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Foreword

Scientists and engineers have long used abstraction to represent complex systems.
The advantages of such practice are manyfold, and they have enabled substantial
advances in numerous disciplines of knowledge. First year students in electrical
engineering are introduced to the concept of resistance without the impacts of heat
conduction, wire induction, or component capacitance, factors that would greatly
obscure and severely complicate the goal of learning the predominant behavior of
this critical circuit element. Students of physics will likely remember learning of a
rigid body falling through air and accounting for the motion solely from the force of
gravity on the object while entirely neglecting the contributions of air friction. This
idealization is helpful when attempting to understand the underlying equations of
motion without the need to account for second-order (or higher) effects that do not
dramatically change the global system. Computer engineers begin the study of
operational amplifiers assuming the open-loop gain and the input resistance of the
component are infinite, the amplifier draws zero current, and the bandwidth is
constant across all frequencies. These conditions are entirely fictitious but allow
the introduction of the topic without overcomplicating the matter and postpone the
study of more realistic conditions to a later time. Incidentally, it is worth realizing
that similar approaches of simplified – sometimes simplistic – abstractions and
models are applied in human biology and medicine. Even the conceptualization of
diseases as clear nosological entities is an example of such abstractions. Ultimately
clinicians need to consider the many individual differences in phenotypical and
pathophysiological characteristics of a given disease. To truly understand, it is not
sufficient to learn about the disease that a patient has, but it is essential – as
Hippocrates admonished – to learn about the person who has the disease.

All these examples are rather obvious but they illustrate a pattern of simplifying a
problem to some most basic components to facilitate the understanding of core
concepts. Once this is accomplished, more complex conditions can be considered,
likely introducing a greater number of relevant variables and using more involved
analysis tools and methods.
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One of the greatest talents an engineer or scientist can possess is the ability to
know when these approximations break down and when to apply more advanced
techniques to achieve the desired solution. Thankfully, as demonstrated by the
research contained within this Volume II of Brain and Human Body Modeling,
there are a number of technical choices available to understand extremely compli-
cated, highly detailed systems.

The present volume offers an important, timely, and needed extension to Volume
I of this series on Brain and Human Body Modeling which compiled a selection of
extended papers presented during the 3rd Annual Invited Session on Computational
Human Models, a component of the 40th Annual International Conference of the
IEEE Engineering in Medicine and Biology Society (EMBS), given from July 17 to
21, 2018, in Honolulu, HI. This Volume was distributed as an open access text
through Springer and may be found here:

https://link.springer.com/book/10.1007%2F978-3-030-21293-3

Given the success of that first Volume, with over 30k downloads from the
Springer website, a second collection was requested and is presented herein. This
second Volume has been expanded to include extended works that were presented
and discussed at two highly respected and relevant conferences:

(1) The 41st Annual International Conference of the IEEE EMBS, took place
between July 23 and 27, 2019, in Berlin, Germany. The focus was on “Biomed-
ical engineering ranging from wellness to intensive care.” This conference
provided an opportunity for researchers from academia and industry to discuss
a variety of topics relevant to EMBS and hosted the 4th Annual Invited Session
on Computational Human Models. At this session, a bevy of research related to
the development of human phantoms was presented, together with a substantial
variety of practical applications explored through simulation.

(2) The 5th Annual Brain Research through Advancing Innovative
Neurotechnologies (BRAIN)® Initiative Investigators Meeting was held
between April 11and 13, 2019, in Washington, DC. This meeting offered an
open forum for government and non-government agencies to engage in scientific
collaboration and discussion on ongoing and potential research.

When viewed collectively, the work presented at these two conferences repre-
sents the state-of-the-art in brain modeling, human phantom development, and the
application of these models through simulation to examine cutting edge diagnostic
methods and therapeutic techniques. It also offers a view into exciting directions to
be explored in the future.

Brain and Human Body Modeling Volume II is divided into seven thematic parts.
The first part covers tumor-treating fields (TTFields), a promising treatment for
glioblastoma that has received approval from the US Food and Drug Administration.
This part describes TTFields in great depth, gives a background on pathogen
formulation, and details treatment methods that may be used to combat tumor
formation. These treatments range from non-invasive placement of electrodes on
the skin surface to more intrusive means, including removing portions of the skull to
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provide a more direct field connection. Detailed models and efficient simulation
techniques are critical to the exploration of these technologies and treatments.

The second part is devoted to non-invasive neurostimulation with specific empha-
sis on the brain. Topics include recent work on simulation of electric field magnitude
and orientation during Transcranial Direct Current Stimulation, computational
modeling of brain stimulation that utilizes white matter tractography, and personal-
ization of multi-electrode configurations to be used during Transcranial Electrical
Stimulation. Brain modeling plays a pivotal role in estimating field strength, direc-
tion, and stimulation in this work with more complex models appearing as more
illustrative medical data becomes available.

Part three presents recent research on non-invasive neurostimulation with specific
emphasis on the spinal cord and peripheral nervous system. An entire chapter is
devoted to the non-invasive electric and magnetic stimulation of the spinal cord,
describing potential neuromodulation of spinal sensory and motor pathways and
modeling of electric field distributions during stimulation. A second chapter
describes application of a highly focal miniature magnetic stimulator for peripheral
nervous system applications.

The fourth part covers advancements in modeling with emphasis on neurophys-
iological signals. The first chapter of this part examines fusion of electromagnetic
source modeling with hemodynamic measures to potentially produce a multimodal
neuroimaging methodology. The second chapter presents a novel simulation
approach that provides tremendous numerical accuracy at unprecedented computa-
tional speeds. The final chapter builds on the previous by applying this new
simulation approach to the cerebral cortex and examining the potential for multiscale
modeling, covering large tissue areas and groups of neurons.

Part five is dedicated to the study of neural circuits at both small and large scales.
The first chapter presents necessary definitions applicable to neural circuits with
specific discussion on modeling very large and complex systems. The second
chapter looks at modeling of selected retinal ganglion cells. The third chapter
explores functional connectivity, making substantial use of the Human Connectome
Project.

In part six, numerous models that offer valuable resources to explore the effects of
high- and radio frequencies are presented. Chapter one discusses potential simplifi-
cations to numerical human models that may be employed to facilitate the calcula-
tion of Specific Absorption Rate (SAR). The second chapter calculates SAR in a
human phantom during a 3T MRI procedure. The third chapter examines unintended
stimulation of implanted medical devices while undergoing an MRI. Chapter four
provides an overview of electric field and SAR estimation when tissues are in close
proximity radiofrequency sources. The final chapter of this part presents a new CAD
compatible male model based on the US Library of Medicine’s Visible Human
Project.

The final, seventh, part examines several topics that are crucial to the construction
of brain and human body models. Chapter one provides instruction on the prepara-
tion of head models for a new simulation method that combines the advantages of the
Boundary Element Method with those of the Fast Multipole Method (FMM).
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Chapter two explores the performance of the FMM when applied to human head
modeling. The final chapter covers an analytical solution for field response of a
conducting object representing a human head in an external electric field.

The exciting work presented here is certainly not all-inclusive and there are
always new avenues to explore. The upcoming 42nd Annual International Confer-
ence of the IEEE EMBS to be held in Montreal, Canada, from July 20 to 24, 2020,
and the 6th Annual BRAIN® Initiative Investigators Meeting planned from June 1 to
3, 2020, in Arlington, VA, will certainly provide more exceptional examples of brain
and human body modeling, and perhaps enable further volumes in this valuable
collection of publications on Brain and Human Modelling as essential abstractions
to help us advance the complex realities of the interface between human biology with
engineering tools and solutions.

Senior Scientist at the Hinda and Arthur
Marcus Institute for Aging Research at
Hebrew SeniorLife, Boston, MA, USA

Professor of Neurology, Harvard
Medical School, Boston, MA, USA

Director, Guttmann Brain Health
Institut, Institut Guttman de
Neurorehabilitación, Universitat
Autónoma de Barcelona, Barcelona,
Spain

Alvaro Pascual-Leone
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Tumor Treating Fields



Tumor-Treating Fields at EMBC 2019:
A Roadmap to Developing a Framework
for TTFields Dosimetry and Treatment
Planning

Ze’ev Bomzon, Cornelia Wenger, Martin Proescholdt, and Suyash Mohan

1 Introduction

Tumor-treating fields (TTFields) are electric fields with intensities of 1–5 V/cm in
the frequency range of 100–500 kHz known to inhibit the growth of cancerous
tumors. TTFields have been approved for the treatment of glioblastoma multiforme
(GBM) since 2011 [19–21]. Recently, the therapy was FDA-approved for the
treatment of malignant pleural mesothelioma (MPM) [4]. TTFields are delivered
noninvasively through two pairs of transducer arrays that are placed on the patient’s
skin in close proximity to the tumor (see Fig. 1). At any instance, only one pair of
arrays is used to create the field, while the second pair is switched off. The pairs of
arrays are placed such that the fields created are roughly orthogonal, and switching
of the active arrays occurs about once per second. This results in the creation of an
alternating electric field, which switches direction periodically. The field is generated
by a portable field generator. Treatment is continuous as analysis of clinical data has
shown a positive connection between device usage (fraction of time patient is on
therapy) and patient outcomes [2].

Preclinical studies have shown that the antimitotic effect of TTFields is fre-
quency- and intensity-dependent. The inhibitory effect on different cell types is
observed at cell-specific frequencies [6, 9, 10], and the higher the intensity of the

Z. Bomzon (*) · C. Wenger
Novocure Ltd., Haifa, Israel
e-mail: zbomzon@novocure.com

M. Proescholdt
Department of Neurosurgery, University Regensburg Hospital Medical Center, Regensburg,
Germany

S. Mohan
Department of Radiology, Division of Neuroradiology, Perelman School of Medicine
University of Pennsylvania, Philadelphia, PA, USA

© The Author(s) 2021
S. N. Makarov et al. (eds.), Brain and Human Body Modeling 2020,
https://doi.org/10.1007/978-3-030-45623-8_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45623-8_1&domain=pdf
mailto:zbomzon@novocure.com
https://doi.org/10.1007/978-3-030-45623-8_1#DOI


field, the stronger the inhibitory effect. As mentioned above, the effect of TTFields is
also time-dependent, with higher usage associated with improved patient survival
[18]. Posthoc analysis of the EF-14 trials showed overall survival for patients treated
with TTFields+temozolomide (TMZ) with usage of 90% or more was 24 months
compared to 16.03 months in patients treated with TMZ alone [18]. More recently, a
study by Ballo et al. [2] showed that in newly diagnosed GBM patients, survival
correlated with TTFields dose delivered to the tumor bed. Dose was defined as
power loss density multiplied by usage. These findings suggest that patient outcome
could be significantly improved with rigorous treatment planning, in which numer-
ical simulations are used to identify array layouts that optimize delivery of TTFields
to the tumor bed. The plan could be adapted periodically as the tumor evolves to
maximize the effect of treatment in regions where tumor progression occurs.

Performing such adaptive planning in a practical and meaningful manner requires
a rigorous and scientifically proven framework defining TTFields dose and showing
how dose distribution influences disease progression in different malignancies
(TTFields dosimetry). The adaptive planning also requires a set of principles on
how best to perform treatment planning, along with numerical methods and algo-
rithms devised to optimize therapy based on the principles mentioned above. The

Fig. 1 Top left image shows Optune™ device used to deliver TTFields to the brain. The device
comprises a portable battery-powered field generator, connected to four transducer arrays which are
placed on the scalp as shown in top and bottom-right images. The image in the bottom-left corner
shows placement of transducer arrays for treatment of thoracic tumors with TTFields
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principles should be derived from our understanding of TTFields dosimetry and how
dose distributions influence disease. An effective treatment planning strategy also
requires quality assurance and uncertainty analysis to understand how uncertainties
in the model, numerical solver, and positions of the array influence the field
distribution to create a quality assurance system to ensure that the plan is adhered
to within the allowed uncertainties.

At EMBC 2019, several talks discussing key components related to TTFields
dosimetry and treatment planning were presented. The purpose of this manuscript is
to provide a short overview of this work and discuss how it sets the foundations for
the emerging field of TTFields dosimetry and treatment planning.

2 An Outline for TTFields Dosimetry and Treatment
Planning

Figure 2 is a flow chart describing the steps required in order to realize an effective
scheme for TTFields treatment planning.

The first step in the process is clinical evaluation and contouring. In this step, the
planning physician examines imaging data of the patient, identifies regions of active

Fig. 2 Flowchart describing the steps involved in treatment planning and how these could be
integrated into an effective workflow in the clinic
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tumor, and selects the target regions in which TTFields dose should be optimized.
The physician may also identify areas to avoid, like areas on the skin over which
transducer arrays should not be placed. Next, the imaging data are used to create a
patient-specific computational model, which can be used to simulate delivery of
TTFields to the patient. In the context of TTFields treatment planning, the model
involves the creation of a three-dimensional representation of the patient, in which
electric conductivity is assigned to each point. The model, target regions, and
avoidance areas are inputs for an optimization algorithm that seeks to find a
transducer array layout that optimizes the dose in the target regions while avoiding
placement of transducer arrays over the avoidance structures. The optimization
algorithm will typically entail iterative use of a numerical solver that simulates
delivery of TTFields to the patient for different array layouts. The output from this
process will be an optimal array layout for treating the patient, as well as quantitative
and visual aids that enable the physician to evaluate the quality of the plan. These
aids could include color maps describing the field distribution within the patient’s
body and dose-volume histogram (DVH) describing the distribution of TTFields
dose within the target regions and within other areas of interest. Once a plan that the
physician deems satisfactory has been generated, the patient is instructed on how to
place the transducer arrays on their body, and treatment commences. Patient follow-
ups occur periodically. During these follow-ups, additional imaging of the patient
may be acquired as physician assesses for disease progression. The new imaging
data may demonstrate regions in which the tumor has responded to therapy and/or
regions in which tumor has progressed. Depending on patient’s patterns of response
and progression, the physician may decide to re-plan in order to enhance treatment to
new target regions.

Three key components required to establish an effective framework for TTFields
treatment planning are:

TTFields Dosimetry: An understanding of how to define TTFields dose accurately
and an understanding on how TTFields dose distributions influence disease
progression and patient outcomes.

Patient-Specific Model Creation: An ability to accurately calculate field distributions
within patients in a quick and reliable manner is crucial for TTFields treatment
planning. This in turn requires an ability to build 3D patient-specific models in
which conductivity at each point within the model is well-defined, so that
accurate dose distributions can be calculated.

Advanced Imaging for Monitoring Response to Therapy: Imaging technologies that
enable accurate mapping of tumors and changes that occur within the tumor.

Below is a discussion of work presented at EMBC 2019, which touches on these
three topics.

6 Z. Bomzon et al.



3 TTFields Dosimetry

As mentioned above, preclinical research has shown that the effect of TTFields on
cancer cells depends on the frequency of the field, its intensity, and the duration of
exposure to the fields. The EF-14 trial compared patient outcome in patients treated
with chemoradiation+TTFields with outcome in patients treated with
chemoradiation alone. Post hoc analysis of this trial has shown that patient outcome
positively correlates with device usage (% of time on active treatment) [2].

More recently, Ballo et al. [2] published a study in which they defined TTFields
dose as power loss density multiplied by usage and showed that within the EF-14
trial population, patients who received higher doses to the tumor bed exhibited
overall improvement. Bomzon et al. presented a summary of this work at EMBC
2019 [3].

A total of N ¼ 340 patients who received TTFields as part of the EF-14 trial were
included in the study. Realistic head models of the patients were derived from
T1-contrast-enhanced images captured at baseline using a previously described
method [24]. The transducer array layout on each patient was obtained from
EF-14 records, and average usage and average electrical current delivered to the
patient during the first 6 months of treatment were derived from log files of the
TTFields devices used by patients. Finite element simulations of TTFields delivery
to the patients were performed using Sim4Life (ZMT Zurich, Switzerland). The
average field intensity, power loss density, and dose density within a tumor bed
comprising the gross tumor volume and the 3-mm-wide peritumoral boundary zone
were calculated. The values of average field intensity, power loss density, and dose
density that divided the patients into two groups with the most statistically signifi-
cant difference in OS were identified.1

Figure 3 shows Kaplan-Meier curves for overall survival (OS) when dividing the
patients into two groups according to TTFields dose. The median OS (and PFS data
not shown) was significantly longer when average TTFields dose in the tumor bed
was > 0.77 mW/cm3: OS (25.2 vs 20.4 months, p ¼ 0.003, HR ¼ 0.611) and PFS
(8.5 vs 6.7 months, p ¼ 0.02, HR ¼ 0.699). In similar analysis, dividing the patients
according to TTFields intensity yielded that median OS and PFS were longer when
average TTFields intensity at the tumor bed was >1.06 V/cm OS (24.3 vs
21.6 months, p ¼ 0.03, HR ¼ 0.705) and PFS (8.1 vs 7.9 months, p ¼ 0.03,
HR ¼ 0.721).

This work sets a foundation for defining TTFields dose. It shows that TTFields
dose can be defined in terms of power and usage and that delivery of higher doses of

1Defining dose for TTFields therapy is important to remember that TTFields are delivered by two
sets of arrays, with the field direction switching direction every second. Thus, TTFields therapy
essentially involves delivery of two incoherent electric fields to the tumor. A key question is how to
meaningfully combine the two fields into a single metric defining dose. Ballo et al. established
connections between local minimum field intensity (LMiFI) and local minimum power density
(LMiPD) and survival. In this paper, dose was defined as LMiPD multiplied by usage.

Tumor-Treating Fields at EMBC 2019: A Roadmap to Developing a Framework. . . 7



TTFields to the tumor bed does indeed improve OS. Thus, a first principle for
TTFields treatment planning is that treatment planning should strive to maximize
average dose delivered to a region comprising the tumor and the peritumoral region,
analogous to radiation therapy planning. A major difference between radiation
therapy planning and TTFields treatment planning is that due to the highly toxic
nature of radiation therapy; radiation therapy plans also need to account for avoid-
ance structures, in which the radiation dose should be limited. This adds a level of
complexity to the planning process. TTFields has a very low toxicity profile, with the
only adverse effect reported being skin toxicity [19, 22]. Thus, there is no need to
plan treatment to minimize dose in critical structures. It might be wise, however, to
incorporate avoidance areas on the skin into the plan where arrays should not be
placed.

Finally, it should be emphasized that TTFields treatment planning could benefit
from understanding how the distribution of the field alters the progression of the
tumor. This type of knowledge may help to devise more efficient strategies for

Fig. 3 Kaplan-Meier curves showing overall survival for patients treated with TTFields during the
EF-14 trial. Graph shows survival curves when patients are divided into two groups based on the
average dose in the tumor bed. The graphs clearly show improved survival in the group of patients
who received an average dose of above 0.77 mW/cm3 at the tumor bed. (Graph adapted from Ballo
et al. [2])
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planning the delivery of TTFields. These methods could be aimed at containing
tumor growth by delivering higher doses to regions to which the tumor is more likely
to grow or preventing tumor growth to critical structures by enhancing the field
intensity in these regions.

4 Patient-Specific Model Creation

In order to properly perform numerical simulations of TTFields delivery, it is
necessary to create accurate computational models that are patient-specific [11, 12,
24–26]. This involves creating a 3D volume representing the patient, in which
dielectric properties (primarily conductivity) are assigned to each voxel.

Two different approaches can be used for creating these models:

Segmenting medical images of the patients to identify the various tissue types in the
model and assignment of typical conductivity values to each tissue type [26]

Mapping conductivity from imaging data to assign a conductivity value to each
voxel in the patient model based on some signal in the imaging data that provides
information about the dielectric properties at a point [26, 27]

To date, most modelling work associated with TTFields has relied on the
segmentation of patient data and assignment of conductivity values to each tissue
type. Conductivity values have been assigned to the tissues based on empirical
measurements that appear in the literature. There is a high degree of certainty
associated with the conductivity values reported for healthy tissues of the brain, as
reported measurements are relatively consistent when comparing different reports.
However, little to no information exists on the electric properties of brain tumors. As
response to TTFields seems to depend on dose delivered to the tumor bed, and as
dose to the tumor will be influenced by the electric properties of the tumor, it is
important to gain reliable data on the electric properties of tumors. At EMBC 2019,
Proescholdt et al. [17] presented data on this topic. The data relied on measurements
performed on tissue probes acquired from 53 patients with tumors of different
histology and malignancy grades: low-grade glioma (n ¼ 5), glioblastoma (GBM;
n ¼ 16), meningioma (n ¼ 19), brain metastases (n ¼ 10), and other histology types
(1 craniopharyngioma, 1 lymphoma, 1 neuroma). Tissue probes were acquired from
the vital and perinecrotic compartments of the tumor if present. Several probes (up to
five) were sampled from each region. Immediately after acquisition, the electric
properties of tissue fragments taken from the probes were determined using a parallel
plate setup. The impedance of the sample was recorded at frequencies 20 Hz–
1 MHz. These measurements revealed significant differences between the conduc-
tivity observed in different tumor types, with meningiomas showing the lowest
conductivity (mean conductivity [S/m]: 0.189; range: 0.327–0.113) and GBM tissue
exhibiting the highest conductivity values (mean conductivity [S/m]: 0.382; range:
0.533–0.258). Consistently, the perinecrotic areas of tumors displayed lower con-
ductivity values compared to the solid tumor compartments and also significant
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intratumoral heterogeneity in tumors of one specific histological diagnosis. The
results of this study are summarized in Fig. 4.

This study sheds light on the dielectric properties of intracranial tumors, currently
not accounted for in numerical models. An understanding of the cause of heteroge-
neity is needed in order to improve model quality and better predict field distribu-
tions around the tumor. In the interim, sensitivity analysis analyzing the effect of
altering the electric properties of the tumor on field distributions is needed in order to
complete our understanding on how best to plan TTFields therapy and the uncer-
tainties associated with this planning.

EMBC 2019 also included a talk by Wenger et al. [26], discussing the use of
water content-based electric property tomography (wEPT) in order to create patient
models for TTFields-related numerical simulations. wEPT is an imaging tomogra-
phy technique that models electrical conductivity, σ, and relative permittivity, ε, as
monotonic functions of water content (WC) according to Maxwell’s mixture theory
[13]. WC maps are found via a transfer function mapping the image ratio (IR) of two
T1w images with different repetition times (TR) into water content. Previously,
wEPT was adapted to map WC, σ, and ε at 200 kHz in animal brain samples and
tumor-bearing rats with mixed results [26]. When comparing wEPT-based predic-
tions to empirical measurements of tissue samples using a parallel plate setup, we
found a good match between wEPT-based estimations in the healthy tissue, while
the quality of the match was poor within the tumors. At EMBC 2019, data were
presented on the applicability of wEPT to mapping the electric properties of the
human brain. The images used for wEPT mappings included, for this purpose, an
image with a short TR resembling a conventional T1w MRI and a proton density
(PD) image with the same parameters except for a long TR (Fig. 5).

EP maps for three patients who participated in the EF-14 trial were created using
wEPT. The adapted wEPT model coefficients were found via curve fitting according
to previous experiments and MRI scanner-specific parameters. Analysis of the
results showed that wEPT estimates of WC, σ, and ε in healthy brain tissues
(white and gray matter) appear accurate and comparable with reports in literature.
The properties were also relatively homogenous throughout the tissues and did not
vary much between patients. Contrary, wEPT estimates of σ and ε in tumor tissues
(necrosis, enhancing and non-enhancing tumor) were highly heterogeneous with
high variability between patients.

These results, combined with results of our previous study, show the potential of
wEPT-like methods for mapping the electric properties of the brain. However, the
results suggest that wEPT alone is insufficient to map the electric properties of the
tumor as well as the heterogeneous nature of the tumor. Future studies should focus
on understanding the connection between tissue microstructure and the electric
properties of the tissues at 200 kHz. When these processes are well understood,
then methods for accurately mapping electric properties can be devised.
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Fig. 4 (a) Boxplots showing the distribution of conductivities measured for four different brain
tumor types: meningiomas, low-grade gliomas, brain metastases, and glioblastomas. Conductivity
differs between tumor types, with the highest median conductivity measured in glioblastoma and
the lowest median conductivity measured in meningioma. In all tumor types, a high heterogeneity in
the electric conductivity is observed. (b) Bar plot showing the average conductivity measured in the
solid and perinecrotic regions of the tumor for several GBM patients. Surprisingly, conductivity is
consistently lower in the perinecrotic region of the tumor
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5 Advanced Imaging for Monitoring Response to Therapy

A key component in adaptive treatment planning is imaging. The ability to image the
tumor and assess response effectively is key to mapping regions in which the tumor
is responding to therapy and identifying the regions in which the disease is
progressing. Treatment can then be adapted to target the regions of progression.
Furthermore, advanced imaging holds the potential of early identification of molec-
ular and biological responses occurring at the tissue and cellular level. These
changes could indicate response or resistance to a specific treatment regimen,
enabling the treating physician to adapt treatment early in order to improve the
probability of positive outcomes. In the context of TTFields, this may mean adapting
the transducer array position in order to increase the dose in regions of progression in
order to suppress tumor growth in this region.

Fig. 5 (top-left) The tetrahedral mesh a of glioblastoma patient used to calculate TTFields induced
electric field distributions, along with the (top row) distribution of conductivity for (top middle) a
model created by segmenting a T1c image and assigning conductivity values to each tissue type and
(top right) a model created using wEPT. Bottom row shows the field distribution in the (bottom
middle) model created through segmentation and in the (bottom right) model created with wEPT.
The flow chart in the bottom-left corner shows the wEPT scheme. First an image ration (IR) is
calculated from the T1w and PD images. Next, WC is found from the IR, and conductivity derived
from the WC. Note the parameters in the equations are found using curve-fitting to empirical data as
detailed in Wenger et al. [26]
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At EMBC Mohan et al. presented a study investigating the use of advanced
imaging to map response to TTFields [14]. Twelve patients (both newly diagnosed
and recurrent GBM patients) previously treated with standard-of-care maximal safe
resection and chemoradiation received TTFields. Patients underwent baseline (prior
to initiation of TTFields therapy) and two follow-up (1 and 2 months post initiation
of TTFields) image acquisitions on a 3 T MRI. DTI data were acquired using
30 directions with a single-shot spin-echo EPI sequence. Motion and eddy current
corrections of raw DTI data were performed, and parametric maps of mean diffu-
sivity (MD) and fractional anisotropy (FA) generated using in-house software.
Perfusion-weighted imaging (PWI) was performed using T2*-weighted gradient-
echo EPI sequence which was acquired with a temporal resolution of 2.1 s. Leakage-
corrected cerebral blood volume (CBV) maps were constructed. 3D-EPSI was
acquired using a spin-echo-based sequence. EPSI data were processed using the
Metabolic Imaging and Data Analysis System (MIDAS) package. MD, FA, EPSI
[choline (Cho)/creatine(Cr)], CBV maps, and FLAIR images were co-registered to
post-contrast T1-weighted images, and contrast-enhancing neoplasms were seg-
mented using a semiautomated algorithm. Median values of MD, FA, relative
CBV (rCBV), and Cho/Cr were computed at each time point, as were the 90th
percentile rCBV (rCBVmax) values. Percent changes of each parameter between
baseline and follow-up time points were evaluated.

Analysis of the images demonstrated an increasing trend in MD (~3%) and
declining trend in FA (~8%) at the 2-month follow-up relative to baseline. Addi-
tionally, reductions in Cho/Cr and rCBV max from baseline to post-TTFields were
also observed. All patients were clinically stable at 2-month follow-up. The changes
in MD, FA, and Cho/Cr may indicate inhibition of cellular growth. Reduction in
rCBVmax may indicate anti-angiogenic effects associated with TTFields and
decreased perfusion within the tumor bed after the therapy. These preliminary results
suggest that advanced MR imaging may be useful in evaluating response to
TTFields in GBM patients. Further work is required to validate the findings in a
larger patient cohort in which these findings could be correlated with clinical
endpoints of PFS and OS. Fully utilizing the power of these findings for TTFields
treatment planning would also warrant studies looking to connect voxel-based
changes observed in the images with field intensity distribution patterns derived
from simulations. The completion of such studies would provide physicians with
valuable information about how to plan and dynamically adapt TTFields dose
distributions in order to maximize their ongoing effect on the tumor.

6 Discussion and Conclusions

In this chapter, we have provided an overview on some of the TTFields-related
research presented at EMBC 2019. The research presented in this chapter relates to
three key areas, which together lay the foundations for the field of TTFields
dosimetry and treatment planning:
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• Definition of TTFields dose and the influence of dose on patient outcome
• The creation of patient-specific computational models for simulating delivery of

TTFields
• Advanced imaging techniques for monitoring response to therapy

The area of TTFields dosimetry and treatment planning is very much in its
infancy. The work presented at EMBC 2019 not only provides a basis for this
field but also highlights the many open questions related to this field. The work
presented by Bomzon et al. provides a robust and relatively intuitive definition for
TTFields dose as the average power delivered by the fields. The authors clearly show
a connection between TTFields dose at the tumor bed and patient survival. However,
a crucial point required for effective treatment planning is to understand how dose
distributions influence progression patterns. Do tumors really tend to progress to
regions in which TTFields dose is lower? At a more fundamental level, given a
TTFields dose distribution map, can we predict the probability that the tumor will
progress in a certain region?

The work presented by Wenger et al. shows the potential of image-based electric
property tomography to accurately map conductivity within patients, thereby pro-
viding a quick and accurate method for creating the patient-specific models required
for TTFields treatment planning. This work also emphasizes the difficulty and
knowledge gap that needs to be bridged in order to accurately map the electric
properties of tissues in the vicinity of the tumor. The work by Proescholdt et al.
shows that electric properties of tumors are indeed highly heterogeneous. Thus,
accurate methods for modelling tumor tissue properties may be needed in order to
accurately model electric field distributions in the vicinity of the tumor when
performing treatment planning.

Finally, the work presented by Mohan shows the potential of advanced imaging
techniques to identify metabolic and physiological changes within the tumor. These
changes could be used as markers for response to therapy and could be adapted to
plan therapy throughout the course of treatment.

Thus, the combination of work presented at EMBC poses key questions that need
to be answered as the field of TTFields dosimetry and treatment planning evolves:

• How are progression patterns influenced by TTFields dose distributions? Do
tumors progress in regions where dose is lower?

• How do we improve methods for mapping conductivity in a patient-specific
method, specifically around the tumor?

• Can we utilize advanced imaging techniques to effectively monitor disease
response/progression in order to better tailor therapy in an adaptive manner?

A final component required for the maturation of TTFields treatment planning is
the development of a clinical quality assurance (QA) system analogous to that used
for radiation therapy planning. This system should aim to establish the uncertainties
associated with treatment plans and their effect on the dose distributions. This in turn
could lead to the development of clinical guidelines related to the desired accuracy of
the computational models used for TTFields treatment planning, the desired
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accuracy in the electric properties assigned to the various tissue types, and the
desired accuracy in the placement of the transducer arrays on the skin when initiating
treatment. Key to answering these questions are studies examining the sensitivity of
numerical simulations of TTFields delivery to all of the above parameters, as well as
studies aiming to experimentally validate the simulations using, for instance, suitable
anthropomorphic phantoms. The development of this QA framework would enable
the derivation of guidelines for best practices when performing TTFields treatment
planning, thereby guiding the practicalities associated with the assimilation of
sophisticated treatment planning procedures into the clinic.

As a concluding comment, we note that TTFields treatment planning could
benefit enormously from emerging studies utilizing mathematical models to predict
tumor progression [1, 7, 8]. These models attempt to incorporate information about
factors such as tumor cell density, cell proliferation rates, and cell invasiveness into
models that predict how tumors progress over time. Radiomic methods can be used
to extract relevant information on the tumor, which can be fed into such models
[5]. The effect of specific drugs or radiation therapy on tumor progression can then
be modelled, and patients would gain potential benefit from a specific treatment
quantified [15, 16]. A natural expansion to these models is to incorporate TTFields
dose distributions. In fact, an attempt to do this has previously been reported
[18]. The benefit of different TTFields treatment plan can be evaluated, and the
optimal plan selected. As the patient is monitored, and additional imaging data
collected, the treatment plan, combination of therapies, and patient-specific model
could be updated to continuously provide the patient with optimal care.

In summary, TTFields are emerging as a powerful addition to a growing arsenal
of tools applied in the fight against cancer. The development of effective techniques
for TTFields treatment planning will help to maximize the utility of this exciting
treatment modality, ultimately leading to improved patient outcomes.
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How Do Tumor-Treating Fields Work?

Kristen W. Carlson, Jack A. Tuszynski, Socrates Dokos, Nirmal Paudel,
Thomas Dreeben, and Ze’ev Bomzon

1 Introduction

Since approved by the FDA for the treatment of glioblastoma brain cancer in 2015,
tumor-treating fields (TTFields) have rapidly become the fourth modality to treat
cancer, along with surgery, chemotherapy, and radiation [1]. TTFields are now in
clinical trials for a variety of cancer types. While efficacy has been proven in the
clinic, higher efficacy is demonstrated in vitro and in animal models, which indicates
much greater clinical efficacy is possible. To attain the great promise of TTFields,
uncovering the mechanisms of action (MoA) is necessary.

TTFields are 200 kHz AC electric fields directed transcranially or transdermally
to a tumor site with target field strength of 2–4 V/cm. Through unknown MoA,
TTFields kill cancer cells, extending survival for victims of brain cancer. Empirical
studies show TTFields exert a variety of effects on cell processes [2–5]. And while
the cause-effect chain is under investigation, they ultimately disrupt mitosis, the
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delicately orchestrated process of cell division, which occurs more often in cancer
cells than in healthy cells. This article will review the clues and hypotheses about
TTFields MoA that have been uncovered to date. We present the novel hypothe-
sis that the intrinsic, mitochondrial apoptotic pathway upregulated by Bcl-2 and
inhibited by BAX is a key component of TTFields MoA.

1.1 TTFields Affect Large, Polar Molecules

Early hypotheses on TTFields MoA pointed to disruptive effects on subcellular
structures such as individual dipoles, e.g., tubulin, which are common in the cell
[2, 3]. However, detailed subsequent calculations show that TTFields’ effects on
individual dipoles seem insufficient to disrupt their function (Fig. 1) [6]. Using
parameters at the high end of their ranges, Tuszynski et al. calculated that the
force on a free, unpolymerized 3000 debye tubulin dimer by 1 V/cm TTFields is
10�24 J, several orders of magnitude less than the cell’s background thermal energy,
and therefore too low to torque it (Table 1). On the other hand, larger molecules
composed of many dipoles, such as microtubules (MT), septin, and organelles, may
accumulate enough dipole moment in their structure to be significantly affected.

Further, it is likely that TTFields’ energy is amplified at various locations within
the cell. Identifying those amplifying locations is an important part of our research
program [7].

TTFields could also modulate ion channel gates in the mitochondrial membranes,
which in turn regulate cellular processes such as apoptosis (programmed cell death).

Fig. 1 COMSOL (Burlington, MA, USA) 2D axisymmetric finite element model of a dipole
approximating a tubulin dimer. Left: color scale, electric potential in volts. Streamlines: electric
field. Right: electric field norm contours in V/m; cf. to TTFields imposed field strength of ~
2 � 102 V/m. Model bears out calculations by Tuszynski et al. predicting the TTFields’ direct
effect on comparable subcellular dipoles is orders of magnitude too weak to have a disruptive effect
on cell structures [6]. Thus, workers look for locations in the cell where TTFields’ effect is
amplified, such as in highly conductive microtubules composed of tubulin dimers, or at the cell
furrow during late mitosis [7]

20 K. W. Carlson et al.



In general, cellular processes evolved to send signals in the presence of back-
ground thermal noise, whose value is given by Boltzmann’s constant k times
absolute temperature T [6]. For practical purposes, we assume energy required for
disruption must be at least 1–2 orders of magnitude above kT, since the signal/noise
ratio in a reliable system is never 1:1 (Table 2) [8]. Another ubiquitous energy
threshold in cellular activities, for instance, in MT depolymerization or motor protein
transport, is ATP energy (Table 1). Since ATP energy is the actual energy used by
the cell for numerous binding or unbinding processes, and not a probabilistic floor as
is kT, TTFields energy need not substantially exceed it to interfere with an
ATP-driven process. While kT and ATP energies are ubiquitous in the cell, other
more specialized energy levels exist as well. Any cellular process in which
TTFields’ energy exceeds the threshold energy driving that process is a candidate
for TTFields MoA.

Tuszynski et al. propose an “energetic constraint from above,” 3 � 10�12 W,
approximately the power generated by a cell, based on the hypothesis that TTFields
cannot disrupt many normal and mitotic cellular processes, which would occur if the
energy absorbed by the cell appreciably heated it [6], and empirically no significant
heating effects have been observed [2]. However, while much of a cell’s energy is
devoted to heating it to a temperature where its biochemical reactions are possible,
energy absorbed from TTFields may be concentrated at key structures and have
nonthermal effects higher up on the entropic food chain.

1.2 The Need for a “Complete” TTFields Theory

We advocate constructing a “complete” theory of TTFields tying together the
underlying mechanisms of TTFields’ efficacy with its unobserved effects on

Table 1 Three ubiquitous cellular energy levels, which, if exceeded via an exogenous source,
would disrupt processes

Disruption metric Energy

Background thermal energy kT ¼ 4 � 10�21 joules

Energy of ions crossing cell membrane (e.g. K+, Na+) 20 – 100 meV
~1 – 4 kT

Adenosine Triphosphate (ATP) ~25 kT
�10�19 joules

Table 2 Signal-to-noise ratio
guidance in signal theory

Signal/noise (dB) Quality

1–10 Unreliable

20 Intelligible but noisy

60 High fidelity

Scale is logarithmic: 1 dB ¼ 10 log10 (P1/P2) where P is power
(watts)
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subcellular structures, cell signaling pathways, and observed effects (Table 3). A
complete theory will sort out what is causal versus epiphenomenal or downstream
effects. For instance, it is unknown whether the decrease of the key motor protein
septin at the cell midline [5] or the 25% increase in free tubulin in relative terms [4]
in TTFields-treated cells are causing disruption of mitosis or are just side effects.
Importantly, a complete theory imposes the maximum constraints on its formulation,
which is helpful conceptually and in modeling TTFields effects. The several hypoth-
eses on TTFields MoA (Sect. 3) conflict with each other and with empirical evidence
in varying respects, which must be sorted out. Examining isolated TTFields phe-
nomena results in under-constrained models.

2 Empirical Clues to TTFields MoA

In this section, we compile key clues informing and constraining a theory of how
TTFields work.

2.1 TTFields Only Kill Fast-Dividing Cells

TTFields do not affect normal cells and only affect cells that divide more often than
normal cells, i.e., cancer cells. Thus, MoA ideas focus on subcellular structures that
differ in the cell division stages (mitosis) versus between cell division (interphase).
For example, MTs become much more dynamic in their length during mitosis, and
during mitosis some septin structures align with the cell axis, while other septin
structures rotate orthogonal to it, while in interphase they are randomly aligned in
general.

Table 3 Ingredients of a complete TTFields theory

Components of TTFields theory Examples

Predicted electromagnetic effects on
subcellular structures

Dielectrophoresis of large molecules near the cellular
furrow during late mitosis [9, 10]

Predicted electromagnetic effects on
cell-signaling pathways

Triggering of intrinsic, Bcl2/BAX-mediated apoptosis by
direct effect on mitochondrial outer membrane (MOM) or
indirect effect via excess free tubulin obstructing MOM
voltage-gated ion channels

Observed effects of TTFields on
cellular structures

Excess free tubulin [4] and decrease of septin at cell
midline [5], both correlated with mitotic spindle deformi-
ties and other mitotic aberrations, such as cell blebbing,
multiple nuclei, aneuploidy, and apoptosis in interphase

Verifiable predictions leading
toward maximum efficacy

Apply direction changes from multiple directions so as to
increase the incidence of field aligned and orthogonal to
cell axis of randomly oriented cells in vivo
To treat edema in brain cancer, replace dexamethasone
(dex) with celecoxib to eliminate dex inhibiting TTFields’
triggering of intrinsic apoptosis [11]
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2.2 TTFields Require 2–4 V/cm Field Strength

Figure 2 (left) shows a plot of killed versus live cells according to TTFields ambient
field strength in vitro [2]. Based on this and other early works, numerous head and
body modeling studies use 2 V/cm as a threshold for efficacy required in TTFields.
However, considering the weakened effect of TTFields when not aligned with the
cell axis (Sect. 2.4) and the need to kill all cells in cancer to eliminate recurrence and
metastases (tumor cells that spread to other organs from their original site), we
suggest 4 V/cm as an efficacy threshold.

2.3 TTFields Are Frequency-Sensitive and Effective Only
in the 100–300 KHz Range

TTFields have proven effective at killing a variety of tumor cell types, but in all
cases, the frequency range is confined to 100–300 KHz, equivalent to a period range
of 3.3–10 μs, and the specific frequency varies with tumor cell type (Fig. 2, right)
[2, 3]. For instance, TTFields’ efficacy for glioblastoma and astrocytoma brain
cancers, ovarian cancer, and mesothelioma lung cancer is maximal at 200 KHz,
while for various types of lung, pancreatic, cervical, and mammary cancers, the peak
effect is at 150 KHz [4, 12]. We believe that part of the underlying mechanism is that
the cell membrane becomes translucent to electromagnetic radiation in this

Fig. 2 Frequency- and electric field intensity-dependent TTFields’ effects on proliferation of
several cancer cell types. Left: relative change in number of cells after 24-h treatment of different
frequencies at 1.75 V/cm. Right: effect of 24-h exposure to TTFields of increasing intensities
(at optimal frequencies). ● B16F1 (mouse melanoma). ■MDA-MB-231 (human breast adenocar-
cinoma). ▲Δ F-98 (human glioma brain cancer). H1299 (small lung cell carcinoma). (From Kirson
et al. [3], with permission, copyright (2007) National Academy of Sciences)
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frequency range, allowing enough field strength to enter the cell and affect subcel-
lular mitotic structures (Fig. 3) [9]. The mechanism underlying the upper limit of the
range and different frequency responses is unknown, which could be, for instance,
tied to relaxation time constants in DEP effects, the duration of sustained current
flow at MT+ end required to disrupt polymerization, or the duration required to
charge the MT counter-ion/depleted ion layer/C-termini capacitor which in turn
could disrupt MT functions.

The efficacy versus field strength relationship is nonlinear for all cell types (Fig. 2
right) and suggests a power law, for which there are at least two candidates. In
general, energy and power in an electromagnetic wave are related to the square of
field strength produced by the wave (Eq. 1). Dielectrophoretic force is proportional
to the square of field strength (Eq. 2) [9]; see Zhao & Zhang for a different analysis
[13], and there are other possibly relevant power law relationships. It is notable that
while the electric field strength squared is also proportional to frequency, TTFields
efficacy does not increase with their frequency outside of the 100–300 KHz range
(Sect. 2.2). The underlying reason is unknown.

Iave ¼ cE0E2
0

2
ð1Þ

FDEPh i˜∇ Re eE
h i2

þ Im eE
h i2

� �

ð2Þ

Fig. 3 At 200 KHz, a 10 μm radius cell becomes “translucent” to an exogenous electric field (2 V/
cm) due to complex permittivity of its membrane, while at lower frequencies it is opaque and at
higher frequencies (e.g., MHz-GHz) it is transparent [9]. The field is largely, but not entirely
shunted around the cell, with a fraction of its energy penetrating the cell to affect subcellular
structures. Left: dividing cell at 0, 45

�
, and 90

�
(left to right) to the cell’s axis. Electric potential

(color bar, V) and current flow (arrows). Arrows: current density. Right: color bar: Electric field
strength (V/cm)
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2.4 TTFields Are Highly Directional

One in vitro experiment examined the proportion of cells killed in relation to the
angle of the cell axis to the ambient TTFields direction [2]. This study found that
TTFields are most lethal when aligned with the cell axis and have a weaker,
secondary effect when orthogonal to the axis, but no significant effect at 45� to the
axis. We interpret these results to indicate there are at least two MoA, and they are
not additive.

Following the conclusions of the experiments just described, and assuming cells
are randomly oriented when they begin mitosis, it is logical to hypothesize that
changing the direction of TTFields would subject more cells to field alignment or
orthogonality than applying the treatment from one direction only. A possible trade-
off is the reduced duty cycle—the proportion of time spent in a given direction. It is
possible that the field must be applied for a minimum duration in order to produce its
disruptive effect on subcellular structures.

Thus, another study looked at TTFields’ efficacy with no change of direction
versus one change of direction twice per second [2]. The latter protocol killed 20%
more cells than TTFields applied with no change of direction.

A third set of experiments was published in US patent [14]. Figure 4, from the
patent, compares the changes in growth rate of glioma F98 cells (brain cancer)
subjected to 200 KHz TTFields imposed from two orthogonal directions at different
change-of-direction frequencies.

The several sets of experiments support each other, while the mechanisms
underlying the increased tumor cell-killing effect with change-of-direction duty
cycle remain to be understood.

2.5 TTFields Have Their Strongest Effect in Prophase
and Metaphase

Kirson et al. also empirically examined TTFields efficacy at different points in the
cell division cycle. They found that the strongest effects occur in metaphase, i.e.,
early in mitosis, with the field direction aligned with the cell axis [2]. Secondarily,
when TTFields are orthogonal to the cell axis, they have a lesser effect, also in
metaphase, specifically in prophase at the start of mitosis.

2.6 TTFields Increase Free Tubulin and Decrease
Polymerized Tubulin in the Mitotic Spindle Region

Giladi et al., through careful experimentation, demonstrated that free tubulin is
increased by 12.8% in absolute terms, which is ~25% in relative terms, and
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polymerized tubulin (i.e., in microtubules) is decreased concomitantly in TTFields-
treated cells [4]. The effect was similar to, but not as pronounced as, the increase of
free versus polymerized tubulin due to a vinca-alkaloid chemotherapeutic agent,
vinorelbine, and opposite to effects of the paclitaxel class of chemotherapeutic
agents that stabilize MT polymerization, thereby decreasing the ratio of free versus
polymerized tubulin. Giladi et al. also showed phenomena such as aberrant spindle
formation, mitotic “slippage” (delayed mitotic phases), aneuploidy (abnormal num-
ber of chromosomes), and other effects that can trigger the intrinsic form of
apoptosis or are emblematic of it.

These results raise the possibility that TTFields act like the vinca alkaloids to
disrupt MT polymerization, but without the noted deleterious side effects of chemo-
therapy. In one study, TTFields were shown to be as effective as chemotherapy in
treating brain cancer [15] and in others were shown to be synergistic with chemo-
therapy for lung cancer, decreasing the dosage required to achieve equal efficacy
[16] and increasing efficacy when used in conjunction with several chemo
agents [12].
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Fig. 4 (From Palti [14]). 200 KHz TTFields were applied to brain cancer cells in culture from two
orthogonal directions at different duty cycle frequencies (i.e., at different frequencies of change
between the two directions). The greatest efficacy occurred when the changes of direction occurred
every 50 ms. The 50 ms optimal duty cycle may be a significant clue as to the underlying
mechanism of action, for instance, a dielectrophoretic relaxation time in a large intracellular
macromolecule
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3 Candidate Mechanisms of Action (MoA)

3.1 Dielectrophoretic (DEP) Effects

Several modeling studies have shown that as the mother and daughter cells elongate
during late mitosis and enter cytokinesis (division into the two daughter cells), field
strength is significantly amplified near the furrow joining the two cells [9, 10,
13]. Since DEP effects are proportional to the electric field amplitude squared
(Eq. 2), DEP forces increase dramatically in late mitosis when cells are maximally
elongated and field lines are most concentrated near the cell furrow. Further, it is
easy to see that DEP effects are enhanced when TTFields are aligned with the cell
axis, in accord with experimental data (Sect. 2.4).

However, DEP effects do not correspond to empirical data showing TTFields
have no effect when oriented at 45

�
to the cell axis and a moderate effect at 90

�
(Sect.

2.4 and Fig. 5). Also arguing against the DEP MoA theory is their weak effect early
in the mitotic cycle and strong effect in the late mitotic cycle, in contradiction to
experimental data (Sect. 2.5).

Fig. 5 A 10 μm radius dividing cell in late mitosis approaching cytokinesis is shown with an
exogenous 200 kHz TTFields of 2 V/cm imposed at 0, 45

�
, and 90

�
(left to right) to the cell’s axis.

Field strength (color bar, V/cm) and current flow (arrows) are amplified most when the field is
aligned with the cell axis, less so at 45

�
, and not at all at 90

�
. (COMSOL model courtesy Wenger

et al. [9])
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3.2 Microtubule Effects

Several hypotheses have been proposed for TTFields disruption of MTs, including
direct effects on C-termini state transitions, stall of the motor protein kinesin which
transports cargo along the MT, and interference with MT polymerization. Since MTs
become more active and increase in length and a proportion of them align with the
cell axis as mitosis progresses, hypotheses that they are involved in TTFields MoA
fit the constraints of acting on mitotic but not interphase cells and efficacy when the
field is aligned or orthogonal to the cell axis (Sects. 2.1 and 2.4).

We calculate the force exerted by TTFields on elementary charges as follows. For
each 100 V/m ¼ 100 N/C ¼ 100 N/(6.2415 � 1018 e), or 1.60218 � 10�17 N/e
(where N is newtons and e is an elementary charge). For 8 C-termini charges and
TTFields target strength of 200 V/m, this yields 2.56 � 10�16 N, orders of magni-
tude less than the minimum estimated 10-10–10�12 N required to perturb C-termini
state transitions.

On the other hand, estimates vary for the stall force on the motor protein kinesin’s
“walk” along a MT, 8 nm dimer by dimer. One group separates each step of the walk
into two phases: the first driven by the mechanical tension inherent in the kinesin
“neck,” which requires at least pN level force to stall, while the second, thermal
energy-driven step of the walk which requires just 10�16 N to stall [17]. Thus, by the
previous calculation and our modeling, disruption by TTFields of the kinesin walk is
possible, and under the “complete” theory approach, attention is directed to corre-
lating predicted effects of the disruption with what is observed.

Several possibilities exist for TTFields interference with MT polymerization.
Direct action of TTFields on tubulin dimers at unamplified field strength, while
suspected in early MoA proposals, is ruled out as described in Sect. 1.1. However,
due to capacitive effects when TTFields are orthogonal to MTs, field strength may be
amplified at the MT+ end where polymerization occurs. Second, Santelices et al.
showed that MT conductivity is orders of magnitude greater than that of the ambient
cytosol [18]. This quality alone implies that MTs will act as electrical shunts of
TTFields-induced currents within the cell, which would have field amplification
effects. Further, the conductive MT layer is likely the counter-ion layer attracted to
the C-termini charges, and the mechanism of its conduction is uncertain [19]. If
counter-ion resistance is non-Ohmic, e.g., not proportionate to MT length, possibly
lossless, then as MT length increases in early mitosis, it would pick up an increasing
field gradient, and if the resulting voltage, current, energy, or power exceeded a
disruption threshold, e.g., for polymerization, that could explain why TTFields affect
mitotic but not interphase cells (Sect. 2.1). This hypothesis is currently under
investigation.
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3.3 Septin Effects

As mentioned, Gera et al. showed decreased septin concentration at the cell midline
during mitosis, specifically as the cell enters anaphase, when errors in mitotic spindle
formation become uncorrectable and ineluctably result in aberrant mitotic exit and/or
programmed cell death [5]. Septin is, in fact, an ideal candidate for TTFields effects
since septin family members self-assemble into various structures—hexameric and
octameric quaternary structures, filaments, rings, and gauzes—that form rapidly and
are precisely aligned or orthogonal to the cell axis during various mitotic phases,
notably including prophase (Fig. 6; Sects. 2.4 and 2.5) [20–22]. Gera et al. estimate
the dipole moment of the septin 2-6-7 complex at 2711 debye and note a higher
value is possible when the complex is aggregated into higher-order septin structures.

They suggest that TTFields' effects on septin correlate with results showing that
septin depletion leads to impairment of its cytoskeletal role to prevent improper

Cell Cycle Phase Septin Component
& Alignment

Schematic

Interphase Single fibers are present with
no alignment

Prophase Double octamer filaments 
begin to align in cell furrow 
along mother-daughter axis

Metaphase, 
anaphase

Single fibers are added 
orthogonal to mother-
daughter axis cross-linking the 
double filaments at regular 
intervals

Telophase Double filaments disassemble

Cytokinesis Double filaments re-align with 
single fibers into a 
circumferential double-ring 
structure

Single filamentSeptin octamer

Fig. 6 Septin in the cell cycle (After Ong et al., [21]). For cell division to succeed, members of the
cytoskeletal protein septin family are required to precisely assemble into various structures that are
either aligned with or orthogonal to the cell axis. Some septins are large polarizable molecules, e.g.,
septin complex 2-6-7, which Gera et al. estimated its dipole moment at 2711 debye, and perhaps
greater in higher-order structures [5]. Since TTFields can affect large polarized molecules and have
their strongest effects when aligned or orthogonal to the cell axis, septins are a possible TTFields
mechanism target.
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membrane shape, e.g., to stabilize aberrantly protruding membranes (“blebbing”)
against internal hydrostatic pressure as the cell changes shape drastically during later
mitosis [20, 23], and which they and others have observed in TTFields-affected cells
[24]. Note, though, that Gilden et al. found that septin rapidly accumulates in
conjunction with a second cytoskeletal protein, actin, at the site of the blebs, and
so depletion of septin at the cell midline has no obvious connection with accumu-
lation of septin at the cell membrane, while it could be tied to effects observed at the
cell cleavage furrow [25]. Another possibility is that depletion of any septin at the
midline could trigger septin depletion at other cell locations since septin depletion
across family members is correlated, perhaps since septin complex formation is
dependent on multiple septins [26]. Further, Gera et al. observed no septin depletion
early in mitosis (cf. Sect. 2.4). In contrast, Estey et al. showed that depletion of
septins 2 and 7 early in cytokinesis causes binucleation, which has been observed in
TTFields-treated cells [26].

Gera et al. hypothesize that (1) TTFields torque the septin 2-6-7 complex and
interfere with its self-assembly into a lattice as the cell enters anaphase; (2) anillin is
then unable to recruit the septin complex to perform its role in preserving the
structural integrity of the cell as it elongates toward cytokinesis, and (3) membrane
blebbing triggers cell death via the immune system. While they speculate that
p53-induced extrinsic, immune-driven apoptosis may be the ultimate cause of cell
death and found evidence of p53-dependent G0/1 cell cycle block, they were unable
to find greater expression of p53 in TTFields-treated cells. Further, p53 has a
complex role in cell signaling, cell cycle checkpoints, and apoptosis [27], and
non-p53-dependent apoptotic pathways are possible, as is p53 involvement in
intrinsic, mitochondrial apoptosis versus extrinsic apoptosis (Sect. 3.4)
[28, 29]. While Gera et al. conclude that the role of p53 in TTFields MoA is unclear,
their focus on septin and their results merit further investigation.

3.4 Is Intrinsic Apoptosis the Key Signaling Pathway
Triggered by TTFields?

Wong et al. hypothesized that TTFields may induce an immune system response
[24] and noted that the MoA of dexamethasone (dex), routinely prescribed to reduce
inflammation and edema in brain cancer patients, is steroidal-driven reduction of
immune system function [11]. They created two cohorts: one with dex dose reduced
to <4.1 mg/day, and result was a significant extension of overall survival among the
low-dex cohort, perhaps supporting the hypothesis that the immune system is
involved in TTFields MoA.

An alternate hypothesis is possible. First, note that immune system activity was
not implicated in the original in vitro studies where TTFields were shown to have
higher efficacy than in human trials [2, 3]. Second, immune response correlated with
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better response in human patients that occurred months into treatment [24], which
again was not a factor in the in vitro efficacy occurring in a few days.

Third, in reviewing the literature on dex and apoptosis, we found that dex has
pleiotropic effects on two different apoptotic pathways. In some tissues, dex
enhances immune system, p53-driven (“extrinsic”) apoptosis [30, 31], while in
others, dex inhibits Bcl-2/BAX-regulated (“intrinsic” or “mitochondrial”) apoptosis
(Fig. 7) [32, 33]. Fourth, in fact, dex has been shown to inhibit intrinsic apoptosis in
glioblastoma and is suspected to interfere with apoptosis in chemo- and radiation
therapy [34–37]. Fifth, a principal MoA of radiotherapy, which induces DNA
damage in target cells, is intrinsic apoptosis [38]. Thus, it seems likely that dex
interferes with TTFields and radiotherapy for the same reason: inhibition of intrinsic
apoptosis.

We hypothesize that TTFields trigger the intrinsic apoptotic pathway as a key
component of its MoA and that the MoA of TTFields, vinca alkaloids,
temozolomide, and radiotherapy overlap. It is notable that TTFields produce no
side effects while chemo- and radiotherapy have serious deleterious effects on
healthy, non-tumor cells and decrease quality of life for patients.

Fig. 7 Diagram showing the intrinsic, mitochondrial (left), and extrinsic, immune-related (right)
apoptotic pathways. In the intrinsic pathway, the steroid dexamethasone (dex) is anti-apoptotic,
while in the extrinsic pathway, dex is pro-apoptotic. Since dex interferes with TTFields efficacy,
this suggests that intrinsic apoptosis is a key signaling pathway of its mechanism of action (MoA).
Since dex also interferes with radiotherapy and it is known that intrinsic apoptosis is a main MoA, it
supports the intrinsic apoptosis theory of TTFields MoA and suggests that TTFields act like
radiotherapy and vinca alkaloid chemotherapy, but notably without their deleterious side effects.
(Source, with permission via ResearchGate: [39])
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The intrinsic apoptosis theory does not necessarily conflict with the hypotheses
described above, which focus on electric field effects on subcellular structures.
Rather, a complete TTFields theory requires tying field effects on subcellular targets
to a downstream triggering of intrinsic apoptosis. One possibility is that TTFields
have a direct or indirect effect on the mitochondrial outer membrane (MOM), which
regulates intrinsic apoptosis via its ion channels. It has been shown that TTFields act
on the ion channels directly, similar to electric field modulation of axon and neuron
ion channels at much lower frequencies (0–30 kHz) [40].

An indirect effect is also possible. Studies have shown that free tubulin has the
correct conformation to block voltage-gated anion channels (VDAC) in MOM and
that tubulin subtypes modulate MOM potential [41–43]. An excess concentration of
free tubulin, as shown by Giladi et al. [4], could result in modulation of VDAC or
other MOM ion channels and affect regulation of intrinsic apoptosis. Since tubulin
regulates MOM channels via the degree to which subtypes block them [44, 45], this
hypothesis can be tested by identifying the subtype(s) rendered free versus polymer-
ized by TTFields and seeing if the same subtype(s) regulate the MOM channels that
trigger intrinsic apoptosis.

Cells in which intrinsic apoptosis is triggered display similarities to the empirical
observations of Giladi et al. of TTFields-treated cells, for instance, that many cells
exit mitosis and die in interphase [4, 28].

The intrinsic apoptosis theory predicts that decreasing the Bcl-2/BAX ratio would
enhance TTFields’ efficacy as it does for radiotherapy and, concomitantly, increased
Bcl-2/BAX ratio would explain TTFields resistance as it does for radiotherapy,
notably in glioma cells [46–48].

Thus, the intrinsic apoptosis hypothesis has the appeal of possibly meeting the
requirements of a “complete” TTFields theory (Sect. 1.2) tying together electromag-
netic effects on intracellular structures, cell signaling pathways, the observed empir-
ical effects of TTFields, and predictions leading to match clinical efficacy with the
high in vitro and animal model in vivo efficacy.

4 Conclusion

Since 2004, a significant body of evidence has accumulated from which increasingly
specific theories of how TTFields work have been proposed. Such theories must
ultimately tie together the effects of electric fields on subcellular structures, cell-
signaling pathways, empirically observed effects on cells, and predictions leading to
clinical efficacy matching the high efficacy proven in vitro and in animal models. We
have presented the leading candidates and highlighted the theory that TTFields
trigger the intrinsic, mitochondrial-regulated, apoptotic pathway as a key component
of their MoA. The intrinsic apoptosis theory suggests that TTFields’MoA is similar
to that of vinca alkaloids and radiotherapy, but lacks their deleterious side effects,
and predicts methods to enhance TTFields clinical efficacy.

32 K. W. Carlson et al.



Acknowledgements Eduard Fedorov, Novocure Ltd., helped with dimensionless modeling.
Magnus Olsson and Kiran Uppalapati, COMSOL, offered techniques for modeling on a nanometer
scale. We thank Cornelia Wenger for sharing her COMSOL model. Jeffrey E. Arle, BIDMC/
Harvard Medical School, introduced the lead author to tumor-treating fields. Partial funding was
provided by Novocure Ltd.

References

1. Mun, E. J., et al. (2017). Tumor-treating fields: A fourth modality in cancer treatment. Clinical
Cancer Research, 24, 266–275.

2. Kirson, E. D., et al. (2004). Disruption of cancer cell replication by alternating electric fields.
Cancer Research, 64, 3288–3295.

3. Kirson, E. D., et al. (2007). Alternating electric fields arrest cell proliferation in animal tumor
models and human brain tumors. Proceedings of the National Academy of Sciences of the
United States of America, 104, 10152–10157.

4. Giladi, M., et al. (2015). Mitotic spindle disruption by alternating electric fields leads to
improper chromosome segregation and mitotic catastrophe in cancer cells. Scientific Reports,
5, 18046.

5. Gera, N., et al. (2015). Tumor treating fields perturb the localization of septins and cause
aberrant mitotic exit. PLoS One, 10, e0125269.

6. Tuszynski, J. A., et al. (2016). An overview of sub-cellular mechanisms involved in the action
of TTFields. International Journal of Environmental Research and Public Health, 13(11),
1128.

7. Tuszynski, J. A. (2019). The bioelectric circuitry of the cell. In S. Makarov, M. Horner, &
G. Noetscher (Eds.), Brain and human body modeling: Computational human modeling at
EMBC 2018 (pp. 195–208). Cham: Springer. https://doi.org/10.1007/978-3-030-21293-3_11.

8. Pierce, J. R. (1981). Signals: The telephone and beyond. San Francisco: W.H. Freeman.
9. Wenger, C., et al. (2015). Modeling Tumor Treating Fields (TTFields) application in single

cells during metaphase and telophase. Conference Proceedings: Annual International Confer-
ence of the IEEE Engineering in Medicine and Biology Society, 2015, 6892–6895.

10. Berkelmann, L., et al. (2019). Tumour-treating fields (TTFields): Investigations on the mech-
anism of action by electromagnetic exposure of cells in telophase/cytokinesis. Scientific
Reports, 9, 7362.

11. Wong, E. T., et al. (2015). Dexamethasone exerts profound immunologic interference on
treatment efficacy for recurrent glioblastoma. British Journal of Cancer, 113, 232–241.

12. Giladi, M., et al. (2014). Alternating electric fields (tumor-treating fields therapy) can improve
chemotherapy treatment efficacy in non-small cell lung cancer both in vitro and in vivo.
Seminars in Oncology, 41(Suppl 6), S35–S41.

13. Zhao, Y., & Zhang, G. (2018). Elucidating the mechanism of 200 kHz tumor treating fields with
a modified DEP theory. IEEE International Symposium on Signal Processing and Information
Technology (ISSPIT).

14. Palti, Y. (2011). Optimizing characteristics of an electric field to increase the Field’s effect on
proliferating cells. US patent 7,917,227 B2 US Application 11/537,026.

15. Stupp, R., et al. (2012). NovoTTF-100A versus physician's choice chemotherapy in recurrent
glioblastoma: A randomised phase III trial of a novel treatment modality. European Journal of
Cancer, 48, 2192–2202.

16. Kirson, E. D., et al. (2009). Chemotherapeutic treatment efficacy and sensitivity are increased
by adjuvant alternating electric fields (TTFields). BMC Medical Physics, 9, 1.

17. Sozanski, K., et al. (2015). Small crowders slow down kinesin-1 stepping by hindering motor
domain diffusion. Physical Review Letters, 115, 218102.

How Do Tumor-Treating Fields Work? 33

https://doi.org/10.1007/978-3-030-21293-3_11


18. Santelices, I. B., et al. (2017). Response to alternating electric fields of tubulin dimers and
microtubule ensembles in electrolytic solutions. Scientific Reports, 7, 9594.

19. Priel, A., et al. (2005). Transitions in microtubule C-termini conformations as a possible
dendritic signaling phenomenon. European Biophysics Journal, 35, 40–52.

20. Gilden, J. K., et al. (2012). The septin cytoskeleton facilitates membrane retraction during
motility and blebbing. The Journal of Cell Biology, 196, 103–114.

21. Ong, K., et al. (2014). Architecture and dynamic remodelling of the septin cytoskeleton during
the cell cycle. Nature Communications, 5, 5698.

22. Ong, K., et al. (2016). Visualization of in vivo septin ultrastructures by platinum replica electron
microscopy. Methods in Cell Biology, 136, 73–97.

23. Stewart, M. P., et al. (2011). Hydrostatic pressure and the actomyosin cortex drive mitotic cell
rounding. Nature, 469, 226–230.

24. Swanson, K. D., et al. (2016). An overview of alternating electric fields therapy (NovoTTF
therapy) for the treatment of malignant glioma. Current Neurology and Neuroscience Reports,
16, 8.

25. Normand, G., & King, R. W. (2010). Understanding cytokinesis failure. Advances in Experi-
mental Medicine and Biology, 676, 27–55.

26. Estey, M. P., et al. (2010). Distinct roles of septins in cytokinesis: SEPT9 mediates midbody
abscission. The Journal of Cell Biology, 191, 741–749.

27. Ozaki, T., & Nakagawara, A. (2011). Role of p53 in cell death and human cancers. Cancers
(Basel), 3, 994–1013.

28. Varmark, H., et al. (2009). DNA damage-induced cell death is enhanced by progression through
mitosis. Cell Cycle, 8, 2951–2963.

29. Luna-Vargas, M. P., & Chipuk, J. E. (2016). The deadly landscape of pro-apoptotic BCL-2
proteins in the outer mitochondrial membrane. The FEBS Journal, 283, 2676–2689.

30. Price, L. C., et al. (2015). Dexamethasone induces apoptosis in pulmonary arterial smooth
muscle cells. Respiratory Research, 16, 114.

31. Li, H., et al. (2012). Glucocorticoid receptor and sequential P53 activation by dexamethasone
mediates apoptosis and cell cycle arrest of osteoblastic MC3T3-E1 cells. PLoS One, 7, e37030.

32. Tsai, H. C., et al. (2015). Dexamethasone inhibits brain apoptosis in mice with eosinophilic
meningitis caused by Angiostrongylus cantonensis infection. Parasites & Vectors, 8, 200.

33. Lee, I. N., et al. (2015). Dexamethasone reduces brain cell apoptosis and inhibits inflammatory
response in rats with intracerebral hemorrhage. Journal of Neuroscience Research, 93,
178–188.

34. Das, A., et al. (2004). Dexamethasone protected human glioblastoma U87MG cells from
temozolomide induced apoptosis by maintaining Bax:Bcl-2 ratio and preventing proteolytic
activities. Molecular Cancer, 3, 36.

35. Das, A., et al. (2008). Modulatory effects of acetazolomide and dexamethasone on
temozolomide-mediated apoptosis in human glioblastoma T98G and U87MG cells. Cancer
Investigation, 26, 352–358.

36. Sur, P., et al. (2005). Dexamethasone decreases temozolomide-induced apoptosis in human
glioblastoma T98G cells. Glia, 50, 160–167.

37. Pitter, K. L., et al. (2016). Corticosteroids compromise survival in glioblastoma. Brain, 139,
1458–1471.

38. Rupnow, B. A., et al. (1998). Direct evidence that apoptosis enhances tumor responses to
fractionated radiotherapy. Cancer Research, 58, 1779–1784.

39. Gomez-Sintes, R., et al. (2011). GSK-3 mouse models to study neuronal apoptosis and
neurodegeneration. Frontiers in Molecular Neuroscience, 4, 45.

40. Neuhaus, E., et al. (2019). Alternating electric fields (TTFields) activate Cav1.2 channels in
human glioblastoma cells. Cancers (Basel), 11, 110.

41. Rostovtseva, T. K., & Bezrukov, S. M. (2012). VDAC inhibition by tubulin and its physiolog-
ical implications. Biochimica et Biophysica Acta, 1818, 1526–1535.

34 K. W. Carlson et al.



42. Maldonado, E. N., et al. (2010). Free tubulin modulates mitochondrial membrane potential in
cancer cells. Cancer Research, 70, 10192–10201.

43. Carre, M., et al. (2002). Tubulin is an inherent component of mitochondrial membranes that
interacts with the voltage-dependent anion channel. The Journal of Biological Chemistry, 277,
33664–33669.

44. Sheldon, K. L., et al. (2015). Tubulin tail sequences and post-translational modifications
regulate closure of mitochondrial voltage-dependent anion channel (VDAC). The Journal of
Biological Chemistry, 290, 26784–26789.

45. Rostovtseva, T. K., et al. (2018). Sequence diversity of tubulin isotypess in regulation of the
mitochondrial voltage-dependent anion channel. The Journal of Biological Chemistry, 293,
10949–10962.

46. Azimian, H., et al. (2018). Bax/Bcl-2 expression ratio in prediction of response to breast cancer
radiotherapy. Iranian Journal of Basic Medical Sciences, 21, 325–332.

47. Sun, D., et al. (2018). MicroRNA-153-3p enhances cell radiosensitivity by targeting BCL2 in
human glioma. Biological Research, 51, 56.

48. Liu, J. J., et al. (2005). Expression of survivin and bax/bcl-2 in peroxisome proliferator activated
receptor-gamma ligands induces apoptosis on human myeloid leukemia cells in vitro. Annals of
Oncology, 16, 455–459.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

How Do Tumor-Treating Fields Work? 35

http://creativecommons.org/licenses/by/4.0/


A Thermal Study of Tumor-Treating Fields
for Glioblastoma Therapy

Nichal Gentilal, Ricardo Salvador, and Pedro Cavaleiro Miranda

1 Introduction

1.1 Electromagnetic Radiation and Matter

The interaction between electromagnetic (EM) radiation and biological tissues has
been a subject of study for a long time. It is known that the effects of these
interactions depend on factors such as intensity, frequency, and duration of the
field. Due to the wide range of possible outcomes, EM radiation has been used in
very different areas.

In medicine, techniques that work at a low frequency range (< 10 kHz) such as
transcranial magnetic stimulation (TMS), transcranial alternating current stimulation
(tACS) and transcranial/transcutaneous spinal direct current stimulation (tDCS/
tsDCS) are employed in diagnosis and treatment of some neurological and psychi-
atric conditions. As the frequency increases, the main effect of these fields at the
cellular level is no longer membrane depolarization, and thus stimulation does not
occur.

As the wavelength gets shorter, the medical applications start to change. For
instance, frequencies of a few MHz and higher are typically used to produce
anatomical images of the human body in techniques such as magnetic resonance
imaging (MRI) and microwave imaging (MWI). In other medical procedures, such
as hyperthermia and ablation techniques, the main goal is not to diagnose but rather
to kill tumoral cells by overheating them.
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For frequencies higher than that of the visible light, EM radiation is strong
enough to ionize cells and affect chemical bonds. This type of radiation finds its
most valuable use in cancer treatment where techniques such as radiotherapy have
been developed based on this type of interaction. Another common application of
such type of radiation is in diagnosis (e.g., X-ray imaging, mammography, com-
puted tomography (CT), etc.).

There is a frequency range, in the hundreds kHz region, that is too high to
stimulate tissues but too low to cause significant temperature increases. Up until
the beginning of the century, it was commonly believed that fields with this
frequency did not have any biological effect on tissues, and thus, they were practi-
cally neglected for medical purposes. However, in 2004 the in vitro studies of Kirson
et al. [1] revealed for the first time a potential application for this type of radiation:
disruption of cancer cell replication. These findings led to a new cancer treatment
technique named tumor-treating fields (TTFields).

1.2 Tumor-Treating Fields

TTFields consist in applying an alternating electric field (EF) with a frequency
between 100 and 500 kHz. The mechanisms of action of this technique are still
not fully understood. The first hypotheses suggested a two-stage action: during
metaphase, these fields could disrupt mitotic spindle formation by acting on cells’
highly polar structures, and during cytokinesis, they could affect correct cell division
by leading to membrane blebbing [1, 2]. However, more recent studies presented
some calculations that indicate that these hypotheses might not fully explain how
TTFields affect the mitotic process [3], and new possible mechanisms have been
suggested since [4, 5]. An example of the latter are the calculations done by
Berkelmann et al. [5] that propose that the high energy deposited at the cleavage
furrow might kill tumoral cells by overheating them during telophase and cytokine-
sis. Despite these uncertainties, the minimum EF intensity that should be induced at
the tumor bed to achieve an antimitotic effect is well-established to be 1 V/cm.
Furthermore, application of these fields in two perpendicular directions alternately
also proved to increase the number of cells targeted [1].

TTFields are FDA-approved for the treatment of recurrent and newly diagnosed
cases of glioblastoma multiforme (GBM), following the outcomes of the EF-11 [6]
and EF-14 [7, 8] clinical trials, respectively. More recently, TTFields were also
approved for the treatment of malignant pleural mesothelioma after the results from
the STELLAR clinical trial [9] showed a treatment improvement when this tech-
nique was applied jointly with chemotherapy.

Post hoc analysis of the results from these trials allowed to identify some of the
most significant factors that could affect treatment outcome. A detailed analysis on
the relation between TTFields inhibitory effect and the intensity of the electric field
at the tumor site was performed by Ballo et al. [10] using data from the EF-14 trial.
For this study, the median overall survival (OS) and the progression-free survival
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(PFS) were significantly higher for the patients in which the EF was greater at the
tumor bed. This corroborates what was already seen in in vitro cell cultures in the
study of Kirson et al. [1]. On the other hand, other studies investigated the correlation
between treatment time and OS and PFS. Kanner et al. [11] showed that in patients
with recurrent GBM, a daily compliance of at least 75% leads to significantly better
treatment outcomes. In newly diagnosed GBM cases, where TTFields are applied in
combination with temozolomide, this value drops down to 50% as discussed in
[12]. The idea of an extended treatment time is further supported by the study of
Giladi et al. [13] in which it was shown that slowly dividing cells are more likely to
be affected by the electric fields the longer they are applied. Despite this clear need of
maximizing patient’s exposure time to TTFields, it is also important to address how
this technique could affect biological tissues due to the temperature increases as a
result of the Joule effect. The purpose of this work is to quantify these rises and
predict the thermal impact using a realistic head model. Additionally, we suggest
new possible ways to apply the fields based on the results we obtained.

1.3 The Optune Device

Optune (https://www.optune.com) is the device developed by Novocure (https://
www.novocure.com) to treat GBMwith TTFields. It is composed of an EF generator
connected to four transducer arrays that work in pairs. The arrays are strategically
placed on patient’s shaved scalp to increase the electric field at the tumor using the
NovoTAL System. This FDA-approved software uses MR images to create person-
alized treatment maps by adapting the configuration of the paired arrays. The
importance of individualized planning was clearly shown in the work of Wenger
et al. [14]. In this computational study, the maximum electric field at the tumor
almost doubled when the arrays were specifically adapted for each patient. These
conclusions were further corroborated by Korshoej et al. [15] in which the authors
evaluated the best array positioning for different tumor locations.

Each array consists of a matrix of 3 � 3 interconnected transducers with temper-
ature sensors. Each transducer is a ceramic disk with a diameter of 18 mm and a
thickness of 1 mm. The Optune device works at 200 kHz and injects around 900 mA
of current amplitude in two perpendicular directions alternately, with a switching
time of 1 s. To allow current to flow from the capacitive transducers to the scalp, a
thin layer of conductive hydrogel is used between them.

As noted in several works [2, 6–8] and summarized by Lacoutre et al. [16], the
occurrence of dermatologic effects is the main side effect reported so far during
TTFields therapy. These might be explained by chemical irritation in the skin due to
the use of the hydrogel, moisture, mechanical trauma from shaving, or array
removal, for example. To avoid burns, Optune controls the injected current to
keep transducers’ temperature below 41 �C.
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2 Methods

2.1 The Realistic Human Head Model

A realistic human head model was used to perform the studies here presented.
Creation of this model to study the electric field in the cortex during tCS is described
in detail in [17]. Briefly, MR images of the Colin27 template with a resolution of
1 � 1 � 1 mm3 were retrieved from BrainWeb. Segmentation was performed using
BrainSuite, and as a result five different surface meshes were created delimiting
different tissues: scalp, skull, cerebrospinal fluid (CSF), gray matter (GM), and white
matter (WM). Mimics was then used for some corrections and model improvement.
The latter included representation of the superior orbital fissures and optical foram-
ina and addition of the lateral ventricles that were considered to be filled with CSF.

The adaptation of this model for TTFields studies is described in [18]. Shortly,
during model manipulation in Mimics, a virtual lesion was added in the right
hemisphere of the brain, near the lateral ventricle, more or less at the same distance
to the anterior and posterior regions of the head. This lesion intended to represent a
GBM tumor, and it consisted in two concentric spheres: one that represented a
necrotic core, with a diameter of 1.4 cm, and the other that represented an active
shell, with a diameter of 2 cm. At this stage, the four transducer arrays were also
added to the model. One pair was placed over the anterior and posterior regions of
the head (AP configuration) and the other pair over the left and right temporal and
parietal regions (LR configuration). Although this array positioning is not optimized
for this virtual lesion, it represents a possible layout for a real patient. To fill in the
gap between the transducers and the scalp, a layer of gel with variable thickness
(0.7 mm median) was added to the model. After these modifications were made, a
volume mesh was generated (Fig. 1), which consisted of around 2.3 � 106 tetrahe-
dral elements with an average element quality of 0.50. This mesh was then imported
to COMSOL Multiphysics to run the simulations.

2.2 Heat Transfer in TTFields: Relevant Mechanisms

Under normal physiological conditions, the human body core temperature is kept
between 36 and 37.5 �C over a wide range of environmental circumstances [19]. In
contrast, skin temperature can vary significantly as a function of the surroundings. In
fact, heat flows from the most internal organs and tissues to the skin, where it is
dissipated to the air [20].

The interplay between heat production and heat loss is a complex system that
allows the body to regulate itself in order to maintain its activity. In this section, an
overview of the most significant heat transfer mechanisms for a patient undergoing
TTFields therapy is discussed. In this context, the main cooling mechanisms include
conduction, convection, sweat, radiation, and blood perfusion. On the other hand,
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there are two main mechanisms that are responsible for increasing tissues’ temper-
ature: their metabolic activity and the Joule effect. As noted previously, the signif-
icance of the latter is a consequence of the high daily compliance needed for this
therapy. The possible thermal harm is thus predicted by considering all these
mechanisms and evaluating their relative contribution to the temperature
distribution.

2.2.1 Conduction

Thermal conduction can be seen as a process that involves atomic and molecular
motion [21]. When there is a temperature difference between two bodies in contact,

Fig. 1 Top: Partial representation of the mesh for the realistic human head model. Bottom: coronal
(left), sagittal (middle), and axial (right) cuts through the center mass of the virtual lesion. Each
color represents a different tissue: scalp (orange), skull (blue), CSF (yellow), gray matter (gray),
white matter (green), tumor’s outer shell (brown), and tumor’s necrotic core (red). The eyes and the
optical foramina are not colored
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heat will flow from the most energetic particles to the less energetic ones through
vibration and collision. The rate equation that characterizes this process is known as
Fourier’s law:

F ¼ �k∇T ð1Þ

where F (W/m2) is the heat flux, k (W/(m��C)) the thermal conductivity, and T (
�
C)

the temperature. This is the main process through which energy flows from the most
internal tissues to the most superficial ones. For the head tissues we considered, the
lowest thermal conductivity is scalp’s (0.34 W/(m��C)), and the highest is skull’s
(1.16 W/(m��C)).

2.2.2 Convection

Heat transfer through convection occurs when a fluid in motion is in contact with a
bounding surface that is at a different temperature. This mechanism is a result of the
contribution of two different processes [21]: random molecular motion (i.e., diffu-
sion) and bulk motion of the fluid (advection). The rate equation that describes this
phenomenon is:

F ¼ h T surface � T fluidð Þ ð2Þ

where h (W/(m2��C)) is the convection coefficient and Tsurface and Tfluid are the
bounding surface and fluid temperatures (�C), respectively. This mechanism can
decrease the temperature of the scalp, transducers, and gel as they are in contact with
the cooler air. We considered h ¼ 4 (W/(m2��C)) for the scalp and
h ¼ 0.25 (W/(m2��C)) for the medical tape covering the arrays. There are two
other regions where convection can occur: between the blood and each perfused
tissue, which is discussed below, and between the CSF and adjacent tissues (GM and
skull). Heat exchange between the brain and CSF is still under investigation
[22]. The very large surface contact between these two tissues plays an important
role in maintaining brain’s thermal safety as well as in providing structural and
biochemical support [23]. Nonetheless, diffusion of molecules between the brain and
the CSF is very restrained [24], and there is barely any study that describes the role of
CSF advection in brain’s temperature control. Further studies are also needed to
characterize the importance of convection between skull and CSF.

2.2.3 Radiation

Heat transfer through radiation occurs whenever a body is at a nonzero temperature.
For a given room temperature, the net radiation loss, in W/m2, is given by:
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F ¼ εσ T4
surface � T4

room

� � ð3Þ

where ε represents the surface emissivity (unitless), σ is the Stefan-Boltzmann
constant (5.67 � 10�8W/(m2 � K4)), and T are the temperatures in K. According to
Wien’s displacement law, loss of energy through radiation at body temperature falls
within the infrared region. Radiation is significant for all surfaces exposed to the
environment (scalp, gel, and transducers).

2.2.4 Sweat

In hot environments when ambient temperature is higher than the skin’s temperature,
sweat is the only way for the body to dissipate heat [20]. Under normal conditions,
sweat rate is around 600–700 mL per day [19], though this value can change
depending on the environment, physical activity, and physiological conditions.

An equation that could realistically model sweat losses has been sought for a long
time. The first attempts could not satisfactorily predict these losses for a practical
range of conditions, either environmental or considering all the remaining significant
energy processes. Shapiro’s equation [25] is typically considered to be the first
mathematical expression to correctly model whole body sweat losses in response
to exercise, environment, and clothing. In their study, 34 heat-acclimatized subjects
walked in a treadmill in different environments and wearing distinct outfits. The data
obtained allowed the authors to deduce the following equation for sweat losses:

Sweating rate W=m2
� � ¼ 18:7� Ereq � Emaxð Þ�0:455 ð4Þ

where Ereq (W/m2) is the required evaporative cooling necessary to maintain thermal
balance and Emax (W/m2) is the maximum evaporative capacity of the environment.
Both these quantities are defined in [26]. For a cooling effect to occur, Emax should
be higher than Ereq, which is normally the case. In some situations, when air vapor
pressure is too high, such as in humid conditions, an increase in the skin vapor
pressure and wetted area is not enough to cool down the body, and thus heat storage
occurs. Mathematically, Ereq is defined as:

Ereq W=m2
� � ¼ Mnet þ Rþ Cð Þ½ �=1:8 ð5Þ

Mnet (W ) is the metabolic heat load given by the difference between body’s total
metabolic rate (M, inW ) and the external work performed by the subject walking in a
treadmill. The factor 1.8 represents the average surface of the human body (in m2).

Mnet Wð Þ ¼ M � 0:098 mt � v� Gð Þ ð6Þ
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In the previous equation, mt is the mass of the subject (in kg), v the walking speed
(in m/s), and G the grade (in %) of the treadmill during the experiments. The value
0.098 is a conversion factor (in m/s). The authors calculated the metabolic rate as:

M Wð Þ ¼ mt 2:7þ 3:2 v� 0:7ð Þ1:65
� �

þ G 0:23þ 0:29 v� 0:7ð Þð Þ
h i

ð7Þ

At rest (i.e., when v ¼ 0 m/s), M is assumed to be 105 W.
The environmental heat load due to radiation and convection (R + C), in W, is

defined as:

Rþ Cð Þ Wð Þ ¼ 11:6
clo

� �
Tair � T skinð Þ ð8Þ

In the former expression, clo represents the total thermal resistance of subject’s
clothes, which was a factor of interest in this experiment. A value of zero would
correspond to a naked person, whereas clo ¼ 1 is the insulating value of clothing
needed to maintain a person at rest in comfort in a room at 21 �C, with air movement
of 0.1 m/s and humidity less than 50%. Typical values for this parameter and for
different outfits can be found in [27].

On the other hand, Emax in Eq. (4) is given by:

Emax W=m2
� � ¼ 25:5

1:8
im
clo

� �
Pskin � Pairð Þ ð9Þ

Pskin and Pair are the vapor pressure in the skin and air (in mmHg), respectively.
Similarly to the clo factor, the permeability index of clothing, im, also depends on the
subject’s clothes [26]. A value of zero means that the fabric is impermeable, whereas
a value of 1 means that all the moisture passes through the material.

The equation for sweat deduced by Shapiro and colleagues is valid for ambient
temperatures between 20 and 54 �C and a relative humidity between 10% and 90%.
Furthermore, Ereq is limited to a range of values between 50 and 360 W/m2, while
Emax range of validity is between 20 and 525 W/m2. This equation was largely used
during more than 20 years to predict sweat losses. However, a more recent study [28]
showed that it might be overestimating the predicted values. Additional experimen-
tal tests were made for a wider range of conditions, and a correction equation was
deduced by Gonzalez et al. [28]:

Corrected Shapiro’s equation g= m2 � h� �� � ¼ 147 exp 0:0012� OSEð Þ ð10Þ

where h means hours and OSE stands for original Shapiro equation (in g/(m2 � h)).
To convert the result to W/m2, it is necessary to multiply the value obtained from the
previous equation by water’s latent heat (2410 J/g at 37 �C) and by 1/3600 h/s. This
correction proved to increase the accuracy of the results by 58%. Additionally, a new
sweat equation was also purposed:
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Gonzalez’s sweating equation g= m2 � h� �� �
¼ 147þ 1:527� Ereq � 0:87� Emax ð11Þ

The last equation proved to be even more accurate (65%) in predicting sweat
losses. The last two equations are valid for ambient temperatures between 15 and
46 �C, water vapor pressure between 0.27 and 4.45 kPa, and wind speed of
0.4–2.5 m/s.

Occurrence of sweat in TTFields patients is not an atypical situation [16]. It is
observed when the environment is hot and humid or when the patient wears a wig to
cover the arrays. Sweat represents an additional way to cool down the head.
Although the number of eccrine glands varies depending on the region of the
scalp, it is commonly believed that the forehead has a higher density of glands
[29]. Thus, this is also the region that might cool down the most when sweating
occurs. However, due to other aspects discussed further ahead, not all sweat is
directly transferred to the environment by evaporation.

2.2.5 Metabolism

Metabolism can be defined as the necessary chemical reactions that occur in cells for
the body to maintain its function and respond to external stimuli. As a result of this
process, heat is released. The sum of the basal metabolic rate of cells with the rate
from physical exercise and extra chemical reactions results in the final metabolic rate
of the body [19]. For head tissues in particular, this mechanism can contribute
significantly to temperature increases due to the brain’s activity, which is a highly
metabolic demanding organ. It accounts for 25% of the body’s total glucose usage
and around 20% of the total oxygen consumption [23]. Not surprisingly, in our
model, the GM had the highest metabolic rate (16,229 W/m3), whereas the CSF had
the lowest (0 W/m3).

2.2.6 Blood Perfusion

When body’s temperature is too high, vasodilation of blood vessels is one of the
main mechanisms to dissipate heat along with sweating and a decrease in the heat
production [19]. For instance, vasodilation can increase heat exchange through the
skin by a factor of 8 [19]. As previously mentioned, the physical process behind this
cooling mechanism is convection between the blood and perfused tissues. A math-
ematical expression was deduced by Pennes [30] to express blood perfusion for each
tissue:

Blood perfusion W=m3
� � ¼ ωbρbcb Tb � Tð Þ ð12Þ
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where ω is tissue’s blood perfusion rate (s�1), ρ is the density (kg/m3), c the specific
heat (J/(kg��C)), and T the temperature (

�
C). The subscript b stands for blood. As the

brain is the organ that needs more energy, it is also the one which has the highest
blood perfusion. We considered GM and WM’s perfusion rate to be 0.0133 s�1 and
0.0037 s�1, respectively.

2.2.7 Joule Heating

Joule heating, also known as Ohmic heating, occurs when there is a potential
difference between two regions of a conductive medium. Electrons collide with
the surroundings and energy transfer in the form of heat occurs. Mathematically, this
term can be expressed as:

Joule heating W=m3
� � ¼ J � E ¼ σ Ej jj j2 ð13Þ

where J is the current density vector (A/m2), E is the electric field vector (V/m), and
σ is the electric conductivity (S/m). In TTFields the need to maximize the EF
intensity at the tumor bed and the time that the patient is subjected to the field lead
inevitably to temperature increases which may have a significant impact on tissues.

2.3 Heat Transfer in TTFields: Pennes’ Equation

Pennes’ equation [30] was used to obtain the temperature distribution as a function
of space and time. This equation was derived based on experimental measurements
of the temperature on the human forearm, and it is defined as:

ρc
∂T
∂t

¼ ∇ � k∇Tð Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Conduction

þ ωbρbcb Tb � Tð Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Blood perfusion

þ Qm|{z}
Metabolic heat

þ J � E|ffl{zffl}
Joule heating

ð14Þ

Some of the heat transfer mechanisms previously discussed are already consid-
ered in this equation. The remaining heat processes (convection, radiation, and
sweat) were considered at the boundaries. More specifically, we considered energy
exchanges through radiation and convection to occur on the outer boundaries of the
scalp, transducers, and gel.

In our model, the medical tape that covers the arrays is not represented. In a real
patient, this adhesive covers a large part of the scalp, and thus it changes the rate at
which energy is exchanged with the environment. To minimize the error associated
with this lack of representation, we chose emissivity and convection factor values for
the transducers and the gel that were close to that of the medical tape. As previously
mentioned, TTFields patients might sweat to reduce the temperature increases that
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occur on the scalp, but some of this energy might not be transferred to the environ-
ment. The fabric of the medical tape can retain some of the sweat, and consequently
changes in the hydrogel composition could occur. Due to all these uncertainties and
the fact that there is no equation that predicts cooling by sweating just for the head,
we opted to use a constant value based on Gonzalez’s sweat equation for the whole
scalp (125 W/m2) except where covered by the gel and transducers.

2.4 Simulations’ Conditions

The frequency used in TTFields therapy, 200 kHz, falls within the frequency range
where the electromagnetic wavelength is significantly larger than the size of the
human head which allowed us to use the electroquasistatic approximation of Max-
well’s equations. Under this approximation, the electric potential could be calculated
using Laplace’s equation. The AC/DC module (electric currents, frequency domain
study) was used in COMSOL Multiphysics to obtain the electric field distribution
when the AP configuration was on. The potential difference between the anterior and
posterior arrays (VAP) was defined in such a way that a current with an amplitude of
900 mA passed between the two arrays. In our model, this corresponded to having
VAP ¼ 91.8 V. This study took around 8 h in a workstation with 2 � 4 core CPU’s
(Intel Xeon W5580 @ 3.2 GHz) and 48 GB RAM. Solver’s relative tolerance was
set to 10�6. At the end of this simulation, we obtained a total power density spatial
map that represented the contribution of this configuration to the Joule effect.

The Heat Transfer Module (electromagnetic heating, Joule heating, frequency-
transient study) was then used to calculate the electric field distribution when the LR
configuration was applied and also to predict the temperature increases. Similarly to
the previous study, a fixed potential difference was defined between the left and right
arrays (VLR ¼ 68.2 V) to ensure that 900 mA were injected.

Regarding the Joule heating term, the last term of Eq. (14), the contribution from
the AP and LR configurations was taken alternately every second after both studies
were coupled. Each simulation of 360 s took around 22 h in the aforementioned
workstation. We also assumed that all the physical properties were isotropic and
uniform. The values assigned to each tissue and material were chosen after an
extensive literature review. Additional details about these values and how the studies
were performed can be found in [31].

3 Results

3.1 Duty Cycle and Effective Electric Field at the Tumor

In our first work [31], we predicted the thermal impact of TTFields and quantified the
duty cycle of Optune. We defined the latter as the time that each configuration is on
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divided by the maximum time it could be delivering the fields and assumed that there
was a complete current shutdown whenever the average temperature of any trans-
ducer reached a cutoff temperature. We considered this critical value to be 40.4 �C
because it corresponded to having around 5% of the volume of the transducer at
41 �C, which we assumed to be the volume occupied by the temperature sensor. In
this work, we did not consider heat losses through sweat. Our simulations showed
that there was one transducer whose temperature reached the threshold temperature
quicker than the other 35 (the Most Significant Transducer or MST). Consequently,
it was the one that controlled if current was injected or not. In our head model in
particular, it was the transducer located in the anterior array, superior row, left side
(ASL). Not surprisingly, it was also one of the transducers where the most current
was injected (around 131 mA, see Fig. 2). Each array can be seen an isopotential
surface in which more current is injected through the outer transducers, a phenom-
enon commonly known as the edge effect [32].

According to our results, Optune’s way of operating can be summarized as
follows: at the beginning of treatment, current is injected in two perpendicular
directions alternately. Transducers’ temperature starts to increase at different rates
and biological tissues’ temperature also rises. After around two and a half minutes,
the temperature of one transducer (the MST) exceeds the safety threshold of 40.4 �C,
and the fields are completely shut down in both directions. It then takes around 2–4 s

Fig. 2 Absolute current injected in each transducer. Each array can be seen as an isopotential
surface where the edge effects are evident as more current is injected in the outer transducers. All
values are in mA
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to decrease the temperature of the MST to values below the critical limit and
consequently to start injecting current again. After 2 s of alternate application of
the fields, the temperature will once again surpass the threshold, and current shut-
down will occur once more. This represents an intermittent operating mode of
Optune (Fig. 3).

This led to different duty cycles for each configuration. In our model, current was
injected in the AP direction 47% of the maximum time, while this value decreased to
around 30% for the LR configuration. This means that, on average, Optune is used
for GBM treatment around 39% of the time that the patient is using the device.

To know the effective electric field in the tumor, we started by calculating the EF
magnitude induced by each configuration in this region. We defined ATV1 as the
percentage of the tumor shell volume above the therapeutic threshold of 1 V/cm. As
it can be seen in Fig. 1, the tumor is much closer to the right array and more or less at
the same distance to the anterior and posterior arrays. This explains why the ATV1
value for the AP configuration is just 13%, while for the LR is 72%. Following this
rationale, we can define the effective ATV1 (ATV1eff) at the tumor shell as the
combined contribution of the duty cycle and the induced electric field as:

ATV1stdeff ¼ OnAP �%ATV1AP þ OnLR �%ATV1LR
¼ 0:47� 13%þ 0:30� 72% ¼ 27:7%

where Onx is the fraction of time that configuration x is on and ATV1x the percentage
of the tumor volume above 1 V/cm when this configuration is applied.

Fig. 3 Temperature variation of the Most Significant Transducer during intermittent operation. The
dashed line represents the critical temperature (40.4 �C). After each shutdown, it takes around 2–4 s
for the temperature of the transducer to decrease below the 40.4 �C. After current starts to be applied
again, it takes about 2 s to surpass once again the threshold. These heating and cooling rates lead to
different duty cycles for each configuration
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3.2 Improving the Duty Cycle

There are two possible ways to increase the effective ATV1: by rising the electric
field magnitude at the tumor shell or by increasing the duty cycle. We investigated
these possibilities by performing different studies (studies 1–4) where we slightly
changed how Optune worked. Here we discuss the operating modes that improved
the results. Note that these results do not consider heat losses through sweat. For
more details, see [31].

We first hypothesized that decreasing the amount of injected current by a factor of
1/ √ 2, but activating both arrays simultaneously, might allow to reduce the temper-
ature maxima by reducing the Joule effect by half and thus increasing the time that
the device is on (study 1). This operating mode affected both the electric field
magnitude and direction and resulted in a duty cycle of 70%. However, the ATV1
decreased to around 45% of the tumor shell. Even so, this results in an effective
ATV1 of 31.5%, which is more than the 27.7% observed in the standard configu-
ration. Additionally, in this mode, current is injected only in one direction because
the EF is a vector quantity, and thus the net field is oriented at approximately 45

�

relative to the standard AP and LR directions. However, it is possible to intentionally
change the phase of the injected current so that more electric field directions are
achieved. The latter approach might increase the number of affected cells and thus
enhance treatment outcome [1].

We then changed the switching time between configurations. Currently, Optune
alternates the direction of the applied field every second as this is the optimal time to
affect cell division according to in vitro studies. We investigated the impact of
increasing the switching time to 2 s (study 2). Our results showed that although
this leads to higher temperatures, the cooling rate is also augmented because it
depends on the temperature difference with the environment. As a consequence,
the duty cycle improved for this case, reaching 47% and 40% for the AP and LR
configurations, respectively. Thus, the effective ATV1 also increased to 34.9%. It is
important to note that switching times different from 1 s might not be the most
suitable to affect the mitotic process of GBM cells. For instance, a recent in vitro
study of Berkelmann et al. [21] concluded that for the BT4Ca cell line, the optimal
switching time that maximizes the antiproliferative effect of TTFields is 60 s.

In all the studies we performed, there was always one transducer that controlled if
Optune was injecting current or not. Due to the cooling time and the location of the
MST on the anterior array, the LR configuration was applied less time than the AP’s.
We hypothesized that if temperature control was made independently for each
configuration, then the duty cycle would increase. To apply this feature, we consid-
ered that there could be two MST’s, one for each configuration. In practice, this
means that if a transducer of one configuration reaches the threshold temperature
(40.4 �C), we would only shut down that specific configuration, while the other
could continue to operate alternately until a transducer of that configuration reached
the critical temperature (Study 3). In these conditions, the duty cycle for the AP
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configuration was 47%, while current was injected in the LR direction 46% of the
time, leading to an ATV1 effective of 39.2%.

Lastly, we tried to increase the electric field in the tumor. We investigated what
would happen if we avoided the edge effects by injecting exactly 100 mA in each
transducer (Study 4). We noticed that this changed the MST and also that it
improved the duty cycle (AP: 46%; LR: 42%), although the ATV1 at the tumor
bed did not change significantly compared to the standard operation mode. In this
case, the ATV1stdeff increased to 36.7%.

The effective ATV1 for each study is presented in Fig. 4.
Our results point out that the best way to improve TTFields therapy, among the

hypotheses we tested, is by controlling the current into the array pairs independently
but still alternately. This allows to compensate the fact that, in our model, there was
always one transducer that controlled if the device was applying the fields or not.
Including this feature in Optune might imply changing the device’s hardware and
software.

As the duty cycle increases, so does the Joule effect, which can lead to significant
temperature increases compared to the standard case. In Sects. 3.4 and 3.5, we
analyze temperature changes and make predictions about the thermal impact of
this technique.

3.3 The Effect of Sweat

Before predicting the thermal impact, we started by studying the main differences in
the temperature distributions and duty cycle if we considered heat losses through
sweat. As already stated, we considered a constant value of 125 W/m2 for the whole
scalp except at the regions where the transducers were placed. In these conditions,

Fig. 4 Effective volume of
the tumor shell above 1 V/
cm. Study 1: less current
injected, but all arrays were
simultaneously activated.
Study 2: switching time
between configurations
increased to 2 s. Study 3:
temperature control for each
configuration is made
independently. Study 4:
each transducer gets exactly
100 mA
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the cooling time decreased, and it took around 2 s to cool down the MST to
temperatures below 40.4 �C. This led to a duty cycle of around 50% for both the
AP and LR configurations.

The effective ATV1 considering sweat is then:

ATV1sweateff ¼ OnAP �%ATV1AP þ OnLR �%ATV1LR
¼ 0:50� 13%þ 0:50� 72% ¼ 42:5%

Comparing the latter value with the ones presented in Fig. 4, it is possible to
conclude that adding sweat to the model has led to the largest improvement in the
predicted outcome for this therapy. Given the importance of this cooling mechanism,
it would be important to improve and validate the model used. Additionally, it would
also be interesting to add sweat losses and combine the different conditions
represented by studies 1–4 and quantify the duty cycle.

3.4 Temperature Increases

The temperature distribution on each tissue surface for the standard operating mode
and without considering sweat can be seen in Fig. 5. The temperature distribution on
each tissue surface with this additional cooling mechanism is shown in Fig. 6.

The two figures clearly show localized temperature increases, mainly underneath
the regions where the transducers were placed. In Fig. 5, temperature on the left and
right sides is lower compared to the values presented in Fig. 6 because the duty cycle
for the LR configuration is also lower. Even though the duty cycle was increased to
nearly 50% for both configurations when sweat was considered, the maximum
temperatures reached by each tissue were practically the same in both situations
because current shutdown occurred at the same temperature. Given that there are
electric field hotspots at tissue interfaces due to accumulation of charges [18], the
Joule effect will also be more significant in these regions. Consequently, it is
expected that the temperature maxima in each tissue occur on the surfaces. In
Fig. 7 this superficial heating is well seen on the brain’s surface. Despite the fact
that both configurations are applied for the same time, the temperature increases are
higher in the anterior-posterior direction as it is clearly shown in Fig. 6. This is a
result of the array positioning in our model. The distance between the central
transducers of the arrays pairs is around 20 cm for the AP configuration and
17 cm for the LR. Under these circumstances, the potential difference between
each pair is higher for the first to ensure that 900 mA are injected
(91.8 V vs. 68.2 V, both values are in amplitude), and thus the electric field and
Joule heating will also be higher near this array pair. This explains why the MST is
located in the anterior array. For other head model and another array layout, the most
significant transducer might not be the same.
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3.5 Prediction of the Thermal Impact

We used two different metrics to predict the thermal impact of TTFields: the
maximum temperature reached by each tissue and the cumulative number of equiv-
alent minutes at 43 �C (CEM 43 �C). The latter was defined by Sapareto and Dewey
[33] as:

CEM 43
�
C ¼

Xn
i¼1

tiR
43�Ti ð15Þ

In this equation, ti(s) and Ti (�C) are the duration of the i-th time interval and
temperature during that period, respectively, n is the total number of intervals, and R
is a constant related with the thermotolerance acquired by the cells. It has a value of
0.5 for temperatures higher than 43

�
C and 0.25 otherwise. Thresholds for thermal

effects based on CEM 43 �C values are available in the literature [34, 35].
Given that the temperature increases are very localized (Figs. 6 and 7) and occur

mainly underneath the arrays, we chose to calculate the CEM 43 �C for each tissue
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Fig. 5 Temperature distribution for Optune’s standard operating mode without considering sweat
and for each tissue surface at the end of the simulation (360 s). First row, scalp; second row, skull;
third row, CSF; fourth row, the brain. Note the different scales for each row. All values are in ºC
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within a cylinder defined by the MST and for the results represented in Fig. 6. The
basis of this cylinder has the area of the transducer, and the cylinder’s axis is parallel
to the transducer surface’s normal. To make our predictions, we only considered
thresholds for thermal impact for the five tissues that were represented in our model.
Additionally, because we only simulated the first 6 min of therapy, we assumed that
the temperature at the last time step would remain the same to calculate the CEM
43 �C for a typical treatment day (18 h). This approach is feasible because the
temperature in each tissue had practically reached a steady-state distribution [31].

Our analysis shows that the CEM 43 �C thresholds for the scalp and skull were
not surpassed, and thus thermal damage at histopathological and functional levels is
not expected when the patient is subjected to the action of the fields. Regarding
thermal safety for CSF, there are no thresholds defined in [34, 35] to compare our
measurements to. We observed maximum increases of around 1.8 �C in this tissue.
Given that CSF is in contact with the interstitial fluid (ISF) and that the latter helps to
dissipate heat from the brain [36], the actual temperature increase might be even
lower. For the brain, we obtained a local CEM 43 �C value of 0.30 min underneath
the transducers assuming 18 h of treatment. Some studies [34, 35] reported that
values higher than 0.03 min are enough to increase the permeability of the blood-
brain barrier (BBB). Other possible effects include changes in the cerebral blood
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Fig. 6 Temperature distribution on each tissue surface at the end of the simulation (360 s) for
Optune’s standard operating mode when sweat is considered for the scalp. First row, scalp; second
row, skull; third row, CSF; fourth row, the brain. Note the different scales for each row. All values
are in �C
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flow (CBF) and variation in the concentration of some neurotransmitters. Regarding
the last two, whether there is a rise or a decrease is not consensual among different
studies. Some researchers observed a higher irrigation of cerebral tissue for CEM
43 �C values of 0.03 and 16 min, whereas other showed a decreased blood flow for
values around 1 and 34 min. Neurotransmitter concentration was also seen to
increase for values above 0.115 min, but when CEM 43 �C surpassed 1.29 min,
there was a drop below the baseline concentration.

It is important to note, however, that there are a lot of uncertainties regarding the
CEM 43 �C thresholds, and these conclusions might not hold when these limits are
used to predict the thermal impact of tumor-treating fields. This metric was created
with the intention of having a way to calculate a thermal isoeffect dose for cancer
therapy. In other words, the rationale behind it is that it is possible to convert the time
that a tissue is at a given temperature to an equivalent time at 43 �C. However, this is
not necessarily accurate. As pointed out by Sapareto and Dewey [33], the heating
regime is an important parameter as well as when the damage is assessed, tissue’s
pH, and the thermotolerance to heat of different cells. Not surprisingly, the lack of
experimental protocols leads to different conclusions regarding variations of the
same physiological process.

Due to all these uncertainties, it is first necessary to investigate if CEM 43 �C can
be really applied to TTFields by measuring sensitive biomarkers to the changes here
reported and confirm or disprove these hypotheses. In case that this metric proves to
be a good measurement for thermal impact, specific thresholds for long and repet-
itive exposure times are needed. Most of the thresholds defined in the literature
concern whole-body heating and were not specifically designed for the human head.

Anterior-Posterior Le�-Right

Fig. 7 Temperature distribution in the brain in four different slices under the arrays at t ¼ 360 s
when sweat is considered. Note that the temperature maxima occur at the surface under the
transducers and that there is a quick drop to a constant value (37 �C). Values are in �C
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Another way to predict thermal impact is by evaluating the maximum tempera-
ture reached by each tissue. The temperature maxima (see Fig. 6) are still well below
45 �C, which is the temperature at which protein and lipid denaturation starts to
occur [23]. Temperature on the scalp is also below the threshold of 44 �C for skin
burn for long exposures, as reported by Moritz and Henriques [37]. In the brain,
maximum temperature variations of around 2 �C were obtained. Studies performed
in animals showed that the cerebral metabolic rate of oxygen (CMRO2) [38, 39] and
CBF [39] increase more or less linearly with the temperature.

Volgushev et al. [40] also showed that temperature variations can temporarily
change synaptic transmission in the neocortex. Further studies by the same author
[41] revealed that there is an increase of the probability of neurotransmitter release at
the synapses as the temperature increases.

Whether these changes can be harmful or not is not clear. An increase on the
CMRO2 might lead to higher temperatures, but a higher CBF can also help to
dissipate the heat more quickly. The uncertainty on the outcome is even higher
when it comes up to changes at the synaptic level. The frequency used for TTFields
treatment is too high to be capable of cell stimulation. Evidence from clinical trials
[6, 8] shows no additional significant nervous system disorders when TTFields are
used as a part of the standard of care which might indicate the absence or the low
impact of these variations. As none of these effects were observed [6–8], it is
necessary to understand why the theory does not match with the practice. The
main explanations might be:

1. These changes do not occur during TTFields therapy: the conclusions drawn from
the literature only apply to the conditions and technique for which those specific
studies were performed. This implies that thresholds defined based on animal
studies must be reviewed for humans.

2. These changes do occur but are negligible: given that the temperature variations
are not very high, these physiological alterations are not meaningful, and thus
they are not observed as side effects.

3. These changes occur but were not measured: the sensitive biomarkers for the
changes here reported were not acquired.

4. These are long-term changes and are masked by patient’s condition: these
possible side effects might not occur on the first months of treatment, and only
patients who survive longer manifest these alterations.

5. The high daily compliance leads to development of thermotolerance by the cells:
given that the daily minimum recommended time for recurrent cases is 18 h and
that treatment should be performed every day, cells might become less sensitive
to temperature variations, and thus the thresholds should be higher in these
conditions.

6. The predictions made are not correct: the model does not realistically represent an
actual treatment, and consequently the temperature distribution is being
overestimated.

The first step to exclude some of these hypotheses would be to acquire sensitive
biomarkers during TTFields treatment. If these changes do occur, it is necessary to
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investigate further if they can be harmful or beneficial for the patient. On the other
hand, if the predictions are not correct, further improvements should be made to our
model to make it more reliable.

Regarding the tumor, the maximum temperature variation also occurred at the
surface, although it was not higher than 0.1 �C. It is known that significant temper-
ature increases can make cells more likely to be affected by radiation or some drugs,
which explains why hyperthermia is sometimes used in cancer treatment. In our
studies the maximum temperature reached by the tumor was 37.1 �C, which suggests
that TTFields mechanisms of action are not expected to be temperature-related.
However, a recent work by Berkelmann et al. [5] opened up new perspectives on
the possible role of heat in this therapy. The authors predict a very high SAR value at
the cleavage furrow during telophase and cytokinesis when the direction of the
electric field is parallel to the longitudinal axis of the hourglass morphology of the
dividing cells.

3.6 Continuous Versus Intermittent Application of the Fields

As seen in Sect. 3.1. due to the necessary thermal restrictions, Optune might work
intermittently with duty cycle lower than 100%. In our next study, we investigated
by how much it was necessary to decrease the injected current so that the average
temperature of the MST would not exceed the shutdown temperature (40.4 �C). In
other words, this means that if the injected current is below a critical value (the
critical current or IC), then it is possible to have an uninterrupted application of the
fields and consequently a duty cycle of 100%. Figure 8 shows the average temper-
ature of the MST as a function of the injected current for a 360 s simulation when
sweat is considered. Current was applied alternately between the two configurations
with a switching time of 1 s and when no current shutdown is considered. Each
simulation took around 24 h in the aforementioned workstation. An analytical
function (Eq. 16) was fitted to each curve represented in this figure.

T ¼ C1 þ C2 � 1� exp �t=C3ð Þð Þ ð16Þ

where C1 (�C), C2 (�C), and C3 (s) are constants. The maximum average temperature
(Tmax, in �C) reached by this transducer can be predicted by calculating the limit of
T when t ! 1:

Tmax ¼ C1 þ C2 ð17Þ

Table 1 summarizes C1, C2, and C3 values, as well as Tmax, as a function of the
injected current.

The physical meaning of each parameter is as follows: C1 values represent the
initial average temperature of the transducer; C2 can be seen as the maximum
contribution of the injected current to temperature increases. C3 is a time constant
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related with the heat transfer with the environment and the injected current. When
t ¼ C3, the temperature of the MST reached around 63.2% of its maximum
temperature. Figure 8 also shows in dashed lines the best curve fitting based on
the parameters of Table 1 for each amount of injected current. Note that the fitted
equation might underestimate the temperatures for long periods of time.

According to our calculations, the critical current is 674 mA which represents a
decrease of around 25% compared to the current that is typically injected in a real
patient. Naturally, this decrease is followed by a lower induced electric field in
tissues and more specifically in the tumor. The ATV1 for each configuration in the
tumor shell is given in Table 2.

The ATV1 values for the AP configuration reduce to 0% for current values near
IC, which, as mentioned previously, has to do with tumor’s location. In terms of
treatment efficacy, decreasing the current to achieve a duty cycle of 100% leads to an
effective ATV1 of:

ATV1No shut
eff ¼ 0%� 1:00þ 34� 1:00 ¼ 34:0%

Fig. 8 Average temperature variation of the MST when no current shutdown is implemented. The
dashed lines represent the best fit for each case based on the expression shown in Eq. (16)

Table 1 Curve fitting parameters as a function of the current injected into the MST

I (mA) C1(�C) C2(�C) C3 (s) R2 Tmax (�C)
900 (I0) 33.45 12.50 222.2 0.9998 45.95

675 (0.75I0) 33.42 7.05 222.2 0.9998 40.47

630 (0.70I0) 33.42 6.15 222.2 0.9998 39.57

The values of R-squared suggest a high correlation between current and the average temperature
reached by the MST
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The latter value is still lower than the 42.5% obtained when current shutdown was
implemented, which is mainly influenced by the AP configuration not producing a
significant electric field (i.e., higher than 1 V/cm) at the tumor bed. Nonetheless,
injecting less current to avoid the need of shutting down the fields might be a good
solution to increase the effective ATV1 for more superficial tumors.

As expected, temperature maxima in the deepest tissues decreased for this new
current injection mode because the power density dissipated in tissues was 44%
lower compared to what was deposited when 900 mA were applied. The temperature
distribution considering heat losses through sweat when 674 mA are injected
continuously is shown in Fig. 9. Regardless of the injected current, the spatial
distribution of the temperature on tissues’ surface remains practically the same
(compare Figs. 6 and 9). Despite the small decreases in CEM 43 �C and in the
maximum temperature, the same physiological changes predicted in Sect. 3.5 apply
to the results here presented.

4 Limitations and Future Work

One of the major drawbacks when modelling tumor-treating fields is the lack of a
metric that allows to simultaneously evaluate the electric field, the duty cycle, and
the temperature increases and to weigh the different parameters to find, e.g., the best
array placement. Treatment efficiency is commonly quantified by metrics such as the
ATV1 that allow to study if the induced EF is higher than the minimum therapeutic
value or not. More recently, the power density has been used as a measurement of
both the electric field and temperature increases [10]. In the future, it would be useful
to develop and validate a new metric that combines all the features mentioned above.

The results of our simulations predict some effects that were not reported
elsewhere. Acquiring the necessary biomarkers sensitive to the physiological
changes here described would allow to corroborate or disprove our conclusions. If
our model turns out to be inaccurate to represent a real patient and the conclusions
derived from it are not reliable, then fine-tuning the most critical parameters is
necessary. The latter includes having a more realistic equation to calculate sweat
losses and perform a sensitivity analysis to evaluate the impact of the uncertainty of
the electric and thermal parameters of tissues in the temperature distribution. Rep-
resentation of the medical tape that covers the transducers, gel, and a large surface of
the scalp would also make our model more realistic. Additionally, performing this

Table 2 Percentage of the
tumor shell volume above
1 V/cm as a function of the
injected current

I (mA) ATV1AP(%) ATV1LR(%)

900 (I0) 13 72

675 (0.75I0) 0 39

674 (IC) 0 34

630 (0.70I0) 0 31
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type of thermal studies in different head models and doing an experimental valida-
tion using phantoms would be useful to support our work.
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Improving Tumor-Treating Fields
with Skull Remodeling Surgery, Surgery
Planning, and Treatment Evaluation
with Finite Element Methods

Nikola Mikic and Anders R. Korshoej

1 Introduction

Tumor-treating fields (TTFields) are alternating fields (200 kHz) used to treat
glioblastoma (GBM), which is one of the deadliest cancer diseases of all. Glioblas-
toma is a type of malignant brain cancer, which causes significant neurological
deterioration and reduced quality of life, and for which there is currently no curative
treatment. TTFields were recently introduced as a novel treatment modality in
addition to surgery, radiation therapy, and chemotherapy. The fields are induced
noninvasively using two pairs of electrode arrays placed on the scalp. Due to low
electrical conductivity, significant currents are shielded from the intracranial space,
potentially compromising treatment efficacy. Recently, skull remodeling surgery
(SR-surgery) was proposed to address this issue. SR-surgery comprises the forma-
tion of skull defects or thinning of the skull over the tumor to redirect currents toward
the pathology and focally enhance the field intensity. Safety and feasibility of this
concept were validated in a clinical phase 1 trial (OptimalTTF-1), which also
indicated promising survival benefits. This chapter describes the FE methods used
in the OptimalTTF-1 trial to plan SR-surgery and assess treatment efficacy. We will
not present detailed modeling results from the trial but rather general concepts of
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model development and field calculations. Readers are kindly referred to Wenger
et al. [1] for a more general overview of the clinical implications and applications of
TTFields modeling.

2 Glioblastoma

GBM is the most common and one of the most aggressive primary malignant tumors
in the central nervous system [2]. GBM is a WHO grade IV glial tumor characterized
by invasive growth and significant anaplasia. The age-standardized incidence rate of
GBM in Denmark is 6.3/100,000 person-years for males and 3.9/100,000 person-
years for females with a median age of 66 years and a median overall survival of
11.2 months [3], which corresponds well with survival estimates from other Western
countries [4]. Today standard therapy consists of maximal surgical resection
followed by radiotherapy with concomitant and adjuvant temozolomide
chemotherapy [5].

3 Tumor Treating Fields

In the search for new treatment options for GBM, TTFields have recently been
introduced as a fourth and supplementary treatment modality applied in parallel with
adjuvant temozolomide. TTFields are alternating electric fields of low intensity
(100–500 V/m) and intermediate frequency (200 kHz) that are transmitted through
the head and brain between electrodes placed noninvasively in an individualized
pattern on the patient’s scalp (Fig. 1). The electric fields affect dividing cells in
particular and hereby primarily cancer cells. The therapeutic effect of TTFields is
explained by two physical principles, dielectrophoresis and dipole alignment. In
combination, the two principles affect the normal movement of charged and polar-
izable structures, including septin and tubulin, which is highly responsible for
successful mitosis. Thus the disruption of these mechanisms leads to cell death
[1]. In patients with newly diagnosed GBM, TTField therapy in combination with
chemotherapy has been proved to have a significant effect on median overall
survival (OS) and median progression-free survival (PFS) compared to chemother-
apy alone [6]. A recent meta-analysis of studies on TTField treatment of GBM
patients further concludes that TTFields are an efficient and safe treatment modality
[7]. The positive effects of TTFields, recently, led to the introduction of TTFields as
a category 1 recommendation of TTFields for a selected population of patients with
newly diagnosed GBM by the National Comprehensive Cancer Network in the
USA [8].
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In regard to the practical use of TTFields, patients are recommended to wear the
active device as much as possible – designated as the level of compliance. A
compliance threshold above 50% correlates positively with improved outcome, but
maximal effect on survival rates is attained with a compliance of >90% [9], and
therefore continuous treatment is recommended whenever possible.

4 TTFields Dosimetry

In recent years, finite element (FE) methods have been used to estimate the distri-
bution of TTFields intensity in the patient’s head and tumor with the objective of
improving technology design and treatment implementation. The rationale behind
this approach is that high field intensities correlate positively with longer overall
survival [11] and increased tumor kill rate in vitro [12, 13], so field estimation can be
considered an approach to TTField dosimetry with potential applications for indi-
vidual treatment planning as well as identification of expected responders to therapy
and prediction of the expected treatment prognosis and topographical patterns of
recurrence in the brain. Although previous studies have established that field inten-
sity is a highly relevant surrogate dose parameter, it is well-known that other factors
such as field frequency, treatment duration, and spatial correlation also affect the
efficacy of TTFields [14–16]. Ongoing work is being conducted to refine the
dosimetry methods and establish a golden standard with a strong correlation to
clinical outcome.

Fig. 1 TTField therapy. Two pairs of electrode arrays are connected to a TTField generator
carried by the patient in a bag (a). The arrays are placed on the patient’s head (b). Each array pair
induces alternating TTFields in sequence (c) using a 50:50 duty cycle. (The patient photograph is
published with permission from the patient (Courtesy of Novocure). The figure is adapted from
Korshoej et al. [10])

Improving Tumor-Treating Fields with Skull Remodeling Surgery, Surgery. . . 65



5 Skull Remodeling Surgery and the Utility of FE Modeling

As an example of FE modeling utility, we recently demonstrated that the high
resistivity of the skull causes significant amounts of currents to be shielded from
the intracranial regions of interest, which may compromise treatment efficacy. To
overcome the obstacle, we proposed a surgical skull remodeling procedure
(SR-surgery) aiming to introduce localized skull defects (with reduced skull resis-
tivity) and thereby redirect the tumor inhibiting currents toward the underlying
regions of interest (Fig. 2) [17]. SR-surgery encompasses thinning of the skull or
formation of burr holes or larger skull defects (craniectomies) over the tumor region,
which causes the intensity of the field (i.e., treatment dose) to increase in these
regions (Fig. 3) and further reduces the amount of wasted electrical energy deposited
in the skin (Fig. 2b).

In search of a feasible approach for clinical implementation, we previously
explored a number of different configurations of craniectomy and found that the
field intensity in the underlying tumor increases with craniectomy diameter, until the
skull defect is approximately the same size as the underlying region of interest.
When the defect area exceeds the size of the underlying pathology, it causes currents
to be shunted around and pass the intended target and therefore does not contribute
to further dose enhancement in the desired area (Fig. 4). In addition, we found that it
was more effective to use multiple smaller burr holes distributed over the region of
interest, rather than a single craniectomy. With this approach it was possible to
achieve higher field enhancement per skull defect area, which made the approach
favorable from a clinical safety perspective.

Recently, we demonstrated the safety and feasibility of the SR-surgery concept in
a clinical phase 1 trial (OptimalTTF-1, clinicaltrials.gov ID: NCT02893137). We
found that SR-surgery combined with TTFields was not associated with serious
adverse events related to the intervention, and adverse events observed could be
attributed to medical therapy or TTField treatment alone. In addition, the trial further
indicated a promising treatment efficacy with prolonged overall survival and
progression-free survival compared to historical data from comparable patient
cohorts [18].

6 The Aim andMotivation of Field Modeling in SR-Surgery
Planning and Evaluation

In the OptimalTTF-1 trial, we used field modeling for a number of purposes. The
most important motivation was the need for a method to ensure that enrolled patients
would gain an expected benefit from the participation in the trial. Since all enrolled
patients underwent SR-surgery, and thereby had to accept the potential risks of the
surgery itself in addition to the risks associated with reduced skull protection in the
operated region, we required the expected dose enhancement to be considerable for
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ethical reasons. Therefore, we set the threshold to an average expected field enhance-
ment of >25% in the region of pathology, i.e., the remnant tumor or the peritumoral
border zone. This was assessed using a reasonably quick and flexible modeling

Fig. 2 Effect of craniectomy on the field and current distribution in a human head model.
(Reproduced from Korshoej et al. [17]). (a) Surface representations of a patient’s head with the
left/right (L/R) and anterior/posterior (A/P) array pairs positioned on the scalp. The middle panel
shows the current density distribution on the brain surface induced by the corresponding array
configurations in the presence of a craniectomy (encircled) above the tumor region. Compared to a
situation with no craniectomy (right-most panels), it is clear that craniectomy causes a significant
amount of current to flow through the craniectomy and toward the underlying brain region. (b) This
panel shows results similar to (a), but with the current distributions shown for the skin and electrode
surfaces, respectively. The craniectomy redistributes how the impressed currents flow through the
electrodes, and more importantly it causes a lower amount of current to flow through the skin
between the electrodes and rather redirects the current toward the brain region underneath the hole
in the skull
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Fig. 3 Effect of different craniectomy configurations. (a) This panel shows the peak field and
median field values in the tumor region and peritumoral region (2 cm around the tumor), when no
resection is performed, for different sizes of circular craniectomies. The red line represents the
anterior/posterior array pair, and the black line represents the left/right pair. The enhancing effect of
the craniectomies tends to plateau around a diameter of 5–7 cm, equivalent to the size of the
underlying tumor. The asterisks represent the equivalent values for a configuration with four 15 mm
burr holes distributed over the tumor. This configuration is equally effective as a 5-cm-diameter
craniectomy. (b) This panel shows results similar to panel a, but following resection. The same
conclusions apply although the plateau tendency is less pronounced in the given case. (c) This panel
shows examples of the investigated craniectomy configurations with the underlying brain, tumor,
and peritumoral region and field intensity in the brain surface. (The figure is reproduced from
Korshoej et al. [17])
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approach, in which a tumor mimicking the actual patient case were introduced
virtually in a preexisting computational head model based on MRI data from a
healthy individual (see below). The reason for adopting the approach was that we
needed a technique for quick evaluation and exploration of SR-surgery benefit in
various configurations. In Denmark, there is a legal requirement to initialize treat-
ment of cancer patients (i.e., operate in this case) within 2 weeks of suspected tumor
diagnosis or establishment of disease progression. Therefore, it was not possible to
construct detailed and personalized head models for each enrolled patient prior to
surgery, as this procedure is very time-consuming. Instead, we used the flexible
approach, with which model creation and surgery planning could be completed
within approximately 2 days. The computations were initiated immediately upon
patient enrollment. We used the model to explore different SR-surgery configura-
tions and identify the optimal configuration with the highest field gain possible for
each patient. This configuration was then used to guide the surgery. As a predefined
rule, the total skull defect area had to be <30 cm2.

In addition to validating treatment benefit, an important motivation was to be able
to correlate topographical patterns of disease recurrence on MRI with detailed
individual assessments of the TTField distribution in treated patients. This work is
exploratory in nature and requires accurate computational models based on MRI data
from individual patients. Moreover, these more accurate models would serve to
validate the estimates obtained in the preliminary preoperative simulations. This
work is still ongoing and beyond the scope of the present paper, but the concept
illustrates how FE modeling may be used to address and explore many clinically
relevant aspects of TTField therapy. The following sections will focus on describing
the basic framework of the quick and flexible modeling technique that was used for
the assessment of treatment benefit upon patient enrollment.

Fig. 4 The effect of skull remodeling in a single-trial case. Surface representation of the field
intensity distribution in the brain and resection cavity from a patient in the OptimalTTF-1 trial.
Furthermore, the middle panel shows the SR-surgery configuration applied for the given patient,
and the right panel shows the field distribution after the craniectomy. SR-surgery caused the field in
the peritumoral region around the resection cavity to be enhanced by approximately 50% in the
given case. (This figure is adapted from Korshoej et al. [10])
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7 Physical Basis of the Field Calculations

Before we continue to discuss the construction of the head models, we will briefly
present the physical framework assumed for the calculations. Given the dielectric
properties of biological tissues, the low to intermediate frequency of TTFields
(200 kHz), and the small width of the head (approximately 20 cm) [19], we can
assume TTFields to behave in a quasi-stationary fashion. Therefore, the electric
potential φ can be approximated with Laplace’s equation

∇∙ σ∇φð Þ= 0, ð1Þ

where ∇∙ is the divergence operator and σ is the real-valued conductivity [20]. In our
calculations, we used the FE approach to obtain an approximate numerical solution
to Laplace’s equation of the electrostatic potential. The field distribution was then
initially derived by taking the gradient of the potential distribution and the current
density subsequently from Ohm’s law and using the derived field and the scalar
conductivity assigned to the element. All distributions were calculated separately for
each of the electrode pairs, as they are activated sequentially in the real treatment
scenario. In addition, calculations were performed both before and after introducing
a virtually planned SR-surgery procedure into the model. This allowed us to
calculate the absolute and relative changes in the average field intensity in the
respective regions of interest, including the tumor and peritumoral border zone,
and thereby to quantify the expected field enhancement caused by the intervention.

8 Creating the Head Models

The head models used for computations were constructed from the dataset “almi5,”
which was created using SimNIBS [21] and which is available from simnibs.org.
The model was initially composed of five volumes, namely, skin, skull, cerebrospi-
nal fluid (CSF), gray matter (GM), and white matter (WM). To incorporate the
tumor, necrotic regions, and resection cavities, we post-processed the surface mesh
STL files of the model for every patient. The post-processing was based on mor-
phological measurements of the pathology regions on preoperative MRI images of
the patient, including gadolinium-enhanced T1 sequences. The tumor was incorpo-
rated into the GM volume, the necrotic region into the tumor interior, and the
resection cavity into the CSF volume. The edited surface meshes were “cleaned”
for self-intersections and triangle degenerations using MeshFix. Subsequently, all
volumes encapsulated by neighboring surfaces were tessellated with Gmsh (gmsh.
info) to construct a tetrahedral computational mesh. The skull defects, i.e., virtual
SR-surgeries, were initially outlined in MeshMixer by producing closed (often
spherical or cylindrical) compact surface files traversing the exterior and interior
boundaries of the skull in a desired geometrical configuration and location. These
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volumes were then used to define binary volume masks used to select the elements to
be contained in the surgical skull defects. These elements were then assigned a
uniform isotropic conductivity equal to the skin, based on the assumption that the
removed skull tissue would be replaced with a better-conducting skin tissue. The
holes in the skull were typically placed directly above the tumor and resection
border. A number of configurations were then tested in a trial-and-error fashion,
and the model selected for SR-surgery was then visualized using Gmsh and used as a
guiding framework for surgery in combination with neuronavigation technologies
(Fig. 5).

Fig. 5 SR-surgery planning for the patient shown in Fig. 4. (a) Contrast-enhanced T1 MRI
showing the tumor/resection. (b) Patient head model showing approximation of intended resection
cavity. (c) Outline of the SR-surgery plan. (d and e) Images of the remodeled bone plate. Four burr
holes (15 mm diameter) were created and the interior plate thinned out in a 5-cm-diameter area over
the tumor. (f) CT scan of the SR-surgery result. (The figure and legend is reproduced from Korshoej
et al. [10])
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9 Placement of TTField Transducer Arrays

The 3 � 3 TTField electrode arrays were positioned to maximize TTField intensity
for each patient and portray the clinical treatment scenario planned for the individual
patient. In a normal clinical setting, the array layout is determined using the
NovoTAL® software (Novocure™). NovoTAL® uses individual measurements of
the head size and tumor size/position to design a layout for each treated individual,
which maximizes the field intensity in the tumor. However, the alteration and
redistribution of the current density and electric field caused by SR-surgery arguably
invalidate this approach, and we therefore planned the array layouts using the
guiding principles of optimized and individualized array placement outlined in
Korshoej et al. [22, 23] as well as generalized principles determining the distribution
of TTFields [24, 25]. Basically, the arrays were placed so that a row of edge
transducers from one array in each pair overlaid the tumor (Fig. 6) and the remodeled
region of the skull, while the other array in the same pair was placed on opposite side
of the skull, ensuring that currents would flow through the holes in the skull and
toward the opposite side of the head and thereby induce high fields in the tumor. This
approach is based on the observation that stronger fields are induced in tissues
underlying the periphery of the electrode arrays (“edge effect”). Hence, it is not
desirable to have the skull holes located under the central parts of the array or in a far
distance from the array, as this would reduce the amount of current likely to pass
through the holes. The virtual placement of electrodes was performed using the
SimNIBS GUI and a custom Matlab script (Mathworks, Inc.). For further details,
see [23].

10 Boundary Conditions and Tissue Conductivities

Computations were conducted using the Dirichlet boundary conditions defined by
the anatomical boundaries of the head and fixed electrical potentials at the top of the
array transducers. Particularly, the potential was set to 1 V in the transducers of one
array in a pair, while the potential in the electrodes of the other array were set to
�1 V. Numerical approximation was obtained using a conjugate gradient solver with
a defined tolerance of 1 E-9. All potentials, fields, and current densities were then
rescaled to obtain a total current of 1.8A through the arrays equivalent to the amount
of current delivered by the Optune™ device. This allowed us to model the actual
scenario that all electrodes in an array were connected to the same electrical source.
In all calculations, a uniform isotropic scalar conductivity value σ was assigned to all
nodes in a volume based on previous measurements from in vitro and in vivo studies
(skin 0.25 S/m, bone 0.010 S/m, CSF 1.654 S/m, tumor 0.24 S/m, and necrosis
1.00 S/m [23]). All transducers were modeled with an underlying layer of conductive
gel with 0.5 mm thickness and 1.0 S/m conductivity.
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Fig. 6 The edge effect and principles of electrode array positioning. The panels a and b,
respectively, show the skin surface representations of the current density (a) and field intensity (b)
induced by the left/right array pair of a participant in the trial. Both panels illustrate that the stronger
fields and currents are present near the periphery of the array. Panels c–e illustrate the underlying
principle adopted when placing the arrays on the head of the patient. Panel c shows the mean field
intensity in a virtually introduced 2-cm-diameter tumor with a 1.4-cm-diameter central necrotic core
for different tumor positions and array positions. Specifically, we tested how the field was affect by
15-degree stepwise rotations of an orthogonal configuration of two array pairs in the same
horizontal plane (b and c). This rotation was conducted around a central craniocaudal axis. Eleven
tumors were investigated for all rotations. Particularly, the tumors were translated along an axis in
the coronal plane from deep positions (30 mm from the median plane) to superficial positions
(50 mm from the median plane). The tumors were located in the plane of the central transducers of
the arrays. For all tumors, the maximum average field intensity was achieved when the array pairs
were oriented both at 45 degrees to the sagittal plane, i.e., obliquely (panel e). The default layout
(i.e., anterior/posterior and left/right, panel d) were the least efficient for these tumors. These results
are further elaborated in Korshoej et al. [23] from which this figure has been adapted. The
conclusions of these investigations are that arrays should be placed such that the edge of one
array from each pair is placed in close vicinity to the tumor (and the introduced skull defects) and
the other array in the same pair on the opposite side of the head. This approach was also adopted
when positioning the arrays in the OptimalTTF-1 trial. (Panels c–e of this figure are reproduced
from Korshoej et al. [23])
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11 SR-Surgery in the OptimalTTF-1 Trial

In the OptimalTTF-1 trial, a total of 15 subjects were enrolled. The tumors were
located in the temporal (N ¼ 5), parietal (N ¼ 2), frontal (N ¼ 2), occipital (N ¼ 1),
frontoparietal (N ¼ 3), and parietooccipital (N ¼ 2) regions, and field enhancement
>25% could be obtained for all patients (median 37%, range 25–67%). The applied
skull defects had a mean area of 10.5 cm2 (range 7–24 cm2), and the mean absolute
field values in the region of interest were in the range 100–200 V/m. Ten patients had
4–6 burr holes (15–18 mm diameter), and two had total craniectomies (elliptic with
semiaxis diameters of approximately 60 � 50 mm and 85 � 65 mm, respectively).
One had five 15 mm burr holes and one 25 mm mini-craniectomy, while the
remaining two patients had seven and eight 20 mm burr holes, respectively. Figure 7
shows examples of two different configurations of SR-surgery, while a third exam-
ple is given in Fig. 5f. The remodeled regions were placed above the resection
cavity/border and residual tumor. Skull thinning was performed if possible and if the
resection cavity extended to regions where the overlying skull had an estimated
thickness above 3 mm. Skull thinning in areas below this limit was considered less
significant because the relative gain in conductivity would be too small in these
cases. For patients with temporal tumors, the squamous area of the temporal bone
was therefore only perforated by burr holes, and bone bridges were left to support the
overlying temporal muscle and maintain cosmetic integrity. All surgeries were
conducted by trained neurosurgeons. The operation was technically feasible, easy

Fig. 7 CT reconstructions of two additional examples of SR-surgery configurations. (a) Total
craniectomy (85 � 65 mm, elliptic) above the tumor region. This was equivalent to a standard
craniotomy bone flap created during resection surgery. (b) Seven burr holes (18 mm diameter)
distributed above the resection cavity and its surrounding borders, tumor region before and after
SR-surgery. (This figure is reproduced from Korshoej et al. [10])
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to perform, and added less than 15 min of additional surgery time. Overall survival
was 15.0 months, CI95% ¼ [9.6; 16.2], and the overall survival rate at 1 year was
64%, CI95% ¼ [35; 85], which is promising compared to historical data.

12 Conclusion

In this chapter, we have introduced the general concept of TTFields and well as
background information on the main indication of this treatment, i.e., glioblastoma.
We have illustrated the technical framework and rationale for implementation FE
modeling dosimetry as a method to plan and evaluate skull remodeling surgery in
combination with tumor-treating field therapy of GBM. We have illustrated how
SR-surgery can be used to increase the TTField dose in GBM tumors and the
techniques used to quantify this enhancement. The presented framework was
adopted in a phase 1 clinical trial to validate expected efficacy for patients enrolled
in the trial and further to calculate the field enhancement achieved for each patient.
The trial, which is concluded at this time, showed that the SR-surgery approach was
safe, feasible, and potentially improved survival in patients with first recurrence of
GBM [18]. Two different modeling approaches were adopted, namely, a fast but less
accurate approach, in which a representative tumor or resection cavity was intro-
duced virtually in a computational model based on a healthy individual and one
based on the individual patients MRI data, which was more accurate but also too
time-consuming to be used for quick preoperative calculations. Here we have mainly
focused on describing the principles and workflow of the simplified framework.
Although we considered this approach sufficient for the given purpose, future work
is needed to improve the FE pipeline for better time-efficiency and preparation of
patient-specific models as exemplified in [17]. Such models would both improve
anatomical accuracy and also allow for individualized anisotropic conductivity
estimation giving a more accurate and realistic basis for the calculations. In the
OptimalTTF-1 trial, we conducted the necessary MRI scans for individualized
modeling preoperatively, postoperatively, and at disease recurrence for most
patients. Based on this data, we aim to conduct individualized and refined post hoc
simulations to accurately reproduce the actual skull remodeling configurations
including skull thinning and thereby provide more accurate estimates of the benefi-
cial effect of SR-surgery. This will be highly valuable when exploring the dose-
response relationship and effects of craniectomy enhancement of TTFields in further
detail. Furthermore, efforts are being made to streamline and automate the simula-
tion pipeline to enable quick and accurate dose estimation and treatment planning
before SR-surgery. Such procedures would ideally also use automated optimization
procedures as opposed to the current exploratory approach to ensure maximal dose
enhancement. Finally, we are finalizing the analysis of the OptimalTTF-1 trial,
which will shed important light to the clinical significance of the concept. A future
clinical phase 2 trial is being planned to test treatment efficacy.
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Part II
Non-invasive Neurostimulation – Brain



A Computational Parcellated Brain Model
for Electric Field Analysis in Transcranial
Direct Current Stimulation

M. A. Callejón-Leblic and Pedro C. Miranda

1 Introduction

tDCS is a noninvasive brain modulation technique which produces cortical excit-
atory and inhibitory plastic changes by delivering small-amplitude electric currents
into the brain through two or more electrodes placed on the scalp [1]. Although
neuromodulation has shown promising results regarding the improvement of both
cognitive and motor functions as well as the treatment of several neurological and
neuropsychiatric diseases [2–4], the field still faces one major drawback: the lack of
reproducibility caused by large differences among subjects and studies [5].

Realistic computational models derived from magnetic resonance imaging (MRI)
have proved useful for the estimation of the EF magnitude and distribution through
the brain, revealing the effect of individual anatomy as a major cause for intersubject
variability [6–10]. Further to this, classic electrode placement criteria, where one
electrode is usually located above the neural target and another some distance away,
has been called into question when predicting similar or even higher values in both
superficial and deep areas between the electrodes [10–14]. It is for this reason that
the correlation between the EF magnitude and the observed neurophysiological
effects of tDCS continues to be controversial [15–17]. Recent modelling studies
have emphasized that the influence of tDCS-induced EFs does not only depend on
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their magnitude but also on their relative orientation to specific cortical targets [18–
20].

This chapter is structured as followed: Section 2 offers a brief review of recent
works addressing the intricate relationship between the modelled EF magnitude
and/or orientation and the stimulation response. Based on previous work in [21],
Sect. 3 describes the modelling framework followed to obtain a computational
parcellated brain model based on the finite element method (FEM) for the analysis
of the distribution of tangential and normal EF components over the cortex. Section 4
presents estimates of mean and peak tangential and normal EF values for different
cortical regions and four different electrode montages typically used in tDCS clinical
applications. Section 5 discusses the main differences observed between the various
electrode montages analyzed. Finally, Sect. 6 concludes this chapter.

2 Relation Between EF Magnitude and Orientation
and tDCS-Physiological Effects

The conventional criteria for the placement of electrodes in tDCS stems from initial
studies undertaken by Nitsche et al. where significant modulation of motor-evoked
potentials (TMS-MEPs) was found only for the left M1-right supraorbital area
(RSOA) montage [22, 23]. In apparent contradiction to this, current MRI-driven
computational EF models predict considerable EF spread over intermediate and deep
brain regions between the electrodes, relatively far from the presumed targeted
regions [9, 11, 14, 24, 25].

As demonstrated through animal and in vitro studies, changes in membrane
excitability of neurons are sensitive to orientation of EFs relative to different
neuronal compartments [26–28]. However, given the complex anatomy of the highly
convoluted human cortex, extrapolating these results to in-vivo studies in humans is
not straightforward. Figure 1 shows an illustrative scheme of the EF vector over the
human cortical sheet and the definition of both tangential and normal EF compo-
nents. Recent multiscale models integrating both macroscopic and microscopic
effects at both tissue and cellular levels have revealed a high correlation between
soma polarization and normal EF irrespective of electrode montage [29].

At a population level, recent works have investigated the correlation between the
simulated EF magnitude and/or orientation and the tDCS-induced excitatory effects,
with seemingly divergent results. For instance, as reported by Fitscher et al. in [30],
lower magnitude and normal EF values estimated for multifocal tDCS of the motor
cortex did not explain the increased excitability changes observed when compared
with standard left M1-RSOA montage. More recently in [31], Antonenko et al.
applied tDCS to 24 healthy participants during eyes-closed resting-state functional
resonance imaging for the standard large-pad left M1-RSOA montage under anodal,
cathodal, and sham stimulation conditions. A better correlation with physiological
effects was identified for the EF magnitude rather than for the normal component
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over the targeted left precentral gyrus for both anodal and cathodal conditions. In
another recent work, Foerster et al. [32] analyzed the TMS-MEP excitability
response in 15 volunteers after 15 min, 1 mA anodal and cathodal stimulation with
two different orientations of the 5 cm � 7 cm electrode placed over the left M1: one
with the long axis of the electrode aligned with the medial-lateral direction and
another with the electrode rotated 45º clockwise. The second electrode was fixed
over the contralateral supraorbital area. Although modelling results in a representa-
tive brain model did not reveal significant differences regarding EF orientation over
M1 for these two montages, a significant enhancement of the excitatory response for
both anodal and cathodal conditions was only exhibited with the 45�-rotated elec-
trode. This outcome was instead related to higher EF magnitude over M1 and
premotor areas.

Nevertheless, other authors have recently uncovered evidence that the tDCS
excitatory changes are indeed sensitive to EF orientation relative to the cortical
surface. For example, in [20], Laakso et al. measured the MEPs in 28 healthy
subjects before and after a 20 min sham or 1 mA anodal tDCS stimulation with
large-pad electrodes over the right motor cortex. Opposite effects in modulated
MEPs were observed for individuals with the strongest and weakest EFs, respec-
tively, showing a high correlation with the normal component in the hand knob area
near the TMS hotspot. In another study [18], Rawji et al. compared the tDCS-
induced changes measured by TMS-MEP in 22 healthy volunteers by comparing
two different montages with two small electrodes placed 7 cm around M1: one
montage with the electrodes aligned so as to direct current perpendicularly to the
central sulcus in the posterior-anterior (PA) direction and another with the electrodes
directing current parallel to the central sulcus in the medial lateral (ML) direction.
Significant after-effects of TMS-MEP for the PA montage were correlated with
predicted current density normally oriented toward the hand region, whereas the
inexistence of excitatory effects for the ML montage were related to a non-uniform

Fig. 1 Schematic illustration of the electric field and their directional components. (a) Realistic
computational EF model at tissue level. (b) Description of tangential and normal EF components
over a slice of the cortical sheet. (c) Relation between the orientation of EF and the morphology of
neuronal structures at cellular level
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EF orientation in this area. Likewise in [19], Hannah et al. confirmed and furthered
these results for behavioral motor learning and two PA- and ML-orientated mon-
tages over the sensorimotor cortex.

In this section, we have summarized the main results derived from recent works
addressing the relationship between the modelled EFs and the tDCS neurophysio-
logical effects. It has been seen that a consensus on EF magnitude or orientation-
based mechanisms has not yet been reached. The variability observed among
experimental trials may be due to different stimulation parameters and electrode
montages used as well as to different modelling approaches. Nonetheless, we can
conclude that computational EF models were vital to improve our understanding of
the complex relationship between simulated EF magnitude and orientation and the
stimulation phenomena observed in tDCS experiments. In this chapter, a computa-
tional analysis of the distribution of tangential and normal EF components over a
representative brain model is presented for various common tDCS clinical montages.

3 A Computational Parcellated Brain Model in tDCS

3.1 Head Anatomy

It is common practice for the creation of a realistic computational model of the head
to involve the segmentation of T1- and T2-weigthed magnetic resonance images
(MRI) based on individual anatomies. The process of converting MRI to EF
distribution is further explained in [33]. That said, computational models based on
brain atlases have also gained interest among researchers due to their ability to
represent an average human brain. Such is the case of the computational model this
chapter will focus on, which is based on the 0.5 mm3 ICBM152 V2009b symmetric
template derived from the nonlinear average of MRI scans of 152 adults with high
anatomical detail of inner brain tissues [34]. Here, an earlier version of SimNIBS
[35] (v2.0, http://simnibs.de/) which employs Freesurfer (https://surfer.nmr.mgh.
harvard.edu/), and is reported to provide higher resolution of cortical gyri and
sulci morphology [36], was used to segment and to obtain 3D surface meshes of
ICBM152 inner brain tissues such as gray matter (GM), white matter (WM),
cerebellum, and ventricles. Regarding non-brain tissues, Huang et al. in [37]
co-registered and re-sliced a prior version of the same template, ICBM152 v6,
which better retained the anatomical characteristics of the scalp and the skull, to
the same MRI space of ICBM152 V2009b. By artificially overlapping the resultant
MRI with an average of several heads, they were able to extend the field of view
(FOV) down to the neck and thus generate a full head model named ICBM-NY
(New-York) head model. The ICBM-NY segmentation masks made available by
Huang et al. were tessellated here to obtain the 3D triangular surface meshes for the
outer head tissues such as the scalp, skull, eyeballs, air cavities, and CSF. A
non-manifold assembly of these tissues as well as post-processing operations such
as the smoothing, re-meshing, and cleaning of small anatomical skull details and
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other tissue irregularities were manually carried out in Mimics 3-matic software
(v16, https://www.materialise.com/es/medical/software/mimics). The resulting
computational head model based on ICBM152 template can be seen in Fig. 2.

3.2 Cortex Parcellation

The use of multimodal neuroimaging studies along with EF modelling may help
identify the true targeted cortical regions in tDCS. Hence, the delineation of different
cortical or brain regions, often referred to as brain parcellation [38], may help
provide useful quantitative comparison of the EF dose delivered to different brain
substructures. Many neuroimaging and EF modelling software toolboxes include
specific labelling tools for brain parcellation based on available brain atlases. The
multimodal parcellation reported in [39], considered one of the most detailed in the
literature so far, is that derived from the Human Connectome Project version 1.0
(HCP-MMP 1.0, https://balsa.wustl.edu/WN56). It offers a description of 180 areas
per hemisphere grouped into 22 regions according to cortical anatomy, function, and
connectivity criteria. In this work, we labelled these 22 regions in the ICBM152
model (see Fig. 3) based on the Freesurfer version of HCP-MMP 1.0 parcellation

Fig. 2 View of the computational head model based on ICBM152 V2009b template and
ICBM152-NY segmentations masks provided by Huang et al. in [37]. The model comprised
different tissues such as the scalp, skull, vertebrae, eyeballs, air cavities, CSF, GM, WM, cerebel-
lum, brain stem, and ventricles. Skull openings such as the eye foramina and foramen magnum were
manually modelled using Mimics 3-matic
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data [40]. The names of the 22 regions are listed in Table 1, where they have been
grouped into 6 main sections per hemisphere, including visual cortex (VC), somato-
sensory and motor cortex (SMC), auditory cortex (AC), temporal cortex (TC),
parietal cortex (PC), and frontal cortex (FC).

3.3 tDCS Electrode Montages

Bipolar large-pad saline-soaked electrodes are the most commonly used in tDCS
clinical trials. Both anodal (excitatory) and cathodal (inhibitory) stimulations are
possible, where the only difference is the direction of the resultant EF but not the
distribution [41]. As can be seen in Fig. 4, four bipolar montages consisting of
7 cm� 5 cm rectangular, 6-mm-thick electrodes were considered. This permitted the
analysis of the EF distribution over various cortical areas commonly targeted in
tDCS clinical applications: motor cortex (C3-right supraorbital area RSOA), dorso-
lateral prefrontal cortex (F3-RSOA), visual cortex (Oz-Cz), and auditory cortex
(T8-T7). The scalp coordinates for these positions were identified according to
10-20 EEG system.

3.4 The Physics of tDCS

The physics of tDCS is that of a conducting body volume with two or more
electrodes attached to its surface [42]. The electric current injected through the
attached electrodes causes a net flow of ions through the head tissues, which can

be described in terms of an electric field, E
�!

(V/m), or a current density, J
! ¼ σE

!

Fig. 3 Cortex parcellated into 22 cortical regions per hemisphere according to color code in
Table 1
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(A/m2). In turn, these currents lead to changes in the membrane potential of excitable
neurons, which are excited or inhibited depending on the stimulation applied (anodal
or cathodal), the magnitude of the electric field induced, and its relative direction to
the targeted neural segments.

Table 1 List of 22 parcellated cortical regions from HCP-MMP 1.0

Parcelled Cortical Regions

Visual/Occipital
cortex

1. Primary Visual Cortex: PVC
2. Early Visual Cortex: EVC
3. Dorsal Stream Visual Cortex: DSVC
4. Ventral Stream Visual Cortex: VSVC
5.M.T.+Complex Neighboring Visual Areas: MT+CNVA

Somatosensory and 
Motor Cortex

6. Somatosensory and Motor Cortex: SMC
7. Paracentral Lobular and Midcingulate Cortex: PLMC
8. Pre-Motor Cortex: PMC
9. Posterior Opercular Cortex: POC

Auditory Cortex
10. Early Auditory Cortex: EAC
11. Auditory Association Cortex: AAC
12. Insular and Frontal Opercular Cortex: IFOC

Temporal Cortex 13. Medial Temporal Cortex: MTC
14. Lateral Temporal Cortex: LTC

Parietal Cortex

15. Temporal-Parietal-Occipital Junction: TPOJ
16. Superior Parietal cortex: SPC
17. Inferior Parietal Cortex: IPC
18. Posterior Cingulate Cortex: PCC

Frontal Cortex

19. Anterior Cingulate and Medial Prefrontal Cortex: ACMPC
20. Orbital and Polar Frontal Cortex: OPFC
21. Inferior Frontal Cortex: IFC
22. Dorsolateral Prefrontal Cortex: DLPC

Fig. 4 Electrode montages commonly used in tDCS clinical applications: C3-RSOA, F3-RSOA,
Oz-Cz, and T8-T7. The anode (positive) is colored red and the cathode (negative) blue
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This bioelectric problem can be mathematically modelled in terms of Laplace’s
equation, i.e., ∇ ∙ (σ ∇ ϕ) ¼ 0, which provides a stationary solution for the scalar

potential, Φ, in the conducting head tissues. From this, the electric field E
! ¼ �∇Φ

���!
and the current density, J

! ¼ σE
!
, can be derived. The required boundary conditions

are usually (i) the continuity of the normal current density at internal boundaries,

�n
! ∙ J1

!� J2
!� �

¼ 0; (ii) electrical isolation at external boundaries, �n
! ∙ J�! ¼ 0;

and (iii) floating potential boundary conditions for the injection of a constant electric
current I0 through the electrodes: in this way, a constant voltage V¼ V0 is applied on

the electrode boundary such that the total normal electric current density J
!
equals a

specific current I0, i.e.,
R
∂Ω �n

! ∙ J
!� �

dS ¼ I0:

3.5 FEM Calculation

Given the highly complex anatomy of the human head and brain tissues, an
approximate solution of Laplace’s equation can only be obtained through the use
of numerical computational techniques such as the finite element method (FEM)
[43]. Therefore, FEM software such as that used here, Comsol Multiphysics (v5.3a,
www.comsol.com), provides a solution for the electric potential Φ at each node of a
tetrahedral volume mesh resembling the head anatomy (see Fig. 5). Another key
element of FEM calculation is the electric conductivity of head tissues, σ (S/m),
often emulated as homogeneous isotropic conductor volumes. Despite the existing

Fig. 5 Volume mesh for
FEM calculation
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controversy on accurate conductivity values, recent in vivo measurements [44]
reveal a reasonable agreement with values commonly used in the modelling litera-
ture, especially for GM, WM, and scalp, as shown in Table 2 [41].

4 Results

4.1 Tangential and Normal EF Distribution Through
the Cortex

Tangential j tE! j and normal j nE! j EF components calculated over the cortical
surface are shown in Figs. 6 and 7 for an injected current of 1 mA and four tDCS
montages commonly used in clinical trials. For the sake of comparison EF compo-
nents were normalized by the peak value obtained for each electrode montage. Peak
values per component, hemisphere, and electrode montage are shown in Table 3 and
will be discussed in the next subsection.

Figures 6 and 7 display the coexistence of a tangential component widely spread
over the gyri and a normal component mainly focalized in deeper sulci, as has
previously been highlighted in the literature [41]. The low thickness and high
conductivity of the CSF may partly explain this dual distribution: when the electric
current reaches the CSF on its way between the two electrodes through the head, the
ions are driven through this thin conductive layer. This occurs tangentially over the
thinnest areas (gyri) and perpendicularly in the case of the deepest areas (sulci),
which leads to this particularly interesting form of tangential and normal EF distri-
bution over the cortex. It is also noteworthy that unlike the results derived from
simplified multilayer spheres mimicking the human head, which show a tangential
EF component largely distributed between the electrodes and a normal EF compo-
nent strongly confined underneath them [45, 46], the irregular anatomy of the highly
convoluted brain leads to tangential and normal EFs hotspots being dispersed over
the cortex [13].

In addition to anatomy, the relative position of the electrodes and the inter-
electrode distance also constitute key variables which determine the EF distribution

Table 2 Conductivity values
in S/m for different head tis-
sues, taken from the literature

Tissue Conductivity value σ (S/m)

Scalp 0.33

Skull 0.008

CSF 1.79

GM 0.33

WM 0.15

Eyeballs 1.5

Air cavities 10e�14

Sponge electrodes 2
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through the cortical surface [24, 47–51]. For instance, Figs. 6 and 7 show that
C3-RSOA exhibits a largely distributed tangential component through the cortex
over the whole left hemisphere and the right frontal cortex. This is due to the position
of anode C3 in the middle of the left hemisphere, which causes a wider spread of the
current lines through the head tissues toward the cathode at RSOA. On the other
hand, for the second montage analyzed, F3-RSOA, reducing the inter-electrode

Fig. 6 Normalized magnitude of the tangential EF component for four electrode montages
commonly used in clinical applications: C3-RSOA (first row), F3-RSOA (second row), Oz-Cz
(third row), and T8-T7 (fourth row)
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distance by moving the anode from C3 to F3 enhances the focality of both tangential
and normal EF in the frontal cortex between the electrodes. In the case of Oz-Cz,
tangential and normal EF are more symmetrically distributed on both hemispheres,
mainly over the parietal and occipital cortex, due to the alignment of both the anode
and cathode on the midsagittal plane. Finally, T8-T7, with the anode and cathode
placed opposite each other, yields an EF pattern mostly confined over the temporal
cortex underneath the electrodes.

Fig. 7 Normalized magnitude of the normal EF component for four electrode montages commonly
used in clinical applications: C3-RSOA (first row), F3-RSOA (second row), Oz-Cz (third row), and
T8-T7 (fourth row)
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4.2 Mean and Peak Tangential and Normal EF Values over
Different Cortical Areas

As shown in Fig. 8, mean tangential j tE! j and normal j nE! j EF values were
calculated over the 22 cortical areas per hemisphere for 4 electrode montages:
C3-RSOA, F3-RSOA, Oz-Cz, and T8-T7. In the majority of cortical areas, the

mean j tE! j values were slightly higher than the mean j nE! j. The peak values over
the cortex for the four electrode montages considered are listed in Table 3 and are

comparatively shown in Fig. 9. It should also be noted that in the case of j tE! j peak
values were generally twice those of the mean, whereas for j nE! j this ratio was
approximately fourfold. Nevertheless, a number of hemisphere and electrode
montage-specific characteristics were also found.

For instance, as expected, some noticeable differences were encountered for
C3-RSOA over the right and the left hemispheres, due to its nonsymmetric config-

uration. As Fig. 8 shows, higher mean j tE! j and j nE! j values above 0.10 V/m were
calculated in regions of the left hemisphere such as SMC, POC, and DLPFC. The

highest value of 0.14 V/m was obtained on the left IPC near the anode for both j tE! j
and j nE! j: In contrast, lower mean j tE! j and j nE! j values were generally found in

the majority of areas of the right hemisphere, which is explained by thicker skull and

air-filled sinuses under the RSOA electrode. As shown in Fig. 9, peak j tE! jvalues of
0.25 and 0.18 V/m were estimated over the left IPC and right OPFC, respectively,
close to the anode and cathode in each hemisphere. Regarding the normal compo-
nent, a peak value of about 0.4 V/m was predicted on POC just below the bottom
edge of the anode on the left hemisphere. Also, a peak value of 0.27 V/m was found

for j nE! j over OPFC near the electrode in the right hemisphere. Peak values of 0.2
and 0.25 V/m were, calculated in areas such as SMC and PMC.

Compared with C3-RSOA, F3-RSOA resulted in lower mean j tE! j and j nE! jEF
values below 0.06 V/m in the majority of cortical areas on both hemispheres. Higher
mean values close to 0.08 V/m were only found in areas of the frontal cortex. The
enhanced focality, albeit with a lower magnitude, exhibited by this montage is
explained by the smaller interelectrode distance. Peak values of about 0.20 and

0.28 V/m were, respectively, calculated for j tE! j and j nE! j on both right and left

Table 3 Peak tangential and
normal EF values

Peak EF (V/m)

Left hemisphere Right hemisphere

j tE! j j nE! j j tE! j j nE! j
C3-RSOA 0.25 0.39 0.18 0.27

F3-RSOA 0.20 0.28 0.21 0.28

Oz-Cz 0.23 0.29 0.21 0.29

T8-T7 0.29 0.31 0.19 0.31
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OPFC. In addition, a peak normal EF close to 0.28 V/m was estimated on the
targeted left DLPFC.

In the case of the Oz-Cz montage, higher mean j tE! j values of 0.15 and 0.13 V/m
were calculated for left DSVC and left IPC, respectively, near the superior edge of

the anode (Oz). With respect to mean j nE! j values, slightly lower values below
0.10 V/m were found in the majority of cortical areas, except on left and right IPC

where a higher mean value near 0.14 V/m was seen. Peak j tE! jvalues slightly above
0.20 V/m were calculated in areas of the visual cortex such as left PVC and right

EVC. Interestingly, peak j nE! j values above 0.20 V/m were seen in both left and
right PCC, approximately halfway between anode and cathode.

Lastly, mean j tE! j and j nE! j values below 0.1 V/m were found in the majority of
cortical areas for T8-T7. Due to its particular configuration with both electrodes
placed above opposite ears, a higher mean value of 0.15 V/m was estimated over the

left and right IPC near the stimulation electrodes. In the left hemisphere, peak j tE! j
and j nE! j values of about 0.3 V/m were found in left IPC and LTC, respectively. A

high peak value of 0.3 V/m was also estimated for j nE! j on the right LTC just below
the anode.

Fig. 9 Simulated peak tangential and normal EF values for the different electrode montages
analyzed. The figure also depicts the cortical region where the peak was observed for both right
and left hemispheres
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5 Summary and Discussion

A general trend has been confirmed for all the electrode montages analyzed, with
a marked anatomical distribution of tangential and normal EF on cortical gyri

and sulci, respectively. High mean j tE! j values were estimated for the majority of
cortical regions between the electrodes, which may explain the low spatial resolution
often reported for standard tDCS. Instead, higher peak EF values were predicted for

j nE! j in sulci regions underneath and close to the electrode edges, with some
electrode montage-specific characteristics.

Specifically, C3-RSOA showed the highest peak values for j nE! j in areas near

the somatosensory and motor cortex and the parietal cortex. This high j nE! j value in
areas below the anode C3 concurs with recent works that have stressed the relevance
of the normal EF component over specific motor targets [20, 29]. However, it must
also be noticed that other experimental studies have in fact found a greater correla-
tion between the EF magnitude and the neurophysiological excitatory response on
gyral regions such as the left precentral gyrus. For the normal component, a larger
intersubject variability prevented the correlation with physiological parameters
[31]. In line with these results, our results also show that the EF magnitude in gyri
areas mainly accounts for the tangential EF and that a consistent higher-mean gyral
tangential EF distribution is observed in the average brain modelled.

The F3-RSOA montage, which targets the left DLPC, exhibited lower j tE! j and
j nE! j values, possibly due to the presence of air-filled sinuses and thicker skull
underneath the electrodes. A more focal EF pattern confined over frontal areas
between the electrodes was observed for this montage and is explained by their

shorter inter-electrode distance. Peak j tE! j and j nE! j values were found over OPFC.
These results may corroborate previous modelling studies that have suggested the
medial prefrontal cortex as a new target for depression condition in tDCS [10]. Fur-
thermore, previous modelling works analyzing intersubject variability have also
reported a greater divergence of EF values over the frontal cortex among subjects
for F3-RSOA compared with classic C3-RSOA montage targeting the left motor
cortex [6].

Regarding Oz-Cz, this montage showed higher mean and peak j tE! j values in
areas of the occipital/visual cortex just underneath the cathode. Interestingly, peak

j nE! j values were also seen on PCC halfway between both stimulation electrodes,
thus corroborating prior modelling results in [12].

In the case of T7-T8, previous computational results on auditory tDCS reported
higher mean values of current density confined around the stimulation electrodes
[52]. Our results here coincide with these previous outcomes showing both hemi-

spheres being stimulated with higher mean and peak j tE! j and j nE! j EF values over
regions of the auditory cortex and LTC near the stimulation electrodes. Finally, it is
noteworthy that three of the four montages analyzed, C3-RSOA, Oz-Cz, and T8-T7,
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showed higher mean tangential and normal EF values over IPC, possibly explained
by local CSF thinning.

6 Conclusion

In this chapter we have conducted a computational analysis of the distribution of the
tangential and normal components of the electric field over a representative
parcellated brain-FEM model for different electrode montages commonly used in
tDCS clinical applications. The results confirmed the existence of a dual EF pattern
on the cortex, based on a widely gyri-distributed tangential component and a sulci-
confined normal EF component. One open question is if such a noticeable depen-
dence of EF components on cortical morphology is the cause of the low focality
reported for large-pad tDCS or if, conversely, it actually entails significant direction-
based mechanisms for the stimulation outcome at distinct neural segments. There-
fore, the validation of computational EF models with physiological measurements is
vital in order to clarify this controversy. Our analysis could prove helpful in
designing new experimental studies which allow greater understanding of the
underlying modulatory mechanisms related to different EF components in tDCS.
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Computational Models of Brain Stimulation
with Tractography Analysis

Stefanie Riel, Mohammad Bashiri, Werner Hemmert, and Siwei Bai

1 Introduction

Computational head models have been used extensively in electrophysiological
studies to locate dipole sources in electroencephalography (EEG) analysis and to
investigate the current distribution profile in brain stimulation, such as the electro-
convulsive therapy (ECT). They have been able to provide useful information that
can’t be acquired or difficult to acquire from experimental or imaging studies
[1]. However, most of these head models are volume conductor models, in which
the electric activity of neurons is assumed to be spatially fixed and temporally
independent of activity arising from other sources. In reality, the brain is a system
of coupled networks that constantly interact with each other by synaptic inputs, with
electrical signals travelling within neurons. Therefore, in order to utilise the head
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models for a better understanding of the mechanisms underlying brain stimulation, a
passive model unable to mimic active membrane dynamics is of limited utility. Bai
et al. presented a finite element (FE) whole head model with the incorporation of a
Hodgkin-Huxley-based continuum excitable neural description in the brain, which
was able to simulate the dynamic changes of brain activation directly elicited by
ECT [2]. Nevertheless, the computation was rather lengthy. In addition, the intra-
cellular potential in the model was assumed to be resistively tied to a remote fixed
potential, whose physiological meaning was difficult to find in reality. This con-
straint also led to the missing of the spread of excitation through neural networks in
the brain (seizure). McIntyre’s group has over the years introduced a representation
of the white matter (WM) fibres in the vicinity of the subthalamic nucleus (STN),
combined with a volume conductor model of deep brain stimulation (DBS)
[3, 4]. After the electric potential induced by the DBS device was calculated by
the FE solver, the time-dependent transmembrane potential was solved in the neuron
using a Hodgkin-Huxley-type model based on the interpolated potential distribution
along the length of each axon. The model was able to predict the activation in STN
neurons and internal capsule fibres, and the degree of activation matched well with
animal experimental data [3]. This chapter describes the steps necessary to imple-
ment computational modelling of the human head, including a white matter
tractography analysis to determine the voltage, electric field and activation function
distribution for two prescribed setups of ECT. Neural activation is analysed by the
neural activation function, which is in turn approximated by the second spatial
derivative of the electrical potential, assuming that the axonal diameter, axoplasmic
resistivity and capacity were constant.

2 Methods

To evaluate the electric field and the neural activation function along neural fibres, an
FE volume conductor model of electrical brain stimulation (ECT in this case) was
combined with a white matter fibre tractography model of the brain. Figure 1 details
all the necessary steps for a combined tractography analysis of electrical brain
stimulation.

2.1 Image Preprocessing

The FE volume conductor model and the white matter tractography model were both
reconstructed from magnetic resonance image (MRI) data from the same subject.
MRI data were taken from subject MGH1010 (gender: female, age: 25–29) provided
by the NIH Human Connectome Project (HCP) [5]. The dataset comprised a
structural T1-weighted scan, a high-resolution T2-weighted scan and a set of high-
resolution, high b-value diffusion-weighted (DWI) scans. These MR scans provided
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by HCP had been preprocessed, and therefore image distortions/artefacts currents
caused by eddy, gradient nonlinearities and motion had been removed [6]. To ensure
the same frame of reference for the individually acquired image datasets, it is
necessary to perform image registration. The structural image data with a resolution
of 1 mm was resampled to a resolution of 1.5 mm using trilinear interpolation in
order to match the dimension of DWI data. Subsequently, a rigid-body registration
with six degrees of freedom was performed between the fixed DWI data and the
floating T1-weighted image. Since the transformation was performed on the struc-
tural data (aligned to the DWI data), no further processing of auxiliary diffusion data
(gradient tables of DWI scans) was necessary. These operations were implemented
using FLIRT (FMRIB’s Linear Image Registration Tool) provided in the FMRIB
Software Library (FSL) which is developed by the Oxford Centre of Functional MRI
of the Brain (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT) [7–9].

2.2 White Matter Fibre Tractography

White matter consists of myelinated neuronal tracts, interconnecting different parts
of the brain. This neural fibre network causes a highly anisotropic diffusion behav-
iour of water molecules inside the brain. Diffusion is higher along the fibres than in
the transverse direction [10]. This characteristic is utilised by DWI scanning, which

Fig. 1 Flowchart describing the workflow to generate a finite element volume conductor model
and a white matter fibre tractography of the head. Information on the electrical field and the
activation function can be computed by numerical approximation of the spatial derivatives of the
voltage along the fibre, which in turn can be extracted by combining both finite element head model
and the tractogram
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applies a magnetic gradient in different directions during image acquisition and thus
encodes the sensitivity of diffusion to each gradient direction in the image data.
Similar anisotropic behaviour is found for the electrical conductivity of white matter
fibres, and a linear relationship between electrical conductivity and water diffusion
has been experimentally validated [11, 12]. Therefore using anatomically
constrained tractography, we extracted a geometrical model of neural fibres from
DWI data, which provided information about the trajectories of white matter fibres.
Structural T1-weighted MRI data containing information on the structural compo-
sition of the brain was used to determine the start and end of each fibre.

2.2.1 Image Segmentation

In order to adopt anatomical constraints for tractography, the structural data was
firstly segmented. T1-weighted image data is typically used as it provides a good
contrast between head structures, especially between grey and white matter
[13]. Image segmentation was performed in two steps: brain extraction and brain
tissue segmentation. The brain extraction procedure was implemented in the FSL
Brain Extraction Tool (BET) (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BET/UserGuide).
An intensity histogram of the structural images was used to find the threshold to
differentiate the brain- and non-brain regions. Triangular tessellation of a spherical
surface was initialised and iteratively deformed – based on the brain/non-brain
intensity threshold – to wrap the whole-brain volume [14]. The extracted brain
volume was then segmented into cortical grey matter, subcortical grey matter,
white matter, cerebrospinal fluid and pathological tissue. The procedure was exe-
cuted in the FLS automated segmentation tools: FAST (https://fsl.fmrib.ox.ac.uk/fsl/
fslwiki/FAST) and FIRST (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FIRST). FSL FAST
makes use of a hidden Markov random field method to categorise grey matter, white
matter and CSF [15]. Due to poor contrast, an intensity-based segmentation proce-
dure failed to segment subcortical grey matter, but FSL FIRST, which utilises a
priori knowledge on the subcortical grey matter, improved segmentation results [16].

2.2.2 Fibre Orientation Distribution

The basis for every white matter tractography is the identification of fibre orienta-
tions from DWI data. The fibre orientation distribution (FOD) holds information on
the probability of certain fibre directions within each voxel. The measured signal S
(θ,ϕ) at a direction (θ,ϕ) is linked to FOD via the axially symmetric response
function R(θ) that satisfies

S θ,ϕð Þ ¼ FOD θ,ϕð Þ
O

R θð Þ ð1Þ
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where R(θ) models the signal expected for a voxel containing a single, coherently
oriented fibre population.

FOD was obtained through constrained spherical deconvolution using spherical
and rotational harmonics that formed a complete orthonormal basis set of functions
over the sphere and the space of pure rotations. A constraint on positive fibre
directions was then imposed [17–19]. The procedure was performed in the MRtrix3
software package (https://www.mrtrix.org/), which provides tools for the analysis of
DWI data [20].

2.2.3 Anatomically Constrained Tractography

FOD estimates the probability that white matter fibres are aligned in a given
direction. When deriving a probability density function (PDF) from the FOD, the
trajectory of a neural fibre can then be constructed.

Tractography started with seeds being randomly scattered within a defined
seeding area. From each seed point, the direction of a step was calculated by
randomly sampling the PDF derived from a second-order integration over FODs
[21]. The step size was predefined. Instead of stepping along straight-line segments
defined by the step size, the connection between two points was realised by an arc of
a circle of fixed length (step size), tangent to the current direction of tracking at the
current point. The probability of each path was calculated as a joint probability of
each infinitesimal step, thus making up the path. This joint probability was approx-
imated by computing the product of the amplitude of the FOD, evaluated at four
points (on the arc segment) along the tangent to the path. The sampling of the PDF
was achieved using rejection sampling, a simple Monte Carlo method. Streamlines
were iteratively generated by stepping along a path determined by the step size, the
orientation derived from the PDF and a constraint on the maximum curvature of the
streamline. The procedure was repeated until a stopping criterion was met.

Since reconstructed streamlines represent white matter fibres connecting spatially
distant areas of grey matter, the start and end points should occur within the grey
matter. Some fibres may project to the spinal cord, but fibres should never end within
the white matter or fluid-filled regions. This a priori information was utilised to
define the seeding area and to derive a termination criterion. Only fibres starting and
terminating within cortical or sub-cortical grey matter were accepted. Fibres that
ended in fluid-filled regions or inside the white matter were rejected [22].

As the density of reconstructed streamlines does not necessarily represent the true
density of anatomical connections, the raw tractogram requires a filter. To find a
subset of streamlines that best matched the diffusion signal, a spherical-
deconvolution informed filtering procedure was used [23]. The FOD was propor-
tional to the DWI signal and to the volume of fibres within a volume pixel. The FOD
was firstly sampled using a large set of basis direction of a unit hemisphere. The
sampled FOD was then segmented into individual lobes representing FOD peak
orientations. The tractogram was subsequently mapped to the voxel grid of the DWI
scans, and for every voxel, a FOD lobe look-up table was generated. Streamlines
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within every voxel were assigned to a lobe. For every voxel, the amount of
streamlines in a specific orientation (of unit length) needed to match the amplitude
of the FOD peak orientations. Therefore, a cost function, based on the FOD lobe
amplitudes over all voxels and the total track density, was introduced and minimised
by removing individual streamlines from the tractogram. Key characteristics of the
tractogram and input settings are listed in Table 1.

2.2.4 Post-Processing

Two more processing steps are necessary before the white matter geometry can be
combined with the volume conductor FE model: model reduction and fibre smooth-
ing. The filtered tractogram still contained over 200,000 individual white matter
fibres that ranged from 3 to 150 mm. In order to optimise the computation time for a
preliminary analysis, the total number of fibres in the tractogram was reduced.
Figure 2 shows a white matter tractogram for 1000, 2000, 5000 and 10,000 fibres
ranging from 50 to 150 mm.While 1000 streamlines appeared too sparse for a proper
visual inspection of the activating function, 2000 and more fibres covered the whole-
brain volume in an adequate density. To limit the computational expense, a white
matter model of 2000 fibres was selected. The extracted streamlines did not follow a
smooth trajectory since the tractography algorithm allowed an abrupt change in
direction after every step (within the fibre curvature constraint). To reduce the risk of
potential errors and noise due to spatial discontinuity, the trajectory of every
streamline was smoothed and subsequently oversampled. A cubic spline was used
to fit the streamline data for all three dimensions separately passing through all
provided points on the streamline. Every streamline was oversampled by a factor of
10, increasing the number of points and reducing the step size from 0.75 mm to
0.075 mm. This was done using the univariate spline interpolation function provided
by the Python SciPy package (https://www.scipy.org/).

Table 1 Parameters for
probabilistic tractography

Step size 0.75 mm

Maximum curvature 15�

Seeding area Grey matter-white matter interface

Max. number of seeds 500,000,000

Number of streamlines
(raw tractogram)

500,000

Number of streamlines
(After filtering)

207,485

Length of streamlines 3–150 mm

Track termination Anatomical constraints
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2.3 Finite Element Analysis of ECT Brain Stimulation

To simulate the potential field introduced to the head by ECT, a volumetric FE
model of the head was generated from structural MRI data. This included image
segmentation, FE mesh generation, electrical property settings and finally running
simulations in a numerical solver. Two different ECT electrode placements were
simulated in this study, and three different electric conductivity settings were chosen
for the white matter compartment. The FE analysis of ECT brain stimulation was
based on Bai et al. [25].

2.3.1 Finite Element Model Reconstruction

The structural T1-weighted MRI data was used to reconstruct an FE head model.
After contrast and edge enhancements of the structural data, segmentation of the
scalp, skull, paranasal sinuses, cerebrospinal fluid, grey matter and white matter
were performed using 3D Slicer, an open-source software platform for medical
image processing (https://www.slicer.org/). Each tissue compartment was assigned
with a label map using a range derived from a histogram, representing the grey levels

Fig. 2 Tractography model
for different numbers of
streamlines
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of the desired tissue type. The selection of desired tissue was performed by setting
the threshold on a single slice, and then a paintbrush was used to manually modify
and correct the selection. This procedure was repeated at every second or third slice
of the image volume, and a full segmentation was created by using a trilinear
interpolation to automatically connect the sparse set of contours. A paintbrush was
then used again to further modify the tissue map until the desired accuracy was
achieved. As the face of the subject was removed from the images to keep the subject
identity anonymous, a smooth surface was used to replace the face of the head
model. For every tissue compartment, a surface triangular mesh was generated in 3D
Slicer. To increase the mesh quality and smoothness, the surface meshes of the head
model were imported into Geomagic Wrap (3D Systems, USA). Non-manifold
edges were removed, self-intersecting triangles were split, the edge crease was
reduced, spikes were smoothed, and existing holes were repaired. The processed
surface meshes were then transferred to ANSYS ICEM CFD (ANSYS, USA) to
create a volumetric mesh. Edges at the intersections between compartments and at
the desired electrode contact locations were defined, and a tetrahedral volumetric
mesh with appropriate meshing and coarsening parameters was generated. To
calculate the voltage data, the final volumetric mesh, with approximately half a
million tetrahedral elements, was exported to COMSOL Multiphysics (COMSOL
Inc., Sweden), a cross-platform FE solver.

2.3.2 Tissue Conductivities

To calculate the potential field induced by ECT, electrical properties need to be
assigned to the different tissue compartments of the volumetric head model. All parts
of the head model, apart from the white matter compartment, were considered
electrically homogeneous and isotropic. Conductivity values assigned to the scalp,
the skull, the paranasal sinuses, the CSF and grey matter are listed in Table 2. Three
different white matter conductivity settings, labelled with G, GW and anisotropic,
were simulated in order to compare its influence on the potential distribution and the
derived electric field and activating function:

• G: isotropic grey matter conductivity (0.31 S/m)

Table 2 Electrical conduc-
tivities of all tissue compart-
ments in the head model [25]

Structure Conductivity (S/m)

Scalp 0.41

Skull, compact bone 0.06

Skull, spongy bone 0.028

Paranasal sinuses 0

Cerebrospinal fluid 1.79

Grey matter 0.31

White matter (isotropic) 0.14

White matter (anisotropic) 0.065 (transverse to fibre)
0.65 (longitudinal to fibre)
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• GW: isotropic conductivity (0.14 S/m)
• Anisotropic: anisotropic conductivity based on conductivity tensor [26, 27]

2.3.3 White Matter Conductivity Anisotropy

The linear relationship between the electrical conductivity tensor and the water
diffusion tensor implies that both share the same eigenvectors [11, 12]. The water
diffusion tensor was extracted using the diffusion tensor fitting algorithm for DWI
data implemented in FSL DTIFIT (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT). The
conductivity tensor σC of a white matter finite element was modelled as

σC ¼ ENdiag σlongC , σtransC , σtransC

� �
ET
N ð2Þ

where EN is the orthogonal matrix of normalised eigenvectors of the diffusion
tensor. σlongC and σtransC are the eigenvalues parallel and perpendicular to the fibre
directions with σtransC � σlongC [27]. The eigenvalues of the conductivity tensor were
determined using a volume constraint proposed by Wolters et al. [26]. To ensure that
only white matter voxels with a high level of anisotropy were considered for the
calculation of the conductivity tensor, the fractional anisotropy (FA) derived from
the diffusion tensor was used. Regions with a low FA values (typically FA < 0.45),
which suggested a low local anisotropy, were removed from the tensor analysis.

2.3.4 ECT Brain Stimulation Settings

In the field of bioelectromagnetism, since the frequency of bioelectric events is low,
biological tissues are typically considered as volume conductors, in which the
capacitive and inductive components of the electrical impedance is neglected
[28]. Thus, all head compartments were formulated as passive volume conductors,
and the electric potential resulting from ECT was obtained by solving Laplace’s
equation

∇∙ �σC∇Vð Þ ¼ 0, ð3Þ

where V is the electric potential and σC is the electrical conductivity tensor. ECT
electrodes were defined as circular boundaries with a radius of 2.5 cm on the scalp. A
stimulus of 800 mA was delivered through the stimulating electrode. Two bipolar
ECT electrode placements were simulated as Fig shown in. 3:

• Bitemporal (A): both electrodes were placed 3 cm superior to the midpoint of a
line connecting the external ear canal with the lateral angle of the ipsilateral eye,
the stimulating electrode on the right and the return electrode on the left.

Computational Models of Brain Stimulation with Tractography Analysis 109

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT


• Right unilateral (B): the stimulating electrode was placed 3 cm superior to the
midpoint of a line connecting the right external ear canal with the lateral angle of
the right eye and the return electrode placed just right of the vertex of the head.

Furthermore, a constant current density Jn for the stimulating electrode was
defined as

Z
SE

JndS ¼ IS ð4Þ

where SE is the area of the electrode and IS is the applied stimulus current at a
constant DC level of 800 mA. All external boundaries were assigned as electric
insulators, and a continuous current density across all interior boundaries was
assumed.

2.4 Model Combination

Having both models set up, the FE volume conductor model, solved for the potential
distribution within the head for a given electrode placement, can be combined with
the white matter tractography model. For every white matter fibre conductivity
setting and ECT electrode position, voltage data along the fibres in the tractogram
was exported from the COMSOLmodels. For fibre coordinates not coinciding with a
FE mesh point, trilinear interpolation was used. To investigate neural activation, the
neural activating function

f A ¼ 1
raxcm

∂2V
∂x2

ð5Þ

was evaluated to link the activation to the second spatial derivative of the potential
along the fibre [29]. In Eq. (5), rax is the axonal resistance determined by the fibre
diameter and the axoplasmic resistivity, and cm is the capacity of the fibre. The

Fig. 3 Illustration of
bitemporal (a) and right
unilateral (b) electrode
placement for ECT. (Image
adapted from [24])
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activating function was in this chapter approximated by the second spatial derivative
of the electrical potential assuming that rax and cm were constant.

The electric field (EF) E = 2 ∇ V is the negative first spatial derivative of the
potential along the fibre. The first spatial derivative ∂V

∂x was approximated by central
difference:

V 0
k ¼ �Ek � Vkþ1 � Vk�1

rkþ1,kj j þ rk,k�1j j ð6Þ

where k represents the kth node on an individual fibre, V 0
k is the first spatial derivative

of V at the kth node and |rk + 1, k| and jrk, k � 1j are the distances between the (k + 1)th
and kth nodes as well as between the kth and (k � 1)th nodes, respectively. The
second spatial derivative along the fibre ∂2V

∂x2 was approximated by the central
difference method on the electric field such that

V 00
k �

Vkþ1�Vk

jrkþ1,k j � Vk�Vk�1
jrk,k�1j

jrkþ1,k�1j
2

ð7Þ

3 Results

3.1 White Matter Fibre Tractography Model

The final neural fibre model – as shown in Fig. 4 – consisted of 2000 individual
fibres with the length between 50 and 150 mm. The spatial sampling of each fibre
was 0.075 mm and every fibre respected the anatomical boundary condition of
starting and ending within the grey matter. Fibres were manually categorised to
commissural fibres (red, connecting both hemispheres), projection fibres (blue,
connecting the brain to the spinal cord) and association fibres (green, interconnecting
brain areas within the same hemisphere). The fibre of the pons, connecting both
hemispheres of the cerebellum (red), marked only a small fraction of fibres. The
model contained 58% association fibres, 24% commissural fibres (including fibres of
the pons) and 18% projection fibres.

3.2 Electric Field and Activating Function for Three White
Matter Conductivity Settings

The potential distribution as well as the approximation of the electric field and the
activating function along the fibres for a bitemporal and a right unilateral electrode
placement is presented in Fig. 5. The comparison of three different conductivity
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settings for white matter shows that the incorporation of white matter anisotropy
resulted in a wider range and a greater non-uniformity of the potential distribution.
The non-uniform potential distribution also led to higher amplitudes and a more
distinctive distribution of the first and second spatial derivatives when compared to
the two isotropic conductivity settings. In addition, the influence on deep brain
structures was most pronounced in the models with anisotropic white matter
conductivity.

3.3 White Matter Activation

Figure 6 shows the electric potential as well as the first and second spatial derivatives
of the potential along the fibre for a single commissural fibre in the anisotropic
bitemporal ECT model. High-potential values appeared on the left side of the fibre,
i.e. the left hemisphere. The fibre started with a steep descent from the right
hemisphere towards the corpus callosum where it ran nearly parallel before it took
a turn up and down. The symmetric electrode placement resulted in a strong potential
gradient from the right hemisphere to the left. Given the trajectory of the fibre, two
peaks appeared in the first spatial derivative resulting in a high second spatial
derivative at the beginning and the end of the fibre. While crossing the corpus

Fig. 4 Final neural fibre
model containing 2000
fibres with a length of
between 50 and 150 mm.
Red fibres are commissural
fibres, interconnecting the
left and right hemispheres;
blue fibres are projection
fibres, projecting down to
the spinal cord; green are
association fibres that
connect brain areas within
the same hemisphere
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callosum, the electric field was nearly constant and thus causing the approximation
of the activating function to be close to zero. Figure 7 shows four views of the second
spatial derivative for both ECT models with anisotropic white matter conductivity.
For a bitemporal electrode placement, association fibres running through the frontal,
temporal and parietal lobes of both hemispheres exhibited a higher probability of
activation. For right unilateral electrode placement, activation was more likely to
initiate from the right hemisphere, among the splenium of corpus callosum and the
association fibres that travelled between the posterior part of the frontal lobe and the
parietal and temporal lobes.

4 Discussion

This chapter presented a study that utilised, for the first time, a white matter
tractography analysis in an FE model of ECT, which can be applied to models of
other types of brain stimulation. In reality, the brain is made up of a tight package of
neuronal somas in the grey matter and their extensions — axons — in the white
matter connecting to other neurons. According to the theory of external stimulation
of neurons [29], neuronal excitation of a homogenous axon can be indicated by the
second spatial derivative of the potential V, i.e. the negative derivative of electric
field along the axon. The assumption of a homogenous axon is only valid in white
matter. In the grey matter, where cell somas are located, changes in the diameter of
the axons to the soma violate this condition, and the precise electroanatomy of the

Fig. 6 Electric potential (top left), first spatial derivative (middle left) and second spatial derivative
of potential (bottom left) along a single streamline reaching from the right hemisphere to the left
hemisphere in the anisotropic bitemporal ECT model. The trajectory of the fibre is indicted in red in
the fibre plot (right)
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neuron, together with the variation of the extracellular potential V, has to be
evaluated. We have therefore combined a tractography analysis with a volume
conductor model and derived brain locations in the white matter, where axons are
most likely activated by ECT. It should nevertheless be noted that a more accurate
analysis of the activation pattern can only be performed by the inclusion of neuronal
cable models. Moreover, the addition of cable models can also be used to simulate
the propagation of activation, such as seizure. However, as neurons in varied
functional areas of the brain have been found to possess different geometrical and
ionic channel properties, the incorporation of cable models across the whole brain
may be a challenging and computational expensive task.

To avoid large numerical errors when the second derivative of V along the path of
the axon was calculated, it was necessary to smooth the path of the axon and
interpolate potential data carefully onto the fibre trajectory. The purpose of the
tractography was to study the distribution of electric signals along the fibres on a
large scale. Therefore, it is important to have a correct representation of all types of
white matter fibres within the brain. For this preliminary study, however, after a
downsampling process to select long fibres, the full variety of neural pathways was
not well presented, particularly the short projection fibres. In spite of this, a close
inspection of the filtered tractogram revealed a good representation of major fibres
connecting the two hemispheres, as well as the cerebrum to the brainstem and the
cerebellum. Furthermore, it was confirmed that the fibres did not cross liquid-filled
areas and that each fibre started and ended within the grey matter.

Fig. 7 Three projections of the second spatial derivative along the fibres for bitemporal (top) and
right unilateral (bottom) ECT head models with anisotropic white matter conductivity
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Personalization of Multi-electrode Setups
in tCS/tES: Methods and Advantages

R. Salvador, M. C. Biagi, O. Puonti, M. Splittgerber, V. Moliadze,
M. Siniatchkin, A. Thielscher, and G. Ruffini

1 Introduction

Transcranial current stimulation (tCS), including transcranial direct current stimula-
tion (tDCS), transcranial alternating current stimulation (tACS), and transcranial
random noise stimulation (tRNS), is a family of noninvasive neuromodulatory
techniques that employ weak (1–4 mA) electrical currents applied via electrodes
placed on the scalp for long durations (20–40 min) [1, 2]. Concurrent effects of
stimulation range from changes in cortical excitability [3] to modulation of ongoing
endogenous oscillations [4]. Hebbian-based mechanisms are hypothesized to lead to
long-lasting plastic changes in the brain [5], leading to an increasing interest in
putative therapeutic applications in a range of neurological diseases [6]. One factor
that limits the usefulness of tCS is the widely reported intersubject variability of
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responses to stimulation [7]. Several factors can explain variability, but here we will
focus on the physical agent of the effects that tCS has on neurons: the electric field
(E-field) induced in the tissues.

1.1 Biophysical Aspects of tCS

The distribution of currents in the head can be described mathematically by the
electric field (E-field) vector induced by tCS. Depending on the orientation of the
latter with respect to neuronal processes, the membrane of pyramidal neurons is
polarized (approximately 0.2 mV per 1 V/m of E-field value, [8]), which leads to the
observed concurrent effects of stimulation. One common hypothesized mechanism
is the polarization of the soma of pyramidal cells due to the component of the E-field
perpendicular to the cortical surface (En), [9]. However, other mechanisms of
interaction are possible, such as the polarization of axon terminals [10].

The E-field distribution depends on factors such as head geometry (thickness and
shape of the head tissues), electrical properties of the tissues (electrical conductivity,
σ), location and geometry of the electrodes, and the currents that are applied via the
electrodes [11]. Since in vivo measurements of the E-field still pose a number of
technical challenges [12, 13] and cannot easily be carried out, computational head
models based on structural data (usually head MRIs) are usually employed to
estimate it [14, 15].

Initial uses of computational head models were limited to a posteriori analysis of
the E-field distribution of electrode montages typically applied in experimental
protocols [15, 16]. In recent years, several algorithms have been described to
leverage these head models with the objective of optimizing some dose parameters
(position and currents of the stimulating electrodes) to target a specific brain region
and/or cortical network [9, 17–20].

This paradigm shift from “one-model-fits-all” montages to individualized mon-
tages leveraging subject-specific head models and dose optimization algorithms has
the potential to reduce intersubject variability in the outcomes of tCS and allow for
more effective and safe protocols. However, several parameters can affect the
outcome of these modeling and optimization pipelines. In this work, we will study
how uncertainties in target specification, tissue electrical conductivities, and the
threshold for neuromodulatory effects can affect the outcome of the optimization.
We will also discuss some of the potential benefits of these pipelines, especially in
relation to reduction of intersubject variability of the results of optimization.
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2 Methods

2.1 Subjects

We included seven healthy children and adolescents (three males) aged 10–17 years
(M 14; SD 2). The study was approved by the Ethics Committee of the Faculty of
Medicine, Kiel University, Kiel Germany.1 All participants and their parents were
instructed about the study, and written informed consent according to the Declara-
tion of Helsinki on biomedical research involving human subjects was obtained. The
study is part of the STIPED project.2

2.2 Head Model Generation

Each subject underwent structural head scanning on a 3 T Philips Achieva scanner,
during which the following sequences were acquired: a T1-weighted scan (1 mm3,
TR ¼ 2530 ms, TE ¼ 3.5 ms, TI ¼ 1100 ms, FA ¼ 7�, fast water excitation), a
T2-weighted scan (1 mm3, TR ¼ 3200 ms, TE ¼ 300 ms, no fat suppression), and a
diffusion MRI (dMRI) scan (2 mm3, TR ¼ 6300 ms, TE ¼ 51 ms, 67 directions,
b ¼ 1000).

Tissue segmentation was performed using an in-house implementation combin-
ing extra-cerebral tissue segmentations from a new segmentation approach, which
will be included in a future version of the open-source simulation toolbox
SimNIBS,3 with brain tissue segmentations and cortical gray matter (GM) surface
reconstructions from FreeSurfer [21]. Finite element head models were then gener-
ated (see Fig. 1), including representations of the scalp, skull, cerebrospinal fluid
(CSF), gray matter, and white matter (WM). The head models also contained
representations of Pistim electrodes (1 cm radius, cylindrical Ag/AgCl electrodes4)
placed in 61 positions of the 10-10 EEG system. For the electrodes, only the
conductive gel underneath the metal connector was represented in the head model.
Unless otherwise stated, the scalp, skull, and CSF were modeled as isotropic with
conductivities of 0.33 S/m, 0.008 S/m, and 1.79 S/m, respectively, which are
appropriate values for the DC-low frequency values used in tCS [15]. The GM
and WM were modeled as anisotropic (volume normalization, [22], with isotropic
conductivity values used for diffusion tensor scaling of 0.40 S/m–0.15 S/m, for the
GM – WM, [15]). E-field calculations were performed in COMSOL5 using second-
order tetrahedral mesh elements to solve Laplace’s equation [11].

1http://apps.who.int/trialsearch/Trial2.aspx?TrialID¼DRKS00008207
2http://www.stiped.eu/home/
3https://simnibs.github.io/simnibs/build/html/index.html
4www.neuroelectrics.com
5v5.3, www.comsol.com
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2.3 Montage Optimization Algorithm

The optimization algorithm used in this study is based on the Stimweaver algorithm
[9]. We assumed the normal component of the E-field to the cortical (GM-CSF)
surface En as responsible for the acute effects of stimulation. Positive/negative
En-values, corresponding to E-fields directed into/out-of-the cortical surface, lead
to increased/decreased excitability of the soma of pyramidal cells. Inputs to this
algorithm include target En-maps, with information about the target En-field
(En

Target) in each node of the cortical surface; weight maps, with information
about the priority (weight, w) assigned to each node in the optimization; current
constraints of the montage (maximum current, in absolute value, per channel
Imax channel ¼ maxi{| Ii| } and maximum total injected current I max total ¼
1
2

PNChannels
i¼1 j Ii j ); and the maximum number of electrodes in the montage. The

objective function in the optimization is the error with respect to no intervention
(ERNI, with units of mV2/mm2):

ERNI ¼
XN

i¼1

wi
PNchannels�1

j¼1 E j�Cz
n,i I j � wiE

Target
n,i

� �2
� wiE

Target
n,i

� �2

PN
j¼1w

2
j

where N is the number of mesh nodes, Nchannels is the number of electrodes available
for the optimization, E j�Cz

n,i is a column vector (lead-field vector) with the normal

Fig. 1 Finite element head
model generated for one of
the subjects in this study.
The model includes
representations of the scalp
(in yellow), skull (in gray),
CSF (in blue), GM (in gray),
and WM (in white), as well
as gel underneath the
electrodes (in green). Air
cavities are represented as
cavities in the mesh, thus
effectively modeling the air
as an insulator
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component of the E-field induced by a bipolar montage that has j as the anode
(+1 mA) and Cz as the cathode (�1 mA), and Ij is the current (in mA) of electrode
j in the montage that is being evaluated. The term

PNChannels�1
j¼1 En,i

j�CzI j yields the
normal component of the E-field in the montage being evaluated (for each node i), as
follows from the linearity principle [9]. The lead-field terms E j�Cz

n,i are calculated on
a subject-specific basis using the methods detailed in the previous section. The
optimization without the constraint on the number of active electrodes was
performed by in-house scripts programmed in Python using the SciPy library.6 In
order to constrain the number of electrodes of the final montage, a genetic algorithm
(GA) was implemented following the methods described in [9].

2.4 Studies Performed

In this work, we performed several studies to clarify the impact of several inputs and
parameters to the optimization algorithm in the results. The first study (study a) aims
at determining the impact of target size on the optimization results. This is related to
the perceived mechanisms of stimulation underlying the effects of tCS, with some
studies focusing on highly localized targets, obtained, for instance, from EEG source
localization information [17, 20], where other studies focus on more widespread
cortical areas with information extracted from cytoarchitectural information [23] or
functional imaging data [24]. Optimization algorithms can tackle both of these cases,
but it is unclear how current constraints influence the capability of achieving the
desired target En-field with increasing target area size.

Another important parameter that affects the E-field distribution, and therefore the
results of the optimization, is the electrical conductivity of the head tissues. Mea-
suring these values in vivo still presents several limitations, and data available in the
literature has a wide variability, representing different measuring methods and origin
of the tissue samples [25]. Furthermore, some reports indicate that this value might
change according to the subject’s age, at least for the skull [26]. In study b, we
partially tackled this problem by assessing the influence that different conductivity
values for the skull tissue have on the optimization results.

In study c, we investigated some of the potential benefits of optimization algo-
rithms on experimental design, namely, less variability on En-field distribution.

More details about how each study was performed are presented in the next
section. In the studies where surface average En values are presented, they were
calculated with the following expression:

6https://www.scipy.org/scipylib/
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< En >¼
R
Area PatchEndA

APatch
¼

PNPatch

i¼1
En,iAi

PNPatch

i¼1
Ai

where Ai is the area associated with each node of the mesh (the sum of the areas of all
the triangles connected to the node divided by 3) and Npatch is the number of nodes in
the surface patch where the average is being calculated.

3 Results

3.1 Study A: Effect of Target Size

In this study, we investigated how target size and current constraints affect the actual
<En> achievable on a target given the current constraints. The target was located on
the left precentral gyrus, and its size varied from 9 mm2 (a tiny spot on the gyrus
crown) to ~275 mm2 (about the entire left frontal lobe). The different areas were first
identified on the cortical surface of a template brain model (Colin277), starting from
the smallest one and progressively enlarging it up to the maximum size considered.
Each area was then remapped separately onto the cortical surface of one of the
participants of this study, and single target maps were created: the target area was
assigned to excitation, with two values of En

Target (0.25 V/m and 0.50 V/m), and
maximum weight wstim ¼ 10; the rest of the cortex was assigned no stimulation
(En

Target ¼ 0 V/m) with weight wno-stim varying for each area, in such a way that both
conditions have the same relative importance to the ERNI calculation: (wno-stim/
wstim)

2 ¼ Areastim/Areano-stim.
Figure 2 shows <En> on the target as a function of target size. The En distribution

results from optimized montages with an unconstrained number of electrodes,
obtained for different combinations of En

Target, maximum current per electrode,
and total injected current (Imax channel, Imax total) including values exceeding the
usual safety limit of 4.0 mA.

For all current constraints and both En
Target values, we observe an overall

logarithmic decrease of the <En> with the target size. This decrease is more rapid
for the higher En

Target, and it follows a non-monotonic trend that can be correlated to
the cortical curvature of the target area and to the distance between the target area
and electrodes. In fact, the significant drop at 108 mm2 w.r.t. the previous size is
likely due to the fact that the ROI is now large enough to comprehend both faces of a
sulcus, which have surface normals – and consequently normal electric field –

pointing in opposite directions: once averaged over the whole ROI, this results in

7https://www.bic.mni.mcgill.ca/ServicesAtlases/Colin27
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a decrease of <En>. With the next area increase, the ROI extends out of the sulcus,
over the two adjacent gyri, and approaches the normal projection of the center of the
two closest electrodes, which is reflected in the slow increase of <En>, reaching a
local peak at 656 mm2. Further area increases, in the second half of the plot, repeat
this pattern, ultimately created by the compounding effect of the gyrification of the
target area and the distance from the covering electrodes.

Concerning the current constraints, in Fig. 3, we look separately at the influence
of the Imax total (3a) and of the Imax channel (3b). The shaded area in blue in Fig. 3a
represents the value of the maximum <En> achievable in each target, for both
En

Target, normalized with respect to En
Target. This maximum <En> is obtained with

a montage optimization with unrestricted maximum individual and total injected
current and is the same for both values of En

Target. As we observe, it also decays
logarithmically with the target area, from 95% En

Target for the smallest target to 15%
En

Target for the largest. In this case the decay is to attribute utterly to the effect of
head anatomy and electrode positions. The figure also shows the <En> obtained with
different current constraints, normalized with respect to the maximum <En> achiev-
able, for both En

Target.
We observe that, for En

Target ¼ 0.50 V/m, only with a Imax total ¼ 8.0 mA it is
possible to induce in all areas a <En> at least over 80% of the maximum <En>
achievable. On the other hand, a total injected current Imax total of 1.0 mA does not
reach even the half of the maximum achievable <En>, in any target, including the
smallest. Moreover, we observe that, as a result of the linearity of Imax total and
En

Target, for the less stringent condition of En
Target ¼ 0.25 V/m, the exact same

relative <En> on each target area can be achieved with half of the total current.

Fig. 2 Average normal component of the E-field on target (red area on the GM surfaces), as a
function of the target area (in log scale), for different values of the target normal E-field
(En

Target ¼ 0.25 V/m dashed lines, En
Target ¼ 0.50 V/m continuous lines) and combinations of

the individual and total current constraints (yellow, Imax total¼ 2 mA; pink and red, Imax total¼ 2 mA;
gray and black, I

max total
¼ 4 mA; green, Imax total ¼ 8 mA). The pictures also show the available

positions of the electrodes on the scalp
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Consequently, Imax total¼ 4.0 mA in this case is sufficient to reach at least 80% of the
maximum achievable <En>. In Fig. 3b, we focus on the current constraints consid-
ered in studies b and c. This plot indicates that Imax channel modulates the <En> only
up to a given target size (which is smaller for the less demanding condition:
En

Target ¼ 0.25 V/m). After this threshold area, the only factor influencing <En>
becomes Imax total.

Fig. 3 Effect of the total injected (a) and individual (b) current constraints on <En> on target areas
of different sizes, for different target En-fields. (a) The bars show the relative <En> w.r.t. the <En>
calculated with unconstrained current, per each target area and En

Target; the area shows the relative
unconstrained <En> w.r.t. En

Target (same for both values of En
Target). (b) The shaded areas represent

the <En> obtained with Imax channel within 1 mA and Imax total, for En
Target ¼ 0.50 V/m and Imax

total ¼ 4 mA (solid gray), En
Target ¼ 0.50 V/m and Imax total ¼ 2 mA (solid red), En

Target ¼ 0.25 V/m
and Imax total ¼ 4 mA (dashed gray), En

Target ¼ 0.25 V/m and Imax total ¼ 4 mA (dashed red). The
lines represent solutions with Imax channel ¼ Imax total /2, for En

Target ¼ 0.50 V/m (solid lines) and
En

Target ¼ 0.25 V/m (dashed lines)
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3.2 Study B: Tissue Conductivity Values

In this study, we assessed how skull conductivity (σskull) values affected the optimi-
zation results. We tried three different conductivity values: 0.008 S/m (our standard
conductivity value which corresponds to a ratio of scalp-to-skull conductivity of 41),
0.011 S/m (scalp-to-skull conductivity ratio of 30), and 0.041 S/m (ratio of 8). These
values cover a wide range of values reported in the literature [26]. For one of the
subjects in this study, we calculated the lead-field matrix and performed optimiza-
tions with a common target: the left dorsolateral prefrontal cortex (lDLPFC) as
identified by Brodmann area 46 [27]. The cortical surface nodes in this area were
set to a target En-value of either 0.25 V/m or 0.50 V/m with weight 10. The
remaining nodes were set to a target En-value of 0 V/m with a weight of 2. Current
constraints were set to (Imax channel, Imax total) ¼ (2.0, 4.0) mA and (Imax channel, Imax
total) ¼ (1.0, 2.0) mA.

Figure 4a displays <En> on the lDLPFC as a function of σskull for the different
current and target En constraints. Average En values increase nonlinearly with σskull
for every set of constraints except for the less stringent one: target En of 0.25 V/m
with (Imax channel, Imax total) ¼ (2.0, 4.0) mA. Figure 4b displays the variation of the
total injected current (Itotal) in each montage with σskull. Itotal tends to decrease
nonlinearly with increasing σskull, except for the most stringent constraint: target
En of 0.50 V/m with (Imax channel, Imax total) ¼ (1.0, 2.0) mA. In this case, Itotal stays
almost constant at the highest value allowed (2.0 mA).

Figure 5 provides the distribution of En in the cortical surface for all the optimi-
zations performed in this study. For all optimizations and for the highest σskull, the
position of the electrodes in the optimized montage is very similar across the
different sets of constraints, with only the current values being different. For lower
σskull values, and especially in the more stringent optimization constraints, the
montages also differ in the electrode positions, often employing bigger separations
between the anodes and cathodes.

We also evaluated the change in average En value that would occur when the
optimized montages were evaluated in a model with a different σskull than the one
used to derive the montage (σskull

Eval 6¼ σskull
Optim). This led to changes in average En

values ranging from �45% to 137% of the values obtained when
σskull

Eval ¼ σskull
Optim. The average En values decreased when σskull

Eval < σskull
Optim

and they increased otherwise.

3.3 Study C: Intersubject Variability

In study c, we investigated the advantages that montage optimization brings in terms
of intersubject variability of the E-field distribution. To do this, we performed
subject-specific optimizations for six of the subjects in this study. For each subject,
the optimization parameters were the same as the ones employed in study b. Each
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optimization was then evaluated not only on the subject’s head model from which it
was derived but also in all the remaining head models. For each evaluation, we
calculated the average <En> value on the lDLPFC. To test the homoscedasticity of
the different distributions, we used Levene’s test. To compare the means of the
different groups, we used Welch’s t-test.

As shown in Fig. 6, the variance of <En> across subjects was significantly lower
when using a personalized montage as opposed to a non-personalized montage
(Levene’s test, p-value<0.05), except in the most stringent optimization (lowest
current constraints with the highest En

Target, Levene’s test p-value ¼ 0.73). As is
also shown in the figure, no statistically significant difference was found between
personalized and non-personalized montages when it comes to the group average of
<En> value across subjects (Welch’s t-test p-value>0.651), when the target En is

Fig. 4 Average value of En (in V/m) in the lDLPFC (a) and total injected current (Imax total in mA,
b) of the optimized montage as a function of skull conductivity (in S/m). The optimizations were
obtained for four different constraints
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maintained constant. Increasing the target En leads to a statistically significant higher
<En>, regardless of the current constraints (Welch’s t-test p-value<7.6 � 10�4).

4 Discussion

4.1 Interplay of Target Size, Cortical Geometry,
and Optimization Constraints

When analyzing the influence of target size and optimization constraints, we found
an expected decrease of <En> with the target area. As mentioned before, the
non-monotonous nature of the decrease could be attributed to the interplay of
different parameters: cortical geometry, positions of the electrodes available for
the optimization, and optimization parameters (current constraints and target En-
field). For small targets that do not encompass multiple sulci and/or gyrus, it was
possible to achieve even the highest average <En> value (0.5 V/m) provided enough
(total injected) current was set as a limit. Limiting the currents to the safety values
used in most studies [28], (Imax channel, Imax total) ¼ (2.0, 4.0 mA), even <En> values
of 0.25 V/m cannot be achieved. This depends of course on target position and
electrode array. For instance, at the bottom of the sulci under some of the electrode
positions available, local maxima have been shown to be created due to the funneling
effect of the CSF layer [15]. In these regions, higher <En> values might be

Fig. 5 Distribution of the normal component of the E-field in the cortical surface induced by
different montages optimized to increase the excitability of the lDLPFC (shown as an inset in a) as a
function of skull conductivity. The current constraints (Imax channel, Imax total) in each optimization as
well as the target En-field (En

Target) are shown next to each group of images (a, b, c, and d). The
order of the conductivities of the skull within each group of images is the same (see a). The
montages were limited to eight channels. The color scale is common to all plots
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achievable there with the same current constraints. For these small targets, we also
found that the constraint on Imax channel can limit the achievable <En>, with higher
values being possible when Imax channel is set to the same value as Imax total. For larger
targets, the maximum achievable <En> decreases, firstly due to the folded nature of
the cortical surface and the electrode distribution (as shown by the rapid decay of
<En> even with unconstrained currents) and then to the current limitations. In
particular, Imax total is the main limiting factor to <En>, with the constraint on Imax
channel not mattering as much. This is expected, as larger targets require the distri-
bution of the current on more electrodes to cover the whole area and achieve the
same En.

Although the effects of having a more dense electrode array available for the
optimization were not tested in this study, it is likely that they would be more

Fig. 6 Effect of current constraints and target En value on <En> calculated on the lDLPFC for
personalized (blue) and non-personalized (pink) optimized montages. The top plots (a) show the
results for the (Imax channel, Imax total) ¼ (1.0, 2.0) mA current constraints, whereas the bottom plots
(b) show the results for the (Imax channel, Imax total) ¼ (2.0, 4.0) mA constraints. Welch’s t-tests were
performed for comparisons between the means of the different groups. Levene’s tests were
performed to test for homoscedasticity between groups with the same constraints
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beneficial for smaller targets (see also [19]), allowing for higher <En> to be achieved
for the same current constraints.

4.2 Influence of Skull Conductivity

The influence of the conductivity of the skull and other tissues on the E-field
distribution in tCS is a well-established fact [29, 30]. Provided enough current was
available to the optimization algorithm, all models reached a similar <En> value on
target. For more stringent constraints (lower currents and/or higher target En-fields),
it might not be possible to maintain a similar <En> across models (this will again
depend on target size). For the latter optimizations, we found that the selected
montage employs higher currents and a bigger separation between anodes and
cathodes to increase <En>.

In a more realistic scenario, however, the discrepancy between the subject’s skull
conductivity and the one employed in the model is the main concern. As our results
indicate, this can lead to very big discrepancies between the planned and effective
<En>. These results stress the need for assessing subject-specific tissue conductivity
values and use them together with subject-specific computational head models.

4.3 Montage Optimization and Intersubject Variability

Consistent with previously published studies [16], we found a large variability when
calculating <En> induced in six head models by non-personalized montages
(on average the standard deviation was 21% of the mean value across all cases).
Employing personalized montages significantly reduced the variation (standard
deviation of 8% of the mean) in all cases except in the more stringent optimization
(top-right boxes in Fig. 6). In that case ((Imax channel, Imax total) ¼ (1.0, 2.0) mA and
En

Target of 0.50 V/m), personalization of montages did not reduce variability or result
in an increase in average <En> at the target. We interpret this as basically showing
that the posed optimization problem is very hard to achieve and hence of variable
results even with personalization. Increasing the target En

Target to 0.50 V/m does
result in a significant increase in <En> for both current constraints. Ultimately, this
may prove to be more important than decreasing the variability of the results.
Heterogeneity in <En> across subjects can always be used as a regressor when
analyzing the results of the study (see [31]).
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4.4 Study Limitations

As all studies involving computational head models, there are a number of limita-
tions in this study related to the simplifications employed by the models. The biggest
simplification is the adoption of a homogeneous compartment for the skull tissue,
ignoring the spongy bone region [32]. Although this would certainly influence the
<En> values reported here, as well as affect the effects of the different current
constraints, it is unlikely that the overall qualitative conclusions of the different
studies would be influenced.

Another limitation is related to the fact that we focused exclusively on the normal
component of the E-field for optimization. The optimization method employed in
this study can easily be used with other E-field components, but the optimized
montages would employ electrode positions very different from the ones reported
here. Again, this is unlikely to affect the overall conclusions of this study, and its
general recommendations can be extended when other components of the E-field are
of interest.

Regarding the targets, we only considered connected single target regions, despite
the fact that interest has arisen lately regarding applications involving multiple
distributed targets (as the ones arising from cortical networks, [5, 24]). Again, the
stimulation protocol can be readily adapted to these types of targets (with the weights
reflecting the statistical significance of the correlation). The conclusions about the
influence of current constraints in these types of optimizations are likely to be similar
to the ones reported here for the larger areas, but further studies are required.

Finally, we should mention the small number of subjects employed in this study,
which limits the generalizability of its results, especially in study c. Future studies
are underway which will investigate these findings in a larger population.

4.5 Consequences for Protocol Design

The results presented here clearly demonstrate the advantages of employing opti-
mized montages for determining dose parameters in a tCS protocol. They have the
potential of reducing variability in the E-field distribution across subjects in a study
by taking into effect idiosyncratic subject properties, such as individual head anat-
omy, electrical properties, and even target location. Of course, these improvements
require availability of appropriate data, such as MRI scans with parameters opti-
mized for tissue segmentation [33], protocols for noninvasive determination of tissue
electrical conductivities in a fast and reliable way [34, 35], as well as a combination
of functional and structural data to determine the target for optimization. Regarding
target size and location, this should guide the determination of the electrical current
constraints of the study, as is clearly illustrated by the previous results.

Another important limitation of the usefulness of montage optimization is the
lack of information about the mechanisms of tCS. However, several studies have
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been published illustrating the interaction of the E-field with neurons [10] and the
network amplification effects that can be responsible for the ultimate long-term
effects of the intervention [4]. The next step in developing montage optimization
protocols would be to combine information about biophysical aspects of current
propagation and electrophysiological aspects of E-field – neuron interaction and
neuron-neuron communication [5, 36, 37].
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Part III
Non-invasive Neurostimulation – Spinal
Cord and Peripheral Nervous System



Modelling Studies of Non-invasive Electric
and Magnetic Stimulation
of the Spinal Cord

Sofia Rita Fernandes, Ricardo Salvador, Mamede de Carvalho,
and Pedro Cavaleiro Miranda

1 Relevance of Modelling Studies in Non-invasive Spinal
Stimulation

The spinal cord (SC) is a complex set of neural pathways and nuclei where essential
reflex responses are generated and where transmission of sensory information and
motor instructions takes place between peripheral organs and brain centres. Spinal
dysfunctions due to various conditions, such as spinal cord injury (SCI),
amyotrophic lateral sclerosis (ALS) and stroke, lead to a decrease in motor perfor-
mance and sensory perception, causing spasticity, pain and muscular weakness
[1]. Electric currents have been applied in the spinal cord for the treatment of chronic
pain, resulting, in particular, from spinal cord lesion due to trauma or inflammatory
diseases. However, the procedure usually involves surgical introduction of elec-
trodes in the epidural space, which is frequently associated with higher risk of
infections and medical costs for the patient [2]. Non-invasive electric and magnetic
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spinal stimulation can modulate spinal pathway responses in a similar fashion to
cortical stimulation techniques, such as transcranial direct current stimulation
(tDCS) and transcranial magnetic stimulation (TMS) [3, 4]. Since 2008, exploratory
clinical studies in humans using transcutaneous spinal direct current stimulation
(tsDCS) have shown evidence of neuromodulation of spinal nociceptive and motor
circuitry responses (e.g. [5, 6]). Repetitive spinal magnetic stimulation (repetitive
tsMS or r-tsMS) has also been applied in the lumbar region of SCI patients with
observed effects in motor spinal function [7, 8].

Computational modelling studies are a powerful tool to understand the biophysics
underlying cortical and spinal stimulation and predict possible clinical outcomes.
The effects of central nervous system electromagnetic stimulation rely mainly on the
electric field (EF) induced in the nervous tissue. These EFs may contribute to inhibit
or facilitate neuronal responses and are shaped by the stimulation delivery charac-
teristics. In tDCS and tsDCS, the spatial distribution is influenced by electrode
number, location, design (shape and structure), current intensity and polarity
(anodal/cathodal); the same applies for coil position, shape, orientation and stimulus
parameters in TMS and tsMS [9, 10]. Predictions of the EF and current distribution
using realistic human models help to optimize stimulation protocols to address
neural targets related with specific clinical dysfunctions [11–17]. The accuracy of
these predictions will depend on factors such as the type of volume elements
(hexahedral or tetrahedral), the accuracy of the representation of tissue geometry
and stimulation source geometry (electrodes, coils) and the accuracy of tissue
biophysical properties considered.

Computational studies on the EF spatial distribution during tsDCS are scarce.
These studies employ realistic human models, based on high-resolution magnetic
resonance imaging (MRI) of healthy volunteers of different ages, and tested different
electrode montages in the thoracic and lumbar SC [18–20]. These models assumed
mainly simple electrode geometry and isotropic tissues and were mostly based on
hexahedral meshes, which do not involve complex tissue interface processing, with a
trade-off between computational facility and lack of boundary accuracy. Over the
last 5 years, we have developed a tetrahedral-based human trunk model and studied
the current density and EF distribution in the spinal cord for tsDCS and tsMS. We
have also introduced anisotropic properties for the spinal white matter and muscle
tissues [21, 22]. This chapter provides a description of the model design steps and
simulation methodology. A summary of the main EF characteristics predicted for
tsDCS and tsMS is presented, with a final discussion on the relevance of modelling
findings for tsDCS clinical application.

2 Creating a Realistic Human Volume Conductor Model

Similarly to cortical modelling studies, an accurate human realistic body model for
spinal stimulation studies requires high-resolution magnetic resonance imaging
(MRI) to obtain a correct segmentation of the inner structures of the spinal cord
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and its surrounding tissues. Resolution should be better than 1 � 1 � 1 mm3 in each
direction to allow distinction between the spinal white matter (spinal-WM) and the
spinal grey matter (spinal-GM), since average transverse diameters are only
6–13 mm [23]. Segmentation results in distinct tissue masks that are to be
transformed and processed into triangulated surface meshes. All surface meshes
have to be assembled into a full model with identification of each tissue boundary
through a process named non-manifold assembly, which generates different shells
for each tissue and its interfaces. After this operation, each shell can be transformed
into a domain filled with tetrahedral volume elements in a process designated by
volume mesh creation. Hexahedral meshes are faster to generate than tetrahedral
meshes, because these are based directly on the original pixels that comprise each
tissue mask. However, these types of meshes may introduce errors in predicted
values of current and electric field (EF) at the interfaces between tissues, as was
observed in tDCS [24]. Thus, models based on tetrahedral meshes provide a better
insight of the stimulation effects on the interfaces between tissues, especially in the
spinal CSF/WM and WM/GM interfaces. The basic steps for obtaining a realistic
human model based on tetrahedral meshes are summarized in Fig. 1.

Acquisition of a full-body MRI for realistic human spinal modelling is a difficult
and time-consuming process. However, there are full-body models available in the
web that provide tissue masks ready for the generation of surface and volume
meshes, such as the Virtual Population (ViP) Family [25]. ViP is a set of detailed
high-resolution anatomical models created from MRI data of human healthy volun-
teers. These consist of simplified CAD files optimized for modelling using the finite
element method (FEM) [25]. These models were used in the aforementioned model-
ling studies based on hexahedral meshes.

The tetrahedral model used in the studies described ahead was designed based on
selected tissue masks from the ViP model Duke, corresponding to a 34-year-old
male. The tissue masks considered were the ones proximal to the SC and the
stimulation sources. Fourteen tissues were selected: skin, fat (including subcutane-
ous adipose tissue, SAT), muscle, bone, heart, lungs, viscera (composed by stomach,
liver, pancreas, small intestine, large intestine), vertebrae, intervertebral disks, dura
mater, cerebrospinal fluid (CSF), cerebellum, brainstem and SC [21, 22]. A spinal-
GM tissue was designed and added to the model, considering general knowledge on
SC anatomy [26] and relative measurements of GM width and shape at each SC
segment using the Visible Human Data Set (VHD) of the National Library of
Medicine (NLM) and the Visible Human Project® (www.nlm.nih.gov/research/
visible/visible_human.html). The selected masks were converted into surface
meshes using the Mimics software (v16) and are represented in Fig. 2. Surface
mesh optimization procedures were performed with the 3-matic module to obtain a

Fig. 1 Essential steps in the design of a human realistic model
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non-manifold assembly of all tissues suitable for successful tetrahedral volume mesh
creation, considering a minimum element quality of 0.3. For tsDCS, volume
meshing was obtained only after electrode incorporation. The full-body model was
truncated at the level of the thighs and above the elbows to shorten computational
time. The final model resulted in approximately 20 million tetrahedral volume
elements, taking around 6–7 h to be generated in a computer with two quad-core
Intel® Xeon® processors clocked at 3.2 GHz and 48 GB of RAM.

3 Electric Field Calculation in Non-invasive Spinal
Stimulation (NISS)

The methods for calculating the EF due to non-invasive spinal stimulation (NISS)
comprise four steps that are summarized in Fig. 3: design and placement of elec-
trodes and coils in the model, assigning electrical conductivity to tissues and
electrode materials (for tsDCS), EF calculation with the finite element method
(FEM) and analysis of EF predictions.

skin

Fat
Muscle

Bones, Lungs,
Heart, Viscera

Vertebra,
Disks

Spinal
Dura

CSF

sacral

lumbar

thoracic

cervical

Brainstem
Cerebellum
Spinal-WM
Spinal-GM

Fig. 2 Top row: surface meshes used in the human model. Bottom row: 2D axial view of WM and
GM volume meshes in each spinal region.

Fig. 3 Procedure steps for calculating the EF in NISS
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3.1 Electrode Model and Stimulation Parameters in tsDCS

Electrode model. The electrode model assumed in the first tsDCS modelling study
was a rectangular prism of gel or sponge with an upper rectangular isopotential
surface [18–20]. tDCS studies that considered electrode models with higher com-
plexity resulted in slight spatial variations of the cortical EF near electrode connec-
tors [27]. Therefore, the electrodes added to our human model had a more complex
design: electrodes were modelled as rectangular prism of conductive rubber in
contact with a rectangular layer of gel. The metallic connectors in each pad were
represented as a rectangle on the upper surface of the rubber pad, reflecting the
dimensions of the electrodes available in our experimental lab (Fig. 4a) [21].

The electrodes were placed over spinous processes (s.p.) of vertebra and in
regions not located over the SC: right deltoid (rD), umbilicus (U), right iliac crest
(rIC) and cervicomental angle (CMA). A total of 11 different electrode montages
were modelled and are shown in Fig. 4b. Montages T10-rD, T10-U, C7-rD,
C7-CMA and C4-CMA have already been used in experimental studies [5, 28–
32]. Montages T10-rIC, T8-U, T8-rIC, L2-rD and L2-T8 have not been applied yet.
Montage C3-T3 was used in an experimental study by our group due to favourable
modelling predictions [22].

Determining electrical conductivity of materials. A literature review on the
electrical properties of biological tissues was performed. Table 1 presents a list of
isotropic electrical conductivity values for DC currents based on this review. A wide
range of values is reported in the literature; preference was given to values deter-
mined at frequencies lower than 10 kHz (low-frequency range) in human tissue at a
body temperature not under 36 �C and less than 24 h post-mortem, using the four-
point method for conductivity measurement.

Some isotropic conductivities (σ) were determined as averages:

Fig. 4 Electrode geometry considered in the study: (a) gel, rubber pad and connector dimensions;
(b) electrode montages simulated with the human model [21, 22]
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• σmuscle was determined as an arithmetic average of transverse and longitudinal
values (0.043 and 0.667 S/m, respectively, from Rush et al. [35]).

• σlungs was also determined from Rush et al. [35], using DC measurements for dog
lungs (human values were not found in the literature search), considering an
average value between inflation (0.042 S/m) and deflation (0.051 S/m).

• σheart is a volume-weighted average of the conductivities of myocardium
(0.461 S/m [36]) and heart lumen (considered filled with blood,
σblood ¼ 0.625 S/m [34]), using the volumes of these tissues in the model.

• σviscera is a volume-weighted average of the conductivities of all visceral tissues
present in the model: liver (0.123 S/m [36]), pancreas (0.130 S/m [37]), stomach
and large and small intestines (considered as soft tissue – 0.200 S/m [34]).

• σcerebellum is a volume-weighted average of cortical WM and GM conductivities,
considering cerebellum WM and GM relative volumes from Damasceno
et al. [40].

Spinal-WM is a tissue with considerable anisotropy due to the orientation of its
fibres, with a higher conductivity along the caudal-rostral direction. Spinal-WM
conductivity was represented by a tensor using information about the spatial orien-
tation of the fibres and the ratio between the conductivity in the longitudinal and
transverse directions. A spinal axis was determined from a set of centre-of-mass
points of 1-mm-thick cylindrical slices along the SC caudal-rostral direction. The x
and y coordinates of this set of points were fitted to a Fourier series of seven and six
terms, respectively, as a function of z. These analytical expressions were used to
determine the direction of the tangent to the spinal axis. This constitutes the
longitudinal (long) direction of the SC, which also defines the transverse (trans)
plane, composed of two orthogonal directions, trans1 (right-left, rl) and trans2
(ventral-dorsal, vd). Next, the values of longitudinal and transverse electrical

Table 1 Isotropic electrical conductivities (σ) of tissues in the human trunk model [21, 22]

Tissue σ (S/m) References

Skin 0.435 [33]

Fat 0.040 [34]

Muscle 0.355 (av) [35]

Lungs 0.046 (av) [35]

Heart 0.535 (av) [34, 36]

Viscera
(liver, pancreas, stomach, small and large intestines, air)

0.123 (av) [34, 36, 37]

Vertebrae/bone 0.006 [34]

Intervertebral disks 0.200 [34]

Dura mater 0.030 [38]

CSF 1.790 [39]

Brainstem 0.154 [34]

Cerebellum 0.290 (av) [34]

Spinal-WM 0.143 [34]

Spinal-GM 0.333 [34]
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conductivities of the spinal-WMwere determined considering the volume constraint,
4
3 πσlong σtransð Þ2 = 4

3 πσisotropic
3 [54], with σlong ¼ 10 σtrans, resulting in

σlong ¼ 0.664 S/m and σtrans ¼ 0.066 S/m. An initial diagonal conductivity matrix
was assigned in a local coordinate system with the diagonal elements equal to the
conductivity values σtrans1, σtrans2 and σlong, where σtrans1 ¼ σtrans2 ¼ σtrans. This
matrix was then rotated in the reference coordinate system using a transformation
matrix S according to Eq. (1) for each mesh node.

σxx σxy σxz
σyx σyy σyz
σzx σzy σzz

2
64

3
75 ¼ S

σtrans1 0 0

0 σ trans2 0

0 0 σlong

2
64

3
75S�1 ð1Þ

The transformation matrix was built from vectors aligned with the longitudinal
and transverse directions of the spinal axis determined previously. The conductivity
matrix was calculated in each mesh node using a MATLAB script (MATLAB
v2015b software). Each component of this conductivity matrix was smoothed to
minimize discontinuities. Smoothing was performed with a zero-phase digital filter.
Conductivity matrix components were interpolated in COMSOL (COMSOL
Multiphysics, version 4.3b) to obtain the conductivity tensor for each volume
element.

Anisotropic properties were also considered for muscle: a conductivity tensor was
determined for muscle groups close to the stimulation sources and the SC. Different
transverse and longitudinal conductivities (σtrans ¼ 0.043 S/m, σlong ¼ 0.667 S/m,
[35]) were assigned to these muscles, according to the direction of muscle fibres
known from anatomy. A diagonal conductivity matrix was assigned for each muscle
mesh node, where the diagonal matrix coefficients had values according to fibre
orientation: σxx ¼ σyy ¼ σtrans and σzz ¼ σlong for the neck, deltoid and abdominal
muscles and σyy¼ σzz ¼ σtrans and σxx ¼ σlong for the pectoral and back muscles. No
rotation of the conductivity tensor of muscles was performed.

The gel considered in our model was the one available in our experimental lab –

Signa gel (Parker Laboratories, Inc.), which has a conductivity of σgel ¼ 4 � 1 S/m,
according to Minhas et al. [41]. The rubber pad resistance was measured using a
four-point probe, and its conductivity estimated to be σrubber ¼ 44 � 1 S/m,
considering the pad as a finite layer of material and following the method described
in Smits [42].

EF Calculations Biophysical calculations in the human volume conductor model
were performed using the FEM. The current density and EF induced in biological
tissues and electrode materials represented in the model were calculated using the
AC/DC module in COMSOL Multiphysics 4.3b, which solves Laplace’s equation
for the electric potential ϕ, ∇.(σ∇ϕ) ¼ 0. Boundary conditions were implemented
according to Miranda et al. [15]: continuity of the normal component of the current
density in all interior boundaries, electric insulation in the external boundaries and
electrode connectors as isopotential surfaces. The potential difference between the
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anode and cathode was adjusted, using the floating potential boundary condition
from COMSOL, so that the current injected through the electrodes was 2.5 mA,

following previous published studies (e.g. [5]). The EF (E
!
) was calculated in all

nodes of the mesh elements by taking the gradient of the electric potential ϕ,

E
!
= 2—ϕ. Current density (J

!
) was determined using Ohm’s law, J

!
= σE

!
, where

σ is the electrical conductivity of the corresponding tissue. All tissues were assumed
to be purely resistive with unit relative permittivity (εr). In lumbar montages, the first
electrode was defined as the anode and the second electrode as the cathode (e.g. in
L2-T8 montage, L2 is the anode and T8 the cathode), and the reverse was considered
in cervical montages (e.g. in C3-T3 montage, C3 is the cathode and T3 the anode).
Reversing polarity would invert the direction of the EF but would not affect its
magnitude or the magnitude of its components [43].

Simulations were performed for 11 electrode montages considering anisotropy of
spinal-WM and muscle. For the seven thoracic and lumbar montages, simulations
were also performed considering all tissues isotropic or only with anisotropy of
spinal-WM, resulting in a total of 7 � 3 + 4 ¼ 25 simulations. Each model had
2.6 � 107 degrees of freedom, and the solution time was about 150 min per
simulation on a computer with two quad-core Intel® Xeon® processors clocked at
3.2 GHz and 48 GB of RAM.

EF Analysis Analysis was performed using MATLAB scripts for post-processing
the results exported from COMSOL. The following assumption was made regarding
neuromodulatory effect predictions: previous tDCS clinical studies reported long-
lasting and polarity-dependent changes in neural excitability of the human motor
cortex when applying a continuous current of 1 mA to the scalp [44]. Miranda et al.
[15] predicted an average EF magnitude in the hand knob of the motor cortex higher
than 0.15 V/m, when applying 1 mA to the scalp and reproducing the same
conditions mentioned in tDCS clinical trials. The values of the EF calculated in
that study are in good agreement with those predicted by other studies [e.g. 13,
27]. Therefore, neuromodulatory effects are considered likely to occur wherever the
average EF in the spinal-GM or WM exceeds 0.15 V/m.

The EF was decomposed into three orthogonal vectors according to three relevant
directions:

• E
!
long – tangent to the longitudinal axis of the SC defined in the previous section

and pointing from caudal to rostral

• E
!
vd – perpendicular to the first, contained in the yz-plane and pointing from

ventral to dorsal

• E
!
rl – perpendicular to the first two and pointing from right to left

The spatial distribution of the EF magnitude and of its components along the SC
length was studied in the spinal-WM and spinal-GM, considering values averaged
over 1-mm-thick axial slices (perpendicular to the z-axis). The spatial variation of
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the EF in the SC was always reported in terms of SC segments, which have positions
that are not always coincident with the position of vertebrae with the same designa-
tion, especially in the case of lumbar and sacral spinal segments, which are distant
from the vertebra with the same designation.

3.2 Coil Model and Stimulation Parameters in tsMS

Coil Model A Fig. 8 coil, Magstim’s double 70 mm coil, was modelled according
to Fig. 5, using a MATLAB script [9]. This script requires an input file with all the
nodes of the human model and calculates the placement of the centre of the coil
through a GUI where the user can set the intended position. The centre (vertex) of the
coil was placed over two positions (Fig. 5):

• T12 s.p., with two coil orientations according to the induced EF, at a distance of
24 mm from skin’s surface [45]: induced EF pointing in inferior-superior direc-
tion (T12-IS); induced EF pointing in the left-right direction (T12-LR)

• C5 s.p., with the coil at a distance of 32 mm from skin’s surface and the induced
field pointing in the IS direction (C5-IS)

EF Calculation and Analysis The EF induced in tsMS results from the sum of two

components. The first term is the primary EF (dA
!
/dt), and it depends only on the

coil’s geometry since the quasi-magnetostatic approximation applies in this case

[46]. The second term is the secondary EF (�∇
!
ϕ), which depends on the geometry

of the model, the primary EF and the electrical properties of tissues. The primary EF
was determined using a MATLAB script as described in Salvador et al. [9]. Stimu-
lation parameters were introduced considering standard values used in single-pulse

Fig. 5 Coil positions and orientations considered in tsMS simulations. From left to right: T12-IS,
T12-LR, C5-IS
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TMS for assessment of motor cortex responses: sinusoidal current of frequency
f ¼ 3.5 kHz and current amplitude of 2.8 kA, resulting in a maximum dI/dt ¼ 61.54
A/μs, which corresponds to the mean threshold for hand muscle activation [47].

The values of the primary EF were imported into COMSOL to calculate the
secondary EF using COMSOL Multiphysics AC/DC module (v5.2a). Electrical
properties of tissues were considered the same as in tsDCS simulations, since the
stimulus considered is in the low-frequency region (< 10 kHz). The quasi-
electrostatic approximation was considered with the same boundary conditions
applied for tsDCS. The total EF results from the vector sum of these two compo-
nents. tsMS simulations comprised 2.7 � 107 degrees of freedom, taking about
60 min to solve on a computer with two quad-core Intel®Xeon® processors clocked
at 3.2 GHz and 48 GB of RAM.

EF analysis applied the methodology previously described for tsDCS, for the
calculation of Elong, Evd and Erl components and their spatial distributions along SC
length.

4 Main Characteristics of the Electric Field in NISS

The EF generated during NISS may induce variations in the transmembrane poten-
tial of spinal neurons oriented along the EF direction, just as in cortical stimulation
techniques [9, 48, 49]. These variations will determine the neuromodulatory poten-
tial of this type of stimulation in spinal circuitry. In the context of non-invasive
spinal stimulation, modelling studies published so far concern tDCS only and report
similar results in terms of EF spatial distribution. Most of the current density spreads
along the regions of the skin, fat and muscle located between the electrodes and the
target segments of the SC. The shape and morphology of the SC and surrounding
tissues (vertebrae, intervertebral disks, CSF and spinal dura) seem to contribute to
the presence of local maxima [19–21]. The main features of the EF predicted in our
model for NISS and how it varies with tissue characteristics and modelling assump-
tions will be addressed in the following sections.

4.1 Predictions in tsDCS

The EF magnitude resulting from tsDCS in the SC is predicted to reach its maximum
value in the spinal segments that lie in the region comprised between stimulating
electrodes in all studies published so far in human models [18–22]. The same is
predicted by our tetrahedral model. Figure 6 shows the distribution of the EF
magnitude in the spinal-WM considering montages with at least one electrode
over the cervical, thoracic or lumbar SC. The EF reaches its maximum value in
SC segments located between electrode positions. Values of the EF magnitude and
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of its components were averaged over 1-mm-thick slices in the spinal-WM and GM
as explained in Sect. 3.1. Table 2 indicates the maximum average value and the
corresponding spinal segment where it is predicted to occur for each montage. It also
presents the range of segments with EF higher than 0.15 V/m. EF maxima are
generally located in the same segments in spinal-GM and spinal-WM. EF maximum
value is approximately the same in spinal-GM and spinal-WM in thoracic and
lumbar montages and higher in spinal-WM for cervical montages. This may be
explained by the fact that the highly conductive CSF has a volume that is two to three
times smaller in the region between C3 and C6 segments when compared with the
rest of the spinal canal, leading to a larger current focusing in those regions that will
affect the EF in the adjacent WM segments. L2-T8 and T8-rIC are the montages that
maximize the EF in the lumbar regions, where most of the spinal circuitry related
with lower limb sensorimotor functions are located. Thus, these montages may result
in larger neuromodulatory outcomes in lower limb sensorimotor responses. The
same applies for C3-T3 considering upper limb sensorimotor functions.

Fig. 6 EF magnitude in the spinal-WM: top row, cervical montages; bottom row, thoracic and
lumbar montages. The corresponding colour scale is represented on the right at the end of each row,
except for C7-rD, which is represented at the right side of the corresponding distribution. Vertebrae,
disks and electrode positions are represented in black and grey in the sagittal plane for each plot
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Figure 7 shows the profiles of the average EF magnitude along the SC length
normalized to maximum value in the spinal-GM and spinal-WM. The distributions
are very similar in both tissues, and montages with one electrode in common share
similar patterns in the average magnitude profiles. Maximum EF values are reached
between electrodes, and minimum values are predicted to occur in montages with a
vertebral electrode near the edge that is distal to the maximum EF region.

The EF components along the longitudinal (Elong), ventral-dorsal (Evd) and right-
left (Erl) directions in the SC have different magnitudes and relative contributions to
the total magnitude in the montages studied, especially when comparing thoracic and
lumbar montages with CMA montages. In thoracic and lumbar montages, Elong is
three to six times greater than the other components (Fig. 8, left). In cervical
montages, Elong can be 10–20 times larger than the other components in the EF
magnitude maximum regions, except for dorsal-ventral placements, namely,
C4-CMA and C7-CMA (Fig. 8, right, grey lines). In CMA montages, Evd is
comparable to Elong and even with a higher contribution to the total EF magnitude
(> 0.60 Emax), however in the spinal-WM segments between the electrodes. Previous
studies also predicted an EF with a preferential longitudinal direction [18, 20]. This
can be explained by the high electrical conductivity of the CSF, which is one order of
magnitude larger that the surrounding tissues, and also by SC cable-shape anatomy.

Electrode position can influence the distribution of the EF and of its components.
For montages that have an electrode over the SC, the sign of Elong changes near the
edge of this electrode that is away from the region between electrodes, leading to a
sharp decrease in magnitude (Fig. 8, left). The ventral-dorsal placement character-
istic of CMA montages leads to a larger Evd component between electrodes (Fig. 8,
right).

Table 2 EF maximum absolute value and corresponding spinal segments for maximum region
location

Electrode
montage

Spinal-GM Spinal-WM

EF max
(V/m)

Max
location

EF > 0.15 V/
m

EF max
(V/m)

Max
location

EF > 0.15 V/
m

C7-rD 0.16; 0.17 C6; T3 C6-C7,
T2-T5

0.17; 0.19 C7; T3 C6-C7,
T2-T5

C7-CMA 0.24 C7 C5-T1 0.38 C7 C4-T1

C4-CMA 0.14 C4 – 0.29 C5 C2-T1

C3-T3 0.44 C6 C1-T4 0.49 C7 C1-T5

T8-U 0.30 L3 T11-Filum 0.30 L3 T11-Filum

T8-rIC 0.36 L3 T10-Filum 0.36 L3 T10-Filum

T10-U 0.27 L5 L1-Filum 0.27 L5 L1-Filum

T10-rIC 0.34 L5 L1-Filum 0.33 L5 L1-Filum

T10-rD 0.29 T9 T5-T12 0.31 T9 T5-T12

L2-rD 0.29 L1 T6-Filum 0.30 L1 T6-Filum

L2-T8 0.37 L3 T10-Filum 0.37 L3 T10-Filum
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Influence of SC Anatomy on the EF Anatomy seems to influence the EF induced
in the SC due to tsDCS. The EF profiles presented in Fig. 7 have local peaks that
appear in the same positions regardless of the montage. This must be due to two main

Fig. 7 EFmag profiles normalized to maximum values in the spinal-GM (left) and spinal-WM
(right) along the SC length for cervical montages (top row) and thoracolumbar montages (middle
and bottom rows). The positions of the electrodes are represented by vertical grey bars, and the
positions of spinal segments are represented in grey on the right of each profile. rIC electrode is
below the caudal end of the SC and thus not represented
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reasons: first, the differences in electrical conductivities between neighbouring
tissues originate large variations of the EF at interfaces; second, CSF narrowing
can occur due to vertebrae bony edges, disk intrusions and, consequently, current
focusing in the CSF due to its high conductivity. Figure 9 shows the locations of
common EF hotspots for selected thoracic, lumbar and cervical montages. Consid-
ering the distribution of the EF magnitude vs. CSF volume in 1-mm-thick slices
along the z axis, the EF magnitude increases with decreasing CSF volume for all
montages in the regions where the EF is higher than 0.15 V/m. This relation can be
quantified with linear fit functions of negative slope for thoracic and lumbar mon-
tages and inverse fit functions for cervical montages with coefficient of determina-
tion larger than 0.5 [21, 22]. This inverse relation between CSF volume and EF value
was also predicted in Fiocchi et al. [19].

Effect of Electrical Conductivity Assumptions on the EF Two additional studies
were performed for T10-U montage to quantify what would be the changes induced
in the predictions when considering: study (1), full isotropic model vs. anisotropy of
the spinal-WM and muscle, and study (2), different isotropic electrical conductivity
values. This montage was chosen because it presents higher EF in the LS segments
and can be compared with a previous study by Parazzini et al. [18].

Figure 10 summarizes the effects for the EF magnitude when considering anisot-
ropy of spinal-WM and muscle (anisotropic 2), anisotropic of spinal-WM only
(anisotropy 1) and isotropy of all tissues (isotropic). The effect of anisotropy on
the EF in the spinal-WM is to increase the magnitude in the spinal segments between
the electrodes. The differences between the various anisotropy settings are
represented by the red lines in Fig. 10 (left panel). Anisotropic 1 and anisotropic
2 have a very small difference, with mean values �0.024 V/m, indicating that

Fig. 8 EF component profiles normalized to maximum values in the spinal-WM in selected
montages: left, Elong/Emax in T8-U, T8-rIC, T10-U and T10-rIC; right, Evd/Emax in cervical
montages. The positions of the electrodes are represented by vertical grey bars, and the positions
of spinal segments are also represented in grey on the right of each profile. rIC electrode is below the
caudal end of the SC and thus not represented
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muscle anisotropy has a small influence on the spinal EF. Muscle tissue is not
adjacent to the SC: vertebrae, spinal dura and epidural fat and CSF are located in
the current path between muscle and SC, and the combination of these tissue
conductivities and shapes may contribute to decrease the effects on the EF due to
muscle anisotropy. Anisotropy also introduces local maxima hotspots at the
CSF/WM and WM/GM interface. This is easily observed in the EF distributions
on transverse slices of selected spinal segments, also shown in Fig. 10 (right panel).
The anisotropic 1 and 2 present small hotspot regions in the CSF/WM interface at L2
and L5 segment and near GM horns in S2 segment that do not appear in the isotropic
model [21].

The maximum and mean differences between isotropic and both anisotropic
models in all montages were determined in the regions where the EF magnitude is
higher than 0.15 V/m. Anisotropic 2 presents the highest values for total EF
magnitude, just as seen for T10-U. Mean differences between models are on the

Fig. 9 Volume plots of the EF magnitude showing local maxima in selected regions of the
thoracolumbar (a) and cervical (b) spinal-WM. Below each plot, EF maxima and related anatomic
features – CSF volume minima, vertebrae and disk volume maxima, are plotted as a function of the
z-coordinate. Labels are indicated in each figure marking maxima positions
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order of 0.01 V/m for the total EF, Elong and Evd magnitudes, but maximum
differences can reach values of 0.131 V/m for the difference between anisotropic
1 and isotropic for the Elong component in T10-rIC and T8-rIC. Erl is negligible in the
isotropic model for all montages.

Study 2 considers two sets of conductivity values: isotropic 1, the one used in the
tetrahedral model, and isotropic 2, considered in tsDCS modelling studies by
Parazzini et al. [18], Fiocchi et al. [19] and Kuck et al. [20]. Isotropic 1 values
were taken from Table 1. Isotropic 2 values are as follows: σskin ¼ 0.100 S/m;
σfat ¼ 0.078 S/m; σmuscle ¼ 0.160 S/m; σbone/vertebrae ¼ 0.020 S/m; σlungs ¼ 0.076 S/
m; σheart ¼ 0.534 S/m (av); σviscera ¼ 0.0254 S/m; σdisks ¼ 0.161 S/m; σSC/
nerve ¼ σSC/dura ¼ 0.017 S/m; σCSF ¼ 1.59 S/m; σmedula oblongata/midbrain/

pons ¼ σbrainstem ¼ 0.0276 S/m. Figure 11 presents the average EF magnitude
distribution over the spinal-WM normalized to maximum in each conductivity set.
This normalization was considered to evaluate the effect of conductivity on the EF
due to electrode positions and anatomical features.

The isotropic 2 set of values resulted in a higher EF in spinal-WM and GM by a
factor of 2. The two distributions almost overlap, with the same peak locations,
except near the T10 connector, where the difference is larger (0.23 Emag/Emax).
Similar results were also observed for spinal-GM and for EF components, with
isotropic 2 presenting larger Elong, Evd and Erl by factors of 2, 4 and 5, respectively,
in the LS region for the spinal-GM, and all by a factor of 2 in the spinal-WM. Erl is
almost zero in both models. Changing electrical conductivity values will affect the

Fig. 10 Left panel, average EF magnitude profiles in T10-U for study 1, considering three
conductivity considerations: isotropic, anisotropic 1, anisotropic 2. The positions of the electrodes
are represented by vertical grey bars, and the positions of spinal segments are also represented in
grey. Right panel: transverse slices of the SC in selected segments in the three different models of
conductivity for T10-U. The colour scale is the same as Fig. 6, from 0 to 0.5 V/m
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EF magnitude, but not its spatial distribution, preserving the features caused by
anatomical morphology.

4.2 Predictions in tsMS

The EF distribution in the SC was calculated for tsMS considering two coil place-
ments, one over the cervical C5 s.p. with an inferior-superior-oriented induced EF
(C5-IS) and the other over the lumbar SC, in T12 s.p. In the lumbar placement, two
coil alignments were considered, resulting in left-right-oriented induced EF
(T12-LR) and inferior-superior-oriented induced EF (T12-IS). The EF magnitude
is presented in Fig. 12 for the three tsMS simulations. The EF is higher in the
posterior SC regions near the coil in all cases. C5-IS tsMS maximum average EF
value is 14.6 V/m and 11.0 V/m in T1 segment for spinal-WM and GM, respectively,
30 times higher than C3-T3, the tsDCS montage with higher EF values. T12-LR
tsMS reaches a maximum average value of 14.4 V/m and 5.4 V/m in the spinal-WM

Fig. 11 Average EF magnitude distribution normalized to maximum in spinal-WM along the z
direction for isotropic 1 and isotropic 2 sets of conductivity values, for the T10-U montage. The
difference between the two distributions is also presented by the dashed line. T10 electrode position
is represented in grey. The letter “A”marks the connector position. The vertical grey bar on the right
indicates the position of each SC segment
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and GM, respectively, in L3 segment, and T12-IS tsMS reaches maximum average
values of 20.5 V/m and 20.4 V/m in the spinal-WM and GM, respectively, in L1
segment. The maximum EFs produced by T12-LR and T12-IS tsMS are 30 and
60 times higher, respectively, than the values reached in tsDCS montages that
maximize the EF in the lumbar region, i.e. T8-rIC and L2-T8.

The orientation of the coil will have a strong influence in the EF direction in the
SC. When the coil is placed so as to induce an IS-oriented EF, the EF has a larger
longitudinal component, and Elong has the highest contribution to the total EF. This
can be observed for the spinal-GM and spinal-WM profiles, represented in Fig. 13
(top and bottom rows). In C5-IS, there is also a large contribution from the Evd

component, which is not present in the spinal-GM, and may be due to spinal-WM
anisotropy, since the cervical region presents sections with a large dorsal-ventral
orientation, when compared to the lumbar region. LR orientation produces a strong
Erl component which contributes for most of the total EF magnitude.

The effects of tsMS decrease faster with distance to source when compared to
tsDCS. This is consistent with modelling studies of cortical stimulation, which show
a higher EF focality and smaller cortical depth in TMS using Fig. 8 coils [50]. This
effect can be observed in the EF magnitude for C3-T3 tsDCS and for C5-IS tsMS in
transverse slices of selected spinal segments near the local peaks (Fig. 14). When
comparing the EF in C3 to T1 segments, the relative difference between maximum
and minimum values is always higher in tsMS, with a pattern of decrease of EF
magnitude from dorsal to ventral regions in the SC that is not seen in any of the
spinal segments for tsDCS.

Fig. 12 EF magnitude distributions in the spinal-WM for C5-IS (middle left), T12-IS (middle
right) and T12-LR (right) coil placements in tsMS. The left panel illustrates the selected spinal cord
region for the cervical tsMS (red line) and lumbar LR and IS tsMS (blue line). The corresponding
colour scale is placed on the right of each plot
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The anatomy may also play an influence on the EF in tsMS local hotspots, since
the profiles in Fig. 13 present local maxima that have the same locations in tsDCS
and tsMS. These effects were also observed in other modelling studies on tsDCS,

Fig. 13 EF components profiles normalized to maximum values in the spinal-GM and spinal-WM
in C5-IS tsMS (top row), T12-LR tsMS (middle row) and T12-IS tsMS (bottom row). The position
of the vertex of the coil is represented by a black circle, and the position of spinal segments is also
represented in grey on the right of each profile
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Fig. 14 EF magnitude during C3-T3 tsDCS and C5-IS tsMS in slices at local maxima, for C3-T1
SC segments. On the right, the percentage variation in EF magnitude in each slice is presented as bar
plots with the values in the spinal-GM and spinal-WM above each bar. Colour scales and slice
orientation are represented in the right column [51]
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tDCS and TMS [10, 15, 21]. In the slices represented in Fig. 14, magnitude hotspots
appear near dorsal and ventral horns, in the same regions for tsDCS and tsMS in all
the segments represented, which is indicative of an anatomical influence due to CSF
narrowing and discontinuity of the electrical conductivity at CSF/WM and WM/GM
interfaces.

4.3 Implications of Modelling Findings in Clinical
Applications of NISS

All modelling studies presented here for tsDCS and tsMS reached values in the SC
higher than 0.15 V/m in different spinal regions. This indicates that different

Table 3 Correspondence between tsDCS and tsMS settings and possible clinical targets according
to EF predictions

tsDCS
Electrode
montage

Spinal segments with EF > 0.15 V/
m

Related sensorimotor functional
area

C7-rD C6-C7, T2-T5 Upper extremity, upper thorax

C7-CMA C4-T1 Scapular girdle, upper limb

C4-CMA C2-T1 Neck, diaphragm, scapular girdle,
upper limb

C3-T3 C1-T5 Neck, diaphragm, scapular girdle,
upper limb, upper thorax

T8-U T11-Filum Abdominal organs, pelvic girdle,
lower limb, pelvic floor

T8-rIC T10-Filum Pelvic girdle, lower limb, pelvic
floor

T10-U L1-Filum Pelvic girdle, lower limb, pelvic
floor

T10-rIC L1-Filum Pelvic girdle, lower limb, pelvic
floor

T10-rD T5-T12 Medium and lower thorax

L2-rD T6-Filum Abdominal organs, pelvic girdle,
lower limb, pelvic floor

L2-T8 T10-Filum Abdominal organs, pelvic girdle,
lower limb, pelvic floor

tsMS
Coil position and
orientation

Spinal segments with EF > 0.15 V/
m and EF > 50% Emax

Related sensorimotor functional
area

C5-IS C5-T3 Diaphragm, scapular girdle, upper
limb, upper thorax

T12-LR L2-S3 Pelvic girdle, lower limb

T12-IS T10-Fillum Abdominal organs, pelvic girdle,
lower limb, pelvic floor
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montages and coil positions may enable neuromodulation of specific target regions
in the SC. Application of cervical and thoracic tsDCS in healthy human volunteers
shows evidence of spinal neuromodulation of upper and lower limb motor and
sensory responses, depending on the placement of the vertebral electrode [6, 28,
31]. Recent experimental studies on lumbar repetitive tsMS applied in spinal lesion
patients observed reduction of spasticity after stimulation and bladder function
improvement [7, 8]. Table 3 presents a summary of the spinal segments with
E > 0.15 V/m for each tsDCS montage and tsMS coil position, with the
corresponding related functional region. These stimulation techniques are consid-
ered to be possible coadjutants for motor rehabilitation programs [6, 20, 22]. The EF
is known to change neuronal resting potential, depending on the neuron orientation
relative to the field, facilitating or inhibiting their firing capability. For instance, in
tsMS-LR, the neurons with larger neuromodulation effects will be the ones oriented
in the right-left direction. NISS neuromodulation selectivity is not only on the
segments comprised between electrodes or near the coil but also on neuron direction
relative to the fields obtained, just as observed in previous modelling and experi-
mental studies on cortical stimulation [10].

Although the EF magnitudes predicted in tsMS are ~30 times higher than in
tsDCS, comparing magnetic and electric stimulation effectiveness is not straightfor-
ward. Unlike DC stimulation, tsMS induces EFs with a more complex temporal
profile, which consists of brief stimuli that are repeated at a low frequency. Further
experimental studies are required to understand the relative physiological effective-
ness of these two techniques and the biophysical mechanisms underlying them.
Also, one main advantage of tsDCS is the portability and easier access to stimulating
devices, which makes it appealing for home-based therapy, with potentially less side
effects [4].

NISS may also induce nerve regeneration. McCaig et al. [52] observed guidance
of spinal axonal regeneration in animal models of SCI after epidural stimulation,
when applying longitudinal EFs of 0.3–0.4 V/m, which are similar to the EFs
predicted for the tsDCS montages modelled. Also, one possible explanation for
the functional recovery seen in the tsMS experimental studies referred above is
spinal axonal regeneration [7, 8]. Although the values of the EF for human SC
regeneration may differ from the ones determined in animals, axonal regeneration
should be considered as a possible clinical effect of non-invasive spinal stimulation.

Since different electrode and coil positions result in diverse target spinal regions,
due to changes in EF spatial distribution and direction, a combined modelling-
experimental approach is recommendable for NISS application, by predicting the
appropriate choice of stimulation conditions and parameters according to the
intended spinal clinical target.
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5 What Lies Ahead in Non-invasive Spinal Stimulation
Modelling Studies

Non-invasive spinal stimulation modelling studies can be useful guides for clinical
application of these techniques, aiming at the recovery of spinal circuits, frequently
damaged by axonal degeneration and neuronal death due to spinal lesions or
neurodegenerative diseases. However, little is known about how electromagnetic
stimulation changes the way neurons function and regenerate. Understanding the
underlying biophysics behind neuronal stimulation will be extremely useful in fine-
tuning modelling predictions for the expected outcomes of NISS techniques.

Specifically for tsDCS, experimental studies present variable outcomes in the
measurements of spinal motor responses, especially in the cervical SC. Future
studies should model the effects of the EF in the transmembrane potential of spinal
neurons during and after tsDCS, considering different regions (cervical, thoracic and
lumbar) and different spinal reflex circuits, taking into account different electrode
geometries and placements, to examine whether differences in the EF distribution
can explain the variability of results observed. Spinal neuronal modelling may also
be useful to infer on the best electrode settings and montages for stimulating a
specific target. After defining the current and EF patterns required for
neuromodulation of a specific spinal cellular target, electrode montages can be
optimized using an inverse problem approach. This has recently been done for
cortical stimulation [53].

Intersubject variability is determinant in the EF distribution for spinal stimulation,
as observed in previous studies [18, 20]. Modelling findings indicate that anatomical
characteristics, such as shape of the spinal canal and heterogeneity of the electrical
conductivity, influence the location of EF hotspots in the SC. To test this, we
repeated the C5-IS tsMS and C3-T3 tsDCS calculations with a conductivity of
0.2 S/m (soft tissue conductivity) attributed to all biological tissues in the model
(Fig. 15): the peaks in the average EF profiles do not occur in the homogeneous
models; thus, those peaks are due to the different electric conductivities of tissues
combined with anatomical morphology. As our tetrahedral mesh was based on only
one human model, future work should compare the EF distributions in different
models to address the influence of anatomical characteristics in the EF spatial
profiles. Parazzini et al. [18] presented EF predictions after tsDCS in four different
models using hexahedral meshes: in this study, the current density and EF distribu-
tions present larger values in children models, which points also to an effect related
with age and size.

These observations demonstrate the relevance of personalized modelling. Future
biomedical research should be on the development of software that uses pipelines for
semi-automatic segmentation of MRI images, which will be useful for the creation of
individual models. These models could be applied for NISS computational studies,
using neuronal circuitry models and the principle of reciprocity, to optimize tsDCS
clinical protocols based on each patient’s needs, informing on electrode number,
geometry and placement, current and charge delivery. Accurate segmentation of
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tissues in MRI requires high spatial resolution since the SC structures have dimen-
sions of the order of 1 mm or less, e.g. spinal roots and dorsal root ganglia. The
model presented here was based on segmentation of MRI of a healthy volunteer on a
1.5 T scanner, using the sequences that could optimize image contrast and resolution
for segmentation for the possible minimum time acquisition. Resolution varied from
0.5 � 0.5 � 1.0 mm3 to 0.9 � 0.9 � 2.0 mm3 voxel size, resulting in approximately
total scanning time of 6 h [25]. Prolonged and frequent MRI acquisition can be
difficult to endure for most patients in the clinical context. MRI scanners of 3–7 T
may provide higher resolution in less scan time and help in the optimization of full
body models. Thus, the improvement in the model will evolve jointly with strategies
to improve MRI resolution and acquisition times.

Modelling studies should be validated by experimental studies to infer on safety
limits and adverse effects and to determine the frequency and stimulation time
needed for long-lasting effects required for rehabilitation. There has been an increase
in experimental studies in human patients and healthy controls in tsDCS, and there
are only few studies applying tsMS, but the high variability of results suggest the
need for more clinical studies, to increase evidence that could provide gold standards
for validation of NISS modelling findings. In vitro and in vivo studies are also
relevant to determine the threshold EF values for neuromodulation of spinal circuitry
and axonal regeneration of damaged spinal neurons, measured through electrophys-
iological techniques applied on cell cultures and animal models.

Non-invasive spinal stimulation is an emerging field of research with a
multidisciplinary approach. It can be a powerful coadjutant therapy in the treatment
of many spinal cord sensorimotor dysfunctions. The combination of modelling and

Fig. 15 Average EF magnitude profile along the spinal-WM length normalized to maximum
values in C5-IS tsMS (left panel) and C3-T3 tsDCS (right panel). The position of the vertex of
the coil is represented by a black circle, the position of the electrodes as vertical grey bars, and the
position of spinal segments in grey on the right of each profile

162 S. R. Fernandes et al.



experimental approaches will be essential to optimize NISS application for spinal
clinical targets aiming at each patient needs.
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A Miniaturized Ultra-Focal Magnetic
Stimulator and Its Preliminary Application
to the Peripheral Nervous System

Micol Colella, Micaela Liberti, Francesca Apollonio,
and Giorgio Bonmassar

1 Introduction

Transcranial magnetic stimulation (TMS) is a noninvasive brain stimulation tech-
nique that employs a high-intensity pulsed magnetic field sent through the scalp by a
stimulating coil. According to Faraday’s law, a time-varying magnetic field induces
inside the brain tissue an electric field, which may elicit a neuronal response. Due to
the lack of physical contact, TMS results in almost a painless stimulation compared
to electric noninvasive techniques, and for this reason, it has been deeply investi-
gated over the past decades. Many studies have demonstrated the effectiveness of
TMS as a therapeutic solution for the treatment of different neuropsychiatric condi-
tions, among which are major depression [1], chronic pain [2–5], epilepsy [6], and
obsessive-compulsive disorder (OCD) [7]. Furthermore, TMS is extensively adopted
in neuroscience research to investigate intracortical, cortico-cortical, and cortico-
subcortical interactions [6, 8, 9] and to assess causal relations between brain activity
and behavior, as during speech [10–12] and motor mapping [13–19]. Despite the
success, there are critical barriers to employing TMS in neuroscience research. One
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major restriction of TMS in its present form is its limited spatial resolution, which
makes the task of focusing the stimulation exclusively to the targeted cortical region
very challenging. The spatial resolution of TMS depends on the stimulating coil’s
geometry and dimensions. A deep investigation of the focality of the electric field
induced by 50 TMS coils has been conducted by Deng et al. [20]. In this work, the
authors showed that figure-of-eight coils are more focal than circular coils. For
example, the Magstim 70 mm figure-8 coil (P/N 9925, 3190) has a 15 cm2 focality
[20, 21], while the Magstim 90 mm circular coil (P/N 3192) has a 70 cm2 focality
[20, 21]. Also, smaller coils are, in general, more focal than larger coils, with focality
that can be as small as 5 cm2 [20]. For this reason, several attempts have been made
to increase the spatial resolution of TMS by reducing the dimension of the stimu-
lating coil [22–24]. To date, however, all the coils with reduced dimensions were
designed for either invasive [24] or noninvasive animal applications [23]. In fact, as
the dimension of the coil shrinks (diameter less than 2 cm), larger electric currents
(few hundreds of kiloamperes) are required to produce enough induced electric field
in the human cortex (~60–100 V/m). Given the conventional engineering approach
which uses a few turns (<30) of wire winding inside an insulation housing, passing
such large currents would produce excessive amounts of heat and large magnetic
forces that may raise safety concerns or exceed specifications of conventional wires.
To overcome such technological barriers, we have introduced flex circuit technology
to design a new generation of miniaturized coils, which allows for a high number of
turns (100 or greater) in a multilayer structure characterized by a reduced diameter
(15–20 mm). Such an approach has been at first used to develop microscopic coils
for invasive magnetic stimulation (μMS) capable of activating neuronal circuitry
both in vitro [25] and in vivo [26]. Based on these results, a flex circuit technology
was adapted to develop the first generation of miniaturized coils for noninvasive
magnetic stimulation (μCoil). The concept behind the structure of the μCoil consists
of a certain number of parallel copper traces, named layers, deposited on a long
flexible substrate wound in N turns around a core. The prototype of μCoil was built
using a four-trace Kapton sheet, wound in 123 turns around a copper pin with a
1 mm diameter. Since each layer was 1 mm high, with a distance of 0.5 mm between
two adjacent layers, we fabricated a single 8-mm-tall circular solenoid (μCoil), with
an outer diameter of 15 mm. A figure-of-eight stimulator was obtained by pairing
two single μCoils, thus obtaining a structure with a maximum dimension of 30 mm.
To date, these coils are the only figure-of-eight coils capable of performing stimu-
lation of the peripheral nervous system on healthy volunteers. In this chapter, we
studied numerically the behavior of six different μCoil geometries to show how each
coil geometry affects the peripheral nerve stimulation threshold.
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2 Models and Methods

2.1 μCoil Modeling

The electromagnetic simulation software Sim4Life (v.5, Zurich MedTech, Zurich)
was adopted in all of the simulations. A planar loop coil geometry represented the
actual copper trace configuration. The space between two consecutive loops of
1.5 mm was selected to model the trace thickness and spacing. Six different
geometries were considered, as shown in Fig. 1. The first geometry studied was a
two-layered single circular coil, with each layer wound in 123 turns around a 1 mm
air core. Second, two other layers, with the same characteristics as above, were
added on top to make a four-layered single circular coil. The third geometry herein
studied was the figure-of-eight configuration, which consisted of two four-layered
single circular coils paired together and with currents circulating in the opposite
phase. Three additional figure-of-eight coil models were built to study how the
presence and length of an ideal iron core (i.e., linearity assumption: B ¼ μrH with
μr ¼ 60) would modify the magnetic and electric field generated by the μCoil. Each
solenoid was wound in 100 turns and had an inner and outer diameter of 10 mm and
21 mm, respectively. Three lengths of the iron core were considered: 9 mm, 23 mm,
and 41 mm. Of all the geometries, the circular four-layered μCoil and the figure-of-
eight μCoil were manufactured and tested. The iron-core μCoils were studied to

Fig. 1 Four figure-of-eight μCoil models. μCoil models and placement over the right arm of the
neurofunctionalized model Yoon-Sun and the point where the two figure-of-eight μCoils touch was
precisely above the nerve trajectory in the wrist area
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enhance the magnetic field strength of the newly developed μTMS coil for future
cortical applications. The electromagnetic simulations were conducted using the
Magneto Quasi-Static solver of the software Sim4life (v.5.9, Zurich MedTech,
Zurich). This solver implements the quasi-static approximation that allowed
decoupling the electric field from the magnetic field. Considering the source current
density J, magnetic vector potential A was calculated from Ampere’s law and used
to compute the B and E field. EM simulations were performed by feeding a
sinusoidal current with a 1.9 kHz frequency in each μCoil and a phase of 0� in the
first μCoil and of 180� in the second μCoil when considering the figure-of-eight coil.
The two coils were placed in a figure-of-eight coil over the arm of the anatomical,
neurofunctionalized body model Yoon-Sun (ViP., v4 [27]), in correspondence of the
superficial branch of the radial nerve, as shown in Fig. 1. The Yoon-Sun model is
characterized by a detailed representation of the peripheral nervous system and the
various nerve fibers. This simulation setup was validated by experiments conducted
on healthy volunteers [28]. The μCoil driving sinusoidal currents were set to 1 A for
comparison among different configurations.

2.2 Modeling Peripheral Nerve Stimulation: Titration
Analysis

To study the interaction between the induced electric field and the peripheral nervous
system, the results of the EM simulations were fed into the dynamic Neuron solver
version (v. 5.9) embedded in Sim4Life in a Multiphysics approach. The excitable
behavior of the fibers was simulated using the McIntyre-Richardson-Grill model,
which is based on a double-cable representation of the axon that allows separating
electrical representations for the myelin and underlying internodal axolemma
[29, 30].

Nerves can be excited by an external potential, Vext, defined as in Eq. 1, where C
is the linear path connecting each data point to an arbitrary zero voltage
reference [31].

Vext ¼ �
Z

C

E ∙ dl ð1Þ

In this work, a titration analysis was conducted for all the simulated μCoil
geometries. Titration is the iterative process that allows determining the stimulation
threshold of a nerve by stimulating it with pulses of increasing intensity.

170 M. Colella et al.



3 Results

3.1 Magnetic Field Generated by the μCoils

Figure 2 shows the vector view of the B field generated by each μCoil on the central
cross-sectional plane. Inside the coil, the presence of more layers directs the B field
along the axis of the coil. The magnetic field lines of forces diverge outside the coil
and form closed loops. Doubling the number of layers increased the maximum
intensity of B induced on the skin from 30 to 40 mT, thus by a factor of 33%
without changing its direction. When forming the eight-shaped coil by pairing two
circular μCoils fed in counter phase, the B field lines formed a third loop at the center
of the figure-of-eight coil, due to the coupling between the two coils. The use of the
iron core modified the direction of the B field that was along the coil axis for the
whole length of the core and parallel to the surface of the coil in the space between
the two cores. At the interface between iron and air, vector B was deviated to respect
the continuity of the normal component to the surface. Moreover, at the level of the
nerve (i.e., 2.5 mm from the surface of the skin) B field intensity for the coil with the
41 mm, long core is higher than that generated with the 23 mm long core and with
the 9 mm long core, by 15% and 50%, respectively.

Fig. 2 Vector view of the B field generated by each μCoil model. Arrows show direction,
orientation, and intensity of B. Intensities of B are represented by a color bar in a logarithmic
scale with 0 dB referenced to 40 mT, which is the maximum |B| induced on the surface of the skin
by the air core figure-of-eight μCoil (Panel c) when fed with 1 A
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3.2 Electric Field Induced by the μCoils

The single circular coil that was composed of four layers induced inside the tissues
an electric field stronger than the field induced by the two-layered coil: the maximum
E field induced at the level of the nerve with 1 A was 0.27 V/m for the two-layered
circular coil and 0.40 V/m for the four-layered one (see Fig. 3, Panel a and b). The
figure-of-eight coil configuration increased the intensity of the induced electric field
on the nerve up to 0.6 V/m (Fig. 3, panel C). Moreover, the direction of the B field
(Fig. 2) induced an E field-oriented mostly along the longitudinal axis of the arm and
(therefore) along the radial nerve. The presence of an iron core further oriented E
along the nerve, as shown by the vector arrows in Fig. 3 d–f. Moreover, the longer
the core, the higher was the maximum intensity of the induced E: 2.5 V/m for
41 mm, 2.3 V/m for 23 mm, and 1.6 V/m for 9 mm. Figure 4 shows electric field
components tangential (Etan) and normal (Enorm) to the nerve fibers, for the two
circular μCoils and the air core figure-of-eight μCoil. The figure-of-eight μCoil
induced a tangential component that was five and seven times higher than that
induced by a four-layered and a two-layered single circular μCoil, respectively,
and a normal component that was two times lower.

Fig. 3 Direction, orientation, and intensity of the E field induced in the arm of the Yoon-Sun model
on the longitudinal plane of the arm that crosses the center of the stimulating coil. A vector view of
the E field is superimposed on the intensities distribution map
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3.3 Variation of the Peripheral Nerve Stimulation Threshold

When simulating exposure of the arm to the two-layered single circular coil, the
computed stimulation threshold for the radial nerve fibers varied between 259 A and
269 A. Nerve action potentials were generated near the extremities of the coil.
Increasing the number of layers from two to four reduced the coil current threshold
in each layer/coil to values between 177.56 A and 184.39 A, while the activation site
of the neuronal response was not affected. The stimulation threshold was further
reduced when simulating with a figure-of-eight coil: the five times higher induced
tangential electric field of the figure-of-eight-coil reduced the threshold to values
between 58 A and 58.5 A; such a small range of variability may be due to the
augmented focality. For all fibers, the activation site of the neuronal response was at
the center of the figure-of-eight coil. Onset timing was not affected by the number of
layers or by the change of coil shape and remained around an average time of 0.8 ms.
A reduction of the onset timing from 0.8 to 0.5 ms, meaning an earlier spike, was
obtained when changing from air to iron core. The presence of the core also reduced
the stimulation threshold from 58 A to 14 A, 10.1 A, and 9.4 A for the short,
medium, and long core, respectively, and further oriented E field along the direction
of the nerve.

Fig. 4 The tangential (left) and normal (right) components of the E field-induced along the nerve
by the two-layered circular μCoil, the four-layered circular μCoil, and figure-of-eight μCoil
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4 Discussion and Conclusion

The lack of focality of TMS stimulators is a significant barrier for the future
deployment of this type of noninvasive neurostimulator in the clinics or neurosci-
ence research. Several solutions have been proposed during the past years to
overcome this limitation. For example, in 2010, Talebinejal and Musallam
conducted a numerical study on a multilayer miniaturized coil made up of braided
Litz wire [23] and demonstrated the feasibility of realizing a TMS coil reduced in
size. Moreover, they showed that adding more layers increased magnetic field
intensity while keeping the coil area constant. Following a similar geometry, in
Tischler et al. 2011, a mini-coil with an outer diameter of 26.5 mm was developed. It
is crucial to notice that all the attempts made to reduce dimensions of the TMS coils
were conceived for either invasive [24] or noninvasive [23] animal models. To our
knowledge, the newly developed figure-of-eight μCoil, based on flex circuit tech-
nology [32], is the first prototype of miniaturized coil manufactured for on-human
applications. Experiments conducted on the peripheral nervous system of healthy
volunteers showed that the μCoil could elicit somatosensory nerve action potentials
(SNAPs) when the coil is placed over the superficial branch of the radial nerve. In
this chapter, we conducted a numerical study that aimed to show how different
possible μCoil geometries can affect the radial nerve stimulation threshold. Six
different topologies of μCoils were modeled, based on the three different μCoils
actually manufactured: the single circular four-layered and the figure-of-eight coils
were originally designed to be tested on the PNS, and the iron core figure-of-eight
coil developed to target the cerebral cortex. Each coil was placed over the radial
nerve superficial branch of the neurofunctionalized model Yoon-Sun [27]. A
multiphysics approach was herein considered, and electromagnetic simulations
were coupled with the dynamic neuronal solution. To study the effect of adding
more layers, we first studied a two-layered single circular μCoil and compared it with
the four-layered one. The results showed that increasing the number of layers from
two to four increased the intensity of the B field by 50%, thus inducing a stronger
E field. As a consequence, the stimulation threshold was lower for the four-layered
coil. A figure-of-eight coil was obtained by pairing together two four-layered
circular coils. Such μCoil was able to generate a stronger magnetic field, thus
inducing a stronger electric field on the nerve. Moreover, the figure-of-eight coil
oriented the E field along the trajectory of the nerve fibers, leading to a better
coupling between the coil and the nerve and a lower stimulation threshold. This
coupling is further enhanced by addition of an iron core. Additionally, the results
showed that the presence of the core not only increased intensity of the induced
electric field, as expected, but also reduced the onset timing of the first spike.
Nevertheless, it should be noted that saturation of the iron core was not considered
in this study. Thus, computed stimulation threshold was underestimated, due to the
overestimation of both B and E field intensities. However, we are planning to model
next the nonlinearities of a real core. We confirmed that the figure-of-eight coil was
more efficient than the circular coil as it enhanced the focality and the coupling
between nerve fibers and E field. Moreover, the results showed that the presence of
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an iron core further reduced stimulation threshold while increasing depth, making
this geometry suitable for investigating the μCoil stimulation of the brain cortex.
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Part IV
Modeling of Neurophysiological Recordings



Combining Noninvasive Electromagnetic
and Hemodynamic Measures of Human
Brain Activity

Fa-Hsuan Lin, Thomas Witzel, Matti S. Hämäläinen,
and Aapo Nummenmaa

1 Introduction

Each of the presently available technologies for noninvasive electromagnetic or
hemodynamic measurements of brain activity offers different spatiotemporal reso-
lution and physiological sensitivity. Human functional MRI [6, 30] is temporally
limited by the slow hemodynamic response (~ seconds) due to relative cerebral
blood flow (CBF), cerebral blood volume (rCBV), and metabolism changes, which
are indirect markers of neuronal signaling. Using the echo-planar imaging [36]
technique, fMRI can typically provide a spatial sampling on a millimeter scale
with homogeneous volumetric sensitivity and whole-brain coverage.

Magnetoencephalography (MEG) and electroencephalography (EEG) in turn
detect extracranial magnetic fields and electric potential differences on scalp,
which are both elicited by spatially clustered and temporally coherent postsynaptic
neuronal currents [40]. Consequently, MEG/EEG can be used to study neuronal
dynamics with millisecond resolution. Different from fMRI, where tomographic
images are usually obtained, the spatial resolution of MEG/EEG is related to the
capability to resolve intracranial current sources from extracranial measurements. To
characterize the distribution of postsynaptic neuronal currents responsible for the
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macroscopically measured voltage and magnetic field, we have to solve an electro-
magnetic inverse problem, which admits no unique solution [26, 28]. With auxiliary
mathematical and physiological assumptions, we can get reasonable estimates of
the spatial distribution of the neuronal currents that generate the MEG (and EEG)
measurements (see, Fig. 1).

There are two main lines of approach to the MEG/EEG inverse problem (for a
review, see [22]). The most traditional one assumes that the measurements are
generated by a small number of equivalent current dipoles (ECDs). The main
challenges with this approach are that i) the optimization problem for finding the
best matching parameters for the ECDs is nonlinear and ii) the optimization becomes
more and more difficult with increasing number of dipoles. The problem of handling
the a priori unknown number of dipoles is also a nontrivial one, because it requires
rather involved numerical methods [3, 29]. The Minimum-Norm Estimate (MNE)
approach circumvents the nonlinearity of estimating current source location and

Fig. 1 (a) A simulated “point-like” current dipole shown on a simulated cortical surface obtained
by shrinking the inner skull segmented from anatomical MRI by about 1 cm. The orientation of the
dipole is tangential to the cortical surface. (b) The simulated MEG measurement shown with
a realistic outer skin surface and sensor locations from an actual measurement. (c) The Mini-
mum-Norm Estimate (MNE) vector field is displayed with black arrows, and the MNE amplitude is
shown in color scale. (d) The full width at half maximum (FWHM) of the MNE point-spread
function gives an estimate for the spatial resolution of the source localization method
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orientation by assuming a discrete grid of source locations, each of which has three
orthogonal dipole orientations. With respect to estimating dipole amplitudes, the
inverse problem is linear. A least squares estimator (i.e., the MNE) can be calculated
by standard numerical methods. The benefit is that the number of sources need not be
known a priori, and a closed form solution is available in a computationally robust
form. The natural drawback of this method is that the identity of each “localized
source” becomes less clear-cut. In the case of Fig. 1, both the MNE and the single
ECD explain the data equally well, which is a manifestation of the non-uniqueness of
the inverse solution.

In principle, fMRI and EEG/MEG data can be integrated in order to achieve high
spatiotemporal brain imaging (for a review, see, e.g., [44]). The basic rationale for
such data integration is based on neurophysiological evidence: invasive studies in
primates suggest that BOLD fMRI signal increases are closely related to the same
postsynaptic neuronal activity [34] that generates MEG responses [22, 40]. Tight
coupling between neuronal and vascular events has also been reported in the
somatosensory system of rodents [12, 13]. Tentatively, these observations support
the computational strategy of using fMRI, a vascular marker of neuronal events, as
a physiological constraint for reducing the spatial ambiguity in the source localiza-
tion of MEG/EEG. For example, the ECD fitting method in MEG/EEG source
localization can be informed by fMRI [2, 20, 48]. The statistical maps derived
from fMRI data can also be used as a spatial prior for the distributed source
reconstruction [10, 32, 33]. A further study using simulations demonstrated the
advantage of combined fMRI and EEG for a higher efficiency of cortical current
density estimation at different signal-to-noise ratios (SNRs) with the presence of
both fMRI-visible and fMRI-invisible sources [5]. MEG has a millisecond temporal
resolution, ideal for studying cortical oscillations. It has been shown that integrating
fMRI and MEG can also improve the localization of cortical sources of oscillatory
activity [31].

In this article, we use the cortically constrained distributed source modeling
framework to illustrate how fMRI information can be used to assist MEG/EEG
localization and what are the potential benefits and pitfalls of this approach. We then
briefly discuss the further modeling efforts and extensions of the fMRI-weighted
MNE that have been presented in the literature. We also elaborate on the practical
aspects of designing a successful MEG/EEG/fMRI experiment, data analysis, and
interpretation of the results. The neurovascular coupling, technical challenges, and
opportunities for further optimizing the integration are also described. As the MEG
and EEG signals have a similar physiological origin, but their sensors have different
sensitivity profiles, the combination of the two yields theoretically the best locali-
zation results. However, the EEG is substantially more sensitive to the volume
conductor model: the poorly conducting skull distorts and smears the electric scalp
potentials, whereas the currents in the skull and scalp make only a minor contribu-
tion to MEG [23]. In what follows, all models and methods could be formulated in
terms of both MEG and EEG measurements, but we use MEG as our main example
due to the less error-prone forward model. Ultimately, we expect to develop
multimodal MEG/EEG/fMRI neuroimaging methodology for characterizing
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spatiotemporal functional connectivity in large-scale neural networks of the human
brain with high sensitivity and accuracy.

2 Methods

2.1 Minimum-Norm Estimates

Under the quasi-static approximation of Maxwell’s equations [22], the measured
MEG signals and the underlying current source are related by a linear
transformation:

Y tð Þ ¼ AX tð Þ þ N tð Þ, ð1Þ

where Y(t) is an m-dimensional vector containing measurements from m sensors at
time instant t; X(t) is a 3n-dimensional vector denoting the unknown amplitudes of
the three components of n current sources; A is the gain matrix representing the
mapping from the unit dipole components to MEG sensors, i.e., the solution of the
forward problem; and N(t) denotes noise in the measured data. For typical analysis
of evoked responses, the measurement noise N(t) can be assumed to be Gaussian
with zero mean and a time-independent spatial covariance matrix C, which can be
estimated from the data. The number of sensors is some hundreds, and any realis-
tically spaced grid covering the cortex requires thousands of source points. Thus, the
inverse problem is severely underdetermined as the number of equations m (sensors)
is an order of magnitude smaller than the number of unknowns 3n (source ampli-
tudes). With the presently available accurate reconstructions of cortical surfaces
[8, 15, 16], the locations of the sources can be constrained according to the
individual anatomy. If we assume that apical dendrites of pyramidal cells, which
are mainly oriented perpendicular to the cortical mantle, are the principal generators
of the MEG signals [40], we can also fix the orientation of the sources and reduce the
number of unknowns from 3n to n (see, Fig. 2).

If we further assume that the source amplitudes have a Gaussian a priori
distribution with a time-independent covariance matrix R, we obtain the maximum
a posteriori (MAP) estimate or the ℓ2 minimum-norm solution, which is linearly
related to the measurements [9]:

XMNE tð Þ ¼ RAT ARAT þ λ2C
� ��1

Y tð Þ ¼ λ�2RAT λ�2ARAT þ C
� ��1

Y tð Þ
¼ WY tð Þ, ð2Þ

where λ2 is a regularization parameter, which is introduced to avoid noise amplifi-
cation in the matrix inversion, and the superscript T indicates matrix transpose. The
parameter λ2 can be estimated from the amplitude signal-to-noise ratio (SNR) of the

whitened data: λ2 ¼ tr eAReAT
� �

=tr Im�mð Þ=SNR2
. Here tr(�) denotes the trace of a
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matrix. The whitened forward operator is eA ¼ C�1=2A, and Im � m is the whitened
(unit) noise covariance. SNR is an estimate for the SNR of the data.

The solution XMNE(t) in Eq. (2) provides the values of the current amplitudes that
best fit the MEG measurements in the least squares sense, with the additional
constraint of having the minimal (Euclidean) ℓ2 norm. It may be desirable to further
transform the resulting current distribution estimate into a statistical map that takes
into account the spatial distribution of fluctuations in the source estimate caused by
noise [10]. To this end, we need to consider the variance of the linear inverse
estimates, when the data consists of noise only:

w2
k ¼ WCWT

� �
kk
¼ fWfWT

� �
kk
: ð3Þ

For fixed-orientation sources, we now obtain the noise-normalized activity esti-
mate for the kth dipole and tth time point as the ratio

Fig. 2 (a) A surface model
of the left cortical
hemisphere gray-white
matter boundary
reconstructed by FreeSurfer.
(b) A close-up view of the
sensorimotor cortex,
showing the dipole sources
as red arrows, oriented
perpendicular to the cortical
surface
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XdSPM
k tð Þ ¼ XMNE

k tð Þ
wk

: ð4Þ

The dSPM thus normalizes the actual MNE by the standard deviation of the
fluctuation of the MNE that results from inverting data, which consists of noise only.

To incorporate the spatial information from fMRI, it has been suggested that
MEG source locations coinciding with significant fMRI activity were given a higher
variance in the a priori source covariance matrix R [10, 32]. Specifically, the source
covariance matrix was assumed diagonal, and the fMRI weighting for source
location k was encoded as:

Rkk ¼
σ21 if k active in fMRI

σ20 otherwise

(
ð5Þ

A weighting ratio of 10:1 between active (σ21) and inactive cortical locations (σ
2
0) has

been suggested by a simulation study [32].

Fig. 3 (a) Simulated sources on the cortical surface with source orientations normal to the cortical
sheet. (b) Simulated MEG measurements corresponding to the source configuration of (a). (c) The
resulting cortically constrained MNE. (d) The noise sensitivity normalized MNE (dSPM)
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2.2 Example: MNE Analysis and the Effect of fMRI
Weighting

Figure 3a shows a simulated source consisting of two patches of activated cortex,
located approximately at motor and auditory areas. As dictated by physics of quasi-
static magnetic fields generated by dipolar current sources in a nearly spherical
volume conductor, MEG is mostly sensitive to sources in the sulcal walls. The
auditory cortical source is located entirely in the wall of the Sylvian fissure, whereas
the motor cortical source extends over the precentral gyrus, thus giving less optimal
summation of the MEG fields. This is readily visible in Fig. 3b: the dipolar field
pattern from the auditory cortex is much more prominent. This translates directly to
the MNE of Fig. 3c: even though originally of similar amplitude, the motor cortical
source estimate is weaker, and the gyral part of the source is missing. As smaller
more superficial sources can produce similar MEG field as larger deep sources, the
minimum-norm constraint has a tendency to push the estimates toward the more
superficial parts of the brain surface. However, as the superficial parts are also more
prone to noise fluctuations in the inverse estimates, the effect of the noise normal-
ization of dSPM counteracts this and pushes the source maxima deeper (Fig. 3d).

Continuing with the same simulated source, Fig. 4 demonstrates the effects of
incorporating an fMRI weighting. The first row shows the case where the fMRI
weighting matches closely to the true source. Consequently, both sources are
recovered, and the extra ripples are suppressed. The second row corresponds to the
case where the motor cortical activity is not visible in the fMRI. Then, the fMRI
weighting also abolishes this source from the MEG inverse solution with the selected
MNE threshold. For the last row, we demonstrate a case where an extra activation
cluster is present in the fMRI, leading to some false-positive sources at the
corresponding fMRI-weighted MNE.

Note that for all the cortical images, the threshold was set to be 30% of the
maximum amplitude, and the full color scale was used to display the sources or
estimates on the cortical surface. This selection is rather arbitrary and has an obvious
effect on the visual appearance of the estimates to be, for example, apparently more
focal.

3 Discussion

3.1 Developments of the fMRI-Weighted MNE

As shown by simulation examples, the main problem with the simple “fMRI-
weighted MEG” is the relatively strong bias toward the fMRI data. Biophysically,
we have reasons to expect that the “active” areas detected by MEG and fMRI may be
only partially overlapping. On one hand, the temporal synchronization and summa-
tion of the neuronal activity on a millisecond scale is crucial for elicitation of a
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measurable MEG response. On the other hand, fMRI hemodynamic response allows
the summation of activity over seconds. For instance, a sharp transient stimulus may
produce a response clearly visible in MEG but may not be strong enough to push the
vascular system to produce a robust hemodynamic response. On the contrary, weak
but asynchronously sustained activity may temporally integrate to a measurable
fMRI response but remain undetected by MEG. In addition to temporal summation,
MEG and fMRI have different spatial sensitivities: fMRI has no spatial cancellation
due to neuronal currents having incoherent orientations as MEG [1], and it has equal
sensitivity for detecting activity in gyri and sulci.

Different from using fMRI as a spatial prior, Daunizeau and colleagues propose a
symmetric approach for multimodal integration of fMRI and MEG/EEG data by
constructing a model where the spatial activation profile in each anatomically
defined parcel of the cortex is assumed to be similar in both modalities [11]. Activa-
tions, which are not present in both modalities, are modeled as Gaussian residuals,
allowing for natural discrepancies between the different types of data. The model
becomes computationally rather complex as variables between modalities become
spatiotemporally entangled. Although the explicit modeling of coupled and

Fig. 4 First row: the fMRI-weighted MNE in case where the fMRI prior information is concordant
with the MEG sources. Second row: the motor cortical source is missing from the fMRI map. Third
row: a superfluous activation cluster is present in the fMRI map near the auditory cortical source
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uncoupled sources is appealing from a theoretical viewpoint, it is somewhat ques-
tionable how desirable it is to let MEG/EEG data substantially influence the esti-
mated waveform of the fMRI hemodynamic response. Henson and colleagues
maintain the asymmetry between modalities but consider more flexible fMRI priors
while preserving the basic Gaussian model structure, which renders computations
highly tractable [27]. The work expresses the prior covariance as multiple variance/
covariance components Ri: R ¼ ΣiλiRi, each with an adaptive weight parameter λi.
The covariance components Ri are generated based on fMRI analysis, whereas
appropriate values for the covariance component weights bλi are estimated from the
MEG/EEG data with the parametric empirical Bayesian (PEB) method. Once the
prior covariance R is fixed to the PEB estimate bR ¼ Σi

bλiRi , the solution for the
dipole amplitudes reduces to the fMRI-weighted MNE. The obvious question is then
how to partition the fMRI activation map into different variance/covariance compo-
nents Ri – the limiting cases are that all locations determined active form one
diagonal variance component R1, and the inactive form another R0, in the spirit of
the original fMRI-weighted MNE (see, Eq. (5)) or that each fMRI-activated location/
cluster is assigned to an individual variance component. Moreover, off-diagonal
covariance terms in the components can be also introduced: we may have an a priori
reason to believe that, for instance, left and right primary auditory cortices should be
activated in a similar fashion if identical stimulation is delivered to both auditory
pathways. As the number of ways in which the fMRI data can be split into
covariance components is rather large, the practical question of how to generate a
reasonable prior structure of appropriate complexity remains an important challenge.
The fMRI-Informed Regional Estimation (FIRE) method [41] combines elements of
the symmetric approach and the automatic relevance determination (ARD)
approaches [19, 39, 45, 50]. FIRE also utilizes the anatomical parcellation of the
cortex [17] and assumes that both electromagnetic and hemodynamic activity have a
common spatial profile at each parcel but independent temporal waveforms. The
overall source variance is adaptively estimated for each region, the ARD structure
allowing adequate variability of source strengths for each parcel and letting thus
non-active regions to be suppressed. Different from the symmetric approach, the
FIRE approach assumes that the hemodynamic responses are directly observed.
Thus, FIRE is computationally tractable and conceptually simple. The result is that
for those regions where clear fMRI responses are detected, the MEG source local-
ization leans on the available fMRI spatial information, and if fMRI information is
missing but MEG signals detected, the localization results are similar to the
basic MNE.
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3.2 Experimental Design, Model Comparison and Validation,
and Neurovascular Coupling Models

As mentioned above, different physiological origins of the signals introduce a
natural challenge in how to design the experiment such that multimodal data fusion
is meaningful. In MEG/EEG, stimuli eliciting transient responses may be optimal for
high temporal resolution MEG/EEG measurements, while delivering “continuous”
trains of stimuli may be more appropriate to drive the vascular system into a steady
state for high contrast-to-noise ratio (CNR) fMRI data. Accordingly, the integrative
analysis of the data requires some special attention. The fMRI weighting prior for the
MNE, by definition, should encode information that we have about the phenomenon
before (a priori) we see the MEG/EEG data. Thus, determining the fMRI weighting
for the MNE should be based solely on the fMRI data. Strictly speaking, it is
incorrect to tweak the fMRI prior after seeing the results of the fMRI-weighted
MNE. However, saying that the (fMRI) prior should not depend on the (MEG/EEG)
data to be modeled does not mean that the prior cannot have unknown parameters
that are estimated from the data, such as the prior covariance weights λi in the PEB
approach [27]. The symmetrical approach [11, 27] and the FIRE approach [41]
partially avoid this problem as the prior is mainly fixed by the cortical parcellation
and other explicit modeling assumptions about the spatial concordance of the
electromagnetic and hemodynamic responses.

If multiple fMRI-MEG/EEG integration methods are applied to a given dataset,
what can be said about the validity or accuracy of these models? Can we compare the
models and select the most likely one in some sense? There are criteria for Bayesian
model comparison and selection such as the model evidence, as utilized in [27],
which can be useful for evaluating the model complexity and guiding the model
selection process. In principle, due to the MEG/EEG inverse problem, there is no
“true” solution that can be singled out by any statistical test – no matter how much
MEG/EEG data we collect, or how realistic we make the volume conductor (head)
model, there will be multiple source configurations that fit equally well to a given set
of MEG/EEG data. Even in the presence of almighty Bayes, the silent sources
remain silent. If the hypothetical silent MEG/EEG source configuration is detected
by fMRI and incorporated into the spatial prior, we do not gain further information of
its electromagnetic characteristics – the product between an inverse operator and
zero measurements (due to silent MEG/EEG source) still yields zero source esti-
mates. Obviously poor models can be detected by comparing, e.g., the data fit of a
given model against a standard model, such as the MNE, which operates on the
minimal assumptions. However, it is unlikely that any model will yield a substan-
tially better data fit for the MEG/EEG data, since the MNE is also an optimal
estimator in least squares sense. Some forms of cross-validation might also be
applied to test and compare prediction errors and to detect over-fitting.

188 F.-H. Lin et al.



3.3 Neurovascular Coupling: The Physiological Bases
of Integrating fMRI and MEG Source Modeling

A better understanding of neurovascular coupling is of fundamental importance in
integrating hemodynamic and neuronal activity data (for review, see [25, 35]).
BOLD contrast fMRI has been suggested to be closely related to the input synaptic
activity [34] and to neuronal output spiking [24, 37]. When postsynaptic neuronal
signals are highly synchronous, they constitute the magnetic fields measured by
MEG in guinea pigs [40, 43]. Invasive recordings can directly measure the
neurovascular coupling and therefore offer more detailed information for further
testing and validating the noninvasive models. Animal models and intracranial
measurements in humans will be needed to provide a backbone for the development
of noninvasive imaging approach, which will always rest on some weighty modeling
assumptions due to the indirect nature of observations. Population-level models of
the neurovascular coupling can also provide insights and predictions about the
noninvasive data in various circumstances [4, 47].

A linear relationship between the strength of neuronal signal and hemodynamic
signal has been suggested by studies in the human visual system [24, 38, 43, 46, 49]
and the motor system [42]. However, using a rodent model, a nonlinear relationship
between the strength of the local hemodynamic response and neuronal activity has
also been reported [12]. Such hemodynamic output may be explained as the spatio-
temporal convolution of local electrophysiological responses [13]. A more compli-
cated correlation structure between MEG and BOLD fMRI responses was also found
in the human auditory system: the same auditory clicks can elicit transient and
sustained MEG responses with the transient response more closely related to the
BOLD fMRI signal [21]. Taken together, the mechanism through which the MEG
and fMRI signals become coupled, as well as the ensuing degree of observed
correlation in the macroscopic responses, remains only partially elucidated.

From the MEG/EEG source modeling perspective, it is highly motivated to
explore and exploit the fMRI data as a spatial prior to complement the non-unique
nature of estimating neuronal current source distributions using extracranial record-
ings [26]. Such a data fusion technique has been supported by studies showing
reliable correlations between hemodynamic responses and neuronal activity as
discussed above: brain areas showing significant hemodynamic responses measured
by fMRI are expected to be engaged in corresponding neuronal activity, the syn-
chronous synaptic components of which are measured by MEG. This rationale is
also supported by studies showing that MEG and fMRI can co-localize to the same
cortical areas in the visual system [7] and motor system [18]. However, it should be
noted that the spatial distribution between electrophysiological activity and hemo-
dynamic responses is not in a complete agreement. In the somatosensory area, the
distance between the center of fMRI map and the center of the electrophysiological
maps can be separated by approximately 1 cm [14]. In summary, further
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investigation of the neurovascular coupling should provide support for developing
the mathematical models of integrating fMRI and MEG data for spatiotemporally
sensitive and functionally specific detection of human brain activation.

In conclusion, the field of multimodal integration of noninvasive imaging tech-
nologies such as MEG/EEG and fMRI is still in a rather early stage, and the
methodology will continue to evolve as more data about the physiological origins
of the signals are accumulated.
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Multiscale Modeling of EEG/MEG
Response of a Compact Cluster of Tightly
Spaced Pyramidal Neocortical Neurons

Sergey N. Makarov, Jyrki Ahveninen, Matti Hämäläinen, Yoshio Okada,
Gregory M. Noetscher, and Aapo Nummenmaa

1 Introduction

Electroencephalography (EEG) [19, 25] and magnetoencephalography (MEG) [7]
noninvasively record electric potentials and magnetic fields, respectively, due to
neural currents. These methods are used as tools in clinical research, in basic
neuroscience, and as diagnostic and monitoring measures in clinical practice. In
addition, EEG, as well as invasive neurophysiological recordings, may be applied to
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enable brain-computer interfaces or BCIs (see, e.g., [1, 12, 26]) with the goal of
mitigating various neurological disabilities [34].

In the most demanding clinical evaluations, EEG and/or MEG is followed by
direct recordings with subdural or intraparenchymal depth electrodes. A modern
high-resolution intracranial recording technique – intracranial electroencephalogra-
phy or iEEG – is blossoming in various fields of human neuroscience [21]. At
present, intracortical arrays with electrodes as small as 20 μm in size and with
25–100 μm electrode spacings are designed and tested (see, e.g., [37]). Local field
potential (LFP) electrodes are, for example, 50-μm-diameter tungsten microwires
[36]. A similar tendency toward fine resolution is observed for more accurate MEG
measurement techniques [9, 24].

The ultimate goal of neurophysiological recordings of any type is an estimation of
the sources generating the measured signal patterns. These sources are electric
currents flowing in the micrometer-size sparse neuronal arbor; consider, for exam-
ple, the arbor of pyramidal neurons in layers II and III of the neocortex shown in
Fig. 1a. A large group or a cluster of such synchronously activated cortical neurons
shown in Fig. 1b is the basic block in the analysis of EEG and MEG. At present,
direct modeling of such extremely complicated current distributions is not possible
with commonly used numerical methods, i.e., the finite element method, the bound-
ary element method, and the finite difference method.

Therefore, a lumped macroscopic electric-current dipole model shown in Fig. 1c,
which consists of a closely spaced or coinciding source and sink of electric current in a
conducting medium, has traditionally been used as a source substitute for the cluster of
synchronously activated cortical neurons in the analysis of EEG and MEG [7, 15, 19,
25]. Several excellent open-source software packages for the dipole-based EEG/MEG
analysis are available, including Brainstorm [29], FieldTrip [20], and MNE [5].
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Fig. 1 (a) Computer reconstruction of neuronal arbor made of clones of a realistic pyramidal
neuron ID NMO_86955 from the NeuroMorpho.Org inventory Version 7.5 in layers II and III with
a density of approximately 150 neurons per mm2 [2]. For this work, we did not study the field
originating in layer V even though the large PNs in this layer can also produce strong electric and
magnetic fields locally inside the brain. (b) A neuronal cluster with an area of approximately
16 mm2 and 2450 individual neurons reconstructed in layers II and III of the anterior central gyrus
for subject #101309 of the Human Connectome Project [31]; see also the Population Head Model
Repository [11, 30]. (c) Equivalent electric-current dipole model located at the “electric” gravity
center of the cluster. GM stands for gray matter, WM for white matter, and CF for cerebrospinal
fluid conductivity boundaries
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This model is indeed a physically valid substitute for any ensemble of micro-
scopic dipolar current sources in a homogeneous conducting medium and in the far
field, i.e., at distances significantly exceeding the cluster size. However, when
irregular conductivity boundaries are present in the immediate vicinity of the cluster,
they may disturb the current distribution. As a result, even the integral far-field
response might be different from that of the equivalent dipole.

The fast multipole method or FMM [6, 23] enables computing the response of
many millions of microscopic electric sources for a comparable or even larger
number of observation or target points in a short amount of time. A proper coupling
of the fast multipole method and the boundary element method – the BEM-FMM
approach suggested in [8, 13, 14] – further enables computing the corresponding
induced charge distribution at tissue conductivity boundaries which, in turn, results
in obtaining precise current, voltage, and magnetic field distributions at the bound-
aries and everywhere in space.

Using the BEM-FMM, one may be in position to depart from the simplified
dipole model in Fig. 1c toward a more realistic computational model which follows
actual microscopic electric current flow in every dendritic or axonal branch of a
neuron as shown in Fig. 2a, b. Along with this, current splitting and combining
according to Kirchhoff’s current law or KCL is enforced as illustrated in Fig. 2c.

Moreover, one may be in position to model a large group of such tightly spaced
neurons firing simultaneously, i.e., directly model the entire compact cluster of
cortical neurons. Such a cluster may be located anywhere in the cerebral cortex.
The realistic cluster size may be as large as 10,000 individual neurons, while the
overall computation times do not exceed several minutes on a standard server.

This study is aimed to apply the developed method to answer the following
question: how well does the conventional dipole model approximate a cluster of

apical
dendrites

dendrites

axon

a) b)

soma

c)

   current 
conservation 
      law

Fig. 2 (a) Morphology of neocortical pyramidal neuron ID NMO_86955 from the NeuroMorpho.
Org inventory Version 7.5. (b) Realistic current paths within the microscopic arbor are schemati-
cally indicated by small circles. The circles are simultaneously the poles (9318 in the present case)
or the sources and sinks of elementary current sources – microscopic electric dipoles – situated
within the firing arbor. (c) Current conservation law illustrated by different sizes of the poles –
microscopic current dipole strengths. We assume the same current inflow/outflow at all synaptic
connections (arbor terminations) of apical dendrites with the total current accumulating toward
the soma
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neurons with an area of 16–25 mm2 (1/7500 to 1/4800 of the total cerebral cortex
area) when approaching the cortical boundaries?

2 Materials and Methods

2.1 Gyrus Cluster Construction and Analysis

Due to the geometry and electrophysiological characteristics of cortical neurons, a
gyrus cluster, which is essentially parallel to the skull surface, is expected to generate
a strong EEG response but a weak MEG response. Figure 3a–c shows one
reconstructed gyrus cluster with an area of approximately 16 mm2 and 2450 indi-
vidual pyramidal neurons (ID NMO_86955 from the NeuroMorpho.Org) located in
layers II and III of the anterior central gyrus for subject #101309 of the Human
Connectome Project [31]. A realistic neuronal density of approximately 150 neurons
per mm2 [2] has been implemented. To do so, we cloned the individual neuron

a)

c)

b)

WM

GM

Fig. 3 (a) Position of the gyrus cluster beneath the gray matter shell along with the coronal and
sagittal observation planes. (b) Zoomed in position of the cluster between gray matter and white
matter shells – the nearest macroscopic conductivity boundaries. (c) Zoomed in display of the
cluster topology with a length of approximately 4 mm. Pale ivory color corresponds to apical
dendrites
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model shown in Fig. 2a for a large number of locations between the white matter
(WM) and gray matter (GM) surfaces, aligned the neurons with the surface normal
vectors, then moved them toward a position that was approximately 1 mm away
from the WM triangular surface in the direction of its outer normal vector.

The microscopic neural origin of the primary currents in EEG/MEG is thought to
be the aggregate of postsynaptic longitudinal currents flowing inside the apical
dendrites of the large, spatially aligned neocortical pyramidal neurons or PNs
[18, 27]. We therefore assumed that the synchronized electric currents flow only in
the apical dendrites of the neurons, which are shown pale ivory in Fig. 3c. The
longest apical dendrite branch has a length of approximately 500 μm. We also
assumed equal outflowing currents at all available synaptic connections with the
total current accumulated (via accurately traversing the dendritic tree) and then
terminated at the soma.

The apical dendrite branches of a single neuron have been divided intoM¼ 2387
individual straight segments – microscopic current dipoles – each with an average
length of 1.2 μm. The corresponding poles are seen in Fig. 2c. This detailed model is
somewhat superfluous for EEG or iEEG purposes since all intermediate current
sources along a branch will cancel out and only the end synapse sources and the
soma source of opposite polarity will remain significant. However, it is meaningful
for MEG purposes since the entire current path along the neuronal arbor will be
reflected in the measurements. The total number of microscopic dipole sources in the
present cluster is approximately 6 M.

To choose a realistic value of current dipole moment density q0 (current dipole
moment per unit cross-sectional area of the active cortex) in the source region, we
used the value q0¼ 1 nA ∙m/mm2 found by Murakami and Okada [17]. This value is
invariant across the cerebral cortex, hippocampus, and cerebellum over a wide
phylogenetic scale from reptiles to humans. This value also agrees with the dipole
moment density estimated from a neural current magnetic resonance imaging (MRI)
study [28]. When the microscopic dipole vector length is dm and its relative weight
(equal to one at synapses and equal to 18 at the soma in the present case) is wm, an
expression for the resulting current constant I0 follows from

Neurons
mm2 � I0

XM
m¼1

wmdm ¼ q0 ð1Þ

which yields I0 ¼ 1.8 nA.
The moment of an equivalent lumped dipole shown in Fig. 1c was found as a

vector sum of all individual dipole moments in the cluster. The center of an
equivalent lumped dipole was found as the weighted average of all individual dipole
centers in the cluster. The weights are the magnitudes of individual dipole moments.

Finally, the underlying macroscopic head model used surface meshes for seven
brain compartments of the Population Head Model Repository [11, 30]. Further, the
surface mesh was refined (oversampled) using a 1 � 4 barycentric triangle
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subdivision, and then surface-preserving Laplacian smoothing [32, 33] was applied.
This resulted in the surface mesh resolution (edge length) of 0.75 mm in the cortex.

Two measurable output quantities obtained via numerical computations are the
electric potential for EEG/iEEG and the magnetic field for MEG. We used a linear
scale for all surface plots including inner skull or pia mater surface, skin surface, and
a surface at the distance of 18 mm from the skin (a “magnetometer” surface used for
MEG purposes only). For the surface plots, only the normal component of the
magnetic field recorded by the flat MEG magnetometers was plotted and analyzed.

For volumetric plots corresponding to intracranial recordings close to the cluster,
larger potential/field variations may be observed. In the last case, we used the
log-modulus transformation [10]

φdB ¼ sign φð Þ ∙ 20 log 10
φ
φ0

þ 1

� �
,φ0 ¼ 0:4 μV ð2Þ

A similar logarithmic transformation but without the additive constant equal to
one was applied to the magnetic field magnitude with B0 ¼ 0.4 pT.

To analyze the surface/interface data, we used two error measures to distinguish
between topography and magnitude errors, respectively. These are the relative
difference measure or RDM defined here as [3, 16, 22, 35]:

E ¼ φ1

φ1k k �
φ2

φ2k k
����

���� ð3Þ

and the magnitude (MAG) error defined as [16]:

MAG ¼ φ1k k
φ2k k ð4Þ

with φ1 being the cluster potential.
Along with this, we computed the ratio of maximum potential differences. The

identical definitions were applied for the normal component of the magnetic field at
the interfaces.

2.2 Sulcus Cluster Construction and Analysis

A sulcus cluster, which is essentially perpendicular to the skull surface, is expected
to generate a weak EEG response but a strong MEG response. Figure 4a–c shows
one reconstructed sulcus cluster with an area of approximately 25 mm2 and 3175
individual pyramidal neurons (ID NMO_86955 from the NeuroMorpho.Org) with
approximately 8 M microscopic dipole sources located in layers II and III of the
superior frontal sulcus for the same subject #101309 of the Human Connectome
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Project [31]. A slightly lower neuronal density of approximately 112 neurons per
mm2 was used. However, for the current dipole moment density, we again used the
value q0¼ 1 nA ∙m/mm2 found by Murakami and Okada [17] so that the total dipole
moment of the cluster appears approximately 25/16 times greater than in the
previous case. This was done to compensate for a larger distance from the skull
surface, which is larger in the present case by a factor of approximately 5/4.
Otherwise, all other parameters and the method of analysis remain the same.

2.3 Modeling Algorithm

The complete mathematical algorithm of the boundary element fast multipole
method, along with justification examples, will be described elsewhere. The present
computations use the most recent version of the FMM library originally developed
by Gimbutas and Greengard [4] and run on an Intel Xeon E5-2683 v4 CPU
(2.1 GHz) server with 256 GB RAM, Windows Server 2008 R2 Enterprise,
implemented on the MATLAB 2018a platform. Apart from the computations of
static model-specific parameters – potential surface integrals for macroscopic
boundaries – the corresponding iterative solution reaches a relative residual of

a)

c)

b)

WM

GM

Fig. 4 (a) Position of the sulcus cluster beneath the gray matter shell along with the coronal and
sagittal observation planes. (b) Zoomed in position of the cluster between gray matter and white
matter shells – the nearest macroscopic conductivity boundaries. (c) Zoomed in display of the
cluster topology with a length of approximately 2 mm. Pale ivory color corresponds to apical
dendrites
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10�3 in approximately 80 sec and in ten iterations. These data are for the macro-
scopic head model with approximately 3 M facets and 6–8 M individual microscopic
dipole sources.

3 Results

3.1 Gyrus (Nearly Horizontal) Cluster

Figure 5 shows the data for the electric potential. The left column corresponds to the
cluster model, while the right column corresponds to the equivalent macroscopic
current dipole. Figure 5a,b displays the volumetric potential distribution in the
immediate vicinity of the cluster and the dipole, respectively. A logarithmic scale
in decibels given by Eq. (2) is used. As expected, the dipole response is “sharper,”
i.e., more localized in space, especially close to the pia or inner skull surface. This
circumstance potentially leads to a larger RDM error given by Eq. (3), although
“centers of gravity” of both responses nearly coincide, as shown by the potential
distributions on the pia (Fig. 5c,d) and skin (Fig. 5e,f) surfaces, respectively. It is
worth noting that the maximum values of the surface potential differ by a factor of
approximately two for the pia mater.

Figure 6 shows the corresponding data for the magnetic field. The left column
corresponds to the cluster model, while the right column corresponds to the equiv-
alent macroscopic current dipole. Figure 6a,b displays the volumetric distribution of
the magnitude of the total magnetic field in the immediate vicinity of the cluster and
the dipole, respectively. The cluster response is more inhomogeneous. A logarithmic
scale in decibels given by Eq. (2) is used. Figure 6c–f shows the normal surface
component (in the direction of the outer normal vector) of the magnetic field
recorded by a magnetometer for the pia and skin surfaces, respectively. We observe
a modest change in the field distribution pattern.

3.2 Sulcus (Predominantly Vertical) Cluster

Figure 7 shows the data for the electric potential. The left column corresponds to the
cluster model, while the right column corresponds to the equivalent macroscopic
current dipole. Figure 7a,b displays the volumetric potential distribution in the
immediate vicinity of the cluster and the dipole, respectively. A logarithmic scale
in decibels given by Eq. (2) is used. Again, the dipole response is somewhat
“sharper,” i.e., more localized in space. A case in point is an isocurve corresponding
to 38 dB in Fig. 7a,b. Potential distributions on the pia (Fig. 7c,d) and skin (Fig. 7e,f)
surfaces visually look similar, at least at first sight.

It is worth noting that the maximum surface potential differences appear to be
higher for the cluster, which is exactly the opposite of the previous case.
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Figure 8 shows the corresponding data for the magnetic field. The left column
corresponds to the cluster model, while the right column corresponds to the equiv-
alent macroscopic current dipole. Figure 8a,b displays the volumetric distribution of
the magnitude of the magnetic field in the immediate vicinity of the cluster and the
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Fig. 5 Electric potential data for the gyrus cluster (left column) versus the equivalent-dipole data
(right column). (a, b) Volumetric potential distribution in the immediate vicinity of the cluster and
the dipole, respectively, using a logarithmic scale. (c, d) Surface potential distribution on the inner
skull (pia) surface using a linear scale. (e, f) Surface potential distribution on the skin surface using a
linear scale
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dipole, respectively. The cluster response is more inhomogeneous. A logarithmic
scale in decibels given by Eq. (2) is used. Figure 8c–f shows the normal surface
component (in the direction of the outer normal vector) of the magnetic field
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Fig. 6 Magnetic field data for the gyrus cluster (left column) versus the equivalent-dipole data
(right column). (a, b) Volumetric field magnitude distribution in the immediate vicinity of the
cluster and the dipole, respectively, using a logarithmic scale. (c, d) Normal magnetic field
distribution on the inner skull (pia) surface using a linear scale. (e, f) Normal magnetic field on
the skin surface using a linear scale
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recorded by a magnetometer for the pia and skin surfaces, respectively. We observe a
visual similarity in the field distribution patterns.
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Fig. 7 Electric potential data for the sulcus cluster (left column) versus the equivalent-dipole data
(right column). (a, b) Volumetric potential distribution in the immediate vicinity of the cluster and
the dipole, respectively, using a logarithmic scale. (c, d) Surface potential distribution on the inner
skull surface using a linear scale. (e, f) Surface potential distribution on the skin surface using a
linear scale
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3.3 Quantitative Error Measures

Tables 1 and 2 summarize data for the RDM error given by Eq. (3), logarithmic
magnitude (lnMAG) error given by Eq. (4), and the error in the maximum swing of
the electric potential or the normal surface magnetic field, respectively, for both
cases. For the normal magnetic field, we additionally include data for a magnetom-
eter surface that was chosen to be located at a distance of 18 mm from the skin
surface. Quite surprisingly, a relatively large topographic error is generated for the
electric potential, despite a good visual agreement observed in Figs. 5 and 7,
respectively.

4 Conclusions

When the absolute response values are ignored and only the response topology or
distribution in space is concerned, the representative error measure is the RDM error
marked blue in Tables 1 and 2, respectively. It follows from these tables that,
quantitatively, the MEG data generally indicate a better agreement between the
distributed multiscale neuronal cluster model and the equivalent macroscopic
lumped-dipole model. This is especially true for the magnetometer surface separated
from the skin and for the most important case of the MEG sulcus cluster. The MEG

Table 1 Quantitative potential/normal magnetic field deviations: gyrus cluster of 16 mm2

Surface 

Potential (from Fig. 5) Normal magnetic field (From Fig. 6) 

RDM 
(shape) 

error, , % 

Ratio of 
max.potential 

diff. 
(cluster/dipole)

MAG 
metric 

RDM 
(shape) 

error, , %

Ratio of 
max.field diff. 

(cluster/dipole) 

MAG 
metric 

Pia matter 27 0.6 0.8 74 0.8 0.8 
Skin 58 0.8 0.8 36 1.0 1.0 

18 mm from 
skin surface 31 1.0 1.1 

Table 2 Quantitative potential/normal magnetic deviations: sulcus cluster of 25 mm2

Surface 

Potential (from Fig. 7) Normal magnetic field (from Fig. 8) 

RDM 
(shape) 

error, , % 

Ratio of 
max.potential 

diff. 
(cluster/dipole)

MAG 
metric 

RDM 
(shape) 

error, , %

Ratio of 
max.field diff. 

(cluster/dipole) 

MAG 
metric 

Pia matter 27 1.7 2.1 18 1.8 2.1 
Skin 46 2.1 2.3 5 2.3 2.3 

18 mm from 
skin surface 9 2.3 2.3 
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RDM error also generally decreases when the distance from the cluster increases.
This is in contrast to the EEG/iEEG data where the RDM error might even increase
(!) when moving from the pia surface to the skin surface (Table 1).

As to the absolute response values, we observe from Figs. 5, 6, 7, and 8, from
Tables 1 and 2, and from the relevant modeling data that the EEG/iEEG lumped-
dipole model

(i) Slightly overestimates the maximum iEEG/EEG response for the gyrus cluster
(ii) Significantly underestimates the maximum iEEG/EEG response for the sulcus

cluster

On the other hand, the MEG dipole model

(i) Is in good agreement with the cluster model on the skin surface and the
magnetometer surface (18 mm away from skin) for the gyrus cluster

(ii) Significantly underestimates the maximum MEG pia/skin/magnetometer sur-
face response for the sulcus cluster.

These observations were confirmed by running several additional relevant cases.
Since the developed BEM-FMM algorithm is quite fast, it might be possible in

future to replace the entire macroscopic dipole approach by the distributed neuronal
arbor modeling.
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Robustness in Neural Circuits

Jeffrey E. Arle, Longzhi Mei, and Kristen W. Carlson

1 Introduction: Stability and Resilience – “Robustness”

Complex systems are found everywhere – from scheduling to traffic, food to climate,
economics to ecology, the brain, and the universe. Complex systems typically have
many elements, many modes of interconnectedness of those elements, and often
exhibit sensitivity to initial conditions. Complex systems by their nature are gener-
ally unpredictable and can be highly unstable.

However, most highly connected complex systems are actually quite stable and
resistant to disruption from minor changes in parameters [1]. This is a concept
originating from Bernard and Cannon (homeostasis) and now is a central hypothesis
of “robustness” in theoretical biology [2–5]. A more contemporary review by
Demongeot and Demetrius [6] captures the relationship between the concepts of
robustness, entropy, and complexity:

The hypothesis that a positive correlation exists between the complexity of a biological
system, as described by its connectance, and its stability, as measured by its ability to recover
from disturbance, derives from the investigations of the physiologists, Bernard and Cannon,
and the ecologist Elton. Studies based on the ergodic theory of dynamical systems and the
theory of large deviations have furnished an analytic support for this hypothesis. Complexity
in this context is described by the mathematical object evolutionary entropy, stability is
characterized by the rate at which the system returns to its stable conditions (steady state or
periodic attractor) after a random perturbation of its robustness. This article reviews the
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analytical basis of the entropy — robustness theorem — and invokes studies of genetic
regulatory networks to provide empirical support for the correlation between complexity and
stability. Earlier investigations based on numerical studies of random matrix models and the
notion of local stability have led to the claim that complex ecosystems tend to be more
dynamically fragile. This article elucidates the basis for this claim which is largely incon-
sistent with the empirical observations of Bernard, Cannon and Elton. Our analysis thus
resolves a long-standing controversy regarding the relation between complex biological
systems and their capacity to recover from perturbations. The entropy-robustness principle is
a mathematical proposition with implications for understanding the basis for the large
variances in stability observed in biological systems having evolved under different envi-
ronmental conditions.

Stability is characterized by measures of how perturbing initial conditions or
default parameters result in permanent deviation from baseline behavior vs a ten-
dency to return toward initial conditions (e.g., a basin of attraction) [7–9]. Biological
robustness is the ability for a system to recover from disturbing its natural healthy
equilibrium into deleterious regions of its parameter space [7, 10–13]. Mathematical
analyses in nonlinear dynamical systems theory provide a theoretical foundation for
robustness theory [14–16]. Since the advent of control theory, engineers have
emphasized negative feedback as a restoring mechanism [17–20]. Much more
empirical work at many biological systems levels is needed to marry theory and
practice [13, 21–26].

On the practical side, by way of example, the medical and neuroscience literature
has many examples where thresholds, numbers of neurons, synapses, locations,
branching, conductivities, capacitances, impedances, time-varying dynamics, and
so forth are not accurate, known, or are even different across publications. Often,
sensitivity analysis is critical to understand the underlying dynamics, and the system
must compensate for sensitivity to maintain stability and robustness [27]. In this
regard, the complexity of neural circuitry systems may compensate for large error
bars in parameter accuracy [28–31].

For practical and theoretical interest, we sought to examine stability and robust-
ness vs complexity in neural circuitry parameter spaces using Monte Carlo
simulation.

2 Methods

2.1 Node Parameters at Several Systems Levels Granularity

Using the universal neural circuitry simulation (UNCuS) software [32–34], we
specified a subset of ten neuron parameters for sample spaces composed of different
numbers of populations, groups, and numbers of cells (neurons). To globally sample
the combined parameter space, we used Monte Carlo methods (Table 1) [27]. Out of
a space of ~5 x 1011 parameter configurations we sampled 5 x 103 combinations.
UNCuS and the Monte Carlo sampling program were written by us in C++
(Microsoft, Redmond, WA, USA) and Java (Oracle Corp., Redwood City, CA,
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USA). UNCuS was designed specifically to perform computationally efficient neural
circuitry simulations for large as well as small circuits. The program integrates
essential behavior at the underlying systems level of ion channel conductance and
dendritic tree emission current and scales well in projects of the current size [32, 35].

The number of populations ranged from two to nine, and each population always
had just two groups of neurons, one excitatory and one inhibitory. Groups within a
population were never connected to each other but were always connected to all
other groups in the other populations, with the same density. What was varied in the
configurations was the number of (1) cells per group and (2) neuron parameters of
the cells. Figure 1 shows screenshots from UNCuS of example configurations.

We created 50 separate project configurations with identical numbers of cells per
group in each case. Initially we looked at the extremes of the parameter space,
7 configurations with 2 populations and 7 configurations with 9 populations, totaling
14 configurations. Then we looked at the intermediate numbers of populations and
groups using 6 configurations each with 3, 4, 5, 6, 7, and 8 populations, totaling
36 configurations.

To set the varying number of cells in each population, the program randomly
selected a number of cells from the set {5,10, . . ., 145, 150}.

The number of connections from source to target group was fixed at 40%; for
example, from a source group of any number of neurons to a target group of, e.g.,
100 neurons, each source neuron connected to 40 of the target group’s neurons.
Groups never recurred back to themselves or the other group in its population,
always to exogenous target groups in other populations (Fig. 1); hence in calculating
the total number of connections, we subtract one from the total number of
populations in the case.

At each target cell, the axon synapsed on two of ten electrotonic compartments in
the middle of the dendrite, specifically compartments four and five. See Limitations

Table 1 Neural circuit topology that varied total # (number of) nodes at several systems levels of
granularity in the model

Circuit parameter Range

#Populations Set 1: 2 or 9. Set 2: 3, 4, 5, 6, 7, or 8

#Cells/group Randomly selected from range of 5 – 150 in steps of 5: {5, 10, . . .,
145, 150}

#Intergroup
connections

Constant at 40% – each source neuron connected to 40% of the target
group’s neurons

Node parameter Definition

#Cells/configuration (#Populations-1) * 2 * #Cells

#Projections/cell 40% * #Cells/Group

#Projections/
configuration

#Cells * #Projections/Cell

#Synapses/
configuration

#Dendritic Compartments * #Projections

#Synapses #Synapses * #Cells * #Projections
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below for the reasoning behind the choice of fixing connection strength at 40% and
the dendritic compartments at two in the middle of the proximal-distal range.

2.2 Neuron Cell Parameters

Just as for each project case there were a random number of cells in each group, the
sampling program also randomly selected a set of neuron cell parameters. In
UNCuS, there are 12 parameters to characterize a neuron type. We excluded
refractory time and spike width, leaving 10 cell parameters to select from. The
parameters, their default baseline values, and the value ranges subjected to random
sampling are shown in Table 2. All cells in all groups in each case used the same
random selection of cell parameters. For the equations governing cell behavior, see
Arle et al. [32, 33].

In previous projects, we usually drove a circuit with specific stimuli on specific
cell groups such that their initial firing rate corresponded to what was reported in the

Fig. 1 Four sample project configurations from universal neural circuitry simulation software
UNCuS. Neuron populations (circles) contain numbered groups and connections between groups
identified as excitatory (blue) or inhibitory (green). Each neuron in each group connected to 40% of
the neurons it targeted. The total number of synapses can be thought of abstractly as the total nodes
in the complex system

216 J. E. Arle et al.



literature. Here we raised background noise to a level that activated all circuits,
specifically 1.7 nA, which we found to be sufficient.

A plot of a typical spiking neuron’s membrane voltage over time is shown in
Fig. 2.

2.2.1 Dynamic Adjustment of Input Amplitude

The program dynamically condensed the input amplitude to each cell from all
incoming excitatory or inhibitory post-synaptic potentials (EPSP, IPSP) to a nor-
malized range between�5 and +5 nA. The reasoning here that there is some range in
actual neurons beyond stimulating or inhibiting the cell has no greater effect.

Table 2 Neuron parameters sampled via Monte Carlo simulation

Symbol Definition
(Min, max, interval), (baseline
values)

Ek Reversal potential of the rectifying potassium
conductance

(�105, �25, 1),�65 mV

Eb Reversal potential of basic channel �65 mV

Gk Rectifying potassium conductance (5, 20, 1), 10 nS

Gb “Lumped” ion channel conductance (5, 20, 1), 10 nS

Tm Membrane time constant (1, 11, 1), 5 ms

Tgk Time constant of rectifying potassium conductance (0.5, 5, 0.5), 2 ms

tTh Time constant of membrane threshold (0.5, 5, 0.5), 5 ms

C Threshold accommodation term (0.1, 0.9, 0.1), 0.2
(dimensionless)

B Delayed rectifier potassium conductance strength (100, 1000, 1), 500 nS

Th0 Threshold transmembrane potential (2.0, 20, 1), 12 mV

Fig. 2 Typical membrane
potential over time of a
neuron in the simulations.
The transient period of the
first 100 ms is discarded in
our calculations. To more
clearly show the spiking
activity, we plot the middle
600 ms of activity between
200 ms and 800 ms
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However, in modeling and simulations, there is often a range of a parameter for
which one has validated the behavior of the simulated entity, while, beyond that
validation value, behavior is unknown and may be unpredictable. Essentially, the
method used was to calculate the maximum possible input current for a given project
case based on UNCuS’ dendritic emission current look-up table, the known dendritic
compartments (#4 and #5), the known number of inputs (40%, e.g., 40 per 100 cells),
and then, at each time step, multiply each cell’s input by the factor required to
condense the scale to �5 to +5 nA.

2.3 Simulation Duration, Time Step, and Calculation
of Firing Rates

All simulations were run for 1000 ms in 0.25 ms time steps, which we have found to
give stable cell behavior, often after an initial transient period. We defined a
“momentary firing rate” by moving a window of 100 ms, time step by time step,
through the 1000 ms, taking the total number of spikes in each interval, and dividing
that number by the interval length, 100 ms, to give spikes/second. This method
discards the first 100 ms, which, as said above, often involved a transient period
transitioning to steady state behavior.

The program recorded the spikes for each neuron, took the momentary firing rate,
and averaged over all cells in a group to give a group firing rate, which underlies the
data shown in Results.

2.4 Definition of “Robustness” via Coefficient of Variance
(CV)

We used coefficient of variance (aka “variation”) (CV) as a metric for “robustness,”
where the standard deviation was divided by the spike rate of baseline neuron cell
instead of the mean of the Monte Carlo sampled data:

cv ¼ 1
FRbase

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

FRi � FRbaseð Þ
n� 1

s

ð1Þ

where n ¼ 50, the number of population-group configurations (each with a random
set of 10-cell parameters), FRi is the firing rate of a given configuration, and FRbase is
the firing rate with the baseline neural parameters. Thus, the baseline parameters,
shown in Table 2, established a firing rate against which the deviation of all Monte
Carlo sampled configurations would be checked.
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2.5 Definition of “Robustness” via an Adapted Lyapunov
Exponent

To give a second perspective on how the level of complexity affects the deviation of
neural system from its baseline performance, we adapted a standard formula for the
Lyapunov exponent as was done with the definition of CV. Thus, the baseline neuron
cell firing rate was used as the initial condition against which deviations over time
were compared in calculating the Lyapunov exponent (LE) [35, 36]:

λ ¼ lim
s!1

1
s

Xs�1

k¼0

ln
FRk

FRbase,k

�
�
�
�

�
�
�
�

ð2Þ

where s is the time step, FRk is the momentary firing rate of the sampled parameter
point at time step k, FRbase,k is the baseline firing rate at time step k, and s is the total
number of time steps. When the sampled configuration firing rate is equal to that of
the baseline, there is no divergence and LE ¼ 0.

2.6 Cumulative Firing Rate vs Momentary Firing Rate

We calculated cumulative firing rate (CFR) as a global reflection of the circuitry in
time, as distinct from the momentary firing rate. The CFR is defined at time t as the
total number of spikes up to t divided by t to give spike rate/second.

2.7 Limitations

There are many other ways to vary neural circuit parameters than those we chose to
explore. Notably the many different topologies of connecting circuits were
programmed to perform a specific behavior. Of those, we did not, for instance,
explore circuits that must be stable to perform their function, such as clocks and
rhythm generators, or that evolved to become emergently stable, such as the various
networks revealed by functional connectivity analyses [37]. The space of connection
strengths could also be explored more fully. Our past experience building small- and
large-scale connectome models [34, 38, 39] and preliminary results in this study
showed that, at the connection strength extremes, very low or high connection
density and/or few distal dendritic compartment connections or many proximal
dendritic compartment connections gave either no activity or hyperactivity, respec-
tively. On the other hand, one can build circuits with, e.g., high connection density in
some parts of the circuit if they are regulated by other parts of the circuit; an
effectively infinite number of such specific circuits are possible.
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Other neural circuitry simulation software exists, and the variety is evolving
rapidly, driven by rapidly increasing interest in building connectome models (see
Carlson et al. elsewhere in this book [24]).

3 Results

In general, in non-quiescent circuits, the momentary firing rate, which characterizes
the system’s short-term behavior in the time domain, was never constant but
dynamic. For the robustness measures, the behavior of excitatory and inhibitory
groups was similar, so only results for excitatory groups are shown below.

3.1 Sample Time Course of Firing Rate of Two
Population-Group Configurations

Figure 3 allows us to visualize the variance of relatively simple vs relative complex
neural circuits over time before we apply metrics to get a more precise understand-
ing. The figure plots the time course of firing rates in the two extreme population-
group configurations; in the left, 2 populations with 5 cells per group are shown, and
in the right, 9 populations with 150 cells per group are shown. In those configura-
tions, each curve is a unique set of ten neuron parameter values. Note that the two

Fig. 3 Momentary firing rate over 1 second in a simple vs complex neural circuit. Left:
2 interconnected populations with just 5 cells in each group (there are always 2 groups/populations
in all configurations). Right: 9 interconnected populations with 150 cells/group. In those configu-
rations, the firing rates of 50 different neural parameters are plotted over 1 second (after a 100 ms
transient period), with a baseline parameter case shown in black. Firing rates in the more complex
system are higher than in the simple one due to recurrent input from a higher number of cells. The
outmost curve in the left case implies that a particular set of ten-parameter value is more sensitive
than others, i.e., one of the ten parameters may be more sensitive than the rest of the parameters. CV
in the simple system is 0.754 and in the more complex system 0.236
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outlier parameter configurations easily seen in the simpler model are also present in
the complex model but are to some extent “tamed” by the higher connectedness and
number of circuit elements. One effect is that in more complex systems, errant
random inputs can cancel each other.

3.1.1 Plots of Firing Rate of All Sample Points vs Baseline Parameters

The three plots in Fig. 4 show all data and examine robustness across increasing
complexity measured by the numbers of several different circuit elements.

Fig. 4 Top left: firing rate vs number of neural cell populations. Top right: firing rate vs total
number of neurons in the system. Bottom: firing rate vs total system projections. Each point is a
1-second run with a unique set of 10 neural cell parameter values (colored dots) vs baseline values
(black dots), totaling 5100 sample points. In general, as complexity increases, variance decreases,
i.e., the system becomes more robust
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3.1.2 Robustness vs Number of Elements as Measured by Coefficient
of Variance (CV)

The next plots (Fig. 5) show CV (Eq. 1) of Monte Carlo sample firing rates vs
complexity parameters compared to the baseline configuration (red line). Note that
we take the baseline firing rate as the “expected value” and therefore CV < 1 means
the standard deviation of the sampled firing rates is smaller than the firing rate of the
baseline (Eq. 1). Each point shows the CV over 50 population configurations, each
with a randomly selected set of neuron parameters, and each graph shows 100 such
points. Since the total synapses and the combined complexity are linearly related
(in our study, synapses are two times the number of projections since each projection
synapsed on dendritic compartments 4 & 5), their distributions of CV are similar, and
thus data for a number of synapses are omitted.
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Fig. 5 Top left: coefficient of variance vs number of populations. Each of the 100 points is 50 runs
with a unique set of 10 neuron parameter values. CV decreased with increasing number of
populations and converged to a constant 0.197 at 7+ populations. Top right: coefficient of
variance vs. number of total cells. Against different numbers of cells in the system, CV is larger
than when varying the number of populations. Here CV converges to 0.281. Bottom: coefficient of
variance vs number of total projections. CV converges to 0.252 at ~105 projections, similar to when
varying the number of cells
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3.1.3 Robustness vs Number of Elements as Measured by Lyapunov
Exponent (LE)

Here we used a different measure of robustness, the Lyapunov exponent (LE, Eq. 2),
based on how the firing rates of sampled population-group-neuron parameter sample
points diverged over time from those of the baseline neuron parameter case. Yet the
results for different levels of complexity were quite similar to the previous results
using CV as the metric. Figure 6 shows LE against numbers of populations, cells, and
projections.

Fig. 6 Lyapunov exponent (LE) analysis of firing rates over time vs system complexity. Each point
is a run with a unique set of 10 neuron parameter values in the 50 combinations of population and
group numbers, totaling 5000 sample points. The LE measures how the firing rates of sample
configurations deviated from the baseline case over time. LE > 0: sample firing rates > baseline. LE
< 0 sample firing rates < baseline. LE ¼ 0: no deviation from baseline. Top left: LE of firing rate vs
populations. Top right: LE of firing rate vs number of total cells. Bottom: LE of firing rate vs
number of total projections. Divergence decreases with increasing numbers of populations. Gen-
erally firing rates decrease over time as steady states are reached in the circuits and those of sample
points are less than those of baseline cases. Firing rates of sampled configurations were generally
higher than those of baseline cases and divergence decreased against total projections in the system.
Divergence decreases with increasing system complexity
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3.1.4 Robustness vs Number of Elements as Measured by Cumulative
Firing Rate (CFR)

The cumulative firing rate (CFR) can be compared to momentary firing rate as a
global reflection of the circuitry behavior over time instead of at a given point
in time.

Figure 7 shows CFR for total populations, total cells, total projections, total
projections’ divergence from baseline (LE), and total populations’ divergence from
baseline (CV). Results were similar to simulations shown above.

4 Discussion

4.1 Key Results

The data suggests that neural circuits become increasingly robust as their complexity
is increased, with a relatively small amount of complexity as compared to the
number of neurons in various organisms. Synapse totals in the study ranged from
160 to 5.18 x 106 – recall that a 3-year-old human has an estimated 1015 synapses in
their entire brain.

Thus, the inherent nature of a moderately complex and sufficiently interconnected
neural circuit results in local parameter changes being unlikely to have significant
changes in circuit behavior. Given sufficient connectivity, robustness increases as
the number of elements increases and may be sustained once it reaches a window of
transition. In our simulations, where the elements were neurons, and other parame-
ters being equal, this transition window to maximal robustness was in the range of
~100–1000 cells.

The number of individual synapses appeared to have the least effect on achieving
robustness compared to the number of cells or axonal projections.

4.2 Robustness and Degeneracy in Biological Systems

Our pragmatic interest is in applying the results of the study and related work to
faithfully modeling neurological disorders, such as Parkinson’s disease, epilepsy,
neuropathic pain, and others, and how to treat them with neuromodulation.

Biological systems have evolved adaptive homeostasis to increase their robust-
ness; conversely, loss of adaptive homeostasis can result in disease and disorder and
is a hallmark of aging [1, 2, 40–45]. More broadly, the term degeneracy in complex
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Model ExpDec1

Equation

Plot Coefficient of Varian

y0 -0.0247 ± 0.3577

A1 0.70664 ± 0.18175

t1 4.71263 ± 5.54536

Reduced Chi-Sqr 0.01316

R-Square (COD) 0.34146

Adj. R-Square 0.32788

Fig. 7 Cumulative firing rate (CFR) is the dynamic cumulative firing rate from 100 ms at each time
step divided by the elapsed time in the simulation. Plots show CFR for total populations (top left),
total cells (top right), total projections (middle left), LE of total projections’ CFR divergence from
that of baseline parameters’ model (middle right), and CV of CFR of total populations’ divergence
from that of baseline (bottom left with legend bottom right). In all cases, the CFR of sampled
configurations decreases with increasing number of system elements
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systems theory has been applied to biological systems to describe a decline in their
ability to maintain functional integrity [46], and the application of degeneracy
analysis to biology and neural circuits in particular is likely to play a major role in
neurological disorders and aging and their treatment [47].

4.3 Robustness and Degeneracy in Functional Connectivity
Brain Networks

In the past two decades, functional connectivity (FC) – the correlated activity
between brain regions as identified by imaging and monitoring the brain’s electrical
activity – has become a major paradigm for understanding healthy and diseased
states. The “resting state” and time course of FC networks can constitute signatures
of healthy vs diseased conditions. Degeneracy of the healthy FC is identified with the
diseased state. In many cases, modelers of neurological disorders and disease may
find that system complexity may underlie diseased states. For instance, the reason
why, in Parkinson’s disease, up to 80% of the dopaminergic neurons of the
substantia nigra are lost before movement disorders manifest is unknown. Degen-
eracy via loss of complexity and connectedness in the basal ganglia may be part of
the mechanism.

4.4 Inadvertent Modeling Error Due to Scaling

Robustness helps illuminate possible errors in modeling connectomes when scaling
the number of elements. When building a complete model of the human spinal cord
connectome [34], we found that Rexed lamina II had ~1300 times the number of
neurons that lamina I had. Thus, in scaling down the total number of neurons to make
a more computationally efficient model, we inadvertently reduced the robustness of
the model, which showed up as high firing rates in lamina I, and had to scale it back
up to correct for that. Such an inadvertent effect would equally invalidate many
neural circuit models, notably of seizure.

5 Conclusion

The complexity of biological systems, notably neural circuitry, as defined by the
number of element (neurons) and connectivity (synaptic topology) is a critical
element in their robustness – the degree to which, when perturbed from healthy
states toward diseased or disordered states, they inherently attempt to return to the
healthy state. We simulated neural circuitry complexity and connectivity in a large
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parameter space via Monte Carlo sampling. Our results bear out the theory that more
complex, connected systems can be inherently more stable than simpler systems.
These results have implications for modeling neurological disorders, such as
Parkinson’s disease, chronic pain, seizure, and age-related cognitive decline, and
how to treat these conditions with neuromodulation.
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Insights from Computational Modelling:
Selective Stimulation of Retinal Ganglion
Cells

Tianruo Guo, David Tsai, Siwei Bai, Mohit Shivdasani,
Madhuvanthi Muralidharan, Liming Li, Socrates Dokos,
and Nigel H. Lovell

1 Introduction

Retinal prostheses aim to restore patterned vision to those with retinitis pigmentosa
by electrically stimulating surviving neurons in the degenerate retina. Despite a
significant global interest in the “race” to develop a high-resolution implant, com-
mercialization of three devices in this space, and numerous human trials having
demonstrated the ability of devices to restore some functional vision, the experience
for most implanted patients has been largely underwhelming. The phosphenes
evoked by all implants tested to date have remained complex, with human subjects
reporting evoked percepts that resembled halos, blobs, wedges, streaks, or other
shapes [1–4]. As a result, current devices are prescribed only to patients with
profound blindness and until the vision quality has significantly improved. Many
patients with residual vision, who would have benefited from the uptake of such
technology, remain “waiting” for an alternative appropriate treatment.
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One possible primary reason for the inability of existing retinal neuroprostheses
to provide better visual perception may be the indiscriminate activation of different
neuronal types across large regions of the retina, providing conflicting information to
higher visual centers. To address this problem, we require an improved understand-
ing of how different functional retinal ganglion cell (RGC) types respond to artificial
electrical stimulation. In particular, if different RGC types can be selectively or
differentially activated in a desired temporospatial sequence, the elicited signals may
be interpreted more accurately by the brain, giving rise to visual percepts of greater
meaning and utility.

Previous reports have indicated that 1–6 kHz high-frequency electrical stimula-
tion (HFS) may elicit differential excitation of different RGCs in a manner similar to
RGC responses to light stimuli in a healthy retina [5–8]. These studies suggest a
great promise in eliciting RGC responses that parallel RGC encoding: one RGC type
exhibited an increase in spiking activity during electrical stimulation, while another
exhibited decreased spiking activity, given the same stimulation parameters. To test
whether a larger range of HFS parameters can improve or even maximize the
differential excitation of ON and OFF RGC pathways, we began with in silico
investigations using biophysically and morphologically detailed computational
models of ON and OFF RGCs using the NEURON computational environment, to
evaluate the performance of a range of electrical stimulation amplitudes (10–70 μA)
and frequencies (1–10 kHz) on RGC responses.

In addition, in order to investigate the effect of ON and OFF RGC dendritic
morphologies on HFS-induced responses, we developed a neural morphology gen-
erator, capable of generating RGCs with tunable morphological properties, including
the dendritic field radius, total dendritic length, and stratification level. Neuronal
morphology has been reported to play a vital role in shaping response properties as
well as the integration of neuronal inputs in many cell types throughout the central
nervous system (CNS) [9, 10]. It is therefore likely that similar morphological
dependence is also present in RGCs.

Finally, we used a population-based computational model of ON and OFF layers
to explore the performance of electrical stimulation with clinically relevant electrode
sizes and locations, as well as stimulation duration.

2 Materials and Methods

2.1 Computational Model of ON and OFF RGC Clusters

ON and OFF RGC clusters were implemented using the computational software
NEURON [11]. Techniques used to model individual RGCs have been described in
detail previously [12–14].

Firstly, the morphological structures of different RGCs were simulated by a
customized neural morphology generator [13, 15] (see Fig. 1A). The RGC soma
was initially defined as a point at the origin. With the soma as the center, a number of
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random carrier points, which serve as the basis of dendritic growth, were distributed
within a circular planar region having a user-defined radius. An algorithm, based on
the minimum spanning tree algorithm [16], generated dendritic branches by
connecting unconnected carrier points to nodal points of the tree. At each step, a
sweep through all nodes starting from the soma was undertaken to find the carrier
point closest to the tree. A cost function was used to calculate the weighted distanceed between a carrier point and a node in the tree, as follows:

ed ¼ de ∙ 1� bfð Þ þ dp ∙ bf ð1Þ

where de is the Euclidean distance between a carrier point and a node in the dendritic
tree; dp is the length of the path along the corresponding branch from the soma to the
carrier point, which is the sum of de and the length of the branch from the soma to the
corresponding node; and bf is a balance factor, which weighs de and dp against each
other in the cost function. The carrier point with the shortest ed was chosen as the
candidate point to be connected to the corresponding node. After creating the
dendritic tree, the soma was then extended into a 15-μm segment. A 50-μm-long
axonal hillock and a 1000-μm-long axon were added subsequently. The vertical
distance between the axon and the soma was set to 10 μm, and the first 50-μm
segment of the axon was defined as the axon initial segment (AIS). RGC dendritic
morphological parameters [17], including dendritic field radius (μm), total dendritic
length (μm), and stratification level (μm), were adjusted based on published data for
ON and OFF RGC morphologies in guinea pig retina (see Table 1).

Secondly, the ionic model used in this study can be represented by the equivalent
cable equation:

Fig. 1 (a). Reconstructed RGC morphologies of ON (red) and OFF (blue) cells. (b). A zoomed
area of the population-based model with ON (red) and OFF (blue) RGC layers. RGCs were
uniformly distributed on a square grid with 40-μm lateral and 40-μm longitudinal distances between
neighboring cells. In total, 21 � 21 cells were simulated in each layer. A subretinal stimulation
electrode (Φ ¼ 200 μm) was placed 200 μm above the RGC soma array
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σ
∂2Vm

∂x2
¼ A Cm

∂Vm

∂t
þ Jion

� �
ð2Þ

where Vm represents membrane potential, x is the axial cable distance, σ is the
intracellular conductivity (mS∙cm�1), A is the local cell surface to volume ratio
(cm�1), and membrane capacitance (Cm) per unit membrane area was set to
1 μF∙cm�2. The intracellular axial resistivity (1/σ) was set to 110 Ω∙cm. The
simulation temperature was 37 �C. Jion (mA∙cm�2) represents the total cell mem-
brane ionic current, consisting of seven time-dependent currents and one leakage
current:

Jion ¼ INa þ IK þ IKA þ ICa þ IKCa þ Ih þ ICaT þ IL ð3Þ

INa, IK, IKA, ICa, and IKCa were defined in a previous RGC model [18], while the
hyperpolarization-activated non-selective cationic current (Ih) and the low-threshold
voltage-activated calcium current (ICaT) are newer additions, with both latter currents
known to contribute to RGC excitation [19–21]. All gating variables, except those
for ICaT, satisfied the following first-order ordinary differential equation (ODE):

dx=dt ¼ αx 1� xð Þ � βxx ð4Þ

where x is a gating variable, with αx, βx its opening and closing rates, respectively,
which are typically functions of membrane potential Vm.

For ICaT, second-order dynamics were used:

mT :
dmT

dt
¼ mT 1� αmTð Þ � βmTαmT

hT : dhT=dt ¼ αhT 1� hT � dTð Þ � βhThT

dT : d dTð Þ=dt ¼ βdT 1� hT � dTð Þ � αdTdT ð5Þ

where the inactivation process for ICaT was modelled using two transition steps: hT
and dT [22].

In this chapter, ON and OFF RGC models shared the same kinetic-defining
parameters for all ionic currents. Ionic channel distributions across different cellular
regions were set to be cell-specific to reproduce the stimulus dependency of recently
published in vitro whole-cell patch-clamping data [14, 23]. The estimated kinetic-

Table 1 RGC morphological
parameters

RGC R (μm) L (μm) S (μm)

ON 287 7300 10

OFF 218 6700 50

R radius of dendritic field area, L total length of dendrites,
S vertical distance between the soma and the dendritic tree layer.
All parameters were estimated based on published data of ON and
OFF RGC morphologies [17]
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defining parameters of each rate and maximum membrane conductance values
(mS/cm2) per region in each cell are listed in Tables 2 and 3.

2.2 ON and OFF Layer Simulation

To explore the generalizability of HFS-induced differential activation with more
clinically relevant electrode size, location, and stimulation duration, we conducted in
silico investigations using population-based neuronal models. ON and OFF RGCs
were uniformly distributed on a square grid with 40-μm lateral and 40-μm longitu-
dinal distances between neighboring cells. In total, 21 � 21 cells were simulated in
each layer (see Fig. 1B).

2.3 Extracellular Electrical Stimulation and Electrode
Settings

To simulate extracellular stimulation, we used a mono-polar circular electrode disk
with ground located at infinity and approximate the extracellular domain to be
homogeneous. The extracellular potential at each spatial point was adapted based
on an analytic formula [24–26]:

Ve ¼ 2Vo

π
sin�1 2Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r � Rð Þ2 þ z2
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r þ Rð Þ2 þ z2

q
0B@

1CA ð6Þ

where r and z are the radial and axial distance, respectively, from the center of the
disk for z 6¼ 0 and R is the radius of the disk. The disk potential Vo can be determined
by the electric stimulation current I and extracellular resistivity ρe (500 Ω∙cm) [25]:

Vo ¼ Iρe
4R

ð7Þ

For simulation of single ON and OFF RGC stimulation, we defined a 3D
Cartesian (x, y, z) coordinate system, with the soma as the origin, so that the upper
surface of the RGC dendritic field was aligned in the x-y plane and the RGC axon
was aligned with the y-axis. A hexapolar electrode array (each disk electrode of
15-μm radius, with a center-to-center distance of 60 μm) was positioned at the
location (0, �40, �50) μm, where (0, 0, 0) μm was the local 3D coordinates of the
soma [23]. Cathodic-first, charge-balanced, symmetric, constant-current biphasic
stimuli, each with a pulse width of 50 μs per phase, were used without an interphase
interval. The extracellular stimulus amplitude ranged from 10 to 70 μA in 5-μA
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steps, and stimulus frequencies ranged from 1.0 to 10 kHz in 0.5-kHz steps. All
pulse trains were 200 ms in duration.

For population-based simulations, ON and OFF layers were stimulated using a
subretinally placed large diameter electrode (Φ¼ 200 μm), positioned 200 μm above
the RGC soma layer. The stimulus frequency was set to 10 kHz. The extracellular
stimulus amplitude ranged from 10 to 350 μA in 10-μA steps. All pulse trains were
reduced to 40 ms in duration. All elicited spikes were observed and counted at the
soma. Differential activation was determined from the difference in averaged total
spike numbers between one cell cluster and the other.

3 Results

3.1 Differential Activation of Individual ON and OFF RGCs
Using a Large HFS Parameter Space

Figure 2A1-2 illustrates the stimulus-dependent (from 20 to 140 μA) ON and OFF
RGC action potential spike counts (spikes/200 ms) in response to a large range of

Table 3 Ionic channel distributions

Channel

Regional maximum membrane conductances (mS/cm2)

Soma Axon AIS Hillock Dendrites

ON

INa 68.4 68.4 254.1 68.4 7.2

IK 45.9 45.9 68.85 45.9 42.83

IKA 18.9 – 18.9 18.9 13.86

ICa 1.6 – 1.6 1.6 2.133

IKCa 0.0474 0.0474 0.0474 0.0474 –

Ih 0.0286 0.0286 0.0286 0.0286 0.0572

ICaT – – – – –

IL 0.2590 0.2590 0.2590 0.2590 0.2590

OFF

INa 45.6 45.6 165.9 45.6 4.818

IK 45.9 45.9 68.85 45.9 42.83

IKA 18.9 – 18.9 18.9 13.86

ICa 1.6 – 1.6 1.6 2.133

IKCa 0.0474 0.0474 0.0474 0.0474 –

Ih 2.1 2.1 2.1 2.1 4.2

ICaT 0.1983 0.1983 0.1983 0.1983 0.9915

IL 0.0519 0.0519 0.0519 0.0519 0.0519

INa. sodium current, IK. delayed rectifier potassium current, IKA.A type potassium current, ICa.
calcium current, IKCa. Ca-activated potassium, Ih. Hyperpolarization-activated current, ICaT.
Low-threshold voltage-activated calcium current, IL. leakage current
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stimulation frequencies (from 1 to 10 kHz). The elicited spikes were observed and
counted at the soma. Our model predicted that the elicited RGC spike counts were
highly dependent on stimulating frequency and amplitude. The colors in Fig. 2A1–2
denote the number of evoked spikes from ON or OFF cells for a given stimulation
frequency and pulse amplitude.

The total spike count of the ON cell (panel A1) reached a plateau as the stimulus
current surpassed a certain threshold at frequencies up to 6.5 kHz. However, with
frequencies higher than 7 kHz, the total spike number increased initially with
stimulus amplitude, followed by a sudden decline with further amplitude increases,
creating a non-monotonic surface in the frequency-amplitude topological space. In
contrast, the OFF cell (panel A2) exhibited a non-monotonic profile at stimulation
frequencies higher than 2 kHz. Nevertheless, both activation maps indicated a
decreasing stimulation threshold trend with respect to HFS pulse trains with increas-
ing stimulation frequency, where the threshold was defined as the stimulation
amplitude capable of eliciting 10% of the maximal spike number of each
non-monotonic spike-stimulus profile.

As shown in Fig. 2B, with increasing stimulation frequency, both ON and OFF
RGCs exhibited an increased slope of the rising phase in spikes/μA (the epoch in
which spike counts increased with increasing stimulation current) and, concomi-
tantly, an earlier onset of the falling phase (in which the total spike numbers
saturated or declined). Interestingly, the stimulus-dependent response of the ON
cell became relatively stable only at stimulation frequencies higher than 9 kHz, while
the OFF cell response tended to be unchanged already at frequencies higher than
5 kHz, thus indicating the ON/OFF-cell-specific frequency dependency.

The differential activation map shown in Fig. 2C provides an alternative visual-
ization of differential activation of RGC types at each stimulation frequency and
amplitude. Each grid point was defined as the difference of total spike number
(spikes/200 ms) of ON and OFF cells. Our model suggested that differential
activation of the ON RGCs was maximized at high stimulation amplitudes
(>45 μA) and frequencies (between 3 and 10 kHz). In contrast, HFS pulse trains
across all tested frequencies induced robust differential activation of OFF RGCs
with different stimulation amplitudes ranging from 10 to 50 μA. Moreover, in
Fig. 1C, the threshold at which differential activation began for both cell types
gradually reduced as the stimulus frequency was increased from 1 to 6 kHz. The
stimulation current range for preferentially activating ON RGCs increased when the
stimulus frequency increased from 2 to 5 kHz, then gradually decreased when the
stimulation frequency increased from 7 to 10 kHz. In contrast, the stimulation
current range for preferentially activating OFF RGCs was mostly stable across all
frequencies.

Based on the information provided by Fig. 2, potential optimal stimulation
parameter combinations can be chosen to selectively excite ON and OFF cells. For
example, with 7-kHz stimuli of 60 μA, the ON RGC was strongly activated, while
simultaneously blocking the OFF RGC spontaneous spikes. In contrast, with 1-kHz
stimuli of 30 μA, the OFF RGC was strongly activated, while the ON RGC remained
silent.
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Fig. 2 Computational models of ON and OFF RGCs using an epiretinal hexapolar electrode
array. (A1-A2). Activation maps showing the total spike number (spikes/200 ms) elicited in ON
and OFF RGCs in response to a range of stimulation amplitudes (10–70 μA) and frequencies (1–10
kHz) delivered over a 200-ms interval. (b). Juxtaposition of the ON and OFF spike count against
stimulating amplitude, at frequencies ranging from 1 to 10 kHz. (c). Differential RGC excitability
map, defined as the difference of total spike count between ON and OFF RGCs, indicating
stimulation parameters which can preferentially activate one cell type, while minimally activating
the other type
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Fig. 3 In silico population-based RGC responses using 21 3 21 pairs of ON and OFF cells.
Each grid point represents the elicited total spike number (spikes/40 ms) of the cell at the given X-Y
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3.2 Simulating Population-Based RGC Activity Under
Clinically Relevant Conditions

Figure 3 shows the ability of the model to predict differential activation in a
population of 21 � 21 pairs of ON and OFF cells using a subretinally placed large
diameter electrode (200 μm), positioned at 200 μm above the RGC layers. Figure 3A
demonstrates the total spike number (spikes/40 ms) elicited among the whole
simulated ON and OFF populations. Our model suggested that 10-kHz HFS pulse
trains were still able to induce differential activation of ON and OFF RGC
populations with different stimulating amplitude parameters. Differential excitability
shown in Fig. 3B was determined by the difference in the total spike numbers
between the ON population and OFF population. Our model suggested that the
activation of the ON RGC population was maximized at higher stimulation ampli-
tudes (>200 μA). In contrast, excitation of OFF population is maximized at ampli-
tudes ranging from 20 to 80 μA.

Excitation maps shown in Fig. 3C provide the differential stimulus dependency of
ON and OFF populations during HFS. For example, when stimulated at a small
stimulation amplitude (60 μA), a large OFF population (C2) was strongly activated,
while only local ON RGCs (C1) located close to the electrode were weakly excited.
However, when stimulation amplitude was gradually increased above a certain level
(>120 μA), local OFF RGCs below the electrode started to be inhibited while a large
population of ON RGCs were still being increasingly excited.

4 Discussion and Conclusion

The simulation results illustrated in this chapter suggest the possibility of translating
recent laboratory advances in differential neural activation to large-scale, clinically
relevant conditions by (1) relaxing the constraint requiring stimulation electrodes to
be near the RGC cell bodies, which are impossible to locate under clinical condi-
tions, and (2) translating the HFS-based differential activation from epiretinal to
subretinal stimulation. Computational RGC models provide the ability to investigate
neural modulation by changing key stimulation parameters. One advantage of the

⁄�

Fig. 3 (continued) location. A stimulus electrode was located at the center. (a). Juxtaposition of the
total elicited spike number recorded from all ON and OFF cells against stimulation amplitude. (b).
Differential excitability is determined as the difference of the total spike numbers of ON and OFF
populations. (c). Examples of activation maps of ON and OFF populations stimulated at different
stimulus amplitudes. (C1-C2): When stimulated using a small amplitude (60 μA), a large OFF
population was strongly activated, while only local ON RGCs were weakly excited. The white
arrow indicates RGC axonal directions. (C3-C4): When stimulation amplitude was gradually
increased to certain level (>120 μA), local OFF RGCs below the electrode started being inhibited
while ON RGCs were still increasingly excited
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computational approach is that the model-generated response space map can be
made arbitrarily large and fine-grained for thorough exploration of stimulus param-
eters. This is difficult, if not impossible, to achieve through biological experiments
due to the invasiveness of intracellular recordings. Moreover, simulation can be used
to guide in vitro experimental design. For example, it is worthwhile to investigate
population-based RGC responses to HFS predicted by our model using high-density
multielectrode arrays [27] or using a calcium imaging technique [28].

Discrimination between ON and OFF RGCs with electrical stimulation is an
initial step toward improving artificial vision. Until recently, retinal stimulation has
not been able to provide differential activation of ON and OFF RGCs. Such
co-activation is highly unnatural, providing conflicting information to higher visual
centers, and potentially degrading the efficacy of retinal implants. This chapter, built
on previous in vitro [5, 8, 23, 29] and in silico [6, 7, 26, 30] studies, demonstrated
that preferential or differential activation of individual and population-based RGC
types could be achieved. Here, we further showed that the effect was possible over a
wide range of HFS parameters. In particular, the ON RGC could be targeted at
relatively higher stimulation amplitudes and frequencies, while the OFF RGC could
be targeted with lower stimulation amplitudes across all tested frequencies. The
precise mechanism underlying differential RGC activation remains largely
unknown. Further modeling and in vitro studies are still required to better understand
the factors that shape the response of a retinal neuron to biphasic HFS. In particular,
efforts should be devoted to assessing the contribution of intrinsic RGC properties
including cell-specific ionic channel distributions in shaping RGC spiking profiles.
To the best of our knowledge, no studies have identified the distribution of different
ionic channel subtypes between the RGC types. Experimental studies in spinal
sensory neurons reported that different sodium channel subtypes may respond
differentially to high stimulus frequencies [31]. It is therefore likely that a similar
frequency dependence is also present in RGCs. Further experiments based on
variable ionic channel identifiers [32–34] will help us to better understand the reason
for the unique stimulus dependency of each RGC type.

The HFS-based stimulation strategy described here may be useful for closely
mimicking the natural encoding of RGC visual patterns. Specifically, the ON
ganglion cells showed an increase in spike counts (spikes/200 ms) as the stimulus
current was increased, while the OFF RGC responses were inhibited by the increased
stimulus. In addition, our results suggest that differential activation of the ON RGC
may be maximized within stimulation frequencies of 5–10 kHz, as shown in Fig. 2.
However, it should be noted that higher frequencies can degrade stimulation efficacy
[29, 35]. Therefore, a balance between current amplitude and HFS frequency may be
necessary for a practical stimulation strategy.

In summary, the modelling approach can predict where the optimal stimulation
parameter space is likely to be without detailed experimental investigations, provid-
ing insights into stimulation strategies that may contribute further to the develop-
ment of retinal prostheses.
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Functional Requirements of Small- and
Large-Scale Neural Circuitry
Connectome Models

Kristen W. Carlson, Jay L. Shils, Longzhi Mei, and Jeffrey E. Arle

1 Introduction

We have truly entered the Age of the Connectome due to a confluence of advanced
imaging tools, methods such as the flavors of functional connectivity analysis and
interspecies connectivity comparisons, and computational power to simulate neural
circuitry [1–8]. The interest in connectomes is reflected in the exponentially rising
number of articles on the subject (Fig. 1). What are our goals? What are the
“functional requirements” of connectome modelers? We give a perspective on
these questions from our group whose focus is modeling neurological disorders,
such as neuropathic back pain, epilepsy, Parkinson’s disease, and age-related cog-
nitive decline, and treating them with neuromodulation.
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2 Goals and Means

2.1 Electroceuticals and Neuromodulation

The ultimate goal of electroceuticals and neuromodulation is to use electromagnetic
fields to modify any component of the central and peripheral nervous system in a
predictable way to restore or enhance its normal functionality. Neuromodulation
focuses more on restoring functionality from a diseased state, while electroceuticals’
emphasis is using electromagnetic fields to replicate pharmaceutical effects and
thereby provide a far less expensive and time-consuming path than the drug devel-
opment and regulatory route via an alternative medical device route cutting cost and
time as much as 90%.

In the past decade, as numerical modeling and simulation have become more
sophisticated, their role in reducing research and development time and expense has
become increasingly clear and valuable [9, 10]. The Food and Drug Administration
and the American Society of Mechanical Engineers have led the way to formalize the
simulation paradigm so that its results and their level of validity are satisfactorily
transparent [11, 12].

2.2 Benefits of Numerical Modeling

The benefits of numerical modeling begin with the ability to predict electromagnetic
field distributions and the resulting forces and energy imparted by the field to
targeted and non-targeted structures. Modeling provides significant advantages
over empirical studies particularly under the following conditions, which apply
pervasively to the nervous system:

Fig. 1 Number of publications on network neuroscience per year between 1990 and 2018.
Reprinted from Douw et al. [1]
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1. Where it is difficult or impossible to measure values empirically
2. Where preclinical studies are expensive or impossible
3. In inhomogeneous, anisotropic materials
4. Where material parameters are imprecisely established

Further, modelers can perform extensive “what if” explorations in large param-
eter spaces either interactively or in an automated batch mode. Using standards such
as those mentioned above, modelers can benefit by exchanging their models to
compare results or to use another’s model as a starting point for new explorations.

2.3 The Role of Simple Versus Complex Models

Freddie Hansen of Abbott Laboratories built over 300 simulation models in 6 years –
how did he do it? For most of his models, Hansen uses the COMSOL finite element
modeling (FEM) software as a “FEM pocket calculator” with which he builds quick-
and-dirty FEMs in a few hours to a few days [13]. These models are designed to
answer a single, simple question. Roughly defined parameters and large error bars
can be addressed with parameter sweeps across the relevant parameters to outline
possible range of responses and determine sensitivities.

In the field, such simple models are often called “sub-models,” i.e., they are a
study of a component from a larger model. The nervous system – even in simpler
model organisms than humans – is so complex that sub-modeling will be an
important technique for calibration, validation, and dissecting functionality of
connectomes.

More complex and sophisticated models, such as Hansen’s principal model of a
heart pump, take weeks and months to build, calibrate, and validate. Generally,
much greater emphasis is placed on validation in complex vs. simple models, and far
greater time is required to beat the desired calibration and validation behavior out of
the model. Hence, calibration of sub-models within connectomes can be an impor-
tant route to efficiency and model control.

An example of a connectome sub-model is the H-reflex, which is the relatively
simple spinal cord circuit triggered when the doctor hits your knee with a rubber
mallet. The connectivity of the monosynaptic H-reflex is well-known (Fig. 2), which
is not generally the case with more complex circuits, hence the need to start with
what is known and get that calibrated before venturing into unknown territory.
Calibration of the H-reflex involves balancing the connection strength between the
Ia excitatory sensory fiber, Renshaw cell (RC) inhibitory feedback loop, and alpha
motor neuron circuit such that this mini-circuit replicates its reported ~50 ms
refractory time (Fig. 3).

While one or two such mini-calibrations may suffice for a simple model, many
may be necessary in a complex model in order to impose sufficient constraints to
validate the model. The growing sophistication of new top-down modeling methods
is greatly improving the calibration/validation process (see Sect. 2.5).
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2.4 Ockham’s Razor Drives All Modeling

“What can be accounted for by fewer assumptions is explained in vain by more” was
a principle frequently invoked by the influential medieval Scholastic thinker, Wil-
liam of Ockham (1285–1349) [14]. Similarly, in modeling, a guiding principle is to
make the model no more complex than is required to capture the desired phenomena.
In modeling the human brain and spinal cord, one has little choice but to invoke this
principle frequently, because the systems are so complex and intertwined. For
example, one cannot model the entire brain to capture a given disorder, such as
movement disorder due to loss of dopaminergic neurons in the substantia nigra pars
compacta in Parkinson’s disease, where the central basal ganglia loop sends and
receives signals from external centers. In such a model, vast regions of, e.g., cortex
and thalamus may be represented as single groups, or single excitatory and inhibi-
tory pairs [15].

2.5 Capturing the Required Level of Detail

Similar to the principle of Ockham’s razor, modelers must make a decision about the
level of detail they wish to capture and the developmental and computational cost
required to capture the target level [16, 17].

Fig. 2 Schematic of the Hoffmann reflex (H-reflex), a monosynaptic relay from afferent sensory
fiber Ia to an alpha motor neuron (αMN) and back to the muscle via a large A-α efferent fiber. The
refractory time of the circuit is principally mediated by a Renshaw cell (RC) clock
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Biology is fundamentally a multisystems level discipline, and accordingly, mod-
elers must decide at which systems level to focus [18–20]. Concomitantly, though,
the systems level approach gives modelers some flexibility with regard to
“axiomatizing” or “black-boxing” elements at the underlying systems level to the
one at hand, thereby simplifying the model and rendering its behavior more under-
standable. This approach goes back as far as von Neumann’s earliest thoughts on
how to model the nervous system [21].

2.6 Which Neural Circuitry Software?

Once a decision is at least tentatively made on the systems level and extent of detail,
a modeling tool is selected that is designed to capture the target level of detail [22].

By way of example, our connectome models have used the following tools, each
designed to model a different neural systems level and to be computationally
efficient for the required tasks:

Fig. 3 Recorded transmembrane potential in a neural circuitry model calibration of the H-reflex
spinal motor circuit to replicate its ~50 ms circuit refractory time. x-axis: time in ms. y-axis:
transmembrane potential in mV. Action potentials (AP) are initiated at 12, 47, and 82 ms (red
arrows) in Ia sensory fibers, triggering the reflex. The timing of alpha motor neuron cell response is
modulated by a double-Renshaw cell (RC) inhibitory “clock” (Fig. 1). With proper calibration of
axonal delays and connection strengths, the alpha motor neuron fires in response to the Ia fiber at
12 ms and 82 ms APs but, inhibited by the RC clock, does not fire at 47 ms, evidencing the
refractory period
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1. UNCuS (Universal Neural Circuitry Simulator) written in C++ and Java incor-
porating electrotonic dendritic compartments and neuron type calibration based
on 12 parameters [6, 16, 23, 24]

2. Active nerve fiber cable models in C++ and Java incorporating ion channel gating
at 0.25 ms timesteps [25]

3. Simpler passive fiber models based on relative threshold or an absolute version of
the Weiss equation using the second finite difference of electric field potential
along the fiber as predicted in a finite element model (Fig. 4) [26, 27]

4. Finite element models in COMSOL Multiphysics™ of electromagnetic
neuromodulation devices and their generation of electric potential, current den-
sity, etc., in heterogeneous biological tissue [26, 27]

5. A special-purpose numerical model written in Mathematica (WRI, Champaign,
IL, USA) of fiber threshold changes due to cathodic and anodic stimulation
phases to elucidate a hypothesis on traditional low-frequency, “burst,” and
high-frequency spinal cord stimulation [28, 29]

In recent years, neural circuitry software is often categorized into three different
model paradigms, all using coupled differential equations. The kind of consider-
ations used to select which paradigm is appropriate for modeling the basal ganglia in
Parkinson’s disease, for instance, is described by Rubin [30]:

1. Activity-based or firing-rate models
2. Integrate-and-fire models
3. Conductance-based models

An older tool, NEURON, has often been used for small neural circuits as well as
individual neuron and axon behavior and offers the advantage of transparency – for
those who can march up the learning curve required to learn its interface [31].

However, as the need to model larger connectomes and longer time series is
growing rapidly, newer methods are being developed [32–36]. Other driving forces

Fig. 4 Rheobase, the minimum threshold of a nerve fiber under sustained stimulation, and
chronaxie, the time constant of the fiber standardized at twice the rheobase stimulus strength,
together determine the fiber threshold under stimuli of any length in passive fiber modeling.
Rheobase may be relative to a given empirical model, or absolute, measured by replicating a
model in finite element software and measuring electric field gradient along a virtual fiber [26]
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of high efficiency model paradigms are “biomimetic” or “bio-inspired” systems and
the prospect of interfacing neural prostheses with biological neural circuits [37–
40]. Such paradigms seek to marry software and hardware requirements (“algorithm-
hardware co-design”) to produce ultimate computational efficiency [41, 42]. These
newer approaches are likely to obsolete the current methods within a decade.

2.7 Initial Conditions

There are no firm guidelines for setting up the initial conditions for a neural circuit,
which remains more of an art than a science. One can start with randomized
connectivity and connection strength, for instance, the absence of any knowledge
of specific connectivity and connection strength, i.e., a high entropy configuration,
and impose calibrations that constrain the circuit, reducing its entropy, until it sends
its “message,” i.e., behaves according to a desired specification.

An example of a “middle ground” initial conditions approach would be specify-
ing coarse-grained connectivity that is known from the literature and using heuristics
to ensure some reasonable performance or more likely avoid unreasonable perfor-
mance. One such heuristic is setting connection strength from inhibitory to excit-
atory groups and excitatory to inhibitory groups incrementally stronger than from
excitatory to excitatory groups and from inhibitory to inhibitory groups, such that the
circuit does not initially slip into hyperactivity. A similar heuristic is lowering the
ratio of excitatory to inhibitory connections such that stability is initially generated.
A third technique is imposing a hypothesized exogenous “black box” inhibitory
input to stabilize the circuit. Any highly recurrent circuit topology requires stabiliz-
ing, negative-feedback heuristics of this genre [6]. We used the first and third
techniques in our human spinal cord connectome, in which the exogenous black
box represented known but unquantified descending inhibitory control from higher
brain centers.

Our human spinal cord connectome model entailed an ultimate attempt to per-
form a bottom-up calibration by culling from the literature all topology including
source peripheral fibers or neural groups, their targets (specific Rexed laminae, i.e.,
the gray matter of the spinal cord), connection strength, and neurotransmitters
[6]. The end result was that the overall model was under-constrained due to the
dearth of complete data, in particular on connection strengths. Our conclusion was
twofold. First, the model was valuable as a starting template for calibrating the
innumerable local circuity models that embody the spinal cord connectome. Second,
while advances in imaging techniques foreshadowed the possibility of complete
bottom-up calibration at some point in the future, for practical purposes, top-down
calibration, e.g., by replicating circuit behavior (input-output specifications) would
be required in connectome modeling.
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2.8 Calibration and Validation

The general calibration/validation procedure is to cull a set of calibrations for a given
circuit from the literature and add calibrations one by one until the model predicts
one or more of the remaining calibrations with reasonable accuracy, i.e., is validated
against the remaining empirical criteria. Calibration can be done iteratively by hand,
which can be painstakingly slow and tedious, but quite educational as to how neural
circuitry behaves in general, how the specific software implementing the circuitry
behaves, and how the specific circuit and its components affect each other.

On the other hand, calibration of a neural circuit can be performed automatically
by an optimization program using one or more objective functions and error toler-
ance in the objective criteria as terminating conditions of a “while” loop. Such
automated batch processing may be the only expeditious way to program evenly a
moderately sized circuit.

As stated, rather than using bottom-up calibration, the field is moving toward
top-down calibration utilizing a variety of empirical techniques (e.g., imaging
techniques, electro- and magnetoencephalography), which, in conjunction, constrain
models more than what has been possible to date, and notably in diseased state
modeling [43, 44]. The lower-level connectivity, connection strength, variety of
individual neural processing, and axonal delays are reflected in the emergent high-
level behavior [45, 46].

For example, to uncover connectivity and connection strength, fiber-tracing
studies and identifying where on the dendritic tree an axon synapsed have been
replaced with diffusion-weighted magnetic resonance image (MRI) and blood-oxy-
gen-level-dependent (BOLD) data from which the “functional” connectivity of the
network is inferred [47, 48]. In a rapidly evolving paradigm, variations on this
technique are utilized with older methods to offer the modeler a menu of possible
calibration/validation datasets (Tables 1, 2, 3, and 4). Disease “signatures” (bio-
markers) in the new paradigms can be used to calibrate models of
diseased vs. healthy states and measure the effects of neuromodulation,
electroceutical, or pharmaceutical techniques to restore the healthy state [24, 49–52].

Table 1 Evolving methods of top-down calibration [43]

Resting-state functional connectivity network behavior

Dynamic functional connectivity network behavior

Resting-state fMRI oscillations

Brain rhythm relationships (e.g., inverse α-rhythms)

Excitation-inhibition balance

Spike-firing patterns and fMRI on short- and long-time scales

fMRI power-law scaling

fMRI functional magnetic resonance imaging
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3 The Functional Requirements

At a high level, the following are required to efficiently make valuable connectome
models:

1. User-friendly modeling software for the correct systems level
2. Standardized parts list (axon and neuron types)

Table 2 Type of modeling software used for the relevant neural systems level and time scale

Model software Time scale Typical application

Molecular dynamics 10�12
–10�9 Fine-grained ion channel dynamics

Active fiber 10�6
–100 Nerve fiber activation and blocking thresholds

detailed at μs/ms ion-channel level

Passive fiber 10�3
–103 Fast, black-box nerve fiber activation and blocking

thresholds

Neural circuitrya 101–103+ Resting state and dynamic functional connectivity
of normal, disease, and neuromodulated circuits

aFor more details on neural circuitry software types, see Sect. 2.6, “Which Neural Circuitry
Software?

Table 3 Modeling software functional requirements for efficient circuit assembly

Batch processing

Parameter sweep

Automatic calibration via optimization criteria:

While[fobjective[u] ¼ false, loop (parameter1, . . . parametern)]

Import user-specific waveform

Import user-specific voltage-current (current-voltage) curve for neuron types

Import calibration-validation connectivity data

Table 4 Idealized requirements for connectome models designed to inform medical device and
drug development

Peripheral fiber groups involved, their receptor type, diameter, conduction speed, numbers, and
activation and blocking thresholds

Source and target neuron groups, their neurotransmitters and receptors, known connectivity, and
axonal delays

Resting state, dynamic state, and their variational methods of measuring functional connectivity in
healthy and diseased circuits

Tissue parameters: geometry, conductivity, permittivity, and permeability

Medical device parameters: geometrical electrode array and waveform characteristics including
anodic, cathodic, and rest phase pulse width and shape, frequency, and duty cycle

Drug effects on neural system targets such as peripheral fiber types and central neural groups
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3. Assembly instructions (topography and weights)
4. Methods of calibration, validation, and their associated datasets to use in those

processes

4 Conclusion

The “connectome” has come of age and is now in a similar stage as the genome was
15 years ago. The great advances and benefits loom ahead. Yet the functional
requirements to build connectomes are now known. Connectome simulation is fast
and cheap compared to hardware prototyping, or in vitro and in vivo investigation of
how the neural system works. Connectome modeling of neuromodulation and
electroceutical action on the nervous system will lead to an explosion of targets
and means for greater control over disease and disorder treatment and enhanced
neural behavior.
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Simplifying the Numerical Human Model
with k-means Clustering Method

Kyoko Fujimoto, Leonardo M. Angelone, Sunder S. Rajan,
and Maria Ida Iacono

1 Introduction

Computational modeling is widely used to assure patient safety with respect to radio-
frequency (RF) related concerns during magnetic resonance imaging (MRI). It
allows for evaluation of RF power absorption and specific absorption rate (SAR)
in anatomically detailed numerical human models. Such evaluations are especially
important for safety of patients with implantable devices.

RF-induced heating depends on the physical characteristics of the patient [1], and
as such, it is expected that numerical human models are sufficiently detailed to be
able to estimate the differences across the patient popupation; however, the time-
consuming model generation process prevents achieving a realistic safety
evaluation.

A limited number of anatomically realistic numerical human models are available
for research and development use. Currently available whole-body numerical
models have 26–77 anatomical structures [2–5]. A previous study showed that
three different dielectric properties (muscle, fat, and lung) were sufficient to estimate
SAR with a 5-mm resolution [6]; yet there are implantable devices with dimensions
of less than 5 mm that can be implanted in very thin anatomical structures such as
arteries and veins. Thus, a more detailed model may be needed for robust
RF-induced heating evaluation. Moreover, a study using a higher resolution model
showed that the blood vessel SAR can be up to ten times higher than the maximum
standard gel phantom SAR value [7]. Knowing the limits of simplification in a
numerical model can help not only to reduce the time needed for segmentation for
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model generation but also to fabricate a standard phantom which can accurately
reflect the in vivo result.

In this study, we used the k-means clustering method, one of the commonly used
vector quantitization methods for cluster analysis, to reduce the number of anatom-
ical structure types with different dielectric properties in a detailed human model.
Then we investigated the resulting differences in SAR with respect to the number of
clusters. The simplified models were then used to simulate a test senario for
RF-exposure by calculating background tangential electric field (Etan) along five
stent trajectories in selected arteries.

2 Methods

2.1 k-means Clustering

The k-means clustering was applied on the electrical conductivity and permittivity of
anatomical structures of the AustinMan model [5] with 61 different anatomical
structures in MATLAB (The MathWorks Inc., Natick, MA, United States). Ten
model variations with different dielectric property configurations were used in the
simulations: one full model with the original 61 anatomical structures with 51 dielec-
tric properties and nine models with varying number of dielectric property clusters
(k ¼ 33, 30, 27, 24, 21, 18, 15, 12, and 9). The total sum of distances was used as a
distance measure, and the model with 33 clusters was chosen as a starting point
because the distance was less than 0.5 for numbers of clusters above 34. The
example of clustering for k ¼ 9 is shown in Fig. 1(a).

2.2 Computational Modeling Setups

The computational modeling setups were implemented using the commercially
available finite-difference time-domain platform Sim4Life (Zurich Med Tech, Swit-
zerland). A 32-port 16-rung birdcage coil, 700 mm in length and 650 mm in
diameter, with idealized excitation was modeled. All the current carrying coil
structures were modeled as perfect electric conductors (PEC). Electromagnetic
simulations were performed by feeding the coil with a continuous sinusoidal wave
at 128 MHz.

The Huygens’ approach [8] was applied to facilitate a fair comparison between
full and simplified models. The incident field was calculated with an unloaded coil
first, then used to compute electromagnetic fields within body models, with 1-mm
isotropic grid. The modeling software could estimate electomagnetic fields with a
coarser grid, especially with the clustered models, which would reduce computa-
tional burdens. However, to facilitate fair comparisons between the full model and
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the clustered models, the same resolution of the AustinMan model was used to
discretize the models in this study. All the models were simulated at the hip bone
imaging landmark.

2.3 SAR Calculation

The single-voxel SAR (SARraw), 1 g-averaged SAR (SAR1g), and 10 g-averaged
SAR (SAR10g) results were compared by calculating the mean and maximum
percentage difference between the full model and the clustered models. Voxel-
wise comparison of each pair was performed by linear regression of the SAR values.
All SAR values were computed with original mass density values of the model and
normalized to a whole-body averaged SAR equal to 2 W/kg [9]. All the analyses
were performed in MATLAB.

2.4 Electric Field Tangential to Stents in Blood Vessels

To simulate a test case of RF heating assessment, stent trajectories were chosen in
the five locations in the arteries of AustinMan as described in Fujimoto et al.
[10]. Five case studies were analyzed for the ascending aorta, the brachial, the
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Fig. 1 (a) Example of the k-means clustering based on the sum of absolute differences. Different
colors represent different clusters. Calculated centroid values were used in the simulation for
anatomical structures within clusters. (b) The coronal view of the segmented model with full
properties and nine properties is shown
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femoral, the iliac, and the popliteal arteries. Stent trajectories were created based on
the centerline of each blood vessel that was calculated in MATLAB by binarizing a
selected vessel and determining the centroid of the consecutive axial slices of the
model. The centerline was then imported into Sim4Life to create a smooth trajectory.
The Etan value was calculated along each trajectory using the IMSAFE module in
Sim4Life. The magnitudes of Etan values were calculated offline for each number of
clusters.

3 Results

The values of dielectric properties for each k-clustered model were determined by
the k centroids. The example of clustering plot and coronal slices of full and k ¼ 9
models are shown in Fig. 1. The centroids as shown in Fig. 1(a) are distributed across
the range of the original permittivity values from 1 (air) and 90 (kidney) and the
original conductivity values from 0 (air) to 2.1 (cerebrospinal fluid). For example,
with these centroids, skin, muscle, diaphragm, and liver became one cluster in the
k¼ 9 clustered model. The maximum intensity projection of each SAR map showed
that the SAR1g and SAR10g maps were qualitatively similar among different models
regardless of numbers of dielectric properties used (Fig. 2).

The mean and maximum percentage difference (Table 1) revealed that there were
up to 15.3% mean difference in SAR. The example cross-sectional (transverse slice)
SAR maps are shown in Fig. 3. The 12-clustered models estimated higher SARraw

values compared to the full model on the skin, whereas the values for SAR1g and
SAR10g were similar. This trend was observed when compared between the rest of
the simplified models and the full model. The SAR values from the full model
plotted against the SAR values from each clustered model revealed that all the
clustered models showed high correlations with the full model (Fig. 4). The Etan

values calculated in selected stent paths were similar among the full and
clustered models (Fig. 5).

4 Discussion

The clustered analysis showed that reducing the number of dielectric properties from
51 (original) to 30 has less than 0.2% effect on the mean SAR results. Further
reduction in the number of dielectric properties was not linearly correlated with
mean and maximum SAR differences. The greatest mean SAR difference was 15.3%
for k ¼ 18. Each voxel pair between the full and the 30-clustered SAR values was
highly correlated. Our results suggest not only reducing the segmentation time on
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generating models but also using existing models with less anatomical structures
which result in reduction in computational time.

The Etan results (Fig. 5) showed that they were not linearly correlated with the
number of clusters. In other words, as shown with the ascending aorta, the iliac, and
the femoral artery trajectories, the models with small numbers of clusters can
estimate the Etan results as the full model simulation does.

Fig. 2 Maximum intensity
projection of SAR1g and
SAR10g from the
simulations with the models
with full, 33-clustered, and
nine-clustered properties.
No subjective differences
were observed among the
three SAR1g and
SAR10g maps
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All the results in this study were simulated at the hip bone landmark. The optimal
number of clusters may change depending on the imaging landmarks as electric field
distribution varies depending on the exposed mass. Another limitation of this study
was that only one set of dimensions of RF coil and one field strength were studied.
As a previous study showed [11], both can affect the field distribution and the
resulting optimal number of clusters.

Our k-means clustering approach was only based on dielectric properties. Incor-
porating the location of the dielectric property may help improve the clustered
models. Different approaches such as the Gaussian hidden Markov random field
models may be able to help the generation of clustered model based on not only the
dielectric properties but also spatial constraints based on neighboring voxels.

Table 1 Percent differences for mean and maximum values computed between full and clustered
SARraw, SAR1g, and SAR10g maps

Percent difference between full and clustered SAR maps

# Clusters

SARraw SAR1g SAR10g

Mean Maximum Mean Maximum Mean Maximum

33 0.0% 54.9% 0.0% 114.8% 0.0% 152.7%

30 0.2% 56.9% 0.2% 114.8% 0.1% 152.7%

27 3.0% 177.8% 2.8% 115.0% 2.3% 152.6%

24 2.7% 53.8% 2.5% 115.1% 2.1% 152.6%

21 15.1% 151.8% 11.7% 117.4% 9.4% 156.3%

18 15.3% 168.9% 11.8% 116.5% 9.3% 156.6%

15 8.1% 171.8% 6.3% 115.4% 4.8% 152.6%

12 12.0% 183.7% 10.0% 118.0% 8.0% 153.9%

9 10.4% 183.5% 8.4% 116.6% 6.7% 153.6%

Fig. 3 Cross-sectional SAR
maps for the full model and
clustered k ¼ 12 model. The
slice shown includes the
voxel with the maximum
difference in SARraw maps
between full and
12-clustered models (see
Table 1). The maximum
difference resides on the
skin of AustinMan where
the arm and torso are in
contact
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Fig. 4 Scatter plots
between full and clustered
SAR1g and SAR10g values.
The linear fit is shown with
the lines and R2 values. All
of the slope values showed
close to 1. Therefore, there
was a one-to-one correlation
between each pair. The 33-,
30-, and 15-clustered
models showed especially
high correlation
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Fig. 5 Etan on selected blood vessel paths where short stents are commonly implanted are
calculated
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5 Conclusion

Simplified numerical models based on dielectric properties can show equivalent
SAR result. Further investigation of the clustering method may enable efficient MRI
safety assessment by simplifying the model generation and reducing
computational time.
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Using Anatomical Human Body Model
for FEM SAR Simulation of a 3T MRI
System

Alexander Prokop, Tilmann Wittig, and Abhay Morey

1 Introduction

Specific absorption rate (SAR), the dissipated power per tissue mass, is used to
quantify the human exposure to electromagnetic fields in frequency ranges between
100 kHz and 6 GHz. To approximate the temperature rise distribution, it is usually
averaged over masses of 1 g (SAR-1g) or 10 g. The averaging procedure to be used
after computational determination of the electromagnetic fields using the finite
difference time domain (FDTD) method or finite integration theory (FIT) in recti-
linear hexahedral grid meshes has been defined in the IEC/IEEE 62704-1
standard [1].

However, with the finite element method (FEM), electromagnetic fields are
usually calculated on unstructured, i.e. tetrahedral or curved element meshes, for
which the 62704-1 averaging procedure is not directly applicable. Therefore, in the
IEC/IEEE 62704-4 standard [2], an iterative sampling procedure has been defined.
Its output can be used with the 62704-1 averaging procedure.

In the following, we show how this sampling procedure, which was developed for
the standard application to wireless communication devices, is also applicable to
other field distributions from devices like magnetic resonance imaging (MRI)
systems for which SAR is also an essential quantity to evaluate patient safety.
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2 Simulation Setup

A generic MRI RF coil for 3 Tesla resonating at 128 MHz is simulated in full 3D
together with an anatomically correct human body model (HBM), the Female
Visible Human [3, 4]; tissue properties are based on the typical Gabriel [5] param-
eters with background tissue modelled as fat (Fig. 1). Coil capacitors are represented
by ports in the 3D model, so the coil can easily be tuned by an EM-circuit
co-simulation in post-processing. During the full simulation run, a relatively coarse
mesh is sufficient, as no details of the HBM need to be resolved. The resulting fields
are recorded on a Huygens box enclosing the HBM.

As a next step, the obtained fields are used as an equivalent field source (EFS) for
a simulation where only the human body model is contained. Agreement of the
results with the full simulation have been verified as presented in [6]. The EFS has
been applied for both FIT hexahedral time domain simulation with a 2-mm mesh
step and a FEM frequency domain simulation with a mesh of about 1 million
tetrahedra.

SAR-1g has been calculated for FIT on the 2-mm discretization mesh and with
different sampling steps for FEM, scaled to an accepted power of 1 W.

As an initial sampling step, 62704-4 [2] suggests to stay below the cubic root of
the quotient of the averaging mass divided by the maximum occurring mass density,
in our case 2000 kg/m3 for bone resulting in a maximum initial mesh step of
7.94 mm. We choose an initial mesh step of 5 mm.

Fig. 1 MRI coil setup with HBM
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3 Results

The following figures show the SAR-1g distributions in coronal cross sections. With
5-mm sampling, the maximum SAR-1g is 0.264 W/kg. Figure 2a shows the plane
with the maximum; see the red spot between stomach and intestine. With 2-mm
sampling, maximum SAR-1 g is 0.37 W/kg, but at a different location. Figure 2b

Fig. 2 (a) left: SAR-1g with 5-mm sampling at y¼�65; (b) right: SAR-1g with 2-mm sampling at
y ¼ �65
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shows only a small rise at the stomach/intestine spot. In Figs. 3a and 3b, we see the
actual maximum SAR-1g position in the right arm, where the 5-mm sampling results
shown in Fig. 3a only have a local maximum of 0.123 W/kg.

Figures 4a and 4b show a good agreement of the 1-mm sampling (0.341 W/kg)
and the FIT results (0.338 W/kg) for maximum SAR-1g in value and location.

Figure 5 compares FEM SAR-1g with different sampling steps to FIT SAR-1g
along the line shown dashed in Fig. 6.

Fig. 3 (a) left: SAR-1g with 5-mm sampling at y ¼ 63; (b) right: SAR-1g with 2-mm sampling at
y ¼ 63
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As in Fig. 2a, the 5-mm sampling shows a peak around z ¼ 680 mm, which does
not exist in the finer sampling and the FIT results. There are some minor deviations
of the 1-mm and 2-mm sampling results from FIT with reasonable relative error or in
regions where SAR is very low.

Fig. 4 (a) left: SAR-1g with 1-mm sampling at y ¼ 63; (b) right: SAR-1g from FIT according to
62704-1 at y ¼ 63
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4 SAR Profiles

Figures 7, 8, and 9 show the maximum SAR-1g per plane for each coordinate
direction, i.e., Fig. 7 shows the maximum SAR-1g in each sagittal plane at coordi-
nates x from �250 to 250 (right to left body part), clearly showing the maximum in

Fig. 5 FEM SAR-1g for different sampling steps with FIT SAR-1 g compared along a line through
x ¼ 30, y ¼ 50

Fig. 6 Dashed line used for comparison in plane y ¼ 50
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Fig. 7 SAR profile showing the plane-wise maximum along x

Fig. 8 SAR profile showing the plane-wise maximum along y
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the right arm at x ¼ �200. Such representations can be called SAR profiles and can
be helpful for the definition of subvolumes described in 62704-4 to avoid refined
sampling in regions with low exposure.

5 Conclusion

The investigation shows that good agreement can be achieved, but care needs to be
taken when limiting the evaluation on subregions as suggested in clause 6.2.2.2 e) of
62704-4 [2]. The SAR profiles introduced in this work can be of help here. The
investigated case suggests that from the initial sampling, the subregion should be
chosen at least large enough such that in the excluded regions the SAR profiles are
below 10% of the global maximum.
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RF-Induced Unintended Stimulation
for Implantable Medical Devices in MRI

James E. Brown, Rui Qiang, Paul J. Stadnik, Larry J. Stotts,
and Jeffrey A. Von Arx

1 Introduction

As the preferred imaging modality for soft tissue imaging, there has been significant
interest in recent years to provide access to magnetic resonance imaging (MRI) to
patients with active implantable medical devices (AIMDs). Historically, these
patients have been denied access to this important diagnostic tool due to several
potentially hazardous interactions with AIMDs [1]. Examples of AIMDs include
pacemakers, cochlear implants, implantable glucose monitors, spinal cord stimula-
tors, and deep brain stimulators.

AIMDmanufacturers, in cooperation with MRI manufacturers, regulatory bodies,
and academia, have developed a technical specification which outlines test methods
for assessing the risk of several hazards [2]. In test methods, hazards are separated
according to the field component (static, gradient, or radio frequency (RF)), and
conservative test conditions are derived to stress the device in a laboratory setting
beyond what is possible in the complex MR environment.

Among the potential hazards of MRI for patients with active implantable medical
device is RF-induced rectified voltage. RF energy incident on the device may be
rectified by internal active components and cause unintended stimulation of tissue
near the device electrodes. In order to assess the risk to the patient, device manu-
facturers use computational human models to quantify the incident RF on the device
and perform benchtop testing to determine the likelihood of unintended stimulation.

For a cardiac implantable electronic device (CIED) such as a pacemaker, if this
rectified voltage exceeds the patient’s physiological threshold, it could induce
unintended cardiac stimulation (UCS) leading to tachycardia. A standard test for
leaded CIEDs is presently being developed to quantify the risk of UCS for these
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devices [3]. The safety assessment for RF-induced UCS utilizes computational
human models (CHMs).

In this work, the general process of using CHMs for the assessment of
RF-induced unintended stimulation is discussed in the next section. Then, the
process is applied to a pacemaker as an example in the following section for the
specific hazard of UCS. Next, the impact of the model development on the results of
this analysis is discussed. Finally, the overall impact of this work and areas which
should be considered for future work are presented.

2 Evaluation of RF-Induced Unintended Stimulation Using
Computational Human Models

There are many advantages of using CHMs for risk-based safety assessments for
AIMD in MRI [4, 5]. The RF-induced energy incident on a leaded AIMD is typically
calculated through the use of the well-known transfer function method [6, 7] as

VDUT ¼ A

Z L

0
S τð Þ ∙Etan τð Þdτ:

Here, VDUT is the voltage at the AIMD under test, S is the transfer function, and
Etan is portion of the incident electric field which is tangent to the lead pathway.
These lead models are combined with RF field distributions within CHMs derived
through electromagnetic simulation to conservatively estimate the induced RF level.

The variability of the predicted induced RF level for leaded devices is quite large
due to the presence of resonant phenomena. These resonance effects have been
extensively studied in the literature [8–11], usually in terms of RF-induced heating,
but the same principle applies to the RF level induced at the implantable pulse
generator (IPG). RF heating is evaluated at the distal end of the lead, while
RF-induced energy is quantified at the proximal end, but otherwise the phenomena
are very much related. Both may be influenced differently by the terminating
impedance at the IPG [12].

2.1 3-D Field Distribution Within the CHM

A library of CHMs spanning the population in terms of height and BMI in different
body positions, MR coils, landmark positions is used to study the distribution of
expected electromagnetic fields along the lead pathway. The overall procedure is
shown in the flowchart of Fig. 1.
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2.2 AIMD System Model

Lead models are developed numerically or experimentally [13–17], in one or more
tissue-simulating media (TSM). The homogenous TSM should be chosen to accu-
rately compute the induced RF level once the transfer function is applied in the
human body (via CHM). The variability of computed RF level with the TSM used
during lead model development is discussed in Sect. 4.

The geometric accuracy of the CHM along the lead trajectory, including the
continuity of organs through which the leads are placed, is paramount to the
accuracy of the model. Variations in critical parameters such as surrounding anat-
omy and tissue parameters must be included in the set of simulations used to
generate the worst-case predicted RF-induced energy.

2.3 Assessment of AIMD Response

A risk assessment is then performed to determine the set of target exposure values for
a benchtop RF injection test. Due to the nonlinear nature of rectified voltage, the test
must be performed using the large-signal RF level (i.e., results cannot be scaled).
Observed rectified voltage can be compared with a patient’s expected physiological
response, which is dependent on the specific tissues that are near the electrodes.

Safety Assessment
Ensure rectified voltage (if any) does not cause unintended 

stimulation.

Model 3-D E-fields 
Model E-field distribution in multiple 

human body model variants, RF 
coils and positions.

Calculate and Analyze Induced RF Level at IPG
Calculate induced RF level for multiple pathways in each human body model variant 

for each AIMD system configuration.  

Generate AIMD System Model
Generate and validate local element 

models for each AIMD system 
configuration (device / lead combination)

Determine Target RF Level for Device Injection
Determine target RF level for each lead combination 

in the system.  Expose the AIMD to the target 
currents.  Monitor rectified voltage (if any).

Fig. 1 Flow chart illustrating workflow for the assessment of protection from harm to the patient
caused by RF-induced unintended stimulation
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As an example of the evaluation of this hazard for a specific implantable device,
this procedure is detailed for a pacemaker system in the next section. Analogous
methods may be applied to extend the analysis to other types of AIMDs, including
spinal cord stimulators and deep brain stimulators.

3 Approach Applied to a Pacemaker System

In order to apply the procedure from Sect. 2 to CIEDs, the incident fields in the
CHMs are extracted for clinically relevant pathways. An example orientation for a
dual-lead pacemaker system is shown in Fig. 2.

Additionally, lead models must be developed for all lead combinations which are
to be evaluated. The induced RF level for multiple lead systems has been observed to
be higher than for single lead systems [3].

A probability distribution of induced RF levels is created using each lead model
and set of extracted fields from the library of CHMs. Additionally, if the device
includes an RF antenna, the induced voltage on the antenna must be quantified
[18, 19]. Then, benchtop testing is performed to expose the pacemaker to a suitable
range of target RF levels so as to appropriately characterize the risk to the patient.
Any observed rectified voltage can then be compared with the statistical likelihood
that the waveform will cause cardiac stimulation, for example, through the strength
duration curve [19]. In [3], the criterion is that the probability of unintended cardiac
stimulation, P(UCS), shall be less than 1 in 10,000. This probability is assessed by
computing the integral

Fig. 2 Example orientation
of a dual-chamber
pacemaker in the human
body
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P UCSð Þ ¼
Z1

0

f xð Þ
Zx

0

g yð Þdy dx:

Here, f(x) is the probability that a given rectified voltage is induced during the
MRI, and g(x) is the probability that a given voltage is the minimum required to
stimulate the patient’s cardiac tissue. This is illustrated in Fig. 3, where the y-axis is
probability and the x-axis is voltage. The voltage is the voltage monitored across a
tissue-simulating resistor and thus is directly proportional to current. Current is a
surrogate for charge, which is the true figure of merit for evaluating the probability of
stimulation.

The pulse width of the rectified voltage is important to assess the probability of
unintended stimulation. The well-known strength duration curve [20], shown in
Fig. 4, can be used to determine the dependence of the analysis on rectified pulse
width.

Fig. 3 Computing the
probability of unintended
stimulation

Fig. 4 The strength-
duration curve
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4 Variability of Induced RF Level

The computed RF level is dependent both on the CHMs being used and the tissue-
simulating medium (TSM) used during lead model development. This topic has been
investigated extensively for RF-induced heating in the literature [21–25]. Here, we
include some discussion of the impact of the TSM on the computation of the induced
RF level, which would in the end impact the assessment of the probability of
unintended stimulation.

A basic structure approximating an implanted medical device lead is described in
[2] as SAIMD-1. Here, the lead length is changed to 45 cm in order to better
represent a pacemaker lead. The device geometry is shown in Fig. 5.

The incorporation of the lead model uses a method similar to [7], where a voltage
is introduced between the wire and device ground, and the transfer function is then
proportional to the current distribution on the wire. The surrounding medium is
swept through a range of dielectric constants and conductivities. For example, the
transfer function magnitude for 0.2 S/m, 1.2 S/m, and 2.2 S/m are given in Fig. 6.

From these plots, it can be observed that a lower dielectric constant of TSM
pushes the lead below resonance. The resonant behavior is more pronounced for the
higher conductivity of TSM due to wavelength compression effects.

Naturally, these lead models will lead to different predictions for the induced RF
level in the patient and thus varied risk of unintended stimulation. The lead model is
inserted into the VHP-Female v3.0 [26] along a representative pathway, and the

0.8 mm

0.5 mm
Fig. 5 Cross section of the
insulated wire. The wire is
0.8 mm diameter with
insulation of 0.5 mm wall
thickness

Fig. 6 Transfer function magnitude (v. length) versus dielectric constant of the TSM for three
selected TSM conductivities
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incident field values are extracted. The pathway and its insertion into the model are
shown in Fig. 7.

For this pathway, the RF-induced energy at the device is calculated for each of the
transfer functions with different TSM. The normalized voltages are shown in Fig. 8.
Notably, the higher the dielectric constant and the conductivity, the higher the
predicted induced RF level which must be used for device testing. Care should be
taken that an appropriate TSM is chosen such that the device test is conservative

Fig. 7 Representative cardiac pathway within VHP-female v3.0 (only selected anatomical features
are visible)

Fig. 8 Predicted in vivo MRI RF-induced voltage as a function of TSM dielectric constant and
conductivity
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without wildly overexposing the hardware to RF levels beyond what is expected in
the clinical environment.

5 Discussion

Manufacturers of AIMDs use CHMs in order to protect the patient from harm due to
the risk of RF-induced unintended stimulation. The use of CHMs enables the
investigation of millions of scenarios of scan parameters, patient sizes and anato-
mies, and MR system technologies. Therefore, CHMs allow AIMDmanufacturers to
quantify low probability events such as (for cardiac implantable electronic devices)
UCS that represent a high risk to the patient.

The predicted RF-induced energy incident on the device is used for benchtop
testing in order to convert a probability of an incident RF level to a probability of
rectifed voltage. This probability distribution is combined with the probability of
stimulating the patient through a physiological model.

It is notable that the predicted RF level is model dependent; thus, an appropriate
TSM should be used. A TSM that shows overly resonant lead behavior will
overpredict the incident RF level and thus overestimate the risk to the patient of
unintended stimulation. This would result in denying access to MRI to patients that
could benefit from this diagnostic tool.

This work explored the application of this procedure to the example of a pace-
maker, where unintended stimulation of cardiac tissue could result in tachycardia.
For other classes of devices, this could mean anything from muscular discomfort, to
recruitment of unintended fibers in the spinal column, to significant impact related to
stimulating tissue within the deep brain.

5.1 Future Work

The results presented here are for a single CHM and one device orientation within
the MRI field. The procedures are valid for the extension to a set of CHMs and for
many devices, enabling the safety assessment of AIMDs by identifying
low-probability worst-case-based assessments.

Future work in this area could allow for co-simulation of the incident RF field and
circuit model of internal device hardware, especially active components that could
rectify the incident RF level. One option for this is to combine the circuit model with
a Tier 4 model [2] of the realistic medical device lead geometry in the patient, with
the MR coil. Additionally, computational methods have been shown to be effective
in evaluating a range of shimming conditions [27, 28].

Further, the incorporation of a physiological model into the electromagnetic
CHM could eliminate the need for clinical data to assess the relationship between
rectified waveforms and the probability of stimulating tissue. An additional benefit
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of this technique would be the evaluation of waveforms not often used in the clinical
setting, including cross-channel rectification which may not mimic a therapy
waveform.
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Estimating Electric Field and SAR in Tissue
in the Proximity of RF Coils

Rosti Lemdiasov, Arun Venkatasubramanian, and Ranga Jegadeesan

1 Introduction

Inductive systems for delivering power and performing communications have
become ubiquitous in medical implants [1–3]. In modern literature [4–9], there are
numerous design approaches for building robust induction-based wireless links, and
some of them include constraints based on exposure regulations as part of their
design methodology. We find that there is a huge reliance on full-wave simulation
tools such as Ansys HFSS, Remcom XFdtd, and Zurich Med Tech SIM4LIFE for
exposure assessments. However, in some cases, this may be the only means to get
some insights on the electromagnetic field distribution in tissues, a result of
nonhomogeneous dispersive behavior of human tissues and its associated irregular
stratified geometry. However, we lose the ability to get an intuitive understanding of
the electromagnetic phenomena in the human body from the point of view of the
basic electromagnetic principles, such as those outlined in [10, 11]. Additionally,
working with full-wave simulation tools is very involved, and it requires familiarity
with the tool and has a sizeable setup time and computational effort. In this paper, we
present our earnest attempt to simplify exposure assessment so that the effort needed
can be significantly reduced while not compromising on the degree of accuracy of
results. We approach this problem by trying to estimate electric field in human body
due to a nearby inductive system that has an RF coil adjacent to the human body. The
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specific absorption rate (SAR) and induced currents can then be computed from first
principles using well-established tissue properties [12] and compared with regula-
tory limits.

2 SAR in the Tissue

The magnetic field generated by the inductive systems used in medical implants
induces currents in the tissues that are exposed to it. These currents generate heat and
can cause tissue damage if left unchecked. To address this issue and regulate the use
of induction technology so that safe operating conditions can be ensured in medical
devices, exposure restrictions are enforced by the Food and Drug Administration
(FDA) regulations in the United States and CE regulations in the EU. Both regula-
tory bodies use SAR metric as the key yardstick to evaluate field exposure. To cite
the SAR regulatory limits for general exposure, the FDA has coordinated with the
Federal Communications Commission (FCC) to set a limit of 1.6 W/kg averaged
over a volume containing a mass of 1 g of tissue for the torso and head [13]. The
corresponding limit in the EU is 2 W/kg averaged over a volume containing 10 g of
tissue [14].

In a typical inductive charging system, the receive coil is part of the implant
which is located at a certain depth inside the tissue (Fig. 1). The implant charging
rate depends on the distance between the transmit coil and receive coil. At low
frequencies (when skin depth in tissue is large compared to tissue size), the effect of
tissue on the generated magnetic field is negligible. Hence, for purposes of estimat-
ing charging rate, tissue needs not be considered, and the system can be considered
as though present in air. This also implies that the losses in tissue due to the magnetic

Fig. 1 Transmit coil, receive coil, and biological tissue
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field are only a tiny fraction of the power that is delivered to the implant. As a result,
for various distances from the transmit coil, it is simply possible to calculate
magnetic field of the transmit coil as though in air. However, the tissue losses,
though small, are a crucial factor in exposure assessment.

To assess these losses, we look at the electric field generated by the time-varying
magnetic field. The electric field leads to circulating eddies and causes heating. It is
this heating that needs to be kept within limits, and the metric used in this regard is
the specific absorption rate which is defined as the amount of heat energy absorbed in
the tissue per kg and is expressed in W/kg.

To estimate SAR due to a certain transmit coil located near tissue, it is normally
required to do full-wave simulations of the coil loaded with biological tissue using
the software package such as Ansys HFSS. Furthermore, such simulations would
need to be performed for a range of distances between the transmitter and the
exposed tissue so that the safe standoff distance can be estimated. For each distance,
one can calculate the maximum allowable current and input RF power that would
correspond to maximum allowable SAR in the tissue. To do this work, it requires
significant computational resources and time. Is there an easier way to estimate
electric field and SAR in the tissue?

3 Tissues

There are four abundant tissues of the human body that are of particular interest for
exposure assessment: skin, fat, muscle, and bone. Each one of these tissues exhibits
different frequency-dependent material characteristics such as electric permittivity,
conductivity, and mass density. Depending on the tissue properties at a given
frequency of interest, we can identify the most lossy tissue type that will exhibit
the highest SAR per unit field strength.

As an example, let us choose an ISM frequency, say 13.56 MHz. For the chosen
frequency, the muscle tissue dissipates most power. For simulation purposes, we use
a block of muscle tissue next to the transmit coil and study effect of the heating. The
relative electric permittivity for the muscle tissue for the frequency that we chose is
138 [14] which indicates how much electric field is attenuated inside the body
compared to the electric field in air. Additionally, conductivity of muscle tissue is
0.628 S/m. Conductivity also contributes to attenuation of the electric field inside the
tissue. The following chapter discusses the electric field and its components.

4 Two Components of Electric Field Inside the Tissue

It is known from electromagnetics that electric field can be represented as a sum of
two components:
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E ¼ �∇φ� jωA

where φ is the scalar electric potential (electric charge as a source) and A is the
magnetic vector potential (electric current as a source). For our analysis, let us call
� ∇φ as “charge” electric field and �jωA as “current” electric field. Then, the
following holds good:

E ¼ Echarge þ Ecurrent

Transmit coil in a wireless charging system generates both types of electric field
when powered. As the transmit coil approaches biological tissue, the “charge” and
“current” components of electric field behave quite differently inside the tissue.

4.1 “Charge” Electric Field

Lines of “charge” electric field have beginning (positive charges) and end (negative
charges) (Fig. 2).

As the electric charges accumulate on the transmit coil, the field lines originate
and end on the coil (outside of the biological tissue). That is, every line of “charge”
electric field enters the block of tissue and then exits it. This “charge” electric field is
significantly attenuated (by a complex factor of εr � j σ

ωε0
¼ 138� j833) by charges

that accumulate on surfaces of the block of tissue (Fig. 3).

Fig. 2 “Charge”
component of electric field
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4.2 “Current” Electric Field

Generally speaking, the “current” electric field is not divergence-free, because the
current in the coil is not the same at different points of the loop. However, if the self-
resonance frequency of a transmit coil is high (compared to the chosen frequency),
then the current can be considered to be the same throughout the coil. Let us consider
a loop where the current I is the same throughout as shown in the following figure
(Fig. 4).

The “current” electric field of the loop can be written as follows:

E rð Þ ¼ � jωμ0
4π

I

I
exp �jk r0 � rj jð Þ

r0 � rj j d l
!0

It can be shown that in free space, the divergence of “current” electric field of the
loop of current is zero. This means that lines of this electric field have no beginning
and no end, that is, they terminate into themselves. Just as magnetic field B, the
“current” electric field of the loop of current consists of self-terminating field lines
(Fig. 5).

Some of these lines are located entirely inside the block of tissue. These lines are
not attenuated by surface charges as these lines never cross the surface. If a round
transmit coil is positioned parallel to the block of tissue, then the “current” compo-
nent of the electric field is not attenuated inside the block of tissue. Hence, it is the
“current” electric field that contributes to tissue heating (SAR).

Fig. 4 Loop of current

Fig. 3 Attenuation of
“charge” electric field in the
tissue
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4.3 Comparing Effects of Tissue Loading Using HFSS
Simulations of Transmit Coil at 10 cm from Tissue

When there is no tissue (unloaded), the electric field in the plane located 10 cm away
from the coil is plotted. When tissue is present (loaded), the electric field on the
surface of the Ø40 cm-diameter and 6 cm-tall cylinder of muscle tissue is plotted
with the transmitting coil still 10 cm away.

From Table 1, we observe that the electric field generated by a transmit coil at a
plane 10 cm from it is quite different if tissue is introduced. The presence of the
tissue significantly attenuates overall electric field. Based on our previous definitions
of types of electric fields, it is the “charge” electric field that is attenuated inside the
tissue.

Fig. 5 Field lines of
“current” electric field

Table 1 Comparing loaded and unloaded simulations

Distance,
cm

HFSS, unloaded simulation HFSS, loaded simulation

Electric field of round coil Electric field of round coil

Free space
Value
V/m

Value
V/m Loaded with human tissue

10 5.62 1.63
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5 “Uniform Current” Approximation

When an RF coil is excited, current develops in the coil and there is charge
accumulation on different parts of the coil. Currents give rise to “current” electric
field and charges produce “charge” electric field. As it is clear from the previous
sections, it is current flowing in the RF coil that is responsible for “current” electric
field that in turn contributes to SAR. If the coil is operating at the frequency that is
several times lower than self-resonance frequency, it makes good sense to assume
uniform current flowing throughout the RF coil. The coil can be modelled as a
combination of short current elements (Fig. 6).

“Current” electric field from the short current element is as follows:

E ¼ � jωμ0
4π

∙ I ∙ l
!

r
∙ exp �jkrð Þ

Each element contributes to the “current” electric field. Adding up the contribu-
tions of the elements, “current” electric field can be calculated and plotted, thereby
providing an estimate for SAR. The following figure demonstrates how an RF coil
can be formed from an arrangement of small current elements (Fig. 7).

There are several common coil geometries that we use in practice when
performing the power transfer calculations. It is possible to write a code (MATLAB,
C++, or others) to generate several commonly used coil geometries from a combi-
nation of short wire elements (Fig. 8).

Given the input parameters (radius, pitch, etc.), most common coil geometries can
be generated. Furthermore, for such coils, the values of magnetic field and “current”
electric field can be calculated at any point in space.

We are interested in the effects of such coils on nearby human tissues (skin,
muscle, fat, bone). As has been discussed, the “current” electric field may not

Fig. 6 Current interval and
observation point

Fig. 7 Crude drawing of
RF coil
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attenuate when it crosses the air-to-tissue boundary. The highest electric field (and
SAR) develops on the surface of the body facing the transmit coil. We calculate the
electric field on the surface of the body and find the maximum value of electric field
(and SAR).

6 Getting Rid of the Block of Tissue

“Current” electric field is the main contributor to tissue heating (SAR) and it does not
attenuate inside the tissue. This means that we can do an RF simulation of the
transmit coil in the absence of the tissue using “uniform current” simulation and then
use the result of this simulation (“current” electric field) to estimate maximum SAR
(Fig. 9).

We calculate maximum value of SAR per unit input RF power at several planes
located at various distances from the coil. We then scale the input RF power to bring
SAR to the maximum permitted value. This way, for a range of distances from the
coil, the maximum RF power for a given transmit coil can be obtained.

It is important to mention that HFSS simulations are expensive in terms of setup
time, simulation time, data processing, and license cost. “Uniform current” simula-
tions are cheap for each one of these terms.

7 Maximum Allowed Current

When moving the transmit coil away from the block of tissue, we can provide more
RF power into the coil (so that the SAR limit is not exceeded) (Fig. 10).

The farther the tissue is from the coil, the larger the current it can take before
hitting the SAR limits.

Fig. 8 Five common coils
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8 Verification: HFSS vs. “Uniform Current”

To verify the idea that the electric field of a transmit coil inside the tissue is close to
electric field in free space, two types of simulations are performed:

• HFSS full-wave simulations to plot electric field generated by a round transmit
coil on the surface of the tissue (Ø40 cm diameter and 6 cm tall) by positioning it
at several distances from the coil.

• “Uniform current” simulation. We define a round coil carrying uniform current
throughout and plot electric field on several planes parallel to the coil. This is not
full-wave simulation.

We use one loop Ø17 cm round coil.
Maximum values of electric field differ by about 3%.
Comparison between HFSS simulations and “uniform current” simulations is

shown in Table 2.
Full-wave simulations done by HFSS are computationally intense and they

require considerable time to perform. We see that the relatively simple “uniform
current” simulation produces about the same result without using HFSS.

9 Skin Depth Attenuation in the Tissue

Above, we assumed that the presence of the tissue does not significantly change
fields outside of the tissue. When can we make such an assumption? Our answer is
that the skin depth should be significantly larger than the thickness of the tissue:
δ � t, which happens at low frequency. In the opposite limiting case (high fre-
quency), skin depth is small, and there is a significant attenuation of external field
right near the boundary. This would correspond to the case of metal (highly
conductive material), where electric field is approaching zero. In case if the skin
depth is comparable to the tissue thickness, we need a formula that would describe
the attenuation of the external field near the boundary. The simplest way to describe
the attenuation of the external field near the tissue can be done by introducing the
exponent exp(�t/δ). However, we get better agreement with full-wave simulations if
we state that the attenuation is exp(�t0/δ), where t0 is a weighted combination
(inversely weighted) of thickness t, distance d, and radius (half size) of tissue
block R: t0 ¼ 1= 1

t þ 1
d þ 1

R

� �
: Here is our rationale for doing such weighting:

• In case if t � d and t � R, we have a straightforward exponential attenuation of
field with depth exp(�t/δ), that is, t0 � t.
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Table 2 Comparing loaded HFSS simulations and unloaded “uniform current” simulation

Distance,
cm

Electric field of round coil from HFSS
Electric field of round coil, “uniform
current” approximation

Plot
Value,
V/m

Value,
V/m Plot

2 8.01 7.85

4 4.80 4.71

6 3.18 3.12

8 2.25 2.19

10 1.63 1.60
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• In case if d � t and d � R, the coil wiring is close to the tissue. Almost all
induced current in the body is flowing right next to coil wiring. Effect of the tissue
thickness d and tissue size 2R would be very small. So t0 � d.

• In case if R� r and R� d, the E-field infiltrates into the tissue from the sides. So
R plays a role of thickness: t0 � R.
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In the following figure, we plot dependence of the maximum electric field on
conductivity (Fig. 11). We compare the “uniform current” approximation (theory)
with HFSS simulations. In the “uniform current” approximation, we first calculate
the maximum electric field and then attenuate it by a factor exp(�t0/δ). In HFSS
simulation, we used a tissue disk having diameter of 2R¼ 20 cm.

First of all, we see from the plot that increasing the value of εr leads to the flatter
HFSS curve on the left side of the graph (low conductivity). This is exactly in line
with our claim that high εr leads to significant attenuation of the “charge” electric
field.

Secondly, for both HFSS and theoretical estimate (“uniform current” simulation),
we observe a fall off at high conductivity (σ > 1 S/m). As a reference, the muscle
conductivity at 13.56 MHz is 0.628 S/m. To our opinion, there is a satisfactory
agreement between HFSS simulations and the “uniform current” estimate.

Fig. 11 Maximum electric field for a range of tissue conductivities (0.002–100 S/m), three
dielectric permittivities (1, 10, 100), three coil-tissue distances (2 cm, 6 cm, 10 cm), and three
tissue thicknesses (4 cm, 6 cm, 8 cm)
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“Uniform current” estimate works well to describe the maximum electric field
(and therefore SAR) developing on the surface of the tissue near the RF coil.

Transition between the flat response on the left (low σ) and exponential decay on
the right (high σ) occurs roughly when skin depth in tissue δ is comparable to
1= 1

t þ 1
d þ 1

R

� �
.

10 Conclusions

We demonstrated that electric field inside the body can be satisfactorily estimated
without full-wave simulation software using simple, time- and energy-efficient
means.

Speaking about interaction of the RF coil with the human body, the following
conclusions can be made:

• “Charge” component of electric field is significantly attenuated inside the bio-
logical tissue (if εr � 1) and generally causes negligible loss. “Current” compo-
nent may not experience significant attenuation.

• It is the “current” component of electric field that is mostly responsible for heating
the tissue.

• To estimate electric field and SAR inside the block of tissue located at certain
distance, it may be sufficient to perform an unloaded simulation (“uniform
current” simulation) that produces only “current” electric field.
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The CAD-Compatible VHP-Male
Computational Phantom

Gregory M. Noetscher

1 Introduction

Computational human phantoms are an integral part of the design process in many
areas of modern science and technology; this is especially true for computational
electromagnetics (CEM). A review of available literature suggests that, since the
very inception of CEM, its practitioners have used various model surrogates (prim-
itive shapes, various combinations thereof, further refined models, etc.) to demon-
strate the use of numerical modelling for the estimation of a body’s response to
external electromagnetic stimulation. The convergence of a number of disparate
disciplines, including highly refined medical image collection techniques, advanced
image processing, development of efficient simulation algorithms and
supercomputing hardware, has resulted in computational human phantoms at a
level of detail previously thought impossible.

Inspiration for the creation of the Visible Human Project (VHP)-Male model,
presented herein, was the design and use of the VHP-Female model [15], which was
constructed in the mid-2010s, adopted by the IEEE International Committee on
Electromagnetic Safety for use as simulation of specific absorption rate (SAR), and
used in a host of commercial and academic applications [2–4, 8, 12–14, 16, 17].
Throughout the development of the VHP-Female model, it became extremely
apparent that compatibility with common computer-aided design (CAD) tools and
interfaces was highly advantageous and enabled maximum use of the model in a
variety of simulation methodologies, including the finite element method (FEM),
boundary element method (BEM), finite-difference time-domain (FDTD) method
and experimental methods, including the coupled boundary element-fast multipole
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method (BEM-FMM) [10]. Due to the successful implementation of the female
model and the demand for a male version, the steps described below were under-
taken for its construction. It is our sincere hope that the model will be adapted in a
manner similar to its predecessor.

This work is organized in the following manner. Section 2 (Materials and
Methods) documents the model construction process, including a description of
the source data and mesh processing techniques. Section 3 (Results and Discussion)
depicts the outcomes of mesh construction, global model assembly and baseline
simulation. Section 4 (Conclusions) provides a summary of the work, together with
plans for future work, suggestions for augmentations to the model and potential
applications for which this model may be suitable.

2 Materials and Methods

2.1 Source Data

As its name would suggest, the VHP-Male model is based exclusively on medical
data collected as part of the US Library of Medicine’s Visible Human Project
[1, 7]. Conducted during the mid-1990s to late 1990s, this effort is a collection of
extremely detailed and anatomically accurate data obtained from one male and one
female cadaver. The data includes magnetic resonance imagery (MRI) and computed
tomography (CT) imagery together with high-definition photographs of cross-
sectional cryosections. This data is provided to the greater public free of charge,
enabling a staggering number of applications, from medical research to artistic
endeavours.

More specifically, the male data, released in 1994, includes axial MRI data
collected at 4 mm intervals throughout the majority of the body, axial CT data
collected at 1 mm intervals and anatomical cryosection images collected at 1 mm
intervals to coincide with the CT data. These cryosection images are 2048 by 1216
pixels, with each pixel measuring 0.33 mm in size.

2.2 Mesh Construction

The VHP cryosection images were segmented using a custom MATLAB-based
segmentation tool. Each cryosection image at a given height of the cadaver and
oriented along the global Z axis was imported, and a user of this tool was able to
surround a given structure with points denoting the X and Y axis limits of the
structure. Once all images were processed in this manner, all X, Y and Z points were
assembled such that they consisted of a point cloud describing the outer surface of
the structure of interest. This point cloud was then meshed using triangular surface
elements such that mesh became two-manifold.
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Following segmentation and construction of each individual component, all
components were assembled in a global reference frame and tested for intersections.
All intersections were resolved using the mesh sculpting capabilities of Meshmixer.
This tool is able to gradually move a triangle and its nearest neighbours along the
triangle surface normal.

In certain instances, a smaller number of triangles were desired due to the need to
balance simulation efficiency with model accuracy. In these cases, the quadric edge
collapse decimation scheme [5] implemented in Meshlab was employed to reduce
the number of triangles.

The results of these mesh manipulations are shown in Figs. 1, 2, 3 and 4. Each
mesh component, the total number of triangles, mesh quality and the minimum mesh
edge are given in Table 1.

Fig. 1 The VHP-Male model. At left and mid-left: the full model including outer skin shell. At
mid-right and right: the full model with the outer skin shell removed for better viewing of internal
structures
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2.3 Simulation Setup

Each component of the model was imported into the commercial FEM-based
ANSYS Electromagnetics Suite 2019 R1 as an STL file and assigned dielectric
and density material properties consistent with those published in the IT’IS Foun-
dation [6]; this database has been widely excepted as the standard by the academic
community. The excitation for this baseline simulation was a 300 MHz incident

Fig. 2 Left – detailed views of the VHP-Male model foot and ankle; right – detailed views of the
VHP-Male model hand and wrist

Fig. 3 Left – detailed view of the VHP-Male model skull and mandible; right – detailed views of
the VHP-Male model internal organs and rib cage
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plane wave with an intensity of 1 V/m originating approximately 35 mm in front of
the model nose. The wave direction of propagation was toward the body, and the
positive direction of the electric field was aligned with the positive vertical axis of
the model.

Construction of the initial mesh was accomplished using the ‘Classic’ method,
and mesh entity error checks were performed with the ‘Strict’ setting to ensure that
no intersections or other mesh faults were present.

A solution setup with a target frequency of 300 MHz was applied and included
adaptive mesh refinement. Following completion of the solution calculation, the
volumetric mesh was refined by 30%. The resulting mesh statistics are presented in
Table 2 along with simulation times and memory requirements. First-order basis
functions were applied throughout. All calculations were performed by activating
the HPC option and using 40 cores. The system hosting the software was running
64-bit Windows Server 2016 Standard with 64 AMD Opteron processors running at
2.66 GHz and a total of 256 GB of memory.

3 Results and Discussion

Following the initialization process described above, a triangular surface mesh
composed of 313,750 elements was produced. This resulted in an initial volumetric
mesh of 1,110,200 tetrahedra. Two adaptive mesh refinement steps were executed,
documented in Table 2, generating a final mesh of 1,443,265 tetrahedra.

Plots of the magnitude of the electric field in the centres of the model sagittal and
coronal planes are given in the top and bottom of Fig. 5, respectively. It is interesting
to see the propagation of the surface wave along the skin shell in the sagittal plane.
Also of note is the relatively uniform propagation of the wave within the body,
shown in stark detail at the rear base of the neck; this is likely a consequence of the
fact that the internal body volume was modelled with a single value of electrical
permittivity and conductivity. When additional muscle structures are added, this is
expected to greatly disrupt the path of the field, creating a much more inhomoge-
neous profile. Additional muscles will be added in the next model revision.

Fig. 4 Left – detailed views of the VHP-Male model spinal cord and vertebrae
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Table 1 Individual mesh names, number of triangles per mesh, triangle quality and minimum edge
length

Mesh name Triangles Triangle quality Min. edge length

‘AortaLower’ 1362 0.134330781 0.920544358

‘AortaUpper’ 652 0.222094966 1.260477698

‘Bladder’ 1640 0.068304298 0.812577699

‘BrainWhiteMatter’ 22,402 0.046567698 0.872950257

‘CalcaneusLeft’ 1344 0.114427155 1.452797748

‘CalcaneusRight’ 1412 0.097310098 1.564575094

‘CapitateRight’ 196 0.072770684 1.559374091

‘Capitateleft’ 178 0.230362472 1.800466459

‘Cerebellum’ 2622 0.157891988 0.494216188

‘ClavicleLeft’ 1258 0.045264776 1.371140432

‘ClavicleRight’ 1238 0.078624045 1.213447698

‘Coccyx’ 346 0.06891789 0.908385343

‘Colon’ 7260 0.001621858 0.544420676

‘CuboidLeft’ 506 0.202039927 1.281321767

‘CuboidRight’ 500 0.175812595 1.436882414

‘CuniformIntermediateLeft’ 252 0.162846331 1.087986024

‘CuniformIntermediateRight’ 210 0.196727483 1.432081059

‘CuniformLateralLeft’ 314 0.066617761 1.440015526

‘CuniformLateralRight’ 282 0.244729955 1.658142044

‘CuniformMedialLeft’ 390 0.138902069 1.28087339

‘CuniformMedialRight’ 406 0.214556367 1.330687259

‘DiscC03C04’ 182 0.198568394 0.896118632

‘DiscC04C05’ 224 0.341427842 1.366489723

‘DiscC05C06’ 344 0.139070512 0.551801066

‘DiscC06C07’ 320 0.149239492 0.490609829

‘DiscC07T01’ 410 0.225282064 0.949094485

‘DiscL01L02’ 538 0.250568351 1.366702091

‘DiscL02L03’ 614 0.194281326 1.534183401

‘DiscL03L04’ 774 0.182906967 1.272352431

‘DiscL04L05’ 724 0.17660326 1.232707083

‘DiscL05L06’ 910 0.106356352 1.239995701

‘DiscL06S00’ 718 0.13029574 1.206016825

‘DiscT01T02’ 588 0.139201049 0.465434502

‘DiscT02T03’ 590 0.312950053 0.630624001

‘DiscT03T04’ 592 0.123513989 0.874712503

‘DiscT04T05’ 732 0.293476947 0.580976494

‘DiscT05T06’ 686 0.178928426 0.910670175

‘DiscT06T07’ 696 0.17695128 0.658382169

‘DiscT07T08’ 754 0.239607771 0.768537297

‘DiscT08T09’ 582 0.149629995 0.925819093

‘DiscT09T10’ 634 0.232195174 0.979317946

‘DiscT10T11’ 744 0.251148608 1.013260169

(continued)
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Table 1 (continued)

Mesh name Triangles Triangle quality Min. edge length

‘DiscT11T12’ 750 0.104616503 1.140370543

‘DiscT12L01’ 802 0.073026765 0.906750275

‘Oesophagus’ 2012 0.052368945 1.018606107

‘FemurLeft’ 5238 0.504688464 2.29075216

‘FemurRight’ 6128 0.549623054 2.480630149

‘FibulaLeft’ 2232 0.308788783 1.02925398

‘FibulaRight’ 2388 0.158261673 1.125755996

‘GallBladder’ 490 0.085184055 1.368812877

‘HipLeft’ 5772 0.170565242 0.466692974

‘HipRight’ 5596 0.066202543 0.577033756

‘HumerusLeft’ 3222 0.525440799 2.029104712

‘HumerusRight’ 2956 0.518585689 2.544932279

‘KidneyLeft’ 2264 0.103633477 0.475712171

‘KidneyRight’ 1922 0.185812015 0.568609335

‘Lens_Left’ 66 0.069840435 0.151185182

‘Lens_Right’ 150 0.120496855 0.307647016

‘Liver’ 10,920 0.029780084 0.517502817

‘LunateLeft’ 188 0.163375398 0.70472835

‘LunateRight’ 194 0.142373039 0.633063654

‘LungLeft’ 10,034 0.00168764 0.361124034

‘LungRight’ 10,094 0.06703563 0.396727705

‘Mandible’ 5000 0.097637404 0.261716653

‘MetacarpalLeft1’ 382 0.33160287 0.299037544

‘MetacarpalLeft2’ 426 0.298271901 1.3603719

‘MetacarpalLeft3’ 508 0.10321164 0.556610664

‘MetacarpalLeft4’ 308 0.085347552 0.972818976

‘MetacarpalLeft5’ 264 0.176798859 0.748657523

‘MetacarpalRight1’ 382 0.11581314 1.086429111

‘MetacarpalRight2’ 434 0.05808032 1.022409002

‘MetacarpalRight3’ 474 0.090823214 0.988240084

‘MetacarpalRight4’ 310 0.262561401 1.026288459

‘MetacarpalRight5’ 252 0.457876386 1.050913568

‘MetatarsalLeft1’ 652 0.120767953 0.517845995

‘MetatarsalLeft2’ 452 0.141255045 1.124870802

‘MetatarsalLeft3’ 462 0.172389284 0.574780219

‘MetatarsalLeft4’ 424 0.132385844 0.558378787

‘MetatarsalLeft5’ 444 0.249921383 0.900482375

‘MetatarsalRight1’ 652 0.119668442 0.706069735

‘MetatarsalRight2’ 446 0.214312152 0.710267704

‘MetatarsalRight3’ 414 0.195978651 0.874267734

‘MetatarsalRight4’ 414 0.24698425 1.14134027

‘MetatarsalRight5’ 438 0.153710476 0.807904513

(continued)
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Table 1 (continued)

Mesh name Triangles Triangle quality Min. edge length

‘NavicularLeft’ 460 0.206977803 0.99978752

‘NavicularRight’ 444 0.128297957 0.964590002

‘Pancreas’ 2102 0.203865066 0.745068684

‘PatellaLeft’ 530 0.267932417 1.078763998

‘PatellaRight’ 532 0.335488394 1.427379689

‘PhalangeDistalFootLeft1’ 168 0.235004346 1.571741849

‘PhalangeDistalFootLeft2’ 92 0.268369191 0.831078757

‘PhalangeDistalFootLeft3’ 102 0.483981354 1.352923578

‘PhalangeDistalFootLeft4’ 96 0.464114316 1.052147256

‘PhalangeDistalFootLeft5’ 82 0.202013722 1.015984979

‘PhalangeDistalFootRight1’ 180 0.096299624 1.353143922

‘PhalangeDistalFootRight2’ 116 0.302680933 1.125514542

‘PhalangeDistalFootRight3’ 70 0.343021658 1.204871773

‘PhalangeDistalFootRight4’ 170 0.31481353 0.721639691

‘PhalangeDistalFootRight5’ 72 0.469888115 1.122329106

‘PhalangeDistalHandLeft1’ 178 0.268247206 1.359285138

‘PhalangeDistalHandLeft2’ 130 0.09784967 1.292786241

‘PhalangeDistalHandLeft3’ 132 0.157418063 1.098169903

‘PhalangeDistalHandLeft4’ 168 0.250218437 0.879250144

‘PhalangeDistalHandLeft5’ 100 0.294543741 1.062110587

‘PhalangeDistalHandRight1’ 188 0.154548236 1.155781252

‘PhalangeDistalHandRight2’ 174 0.082593765 0.749666824

‘PhalangeDistalHandRight3’ 158 0.144122875 1.006352412

‘PhalangeDistalHandRight4’ 120 0.051107021 1.366663165

‘PhalangeDistalHandRight5’ 128 0.204927838 0.672745153

‘PhalangeIntermediateFootLeft2’ 126 0.19671167 1.202773185

‘PhalangeIntermediateFootLeft3’ 102 0.292676446 1.179335756

‘PhalangeIntermediateFootLeft4’ 94 0.28205998 1.319829723

‘PhalangeIntermediateFootLeft5’ 128 0.465058544 0.712763519

‘PhalangeIntermediateFootRight2’ 122 0.425226618 1.229020296

‘PhalangeIntermediateFootRight3’ 154 0.234524916 1.159242431

‘PhalangeIntermediateFootRight4’ 72 0.212530112 1.190552138

‘PhalangeIntermediateFootRight5’ 74 0.222513152 1.097581791

‘PhalangeIntermediateHandLeft2’ 162 0.056994087 1.403116851

‘PhalangeIntermediateHandLeft3’ 244 0.090014565 1.144600211

‘PhalangeIntermediateHandLeft4’ 206 0.234766368 1.32785976

‘PhalangeIntermediateHandLeft5’ 156 0.159150685 1.287847653

‘PhalangeIntermediateHandRight2’ 188 0.245103352 1.179043396

‘PhalangeIntermediateHandRight3’ 268 0.111289314 1.036930209

‘PhalangeIntermediateHandRight4’ 218 0.026740507 0.927233326

‘PhalangeIntermediateHandRight5’ 184 0.103672908 1.272412621

‘PhalangeProximalFootLeft1’ 316 0.166227126 1.328956537

(continued)
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Table 1 (continued)

Mesh name Triangles Triangle quality Min. edge length

‘PhalangeProximalFootLeft2’ 210 0.191881761 1.421797168

‘PhalangeProximalFootLeft3’ 204 0.183090128 1.153649369

‘PhalangeProximalFootLeft4’ 166 0.16043228 1.435088718

‘PhalangeProximalFootLeft5’ 184 0.280139704 1.35571498

‘PhalangeProximalFootRight1’ 358 0.17528083 1.13358412

‘PhalangeProximalFootRight2’ 172 0.109310553 1.493342579

‘PhalangeProximalFootRight3’ 184 0.176204429 1.46978673

‘PhalangeProximalFootRight4’ 198 0.190545609 1.103740172

‘PhalangeProximalFootRight5’ 208 0.110182825 1.080280334

‘PhalangeProximalHandLeft1’ 210 0.098640872 1.447996794

‘PhalangeProximalHandLeft2’ 272 0.199974342 1.451075053

‘PhalangeProximalHandLeft3’ 312 0.121724447 1.586284823

‘PhalangeProximalHandLeft4’ 294 0.165683911 1.321214895

‘PhalangeProximalHandLeft5’ 222 0.253583311 1.355428709

‘PhalangeProximalHandRight1’ 212 0.222933219 1.650829938

‘PhalangeProximalHandRight2’ 272 0.177067742 1.478012517

‘PhalangeProximalHandRight3’ 360 0.121158269 1.168497

‘PhalangeProximalHandRight4’ 354 0.223749458 1.367527605

‘PhalangeProximalHandRight5’ 222 0.239075957 1.495746015

‘PisiformLeft’ 78 0.314852312 2.176323052

‘PisiformRight’ 86 0.284437859 1.511736134

‘RadiusLeft’ 1624 0.07812625 1.580472228

‘RadiusRight’ 1652 0.005233192 1.677186851

‘RibLeft01’ 588 0.060906359 1.059913319

‘RibLeft01Cartilage’ 404 0.109004079 1.054736417

‘RibLeft02’ 1042 0.09086824 0.932675145

‘RibLeft02_Cartilage’ 176 0.045449305 2.127295566

‘RibLeft03’ 1128 0.113561227 0.99423192

‘RibLeft03_Cartilage’ 260 0.026268431 1.645999605

‘RibLeft04’ 1302 0.084563472 0.992262712

‘RibLeft04_Cartilage’ 308 0.023780717 1.636533296

‘RibLeft05’ 1274 0.119127187 0.984158072

‘RibLeft05_Cartilage’ 386 0.111179556 1.617471712

‘RibLeft06’ 5008 0.03157469 0.243544913

‘RibLeft06_09Cartilage’ 1792 0.100098473 0.591946184

‘RibLeft07’ 2510 0.036709266 0.61452184

‘RibLeft08’ 2496 0.110317453 0.545243404

‘RibLeft09’ 5026 0.033871361 0.259944831

‘RibLeft10’ 5018 0.001194147 0.201178192

‘RibLeft10Cartilage’ 220 0.239513906 1.157833434

‘RibLeft11’ 1148 0.108452456 1.019565359

‘RibLeft12’ 530 0.1788179 0.907150243

(continued)
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Table 1 (continued)

Mesh name Triangles Triangle quality Min. edge length

‘RibRight01’ 600 0.087526113 1.204959997

‘RibRight02’ 1148 0.10756514 0.511703818

‘RibRight02_Cartilage’ 212 0.225162533 1.718796537

‘RibRight03’ 1236 0.099341824 0.919209026

‘RibRight03_Cartilage’ 340 0.040870397 1.163855878

‘RibRight04’ 1224 0.137964912 1.049346668

‘RibRight04_Cartilage’ 340 0.123182198 1.852387423

‘RibRight05’ 1250 0.079547932 1.155101801

‘RibRight05_Cartilage’ 366 0.121168084 1.80995292

‘RibRight06’ 1330 0.176484463 1.038825487

‘RibRight06_09Cartilage’ 1902 0.102953268 1.104599593

‘RibRight07’ 2290 0.02321827 0.436906477

‘RibRight08’ 2470 0.035852455 0.697197243

‘RibRight09’ 2488 0.007762291 0.869718583

‘RibRight10’ 410 0.187648969 0.881692954

‘RibRight12’ 872 0.12421912 0.833364362

‘Sacrum’ 7146 0.005022698 0.121273699

‘ScaphoidLeft’ 276 0.161552246 1.259282022

‘ScaphoidRight’ 234 0.126420481 0.919981639

‘ScapulaLeft’ 2118 0.002681555 0.905832545

‘ScapulaRight’ 2064 0.003680874 0.996482213

‘Skin’ 13,246 0.000609802 0.198862826

‘Skull’ 14,766 0.001814466 0.154270982

‘SpineC1’ 2460 0.00481742 0.248172617

‘SpineC2’ 1190 0.08315216 0.781631363

‘SpineC3’ 1518 0.042719709 0.252149084

‘SpineC4’ 1794 0.002418403 0.038447994

‘SpineC5’ 1704 0.019635973 0.021795812

‘SpineC6’ 1702 0.007202928 0.020272316

‘SpineC7’ 1532 0.063678597 0.188076348

‘SpineL1’ 2790 0.105967936 0.545063665

‘SpineL2’ 2214 0.169298277 0.590225123

‘SpineL3’ 2014 0.022869325 0.758650269

‘SpineL4’ 2072 0.010869297 0.55886578

‘SpineL5’ 1906 0.143658437 1.191150819

‘SpineT1’ 1356 0.033942145 0.248312562

‘SpineT10’ 1598 0.071890258 0.599400251

‘SpineT11’ 1746 0.099742236 0.411570228

‘SpineT12’ 1770 0.204306553 0.734127338

‘SpineT2’ 1546 0.004042741 0.992247621

‘SpineT3’ 1370 0.11645742 0.356404699

‘SpineT4’ 1382 0.076971261 0.159364139

(continued)
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4 Conclusions

The work describes the construction and baseline use of the Visible Human Project
(VHP)-Male computational phantom, a CAD-compatible model based on publicly
available data. This model has been constructed such that it may be employed by all
of the most common CEM simulation techniques in use today and easily modified to
optimally fit a given application. A baseline simulation using the commercial
FEM-based ANSYS Electromagnetics Suite 2019 was conducted, and the results
of this simulation were presented.

Future additions to the model include major muscle groups and selected large
nerves. In addition, further detail in the circulatory system will likely be required to
address several simulation applications.

Table 1 (continued)

Mesh name Triangles Triangle quality Min. edge length

‘SpineT5’ 1482 0.136731374 0.637760074

‘SpineT6’ 1298 0.098502586 0.573448349

‘SpineT7’ 1312 0.146509781 1.096860449

‘SpineT8’ 2152 0.003031485 0.395329192

‘SpineT9’ 1734 0.016899747 0.416672514

‘Spleen’ 952 0.128410792 2.317553484

‘Sternum’ 2336 0.017746966 0.595070383

‘TalusLeft’ 914 0.522314047 1.397671978

‘TalusRight’ 848 0.16043732 1.072112228

‘TibiaLeft’ 4544 0.534577008 1.721629222

‘TibiaRight’ 4296 0.59556915 2.341040932

‘TrapeziumLeft’ 178 0.199925044 0.525153998

‘TrapeziumRight’ 150 0.341799266 1.094954994

‘TrapezoidLeft’ 148 0.067468983 0.507043705

‘TrapezoidRight’ 128 0.130458037 0.663360569

‘TriquetralLeft’ 182 0.069901248 0.329812317

‘TriquetralRight’ 134 0.246326993 0.986282248

‘UlnaLeft’ 1950 0.32301674 1.023958874

‘UlnaRight’ 1998 0.137709703 0.985571845

‘VitreousHumor_Left’ 312 0.416736477 0.50974078

‘VitreousHumor_Right’ 268 0.266409301 1.142471306

Table 2 Individual mesh names, number of triangles per mesh, triangle quality and minimum edge
length

Adaptive pass Number of tetrahedra Solver time (HH:MM:SS) Memory (GB)

1 1,110,200 01:00:13 109

2 1,443,265 01:56:40 177
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As with the VHP-Female model, additional layers characterizing variations in
skin and fat thicknesses will be included to explore the impact of body mass index on
SAR. Refinements of the inner and outer ear structures are also envisioned. Inclusion
of sinus cavities will also be critical to enable the highest level of accuracy possible.

Fig. 5 Top – electric field magnitude at centre of sagittal plane; bottom – electric field magnitude at
centre of coronal plane
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Figure 6 provides one possible use of this new model: simulation of a loaded MRI
coil. The VHP-Female model was used very successfully to characterize numerous
MRI coil designs. There is no reason to believe this new male model would not also
be highly suitable for this purpose.

Acknowledgements The author would like to thank Dr. Ali Yilmaz, Dr. Jackson Massey and the
Computational Electromagnetics Group at the University of Texas at Austin for their exceptional
work on the AustinMan and AustinWoman voxel models [11]. The AustinMan model in particular
represented the standard against which the VHP-Male model was measured.

Fig. 6 The VHP-Male model oriented in a simulation of an MRI coil
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Preprocessing General Head Models
for BEM-FMMModeling Pertinent to Brain
Stimulation

William A. Wartman

1 Introduction

Transcranial magnetic stimulation (TMS) is a noninvasive neurostimulation method
wherein a coil placed near the subject’s head induces electric currents within the
brain [7, 10, 13]. However, intermediate tissues between the coil and the cortex
strongly affect the induced electric field (and thus the induced current). Numerical
simulation of the interaction between the primary electric field and tissues of the
head is necessary to predict the behavior of the total induced electric field and find
the ultimate activation site(s). Further, wide intersubject variations cause the actual
fields to deviate strongly from expected fields calculated using a generic head model.
To minimize deviation between the simulated and actual fields, the simulated fields
must be calculated using an accurate, high-resolution, subject-specific head model.

The TMS toolkit (complete computational code and supporting documentation)
available for academic use at the Dropbox repository [2] is one such TMS simulator,
which utilizes the boundary element fast multipole method (BEM-FMM) described
in [4, 9]. The toolkit is written for MATLAB R2019a and has dependencies on the
Image Processing Toolbox, Partial Differential Equations Toolbox/Antenna Tool-
box, and Statistics and Machine Learning Toolbox. Its core FMM method is that of
[3], included with permission in the redistributable software package.

This toolkit enables users to simulate TMS behavior using predefined or custom
coil CAD models and subject-specific head models. These head models consist of a
set of nested 3D triangular meshes, where each mesh marks the boundary between
two tissues with different electrical properties (e.g., one mesh follows the skin/skull
boundary, and another mesh follows the gray matter (GM)/white matter
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(WM) boundary) [5]. Because the BEM-FMM algorithm operates directly in terms
of induced charges on these interfaces [8], it is robust against several common mesh
defects that would hinder conventional volumetric finite element method (FEM)
simulations, including intersecting meshes. The BEM-FMM algorithm further sup-
ports computation of the net electric field at locations arbitrarily close to tissue
interfaces, where FEM routines cannot provide field resolution that exceeds the
resolution of the underlying volumetric mesh.

Despite the BEM-FMM algorithm’s robustness against common mesh defects,
the current implementation of the software toolkit is applicable only to one specific
meshing scheme: one in which each mesh represents a boundary between exactly
two tissues. This is the standard output format of the SimNIBS v2.1 pipeline [11, 12,
14–17] in particular, and it produces meshes that are layered one inside the other. For
example, the boundary between the skull and cerebrospinal fluid (CSF) completely
surrounds and encloses the boundary between the CSF and gray matter (GM), which
in turn completely surrounds and encloses the boundary between gray matter and
white matter (WM). The goal of this exercise was to add support for a second
meshing scheme, in which each mesh represents the entire outer boundary of a single
tissue. One model that employs this meshing scheme is the MIDA model, produced
by the IT’IS Foundation [6]

The MIDA head model comprises 115 CAD tissue models with more than 11 M
triangular facets total. The model was produced from scans of a healthy 29-year-old
female volunteer. Data was compiled from several medical imaging methods,
including MRI, MRA, and DTI. These diverse imaging methods ensured that
high-contrast images of most tissues existed in at least one of the image sets and
image resolution approached 500 μm. Special care was taken to obtain high-contrast
images of nerve tissue and vasculature. The entire data set was segmented indepen-
dently by three experts using both manual and automated segmentation techniques,
and their individual segmentations were combined to produce a highly accurate final
segmentation. A triangulation algorithm was then applied to the resulting voxel
model to extract triangular mesh surfaces for every tissue [6].

Several selections of model tissues are shown in Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9 and
10. The mesh processing software used is open-source MeshLab v2016.12 [1]. Some
characteristics of the model relevant to the task of enabling its use in the BEM-FMM
toolkit are as follows:

(a) Adjacent meshes typically have coincident triangular facets at their interfaces.
Observe, for example, the GM, CSF, and vasculature in Figs. 4, 5 and 6.

(b) Some meshes comprise multiple manifold surfaces. The CSF in particular
includes a very large number of closed surfaces scattered throughout the cranial
volume (see Figs. 5 and 10).
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Fig. 1 Epidermis mesh of
the MIDA head model

Fig. 2 Selected meshes of
the MIDA model below the
subcutaneous adipose tissue.
Muscles are shown in pink,
bones are shown in white,
glands are shown in green,
mucous membranes are
shown in lime green, and
cartilage is shown in orange
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Fig. 3 The skull, vertebrae,
and other bones (white);
intervertebral disks
(orange); veins and arteries
(blue and red); and cranial
nerves (yellow)

Fig. 4 Gray matter (gray),
cerebrospinal fluid (light
yellow), cranial nerves (dark
yellow), veins (blue), and
arteries (red). Note the close
proximity of the CSF, GM,
veins, and arteries
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Fig. 5 The CSF mesh
presented in isolation from
all other tissues. Note the
multitude of small, isolated
compartments visible near
the position of the
cerebellum. Also note the
tight channel for the vein
near the top of the CSF mesh
(compare with Fig. 4)

Fig. 6 Gray matter (gray),
arteries (red), veins (blue),
and cranial nerves and
spinal cord (yellow). Other
small brain components are
in light gray
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2 Methods

2.1 Mesh Preprocessing

Because the MIDA model’s tissue meshes are not nested in general (i.e., a given
MIDA tissue mesh explicitly segments every boundary between that mesh and any
other tissue), adjacent tissue meshes each contain their own copies of the facets that
form the border between them. When two adjacent tissue meshes are loaded
simultaneously, their shared border comprises two sets of coincident facets, one
set contributed by each tissue mesh. These coincident facets necessarily share
coincident centroids, which in turn create singularities that invalidate simulation
results. Figure 11 depicts this case for three hypothetical meshes, Object 1, Object
2, and Object 3. Though Object 1 and Object 2 both segment their shared boundary,
Object 3 does not explicitly segment its boundary with Objects 1 and 2 for

Fig. 7 White matter
(white), arteries (red), veins
(blue), nerves/spinal cord
(yellow), and other small
brain meshes (gray). Note
the very fine structures of
the white matter of the
cerebellum
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Fig. 8 Veins (blue), arteries
(red), and nerves (yellow)
presented in isolation from
other tissues

Fig. 9 Nerves of the MIDA
head model, featuring the
optic chiasm and optic tract.
The anterior direction is
toward the top of the page,
and the superior direction is
out of the page
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Fig. 10 View from the interior of the CSF mesh presented in isolation from all other tissues. Note
the large number of isolated compartments

σ3

σ3
n1

object 1

object 2n1 n2

this is a boundary between objects:
the normal vector points from
inner conductivity  to outerσ1

σ1

σ2

conductivity σ3
this is a boundary between objects:
the normal vector points from
inner conductivity  to outerσ2

conductivity σ3

this is a boundary between objects:
the normal vector points from
inner conductivity  to outer
conductivity 

object 3

σ1

σ2

Fig. 11 Object 3 (with interior conductivity σ3) surrounds and encloses both Object 1 (with interior
conductivity σ1) and Object 2 (with interior conductivity σ2), so Object 1 and Object 2 initially list
σ3 as the exterior conductivity for all facets in their respective meshes. Because Object 1 and Object
2 have each explicitly segmented their mutual interface, that interface initially contains coincident
facets contributed by both objects. In this example, Object 2’s copies of the interface facets have
been removed, and Object 1’s copies of the facets remain. Object 1’s facets at the interface still list
σ1 as their interior conductivity but have changed their exterior conductivity from σ3 to σ2
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simplicity. Every mesh is assigned a default exterior conductivity derived from
manual inspection of the surrounding tissues.

The function knnsearch of MATLAB’s Statistics and Machine Learning
Toolbox is first used to pair facets that have coincident centroids. One facet of
each pair is designated as the facet to be kept, and the other is designated as the facet
to be deleted. The outer conductivity of the facet to be kept is set equal to the inner
conductivity of the facet to be deleted, and associated contrast information is updated
for the facet to be kept. After this process has been completed for all coincident facet
pairs, all information related to the facets to be deleted (e.g., centroid, area, connec-
tivity) is removed, and any now-unreferenced vertices are cleared from the list of
vertices (and face connectivity information is updated as appropriate).

3 Results

The final test setup modeled a TMS configuration intended to target the motor hand
area of the precentral gyrus (the hand knob area, [18]) of the MIDA model. The coil
model used was a generic figure-eight coil with circular cross-sectional wire, as
shown in Fig. 12. The coil was approximated by 16,000 elementary current segments
driven by time-varying current dIdt ¼ 9:4e7 Amperes= sec .

Preprocessing of the MIDA model for simulation using the BEM-FMM algo-
rithm took approximately 525 s in total. Of those 525 s, 138 s were required to
resolve coincident facets. Of the original 11 M facets, approximately 5.4 M were
removed, and approximately 5.6 M remain. Table 1 lists the times associated with
each preprocessing step.

The coil model was positioned above the head model according to four simple
geometric rules:

1. The coil’s centerline passes through a selected point on the hand knob area.
2. The coil’s centerline is perpendicular to the skin surface.
3. The distance from the coil to the skin surface along the coil’s centerline is 10 mm.
4. The dominant field direction (the y-axis of the coil coordinate system) is approx-

imately perpendicular to the gyral crown and associated sulcal walls of the
precentral gyrus pattern at the target point.

Fig. 12 The coil model employed for this test
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Figure 13 shows the BEM-FMM convergence curve for this test setup after
100 GMRES iterations, and Fig. 14 shows the convergence curve for the first
15 iterations. The relative residual falls well below the threshold 10�3 within
15 iterations, indicating that 15 iterations produce results within an acceptable
error margin. The test was run on a 32-core Intel® Xeon® E5-2683 v4 CPU
operating at 2.1 GHz with 256 GB RAM. On this machine, the total computational
time required with 5.6 M facets for 15 GMRES iterations was 373 s.

Table 1 Preprocessing time

Step description Step time (s) Facet count

Load all meshes from disk 48.16 11,008,306

Calculate facet characteristics (e.g., normal vectors) 84.89 11,008,306

Assign initial conductivities 4.83 11,008,306

Find and resolve coincident facets 137.97 11,008,306

Find topological neighbors (for charge low-pass filtering) 30.08 5,632,767

Find BEM-FMM integration neighbors 17.52 5,632,767

Evaluate neighbor integrals 169.80 5,632,767

Save data to disk 30.82 5,632,767

Total preprocessing time 524.24
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Fig. 13 Convergence curve for 100 GMRES iterations
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Figure 15 shows simulation results for the electric field at the gray matter/CSF
interface (a, c) and the white matter/gray matter interface (b, d). Figure 15 (a, b)
shows a heat map of the magnitude of the electric field at the respective surfaces,
scaled in V/m. Figure 15 (c, d) shows a focality estimate of the total electric field. In
these figures, small blue balls are drawn at every facet for which the total field
magnitude is within the range 80% to 100% of the maximum field magnitude
observed for that particular surface. We see that the naïve geometric coil positioning
rules barely stimulate the desired region at all and instead produce local maxima at
distant sulci rather than the targeted motor hand area. This further reinforces the
necessity of subject-specific head modeling for TMS applications.

Figures 16, 18 and 20 depict cross sections of the tissue meshes coregistered with
T1 MRI data for the MIDA subject. The planes of these cross sections pass through
the point on the white matter surface where the maximum E-field magnitude occurs.
Pink spheres are drawn at the center of every WM facet that experiences a field with
magnitude within 80–100% of the maximum E-field magnitude on this surface.
Figures 17 and 19 show contour plots of the electric field magnitude in the imme-
diate vicinity (i.e., �10 mm) of the maximum field locations of Figs. 16 and 18,
respectively.
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Fig. 14 Convergence curve for 15 GMRES iterations
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4 Conclusion

The BEM-FMM TMS modeling toolkit has been made compatible with a previously
unsupported head mesh scheme, in which each mesh corresponds to one tissue’s
entire outer surface. The modifications were tested using the MIDA head model,
which employs the newly supported mesh scheme. Simulation was executed suc-
cessfully with the MIDA model, achieving convergence within 15 GMRES itera-
tions. The performance penalty associated with the new mesh format occurs solely in

Fig. 15 Surface fields and focality. (a): Electric field magnitude (V/m) at the gray matter surface.
(b): Electric field magnitude (V/m) at the white matter surface. (c): Locations of high field strength
(80–100% of the absolute maximum field observed) at the gray matter surface. (d): Locations of
high field strength (80–100% of the absolute maximum field observed) at the white matter surface
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the preprocessing stage, and there is little to no effect on field calculation perfor-
mance. The toolkit is now applicable to a wider range of head models and is more
robust against models whose meshes have coincident facets in general.
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Fig. 16 Coronal cross section passing through the location of the maximum E-field in the white
matter volume. Colored traces denote contours of tissue meshes passing through the cross-sectional
plane. Small pink balls are drawn at the locations experiencing high field strength (80–100% of the
maximum field observed in the WM volume)
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Fig. 17 Coronal-plane contour plot of electric field magnitude in the immediate vicinity of the
location of the maximum electric field within the white matter volume. The boundary of this figure
corresponds to the white box in Fig. 16
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Fig. 18 Transverse cross section passing through the location of the maximum E-field in the white
matter volume. Colored traces denote contours of tissue meshes passing through the cross-sectional
plane. Small pink balls are drawn at the locations experiencing high field strength (80–100% of the
maximum field observed in the WM volume)
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Fig. 19 Transverse-plane contour plot of electric field magnitude in the immediate vicinity of the
location of the maximum electric field within the white matter volume. The boundary of this figure
corresponds to the white box in Fig. 18
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Fig. 20 Sagittal-plane cross section passing through the location of the maximum E-field in the
white matter volume. Colored traces denote contours of tissue meshes passing through the cross-
sectional plane. Small pink balls are drawn at the locations experiencing high field strength
(80–100% of the maximum field observed in the WM volume)
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Profiling General-Purpose Fast Multipole
Method (FMM) Using Human Head
Topology

Dung Ngoc Pham

1 Introduction

Recently, a quasistatic boundary element method (BEM) solution has been proposed
[1] that combines the adjoint double-layer formulation of the boundary element
method [2–4] which utilizes surface charges at the boundaries, the zeroth-order
(piecewise constant) basis functions with accurate near-field integration, and the
FMM accelerator [5–7]. This approach does not require explicit forming of the BEM
matrix; an iterative solution with M iterations requires O(MN) operations. The fast
multipole method speeds up computation of a matrix-vector product of a numerical
iterative solution via the boundary element method (BEM) by many orders of
magnitude. In the past, it was successfully applied for modeling high-frequency
electromagnetic [8, 9] and acoustic [10–12] scattering problems. It has also been
applied to modeling transcranial magnetic stimulation (TMS) and demonstrated a
fast computational speed and superior accuracy for high-resolution head models as
compared to both the standard boundary element method and the finite element
method of various orders [1, 13, 14]. The rapid increase in the use of FMM in such
numerical modeling schemes calls for an accurate and thorough study of the
performance of FMM in a wide range of scenarios.

The goal of this study is to benchmark the performance (both speed and memory
consumption) of the fast multipole method or FMM [5, 6]. Here, we will use the
established head collection and its barycentrically refined versions to perform the
profiling of the FMM library provided by Z. Gimbutas and L. Greengard [7] and
employed in [1, 12]. Such profiling implies running the FMM for all head geometries
at different frequencies including the static case and averaging the respective results.
One FMM runtime essentially corresponds to one iteration step of an iterative
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BEM-FMM solution [1, 12]. Therefore, the data reported in the present study could
be used to estimate the performance of a rather generic BEM-FMM algorithm if the
number of iterations is approximately known or could be estimated a priori.

2 Materials and Methods

2.1 FMM Library of 2017

The core FMM algorithm is taken from the FMM library provided by Gimbutas and
Greengard [7]. The latest version, last updated on November 8, 2017, is downloaded
from the GitHub database to use in this study. We focus specifically in the function
fmm3dwhich is used to solve Laplace and Helmholtz equations for a large number of
target points. The compiled MEX versions of this function, namely, fmm3d.mexw64
and fmm3d.mexw64 for MATLAB compatibility in Windows and Linux, respec-
tively, are used for all FMM calculations within the MATLAB environment.
Depending on whether a solution for the Laplace or Helmholtz equation is desired,
a wrapper function, either lfmm3dpart or hfmm3dpart – both available in the FMM
library, is employed. A sample MATLAB command that calls hfmm3dpart to
compute the Helmholtz equation is given by the following:

[U]=hfmm3dpart(iprec,k,nsource,source,ifcharge,charge,ifdipole,
dipstr,dipvec,ifpot,iffld,ntarget,target,ifpottarg,iffldtarg)

In the command above, the inputs parameters are as follows:

• iprec: precision flags for FMM
• k: wave number(Helmholtz parameter)
• nsource: number of source points
• source: source locations
• ifcharge: charge flag
• charge: charge values
• ifdipole: dipole flag
• dipstr: dipole magnitudes
• dipvec: dipole orientations
• ifpot: potential flag
• iffld: filed flag
• ntarget: number of targets
• target: target locations
• ifpottarg: target potential flag
• iffldtarg: target field flag
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The output parameter is the struct U that contains the following fields:

• U.pot: the computed potential at source locations
• U.fld: the field at source location
• U.pottarg: potential at target locations
• U.fldtarg: field at target locations

In a similar manner, a sample MATLAB command that calls lfmm3dpart to
compute the Laplace equation is given by the following:

[U]=lfmm3dpart(iprec,nsource,source,ifcharge,charge,ifdipole,
dipstr,dipvec,ifpot,iffld,ntarget,target,ifpottarg,iffldtarg)

where the input and output variables are similar to that of hfmm3dpart, except that
for lfmm3dpart there is no wave number k. A more recent FMM library, developed
by Flatiron Institute [15], is also investigated and compared with the library provided
by Gimbutas and Greengard [7].

2.2 CAD Human Head Models

Every CAD human head model [8] has seven objects: the skin, skull, CSF, GM,
cerebellum, WM, and ventricles head compartments. The models have an “onion”
topology: the gray matter shell is a container for white matter, ventricles, and
cerebellum objects; the CSF shell contains the gray matter shell; the skull shell
contains the CSF shell; and finally, the skin or scalp shell contains the skull shell.
The models have an average of 866,000 triangular facets and an average triangle
quality of 0.25. The average edge length is 1.48 mm, and the average surface mesh
density or resolution is 0.57 points per mm2. A sample image of such a head model is
shown in Fig. 1. Finer meshes with ~3,464,000 facets, obtained through one iteration
of subdivision on the original CAD models, are also obtained for more intensive
examinations on the scaling of timings and hardware resources.

2.3 Hardware Information

Windows server:

• 2 CPUs: Intel(R) Xeon(R) CPU E5–2683 v4 at 2.10GHz, 16 cores, 32 logical
processors

• Physical memory (RAM): 256 GB
• OS: Microsoft Windows Server 2008 R2 Enterprise
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Linux server:

• 2 CPUs: Intel(R) Xeon(R) CPU E5–2690 0 at 2.90GHz, 64 bits
• Physical memory (RAM): 192 GB
• OS: Red Hat Enterprise Linux Server release 7.5 (Maipo)

2.4 Charge Assembly

For each of the 16 CAD models, a set of monopole charges are distributed over the
surfaces of the triangular mesh so that at each triangle centers, a charge of random

Fig. 1 Compartments of a sample brain model used in the testing of FMM software. (Image
adapted from Htet et al. [8])
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magnitude q is assigned. The electric potential generated at each triangle centroids,
excluding self-contribution from the local charge, is given by the following:

φ rð Þ ¼
X

i

1
4πε0

q
r� rij j e

�jk r�rij j ð1Þ

where ε0 is permittivity of vacuum, q is electric charge of the source, k is the wave
number, r is the target location at which the potential is sought, and ri is the source
location. The resultant electric field is given by the following:

E rð Þ= 2∇φ ¼
X

i

þ q
4πε0

r� ri
r� rij j3 þ jk

r� ri
r� rij j2

 !
e�jk r�rij j ð2Þ

As a measure of FMM’s performance, both the potential and the electric field,
given by Eqs. (1) and (2), are computed for all models, at the same triangle
centroids, and excluding the self-contribution. Through the function hfmm3dpart
(and lfmm3dpart for the case ka ¼ 0), the potential and the field are obtained
simultaneously. With each head models, the calculations are done for three levels
of accuracy:

• 2 digits (iprec ¼ 0)
• 3 digits (iprec ¼ 1)
• 6 digits (iprec ¼ 2)

The frequencies for which the FMM algorithm is tested span over a wide range,
which corresponds to ka values varying from 0 to 500. Here, a is the maximum of
the x, y, and z coordinates of the model. Average value of a is 107.5754.

3 Results

3.1 Windows Platform (FMM 2017)

3.1.1 Original CAD Models

The relationship between runtimes of FMM calculations on Windows server, aver-
aged over all 16 models, and ka is shown in Figs. 2, 3 and 4, with precisions 0 (two
digits), 1 (three digits), and 2 (six digits), respectively. The discrete step for values of
ka is 50, starting from ka¼ 0 and ending at ka¼ 500, with a more refined resolution
within the low-frequency domain, from 0 to 50, where the step is 2.5. As can be seen
in the insets in these figures, where the plot for low-frequency domain is magnified,
there is always a sharp jump from the runtime for ka ¼ 0 (Laplace case) to the very
next value ka ¼ 2.5. After the abrupt jump, FMM time increases steadily in a linear
manner within the small ka domain (low frequencies) before growing exponentially
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Fig. 2 FMM runtime within MATLAB platform (averaged over all sixteen heads) on Windows vs
ka. The demanded precision is two digits accuracy. The Laplace case takes on average 3.41 s to
complete with precision 0 (two digits)
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Fig. 3 FMM runtime within MATLAB platform (averaged over all sixteen heads) on Windows vs
ka. The demanded precision is three digits accuracy. The Laplace case takes on average 9.23 s to
complete with precision 1 (three digits)
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at medium and large ka. The slope of the time-ka dependence in low ka with
precision 0 (Fig. 2) is (6.04 � 0.19) � 10�2, whereas with precision 1, the slope is
(7.86 � 0.13) � 10�2, and with precision 2, it is (16.81 � 1.03) � 10�2. From these
numerical estimations, it can be concluded that the higher the demanded precision is,
the steeper the time-ka slope becomes, and the runtime increases with ka in a higher
rate.

In Fig. 5, the FMM runtimes for all three precision choices are plotted. For the
Laplace case (ka ¼ 0), it takes on average 3.41 s for the computations to complete
with precision 0. If higher level of accuracy is requested, the time taken increases to
9.23 s with precision 1 and 16.70 with precision 2. This trend, however, is not
replicated in the Helmholtz case, particularly at the low-frequency domain. As
shown in Figs. 2 and 5, in the small ka domain, except for ka ¼ 0, FMM is longest
with precision 0, the lowest level of accuracy of all. More specifically, with precision
0, FMM runtime increases from an average of 62.88 s at ka ¼ 2.5 to 65.33 s at
ka ¼ 50 (Fig. 1 or 4). Precision 2, the highest accuracy level tested, only takes the
second longest amount of time, with 41.92 s for ka ¼ 2.5, and rises to 50.77 s at
ka ¼ 50. Calculations within the low-frequency domain are fastest with precision
1, as it only takes 27.73 s to finish calculating for ka ¼ 2.5 and 31.67 s for ka ¼ 50.
This rather unexpected behavior continues as far as ka¼ 150, where FMM time with
precision 2, due to its rapid exponential rise, surpasses the runtime of precision
0. Toward the high end of the frequency range, precision 1 runtime, whose expo-
nential rate is also higher than precision 0 (but not as high as 2), starts approaching
before surpassing precision 0’s runtime at ka ¼ 500. Therefore, at very large values
for ka, a more intuitively expected trend is observed, where FMM runtime with
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Fig. 4 FMM runtime within MATLAB platform (averaged over all sixteen heads) on Windows vs
ka. The demanded precision is six digits accuracy. The Laplace case takes on average 16.70 s to
complete with precision 3 (six digits)
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precision 0 is lowest and has the slowest exponential rise as ka increases, followed
by precision 1, and lastly, precision 2 is most time-consuming and has the quickest
exponential rate.

3.1.2 First-Order Mesh Subdivision

In Figs. 6, 7 and 8, FMM runtimes on Windows server with precisions 0, 1, and
2, respectively, averaged over all 16 refined meshes obtained through one iteration of
barycentric subdivision done on the original CAD models, are presented. Average
mesh size quadruples; it is now 3.464 M facets. Similar to when the calculations
were done on the original head models, for ka ¼ 0 (Laplace case), precision 0 takes
the least amount of time, 10.41 s, compared to 41.50 s with precision 1 and 70.86 s
with precision 2. Also similar to the original head models, there are abrupt jumps in
runtime from the Laplace case to the Helmholtz calculations, as shown in Figs. 6, 7
and 8. Within low-frequency limit, FMM runtime increases linearly with ka. The
higher the requested accuracy is, the steeper the slope is; with precision 0, FMM time
increases at the linear rate of (11.02 � 1.90) � 10�2 for ka in the low-frequency
domain (0–50), while FMM time for calculations done with precision 1 increases at a
higher rate, (21.30 � 0.61) � 10�2, and precision 2 calculation time increases most
rapidly with the rate (39.21 � 6.75) � 10�2.

In Fig. 9, the runtimes of FMM applied to the first-order-refined meshes with all
three precision choices are plotted. Again, within the low-frequency domain, preci-
sion 0 does not yield the fastest runtime. As shown in Fig. 9, at ka ¼ 2.5, runtime
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Fig. 6 FMM runtime for the refined models within MATLAB platform (averaged over all sixteen
heads) on Windows vs ka. The demanded precision is two digits accuracy. The Laplace case takes
on average 10.41 s to complete with precision 0 (two digits)
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Fig. 7 FMM runtime for the refined models within MATLAB platform (averaged over all sixteen
heads) on Windows vs ka. The demanded precision is three digits accuracy. The Laplace case takes
on average 41.50 s to complete with precision 1 (three digits)
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with precision 0 (172.62 s) is essentially comparable to precision 2 (173.26 s), and
both are significantly slower than precision 1 (127.76 s). As ka increases, out of the
three options, precision 0 has its runtimes increase at the slowest rate. Therefore, by
ka ¼ 350, FMM runtimes of precision 0 is surpassed by precision 1, and from then
on, its runtimes are quickest, followed by precision 1, and precision 2 takes up the
most time.

On the scaling of FMM runtime from the original CAD models that have average
of N0 ¼ 866,000 facets to first-order-refined meshes with N1 ¼ 3,464,000 facets, the
theoretical factor is as follows:

S ¼ N1 logN1

N0 logN0
¼ 4:4 ð3Þ

In Fig. 10, throughout the tested range for ka, the time ratio for precision 0 is
always the smallest out of the three choices for precision. Quite surprisingly, the
ratio for precision 2, for most of the time, is smaller than that of precision 1. Also
interestingly, all three precision options start at ka¼ 0 with scaling factors relatively
close to the theoretical values (perhaps with an exception with precision 0) and then
decrease significantly as ka increases. Therefore, it appears that the higher the
frequency is, the better the scaling in runtime is.
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Fig. 8 FMM runtime for the refined models within MATLAB platform (averaged over all sixteen
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3.2 Linux Platform (FMM 2017)

3.2.1 Original CAD Models

The relationship between runtimes of FMM calculations on Linux server, averaged
over all 16 models, and ka is shown in Figs. 11, 12 and 13 with precisions 0, 1, and
2, respectively. A summary of runtimes for all three precisions is plotted in Fig. 14.
Different from the same calculations done on the Windows platform, the runtime on
Linux with precision 0, the lowest level of accuracy tested in this study, takes the
least amount of time, while calculations with precision 1 are second, and precision
2, the highest level of accuracy with six digits, consumes the most amount of time.
This order is held consistently throughout the entire frequency range from 0 to 500.
It is also noticeable that runtimes with precisions 0 and 1, which guarantee accuracy
within two and three digits, respectively, are comparable to each other, with calcu-
lations with precision 1 take slightly longer than 0. FMM runtime with precision
2, which demands six digits accuracy, takes significantly more time to finish. This
rather intuitive behavior, however, is not present in the runtime profiling for Win-
dows, which was discussed in Sect. 3.1. As a note on how the two servers compare to
each other in computing Laplace equation, it takes the Linux server 5.14 s to finish
the calculation with precision 0, while for Windows, it is only 3.41 s. The Linux
server, however, is notably faster on precision 1, taking 5.33 s to finish as compared
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Fig. 11 FMM runtime within MATLAB platform (averaged over all sixteen heads) on Linux vs
ka. The demanded precision is two digits accuracy. The Laplace case takes on average 5.14 s to
complete with precision 0 (two digits)
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Fig. 12 FMM runtime within MATLAB platform (averaged over all sixteen heads) on Linux vs
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complete with precision 1 (three digits)

1400

1200

1000

1600

800

F
M

M
 ti

m
e 

in
 s

ec
on

ds

FMM time vs ka - precision 2 (Linux)

600

400

200

0
0 50 100 150 200 250 300 350 400 450 500

ka

0
0

10 20

20

30 40

40

60

80

100

50

Fig. 13 FMM runtime within MATLAB platform (averaged over all sixteen heads) on Linux vs
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to 9.23 s by the Windows platform. And finally, the Linux server is slightly better at
precision 2, with 15.31 s, whereas Windows takes 16.70 s.

Comparing the calculations done on two platforms, Linux and Windows, we also
observe major differences in how the runtime evolves as ka varies. First of all, FMM
calculations within low-frequency domain are generally faster on Linux than on
Windows, especially for low-to-medium accuracies (precisions 0 and 1). In partic-
ular, with precision 0, on Linux, it takes on average 19.51 s for hfmm3dpart to finish
solving the Helmholtz equation on the original CAD models for ka within the range
0–50, whereas it takes on average 64.03 s to complete the same task on the Windows
server. Similarly, it takes only 25.59 s on Linux to finish the calculations in the
low-frequency domain with precision 1. Calculations on Windows, although not
drastically slower than Linux as in the case of precision 0, still take 29.71 s to
complete. If higher precisions are in demand, in fact, runtimes on Windows will
catch up with Linux, and eventually, the speed on Windows will exceed. Evidently,
for low-frequency calculations demanding precision 2 (six digits accuracy), it takes
only 45.35 s for hfmm3dpart to complete computing, while a similar task takes the
Linux server 88.88 s to complete.

Scaling of runtime as the frequency (or ka) is increased is another important
metric. For the Linux server, within the range 0–50 for ka, FMM runtime increases
linearly with the slope of (16.06 � 0.31) � 10�2 with precision 0. This is a
significantly faster rate compared to the slope (6.04 � 0.19) � 10�2 (already
mentioned in Sect. 3.1.1) for the same precision but on Windows. This comparison
also holds with precisions 1 and 2, as on Linux the linear rates are
(26.20 � 0.07) � 10�2 with precision 1 and a whopping (50.09 � 3.81) � 10�2
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with precision 2. These values are far inferior than the rates (7.86 � 0.13) � 10�2

with precision 1 and (16.81 � 1.03) � 10�2 with precision 2 on Windows.
Therefore, although the Linux server shows an edge over the Windows platform in
computing low-frequency Helmholtz equation, the fact that runtimes on Linux
increase too quickly with frequency makes it eventually get surpassed by Windows
server at medium- and high-frequency domains. At ka ¼ 500 (the highest value for
ka tested in this study), runtimes on Windows are 834.69 s with precision 0, 833.91 s
with precision 1, and 1090 s with precision 2, while on Linux, the numbers are
1108 s, 1148 s, and 1526 s, respectively.

3.2.2 First-Order Mesh Subdivision

In Figs. 15, 16, and 17, FMM runtimes on Linux server with precisions 0, 1, and
2, respectively, averaged over all 16 refined mesh (obtained through one iteration of
barycentric subdivision done on the original CAD models), are presented. A sum-
mary of runtimes for all three precisions is plotted in Fig. 18. Comparing FMM done
for the refined meshes on Linux and Windows, we obtain trends that are mostly
similar to what was observed in the calculations done on the original models. First,
comparisons on Laplace calculations yield the same results: Linux with precision
0 takes 16.41 s, considerably slower than Windows, which takes only 10.41 s. For
precision 1, the time is 17.7 s on Linux, again significantly better than Windows’
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Fig. 15 FMM runtime for the refined models within MATLAB platform (averaged over all sixteen
heads) on Linux vs ka. The demanded precision is two digits accuracy. The Laplace case takes on
average 16.41 s to complete with precision 0 (two digits)
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Fig. 16 FMM runtime for the refined models within MATLAB platform (averaged over all sixteen
heads) on Linux vs ka. The demanded precision is two digits accuracy. The Laplace case takes on
average 17.7 s to complete with precision 1 (three digits)
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Fig. 17 FMM runtime for the refined models within MATLAB platform (averaged over all sixteen
heads) on Linux vs ka. The demanded precision is two digits accuracy. The Laplace case takes on
average 73.29 s to complete with precision 2 (six digits)
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41.50 s, and finally, runtimes for precision 2 of the two platforms are comparable,
73.29 s for Linux and 70.86 s for Windows.

In terms of how runtimes of the three accuracy options compare to each other, as
can be seen in Fig. 18, precision 0 takes the least amount of time, tightly followed by
precision 1, while precision 2 is a lot more time-consuming. The same behavior was
already discussed in Sect. 3.2.1 for calculations done with the original CAD models
on Linux. The same conclusion, however, cannot be drawn for calculations done on
Windows, as mentioned in Sects. 3.1.1 and 3.1.2.

The rates at which FMM runtimes increase with ka are significantly higher on
Linux than on Windows. Within the low-frequency domain, where the FMM time-
ka dependence appears to be linear, FMM runtime (with refined meshes) for
precision 0 on Linux has the linear rate of (28.90 � 0.45) � 10�2, by a large margin
higher than the rate (11.02 � 1.9) � 10�2 on Windows for the same precision level.
Similarly, precision 1’s runtimes increase at the rate (53.91 � 0.90) � 10�2 in the
low-frequency range, while on windows, it is only (21.30 � 0.61) � 10�2. And
finally, for precision 2, the rate is (104.5 � 4.30) � 10�2 on Linux and
(39.21 � 6.75) � 10�2. Such steep slopes on the runtime-ka dependence in the
low-frequency domain of the Linux platform are continued by the rapid exponenti-
ations in the medium- and high-frequency ranges, which result in the Linux server
being far inferior to Windows in computing the Helmholtz equations in high-
frequency domain.

In Fig. 19, the actual ratio between FMM time (on Linux) of the refined models
and the original model is plotted. Unlike the time ratio plot for Windows (Fig. 10),
here, we see a more expected trend; the time ratio for precision 0 is lowest, followed
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Fig. 18 Comparison among average FMM runtimes for the refined models in MATLAB on Linux
for when two, three, and six digits accuracy are demanded
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by precision 1, while precision 2 has the largest ratio, and this behavior is maintained
over the entire range ka ¼ 0–500. As also shown in Fig. 19, except for only the
Laplace case precision 2, all the ratios of the three precisions are below the
theoretical scaling factor (see Eq. (3)). As ka increases, a decreasing trend is
observed for all three plots. A similar result can be seen in Fig. 10 for Windows.

3.3 Memory Requirements

3.3.1 Original CAD Models

In this section, we discuss the memory consumed by FMM. Due to limitations on
tools available, as well as Windows’ uncompromising memory recording scheme,
only memory information for calculations done on Linux is profiled and analyzed
here. However, given the same FMM task, the (approximately) same amount of
memory consumption is expected in both platforms. Therefore, valuable insights in
memory requirements for performing FMM on Windows can still be drawn. In
Figs. 20, 21, and 22, peak physical memory over FMM runtime is plotted with ka for
precisions 0, 1, and 2, respectively. In Fig. 23, a summary of memory vs ka is plotted
for all three precision choices. As can be seen in the figures, the general shapes of the
curves are similar to the runtime plots displayed in previous sections; there is an
abrupt jump from memory needed for solving Laplace equation to the Helmholtz
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case. For the Laplace case, calculations with all three levels of precisions require
roughly the same amount of memory (approximately 1.2 Gb). Within the
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Fig. 22 Average peak memory consumption in MATLAB on Linux is plotted with respect to
values of ka. The demanded precision is six digits accuracy
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Fig. 23 A comparison among average peak memory consumption in MATLAB on Linux for when
two, three, and six digits accuracy are demanded
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low-frequency domain, the memory-ka dependence is linear before evolving into an
exponential growth in higher frequency ranges.

Perhaps the most astonishing results are that precision 0, the lowest level of
accuracy, requires the most amount of memory, especially at high-frequency
domain. As shown in Fig. 23, starting with very small values of ka, calculations
for precision 0 consume the least amount of memory. However, both its linear rate
within the low-frequency range and its exponential rate in the higher-frequency
domain exceed that of precisions 1 and 2, resulting in the memory needed for
precision 0 to somehow outgrow the supposedly more computationally demanding
precision options. The memory plots for precisions 1 and 2, on the other hand,
evolve in a more relaxed manner and, over the entire ka range from 0 to 500, tend to
stay close to each other.

3.3.2 First-Order Mesh Subdivision

In Figs. 24, 25 and 26, peak physical memory over FMM runtime (performed on
refined meshes) is plotted with ka for precisions 0, 1, and 2, respectively. In Fig. 27,
a summary of memory vs ka is plotted for all three precision choices. Similar to the
memory recorded for FMM done on the original meshes, here, we again observe that
it is precision 0 that consumes the most memory, particularly at high frequencies
(Fig. 28).

0 50 100 150 200
ka

250 300 350 400 450 500

3.5

3

2.5

2

1.5
0 10 20 30 40

4

9

8

7

6

5

3

2

1

M
em

or
y 

(G
b)

FMM memory vs ka - precisions 0 (Linux)
First order mesh refinement

Fig. 24 Average peak memory consumption in MATLAB for the refined models on Linux is
plotted with respect to values of ka. The demanded precision is two digits accuracy
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Fig. 25 Average peak memory consumption in MATLAB for the refined models on Linux is
plotted with respect to values of ka. The demanded precision is three digits accuracy
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Fig. 26 Average peak memory consumption in MATLAB for the refined models on Linux is
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3.4 Second-Order Mesh Refinement (FMM 2017)

3.4.1 Windows Platform

In this section, we study the performance of FMM in calculations that use CAD
models that have more refined meshes. These models have an average of 13,800,000
triangles and are obtained by performing two levels of barycentric subdivisions on
the original head models. In Figs. 29, 30, and 31, FMM runtimes on Windows server
with precisions 0, 1, and 2, respectively, averaged over all 16 refined meshes, are
presented. In Fig. 32, a summary of runtime vs ka is plotted for all three precision
choices. For the studies in this section, due to limited resources in computation, we
restrict ourselves with ka values only from 0 to 50. As seen in Figs. 29 and 32, the
runtimes for dense meshes are rather unpredictable, as there are no observable
patterns for how the runtime of FMM evolves when ka is increased from 0 to 50.
This volatility can be seen in the plots for all precisions 0, 1, and 2. In Fig. 33, the
ratio between FMM time for the refined models (second level of mesh refinement)
and FMM time for the original CAD models is plotted with respect to ka. As seen in
Fig. 33, the scaling is best for calculations that require precision 0, followed by
precision 2. FMM calculations for precision 1 has the largest scaling factor. This
unintuitive scaling result was also seen for first-order mesh refinement (see Fig. 9)
and was discussed in Sect. 3.1.2.
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Fig. 29 Average FMM runtime for the doubly refined models in MATLAB on Windows is plotted
with respect to values of ka. The demanded precision is two digits accuracy
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Fig. 30 Average FMM runtime for the doubly refined models in MATLAB on Windows is plotted
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Fig. 31 Average FMM runtime for the doubly refined models in MATLAB on Windows is plotted
with respect to values of ka. The demanded precision is six digits accuracy
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3.4.2 Linux Platform

In Figs. 34, 35, and 36, FMM runtimes on Linux server with precisions 0, 1, and
2, respectively, averaged over all 16 refined meshes (second order), are presented. In
Fig. 37, a summary of runtime vs ka is plotted for all three choices of precision.
Unlike the volatile behavior seen in the results for Windows, the FMM runtimes in
Linux for meshes of second-order refinement increase linearly as ka increases, as
expected. In Fig. 38, the ratio between FMM time for the refined models (second
level of mesh refinement) and FMM time for the original CAD models is plotted
with respect to ka. Again, we see that the scaling for precision 0 is lowest, while
precision 1 has the highest scaling factor.

3.5 Comparisons with the New FMM Package (Summer
2019)

Very recently, a new version of the FMM library was published by the Flatiron
Institute [15]. This package was downloaded for testing on June 11, 2019. Shortly
after that, the online library was updated; this newer version was downloaded on
June 20, 2019. In this section, we compare the performances of these two new
versions of the FMM software with the original FMM library by Gimbutas and
Greengard [7], last updated on November 8, 2017. Here, we focus on the
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Fig. 34 Average FMM runtime for the doubly refined models in MATLAB on Linux is plotted
with respect to values of ka. The demanded precision is two digits accuracy
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Fig. 35 Average FMM runtime for the doubly refined models in MATLAB on Linux is plotted
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performance in Linux. Note the legends in the plots: “new2”¼ newly updated MEX
file (June 20, 2019), “new1” ¼ MEX file in the original new FMM library
(downloaded June 11, 2019), “old” ¼ MEX file in the old FMM library (2017),
and zero time ¼ program fails.

In Figs. 39, 40, and 41, FMM runtimes of the new and old libraries on Linux
server with precisions 0, 1, and 2, respectively, averaged over all 16 refined meshes,
are presented. A few comments are in order:

• The newest FMM library of the three tested crashed at high frequencies. The
reason for these crashes is due to memory leaking. This issue has been fixed
meanwhile.

• At low frequencies (ka �50), the newest library has the best runtime (June
20, 2019), followed by the second newest (June 11, 2019), while the old library
is slowest. However, the old FMM library shows significant superiority in
runtime over the new libraries as the frequency increases.

• Both new libraries show improvements over the old FMM codes when the
Laplace solver is in used, with the second newest FMM library having the best
runtime.
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Fig. 39 FMM runtime of the new and old libraries for the original CAD models within MATLAB
platform (averaged over all sixteen heads) on Linux vs ka. The demanded precision is two digits
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3.6 Solving for Multiple Solutions in Parallel

The FMM software updated by the Flatiron Institute also allows one to solve
multiple right-hand sides at a time. In this section, we report the scaling of the
FMM code when it is used to solve the Laplace equation with multiple sets of
charges simultaneously. The original CAD models are used. The performances of
the MEX function compiled for Windows, Linux (June 11, 2019), and the updated
version for Linux (June 20, 2019) are compared against each other. These three
MEX options are, respectively, called Windows, Linux1, and Linux2 in the follow-
ing table. Runtimes are in seconds, and “X” indicates program failures due to
memory issues. In Table 1, we show the runtimes of FMM run on different
platforms, when different number of sets are included. The scale curves are shown
in Figs. 42 and 43. The most significant result is that FMM run on Windows has the
shortest runtime when a small number of sets are computed. The Linux platform, on
the other hand, has a much better scaling rate, and therefore, the runtimes on Linux
(for both versions of the library) are progressively better than those on Windows as
the number of sets increases.

4 Discussion and Conclusions

In this paper, we have studied the performance of the fast multipole method in
computing the Laplace and Helmholtz source-to-source potentials within human
head topology. The FMM software used for this study was developed by Gimbutas
and Greengard [7], and we have profiled the method in a wide range of frequency
values, mesh density, in both Linux and Windows frameworks, and with all choices
of precision available. We showed that for problems that have reasonably “small”
sizes (up to 3–4 million facets), the FMM runtime and memory consumption evolve
in a predictable manner when run on both Linux and Windows. In particular, the
runtime (and memory usage) varies exponentially as the frequency increases, with a
small linear dependence at small values of frequency. We also observe universally a
sharp, discrete increase in both runtime and memory from when the FMM software
is using the Laplace solver to when the Helmholtz solver is used.

Table 1 FMM runtimes in
Linux and Windows for dif-
ferent number of sets of
charge distributions are shown

Number of sets, N Total runtime, TN

Linux1 Linux2 Windows

1 5.37 5.66 2.99

2 6.18 5.64 3.87

4 9.10 7.69 6.43

8 12.82 10.75 11.90

16 19.72 17.94 22.89

32 35.46 35.43 43.70

64 66.76 75.58 90.07

128 X X X
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Upon studying the scaling efficiency of FMM, we showed that the algorithm
deviates slightly from the theoretically expected scaling factors for runtime and
memory, along with decreasing trends as the problem size increases. We also
observed a number of interesting and unexpected results in terms of comparisons
in runtimes required by different level of accuracy. In particular, we showed that for
calculations run in Windows, the runtime needed for the three levels of accuracy
tested did not follow any particular order at low frequency and only formed a pattern
(low accuracy needed less time than high accuracy) when the frequency is suffi-
ciently high. Resources needed for calculations performed in Linux were shown to
have much more predictable patterns among different choices of accuracy and
problem sizes, as well as smoother evolutions as the frequency changes.

We also compare the performance of this FMM library with a newer package
(downloaded June 11, 2019) and its updated version (downloaded June 20, 2019).
The results show that although the new library has better performance at low
frequency, in Laplace calculations, it scales poorly compared to the old library and
therefore is time-wise less efficient than the old FMM codes at high frequencies.
Finally, we investigate the scaling rate of the new library with increasing number of
right-hand sides (rhs) being solved simultaneously. The overall results show that
while the Windows platform has the shorter runtime for small number of rhs, the
FMM code compiled for Linux has better scaling rate and therefore has better
runtime when the number of rhs increases.

With this study, we have benchmarked the performance of the general-purpose
FMM, provided new insights to the behavior of the algorithms in various scenarios,
and effectively offered a means to pre-estimate the efficiency of FMM-based or
FMM-accelerated numerical methods.
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Analytical Solution for the Electric Field
Response Generated by a Nonconducting
Ellipsoid (Prolate Spheroid)
in a Conducting Fluid Subject to an
External Electric Field

Andrey B. Yakovlev and Valeriya S. Federyaeva

1 Introduction

In this short study, we retrieve and discuss an analytical solution for the electric field
response generated by a nonconducting ellipsoid (prolate spheroid) in a homoge-
neous conducting fluid subject to an external primary electric field. We assume that
the primary field can have any angle of incidence with respect to the longer axis of
the ellipsoid. We assume that the ellipsoid has a zero (a nonconducting cell mem-
brane) conductivity.

In the main text, we will utilize the well-known analogy between the electrostatics
of dielectrics and DC conduction [1–3]. This analogy means that the basic equations
and the corresponding solutions become identical when the ratio(s) of dielectric
constants will coincide with the ratio(s) of conductivities. Since the solution of the
present problem for dielectric materials does exist [1], its conversion to the
conducting case is rather straightforward, but it requires extra steps for computing
the induced charge density at the interface.

Here we also note that such an analogy is not the only one: one might consider a
relevant fluid dynamics analogy as well. For example, the solution for a potential
flow of an ideal incompressible fluid around a sphere with radius R [4] yields the
expression for the hydrodynamic potential in the following form (the flow direction
is along the x-axis):
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φv ¼ �v0xr cos θ þ B cos θ
r2

ð1Þ

An unknown coefficient B is found from the condition∂φv
∂r ¼ 0, which allows us to

write the following expression for the potential:

φv ¼ �v0xr cos θ � v0xR3 cos θ
2r2

ð2Þ

Simultaneously, the tangential velocity at the sphere surface is given by

vτ ¼ 1
r
∂φv

∂θ

���
r¼R

¼ v0xsinθ þ v0xR3sinθ
2r3

���
r¼R

¼ 3v0xsinθ
2

ð3Þ

This solution is equivalent to the steady electric current solution for a
nonconducting sphere in a conducting fluid. In particular, the electric field inside
the sphere is given by (cf. [3]):

E
!
i ¼ 3

2
E
!
0 ð4Þ

where E
!
0 is the primary electric field. On the other hand, for a dielectric sphere with

permittivity ε in a dielectric medium with permittivity ε, the corresponding solution
for the field inside has the following form [1–3]:

E
!
i ¼ 3ε eð Þ

2ε eð Þ þ ε ið Þ E
!
0 ð5Þ

Two solutions (4) and (5) indeed coincide when

ε ið Þ=ε eð Þ ¼ 0 ð6Þ

2 Materials and Methods

In Ref. [1], the problem is solved for the electric field of an ellipsoid with half axes
a, b, c, with permittivity ε(i) in a dielectric medium with permittivity ε(e) when a

primary or external field E
!
0 is applied. This solution will be repeated here; the final

result implies that the permittivities should be replaced by conductivities.
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We consider an ellipsoid in the form of a prolate spheroid (a > b ¼ c). The
coordinate system (see Fig. 1) is chosen as follows: the z-axis is directed along a so

that the angle between the z-axis and the vector E
!
0 is less than 90 degrees. The x-axis

is located in a plane defined by the z-axis and vector E
!
0. The y-axis is then chosen to

construct the right-handed Cartesian system.
In this coordinate system, the depolarization tensor [1] becomes diagonal with the

following components:

nzz ¼ abc
2

Z1
0

ds

sþ a2ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ a2ð Þ sþ b2

� �
sþ c2ð Þ

q ,

nyy ¼ abc
2

Z1
0

ds

sþ b2
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sþ a2ð Þ sþ b2
� �

sþ c2ð Þ
q ,

nxx ¼ abc
2

Z1
0

ds

sþ c2ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ a2ð Þ sþ b2

� �
sþ c2ð Þ

q

ð7Þ

For the prolate spheroid, simplifications are made in the following form [1]:

nzz ¼ 1� e2

e3
Arthe� eð Þ,

nyy ¼nxx ¼ 1
2

1� nzzð Þ
ð8Þ

wheree ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2=a2

p
is the ellipsoid eccentricity.

Fig. 1 Ellipsoid along with
the coordinate system used
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3 Results for the Potential and the Electric Field

Accordingly, the electric potential everywhere in space and the electric field inside
the ellipsoid have the following form [1] (the ratio of dielectric permittivities in the
equations given below must be set to zero to obtain the result for the nonconducting
ellipsoid in the conducting fluid):

φðiÞ ¼ �
(

E0xx

1þ
 

εðiÞ

εðeÞ
� 1

!
nxx

þ E0yy

1þ
 

εðiÞ

εðeÞ
� 1

!
nyy

þ E0zz

1þ
 

εðiÞ

εðeÞ
� 1

!
nzz

)

φðeÞ ¼
�E0xx

 
1þ abc

2

 
εðiÞ

εðeÞ
� 1

!Zξ
0

ds

ðsþ c2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsþ a2Þðsþ b2Þðsþ c2Þ

q
!

1þ
 

εðiÞ

εðeÞ
� 1

!
nxx

þ

þ
�E0yy

 
1þ abc

2

 
εðiÞ

εðeÞ
� 1

!Zξ
0

ds

ðsþ b2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsþ a2Þðsþ b2Þðsþ c2Þ

q
!

1þ
 

εðiÞ

εðeÞ
� 1

!
nyy

þ

þ
�E0zz

 
1þ abc

2

 
εðiÞ

εðeÞ
� 1

!Zξ
0

ds

ðsþ a2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsþ a2Þðsþ b2Þðsþ c2Þ

q
!

1þ
 

εðiÞ

εðeÞ
� 1

!
nzz

Ex ¼ E0x

1þ
 

εðiÞ

εðeÞ
� 1

!
nxx

,Ey ¼ E0y

1þ
 

εðiÞ

εðeÞ
� 1

!
nyy

,Ez ¼ E0z

1þ
 

εðiÞ

εðeÞ
� 1

!
nzz

ð9Þ

Here, ξ is the ellipsoidal coordinate that is a constant for all ellipsoids being
confocal with the given one. For the prolate spheroid, one has ξ ¼ a=

ffiffiffiffiffiffiffiffiffi
a2�b2

p
.

Now, we express the electric field in the following form (ϑ is the elevation angle):

386 A. B. Yakovlev and V. S. Federyaeva



E0z ¼E0 cos ϑ,

E0x ¼E0 sinϑ,

E0y ¼0

ð10Þ

After substitution of Eq. (10) into Eq. (9) and using Eq. (6), we obtain

φðiÞ ¼ �
(
E0xsinϑ
1� nxx

þ E0zcosϑ
1� nzz

)

φðeÞ ¼
�E0xsinϑ

 
1� abc

2

Zξ
0

ds

ðsþ c2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsþ a2Þðsþ b2Þðsþ c2Þ

q
!

1� nxx
þ

þ
�E0zcosϑ

 
1� abc

2

Zξ
0

ds

ðsþ a2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsþ a2Þðsþ b2Þðsþ c2Þ

q
!

1� nzz

Ez ¼ E0cosϑ
1� nxx

,Ex ¼ E0sinϑ
1� nyy

,Ey ¼ 0

ð11Þ

It follows from Eqs. (8) and (11) that the electric field within the ellipsoid is not
parallel to the external primary electric field.

4 Results for the Surface Charge Density

For the prolate spheroid, the ellipsoidal coordinates are reduced to the prolate
spheroidal coordinates ξ, η, and ψ. They are converted to Cartesian coordinates
using the following expressions [5]:

x ¼ d
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 � 1
� �

1� η2ð Þ
q

cosψ

y ¼ d
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 � 1
� �

1� η2ð Þ
q

sinψ

z ¼ d
2
ξη

ð12Þ

where d is the spacing between two focal points of the ellipsoid, which is equal
to 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

p
.

In order to find the surface charge distribution, one needs to find the normal
derivative of the electric potential at the surface. Since the outer normal derivative of
the potential is equal to zero, only the inner derivative is needed.
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It is convenient to compute the inner derivative using coordinates ξ, η, and ψ.
Then,

dφ
dn

���
surf

¼ � 1
Hξ

∂φ ið Þ

∂ξ

����
surf

ð13Þ

where Hξ is the corresponding Lamé coefficient. We find this coefficient in the
following form:

Hξ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð∂x∂ξÞ

2 þ ð∂y∂ξÞ
2 þ ð∂z∂ξÞ

2
q

¼

¼ d
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� η2

ξ2 � 1
ξ2 þ η2

s
¼

¼ d
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 � η2

ξ2 � 1

s ð14Þ

Here, ξ0 is the value of ξ on the ellipsoid surface. Following the definition of the
prolate spheroid, one obtains ξ ¼ a=

ffiffiffiffiffiffiffiffiffi
a2�b2

p
andη ¼ z=a. Then,

�1
Hξ

∂φðiÞ

∂ξ

���
ξ¼ξ0

¼
� E0x

1� nxx
1
Hξ

∂x
∂ξ

þ E0z

1� nzz
1
Hξ

∂z
∂ξ

����
ξ¼ξ0

¼

¼
�

E0x
1�nxx

ξ
ffiffiffiffiffiffiffiffi
1�η2

pffiffiffiffiffiffiffiffiffi
ξ2�η2

p þ E0z
1�nzz

η
ffiffiffiffiffiffiffiffi
ξ2�1

pffiffiffiffiffiffiffiffiffi
ξ2�η2

p
����

ξ¼ξ0

¼

¼ E0sinϑ
1� nxx

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � z2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4 þ z2b2 � z2a2

p þ

þ E0cosϑ
1� nzz

bz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

p

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4 þ z2b2 � z2a2

p

ð15Þ

It follows from here that the surface charge density as a function of z and ϑ (the
elevation angle) is obtained in the following form:

σ ¼ ε0
E0 sin ϑ
1� nxx

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � z2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4 þ z2b2 � z2a2

p þ E0 cos ϑ
1� nzz

bz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

p

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4 þ z2b2 � z2a2

p
 !

ð16Þ

which completes the solution. This is the surface charge density residing on the
surface of the nonconducting ellipsoid in the conducting fluid.

Consider the primary external field that has only one component parallel to the
z-axis, and consider b that tends to zero in Eq. (16). Then, the surface charge density
is only different from zero at the tips of the ellipsoid, that is, at z ! a or z ! � a.
This is a physically meaningful result, which is observed for a thin cylinder in a
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coaxial external field. Here, the opposite charges are concentrated close to the
cylinder tips only.
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Example of Steady-State Electric-Current
Modeling of a Complicated Cellular
Topology with Boundary Element Fast
Multipole Method

Vishwanath Iyer, William A. Wartman, Aapo Nummenmaa,
and Sergey N. Makarov

1 Introduction

The recently developed quasistatic formulation of the boundary element fast
multipole method or BEM-FMM [1, 2] is based on the integral equation written in
terms of induced charge density at the interfaces, which is naturally coupled with the
general-purpose fast multipole method [3, 4]. It could potentially be applied to
perform quasistatic electromagnetic modeling of complicated 3D surface topologies
on the cellular level. Modeling such topologies with the finite element method or
FEM is hardly possible in practice, in particular due to the complexity of creation of
the required volumetric tetrahedral mesh and the required high mesh resolution near
multiple fine model joints.

V. Iyer (*)
The MathWorks, Inc., Natick, MA, USA
e-mail: vishwanath.iyer@mathworks.com

W. A. Wartman
Electrical and Computer Engineering Department, Worcester Polytechnic Institute,
Worcester, MA, USA

A. Nummenmaa
Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital,
Charlestown, MA, USA

S. N. Makarov
Electrical and Computer Engineering Department, Worcester Polytechnic Institute,
Worcester, MA, USA

Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital,
Charlestown, MA, USA

© The Author(s) 2021
S. N. Makarov et al. (eds.), Brain and Human Body Modeling 2020,
https://doi.org/10.1007/978-3-030-45623-8_23

391

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45623-8_23&domain=pdf
mailto:vishwanath.iyer@mathworks.com
https://doi.org/10.1007/978-3-030-45623-8_23#DOI


In this study, we report the performance of the BEM-FMM algorithm for classic
(quasi) steady-state electric current modeling around a CAD-based SARS-CoV-2
spike glycoprotein structure [5]. This structure is part of the mechanism by which the
coronavirus attaches to a target object, see Fig. 1a. The target object itself is not
included into the present study; only the conceptual possibility of quasistatic model-
ing and the method’s numerical performance are reported and discussed.

2 Materials and Methods

Figure 1b shows the protein CAD model [5]. While the overall SARS-CoV-2 virus
particle size is reported to be in the range of 80–200 nm [6, 7], the spike glycoprotein
structure shown in Fig.1a is much smaller, possibly in the range of 10–20 nm
[8]. The electrical conductivity of protein may vary [9]; we assume that the macro-
scopic conductivity of protein approaches zero while the conductivity of the ambient
body fluid is 0.1 S/m. A primary electric field with the amplitude of 1 V/m is applied
along the x-axis, as shown in Figs. 2 and 3, respectively.

a ) b )

Fig. 1 CAD-based SARS-CoV-2 spike glycoprotein structure [5]. No differentiation between
different protein types is made
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The entire surface CAD model has 2.34 M facets. Nine facets were found to have
coincident face centers, although their vertices were somewhat different. These
duplicated facets were removed from the mesh prior to simulation.

3 Results

The numerical solution with 100 GMRES iterations executes in approximately
10 min using a general-purpose Intel Xeon E5-2698 v4 CPU (2.10 GHz) Windows
server, 256 GB RAM, which runs MATLAB 2019b. The final relative residual of the
iterative solution is 4 � 10�7; the charge conservation law is satisfied to within a
10�5 relative error.

Fig. 2 Primary incident electric field and surface charge density distribution in C/m2 on the surface
of the CAD object
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Figure 2 shows the direction of the primary electric field and the resulting
distribution of the surface charge density in C/m2 on the surface of the CAD object
subject to the applied electric field. There seems to be no dedicated domain where the
absolute charge concentration would be the largest.

Similarly, Fig. 3 demonstrates the total electric field distribution just outside the
surface of the CAD object in V/m. A potentially interesting observation is that the
total electric field becomes quite large at certain vertical segments of the protein
structure (an inset in Fig. 3), which remain largely perpendicular to the primary field.
Regarding the surface fields, the simulations reveal that the total field just outside the
surface might exceed the primary field by a factor of up to 80. Further modeling is
necessary to justify this result.

The normal field just outside the surface approaches zero (this fact also follows
from the current continuity condition) so that the tangential field nearly coincides
with the total field.

Fig. 3 Total electric field distribution just outside the surface of the CAD object in V/m. Note the
inset which shows the zoomed-in field distribution
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We further studied the same problem but at different orientations of the primary
electric field. Similar convergence results have been observed, but the field distri-
butions are quite different.

4 Discussion and Conclusion

The BEM-FMM approach allows us to model the present rather complicated topol-
ogy in approximately 10 min using a common Windows server and with a high
degree of convergence accuracy. It is straightforward to assign different properties to
different constituents of the microscopic structure. It is also possible to clone the
structure multiple times and include the effect of a nearby cell object.

Indeed, the performed modeling task remains purely classical and “macroscopic,”
with no relevant quantum effects included. At the same time, it demonstrates the
conceptual possibility of quasistatic modeling via BEM-FMM and demonstrates the
method’s numerical performance.
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