly reactivating the previously suspended
thread context and scheduling it onto a vCPU. Afterwards, execution is resumed in
decoupled mode on the L4Re host thread. Figure 3 visualizes decoupled execution;
more details can be found our publications [33, 60].

One Mechanism for the Best of Both Worlds The net gain of the decoupling
mechanism is that we can combine noise-free execution on our LWK (i.e., the
L4Re microkernel) with the rich execution environment of Linux, including all
its APIs and the HPC infrastructure built for it. Decoupled threads use a single
mechanism for forwarding any system call or exception, instead of many specialized
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Compute Cores Service Cores

L4Linux

L4 microkernel

L4 host thread
(running)

Linux thread
(decoupled,

inactive)

Address space

Fig. 3 Schematic view of the decoupling mechanism. The L4Re microkernel runs on every core
of the system, while the virtualized L4Linux runs on a subset of those cores only. All normal Linux
applications are thus restricted to those cores. Decoupling pulls off threads and runs them on cores
not available to L4Linux

proxies that other multi-kernel HPC OSes use and that are difficult to maintain [60].
Applications are built for Linux and start running as Linux processes, but we pull
their threads out of Linux’s scheduling regime so they can run on dedicated cores
without being disturbed by L4Linux. Effectively, decoupled threads run directly on
the microkernel. However, they can use all services provided by L4Linux, which
will continue to handle Linux system calls and resolve page faults. Also, since the
InfiniBand driver in the L4Linux kernel maps the I/O registers of the HCA into
the address space of each MPI rank, the high performance and minimal latency of
the user-space part of the driver is not impaired; a decoupled thread can program
performance-critical operations just like it would on native Linux.

CPU Resource Control The number of vCPUs assigned to L4Linux and their
pinning to physical CPU cores determines how much hardware parallelism an
L4Linux-based virtual machine can use. All other cores are exclusively under control
of the L4Re microkernel and can therefore be allocated exclusively to decoupled
threads of HPC application processes.

Initial Benchmark We used the fixed-work quantum (FWQ) [35] benchmark to
determine how much “OS noise” decoupled threads experience. FWQ executes a
fixed amount of work in a loop, which on a perfectly noise-free system should
require a constant amount of CPU cycles to complete. Figure 4 shows the result
of our first benchmark run, performed on a 2-socket machine from our lab. Using
the rdtsc instruction, we measured delays of up to 55 CPU cycles per iteration
when FWQ is executed by a decoupled thread on a dedicated core. The execution-
time jitter is reduced to 4 cycles per iteration, when FWQ is offloaded to the second
socket, while L4Linux is pinned to a single core of socket 1.
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Fig. 4 Minimal OS noise remaining in decoupled execution; L4Linux running on same socket

Multi-Node Benchmark The execution-time jitter we measured in the lab is four
to fives orders of magnitude smaller than what we saw when FWQ ran on the
vendor-provided Linux OS of Taurus, an HPC cluster installed at TU Dresden (see
Fig. 2 on page 486). For larger-scale benchmarks, we extended FWQ into MPI-
FWQ, a parallel benchmark that executes work-loop iterations in each MPI process
on all participating cores. We performed experiments with our L4Re/L4Linux-based
node OS on 50 Taurus nodes. Each node has two Xeon® E5-2690 processors
with 8 cores per socket. To benchmark “decoupling” in a parallel application,
we allocated one core to L4Linux and the remaining 15 cores to MPI-FWQ. The
baseline we compare against is 15 MPI-FWQ processes per node scheduled by
the same L4Linux on the same hardware, but in a 16-vCPU configuration with no
decoupled threads.

EP and BSP Runs MPI-FWQ can operate in two modes: In StartSync mode, a
single barrier across all ranks is used to synchronize once when the benchmark
starts; this mode simulates an embarrassingly parallel (EP) application. In StepSync
mode, MPI-FWQ waits on a barrier after each iteration of the work loop, thereby
acting like an application based on the bulk-synchronous programming (BSP)
model.

Figure 5 shows the time to completion for any MPI-FWQ process operating in
BSP-style StepSync mode, as we increased the total number of MPI processes (i.e.,
cores) from 30 to 750. The benchmark run time with decoupled MPI-FWQ threads
(L4Linux-DC) is approximately 1% shorter than when the standard scheduler in the
L4Linux kernel controlled application threads (L4Linux-Std); results for EP-style
StartSync runs show a similar performance. This difference is smaller than the up
to 9% jitter we saw with the vendor OS, but our stripped down Linux environment
lacks most of the management services and system daemons that run on the cluster.
These services could never preempt decoupled threads, though.

More information on the decoupling mechanism, additional use-cases, and
evaluations results can be found in separate publications [32–34].
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Fig. 5 BSP-style MPI-FWQ (StepSync mode) on L4Linux (Std) and with decoupled thread
execution (DC) on Taurus. This figure has originally been published in [33]

2.4 Hardware Performance Variation

Software-induced imbalance in large-scale parallel simulations have also been
studied by other groups, who proposed multi-kernel architectures as well [20, 23,
30, 48, 50, 51]. However, one source of variability has not been systematically
investigated so far: the hardware itself. Hardware performance variation is partic-
ularly interesting due to growing diversity of platforms in HPC and the increasing
complexity of computer architectures in general.

Measuring Hardware Performance Variation Characterizing hardware perfor-
mance variability is challenging, because it requires a tightly controlled software
environment. LWKs [51] have the greatest potential to obtain a precise charac-
terization of various aspects of hardware performance variability on real HPC
hardware. Towards this end, we have developed an extensible benchmarking
framework to systematically characterize different aspects of hardware performance
variability [61]. We use this benchmark suite to analyze five platforms described
in Table 1: Intel Xeon [29], Intel Xeon Phi [56], Cavium ThunderX [9], Fujitsu
FX100 [64] and IBM BlueGene/Q [28]. To minimize “OS noise”, we benchmarked
on OSes based on two LWKs: CNK on the IBM BG/Q and IHK/McKernel [20, 55]
on the Intel, Fujitsu, and Cavium machines.

Benchmark Suite In addition to the previously described FWQ benchmark, our
benchmark suite consists of seven other benchmark kernels. They were selected
from well-known algorithms, micro benchmarks, or proxy applications and have
the following characteristics:

• The DGEMM benchmark performs matrix multiplication. We confine ourselves
to naïve matrix multiplication algorithms to allow compilers to emit SIMD
instructions, if possible. This benchmark kernel is intended to measure hardware
performance variation for double-precision floating point and vector operations.
The SHA algorithm utilizes integer execution units instead.
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• Using John McCalpin’s STREAM benchmark, we assess variability in the cache
and memory subsystems. The Capacity benchmark is intended to measure
performance variation of cache misses themselves.

• HACCmk from the CORAL benchmark suite is a compute-intensive N-body
simulation kernel with regular memory accesses. HPCCG from Mantevo’s
benchmark suite is a Mini-App aimed at exhibiting the performance properties
of real-world physics codes working on unstructured grid problems. MiniFE
is another proxy application for unstructured implicit finite-element codes from
Mantevo’s package.

More detailed descriptions of these benchmark kernels, modifications we made, and
all measurement results can be found in our paper [61]. In this report, we highlight
only a few key results from FWQ, HPCCG, and DGEMM experiments.

Workload Matters Like previous studies on software-induced performance vari-
ation, we relied on the FWQ benchmark to evaluate execution-time jitter for
decoupled threads. However, this simple benchmark kernel, may be suitable to
quantify interruptions caused by system software, but they are insufficient to
capture hardware-induced noise. We hypothesize that the full extent of hardware
performance variation can only be observed when the resources which cause these
variations are actually used. And indeed, as shown in Fig. 6, the HPCCG proxy
code running on IHK/McKernel on an Intel Ivy Bridge system shows about 1% of
performance variation among all cores of a node.

We measured variation on 30 SMT cores of this 2-socket Intel Ivy Bridge E5-
2650 v2 system for both FWQ and HPCCG. We set the working set size of HPCCG
to 70% of the L1 data cache size (32 KiB), disabled TurboBoost, set the scaling
governor to performance, and fixed the clock speed to the nominal frequency of
2.6 GHz. We additionally sampled the performance counters for L1 data cache
and L1 instruction cache misses and confirmed that both benchmarks experience
little to no misses, in particular cores one to seven and 16 to 29 experience neither
instruction cache nor data cache misses under HPCCG. Nevertheless all cores show
significantly more variation under HPCCG than under FWQ. We conclude that
FWQ is indeed ill-suited to measure hardware-induced performance variation.
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Fig. 7 Hardware performance variation under the DGEMM benchmark

Microarchitectures Differ Figure 7 visualizes our measurements for the DGEMM
benchmark, which is dominated by floating point operations. We observe that the
FX and ThunderX platforms exhibit very low variation, and note the rather high
variation of the Ivy Bridge, KNL and BlueGene/Q platforms. We saw high numbers
of cache misses on the Ivy Bridge platforms and therefore reduced the cache
pressure to 70% fill level. After this modification to the benchmark setup, we saw
stable or even zero cache miss numbers for all cores of the Ivy Bridge platform, but
variation did not improve. We conclude that the measured variation is not caused by
the memory subsystem.

Overall we found that just focusing on CPU core-local resources, like we did
in this study, already shows up to six orders of magnitude difference in relative
variation among different CPU architectures.

2.5 Scalable Diffusion-Based Load Balancing

A low-noise execution environment is essential for certain types of applications,
as we explained in the preceding subsections. However, there are other HPC codes
where noise is less of a concern, because they suffer from load imbalances that are
inherent to the problem domain. For example, they might use multiple simulation
kernels with different computational complexity. Furthermore, some computations
are difficult to parallelize efficiently, because partitioning of the problem space
is non-trivial; it might even change dynamically as the simulation progresses. As
mentioned as part of the architecture overview in Sect. 1, we believe that support for
load balancing should be provided at the system level, thereby freeing application
developers from the burden of managing a dynamic system.

Taskifying MPI Applications may need to be (re-)balanced due to inherent load
imbalances or to support shrinking and expanding the set of nodes assigned to
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the application. In the Phase 1 report [59] of this project, we proposed to taskify
MPI processes using oversubscription, which results in multiple Tasks (i.e., MPI
processes) per core that can be migrated transparently without application code
modifications. MosiX-like algorithms [2] can be used for this kind of system-level
load balancing in case communication between application tasks is insignificant. In
other cases, repartitioning methods that consider the task communication graph are
required [57].

Requirements for Efficient Load Balancing In the context of our system architec-
ture, the requirements for a load-balancing method are: (1) effective load balancing
with low inter-node communication (edge-cut), (2) low amount of migration to
reduce MPI process migration costs, and (3) low overhead of the method itself. The
method’s input should be the local node’s view of the weighted task communication
graph, which can be obtained by monitoring the application at the OS/MPI level.
Since graph partitioners, like ParMetis [52], are known to be computationally
expensive, we developed a nearest-neighbor diffusion-based repartitioning method.

Method Description The method consists of four main phases that require point-
to-point communication between neighbor nodes only and, with the exception of
the flow calculation, have O(number of tasks per node) computational complexity.

1. Each node determines its neighbor nodes from the task communication graph.
2. Flow calculation: Computation of minimal load flows between neighbor nodes

that lead to global balance using 2nd-order diffusion [13, 45]. The diffusion is
stopped between each node pair individually if the load flow of an iteration falls
below a specified threshold. The required number of iterations grows with the
number of nodes. However, with low-latency networks the observed run time is
within the low millisecond range even with thousands of nodes [39].

3. Task selection: Tasks at the partition border are selected for migration to realize
workload flows using different weighted criteria to achieve low edge-cut [14].

4. Partition refinement: Edge-cut is improved with a parallel KL/FM-based
refinement algorithm [58] that smoothes partition borders by swapping weighted
tasks between neighbor node pairs independently within a certain imbalance tol-
erance. If the task selection result was not within the tolerance, the optimization
goal is “balance” instead of “edge-cut”.

Evaluation Workloads We implemented the diffusion method within the Zoltan
load balancing library [12] and evaluate the performance on Taurus in a normal,
non-oversubscribed setup. MPI processes own multiple migratable user-level tasks.
Two scenarios with 3D task meshes are used for performance evaluation: the Cloud
scenario consists of computation time measurements from 36× 36× 48 grid cells
over 100 time steps of COSMO-SPECS+FD4 [38] and the synthetic Shock scenario
simulates the evolution of a spherical shock wave over a 160× 80× 80 grid with a
four times increased workload at the wave front over 169 time steps. Figure 8 shows
the workload distribution for a 2D version of the shock scenario with two examples
of resulting partitionings.



FFMK 497

Fig. 8 Left: workload distribution for a selected time step of the 2D shock scenario, red indicates
4 times increased workload; Center: Resulting partitioning for 96 processes with ParMetis, colors
represent individual partitions; Right: Resulting partitioning with Diffusion

Diffusion Results We compare our method with four other (re)partitioning meth-
ods: a hierarchical space-filling-curve method (FD4/SFC) [37], recursive coordinate
bisection and space-filling curve from Zoltan (Zoltan/RCB and SFC), as well as
AdaptiveRepart from ParMetis [52] with 0.5% imbalance tolerance. Note, that
SFC and RCB are coordinate-based and not graph-based; they require application
knowledge about spatial coordinates of tasks. Since diffusive load balancing
requires a partitioning to exist, we use Zoltan/RCB to initialize the partitioning.
Figure 9 shows the results for different metrics (lower is better), each averaged over
the time steps (except median for run time):

• Load Imbalance (max. load among processes/average load—1): Diffusion per-
forms better than ParMetis, but worse than the three geometric methods.

• Migration (max. no. of tasks a process imports and exports/avg. no. of tasks per
process): Diffusion outperforms the other methods, especially with the Shock
scenario (factor 3–10 less migration).

0 4% 8%
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Diff tol=10%

Cloud Scenario

Number of procs:
96
192
384
768

Load imbalance

0  40% 80%

Migration

0  50% 100%

Edge−cut

0.1 1   10  100 

Run time (ms)

0 3% 6%

FD4/SFC

Zoltan/SFC

Zoltan/RCB

ParMetis

Diff tol=1%

Diff tol=10%

Shock Scenario

Number of procs:
384
768
1536
3072
6144

Load imbalance

0    100% 200%

Migration

0  40% 80%

Edge−cut

0.1 1   10  100 1000

Run time (ms)

Fig. 9 Evaluation of diffusion-based load balancing with Cloud (62208 tasks) and Shock (ca. 1M
tasks) scenarios. Bar shades show results for 96–768 and 384–6144 MPI processes, respectively
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• Edge-cut (max. edge-cut among all processes/avg. number of edges per process):
All methods achieve very similar results, except diffusion with low imbalance
tolerance at high process counts (coarse granularity).

• Run time of the method (max. among all processes): Due to its scalability,
diffusion is clearly faster than the Zoltan methods at higher parallelism and 1–
2 orders of magnitude faster than ParMetis. At 6144 processes, it requires 2.5 ms
only.

As can be seen, the imbalance tolerance of the diffusion method allows to
trade-off load balance vs. edge-cut and migration. We can conclude that our load
balancing method enables fast, scalable, and low-migration graph-based repartition-
ing.

2.6 Beyond L4: Improving Scalability with M3

and SEMPEROS

We conclude the performance and scalability section of this paper with an out-
look on a new kernel architecture suitable for heterogeneous many-core systems:
SEMPEROS [25].

M3 SEMPEROS is based on M3 [1], a hardware/software co-designed system archi-
tecture. Like L4Re, which we described in Sect. 2.2, these systems are microkernel
OSes that manage access rights to all system resources based on capabilities. A
process can only use a resource, if it owns a capability to it. Such resources include
threads, memory allocations, and files, but they are also used to grant and revoke
access to CPU cores and the ability to send messages between the threads running
on these cores. A key aspect of the M3 design is that the OS kernel runs on just one
core, which remotely manages all other cores2 in the system.

Heterogeneous Architectures Since it is not necessary that all cores of a system
can run an OS kernel, M3 is suitable for heterogeneous system architectures with
different kinds of CPU cores. The current No. 1 system in the TOP500 list of
supercomputers, China’s Sunway TaihuLight system [19], is based on such an
architecture. Each node has “big” cores capable of running an OS kernel, as well
as many small compute cores that are optimized for computation, but lack the
architectural support for an OS kernel.

SEMPEROS To put hundreds of cores under the control of a microkernel OS, the
kernel and its capability system need to scale. SEMPEROS extends M3 to manage the

2M3 provides a hardware abstraction to integrate accelerators in the same way as general-purpose
cores. Therefore, we usually use the term processing element in an M3 context. HPC workloads can
benefit from generalized accelerator support, but it does not influence how the capability system
works. In this paper, we therefore use the common term cores to simplify the explanation.
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system using multiple kernels. The compute cores of the system are organized into
as many partitions as there are kernel instances, thereby increasing the total number
of cores (and compute threads) the system can handle. Each of the SEMPEROS
kernel instances executes on its own privileged core, but they coordinate with each
other via a distributed capability protocol [25]. The collaboration between cores
managed by different kernels is transparent to the applications.

Capability Model SEMPEROS implements partitioned capabilities. The capabili-
ties are stored within a protected address space and the kernel supervises capability
operations. Application processes can delegate and revoke capabilities via the
respective system calls. The kernel records the delegations in a capability tree that
stores the relations between capabilities. Using this capability tree, SEMPEROS
implements recursive revocation, by which all access rights that originated from the
specific capability can be revoked by deleting this capability and all its descendants.

Distributed Capability Protocol In a distributed capability system, the data
structure storing the capability tree is split between multiple kernels. Because the
same capabilities can be manipulated simultaneously by different kernels in the
system, SEMPEROS kernel instances need to coordinate certain capability opera-
tions. We analyzed all possible interleavings of capability operations (e.g., during
delegation or revocation) and developed a protocol that prevents inconsistencies in
the capability tree. This protocol integrates a confirmation for capability delegation
(similar to a two-way handshake) and a distributed mark-and-sweep algorithm to
revoke capabilities [25].

Evaluation Setup We evaluated SEMPEROS using the cycle-accurate gem5 sim-
ulator [6]. The experiments were run with up to 640 out-of-order cores integrated
into a single network-on-chip. The applications used in our evaluation stress the
capability system, as they extensively use OS services. In particular, they make
heavy use of the M3/SEMPEROS in-memory file system, which grants access to
memory ranges within files by delegating memory capabilities to applications and
revoking those capabilities when files are closed again. We assume that similar usage
patterns would also occur during checkpointing operations on a future HPC system
with storage-class memory in each node.

Scalability Results To quantify the scalability of SEMPEROS, we computed the
parallel efficiency, exposing the runtime overhead a single benchmark instance (i.e.
process) experiences when it is executed in parallel with a number of identical
benchmark instances. Figure 10a depicts an overview of the parallel efficiency of
all application benchmarks we evaluated. The scalability of the applications improve
when increasing the number of kernels managing the system as depicted in Fig. 10b.

The capability protocol in general is applicable to any distributed capability
system implementing global IDs and stores all capability relations in a capability
tree.
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3 Algorithms and System Support for Fault Tolerance

In this section we discuss FFMK research results on fault tolerance. Our activities
concentrated on two areas: First, we introduce new methods for resilience of MPI
applications at scale. To this end, we developed probabilistic and deterministic
algorithms for resilience of collective operations (Sects. 3.1 through 3.3). Second,
we present new approaches to coordinate and optimize concurrent checkpointing
of multiple jobs (Sect. 3.4) and to improve multi-level checkpointing for a single
parallel job (Sect. 3.5).

3.1 Resilience in MPI Collective Operations

MPI libraries are usually not fault tolerant and therefore not able to complete a
collective operation correctly in case of a fault. Instead, the whole application will
either hang or crash. Unfortunately, the overall system reliability decreases as the
number of processes involved in the computation grows.

Existing Recovery Approaches The MPI standard does not address resilience
of parallel applications, with the exception of return codes for detected errors.
Currently, there are multiple outstanding proposals how to address faults during MPI
run-time. Most work on this subject is characterized as either backward recovery or
forward recovery. The former tries to restore a correct past state, whereas the latter
attempts to establish a new correct state. For example, ULFM [8] applies forward
recovery, entailing a set of tools that allow applications to deal with detected faults.

Fault-Tolerant Algorithms Fault-Tolerant Collective Operations (FTCO) [43] is
a new forward recovery approach. FTCO relies on parallel algorithms that apply to
tree-based collective operations in MPI. It includes resilient versions of collective
operations such as Bcast, Reduce and Allreduce, for any tree topology. This
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Fig. 11 Message flow after
DATA timeout: Node #3
overcomes fault detected on
node #1 by bypassing it and
sending the data to the next
node #0 along the tree
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algorithm detects faults by a per-node calculated timeout and overcomes faults by
excluding failed processes. It is intended for use-cases that can tolerate process
faults, such as Monte–Carlo method or PDE solvers. FTCO delivers a result to every
live process, so that the application may keep running without handling those faults.
The FTCO algorithm minimizes the fault-free performance penalty and shows a
small increase in latency and messages per fault, regardless of job size. This offers a
transparent and scalable forward recovery alternative to the costly legacy backward
recovery mechanisms. For example, Fig. 11 demonstrates a simple case, where node
#3 overcomes the fault detected on node #1 by bypassing it and sending the data to
the next node (#0) along the tree.

FTCO Results FTCO differs from other approaches, such as ULFM, by localizing
the detection and recovery of faults, while other approaches involve the entire group
of processes in the MPI job. Our experimental results with the FTCO approach
support this claim, showing that the latency with FTCO is proportional to the
number of serial faults, regardless of the number of MPI proceeses: Table 2 shows
the FTCO latency of the Allreduce operation for different combinations of offline
faults and increasing number of processes. We chose a timeout of 2 s, which is the
default for ULFM [43]. In the table, each figure represents the average longest time
(in seconds) for a process to complete the same Allreduce call. In a tree topology,
multiple faults could be either serial or parallel: parallel faults occur in different sub-
trees, thus their recovery time may overlap, while serial faults are handled one after
the other. We found that two parallel faults take approximately the same amount
of time as a single fault; adding a third parallel fault to two serial faults does not
change the latency.

Table 2 FTCO: average longest time in seconds for a process to complete Allreduce call

No. of process No faults 1 fault 2 parallel faults 2 serial faults 3 mixed faults

64 0.0005 2.0095 2.0094 4.0194 4.0194

128 0.0006 2.0123 2.0123 4.0221 4.0222

256 0.0007 2.0121 2.0123 4.0220 4.0219

384 0.0017 2.0114 2.0323 4.0404 4.0217

512 0.0024 2.0343 2.0110 4.0421 4.0422
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Fig. 12 The latency cost of one fault (in seconds) with FTCO and ULFM: FTCO outperforms
ULFM; both approaches use the same fault-detection timeouts and tree topology

FTCO vs ULFM Figure 12 shows a comparison between the latency of FTCO and
ULFM for the Allreduce operation with a single fault and an increasing number of
processes. In both cases we used the same parameters, like fault detection timeouts
and tree topology. Each test started by injecting a fault into one process and then
attempted an Allreduce on multiple communicators with that process.

Integration of FTCO into UCX We developed a prototype library to further
measure the performance of FTCO based on UCX. UCX [54] is an open-source
point-to-point communication library, optimized for performance on low-latency
interconnects. UCX is designed to provide a high-level of abstraction for com-
munication, and to consider the specifics of the local NIC, to find the optimal
send and receive methods. UCX queries the capabilities of each NIC to establish
which hardware accelerations are present, and chooses the optimal parameters
for sending messages, including the NIC, port and protocol (e.g. rendezvous). In
order to apply fault-tolerance algorithms to MPI applications, we extended UCX
with an implementation of MPI’s collective operations. Our library is suitable
for applications that can withstand partial failures, where the overall result is not
effected by some faults, or where the application can overcome them.

Our extension contains a basic, deterministic implementation for fault-free
collective operations. It demonstrated the benefit of a persistent collective operation:
applications often repeat the same collective operation call, and so the library can
reuse past structures instead of creating it from scratch for each call. Our UCX-
based library can be used with any MPI implementation, and provides a foundation
for further experimental results and optimizations.
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3.2 Corrected Gossip Algorithms

An alternative to the deterministic approach taken with FTCO is to use randomized
gossip-based algorithms, which have been shown to yield better recovery latency
for some applications. Gossip algorithms have been widely successful in various
contexts that did not require strong consistency. Yet, they become rapidly inefficient
once about 50% of the nodes were reached, because messages are more likely to be
sent to nodes that have already received a message before.

Gossip-Based Broadcast Let us consider how broadcast among processes can be
implemented using gossip. The root sends the broadcast payload to a random subset
of other processes. When a new process receives the payload and gets colored, it
starts sending messages to randomly selected processes as well. This dissemination
runs for a fixed period of time, after which all colored processes have received the
broadcast payload.

Closing the Gaps The gossip phase attempts to color as many processes as
possible, but due to potential failures and the random nature of gossip, the protocol
cannot guarantee that all live processes are actually colored. Our new algorithm
therefore enters a deterministic correction phase, in which it tries to color these
remaining processes. For correction, all processes are reorganized into a virtual ring
(e.g., according to their MPI rank numbers from 0 to P −1 for P processes). On this
ring, uncolored processes create gaps, where the maximum gap size is the length
of the longest sequence of uncolored processes. All colored processes now send
messages to their neighbors on the ring, thereby closing the gaps with few messages
per node.

Corrected Gossip Algorithms We designed three different protocols based on
this idea of combining randomized and deterministic algorithms for improving the
broadcast latency [27]. These three algorithms allow us to choose various tradeoffs
between consistency, simplicity, and performance. The three algorithms are: (1)
opportunistic, which applies the correction without checking for completion; (2)
checked, which runs the correction until all nodes received the message, provided
that no nodes fail during the correction; and (3) fail-proof, which applies the
correction and guarantees that all active nodes receive the message, provided
that no more than f nodes fail during the operation. Our algorithms do not
require multicast, failure detectors, timeouts, acknowledgments, or reconfiguration
procedures. The result of this work is the “corrected-gossip” paradigm [27].

Framework for Collective Algorithms Based on the corrected-gossip paradigm,
we also developed a framework for failure-proof collective operations that generates
online an independent spanning tree. Generation can be completed successfully
even with an arbitrary number of active nodes and up to f online failures. Based
on the system’s mean time between failures (MTBF), an appropriate value f
could be chosen as the maximal number of faults supported by the algorithm.
Compared to alternative methods for fault recovery, this approach allows a trivial
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recovery procedure, provided that sufficient spanning trees are maintained during
the application run.

3.3 Corrected Tree Algorithms

The reliability properties of all correction schemes of “corrected gossip” have been
proven [27]. However, due to being probabilistic, the gossip algorithm used in
the dissemination phase needs to send more messages than an optimal tree-based
broadcast algorithm in order to color nodes. Tree-based dissemination will, however,
miss a large number of processes, if any process close to the tree’s root fails. In
general, failure of any non-leaf process in the tree results in all its descendants
remaining uncolored.

Can We Save the Trees? We developed a corrected tree algorithm which splits
communication among processes into two phases, exactly like we did with corrected
gossip: dissemination and correction. The idea is to correct the result of a failed tree-
based broadcast during the dissemination phase. With failure-proof correction, full
coloring can be guaranteed even if processes fail during the broadcast [27].

Requirements for Corrected Trees The goal of the broadcast is to guarantee
information propagation from the root process to every live process, even if some
processes fail. In a broadcast operation among P processes, the root process
propagates a message reliably to all other processes. Without loss of generality we
assume the root process to have rank 0, other processes have ranks 1, . . . , P − 1.
To ensure that correction can color uncolored processes quickly, the maximum gap
size ought to be small. A tree maintaining such a property should have its subtrees
spread across the correction ring to avoid the danger of having uncolored processes
cluster together on the ring. For lowering correction latency, multiple small gaps are
better than few large ones.

Interleaved Trees The key idea behind corrected tree algorithms is that nodes of
the tree can be renumbered in such a way that parent and child nodes do not become
neighbors on the ring. Instead, nodes from a subtree below a failed node shall always
have a close neighbor from outside their own subtree, so the they can be colored in
the correction phase. In this paper, we only describe how to interleave k-ary trees.
However, the scheme is also available for Lamé trees, which include Binomial trees.
A more detailed description is given in the original publication [31].

Interleaving k-ary Trees Given the root process at level 0, a full k-ary tree has
k� processes at level �, and k� subtrees that have their root process at that level. The
processes in these subtrees can have a distance of k� in the ring. Process r has the
child processes r ′:

{r ′ | r ′ = r + i · k�, 0 < i ≤ k, r ′ < P }
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This interleaving ensures that a failing process on level � leads to every k�-th process
being uncolored. Thus, f = k�−1 failures on level � or below can be tolerated, and
still every k�-th process will be colored after the dissemination.

Correction Phase The correction phase follows the dissemination phase and
is independent of the tree type. It ensures coloring of the processes that the
dissemination phase left uncolored due to failures. All three correction algorithms
developed for corrected gossip [27] are directly applicable.

Simulation Results In our simulation-based evaluation, we used the same fail-stop
fault model as in the corrected-gossip publication [27]. During broadcast, every
process is either dead or alive. A process either sends all messages required by
the protocol or none at all, but failures can occur anywhere outside of the broadcast
operation. The simulation is based on the LogP-model [10]. The graph in Fig. 13
shows the number of messages sent for different numbers of faults. All tree-based
broadcasts send fewer messages than corrected gossip and are thus more efficient
with regard to this metric.

Latency Measurements To measure the average latency of a broadcast, we
implemented all algorithms using MPI and ran them on the Piz Daint supercomputer
installed at ETH Zurich. The results shown in Fig. 14 therefore include overhead
due to the physical properties of the interconnect. Note that there are no faults
in this experiment, so we can compare our implementations with the broadcast
implementation from Cray. Since our MPI-based implementation cannot use the
shared-memory optimization the Cray algorithm uses, we include performance
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processes
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Fig. 14 Broadcast median latency of corrected tree, corrected gossip, and vendor-provided
implementations of broadcast without any failures

of the Cray algorithm with shared memory disabled for reference (green line in
diagram).

We find Corrected Trees to be a simple, yet efficient protocol for fault-tolerant
collective group communication. A more detailed evaluation can be found in the
publication [31].

3.4 Checkpointing Scheduling

Only some applications can benefit from forward recovery by tolerating process
or node failures. All other HPC codes rely on system-level or application-assisted
fault-tolerance services. Periodic checkpoint/restart (C/R) [11, 65] is an effective
mechanism to alleviate failures during execution of HPC applications, which often
require a vast number of nodes for a relatively long time [15]. The overhead of
checkpointing should be kept as small as possible, as typically the computation has
to be paused during a checkpoint write to store a consistent state of the application.
Furthermore, on a large supercomputer, which is shared by several parallel jobs,
checkpointing should be coordinated between applications to avoid performance
bottlenecks. Otherwise, as the storage is typically shared between all applications,
concurrent checkpoint writes would unnecessarily delay the computation tasks.

Uncoordinated Checkpointing Hurts As part of the FFMK project, we designed
a mechanism to coordinate concurrent checkpoints of large applications running on
a supercomputer and sharing a dedicated burst-buffer [42] or parallel file system
(PFS) [41] for checkpointing [22]. We assume that the system executes multiple
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parallel applications at the same time and that it provides a single shared PFS
(e.g., Lustre, GPFS, . . . ) for all applications. Typically, each application uses fixed
checkpoint intervals calculated independently of the other applications based on
Daly’s method [11]. However, Daly assumes a constant checkpoint write duration
during the application’s lifetime, whereas in case of concurrent checkpointing of
different applications checkpoint costs vary and depend on other applications’
activities due to limited write bandwidth and other interferences.

Checkpoint Scheduling Approach In our work, we take this variation into
account and rearrange the checkpoints of jobs, by predicting conflicts, in order
to minimize the overall system resource usage. This is achieved by scheduling
checkpoints earlier or later than originally planned. The decision whether to
postpone a checkpoint to another timeslot is based on a constructed optimization
problem for the predicted conflicts. By minimizing the constructed problem, non-
overlapping timeslots to write checkpoints are found and applied.

Checkpoint Scheduling Architecture While system-level checkpointing takes
advantage of system-wide information not visible to jobs such as mean-time to
failure (MTTF), bandwidth, or other jobs’ activities, it suffers from unnecessarily
large checkpoints (higher checkpoint costs). On the other hand, user-defined
checkpointing is done within the application which uses a runtime library for
checkpointing. The library remembers the important data to be saved and also knows
at which time checkpoints should be written (application-level information). This
way the approach reduces the checkpoint size while lacking the system-wide infor-
mation. In our work, we combined system-level with user-defined checkpointing
in order to leverage the advantages of both methods [22]. The coordination among
different jobs is performed by a coordinator service running on the system side. The
service has access to system-wide information like MTTF, the bandwidth of shared
storage systems, and the activities of other jobs (system-level checkpointing).

User-Level Library Support To achieve this, we modified the SCR library [44]
to provide it with the ability to interact with our coordinator service, which
instructs SCR when to perform checkpoint requests. The application uses the library
to write checkpoints (user-level checkpointing). This library cooperates with the
coordinator-service, whereby whenever a checkpoint call is made by the application
(which is done frequently and periodically), a request is sent to the coordinator and
if accepted, the write will be performed by the library. Otherwise, the checkpoint
call will be ignored and the application continues with the computation.

System-Level Coordinator The decisions on the coordinator side are based on
solved optimization problems constructed for the predicted conflicts. Then the
incoming checkpoint requests are either accepted or rejected based on the computed
decisions to get optimal checkpoint times.

Figure 15 shows that we are able to reduce the C/R overhead by up to 20% by
coordinating checkpoints compared to state-of-the-art approaches.
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Fig. 15 Improvement rate of C/R overhead

3.5 Multi-Level Checkpoint/Restart

To further strengthen the C/R mechanism of the FFMK OS platform, multi-level
checkpoint/restart is used as a solution to address a wide range of failures of
different severity occurring in large supercomputers [21]. Severe failures require
application state to be recovered from the most stable storage devices. However,
this comes at high cost, as stable storage devices are slower to write to than transient
storage. This is the key motivation of using multi-level checkpoint/restart.

Component Failure Rates To fully grasp the multi-level hierarchy of failures and
storage devices, we constructed a comprehensive model of a typical large cluster
containing nodes, local storages (ramdisk, SSD), network switches, power supplies,
different shared storage systems (burst-buffer, PFS), etc. Additionally, we modeled
5 different levels of checkpoints, all of which are supported by the SCR [44] library
and most of them are also available on other checkpointing libraries as well (FTI [4],
VeloC [46]):

• Local Level: The first checkpoint level is the node’s local storage (ramdisk, SSD).
While this level benefits from the lowest checkpointing cost among all levels, it
cannot survive fatal faults where the node becomes unavailable.
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• XOR Level: The next level is the XOR level, at which for each node a
parity segment is computed and distributed among a set of nodes (XOR group)
according to [24, 47]. Each node stores its local checkpoint along with the
XOR parity data. This level survives a single node of an XOR group becoming
unavailable.

• Partner Level: A more stable level is the partner scheme, where the checkpoint
is stored in the node’s local storage along with the partner node’s storage (two
copies). This level fails to restart the job, if a node and its partner fail together.

• Shared Levels: The most stable levels use shared storage (among all compute
nodes), namely the burst buffer and the parallel file system. However, they provide
lower checkpointing bandwidth per node, because many (or all) nodes may access
them concurrently.

Modeling Failures Per Component To have a proper estimation of the stability
of different checkpoint levels (i.e., how often they fail), we studied a wide range
of possible failures occurring on supercomputers and investigated their effect on
each checkpoint level. Using the estimations, we defined the optimum checkpoint
intervals for each level minimizing the application’s lifetime. To study different
types of failures, we differentiated light faults and fatal failures, where after a light
fault the node stays alive and the job can be restarted from the local storage device.
A fatal failure makes a node or a set of nodes unavailable (node down). In this case,
the job must be restarted from more stable levels (XOR, partner, etc.). Additionally,
we took correlations into account by arranging the nodes of a cluster in different
correlated groups (network, power supply, etc.), whereby the nodes belonging to the
same correlated group are vulnerable to failures of the same origin making all nodes
in the group unavailable at the same time (e.g., a network switch outage). Figure 16
visualizes, how this correlation of nodes translates into a correlation graph.

In addition to the compute nodes, we considered I/O nodes (burst-buffer) which
are also vulnerable to failures making the burst-buffer unavailable for a restart.
Although such faults do not interrupt the job’s computation, losing checkpoints
on the burst-buffer may impact the job’s lifetime. Another case of a checkpoint’s
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unavailability occurs, if due to a node down, the job is restarted from the XOR level
and the new node allocated to the job lacks the partner level checkpoint. Hence, in
case of another failure, an attempt to restore from partner-level will fail to recover
the just restarted job a second time until the next partner checkpoint is written.

Model-Based Adaptation of Checkpoint Behavior Finally, we introduced a
mechanism to model the expected lifetime of applications writing multi-level
checkpoints on a given set of checkpoint levels considering all investigated types
of failures. Using this model, we properly choose the optimal set of checkpoint
levels for each job minimizing the expected lifetime.

Multi-Level Checkpoint Architecture Our implementation of multi-level check-
point/restart consists of a system-level daemon and a library that is linked into
the application. The daemon communicates with the library in the application
using TCP sockets and directs the local checkpoints (written by the application) to
different checkpoint levels transparent to the application. It computes the optimum
checkpoint intervals of each level using system-wide information and application-
specific parameters. For each checkpoint call made through the library, the daemon
determines the optimal level of the checkpoint (or simply rejects it). We employ
the following optimizations and automations in our design to further improve
performance and reliability:

• Asynchronous Checkpointing: To further reduce the checkpointing costs of the
lower levels, checkpoint writes are performed asynchronously. The application
writes its state to the node’s local storage, providing fast write performance.
Thereafter, the operation of checkpointing at the lower levels (e.g., partner, burst
buffer, PFS) is performed by the daemon in the background while the application
returns to the computation. During the background operation of the daemon,
every incoming request for checkpointing to the same level from the job is ignored
until the persisting is finished.

• Fast Recovery: To ensure the fast recovery in case of light failures (node alive),
ULFM [7] is used to provide the capability of automatically recovering the failed
ranks with the most recent checkpoint and reordering the ranks to the original
arrangement, transparent to the developer, application, and the resource manager.

• Job Life Cycle and Recovery When a new job is started, a short-lived controller
service is executed by the first rank on each node (i.e., the node’s local rank 0).
This service forks a daemon process for each rank on the node, connects them
to the corresponding ranks, and then terminates. The per-rank daemons are
responsible for sending status information and receiving instructions. The per-
rank daemons stay alive until the application is finished with the computation. If
a rank fails, its daemon terminates and the rank is later restarted using ULFM.
When a rank is restarted, or when it notices that its daemon died, it will execute
the previously mentioned controller service again, which will then reconnect a
new daemon process with the rank. This is done transparently to the application
and the existence of both daemons and controller services remains transparent to
the user and the developer.
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• Rotating Partner Nodes: To further enhance the stability of the partner level, a
novel approach will be engaged in which there are no fixed partners for the nodes,
instead, the partner node of a specific node is changed on each turn and chosen by
the daemon. This allows reducing the probability of unavailability of checkpoints
at this level. In addition, partner checkpoints and data transfers will be performed
by service daemons of both nodes using Remote Direct Memory Access (RDMA)
in order to have fast partner checkpoints in the background.

Our evaluations of the introduced multi-level checkpoint/restart model (the failure
rates and optimal intervals) show that we managed to reduce the C/R overhead of
jobs by up to 10% in the investigated cases (50,000 nodes, 3–5 levels, 6–240 GB
checkpoints) compared to the state-of-the-art approach. Our observations indicate
that the overhead is reduced further as the number of levels or the checkpoint size
increases.

4 Conclusions

The FFMK project had the very ambitious goal of creating a new operating-
system (OS) platform for Exascale computing. Unfortunately, we did not reach the
milestone of a fully integrated prototype at the end of phase 2. However, several
essential building blocks have been adapted for HPC and new algorithms and
services have been developed to meet the challenges we expect from these upcoming
extreme-scale systems.

Multi-Kernel Node OS At the node level, the mature L4Re microkernel together
with L4Linux enable the decoupled-thread model, which combines noise-free exe-
cution and full Linux compatibility for applications. We studied and quantified the
influence of hardware performance variation, a source of noise that still remained.
Furthermore, we gave an outlook on how to manage OS-level resources at extreme
scales of parallelism with a kernel architecture for scalable capability management.

Dynamic Platform Management Although mostly an activity from the first three-
year phase of the project, we continued research on dynamic platform management
at the system level. We researched fault-tolerant gossip-based algorithms for
obtaining load and health information from nodes. We integrated these information
dissemination algorithms with a per-node management daemon and a distributed
decision making module. However, one component of the FFMK architecture’s
load balancing service remained elusive: migration of processes has been shown
to work at small scale for simple InfiniBand-based programs, but robust C/R-based
migration is not available yet. In Phase 2, we developed highly efficient diffusion-
based load balancing algorithms; they complement the architecture and can already
be used for application-level load balancing, as they have been integrated into a
widely-used framework.
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Fault Tolerance The main activities of the second phase of this project concen-
trated on efficient and fault-tolerant communication, as well as system-level support
for reducing checkpoint overhead. Fault-tolerant collective operations (FTCO) have
been developed as a drop-in replacement for MPI libraries and were prototyped
in the UCX communication library. As a potentially more efficient alternative, we
introduced a new class of two-step algorithms based on either gossip or trees:
Corrected Gossip and Corrected Trees enable inherently fault-tolerant collective
operations for applications that can continue even after some processes failed.
Globally optimized checkpoint scheduling and multi-level checkpointing minimize
checkpoint/restart overhead for all other applications. The latter optimizes the
cost of checkpointing based on a model that includes expected failure rates of
components, a failure-correlation graph, and available write bandwidth across the
storage hierarchy.

Together, all newly developed algorithms, system services, and low-level OS
components form the basis of a fast, scalable, and fault-tolerant HPC operating
system for Exascale computing.
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Abstract Atomistic simulations of large biomolecular systems with chemical
variability such as constant pH dynamic protonation offer multiple challenges in
high performance computing. One of them is the correct treatment of the involved
electrostatics in an efficient and highly scalable way. Here we review and assess two
of the main building blocks that will permit such simulations: (1) An electrostatics
library based on the Fast Multipole Method (FMM) that treats local alternative
charge distributions with minimal overhead, and (2) A λ-dynamics module working
in tandem with the FMM that enables various types of chemical transitions during
the simulation. Our λ-dynamics and FMM implementations do not rely on third-
party libraries but are exclusively using C++ language features and they are
tailored to the specific requirements of molecular dynamics simulation suites such
as GROMACS. The FMM library supports fractional tree depths and allows for
rigorous error control and automatic performance optimization at runtime. Near-
optimal performance is achieved on various SIMD architectures and on GPUs
using CUDA. For exascale systems, we expect our approach to outperform current
implementations based on Particle Mesh Ewald (PME) electrostatics, because
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1 Introduction

The majority of cellular function is carried out by biological nanomachines made
of proteins. Ranging from transporters to enzymes, from motor to signalling
proteins, conformational transitions are frequently at the core of protein function,
which renders the detailed understanding of the involved dynamics indispensable.
Experimentally, atomistic dynamics on submillisecond timescales are notoriously
difficult to access, making computer simulations the method of choice. Molecular
dynamics (MD) simulations of biomolecular systems are nowadays routinely used
to study the mechanisms underlying biological function in atomic detail. Examples
reach from membrane channels [28], microtubules [20], and whole ribosomes [4] to
subcellular organelles [43]. Recently, the first MD simulation of an entire gene was
reported, comprising about a billion of atoms [21].

Apart from system size, the scope of such simulations is limited by model
accuracy and simulation length. Particularly the accurate treatment of electrostatic
interactions is essential to properly describe a biomolecule’s functional motions.
However, these interactions are numerically challenging for two reasons.

First, their long-range character (the potential drops off slowly with 1/r with
distance r) renders traditional cut-off schemes prone to artifacts, such that grid-
based Ewald summation methods were introduced to provide an accurate solution
in 3D periodic boundaries. The current standard is the Particle Mesh Ewald (PME)
method that makes use of fast Fourier transforms (FFTs) and scales as N · logN
with the number of charges N [11]. However, when parallelizing PME over many
compute nodes, the algorithm’s communication requirements become more limiting
than the scaling with respect to N . Because of the involved FFTs, parallel PME
requires multiple all-to-all communication steps per time step, in which the number
of messages sent between p processes scales with p2 [29]. For the PME algorithm
included in the highly efficient, open source MD package GROMACS [42], much
effort has been made to reduce as much as possible the all-to-all bottleneck, e.g.
by partitioning the parallel computer in long-range and short-range processors,
which reduces the number of messages involved in all-to-all communication [17].
Despite these efforts, however, even for multimillion atom MD systems on modern
hardware, performance levels off beyond several thousand cores due to the inherent
parallelization limitations of PME [30, 42, 45].

The second challenge is the tight and non-local coupling between the electrostatic
potential and the location of charges on the protein, in particular titratable/protonat-
able groups that adapt their total charge and potentially also their charge distribution
to their current electrostatic environment. Hence, all protonation states are closely
coupled, depend on pH, and therefore the protonation/deprotonation dynamics
needs to be taken into account during the simulation. Whereas most MD simulations
employ fixed protonation states for each titratable group, several dynamical schemes
have been introduced [8, 13, 14, 23, 33, 37] that use a protonation coordinate λ to
distinguish the protonated from the deprotonated state. Here, we follow and expand
the λ-dynamics approach of Brooks et al. [27] and treat λ as an additional degree
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of freedom in the Hamiltonian with massmλ. Each protonatable group is associated
with its own λ “particle” that adopts continuous values in the interval [0, 1], where
the end points around λ = 0 and λ = 1 correspond to the physical protonated
or deprotonated states. A barrier potential with its maximum at λ ≈ 0.5 serves
two purposes. (1) It reduces the time spent in unphysical states, and (2) it allows
to tune for optimal sampling of the λ coordinate by adjusting its height [8, 9].
Current λ-dynamics simulations with GROMACS are however limited to small
system sizes with a small number nλ of protonatable groups [7–9], as the existing,
PME-based implementation (see www.mpibpc.mpg.de/grubmueller/constpH)needs
an extra PME mesh evaluation per λ group and suffers from the PME parallelization
problem. While these extra PME evaluations can be overcome for the case where
only the charges differ between the states, for the most general case of chemical
alterations this is not possible.

Without the PME parallelization limitations, a significantly higher number of
compute nodes could be utilized, so that both larger and more realistic biomolecular
systems would become accessible. The Fast Multipole Method [15] (FMM) is a
method that by construction parallelizes much better than PME. Beyond that, the
FMM can compute and communicate the additional multipole expansions that are
required for the local charge alternatives of λ groups with far less overhead as
compared to the PME case. This makes the communicated volume (extra multipole
components) somewhat larger, but no global communication steps are involved
as in PME, where the global communication volume grows linearly with nλ and
quadratic with p. We also considered other methods that, like FMM, scale linearly
with the number of charges, as e.g. multigrid methods. We decided in favor of
FMM, because it showed better energy conservation and higher performance in a
comparison study [2].

We will now introduce λ-dynamics methods and related work to motivate the spe-
cial requirements they have on the electrostatics solver. Then follows an overview of
our FMM-based solver and the design decisions reflecting the specific needs of MD
simulation. We will describe several of the algorithmical and hardware-exploiting
features of the implementation such as error control, automatic performance tuning,
the lightweight tasking engine, and the CUDA-based GPU implementation.

2 Chemical Variability and Protonation Dynamics

Classical MD simulations employ a Hamiltonian H that includes potential terms
modeling the bonded interactions between pairs of atoms, the bond angle inter-
actions between bonded atoms, and the van der Waals and Coulomb interactions
between all pairs of atoms. For conventional, force field based MD simulations, the
chemistry of molecules is fixed during a simulation because chemical changes are
not described by established biomolecular force fields. Exceptions are alchemical
transformations [36, 38, 46, 47], where the system is either driven from a state
A described by Hamiltonian HA to a slightly different state B (with HB) via

www.mpibpc.mpg.de/grubmueller/constpH
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a λ parameter that increases linearly with time, or where A/B chimeric states
are simulated at several fixed λ values between λ = 0 and λ = 1, as e.g. in
thermodynamic integration [24]. The A→ B transition is described by a combined,
λ-dependent Hamiltonian

HAB(λ) = (1− λ)HA + λHB. (1)

In these simulations, which usually aim at determining the free energy difference
between the A and B states, the value of λ is an input parameter.

In contrast, with λ-dynamics [16, 25, 27], the λ parameter is treated as an
additional degree of freedom with mass m, whose 1D coordinate λ and velocity λ̇
evolve dynamically during the simulation. Whereas in a normal MD simulation all
protonation states are fixed, with λ-dynamics, the pH value is fixed instead and the
protonation state of a titratable group changes back and forth during the simulation
in response to its local electrostatic environment [23, 39]. If two states (or forms)
A and B are involved in the chemical transition, the corresponding Hamiltonian
expands to

H(λ) = (1− λ)HA + λHB + m/2λ̇2 + Vbias(λ) (2)

with a bias potentialVbias that is calibrated to reflect the (experimentally determined)
free energy difference between the A and B states and that optionally controls other
properties relating to the A � B transitions [8]. With the potential energy part V of
the Hamiltonian, the force acting on the λ particle is

fλ = −∂V
∂λ
. (3)

If coupled to the protonated and deprotonated form of an amino acid side chain,
e.g., λ-dynamics enables dynamic protonation and deprotonation of this side chain
in the simulation (see Fig. 1 for an example), accurately reacting to the electrostatic
environment of the side chain. More generally, also alchemical transformations
beyond protons are possible, as well as transformations involving more than just two
forms A and B. Equation 2 shows the Hamiltonian for the simplest case of a single
protonatable group with two forms A and B, but we have extended the framework to
multiple protonatable groups using one λi parameter for each chemical form [7–9].

2.1 Variants of λ-Dynamics and the Bias Potential

The key aim of λ-dynamics methods is to allow for dynamic protonation, but there
are three areas in which the implementations differ from each other. These are the
coordinate system used for λ, the type of the applied bias potential, and how λ is
coupled to the alchemical transition. Before we discuss the different choices, let
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Fig. 1 Simplified sketch of a protein (right, grey) in solution (blue) with several protonatable sites
(ball-and-stick representations) of which a histidine (top left) and a carboxyl group (bottom left)
are highlighted. The histidine site contains four forms (two neutral, two charged), whereas the
carboxyl group contains three forms (two neutral, one negatively charged). In λ-dynamics, the
lambdas controls how much of each form is contributing to a site. Atom color coding: carbons-
black, hydrogens/protons-white, oxygens-red, nitrogens-blue

us define two terms used in the context of chemical variability and protonation.
We use the term site for a part of a molecule that can interconvert between two or
more chemically different states, e.g. the protonated and deprotonated forms of an
aminoacid. Additionally, we call each of the chemically different states of a site a
form. For instance, a protonatable group is a site with at least two forms A and B, a
protonated form A and a deprotonated form B.

2.1.1 The Coordinate System for λ

Based on the coordinate system in which λ lives (or on the dynamical variables
used to express λ), we consider three variants of λ-dynamics listed in Table 1. The
linear variant is conceptually most straightforward, but it definitely needs a bias
potential to constrain λ to the interval [0..1]. The circular coordinate system for
λ used in the hypersphere variant automatically constrains the range of λ values
to the desired interval, however one needs to properly correct for the associated
circle entropy [8]. The Nexp variant implicitly fulfils the constraints on the Nforms
individual lambdas (Eq. 4) for sites that are allowed to transition between Nforms
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Table 1 Three variants of λ-dynamics are considered

Variant name Ref. Dynamical variable Geometric picture

Linear [9] λ λ lives on a constricted linear interval, e.g. [0..1]

Hypersphere [8] θ λ lives on a circle

Brooks’ Nexp [26] ϑ No simple geometric interpretation
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Fig. 2 Qualitative sketches of individual bias potentials (black) that fulfil some of the require-
ments (1)–(5), and resulting equilibrium distributions of λ values (green)

different forms (Nforms = 2 in the case of simple protonation), such that no
additional constraint solver for the λi is needed.

2.1.2 The Bias Potential

The bias potential Vbias(λ) that acts on λ fulfils one or more of the following tasks.

1. If needed, it limits the accessible values of λ to the interval [0..1], whereas slight
fluctuations outside that interval may be desirable (Fig. 2a).

2. It cancels out any unwanted barrier at intermediate λ values (b)
3. It takes care that the resulting λ values cluster around 0 or 1, suppressing values

between about 0.2 and 0.8 (c)
4. It regulates the depth and width of the minima at 0 and 1, such that the resulting λ

distribution fits the experimental free energy difference between protonated and
deprotonated form (c + d).

5. It allows to tune for optimal sampling of the λ space by adjusting the barrier
height at λ = 0.5 (c)

Taken together, the various contributions to the barrier potential might look like
the example given in Fig. 3 for a particular λ in a simulation.
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Fig. 3 Qualitative sketch of a
bias potential (black) that
fulfils all requirements
(1)–(5) with resulting
equilibrium distribution of λ
values (green)
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2.1.3 How λ Controls the Transition Between States

The λ parameter can either be coupled to the transition itself between two forms (as
in [8, 9]), then λ = 0 corresponds to form A and λ = 1 to form B. Alternatively,
each form gets assigned its own λα with α ∈ {A,B} as weight parameter. In the
latter case one needs extra constraints on the weights similar to

∑
λα = 1, 0 ≤ λα ≤ 1, (4)

such that only one of the physical forms A or B is fully present at a time. For the
examples mentioned so far, with just two forms, both approaches are equivalent and
one would rather choose the first one, because it involves only one λ and needs no
extra constraints.

If, however, a site can adopt more than two chemically different forms, the weight
approach can become more convenient as it allows to treat sites with any number
Nforms of forms (using a number of Nforms independent λ parameters). Further, it
does not require that the number of forms is a power of two (Nforms = 2Nλ) as in
the transition approach.

2.2 Keeping the System Neutral with Buffer Sites

In periodic boundary conditions as typically used in MD simulations, the electro-
static energy is only defined for systems with a zero net charge. Therefore, if the
charge of the MD system changes due to λ mediated (de)protonation events, system
neutrality has to be preserved. With PME, any net charge can be artificially removed
by setting the respective Fourier mode’s coefficient to zero, so that also in these
cases a value for the electrostatic energy can be computed. However, it is merely
the energy of a similar system with a neutralizing background charge added. Severe
simulation artifacts have been reported as side effects of this approach [19].

As an alternative, a charge buffer can be used that balances the net charge of the
simulation system arising from fluctuating charge of the protonatable sites [9, 48].
A reduced number of nbuffer buffer sites, each with a fractional charge |q| ≤ 1e (e.g.
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via H2O � H3O+), was found to be sufficient to neutralize the Nsites protonatable
groups of a protein with nbuffer % Nsites. The total charge of these buffer ions is
coupled to the system’s net charge with a holonomic constraint [9]. The buffer sites
should be placed sufficiently far from each other, such that their direct electrostatic
interaction through the shielding solvent is negligible.

3 A Modern FMM Implementation in C++ Tailored to MD
Simulation

High performance computing (HPC) biomolecular simulations differ from other
scientific applications by their comparatively small particle numbers and by their
extremely high iteration rates. With GROMACS, when approaching the scaling
limit, the number of particles per CPU core typically lies in the order of a few
hundred, whereas the wall-clock time required for computing one time step lies in
the range of a millisecond or less [42]. In MD simulations with λ-dynamics, the
additional challenge arises to calculate the energy and forces from a Hamiltonian
similar to Eq. 2, but for N protonatable sites, in an efficient way. In addition to
the Coulomb forces on the regular charged particles, the electrostatic solver has to
compute the forces on the N λ particles as well [8] via

fλi = −
∂VC

∂λi
= −∂VC(λ1, . . . , λi−1, λi , λi+1, . . . λN)

∂λi

= −
[
VC(λ1, . . . , λi−1, λi = 1, λi+1, . . . λN )

−VC(λ1, . . . , λi−1, λi = 0, λi+1, . . . λN )
]

(5)

Accordingly, with λ-dynamics, for each of the λi’s, the energies of the pure (i.e.,
λi = 0 and λi = 1) states have to be evaluated while keeping all other lambdas at
their actual fractional values.

The aforementioned requirements of biomolecular electrostatics have driven
several design decisions in our C++ FMM, which is a completely new C++
reimplementation of the Fortran ScaFaCoS FMM [5]. Although several other FMM
implementations exist [1, 50], none of them is prepared to compute the potential
terms needed for biomolecular simulations with λ-dynamics.

Although our FMM is tailored for usage with GROMACS, it can be used as
an electrostatics solver for other applications as well as it comes as a separate
library in a distinct Git repository. On the GROMACS side we provide the necessary
modifications such that FMM instead of PME can be chosen at run time. Apart
from that, GROMACS calls our FMM library via an interface that can also be
used by other codes. The development of this library follows three principles.
First, the building blocks (i.e., data structures) used in the FMM support each level
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of the hierarchical parallelism available on today’s hardware. Second, the library
provides different implementations of the involved FMM operators depending on
the underlying hardware. Third, the library optionally supports λ-dynamics via an
additional interface.

3.1 The FMM in a Nutshell

The FMM approximates and thereby speeds up the computation of the Coulomb
potential VC for a system of N charges:

VC ∝
N∑

i

∑

j<i

qiqj

|ri − rj | (6)

For that purpose, the FMM divides the simulation box into eight smaller boxes
(depth d = 1), which are subsequently subdivided into eight smaller boxes again
(d = 2) and again (d = 3, 4, . . .). The depth d refers to the number of subdivisions.
On the lowermost level, i.e. for the smallest boxes (largest d), all interactions
between neighboring boxes are directly calculated (these are called the near-field
interactions). Interactions with boxes further away are approximated by a multipole
expansion of order p (these are called the far-field interactions). A comprehensive
description of the FMM algorithm is beyond the scope of this text, however we will
shortly describe the basic workflow and the different operators used in the six FMM
stages as these will be referred to in the following sections. For a detailed overview
of the FMM, see [22]; for an introduction in our C++ FMM implementation see [12].

3.1.1 FMM Workflow

The FMM algorithm consists of six different stages, five of them required for the
farfield (FF) and one for the nearfield (NF) (Fig. 4). After setting up the FMM
parameters tree depth (d) and multipole order (p), the following workflow is
executed.

1. P2M: Expand particles into spherical multipole moments ωlm up to order p on
the lowest level for each box in the FMM tree. Multipole moments for particles in
the same box can be summed into a multipole expansion representing the whole
box.

2. M2M: Translate the multipole expansion of each box to its parent box inside the
tree. Again, multipole expansions with the same box center can be summed up.
The translation up the tree is repeated until the root node is reached.

3. M2L: Transform remote multipole moments ωlm into local moments μlm for
each box on every level. Only a limited number of interactions for each box on
each level is performed to achieve linear scaling.
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Input P2M M2M M2L L2L L2P P2P Out

synchronization
points

Fig. 4 The classical (sequential) FMM workflow consists of six stages. Only the nearfield (P2P)
can be computed completely independent of all other stages. Each farfield stage (P2M, M2M,
etc.) depends on the former stage and exhibits different amounts of parallelism. Especially the
distribution of multipole and local moments in the tree provide limited parallelism in classical
loop-based parallelization schemes

4. L2L: Translate local moments μlm starting from the root node down towards the
leaf nodes. Local moments within the same box are summed.

5. L2P: After reaching the leaf nodes, the farfield contributions for the potentials
"FF, forces FFF, and energy EFF are computed.

6. P2P: Interactions between particles within each box and its direct neighbors are
computed directly, resulting in the nearfield contributions for the potentials"NF,
forces FNF, and energy ENF.

3.1.2 Features of Our FMM Implementation

Our FMM implementation includes special algorithmical features and features that
help to optimally exploit the underlying hardware. Algorithmical features are

• Support for open and 1D, 2D and 3D periodic boundary conditions for cubic
boxes.

• Support for λ-dynamics (Sect. 2).
• Communication-avoiding algorithms for internode communication via MPI

(Fig. 9).
• Automatic tuning of FMM parameters d and p to provide automatic error control

and runtime minimization [6] based on a user-provided energy error threshold
�E (Fig. 10).

• Adjustable tuning to reduce or avoid energy drift (Fig. 11).

Hardware features include

• A performance-portable SIMD layer (Sect. 3.2.1).
• A light-weight, NUMA-aware task scheduler for CPU and GPU tasks

(Sect. 3.2.2).
• A GPU implementation based on CUDA (Sect. 3.4).
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3.2 Utilizing Hierarchical Parallelism

3.2.1 Intra-Core Parallelism

A large fraction of today’s HPC peak performance stems from the increasing width
of SIMD vector units. However, even modern compilers cannot generate fully vec-
torized code unless the data structures and dependencies are very simple. Generic
algorithms like FFTs or basic linear algebra can be accelerated by using third-party
libraries and tools specifically tuned and optimized for a multitude of different
hardware configurations. Unfortunately, the FMM data structures are not trivially
vectorizable and require careful design. Therefore, we developed a performance-
portable SIMD layer for non-standard data structures and dependencies in C++.

Using only C++11 language features without third-party libraries allows to fine-
tune the abstraction layer for the non-trivial data structures and achieve a better
utilization. Compile-time loop-unrolling and tunable stacking are used to increase
out-of-order execution and instruction-level parallelism. Such optimizations depend
heavily on the targeted hardware and must not be part of the algorithmic layer of
the code. Therefore, the SIMD layer serves as an abstraction layer that hides such
hardware-specifics and that helps to increase code readability and maintainability.
The requested SIMD width (1×, 2×, . . . , 16×) and type (float, double) is selected
at compile time. The overhead costs and performance results are shown in Fig. 5.
The baseline plot (blue) shows the costs of the M2L operation (float) without any
vectorization enabled. All other plots show the costs of the M2L operation (float)
and 16-fold vectorization (AVX-512). Since the runtime of the M2L operation is
limited by the loads of the M2L operator, we try to amortize these costs by utilizing
multiple (2× . . . 6×) SIMDized multipole coefficient matrices together with a single
operator via unrolling (stacking). As can be seen in Fig. 5, unrolling the multipole
coefficient matrices 2× (red), we reach the minimal computation time and the
expected 16-fold speedup. Additional unroll factors (3× . . . 6×) will not improve
performance due to register spilling. To reach optimal performance, it is required to
reuse (cache) the M2L operator for around 300 (or more) of these steps.

3.2.2 Intra-Node and Inter-Node Parallelism

To overcome scaling bottlenecks of a pragma-based loop-level parallelization (see
Fig. 4), our FMM employs a lightweight tasking framework purely based on C++.
Being independent of other third-party tasking libraries and compiler extensions
allows to utilize resources better, since algorithm-specific behavior and data-flow
can be taken into account. Two distinct design features are a type-driven priority
scheduler and a static dataflow dispatcher. The scheduler is capable of prioritizing
tasks depending on their type at compile time. Hence, it is possible to prioritize
vertical operations (like M2M and L2L) in the tree. This reduces the runtime
twofold. First, it reduces the scheduling overhead at runtime by avoiding costly
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Fig. 5 M2L operation benchmark for vectorized data structures with multipole order p = 10 on an
Intel Xeon Phi 7250F CPU for a float type with 16× SIMD (AVX-512). The benchmarks shows the
performance of different SIMD/unrolling combinations. E.g. the red curve (SIMD stacking 16×2)
utilizes 16-fold vectorization together with twofold unrolling For a sufficient number (around
300) of vectorized operations, a 16-fold improvement can be measured for the re-designed data
structures
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Fig. 6 The data flow of the FMM still consists of six stages. However, synchronization now
happens on a fine-grained level and not only after each full stage is completed. This allows to
overlap parts that exhibit poor parallelization with parts that show a high degree of parallel code.
The dependencies of such a data flow graph can be evaluated and even prioritized at compile time

virtual function calls. Second, since the execution of the critical path is prioritized,
the scheduler ensures that a sufficient amount of independent parallelism gets
generated. The dataflow dispatcher defines the dependencies between tasks—a data
flow graph—also at compile time (see Fig. 6). Together with loadbalancing and
workstealing strategies, even a non-trivial FMM data flow can be executed. For
compute-bound problems this design shows virtually no overhead. However, in MD
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Fig. 7 Intranode FMM benchmark for 1000 particles, multipole order p = 1 and tree depth
d = 3 on a 2x26-core Intel Xeon Platinum 8170 CPU. When using MCS locks, simultaneous
multithreading and 50 threads, the overall improvement compared to the original implementation
reaches >40%, translating into a reduction in runtime from 1.93 ms down to 1.14 ms
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Fig. 8 Initial internode FMM benchmark for 1,000,000 particles, multipole order p = 3 and tree
depth d = 5 with one MPI rank per compute node of the JURECA cluster

we are interested in smaller particle systems with only a few hundred particles per
compute node. Hence, we have to take even more hardware constraints into account.
Performance penalties due to the memory hierarchy (NUMA) and costs to access
memory in a shared fashion via locks introduce additional overhead. Therefore,
we extended also our tasking framework with NUMA-aware memory allocations,
workstealing and scalable Mellor-Crummey Scott (MCS) locks [35] to enhance the
parallel scalability over many threads, as shown in Fig. 7.

In the future, we will extend our tasking framework so that tasks can also be
offloaded to local accelerators like GPUs, if available on the node.

For the node-to-node communication via MPI the aforementioned concepts
do not work well (see Fig. 8), since loadbalancing or workstealing would create
large overheads due to a large amount of small messages. To avoid or reduce
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Fig. 9 Left: Intranode FMM parallelization—efficiency of different threading implementations.
Near field interaction of 114,537 particles in double precision on up to 28 cores on a single node
with two 14-core Intel Xeon E5-2695 v3 CPUs. Single precision computation as well as other
threading schemes (std::thread, boost::thread, OpenMP) showed similar excellent scaling behavior.
The plot has been normalized to the maximum turbo mode frequency which varies with the number
of active cores (3.3–2.8 GHz for scalar operation, 3.0–2.6 GHz for SIMD operation). Right:
Internode parallelization—strong scaling efficiency of a communication avoiding, replication-
based workload distribution scheme [10]. Near field interaction of 114,537 particles on up to
65,536 Blue Gene/Q cores using replication factor c. In the initial replication phase, only c nodes
within a group communicate. Afterwards, communication is restricted to all pairs of p/c groups.
For 65,536 cores, i.e. only 1–2 particles per core initially, a maximum parallel efficiency of 84%
(22 ms runtime) is reached for c = 64, and the maximal replication factor c = 256 yields an
efficiency of 73%, while a classical particle distribution (c = 1) would require a runtime exceeding
1 min due to communication latency

the latency that comes with each message, we employ a communication-avoiding
parallelization scheme [10]. Nodes do not communicate separately with each other,
but form groups in order to reduce the total number of messages. At the same time
the message size can be increased. Depending on the total number of nodes involved,
the group size parameter can be tuned for performance (see Fig. 9).

3.3 Algorithmic Interface

Choosing the optimal FMM parameters in terms of accuracy and performance
is difficult if not impossible to do manually as they also depend on the charge
distribution itself. A naive choice of tree depth d and multipole order p might either
lead to wasting FLOPs or to results that are not accurate enough. Therefore, d and
p are automatically tuned depending on the underlying hardware and on a provided
energy tolerance �E (absolute or relative acceptable error in Coulombic energy).
The corresponding parameter set {d, p} is computed such that the accuracy is met
at minimal computational costs (Fig. 10) [6].

Besides tuning the accuracy to achieve a certain acceptable error in the Coulom-
bic energy for each time step, the FMM can additionally be tuned to reduce the
energy drift over time.
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Fig. 10 Depending on a maximum relative or absolute energy tolerance �E, the automatic
runtime minimization provides the optimal set of FMM input parameters {d, p}. A lower requested
error in energy results in an increased multipole order p (magenta). Since the computational
complexity of the farfield operators M2M, M2L and L2L scales with p3 or even p4 (depending on
the used implementation), the tree depth d is reduced accordingly to achieve a minimal runtime
(green). With fractional depths [49], as used here, the runtime can be optimized even more than
with integer depths

Whereas multipole orders of about ten yield a comparable drift of the total energy
over time as a typical simulation with PME, the drift with FMM can be reduced to
much lower levels if desired (Fig. 11).

3.4 CUDA Implementation of the FMM for GPUs

A growing number of HPC clusters incorporate accelerators like GPUs to deliver
a large part of the FLOPS. Also GROMACS evolves towards offloading more and
more tasks to the GPU, for reasons of both performance and cost-efficiency [31, 32].

For system sizes that are typical for biomolecular simulations, FMM perfor-
mance critically depends on the M2L and P2P operators. For multipole orders of
about eight and larger their execution times dominate the overall FMM runtime
(Fig. 12).

Hence, these operators need to be parallelized very efficiently on the GPU. At the
same time, all remaining operators need to be implemented on the GPU as well to
avoid memory traffic between device (GPU) and host (CPU) that would otherwise
become necessary. This traffic would introduce a substantial overhead as a complete
MD time step may take just a few milliseconds to execute.

Our encapsulated GPU FMM implementation takes particle positions and
charges as input and returns the electrostatic forces on the particles as output.
Memory transfers between host and device are performed only at these two points
in the calculation step.
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Å

Fig. 11 Observed drift of the total energy for different electrostatics settings. Left: evolution of
the total energy for PME with order 4, mesh distance 0.113 nm, ewald-rtol set to 10−5 (black
line) as well as for FMM with different multipole orders p at depth d = 3 (see legend in the right
panel). Test system is a double precision simulation at T ≈ 300 K in periodic boundaries of 40 Na+
and 40 Cl− ions solvated in a 4.07 nm3 box containing extended simple point charge (SPC/E) water
molecules [3], comprising 6740 atoms altogether. Time step �t = 2 fs, cutoffs at 0.9 nm, pair-list
updated every ten steps. Right: Black squares show the drift with PME for different Verlet buffer
sizes for the water/ions system using 4×4 cluster pair lists [41]. For comparison, green line shows
the same for pure SPC/E water (without ions) taken from Ref. [34]. Influence of different multipole
orders p on the drift is shown for a fixed buffer size of 8.3 Å. The GROMACS default Verlet buffer
settings yield a drift of≈ 8×10−5 kJ/mol/ps per atom for these MD systems, corresponding to the
first data point on the left (black square/green circle)

The particle positions and charges are split into different CUDA streams that
allow for asynchronous memory transfer to the host. The memory transfer is
overlapped with the computation of the spatial affiliation of the octree box.

In contrast to the CPU FMM that utilizes O(p3) far field operators (M2M, M2L,
L2L), the GPU version is based on the O(p4) operator variant. The O(p3) operators
require less multiplications to calculate the result, but they introduce additional
highly irregular data structures to rotate the moments. Since the performance of
the GPU FMM at small multipole orders is not limited by the number of floating
point operations (Fig. 12) but rather by scattered memory access patterns, we use
the O(p4) operators for the GPU implementation.

We will now outline our CUDA implementation of the operations needed in the
various stages of the FMM (Figs. 4, 5, and 6), which starts by building the multipoles
on the lowest level with the P2M operator.
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Fig. 12 Colored bars show detailed timings for the various parts of a single FMM step on a GTX
1080Ti GPU for a 103,000 particle system using depth d = 3. For comparison, total execution
time for d = 3 on an RTX 2080 GPU is shown as brown line, whereas black line shows timings
for d = 4 on a GTX 1080Ti GPU. CUDA parallelization is used in each FMM stage leaving the
CPU mostly idle

3.4.1 P2M: Particle to Multipole

The P2M operation is described in detail elsewhere [44]. The large number of
registers that is required and the recursive nature of this stage limits the efficient
GPU parallelization. The operation is however executed independently for each
particle and the requested multipole expansion is gained by summing atomically
into common expansion points. The result is precomputed locally using shared
memory or intra-warp communication to reduce the global memory traffic when
storing the multipole moments. The multipole moments ω, local moments μ and
the far field operators A,M, and C are stored as triangular shaped matrices

ω,μ,A,C ∈ K
p×p := {

(xlm)l=0,...,p, m=−l,...,l | xlm ∈ C
}

(7)

and M ∈ K
2p×2p, where p is the multipole order.

To map the triangular matrices efficiently to contiguous memory, their elements
are stored as 1D arrays of complex values and the l, m indices are calculated on the
fly when accessing the data. For optimal performance, different stages of the FMM
require different memory access patterns. Therefore, the data structures are stored
redundantly in a Structure of Arrays (SoA) and Array of Structures (AoS) version.
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The P2M operator writes to AoS, whereas the far field operators use SoA. A copy
kernel, negligible in runtime, does the copying from one structure to another.

3.4.2 M2M: Multipole to Multipole

The M2M operation, which shifts the multipole expansions of the child boxes to
their parents, is executed on all boxes within the tree, except for the root node which
has no parent box. The complexity of this operation is O(p4); one M2M operation
has the form

ωlm(a
′) =

l∑

j=0

j∑

k=−j
ωjk(a)Al−j,m−k(a − a′), (8)

where A is the M2M operator and a and a′ are different expansion center vectors.
The operation performs O(p2) dot products between ω and a part of the operator
A. These operations need to be executed in all boxes in the octree, excluding the
box on level 0, i.e. the root node. The kernels are executed level wise on each
depth, synchronizing between each level. Each computation of the target ωlm for
a distinct (l,m) pair is performed in a different CUDA block of the kernel, with
threads within a block accessing different boxes sharing the same operator. The
operator can be efficiently preloaded into CUDA shared memory and is accessed
for different ωlm residing in different octree boxes. Each single reduction step
is performed sequentially by each thread. This has the advantage that the partial
products are stored locally in registers, reducing the global memory traffic since only
O(p2) elements are written to global memory. It also reduces the atomic accesses,
since the results from eight distinct multipoles are written into one common target
multipole.

3.4.3 M2L: Multipole to Local

The M2L operator works similarly to M2M, but it requires much more transforma-
tions as each source ω is transformed to 189 target μ boxes. The group of boxes
to which a particular ω is transformed to is called the interaction set. It contains
all child boxes of the direct neighbor boxes of the source’s ω parent. The M2L
operation is defined as

μlm(r) =
p∑

j=0

j∑

k=−j
ωjk(a)Ml+j,m+k(a − r), (9)

where r and a are different expansion centers. The operation differs only slightly
from M2M in the access pattern but is of the same O(p4) complexity. As the
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M2L runtime is crucial for the overall FMM performance, we have implemented
several parallelization schemes. Which scheme is the fastest depends on tree depth
and multipole order. The most efficient implementation is based on presorted lists
containing interaction box pointers. The lists are presorted so that the symmetry
of the operator M can be exploited. In M, the orthogonal operator elements differ
only by their sign. Harnessing this minimizes the number of multiplications and
global memory accesses and allows to reduce the number of spawned CUDA blocks
from 189 to 54. However, it introduces additional overhead in logic to change
signs and computations of additional target μ box positions, so the performance
speedup is smaller than 189/54. The kernel is spawned similarly to the M2M
kernel performing one dot product per CUDA block preloading the operator M
into shared memory. The sign changing is done with the help of and additional
bitset provided for each operator. Three different parallelization approaches are
compared in Fig. 13. Considering the hardware performance bottlenecks of this
stage, the limitations highly differ for particular implementations. The naive M2L
kernel is clearly bandwidth limited and achieves nearly 500 GB/s for multipole
orders larger than ten. This is higher than the theoretical memory throughput of
the tested GPU, which is 480 GB/s, due to caching effects. The cache utilization
is nearly at 100% achieving 3500 GB/s. However, the performance of this kernel
can be enhanced further by moving towards more compute bound regime. With the
dynamical approach the performance is mainly limited by the costs of spawning
additional kernels. It can be clearly seen with the flat curve shape for multipoles

naive

dynamic

symmetric

Fig. 13 Comparison of three different parallelization schemes for the M2L operator, which is the
most compute intensive part of the FMM algorithm. The naive implementation (red) directly maps
the operator loops to CUDA blocks. It beats the other schemes only for orders p < 2. Dynamic
parallelization (blue) is a CUDA specific approach that dynamically spawns thread groups from
the kernels. The symmetric scheme (magenta) represents the FMM tree via presorted interaction
lists. It also exploits the symmetry of the M2L operator
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Fig. 14 Hardware utilization of the symmetrical M2L kernel of the GPU-FMM

smaller than 13 in Fig. 13. The hardware utilization for the symmetrical kernel
is depicted in Fig. 14. The performance of this kernel depends on the multipole
order p, since p2 is a CUDA gridsize parameter [40]. The values p < 7 lead
to underutilization of the underlying hardware, however they are mostly not of
practical relevance. For larger values the performance is operations bound achieving
about 80% of the possible compute utilization.

3.4.4 L2L: Local to Local

The L2L operation is executed for each box in the octree, shifting the local moments
from the root of the tree down to the leaves, opposite in direction to M2M. Although
the implementation is nearly identical, it achieves slightly better performance than
M2M because the number of atomic memory accesses is reduced due to the tree
traversing direction. For the L2L operator, the result is written into eight target
boxes, whereas M2M gathers information from eight source boxes into one.

3.4.5 L2P: Local to Particles

The calculation of the potentials at particle positions xi requires evaluating

"(xi) =
p∑

l=0

l∑

m=−l
μlmω̊

i
lm, i = 0, . . . , Nbox , (10)
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where ω̊ilm is a chargeless multipole moment of particle at position xi and Nbox the
number of particles in the box. The complexity of each operation is O(p2). This
stage is similar to P2M since the chargeless moments need to be evaluated for each
particle using the same routine for a charge of q = 1. The performance is limited by
register requirement but like in the P2M stage it runs concurrently for each particle
and it is overlapped with the asynchronous memory transfer from device to host.

3.4.6 P2P: Particle to Particle

The FMM computes direct Coulomb interactions only for particles in the leaves
of the octree and between particles in boxes that are direct neighbors. These
interactions can be computed for each pair of atoms directly by starting one thread
for each target particle in the box that sequentially loops over all source particles. An
alternative way that better fits the GPU hardware is to compute these interactions for
pairs of clusters of sizeM andN particles, withM ×N = 32 the CUDA warp size,
as laid out in [41]. The forces acting on the sources and on the targets are calculated
simultaneously. The interactions are computed in parallel between all needed box-
box pairs in the octree. The resulting speedup of computing all atomic interactions
between pairs of clusters instead of using simpler, but longer loops over pairs of
atoms is shown in Fig. 15. The P2P kernels are clearly compute bound. The exact
performance evaluation of the kernel can be found in [41].

Fig. 15 Speedup of calculating the P2P direct interactions in chunks of M × N = 32 (i.e. for
cluster pairs of sizeM and N) compared to computing them for all atomic pairs (i.e. for “clusters”
of sizeM = N = 1). All needed FMM box-box interactions are taken into account
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3.5 GPU FMM with λ-Dynamics Support

In addition to the regular Coulomb interactions, with λ-dynamics, extra energy
terms for all forms of all λ sites need to be evaluated such that the forces on
the λ particles can be derived. The resulting additional operations exhibit a very
unstructured pattern that varies depending on the distribution of the particles
associated with λ sites. Such a pattern can be described by multiple sparse FMM
octrees that additionally interact with each other. The sparsity that emerges from a
relatively small size of the λ sites necessitates a different parallelization than for
a standard FMM. To support λ-dynamics efficiently, all stages of the algorithm
were adapted. Especially, the most compute intense shifting (M2M, L2L) and
transformation (M2L) operations need a different parallelization than that of the
normal FMM to run efficiently for a sparse octree. Figure 16 shows the runtime of
the CUDA parallelized λ-FMM as a function of the system size, whereas Fig. 17
shows the overhead associated with λ-dynamics. The overhead that emerges from
addition of λ sites to the simulation system scales linearly with the number of
additional sites with a factor of about 10−3 per site. This shows that the FMM
tree structure fits particularly well the λ-dynamics requirements for flexibility to
compute the highly unstructured, additional particle-particle interactions. Note that
our λ-FMM kernels still have the potential for more optimizations (at the moment
they achieve only about 60% of the efficiency of the regular FMM kernels) such that
for the final optimized implementation we expect the costs for the additional sites
to be even smaller than what is shown in Fig. 17.

Fig. 16 Absolute runtime of the λ-FMM CUDA implementation. For this example we use one λ
site per 4000 particles as estimated from the hen egg white lysozyme model system for constant-
pH simulation. Each form of a λ site contains ten particles. The tests were run on a GTX 1080Ti
GPU
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Fig. 17 As Fig. 16, but now showing relative costs of adding λ-dynamics functionality to the
regular GPU FMM

4 Conclusions and Outlook

All-atom, explicit solvent biomolecular simulations with λ-dynamics are still
limited to comparatively small simulation systems (<100,000 particles) and/or short
timescales [7, 9, 18]. To ultimately allow for a realistic (e.g., const-pH) treatment
of large biomolecular systems on long timescales, we are developing an efficient
FMM that computes the long-range Coulomb interactions, including local charge
alternatives for a large number of sites, with just a small overhead compared to the
case without λ-dynamics.

Our FMM library is a modern C++11 based implementation tailored towards the
specific requirements of biomolecular simulation, which are a comparatively small
number of particles per compute core and a very short wall clock time per iteration.
The presented implementation offers near-optimal performance on various SIMD
architectures, an efficient CUDA version for GPUs, and it makes use of fractional
tree depths for optimal performance. In addition to supporting chemical variability
via λ-dynamics, it has several more unique features such as a rigorous error control,
and based upon that, an automatic performance optimization at runtime. The energy
drift resulting from errors in the FMM calculation can be reduced to virtually zero
with a newly developed scheme that adapts the multipole expansion order p locally
and on the fly in response to the requested maximum energy error. With fixed p,
using multipole orders 10–14 yields drifts that are smaller than those observed for
typical simulations with PME. We expect the FMM to be useful also for normal
MD simulations, as a drop-in PME replacement for extreme scaling scenarios where
PME reaches its scaling limit.

The GPU version of our FMM will implicitly use the same parallelization
framework as the CPU version. In fact, GPUs will be treated as one of several
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resources a node offers (in addition to CPUs), to which tasks can be scheduled.
As our GPU implementation is not a monolithic module, it can be used to calculate
individual parts of the FMM, like the near-field contribution or the M2L operations
of one of the local boxes only, in a fine-grained manner. How much work is offloaded
to local GPUs will depend on the node specifications and on how much GPU and
CPU processing power is available.

The λ-dynamics module allows to choose between three different variants of
λ-dynamics. The dynamics and equilibrium distributions of the lambdas can be
flexibly tuned by a barrier potential, whereas buffer sites ensure system neutrality
in periodic boundary conditions. Compared to a regular FMM calculation without
local charge alternatives, the GPU-FMM with λ-dynamics is only a factor of two
slower even for a large (500,000 atom) simulation system with more than 100
protonatable sites.

Although some infrastructure that is needed for out-of-the-box constant-pH
simulations in GROMACS still has to be implemented, with the λ-dynamics and
FMM modules, the most important building blocks are in place and performing
well. The next steps will be to carry out realistic tests with the new λ-dynamics
implementation and to thoroughly compare to known results from older studies,
before advancing to larger, more complex simulation systems that have become
feasible now.
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concurrency of large scale systems, the mSPMD model was proposed and imple-
mented with the YvetteML workflow description language. When introducing a new
parallel programming paradigm, good tool support for debugging and performance
analysis is crucial for the productivity and therefore the acceptance in the HPC
community. The subject of the MYX project is to investigate which properties of a
parallel programming language specification may help tools to highlight correctness
and performance issues or help to avoid common issues in parallel programming in
the first place. In this paper, we exercise these investigations on the example of
XcalableMP and YvetteML.

1 Introduction

Exascale systems are expected to consist of tens of thousands of compute nodes,
complemented by specialized accelerators, resulting in system architectures which
are heterogeneous on multiple levels. Such architectures challenge the programmer
to write multi-level parallel programs, which means employing multiple different
paradigms to address each level of parallelism in the system [2]. This ranges
from inter-node parallelism in the form of distributed memory parallelism, over
shared-memory parallelism to exploit multi-core processors and acceleration units,
to vector-style parallelism to target corresponding hardware units. The long-term
challenge is to evolve existing and develop new programming models to better sup-
port the application development on exascale machines. For different domains and
different abstraction levels, various programming models have gained momentum.
While there is ongoing research on how to make the currently predominant HPC
programming model—namely MPI+X—scale well on such systems, the emerging
and more high-level PGAS programming models have shown to deliver high
productivity for users and certain types of codes [10]. The JST-CREST funded post-
petascale HPC project developed the XcalableMP (XMP) programming paradigm,
which combines local and global view PGAS concepts.

The multi-level programming paradigm FP3C [13] as described later in this paper
is a solution for post-petascale systems targeting a huge number of processors and
the attached acceleration devices. Programmers can express high-level parallelism
in the YvetteML (YML) workflow language and employ parallel components
written in SPMD programming paradigms like XMP or MPI. Since YML drives and
executes multiple SPMD tasks at the same time, this is characterized as mSPMD.

The MYX project aims to combine the know-how and lessons learned of different
areas to derive the input necessary to guide the development of future programming
models and software engineering methods. Therefore we are developing correctness
checking techniques for the XMP programming paradigm and make this analysis
also available for the multi-level programming paradigm FP3C.
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The contributions of this work are:

• Identify possible correctness issues of XMP applications,
• define an XMP tools interface to provide runtime state and event information to

runtime tools,
• extend MUST by XMP specific runtime correctness analyses,
• extend YML to soundly support innovative numeric techniques like UCGLE, and
• provide a workflow to analyze YML+XMP applications driven by the FC2P

framework.

The structure of the remaining paper is as follows. In Sect. 2 we introduce the
concept of runtime correctness checking and provide an overview of the general
implementation of MUST. In Sect. 3 we provide a brief overview of the concepts
of the XMP programming paradigm based on an example code. In Sect. 4 we
highlight potential correctness issues in XMP applications and what information
is needed to analyze those errors. To perform such runtime analysis, a tool like
MUST needs state and event information from the XMP runtime system. In Sect. 5
we, therefore, provide a brief overview of the tools interface that we proposed as
an extension of XMP to the XMP specification consortium. In Sect. 6 we introduce
the concepts of the YML workflow language based on an example code. The unite
and conquer method described in Sect. 7 represents an example use case for an
mSPMD program implemented with YML for the coarse-grained parallelism and
XMP for the implementation of the individual YML tasks. To implement such a
method, some extensions of YML are necessary, we also discuss the implications
for correctness. In Sect. 8 we present the FP2C framework, which provides a
YML+XMP implementation targeted to HPC systems. As MPI is basically the
standard for distributed memory HPC systems and those systems also prefer fixed-
width jobs, i.e., jobs with a fixed number of processes the FP2C framework
is implemented with MPI and dynamically launches MPI processes to fill the
requested number of process slots. Finally, in Sect. 9 we present the challenges
and solutions to provide runtime correctness analysis in MUST for such a dynamic
runtime system.

2 Runtime Correctness Analysis for Parallel Programs

Other than serial programs, parallel programs are affected by non-determinism as
an effect of the concurrent execution of multiple threads or processes. For defect
programs, this non-determinism can manifest as data races or deadlocks which are
not known in serial programming. Different approaches to identify and remove the
defects in those programs include static code analysis, model checking, and runtime
or post-mortem analysis. Here we want to discuss runtime correctness analysis,
where the error detection is performed during the execution of the program.

MUST performs runtime correctness checking for MPI parallel applications. The
application developer executes the application under the control of MUST, which
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checks at execution time whether the usage of MPI is valid according to the MPI
specification. For MPI applications we have shown, that the execution overhead
for such runtime analysis is below 20% for the typical use case [8]. Although
we aim at complete coverage of the MPI specification, the focus is currently on
communication functions.

The overhead of runtime correctness analysis depends significantly on the
granularity of the analysis. For MPI, the granularity is quite coarse-grained: there
is typically a lot of calculation between MPI function calls which is not analyzed.
For data race detection in multithreaded applications, the granularity of analysis is
much more fine-grained, as each individual memory access is subject to analysis.
Therefore we see a two to hundredfold runtime overhead for data race analysis.

2.1 Runtime Analysis in MUST

For runtime analysis of distributed memory applications, we distinguish three kinds
of analyses as shown in Fig. 1. Local analysis only needs information from a single
application process and can be performed within the application process to avoid
unnecessary data transfer. In a multi-threaded application, this analysis potentially
needs information from multiple threads. We, therefore, spawn an additional
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- HTML output

Fig. 1 MUST applied to a hybrid parallel application with four processes p0 . . . p3 and four
threads t0 . . . t3 each. MUST spawns an extra tool thread in each process, which communicates
with the additional tool processes using a tree-based overlay network (TBON). Each analysis is
performed on the first tool layer that has sufficient information to perform the specific analysis.
In the typical setup, communication between MUST processes is performed using MPI. The
communication between the threads uses shared memory communication
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analysis thread to have all necessary information available. In a single-threaded
application or when only the master thread communicates, the local analysis is
performed in the application thread and no additional tool thread is spawned. As
an example, local type matching compares compile-time information about types
used by the application on variable declaration with the runtime information on the
corresponding MPI data types used in communication [9].

Distributed analysis needs information from more than one application process.
For scalability reasons, the analysis is distributed in the analysis tree and performed
in the node where sufficient information is available. As an example, the distributed
deadlock detection analysis runs on the parent node of each application process. It
works with a distributed state transition system, which is fed with send and receive
information for the specific process, as well as completion notification for collective
communication [8].

Centralized analysis needs global information from multiple or all application
processes. For scalability, a tree reduction analysis is applied where possible, so
that the centralized analysis is just the last step in such reduction. An example of
such tree reduction is collective matching analysis, where each tree node compares
the parameters in collective communication for all child nodes and finally passes
one representative to the parent tree node. An example of completely centralized
analysis is graph-based deadlock analysis, which we use to visualize the circular
dependencies causing a deadlock, but also to verify the presence of a deadlock
in the time-out based deadlock detection. This analysis needs information on all
pending communication operations but is only executed when a deadlock is detected
or suspected.

2.2 Underlying Tool Infrastructure of MUST

MUST intercepts events in the execution of a targeted application to apply the
analysis based on the information from these application events. Initially, these
events were MPI function calls, but this is now extended to OpenMP and XMP
events that are delivered to registered callback functions. Within an application
process or thread, the tool can only get active when such an event is delivered.
MUST builds on a tree-based overlay network (TBON) communication subsystem,
as depicted in Fig. 1. Since the tool cannot make any assumptions, when it will
be active on an application process or thread, those nodes communicate only
towards the root of the tree. For use cases as point-to-point matching and distributed
deadlock detection, the classical TBON communication scheme was extended by
horizontal communication within a tool layer. In the current default configuration
of MUST, all processes are started together as MPI processes with a common
MPI_COMM_WORLD. Using the MPI interception layer PMPI, MUST then makes
sure, that only the processes intended to execute the application code will continue
execution. The tool processes remain in a run loop which waits for incoming
events to process. Whenever application code uses MPI_COMM_WORLD in an MPI
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function call, this communicator is replaced by a sub-communicator representing
the application processes. This is transparent for the application, which will never
see the additional analysis processes. For performance reasons, the tree layout—
including the number of layers and placement of analysis functions— is hard-coded
and compiled into a specific instance of the tool. This means that with the current
tool infrastructure a dynamic reconfiguration of the tree is not possible at runtime.

3 XcalableMP

XcalableMP (XMP) is a directive-based language extension for Fortran and C
languages. Like in OpenMP, parallelism is introduced by the use of directives. If all
the directives are ignored by the compiler, a serial program with the same semantics
and results should remain. XMP targets parallel programming for distributed
memory systems, in contrast to OpenMP targeting shared-memory parallelism. The
implementation of XMP in the OmniCompiler is a source to source transformation,
which translates the directives into additional code and calls into the XMP runtime
library. The XMP runtime library communication is mainly performed using MPI.
Therefore, it is in general also possible to use MPI communication in XMP
programs or link a library written with XMP into an MPI application.

Listing 1 shows an example of an XMP distributed parallel source code. This
example assumes the execution with four processes which are assigned to the
nodeset p. In XMP, the distribution of a virtual array onto nodes is defined as a
template. An array is then associated with a template using the align statement.
This defines the distribution of the array over the nodes. Also, the distributed
processing is defined by applying the template to a loop directive. The iterations
of the loop are executed on the different processes according to the distribution
assigned to the template t.

For parallelization of stencil codes on distributed memory systems, there is
typically the need to use a halo as temporary copy for the calculation of the boundary
in the local share. XMP supports such behavior with two directives. The shadow

Listing 1 Global-view programming: distribute data and work to processes (nodes)

#pragma xmp nodes p(4)
#pragma xmp template t(0:11)
#pragma xmp distribute t(block) onto p
int B[12]; // Data Mapping
#pragma xmp align B[i] with t(i)

#pragma xmp loop (i) on t(i)
for(i=0; i<12; i++){ // Work Mapping

B[i]=B[i]*2;
}
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Listing 2 Local-view programming: use coarray notion in C code

int a[10]:[*], b[10], c[10];
#pragma xmp nodes p(4)

int me = xmpc_this_image();
int right = (me + 1) % 4, left = (me + 3) % 4;
for(i=0; i<10; i++){

b[i]=me; // initialize
}
a[:]:[right] = b[:]; // put to right neighbor
xmp_sync_all(NULL); // barrier and sync memory
b[:] = a[:]; // local copy
c[:] = a[:]:[left]; // get from left neighbor

directive allows to specify the width of the halo for a specific distributed array and
the reflect directive is to perform the update of the halo.

The functionality described so far is called as global-view programming in XMP.
In global-view programming, the application programmer does not need to care
where data is located. The array is transparently distributed and accessed. In the
suggested workflow, the work is performed where the data is located.

Furthermore, XMP extends Coarray Fortran and makes this functionality also
available in C. In XMP this is called local-view programming. To access memory
on a different process in local-view programming means to explicitly specify the
target process, that holds the image of interest.

The code example in Listing 2 demonstrates how XMP allows using the concept
of Coarray in C code. The array a is declared as a Coarray of size 10 with an image
on each process. The image selector is separated with a colon in the declaration. A
classical, local array b is initialized in the for loop and then assigned to the Coarray
a. The slice notation b[:] similar to Fortran allows assigning a whole array at
once. The assignment to the remote image right is semantically a put operation.
Therefore, the slice notion is not only a convenience feature but allows to perform
a single memory transfer in comparison to a for loop, which assigns each array
element individually.

4 Correctness Checking for XMP Programs

In this section, we will discuss possible programming errors in XMP applications
and how to detect those errors in the code.
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4.1 Programming Errors in XMP Programs

For global-view programming we identified a range of possible programming errors
that violate restrictions provided for the specific XMP construct. As an example, the
barrier construct has the following restriction:

• The nodeset specified by the on clause must be a subset of the executing nodeset.

The code example in Listing 3 violates this restriction, because the task construct
limits the executing nodeset to process p(0), while the nodeset specified by the on
clause is the complete nodeset p. The code presents also the MPI idiom with the
same semantic. Since only the process with the rank number 0 reaches the barrier,
this will finally result in a deadlock for the MPI code.

Besides violations against restrictions imposed by the XMP specification, we also
identified possible data races for asynchronous communication. The code example
in Listing 4 initializes a distributed array, which is defined with a surrounding halo.
The update of the halo is performed asynchronously, because of the async clause.

Listing 3 Only a subset of processes participates in a collective barrier operation

#pragma xmp task on p(0)
{

printf("Only executed on rank 0");
#pragma xmp barrier on p

}
if(rank == 0)
{

printf("Only executed on rank 0");
MPI_Barrier(MPI_COMM_WORLD);

}

Listing 4 Asynchronously updating the halo can result in a data race

int a[16];
#pragma xmp nodes p[4]
#pragma xmp template t[16]
#pragma xmp distribute t onto p
#pragma xmp align a[i] with t[i]
#pragma xmp shadow a[1]

#pragma xmp loop (i) on t[i]
for(int i=0;i<16;i++)

a[i] = i * 4;

#pragma xmp reflect (a) width (/periodic/1) async(100)
for(int i=0;i<16;i++)

a[i] = a[i-1] + a[i+1];
#pragma xmp wait(100)
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Before the asynchronous execution is finished, the stencil access already reads this
halo value. It is unclear whether the old or the new value is read, but also whether
the old or the new value is sent to the neighbor.

Another possible error arises from the use of the orthogonal clause with the
reflect construct. With this clause, only the orthogonally adjacent halo will be
updated, but not the corners or edges of a multidimensional halo. For most stencil
applications, this is sufficient and saves a lot of communication, because the corner
is located on a different process. If the application nevertheless needs and accesses
the value, it will see an uninitialized value there.

For local-view programming, the main risk is data race in the remote memory
access. This can occur if different processes access the same memory in the same
image without synchronization and one of them modifies the memory. Revisiting
the code example in Listing 2, we would have a data race on a if we remove the
function call to xmp_sync_all. The left neighbor updates the local image a
of a process, which would then not be synchronized with the local access to a and
also not synchronized with the read by the right neighbor.

4.2 Correctness Analysis for XMP Programs

Since XMP programs translate to MPI programs in the implementation provided
by the omni-compiler, we can apply native MPI correctness analysis to XMP
programs. For an application which implements Listing 3, MUST detects a deadlock
between an MPI_Barrier implementing the XMP barrier directive and an
MPI_Barrier inserted by the XMP compiler at the end of the task region.
Figure 2 shows the deadlock as reported by MUST. The left diagram depicts
the cyclic dependency detected by MUST, where MPI_Barrier is called with
two different communicators. The MUST report provides further details about
these communicators, which are created by the XMP implementation. The right
diagram provides additional information on the function stack for the two conflicting
MPI_Barrier calls. _XMP_Barrier is the XMP runtime implementation for
any explicit or implicit barrier. The graph also shows that this XMP barrier is called
from two different locations—lines 15 and 23—in the source code, although the
original source code only has 15 lines.

This example emphasizes, that correctness analysis for XMP applications can be
done at the MPI level, but is not too useful for the application developer. In other
previous work [1, 11] we have seen that we can achieve better results concerning
precision and recall if we base the analysis on the semantics of the high-level parallel
programming paradigm. Furthermore, the analysis at a higher abstraction level can
help to provide more meaningful error reports. In the following, we will see how
this applies to XMP.

Analysis in Global-View Programming For the errors, where XMP code might
violate restrictions imposed by the XMP specification, we distinguish between static
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Fig. 2 Deadlock detected by MUST for Listing 3 when only looking at MPI

and dynamic properties of the code. Most of the restrictions on the standalone
declarative directives like nodes, template, or align have an impact on static
properties of the code. Those restrictions include self-reference in a declaration or
lexical name conflicts of handle names with other symbols in a scoping unit. Such
restrictions should be enforced by the compiler and result in meaningful compile-
time error messages.

Restrictions on dynamic properties depend on the specific value a variable has at
runtime. We distinguish between those that involve only the local process and those
that involve multiple or all processes. For global-view programming the latter is
only the case for collective operations, which require consistent clauses and values
among all contributing processes. As for MPI collective communication functions,
we analyze this as a reduction analysis, where each node in the TBON compares all
incoming events and passes one representative event to the parent node.

All other restrictions on dynamic properties can be analyzed locally. Various
XMP constructs have the same restriction as mentioned in Sect. 4.1 for the
barrier construct. The nodeset used for the construct needs to be a subset of
the currently executing nodeset. The executing nodeset is the set of nodes executing
the current XMP region. The loop construct as well as the task construct allow
to restrict the currently executing nodeset. To perform runtime analysis for such a
subset requirement, an analysis tool needs to understand the concept of nodeset and
how they can be derived. Listing 5 provides some examples for slicing nodesets.
The nodeset p consists of the eight processes executing the application, it is also
called entire nodeset. The nodeset q skips the first node in p and recruits nodes two
to five from p. The nodeset r is a two-dimensional nodeset, which can be used from
two-dimensional domain decomposition. The nodeset s is also two-dimensional,
but uses only every other node in p. Now, checking whether q[2] is subset of s
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Listing 5 Deriving nodesets in XMP

#pragma xmp nodes p(8) // entire nodeset
#pragma xmp nodes q(4)=p(2:5) // slicing nodes 2-5
#pragma xmp nodes r(2,4)=p(1:8) // 2-dimensional nodeset
#pragma xmp nodes s(2,2)=p(1:8:2) // skip every other node

is a non-trivial question. One method to perform the subset analysis is to expand
the given nodeset to the entire nodeset while marking participating nodes. This
expansion is not scalable for large numbers of processes, but for some comparison
of nodesets we cannot avoid the full expansion.

Analysis in Local-View Programming For local-view programming, our main
focus is on data race detection in remote memory access. A data race is commonly
understood as concurrent access of multiple execution entities to the same data in
memory while at least one access is writing to memory. Concurrent access implies
that there is no synchronization between the two memory accesses. We can observe
two ways of access to a coarray in XMP, both can be found in the code example
in Listing 2. The remote image access denoted by a[:]:[target] has write
semantics on the target memory for the put operation and read semantics for the get
operation. The local image access denoted by a[:] or by a[1] has the memory
access semantics as suggested by the base language. In general, an application might
access and modify the local image through a pointer to the local image. Especially,
when the array is passed to a library, as a linear algebra library, the access to the local
image is out of control of the XMP compiler or runtime system. To detect data races
on remote memory access, we need to instrument the local memory accesses as well
as tracking all remote memory accesses. Since the conflicting memory access might
occur in the library, also the library needs to be instrumented for the runtime data
race analysis. This is particularly difficult if the library is only available as a binary.

For data race analysis in MUST, we build on ThreadSanitizer as logging and
analysis backend. Memory access instrumentation is performed by clang or GNU
compiler during compilation. In addition, we provide high-level synchronization,
memory access, and concurrency semantics into the ThreadSanitizer analysis.
Therefore we extend the annotation interface used by ThreadSanitizer and Valgrind
to feed all necessary information into the analysis. An access to the local image
by a remote process should be seen concurrent to any previous access by a
different process, that is not synchronized with the current access. Synchronization
in XMP is possible with global synchronization, e.g., using the sync all directive
respectively an xmp_sync_all() call, or point to point synchronization, e.g.,
using the sync image directive respectively an xmp_sync_image() function
call.
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5 Tools Interface for XcalableMP

To provide XMP specific runtime information to analysis tools, we designed and
implemented the XMP tools interface—XMPT. The interface builds on experiences
from the OpenMP tools interface. As an example, the specific environmental
variable XMP_TOOL_LIBRARIES allows loading an XMP specific tool, when the
XMPT interface is available during application execution. This imitates the OMPT
specific environmental variable OMP_TOOL_LIBRARIES and allows building
portable tools, which dynamically adapt to the parallel programming paradigm used
by a program.

During startup of an XMP application, the XMP runtime tries to find an XMPT
tool, which is identified by the exported function xmpt_initialize. Other than
in OMPT we don’t need a three-way handshake for tool initialization, as the XMP
runtime doesn’t need to adopt the own initialization in case an XMPT tool is present.
Once a tool is found, the XMP runtime calls this function and the tool has the chance
to register callbacks for certain XMP events. The current implementation of XMPT
provides callbacks for all global-view directives and constructs as well as for coarray
memory access and synchronization in local-view programming.

The data mapping identifiers like node-names and template-names are identified
by their opaque XMP descriptor handles. To recognize such a descriptor and store
information on the descriptor, the XMPT interface allows binding tool data to each
XMP descriptor.

The OpenMP specification restricts the OMPT tool to only use OMPT runtime
functions, but not to call OpenMP runtime routines like omp_get_num_threads,
nor to use OpenMP pragmas to implement OMPT callback functions or signal
handlers. Without this restriction, the OMPT tool might cause a deadlock in the
execution of an OpenMP application, because the OpenMP runtime could hold a
lock that it tries to acquire again when the OpenMP runtime function is called. The
main difference in this particular aspect is that XMP is initialized explicitly at an
early point in the execution by calling xmp_init, while OpenMP implementations
tend to lazy initialize when the first OpenMP construct or runtime routine is called.
For thread-safe initialization, the OpenMP runtime might acquire an initialization
lock at any entry to the runtime.

For XMPT there is no restriction on the use of XMP runtime functions so that
an XMPT tool can use the variety of inquiry functions to collect all necessary
information about the opaque XMP descriptor handles. This allows to query
information on XMP specific entities on demand and avoids to transport all available
information as arguments to the callbacks. This makes the interface both more
compact and more efficient.
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6 YvetteML

YvetteML (YML) is a workflow description language for technical or scientific
calculation that describes dependencies among tasks.

YML interprets low source code and dependencies between tasks to generate the
indicated DAG and execute the task according to the DAG. YML of the original
casing is, P2P tasks that are written sequentially in the language it was assumed
to run in an environment or a small cluster, of tasks written in a parallel language.
By using YML it became possible to run the application on a large scale system.
We also developed middleware for porting. The middleware used to implement the
mSPMD programming model is OmniRPC-MPI [13]. It provides Remote Procedure
Call (RPC) based on MPI and is an extension of the library OmniRPC. Our
OmniRPC-MPI middleware is a workflow scheduler to control remote programs
which are created for task execution by use of MPI_Comm_spawn on request.
Control and data flow is implemented using MPI functions such as and MPI_Send
and MPI_Recv.

Listing 6 shows a simple example for a YML program. It invokes a function
add which takes two double arguments and on return provides the sum in the first
argument. The execution starts sequentially, at first result = 1 + 2 is calculated.
Then execution continues parallel with three concurrent code blocks, separated by
//. The first code block is just to satisfy the dependency onping[0], the other two
concurrent code blocks execute five parallel iterations each. We can interpret each
of the iterations as a task, the wait and notify statements express dependencies.
The YML interpreter generates a DAG as depicted in Fig. 3, where each parallel
block and each parallel loop iteration becomes a task. Each of the leaf tasks executes

Listing 6 YvetteML example

compute add(result, 1.0, 2.0); # result <- 1 + 2
par

notify(ping[0]);
//

par(i:=0;4)
do

wait(ping[i]);
compute add(result, result, result);
notify(pong[i]);

enddo
//

par(i:=0;4)
do

wait(pong[i]);
compute add(result, result, result);
notify(ping[i+1]);

enddo
endpar
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Fig. 3 Graph of tasks as defined by the YvetteML code in Listing 6. The task nodes representing
the inner task executing the compute add are represented by the result of their computation

one of the add functions and the vertices represent the dependencies expressed by
the notify and wait statements. Due to the alternating dependencies between
the tasks, this program at the end executes sequentially.

7 Unite and Conquer Approach Using YvetteML

The Unite and Conquer approach was introduced by Emad et al. [6]. The principle of
this approach is to make the collaboration of several iterative methods to accelerate
the convergence of one of them. This approach can be seen as a model for the
design of numerical methods by combining different computational components
to work for the same objective, with asynchronous communication among them.
Unite implies the combination of different computational components, and conquer
represents different components work together to solve one problem. Different
independent components with asynchronous communications can be deployed on
various platforms such as P2P, cloud and supercomputer systems. The idea of
mixing asynchronously restarted Krylov methods using distributed and parallel
computing was initially introduced by Guy Edjlali and Serge Petiton [4, 5].
They experimented those hybrid Krylov methods asynchronously on networks of
heterogeneous parallel computers (e.g., using two Connection Machines, a CM5
and a CM200 and a network of workstations).
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Dividing iterative methods into components coupled with asynchronous com-
munication, as suggested in the Unite and Conquer approach, introduces both
numerical and parallel benefits for the components.

Numerical benefits: for conventional deflation and polynomial preconditioned
methods, the information used is obtained from previous Arnoldi reduction, and
it might be difficult to explore larger subspace. Therefore, the convergence might
be slowed down. For the methods implemented with the proposed paradigm, the
solving and preconditioning parts are independent. This information applied to
the deflation or polynomial preconditioned Solver Components can be different
from their own Arnoldi reduction, which improves the flexibility of the algorithms,
e.g., much more eigenvalues and larger searching space for the deflation. Hence
the limitation of spectral information caused by restarting might be broken down,
and faster convergence might be obtained. The numerical benefits for linear and
eigensolver are already respectively discussed in [7, 14].

Parallel benefits: parallel performance of iterative methods can be improved by
the asynchronous promotion and reduction of synchronizations and global commu-
nications, especially the synchronization points for the preconditioning. Separating
components improves also the fault tolerance and reusability of algorithms.

7.1 UCGLE

UCGLE (Unite and Conquer GMRES/GMRES-LS method) is a linear equation
solver implementation based on the Unite and Conquer approach. It composes
mainly three computing components: ERAM, GMRES (Generalized Minimal
Residual method), and LS (Least-Squares polynomial method). The GMRES
component is used to solve the systems, the LS and ERAM components work as
the preconditioning part. The asynchronous communication of this hybrid method
among three components reduces the number of overall synchronization points and
minimizes global communication. The work-flow of UCGLE with three computing
components: The ERAM component computes the desired number of dominant
eigenvalues, and then sends them to LS component; the LS component uses these
received eigenvalues to generate a new residual vector, and sends it to the GMRES
component; the GMRES component uses this residual as a new restarted initial
vector for solving the non-Hermitian linear systems. Figure 4 shows the better
convergence acceleration of UCGLE compared with preconditioned GMRES. The
convergence of UCGLE is accelerated by the LS polynomial preconditioning.

For the use-case of multiple right-hand sides, Wu and Petiton extend this method
to m-UCGLE [14]. The m-UCGLE approach furthermore splits the problem into
blocks, which are solved individually while feeding their results asynchronously
into the computation of the other blocks. This loosely synchronized blocking
approach is supported by the general asynchronous feedback loop in the UCGLE
approach. Overall this method shows better scalability than other approaches while
still profiting from the improved convergence behavior of the UCGLE method.
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Fig. 4 Convergence comparison of UCGLE method vs. classic GMRES

7.2 Extending YvetteML to Support m-UCGLE

With the current version of YML, the implementation of an m-UCGLE method is
not possible due to two limitations: There is no mean for asynchronous communica-
tion in YML as needed for the asynchronous feedback loop. YML also provides no
way to break early from a YML loop. The latter would be needed to stop iteration
at a convergence condition. To make the control flow depending on asynchronous
communication, it is necessary to break at multiple levels. Therefore, we propose
different kinds of exiting a parallel branch in YML:

1. the application may exit the parallel branch if all the running tasks are completed,
e.g., if there are several BGMRES components in parallel to solve linear systems,
this parallel section should be exit if all the BGMRES component achieve the
convergence;

2. the application may exit the parallel branch if only one task among all is
completed, e.g., in the MERAM algorithm, several ERAM components are
executed in parallel to approximate the eigenvalues of a matrix, if one of these
components approximates enough eigenvalues, the whole parallel section should
be exited;

3. the application may exit the parallel branch if only several tasks among all are
completed;

4. for the application with multi-level parallelism, we may decide to exit several
levels of parallel branches; and

5. the application may exit with saving selected data into the local filesystems,
which will improve its fault tolerance and reusability, e.g., lsparams generated by
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the B-LSP Component could be saved into local, which will be used for solving
the linear systems in future.

By use of the different ways to exit a parallel branch, a unite and conquer algorithm
could be implemented with YML. The latter point would even introduce resilience
to the YML implementation allowing efficient checkpoint and restart to be defined
in the YML description.

8 FP2C

FP2C (Framework for Post-Petascale Computing) is a development and execution
environment which supports multi-program methodologies across multiple archi-
tectural levels as suggested by Dufaud et al. [3]. FP2C integrates XMP to describe
tasks into the workflow environment YML. Therefore FP2C is an implementation of
YML to be executed on classical HPC clusters. FP2C is composed of three layers:

1. workflow programming,
2. parallel and distributed programming, and
3. shared-memory parallel programming/accelerator.

The tasks are expected to be executed on sub-clusters or groups of nodes which
are tightly connected. These tasks would be hybrid programs with distributed and
shared programming models. The workflow scheduler among the sub-clusters or
groups invokes and manages the tasks.

The YML backend implementation used for this configuration is OmniRPC-MPI
to allow dynamic creation and control of MPI processes needed to executed the
YML tasks on an HPC cluster. OmniRPC-MPI is an extension of OmniRPC [12],
which supports remote procedure call (RPC) in a grid environment. When the
OmniRPC-MPI receives requests to invoke remote programs or to execute tasks
on the remote programs, then it handles the requests by calling MPI function such
as MPI_Comm_spawn to create new processes for the task or MPI_Send to notify
existing, available processes about the new task.

Figure 5 depicts the execution of a workflow with FP2C. Initially, mpirun only
starts the process for the YML scheduler. The scheduler loads the task graph and
starts executing the YML program by creating and scheduling YML tasks. Using
MPI_Comm_spawn, the scheduler creates remote programs with the required
number of processes to execute a specific task. To avoid the overhead of process
startup and shutdown, the scheduler can reuse an existing group of processes to
schedule another task, when the previous task is finished like depicted for task2
and task3. By the use of MPI point-to-point communication, the remote program
is informed about the next task to execute and also communicates back about
the completion of a task. If some YML tasks need a different number of parallel
processes than the previously finished task, FP2C will terminate the remote program
to spawn new remote programs as depicted for task1, which is replaced by smaller
remote programs to execute task5 and task4.
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Fig. 5 Execution of an mSPMD application described in the YML control and data flow language
in the FP2C implementation

9 Correctness Checking for YML

Correctness checking touches YML at multiple levels:

• The language Yvette, that expresses the graph semantics within YML, is quite
similar to the hardware description language Esterel and suffers from similar
correctness issues. In this section, we will especially cover potential deadlocks
and data races as well as some semantic issues that come with this language.

• The runtime system implementation of YML could also be subject of correctness
analysis. The challenge is then to distinguish the behavior of the YML runtime
system from application behavior to minimize the analysis overhead.

• Finally, since YML expresses a workflow and runs various modules, it can be of
interest to analyze the individual modules separately for correctness.

9.1 Programming Errors in YML Description

With the current specification of YML, the graph defined by a YML graph descrip-
tion can be statically built and therefore also statically analyzed. We identified
various possible error patterns in graph descriptions. Possible errors include the use
of undefined variables, type miss-match for a variable, but also deadlock due to wait
conditions which never receive a signal. Due to the static and self-contained nature
of the graph description language, even the possible deadlocks can be identified
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statically with data flow analysis. The analysis for those programming errors should
be integrated into the YML compiler.

9.2 Challenges of Analyzing the YML Runtime System

Analyzing the runtime system of YML has two mayor challenges for a runtime
analysis tool like MUST, which is developed to support the analysis of common
HPC applications. The first challenge is to understand the difference between code
that represents the YML runtime system and code that belongs to the application
code, in this context the YML task code. The bigger challenge is the dynamic MPI
characteristic of the YML runtime system, which dynamically creates processes
using MPI_Comm_spawn, that are then integrated into the execution and should
also be supervised by the analysis tool. The analysis tool would also need to
understand the resulting new MPI communicators as well as the communication
patterns with those spawned processes.

Supporting an application that exposes such dynamic behavior is currently not
supported by MUST and the underlying TBON communication layer. The tool
would dynamically need to decide about additionally needed analysis processes to
extend the TBON. Creating a TBON infrastructure which supports such dynamic
application behavior might be subject of a future project.

9.3 Correctness Checking Integrated into FP2C

Since each YML task, invoked by the YML runtime, can be a complete parallel
program, such task can have any issue which can also be found in parallel programs.
Therefore a developer might want to analyze individual tasks for parallel correctness
to identify issues like deadlocks or data race within a task. We introduce a new
option for the definition of compute functions into the YML description, which
allows applying an analysis tool like MUST to specific YML tasks.

For those selected tasks, the YML scheduler needs to launch additional processes
to execute the distributed and centralized analysis of MUST as depicted for remote
program2 in Fig. 6. In this specific example, MUST executes both kinds of analysis
in a single process. Before launching the FP2C application, the MUST infrastructure
needs to be prepared for the execution with each task configuration, which would
be done by the mustrun execution wrapper for a normal MPI or XMP application.
For the execution of a YML task with applied MUST analysis, the remote program
controlled by FP2C then needs to select the appropriate prepared configuration of
MUST, which is typically done by exporting some environmental variables.

Since we specifically want to analyze the YML task, but not the YML infras-
tructure, the MPI functions called to implement the FP2C command and control
workflow should be ignored by the analysis tool. Some of those MPI functions are
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command and control workflow

used to communicate with the YML scheduler, which is outside of the process
controlled by MUST. Such communication to the outside would confuse some
analysis performed by MUST. We can avoid analysis of such functions by directly
calling into the PMPI interface for functions that implement FP2C functionality.
Circumventing MUST analysis for all FP2C-owned MPI communication can result
in a deadlock: As Fig. 5 shows, FP2C will execute a barrier at the end of task
execution to ensure that all processes finished the execution of the task. For
native FP2C execution, it is valid to use MPI_COMM_WORLD for this barrier. The
MUST analysis process does not know about the barrier and the execution will
therefore stall. With FP2C using PMPI calls, MUST will not be able to replace
MPI_COMM_WORLD by a communicator representing the application processes as
it was described in Sect. 2.2. The application processes cannot pass the barrier and
the MUST process waits for new messages from the application processes. We
could fix this issue by deriving fp2c_world from MPI_COMM_WORLD using
MPI_Comm_dup as shown in Fig. 6. The fp2c_world communicator can then
safely be used by FP2C in PMPI communication calls which are limited to the
application processes.

Another challenge when applying MUST to YML tasks is to deal with
the output files of MUST. By default, MUST assumes that it is applied to a
single MPI application and will write an output file to the current working
directory. With FP2C we apply MUST to various YML tasks. To enable the
application developer to associate the error report to a specific YML task, we
should write the MUST output to a different file per task. The MPI specification
defines int MPI_Pcontrol(const int level, ...) to allow flexible
interaction between MPI application and PMPI tool. It is the responsibility
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of the tool to interpret and define the arguments passed to this variadic
function. For our use case, we defined usage with level=8192 and signature
int MPI_Pcontrol(const int level, const char* filename)
to indicate that the analysis results of subsequent application events should be
written to the new file name. We also want to make sure that distributed analysis for
application events before the pcontrol call write the report into the old file. Therefore
we require this pcontrol function call to be collective on the whole application.
Currently, we do not require to finish all MPI communication at this point. In the
future, we might add some additional pcontrol commands to express certain runtime
assertions. Such assertions might include that no outstanding messages are expected
or all MPI handles should be released at a certain point.

10 Conclusion

In this paper, we discussed how we can apply runtime correctness checking to
emerging multi-level parallel programming languages which try to encounter the
challenges of multi-level concurrency of exascale systems. Specifically, we looked
into possible correctness issues in XMP applications, which represent the field of
PGAS languages. We described how we integrated runtime correctness analysis for
XMP applications into the runtime correctness checking tool MUST and therefore
specified the new tools interface XMPT for XcalableMP. The workflow description
language YML allows to introduce another level of high-level concurrency and
therefore better exploit the massive available concurrency of exascale systems. As
an example application for such a high-level concurrency workflow, we introduced
the unite and conquer method UCGLE. This method improves the convergence
behavior of certain solvers of linear equation systems by asynchronously exchang-
ing intermediate results of preconditioner and solver. We introduced FP2C as an
implementation of YML targeting HPC systems. We showed how we could integrate
MUST runtime analysis to be applied to certain tasks scheduled by the FP2C
runtime system and discussed solutions for challenges on the way to a successful
workflow.
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TerraNeo—Mantle Convection Beyond
a Trillion Degrees of Freedom
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Markus Huber, Nils Kohl, Marcus Mohr, Ulrich Rüde, Dominik Thönnes,
and Barbara Wohlmuth

Abstract Simulation of mantle convection on planetary scales is considered a
grand-challenge application even in the exascale era. The reason being the enormous
spatial and temporal scales that must be resolved in the computation as well as
the complexities of realistic models and the large parameter uncertainties that need
to be handled by advanced numerical methods. This contribution reports on the
TerraNeo project which delivered novel matrix-free geometric multigrid solvers for
the Stokes system that forms the core of mantle convection models. In TerraNeo the
hierarchical hybrid grids paradigm was employed to demonstrate that scalability can
be achieved when solving the Stokes system with more than ten trillion (1.1 · 1013)
degrees of freedom even on present-day peta-scale supercomputers. Novel concepts
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were developed to ensure resilience of algorithms even in case of hard faults and
new scheduling algorithms proposed for ensemble runs arising in Multilevel Monte
Carlo algorithms for uncertainty quantification. The prototype framework was used
to investigate geodynamic questions such as high velocity asthenospheric channels
and dynamic topography and to perform adjoint inversions. We also describe the
redesign of our software to support more advanced discretizations, adaptivity, and
highly asynchronous execution while ensuring sustainability and flexibility for
future extensions.

1 Introduction and Motivation

Geodynamics
Mantle convection is a critical component of the Earth system. Although composed
of rocks, the Earth’s mantle behaves like a highly viscous fluid on geological
time-scales. Its motion is driven by internal heating due to radioactive decay
and by substantial heating from below. The latter stems from the release of
primordial heat stored in the core from the time of the planet’s accretion. The
mantle convection currents are largely responsible for many of Earth’s surface
tectonic features, forming mountain chains and oceanic trenches through plate
tectonics, and contributing significantly to the accumulation of stresses released
in inter-plate earthquakes. Hence, a thorough quantitative understanding of mantle
convection is indispensible to gain further insight into these processes. However,
besides such sort of fundamental questions, mantle convection does also have direct
influence on some societal and commercial issues. Viscous stresses caused by
up- and downwellings in the mantle induce dynamic topography, i.e. they lead to
elevation or depression of parts of Earth’s surface. Reconstructing the latter and the
associated sea-levels back in time is crucial for localisation of oil-reservoirs and the
determination of future sea-level rises caused by climate change.

Although the basic equations for describing the mantle convection process are
not in question, resulting from the force balance between viscous and buoyancy
forces and conservation of mass and energy, key system parameters, such as the
buoyancies and viscosities, remain poorly known. In particular the rheology of
the mantle, which is a fundamental input parameter for geodynamic models, is
not well known. Studies based on modeling the geoid e.g. [87], the convective
planform e.g. [21], glacial isostatic adjustment e.g. [72, 80], true polar wander e.g.
[82, 86, 89] and plate motion changes e.g. [57] consistently point to the need for
a significant viscosity increase between the upper and the lower mantle. But the
precise form of the viscosity profile remains uncertain. Commonly the viscosity
profiles display a peak in the mid lower mantle [81, 85], or involve a rheology
contrast located around 1000 km depth [93], or favor an asthenosphere with a strong
viscosity reduction to achieve high flow velocities and stress amplification in the
sublithospheric mantle [51, 102]. Geodynamic arguments on the uncertainties and
trade-offs in the viscosity profile of the upper mantle have been summarized recently
by Richards and Lenardic [88].
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Fig. 1 Velocity flowlines under the Himalaya mountain range; snapshot from a global convection
model simulated with hierarchical hybrid grids

Since the mantle is not directly accessible to observations and laboratory
experiments can hardly reproduce the relevant temperatures, pressures, and time-
scales, computer simulation is vital for studying mantle convection. An example
is given in Fig. 1. One of the challenges is the enormous spatial scales that must
be resolved. While the mantle has a thickness of roughly 3000 km, important
features, such as subducting slabs might only have a width of several kilometers.
Additionally, realistic simulations will require a very large number of time-steps.
Furthermore, fully realistic models of the mantle must deal with many complexities
such as non-linear viscosity models, phase transitions, or the treatment of the non-
constant hydrostatic background density of the mantle, see e.g. [50].

TERRANEO

TERRANEO1 aims to design and realize a new community software framework for
extreme scale Earth Mantle simulations. We have a special constellation where
groups from Geophysics, Numerical Mathematics, and High Performance Comput-
ing collaborate towards a unique co-design effort. The first 3-year funding period
has already been summarized in [7]. Initially, the team had focussed on fundamental
mathematical questions together with general scalability and performance issues, as
documented in [38, 40–43]. In particular it could be shown that even with peta-scale
class machines, computations are possible that resolve the global Earth Mantle with
about 1 km resolution, requiring the solution of indefinite sparse linear systems with
more than 1012 degrees of freedom. These very large computations and scaling
experiments were performed with a prototype software that was implemented
using the pre-existing hierarchical hybrid grids (HHG) multigrid library [12, 13].
This step was necessary to gain experience with parallel multigrid solvers for

1http://terraneo.fau.de.

http://terraneo.fau.de
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indefinite problems and the specific difficulties arising in Earth Mantle models.
While this approach led to quick first results, the prototype character of HHG
implied several fundamental limitations. Therefore, the second funding period is
being used for a fundamental redesign of HHG under the new acronym HYTEG for
Hybrid Tetrahedral Grids. The goal is to leverage the lessons learned with HHG
for the design of a new, extremely fast, but also flexible, extensible, and sustainable
Geophysics software framework.

Additionally, research on several exascale topics was conducted in both funding
periods. These include resilience, inverse problems, and uncertainty quantification.
Detailed results on these topics, as well as on the new HYTEG software architecture,
will be reported in the following sections of this report.

Multigrid Methods
Multigrid methods belong to the set of fastest solvers for sparse linear systems
that arise from the discretization of PDEs and are, thus, of central importance for
exascale research. Their invention and their popularization e.g. in [17] constitute one
of the major breakthroughs in numerical mathematics and computational science.
To illustrate their relevance for exascale computing, we summarize here a thought
experiment from [90].

Assuming that systems with N = 1012, i.e. a trillion degrees of freedom
(DoF) would be solved by classical Gaussian elimination, this would require the
astronomical number of operations of 2/3N3 = 2/3 × 1036. Better elimination
based algorithms can exploit the sparse matrix structure. A typical method of this
class, such as nested dissection would still require around 1024 operations. For such
a work load, a modern, fast PC with a performance of 100 GFlops would need
more than 100,000 years of compute time. Note that solving one such system is
still only worth one time step of many. This line of thought may be seen as just
another argument why Earth Mantle Convection is a grand challenge problem and
why e.g. the authors of [23] write:

A uniform discretization of the mantle at for instance 1 km resolution would result in meshes
with nearly a trillion elements, which is far beyond the capacity of the largest available
supercomputers.

It is important to realize that parallel computing alone does not solve the problem.
Even the fastest German supercomputer, currently SuperMUC-NG2 , would still
need longer than a year of compute time (if it did not run out of memory before) to
execute 1024 operations.

In the TERRANEO project we have demonstrated, and we will report below, that a
well designed massively parallel multigrid method is indeed capable of solving such
large systems with a trillion unknowns in compute times in the order of seconds.
This is fundamentally based on their fast convergence, for many types of problems,
that leads to asymptotically optimal complexity solvers, when it is combined with a
nested iteration in the form of a so called full multigrid method [17, 41]. Based on
this, it comes as little surprise that multigrid methods are employed in several of the

2https://doku.lrz.de/display/PUBLIC/SuperMUC-NG.

https://doku.lrz.de/display/PUBLIC/SuperMUC-NG
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SPPEXA projects, such as e.g. [3, 4, 24, 69, 75] with excellent success for a wide
variety of applications.

In the literature on multigrid methods of the past two decades, much attention
has been given to so called algebraic multigrid methods (AMG) that do not operate
on a mesh structure, but that attempt to construct the necessary hierarchy based on
analyzing the sparse system matrix. These methods can exhibit excellent parallel
scalability [3] and are often used as components within other parallel solvers, such
as domain decomposition methods [62]. AMG methods have several advantages,
most importantly that they can be interfaced to an application via classical sparse
matrix technology. They can also save the application developer from worrying
about the necessary solution process and many numerical analysts who design novel
discretizations have taken this perspective. However, AMG methods work only well
for certain types of systems, and consequently users of these new discretization
techniques now find themselves being trapped with linear systems for which no
efficient parallel algorithms are available, yet. Few methods devised in the applied
mathematics community can demonstrate even solving systems with 109 degrees of
freedom, falling three or four orders behind of what we can demonstrate here.

Additionally, the convenience of algebraic multigrid also comes at the price of
a loss in performance. Algebraic multigrid methods have only a limited scope of
applicability, and additionally they often lose an order of magnitude in performance
in their expensive setup phase. Of course they are inherently also not matrix-free.
As we will discuss below, matrix-free methods are essential to reach maximal per-
formance. Geometric multigrid methods can be realized as matrix-free algorithms,
potentially leading to another order of magnitude in performance improvement. For
this reason we have invested heavily in new matrix-free methods [8, 9, 11], similar
to other SPPEXA projects [5, 67].

The price of using geometric multigrid lies in the more complex algorithms
which often have to be tailored carefully to each specific application, and the
significantly more complex interfaces that are needed between the other software
components and the solver. This in turn creates the need for new software technolo-
gies as are being developed in the HYTEG framework.

2 Basic Ideas and Concepts

As mentioned above the mathematical-physical model of mantle convection is
based on the force balance between viscous and buoyancy forces and conservation
of mass and energy. The resulting general system of equations is e.g. given in
[7, 105]. Expressing these in terms of the central quantities of interest, i.e. velocity,
pressure and temperature results in a coupled system composed of a stationary
Stokes component and a time-dependent equation for the temperature. The former
constitutes the most expensive part in these kinds of simulations and we will, thus,
concentrate on this aspect mostly in the following. In the case of the Boussinesq
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Table 1 Physical quantities and their representing symbols

R0 Earth’s radius ρ0 Reference density g Gravitational
acceleration

η Dynamic viscosity α Thermal expansivity κ Heat conductivity

�T Temperature difference between core-mantle-boundary and surface

approximation the Stokes part is given in non-dimensional form by

−div
(
η(∇u+ (∇u)&)

)+ ∇p = −Ra T er (1)

div(u) = 0 (2)

with dimensionless velocity u, pressure p and the unit vector in radial direction er .
The Rayleigh number Ra describes the vigor of the convection and is given by

Ra = αgρ0�TR
3
0

κηr
.

A description of the physical quantities represented by the symbols is given
in Table 1. The finite element discretization that we consider for the stationary
equations is backed by the concept of HHG. Initially, the domain is partitioned into
an unstructured mesh of tetrahedra. In a second step, each tetrahedron is iteratively,
uniformly refined in a way that a block-structured, tetrahedral mesh is created
[12, 13, 40]. This refinement strategy results in a grid hierarchy T := {T�, � =
0, 1, . . . , L} that allows for a canonical implementation of geometric multigrid
methods.

The computational domain is distributed to the parallel processes by means of the
unstructured coarse grid elements. To realize efficient communication procedures,
the mesh is enhanced by so-called interface primitives. For each shared face, edge,
and vertex an additional macro-primitive is allocated in the data structure. Together
with the macro-tetrahedra, each primitive is assigned to one parallel process.
Starting from a two times refined mesh, each macro-primitive has at least one inner
vertex.

We employ conforming finite elements on the domain � and define the function
spaces of globally continuous, piecewise polynomial functions with polynomial
degree d on level � as

Sd� (�) := {v ∈ C(�) : v|T ∈ Pd(T ),∀T ∈ T�}.

For the majority of our experiments and simulations we implement a stabilized
P1-P1 discretization for the Stokes equation, using the velocity and pressure finite
element spaces

V� ×Q� :=
[
S1
� (�) ∩H 1

0 (�)
]3 × S1

� (�) ∩ L2
0(�).
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Here, L2
0(�) := {q ∈ L2(�) : 〈q, 1〉� = 0} with 〈·, ·〉� being the inner product

in L2(�). The P1-P1 element pairing does not fulfill the LBB-condition and we
employ a PSPG stabilization [19, 33]. It follows the standard weak formulation for
the discretized Stokes problem: find (u�, p�) ∈ V� ×Q� such that

a(u�, v�)+ b(v�, p�) = f (v�) ∀ v� ∈ V�,

b(u�, q�) − c�(q�, p�) = g�(q�) ∀ q� ∈ Q�,
(3)

where

a(u, v) := 2〈ηD(u),D(v)〉�
b(u, q) := −〈div u, q〉�
f (v) := 〈f, v〉�,

for all u, v ∈ H 1
0 (�)

3 and q ∈ L2
0(�). The stabilization terms are defined as

c�(q�, p�) :=
∑

T ∈T�

1

12
(

∫

T

dx)1/3 〈∇p�,∇q�〉T

g�(q�) := −
∑

T∈T�

1

12
(

∫

T

dx)1/3 〈f,∇q�〉T .

The discrete formulation of (3) can then be expressed as the system of linear
equations

K
(

u
p

)

:=
(
A B&
B −C

)(
u
p

)

=
(

f
g

)

. (4)

A description of the general form of the temperature equation and our work on
its discretization and time-stepping can be found in [7].

3 Summary of Project Results

3.1 Efficiency of Solvers and Software

A rigorous quantitative performance analysis lies at the heart of systematic research
in large scale scientific computing. The systematic analysis of performance is central
to the research agenda of computational science [91], since it defines how successful
computational models are. In this sense, performance analysis here means more than
measuring the speedup of a parallel solver or studying its weak and strong scaling
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properties. Beyond this, modern scientific computing must attempt to quantify
numerical cost in metrics that are independent of the run-time of an arbitrary
reference implementation. Most importantly, the numerical cost must be set in
relation to what is numerically achieved, i.e. the accuracy that is delivered by a
specific computation.

As one step in this direction, we extend Achi Brandt’s notion of textbook
multigrid efficiency (TME) to massively parallel algorithms in [41]. Using the finite
element based prototype multigrid implementation of the HHG library, we have
employed the TME paradigm for scalar linear equations with constant and varying
coefficients as well as to linear systems with saddle-point structure. A core step
is then to extend the idea of TME to the parallel setting in a way that is adapted
to the parallel architecture under consideration. To this end, we develop a new
characterization of a work unit (WU) in an architecture-aware fashion by taking
into account modern performance modeling techniques, in particular the standard
Roofline model and the more advanced ECM model. The newly introduced parallel
TME measure is studied in [41] with large-scale computations and for solving
problems with up to 200 billion unknowns.

3.2 Reducing Complexity in Models and Algorithms

When striving for optimal efficiency, it is essential to choose models and discret-
ization schemes whose incurred computational cost is as low as possible. Within
TERRANEO we have therefore analyzed and improved the discretization schemes
under study. A restricting factor was initially that only simple conforming dis-
cretizations are feasible in the prototype HHG library. E.g. discontinuous Galerkin
discretizations, as in [6, 69], were not yet feasible in HHG. In particular, buoyancy-
driven flow models thus demand a careful treatment of the mass-balance equation
to avoid spurious source and sink terms in the non-linear coupling between flow
and transport. In the context of finite-elements, it is therefore commonly proposed
to employ sufficiently rich pressure spaces, containing piecewise constant shape
functions to obtain local or even strong mass-conservation. In three-dimensional
computations, this usually requires nonconforming approaches, special meshes or
higher order velocities, which make these schemes prohibitively expensive for
some applications and complicate the implementation into legacy code. In [39], we
propose and analyze a lean and conservatively coupled scheme based on standard
stabilized linear equal-order finite elements for the Stokes part and vertex-centered
finite volumes for the energy equation. We show that in a weak mass-balance it
is possible to recover exact conservation properties by a local flux-correction which
can be computed efficiently on the control volume boundaries of the transport mesh.
Furthermore, we discuss implementation aspects and demonstrate the effectiveness
of the flux-correction by different two- and three-dimensional examples which are
motivated by geophysical applications in [101].
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In the special case of constant viscosity the Stokes system can be cast into
different formulations by exploiting the incompressibility constraint. For instance
the strain in the weak formulation can be replaced by the gradient to decouple the
velocity components in the different coordinate directions. Thus the discretization
of the simplified problem leads to fewer nonzero entries in the stiffness matrix.
This is of particular interest in large scale simulations where a reduced memory
footprint and accordingly reduced bandwidth requirement can help to significantly
accelerate the computations. In the case of a piecewise constant viscosity, as it
typically arises in multi-phase flows, or when the boundary conditions involve
traction, the situation is more complex, and the cross derivatives in the original
Stokes system must be treated with care. A naive application of the standard
vectorial Laplacian results in a physically incorrect solution, while formulations
based on the strain increase the computational effort everywhere, even when the
inconsistencies arise only from an incorrect treatment in a small fraction of the
computational domain. In [55], we present a new approach that is consistent with the
strain-based formulation and preserves the decoupling advantages of the gradient-
based formulation in iso-viscous subdomains. The modification is equivalent to
locally changing the discretization stencils, hence the more expensive discretization
is restricted to a lower dimensional interface, making the additional computational
cost asymptotically negligible. We demonstrate the consistency and convergence
properties of the new method and show that in a massively parallel setup, the
multigrid solution of the resulting discrete systems is faster than for the classical
strain-based formulation.

3.3 Stokes Solvers and Performance

3.3.1 Multigrid Approaches for the Stokes System

In this subsection we briefly review different classes of solvers for Stokes type
systems involving a multigrid component. One characteristic feature is the indefinite
structure and thus special care in the design of the solver is required. Numerical
experiments and performance studies were originally performed with the HHG
software and are thus mostly limited to stabilized conforming P1-P1 discretizations.
We point here also to the possibility to generate such parallel solvers automatically
and achieve similarly good scalability and efficiency results, as demonstrated in the
ExaStencils project [70, 75]. A comprehensive summary of the supercomputers used
for the simulations conducted in this project is listed in Table 2.

In TERRANEO three classes of solvers we consider are a preconditioned Krylov
method for the indefinite system, a preconditioned Krylov method for the positive
definite pressure based Schur complement and a monolithic (sometimes also called
an all-at-once) multigrid solver for the indefinite system. While in the first two
approaches the multigrid solver is only applied to the velocity component, the
monolithic multigrid scheme works simultaneously on the velocity and the pressure
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Table 2 Characteristics of the different supercomputers used for simulations presented in this
publication

SuperMUC Phase 1

(Thin nodes) SuperMUC Phase 2 Juqueen Hazel Hen

Operation 2012–2018 2015–present 2012–2018 2015–present

# nodes 9216 3072 28,672 7712

CPU Intel Sandy Bridge Intel Haswell IBM Intel Haswell

E5-2580 E5-2697v3 PowerPC A2 E5-2680v3

8 Core 14 Core 16 Core 12 Core

CPU frequency
(GHz)

2.7 2.6 1.6 2.5

# total cores 147,456 80,016 458,752 185,088

Interconnect Infiniband FDR10 Infiniband FDR14 5D Torus Aries

Total memory
(TByte)

288 194 448 987

Linpack (PFlop/s) 2.897 2.814 5.0 7.42

Table 3 Exploring the limits of the monolithic multigrid solver: weak scaling on JUQUEEN

Nodes Threads DoFs Iter Time [s] Time [s] w/o coarse grid solver

5 80 2.7× 109 10 685.88 678.77

40 640 2.1× 1010 10 703.69 686.24

320 5120 1.2× 1011 10 741.86 709.88

2560 40,960 1.7× 1012 9 720.24 671.63

20,480 327,680 1.1× 1013 9 776.09 681.91

component. A systematic quantitative performance study of all three approaches on
modern peta-scale systems is given in [43]. More than 750,000 parallel threads are
used in the largest simulation runs. Our main finding is that the all-at-once multigrid
scheme outperforms the two alternatives. It does not only show the smallest memory
footprint, but also results in the shortest compute time. More than 10 trillion3

unknowns (> 1013) have been solved for on a Blue Gene/Q system, see Table 3.
For such huge systems a sophisticated matrix-free code design with minimized

memory traffic is a must. Although the use of GMRES type Krylov methods for
the indefinite system is quite popular due to its robustness, it is not an option for
us. The non-optimal memory requirement and compute time per iteration before
the next restart slows down the overall performance drastically and restricts the
feasible system size. To test the flexibility of the solver, we consider not only a box
as geometry but also a thick spherical shell motivated by our application, a pipe filled
with spherical obstacles of different diameters and a simplified artery, see Fig. 2.
The physical system under consideration then ranges from a thermo-mechanically
coupled system to a non-linear viscosity model of Carreau type.

3W.r.t. the short scale naming system.
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Fig. 2 Left to right: concentration in a lid driven cavity type setting; streamlines and speed in a
benchmark problem; streamlines for a non-linear dynamic viscosity model and stationary flow in
a pipe

3.3.2 Smoothers for Indefinite Systems

There are different strategies to construct smoothers for the coupled systems.
Among the popular ones are Braess–Sarazin, Vanka, and Uzawa type approaches.
While the first two types consider a saddle point problem either in a global or a
local form as starting point, the Uzawa type scheme is based on a factorization of the
saddle point system in lower and upper triangular matrices, see [16, 77, 98, 99, 104].
The advantage of the Uzawa version is clearly a smaller FLOP count and a reduced
communication traffic compared to the two mentioned alternatives. Also in contrast
to the Vanka smoother where local patches have to be considered it can be applied
node-wise. Let us assume that A is symmetric and positive definite and Â and Ŝ
satisfy

Â ≥ A, Ŝ ≥ S := CBA−1B&

then the following smoothing property holds

‖KMν‖ ≤ √2 η(ν − 1) ‖D‖ ,

where ν is the number of smoothing steps, ‖ · ‖ a suitable operator norm and

M := Id−K−1
(
Â 0
B Ŝ

)

, D :=
(
Â 0
0 Ŝ

)

, η(ν) := 1

2ν

(
ν

'(ν − 1)/2(
)

.

A mathematically rigorous proof is given in [29]. Following the abstract framework
provided by Larin and Reusken [73], the following identity turns out to be of crucial
importance

KMν = M1KMν−1
s M2

with suitable operators M1, M2 and Ms being the error propagation operator
of the standard Uzawa. We note that in comparison to earlier theoretical results
[95, 106, 107], we do not require symmetry of the Uzawa type smoother and thus
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Table 4 Number of
iterations to reduce the
residual by factor of 10−8

(Intel Xeon)

ν 4 6 8

DoFs Iter Time [s] Iter Time [s] Iter Time [s]

1.4 × 103 13 0.10 9 0.07 7 0.06

1.4 × 104 12 0.21 9 0.18 7 0.15

1.2 × 105 12 0.61 8 0.51 6 0.44

1.0 × 106 11 2.44 8 2.33 6 2.16

8.2 × 106 11 14.54 8 14.58 6 14.03

6.6 × 107 11 102.66 7 92.09 6 101.90

5.3 × 108 10 700.38 7 693.75 6 769.34

the computational cost is reduced from two applications of the velocity smoother
to one in each iteration. The achieved upper bound for the smoothing property
is sufficient to guarantee level independent W-cycle or variable V-cycle results.
However, in large scale applicationsV-cycle schemes are much more attractive than
W-cycle based multigrid methods. The number of coarse solves per iteration is one
in case of the V-cycle but growths exponentially with the depth of the multigrid
hierarchy in case of a W-cycle. Unfortunately, there is no V-cycle theory for this
all-at-once multigrid method available, and moreover numerical experiments show
that the convergence rate deteriorates for a fixed and level independent number of
smoothing steps per level and an increased level count. As a compromise a mildly
variable V-cycle turns out to perform best. The HHG data structure and the matrix-
free concept allows us, even on a standard workstation, to test the solver for systems
with more than 100 millions of unknowns. The computations reported in Table 4 are
performed on an Intel Xeon CPU E3-1226 v3, 3.30 GHz with 32 GB memory. For
this first test only a single core is used and thus the timing does not reflect the parallel
performance of the solver. For the pressure we use damped Gauss–Seidel applied to
the operator C where the damping parameter is determined by a power iteration on
a coarse level and not dependent on the mesh-size, but on the mesh-regularity.

While the all-at-once multigrid solver requires a special smoother, the Schur-
complement formulation allows for a natural application of multigrid on the velocity
component as part of an inner iteration in a preconditioned conjugate gradient
method for the pressure. In case of an isoviscous flow the Schur complement
is spectrally equivalent to the mass matrix and thus the condition number does
not deteriorate with an increasing number of degrees of freedom. Due to its
simple structure this iterative solver can be easily implemented by reusing standard
software components and is thus suitable for a rigorous performance analysis. We
do not report here in further detail, but an innovative performance analysis can be
found in [40, 41]. Good scalability on more than half a million parallel threads is
demonstrated in [42]. Together with the excellent node-level performance, this is
essential for achieving high performance levels.
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3.3.3 Multigrid Coarse Grid Solvers

Finally we report on results for agglomeration techniques. In the context of the
matrix-free HHG implementation it is natural to use a preconditioned Krylov
method as a coarse grid solver. However, in the context of very large systems this is
a bottleneck since this coarse solver is non-optimal, and will thus ultimately become
a limit to scalability. To improve the parallel efficiency for systems beyond a billion
of unknowns, we proceed in two steps. In a first preprocessing step, the coarse
grid problem is assembled in a classical fashion storing matrix entries in standard
compressed row storage format. The system can then be solved by methods from the
PETSc library, [79]. More specifically, a block preconditioned MINRES iteration is
applied. For the velocity component we here use an AMG preconditioned conjugate
gradient (CG) iteration and for the pressure a lumped mass-matrix approach. Here
still the full parallel system is employed so that only small coarse grid subproblems
are assigned to each parallel process. In the second step, we therefore propose to use
agglomeration to reduce the number of parallel processes on the coarsest level and
to reduce the communication overhead in each iteration. This becomes necessary
when the ratio between communication time and compute time becomes unbalanced
and when the overall coarse solve time is severely dominated by communication. In
Table 5, we report on the parallel efficiency for a weak scaling study on JUQUEEN
(IBM BlueGene/Q-System, 28 racks, 28,672 nodes, 458,752 cores). The number of
unknowns ranges from approximately 80 million to over 100,000 million and the
number of parallel threads is increased by a factor of more than 15,000. Over this
large range, the parallel efficiency shows only a moderate deterioration and remains
above 90% even in the largest run. This results mainly from the fact that for the
largest run we reduce the number of processes on the coarsest level by a factor of
eight. Using a master-slave agglomeration technique has the advantage of a short
collecting and distribution phase.

In Fig. 3 we compare the naive non-optimal coarse solver with the PETSc based
agglomeration strategy for the largest run, i.e. np = 61,440. We observe that with
the naive approach roughly half of the compute time is spent in the coarse solve,
although it has only a small fraction of the total number of unknowns. The situation
is drastically different for the agglomeration technique in combination with the
PETSc solver. Here only roughly 5% of the actual time to solve is spent in the coarse
solver routines. A closer look at the ratio between MPI communication and operator
computations exhibits that without agglomeration strategy a significant amount of

Table 5 Parallel efficiency
for master-slave
agglomeration technique and
up to more than 50,000
parallel threads on
JUQUEEN

np DoF Red. T[s] Coarse Par. eff

30 8.3 × 107 1 16.284 0.043 1.00

120 3.3 × 108 1 16.426 0.050 0.99

960 2.6 × 109 1 17.084 0.171 0.95

7680 2.4 × 1010 1 17.310 0.382 0.94

61,440 1.7 × 1011 8 17.704 0.877 0.92
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Fig. 3 Ratio of relative time to solve spent in the different multigrid components: a non-optimal
Krylov based solver without agglomeration (left) and AMG preconditioned Krylov based solver
with agglomeration

time is lost by simple communication. The situation is again drastically different
for the agglomeration strategy. Here the communication overhead is reduced to less
than 5%. We note that for a smaller system size and a moderate number of parallel
threads, the difference in the time to solution for both approaches is negligible. For
np = 30 the naive non-optimal coarse solver takes less than 10% of the total run-
time and the communication load is less than 5% compared to the FLOP count.
Moreover the savings in run-time in case of a PETSc coarse solver are limited due
to the set-up phase. In conclusion, and somewhat contrary to conventional wisdom,
we find that for up to ten million unknowns, a more sophisticated coarse solver does
not pay off.

To show its generality, we also test the strategy on a different peta-scale system
(Hazel Hen) and for a problem with a strongly varying discontinuous viscosity
profile as it is relevant for geodynamical simulations, see Table 6. Here, we
additionally exploit a block low-rank coarse grid solver (BLR) which uses low-
rank compressions in an elimination method to devise an approximate solver [1].
The reduced parallel efficiency, compared to the setting before, does not result from
the different architecture, nor the use of BLR, but mainly from the fact that one
additional multigrid iteration is required.

Table 6 Parallel efficiency in a weak scaling experiment for a geodynamically relevant setting
on Hazel Hen

DOF Iter Time [s] Time [s]

Proc. Fine Total Fine BLR ε Coarse Ana. & fac. Par. eff.

1920 2.10 × 1010 15 78.1 77.9 10−3 0.03 2.7 1.00

15, 360 4.30 × 1010 13 88.9 86.8 10−3 0.22 25.0 0.93

43,200 1.70 × 1011 14 95.5 87.0 10−8 0.59 111.6 0.82
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3.4 Multi-Level Monte Carlo

Due to errors in measurements, geophysical data are inevitably stochastic. There-
fore, it is desirable to quantify these uncertainties when computing geophysical
applications. A typical approach is to use ensemble simulations, i.e. running
multiple computations with slight variations of perturbed data, and evaluating
computational quantities of interest via Monte Carlo sampling. A naive sampling-
based uncertainty quantification for 3D partial differential equations results in an
extremely large computational complexity. More sophisticated approaches, such
as multilevel Monte Carlo (MLMC), can reduce this complexity significantly. The
performance can be further enhanced when the Monte Carlo sampling over several
levels of mesh refinement is combined with a fast multigrid solver. In a parallel
environment, however, sophisticated scheduling strategies are needed to exploit
MLMC based on multigrid solvers. In [28], we explored the concurrent execution
across the three layers of the MLMC method. Namely, parallelization across levels,
across samples, and across the spatial grid.

An alternative way to classify these different parallel execution models is to
consider the time-processor diagram, as illustrated in Fig. 4, where the scheduling
of each sample Y i

� , with index 1 ≤ i ≤ N� on level 0 ≤ � ≤ L, is represented
by a rectangular box with the height expressing the number of processors used. We
call a parallel execution model homogeneous bulk synchronous if at any time in the
processor diagram all tasks execute on the same level � with the same number of
processors. Otherwise we call it heterogeneous bulk synchronous.

The one-layer homogeneous strategy, as shown in Fig. 4 (left), offers no flex-
ibility. The theoretical run-time is simply given by the sum of the time of all
samples. Even if this method guarantees perfect load balancing, it will not lead
to an optimal efficiency since on the coarser levels the scalability of the solver is
typically significantly worse than on the finer levels. On the coarsest level we may
even have less grid points than processors. Thus, we discard this approach from our
list of possible options.

We, instead, consider the following two variants: Firstly, sample synchronous
homogeneous (SaSyHom) where a synchronization step is imposed after each
sequential step (see Fig. 5, left). Here statistical quantities can be updated after

Fig. 4 From left to right: illustration of homogeneous (one-layer and two-layer) and of heteroge-
neous bulk synchronous strategies (two-layer and three-layer)
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Fig. 5 Illustration of different homogeneous scheduling strategies. Left: sample synchronous
homogeneous (SaSyHom); centre: level synchronous homogeneous (LeSyHom); right: dynamic
level synchronous homogeneous (DyLeSyHom)

each synchronization point. Secondly, level synchronous homogeneous (LeSyHom),
where each block of processors executes all samples without any synchronization
(see Fig. 5, center).

In case of large run-time variations of the samples, we additionally consider
dynamic variants where samples can be assigned to processors dynamically.
Figure 5 (right) illustrates the DyLeSyHom strategy. Here it is essential that not
all processor blocks execute the same number of sequential steps.

We compare static strategies with their dynamic variants in the case of large
run-time variations on three MLMC levels, i.e. L = 2, with a fine grid resolution
of about 1.6 · 107 mesh nodes. We assume a lognormal random coefficient, but in
order to increase the run-time variation, we choose a greater variance σ 2 = 4.0
and λ = 0.5. As quantity of interest we employ the PDE solution u evaluated at
the point x = (0.5, 0.5, 0.5). All samples are computed with a FMG-2V(4,4) cycle
with up to a hundred additional V(4,4) cycles until a relative residuum of 10−10.
Pre-computed variance estimates lead to an a priori strategy with (N�)�=0,1,2 =
(27,151, 10,765, 3792) samples per level. In this scenario, 8192 processors were
available for the scheduler. In Table 7 we compare the required time of the LeSyHom
strategy in the static and dynamic variant and see that the dynamic strategy is 6%
faster than its static counterpart.

The largest uncertainty quantification scenario we considered, involved finest
grids with almost 70 billion degrees of freedom, and a total number of samples
beyond 10,000, most of which are computed on coarser levels. This computation
was executed on the JUQUEEN supercomputer using more than 132,000 processor
cores in an excellent overall compute time of about 1.5 h.

Table 7 Comparison of
static and dynamic
scheduling strategies

LeSyHom DyLeSyHom

Level time [s] time [s] Ratio

0 500 460 0.92

1 1512 1347 0.89

2 5885 5596 0.95

Total 7897 7403 0.94
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3.5 Inverse Problem and Adjoint Computations

The adjoint method is a powerful technique that allows the computation of
sensitivities (Fréchet derivatives) with respect to model parameters. It solves inverse
problems where analytical solutions are not available or the cost to solve the
associated forward problem many times is prohibitively high. In geodynamics it
has been applied to the inverse problem of mantle convection—i.e., to restore past
mantle flow e.g. [22], where it finds an optimal initial flow state that evolves into the
present-day state of Earth’s mantle. In doing so, the adjoint method has the potential
to link together diverse observations and theoretical expectations from seismology,
geology, mineral physics, paleomagnetism and fluid dynamics, greatly enhancing
our understanding of the solid Earth system.

Adjoint equations for mantle flow restoration have been derived for incom-
pressible [22, 52, 59], compressible [35] and thermo-chemical mantle flow [36],
and the uniqueness properties of the inverse problem have been related explicitly
to the tangential component of the surface velocity field of a mantle convection
model [25]. So knowledge of the latter is essential to assure convergence [100]
and to obtain a small null space for the restored flow history [52]. To reduce the
computational cost, we use a two-scale time step size predictor-corrector strategy to
couple between Stokes and temperature similar to the one discussed in [46].

The framework was used to implement the adjoint technique. Specifically, we
minimized the misfit functional

χ(T ) := 1

2

∫

�

∫

[t0,t1]

(
T (T0, x, t)− TE(x)

)2
δ(t − t1) dt dx (5)

that relates to the squared difference of the geodynamic model temperature and the
thermal heterogeneity distribution TE for the final state at t = t1. The latter can be
inferred e.g., from seismology and considerations of mantle mineralogy. We used a
first order optimization approach to update the initial temperature T0 in the descent
direction φ in a process described by

T i+1
0 (x) = T i0 (x)− βφ(x, t0) for i = 0, 1, . . . ,

where β controls the correction in the descent direction and has to be sufficiently
small [84]. In order to reduce the computational cost of deriving the step length,
we found that fixing β = 0.4 yields sufficient results in our experiments, in
agreement with [22]. The descent direction φ(x, t0) is obtained by solving the
adjoint equations, which are given by Bunge et al. [22]. Solving the adjoint
equations requires velocity and temperature states from the forward problem. We
checkpointed these states in the forward problem such that they could be read for
the adjoint iteration. In our exploration of the inverse problem, we used a similar
setup as presented in [23]. We considered a 45◦ × 45◦ part of a spherical shell
domain and discretized it by a tetrahedral mesh. Applying four uniform refinement
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steps, the mesh has a resolution of 2.7 · 105 grid points. The initial temperature field
given by

T (x) = T0 + exp

(

− 1

σ 2 ‖x − x0‖2
)

,

where σ = 1/20 determines the extent of the anomaly and x0 denotes the center.
Note that in our setup the latter is situated 2/9D below the core-mantle boundary,
whereD denotes relative mantle thickness, and thus lower than in [23].

3.5.1 Twin Experiment

To verify our implementation, we considered a so called twin experiment. In this
setup a reference flow history is generated from the forward model. The final state
of this reference flow is used as the terminal state that drives the geodynamic
inverse problem. The reconstructed flow history is then compared against the known
reference history to assess the quality of the inversion. Thus, while in a realistic
geophysical setting only the final state TE is known, in the twin experiments, the
true (unreconstructed) initial TI and final state TE are given from the reference twin.
This allows us to study the convergence of initial and final states. In addition to the
misfit error (5) at the final time, we define the misfit error at the initial time by

mI (T ) := 1

2

∫

�

∫

[t0,t1]

(
T (x, t)− TI (x)

)2
δ(t − t0) dt dx

In Fig. 6, we present the initial/final temperature (left/right) from the reference
twin. Figure 7 shows isosurfaces of the reconstructed initial (top row) and final
(bottom row) temperature after adjoint iterations i = 0, 5, 10. For the sake of
simplicity, the first guess for the unknown initial temperature is taken from the final
state of the reference twin. Therefore, the reconstructed final temperature for i = 0
is a plume that has evolved much farther than the final reference state. After solving
the inverse problem with 10 iterations, the error at the final state is reduced by more
than one order of magnitude, while the error at the initial state is reduced by a

Fig. 6 Left: initial temperature state, right: final temperature state of the reference twin
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Fig. 7 From left to right: reconstruction of initial (top row) and final (bottom row) state: i =
0, 5, 10 iterations, very right: reference states

factor of 3, and we observe a good agreement between reconstructed and reference
temperatures.

3.6 Matrix-Free Algorithms

Matrix-free approaches are an essential component for ultra-high resolution finite-
element simulations. The reason for this is twofold. The classical finite-element
workflow of assembling the global system matrix from the local element contri-
butions and then solving the resulting linear system of equations with algorithms
implemented in matrix-vector fashion leads to enormous data traffic between
main memory and computational units (CPU cores). This constitutes a severe
performance bottleneck. Another aspect is that the cost for holding the matrix
in main memory becomes prohibitive, too. Note that for our simulations with
1013 DoFs, see [43] and Sect. 3.3 the solution vector alone requires 80 TByte of
memory. Thus, matrix-free methods, which do not assemble the global matrix, but
only provide the means to evaluate an associated matrix–vector product receive
increasing attention, see e.g. [5, 20, 66–68, 78, 92]. An overview on the history
and different approaches can e.g. be found in [9].

We note that the concept of hierarchical hybrid grids, from its inception on,
was designed to be matrix-free. Based on its original premise that the macro mesh
resolves both, geometry and material parameters, only a single discretization stencil
had to be computed and stored for each macro primitive, as opposed to one for
every fine mesh node, which corresponds to one row of the global matrix, [13].
For the case of locally varying material parameters, such as the viscosity in mantle
convection, this could be extended, using classical local element matrix based
approaches, see [9, 14, 37]. However, this approach does not carry over to the
case of non-polyhedral domains and/or higher order elements. Thus, we developed
alternative and also more efficient approaches.
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3.6.1 Matrix-Free Approaches Based on Surrogate Polynomials

In our HHG and HYTEG frameworks the coupling between DoFs is considered in
the form of a stencil like in classical finite differences. Due to the local regularity of
the refined block-structured mesh the stencil pattern is invariant across an individual
macro primitive. For example in the case of P1 elements and a scalar equation in
3D we obtain a 15-point stencil for all nodes within a volume primitive or on a
face primitive. However, in the case of a curved domain and/or locally variable
material parameters the stencil weights are non-constant over a macro primitive.
These weights can be computed on-the-fly when they are needed to apply the stencil
locally, e.g. during a smoothing step, by standard quadrature. Note that at least for
P1 elements this is theoretically still faster than the more sophisticated approach of
fusing quadrature and application of the local element-matrix, see [66]. However,
it is significantly slower than the original one-stencil-per-primitive scenario. Thus,
in [8] we introduce a new two-scale approach that employs surrogate polynomials
to approximate the stencil weights. The idea, in a nutshell, is to consider the
individual stencil weights as functions on each primitive. These functions can
be sampled, in a setup phase, on a certain number of sampling points, typically
for all nodes of the primitive on a coarser level of the mesh hierarchy. Then
an approximating polynomial is constructed for the weight by determining the
polynomial coefficients through a standard least-squares fit. Whenever the stencil
weight is needed the associated polynomial is then evaluated. Performance-wise
this raises two questions. How much memory is required for storing the polynomial
coefficients and what is the cost for evaluating the polynomial, as opposed to that of
on-the-fly quadrature. The answer to the first question is that the memory footprint
even in 3D is not too large for polynomials of moderate degree. Consider as an
example a trivariate polynomial of degree five. It has 56 coefficients. Representing
a 15-point stencil by such polynomials for all nodes of a volume primitive, thus,
requires only 6720 bytes. Note also that the number of polynomials needed can be
reduced by symmetry arguments and the zero row-sum property of consistent weak
differential operators, see [8, 30]. Thanks to the logical structuredness of the mesh
inside our volume and face primitives evaluation of a polynomial can be performed
lexicographically along lines. It, thus, reduces to a 1D problem which can efficiently
be executed using incremental updates based on the concept of divided differences,
see [8, 30].

In [8] we conducted an extensive performance study of the new approach for
the 3D Poisson problem on different curved domains which we connected to a
polygonal domain by means of a mapping function. Thus, we are in fact solving
a diffusion equation with a non-constant symmetric definite material tensor. As an
example Fig. 8 shows results for a weak scaling experiment on SuperMUC. Here
we consider a V(3,3) cycle and assign 16 macro elements to one core. On the
finest grid there are 3.3× 105 DoFs per volume primitive. We see that the surrogate
operator approach (using quadratic polynomials) clearly outperforms the on-the-fly
quadrature and is only about a factor two more expensive than the original one-
stencil-per-primitive approach in HHG which cannot capture the domain curvature.
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Fig. 8 Weak scaling behavior of a V(3, 3) cycle for different approaches: on-the-fly quadrature
(IFEM), surrogate polynomials (LSQP), surrogate polynomials combined with double discret-
ization (LSQP DD) and surrogate polynomials after node-level performance optimization (LSQP
OPT); for comparison (CONS) gives times for the one-stencil-per-primitive approach that neglects
curvature

Additionally, we study the influence of the approximation on the discretization
error and the multigrid convergence rate. The former is influenced by the ratio
between the mesh size of the macro mesh and the solution level, the sampling
level and also the polynomial degree, while the latter is basically non-existent,
see Table 8. In [30] we present a theoretical analysis of the consistency error of
the surrogate operator approach and extend our numerical experiments to more
challenging differential operators using problems from linear elasticity and non-
linear p-Laplacian diffusion.

In mantle convection models viscosity may vary significantly on a local scale,
i.e. within a volume primitive. In this case, an approximation of stencil weights by
low-order polynomials as in [8] will no longer be sufficient. One might try higher
order polynomials as was implemented in HYTEG for the tests presented in [30].
Albeit this is currently only available in 2D. Alternatively, we devised a variant
of our approach, see [10, 11], denoted in the following as LSQPe. Here, instead
of directly approximating the stencil weights, we replace the entries of the local
element matrices by surrogate polynomials. The stencil weights are then computed

Table 8 Discretization error in the L2-norm for IFEM and LSQP (with different polynomial
degree q) and ratio of the asymptotic multigrid convergence rates for curved pipe domain (level
� = 0 refers to an already twice refined mesh)

eLSQP ρIFEM/ρLSQP eLSQP ρIFEM/ρLSQP

Level eIFEM q = 2 q = 3

� = 1 7.50 × 10−5 7.50 × 10−5 1.00 7.50 × 10−5 1.00

� = 2 1.86 × 10−5 1.86 × 10−5 1.00 1.86 × 10−5 1.00

� = 3 4.64 × 10−6 4.67 × 10−6 1.00 4.64 × 10−6 1.00

� = 4 1.16 × 10−6 1.41 × 10−6 1.00 1.16 × 10−6 1.00

� = 5 2.89 × 10−7 9.87 × 10−7 1.00 3.10 × 10−7 1.00



590 S. Bauer et al.

Table 9 Weak scaling of the LSQPe approach using ca. 2.3× 107 DoFs per core; shown
are: average run-time w/ and w/o coarse grid solver (c.g.) for one UMG cycle and no. of
UMG iterations; values in brackets give no. of c.g. iterations (preconditioner/MINRES); parallel
efficiency w.r.t. one UMG cycle is given for timings w/ and w/o c.g.; additionally the average time
for a single residual application on the finest level is given

Global # UMG Time UMG cycle Parallel Time

Islands Cores DoFs resolution V-cycles w/ c.g w/o c.g. efficiency residual

1 5580 1.3× 1011 3.4 km 7 (50/150) 192 s 164 s 1.00 / 1.00 11.9 s

2 12,000 2.7× 1011 2.8 km 10 (100/150) 213 s 169 s 0.90 / 0.97 12.1 s

4 21,600 4.8× 1011 2.3 km 7 (50/250) 210 s 172 s 0.92 / 0.96 12.7 s

8 47,250 1.1× 1012 1.7 km 8 (50/350) 230 s 173 s 0.83 / 0.95 12.8 s

from these surrogate element matrices in the standard fashion for the P1 case. This
variant was used to perform the dynamic topography simulations of Sect. 3.10. As
an example Table 9 shows weak scaling results on SuperMUC Phase 1 for a mantle
convection model with a temperature-dependent viscosity and a global resolution of
1.7 km for the largest scenario. Run-times are for a V-cycle with an Uzawa smoother,
stopping criterion is a residual reduction of five orders of magnitude. For complete
details we refer to [11]. Note the parallel efficiency of 83% for the largest run,
which could be further improved by using a more sophisticated coarse grid solver,
see Sect. 3.3, than the one available at the time of the experiment.

3.6.2 A Stencil Scaling Approach for Accelerating Matrix-Free Finite
Element Implementations

In [9] we present a novel approach to fast on-the-fly low order finite element
assembly for scalar elliptic partial differential equations of Darcy type with vari-
able coefficients optimized for matrix-free implementations. In this approach, we
introduce a new operator that is obtained by scaling the reference operator, i.e. the
stencil obtained from the constant coefficient case. Assuming sufficient regularity,
an a priori analysis showed that solutions obtained by this approach are unique and
have asymptotically optimal order convergence in the H 1-norm and the L2-norm
on hierarchical hybrid grids. These preliminary considerations motivate our novel
approach to reduce the cost by recomputing the surrogate stencil entries for a matrix-
free solver in a more efficient way.

To demonstrate the advantages of our novel scaling approach we consider, among
other examples, a Poisson problem on a domain defined through a blending function.
Particularly, we consider a half cylinder mantle with inner radius r1 = 0.8 and outer
radius r2 = 1.0, height z1 = 4.0 and with an angular coordinate between 0 and π as
our physical domain �phy. The cylinder mantle is additionally warped inwards by
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w(z) = 0.2 sin (zπ/z1) in axial direction. The mapping" : �phy → � is given by

"(x, y, z) =
⎛

⎝

√
x2 + y2 + w(z)

arccos
(
x/
√
x2+y2

)

z

⎞

⎠

with the reference domain� = (r1, r2)×(0, π)×(0, z1). It follows for the mapping
tensorK of the Poisson problem that

K = (D")(D")
&

|detD"| =
√

x2 + y2

⎛

⎝
w′(z)2 + 1 0 w′(z)

0 1/(x2+y2) 0
w′(z) 0 1

⎞

⎠ .

Obviously, this tensor is symmetric and positive definite. In addition to the geometry
blending, we use a variable material parameter a(x, y, z) = 1 + z. This yields the
following PDE on the reference domain �: −div (aK∇u) = f . Additionally, the
manufactured solution is chosen as

u(x, y, z) = sin

(
x − r1
r2 − r1π

)

cos (4y) exp (z/2) .

For our numerical experiments, we employ a macro mesh composed of 9540
hexahedral blocks, where each block is further split into six tetrahedral elements.
The resulting system is solved on SuperMUC Phase 2 using 14,310 compute cores,
i.e., four macro elements are assigned per core. The largest system involves solving a
linear system with O

(
1011

)
DoFs. We employ a multigrid solver with a V(3,3) cycle

and the iterations are stopped when the residual has been reduced by a factor of
10−8. In Table 10, we report on the resulting discretization error and its estimated
order of convergence (eoc), the asymptotic multigrid convergence rate ρ, and the
time-to-solution for different refinement levels �. Note that we restricted the scaling
approach in this test to volume and face primitives, which contain the vast majority
of DoFs.

Table 10 Results for large scale 3D application with errors measured in the discrete L2-norm

Nodal integration Scale Vol+Face Rel.

DoFs Error eoc ρ tts [s] Error eoc ρ tts [s] tts

4.7 × 106 2.43 × 10−4 – 0.522 2.5 2.38 × 10−4 – 0.522 2.0 0.80

3.8 × 107 6.00 × 10−5 2.02 0.536 4.2 5.86 × 10−5 2.02 0.536 2.6 0.61

3.1 × 108 1.49 × 10−5 2.01 0.539 12.0 1.46 × 10−5 2.01 0.539 4.5 0.37

2.5 × 109 3.72 × 10−6 2.00 0.538 53.9 3.63 × 10−6 2.00 0.538 15.3 0.28

2.0 × 1010 9.28 × 10−7 2.00 0.536 307.2 9.06 × 10−7 2.00 0.536 88.9 0.29

1.6 × 1011 2.32 × 10−7 2.00 0.534 1822.2 2.26 × 10−7 2.00 0.534 589.6 0.32
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These results demonstrate that the new scaling approach reproduces the dis-
cretization error, as is expected from our variational crime analysis [8, 9, 30].
Additionally, the multigrid convergence rate is not affected. For larger � the run-
time as compared to the nodal integration approach requires only about 30% of the
time.

3.6.3 Stencil Scaling for Vector-Valued PDEs with Applications to
Generalized Newtonian Fluids

Our target problem is vector-valued, thus, we expanded the scalar stencil scaling
idea from Sect. 3.6.2 and developed a similar matrix-free approach for vector-
valued PDEs [31]. The construction is again based on the use of hierarchical hybrid
grids, the conceptual basis in the HHG and HYTEG [63] frameworks. Vector-valued
second-order elliptic PDEs play an important role in mathematical modeling and
arise e.g. in problems from elastostatics and fluid dynamics. Numerical experiments
indicated that the idea of the scalar stencil scaling (denoted below as unphysical
scaling) cannot directly be applied to these equations, because the standard finite-
element solution cannot be reproduced, even in the case of linear coefficients. Thus,
there is need of a modified stencil scaling method (denoted below as physical scal-
ing) that is also suited for matrix-free finite element implementations on hierarchical
hybrid grids. It turns out this vector-valued scaling requires computation of an
additional correction term. While this makes it more complicated and expensive,
compared to the scalar stencil scaling, it is able to reproduce the standard finite-
element solutions, while requiring only a fraction of the time to obtain them. In the
best scenario, we could observe a speedup of about 122% compared to standard
on-the-fly integration. Our largest example involved solving a Stokes problem with
12,288 compute cores.

One of the examples studied is the scenario of a non-linear incompressible Stokes
problem where the fluid is assumed to be of generalized Newtonian type, modeled
by a shear-thinning Carreau model

μ(u) = η∞ + (η0 − η∞)
(

1+ κ |ε(u)|2
)r
.

The parameters employed are given in Table 11 in dimensionless form. The values
stem from experimental results, cf. [34, Chapter II].

The computational domain � is depicted in Fig. 9. The channel has a length
of 5 and a depth and height of 1. The kink starts at position x = 1.5. The
domain is discretized by 14,208 tetrahedra on the coarsest level. The boundary

Table 11 Dimensionless parameters for the Carreau viscosity model

Parameter η0 η∞ κ r

Value 140.764 1.0 212.2 −0.325
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Fig. 9 Velocity streamlines for the non-linear generalized Newtonian Stokes problem

∂� is composed into Dirichlet and Neumann parts, i.e., ∂� = 
D ∪ 
N with

D = {(x, y, z) ∈ ∂� | x < 5} and 
N = ∂�\
D. The volume force term f ,
the external forces t̂ , and the Dirichlet boundary term g are set to

f = (0, 0, 100)&, t̂ = (0, 0, 0)&, and g = 16 y (1− y) z (1− z) · (1, 0, 1)&.

We solve this non-linear system by applying an inexact fixed-point iteration where
the underlying linear systems are only solved approximately to prevent over-solving.

In order to solve the systems, we employ the inexact Uzawa solver presented
from [29] with variable V (3, 3) cycles where 2 smoothing steps are added to each
coarser refinement level which enforces convergence of the method.

In Table 12, we present the relative errors of the physical and unphysical scaling
approaches along the line θ = [0, 5] × {0.5} × {0.42} in the supremum norm,
computed on the 4 times refined grid. It can clearly be seen that the physical scaling
yields significantly better results with errors smaller by three orders of magnitude.
Further experiments indicate that the unphysical scaling does not converge to the
standard finite element solution even after additional mesh refinements. Therefore,
we conclude that the unphysical scaling is an inconsistent discretization for vector-
valued problems.

Table 13 presents the relative time-to-solutions for the nodal integration and
physical scaling measured on SuperMUC Phase 2. On the finest level, after 6
refinements, the relative time-to-solution of the physical scaling is at about 81%.
Figure 9 shows the streamlines of the velocity within the computational domain
computed with the physical scaling.

Table 12 Relative errors
along the line θ in the
supremum norm for different
scaling approaches

Viscosity Velocity

Physical Unphysical Physical Unphysical

8.88 × 10−4 1.07 × 10−1 5.65 × 10−5 3.19 × 10−2
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Table 13 Relative
time-to-solution comparison
of the nodal integration and
physical scaling approach for
the non-linear generalized
Stokes problem

Nodal integration Physical scaling Relative

DoFs tts [s] tts [s] tts

4.69 × 106 309.10 364.97 1.18

3.82 × 107 361.90 412.10 1.14

3.08 × 108 895.18 719.55 0.80

2.47 × 109 3227.45 2626.13 0.81

3.7 Resilience

Extremely concurrent simulations may in the future require a software design that is
resilient to faults of individual software and hardware components. The probability
of faults in the underlying systems increases with the number of parallel processes.
Especially long-running simulations may suffer from lower mean time between
failures and restarting applications with run-times of several hours or days consumes
vast amounts of resources.

Therefore, fault tolerance techniques have become a research topic as preparation
for possibly unreliable future exascale systems. In the TERRANEO project we
have so far mainly focused on hard faults. To cope with the failure of a core
or node, we mainly distinguish between two categories of methods: one class
relies on checkpointing techniques, where snapshots of the simulation are stored
in regular intervals so that the state can be loaded upon failure. A second class
are algorithm-based fault tolerance (ABFT) techniques, where (partially) lost data
can be re-computed on-the-fly. Regarding large-scale simulations, checkpointing
techniques often suffer from bad serial and parallel performance if data is written
to disk. However, there are approaches that solely rely on distributed, in-memory
checkpointing, which could be combined with compression techniques [71] that
were also explored in a student project [74]. This can lead to a flexible, fast, and
scalable resilience method [64].

In [53, 54] an alternative ABFT technique to provide resilience specifically for
multigrid methods is developed. Given a faulty subdomain �F , created when a
processor (core or node) crashes, the global solution can be recovered by solving
a recovery problem on �F via a local multigrid iteration. After the recovery
subproblem is solved, the global iteration continues.

A priori, it is not clear, how many iterations will be required in the faulty
subdomain. In [54] a fixed number of V-cycle iterations is employed. This can lead
to under– or over-solving in �F . While under-solving leads to a poor recovery,
over-solving inhibits the global convergence due to wrong values at the interface.
The convergence behavior of both scenarios is illustrated in Fig. 10.

To address this issue, in [56] the recovery algorithm is enhanced by an adaptive
control mechanism. Instead of solving the subproblem using a fixed number
of iterations, a hierarchically weighted error estimator is introduced to define
a stopping criterion for the faulty subdomain. The estimator is designed to be
well-suited to extreme-scale parallel multigrid settings as they are employed in
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Fig. 10 Convergence
behavior for over- and
under-solving in the faulty
subdomain
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Fig. 11 Comparison of the
estimated error using the
hierarchically weighted error
estimator to the error in a
fault-free and a recovery-free
scenario. κσLRB denotes the
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details see [56]
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applications. It guards the algorithm against over- or under-solving the subproblem
and therefore wasting computational resources.

As already suggested in [54], a so-called superman strategy is employed, which
increases the computing power locally in the faulty subdomain. The recovery
computation is accelerated e.g. through a further subdivision of �F by means of
additional shared memory parallelism. In Fig. 11 the development of the estimated
error of a recovered solution is compared to the error of a fault-free scenario and a
no-recovery scenario. Locally, the number of processes is increased by a factor of 4.

We have also conducted studies with asynchronous recovery strategies. Here, the
local problem on �F and the problem on the healthy domain � \ �F are solved
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concurrently. This means that during the recovery process, the multigrid iteration
is also continued in parallel in the healthy domain. Different strategies have been
explored in [54] which boundary conditions are suitable for the healthy domain on
the interface. After the stopping criterion in the faulty domain is fulfilled, the local
recovery iteration is terminated and a recoupling procedure is initiated.

To emphasize the applicability to large-scale scenarios, the adaptive approach is
scaled in [56] to a simulation with about 6.9 × 1011 DoFs and 245, 766 processes
run on the JUQUEEN supercomputer. Additionally, the generality of the approach
was demonstrated for a scenario where multiple failures in different regions of the
domain have been triggered.

3.8 General Performance Issues

Simulations in geophysics require a high spatial resolution which leads to problems
with many degrees of freedom. The success of a geophysics simulation framework
will thus depend on its scalability and that it has only minimal memory overhead. In
the previous sections we already presented scalability results to highlight the results
obtained in the TERRANEO project.

However, message passing scalability is not the only metric that is important
in high-performance computing. Even more important is the absolute performance
which depends critically also on the performance on a single core or a single node.
In the extreme scale computing community the relevance of a systematic node-level
performance engineering is increasingly being realized, see e.g. [4, 45, 48, 60, 67].
Note that traditional scalability is easier to achieve when the node-level performance
is lower. Publishing only scalability results without absolute performance measures
is a frequently observed parallel computing cheat, as exposed in [2]. We emphasize
here that the TERRANEO project has in this sense profited from long term research
efforts in HPC performance engineering. These stem originally from the Dime
project4 [65, 97] and have led to the excellent performance features of the HHG
library [12, 13]. Thus, node level performance in TERRANEO is not coming as an
afterthought imposed on existing codes, but has been an a priori design goal with
high priority.

Within TERRANEO, these techniques were continuously employed to analyze
the performance and were used to guide the development of new matrix-free
methods. This includes rather simple analysis like calculating the update cost for
a single stencil update in terms of floating point operations per second which allows
comparing the actual performance to the maximally achievable performance on a
given hardware. This type of analysis has been performed in [10] and [11].

In [9] this metric was also extended with an analysis of the memory traffic that
is required to apply the stencil to a function which, in terms of linear algebra,

4http://dime.fau.de.

http://dime.fau.de
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Fig. 12 Roofline model for different approaches presented in [9]

corresponds to matrix-vector multiplication. The analysis provided a lower and
upper bound for the performance with respect to memory. One for the optimistic
assumption that all data required resides in the last level cache, and one for the
pessimistic assumption that everything needs to be loaded from main memory. To
evaluate this analysis the Intel Advisor5 was used as an automatic tool to perform
the well established Roofline analysis [58, 103]. The results are given in Fig. 12.

In cooperation with the HPC group of the RRZE in Erlangen, a more sophis-
ticated analysis was performed in [8, 40, 41] where the Execution-Cache-Memory
(ECM) model [48] was used to examine the performance.

The Roofline model assumes that only one data location is the bottleneck. This
can be the main memory or any of the cache levels represented by the four different
limits in Fig. 12. The ECM model however, takes into account memory, all levels
of cache, and finally the registers within the CPU. The model helped to design
the new computational kernels by identifying performance bottlenecks and guiding
subsequent performance optimization steps. The end result of this development
procedure are kernels where the analytically predicted optimal duration of a stencil-
based update is in good agreement with the measurements in the real program code.
Here an error of only ≈15% is considered acceptable. In Fig. 13 the occupancy of
the execution units within the CPU is shown, as it was derived from the performance
models.

5https://software.intel.com/advisor.

https://software.intel.com/advisor
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Fig. 13 Duration of the different phases involved during eight stencil-based updates as obtained
by the ECM model for the newly developed kernel in [8]

3.9 HyTeG

We successfully demonstrated that the combination of a fully unstructured grid
with regular refinement and matrix-free algorithms can be used to solve large
geodynamical problems. A substantial amount of work in the TERRANEO project
was performed using the HHG prototype. Even though the latter shows excellent
performance and scalability, certain issues need to be faced. Due to the fact that
the codebase was created over a decade ago, the coding standard cannot live up
to current requirements. This makes it hard to maintain the framework and to
familiarise new users with it, which is essential for a community code. Furthermore,
the prototype was never meant to be used for higher-order discretizations or other
than nodal elements.

Therefore a redesign is initiated under a new name: Hybrid Tetrahedral Grids
(HYTEG) [63]. In addition to building on the knowledge gathered over the years
from developing the HHG framework we could also utilize ideas and infrastructure
from the WALBERLA framework [44]. One of the fundamental changes in HYTEG
is the strict separation of the data structures that define the macro mesh geometry
and the actual simulation data. As in HHG, the tetrahedra of the unstructured macro
mesh are split into their geometric primitives, namely volumes, faces, edges and
vertices. The lower dimensional primitives (faces, edges and vertices) are used to
decouple the volume primitives in terms of communication. Contrary to HHG the
parallel partitioning is not solely based on volume primitives, instead all primitives
get partitioned between processes. This e.g. allows to take also the computational
and memory footprint for face primitives into account for load balancing, for which
we can employ sophisticated tools such as ParMetis [61]. Note that in HYTEG
the partitioning does not involve global data structures, an essential aspect when
entering the exascale era. Like with HHG, it was decided to use C++ as the
primary programming language due to its high performance and spread in the HPC
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Fig. 14 Basic types can be combined to create various finite element discretizations

community. Up to this point, no compute data are associated with the primitives.
In a second step, these can be attached to the primitives. This might be a single
value for only some of the primitives or a full hierarchy of grids for every single
primitive. This separation also allows for efficient light-weight static and dynamic
load balancing techniques similar to those described in [32, 96].

As mentioned above, one major goal when moving from HHG to HYTEG is
the realization of different discretizations on hierarchical hybrid grids. In addition
to unknowns located at the vertices of each micro-element of the mesh, unknowns
on the edges, faces and inside the elements are also supported. These basic types
of unknowns are implemented in such a way that different discretizations can be
realized by combination which is illustrated in Fig. 14. Using this technique, a
Taylor-Hood discretization for a Stokes flow simulation can be realized as well as
finite volume discretizations to simulate energy transport [63].

By introducing different types of discretizations, there are also many more
compute-intensive kernels that need to be taken care of. The solution chosen
in HYTEG to solve this problem is code generation. Inspired by the work in
ExaStencils [76, 94], our joint collaboration in this direction [15], and also using
experience from pystencils6 this can be efficiently realized. One difference to
other projects that use whole program generation, however, is that only compute
intensive kernels are generated, but not the surrounding data structures. In contrast
to HYTEG itself, pystencils is using Python, which allows for much more flexibility
and metaprogramming capabilities. The generated kernels, however are in C++,
which eliminates the need for a Python environment when running HYTEG on
supercomputers.

6https://i10git.cs.fau.de/pycodegen/pystencils.

https://i10git.cs.fau.de/pycodegen/pystencils
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Fig. 15 Each combination of one leaf of every color represents one possible configuration

Another important feature that was introduced with the community code in
mind is a state-of-the-art continuous integration process. With every change in the
codebase, an automated process is started, which ensures the compatibility with
different hardware and software configurations. Additionally, extensive testing is
also part of the pipeline to guarantee the correctness of all features inside HYTEG.
To illustrate the complexity of this process Fig. 15 shows all possible combinations
of configurations.

3.10 Asthenosphere Velocities and Dynamic Topography

In order to demonstrate the flexibility of the different algorithmic components, we
have studied selected application questions. In [102] we investigated the question
of flow speeds in the asthenosphere. The latter is a mechanically weak layer in the
upper mantle right below the lithosphere, the rigid outermost shell of our planet. It
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plays an important role in convection modelling as it distinguishes itself from the
lower parts of the mantle by a significantly lower viscosity. The precise details of the
contrast are, however, unknown. A variety of geologic observations and geodynamic
arguments indicates that velocities in the upper mantle may exceed those of tectonic
plates by an order of magnitude [49, 51]. The framework was used to simulate high-
resolution whole earth convection models with asthenospheric channels of varying
thickness. Reduction of the asthenospheric thickness is balanced by an associated
reduction in its viscosity, following the Cathles parameter [88]. This resulted for the
tested end-member case in a set-up with an asthenosphere channel of only 100 km
depth and a significant viscosity contrast of up to 4 orders of magnitude relative
to the deeper mantle. We found a velocity increase by a factor of 10 between a
reference case with an upper mantle of 1000 km depth and the very thin channel end-
member case, translating into speeds of≈ 20 cm/a within the narrow asthenosphere.
Our suggested and numerically verified Poiseuille flow model predicts that the upper
mantle velocity scales with the inverse of the asthenospheric thickness.

Note that the prototype implemented in HHG already allows to include real-
world geophysical data. The model presented in Fig. 16, e.g., uses present-day plate
velocities, see [83], as surface boundary conditions and a buoyancy term based on
present day temperature and density fields, converted from a seismic tomography
model via techniques described in [27]. Viscosity depends on temperature and
includes a jump at the bottom of the asthenosphere, chosen at 660 km.

Another geodynamic quantity we studied is dynamic topography. This term,
which plays a crucial role in our understanding of long term sea-level variations,
refers to deflections of the Earth’s surface as a response to viscous stresses in the
mantle, and has been known from geodynamic arguments for a long time [47, 87].
The precise magnitude of dynamic topography is still debated, however, due to
uncertainties in measuring it [18]. Dynamic topography occurs both at the surface

Fig. 16 Mantle convection model computed in HHG with real-world geophysical data: tempera-
ture field from seismic tomography for viscosity (left) and resulting flow speeds (right); quantities
are non-dimensional
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Fig. 17 Surface dynamic topography for cases: A—viscosity with only radial variations, B—
with the addition of viscosity variations due to varying thickness of the lithosphere, C—with
additional temperature-dependent viscosity in the lower mantle (left) and pairwise difference
between scenarios (right)

and the core-mantle boundary (CMB), see [26] for a review. In [10] we studied
the influence of lateral viscosity variations on the amplitude and pattern of dynamic
topography. We first considered a standard benchmark with a purely radially varying
viscosity profile, see [23, 105], for which a semi-analytic solution exists in terms
of the propagator matrix technique [47, 85, 87]. This allowed us to verify suitable
correctness of our LSQPe approach from Sect. 3.6. We then compared models
with increasing levels of complexity, see Fig. 17, going up to a profile with lateral
viscosity variations due to varying thickness of the lithosphere and temperature-
dependent variations in the lower mantle. Full details and a discussion of the
outcomes can be found in [10].
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4 Conclusions and Future Work

TERRANEO is a project in Computational Science and Engineering [91]. We suc-
cessfully developed innovative scientific computing methods for the exascale era.
To this end, new algorithms were devised for simulating Earth Mantle convection.
We analyzed the accuracy of these methods and their cost on massively parallel
computers, showing that our methods exhibit excellent performance. A highly
optimized prototype implementation was designed using the HHG multigrid library.
Based on HHG, we demonstrated computations with an unprecedented resolution of
the Earth’s Mantle based on real-world geophyical input data.

In TERRANEO many new methods for future exascale geodynamic simulations
were invented: they include new solver components for monolithic multigrid
methods for saddle point problems, specially designed smoothers and new strategies
to solve the coarse grid problems. Two new classes of matrix-free methods were
introduced and analyzed, one based on surrogate polynomials, the other one based
on stencil scaling. New scheduling algorithms for parallel multilevel Monte Carlo
methods and uncertainty quantification were studied. Methods for fault tolerance
were investigated. This includes methods based on in-memory checkpointing as
well as new methods for fast algorithmic reconstruction of lost data when hard faults
occur. Inverse problems in mantle convection were studied using adjoint techniques.

Careful parallel performance studies complement our work and assess the
suitability of the algorithmic components on future exascale computers. Many of
the methods were tested on application oriented problems, such as for example a
geophysics study on the relation of the thickness of the asthenosphere and upper
mantle velocities and the influence of viscosity variations on dynamic topography.

We found that conventional C++-based implementation techniques lack expres-
siveness and flexibility for massively parallel and highly optimized parallel codes
and that achieving performance portability is a major difficulty. Starting from this
insight, we invented new programming techniques based on automatic program
generation, learning from neighboring SPPEXA projects such as ExaStencils. These
ideas have already been realized in HYTEG and WALBERLA as new and innovative
simulation software architectures for multiphysics exascale computing.

Thus, some aspects of our research in TERRANEO are of mathematical nature,
others fall into the field of computer science. Our methods have also already
been used to perform research in geophysics, the target discipline of TERRANEO.
However, we point out that the research contribution of TERRANEO falls neither
into the intersection of all these fields, nor can our contribution be understood from
the viewpoint of mathematics or computer science alone. It is also no project in the
geosciences, since its primary goal is not the creation of new geophysical insight.
The goal of TERRANEO is the construction and analysis of simulation methods that
are the enabling technologies for future exascale research in geodynamics.

This result could not be reached by either of the classical disciplines alone. The
synthesis of knowledge and methods from mathematics, computer science, and
geophysics becomes more than the sum of its parts. We emphasize additionally
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that our research in computational science and engineering is not restricted to the
application in geophysics. Many of the innovations developed in TERRANEO can
be transferred to other target disciplines.

With our new computational methods, we have broken previously existing
barriers to computational performance. This is demonstrated for example by our
solution of indefinite linear systems that have in excess of 1013 degrees of freedom.
To our knowledge this constitutes the largest finite element computation published
to date, even though the computation was still performed on JUQUEEN, a machine
that is now outdated and was already retired.

TERRANEO funding in the last period was reduced from the desired four to
only three positions so that the new software design and its development could
not be completed as originally proposed. A preliminary version of the TERRANEO

software will be made public and will contain essential parts of the promised core
functionality, but it still lacks most of the application oriented functionality that
would make it fully usable as a Geophysics community code. Efforts will be made
to continue the development so that the central research goal of TERRANEO can be
reached.
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93. Rudolph, M.L., Lekić, V., Lithgow-Bertelloni, C.: Viscosity jump in Earth’s mid-mantle.
Science 350(6266), 1349–1352 (2015). https://doi.org/10.1126/science.aad1929

94. Schmitt, C., Kuckuk, S., Hannig, F., Köstler, H., Teich, J.: ExaSlang: A domain-specific
language for highly scalable multigrid solvers. In: Proceedings of the Fourth International
Workshop on Domain-Specific Languages and High-Level Frameworks for High Perfor-
mance Computing (WOLFHPC), pp. 42–51. IEEE Computer Society, Washington (2014)

95. Schöberl, J., Zulehner, W.: On Schwarz-type smoothers for saddle point problems. Numer.
Math. 95(2), 377–399 (2003). https://doi.org/10.1007/s00211-002-0448-3

96. Schornbaum, F., Rüde, U.: Extreme-scale block-structured adaptive mesh refinement. SIAM
J. Sci. Comp. 40(3), C358–C387 (2018)

97. Stals, L., Rüde, U., Weiß, C., Hellwagner, H.: Data local iterative methods for the efficient
solution of partial differential equations. In: John, N., Andrew, G., Michael, T. (eds.)
Computational Techniques And Applications: Ctac 97-Proceedings Of The Eight Biennial
Conference. World Scientific, Singapore (1998)

98. Vanka, S.: Block-implicit multigrid solution of Navier-Stokes equations in primitive variables.
J. Comput. Phys. 65, 138–158 (1986). https://doi.org/10.1016/0021-9991(86)90008-2

https://doi.org/10.1029/95JB03208
https://doi.org/10.1029/95JB03208
https://doi.org/10.1016/j.epsl.2004.06.005
https://doi.org/10.1146/annurev-earth-040610-133404
https://doi.org/10.1093/gji/ggx489
https://doi.org/10.1111/j.1365-246X.1991.tb00796.x
https://doi.org/10.1111/j.1365-246X.1991.tb00796.x
https://doi.org/10.1111/j.1365-246X.1993.tb00888.x
https://doi.org/10.1029/JB089iB07p05987
https://doi.org/10.1029/2018GC007664
https://doi.org/10.1029/1999GL900331
https://doi.org/10.1029/1999GL900331
https://doi.org/10.1137/16M1096840
https://doi.org/10.1137/16M1096840
https://doi.org/10.1145/2807591.2807675
https://doi.org/10.1126/science.aad1929
https://doi.org/10.1007/s00211-002-0448-3
https://doi.org/10.1016/0021-9991(86)90008-2


610 S. Bauer et al.

99. Verfürth, R.: A multilevel algorithm for mixed problems. SIAM J. Numer. Anal. 21, 264–271
(1984). https://doi.org/10.1137/0721019

100. Vynnytska, L., Bunge, H.: Restoring past mantle convection structure through fluid
dynamic inverse theory: regularisation through surface velocity boundary conditions. GEM -
Int. J. Geomath. 6(1), 83–100 (2014). https://doi.org/10.1007/s13137-014-0060-6

101. Waluga, C., Wohlmuth, B., Rüde, U.: Mass-corrections for the conservative coupling of flow
and transport on collocated meshes. J. Comp. Phys. 305, 319–332 (2016). https://doi.org/10.
1016/j.jcp.2015.10.044

102. Weismüller, J., Gmeiner, B., Ghelichkhan, S., Huber, M., John, L., Wohlmuth, B., Rüde,
U., Bunge, H.P.: Fast asthenosphere motion in high-resolution global mantle flow models.
Geophys. Res. Lett. 42(18), 7429–7435 (2015). https://doi.org/10.1002/2015GL063727

103. Williams, S., Waterman, A., Patterson, D.: Roofline: An insightful visual performance model
for multicore architectures. Commun. ACM 52(4), 65–76 (2009). https://doi.org/10.1145/
1498765.1498785

104. Wobker, H., Turek, S.: Numerical studies of Vanka-type smoothers in computational solid
mechanics. Adv. Appl. Math. Mech. 1(1), 29–55 (2009)

105. Zhong, S., McNamara, A., Tan, E., Moresi, L., Gurnis, M.: A benchmark study on mantle
convection in a 3-D spherical shell using CitcomS. Geochem. Geophys. Geosyst. 9, Q10017
(2008). https://doi.org/10.1029/2008GC002048

106. Zulehner, W.: A class of smoothers for saddle point problems. Computing 65, 227–246
(2000). https://doi.org/10.1007/s006070070008

107. Zulehner, W.: Analysis of iterative methods for saddle point problems: a unified approach.
Math. Comp. 71(238), 479–505 (2002)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1137/0721019
https://doi.org/10.1007/s13137-014-0060-6
https://doi.org/10.1016/j.jcp.2015.10.044
https://doi.org/10.1016/j.jcp.2015.10.044
https://doi.org/10.1002/2015GL063727
https://doi.org/10.1145/1498765.1498785
https://doi.org/10.1145/1498765.1498785
https://doi.org/10.1029/2008GC002048
https://doi.org/10.1007/s006070070008
http://creativecommons.org/licenses/by/4.0/


Editorial Policy

1. Volumes in the following three categories will be published in LNCSE:

i) Research monographs
ii) Tutorials
iii) Conference proceedings

Those considering a book which might be suitable for the series are strongly advised to
contact the publisher or the series editors at an early stage.

2. Categories i) and ii). Tutorials are lecture notes typically arising via summer schools
or similar events, which are used to teach graduate students. These categories will be
emphasized by Lecture Notes in Computational Science and Engineering. Submissions by
interdisciplinary teams of authors are encouraged. The goal is to report new developments
– quickly, informally, and in a way that will make them accessible to non-specialists. In the
evaluation of submissions timeliness of the work is an important criterion. Texts should
be well-rounded, well-written and reasonably self-contained. In most cases the work will
contain results of others as well as those of the author(s). In each case the author(s) should
provide sufficient motivation, examples, and applications. In this respect, Ph.D. theses will
usually be deemed unsuitable for the Lecture Notes series. Proposals for volumes in these
categories should be submitted either to one of the series editors or to Springer-Verlag,
Heidelberg, and will be refereed. A provisional judgement on the acceptability of a project
can be based on partial information about the work: a detailed outline describing the contents
of each chapter, the estimated length, a bibliography, and one or two sample chapters – or
a first draft. A final decision whether to accept will rest on an evaluation of the completed
work which should include

– at least 100 pages of text;
– a table of contents;
– an informative introduction perhaps with some historical remarks which should be

accessible to readers unfamiliar with the topic treated;
– a subject index.

3. Category iii). Conference proceedings will be considered for publication provided that
they are both of exceptional interest and devoted to a single topic. One (or more) expert
participants will act as the scientific editor(s) of the volume. They select the papers which are
suitable for inclusion and have them individually refereed as for a journal. Papers not closely
related to the central topic are to be excluded. Organizers should contact the Editor for CSE
at Springer at the planning stage, see Addresses below.

In exceptional cases some other multi-author-volumes may be considered in this category.

4. Only works in English will be considered. For evaluation purposes, manuscripts may
be submitted in print or electronic form, in the latter case, preferably as pdf- or zipped
ps-files. Authors are requested to use the LaTeX style files available from Springer at http://
www.springer.com/gp/authors-editors/book-authors-editors/manuscript-preparation/5636
(Click on LaTeX Template→ monographs or contributed books).

For categories ii) and iii) we strongly recommend that all contributions in a volume be
written in the same LaTeX version, preferably LaTeX2e. Electronic material can be included
if appropriate. Please contact the publisher.

Careful preparation of the manuscripts will help keep production time short besides ensuring
satisfactory appearance of the finished book in print and online.

http://www.springer.com/gp/authors-editors/book-authors-editors/manuscript-preparation/5636


5. The following terms and conditions hold. Categories i), ii) and iii):

Authors receive 50 free copies of their book. No royalty is paid.
Volume editors receive a total of 50 free copies of their volume to be shared with authors, but
no royalties.

Authors and volume editors are entitled to a discount of 40 % on the price of Springer books
purchased for their personal use, if ordering directly from Springer.

6. Springer secures the copyright for each volume.

Addresses:

Timothy J. Barth
NASA Ames Research Center
NAS Division
Moffett Field, CA 94035, USA
barth@nas.nasa.gov

Michael Griebel
Institut für Numerische Simulation
der Universität Bonn
Wegelerstr. 6
53115 Bonn, Germany
griebel@ins.uni-bonn.de

David E. Keyes
Mathematical and Computer Sciences
and Engineering
King Abdullah University of Science
and Technology
P.O. Box 55455
Jeddah 21534, Saudi Arabia
david.keyes@kaust.edu.sa

and

Department of Applied Physics
and Applied Mathematics
Columbia University
500 W. 120 th Street
New York, NY 10027, USA
kd2112@columbia.edu

Risto M. Nieminen
Department of Applied Physics
Aalto University School of Science
and Technology
00076 Aalto, Finland
risto.nieminen@aalto.fi

Dirk Roose
Department of Computer Science
Katholieke Universiteit Leuven
Celestijnenlaan 200A
3001 Leuven-Heverlee, Belgium
dirk.roose@cs.kuleuven.be

Tamar Schlick
Department of Chemistry
and Courant Institute
of Mathematical Sciences
New York University
251 Mercer Street
New York, NY 10012, USA
schlick@nyu.edu

Editor for Computational Science
and Engineering at Springer:

Martin Peters
Springer-Verlag
Mathematics Editorial IV
Tiergartenstrasse 17
69121 Heidelberg, Germany
martin.peters@springer.com



Lecture Notes
in Computational Science
and Engineering

1. D. Funaro, Spectral Elements for Transport-Dominated Equations.

2. H.P. Langtangen, Computational Partial Differential Equations. Numerical Methods and Diffpack
Programming.

3. W. Hackbusch, G. Wittum (eds.), Multigrid Methods V.

4. P. Deuflhard, J. Hermans, B. Leimkuhler, A.E. Mark, S. Reich, R.D. Skeel (eds.), Computational
Molecular Dynamics: Challenges, Methods, Ideas.

5. D. Kröner, M. Ohlberger, C. Rohde (eds.), An Introduction to Recent Developments in Theory and
Numerics for Conservation Laws.

6. S. Turek, Efficient Solvers for Incompressible Flow Problems. An Algorithmic and Computational
Approach.

7. R. von Schwerin, Multi Body System SIMulation. Numerical Methods, Algorithms, and Software.

8. H.-J. Bungartz, F. Durst, C. Zenger (eds.), High Performance Scientific and Engineering Comput-
ing.

9. T.J. Barth, H. Deconinck (eds.), High-Order Methods for Computational Physics.

10. H.P. Langtangen, A.M. Bruaset, E. Quak (eds.), Advances in Software Tools for Scientific
Computing.

11. B. Cockburn, G.E. Karniadakis, C.-W. Shu (eds.), Discontinuous Galerkin Methods. Theory,
Computation and Applications.

12. U. van Rienen, Numerical Methods in Computational Electrodynamics. Linear Systems in Practical
Applications.

13. B. Engquist, L. Johnsson, M. Hammill, F. Short (eds.), Simulation and Visualization on the Grid.

14. E. Dick, K. Riemslagh, J. Vierendeels (eds.), Multigrid Methods VI.

15. A. Frommer, T. Lippert, B. Medeke, K. Schilling (eds.), Numerical Challenges in Lattice Quantum
Chromodynamics.

16. J. Lang, Adaptive Multilevel Solution of Nonlinear Parabolic PDE Systems. Theory, Algorithm,
and Applications.

17. B.I. Wohlmuth, Discretization Methods and Iterative Solvers Based on Domain Decomposition.

18. U. van Rienen, M. Günther, D. Hecht (eds.), Scientific Computing in Electrical Engineering.

19. I. Babuška, P.G. Ciarlet, T. Miyoshi (eds.), Mathematical Modeling and Numerical Simulation in
Continuum Mechanics.

20. T.J. Barth, T. Chan, R. Haimes (eds.), Multiscale and Multiresolution Methods. Theory and
Applications.

21. M. Breuer, F. Durst, C. Zenger (eds.), High Performance Scientific and Engineering Computing.

22. K. Urban, Wavelets in Numerical Simulation. Problem Adapted Construction and Applications.

23. L.F. Pavarino, A. Toselli (eds.), Recent Developments in Domain Decomposition Methods.



24. T. Schlick, H.H. Gan (eds.), Computational Methods for Macromolecules: Challenges and
Applications.

25. T.J. Barth, H. Deconinck (eds.), Error Estimation and Adaptive Discretization Methods in
Computational Fluid Dynamics.

26. M. Griebel, M.A. Schweitzer (eds.), Meshfree Methods for Partial Differential Equations.

27. S. Müller, Adaptive Multiscale Schemes for Conservation Laws.

28. C. Carstensen, S. Funken, W. Hackbusch, R.H.W. Hoppe, P. Monk (eds.), Computational
Electromagnetics.

29. M.A. Schweitzer, A Parallel Multilevel Partition of Unity Method for Elliptic Partial Differential
Equations.

30. T. Biegler, O. Ghattas, M. Heinkenschloss, B. van Bloemen Waanders (eds.), Large-Scale PDE-
Constrained Optimization.

31. M. Ainsworth, P. Davies, D. Duncan, P. Martin, B. Rynne (eds.), Topics in Computational Wave
Propagation. Direct and Inverse Problems.

32. H. Emmerich, B. Nestler, M. Schreckenberg (eds.), Interface and Transport Dynamics. Computa-
tional Modelling.

33. H.P. Langtangen, A. Tveito (eds.), Advanced Topics in Computational Partial Differential
Equations. Numerical Methods and Diffpack Programming.

34. V. John, Large Eddy Simulation of Turbulent Incompressible Flows. Analytical and Numerical
Results for a Class of LES Models.

35. E. Bänsch (ed.), Challenges in Scientific Computing - CISC 2002.

36. B.N. Khoromskij, G. Wittum, Numerical Solution of Elliptic Differential Equations by Reduction
to the Interface.

37. A. Iske, Multiresolution Methods in Scattered Data Modelling.

38. S.-I. Niculescu, K. Gu (eds.), Advances in Time-Delay Systems.

39. S. Attinger, P. Koumoutsakos (eds.), Multiscale Modelling and Simulation.

40. R. Kornhuber, R. Hoppe, J. Périaux, O. Pironneau, O. Wildlund, J. Xu (eds.), Domain Decomposi-
tion Methods in Science and Engineering.

41. T. Plewa, T. Linde, V.G. Weirs (eds.), Adaptive Mesh Refinement – Theory and Applications.

42. A. Schmidt, K.G. Siebert, Design of Adaptive Finite Element Software. The Finite Element Toolbox
ALBERTA.

43. M. Griebel, M.A. Schweitzer (eds.), Meshfree Methods for Partial Differential Equations II.

44. B. Engquist, P. Lötstedt, O. Runborg (eds.), Multiscale Methods in Science and Engineering.

45. P. Benner, V. Mehrmann, D.C. Sorensen (eds.), Dimension Reduction of Large-Scale Systems.

46. D. Kressner, Numerical Methods for General and Structured Eigenvalue Problems.

47. A. Boriçi, A. Frommer, B. Joó, A. Kennedy, B. Pendleton (eds.), QCD and Numerical Analysis III.

48. F. Graziani (ed.), Computational Methods in Transport.

49. B. Leimkuhler, C. Chipot, R. Elber, A. Laaksonen, A. Mark, T. Schlick, C. Schütte, R. Skeel (eds.),
New Algorithms for Macromolecular Simulation.



50. M. Bücker, G. Corliss, P. Hovland, U. Naumann, B. Norris (eds.), Automatic Differentiation:
Applications, Theory, and Implementations.

51. A.M. Bruaset, A. Tveito (eds.), Numerical Solution of Partial Differential Equations on Parallel
Computers.

52. K.H. Hoffmann, A. Meyer (eds.), Parallel Algorithms and Cluster Computing.

53. H.-J. Bungartz, M. Schäfer (eds.), Fluid-Structure Interaction.

54. J. Behrens, Adaptive Atmospheric Modeling.

55. O. Widlund, D. Keyes (eds.), Domain Decomposition Methods in Science and Engineering XVI.

56. S. Kassinos, C. Langer, G. Iaccarino, P. Moin (eds.), Complex Effects in Large Eddy Simulations.

57. M. Griebel, M.A Schweitzer (eds.), Meshfree Methods for Partial Differential Equations III.

58. A.N. Gorban, B. Kégl, D.C. Wunsch, A. Zinovyev (eds.), Principal Manifolds for Data Visualiza-
tion and Dimension Reduction.

59. H. Ammari (ed.), Modeling and Computations in Electromagnetics: A Volume Dedicated to Jean-
Claude Nédélec.

60. U. Langer, M. Discacciati, D. Keyes, O. Widlund, W. Zulehner (eds.), Domain Decomposition
Methods in Science and Engineering XVII.

61. T. Mathew, Domain Decomposition Methods for the Numerical Solution of Partial Differential
Equations.

62. F. Graziani (ed.), Computational Methods in Transport: Verification and Validation.

63. M. Bebendorf, Hierarchical Matrices. A Means to Efficiently Solve Elliptic Boundary Value
Problems.

64. C.H. Bischof, H.M. Bücker, P. Hovland, U. Naumann, J. Utke (eds.), Advances in Automatic
Differentiation.

65. M. Griebel, M.A. Schweitzer (eds.), Meshfree Methods for Partial Differential Equations IV.

66. B. Engquist, P. Lötstedt, O. Runborg (eds.), Multiscale Modeling and Simulation in Science.

67. I.H. Tuncer, Ü. Gülcat, D.R. Emerson, K. Matsuno (eds.), Parallel Computational Fluid Dynamics
2007.

68. S. Yip, T. Diaz de la Rubia (eds.), Scientific Modeling and Simulations.

69. A. Hegarty, N. Kopteva, E. O’Riordan, M. Stynes (eds.), BAIL 2008 – Boundary and Interior
Layers.

70. M. Bercovier, M.J. Gander, R. Kornhuber, O. Widlund (eds.), Domain Decomposition Methods in
Science and Engineering XVIII.

71. B. Koren, C. Vuik (eds.), Advanced Computational Methods in Science and Engineering.

72. M. Peters (ed.), Computational Fluid Dynamics for Sport Simulation.

73. H.-J. Bungartz, M. Mehl, M. Schäfer (eds.), Fluid Structure Interaction II - Modelling, Simulation,
Optimization.

74. D. Tromeur-Dervout, G. Brenner, D.R. Emerson, J. Erhel (eds.), Parallel Computational Fluid
Dynamics 2008.

75. A.N. Gorban, D. Roose (eds.), Coping with Complexity: Model Reduction and Data Analysis.



76. J.S. Hesthaven, E.M. Rønquist (eds.), Spectral and High Order Methods for Partial Differential
Equations.

77. M. Holtz, Sparse Grid Quadrature in High Dimensions with Applications in Finance and
Insurance.

78. Y. Huang, R. Kornhuber, O.Widlund, J. Xu (eds.), Domain Decomposition Methods in Science and
Engineering XIX.

79. M. Griebel, M.A. Schweitzer (eds.), Meshfree Methods for Partial Differential Equations V.

80. P.H. Lauritzen, C. Jablonowski, M.A. Taylor, R.D. Nair (eds.), Numerical Techniques for Global
Atmospheric Models.

81. C. Clavero, J.L. Gracia, F.J. Lisbona (eds.), BAIL 2010 – Boundary and Interior Layers,
Computational and Asymptotic Methods.

82. B. Engquist, O. Runborg, Y.R. Tsai (eds.), Numerical Analysis and Multiscale Computations.

83. I.G. Graham, T.Y. Hou, O. Lakkis, R. Scheichl (eds.), Numerical Analysis of Multiscale Problems.

84. A. Logg, K.-A. Mardal, G. Wells (eds.), Automated Solution of Differential Equations by the Finite
Element Method.

85. J. Blowey, M. Jensen (eds.), Frontiers in Numerical Analysis - Durham 2010.

86. O. Kolditz, U.-J. Gorke, H. Shao, W. Wang (eds.), Thermo-Hydro-Mechanical-Chemical Processes
in Fractured Porous Media - Benchmarks and Examples.

87. S. Forth, P. Hovland, E. Phipps, J. Utke, A. Walther (eds.), Recent Advances in Algorithmic
Differentiation.

88. J. Garcke, M. Griebel (eds.), Sparse Grids and Applications.

89. M. Griebel, M.A. Schweitzer (eds.), Meshfree Methods for Partial Differential Equations VI.

90. C. Pechstein, Finite and Boundary Element Tearing and Interconnecting Solvers for Multiscale
Problems.

91. R. Bank, M. Holst, O. Widlund, J. Xu (eds.), Domain Decomposition Methods in Science and
Engineering XX.

92. H. Bijl, D. Lucor, S. Mishra, C. Schwab (eds.), Uncertainty Quantification in Computational Fluid
Dynamics.

93. M. Bader, H.-J. Bungartz, T. Weinzierl (eds.), Advanced Computing.

94. M. Ehrhardt, T. Koprucki (eds.), Advanced Mathematical Models and Numerical Techniques for
Multi-Band Effective Mass Approximations.

95. M. Azaïez, H. El Fekih, J.S. Hesthaven (eds.), Spectral and High Order Methods for Partial
Differential Equations ICOSAHOM 2012.

96. F. Graziani, M.P. Desjarlais, R. Redmer, S.B. Trickey (eds.), Frontiers and Challenges in Warm
Dense Matter.

97. J. Garcke, D. Pflüger (eds.), Sparse Grids and Applications – Munich 2012.

98. J. Erhel, M. Gander, L. Halpern, G. Pichot, T. Sassi, O. Widlund (eds.), Domain Decomposition
Methods in Science and Engineering XXI.

99. R. Abgrall, H. Beaugendre, P.M. Congedo, C. Dobrzynski, V. Perrier, M. Ricchiuto (eds.), High
Order Nonlinear Numerical Methods for Evolutionary PDEs - HONOM 2013.

100. M. Griebel, M.A. Schweitzer (eds.), Meshfree Methods for Partial Differential Equations VII.



101. R. Hoppe (ed.), Optimization with PDE Constraints - OPTPDE 2014.

102. S. Dahlke, W. Dahmen, M. Griebel, W. Hackbusch, K. Ritter, R. Schneider, C. Schwab,
H. Yserentant (eds.), Extraction of Quantifiable Information from Complex Systems.

103. A. Abdulle, S. Deparis, D. Kressner, F. Nobile, M. Picasso (eds.), Numerical Mathematics and
Advanced Applications - ENUMATH 2013.

104. T. Dickopf, M.J. Gander, L. Halpern, R. Krause, L.F. Pavarino (eds.), Domain Decomposition
Methods in Science and Engineering XXII.

105. M. Mehl, M. Bischoff, M. Schäfer (eds.), Recent Trends in Computational Engineering - CE2014.
Optimization, Uncertainty, Parallel Algorithms, Coupled and Complex Problems.

106. R.M. Kirby, M. Berzins, J.S. Hesthaven (eds.), Spectral and High Order Methods for Partial
Differential Equations - ICOSAHOM’14.

107. B. Jüttler, B. Simeon (eds.), Isogeometric Analysis and Applications 2014.

108. P. Knobloch (ed.), Boundary and Interior Layers, Computational and Asymptotic Methods – BAIL
2014.

109. J. Garcke, D. Pflüger (eds.), Sparse Grids and Applications – Stuttgart 2014.

110. H. P. Langtangen, Finite Difference Computing with Exponential Decay Models.

111. A. Tveito, G.T. Lines, Computing Characterizations of Drugs for Ion Channels and Receptors
Using Markov Models.
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