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Preface
 

It is my pleasure to present this book on optimal control geared toward chem­
ical engineers. The application of optimal control is a logical step when it 
comes to pushing the envelopes of unit operations and processes undergoing 
changes with time and space. 

This book is essentially a summary of important concepts I have learned in 
the last 16 years from the classroom, self-study, and research along with in­
teraction with some great individuals including teachers, authors, peers, and 
students. The goal of this book is to provide a sufficiently detailed treat­
ment of optimal control that will enable readers to formulate optimal control 
problems and solve them. With this emphasis, the book provides necessary 
mathematical analyses and derivations of important results. It is assumed 
that the reader is at the level of a graduate student. 

Chapter 1 stimulates interest in optimal control by describing various pro­
cesses and introducing the mathematical description of optimal control prob­
lems. Against this backdrop, readers are introduced to the basic concepts 
of optimal control in Chapter 2. The notion of optimality is presented and 
analyzed in Chapter 3. The ubiquitous Lagrange multipliers are introduced 
in this chapter. They are elaborated later in Chapter 4 along with important 
theorems and rules of application. Chapter 5 presents the celebrated Pon­
tryagin’s principle of optimal control. With this background, Chapter 6 puts 
together different types of optimal control problems and the necessary condi­
tions for optimality. Chapter 7 describes important numerical methods and 
computational algorithms in a lucid manner to solve a wide range of optimal 
control problems. Chapter 8 introduces the optimal control of processes that 
are periodic and provides relevant numerical methods and algorithms. A brief 
review of mathematical concepts is provided in Chapter 9. Chapter-end bib­
liographies contain the cited references as well as important sources on which 
I have relied. 

For an introductory one-semester course, instructors can consider Chap­
ters 1–3, the main results from Chapters 4 and 5, and Chapters 6 and 7. An 
advanced course may include all chapters with obviously less time devoted to 
the first three. Chapters 7 and 8 may form a part of an advanced optimization 
course. 

Containing all relevant mathematical results and their derivations, the book 
encourages self-study. During initial readings, some readers might want to 
skip a derivation, accept the result temporarily, and focus more on the ap­
plications. A working knowledge of computer programming is highly recom­
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xiv 

mended to solve optimal control problems — whether one intends to write 
one’s own programs or use software and programs developed by others. 

Optimal control is the result of tremendous contributions of wonderful 
mathematicians, scientists, and engineers. To list their achievements is a 
formidable task. What I have presented in this book is what I could under­
stand and have first-hand experience with. I hope the savants will help me in 
improving this book and the students will find the book useful. 

I am profoundly grateful to Dr. Anil Mehrotra, Dr. Ayodeji Jeje, and 
Dr. Robert Heidemann for their assiduous mentoring and training during my 
doctorate and postdoctoral fellowship at the University of Calgary. I am 
thankful to my graduate students, especially Amir Sani, Hameed Muhamad, 
Dinesh Kumar Patel, and Vishalkumar Patel for helping with the proofread­
ing. I acknowledge Allison Shatkin, Karen Simon, and Marsha Pronin at CRC 
Press who have offered superb assistance in the writing of this book. 

I am very appreciative of the outstanding contributions of the developers of 
TEX, LATEX, MiKTEX, Xfig, Asymptote, AUCTEX, and GNU Emacs — the 
primary applications I have used to prepare the book. 

Finally, my wife Deepa provided unstinting support and encouragement to 
follow through with this project. My children Jahnavi and Pranav were very 
patient with me all along. To the three of them I am deeply indebted. 

Toronto Simant R. Upreti 



Notation
 

Vectors 

We will use lower case bold face letters for vectors. For example, 

⎤⎡ 

y ≡ 

⎢⎢⎢⎢⎢⎢⎣ 

y1 

y2 

. . . 

yn 

⎥⎥⎥⎥⎥⎥⎦ 

is a column vector. It has n components. The transpose of y is 

  
T ≡y y1 y2 . . .  yn

where yT is a row vector. Also, y(t) means that each component of y is time 
dependent. 

Function Vectors 

A function vector is a vector of functions. For example, the n-component 
function vectors f(t) and  g(y,u) are, respectively, 

⎤⎡⎤⎡⎤⎡ ⎢⎢⎢⎢⎢⎢⎣ 

f1(t) 

f2(t) 
. . . 

⎥⎥⎥⎥⎥⎥⎦ 

and 

⎢⎢⎢⎢⎢⎢⎣ 

g1(y,u) 

g2(y,u) 
. . . 

⎥⎥⎥⎥⎥⎥⎦ 

or 

⎢⎢⎢⎢⎢⎢⎣ 

g1(y1, y2, . . . , yn, u1, u2, . . . , um) 

g2(y1, y2, . . . , yn, u1, u2, . . . , um) 
. . . 

⎥⎥⎥⎥⎥⎥⎦ 
fn(t) gn(y,u) gn(y1, y2, . . . , yn, u1, u2, . . . , um) 

where u is an m-component vector. The function arguments can be functions 
themselves, as in g[y(t),u(t)]. 
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Matrices 

We will most often use upper case bold face for matrices, e. g., ⎡ ⎢a11 a12 . . .  a1n 

 

⎤
A ≡ 

⎢⎢⎢a21 a22 . . .  a2n⎢⎢ .  . . ⎣ . . . . . . . .  .  

⎥⎥⎥
 

am1 am2 . . .  amn 

⎥⎥⎥⎦
which is an m × n matrix. The matrix components can be functions. 

Derivatives 

We will use an over dot ˙ to denote the derivative with respect to time t. A  
'prime will denote the derivative with respect to an independent variable 

other than time such as x according to the context. Thus, 

' d2 'dy dy dy y'' ≡ẏ ≡ , y  ' ≡ , and y ≡ 
dt dx dx dx2 

Partial Derivatives 

Often, we will use the subscript notation for partial derivatives. For example, 

∂H  ∂H ∂ ∂H  
Hu ≡ and y

 uy ≡  
H = 

∂u ∂u ∂u

 
∂y

 

Derivatives Involving Vectors 

The derivative of a scalar f with respect to vector y is a vector fy made of 
components that are partial derivatives. Thus, 

�T
∂f ∂f  ∂f  

fy ≡ . . .  
∂y1 ∂y2 ∂yn 



� �
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The derivative of a vector f with respect to a scalar, say, t, is again a vector 
of partial derivatives. For example, 

T 
∂f1 ∂f2 ∂fnft ≡ . . .  
∂t ∂t ∂t 

The derivative of a vector f with respect to another vector u is a Jacobian 
matrix of partial derivatives. Thus, ⎡ 

⎢⎢⎢ ∂f1 ∂f1 ∂f1 
. . .  

∂u1 ∂u2 ∂um

⎤
⎢  ⎢⎢ ∂f2 ∂f⎢ 2 ∂f2 ⎢ . . .  

⎥

⎢∂u1 ∂u  

⎥
f  
u ≡ 2 ∂um

⎥⎥
⎢⎢ . ⎢ . . 

. . .  

⎥
. . . .  .⎢ . 

⎥⎥⎥
⎢⎣ 

⎥
∂f  ∂f  n n ∂f

. . .  n 

⎥⎥
∂u1 ∂u2 ∂um 

⎥⎥⎥⎦

States, Costates, and Controls 

In the optimal control problems, we will most often use 
• y to denote the vector of state variables 
• u to denote the vector of controls 
• λ to denote the vector of costate variables 

The above vectors will depend upon an independent variable, which will usu­
ally be time. 

Miscellaneous Symbols 

A few miscellaneous symbols are as follows. 

H Hamiltonian 
J, L, M augmented functionals 

t time 
tf final time 
σ transformed time in the range 0–1 
τ time period 
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Chapter 1
 

Introduction 

This chapter introduces optimal control with the help of several exam­
ples taken from chemical engineering applications. The examples elucidate 
the use of control functions to achieve what is desired in those applications. 
The mathematical underpinnings illustrate the formulation of optimal control 
problems. The examples help build up the notion of objective functionals to 
be optimized using control functions. 

1.1 Definition 

An optimal controlis a function that optimizes the performance of a system 
changing with time, space, or any other independent variable. That function 
is a relation between a selected system input or property and an independent 
variable. The appellation “control” signifies the use of a function to control 
the state of the system and obtain some desired performance. As a subject, 
optimal control is the embodiment of principles that characterize optimal 
controls, and help determine them in what we call optimal control problems. 

Consider a well-mixed batch reactor, shown in Figure 1.1, with chemical 
species A and B reacting to form a product C. The reactivities are depen­
dent on the reactor temperature, T , which can be changed with time, t. At  

Figure 1.1 A batch reactor operating with 
temperature as a function of time over a 
certain time duration 

T(t) 

cCaA + bB 
x(t) y(t) z(t) 

1 



ሺ ሻ Ta(t) 

Td 

T 

0 t 

final time, tf 

Td(t) = Td 

Tb(t) 

Tc(t) 
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any time, however, the temperature is the same or uniform throughout the 
reactor because of perfect mixing. Such a system is described by the mass 
balances of the involved species or the equations of change. They are differ­
ential equations, which have time as the independent variable in the present 
case. 

An optimal control problem for the batch reactor is to find the temperature 
versus time function, the application of which maximizes the product concen­

ˆtration at the final time tf. That function is the optimal control T (t) among  
all possible control functions, such as those shown in Figure 1.2. 

Figure 1.2 Optimal control T̂ (t) and other possible control functions Ta(t)–Td(t) 

Let us formulate the above problem for the elementary reaction 

aA+ b B −→ cC 

where a, b, and c  are the stoichiometric coefficients of the species A, B, and 
C. Denoting their respective concentrations by x, y, and  z at any time t, the  
batch reaction process may be described by the following equations of change: 

dx 
�

E 
= − k

�
axa

0 exp −  (t)y b(t) (1.1) 
dt � RT 

dy E 
= − k

�
b

0 exp − bxa(t)y (t) (1.2) 
dt � RT 

dz E 
= k0 exp − 

d

�
cxa (t)y b(t) (1.3) 

t RT 
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with the initial conditions 

x(0) = x0, y(0) = y0, and z(0) = 0. 

In the above equations, k0 is the Arrhenius constant, E is the constant acti­
vation energy of the reaction, R is the universal gas constant, and T is the 
absolute temperature dependent on t. The temperature T (t) is a control func­
tion, which is undetermined. It can be suitably changed to affect the product 
concentration z at the final time tf. The objective is to find the optimal 
control function T (t) that maximizes z(tf), i. e., 

z(tf)t ttf 
dz 

I = z(tf) =  dz = dt 
dt 

z(0) 0 ttf 
= ck0 exp − 

E
x a(t)y b(t) dt (1.4) 

RT (t) 
0 

subject to the satisfaction of Equations (1.1) and (1.2) with the specified 
initial concentrations x0 and y0 for A and B, respectively. 

There could be other constraints as well. For example, T (t) should never 
exceed a maximum temperature Tmax, and the concentration of A should 
never fall below a threshold level xmin. In this case, the inequalities 

T (t) ≤ Tmax (1.5) 

x(t) ≥ xmin (1.6) 

also need to be satisfied in the time interval [0, tf]. 

Objective Functional 

Observe that I defined by Equation (1.4) is a function of x, y, and  T , which  
in turn are functions of t. Thus, symbolically, 

I = I[x(t), y(t), T (t)] 

A function such as I depending on one or more functions is known as a 
functional. It will be explained fully in Chapter 2. In the present problem, 
I being the objective to be optimized is an objective functional with the 
function T (t) as the optimization parameter. 

Note that T is an undetermined function of t. The functions x(t) and  
y(t) depend implicitly on T (t) through Equations (1.1) and (1.2) for specified 
constants and initial conditions. The evaluation of I for any particular form 
of T (t) [say  Ta(t) in Figure 1.2] requires all the function [Ta(t)] values over 
the specified time interval [0, tf]. The objective is to find an optimal form of 
T (t) or  T̂ (t), which yields the maximum value of I simultaneously satisfying 
Equations (1.1) and (1.2) and any other constraints such as Equations (1.5) 
and (1.6). 
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1.2 Optimal Control versus Optimization 

It is easy to perceive from the above example that optimal control involves 
optimization of an objective functional subject to the equations of change in a 
system and additional constraints, if any. Because of this fact, optimal control 
is also known as dynamic or trajectory optimization. 

The salient feature of optimal control is that it uses functions as opti­
mization parameters. These functions are called control functions or simply 
controls. The routine, static optimization is a special case of optimal control 
using uniform or single-valued controls such as Td(t) or  Td in Figure 1.2. Had 
we prescribed the invariance of temperature with respect to time in the pre­
vious example, the problem would have been that of the routine optimization 
with the goal to find the optimal time invariant temperature from all pos­
sible choices restricted to be time invariant like Td. Because this restriction 
(or invariance with respect to independent variable) does not exist in optimal 
control, it has a significant advantage over routine optimization. Let us get 
more details. 

Infinite Optimization Parameters 

A control function used in optimal control comprises a number of values, one 
for each value of the independent variable. That number is infinity if at least 
a part of the function is continuous. Thus, in the previous example of the 
batch reactor, the control T (t) is a set of optimization parameters 

T1, T2,  . . . ,  Ti,  . . . ,  Tn 

where 

Ti = T (ti), t1 = 0, ti = (ti−1 +Δti) for  1  < i < n,  tn = tf 

and Δti tends to zero as n tends to infinity. Hence, from the standpoint 
of the routine optimization, optimal control is equivalent to multi-parameter 
optimization. With a significantly greater number of parameters available to 
optimize in general, optimal control unlocks a considerably extensive region 
to search for optimal solutions otherwise unobtainable from the routine opti­
mization. This striking feature, along with remarkable progress in high-speed 
computing, has made optimal control increasingly relevant today to processes 
and products facing tougher market competitions, stricter regulations, and 
thinner profit margins. 
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1.3 Examples of Optimal Control Problems 

To gain further understanding of the applications of optimal control, let us 
study some examples of optimal control problems. In each problem, there is a 
system changing with time or some other independent variable. The system is 
mathematically described or modeled with the help of differential equations. 
At least one such differential equation is needed in order to have an optimal 
control problem. Appearing in the model is a set of undetermined control 
functions, which determines the dependent variables. The set of controls and 
dependent variables in turn determine the objective functional of the optimal 
control problem. 

1.3.1 Batch Distillation 

Figure 1.3 shows a schematic of the batch distillation process for the separation 
of a volatile compound from a binary liquid mixture. It is heated in the bottom 
still to generate vapors, which condense at the top to yield distillate having 
a higher concentration of a the volatile compound. A part of the distillate 
is withdrawn as product while the rest is recycled to the still. An optimal 
control problem is to maximize the production of distillate of a desired purity 
over a fixed time duration by controlling the distillate production rate with 
time (Converse and Gross, 1963). 

Assuming a constant boil-up rate in the still and no liquid hold-up in the 
column, the process can be modeled as 

dm 
= −u(t), m(0) = m0 (1.7) 

dt 
dx u(t) 

= (x − y), x(0) = x0 (1.8) 
dt m 

where m is the mass of mixture in the still, t is time, u is the mass of distillate 
product withdrawn per unit time, and x and y are the mass fractions of the 
volatile compound in the still and distillate, respectively. The initial mass m0 

and the mass fraction x0 in the still are known. The distillate mass fraction 
is at any time is known from a relation specified as 

y = y(m, x) (1.9) 

Thus, u, m, x, and  y are time dependent. The optimal control problem is to 
find the control function u(t) that maximizes the objective functional 

ttf 
I = u(t) dt 

0 
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binary liquid mixture 

condenser 

distillate 

recycle 

overhead vapors 

steam 

u(t) 
product 

y(t) 

m(t), x(t) 

bottom still 

Figure 1.3 Batch distillation process with distillate production rate versus time or 
u(t) as the control function 

subject to Equations (1.7)–(1.9) as well as the purity specification y ∗ for the 
distillate product given by 

tf 

yu(t) dt tf 

0 y ∗  = 

t t
t or u(y − y ∗) dt = 0 (1.10) 
tf 

u(t) dt 0 
0 

over a certain time duration tf. 

1.3.2 Plug Flow Reactor 

Pressure plays an important role in reversible gas phase reactions such as 

k1 
A E GGGGGGGGGGGGC 2B 

k2 

where the number of moles of species changes along a reaction path. In the 
above reaction, while lower pressure favors the forward path, higher pressure 
does the opposite. For that reaction carried out isothermally in a plug flow 
reactor (Figure 1.4), it is desired to obtain maximum product (or equivalently 
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minimum reactant) concentration by controlling pressure along the reactor 
length. 

z = Lz 

y 

y0 

gas with 
y = y0 

product 
gas out 

z = 0 

I = y(L) 

A 2B 

plug flow reactor 

k1 

k2 

Figure 1.4 Gas-phase reaction in a plug flow reactor 

Assuming the ideal gas law to hold, the model for the reactor of uniform 
cross-section is given by 

dy 
�−k1yP (z) 4k2(y 0  y)2P (z)2 

= τS  + 
−

, y(0) = y
 −  −  

�
0 (1.11) 

dz 2y0 y (2y0 y)2

where S is the cross-section area, τ is the residence time of species inside the 
reactor, y is the concentration of the reactant A, z is the independent variable 
denoting the reactor length, P is pressure, and k1 and k2 are the forward and 
backward reaction rate coefficients (van de Vusse and Voetter, 1961). 

The optimal control problem is to find the control function P (z) that min­
imizes y at the reactor end z = L subject to Equation (1.11). The minimum 
y is the objective functional given by 

y(L) L 
dy

I = y(L) =  y(0) + 
t

dz = y0 +

t
dz (1.12) 

dz 
y(0) 0 



 

 

z = L z 

׺ Ł Tw(tf) 

Ts 

T0 

tube wall at Tw(t) 

fluid at T0 fluid out 

z = 0 

heat exchanger 
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1.3.3 Heat Exchanger 

Figure 1.5 shows a single-tube heat exchanger used to heat (or cool) the fluid 
flowing inside the tube by controlling its wall temperature Tw as a function of 
time t (Huang et al., 1969). At any time, Tw is uniform along the z-direction, 
i. e., the length of the heat exchanger. 

Figure 1.5 A single-tube heat exchanger 

Corresponding to a given wall temperature θ, it is desired to attain a steady 
state temperature distribution Ts(z) of the fluid in a specified time interval 
[0, tf]. For the control to be meaningful, tf is less than the time spent by the 
fluid inside the heat exchanger. A simple heat transfer model of the heat 
exchanger is given by 

∂T  dT h 
= −v + [Tw(t)  T ] (1.13) 

∂t dz ρCp 
−

where t and z are the independent variables denoting time and heat exchanger 
length, T and Tw are the temperatures of the fluid and the wall, v is the 
average fluid velocity, h is the wall-to-fluid heat transfer coefficient, and Cp 

is the specific heat capacity of the fluid of density ρ. While T depends on z 
and t, Tw is a function of t only. The initial and boundary conditions are 

T (z, 0) = T (0, t) =  T0 (1.14) 
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where T0 is the fluid temperature at the inlet of the heat exchanger. 
The steady state temperature Ts(z) is the temperature defined by Equa­

tion (1.13) with the time derivative set to zero and Tw(t) replaced with θ. 
Thus, 

dTs h 
= [θ − T ] (1.15) 

dz vρCp 

Subject to the satisfaction of Equations (1.13)–(1.15), the optimal control 
problem is to find the control function Tw(t) that brings  in time  tf, the final 
unsteady state fluid temperature closest to the steady state wall temperature. 
Hence it is desired to minimize the objective functional 

tL 

I = [T (z, tf) − Ts(z)]
2 dz 

0 

where L is the length of the heat exchanger. It may also be required that 
Tw(t) does not exceed some maximum value, i. e., 

Tw(t) ≤ Tmax 

throughout the time interval [0, tf]. 

1.3.4 Gas Diffusion in a Non-Volatile Liquid 

This example shows the application of optimal control to determine a system 
property (diffusivity) as a function of another system property (concentra­
tion). 

Consider the diffusion of a gas into an underlying layer of a non-volatile 
liquid such as heavy oil or polymer (Upreti and Mehrotra, 2000; Tendulkar 
et al., 2009) inside a closed vessel of uniform cross-section area A (Figure 1.6). 
As the gas penetrates the liquid layer, the pressure inside the vessel goes 
down. The system is at constant temperature throughout the duration tf 
this process with negligible change in the thickness L of the polymer layer. 
The mass concentration c of gas in the layer at any time t and depth z is 
given by 

∂c  c ∂2  2
c c dD(c) D(c) ∂c  

= D(c) 1 +  + 1 +  + (1.16) 
∂t 

 
ρ

 
∂z2 

� 
ρ 

 
dc ρ

� 
∂z 

 
where D is the concentration-dependent diffusivity of the gas in the liquid, 
and ρ is its density. Equation (1.16) has the following initial conditions: 

c(0, 0) = csat(t = 0) at the gas–liquid interface (1.17) 

c(z, 0) = 0 for 0 < z  ≤ L (1.18) 

of 



gas 
liquid layer 

P 

csat(t) 

z = 0 

z = L 

diffusion cell 

pressure 
gas mass in 

liquid 

time 
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Figure 1.6 Diffusion of gas into the liquid layer 

and boundary conditions: 

c⏐(0, t) = c sat(t)  for 0 < t ≤  tf (1.19) 

∂c  ⏐⏐⏐ = 0  for 0   t  tf (1.20) 
∂z z=L 

≤ ≤

where csat is the equilibrium saturation concentration of the gas at the inter­
face. 

The objective in this problem is to determine the unknown concentration-
dependent gas diffusivity such that its use in Equations (1.16)–(1.20) yields 
the calculated mass of gas in the layer tL 

mc(t) =  c(z, t)Adz (1.21) 

0 

in agreement with the experimental gas mass me(t). The latter mass is already 
known using system pressure recorded with time and experimental pressure­
volume-temperature data for the gas. Thus, the optimal control problem is 
to find the control function D(c) that minimizes the objective functional ttf 

2I = [mc(t) − me(t)] dt 

0 
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subject to Equations (1.16)–(1.21). 

1.3.5 Periodic Reactor 

This reactor poses a optimal periodic control problem, which involves periodic 
control functions. Their application can result in better performance relative 
to steady state operation and help achieve difficult performance criteria such 
as those involving molecular weight distribution (MWD). 

Figure 1.7 shows one such application to polymerization carried out in a 
constant volume stirred tank reactor or CSTR fed by liquid streams of initiator 
and monomer. The feed streams react to form polymer, which is discharged 
in the output stream. It is desired to find periodic feed flow rates versus 
time that would produce a polymer of specified polydispersity index (PI), a 
measure of polymer MWD. 

A model for the above process is given by 

dx Fxxf (Fx + Fy)x 
= − − kxxy (1.22) 

dt V V 

dy Fyyf (Fx + Fy)y 
= − − kxxy − kpyμ0 (1.23) 

dt V V 

dμ0 (Fx + Fy)μ0 
= kxxy − (1.24) 

dt V 

dμ1 (Fx + Fy)μ1 
= kxxy − + kpyμ0 (1.25) 

dt V 

dμ2 (Fx + Fy)μ2 
= kxxy − + kpy(μ0 + 2μ1) (1.26) 

dt V 

where x and y are the initiator and monomer concentrations in the reactor, 
Fx(t) and  Fy(t) are the undetermined initiator and monomer feed flow rates 
of time period τ , kx and kp are the reaction rate coefficients for initiation and 
polymerization, V is the reactor volume, and μ0, μ1, and  μ2 are the first three 
moments of number distribution of polymer chains (Frontini et al., 1986). The 
subscript f indicates the feed stream property. 

Subject to Equations (1.22)–(1.26), the optimal control problem is to find 
the control functions Fx(t) and  Fy(t) that repeat over a given time period τ 
to produce polymer of a specific PI, i. e., minimize the objective functional ⎡ ⎤2tτ 

1 μ0(t)μ2(t)
I = ⎣ dt − D ∗⎦ 

τ μ2(t)1
0 

where the integrand and D∗ are the instantaneous and specified PIs, respec­
tively. The periodicity conditions 

s(t) =  s(t + τ), s  = {Fx, Fy, x, y, μ0, μ1, μ2} 



 

monomer: 

xf, Fx(t)
 

Fx 

polymer: feed streams 
yf, Fy(t) 

x(t), y(t), V 
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Fy 

t 

output stream with 
polymer product 

12 Optimal Control for Chemical Engineers 

Figure 1.7 A constant volume stirred tank reactor with periodic feed flow rates 
like those on the right 

must be satisfied simultaneously. 

1.3.6 Nuclear Reactor 

Consider nuclear fission in a reactor where neutrons react with large fissile 
nuclei to produce more neutrons and smaller fissile nuclei called precursors. 
The latter subsequently absorb more neutrons to produce “delayed” neutrons. 
The kinetic energy of these products is converted into thermal energy when 
they collide with neighboring atoms. Thus, the power output of the reactor 
depends on the concentration of neutrons available to carry out nuclear fission. 

The power output can be changed according to the demand by inserting (re­
tracting) a neutron-absorbing control rod into (from) the reactor, as shown in 
Figure 1.8. The control rod upon insertion absorbs neutrons, thereby reduc­
ing the heat flux and consequently the power output. The opposite happens 
when the rod is retracted. 

The reaction kinetics is given by 

dx rx 
=

− αx2 − βx 
+ μy, x(0) = x0 (1.27) 

dt τ 

dy βx 
= − μy, y(0) = y0 (1.28) 

dt τ 
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u(t) = 0 u(t) > 0 u(t) < 0 
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Figure 1.8 Control rod positions in a nuclear reactor 

where x and y are the concentrations of neutrons and precursors, t is time, 

r = r[u(t)] (1.29) 

is the degree of change in neutron multiplication as a known function of control 
rod displacement u(t), α is the reactivity coefficient, β is the fraction of delayed 
neutrons, μ is the decay constant for precursors, and τ is the average time 
taken by a neutron to produce a neutron or precursor (Fan, 1966). 

It is desired to change x from x0 to a stable value of xf at time tf with 
minimum displacement of the control rod. Thus, the optimal control problem 
is to find the control function u(t) that minimizes the objective functional 

tf 

I = 
t

u 2(t) dt (1.30) 

0 

with the final conditions 

x(tf) =  xf 

dx 
dt 

⏐
 = 0  
t=tf 

subject to Equations (1.27)–(1.29) as

⏐⏐⏐
 well as the constraint 

|u(t)| ≤ umax 

1.3.7 Vapor Extraction of Heavy Oil 

Vapor extraction or Vapex involves the extraction of heavy oil from a porous 
reservoir (Figure 1.9) using a vaporized solvent close to the dew point. Upon 
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being injected from the top, the solvent drastically reduces the viscosity of oil, 
causing it to drain under gravity and get produced at the bottom. We would 
like to maximize the oil production in Vapex by considering solvent pressure 
versus time as a control function to influence solvent concentration at the top. 

Figure 1.9 Vapor extraction of heavy oil from a reservoir 

Assuming constant temperature and oil density, uniform reservoir porosity 
and permeability, and changes only along the vertical z direction, the solvent 
mass balance is given by 

∂ω  ∂ 
 

�
∂ω  1 ∂ 

= − D(ω) 

�
+ (vω) (1.31) 

∂t ∂z ∂z φ ∂z 

where t is time, ω is the solvent mass fraction in the oil, D is the dispersion 
coefficient of the solvent into the reservoir medium of porosity φ, and v  is the 
downward velocity of the oil. Typically, D is a known function of ω. The  
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initial and boundary conditions are 

ω(z, 0) = 0, 0 ≤ z < L0 (1.32) 

ω[L(t), t] =  ωi[P (t)] (1.33) 

where L is the height of oil in the reservoir with the initial value L0, ωi is 
the solvent mass fraction in the solvent–oil interface at the top, and P is the 
pressure of the solvent. The relationship between ωi and P is known a priori 
from experiments. The change in L due to oil drainage is given by 

dL 
= −v[ω(0, t)], z(0) = L0 (1.34) 

dt 

Finally, assuming that Darcy’s law holds, we have 

KrKρg  
v = (1.35) 

μ(ω) 

where Kr is relative permeability, g is gravity, ρ is the oil density, and μ is oil 
viscosity, which is a known function of ω. 

Given the reservoir of length X and thickness Y , the optimal control prob­
lem is to determine the control function P (t) that maximizes  the mass  m of 
oil produced at the bottom, i. e., the objective functional 

L(tf)t 
m = ρXY dz 

0 

by satisfying Equations (1.31)–(1.35) as well as any other constraint such as 

P ≤ Pmax 

1.3.8 Chemotherapy 

The drug concentration y1 and the number of immune, healthy, and cancer 
cells (y2, y3, and  y4) in an organ at any time t during chemotherapy can be 
expressed as 

dy1 
= u(t) − γ6y1 (1.36) 

dt 
dy2 y2y4   −y1λ2= ẏ2,in + r2 − γ3y2y4 − γ4y2 − α2y2 1 − e (1.37) 
dt β2 + y4 

dy3   −y1λ3= r3y3(1 − β3y3) − γ5y3y4 − α3y3 1 − e (1.38) 
dt 
dy4   −y1λ1= r1y4(1 − β1y4) − γ1y3y4 − γ2y2y4 − α1y4 1 − e (1.39) 
dt 
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where ẏ2,in is the constant rate of immune cells that enter the organ to fight 
cancer cells, and u(t) is the rate of drug injection into the organ (de Pillis and 
Radunskaya, 2003). The ris and  βis are constants in the growth terms, while 
αis and  λis are the constants in the decay terms arising due to the action of 
the drug. The γis are the constants in the remaining decay terms. Note that 
the drug has toxic side effects since it kills the immune and healthy cells as 
well. 

To treat cancer using chemotherapy, an objective could be to minimize the 
number of cancer cells in a specified time tf using minimum drug to reduce its 
toxic effects. The optimal control problem in this case is to find the control 
function u(t) that minimizes the objective functional 

ttf 
I = y4(tf) +  u(t) dt (1.40) 

0 

subject to Equations (1.36)–(1.39), and the initial values of drug concentration 
and cell numbers. It is expected that u(t) is never less than zero. 

Other constraints may be present. For example, the number of healthy cells 
during treatment should not fall below a certain minimum, i. e., 

y3(t) ≥ y3,min 

Also, there could be an upper limit to drug dosage, i. e., 

u(t) ≤ umax 

1.3.9 Medicinal Drug Delivery 

A polymer loaded with medicinal drug provides a means to administer it to 
specific body parts. The initial drug distribution in the polymer matrix could 
be controlled to obtain a desirable pattern of drug release with time (Lu et al., 
1998). 

The one-dimensional release of the drug from the matrix to a tissue in 
contact (Figure 1.10) can be modeled as 

∂c  ∂ ∂c  
= D (1.41) 

∂t ∂x 

 
∂x 

 
where c is the drug concentration, t is the time variable, x is the variable 
along the thickness L of the matrix, and D is drug diffusivity. 

The initial condition is 
c(x, 0) = u(x) (1.42) 

where u(x) is the undetermined drug distribution. The boundary conditions 
for t >  0 are  

∂c  
= 0  and  c(L, t) = 0 (1.43) 

∂x x=0 

⏐⏐⏐⏐ 



 
u 
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Figure 1.10 Drug release from a polymer matrix to a tissue in contact 

At any time, the flux of the drug into the tissue at the point of contact is 
given by 

∂c  
J(t) = − D 

� �
(1.44) 

∂x x=L 

It is desired to match J(t) with a specified drug release versus time relation, 
J∗(t) over a certain time duration tf. 

Hence, the optimal control problem is to find the control function u(x) that  
minimizes the objective functional 

ttf 
I  = [J(t  − J ∗ ) (t)]2 dt 

0 

subject to Equations (1.41)–(1.44). 

1.3.10 Blood Flow and Metabolism 

The peripheral blood flow and metabolism rates versus time in a tissue could 
be non-invasively determined through skin surface temperature, which follows 
the circadian rhythm of sunrise and sunset under resting conditions (Upreti 
and Jeje, 2004). 

Figure 1.11 shows the cross-section of the skin layer around a cylindrical 
limb such as a big toe. 



 

  

� �
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r0 

R 

skin surface at Te(r,t) 

T(r,t) 

skin tissue with blood 
vessels 

ambient at T� 

Figure 1.11 Cross-section of the skin layer surrounding a cylindrical limb 

The heat transfer model for the skin layer is given by 

∂T  k ∂ ∂T  F (t)Cb(Tb − T ) ΔH(t) 
= r + + (1.45) 

∂t rρCp ∂r ∂r Cp ρCp 

where T is temperature, t and r are time and radial variables, k and Cp are 
the thermal conductivity and specific heat capacity of the skin tissue, Cb and 
Tb are the specific heat capacity and temperature of the blood, and F (t) and  
ΔH(t) are the undetermined rates of blood flow and metabolism in the tissue. 
The boundary conditions are given by 

dT −k = h(T − T∞) (1.46) 
dr r=R 

T (r, 0) = T (r, τ), r0 ≤ r ≤ R (1.47) 

where h is the convective heat transfer coefficient, T∞ is the ambient temper­
ature, r0 and R are the inner and outer radii of the skin tissue, and τ is the 
time period of the circadian rhythm. This rhythm enforces Equation (1.47) 
and similar periodicity of F (t) and  ΔH(t), i. e., the equations 

F (0) = F (τ) and  ΔH(0) = ΔH(τ) 

Thus, the optimal control problem is to find the two periodic control func­
tions, F (t) and  ΔH(t), the incorporation of which in Equations (1.45)–(1.47) 
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minimizes the difference between the model-predicted T (R, t) and its experi­
mental counterpart Te(R, t), i. e., the objective functional 

tτ 

=

� 2
T (R, t)

I 1 − 

�
dt 

Te(R, t) 
0 

1.4 Structure of Optimal Control Problems 

The above examples help us identify the structure of optimal control problems. 
As shown in Figure 1.12, an optimal control problem involves one or more 
controls and other inputs to a system under change. The optimal controls 
provide the desired output from the system. 

A set of controls in a system is a combination of 

1.	 system inputs such as temperature versus time relation in a batch reac­
tion, 

2. system properties such as diffusivity versus concentration relation in a 
gas–polymer system, and 

3.	 entities generated in the system, e. g., the rate of heat generation versus 
time relation in a skin tissue. 

Figure 1.12 Structure of optimal control problems 
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Open-Loop Control 

In most optimal control problems, it is not possible to obtain optimal control 
laws, i. e., optimal controls as explicit functions of system state. Note that 
system state is the set of system properties such as temperature, pressure, and 
concentration. They are subject to change with independent variables like 
time and space. In the absence of an optimal control law, the optimal control 
needs to be determined all over again if the initial system state changes. 

The controls that are not given by optimal control laws are often called 
open-loop controls. They simply are functions of independent variables and 
specific to the initial system state. The application of open-loop controls is 
termed open-loop control, which is the subject matter of this book. 

Closed-Loop Control 

Sometimes, it is possible to derive optimal control laws when the underly­
ing mathematical models describing the system are simple enough. In many 
problems though, obtaining optimal control laws mostly requires drastic sim­
plifications of the underlying mathematical models, thereby compromising on 
the accuracy of control. 

Nonetheless, when determined, optimal control laws are easier to implement 
for the control of continuous processes where inputs are susceptible to change 
during long operation periods. Optimal controls are then readily obtained 
from the system state and applied or fed back to the system, as shown in Fig­
ure 1.12. These controls are called feedback controls and the control strategy 
is termed feedback control, which is a type of closed-loop control. 

A different type of closed-loop control is feedforward control, in which  opti­
mal controls are explicitly obtained in advance from the inputs in conjunction 
with the mathematical model of a system. As shown in the above figure, 
feedforward controls are applied to the system without having to wait for the 
system state the inputs and controls would later generate. 
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Exercises 

1.1 Revise the batch distillation problem in Section 1.3.1 (p. 5) in order to 
minimize the mass fraction of the volatile compound in the bottom still in a 
certain time duration tf. 

1.2 Using temperature T (z) as a control function at constant pressure, for­
mulate the problem of the plug flow reactor in Section 1.3.2 (p. 6) to maximize 
the concentration of the intermediate product B in the following sequence of 
elementary first order reactions 

k1(T ) k2(T ) 
A GGGGGGGGGA B GGGGGGGGGA C 

where k1 and k2 are the reaction rate coefficients dependent on the tempera­
ture T . 

1.3 Modify the objective functional of the nuclear reactor example in Sec­
tion 1.3.6 (p. 12) to additionally enable the minimization of oscillations in the 
neutron concentration. 
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1.4 Revise the drug delivery example in Section 1.3.9 (p. 16) to minimize the 
consumption of drug, simultaneously ensuring that its flux does not fall below 
a threshold value over a certain time duration tf. 

1.5 What new conditions would be required if the optimal periodic control 
problem of Section 1.3.5 (p. 11) is changed to a non-periodic one? 

1.6 Compare the use of u(t) in the objective functionals of Equations (1.30) 
and (1.40). 



Chapter 2
 

Fundamental Concepts 

This chapter introduces the fundamental concepts of optimal control. Be­
ginning with a functional and its domain of associated functions, we learn 
about the need for them to be in linear or vector spaces and be quantified 
based on size measures or norms. With this background, we establish the dif­
ferential of a functional and relax its definition to variation in order to include 
a broad spectrum of functionals. A number of examples are presented to il­
lustrate how to obtain the variation of an objective functional in an optimal 
control problem. 

2.1 From Function to Functional 

Let us understand the concept of a functional in the light of what we already 
know about a function. A function associates a function value with a set of 
variables, each of which assumes a single value for function evaluation. For 
example, in the equation 

f = x 2 , a  ≤ x ≤ b 

f is a function associating a function value f (x) with the variable x in its 
domain [a, b]. Thus, f (x) is equal to the square of x. This variable assumes a 
single value each time f (x) is evaluated, as shown in Figure 2.1. 

A functional, on the other hand, associates a functional value with a set 
of functions, each of which assumes in its respective domain a set of values 
for functional evaluation. For example, in the equation 

tb 

I = f (x) dx (2.1) 

a 

where f (x) is a continuous function. I is a functional, which associates a 
functional value I(f ) with the function f in its domain [a, b]. We know that 
value to be the area between the x-axis from a to b and the curve f . Note  that  
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Figure 2.1 Evaluation of 
a function f for x = a and 
x = b 

x = b 

x = a f(a) 

f(b) 

for the evaluation of I(f), the function f assumes not a single value but the 
set of all values from f(a) to f (b). This fact becomes explicit in the discrete 
equivalent of Equation (2.1), i. e., 

n�→∞ 
I = fi ·Δxi (2.2) 

lim Δxi→0
i=1 

where 

fi = f(xi); x1 = a; xi = xi 1 +Δxi, i = 2, 3, . . . , (n− 1); and xn = b. −

Note that as the Δxi values tend to zero, n tends to infinity. Not a single 
function value but a set  of  all function values 

{f1, f2,  . . . ,  fn| n → ∞}  

is needed to evaluate the functional value I(f). Figure 2.2 shows the eval­
uation of I for the functions g and h, which are two different forms of the 
function f . 

To sum up, a function depends on a set of variables, each of which assumes a 
single value for function evaluation. On the other hand, a functional depends 
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on a set of functions, each of which assumes a set of values for functional 
evaluation. 

2.1.1 Functional as a Multivariable Function 

A functional dependent on a function is analogous to a multivariable function 
dependent on a vector of variables. For example, consider the functional 

f1
2f2

K(f) =  
f3

2 

dependent on a function f comprising three components f1, f2, and  f3. For  
an evaluation of K(f), f assumes a set of values, i. e., a value for each of its 
components. We can say that the components behave as variables. From this 
viewpoint, the functional is equivalent to a multivariable function dependent 
on the variable vector T 

f = f1 f2 f3 

To extend the analogy further, consider a functional dependent on an integral 
of a continuous function. The latter has an infinite number of components 
over a non-zero range of integration. Thus, the functional is equivalent to 
a multivariable function dependent on the variable vector comprising those 
components. For example, the functional I in Equation (2.1) is equivalent to 
a multivariable function dependent on a vector of infinite components of f . 

An interesting upshot of the above analogy is that a continuous function is 
equivalent to a vector of infinite components. Thus, f(x) in Equation (2.1) is 
equivalent to the vector 

T 
f = f1 f2 . . .  f , lim n → ∞n 

whose infinitely many components are shown in Equation (2.2). 

2.2 Domain of a Functional 

The domain of a functional is a space that holds all possible forms of the 
associated functions or vectors with some common specification. For example, 
the domain of the functional I in Equation (2.1) is the space holding all 
forms of f(x) with the common specification that each form be continuous for 
a ≤ x ≤ b. 

We require domains that are linear or vector spaces. Such a space con­
tains all linear combinations of its elements. The details and the rationale of 
linear spaces are as follows. 
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2.2.1 Linear or Vector Spaces 

In optimal control, we desire to find the minimum or maximum value of a 
functional defined over a specified domain. The analytical procedure is to 
continuously change the associated function from some reference form and 
examine the corresponding change in the functional. The new form of the 
function is, in fact, the result of a linear combination of the reference form 
and some other form of the function in the same domain. This examination 
can continue only if the new form of the function lies within the specified 
domain each time the function is changed. Otherwise, the corresponding 
new functional may not exist or be valid. The validity of the functional is 
ensured by  having  the  specified domain be a  linear or vector space. This  
space holds within itself all linear combinations of its elements (functions), 
which are called vectors. A precise definition of linear space is provided in 
Section 9.19 (p. 278). 

In this book, we will deal with functions or vectors that belong to linear or 
vector spaces. Examples of these spaces include a space of vectors of specified 
n components, a space of continuous functions dependent on an independent 
variable varying in a specified interval, etc. 

2.2.2 Norm of a Function 

The aforementioned analytical procedure furthermore requires a single-valued 
measure for the size of the function or vector in the specified domain of a 
functional. That measure is termed the norm. We use it to quantify the 
difference between two functions, or equivalently, the change in the function 
from some reference form. 

The norm of a vector or function y is denoted by lyl. A norm has the 
following properties: 

1. It is zero for a zero vector or function∗ and non-zero otherwise. 
2. For any real number α,
 

lαyl = |α|lyl.
 
3. The norm obeys the triangle inequality, i. e .,  

ly + zl ≤ lyl+ lzl
 

where z is another vector or function.
 

Examples 

In the two-dimensional Cartesian coordinate system, the length of a vector   T 
y = y1 y2 is the norm given by  

lyl = y21 + y22 (2.3) 

∗ It has all components zero or is zero throughout. 
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For a continuous function f (x) in the  x-interval [a, b], a definition of the norm 
could be tb 

lf l =

     [f (x)]2dx (2.4) 

a 

We can easily verify that Equations (2.3) and (2.4) satisfy the properties of a 
norm. 

Thus, given a norm, we can compare the sizes of any two vectors. Con­
sidering a change in a vector or a function, which is reflected in its norm, 
we can study the optimality of the dependent functional by examining how 
it changes. The approach is similar to that in routine optimization where we 
consider a change in a variable and examine the corresponding change in the 
dependent function. 

2.3 Properties of Functionals 

We need three important properties for functionals — continuity, linearity, 
and homogeneity. These properties are required to develop the concept of the 
differential of a functional. 

A functional I is continuous in its domain at a particular function z if for 
every other function y in the neighborhood 

I(y) = I(z) 
lim y→z 

A linear functional I over a specified domain satisfies the relation 

I(αy + βz) =  αI(y) +  βI(z) (2.5) 

where y and z are any two functions in the domain, and α and β are any two 
real numbers. A homogeneous functional I of the first degree, on the other 
hand, satisfies the relation 

I(αy) =  αI(y) 

Note that a linear functional is inherently homogeneous but a homogeneous 
functional is not necessarily linear. The following example illustrates this 
important point. 

Example 2.1 
Consider the following two functionals: tb b 

y2 

J = y dx and K = 
t

dx 
y − y ' 

a a 
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where y ' denotes the derivative dy/dx. The functional J is linear and therefore 
homogeneous. However, the functional K is homogeneous but not linear. If 

' z = αy, then z  = αy ' and 

b  b 
α2 2  

y y2
K(αy) = K (z) =

t
 dx = α 

t
dx = αK(y)

αy − αy ' y  y ' 
a a 

−

showing that K is a homogeneous functional. But K does not satisfy the 
linearity relation, i. e., Equation (2.5), since tb  b  b  

(αy + βz)2 y2 z2
dx = α dx + β dx

(αy + βz) − (αy ' + βz ' ) 

t
y − y'

t
z − z ' 'a   ' a a

βz

  ' '   ' 
K(αy+ )

'
αK(y) βK(z) 

 

2.4 Differential of a Functional 

The concept of a differential enables the study of the change in a functional 
by rendering it linear and continuous over a sufficiently small change in the 
associated function. The notion follows the definition of the differential of a 
function explained in Section 9.8 (p. 271). 

Consider a change in a functional due to a change in the associated function. 
The differential of the functional is defined as the functional change that is 
a linear and continuous functional depending on the function change that is 
sufficiently small. Thus, given a function change h of size greater than zero but 
less than some positive real number δ, the differential dI(y0; h) of a functional 
I(y) at y  = y0 is defined by 

I(y0 + h) − I(y0) = dI(y0; h) +  E(h) (2.6) 

where the error E(h) vanishes faster than the size of h. In other words, the 
ratio of E(h) to some size measure of h vanishes with the measure. When that 
happens, the error is bound to become zero at some non-zero size of h. Then  
for h of that size or smaller, the change in functional can be conveniently 
represented by the simple functional dI(y0; h) called the differential, which is 
a linear and continuous functional of the function h. 

2.4.1 Fréchet Differential 

The Fréchet differential is defined by Equation (2.6) when the norm of h is 
used for its size. In this case, therefore, the ratio E(h)/lhl is required to 
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vanish with lhl. 
Dividing both sides of Equation (2.6) by lhl and taking its limit to zero, 

we get the following equivalent definition for the Fréchet differential: 

I(y0 + h) − I(y0) − dI(y0; h) E(h)
lim = lim = 0 (2.7) 

�h�→0 lhl �h�→0 lhl 

Placing no restriction on the form of h, i. e., the shape of the curve h(x), 
this requirement implies that the error should decrease uniformly with h, as  
explained below. 

Let I be a functional of a function y having only two components. Figure 2.3 
graphs the following changes in y from a reference form y0: 

hk,1, hk,2, hl,1, hl,2, hm,1, and hm,2 

These changes are different forms of h and are shown as arrow vectors. Thus, 
hk,1 is the first change having the norm (or radius) k with a component 
along each of the two mutually perpendicular axes. The norm is given by 

Figure 2.3 Changes in a two-
component function for a Fréchet 
differential 

hk,2 

hk,1 

hl,1 

hm,1 

hm,2 

hl,2 

Equation (2.3). Having the same norm k, hk,2 is the second change in a 
different direction. The existence of the Fréchet differential at y0 requires 
that the ratio E(h)/lhl should decrease as any h having some norm k or less 
is downsized to any h having a smaller norm. 

For simplicity, let us adhere to two arbitrary directions of h for the same 
norm (i. e., radius), as shown in the figure. Thus, for dI(y0; h) to  exist, the  
ratio E(h)/lhl should decrease as an h having the norm k is downsized in all 
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possible ways — from (i) hk,1 to hl,1, (ii) hk,1 to hl,2, (iii) hk,2 to hl,1, and  
(iv) hk,2 to hl,1. 

Figure 2.4 illustrates an analogous example with y as a continuous function 
and the norm defined by Equation (2.4). In this case, hk,1(x) and  hk,2(x) are  
two different forms of h(x) of  norm  k with different directions (Section 9.20, 
p. 279), which are characterized by different shapes of the plotted curves. 

In general, we have the following condition for a Fréchet differential to 
exist. As long as lhl decreases, the ratio E(h)/lhl, and consequently the 
error E(h), should decrease uniformly with h, i. e., regardless of its direction. 
If this condition is satisfied, then at some sufficiently small and non-zero norm 
m of h, the error itself would become zero. Then for any h having the norm 
m or less, the functional change is representable by the Fréchet differential, 
which is a linear and continuous functional of h. 

h > 0 

x = b 

hk,2 

hk,1 

hl,1 

hm,1 

hm,2 

hl,2 

h = 0 

x = a 

h < 0 

Figure 2.4 Changes in a continuous function for the Fréchet differential 

2.4.2 Gâteaux Differential 

The Fréchet differential is based on the aforementioned condition of uniform 
error disappearance. This condition is too stringent to be satisfied by a large 
class of functionals. If we loosen that condition by preserving the direction 
of h during its downsizing, the resulting differential is known as the Gâteaux 
differential. Denoted by dI(y0; h), it is a linear and continuous functional of 
h defined by 

I(y0 + αh) − I(y0) = dI(y0; αh) +  E1(αh) (2.8) 
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where the ratio of E1(αh) to a scalar multiplier α vanishes with α itself for 
all h in the domain of I with 0 < lαhl < δ. Note  that  E1(αh)/α is the ratio 
E(αh)/lαhl with the introduction of E1(αh) ≡ E(αh)/lhl. 

Similar to Equation (2.7), the equivalent definition of the Gâteaux differ­
ential is 

I(y0 + h) − I(y0) − dI(y0; h)
lim = 0  
α→0 α 

which is obtained by dividing Equation (2.8) by α, taking its limit to zero, 
and replacing αh by h in the end. 

Figures 2.5 and 2.6 show the downsizing of h when it is, respectively, a 
two-component vector and a continuous function. Observe the preservation 
of the direction of a vector or the shape of a function during the downsizing 
process. 

Figure 2.5 Changes in a 
two-component function for 
the Gâteaux differential 

hk,2 

hk,1 

hl,1 

hm,1 

hm,2 

hl,2 

hk,3 

hl,3 

hm,3 

When E1(αh) becomes zero for a sufficiently small α, then  from  Equa­
tion (2.8) 

I(y0 + αh) − I(y0) = dI(y0; αh) =  αdI(y0; h) 

since dI(y0; αh) is linear. The above equation can be written in terms of a 
scalar variable β as 

{I[y0 + (α + β)h] − I(y0 + βh)}β=0
dI(y0; h) = lim 

α→0 α 

Introducing γ ≡ β as the reference value undergoing the change (Δγ ≡ α) 
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h > 0 

x = bhk,2 

hk,1 

hm,2 

hm,1 

h = 0 

x = a 

hl,1 

hl,2 

h < 0 

Figure 2.6 Changes in a continuous function for the Gâteaux differential 

from β to (β + α), we get 

{I[y0 + (γ +Δγ)h] − I(y0 + γh)
dI(y0; h) = lim 

}γ=0

Δγ→0 Δγ 
d 

= I(y
 0 + γh)γ=0

dγ

Replacing γ by α, the  Gâteaux differential can be written as 

d 
dI(y0; h) =  I(y0 + αh)α=0 (2.9) 

dα 

Equation (2.9) delivers a very important result. It shows that the Gâteaux 
differential of a functional is equal to its directional derivative (Section 9.9.1, 
p. 272) along h, i. e., the change in the associated function y at y0. Thus, t he  
value of the differential is the derivative of the functional with respect to the 
scalar multiplier to the function change, when evaluated at the zero value of 
the multiplier. 

Example 2.2 
Find the Gâteaux differential of the functional t1 

I(y) =  (y 2 − 2y + 1) dx 

0 

corresponding to the reference y-function y0, and the variation h given, re­
spectively, by 

y0 = 2x and h = x + 1  
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Let y ≡ (y0 + αh) be a function in the vicinity of y0. Then Equation (2.9), 
along with the above definition of y and specifications of y0 and h, provides  

1
 
d d 

dI(y0; h) =  I '   ( y0 +  αh ) 2
α=0 = y − 2y + 1  dx
 

dα  dα α=0 

y 

t  
d 

'
0 

1 

 
1 

 d  dy 
= 
t

y 2 − 2y + 1  dx = (y 2 − 2y + 1)  dx 
dα α=0 dy dα α=0 

0

 

 �
1

 t
0 

�
t 1 

= 2 (y0 + αh) − 2 h dx = 2  (y0 − 1)h dx
 α=0
 

0 

  t
'   

y 
'

0
 

= 2

t1
 
1 

 ( 2x  − 1) (x + 1) dx =  3 
0 y0 h 

Observe that the Gˆ

' 
atea

'
ux differ

'   
en

'
tial of I is the functional 

t1
 

dI(y0; h) = 2  (y0 − 1)h dx
 

0
 

depending on y0(x) and h (x). As we show below, dI(y0; h) is linear and 
continuous with respect to h, as required by the definition. 

Linearity of the Gâteaux Differential 

The linearity can be easily verified through 

dI(y0; αh + βk) =  αdI(y0; h) +  βdI(y0; k) 

Continuity of the Gâteaux Differential 

To establish the continuity, we need to show that 

lim dI(y0; k) = dI(y0; h) 
k→h 

Equivalently, for any function h and a real number E >  0 there exists another 
real number δ > 0  such that ⏐⏐  ⏐  

dI(y0; k) − dI(y0; h)
⏐

 < E  

for any function k satisfying 

⏐⏐

lh − kl < δ  
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Let γ be the maximum absolute value of (h − k) in the  x-interval [0, 1]. 
Then 

⏐⏐⏐dI(y0; h) − dI(y0; k)
⏐⏐⏐ 1

 
t1 

= 

⏐⏐⏐⏐2 (y0 − 1)(h − k) dx 

⏐⏐
 

⏐⏐ ⏐⏐ ≤ ⏐⏐2 (y0 − 1)γ dx 

0

t
0 

⏐⏐⏐
With γ related to  

⏐
lh − kl as

γ = κlh − kl 

where κ is some positive real number, we have 

⏐ 1 ⏐⏐dI(y0; k) − dI(y0; h)
⏐⏐⏐ ≤ 2κlh − kl

⏐⏐
  

t⏐ (y0 − 1) dx 

0 

⏐⏐⏐⏐ ⏐ 

We can always find a positive real number E greater

'
 than

  
I0 

 the righ

'
t-hand side 

of the above inequality, i. e., 

2κlh − klI0 < E  

Thus, we can write

for which the second-last

⏐⏐⏐dI(y0; h) − dI(y0; k) < E  

 inequality provides 

⏐⏐⏐
lh − kl < E/(2κI0) 

δ 

with the right-hand side standing for a p

'
ositiv

  
e 

'
real number δ. 

The above example introduces an important result. The Gâteaux differen­
tial of the functional 

I

tb 

 = F (y) dx 

a 

is given by 

d 
dI(y0; h) =  

dα 

�tb tb 

 

�
dF 

F dx

�
 = 

�
h dx (2.10) 

α=0 dy α=0 
a a 

provided that dF/dy exists and is continuous with respect to y, which i s  
defined as y ≡ y0 + αh. 
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Example 2.3 
Find the Gâteaux differential of the functional t1 

I(y) =  |y| dx 

0 

corresponding to the reference y-function y0 and the variation h given by 
y0 = 0  and  h = 2x, respectively. 

Let y ≡ (y0 + αh) be a function in the vicinity of y0. Applying Equa­
tion (2.10), 

1 1 
d d 

dI(y0; h) =  
t �

|y  
dy

|
�

h dx = 2  
α=0 

t �
dy

|y| 
 

�
xdx 

α=0 
0 0

Now at α = 0,  we  have y = y0 = 0, for which the derivative d|y|/dy is not 
defined. The reason is that the right and left-hand derivatives corresponding, 
respectively, to the change in y (i. e., Δy) greater and less than zero are not 
equal as follows: �

d 
�

y y|y|  0 +Δy
 0

= lim 
| | − | |

dy Δy 0 
α=0 →

�
Δy

�
y0=0 

 
|Δy| 1 if  Δy > 0  

= lim =
Δy→0 Δy 

 
−1 if  Δy < 0  

As a consequence, the Gâteaux differential of I does not exist or is not defined 
at y0 = 0.  

Example 2.4 
In the previous example, if we specify the reference function as 

y0 = x+ 1  

then y0 > 0 in the range of the integration. For this specification, both the 
right and left-hand derivatives of |y| with respect to y have Δy > 0 as Δ y 
tends to zero. Hence �

d |y
d

| 
�

= 1  
y α=0 

and t1 �
d 

dI(y0; h) = 2  
dy

|y|
�
 xdx = 1  
α=0 

0 

In fact, the Gâteaux differential of I in Example 2.3 is (i) 1 if y0 > 0, and 
(ii) −1 if  y0 < 0 in the range of the integration. 
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2.4.3 Variation 

To deal with an even wider class of functionals, the concept of the Gatˆ eaux 
differential is further relaxed to the Gâteaux variation, or simply the variation. 
Similar to the Gâteaux differential, the variation δI(y0; h) of a functional I 
is 

1. defined by 
I(y0 + αh) − I(y0) =  δI(y0; αh) + E 1(αh) (2.11) 

where E1(αh) becomes zero for a sufficiently small α; and  

2. is equal to the directional derivative along h, i. e .,  

d 
δI(y0; h) =  I(y0 + αh)α=0 (2.12) 

dα 

However, δI(y0; h) does not have to be linear and continuous with respect to 
h as opposed to the Gâteaux differential. 

2.4.3.1 Homogeneity of Variation 

Note that δI(y0; h) is inherently a homogeneous functional of degree one. It 
means that 

δI(y0; βh) = βδ I(y0; h) 

for any real number β. Recall from Example 2.1 (p. 27) that a homogeneous 
functional is not necessarily linear. The homogeneity of the variation arises 
from Equation (2.9) as follows. Let γ ≡ αβ. Then, from Equation (2.12), 

d d 
δI(y0; βh) =  I[y0 + α(βh)]α=0 = I(y0 + γh)α=0

dα dα 
dγ d 

= I(y0 + γh)γ=0 = βδI(y0; h)
dα dγ 

Example 2.5 
Find the variation of I(y) in Example 2.2 (p. 32). 

Similar to the Gâteaux differential, the variation is equal to the directional 
derivative 

d 
I(y0 + αh)α=0

dα 

Thus, δI(y0; h) is t he  same a s t he dI(y0; h) in Example 2.2 and is given by 

t1 
1 

δI(y0; h) = 2  (y0 − 1)h dx = 
3 

0 
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The above variation is of course homogeneous with respect to h since 

1 1 

δI(y0; αh) = 2

t
 (y0 − 1)αh dx = 2α 

t
(y0 − 1)h dx = αδI(y0; h) 

0 0 

Generalization to Several Functions 

For a functional dependent on a vector y of several functions in general, the 
above definitions for differentials apply with the vectors y0 and h replacing 
y0 and h, respectively. For example, the general form of Equation (2.12) is 

d 
δI(y0; h) =  I(y0 + αh)α=0 (2.13) 

dα 

Example 2.6 
Find the variation of the functional 

 
T 

I(

t1
y) =  (y21 − 2y22 + 1) dx, y = 

 
y1(x) y2(x) 

0 

 
corresponding to the reference y-function y0, and the variation h given, re­
spectively, by ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡  

y0,1 2x h + 1
and 

1 x 
 

y0,2 3x

⎤
 

 =   =
h2 x 

Let y +

⎣ ⎦
 

⎣
≡ (y0  αh) be a functio

⎦
n vector

⎣
 in 

⎦
the v

⎣
icinity

⎦
 of y0. Then E qua­

tion (2.13), along with the above definition of y and specifications of y0 and 
h, provides  

1 
d d 

δI(y ; 2
0  h) =  I( y 2

0 +   αh )
 ' ' α=0 = y   2y  + 1  dx 

dα dα 

t
1

 

 − 2

 

 
α=0 

y 0 

1 1 
d dy dy

= 
t

2 2 y x =
dα 1 − 2y2 + 1  d

α=0

0

t
0 

�
1 2

2y1 − 4y2 

�
dx

dα dα α=0 t1 

  

= 
 
2 (y'0,1   + αh'1) h   4 (y  + αh ) h  dx 

 
1 − 0,2 2

 
2

 
α=0

0 y1 y2 

2 
= 2

t1 

  

'   '
(y0,1h1 − 2y0,2h2) dx = − 

3 
0 
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It can be easily verified that the above variation is homogeneous, i. e., 

δI(y0; αh) = αδ I(y0; h) 

2.4.4 Summary of Differentials 

In summary, we have three types of differentials of a functional: 

1. Fréchet differential, 

2. Gâteaux differential, and 

3. Gâteaux variation, or simply variation 

in the order of decreasing strictness for their existence. The Fréchet differential 
requires the error to decrease with function change regardless of its direction 
(or shape). On the other hand, the Gâteaux differential as well as the variation 
require the error to decrease with function change along its direction for all 
possible changes. While both Fréchet and Gâteaux differentials should be 
linear and continuous with respect to a change in function, a variation does 
not need to be so. It is inherently homogeneous with respect to the function 
change. 

In other words, functionals are more likely to have variations than differ­
entials. Thus, most of the time, we will use the variation of functionals in 
optimal control analysis. Fréchet and Gâteaux differentials will be invoked 
only when their typical properties are needed. 

2.4.5 Relations between Differentials 

The Fréchet differential of a functional is also the Gâteaux differential. In 
turn, the Gâteaux differential of a functional is also the variation. Thus, for a 
functional, the existence of the Fréchet differential implies the existence of the 
Gâteaux differential. In turn, the existence of the Gâteaux differential implies 
the existence of the variation. However, there is no guarantee that the reverse 
relations hold. For example, a functional may have the variation but not the 
Gâteaux differential. Using conditional statements, these relations are 

The following two examples illustrate these relations. 
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Example 2.7 
Consider the functional 

 y1y 2 
if y = 0  

y + yI(y) =
⎨⎧
 1 2 

 
0 if y = 0   

where the function (or equivalen

⎩
tly the vector) y has two real components, y1 

and y2. Find the variation of I at y0 = 0, i. e., for y0,1 = 0  and  y0,2 = 0.  
In the vicinity of y0, we h ave  ⎡

 0

y2 

⎤ ⎡
α

0

⎤ 
y1  

=  + 
 

⎡
h

⎤ ⎡ ⎤ ⎣ ⎦ ⎣ ⎦ ⎣h1 αh
 ⎦ 1

= 

y

⎣
αh

⎦

corresponding to whic

'   
h

'
 

'  ' 2 
 '   

h 
' '   2 ' 

y0 αh 

αh1h 2
I(y0 + h) =  I(y) =  

h1 + h2 

From Equation (2.12), the variation of I is given by 

d h
0; 

1h2
δI(y h) =  I(y0 + h)α=0 = 

dα h1 + h2 

which fulfills the requirement of being first-degree homogeneous, i. e., 

δI(y0; γh) =  γδI(h) 

where γ is any real number. This result can be easily verified by replacing h 
by γh in the expression for δI(y0; h). 

Example 2.8 
In the previous example, does the Gâteaux differential of I exist at y0 = 0?  

The Gâteaux differential of I does not exist at y0 = 0  since  

d h1h2
J(h) ≡ I(y)α=0 = 

dα h1 + h2 

is not linear with respect to h. Observe t hat  

J(h) + J (k) = J(h + k) 

wher
  T  

e k = k1 k2 is some vector different from h = 
 
h1 h2 

 T
. 
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2.5 Variation of an Integral Objective Functional 

Let us derive the variation of the integral objective functional tb 

I(y) =  F (y, y ' ) dx 

a 

' where y and y (or dy/dx) are functions of the independent variable x. The  
variation has to be obtained in the neighborhood of a reference function y0(x) 

' having its derivative y0(x) with respect to x. If the change from y0(x) to  y(x) 
is αh(x), then 

y(x) =  y0(x) +  αh(x) (2.14) 
' y ' (x) =  y0(x) +  αh ' (x) (2.15) 

From Equation (2.12), the variation of I is given by   t b 

δI(y0; h) =  
d 

I(y0 + αh)α=0 =
d 

F (y0 + αh, y 0 
' + αh ' ) dx

dα dα a 
α=0  t b 

=
d 

F (y0 + αh, y 0 
' + αh ' ) dx

dαa 
α=0 

Using Equations (2.14) and (2.15) in the above equation,    t b 
 t b ' d ∂F  dy ∂F  dy

δI(y0; h) = F (y, y ' ) dx = + dx
dα ∂y dα ∂y ' dαa a

α=0 α=0  t b 

= [Fy (y, y ' )h + Fy/ (y, y ' )h ' ] dx
a 

α=0 

where Fy and Fy/ are partial derivatives of the integrand F with respect 
' to y and y ' , respectively. Expanding y and y in the above equation using 

Equations (2.14) and (2.15), and substituting α = 0,  we  get  

tb 

' ' δI(y0; h) =  [Fy (y0, y0)h + Fy/ (y0, y0)h ' ] dx 

a 

It is convenient to express the above variation simply as tb 

δI = [Fy (y, y ' )δy + Fy/ (y, y ' )δy ' ] dx (2.16) 

a 

where it is understood that 
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• y is the reference function y0(x), and y ' is the corresponding derivative 
function y' 0(x); and 

• δy and δy are the functions h h  (x) and  '(x), respectively. 

In the above equation, the coefficient of δy (i. e., Fy ) is called the vari­
ational derivative of the functional I with respect to y. Similarly, Fy/ is 
called the variational derivative of I with respect to y ' . If F  = F (y ' ), then 
obviously tb 

δI = Fy (y)δy dx (2.17) 

a 

Example 2.9 
Find the variation of the functional t1 

I = [y 3(x) − y '2(x)] dx 

0 

at y = x3 − 1 for  δy = −x. 
Using Equation (2.16), the variation of I is given by 

1 

δI  = 
t
[3y 2δy − 2y 'δy ' ] dx 

0 

When y = x3 − 1, y ' = 3x2 so that 

t1 

δI =   [3(x3 − 1)2δy − 6x2 δy '] dx 

0 

Upon substituting δy = x and the corresponding δy ' = −1 in t he a bove  
equation and integrating, we obtain 

13 
δI = 1  

40 

2.5.1 Equivalence to Other Differentials 

Consider the integral functional 

I

tb 

 = F (y) dx (2.18) 

a 
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where y is a function of x. If dF/dy exists and is continuous with respect to 
x, then the variation of I is also the Fréchet differential as well as the Gatˆ eaux 
differential. 

2.5.1.1 Equivalence to the Fréchet Differential 

The Fréchet differential dI(y; h) is defined by 

I(y + h) − I(y) − dI(y; h)
lim = 0 (2.7) 
h→0 lhl 

The above expression is equivalent to the following statement: 
Given an E >  0 there is a δ > 0  such that for lhl < δ, ⏐

I(y + h) − I(y) dI(y; h
 

− ) 
lhl 

⏐
< E  

If the variation δI(y; h

⏐⏐⏐
) is  equivalent to  the  Fréchet

⏐⏐
 differential, then the above 

statement must hold for the variation δI(y; h) subs

⏐
tituted for dI(y; h). 

Let us define 
p ≡ 

Then we need to show that

⏐⏐⏐I(y + h) − I(y) − δI(y; h) 

 p < E

⏐
lhl. 

⏐
From the definition of I in Equation (2.18) and Equ

⏐
ation (2.17), we have 

b 

p = 

⏐⏐⏐t  
F (y + h) − F (y) − Fy (y)h(x)

  
a 

 
dx

⏐⏐⏐
 

Applying the Mean V

⏐⏐⏐
alue Theorem for derivatives (Section

⏐⏐⏐
 9.14.1, p. 276) at 

any x in [a, b], we obtain 

F (y + h) − F (y) dF 
= 

⏐
 = Fy (ȳ) 

h dy ȳ

for some ȳ in the interval [y h, y + h]. Substituting

⏐⏐⏐
−  this result in the expres­

sion for p, 
b 

p = 

⏐⏐t  ⏐⏐⏐ Fy (ȳ, x) − Fy (y, x) 
 

 
h(x) dx

⏐⏐⏐
 

 
a 

The function Fy (y), be

⏐
ing a continuous function of y 

⏐⏐
and x in the closed 

interval [a, b], is uniformly continuous therein. Thus, 

⏐
for an E1 > 0 there  

exists a δ > 0  such that for lȳ − yl < δ, 

|Fy (ȳ, x) − Fy (y, x)| < E1 

n t ms ¯Now i er of 
⏐⏐h⏐⏐, the maximum absolute value of h in the interval [a, b], 

we obviously have 
| ⏐⏐ ¯h(x)| ≤ h

⏐⏐ ≡ βlhl
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¯where 
⏐⏐h⏐⏐ is defined in terms of a positive real number β and the norm lhl. 

Multiplying the last two inequalities and integrating with respect to x over 
the interval [a, b], we get 

tb⏐⏐⏐Fy 

 
(ȳ, x) − Fy (y, x)

 
 h(x)⏐⏐⏐ dx < β' (b − a)E

a � 

where we introduce E ≡ β(b − a)E1. From the triangle inequa

  '1 lhl 
 

lity for integrals 
(Section 9.22, p. 280), 

⏐⏐ tb b⏐⏐ [Fy (ȳ, x) − Fy (y, x)]h(x) dx 

⏐⏐
  ≤
t ⏐

[Fy (ȳ, x) − Fy (y, x)]h(x) 
⏐
dx

' a    a

p 

⏐⏐ ⏐⏐ ⏐⏐

The last two inequalities yield 

'

p = 

⏐⏐
 

tb 

[Fy (ȳ, x) − Fy (y, x)]h(x) dx 

a 

⏐⏐

whic

⏐⏐ < Elhl

h was to be proved. 

⏐⏐

2.5.1.2 Equivalence to the Gâteaux Differential 

To show this equivalence, we first show that the Fréchet differential of a func­
tional is also its Gâteaux differential. 

The Fréchet differential, dI(y0; h), is defined by Equation (2.6) if the ratio 
E(h)/lhl tends to zero with lhl. Let h  ≡ αk where α is a real number and k 
is a function. Then the definition can be written as 

E(αk)
I(y0 + αk) − I(y0) = dI(y0; αk) + E (αk), lim = 0  

�αk�→0 lαkl 

Since limlαkl → 0 is equivalent to lim α → 0 for  a given k , we o btain  

E1(αk)
I(y0 + αk) − I(y0) = dI(y0; αk) + E (αk), lim = 0  

α→0 α 

which is the definition of the Gâteaux differential [see Equation (2.8), p. 30]. 
Hence, the Fréchet differential is inherently the Gâteaux differential of a func­
tional. This result plus the equivalence of the variation to the Fréchet dif­
ferential of an integral functional, as shown in the last section, proves the 
following: 

The variation of an integral functional is equivalent to the Fréchet as well 
as the Gâteaux differential provided that the derivative of the integrand exists 
and is continuous with respect to the variable of integration. 
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2.5.2 Application to Optimal Control Problems 

In an optimal control problem, we arrive at an integral objective functional 
having the general form 

ttf 
J = f(y, ẏ, u, λ) dt (2.19) 

0 

where the integrand depends on 

1. the vector of state variables: 

y = y1(t) y2(t) . . .  yn(t) , 

2. the derivative of y with respect to time t: 

T

T 
ẏ = ẏ1(t) ẏ2(t) . . .  ẏn(t) , 

3. the vector of controls: 

 
u = u1(t) u2(t) . . .  um(t) 

T
, and 

4. the vector of certain undetermined multiplier functions or costates: 

 
λ = λ1(t) λ2(t) . . .  λn(t) 

T

It is desired to determine

 
 the optimal control u tha

 
t optimizes (i. e., either 

minimizes or maximizes) J . To that end, we need to obtain the variation of 
J to help determine the optimum. The variation of J is a straightforward 
generalization of Equation (2.16) and is given by 

δJ = 
ttf  �n  n  m  n  

fyi δyi + 
�

f ẏi δ ẏi + 
�

fui δui + 
�

fλi δλi

i=1 i=1 i=1 i=1 0 

 
dt (2.20) 

where the partial derivatives — fyi , f ẏi , fui , and f λi — are the variational 
derivatives of the functional J with respect to yi, ẏi, ui, and λ i, respectively. 
Note that each of δyi, δẏi, δui, and  δλi is a function of t. 

In compact vector notation, 

 =

ttf 
δJ  fT  

y δy + fy
T
˙ δẏ + fu

T
 δu + fλ

T
 δλ dt

0

  



  

� �

� �

  �   �
  �   
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where δy, δẏ, δu, and  δλ are the variation vectors corresponding to y, ẏ, u, 
and λ, respectively. Thus, for example, 

T 
δy = δy1(t) δy2(t) . . .  δyn(t) 

Example 2.10 
A simpler version of the batch reactor problem (p. 2) for the reaction 

aA −→ cC 

without any inequality constraints is as follows. 
Find the T (t) that maximizes ttf 

E 
I = ck0 exp − x a(t) dt (2.21) 

RT (t) 
0 

subject to the satisfaction of the differential equation constraint 

E 
ẋ = − ak0 exp − x a(t), x(0) = x0 (2.22) 

RT (t) 

where ẋ is the derivative of x with respect to t, and  x0 is the initial concen­
tration of A. 

To proceed, we need to apply the Lagrange Multiplier Rule, the details of 
which will be provided later in Chapter 4. According to this rule, the above 
constrained problem is equivalent to the problem of finding the control T (t) 
that maximizes the following augmented functional: ttf ttf 

E E aJ = ck0 exp − x a dt + λ − ẋ− ak0 exp − x dt 
RT RT 

0 0 ttf � �� 
E E a = ck0 exp − x a − λ ẋ+ ak0 exp − x dt (2.23) 
RT RT 

0 ' ' 
f 

subject to x(0) = x0 with λ as an undetermined multiplier function of t. To  
avoid clutter, we will from now on show the bracketed independent variables 
of functions only if needed for clarity. 

At this point it is sufficient to learn how the augmented functional J is 
formed by adjoining the constraint [Equation (2.22)] to the original functional 
I after bringing all constraint terms to the right-hand side and multiplying 
them by an undetermined multiplier λ. 

In the present example, we will find the variation of J . Denoting the inte­
grand in Equation (2.23) by f and considering the dependence 

f = f(x, ẋ, T, λ) 
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the variation of J is given by 

=

ttf 
δJ (fxδx + fẋδẋ+ fT δT + fλδλ) dt 

0 

where fx, fẋ, fT , and f λ are partial derivatives of f with respect to x, ẋ, T , 
and λ, respectively. Therefore, 

tf 
E k E E 

δJ = 
t ��  

 − 

 
 − a −1 

�
 −  

�
0

k0 exp (c aλ)ax δx [λ]δẋ+ exp  
RT RT 2 

 

 
−
RT 

0  

 
E

(c − aλ)xa 

�
δT − 

�
ẋ+ ak exp

 
 − xa

0 

 
 

RT

�
δλ

�
 dt 

 

where δx, δẋ, δT , and δλ  are functions of t. The coefficient of δλ in the 
above equation is zero because of the differential equation constraint, Equa­
tion (2.22), which must be satisfied at each t in the interval [0, tf]. Hence, the 
final expression for δJ is 

tf 

δJ = 
t ��

E 
k

 
a

0 exp

 
− aλ)ax −1

  − (c 

�
δx 

RT 
− [λ]δẋ

0 

+ 

�
k

  
0E E 

exp − 

 
(c − aλ)xa 

�
δT 

�
dt 

RT 2 RT 

Example 2.11 
Consider the simplified heat exchanger problem (Section 1.3.3, p. 8) in which 
it is desired to find the Tw(t) that minimizes 

tL 

I = [T (x, tf) − T ∗  (x)]2 dx 

0 

subject to the satisfaction of the differential equation constraint 

h
Ṫ = −vT ' + [Tw(t) − T ] (2.24) 

ρCp 

and  ˙T (z, 0) = T (0, t) =  T ' 
0 with T and T as partial derivatives of T with 

respect to t and x, respectively. The temperature profile T ∗(x) is specified. 
With the application of the Lagrange Multiplier Rule, this constrained prob­
lem is equivalent to the minimization of the following augmented objective 
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functional: 

 L tf 
2 h 

J = 
tL  

T f) − T ∗ (x, t (x)
 

λ  d

t t
˙x + −T − vT ' + (Tw t dx    ρC

0 
' ' p

− T ) d

0 0 
F 

� �
 

G 
(2.25) 

subject to T (z, 0) = T (0, t) =  T0 wher

'
e the undeterm

  
ined multiplier

'
 λ is a 

function of the two independent variables x and t. Note the presence of the 
double integral corresponding to these variables. Let us now find the variation 
of J . 

Denoting the first and second integrand of Equation (2.25) by F and G, 
respectively, and considering the dependencies 

F ˙  = F [T (x, tf)] and G = G(T, T  ', T, Tw, λ) 

the variation of J is given by 

δJ = 
tL 

FT (x,tf)δT (x, tf) dx + 
tL ttf 

˙
T   G ˙ δT +GT / δT ' + GT δT + GTw δTw

0 0 0

+ Gλδλ  dx 

where F

 
dt

T (x,tf) is the partial derivative of F with respect to T (x, tf), GT ˙ is the 
˙partial derivative of G with respect to T , and s o  on.  We  have  

 h 
Gλ = −Ṫ − vT ' + (Tw T ) = 0  

ρCp 
− 

because of the differential equation constraint, Equation (2.24). Thus, the 
variation of J is given by 

tL   tL tf 
h 

δJ = 2  T (   ∗ x, tf) − T (x) δT (x, tf) dx −   λ δ Ṫ + vδT ' + δT 
ρCp 

0 0

t
0 

� �   
  �� 

h − δTw dt dx 
ρCp 

Example 2.12 
The batch distillation problem of Section 1.3.1 (p. 5) is equivalent to the min­
imization of 

tf 

 I = 
t

{u + μu(y − y ∗)} dt (2.26) 

0 
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subject to 

ṁ = −u, (2.27) 
u 

ẋ = (x  y), (2.28) 
m 

−

m(0) = m0, and x (0) = x0 with μ as a time invariant multiplier used to 
incorporate the purity specification, Equation (1.10), in Equation (2.26). 

The problem at hand has only two constraints, namely, Equations (2.27) 
and (2.28). With the application of the Lagrange Multiplier Rule, this prob­
lem is equivalent to the minimization of the following augmented objective 
functional: ttf  

 u 
J = u + μu(y − y ∗) + λ 1(−ṁ− u) +  λ2 

 
−ẋ+ (x − y)

  
dt 

j

' m  
0 

f 

sub ect to m(0) = m0 and x(0) = x0. Let

  
 us now find the variation 

'
of J . 

We denote the integrand of the above equation by f and observe that 

f = f(m, m,˙  x, x,˙  y, u, μ, λ1, λ2)

where all arguments of f except μ are functions of t. Then the variation of J 
is given by 

δJ = 
t tf  

fmδm + fṁδṁ+ fxδx + fẋδẋ+ fy δy + fuδu + fμδμ + fλ1 δλ1 
0 

+ fλ2 δλ2 

The last three terms of

 
dt 

 the above equation are zero since ttf tf 

 fμδμ dt = δμ 
t

u(y − y ∗) dt = 0, fλ1 = −ṁ− u = 0, and 

0 0 
u 

fλ2 = −ẋ+ (x − y) = 0  
m 

respectively, due to the constraints — Equations (1.10), (2.27), and (2.28) 
— which have to be satisfied by necessity. In general, the coefficient of the 
variation of a multiplier will always be zero due to the presence of the corre­
sponding constraint. Hence, the variation of J is given by ttf ��

λ2u λ2u λ2
δJ = (y − x)

�
 δm − [λ1]δṁ+ 

�
δx  [λ2]δẋ+ u μ  δy 

m2 m m
0 

�
−

�
−

 

 
 

 �
 λ2 

+ 

�
1 + μ (y − y ∗) − λ1 + (x − y)

�
 δu dt (2.  

m 

�
29)



� � �

� � �
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Further Simplification 

The variations of integral objective functionals can be further simplified at 
their optima by integrating by parts the terms involving derivative functions 
such as δẋ and δṁ in Equation (2.29). As a matter of fact, this simplification 
is an important step in deriving the optimality conditions. Therefore, it is very 
important to familiarize oneself with the following formula of integration by 
parts: 

tb t tb t � x b xdy 
yz dx = y z dx − z dx dx (2.30) 

dxa aa 
a a 

where y and z are continuous functions of x, with y being additionally differ­
entiable. Note that the right-hand side of the above equation carries only the 
integral of the second function z — a simplification in case z is a derivative 
function like δẋ. 

Example 2.13 

For the batch distillation problem, let us simplify δJ given by Equation (2.29) 
when J is optimal. We can get rid of δṁ and δẋ in the following two terms 
of δJ : ttf ttf 

− [λ1]δṁ dt and − [λ2]δẋdt 

0 0 

using integration by parts. It is possible since the multiplier functions — λ1 

and λ2 — are differentiable whenever J is optimal. We will prove the dif­
ferentiability of multiplier functions later in Chapter 3 on p. 78. Note that 
the derivative function has to be the second function z when utilizing Equa­
tion (2.30). Its application yields 

ttf t t tf ttf t t � 
dλ1− [λ1]δṁ dt = − λ1 δṁ dt + δṁ dt dt 

0 0 0dt 
0 0 ttf 

tf 
˙= − λ1δm + λ1δm dt 

0 
0 

and similarly ttf ttf 
tf 

˙− [λ2]δẋdt = − λ2δx + λ2δx dt 
0 

0 0 
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Upon substituting the last two equations into Equation (2.29), we get 

ttf ��
λ2u 

 ˙δJ = λ1 − (x  y)
m2 

−
0 

�
 

�
λ2u λ2 

δm + λ̇2 + δx  
m

�
 + 

�
u 

 

 
μ 

 
−

m 

 �
δy 

�
λ

+ 1 + μ  (y − y ∗) − λ1 + 2 
(x − y)

�
 δu dt 

m 
t

−  
f t

−  
f 

�
λ1δm λ2δx

0 0 

The variation of J

 
 thus 

 
obtained

 
 is r

 
eadily amenable to further analysis for 

the determination of optimal control. 

2.6 Second Variation 

Let δI(y0; h) exist at  y0 as well as (y0 + αh) for sufficiently small α. Then the 
variation of δI(y0; h) at  y0 is the second variation of the functional I and is 
denoted by δ2I(y0; h). Using Equation (2.12), we obtain 

d δI(y0 + αh; αh) − δI(y0; αh)
δ2I(y0; h) =  δI(y0; αh)α=0 = lim 

dα α→0 α 
d d 

I(y0 + αh + βh)β=0 − I(y0 + βh)β=0
dβ dβ 

= lim 
α→0 α 

With γ ≡ β, and  Δγ ≡ α, we  get  

d d 
I[y0 + (γ +Δγ)h]γ=0 − I(y0 + γh)γ=0

dγ dγ 
δ2I(y0; h) = lim 

Δγ→0 Δγ 

d2 

= I(y0 + γh)γ=0 = I(y0 + γh)γ=0 
d d 
dγ dγ dγ2 

Replacing γ by α, we obtain the second variation of I at y0 as 

d2 

δ2I(y0; h) =  I(y0 + αh)α=0 (2.31) 
dα2 

2.6.1 Second Degree Homogeneity 

We now show that the second variation is homogeneous of the second degree 
in h, i.  e.,  

δ2I(y0; βh) =  β2δ2I(y0; h) 
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Replacing h by βh in Equation (2.31), we get 

d2 

δ2I(y0; βh) =  I(y0 + αβh)
 α=0

dα2

Let γ ≡ αβ. Then using the chain rule of differentiation, 

d d dγ dγ 
δ2I(y0; βh) =  +

 

�
I(y

dγ 0  αβh)γ=0
dγ dα 

2 d

�
dα 

2 

=  β I(y 2
0 + γh) 2

γ=0 = β δ I(y0; h)
dγ2 

2.6.2 Contribution to Functional Change 

The functional change, I(y0 + h) − I(y0),  can be expressed i n terms  of t he  
second variation provided (d2/dα2)I(y0 +αh) exists and is continuous at α = 0  
for all h. Using the second order Taylor expansion (Appendix 2.A, p. 52) along 
a function g, 

d2 α2 

I(y0 + αg) − I(y0) =  δI(y0; g)α + 

�
I(y  + βg)  , γ  < 1 

dβ2 0 β=γα

�
2 

| |

d2 d2 

= δI(y0; g)α + 

�
I(y0 + βg)β=γα − I(y +
 0  αg)α=0'dβ2 dα2 

 

α  ε2 (αg)2

+ δ2I(y0; g)

�
 , |γ| <

  
 1 

2 

'

where we have subtracted  and added δ 2I(y0; g), and used Equation (2.31) for 
the subtracted term. Note that the term ε2(αg) shown above tends to zero 
with α due to the continuity of (d2/dα2)I(y0 +αg) with respect to α at α = 0.  

Since δI(y0; g) and  δ2I(y0; g) are homogeneous of the respective first and 
second degrees, 

1 α2 

I(y0 + αg) − I(y 2
0) =  δI(y0; αg) +  δ I(y0; αg) + ε 2(αg)

2 2 

With h ≡ αg, and E 2 ≡ ε2α2/2, we obtain 

1 
I(y0 + h) − I(y0) = δI (y0; h) +  δ2I(y0; h) + E 2(h) (2.32) 

2 

where the error E2/α2 tends to zero with α2 . The error is zero for sufficiently 
small α, or equivalently the change along a given h. 
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Generalization to Several Functions 

The above result can be generalized to a functional dependent on several 
functions. Thus, 

1 
I(y0 + h) − I(y0) = δI (y0; h) +  δ2I(y0; h) +  E2(h) (2.33) 

2 

where I depends on the function vector y given by 

⎡ ⎢y1(x) ⎤ ⎡
y0,1(x) h1(x) ⎢⎢⎢y2(x) y0,2(x) 

⎤ ⎡
h2(x) 

⎤
⎢ = + α ⎢ . 

⎢⎢⎢⎢⎣ ⎥ . . ⎢⎦ ⎢ . . 

⎥⎥⎥⎥⎥ .  ⎣ . 

⎥
.    

⎥⎥
 

⎢⎢⎢
.

 

⎥⎥⎥
 

⎥⎥ ⎢⎢⎦⎥ ⎢⎣  
yn(x) y0,n(x) hn(x) 

⎥⎥⎥
y0 h 

⎦

E/α2 tends  and to zero with α2. 

'
The

  
 erro

'
r is zero

'
 for

  
 sufficien

'
tly small α, or  

equivalently the change along h. 

We end this chapter by pointing out that the variation of an objective 
functional will provide us with important clues about its optimum, similar 
to what a differential does for an objective function. The second variation 
will provide some auxiliary conditions and help in the search for optimal 
solutions. The necessary and sufficient conditions for the optimum of an 
objective functional will be the topic of the next chapter. As expected, those 
conditions will use the concepts we have developed here. 

2.A Second-Order Taylor Expansion 

Considering I(y0 + αh) to be a function of α, the Fundamental Theorem of 
Calculus (Section 9.13, p. 275) gives 

tα 

I(y0 + αh) − I(y0) =  I ' (y0 + βh) dβ 

0 

' where denotes the derivative with respect to β. In t erms o f  

v ≡  I '(y0 + βh) and  w ≡ (α − β) 
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we can write 

α α 

  I(y0 + αh) − I(y0) =
t
 'I '(y0   + βh')  

 
× dβ = vw' dβ

 v 

' 1  
0 w/

t'
0 

  tα 
β=α ' = vw − v w dβ (upon integration by parts) 
β=0 

0 

α 

=  α I

t
' ' (y0 +   βh)β=0' + [I '' (y0 + βh)](α − β) dβ (2.34) 

 
0δI(y0;h)  

R2 

where I '' (y0 + βh) is the second derivative 

'
of I(y0 + βh

  
) with respect

'
 to β. 

If m and M are the respective minimum and maximum values of I '' (y0 +βh) 
in the interval 0 ≤ β ≤ α, then  

tα α 

m (α − β) dβ ≤ R2 ≤ M 
t
(α − β) dβ 

0 0 

α2 α2 

or m ≤ R2 ≤ M 
2 2 

R2 
or m ≤  M 

α2/2 
≤

Hence R2/(α
2/2) is bounded by the minimum and maximum values of the 

second derivative, I '' (y0 + βh), which is continuous. Therefore, by the Inter­
mediate Value Theorem (Section 9.15, p. 276), R2/(α

2/2) must be equal to 
I '' (y0 + βh) for so me β in the interval 0 < β < α. 

The interval is −α < β < 0 i f α  is negative. Hence the combined result for 
a non-zero α is 

α2 

R2 = I '' (y0 + βh), β < |α 
2 

|
Let γ ≡ β/α. Then  

β = αγ < |α| or |γ| < 1 

and Equation (2.34) can be finally written as [compare with Equation (9.1) 
in Section 9.6 (p. 270)] 

α2 d2 

I(y0 + αh) − I(y0) =  αδI(y0; h) +  I(y0 + βh)β=γα, |γ| < 1 
2 dβ2 
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Exercises 

2.1 Given two functionals I[y(x)] and J [y(x)], find the variation of 

a. I[y(x)]J [y(x)], and 

I[y(x)]
b. where J [y(x)] = 0  

J [y(x)] 

2.2 In the plug flow reactor problem of Section 1.3.2 (p. 6), substitute Equa­
tion (1.11) into Equation (1.12) and find the variation of the resulting objec­
tive functional. 

2.3 Derive the augmented functional for the optimal periodic control problem 
in Section 1.3.5 (p. 11). Find the variation of that functional. 

2.4 Repeat the previous exercise for the nuclear reactor problem in Sec­
tion 1.3.6 (p. 12) ignoring the inequality constraints. 

2.5 Simplify the variations obtained in the last two exercises using integration 
by parts. 

2.6 Follow the approach of Example 2.11 (p. 46) to derive the augmented 
functional for the blood flow and metabolism problem in Section 1.3.10 (p. 17). 
Find the variation of that functional. 

2.7 Repeat the previous exercise for the medicinal drug delivery problem in 
Section 1.3.9 (p. 16). 
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2.8 The objective functional of an optimal control problem depends on func­
tions as well as their derivatives. Under what circumstances would the varia­
tion of such a functional become the differential? 

2.9 Show that the Gâteaux differential of the functional in Example 2.3 
(p. 35) is (i) −1 if  y0 < 0, and (ii) 1 if y0 > 1 in the range of the integration. 
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Chapter 3
 

Optimality in Optimal Control 
Problems 

This chapter presents the conditions related to the optimality of a func­
tional. We derive the necessary conditions for optimal control to exist and 
apply them to optimal control problems. We also present sufficient conditions 
assuring the optimum under certain conditions. Readers are encouraged to 
review the logic of the conditional statement in Section 9.25 (p. 282). 

3.1 Necessary Condition for Optimality 

Let I be a functional of a function y. If  I is minimum at ŷ, then the values of 
I for all other admissible functions in the vicinity of ŷ cannot be lower than 
the value of I at ŷ. Precisely, 

I(y) − I(ŷ) ≥ 0 

is the necessary condition for the minimum of I where y is any admissible 
function in the vicinity and the norm of the function change (y − ŷ) is  less  
than some positive number. Denoting (y − ŷ) by  δy in the above inequality, 
we have 

I(ŷ + αδy ) − I(ŷ) ≥ 0 (3.1) ' ' 
y 

where α is a non-zero scalar variable with absolute value less than or equal to 
unity. In other words, −1 ≤ α <  0 and  0  < α  ≤ 1 are the two intervals of α. 

Now if I has a variation at ŷ, then from the definition of variation [Equa­
tion (2.11), p. 36] and its homogeneity property 

I(ŷ + αδy) − I(ŷ) =  δI(ŷ; αδy) =  αδI(ŷ; δy) ≡ αδI (3.2) 

for sufficiently small α in its prescribed intervals. Hence, from Inequality (3.1) 
and Equation (3.2) 

αδI ≥ 0 

According to the above inequality, δI should be either 

57 
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1. greater than or equal to zero when α is greater than zero, or 

2. less than or equal to zero when α is less than zero 

Thus, δI = 0 is the only non-contradicting condition that is applicable for the 
minimum of I. 

In fact, we obtain the same condition if I happens to be maximum at ŷ. In  
this case, we proceed with the observation that I(y) − I(ŷ) ≤ 0 and do the 
same analysis as above involving α. 

As a consequence, 
δI = 0  (3.3) 

is the necessary condition for the optimum (either minimum or maximum) 
of the functional I. Not guaranteeing an optimum of I, Equation (3.3) is just 
a logical consequence of I being an optimum. 

We will now apply the above necessary condition to optimal control prob­
lems and derive equations to help identify optimal solutions. 

3.2 Application to Simplest Optimal Control Problem 

Consider the simplest optimal control problem in which it is desired to find a 
continuous control function u(t) that optimizes the objective functional 

ttf 
I = F (y, u) dt (3.4) 

0 

subject to the constraint of the differential equation 

ẏ = g(y, u) or  y, u) ≡ − ˙ (3.5) G(y, ˙ y + g(y, u) = 0 

with the initial condition 
y(0) = y0 (3.6) 

Equation (3.5) is called the state equation since it describes the state of the 
system through the state variable y as a function of the independent vari­
able t. It is assumed that F and g have continuous partial derivatives with 
respect to y and u. Note that this problem is autonomous in the sense that 
the independent variable does not appear explicitly in F or g. When  it  does,  
the problem is easily convertible to the autonomous form (see Exercise 3.4). 

Effect of Control 

Observe that the objective functional I in Equation (3.4) is influenced by 
the control u directly as well as indirectly. While the direct influence is 
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through the integrand F , the indirect influence stems from y being affected 
by u through the state equation constraint, i. e., Equation (3.5). 

Hence, to solve the problem, we need to first obtain an explicit solution 
y = y(u) and then substitute it in the expression of F . However, such solutions 
do not exist for most optimal control problems, which are typically constrained 
by highly non-linear state equations. 

The recourse is to adjoin the constraints of an optimal control problem to 
the objective functional using new variables called Lagrange multipliers. Their 
introduction obviates the need to obtain explicit solutions of state variables 
in terms of controls. The optimization of the resulting augmented functional 
is then equivalent to the constrained optimization of the original functional. 
This outcome — which we shall call the Lagrange Multiplier Rule — springs 
from the Lagrange Multiplier Theorem, the details of which will be presented 
in the next chapter. For now we accept this result and work with the aug­
mented functional. 

3.2.1 Augmented Functional 

In the present problem defined by Equation (3.4)–(3.6), we adjoin the state 
equation constraint to I using a Lagrange multiplier λ and obtain the aug­
mented functional ttf 

J = y, u)] dt (3.7) [F (y, u) +  λG(y, ˙' ' 
0 f 

For the given initial condition, i. e., Equation (3.6), the optimization of J is 
then equivalent to the optimization of I constrained by the state equation. 
Observe how the integrand f in Equation (3.7) is formed by multiplying λ by 
G, which consists of all terms of the state equation constraint moved to the 
right-hand side. We will follow this approach, which will later on enable us 
to introduce a useful mnemonic function called the Hamiltonian. 

The Lagrange multiplier λ is also known as the adjoint or costate vari­
able. It is an undetermined function of an independent variable, which is t 
in the present problem. Both λ and the optimal u are determined by the nec­
essary condition for the optimum of J . The subsequent analysis expands the 
necessary condition, which is terse as such, into a set of workable equations 
or necessary conditions to be satisfied at the optimum. 

3.2.2 Optimal Control Analysis 

From Equation (3.3), if J is optimum, then δJ = 0. This result, on the basis 
of Section 2.5.2 (p. 44), can be expressed as ttf 

δJ = (δF + λδG + Gδλ) dt = 0 (3.8) 

0 
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where 

δF = Fyδy + Fuδu (3.9) 

and 

δG = Gyδy + Gẏδ ẏ + Guδu (3.10) 

We rewrite Equation (3.8) as 

tf tf 

δJ =
t
(δF + λδG) dt + 

t
Gδλ dt = 0  

'0 0  
J1(δy,δu) J2(δλ) 

where the first integral (J1) depends

  
 on a

'
rbitr

'
ary

  
 functio

'
ns δy and δu, and t he  

second integral (J2) depends on another arbitrary function δλ. The function 
δẏ is not arbitrary but depends on δy. 

Note that J1 is independent of δλ while J2 is independent of δy and δu. 
Because of this fact, both J1 and J2 must be individually zero. Otherwise, 
J1(δy, δu) =  −J2(δλ), implying the contradiction that J1 depends on δλ and 
J2 depends on δy and δu. Therefore, J1 = 0  and  J2 = 0 must be satisfied in 
order to ensure δJ = 0.  

Satisfaction of J2 = 0  

We consider the equation ttf 
J2 = Gδλ dt = 0  

0 

Since δλ is arbitrary in the above equation, J2 = 0 is satisfied by having 

G = 0  (3.11) 

throughout the interval [0, tf]. Keep in mind that we have considered the 
optimum of J without supposing that G is zero, as given by Equation (3.5). 
The above equation, G = 0, comes forth as a necessary condition for the 
optimum. 

Satisfaction of J1 = 0  

Next, we consider ttf 
J1 = (δF + λδG) dt = 0  (3.12) 

0 
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Arising from δJ = 0, both Equations (3.11) and (3.12) are the necessary 
conditions for the optimum of J . On the basis of the Lagrange Multiplier 
Rule, these two equations are also the necessary conditions for the constrained 
optimum of I. Both optima are still subject to the given initial condition, i. e., 
Equation (3.6). The equivalence between the two optima will be shown later 
in Section 4.3.3. 

We now proceed to obtain workable equations that will ensure the satis­
faction of Equation (3.12), and consequently, be necessary along with Equa­
tion (3.11) for the optimum of I. 

With the help of Equations (3.9) and (3.10), Equation (3.12) can be ex­
pressed as 

ttf ttf 
J1 = (Fy + λGy)δy + λGẏδẏ dt + (Fu + λGu)δu dt = 0  

0 0' ' ' ' 
J3(δy) J4(δu) 

where the first integral (J3) depends on the arbitrary function δy, while the 
second integral (J4) depends on another arbitrary function δu. 

Note that J3 does not depend on δu, and  J4 does not depend on δy. There­
fore, for the above equation to hold, both integrals must be individually zero. 
Otherwise, J3(δy) =  −J4(δu), implying that J3 depends on δu and J4 depends 
on δy, which is contradictory. Thus, 

ttf 
J3 = (Fy + λGy)δy + λGẏδẏ dt = 0 (3.13) 

0 

and 

ttf 
J4 = (Fu + λGu)δu dt = 0 (3.14) 

0 

must be satisfied in order to ensure J1 = 0.  

Satisfaction of J4 = 0  

For Equation (3.14) to hold for any arbitrary δu, 

Fu + λGu = 0, 0 ≤ t ≤ tf (3.15) 

The above equation is known as the stationarity condition. 
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Satisfaction of J3 = 0  

Upon substituting Gẏ = −1, which is obtained from the definition of G in 
Equation (3.5), Equation (3.13) becomes 

ttf	 ttf 
J3 = (Fy + λGy )δy dt − λδẏ dt = 0 (3.16) 

0	 0 

Before simplifying the above equation further, we need to express the second 
integral in terms of δy. Applying integration by parts to the second integral, 
we get 

ttf	 ttf 
˙(Fy + λGy )δy dt − λδy + λδy + λδy dt = 0 (3.17) 

t=tf t=0' ' 
0	 0 

is zero 

The above step assumes that we can differentiate λ with respect to t in Equa­
tion (3.16). It is indeed true, as shown in Appendix 3.A (p. 78). 

Because of the initial condition, i. e., Equation (3.6), there cannot be any 
variation in y at t = 0  where  y is fixed. Thus, the third term in Equation (3.17) 
is zero. Rearranging the remaining terms of the equation, we get 

ttf  
Fy + λGy + λ̇ δy dt − λδy = 0 (3.18) 

t=tf 
0

From the Mean Value Theorem for integrals (Section 9.14.2, p. 276), 

ttf   
Fy + λGy + λ̇ δy dt = p(t1)δy(t1)(tf − 0) ' ' 

0
p(t) 

where p(t) is the coefficient of δy and 0 ≤ t1 ≤ tf. The above equation shows 
that the integral depends on an arbitrary function value δy(t1). We contend 
that the above integral does not depend on δy(tf) though. In other words, the 
above equation is valid for t1 less than tf. To  prove  it,  let  t1 be equal to tf in 
the equation and p(t) be given over the interval [0, tf]. Then, from the above 
equation, ttf 

pδy dt = p(tf)δy(tf)tf	 (3.19) 

0 

and the integrand pδy 

•	 either stays constant so that it has the same value p(tf)δy(tf) at any  t1 

less than tf (Case 1) 
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•	 or changes with t, in which  case  pδy attains at least once the same value  
p(tf)δy(tf) at  t1 less than tf (Case 2). 

Suppose this conclusion is not true, so that 

p(t1)δy(t1) > p(tf)δy(tf), 0 ≤ t1 < tf 

Then p(tf)δy(tf) is the minimum integrand value. Thus, t tf 
pδy dt > p(tf)δy(tf)tf 

0 

which contradicts Equation (3.19). The other situation when 

p(t1)δy(t1) < p(tf)δy(tf), 0 ≤ t1 < tf 

is similarly contradictory. Hence, pδy = p(tf)δy(tf) at least  once  for  
t1 < tf. 

In either case, ttf 
pδy dt = p(t1)δy(t1)(tf − 0) 

0 

where t1 is less than tf. Thus, the integral is relieved from dependence on 
δy(tf), which therefore affects only the last term of Equation (3.18). As rea­
soned in similar instances previously, the two terms of Equation (3.18) must 
therefore be individually zero. Hence 

tf 

Fy + λGy + λ̇ δy dt = 0 (3.20) 
t
0 

and 

λ(tf)δy(tf) = 0	 (3.21) 

Now Equation (3.20) is certainly satisfied if the coefficient of δy is zero, or 
equivalently 

λ̇ = −(Fy + λGy ), 0 ≤ t ≤ tf	 (3.22) 

The above equation is known as the Euler–Lagrange equation in honor of 
Swiss mathematician Leonard Euler (1707–1783) and French mathematician 
Joseph Luis de Lagrange (1736–1813). The Euler–Lagrange equation is also 
called the adjoint or costate equation since it defines the adjoint or costate 
variable λ. 

A question arises whether the coefficient of δy in Equation (3.20) really 
needs to vanish at t = 0  where  δy is already zero. The answer is yes and the 
proof is provided in Appendix 3.B (p. 81). 



1. The state equation 

with initial condition 

ẏ = g(y, u), 

y(0) = y0 

0 ≤ t ≤ tf (3.5) 

(3.6) 

2. The costate equation 

with final condition 

λ̇ = −(Fy + 

λ(tf) = 0  

λGy ), 0 ≤ t ≤ tf (3.22) 

(3.23) 

3. The stationarity 

condition 

Fu + λGu = 0, 0 ≤ t ≤ tf (3.15) 
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Table 3.1 Necessary conditions for the optimum of I in the problem defined by 
Equations (3.4)–(3.6) 

Finally, we are left with Equation (3.21), which is satisfied if the coefficient 
of the arbitrary δy(tf) is zero, i. e., 

λ = 0  at  t = tf (3.23) 

The above equation is in fact the initial condition for the backward integration 
(from t = tf to 0) of the costate equation, i. e., Equation (3.22). 

Summary of Necessary Conditions 

Table 3.1 collects the equations we have used to satisfy δJ = 0. These equa­
tions are the necessary conditions for the optimum of J or, equivalently, of I 
subject to the state equation constraint. The solution of the necessary condi­
tions provides the u and the corresponding y as well as the λ at an optimum 
of I. Put differently, for I to be optimal, u must be such that these conditions 
are satisfied. Otherwise I cannot be optimal. 

Keep in mind that the satisfaction of these equations does not guarantee 
the optimum but provides a candidate for the optimum. For example, several 
optima may exist and the optimum provided by the necessary conditions may 
not be the best among all optima. (We will explore this issue further in 
Section 3.3.1 later on.) 

Most important, if the equations are not satisfied, then the optimum can­
not exist. The above facts conform to the logic of a conditional statement 
explained in Section 9.25 (p. 282). For now, let us apply these conditions to 
optimal control problems. 
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Example 3.1 
Find the necessary conditions for the minimum of 

ttf 
 2 I = (u − yu) dt 

0 

subject to the satisfaction of the differential equation constraint 

√ 
ẏ = − y + u (3.24) 

where u(t) is the control and y(t) is the state variable with the initial condition 
y(0) = 0. 

The augmented functional for this problem is 

 

J = 
ttf �

 
u'  2   − yu + λ t 

 
−ẏ

√− y + u d
 

0 F 

� � �
' '   

g

'
 

G 

with the functions F , g, and G  as ind

'
icated 

  
in the 

'
above equation. From 

Table 3.1, the necessary conditions for the minimum of I are 

1. the state equation, Equation (3.24), with the initial condition y(0) = 0; 

˙2. the costate equation, λ = −(Fy + λGy ), i. e.,
 

λ

λ̇ = u + √ 

2 y
 

with the final condition λ(tf) = 0; and
 

3. the stationarity condition Fu + λGu = 0,  i. e ., 
  

2u − y + λ = 0 
  

throughout the time interval [0, tf]. 

Example 3.2 
Find the necessary conditions for the maximum of 

ttf 
E 

I = ckxa dt, k = ko exp

 
 − 

RT 
0 

 

subject to the satisfaction of the differential equation constraint
 

ẋ = −akxa (3.25)
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with T (t) as the control and x(0) = x0 as the initial condition. 
This is the simple batch reactor control problem (see Example 2.10, p. 45) 

for which the augmented functional is ttf �  

J = ck'  xa' + λ 

�
−ẋ '−  

�
  a akx

�
dt

 

' 
0 F g

 
G

with the functions F , g, and G  as indica

'
ted a

  
bove. 

'
Referring to Table 3.1, T 

is the control u as a function of the independent variable t and x is the state 
variable y. Using the table, the necessary conditions for the maximum of I 
are 

1. the state equation, Equation (3.25), with the initial condition x(0) = x0; 

e ˙2. th costate equation, λ = −(Fx + λGx), i. e., 

λ̇ = −akxa−1(c − aλ) (3.26) 

with the final condition λ(tf) = 0; and 

3. the stationarity condition FT + λGT = 0,  i. e ., 
  

kE
 
xa (c − aλ) = 0 (3.27) 

RT 2 

over t he time interval [ 0, tf]. 

Hamiltonian 

For the optimal control problem defined by Equations (3.4)–(3.6), a mnemonic 
to remember the necessary conditions for the minimum is the Hamiltonian 
function defined as 

H ≡ F + λg 

It is easy to verify that 

dH ≡ Hλ = ẏ (3.28) provides 'ẏ = g  (y, u') (3.5)
dλ   

state equation 

dH ≡ ˙Hy = − λ ˙(3.29) provides λ'  = −(F  y + λGy ') (3.22)
dy   

costate equation 

and 

dH ≡ Hu = 0  (3.30) provides F' u + λG = 0
   u

du ' (3.15) 
 

stationarity condition 
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Example 3.3 
Repeat the previous example utilizing the Hamiltonian. 

The Hamiltonian is given by 

H = ckxa + λ(−akxa)
 

Therefore, the necessary conditions for the maximum of I are
 

1. the state equation, Equation (6.10), obtained from ẋ = Hλ and the 
initial condition x(0) = 0; 

e ˙2. the costat equation, Equation (3.26), obtained from λ = −Hx and the 
final condition λ(tf) = 0; and 

3. the stationarity condition, Equation (3.27), obtained from HT = 0  

over t he time interval [ 0, tf]. 

3.2.3 Generalization 

For the simplest optimal control problem with m control functions and n state 
variables in general, the objective functional to be optimized is 

f

= 
tt  

I F (y1, y2, . . . , yn, u1, u2, . . . , um) dt (3.31) 
  

0 y� u� 

subject to n differential equa

'
tion

  
 constr

'
ain

'
ts 

  '

ẏi = gi(y, ẏ,u) or G i ≡ −ẏi + gi = 0;  i = 1, 2, . . . , n  (3.32) 

with the n initial conditions 

yi(0) = yi,0, i = 1 , 2, . . . , n  (3.33) 

Using the Lagrange Multiplier Rule, the augmented functional is 

f

 

 t

 
�m  

J = 
ttf 

F + λiGi 

 
dt ≡ 

t
f(y, ẏ,u,λ) dt 

i=10 0 

which was introduced in Section 2.5.2 (p. 44) using the same vector notation. 
At the optimum of J , δJ is zero and is given by 

ttf  �n  �n  m  n  
fyi δyi + fẏi δẏi + 

�
fui δui + 

�
fλi δλi 

 
dt = 0  

i=1 i=1 i=1 i=10 



1. The 

with 

for i 

state equations 

the initial conditions 

= 1, 2, . . . , n  

ẏi 

yi(0) 

= Hλi 

= yi,0, 

0 ≤ t ≤ tf (3.35) 

(3.36) 

2. The 

with 

for i 

costate equations 

the final conditions 

= 1, 2, . . . , n  

λ̇i 

λi(tf) 

= −Hyi 

= 0 

, 0 ≤ t ≤ tf (3.37) 

(3.38) 

3. The 

for i 

stationarity condition 

= 1, 2, . . . ,m  

Hui = 0, 0 ≤ t ≤ tf (3.39) 
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where 
n  n  n  

fyi = Fyi + 
�

λj Gjy , fẏi = λj Gjy ̇ =  λj , and 
i i 

j=1 j

−

 

�
=1 

�
j=1 

m

fui = Fui + 
�

λj Gjui

j=1 

The Necessary Conditions 

Extending the optimal control analysis (Section 3.2.2, p. 59) to the generalized 
problem with multiple states and controls, and defining the Hamiltonian as �n  

H = F + λigi (3.34) 
i=1 

we get the necessary conditions for the optimum of J , which are provided in 
Table 3.2. 

Table 3.2 Necessary conditions for the optimum of I in the general problem defined 
by Equations (3.31)–(3.33) 

Example 3.4 
Find the necessary conditions for the maximum of ttf 

a bI = kcx y dt ' ' 
0 F 
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subject to the satisfaction of the state equations 

ẋ = − a yb kax  (3.40) 
 

g1 

  ẏ = 

'
−kb

  
xay b

'
(3.41) 

 
g2 

where T is the control and 

'   '
 

E 
k = k0 exp − 

 
(3.42) 

RT 

The initial conditions are 

x(0) = x0 and y(0) = y0 

This is the batch reactor control problem (seep. 2) without the inequality con­
straints. Referring to Table 3.2, x and y are, respectively, the state variables 
y1 and y2. Furthermore, T  is the control u. Using Equation (3.34) and the 
functions F , g1, and g 2 as indicated above, the Hamiltonian for this problem 
is given by 

a y b   H =  kcx + λ (−kaxay b) + λ (−kbxay b1 2 )
  

F g1 g2 

From Table 3.2, the necessa

'   
r

'
y conditio

'
ns

  
 for 

'
the maxim

'
um

  
 ar

'
e 

1. the state equations, ẋ = Hλ1 and ẏ = Hλ2 , given respectively by Equa­
tions (3.40) and (3.41), and their initial conditions; 

2. the costate ˙ ˙equations given by λ1 = −Hx and λ2 = −Hy, i. e .,  

λ̇1 = −kaxa−1 y b(c − aλ1 − bλ2) 

λ̇ b
2 = −kxa

 by −1(c − aλ1 − bλ2) 

and their final conditions λ1(tf) =  λ2(tf) = 0; and 

3. the stationarity condition HT = 0,  i. e .,  

kE 
xa y b(c − aλ

 1 2
− bλ2) = 0  

RT  

throughout the time interval [0, tf]. 

Example 3.5 
The change in reactant and catalyst concentrations x and y, and temperature 
T in a Constant (volume) Stirred Tank Reactor or CSTR without time delays 



  

  
� � � �
� �
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is given by (Ray and Soliman, 1970) 

Q 
ẋ = (xf − x) 

V 
− kxy (3.43) 

m 
ẏ = 

− Qy 
(3.44) 

V 
Q ΔH hA + K(T  T ) 

Ṫ = (Tf − T ) − kxy − 
− s

(T T  
V ρCp C  

− c) (3.45)
V ρ p

where V , ΔH , ρ, and  Cp are, respectively, the reactor volume, heat of reaction, 
liquid density, and specific heat capacity. The subscript f denotes the feed 
property, k is given by Equation (3.42), and Q, m, and  K are the three 
controls. They are, respectively, the volumetric flow rate, mass flow rate of 
the catalyst, and the gain of temperature controller as functions of time t. 
The initial conditions are 

x(0) = x0, y(0) = y0, and T (0) = T0 

It is desired to minimize the deviation of the state of the CSTR with minimum 
control action, i. e., to minimize 

ttf 
I = (x − xs)

2 + (y − ys)
2 + (T − Ts)

2 + (Q − Qs)
2 + (m − ms)

2 dt 

0 

where the subscript s denotes the steady state value. Find the necessary 
conditions for the minimum of I. 

Using Equation (3.34), the Hamiltonian is given by 

H = (x − xs)
2 + (y − ys)2 + (T − Ts)

2 + (Q − Qs)
2 + (m − ms)

2 

Q m − Qy
+ λ1 (xf − x) − kxy + λ2

V V 

Q ΔH hA + K(T − Ts)
+ λ3 (Tf − T ) − kxy − (T − Tc)

V ρCp V ρCp 

In this example, x, y, T , Q, m, and  K correspond, respectively, to y1, y2, y3, 
u1, u2, and  u3 of Table 3.2. From the table, the necessary conditions for the 
minimum are 

1. the state equations, Equations (3.43)–(3.45), respectively given by 

˙ẋ = Hλ1 , ẏ = Hλ2 , and T = Hλ3 

with their initial conditions x(0) = x0, y(0) = y0, and  T (0) = T0. 
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2. the costate equations 

Q ΔH
λ̇1 = −Hx = −2(x − xs) + λ 1 

�
+ ky 

�
+ λ3 

�
ky

V ρCp 

�
Q ΔH 

λ̇2 = −Hy = −2(y − ys) +  λ1kx + λ2 + λ3 kx 
V 

�
ρCp 

�
kE

λ̇3 = −HT = −2(T − Ts) + λ 1 xy� RT 2 

Q ΔH kE hA + K(2T 
 

− T
  s  

+ +
− Tc)

λ3 + xy
V ρCp RT 2 V ρCp 

�
with the final conditions λi(tf) =  0,  i = 1, 2, 3. 

3. the stationarity condition for each of Q, m, and K , i. e .,  

xf  x y Tf  T 
HQ = 2(Q − Qs) + λ 1 

− −− λ2 + λ3 = 0  
V V V 

λ2
Hm = 2(m − ms) +  = 0  

V 

(T − Ts)(T − Tc)
HK = −λ3 = 0  

V ρCp 

throughout the time interval [0, tf]. 

3.3 Solving an Optimal Control Problem 

Although a little bit early, it is worthwhile to know how we can actually 
solve an optimal control problem. As indicated earlier, the answer lies in the 
necessary conditions we have established above. They must be satisfied by 
the optimal control functions. 

It must be noted that the necessary conditions are frequently nonlinear 
and cannot be solved analytically. Therefore, optimal control problems are 
generally solved using numerical algorithms, the focus of Chapter 7. 

At this moment, we outline a simple numerical algorithm, which begins by 
guessing the control functions, and involves the following steps: 

1. forward integration of state equations using the initial conditions 

2. backward integration of costate equations using the final conditions 



a 1.5 tf 20 min 

b 1 E 7 ×  107 J/kmol 

c 1 k0 6 ×  106
3

(kmol/m )−1.5/min 
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3. improvement of each control function utilizing the gradient information 
from Hui — the variational derivative of the objective functional with 
respect to the control function ui. 

The improvement in control functions causes the objective functional value to 
get closer to the optimum. Therefore, iterative application of the above steps 
leads to the optimum, i. e., the optimal functional value, and the corresponding 
optimal control functions. While the state and costate equations are satisfied 
in each iteration, the variational derivatives are reduced successively. They 
vanish when the optimum is attained. 

An application of the above algorithm to the batch reactor problem of 
Example 3.4 results in the optimal control temperature (T ), states (x and 
y), and costates (λ1 and λ2) versus time, as shown in Figure 3.1 for the 
parameters listed in Table 3.3. The corresponding maximum value of the 
objective functional I is 6.67 kmol/m3 . 

T
 (
K
) 

750 

6 

600 

0 

450 

−6 

0  10
t (min) 

(I = 6.67) 

T x y 

λ1 λ2 

x
, 
y
, 
λ
1

 , 
λ
2

 ×
 1
0
 7 

 20  

Figure 3.1 The optimal control, states, and costates versus time in Example 3.4 

Table 3.3 Parameters for the problem in Example 3.4 
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3.3.1 Presence of Several Local Optima 

When solving an optimal control problem, it has to be kept in mind that 
several local optima may exist. Consider for example a problem with a single 
control function. The objective functional value may be locally optimal, i. e., 
optimal only in a vicinity of the obtained optimal control function. In another 
location within the space of all admissible∗ control functions, the objective 
functional may again be locally optimal corresponding to some other optimal 
control function. This new optimal objective functional value may be better 
or worse than, or, even the same as the previous one. 

For example, in the problem of Example 3.4 solved above, the optimum 
obtained is local. Three different optima are obtained when the same problem 
is solved by initializing the algorithm with different guesses for the control 
function. Figure 3.2 shows the corresponding optimal control functions T1, 
T2, and T 3. They are quite different from not only each other but also the 
optimal T in Figure 3.1. While T1 and T2 yield the same maximum as obtained 
with T , T3 provides a better  maximum of I = 6.70 kmol/m3. 

The above outcome is not unexpected since it is based on the necessary 
conditions for the optimum. As shown in Figure 3.3, the necessary conditions 
are the consequence of an optimum, whether local or global. The satisfaction 
of these conditions does not guarantee the global optimum but merely pro­
vides a candidate for it. It is the satisfaction of the sufficient conditions that 
guarantees the global optimum. 

0  10
t (min) 

T
 (
K
) 

T1 (I = 6.67) 

T2 (I = 6.67) 

T3 (I = 6.70)1400 

800 

200 

 20  

Figure 3.2 Three other optimal control functions for the batch reactor problem 

∗ Satisfying the state equations and any other specified constraints. 



ˆ necessary 

conditions 
I an optimum: 

minimum
 

(I ≥ Î)
 
or
 

maximum
 

(I ≤ Î)
 

sufficient 
Î a global optimum: 

conditions 
minimum 

or 

maximum 

74 Optimal Control for Chemical Engineers 

Figure 3.3 Necessary and sufficient conditions for the optimum of the objective 
functional I 

Naturally, we would like to determine the optimum that is global, i. e., valid 
over the entire space of admissible control functions. This quest urges us to 
inquire into the conditions that are sufficient for the global optimum, i. e., the 
optimum over the entire space of admissible control functions. 

3.4 Sufficient Conditions 

For the minimum solution to be global, a sufficient condition must ensure 
that the objective functional value is the lowest possible. In the context of an 
optimal control problem, a sufficient condition for the minimum should lead 
to the inequality 

I(y, u) ≥ I(ŷ, û) 

where I is the objective functional, y is the state vector corresponding to any 
admissible control vector u, and y ̂ is the optimal state vector corresponding to 
the optimal control vector û. The states, controls, and costates are functions 
of time t, which is the independent variable. The above inequality is opposite 
if the maximum of I is to be determined. 

To yield the above inequality, a sufficient condition must include at least 
one inequality, which in fact is another optimal control problem. Thus, for the 
global minimum in the simplest optimal control problem, a set of sufficient 
conditions by Mangasarian (1966) requires that 
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1. the controls satisfy the necessary conditions for the minimum, 

2. the costates at the minimum are non-positive if g [i. e., the vector of gis 
in Equation (3.32) on p. 67] is nonlinear with respect to the states or 
controls, and 

3. the functions F [Equation (3.31), p. 67] and g are convex jointly with 
respect to the states and corresponding controls 

The proof of this result is provided in Appendix 3.C (p. 81). 

The third requirement of Mangasarian gives rise to inequalities of the form 
L(y,u) ≥ 0 [see Inequality (3.52), p. 82]. Proving it becomes a new optimal 
control problem in which zero needs to be established as the minimum of L 
for all admissible u. This task cannot be accomplished analytically except 
in rare, simple cases where the Hessian of L could be easily checked for pos­
itive definiteness. Because of this situation, the application of any sufficient 
condition in optimal control is very limited. 

3.4.1 Weak Sufficient Condition 

We will now examine the role of the second variation in identifying the opti­
mum. Let us say we desire to find the minimum of I, and we have determined 
the minimum from the necessary conditions. Then from Equation (2.33) on 
p. 52, and noting that δI = 0 at the minimum, we get 

1 
I(y,u) − I(ŷ, û) =  δ2I(ŷ; δy) + E 2(δy) (3.46) 

2 

where δ2I is the second variation of I, and E 2 is the error term, both depending 
on δu ≡ (u − û) and the corresponding δy ≡ (y − ŷ). Observe that the non-
negativity of δ2I does not assure the minimum. For example, there may exist 
a u for which δ2I is less than the absolute value of E2, which happens to be 
negative. In such a case, let E2 = −β where β > 0. Then the right-hand side 
of Equation (3.46) becomes 

δ2I |E2| β 
+ E2 < + E2 = − β < 0  

2 2 2 

The above result implies that I(y,u) − I(ŷ, û) < 0 so that  I(ŷ, û) is n ot a  
minimum! We need to impose some condition on δ2I to ensure its minimum. 
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The Condition 

If we place  2
a condition that the error ratio E2/lδul vanishes with lδul, and  

δ2I ≥ 2αlδul where α is some positive number, then 

α 2 
I(y, u) − I(ŷ, û) ≥ lδu

2 
l + E2

l2
 
α E≥ l 2

δu + 
2 l 2δul

 

If we can find a sufficiently small neighborhood of û such that all δu therein 
have norms sufficiently small to render any negative error ratio less than α/2, 
then 

I(y, u) − I(ŷ, û) ≥ 0 

in that locality, and I(ŷ, û) is the local minimum. 
The above sufficient condition is weak, since it is applicable only in a suffi­

ciently small vicinity of the optimal control. The satisfaction of this condition 
does not guarantee a global minimum. Moreover, it is not easy to come up 
with a suitable α in an optimal control problem. 

From a practical viewpoint, the second variation can be utilized 

1. as another necessary condition for the optimum 

2. to speed up the convergence of an optimal control algorithm near the op­
timum when the variational derivatives of I with respect to u approach 
zero. 

Hence, to increase the confidence on the final optimal solution, the opti­
mal control problem needs to be solved with different initial guesses to the 
numerical algorithm. If several optima are obtained, then the most optimal 
among them is adopted. There is no golden rule to ensure that the optimum 
is global. 

3.5 Piecewise Continuous Controls 

The optimal control analysis developed above is also applicable when a control 
function is piecewise continuous with a finite number of jump discontinuities, 
as shown in Figure 3.4. Observe that a jump discontinuity suddenly changes 
ẏ or the slope of the state variable. The result is a corner in the graph of y(t) 
at the time of discontinuity where ẏ is not defined. Geometrically, there is no 
unique slope of the curve at a corner. One can draw an infinite number of 
tangents there. 
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discontinuity 

jump 
discontinuity 

y 

u3 

u1 

corner 

u2 

t1 t2 

ut1,t2 

jump 

0 tft 

Figure 3.4 A piecewise continuous control ut1,t2 and the accompanying state y(t) 

Let us use ut1,t2 to denote a piecewise continuous control with jump dis­
continuities at times t1 and t2. Thus, u t1,t2 is made up of three continuous 
controls — u1, u2, and u 3, as shown in the figure. Then the problem of finding 
the ut1,t2 that minimizes ttf tt1 t2 tf 

I = F (y, ut1,t2 ) dt or F (y, u1) dt + 
t

F (y, u2) dt + 
t

F (y, u3) dt 

0 '0   ' t'1    t2  
I1 I2 

' '   
I3 

subject to 

'
ẏ = g(y, ut1,t2 ), y(0) = y0, 0 ≤ t ≤ tf 

is the same as finding the minimum of I1, I2, and I 3 over the contiguous 
time intervals [0, t1), [t1, t2), and [t1, tf] during which the control has no jump 
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discontinuities. Therefore, to find the control ut1,t2 that minimizes I, we apply 
the developed optimal control analysis to the following three subproblems: 

1. Find  the  u1 that minimizes I1 subject to 

ẏ = g(y, u), y(0) = y0, 0 ≤ t ≤ t1 

2. Find  the  u2 that minimizes I2 subject to 

ẏ = g(y, u), t1 ≤ t ≤ t2 

where y(t1) is obtained from the previous subproblem 

3. Find  the  u3 that minimizes I3 subject to 

ẏ = g(y, u), t2 ≤ t ≤ tf 

where y(t2) is obtained from the previous subproblem 

At the minimum of I, additional conditions called, Weierstrass–Erdmann 
corner conditions, must be satisfied on the corners. These conditions require 
the continuity of the Hamiltonian and costate at the corners. The details will 
come later in Section 6.6. 

3.A Differentiability of λ 

We need to show that λ is differentiable with respect to t in the following 
equation on p. 62: 

ttf ttf 
(Fy + λGy )δy dt − λδẏ dt = 0 (3.16) 

0 0 

so that ttf ttf 
˙(Fy + λGy )δy dt − [λδy] + [λδy] + λδy dt = 0 (3.17) t=tf t=0
 

0 0
 

Applying integration by parts to the first integral in Equation (3.16), we 
obtain t t tf ttf t t ttf 

δy (Fy + λGy ) dt − δẏ (Fy + λGy ) dt dt − λδẏ dt = 0 (3.47) 
0 0 0 

0 0 
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Introducing tt 
φ(t) ≡ (Fy + λGy ) dt 

0 

and considering that δy is zero at t = 0 due to the initial condition [Equa­
tion (3.6), p. 58], we can write Equation (3.47) as 

tf 

δy(tf)φ(tf) − 
t
[φ(t) + λ ]δẏ dt = 0 (3.48) 

0 

Note that the above equation is valid for the entire class of continuous δy 
functions that are zero at t = 0. This class includes the subclass of δy func­
tions, which are zero at t = tf as well. Now if δy belongs to the subclass, then 
the coefficient of δẏ in Equation (3.48) is a constant, as we will show shortly. 
This is a very important result, which implies that the coefficient [φ(t) + λ ] 
has to be the same constant for the entire class of δy functions. If that is not 
so, then Equation (3.48) will obviously not apply to the subclass and therefore 
will not be valid for the entire class of δy functions. 

            Before examining the differentiability of λ, let us show the constancy of
the coefficient of δẏ, i. e., [φ(t) +  λ]. This result is known as the Lemma of 
Dubois–Reymond. 

Constancy of the coefficient of δẏ

With δy additionally being zero at t = tf, Equation (3.48) becomes ttf ttf 
[φ(t) +  λ] δẏ dt ≡ c(t)δẏ dt = 0 (3.49) ' ' 

0 0c(t) 

where c(t) stands for the coefficient of δẏ. Let  c0 be the average of c(t) in  the  
interval [0, tf]. Then ttf ttf 

c(t) dt = c0(tf − 0) = c0 dt 

0 0 

which yields upon rearrangement ttf 
[c(t) − c0] dt = 0  

0 

Thus, the choice of tt 
δy = [c(t) − c0] dt 

0 
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conforms to the current conditions of δy being zero at t = 0  and  tf. For  this  
choice, δẏ is given by 

δẏ = c(t) − c0 (3.50) 

and is admissible. We will use it in the following result 

ttf ttf 
tf 

[c(t) − c0]δẏ dt = c(t)δẏ dt − c0 δy = 0 (3.51) 
0 

0 0 

which is due to Equation (3.49) and the conditions δy(0) = δy(tf) = 0. Sub­
stituting the δẏ from Equation (3.50) in Equation (3.51), we obtain 

ttf 
2

[c(t) − c0] dt = 0  

0 

Observe that the above integrand, being a squared term, cannot be negative. 
It must be zero throughout the interval in order to satisfy the above equation. 
Thus, 

c(t) =  c0, 0 ≤ t ≤ tf 

showing that c(t) or  [φ(t) +  λ], the coefficient of δẏ in Equation (3.49), is a 
constant. As explained earlier in the paragraph following Equation (3.48), 
this result extends to the entire class of δy functions. Thus, [φ(t) +  λ] is a  
constant in Equation (3.48) for all δy functions. Let us now examine the 
differentiability of λ by expressing the above result, i. e., 

tt 
φ(t) +  λ = (Fy + λGy ) dt + λ = c0 

0 

or tt 
λ = − (Fy + λGy ) dt + c0 

0 

The above equation shows that λ is differentiable with respect to t at the op­
timum for which Equation (3.16) is the necessary condition. At the optimum, 
the derivative of λ with respect to t is 

λ̇ = −(Fy + λGy ) 
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3.B Vanishing of (Fy + λGy + λ̇) at t = 0  

We need to show that the coefficient (Fy + λGy + λ̇) of  δy in the following 
equation on p. 63: ttf 

Fy + λGy + λ̇ δy dt = 0 (3.20) 

0 

has to be zero at t = 0 even though δy there is zero. 
Suppose that the coefficient (Fy + λGy + λ̇) is greater than zero at t = 0.  

This supposition means that (Fy + λGy + λ̇), which is a continuous function,∗ 

has to be greater than zero in a finite subinterval [0, t1] however small. Now 
δy could be any continuous function provided it is zero at t = 0. Satisfying 
this provision, we choose a δy to be t(t1 −t) in the subinterval but zero outside 
it. Figure 3.5 shows these two functions as well as their product, the integral 
of which is 

ttf tt1 

Fy + λGy + λ̇ δy dt = Fy + λGy + λ̇ t(t1 − t) dt >  0 

0 0 

in contradiction to Equation (3.20). The above integral turns out to be posi­
tive because (Fy + λGy + λ̇) is positive in the subinterval [0, t1], and t(t1 − t) 
is zero at t = 0 but positive otherwise. 

Supposing the coefficient (Fy + λGy + λ̇) at  t = 0 to be less than zero 
contradicts Equation (3.20) again. The integral turns out to be negative this 
time. 

Thus, neither greater nor less than zero as supposed, the coefficient of δy, 
i. e., (Fy + λGy + λ̇), has to be zero at t = 0  where  δy is already zero. This 
result is due to Du Bois-Reymond (1879) and holds for any t where δy is zero. 

3.C Mangasarian Sufficiency Condition 

For the minimum (maximum) of the optimal control problem given by Equa­
tions (3.31)–(3.33) on p. 67, it is sufficient to have 

1. the  control  û satisfy the necessary conditions in Table 3.2, 

∗ Because of the assumption made at the outset that the partial derivatives of F and g with 
respect to y are continuous. 
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(Fy + λGy + λ̇)δy 

δy 

(Fy + λGy + λ̇) 

t1 

0 
0 tf 

  
Figure 3.5 The functions Fy + λGy + λ̇ , δy, and their product, i. e., the inte­

grand of Equation (3.20) 

2. all non-positive (non-negative) elements of the costate vector λ in the 
interval [0, tf] at the minimum (maximum) if 

T 
g = g1 g2 . . .  gn 

is nonlinear with respect to u or y, and  

3. a convex (concave) F as well as g jointly with respect to u and the 
corresponding y in the interval [0, tf] 

Note that the entities H , F , g, and their partial derivatives are functions of 
ˆy and u. Such an entity, say, H , is denoted by H when evaluated at the 

optimum, i. e., for the vector of optimal controls û and the corresponding 
vector of optimal states ŷ. 

ˆLet us show the result for the minimum of I or I. ∗ Because F and g are 
specified to be convex and continuously differentiable, 

T 
yF − F̂ ≥ F̂ T 

u(y − ŷ) +  F̂ (u − û) (3.52) 

T 
y g T 

ug − ĝ ≥ ĝ (y − ŷ) +  ̂ (u − û) (3.53) 

throughout the time interval [0, tf]. 

∗ To show it for the maximum, reverse the inequalities that follow. 
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Since û satisfies the necessary optimality conditions (see Table 3.2, p. 68), 

Tλ = −Ĥy ⇒ F̂y = −λ̇− ĝy λ ⇒ F̂T = −λ̇T − λT ĝy (3.54) y 

Ĥu = 0  ⇒ F̂u = −ĝu 
Tλ ⇒ F̂u 

T = −λT ĝu (3.55) 

Using Equations (3.54) and (3.55) in Inequality (3.52), and integrating both 
sides provides ttf ttf 

˙I − Î ≥ −  λT(y − ŷ) dt − λT ĝy(y − ŷ) +  λT ĝu(u − û) dt (3.56) 

0	 0 

Integrating by parts the first integral in the above inequality, we get ttf	 ttf ttf 
λ̇T(y − ŷ) dt = − λT(ẏ − ẏ̂) dt = − λT(g − ĝ) dt (3.57) 

0	 0 0 

where we have applied the final costate condition λ(tf) =  0, the non-variation 
of the state at t = 0,  i.  e.,  y(0) − ŷ(0) = δy(0) = 0, and state equations in the 
last step. With the help of Equation (3.57), Inequality (3.56) becomes 

ttf 
I − Î ≥ λT g − ĝ− ĝy(y − ŷ) − ĝu(u − û) dt 

0 

in which the square-bracketed term is greater than zero due to Inequal­
ity (3.53). Because the costate at the minimum is specified to be non-positive, 
i. e., λ ≥ 0, we  obtain  I − Î ≥ 0. 

If ĝ is linear with respect to u and y, then Inequality (3.53) becomes an 
equation so that the specification λ ≥ 0 is not required to obtain I − Î ≥ 0. 
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Exercises 

3.1 Find the necessary conditions for the minimum of 

ttf 
I = (u 2 − y2) dt 

0 

subject to 

2 ẏ1 = −y1u + y1u , y1(0) = y1,0 

ẏ2 = y2u, y2(0) = 0 

3.2 For the plug flow reactor problem on p. 6, find the necessary conditions 
for the minimum of tZ 

dy
I = dz	 (1.12) 

dz 
0 

subject to 

dy −k1yP 4k2(y0 − y)2P 2 

= τS  +	 (3.58) 
dz 2y0 − y (2y0 − y)2 

with y(0) = y0. 

3.3	 Find the necessary conditions to maximize the profits 

I = y8(tf) 

from an isothermal CSTR carrying out four simultaneous reactions described 
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by (Jensen, 1964) 

ẏ1 = u4 − (u1 + u2 + u4)y1 − a1y1y2 − a2y1y6u3
 

ẏ2 = u1 − (u1 + u2 + u4)y2 − a1y1y2 − 2a3y2y3
 

ẏ3 = u2 − (u1 + u2 + u4)y3 − a3y2y3
 

ẏ4 = −(u1 + u2 + u4)y4 + 2a1y1y2 − a4y4y5
 

ẏ5 = −(u1 + u2 + u4)y5 + a5y2y3 − a4y4y5
 

ẏ6 = −(u1 + u2 + u4)y6 + 2a4y4y5 − a2y1y6u3
 

ẏ7 = −(u1 + u2 + u4)y7 + 2a2y1y6u3
 

ẏ8 = a5[(u1 + u2 + u4)y1 − u4] − a6u1 − a7u2
 

+ (u1 + u 2
2 + u4)(a2y4 + a8y5 + a9y6 + a10y7) − a11u3 − a12 

with initial conditions yi(0) = yi,0 for i = 1, 2, . . . , 8 over the time interval 
[0, tf]. The coefficients a1 to a12 are constants. The controls u1 to u4 are, 
respectively, three feed flow rates and electrical energy input to the CSTR as 
functions of time. 

3.4 Show that the non-autonomous problem of finding the minimum of 

ttf 
I = F [y(t), u(t), t] dt 

0 

subject to 
G[y(t), y,˙ u(t), t) ≡ −ẏ + g[y(t), u(t), t] = 0  

is similar to the autonomous problem in which t does not appear explicitly as 
an argument of F and g. 

Hint : Propose t  as a new state variable, say, y0 (see Section 9.7.1, p. 270). 
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Chapter 4
 

Lagrange Multipliers 

In this chapter, we introduce the concept of Lagrange multipliers. We show 
how the Lagrange Multiplier Rule and the John Multiplier Theorem help us 
handle the equality and inequality constraints in optimal control problems. 

4.1 Motivation 

Consider the simplest optimal control problem, in which we wish to find the 
control function u that optimizes 

ttf 
I = F (y, u) dt (3.4) 

0 

subject to the differential equation constraint 

ẏ = g(y, u) or  y, u) ≡ − ˙ (3.5) G(y, ˙ y + g(y, u) = 0 

with the initial condition 
y(0) = y0 (3.6) 

At the optimum, it is necessary that the variation given by 

ttf 
δI = (Fy δy + Fuδu) dt 

0 

is zero, while satisfying the differential equation constraint. Because the con­
straint ties y and u together, we cannot have δy or δu arbitrary and thus 
independent of each other in the above equation. Recall from the last chapter 
that when the variations are arbitrary, their coefficients are individually zero, 
thereby leading to the necessary conditions for the optimum. This simplifica­
tion is, however, not possible with the above equation. 

Dealing with this problem is easy if Equation (3.5) could be integrated to 
provide an explicit solution for y in terms of u. Then one could substitute 
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y = y(u) into Equation (3.4) and obtain I in terms of u alone. However, this 
approach fails in most problems where analytical solutions of the involved 
constraints are simply not possible. 

4.2 Role of Lagrange Multipliers 

The above difficulty is surmounted by introducing an undetermined function, 
λ(t), called Lagrange multiplier, in the augmented objective functional defined 
as ttf 

J ≡ F (y, u) +  λG(y, ˙ dty, u) (3.7) 

0 

At the optimum, the variation of J is ttf 
δJ = [Fy δy + Fuδu + λ(Gy δy + Gẏδẏ + Guδu) +  Gδλ] dt = 0 (4.1) 

0 

where the role of λ is to untie y from u by assuming certain values in the inter­
val [0, tf]. Given such a λ, we are then able to vary δy and δu arbitrarily and 
independently of each other. This ability leads to the simplified necessary con­
ditions for the optimum of J and, equivalently, for the constrained optimum 
of I. The conditions include an additional equation for λ, the satisfaction of 
which enables the arbitrary variations in the first place. 

In Section 3.2.1 (p. 59), we had asserted the Lagrange Multiplier Rule that 
the optimum of the augmented J is equivalent to the constrained optimum 
of I. This rule is based on the Lagrange Multiplier Theorem, which provides 
the necessary conditions for the constrained optimum. We will first prove this 
theorem and then apply it to optimal control problems subject to different 
types of constraints. 

4.3 Lagrange Multiplier Theorem 

The theorem states that if a functional I(y) subject to the constraint 

K(y) =  k0 

is optimal at y = ŷ near which δI and δK are weakly continuous, and  there  
exists a variation δz at ŷ along which 

δK(ŷ; δz) = 0  
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then the following conditions are necessary: 

1. The constraint is satisfied, i. e., 

K(ŷ) = k 0 (4.2) 

2. There exists a constant multiplier λ such that 

δI(ŷ; δy) +  λδK(ŷ; δy) = 0 (4.3) 

for all variations δy. 

Remarks 

1. The provision that δK(ŷ; δz) = 0 along at least one variation δz is called 
the normality condition or the constraint qualification. 

2. Equations (4.2) and (4.3) are the necessary conditions for the con­
strained optimum of I at ŷ. 

3. Both I  and K in a general case are functionals of a function y depending 
on an independent variable. 

4. Weak continuity of δI means the continuity of δI with respect to y for 
each fixed δy. This is a relaxed requirement. Not fixing δy would have 
imposed the demand for the Fréchet differential instead of the variation 
of I. 

5. If δI  is weakly continuous near ŷ, it means at any y near ŷ, δI is contin­
uous for each fixed δy. In o ther w ords, i f y 1 and y2 are two functions in 
the vicinity of ŷ, then  δI(y1; δy) approaches δI(y2; δy) as  y1 approaches 
y2 for each fixed δy. 

Example 4.1 

Consider the functional ttf 
I = F (y) dt 

0 

whose variation is given by 

ttf 
δI = Fy (y) δy dt 

0 

Then the weak continuity of δI means the continuity of the partial 
derivative Fy . 



at ŷ: 

δI + λδK = 0  at  ̂y 

Givens 

2. K = k0 

3. δI and δK are 

weakly continuous 

(necessary conditions for 

the constrained optimum) 

theorem 

Inverse function 

1. I is optimum 

(contradicts Given 1) 

I is NOT optimum at ̂y 

The Jacobian is zero at ̂y 

The assumption is wrong! 

Assumption 

Non-zero Jacobian of 

I and K 

K = k0 and 
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Note that most of the optimal control problems have continuous partial 
derivatives of the involved integrands and, therefore, satisfy the require­
ment of weak continuity. 

Outline of the Proof 

As shown in Figure 4.1, together with the givens and an assumption of a non­
zero Jacobian of I and K at the optimum, we will invoke the Inverse Function 
Theorem (Appendix 4.A, p. 115) to contradict the optimum of I. This  step  
will entail the Jacobian being zero and lead to the desired conclusion. 

Figure 4.1 Outline of the proof for the Lagrange Multiplier Theorem 

The Proof 

Let ŷ be the optimal function. Since any admissible function must satisfy the 
the constraint K(y) =  k0, we have  

K(ŷ) =  k0 (4.2) 

as the first necessary condition for the constrained optimum of I. 
Consider this ŷ and its arbitrary variations, δy and δz. Keeping these three 

functions fixed, the functional values I(ŷ+μδy+νδz) and  K(ŷ+μδy+νδz) are  
functions of μ and ν, which are some real numbers. Let these two functions 
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be, respectively, 

i(μ, ν) ≡ I(ŷ + μδy + νδz) (4.4) 

and k(μ, ν) ≡ K(ŷ + μδy + νδz) (4.5) 

for all μ and ν within a region R that is sufficiently small to allow for the 
weak continuity of δI as well as δK at y = (ŷ + μy + νz). Figure 4.2 shows 
the (μ, ν) coordinates in R mapped to the (i, k) coordinates b y i (μ, ν) and  
k(μ, ν). 

Jacobian Determinant 

We now introduce the Jacobian determinant of i and k 

i  i
  ≡ 

��� μ ν 
D(μ, ν)   kμ kν 

�
where iμ, for example, is the partial derivative

��
 of i with respect to μ and is 

given by 

� �

i(μ + α, ν)  i(μ, ν)
iμ = lim 

−
α→0 α 

I[(ŷ + μδy + νδz) + αδ y] − I[(ŷ + μδy + νδz)] 
= lim 

α→0 α 

d 
= I(ŷ + μδy + νδz)α=0

dα 

= δI(ŷ + μδy + νδz; δy) (4.6) 

ν k 

î 

(μ1, ν1) 

i1 

(0, 0) 

μ = iinv(i, k) 

ν = kinv(i, k) 

i = i(μ, ν), k = k(μ, ν) 

i 

R 

k0 

(̂i, k0) 
μ 

Figure 4.2 Mappings between (μ, ν) and  (i, k). The shaded region has the inverse 
mappings. 
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The last equation follows from the definition of the variation [see Equa­
tion (2.12), p. 36]. Similar results are obtained for the remaining partial 
derivatives. Using them in the definition of D, we  obtain  

D(μ, ν) =  
δK(ŷ + μδy + νδz; δy) δK(ŷ + μδy + νδz; δz) 

δI(ŷ + μδy + νδz; δy) δI(ŷ + μδy + νδz; δz) 

Note that the given weak continuity of δI and δK gets translated into the 
continuity of their equivalents, i. e., the partial derivatives of i and k. In  other  
words, the functions i and k are differentiable in the sufficiently small region 
containing μ and ν. 

When μ = ν = 0, the Jacobian becomes 

D(0, 0) = 
δK(ŷ; δy) δK(ŷ; δz) 

δI(ŷ; δy) δI(ŷ; δz) 

which is  at the  optimum.  Let us  assume  that  D(0, 0) is not zero. This 
assumption rules out δy or δz being zero throughout the t-interval [0, tf]. 
Otherwise, say, if δy is zero throughout the interval, then both terms of the 
first column of the Jacobian would be zero and result in D = 0.  

Application of Inverse Function Theorem 

Observe from the definitions in Equations (4.4) and (4.5) that μ = 0  and  
ν = 0 correspond to i(0, 0) = I(ŷ) ≡ î, and  k(0, 0) = K(ŷ) =  k0 using 
Equation (4.2). Figure 4.2 shows these coordinates. The functions i(μ, ν) and  
k(μ, ν) are differentiable in the region R around μ = ν = 0.  

Since D(0, 0) is not zero, the Inverse Function Theorem (Appendix 4.A, 
p. 115) guarantees the existence of inverse functions 

μ = iinv(i, k) (4.7) 

ν = kinv(i, k) (4.8) 

which are continuous in some region shown shaded around (̂i, k0) in the figure. 
In this region, we can always pick a coordinate (i1, k0) where  i1 is less than 
I(ŷ) and the constraint K = k0 is satisfied. Then Equations (4.7) and (4.8) 
provide 

= kinv(i1, k0)μ1 = iinv(i1, k0) and  ν1 

which contradict the specification that î is the minimum. The presence of 
μ1 and ν1 implies that while satisfying the constraint K(y) =  k0, a  control  
function y = (ŷ + μ1δy + ν1δz) provides  i1 = I(y), which is less than î = I(ŷ). 
Since this is impossible, our assumption cannot be true, so that the D(0, 0) 
has to be zero. Therefore, 

D(0, 0) = 
δK(ŷ; δy) δK(ŷ; δz) 

δI(ŷ; δy) δI(ŷ; δz) 
= 0 (4.9) 
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which leads to the second necessary condition for the minimum of I(y) at  ̂y 
subject to the constraint K(y) =  k0. The same condition is obtained for the 
constrained maximum of I by considering i1 greater than I(ŷ). 

Expanding Equation (4.9), we get 

δI(ŷ; δy)δK(ŷ; δz) − δI(ŷ; δz)δK(ŷ; δy) = 0 (4.10) 

for all functions δy and δz. With the introduction of 

δI(ŷ; δz)
λ ≡ −  

δK(ŷ; δz) 

where δK(ŷ; δz) is not zero as per the given constraint qualification, Equa­
tion (4.10) becomes 

δI(ŷ; δy) +  λδK(ŷ; δy) = 0  (4.3) 

for all δy and a Lagrange multiplier λ. The above equation is the second 
necessary condition for the constrained optimum of I(y) at  ̂y subject to 
the constraint K(y) =  k0. This completes the proof of the Lagrange Multiplier 
Theorem. 

Lagrange Multiplier Rule 

This rule is based on the Lagrange Multiplier Theorem. Consider the aug­
mented functional 

J(y) ≡ I(y) +  λ[K(y) − k0] 

where both y and λ are functions of an independent variable t. According to 
the theorem, the necessary condition for the optimum of J at ŷ is that 

δJ(ŷ; δy) = 0, or 

δI(ŷ; δy) +  λδK(ŷ; δy) + δλ[K(ŷ) − k0] = 0  ' ' ' ' 
J1 J2 

Since δλ is arbitrary and appears only in the last term J2 of the above equa­
tion, both J1 and J2 should be individually zero. Thus, 

J2 = δλ[K(ŷ) − k0] = 0  

implies that 
K(ŷ) − k0 (4.2) 

because δλ is an arbitrary function of t. Next,  J1 = 0  yields  

δI(ŷ; δy) +  λδK(ŷ; δy) = 0  (4.3) 

According to the Lagrange Multiplier Theorem, Equations (4.2) and (4.3) 
are the necessary conditions for the optimum of I subject to the following 
preconditions: 
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1. The variations of both I and K are weakly continuous near ŷ. 

2. The constraint qualification that the variation of K at y = ŷ is non-zero 
for at least one variation of y. 

Observe that Equations (4.2) and (4.3), which arise from δJ(ŷ; δy) = 0, are 
also the necessary conditions for the optimum of J . This fact gives rise to the 
following Lagrange Multiplier Rule: 

The optimum of a functional I(y) subject to a constraint K(y) =  k0 is 
equivalent to the optimum of the augmented functional 

J(y) =  I(y) +  λ[K(y) − k0] 

where λ is an undetermined Lagrange multiplier, both δI and δK are weakly 
continuous near the optimal y, and the constraint qualification δK(y; δz) = 0  
holds along at least one variation δz at the optimal y. 

Before considering the applications of the Lagrange Multiplier Theorem, it 
is worthwhile to generalize the theorem to handle several equality constraints 
and functions. 

4.3.1 Generalization to Several Equality Constraints 

Let us derive in terms of Lagrange multipliers the necessary conditions for the 
optimum of I(y) at  y = ŷ subject to two equality constraints 

K1(y) =  k1 and K2(y) =  k2 

and weak continuity of δI, δK1, and  δK2 near ŷ with the following constraint 
qualification: 

There exists at least a pair of variations δz1 and δz2 corresponding to which 
the determinant ⏐⏐⏐⏐⏐ 

δK1(ŷ; δz1) δK1(ŷ; δz2) 

δK2(ŷ; δz1) δK2(ŷ; δz2) 

⏐⏐⏐⏐⏐ 
= 0  

If ŷ is optimal, then it must satisfy the above constraints. Therefore, the 
first set of two necessary conditions is 

K1(ŷ) =  k1 and K2(ŷ) =  k2 

Now consider a function 

y ≡ ŷ + μδy + ν1δz1 + ν2δz2 

in the vicinity of ŷ with three arbitrary but fixed variations, δy, δz1, and  
δz2. The variables μ, ν1, and  ν2 are some real numbers in a region R. Then  
the functional values I(y), K1(y), and K2(y) are the functions i(μ, ν1, ν2), 
k1(μ, ν1, ν2), and k2(μ, ν1, ν2), respectively. If R is small enough to allow for 
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weak continuity of δI, δK1, and δK 2 near ŷ, then from Equation (4.6) it 
follows that ⏐⏐⏐ ∂i  ∂i  ∂i  ⏐⏐ ∂μ ∂ν  

⏐
⏐ 1 ∂ν2 

⏐
⏐ ∂k⏐⏐ ∂k ∂k

D(μ, ν1, ν2) ≡ 1 1 1 

⏐
 

⏐⏐⏐⏐⏐ ⏐⏐⏐⏐⏐ ∂μ ∂ν1 ∂ν2 

∂k ∂k
⏐⏐⏐⏐ 2 ∂k2 2 

  ∂μ ∂ν1 ∂ν2 

⏐
⏐⏐⏐ δI(y; δy) δI(y;

⏐
 δz1) δI(y; δz2) 

=
⏐⏐⏐ δK1(y; δy) δK1(y; δz1) δK1(y; δz2) ⏐ 

⏐
 δK2(y; δy) δK2(y; δz1) δK

⏐
2(y; δz2)

⏐⏐⏐⏐
 

Applying the Inverse Function Theorem as before, we establish

⏐
 

⏐⏐⏐ δI(ŷ; δy) δI(ŷ; δz1) δI(ŷ; δz2) 

D(0, 0, 0) =⏐⏐⏐ δK1(ŷ; δy) δK1(ŷ; δz1) δK1(ŷ; δz2)⏐ 

⏐
 = 0  

 δK2(ŷ; δy) δK2(ŷ; δz )

⏐
1) δK2(ŷ; δz2

⏐⏐⏐
 

which is the remaining necessary condition for the optimum o

⏐⏐
f I(ŷ) subject 

to K1(ŷ) = k 1 and K2(ŷ) =  k2. This condition expands to ⏐⏐⏐ δK δz1) δK⏐ 1(ŷ; 1(ŷ; δz2) ⏐⏐⏐ δI(ŷ; δz1) δI(ŷ; δz2) 
δI(ŷ; δy)⏐ ⏐⏐− δK1(ŷ; δy)  δK2(ŷ; δz1) δK2(ŷ; δz2)  

⏐⏐⏐⏐⏐ δK2(ŷ; δz1) '   ' '   δK2(ŷ; δz  
2) 

⏐⏐
η0 η1

⏐⏐
⏐⏐⏐⏐ δI(ŷ; δz ) δI(ŷ; δz ) 

⏐
1 2

+ δK2(ŷ; δy)⏐ = 0  

'
 ' δK1(ŷ; δz1) ) 

⏐⏐
  δK1(ŷ; δz  2

η2 

⏐⏐⏐
where η0, η1, and η 2 are the determinan

'
ts as indicated above. 

Because of the provision of constraint qualification, η0 = 0.  Thus,  we  can  
introduce the Lagrange multipliers 

λ1 ≡ −η1/η0 and λ2 ≡ η2/η0 

to obtain 

δI(ŷ; δy) + λ 1δK1(ŷ; δy) +  λ2δK2(ŷ; δy) = 0  

as the final necessary condition for the constrained optimum of I. 
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Lagrange Multiplier Theorem for Several Equality Constraints 

Generalizing the above results for m constraints, Ki(y) =  ki, i = 1, 2, . . . ,m, 
the necessary conditions for the optimum of I(y) at  ̂y 

Ki(ŷ) =  ki, i = 1, 2, . . . ,m  
m

δI(ŷ; δy) +  λiδKi(ŷ; δy) = 0  
i=1 

subject to the following preconditions: 

1. The variations of I and Ki, i = 1, 2, . . . ,m  are weakly continuous near 
the optimum at ŷ. 

2. The constraint qualification that there exists a set of m variations 

(δz1, δz2,  . . . ,  δzm)
 

of y such that the determinant
 ⏐
δK1(ŷ; δz1) δK1(ŷ; δz2) . . .  δK1(ŷ; δzm) 

δK2(ŷ; δz1) δK2(ŷ; δz2) . . .  δK2(ŷ; δzm) 

⏐
η0 = 

⏐⏐⏐ ⏐
⏐⏐⏐⏐
⏐

 . . . . = 0⏐ .  .  .  . . . 

⏐⏐
.

⏐
⏐ 

⏐
⏐ .

δKm(ŷ; δz  1) δKm(ŷ; δz2) . . .  δKm(ŷ; δzm) 

⏐⏐⏐⏐
Lagrange Multiplier Rule for Several Equality Constrain

⏐⏐
ts 

Similar to the case of a single constraint in the last section, the rule is as 
follows: 

The optimum of a functional I(y) subject to constraints 

Ki(y) =  ki, i = 1, 2, . . . ,m  

is equivalent to the optimum of the augmented functional 

m


J(y) =  I(y) +  λi[Ki(y) − ki]
 
i=1
 

where λis are undetermined Lagrange multipliers, δI and all δKis are  weakly  
continuous near the optimum, and the aforementioned constraint qualification 
η0 = 0 holds for at least one set of m variations of y at the optimum. 

4.3.2 Generalization to Several Functions 

The result of the above section is easily extensible to the general case in which 
the objective functional and equality constraints depend on several functions. 
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Let I be a functional dependent on the vector of n functions 

 
y = y1 y2 . . .  yn 

T

and subject to m constraints

 
 

 

Ki(y) = k i, i = 1, 2, . . . ,m  

If satisfying the above constraints I is optimum at y = ŷ such that 

1. the functionals δI and all δKis are weakly continuous near ŷ, and  

2. there exists a set of m variations 

(δz1, δz2,  . . . ,  δzm)
 

where δzi is the i-th variation vector at ŷ given by
 

 
δzi = δzi1 δzi2 . . .  δzin 

T

for which the following co

 
nstraint qualification is sa

 
tisfied: 

⏐⏐⏐ δK (  ⏐ 1 ŷ; δz1) δK1(ŷ; δz2) . . .  δK1(ŷ; δzm) ⏐⏐ δK2(ŷ; δz1) δK2(ŷ; δz⏐ 2) . . .  δK2(ŷ; δzm) 
η0 = 

⏐⏐⏐⏐⏐⏐⏐ = 0  ⏐ . . . . ⏐ . . . . . . . . ⏐⏐ δKm(ŷ; δz1) δKm(ŷ; δz2) . . .  δKm(ŷ; δzm)

⏐⏐⏐⏐
  

then the necessary conditions for the optimum are 

⏐⏐

Ki(ŷ) =  ki, i = 1, 2, . . . ,m  
m  

δI(ŷ; δŷ) +
�
 λiδKi(ŷ; δŷ) =  0  
i=1 

where λis are t he m  undetermined Lagrange multipliers. 

4.3.2.1 Simplification of Constraint Qualification 

The constraint qualification η0 = 0 can be simplified by expanding the terms 
of the determinant. In general 

∂Ki ∂Ki ∂Ki
δKi(ŷ; δzj ) =

�
 δzj1 + δzj2 + · · ·+ δzjn
∂y1 ∂y2 ∂yn 

�
ŷ

= KT 
iŷδzj 



 

 

  

� 
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where Kiŷ is the vector of partial derivatives of Ki with respect to y and is 
evaluated at y = ŷ, i. e .,  �

∂K  ∂K
 i i ∂Ki

Kiŷ =
n 

�T
. . .  

∂y1 ∂y2 ∂y ŷ

Thus, the constraint qualification can be written as 

η0 =

⏐⏐⏐ T  K1ŷ 1 K1
T  δz ŷδz2 . . .  KT

 ⏐ 1ŷδzm⏐⏐   
2
T  K yδz⏐ ˆ 1 K2

T
ŷδz2 . . .  K2

T
ŷδzm 

⏐
 

⏐
⏐ = 0  ⏐ . . . . ⏐ .  .   

⏐
. . .. .. 

⏐⏐
  KT  

⏐
ŷδz

⏐
 

m 1 Km
T
ŷδz2 . . .  Km

T
ŷδzm 

⏐⏐⏐
If a determinant is no

⏐⏐
t zero, it means that its rows are linea

⏐⏐
rly independent. 

In other words, none of the rows can be expressed as a linear combination 
of other rows. This result in case of the above determinant η0 means that 
there is no Kiŷ that can be expressed as a linear combination of other Kjŷ

(j = 1, 2, . . . ,m, j = i). 
As a consequence, the simplified constraint qualification is that the vectors 

∂Ki ∂Ki ∂Ki
T

Kiŷ = 

�
. . .  

∂y1 ∂y2 ∂yn 

�
, i = 1 , 2, . . . ,m  

ŷ

are linearly independent. 

Generalized Lagrange Multiplier Rule 

The rule for this general case of several constraints and functions is as follows: 
The optimum of a functional I(y) where  

T 
y = y1 y2 . . .  yn 

subject to m constraints 

Ki(y) =  ki, i = 1, 2, . . . ,m  

is equivalent to the optimum of the augmented functional 

m

J(y) =  I(y) +  λi[Ki(y) − ki] 
i=1 

where λis are undetermined Lagrange multipliers, δI and all δKis are  weakly  
continuous near the optimal y, and the vectors of partial derivatives Kiŷ

(i = 1, 2, . . .m) are linearly independent. 
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4.3.3 Application to Optimal Control Problems 

We will apply the Lagrange Multiplier Rule to obtain the set of necessary 
conditions for the optimum in an optimal control problem constrained by a 
differential equation. In Section 3.2, we asserted the rule and obtained the 
following necessary conditions (see p. 60): 

G = 0 (3.11) 

and ttf 
(δF + λδG) dt = 0 (3.12) 

0 

for the optimum of 
tf 

I = 
t

F (y, u) dt (3.4) 

0 

subject to the differential equation constraint 

ẏ = g(y, u) or  G ≡ −ẏ + g(y, u) = 0 (3.5) 

over the interval [0, tf] with the initial condition y(0) = y0. 

Series of Equality Constraints 

We will first show that the differential equation poses a series of equality 
constraints along the t-direction. Then we will apply the Lagrange Multiplier 
Rule for the optimum of I subject to those constraints. 

As s hown in Figure 4 .3, l et y i and ui be the values of y and u at a point ti 
in the interval [0, tf]. Then at each successive t greater than 0, the differential 

gi 

yi+1 yn 
y0 yi 

ui+1 
ui unu0 

i-th subinterval t0 ≡ 0 tn ≡ tf 

ti ti+1 

Figure 4.3 Values of y, u, and  g in the i-th subinterval 
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equation constrains the corresponding values of y to 

tt1 tt2 ttn −1 tn =tf

y0 + g dt, y1 + g dt,  . . . ,  yn 2 + g dt, and yn 1 + 
t

g dt − −
t0  =0 

y1 

where

' 
 for eac

'
h i-

'
th subin

  t1 tn−2 

1 

er

' 
y2 yn−

t val [ti, ti+1

'
], the 

  
length 

'
Δti  (ti+1

'
y

  t 
n−1 ' 

n 

≡  − ti) tends to 
zero. The i-th such constraint is  

tti+1 

g(y, u) dt = yi+1 − yi 
ti 

which can be written as 

lim giΔti = yi+1 
Δ

− yi 
ti→0 

where from the Mean Value Theorem for integrals (Section 9.14.2, p. 276), gi 
is the value of g at some t in the i-th subinterval. Rearranging the above 
equation, 

yi+1 − yi
lim − + gi Δti = ' 0 ' Δti→0 Δti' ' ki 

Ki (zi) 

where we have denoted the left-hand side as the functional Ki. In the limit 
Δti tending to zero, Ki depends on the vector 

T 
zi = ẏi yi ui 

Hence, for all t >  0 in the interval [0, tf], the differential equation constraint 
is equivalent to the following series of equality constraints: 

Ki(zi) = 0, i = 1, 2, . . . , n  (4.11) 

where n tends to infinity. Note that there is only one constraint Ki(zi) = 0  
at a given t = ti in the interval (0, tf]. 

4.3.3.1 Serial Application of the Lagrange Multiplier Rule 

The optimum of I subject to the first constraint K1 = 0 is equivalent to the 
optimum of 

J1 = I + λ1K1 

In turn, the optimum of J1 subject to the second constraint K2 = 0  is  equiv­
alent to the optimum of 

J2 = J1 + λ2K2 = I + λ1K1 + λ2K2 
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Thus, the optimum of J2 is equivalent to the optimum of I subject to the first 
two constraints. In this way, we sequentially arrive at 

n  
J ≡ Jn = I + 

�
λiKi, lim n → ∞  

i=1 

whose optimum is equivalent to the optimum of I subject to all constraints 

Ki(zi) = 0, i = 1 , 2, . . . , n ,  lim n → ∞  (4.11) 

Consequently, the necessary conditions for the optimum at ẑ are 

1. the constraints given by Equation (4.11) or G = 0 along with y(0) = y0, 
and 

2. the equation 
n→∞ 

δI + λiδKi = 0 (4.12) 
i=0 

where λi is the Lagrange multiplier

�
 corresponding to the i-th constraint, 

Ki(y) = 0, at t = ti. 

We now need to simplify the last condition. The variations δI and δKi are 
respectively given by ttf 

δI = δF dt and 

0 

lim

�
δy − δyi

δKi =  − i+1 
+ gy δyi

Δti→0 i

⏐⏐
 + gu

Δt ti 

δg 

�⏐⏐ δui Δti ti 

Inserting them in Equation (4.12), we get 

'   '
ttf n�→∞ δy δyi

δF dt + lim i+1 
λi 

−
+ 

Δti→0 

�
−

Δtii=00 ⏐⏐ ⏐⏐ gy δyi + gu δui 

�
Δti = 0 (4.13) 

ti ti 

With Δti tending to zero as n increases to infinity in the above equation, 

δyi+1 − δyi d 
 

⏐⏐⏐⏐  = δy = δẏ , i = 1 , 2, . . . , n  
Δt d  t

 i i t ti 

and the summation term becomes an integr

⏐⏐
al. Incorporating these two results, 

Equation (4.13) becomes ttf  
δF + λ('−δẏ + gy

   δy + guδu') dt = 0  

0 δG 
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where λ is an undetermined function of the independent variable t. The  
bracketed term multiplied by λ is δG obtained from the definition of G. Hence, 
the above equation can be expressed as ttf 

(δF + λδG) dt = 0 (3.12) 

0 

To summarize, the above equation and 

G = 0 (3.11) 

along with y(0) = y0 are necessary for the constrained optimum of I. 

Preconditions for the Optimum 

It can be easily verified that the above result is subject to the following pre­
conditions at each t in (0, tf]: 

1. The variations of I and G are weakly continuous near the optimum. 

Given that Fẏ = 0  and  Gẏ = −1 are constant and therefore continuous, 
the weak continuity condition means that the partial derivatives of F 
and g are continuous with respect to y and u in the vicinity of the 
optimal pair (y,̂ û). 

2. The following constraint qualification exists. There exists at least one 
set of variations δz = (δ y,˙  δy, δu) for which the variation of G at each t 
in (0, tf] is not zero at the optimum. 

Example 4.2 
Consider the problem in Example 3.1 (p. 65). According to the Lagrange 
Multiplier Rule, the minimum of ttf 

I = (u 2 − yu) dt 

0 

subject to √ 
ẏ = − y + u (3.24) 

with the initial condition y(0) = 0 is equivalent to the minimum of the aug­
mented functional ttf 

J = (u 2 − yu) +  λ (−ẏ−√ 
y + u) dt (4.14) ' ' ' ' 

0 F g 

subject to the initial condition. The Lagrange multiplier λ is an undetermined 
function of the independent variable t. This result is subject to the following 
preconditions: 
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1. The partial derivatives of F and g with respect to y and u are continuous 
in the vicinity of the minimum. 

2. The following constraint qualification is satisfied for G ≡ −ẏ+ g. There  
exists at least one set of variations (δ y,˙  δy, δu) at  each  t in (0, tf] for  
which the variation of G is not zero at the minimum. 

Example 4.3 
Similarly in Example 3.2 (p. 65), the maximum of 

tf 
E 

I 
t

 = ckxa dt, k = ko exp

 
 − 

RT 
0 

 
subject to 

akxa ẋ = − , x(0) = x0 

with T as the control function is equivalent to the maximum of the augmented 
functional ttf 

J = 

0 

 
 ckxa + λ(−ẋ−akxa
 ) 

F g 

 
dt, x(0) = x0

wher e λ is an undetermined

'  
 

'
function o

'
f the

 

  
 

'
independent variable t. The vector 

ẑ = ˆx̂ T
 T

provides the maximum under the following preconditions: 

1. The partial derivatives of F and g with respect to x and T are continuous 
in the vicinity of ẑ. 

2. The constraint qualification is satisfied for G ≡ −ẏ + g. Thus, t here  
exists at least one set of variations (δ y,˙  δy, δu) at  each  t in (0, tf] for  
which the variation of G is not zero at the maximum. 

4.3.3.2 Generalization to Several States and Controls 

Consider the optimization of the functional ttf 
I = F (y, u) dt 

0 

where y and u are, respectively, the state and control vectors   
y = y1(t) y2(t) . . .  yn(t)

T

(

 
 and 

u = 
 
u1 t) u2(t) . . .  um(t)

 
 
T 
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subject to the autonomous ordinary differential equations 

ẏ = g(y,u) 

with the initial conditions 

y(0) = y0 

where g is the function vector 

T 
g1(y,u) g2(y,u) . . .  gn(y,u) 

The above problem is equivalent to optimizing the augmented functional 

ttf 
J = F + λT(−ẏ + g) dt ''

0 G 

subject to the initial conditions where λ is the vector of time dependent 
Lagrange multipliers 

T 
λ1(t) λ2(t) . . .  λn(t)
 

The preconditions for the optimum are as follows:
 

1. The partial derivatives of F and g with respect to y and u are continuous 
in the vicinity of the optimal pair (ŷ, û). 

2. The following constraint qualification is satisfied at each t in (0, tf]: ⏐⏐⏐ δz1) ⏐ δG1(ẑ; δG1(ẑ; δz2) . . .  δG1(ẑ; δzm) 

⏐⏐ δG2(ẑ; δz1) δG2(ẑ; δz2) . . .  δG2(ẑ; δzm) 

⏐
η0 = 

⏐
= 0⏐⏐⏐  . . . . ⏐ .  . . . . . . .

⏐⏐
 

⏐
⏐ 

⏐
⏐
δGm(ẑ; δz1) δGm(ẑ; δz2) . . .  δGm(ẑ; δzm) 

⏐⏐⏐
 

where z is the coordinate set (y ̇ ,y,u), ẑ is the optimal z, a

⏐⏐
nd δ zi the 

i-th variation (δẏi, δyi, δui) in  z at ẑ. 

⏐

Example 4.4 
Consider the isothermal operation of the CSTR in Example 3.5 (p. 69). The 
reactant and catalyst concentrations, x1 and x2, are governed by 

u1 
ẋ1 = (xf − x1) − kx1x2, x1(0) = x1,0

V 
u2 − u1x2 

ẋ2 = , x2(0) = x2,0
V 
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where the controls u1 and u2 are the volumetric flow rate of the CSTR and 
the catalyst mass flow rate, respectively. The aim is to minimize the deviation 
of the state of the CSTR with minimum control action, i. e., to minimize 

tf 

I =

t �2   
(xi 

i=1

− xs
i )

2 + (ui − us
i )

2 

0 

 
dt 

where the superscript s denotes the steady state value. 
The above problem is equivalent to minimizing the augmented objective 

functional 

J =
ttf ��2   

(x − xs 2  + ( − us  
i i ) ui i )

2
 

 
+

 u
 1
λ1 − ẋ1 + (xf − x1) − kx1x2

V
0

 
'i=1 

+ λ2  ẋ2 +

   
 g1 

F  u u1x− 2 − 2 

' '   
  

dt (4.

'
15) 

V  
g2 

where x1(0) = x1,0, x2 

'
= x2,

  
0, and

'
λ 1 and λ2 are time dependent Lagrange 

multipliers. The preconditions are as follows: 

1. The partial derivatives of F , g1, and g 2 are continuous with respect to 
x1, x2, u1, and u 2 in the vicinity of the minimum. 

2. With Gi defined as (−ẋi + gi) for i = 1 and 2, the following constraint 
qualification holds at each t in the interval (0, tf]: 

η0 = 

⏐⏐⏐ δG1(ẑ; δz1) δG1(ẑ; δz2) 
= 0  

 δG2(ẑ; δz1) δG2(ẑ; δz2)

⏐⏐
  

where z is the coordina

⏐⏐
te set 

⏐⏐⏐
(ẋ1, ẋ2, x1, x2, u1, u2) 

ẑ is the optimal z and δzi the i-th variation set 

(δẋ1i, δẋ2i, δx1, δx2, δu1i, δu2i) 

4.3.3.3 Presence of Algebraic Constraints 

Consider the “base” problem to optimize ttf 
I = F (y,u) dt 

0 



  

  

 

� 
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subject to 

ẏ = g(y,u), y(0) = y0 

To the base problem we add the following algebraic equality constraints: 

hi(y,u) = 0, i  = 1, 2, . . . , l  or h(y,u) =  0; 0  ≤ t ≤ tf 

where l is less than m, the dimension of u. From Section 4.3.3.2 (p. 103), the 
base problem is equivalent to the optimization of 

ttf 
J = F + λT(−ẏ + g) dt 

0 

subject to the usual preconditions of weak continuity and constraint qualifica­
tion. Thus, the current problem is to find the optimum of J subject to h = 0. 
Observe that the optimum of J already implies the satisfaction of state equa­
tions. Then, according to the Lagrange Multiplier Rule, the current problem 
is equivalent to finding the optimum of the further-augmented functional 

ttf ttfl

M(ŷ,u) =  J(ŷ,u) +  νihi(ŷ,u) dt = J + νTh(ŷ,u) dt 
i=10 0 

where ŷ denotes the state vector that satisfies state equations for any ad­
missible control vector u and ν is the vector of time dependent Lagrange 
multipliers 

T 
ν1(t) ν2(t) . . .  νl(t) 

The additional preconditions for the optimum are as follows:

1. The partial derivatives of h are continuous with respect to y and u in 
the vicinity of the optimum at (ŷ, û). 

2. The following constraint qualification is satisfied: there exists a set of 
m control variations (δu1, δu2, . . . , δum) for which at each t in (0, tf] 

η0 =

⏐⏐⏐⏐ δh1(ẑ; δu1) δh1(ẑ; δu2) . . .  δh1(ẑ; δum) 

⏐⏐ δh⏐ 2(ẑ; δu1) δh2(ẑ; δu2) . . .  δh2(ẑ; δum) 

⏐⏐
 

⏐
= 0⏐⏐  . . . . . . . . ⏐⏐  . . . . 

⏐⏐
⏐ 

⏐
δhm(ẑ; δu1) δhm(ẑ; δu2) . . .  δhm(ẑ; δu

⏐⏐⏐⏐
 m) 

where ẑ is the coordinate set (ŷ, û) at the  optimum.  

⏐⏐
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Example 4.5 
In the last example, let us say we want u2 to be increasingly higher for a 
smaller amount of the catalyst-to-reactant ratio. For this purpose we enforce 
the following equality constraint at all times: 

x2 
 

1 
= a − 1 

x u −c
1 b 2

 
where a, b, and c  are some suitable parameters. The objective is to minimize 
I subject to state equations and the above algebraic constraint. In turn, 
the equivalent objective is to minimize J given by Equation (4.15) on p. 105 
subject to the algebraic constraint. Provided that the preconditions for the 
minimum of J are satisfied, the objective is to find the minimum of ttf 

x2 1 
M = J + μ 

�
x1 

− a 

 
− 1

bu2 −c

0 

 
 

�
dt (4.16) 

h 

where μ is another time dependent

'
 Lagrange

  
 multipli

'
er. 

The additional preconditions are as follows: 

1. The partial derivatives of h are continuous with respect to x and u in 
the vicinity of the minimum at (x̂, û). 

2. The following constraint qualification is satisfied at each t in (0, tf]. 
There exists a control variation δu for which δh(x̂, û; δu) = 0.  

4.4 Lagrange Multiplier and Objective Functional 

In most problems, a Lagrange multiplier can be shown to be related to the 
rate of change of the optimal objective functional with respect to the con­
straint value. This is an important result, which will be utilized in developing 
the necessary conditions for optimal control problems having inequality con­
straints. 

For simplicity, consider an objective functional J dependent on a control 
function u(t) and subject to the constraint 

K(u) = k 0 

We assume that both J and K are Gâteaux differentiable. This is a modest 
assumption, which is valid in most optimal control problems we encounter. 
The reason for this assumption is the need for the linearity of the differen­
tials in the following three-step derivation of the relation between a Lagrange 
multiplier μ and the objective functional J : 
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Step 1 Let J be optimal at û, which depends on k0, the value of the con­
straint. Then at any t in the t-interval, Taylor’s first order expansion gives 

û(k0 +Δk0) = û(k0) + ûk0 Δk0 + E 

where E/Δk0 vanishes with Δk0. We can rewrite the above equation as 

û(k0 +Δk0) = û(k0) + Δk0 (ûk0 + E/Δk0)' ' 
δu 

Step 2 Using δu as indicated in the above equation, 

J [û(k0 +Δk0)] = J [û(k0) + Δk0δu] 

= J [û(k0)] + dJ [û(k0); Δk0δu] +  E1(Δk0δu) 

where dJ is the Gâteaux differential of J [from Equation (2.8), p. 30] and 
E1/Δk0 vanishes with Δk0. Since dJ is linear with respect to the second 
argument, i. e., Δk0δy, we obtain, upon expanding δu, 

J [û(k0 +Δk0]) = J [û(k0)] + dJ [û(k0); ûk0 Δk0] + dJ [û(k0); E] +  E1(Δk0δu) 

= J [û(k0)] + Δk0dJ [ŷ(k0); ûk0 ] + Δk0dJ [û(k0); E/Δk0] +  E1 

The above equation can be rearranged as 

J [û(k0 +Δk0)] − J [û(k0)] E1
= dJ [ŷ(k0); ûk0 ]+dJ [û(k0); E/Δk0]+  (4.17) 

Δk0 Δk0 

In the limit, Δk0 → 0, we have 

J [û(k0 +Δk0)] − J [û(k0)] 
= Jk0 (û) (i. e., the partial derivative) 

Δk0 

dJ [û(k0); E/Δk0] = dJ [û(k0); 0] = 0 

E1/Δk0 = 0  

so that Equation (4.17) becomes 

Jk0 (û) = dJ [û(k0); ûk0 ] 

We already know that if J is Gâteaux differentiable, then its variation δJ 
exists and is equal to dJ . Therefore, 

δJ [û(k0); ûk0 ] =  Jk0 (û) 
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Step 3 The augmented objective functional is M ≡ J + μK where μ is a 
Lagrange multiplier. From the Lagrange Multiplier Theorem, assuming that 
δK[û(k0); ûk0 ] = 0,  we  have  

δM [û(k0); ûk0 ] =  δJ [û(k0); ûk0 ] +  μδK[û(k0); ûk0 ] = 0  

The last two equations yield 

Jk0 (û) =  −μδK[û(k0); ûk0 ] (4.18) 

Repeating Step 2 for K in place of J , we  obtain  

δK[û(k0); ûk0 ] =  Kk0 (û) 

Expanding the right-hand side of the above equation, 

(k0 +Δk0) − k0
δK[û(k0); ûk0 ] =  = 1 (4.19) 

Δk0 

From Equations (4.18) and (4.19), we finally obtain 

∂ 
μ = −Jk0 (û) =  − J [û(k0)] (4.20) 

∂k0 

4.4.1 General Relation 

The above result can be readily generalized for the optimal control problem 
in which J is dependent on vectors y and u of state and control functions 
and is subject to m constraints, Ki = ki, i = 1, 2, . . . ,m. In  this  case,  the  
Lagrange multipliers are given by 

∂ 
μi = − J [ŷ(k), û(k)]; i = 1, 2, . . . ,m  (4.21) 

∂ki 

T 
where k = k1 k2 . . .  km . 

4.5 John Multiplier Theorem for Inequality Constraints 

In this section, we will derive the John Multiplier Theorem, which is a set of 
necessary conditions for the minimum of an objective functional constrained 
by inequalities. 

We begin with an objective functional J dependent on a control function 
u(t) and subject to the constraint K(u) ≤ k0. As before, we assume that both 
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J and K are Gâteaux differentiable since we will need the continuity of the 
differentials. 

Let J be minimum at û among all u satisfying the inequality constraint. 
Then K(û) could be either k0 or less. We will consider these two cases as 
follows: 

Case 1 Here K(û) =  k0 and the inequality constraint is said to be active. 
The augmented objective functional is M ≡ J + μK where μ is a Lagrange 
multiplier. The Lagrange Multiplier Theorem yields 

δM = δJ + μδK = 0  

where, from Equation (4.20), 

∂ 
μ = − J [û(k0)]

∂k0 

Now, any change in K from K(û) has to be negative since K(u) ≤ k0. This  
change, which is Δk0, cannot decrease the value of J because J(û) is  already  
the minimum subject to the constraint K(u) ≤ k0. Hence, the change ΔJ has 
to be positive or zero, corresponding to the negative Δk0. In other words, the 
partial derivative in Equation (4.20) has to be either negative or zero. This 
finally means that 

μ ≥ 0 

Case 2 Here the strict inequality K(û) < k0 is in effect and the inequality 
constraint is said to be inactive. Let  K(û) =  kc where kc is some real number 
less than k0. Then Equation (4.20) for K(û) =  kc is 

∂ 
μ = − J [û(kc)]

∂kc 

The continuity of K implies that there is an interval around kc in which 
K < k0 for all u in a region around û. In that interval, Δkc can be positive or 
negative, but ΔJ has to be positive or zero since J(û) is already the minimum. 
Thus, the partial derivative in the above equation can only be zero, thereby 
leading to 

μ = 0  

In this case, the Lagrange Multiplier Theorem yields δM = 0, which is the 
necessary condition for the minimum. 

The John Multiplier Theorem can now be expressed by combining the re­
sults for both the cases as follows: 
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The necessary condition for the minimum at û(t) is  

δM(û) =  δJ(û) + μδ K(û) = 0  

K(û) ≤ k0 

μ ≥ 0, μ[K(û) − k0] = 0  
 

complementary slackness condition 

The following preconditions must be 

'
satisfied:

  
 

'

1. The G âteaux differentials of both J and K are weakly continuous near 
û(t). 

2. The constraint qualification — There exists a δu for which K(û; δu) = 0  
whenever the constraint is active. 

Observe that the complementary slackness condition, μ[K(û) − k0] = 0 ,  
requires μ to be zero when the constraint is inactive. Otherwise, μ could be 
zero or greater. 

Example 4.6 
Let the problem in Example 4.2 (p. 102) be constrained by the inequality 

u ≤ cy, at t = tf 

where c is some constant. Thus, the minimum of the augmented functional J 
given by Equation (4.14) is now subject to the inequality constraint 

'u −   cy  
 
≤ at t = tf

 

' 0  
kK

'
0

We assume that the preconditions already

'
 hold for the minimum of J . 

Now the minimum of J implies that the state equation is already satisfied 
for the given initial condition y(0) = 0. The augmented functional is given by 

M(ŷ, u) =  J(ŷ, u) +  μK = J + μ u − cŷ
t=tf 

where ŷ is the state satisfying the state equation

 
 for an

 
y admissible control 

u and μ is an undetermined multiplier. Hence, from the John Multiplier 
Theorem, the necessary conditions for the minimum of M(ŷ, u) at u ̂  are 

δM(ŷ, û) =  0  

û− cy ≤ 0 at  tf 
μ ≥ 0, μ' (û − cŷ  ) at t 'f 

complementary slackness condition 

subject to the following additional preconditions: 
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1. The G âteaux differential dK(ŷ, u; δu) is weakly continuous near û for 
t = tf. This means that the partial derivative Ku at ŷ is continuous. 

2. The constraint qualification — If the constraint is active, there exists a 
control variation δu for which δK(ŷ, û; δu) = 0  for  t = tf. It m eans t hat  
Ku = 0  at  (y,̂ û) for  t = tf. 

Example 4.7 
Let us replace the point inequality constraint in the above example by 

K ≡ u − cy ≤ 0, for all t in [0, tf] 

In this case, with the values of t defined as 

t0 ≡ 0, t1 ≡ t0 +Δt, t2 ≡ t1 +Δt,  . . . ,  tn 1 ≡ tn 2 +Δt, t t− − n ≡ f 

with Δt tending to zero, the inequality constraint can be rendered in terms 
of the following inequalities: 

u' (ti) −  cy(ti') ≤ 0; i = 0, 1, . . . , ( n → ∞) 

Ki 

Hence from the serial application of the John Multiplier Theorem, [similar to 
that in Section 4.3.3.1 (p. 100)], the final augmented functional is given by 

 
tn→∞ f 

M(ŷ, u) = J (ŷ, u) +  
�

μiKi(ŷi, ui) = J  + 
t

μ(u − cŷ) dt 
i=0 0 

where the multiplier μ is a function of t and the necessary conditions for the 
minimum are 

tf 

δM(ŷ, û) = δJ (ŷ, û) +
t
 μδK(ŷ, û) dt = 0  

0 
 

û− cŷ ≤ 0  
μ ≥ 0, 'μ(û −  cŷ) =  0  

⎫⎪⎬
for all t in [0, tf] 

 
complementary slackness condition 

The additional preconditions of Example 4

'
.6 now apply

⎪⎭
 to each t in the interval 

[0, tf]. 
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4.5.1 Generalized John Multiplier Theorem 

The approach in the preceding section may be followed to arrive at the fol­
lowing the John Multiplier Theorem for several inequality constraints: 

The necessary conditions for the minimum of J(y,u) subject to K(y,u) ≤ k 
at û(t) are  

δM(ŷ, û) = δJ (ŷ, û) + μ TδK(ŷ, û) =  0  

K(ŷ, û) ≤ k 

μ ≥ 0, μ' T[K(ŷ, û) − k] = 0 
 

complementary slackness condition 

where M ≡ J + μTK. The the following preco

  
nditions must

'
 be satisfied at 

the minimum: 

1. The G âteaux differentials of J and K are weakly continuous near û. 

2. The constraint qualification — Whenever la of the total l constraints 
are active, there exists a set of control variations (δu1, δu2,  . . . ,  δula ) 
for which ⏐⏐⏐ δK1(ẑ; ⏐ δu1) δK1(ẑ; δu2) . . .  δK1(ẑ; δula ) 

⏐⏐ δK2(ẑ; δu1) δK2(ẑ; δu2) . . .  δK
η = ⏐ 2(ẑ; δula ) 
0 

⏐⏐
= 0  ⏐⏐ . . ⏐  . . .  . .  . 

⏐
. . . . 

⏐⏐
⏐⏐ 

⏐
δKla (ẑ; δu1) δKla (ẑ; δu2) . . .  δKl

⏐
a (ẑ; δula )

⏐⏐
  

where ẑ = (ŷ, û) and  each δK i(ẑ; δuj ) corresponds to an 

⏐⏐
active con­

straint K (

⏐
i y,u) = k i. 

Example 4.8 
Let us restrict the second control 

umin ≤ u2 ≤ umax 

in the problem of Example 4.5 (p. 107). Thus, the problem is to minimize 

ttf �2  
 

 − s 2 −  I = (xi xi ) + (ui us
i )

2
 
dt 

i=10 

subject to 

u1 
ẋ1 = (x  x )  kx x , x (0) = x

V f − 1 − 1 2 1 1,0

u2 − u1x 2 
ẋ2 = , x2(0) = x2,0

V 
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and the following algebraic equality and inequality constraints: 

x2 
= a 

x1 

u + u

 
1 − 1 

bu2−c

 
− 2 min ≤ 0 

u2 − umax ≤ 0 

The equivalent problem is to minimize J given by Equation (4.15) on p. 105 
subject to the initial conditions and the algebraic constraints. It is assumed 
that the preconditions for the minimum of J (see p. 105) are satisfied. The 
augmented functional for this modified problem is given by 

ttf � �  
x

  1
M 2  

= J + μ1 
x1 

− a 

 
− 1 

 �
+ μ2( u + umin) + μ 3(u  umax ) dt 

bu2 −c 
−
   

−
 

0 '   ' '
K  

�
  

2 

' '
K

  
3

K1 

'
where μ1, μ2, and  μ3 are the time dependent Lagrange multipliers. 

From the Generalized John Multiplier theorem, the necessary conditions 
for the minimum are δM = 0  and  

− u2 ≤ umin μ2 ≥ 0 μ2(−u2 + umin) = 0  

u2 ≤ umax μ3 ≥ 0 μ3(u2 − umax) = 0  

throughout the time interval [0, tf] subject to the following additional precon­
ditions: 

1. The G âteaux differentials of K1, K2, and K 3 are weakly continuous at 
x̂ near û. In other words, the partial derivatives ∂Ki/∂uj (i, j = 1, 2) 
at x̂ are continuous. 

2. The constraint qualification — 

2.a The first constraint is always active, for which K1 = 0. If only the 
first constraint is active, then there exists a control variation δu 
for which δK1(x̂, û; δu) = 0.  It  means  that  

ˆ
�
∂K1 ∂K1 

T
K1û = = 0 0 

T
∂u1 ∂u2 

�
x̂,û

  
2.b At any time, if the first and any of the remaining two constraints 

are active, then the corresponding vectors of partial derivatives, 
  ˆ ˆK1û and (K2û or K3û), are linearly independent. 

Note that the last two constraints can never be active together. 
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4.5.2 Remark on Numerical Solutions 

When solving an inequality-constrained optimal control problem numerically, 
it is impossible to determine which constraints are active. The reason is one 
cannot obtain a μ exactly equal to zero. This difficulty is surmounted by 
considering a constraint to be active if the corresponding μ ≤ α where α is a 
small positive number such as 10−3 or less, depending on the problem. Slack 
variables may be used to convert inequalities into equalities and utilize the 
Lagrange Multiplier Rule. 

Alternatively, increasing penalties may be applied on constraint violations 
during repeated applications of any computational algorithm used for uncon­
strained problems. We will use the latter approach in Chapter 7 to solve 
optimal control problems constrained by (in)equalities. 

Note 

When using Lagrange multipliers in the rest of the book, we will skip men­
tioning the preconditions assuming that they are satisfied. 

4.A Inverse Function Theorem 

Let f be a continuously differentiable function of x, both  having  the  same  
dimension n greater than zero. If the derivative f ' (x) is non-zero at x = x0 

for which y0 = f(x0), then there exists a continuous inverse function f inv(y), 
which maps  an  open set  Y containing y0 to an open set X containing x0. 

Note that an open set has each member completely surrounded by members 
of the same set (see Section 9.3, p. 268). Moreover, the inverse function is 
differentiable, the proof of which can be found in Rudin (1976). 

Remark 

Under the given conditions, the theorem assures that y = f(x), which is a set 
of n equations 

yi = fi(x1, x2, . . . , xn), i  = 1, 2, . . . , n  

can be uniquely solved as x = f inv(y), i. e., 

= f inv xi (y1, y2, . . . , yn), i  = 1, 2, . . . , n  i 

in sufficiently small neighborhoods of x0 and y0. 
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Outline of Proof 

Based on the given function f , we will develop an auxiliary function g. We  
will show it to be a contraction, which is associated to a unique fixed point. 
This property will then lead to the existence of the inverse function f inv. We  
start with the description of a contraction and its fixed point. 

Contraction 

A contraction is defined to be a function φ that maps a region X to itself 
such that for all xi and xj in X 

lφ(xi) − φ(xj )l ≤ clxi − xj l, c < 1 (4.22) 

In the next three steps, we will show that there is a unique fixed point x in 
X such that x = φ(x). 

Step 1 Let us select an arbitrary x0 in X and obtain the series 

xi+1 = φ(xi); i = 0, 1, 2, . . .  (4.23) 

Then for i > 0 

lxi+1 − xil = φi − φi x−1 ≤ clxi − i−1l

where φi ≡ φ(xi) and the above inequality follows from the definition of a 
contraction, i. e., Inequality (4.22). Its recursive application yields 

lxi+1 − xil ≤  clx 2
i − xi c−1l ≤   lxi−1 − xi−2l ≤  . . .  

≤ c ilx1 − x0l (4.24) 

Step 2 For j > i, we can write 

lxj − xil = 'l(xi+1 − xi) + (xi+2 − xi+1) + · · · + (xj 1 − xj 2) + (x x− − j − j−1)l 
 

�r� 

Applying the triangle inequality (Section 2.2.2

  
, p. 26) on the right-hand side, 

'

lrl ≤ lxi+1 − xil+ lxi+2 − xi+1l+ · · ·+ lxj−1 − xj−2l+ lxj − xj  −1l

Combining the last two results, 

lxi − xj l ≤ lxi+1 − xil+ lxi+2 − xi+1l+ · · ·+ lxj−1 − xj−2l+ lxj − xj−1l 
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Step 3 Using Inequality (4.24) for each right-hand side term above, we get 

i i+1 j−2 j−1)lxi − xj l ≤ (c + c + · · ·+ c + c lx1 − x0l ' ' 
P 

Because c is a positive fraction, the coefficient on the right-hand side 

icj j+1 2P ≤ P + c + c + · · · = c i(1 + c+ c + . . . ) =  
1 − c 

because of which 
iclxi − xj l ≤  lx1 − x0l 

1 − c 

Fixed Point 

In the above inequality, with c < 1 and  i tending to infinity, lxi − xj l tends 
to zero and so does φi − φj due to Inequality (4.22). In other words, xi 

and φi tend respectively to some x and φ[= φ(x)] in the region X . Hence, 
Equation (4.23), i. e., 

lim xi+1 = lim φi
i→∞ i→∞ 

is equivalent to 

x = φ(x) 

where x is the fixed point. 

Uniqueness of the Fixed Point 

The fixed point is unique because otherwise if there is another fixed point, 
say, x̄ = φ(x̄), then lφ(x) − φ(x̄)l = lx − x̄l, which contradicts Inequal­
ity (4.22). 

Having shown that a contraction has a unique fixed point, we consider 
the givens of the Inverse Function Theorem. Based on f(x), we propose an 
auxiliary function and prove it to be a contraction. 

Auxiliary Function 

Consider the auxiliary function 

f(x) − y 
g(x) ≡ x − (4.25) 

D 

where y is an n-dimensional vector, D ≡ f ' (x0) and  x is in the vicinity of x0 

such that lx − x0l < δ for some δ > 0. In the next four steps, we show that 
g(x) is a contraction. 
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' Step 1 The continuity of f at x0 implies that there exists an open set X in 
which 

lx − x0l < δ,  δ > 0 (4.26) 

such that 
lf ' (x) −Dl < E1, E1 > 0 (4.27) 

Differentiating g(x) with respect to x, we  get  

g ' (x) =  I −D−1f ' (x) =  D−1[D − f ' (x)] 

where I is the identity matrix. Taking the norm on both sides of the above 
equation and applying Inequality (4.27), 

D−1lg ' (x)l = lD − f ' (x)l 

D−1< E1 

With the choice E1 ≡ 0.5/ D−1 , we  have  

lg ' (x)l < 0.5 (4.28) 

Step 2 Considering x as 

x(s) = (1  − s)x0 + sx1, 0 ≤ s ≤ 1 (4.29) 

we obtain g(s) =  g[x(s)] so that 

dg dx 
= g ' (x) = g ' (x)(x1 − x0)

ds ds 

Taking the norm on both sides of the above equation, we get 

dg 
= lg ' (x)(x1 − x0)l 

ds 

Applying the Operator Inequality (Section 9.24, p. 281) on the right-hand 
side of the above equation, 

lg ' (x)(x1 − x0)l ≤ lg ' (x)ll(x1 − x0)l 

Combining the last two results, we get 

dg ≤ lg ' (x)llx1 − x0l 
ds 

Using Inequality (4.28) in the above result, we obtain 

dg 
< 0.5lx1 − x0l (4.30) 

ds 
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Step 3 Let h(s) ≡ [g(1) − g(0)]Tg(s). Then for 0 ≤ s ≤ 1, the Mean Value 
Theorem for derivatives (Section 9.14.1, p. 276) yields 

dh dg
h(1) − h(0) = (1 − 0) = [g(1) − g(0)]T 

ds ds s s 

Also, from the definition of h(s), 

2h(1) − h(0) = [g(1) − g(0)]T[g(1) − g(0)] = lg(1) − g(0)l
From the last two equations, 

2 dglg(1) − g(0)l = [g(1) − g(0)]T (4.31) 
ds s 

Applying the Cauchy–Schwarz Inequality (Section 9.23, p. 281) to the right-
hand side of the above equation, we get 

dg dg
[g(1) − g(0)]T ≤ lg(1) − g(0)l 

ds ds s s 

Using the above inequality in Equation (4.31), we get 

2 dglg(1) − g(0)l ≤ lg(1) − g(0)l 
ds s 

or 
dglg(1) − g(0)l ≤  
ds s 

Step 4 From Equation (4.29) 

g(1) = g[x(1)] = g(x1) and  g(0) = g[x(0)] = g(x0) 

Therefore, the last inequality can be written as 

dglg(x1) − g(x0)l ≤  
ds s 

Applying Inequality (4.30) in the above result, we get 

lg(x1) − g(x0)l < 0.5lx1 − x0l 

Hence, g(x) is a contraction as defined by Inequality (4.22). Being a contrac­
tion, it has a unique fixed point. 

Existence of the Inverse Function 

We will now use g(x) to show that f(x) is one-to-one (injective) as well as onto 
(surjective) over regions X and Y , which are open sets. Note that this state­
ment is equivalent to the fact that there exists a continuous inverse function 
f inv(y) that  maps  Y to X . 
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Injection of f(x) 

Consider g(x) defined by Equation (4.25) in the open set described by In­
equality (4.26). Since g(x) is a contraction, it is associated with a unique 
fixed point given by x = g(x) or  

f(x) − y 
x = x − 

D 

Since the determinant of D is not zero, further simplification yields 

f(x) =  y 

which holds for exactly one x in X . Hence, f(x) is injective in X . 

Surjection of f(x) 

Let Y be the collection of points y = f(x) for all points x in the open set X . 
Then obviously f(x) is a surjection from X to Y . 

That Y is an open set follows from the continuity of f(x). It means that 
each point yi = f(xi) in  Y lies in an open set surrounded by neighboring 
points y = f(x). In other words, the open set ly − yil < E corresponds to 
an open set lx − xil < δ in X where both E and δ are some positive real 
numbers. Thus, Y , being a collection of open sets, is an open set. 
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Exercises 

4.1 Show that the costate variables in the optimal control problem 

a. are continuous with respect to time, and 

b. have piecewise continuous time derivatives 

4.2 Show that the augmented functional formed by adjoining even the initial 
condition of the state equation leads to the same necessary conditions for the 
optimum. 

4.3 Expand the determinant η0 in Example 4.4 (p. 104). 

4.4 Simplify the constraint qualifications in Section 4.3.3.3 (p. 105) and Sec­
tion 4.5.1 (p. 113). 

4.5 Derive the necessary conditions for the minimum of the batch distillation 
problem described in Section 1.3.1 (p. 5) without the purity specification. List 
all involved assumptions. 

4.6 Repeat Problem 4.5 including the purity specification. 

4.7 Find the necessary conditions for the maximum in Example 2.10 (p. 45) 
in presence of the following inequality constraints: 

T ≤ Tmax, 0 ≤ t ≤ tf 
x(tf) ≤ xf 

State all assumptions involved. 
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Chapter 5
 

Pontryagin’s Minimum Principle 

One of the most profound results of applied mathematics, Pontryagin’s 
minimum principle provides the necessary conditions for the minimum of an 
optimal control problem. The elegance of the principle lies in the simplicity of 
its application to a vast variety of optimal control problems. Boltyanskii et al. 
(1956) developed the principle originally as a maximum principle requiring the 
Hamiltonian to be maximized at the minimum. 

In this chapter, we will present the proof of the minimum principle. The 
minimum principle uses a positive multiplier for the objective functional in 
the Hamiltonian formulation.∗ With this provision, the minimum principle 
concludes that the minimum of the problem requires minimization of the 
Hamiltonian in an optimal control problem whose minimum needs to be de­
termined. 

Some readers may first want to get the essence of the minimum principle and 
go cursorily over the derivation in Section 5.4. This section may be skipped 
during the initial reading. 

5.1 Application 

Before delving into the proof, let us take the simplest optimal control problem 
and examine the application of Pontryagin’s minimum principle. We will 
realize that we already have been applying the minimum principle to our 
optimal control problems. 

Consider the minimization of 

ttf 
I = F (y, u) dt (3.4) 

0 

subject to G(y, ˙ y + g(y, u) = 0 y, u) ≡ − ˙ (3.5) 

∗ A negative multiplier, on the other hand, leads to the maximum principle, which stipulates 
that the Hamiltonian be maximized in a minimum problem. 
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with the initial condition 
y(0) = y0 (3.6) 

This problem is the same as the one in Section 3.2 (p. 58). The Hamiltonian 
for this problem is defined as 

H(y, λ, u) =  F (y, u) +  λg(y, u) 

According to Pontryagin’s minimum principle, if û is optimal, then the cor­
ˆresponding Hamiltonian H(ŷ, λ, û) at each time instant is minimum over all 

admissible choices for u. Thus,  if  u = û + δu is any admissible control, then 

ˆ ˆH(ŷ, λ, u) ≥ H(ŷ, λ, û), 0 ≤ t ≤ tf (5.1) 

Let us understand the import of the above result in light of the optimal control 
analysis we have done so far. The augmented functional for this problem is 

ttf 
J = y, u) dt (3.7) F (y, u) +  λG(y, ˙

0 

whose variation is given by (see Section 3.2.2, p. 59) 

ttf ttf 
δJ = (δF + λδG) dt + Gδλ dt 

0 0 ttf ttf ttf 
tf 

= (Fy + λGy + λ̇)δy dt − λδy + (Fu + λGu)δu dt + Gδλ dt 
0 

0 0 0 ttf ttf ttf
 
tf
 

= (Hy + λ̇)δy dt − λδy + Huδu dt + (−ẏ + Hλδλ) dt 
0
 

0 0 0
 

If, for a given control û(t), we obtain 
1. the state ŷ(t) that satisfies y ̇ = Hλ or G = 0  with  ŷ(0) fixed to y0, and  

ˆ2. ˆ ˙the corresponding costate λ(t) that satisfies λ = −Hy with λ(tf) fixed  
to 0, 

then we are left with 
tf 

δJ = 
t

Hu(ŷ,  ̂λ, û)δu dt 

0 

where, since G = 0 is satisfied, 

ˆ ˆδJ = J(ŷ, λ, u'̂ +   δu' ) − J(ŷ, λ, û) =  I(ŷ, u) − I(ŷ, û) 
u 
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for sufficiently small variation δu in û. 
Now, for sufficiently δu at any time, we can express the Hamiltonian at 
ˆ(ŷ, λ, û+ δu) using the first order Taylor expansion as 

ˆ ˆ ˆH(ŷ, λ, û+ δu ) =  H(ŷ, λ, û) +  Hu(ŷ, λ, û)δu' ' 
u 

where u is the perturbed control (û + δu). From the last two equations, we 
obtain ttf ttf 

ˆ ˆ ˆI(ŷ, u) − I(ŷ, û) =  Hu(ŷ, λ, û)δu dt = [H(ŷ, λ, u) − H(ŷ, λ, û)] dt (5.2) 

0 0 

Depending on the control u, the following cases arise for the above equation: 

Case 1 There is no constraint on u. Then  δu can be positive or negative at 
ˆany time instant. Now a non-zero Hu(ŷ, λ, û) at any time allows the possibility 

ˆof I(ŷ, u) − I(ŷ, û) < 0. Therefore, Hu(ŷ, λ, û) must be zero to ensure the 
minimum of I. This necessary condition, as observed from Equation (5.2), is 
equivalent to 

ˆ ˆH(ŷ, λ, u) =  H(ŷ, λ, û), 0 ≤ t ≤ tf 

which is included in the Pontryagin’s minimum principle, i. e., Equation (5.1). 

Case 2 The control u is in between (but not at) its specified upper and 
lower limits, umax and umin, respectively. Each time when that happens, the 
necessary condition for the minimum of I is 

ˆ ˆH(ŷ, λ, u) =  H(ŷ, λ, û), 

for the same reason as in the previous case. 

Case 3 The control is constrained by u ≤ umax. If  at  any  time  û = umax, 
then δu can only be negative. A positive δu will make the control exceed 

ˆumax and therefore be inadmissible. Hence in this case, Hu(ŷ, λ, û) must be  
zero or negative to ensure the minimum of I, i.  e.,  I(ŷ, u) − I(ŷ, û) ≥ 0. This 
necessary condition, as observed from Equation (5.2), is equivalent to 

ˆ ˆH(ŷ, λ, u) ≥ H(ŷ, λ, û), 

as asserted by Pontryagin’s minimum principle, i. e., Equation (5.1). 

Case 4 The control is constrained by u ≥ umin. If  at  any  time  û = umin, 
then δu can only be positive. A negative δu will make the control less than 

ˆumin and therefore be inadmissible. Hence in this case, Hu(ŷ, λ, û) must be  
zero or positive to ensure the minimum of I, i.  e.,  I(ŷ, u) − I(ŷ, û) ≥ 0. Thus, 
the necessary condition is the same as in the previous case. 



126 Optimal Control for Chemical Engineers 

Case 5 The integrand F in Equation (3.4) is a function of |u|. Now,  when  
u = 0 the partial derivative of Fu does not exist, and we cannot apply the 
stationarity condition, Hu = 0. However, Pontryagin’s minimum principle 
does not require the partial derivatives Fu and gu to exist. According to the 
principle, 

ˆ ˆH(ŷ, λ, u) ≥ H(ŷ, λ, û) 

is the necessary condition for the minimum of I in this case as well. 
Freedom from having the partial derivatives of F and g with respect to 

u means that the principle is also applicable to the case when only a finite 
number of controls are available. 

The above cases show that Pontryagin’s minimum principle provides an 
overarching necessary condition for the minimum. Appreciating this fact, we 
present a general optimal control problem involving a wide class of controls 
for which we will derive Pontryagin’s minimum principle. 

5.2 Problem Statement 

It is desired to minimize the objective functional ttf 
I = F [y1(t), y2(t), . . . , yn(t), u1(t), u2(t), . . . , um(t)] dt 

0 

where t or time is the independent variable, ui(t)s are the controls, and yi(t)s 
are the state variables governed by the following ordinary differential equa­
tions: 

dyi 
= gi[y1(t), y2(t), . . . , yn(t), u1(t), u2(t), . . . , um(t)]; i = 1, 2, . . . , n  

dt 

called the state equations. These equations are autonomous because no gi 
depends on the independent variable t. The objective functional I is also 
autonomous since F does not depend explicitly on t. 

The initial conditions for the state equations are 

yi(0) = yi,0; i = 1, 2, . . . , n  

While the initial time is fixed at zero, the final time tf is not specified or fixed. 

5.2.1 Class of Controls 

For the above problem, we consider a general class of piecewise constrained 
controls that are typically encountered in practice. The controls in this class 
have the following characteristics: 
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1. The c ontrols u is are p iecewise continuous with respect to t. Figure 3.4 
(p. 77) showed one such control, which is made of three continuous 
curves. When two such curves meet, there is a jump discontinuity, e. g .,  
at time t1, as shown in the figure. On either side of t1, the c ontrol i s  
provided by the curve on that side. At t ≥ t1 we take the control value 
from the right-hand side curve. 

Note that the number of jump continuities is finite.∗ In other words, 
each curve spans a non-zero time duration. Obviously, a single contin­
uous curve for the control is also a member of this class of controls. 

2. The controls are not discontinuous at the initial and final times. 

Thus, the control vector u(t) approaches u(0) as t tends to 0 from the 
right-hand side. Similarly, u(t) approaches u(tf) as t  tends to tf from 
the left-hand side. 

3. At all times, each control takes values from a bounded set of values. 
For example, a control ui may be specified to take values from the 
constrained set {0 < ui ≤ 5}. 

5.2.2 New State Variable 

We also introduce g0 ≡ F and a new state variable y0 defined by 

dy0 ≡ g0[y1(t), y2(t), . . . , yn(t), u1(t), u2(t), . . . , um(t)]; y0(0) = 0θ 
dt 

Thus, y0(tf) is  equal  to  I, as can be verified by integrating the above dif­
ferential equation. Next, we define the Hamiltonian, 

H ≡ λ0(t)g0 + λ1(t)g1 + · · ·+ λn(t)gn 

where λis are the time dependent Lagrange multipliers or costate variables. 
This is the same definition as Equation (3.34) on p. 68 with λ0 = 1.  

5.2.3 Notation 

For the sake of convenience, we adopt the following notation: 

1. To reduce clutter, we omit (t) unless needed for clarity. The time-
dependence of yis, uis, and λis is taken for granted. 

2. The vectors y, λ, and  g are, respectively,  
 yn 

 
,
  

y0 y1 . . .  
T

λ   0 λ1 . . .  λn
T
, and 

 
g0 g1 . . .  gn 

T

 
 

∗ Otherwise, with infinite jump discontinuities, the control would never be continuous. 
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3. The  i-th component of g is the function
 

gi(y,u) ≡ gi(y1, y2, . . . , yn, u1, u2, . . . , um)
 

It is implicitly understood that any gi does not depend on y0.
 

4. The costate at the minimum is denoted by λ without the hat .̂ 

Using the above notation, the state equations can be written as 

dy 
ẏ ≡ = g(y,u) (5.3) 

dt 

and the Hamiltonian can be expressed as 

H(y,λ,u) =  λT g(y,u) (5.4) 

From the last two equations, we get the identity 

∂H  dyi ∂H  
ẏ = or ẏi ≡ = , i  = 0, 1, . . . , n  (5.5) 

∂λ dt ∂λi 

5.3 Pontryagin’s Minimum Principle 

Pontryagin’s minimum principle is a statement of necessary conditions for 
the control to be optimal. The main conclusion of this principle is that the 
optimal control minimizes the Hamiltonian at each point in the time interval 
whether or not the control there is continuous. 

5.3.1 Assumptions 

The principle is based on the following assumptions: 

1. The controls belong to the class of piecewise continuous controls defined 
in Section 5.2.1. 

2. The functions
 

∂g (y,u)
 
gi(y,u) and  i

for i, j = 0, 1, . . . , n  
∂yj 

are continuous in the space of functions 

(y1, y2,  . . . ,  yn, u) 

where u takes values from t he  m-dimensional constrained space includ­
ing all boundary points. 

For example, if 1 ≤ u1 < 2, then the functions are required to be 
continuous at u1 = 2 even though u1 cannot be equal to 2. 
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5.3.2 Statement 

If û is the optimal control resulting in the optimal state ŷ over the time 
interval [0, ̂tf] in which  I is minimum, then there exists a non-zero vector λ 
such that the following conclusions hold: 

1. The corresponding Hamiltonian
 

ˆ
H ≡ H(ŷ, λ, û) 

is minimum over the set of all admissible controls at each point in [0, ̂tf] 
whether or not the controls are continuous at the point. To be specific, 

Ĥ ≤ H(ŷ, λ, u)
 

at each t in [0, t̂f].
 

ˆ ˆ
2. Both  H and λ0 are time invariant, i. e., constant over [0, tf].
 

ˆ
3. If the final time is not fixed, then H = 0 at the final time t̂f. 

Remarks 

1. The first conclusion means that throughout the time interval, the opti­
mal control û minimizes the Hamiltonian H(ŷ, λ, u). 

2. The last two conclusions together imply that if the final time is not 
fixed, then
 

ˆ
H = 0 
  

throughout the time interval.
 

5.4 Derivation of Pontryagin’s Minimum Principle 

Very versatile in applications, Pontryagin’s minimum principle is among the 
most profound and difficult results to derive. Figure 5.1 presents the outline 
of the derivation of the principle. 

Basically, we intend to perturb the optimal control along the control axis 
as well as change the final time to examine the effect on the Hamiltonian. 



given a pulse perturbation
 

consider perturbations in the
 

optimal control û by
 

1. introducing a pulse at a time 

when û is continuous
 

(Pulse Perturbation)
 

given a temporal show that λ0 

is a constant 

conclude that the Hamiltonian 

is zero at the final time 

corresponding to û

show that the dot product of λ 

and the state change is constant 

show that û 

continuous) 

perturbation 

, i.  e.,  H(ŷ, λ, û), 

a. constant in a subinterval 

where û is continuous 

b. the infimum of H(ŷ, λ, u) 

w.r.t. the value of u 

2. the infimum is continuous 

throughout the entire 

time interval 

2. constant throughout the 

entire time interval 

2. changing the final time 

(Temporal Perturbation) 

1. the costate λ as adjoint to 

the change in the final state 

and supported by a hyperplane 

show that final states are convex 

select 

2. λ at the final time opposite to 

the normal to the hyperplane 

final states for both perturbations 

get first order accurate changes in 

minimizes the 

Hamiltonian H = H(y, λ, u) when 

û is continuous 

show that 

1. in a subinterval where û is 

continuous, the minimum of 

H or H(ŷ, λ, û) is 

conclude that H(ŷ, λ, û) is 

1. defined even when û is not 

continuous (i. e., û minimizes 

H even when û is not 
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Figure 5.1 Outline of the proof of Pontryagin’s minimum principle 

Figure 5.2 shows these two types of perturbations. While the first type 
involves a pulse perturbation in a finite subinterval, the second one has 
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vi 

ûi(t) 

perturbed ûi 

ûi 

Δt1 Δtf 

ûi(t̂f) 

at t1 perturbation 

t1 tf̂

perturbation 
temporal ûi is continuous 

pulse 

t0 t 

Pontryagin’s Minimum Principle 

Figure 5.2 Two types of perturbations in ûi, the  i-th component of the optimal 
control û

temporal perturbation in the final time. These perturbations change the 
optimal state generated by the optimal control. 

The time intervals of both perturbations are small enough to ensure the 
accuracy of the first-order approximation of the resulting new state. We will 
now examine these perturbations in the optimal control and determine the 
resulting states. 

5.4.1 Pulse Perturbation of Optimal Control 

Consider a subinterval 

[t1 − Δt1, t1), i. e., t1 − Δt1 ≤ t < t1 

where the optimal control û(t) is continuous at t1. In this subinterval, we 
consider a perturbed control u(t) to be constant, i. e., a vector v of some 
constants within the specified control limits. Elsewhere in the time interval 
[0, t̂f], u is the same as the optimal control û. Figure 5.2 shows a pulse 
perturbation in the i-th component of û. 

In the next three steps, we determine the final state y(t̂f) due to a pulse 
perturbation in û at time t1. 

Step 1 Integrating the state equation over the subinterval [t1 − Δt1, t1) for  
the controls u and û, we get, respectively, 

  t1 t1
 

 
t

y
1  

t
y

 t
= g( ,u) dt and ŷ

1
 
= g(ŷ, û) dt 

t1 −Δt1 

 
t1−Δt1 

t1−Δt1 t1−

t
Δt1 
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Since there is no perturbation prior to (t1 − Δt1), y at this time is the same 
as ŷ. Hence, the difference between the above two equations gives 

tt1 

y(t1) − ŷ(t1) =  [g(y,u) − g(ŷ, û)] dt (5.6) 

t1−Δt1 

Step 2 Being a continuous function of (y0, y1, . . . , yn) as per Assumption 1 
(Section 5.3.1, p. 128), g(y,v) approaches g(ŷ,v) as  y tends to ŷ in the 
subinterval [t1 − Δt1, t1). Thus, we can write 

|gi(y,v) − gi(ŷ,v)| 
< ci; i = 0, 1, . . . , n  ly − ŷl 

where cis are some positive constants,∗ and y is sufficiently close to ŷ. Simi­
larly, since y approaches ŷ as the perturbation interval Δt1 tends to zero, 

ly − ŷl 
< c0

Δt1 

where c0 is some positive constant, and Δt1 is sufficiently small. Multiplying 
together the last two inequalities, 

lim |gi(y,v) − gi(ŷ,v)| < diΔt1; i = 0, 1, . . . , n  
Δt1→0

where each di ≡ c0ci is a non-negative constant. The above inequality is 
symbolically expressed as 

gi(y,v) − gi(ŷ,v) =  O(Δt1); i = 0, 1, . . . , n  

using the big-O notation explained in Section 9.5.1 (p. 269). Here O(Δt1) de­
notes the maximum of the absolute error |gi(y,v) − gi(ŷ,v)|. This maximum 
is equal to some positive constant times Δt1 when Δt1 is sufficiently small. 
In vector form, 

g(y,v) =  g(ŷ,v) +  O(Δt1) 

Using similar reasoning as above, we obtain 

g[ŷ(t),v] =  g[ŷ(t1),v] +  O(Δt1) 

g[ŷ(t), û(t)] = g[ŷ(t1), û(t1)] + O(Δt1) 

where t lies in the subinterval [t1 −Δt1, t1). The last three equations combined 
with Equation (5.6) provide the new state due to the pulse perturbation at 
time t1 as follows: 

∗ Since the left-hand side of the inequality cannot be negative, cis cannot be zero or negative. 
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tt1 

y(t1) =  ŷ(t1) +  g[ŷ(t1),v] − g[ŷ(t1), û(t1)] + O(Δt1) dt 

t1−Δt1 

2 = ŷ(t1) +  g[ŷ(t1),v] − g[ŷ(t1), û(t1)] Δt1 + O(Δt1) (5.7) ' ' ' ' 
second order term 

first order term 

We consider Δt1 to be sufficiently small so that the second order term vanishes. 
With this provision, the change of state at t1 is 

Δy(t1) ≡ y(t1) − ŷ(t1) =  g[ŷ(t1),v] − g[ŷ(t1), û(t1)] Δt1 (5.8) 

Step 3 From time t1 to the final time t̂f, the control is optimal, i. e., û, and  
the state equation is ẏ = g(y, û). Replacing y by (ŷ + Δy) and using the 
first order Taylor expansion for sufficiently small Δy, the state equation can 
be written as 

d
(ŷ +Δy) =  g(ŷ +Δy, û) =  g(ŷ, û) +  gŷΔy, t1 ≤ t ≤ t̂f (5.9) 

dt

where gŷ is gy evaluated at (ŷ, û). Since dŷ/dt is g(ŷ, û), Equation (5.9) 
simplifies to 

d
Δy = gŷΔy, t1 ≤ t ≤ t̂f (5.10) 

dt 
which is a homogeneous linear differential equation with the initial condition 
given by Equation (5.8). Integrating the above equation, we get for t > t1 tt 

Δy(t) =  
d
Δy dt = Ψ(t)Ψ−1(t1)Δy(t1) (5.11) 

dt 

where Ψ(t) is  an (n + 1)  × (n + 1) fundamental matrix whose columns are 
the linearly independent solutions of the differential equation, Equation (5.10) 
(see Section 9.26, p. 283). Observe that the above equation along with Equa­
tion (5.8) reveals that Δy is directly proportional to Δt1. We ensure the 
requisite size of Δy in Equation (5.9) by having Δt1 suitably small. 

Now the new state at time t > t1, utilizing Equation (5.11), is given by 

tt tt tt 
dy dŷ d 

y(t) =  dt = dt+ Δy dt = ŷ(t) +  Ψ(t)Ψ−1(t1)Δy(t1)
dt dt dt 

The above equation, upon substituting for Δy(t1) given by Equation (5.8) and 
replacing t by t̂f, yields the final state in the presence of the pulse perturbation, 

y(t̂f) =  ŷ(t̂f) +  Ψ(t̂f)Ψ
−1(t1) g[ŷ(t1),v] − g[ŷ(t1), û(t1)] Δt1 
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which is first order accurate with respect to Δt1, the interval of pulse per­
turbation. We take Δt1 to be small enough for the above equation to be 
true. 

5.4.2 Temporal Perturbation of Optimal Control 

As shown in Figure 5.2, we now consider a truncation or extension of the 
optimal control û at the final time t̂f. If Δtf is negative, then the control 
remains û in the truncated interval [0, t̂f − |Δtf|]. But if Δtf is positive, then 
the control remains û in the original interval [0, t̂f] and stays at the optimal 
value û(t̂f) for  t > t̂f in the added subinterval [t̂f, t̂f +Δtf]. 

Integrating the state equations from t̂f to t̂f +Δtf, we  get  

t̂f+Δtft 
y(t̂f +Δtf) =  y(t̂f) +  g[y(t), û(t̂f)] dt 

t̂f 

For sufficiently small Δtf, the integral in the above equation is given by its 
first order Taylor expansion, g[y(t̂f), û(t̂f)]Δtf. Thus,  

y(t̂f +Δtf) =  y(t̂f) +  g[y(t̂f), û(t̂f)]Δtf (5.12) 

is the first order approximation of the final state due to the temporal pertur­
bation. Similar to Δt1 above, we take Δtf to be small enough for the above 
equation to be true. 

5.4.3 Effect on Final State 

Consider a collection of final states generated by the optimal control altered by 
all possible combinations of pulse and temporal perturbations. This collection 
also includes the optimal final state generated by the optimal control without 
perturbations. Appendix 5.A (p. 145) shows that this collection is a convex 
set. As shown in Figure 5.3, a convex set contains all points that lie on a 
straight line joining any two points of the set. 

In this set, let yf be a point representing a final state, which is either 

1. y(t̂f) due to pulse perturbation, or 

2. y(t̂f +Δtf) due to temporal perturbation. 

Then, since the collection is convex, the final state given by 

zf = αyf + (1  − α)ỹf for 0 ≤ α ≤ 1 

also belongs to the set where ỹf is another member of the set, i. e., another 
final state. 



x 

θ ≥ π/2 

(yf − ŷf) 
ỹ 

z 
on the line yf 

ŷboundary point 

is any point 

f 

convex set S 

normal p = x − ŷf 

hyperplane P 
y1 

y2 
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Figure 5.3 A convex set  S of final states with a supporting hyperplane P . A
hyperplane is a tangent line in two dimensions 

Supporting Hyperplane 

Now for a convex set, there exists a supporting hyperplane at any boundary 
point of the set (see Appendix 5.B, p. 149). We apply this result to our convex 
set of final states, in which the final optimal state 

ŷf ≡ 

is a boundary point since

 T 

ŷ0(tf) ŷ1(tf) . . .  ŷn(tf) 

 it cannot be an interior point. 

 
Otherwise, ŷf would 

have been surrounded in all directions by other points of the set, including 
those with y0(t̂f) components less than ŷ0(t̂f). This situation is contradictory 
since no p oint i n t he set c an h ave t he y 0(t̂f) component — the objective 
function value I — less than  ŷ0(t̂f), which is the minimum I. 

In light of the above facts, there exists at ŷf a hyperplane supporting the 
convex set of final states. Let 

T 
p ≡ p0 p1 . . .  pn 

be the normal to the hyper

 
plane such that no po

 
int of p is in the set, as 

shown in Figure 5.3. Hence, for any point yf in the set, the angle between the 
vector (yf − ŷf) and t he n ormal p  is greater than or equal to π/2. Derived in 
Appendix 5.B, this result is mathematically expressed by the inequality 

pT (yf − ŷf) ≤ 0 
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5.4.4 Choice of Final Costate 

Let us choose λ(t̂f) =  −p. Then the above inequality becomes 

λ(t̂f)
T(yf − ŷf) ≥ 0 (5.13) 

Simply put, we choose the final costate to be a vector opposite to the normal 
p and pointing toward the convex set of final states (see Figure 5.3).∗ The 
first component of the costate, λ0,  is a constant, as we show next.  

Constancy of λ0 

Consider the set of linear first order differential equations 

dλ
λ̇ ≡ y 

T−gˆ

which is called the adjoint of Equation (5.10). Note that gŷ is gy evaluated 
at (ŷ, û). Expanding this set of adjoint equations, 

t1 ≤ t ≤ t̂fλ, (5.14) = 
dt 

⎤⎡⎤⎡⎤⎡⎤⎡ 
∂g0 ∂g1 ∂g2 ∂gn 

. . .  
∂y0 ∂y0 ∂y0 ∂y0 

∂g0 ∂g1 ∂g2 ∂gn 
. . .  

∂y1 ∂y1 ∂y1 ∂y1 

. . . . . . . . . . . . . . . 

∂g0 ∂g1 ∂g2 ∂gn 
. . .  

∂H
λ̇0 

λ̇1 

. . . 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

= − 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

λ0 

λ1 

. . . 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

= − 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

∂y0 

∂H  
∂y1 

. . . 

∂H
λ̇n λn

∂yn ∂yn ∂yn ∂yn (ŷ,û) ∂yn (ŷ,û) 

where the last equality follows from the definition of the Hamiltonian. We 
rewrite this equality as 

∂H  
λ̇ = − 

∂y 

⏐⏐⏐ dλ ∂H⏐ ˙ i   or λi  = , i = 0 , 1, . . . , n  (5.15)
(ŷ,û) 

≡
dt 

−
∂yi

⏐⏐
(ŷ,û) 

 ˙Since H does not depend explicitly on y0, the

⏐⏐
 first adjoint equation is λ0 = 0,  

thereby implying that λ0 is a constant. 

Specification of λ0 

If λ0 is zero, then the Hamiltonian would be independent of the objective 
functional. Consequently, the optimal control problem would have nothing to 
do with the objective functional. Since an objective functional is essentially 

∗ In the original derivation of the maximum principle, Pontryagin (1986) chose the final 
costate along the normal p, i. e., away from the set of final states. 
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relevant to an engineering optimal control problem, we implicitly assume that 
λ0 is not zero. It could be zero in a rare problem where the solution is 
independent of the objective functional, i. e., the latter is inconsequential. See 
Kamien and Schwartz (1991) for an example. 

In practice, therefore, we expect to get solutions with any non-zero λ0 and 
skip the exercise to prove that λ0 is surely a non-zero constant. Nonetheless, it 
still needs to be specified. We make the simple choice, λ0 = 1, and introduce 
it in Inequality (5.13) by dividing both sides by −p0 to obtain 

1 p1/p0 . . .  pn/p0 (yf − ŷf) ≥ 0 ' ' 
λ� (t̂f) 

Considering yf ≡ y(t̂f), i. e., the final state due to a pulse perturbation in 
the optimal control, we can rewrite the above inequality as 

λT(y − ŷ) ≥ 0, at t = t̂f (5.16) 

5.4.5 Minimality of the Hamiltonian 

Next, we will show that the dot product λT(y − ŷ) in Inequality (5.16) is 
constant so that the inequality also holds at t1, the time of pulse perturba­
tion. This outcome will reveal that at any time when the optimal control is 
continuous, the corresponding Hamiltonian is minimum, and any control per­
turbation does not decrease the Hamiltonian further. Finally, we will extend 
this minimality to times when the optimal control is not continuous. 

Constancy of the dot product λT(y − ŷ) in [t1, t̂f] 

Let Δy ≡ (y − ŷ). Then utilizing Equations (5.10) and (5.14), the time 
derivative of the dot product λT(y − ŷ) is  

d dλT 

Δy + λT dΔy T(λTΔy) =  = (−gŷ λ)
TΔy + λT(gŷΔy)

dt dt dt 
= −λT gŷΔy + λT gŷΔy = 0  

Hence, the dot product λT(y − ŷ) is constant so that Inequality (5.16) holds 
throughout the time interval [t1, t̂f]. In particular, 

λT(t1)[y(t1) − ŷ(t1)] ≥ 0 

which yields 

λT(t1) g[ŷ(t1), v] − g[ŷ(t1), û(t1)] ≥ 0 

after substituting for [y(t1)−ŷ(t1)] from [Equation (5.8), p. 133] and canceling 
out the positive time duration Δt1. In terms of the Hamiltonian as expressed 
by [Equation (5.4), p. 128], the above inequality becomes 

H [ŷ(t1), λ, v] ≥ H [ŷ(t1), λ, û(t1)] 
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where v is any admissible control value at t1, including û(t1). Hence, the 
above inequality shows that at t1, the Hamiltonian achieves the minimum 
with the optimal control function. 

Note that t1 is any arbitrary time instant when the optimal control is contin­
uous. Hence the optimal control, whenever continuous, minimizes the Hamil­
tonian. 

5.4.5.1 Minimality Even When û(t) Is Discontinuous 

Belonging to the class defined in Section 5.2.1 (p. 126), the optimal control û
could be discontinuous in the interval [0, tf]. Therefore, we need to show that 
even when û is discontinuous, it minimizes the Hamiltonian. We will derive 
this result in the following three steps: 

1.	 We will ˆshow that the optimal Hamiltonian H(t) ≡ λT(t)g[ŷ(t), û(t)] 
is 

a.	 constant in a subinterval in which the optimal control û(t) is  con­
tinuous, and 

b.	 equal to a certain function h(t) — an infimum of H with respect 
to the value of control — in the subinterval. 

2.	 We will show that the function h(t) is continuous throughout the interval 
[0, t̂f]. 

ˆ3.	 We will utilize the above steps to show that H(t) is  

a.	 defined, and the Hamiltonian H(t) is minimized by û even when û
is discontinuous, and 

b.	 the same constant throughout the time interval [0, t̂f]. 

Step 1a Given a closed subinterval [ti, tj ] where  û(t) is continuous, we wish 
ˆto show that H(t) is constant. 

Continuity of the Hamiltonian 

Observe that the Hamiltonian defined as 

H(t) ≡ λT(t)g[y(t),u(t)] 

is a continuous function of t in the subinterval [ti, tj ]. The reasons are as 
follows: 

1. Both  g(y,u) and  gy(y,u) are continuous in the space (y1, y2, . . . , yn,u) 
as assumed in Section 5.3.1 (p. 128). 

2. As specified, û is a continuous function of t in the subinterval [ti, tj ]. 
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3. Due to the above two reasons, y and λ, being respective solutions of 
Equation (5.3) on p. 128 and Equation (5.14) on p. 136, are continuous 
functions of t. 

As a consequence, H is a continuous function of t in the subinterval [ti, tj ]. 
Next, we examine a function defined as 

ˆ ˆH(t) ≡ H [ŷ(t),λ(t), û(t)] and H(t, tc) ≡ H [ŷ(t),λ(t), û(tc)] 

for some fixed arbitrary time tc in the subinterval [ti, tj ]. 

ˆProperties of H(t, tc) and its Time Derivative 

ˆAs a particular case of the continuous Hamiltonian, H(t, tc) is a continuous 
function of t in the subinterval [ti, tj ]. Moreover, observe that 

n
dĤ(t, tc) 

= 
dt 

∂H [ŷ(t),λ(t), û(tc)] dŷi ∂H [ŷ(t),λ(t), û(tc)]
+ 

dλi 

∂yi dt ∂λi dt 
i=0 
n n

= 
∂gj [ŷ(t), û(tc)] dŷi dλi

λj + gj [ŷ(t), û(tc)] (5.17) 
∂yi dt dt 

i=0 j=0 

is also a continuous function of t in the interval [ti, tj ] for the same reasons 
given previously for the continuity of the Hamiltonian. 

ˆAt t = tc, the time variable in H(t, tc) is  tc throughout, and we can apply 
Equation (5.5) on p. 128 and Equation (5.15) on p. 136 with y = ŷ and u = û
to obtain 

∂Ĥ(t, tc) dλi ∂Ĥ(t, tc) dŷi 
= − and = , i  = 0, 1, . . . , n  

∂yi dt ∂λi dt 
t=tc t=tc 

The above two equations, when substituted in Equation (5.17), yield 

dH(t, tc) 
= 0  

dt t=tc 

Since the derivative d/dt[Ĥ(t, tc)] is continuous, for each E >  0 there  exists  

⏐⏐⏐⏐⏐ 

a δ >  0 such that |t − tc

dĤ(t, tc) dĤ(t, tc)− 

| < δ  implies ⏐⏐⏐⏐⏐ 
< E  

dt dt 
t=tc 

where the second term in the above inequality is zero from the last equation. 
Hence, the above inequality simplifies to 

dĤ(t, tc)−E <  < E  (5.18) 
dt 

Now we are ready to utilize the properties of Ĥ(t, tc) and  d/dt[Ĥ(t, tc)] in 
conjunction with the minimality of the Hamiltonian. 
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Minimality of the Hamiltonian 

Being continuous in the subinterval [ti, tj ], û minimizes the Hamiltonian so 
that 

H [ŷ(t),λ(t), û(t)] ≤ H [ŷ(t),λ(t), û(tc)]' ' ' ' 
ˆ	 ˆH(t)	 H(t,tc ) 

ˆSubtracting H(tc) from both the sides of the above inequality, 

Ĥ(t) − Ĥ(tc) ≤ Ĥ(t, tc) − Ĥ(tc) (5.19) 

Depending on t we have the following two cases: 

 ˆ1.	 t > tc for which we will prove ˆH(tj ) ≤ H(ti), and 

2. t < tc for  ˆwhich we will prove H(tj ) ≥ Ĥ(ti). 

These cases, ˆwhen prove  will ˆd, together imply that H(tj ) = H (ti) because t 
could be on either side of tc. 

Case 1 ˆHere t > tc. Since H (t, tc) is a continuous function of t, the M ean  
Value Theorem for derivatives (Section 9.14.1, p. 276) yields 

dĤ(t, tc)
Ĥ(t, tc) − Ĥ(tc, tc) =	 (t− tc) (5.20) ' ' dt 

t=tdor H(tc ) 

for some td in between t and tc. The above equation, when combined with 
the right-hand inequality of Inequality set (5.18), yields 

Ĥ(t, tc) − Ĥ(tc) < E(t− tc) 

Comparing the above inequality with Inequality (5.19), we get 

Ĥ(t) − Ĥ(tc) < E(t− tc)	 (5.21) 

where both t and tc lie in the closed subinterval [ti, tj ]. 
Now consider the auxiliary function 

Ĥ(tj ) − Ĥ(ti)
Ha(t) ≡ Ĥ(t) − (t− ti)

tj − ti 

which is continuous since both terms on the right-hand side of the above 
equation are continuous functions of t in the subinterval. As a consequence, 
Ha(t) must have a minimum at some time, since a continuous function in a 
closed interval achieves a minimum as well as a maximum according to the 
Weierstrass Theorem (Section 9.18, p. 278). Let the minimum of Ha(t) be  at  
tmin so that 

Ha(tmin) ≤ Ha(t) 
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in the subinterval. Expanding the above inequality, we get 

Ĥ(tj ) − Ĥ(ti) Ĥ(t) − Ĥ(t
 min)

 
≤ (5.22) 

tj − ti t− tmin 

Now Inequality (5.21), which is also satisfied for tc = tmin, provides  

Ĥ(t) − Ĥ(tmin) 
< E  (5.23) 

t− tmin 

From Inequalities (5.22) and (5.23), 

Ĥ(tj ) − Ĥ(ti)   ˆ  − ˆ< E or H(tj ) H(ti) < (tj  ti)E 
tj − ti 

−

Since both (tj −ti) and  E are positive real numbers that can be made arbitrarily 
small, 

ˆ ˆH(tj ) − Ĥ(ti) ≤ 0 or  H(tj ) ≤ Ĥ(ti) (5.24) 

Case 2 In this case t < tc. The Mean Value theorem for derivatives provides 
[compare with Equation (5.20)] 

ˆdH(t, t )
Ĥ(tc) − ˆ c

H(t, tc) =

 
 

 
(tc − t)

dt 
t=td 

Combining the above equation with the left-hand inequality of Inequality 
set (5.18) and Inequality (5.19) yields 

Ĥ(tc) − Ĥ(t) > −E(tc − t) (5.25) 

The auxiliary function Ha(t) must  also have  a  maximum at some time,  say,  
tmax, so  that  

Ha(tmax) ≥ Ha(t) 

in the subinterval. Expanding this inequality, we get 

Ĥ(tj ) − Ĥ(ti) Ĥ(t) − Ĥ(tmax)≥ (5.26) 
tj − ti t− tmax 

Now Inequality (5.25), which is also satisfied for tc = tmax, provides  

Ĥ(t) − Ĥ(tmax) 
> −E (5.27) 

t− tmax 

Altogether, Inequalities (5.26) and (5.27) yield 

Ĥ(tj ) − Ĥ(ti) ˆ> −E or H(tj ) − Ĥ(ti) > −(tj − ti)E 
tj − ti 

Since both (tj −ti) and  E are positive real numbers that can be made arbitrarily 
small, 

ˆ ˆH(tj ) − Ĥ(ti) ≥ 0 or  H(tj ) ≥ Ĥ(ti) (5.28) 
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Constancy of Ĥ in [ti, tj ] 

Since t is arbitrary within the closed subinterval [ti, tj ], the intersection of 
Inequalities (5.24) and (5.28) yields Ĥ(ti) =  Ĥ(tj ). Hence if tk is an arbitrary 
time in [ti, tj ], then 

Ĥ(ti) =  Ĥ(tk) =  Ĥ(tj ) 

ˆBy necessity therefore, H is constant throughout the subinterval where the 
optimal control is continuous. 

Step 1b Consider the function h(t), which is the infimum or the greatest 
lower bound (Section 9.4, p. 269) of the Hamiltonian with respect to the value 
of the control in the set U of admissible control values. Hence, h(t) is  the  
minimum value of the Hamiltonian at time t, if the minimum exists for some 
control in U . Otherwise,  h(t) is the greatest value of the Hamiltonian, which 
is less than all Hamiltonian values obtainable from U . In  either  case,  we  
specify the infimum to occur for u = w at any time t so that 

h(t) = inf H [ŷ(t),λ(t),u(t)] = H [ŷ(t),λ(t),w(t)] (5.29) 
u∈U 

Note that w(t) is simply an m-dimensional coordinate of control that provides 
the infimum of the Hamiltonian at time t. We now show that whenever û is 
continuous, 

h(t) =  H [ŷ(t),λ(t), û(t)] 

Let û be continuous at time ti. Then  

H [ŷ(ti),λ(ti), û(ti)] ≥ h(ti) (5.30) 

by virtue of Equation (5.29). Now consider an admissible control function 
u[(t,w(ti)], which is û(t) having a pulse perturbation w at time ti when 
û is continuous. At such a time instant, we have already shown that the 
Hamiltonian is minimum when the control is optimal. Thus, 

H [ŷ(ti),λ(ti), û(ti)] ≤ H{[ŷ(ti),λ(ti),u[(ti,w(ti)]} 

Since u[(ti,w(ti)] = w(ti), the right-hand side of the above inequality is h(ti) 
as per Equation (5.29). Therefore, 

H [ŷ(ti),λ(ti), û(ti)] ≤ h(ti) (5.31) 

The intersection of the above inequality with Inequality (5.30) yields 

ˆh(t) =  H [ŷ(t),λ(t), û(t)] or H(t) 

at any time t when û is continuous. 
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Step 2 We need to show that h(t) is continuous in the time interval [0, t̂f]. 
Thus, for each E >  0 there exists a δ > 0  such that |s− t| < δ  implies 

|h(s) − h(t)| < E  

In terms of the function denoted by 

H[t,u(t)] ≡ H [ŷ(t),λ(t),u(t)] (5.32) 

we can write 
h(t) = H [ŷ(t),λ(t),w(t)] = H[t,w(t)] (5.33) 

Because of the continuity of H (see p. 138), H is continuous in the space of 
time and control. Given a time instant s, for  each E >  0 there exists a δ1 > 0 
such that the norm of the variable vector [s − t, u(s) − w(t)]T less than δ1 

implies

H[s,u(s)] −H[t,w(t)] = H[s,u(s)] − h(t) < E  

The above inequa

⏐ ⏐⏐⏐
lity for u(s) = w (

⏐⏐
t) pa

⏐⏐⏐
rticularly yields 

⏐⏐⏐
H[s,w(t)] < h(t) + E  

From the definition 

h(s) = inf H [ŷ(s),λ(s),u(s)] = [s,w(s)] [s,w(t)] 
u∈U 

H ≤ H

Combining the last two inequalities, we obtain 

h(s) < h(t) + E  (5.34) 

which establishes the upper semi-continuity (see Section 9.2.1, p. 268) of h at 
t. To complete the proof of the continuity of h(t), we need to prove the lower 
semi-continuity of h at t, i. e .,  

h(s) > h(t) − E for |s− t| < δ2 > 0 (5.35) 

We prove it by contradiction. Suppose there is no δ2 > 0 for which the above 
set of inequalities is true. It means that in any time interval |s− t| < δ2, we  
have 

h(s) =  H[s,w(s)] ≤ h(t) − E 

The above inequality for an infinite sequence of progressively smaller intervals, 
|sn − t| < 1/n; n = 1, 2, . . . , can be written as 

h(sn) =  H[sn,wn] ≤ h(t) − E 

where sn and wn are the  respective values  of  s and w in the n-th interval. Be­
longing to the set of admissible control values, the sequence of wn is bounded. 
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The Bolzano–Weierstrass Theorem (Section 9.17, p. 277) assures that this se­
∗quence contains a subsequence that is convergent on some value, say, w0. As 

wn approaches w0, sn approaches t, thereby implying 

H[t,w0] ≤ h(t) − E 

which contradicts h(t) being the infimum. Hence, Inequality (5.35) is true. 
Combining it with Inequality (5.34) for δ as the lower of δ1 and δ2, we  obtain  

|h(s) − h(t)| < E  for |s− t| < δ  

thereby proving the continuity of h(t) in the time interval [0, t̂f]. 
Finally, we prove that the minimality of Ĥ extends to even those times when 

ˆthe optimal control is discontinuous. Furthermore, H is constant throughout 
time interval [0, t̂f]. 

Step 3a Let û be discontinuous at a time ti somewhere in the open time 
interval (0, t̂f), as shown in Figure 5.4. Since h(t) is continuous throughout 

h(t) 
Ĥi 

ti+1ti−1 ti ˆ

h(ti) h(ti+1)h(ti−1) 

t1 t2 

Ĥi−1 

h(t1) h(t2) 

Ĥ0 Ĥ1 Ĥ3 Ĥi Ĥn−1 Ĥn 

h(tn)h(tn−1) 

tn−1 tn 
t0 tft 

Figure 5.4 The function h(t). Solid dots correspond to times when û is not con­
tinuous 

ˆthe interval, and equal to H(t) whenever û(t) is continuous, 

lim h(t) =  h(ti) = lim h(t) 
t→ti − t→ti + 

ˆNote that the number of tis is finite, and h(t) is  equal  to  H(t) when  û(t) 
is continuous in a sufficiently small neighborhood of ti, as shown earlier in 
Step 1b. Hence, the above set of equations becomes 

ˆ ˆlim H(t) =  h(ti) = lim H(t) 
t→ti − t→ti + 

ˆwhich shows that H(t) is defined at ti to be equal to h(ti). Thus, û, even  
when discontinuous, minimizes the Hamiltonian. 

∗ If w were a continuous function of t, then  w0 = w(t). However, we cannot impose 
continuity on w with respect to t, hence the need for this theorem. 
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ˆStep 3b Now H(t) is a constant, not necessarily the same, in the left as well 
as the right part of the neighborhood corresponding to t < ti and t > ti. Let  

ˆ ˆthe respective constants be Hi−1 and Hi, as shown in Figure 5.4. Then the 
above set of equations becomes 

ˆ ˆHi−1 = h(ti) =  Hi 

ˆwhich shows that H(t) is constant over the entire neighborhood, including ti. 
This reasoning, when applied to all such tis (i = 1, 2, . . . , n) where  

0 < t1 < t2 < · · · < tn−1 < tn < t̂f 

yields 

Ĥ0 = h(t1) =  Ĥ1 = h(t2) =  Ĥ3 = · · · = Ĥn−1 = h(tn) =  Ĥn 

as shown in the figure. As a consequence, the optimal Hamiltonian is constant 
throughout the time interval. 

5.4.6 Zero Hamiltonian at Free Final Time 

If the final time is not fixed, then from Equation (5.12) on p. 134, the final 
state is 

'yf ≡ y(t̂f +Δtf) =  y(t̂f) +  g[y(t̂ 'f), û(t̂f)]Δtf 

ĝ

Hence the change in the final state from the optimal time t̂f is 

yf − y(t̂f) =  ĝΔtf 

which, when substituted into Inequality (5.13), yields 

(λT ĝ)Δtf ≥ 0 

Since Δtf is arbitrary, it is necessary that 

λT ĝ = Ĥ(t̂f) = 0  

5.A Convexity of Final States 

Consider the following control function ⎧ ⎪⎪⎪⎪⎪⎪⎨ ⎪⎪⎪⎪⎪⎪⎩ 

û(t), 0 ≤ t < t1 −Δt1 

v1, t1 −Δt1 ≤ t < t1 (subinterval I1) 

û(t), t1 ≤ t < t2 −Δtu(t) =  2 

v2, t2 −Δt2 ≤ t < t2 (subinterval I2) 

û(t), t ≥ t2 
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This function has pulse perturbations v1 and v2 in the two disjunct subinter­
vals I1 and I2, respectively. Elsewhere in [0, t̂f], the function is the same as 
the optimal control. Derived earlier in Section 5.4.1 (p. 131), the state change 
at time t1 is 

Δy(t1) =  g[ŷ(t1),v] − g[ŷ(t1), û(t1)] Δt1 (5.8) 

This state change, as per Equation (5.11) on p. 133, evolves to 

Δy(t2 − Δt2) =  Ψ(t2 − Δt2)Ψ
−1(t1)Δy(t1) (5.36) 

at time (t2 − Δt2), the onset of the second subinterval I2. Let us simplify 
the above equation. From Equation (5.11), Ψ(t) depends on Δy(t) — a  
continuous function of t whose derivative exists as defined by Equation (5.10). 
Thus, Ψ(t) is a continuous function of t in the subinterval [t1, t2 −Δt2]. Hence, 
Ψ(t2 − Δt2) approaches Ψ(t2) as  Δt2 tends to zero. Using the big-O notation 
(see p. 269), we have the matrix equation 

Ψ(t2 − Δt2) =  Ψ(t2) +  O(Δt2) 

which, when used in Equation (5.36), yields 

Δy(t2 − Δt2) =  Ψ(t2)Ψ
−1(t1)Δy(t1) +  O(Δt2)Ψ

−1(t1)Δy(t1) 

= Ψ(t2)Ψ
−1(t1)Δy(t1) +  O(Δt1Δt2)' ' 

second order term 

For sufficiently small Δt1 and Δt2, the second order term vanishes, and the 
state change at (t2 − Δt2) — the onset  of  I2 — simplifies to 

Δy(t2 − Δt2) =  Ψ(t2)Ψ
−1(t1)Δy(t1) (5.37) 

To determine the state change at the end of I2, we repeat the steps of Sec­
tion 5.4.1, which is concerned with a single pulse perturbation corresponding 
to the first subinterval I1. 

Step 1 Thus, in place of Equation (5.6) on p. 132, we get for the second 
subinterval I2 tt2 

y(t2) − ŷ(t2) − [y(t2 − Δt2) − ŷ(t2 − Δt2)] = [g(y,u) − g(ŷ, û)] dt ' ' 
Δy(t2−Δt2) t2 −Δt2 

Step 2 Doing the analysis that led to Equation (5.7) on p. 133, we get 

tt2 

2[g(y,u) − g(ŷ, û)] dt = g[ŷ(t2),v2] − g[ŷ(t2), û(t2)] Δt2 + O(Δt2) 

t2 −Δt2 



    

    

� 

� 

� 

147 Pontryagin’s Minimum Principle 

Hence, for sufficiently small Δt2, the above equation when substituted in the 
result of Step 1, yields [compare with Equation (5.8), p. 133] 

Δy(t2) ≡ y(t2) − ŷ(t2) =  g[ŷ(t2),v2] − g[ŷ(t2), û(t2)] Δt2 +Δy(t2 − Δt2)' ' 
δy(t2 ) 

In the above equation, δy(t2) indicates the state change at t2 if there were 
no previous perturbation. Thus, Δy(t2) is  δy(t2) if  Δy(t2 − Δt2) is zero. 
Obviously, for the first perturbation, Δy(t1) is  δy(t1) so that Equation (5.37) 
can be written as 

Δy(t2 − Δt2) =  Ψ(t2)Ψ
−1(t1) δy(t1) 

Combining the last two equations, we obtain 

Δy(t2) =  δy(t2) +  Ψ(t2)Ψ
−1(t1) δy(t1) 

Final State 

Now from t2 to t̂f during which the control is optimal, the evolution of Δy 
is governed by Equation (5.11) on p. 133 so that the state change at the final 
time is 

Δy(t̂f) ≡ y(t̂f) − ŷ(t̂f) =  Ψ(t̂f)Ψ
−1(t2)Δy(t2) 

= Ψ(t̂f)Ψ
−1(t2)δy(t2) +  Ψ(t̂f)Ψ

−1(t1)δy(t1) 

In general, if the optimal control has pulse perturbations in n disjunct intervals 
Ii (i = 1, 2, . . . , n), then the change in final state is 

n

Δy(t̂f) =  Φ(ti)δy(ti) 
i=1 

where Φ(ti) ≡ Ψ(t̂f)Ψ
−1(ti). Now if the final time changes by Δtf, it would  

bring about an additional final state change 

y(t̂f +Δtf) − y(t̂f) =  g[y(t̂f), û(t̂f)]Δtf 

given by Equation (5.12). Thus, the final state resulting from pulse as well as 
temporal perturbations to the optimal control is given by 

n

y(t̂f) =  ŷ(t̂f) +  Φ(ti)δy(ti) +  g[ŷ(t̂f), û(t̂f)] Δtf 
i=1
 
n


= ŷ(t̂f) +  Φ(ti) g[ŷ(ti),vi] − g[ŷ(ti), û(ti)] Δti + g[ŷ(t̂f), û(t̂f)] Δtf ' ' 
i=1 

ai 

The optimal control thus perturbed is an admissible control. Let us consider 
a collection of all such controls with 
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1. arbitrarily fixed but admissible pulse perturbations v1,v2, . . . ,vn at a 
finite number of time instants, t1, t2, . . . , tn; ∗ 

2. corresponding intervals Δt1,Δt2, . . .Δtn — each of variable size, includ­
ing zero; and 

3. intervals of temporal perturbations at t̂f, which also have variable sizes 
including zero. 

In terms of ai introduced in the last equation, the final state is then 

n

y(t̂f) =  ŷ(t̂f) +  aiΔti + g[ŷ(t̂f), û(t̂f)] Δtf (5.38) 
i=1 

Containing all combinations of the pulse and temporal perturbations, the 
collection of admissible controls includes the optimal control, which has all 
Δtis and  Δtf of zero size. Each member of this collection results in a final 
state. The final state is optimal when the control is the optimal control. 

Convexity 

We now show that the set of all final states given by Equation (5.38) is convex. 
Thus, given any two final states y(t̂f) and  ỹ(t̂f) of this set, their combination 

z(t̂f) =  αy(t̂f ) +  (1  − α)ỹ(t̂f), 0 ≤ α ≤ 1 

also belongs to this set. It means that we need to show that z(t̂f) is generated 
by a member of the collection of admissible controls. 

Let y(t̂f) and  ỹ(t̂f) be generated by respective admissible controls u(t) and  
ũ(t). The control u(t) has perturbation intervals 

Δt1, Δt2,  . . . ,  Δtn 

and a temporal perturbation Δtf. On the other hand, the control ũ(t) has  
perturbation intervals 

Δt̃1, Δt̃2,  . . . ,  Δt̃n 

and a temporal perturbation Δt̃f. Then  

n

y(t̂f) =  ŷ(t̂f) +  aiΔti + g[ŷ(t̂f), û(t̂f)] Δtf 
i=1 
n

ỹ(t̂f) =  ŷ(t̂f) +  aiΔt̃i + g[ŷ(t̂f), û(t̂f)] Δt̃f 
i=1 

∗ If n is infinite, then the control would be discontinuous everywhere in [0, t̂f] and thus not 
admissible. 
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and

z(t̂f) =  ŷ(t̂f) + α y(t̂f) +  (1  − α)ỹ(t̂f)
 
n  

= ŷ(t̂f) +
�
 ai '[αΔt

 i + (  1−  α)Δt̃i'] + g[ŷ(t̂f), û(t̂f)] [  
t

'αΔtf + (1  − α)Δt̃f]  
i=1 

Δ ĭ Δt̆f 

Thus, z(t̂f) is the result of a control ŭ(t) from the collection of 

  
admissible

'
 

controls with non-negative time intervals Δt̆is and  Δt̆f. ∗ Therefore, the set of 
final states is convex. 


 

5.B Supporting Hyperplane of a Convex Set 

A hyperplane is a generalization of a plane in a coordinate system of a number 
of dimensions. Any point y in a hyperplane satisfies a set of linear equations 

n

piyi = α, i = 1, 2, . . . , n  or p T y = α 
i=1 

where α is some constant. For a specific point ŷ on the hyperplane, we have 

T ˆp y = α 

The difference between the last two equations yields 

p T(y − ŷ) =  0  

which is the equation of the hyperplane relative to ŷ. The vector p is called 
the normal to the hyperplane at ŷ. 

Consider a set of points, S. If and only if all points of S lie on one side of 
P , then  P is called a supporting hyperplane of S. For our purpose, we 
consider S to lie on the side opposite to the normal to P at a given point. For 
a convex set of two-dimensional points, Figure 5.3 (p. 135) shows a hyperplane 
P supporting a closed set S at a point ŷ. Belonging to both P and S, the  
point lies on the boundary of S. 

We will now show that if S is a convex set, then at each of its boundary 
point we have a supporting hyperplane, or equivalently pT(y − ŷ) ≤ 0 for all 
y in S. In the following two steps we show that: 

∗ They are non-negative since they depend on non-negative Δtis, Δt̃is, Δtf, Δt̃f, and  α. 
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1. In a closed convex set S in Rn, there exists a unique point ŷ, which  is  
closest to a given point x outside the set S. 

2. If  ŷ in the set S is closest to x, then for all y in S the dot product 
(x − ŷ)T(y − ŷ) ≤ 0 and  vice  versa.  

3. Given any boundary point ŷ of the set S, there exists a non-zero vector p 
such that the dot product pT(y − ŷ) ≤ 0 for all y in the S. This result 
means that a hyperplane supports the set S at each of its boundary 
point. 

Step 1 Consider within S a point  y0 and all points yi (i = 1, 2, . . . ) equidis­
tant from or closer to x than y0. Then finding ŷ, a point of S closest to x, is  
equivalent to finding the minimum element of the set 

{lx − yil; i = 0, 1, 2, . . .} 

Now the above set is closed and bounded (by 0 and lx − y0l). In this 
set, consider the continuous function f(yi) =  lx − yil. According to the 
Weierstrass Theorem (Section 9.18, p. 278), there exists a minimum of f , say,  
f(ŷ), corresponding to the smallest element of the set, lx − ŷl. Thus,  there  
exists a point ŷ in S that is closest to x. 

Next, we show that ŷ is unique. Suppose there exists a point ya equidistant 
from x. Let  

d ≡ lx − ŷl = lx − yal (5.39) 

Since S is convex, it contains 0.5(ŷ+ ya). From the triangle inequality (Sec­
tion 2.2.2, p. 26), the distance 

lx − 0.5(ŷ+ ya)l = 0.5l(x − ŷ) +  (x − ya)l ≤  0.5l(x − ŷ)l+0.5l(x − ya)l ' ' ' ' 
d d 

Strict inequality in the above relation is contradictory since it would imply 
that 0.5(ŷ + ya) is closer to x than the minimum distance d. Therefore, 

l(x − ŷ) + (x − ya)l = l(x − ŷ)l+ l(x − ya)l 

which means that the vectors (x − ŷ) and  (x − ya) are collinear.∗ Thus, 

(x − ŷ) =  γ(x − ya) 

where γ is some scalar. Taking the norm on both sides of the above equation 
and comparing it with Equation (5.39), we get 

lγl = |γ| = 1  

  ∗ n n 2Let la + bl = lal+lbl. Squaring both sides, (ai +bi)2 = (a +b2)+2lallbl.i=1 i=1 i i  nUpon simplifying, = aTb = lallbl. Now  aTb = lallbl cos θ where θ is the i=1 aibi 
angle between the two vectors. In this case where la + bl = lal+ lbl, we have  θ = 0◦ . 
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If γ = −1, then x = (ŷ + ya)/2, which belongs to the convex set S. This i s  
contradictory since x lies outside S. Thus, γ  = −1. Hence, γ = 1,  thereby  
implying that ŷ = ya. In o ther w ords, ŷ is a unique point of S for which the 
distance lx − ŷl is minimum. 

Step 2 Next, we show that if ŷ is closest to x, then for any point y in S, 

(x − ŷ)T(y − ŷ) ≤ 0 (5.40) 

Consider a point yb = ŷ + α(y − ŷ), which lies in the convex set S for 
0 ≤ α ≤ 1. Since ŷ is closest to x, we h ave l x − ŷl ≤ lx − ybl or equivalently, 

l  − l2 ≤ l 2 
x ŷ x − ybl = l(x − ŷ) − α(y − ŷ)l2 (5.41) 

Using the Parallelogram Identity (Section 9.21, p. 280), 

l 2(x − ŷ) − α(y − ŷ)l = lx − ŷl2 2+ α2ly − ŷl − 2α(x − ŷ)T(y − ŷ) 

Using the above equation in Inequality (5.41), we get 

(x − ŷ)T(y − ŷ) ≤ (α/2)ly − 2
ŷl , 0 ≤ α ≤ 1 

In the above inequality, taking the right-hand limit of α to zero, we get the 
desired result, 

(x − ŷ)T(y − ŷ) ≤ 0 

Finally, we show that if (x − ŷ)T(y − ŷ) ≤ 0, then ŷ is closest to x for any 
point y in S. Consider  

l 2 x − yl = l(x − l2ŷ) − (y − ŷ) = l 2 2x − ŷl + ly − ŷl − 2(x − ŷ)T(y − ŷ) 

where the right-hand side follows from the Parallelogram Identity. Since we 
are given 

(x − ŷ)T(y − ŷ) ≤ 0 

the last term of the above equation is positive or zero. Hence, 

l 2 2x − yl ≥ lx − ŷl or lx − yl ≥ lx − ŷl 

which implies that ŷ is closest to x. 

Step 3 In terms of a unit vector p ≡ (x − ŷ)/lx − ŷl, Inequality (5.40) 
becomes 

T T p y ≤ p ŷ
 

α 

where we denote the right-hand side, a dot product, as a scalar α. But  
α < p Tx since 

'  '

T p x − α = (x − ŷ)T  2 
(x− ŷ) =  lx − ŷl > 0 
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Consequently, pTy	 < pTx. In other words, given a point xi outside the 
convex set S, there is a unique point ŷi in S, corresponding to the unit vector 
pi = (xi − ŷi)/lxi − ŷil, such that 

T T p i y < pi xi

for each y in S. 
Now consider an infinite sequence of xi tending to a point ŷ on the boundary 

of S. The corresponding sequence pi of unit vectors is bounded. According 
to the Bolzano–Weierstrass Theorem (Section 9.17, p. 277), this sequence has 
a subsequence converging to a limit, say, p whose norm is also unity. Hence, 
as i tends to infinity, the above inequality becomes 

 T  < T p y p ŷ or p T(y − ŷ) < 0

Including the case y = ŷ, we finally have 

p T(y − ŷ) ≤ 0
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Chapter 6
 

Different Types of Optimal Control 
Problems 

In this chapter, we engage with different types of optimal control problems 
and derive the necessary conditions for the minimum. The constraints in 
the problems are handled using the Lagrange Multiplier Rule and the John 
Multiplier Theorem. Since derivatives are available in most of the engineering 
problems, we assume the functions involved are sufficiently differentiable and 
the constraint qualifications explained in Chapter 4 are satisfied. Simply 
put, we take for granted the existence of a set of Lagrange multipliers in 
the augmented functional incorporating all constraints of an optimal control 
problem. 

6.1 Free Final Time 

We first consider optimal control problems in which the final time is free, i. e., 
not specified or fixed. Thus, in addition to finding optimal control functions, 
we need to determine the optimal final time as well in these problems. 

6.1.1 Free Final State 

This is the optimal control problem of Section 5.2 (p. 126) in which both 
the final time and the final state are unspecified or free. Using vectors, the 
objective is to minimize the functional ttf 

I = F [y(t), u(t)] dt (6.1) 

0 

subject to the autonomous ordinary differential equations 

ẏ = g[y(t), u(t)] (6.2) 

with the initial conditions 

y(0) = y0 (6.3) 
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Based on the Lagrange Multiplier Rule (see Section 4.3.3.2, p. 103), the above 
problem is equivalent to minimizing the augmented functional 

ttf 
J = F + λT(−ẏ + g) dt (6.4) 

0 

subject to the initial conditions. The vectors y, ẏ, g, and  λ are each of 
dimension n with the first element indexed 1. For example, 

T 
λ = λ1 λ2 . . .  λn 

Variation of J 

We begin with the definition of the Hamiltonian 

H ≡ F + λT g 

which is the same as Equation (5.4) on p. 128 with λ0 = 1  and  g0 ≡ F . In  
terms of H , the augmented functional becomes 

ttf 
J = (H − λT ẏ) dt 

0 

The variation of J is given by 

ttf n
∂H ∂H  ∂H  

δJ = δyi + δλi + δui − λiδẏi − ẏiδλi dt 
∂yi ∂λi ∂uii=10 

+ H − λT ẏ δtf 
tf ttf 

T= Hy 
Tδy + Hλ 

Tδλ + Hu 
Tδu − λTδẏ − ẏ δλ dt + H − λT ẏ δtf 

tf' ' 0 
∂J/∂tf 

where the last term above is the partial derivative of J with respect to tf 
resulting from the application of the Leibniz Integral Rule (see Section 9.10, 
p. 273). Applying integration by parts to the integral of λTδẏ, we  get  

ttf ttf ttf 
λTδẏ dt = λTδy 

tf − λ̇Tδy dt = λTδy − λ̇Tδy dt 
0 tf
 

0 0 0
 

where in the last step we have made use of the fact that δy(0) must be zero 
since y(0) cannot vary — it is fixed at y0 by the initial condition. Substituting 
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the above equation in the expression for δJ , we obtain  ttf 
δJ = (Hy + λ̇)Tδy + (Hλ − ẏ)Tδλ + HTδu dt − λT(tf) δy(tf)u 

+ H − λT ẏ δtf (6.5) 
tf 

Note that δy(tf) is the variation in the optimal state ŷ at time tf, i.  e.,  

δy(tf) =  y(tf) − ŷ(tf) (6.6) 

This variation is different from the variation in the final state 

δyf ≡ y(tf + δtf) − ŷ(tf) (6.7) 

which also incorporates a change δtf in tf. Figure 6.1 illustrates both of these 
variations for a single optimal state ŷ. To incorporate the specifications of free 
final state and free final time, we need to introduce δyf in Equation (6.5). For 
this purpose, we obtain a first-order approximation of δyf in terms of δy(tf) 
as follows. 

The variation δyf can be expressed as 

δyf = y(tf + δtf) − ŷ(tf) =  y(tf) +  ẏ(tf)δtf − ŷ(tf) 

= δy(tf) +  ẏ(tf)δtf 

where we have used the first order Taylor expansion for y(tf + δtf). Next, 
differentiating Equation (6.6) with respect to t, we  obtain  

ẏ(tf) =  ẏ̂(tf) +  δẏ(tf) 

y 
δyfδy(tf) 

ẏ(tf)δtf 
y(tf + δtf) 

ŷ(tf) 

y(tf) 

y0 

ŷ 

0 tf tf + δtft 

Figure 6.1 Relation between δyf and δy(tf) 
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After combining the last two equations and discarding the second-order term 
δẏ(tf)δtf, we  get  

δyf = δy(tf) +  ẏ̂(tf)δtf or δy(tf) =  δyf − ẏ̂(tf)δtf (6.8) 

Finally, substituting the above equation in Equation (6.5), we obtain at the 
minimum of J [where δJ = 0,  u = û, y = ŷ, and, in particular, ẏ(tf) =  ẏ̂(tf)] ttf 

(Hy + λ̇)Tδy + (Hλ − ẏ)Tδλ + HTδu dt − λT(tf) δyf + H(tf)δtf = 0u 

0' ' 
δJ 

(6.9) 

Necessary Conditions for the Minimum 

Hence, at the minimum of J , and equivalently of I, the following equations 
must be satisfied: 

λ̇ = −Hy ẏ = Hλ = g Hu = 0 

λ(tf) =  0 H(tf) = 0  

along with the initial conditions, y(0) = y0. The control for which the above 
conditions are satisfied is called the optimal control û. This result is valid 
when the following conditions are met with: 

1. the functions F , g, Hy, and  Hu exist and are continuous with respect 
to y and u. 

2. the optimal control is 

2.a either unconstrained, i. e., a ûi can take any value 

2.b or in the interior of a specified set containing all admissible control 
values 

Condition 2a is applicable to the present problem, which does not impose any 
constraints on the control. 

It might happen that the first condition is not satisfied, e. g., when the 
objective functional depends on |u| or the set of admissible controls contains 
discrete elements. To obtain necessary conditions for the minimum in that 
situation, we can rely on Pontryagin’s minimum principle, which does not 
depend on the existence of Hu or its continuity (see Section 5.3.1, p. 128). 
According to the principle, the optimal control û minimizes H , i.  e.,  

H(ŷ, λ, u) ≥ H(ŷ, λ, û) 

at each time in the interval [0, tf] where  ŷ and λ are the state and costate at 
the minimum, respectively. 
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Example 6.1 
For the batch reactor problem in Example 2.10 (p. 45), find the necessary 
conditions for the minimum of ttf 

a 

 
E 

I = − ckx dt, k = ko exp − 
RT 

0 

 

subject to the satisfaction of the state equation 

a ẋ = −akx (6.10) 

with T (t) as t he  control,  x(0) = x0 as the initial condition, and tf as the 
unspecified final time. 

In this problem, x and T are the state (y) and c ontrol ( u), respectively. 
The Hamiltonian for this problem is 

H = −   ckxa − λakxa

Thus, for I to be minimum the necessary conditions are as follows: 

λ̇ = a'akx −1 kE   (c + aλ') ẋ = '−  ak  xa' − xa (c + aλ) = 0  
  RT 2 

−H H λx
'

H

) = x  xa λ(t ) = 0  x(0 ck +

   
T 

'
f 0 −

 
 λakxa   

(t

 
= 0  ' tf  

H f ) 

'

6.1.2 Fixed Final State 

Consider the optimal control problem of Section 6.1.1 (p. 153). If the final 
state is fixed, say, at y(tf) = y f, then the variation δyf must be zero. Conse­
quently, Equation (6.9) simplifies to 

ttf  
˙δJ = (Hy + λ)Tδy + (Hλ − ẏ)Tδλ + Hu

T
 δu 
 
dt + H(tf)δtf = 0

0 

and the necessary conditions for the minimum of J , and equivalently of I, are  

λ̇ = −Hy, ẏ = Hλ = g, Hu = 0, and H(tf) = 0  

along with the initial and final conditions 

y(0) = y0 and y(tf) =  yf. 
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Example 6.2 
Let the final state in Example 6.1 be specified as x(tf) =  xf. In t his c ase, t he  
necessary conditions for the minimum are the same except λ(tf) = 0, which 
is replaced with x(tf) =  xf. 

6.1.3 Final State on Hypersurfaces 

In this case, the objective is to minimize the functional 

tf 

I = 
t

F [y(t),u(t)] dt 

0 

subject to 

ẏ = g[y(t),u(t)], y(0) = y0 

as well as 

q[y(tf)] = 0 

T 
where q = q1 q2 . . .  ql and each qi = 0 is an equation of a hypersur­
face in the 

 
space of coordinates

 
 

(y1, y2,  . . . ,  yn). 

Thus, the final state is constrained to lie on these hypersurfaces. Given the 
initial conditions, the optimal control problem is to minimize the augmented 
functional J given by Equation (6.4) subject to the hypersurface constraint 
q[y(tf)] = 0. According to the Lagrange Multiplier Rule, this problem is 
equivalent to that of minimizing the further-augmented objective functional 

ttf  
+  M = J + μT q = F λT(−ẏ + g)

 
dt+ μTq (6.11) 

0 

where  T 
μ = μ1 μ2 . . .  μn 

is the vector of additional Lagrange multipliers corresp

 
onding to the vector 

of constraint hypersurfaces. 
The variation of M is 

δM = δJ + δμT q + μTδq 

Because q depends on y(tf), which in turn can additionally vary with tf, 

δq = qy(tf)δy(tf) + q y(tf)ẏ(tf)δtf = qy(tf)δyf (6.12) 
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at the minimum. In the above equation, qy(tf) is the matrix of partial deriva­
tives of q with respect to y(tf), and the right-hand side is the result of sub­
stituting δy(tf) given by Equation (6.8). 

Substituting Equations (6.9) and (6.12) in the expression for δM , we  obtain  ttf 
δM = (Hy + λ̇)Tδy + (Hλ − ẏ)Tδλ + HTδu dt + H(tf)δtfu 

0 

+ δμT q − [λT(tf) − μT qy(tf )] δyf (6.13) 

Since M has to be zero at the minimum, the necessary conditions for the
 
minimum of M , and equivalently of J and I, are 
  

λ̇ = − Hy, ẏ = Hλ, Hu = 0, H(tf) = 0, q = 0, and λT(tf) =  μT qy(tf )
 

along with the initial conditions y(0) = y0.
 

Example 6.3 
Consider the consecutive reaction A −→ B E GGG C carried out in a batch reac-GGGC 

tor. The mole fractions y1, y2, and  y3 of species A, B, and C are respectively 
governed by 

2 E1/Tẏ1 = − a1y1 e , y1(0) = 1 
2 E1/T − a2y2e E2/Tẏ2 = a1y1 e , y2(0) = 0 

E2/T − a3y3e E3/Tẏ3 = a2y2e , y3(0) = 0 

where ai and Ei (i = 1, 2, 3) are constants. It is desired to find the temperature 
policy T (t) that maximizes the product mole fraction y3 at the final time tf, 
which is not fixed. Moreover, y3 must satisfy the two selectivity constraints 

y3 = b1y1 and y3 = b2y2 at t = tf 

where b1 and b2 are some constants. 
In this problem, T is the control (u). The equivalent objective is to minimize 

the functional 
y3(tf)t ttf ttf 

E2/T E3/TI = − y3(tf) =  − dy3 = − ẏ3 dt = − a2y2e + a3y3e dt 

0 0 0 

for which we have used the state equation for the species C in the last step. 
The above objecive is subject to the satisfaction of all state equations and the 
selectivity constraints. The Hamiltonian is then given by 

E2/T E3/T − λ1a1y 2 E1/T 2 E1/T − a2y2e E2/TH = − a2y2e + a3y3e 1 e + λ2 a1y1 e 

E2/T − a3y3e E3/T+ λ3 a2y2e 
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The necessary conditions for the minimum of I are 

⎡ ⎢ẏ1 −a y2 E1/T
1 1 e y1 1⎢⎢ 2 E1/T E2/T ⎣ẏ2 

⎤
=

⎡ ⎤⎥⎥⎥⎦  
⎢⎢ −

⎥⎢ ⎥⎣a1y e  a2y2e ⎥, 
⎡
y2 

⎤
= 1  

⎡
0

⎤
 

      
ẏ a E2/T 
3 2y2e − a3y3eE3/T

⎢⎢⎢
y3 

⎥⎥ ⎢⎥ ⎢⎢
0

⎥
 

t=0

⎥⎥
'

H

  
λ 

⎦ ⎣ ⎦ ⎣ ⎦
⎡ 

'
q1

q2 

⎤
y

 

⎡⎣ ⎦ 0 
= ⎣ 3 − b1y1

=  
y3 − b2y2 

⎤ ⎡ ⎤⎦
 

⎣
0 

tf

⎦
⎡ 
λ̇
⎤ ⎡⎢ 1 2(−λ1 + λ E1/T

⎤
⎢
λ̇
 2 

λ̇3 

⎥⎥⎥ = 
⎢ 2)a1y1e⎢ E⎣ ⎦ 
⎢⎢⎣(  λ2 + λ 2/T

 
−1 − 3)a2e  

(1 − λ )a eE3/T
3

 

⎦⎥⎥⎥
'   3

−Hy

'
⎡
λ1 

λ  

⎤T ⎡
μ

⎤T

 

⎡
∂q1 ∂q1 ∂q1 

1 μ1 
∂y= 1 ∂y2 ∂y3 

⎤
= 

⎡ ⎤  T⎡ ⎤⎢
 

⎢ ⎥  ⎢⎢
2

 

⎥⎥ ⎢ ⎥⎥⎥ ⎢⎢⎣⎢ ⎥ ⎢ b

 
⎥ ⎢⎣ ⎦ ⎥

 
⎢⎣ ∂q  ∂q ∂q

⎥ −  ⎢ ⎥⎦   
⎥⎦ 2 2

μ

⎢
λ

⎣⎢⎢⎢ 2
2 μ2 

∂y

⎥⎥ ⎢
3 ∂y ∂y

⎢ ⎥
1 2 3 tf tf 

⎥⎥
 
⎢ 1 0 1

⎦ ⎣⎢  
0 −b2 1

⎦⎥⎥⎥
 '

qy

  
(t ) f

'
= 
 
−μ1b1 −μ2b2 μ1 + μ2 

 
1 

HT = − 
 
− 1 +   ( λ λ  2

2)a
2

1y1 E1e E1/T + (−1− λ E /T
 2 + λ3)a2y2E2e 

T 2

+(1 − λ3)a y 3
3 3E3e E /T

 
= 0  

H(t ) =  
 
(−λ + λ )a y2 e E1/T − E

1 + ( − 2/T
f 1 2 1 1  λ2 + λ3)a2y2e 

+(1 − λ )a E3/T
3 3y3e 

 
= 0  

tf 
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6.2 Fixed Final Time 

In this section, we take up problems in which the final time is specified or 
fixed. The control functions are the only optimization parameters. 

6.2.1 Free Final State 

Consider again the optimal control problem of Section 6.1.1 (p. 153). If the 
final time is fixed, then its variation δtf must be zero in Equation (6.9) on 
p. 156. Moreover, δyf = δy(tf) from Equation (6.8). Consequently, Equa­
tion (6.9) simplifies to 

 

 
ttf 

 ˙δJ = (Hy + λ)Tδy + (Hλ − ẏ)Tδλ + Hu
T

 δu 
 
dt − λT(tf) δy(tf) = 0  

0 
(6.14) 

and the necessary conditions for the minimum of J , and equivalently of I, are  

λ̇ = −Hy, ẏ = Hλ = g, Hu = 0, and λ(tf) = 0  

along with the initial conditions y(0) = y0. 

Example 6.4 
Let the final time be fixed in Example 6.1 (p. 157). Then the necessary con­
ditions for the minimum are as follows: 

kE
λ̇ =  akxa−1  

(c + λ) ẋ = −akxa − xa (c + aλ) = 0  
RT 2
 

λ(tf) = 0  x(0) = x0
 

6.2.2 Fixed Final State 

In this case, we have the optimal control problem of the last section, but with 
the final state fixed. Thus, Equation (6.14) becomes 

ttf 
δJ =

 
(Hy + λ̇)Tδy + (Hλ − ẏ)Tδλ + Hu

T
 δu dt = 0

0 

 
Thus, the necessary conditions for the minimum of J , and equivalently of I, 
are 

λ̇ = −Hy, ẏ = Hλ = g, and Hu = 0 
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along with the respective initial and final conditions 

y(0) = y0 and y(tf) = y f 

Example 6.5 
Let both final time and final state be fixed in Example 6.1 (p. 157). Thus, 
for fixed tf and x(tf) = x f, the necessary conditions for the minimum are as 
follows: 

kE ˙  λ = akxa−1(c + λ) ẋ = −akxa − xa (c + aλ) = 0  
RT 2
 

x(tf) =  xf x(0) = x0
 

6.2.3 Final State on Hypersurfaces 

In this case, we have the optimal control problem of Section 6.1.3 (p. 158), 
but with fixed final time. This problem is equivalent to that of minimizing 
the augmented functional 

M

ttf 
 = 

 
F + λT(−ẏ + g)

 
dt +  μTq = J + μT q (6.11) 

0 

whose variation from Equation (6.13) for fixed tf, i. e .,  δtf = 0,  is  

ttf 
δM =

 
(Hy + λ̇)Tδy + (Hλ − ẏ)Tδλ + Hu

T
 δu 

0

 
 dt + δμTq

 

− [λT  (tf) − μTqy(tf)] δy(tf) 

where qy(tf) is the matrix of partial derivatives of q with respect to y(tf). 
Since M has to be zero at the minimum, the necessary conditions for the 
minimum of I, and equivalently of J and I, are  

λ̇ = −  Hy, ẏ = Hλ = g, Hu = 0, q = 0 and λT(tf) − μTqy(tf ) = 0 

along with the initial conditions y(0) = y0. 

Example 6.6 
Let the final time in Example 6.3 (p. 159) be fixed at tf. In this case, all 
necessary conditions of Example 6.3 hold except H(tf) =  0.  
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6.3 Algebraic Constraints 

This section deals with optimal control problems constrained by algebraic 
equalities and inequalities. 

6.3.1 Algebraic Equality Constraints 

Consider the objective to minimize the functional 

ttf 
I = F [y(t),u(t)] dt 

0 

subject to the state equations 

ẏ = g[y(t),u(t)], y(0) = y0 

and the equality constraints 

fi(y,u) = 0, i = 1, 2, . . . , l  or f(y,u) =  0 

where it is provided that 

1. the functions f , fy, and f u exist and are continuous with respect to y 
and u. 

2. The number of equality constraints l is less than the number of controls, 
i. e., m. 

The reason for the above provision is that if l = m, then the constraints 
would uniquely determine the control, and there would not be any op­
timal control problem remaining. 

According to the Lagrange Multiplier Rule, the above problem is equivalent 
to the minimization of the augmented functional 

ttf ttf 
M = F + λT(−ẏ + g) +  μTf dt = (L− λT ẏ) dt (6.15) 

0 0 

where 
T 

μ = μ1 μ2 . . .  μl 

is the vector of time dependent Lagrange multipliers corresponding to the 
equality constraints, and L is the Lagrangian defined as 

L ≡ H + μTf = F + λT g + μTf (6.16) 



  

    

  � 
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Considering that both final state and time are free, i. e., unspecified, the vari­
ation of M upon simplification is given by [compare with Equation (6.9) on 
p. 156] 

ttf 
(Ly + ˙ y)Tδλ + LTδM = λ)Tδy + (Lλ − ˙ μ δμ + LTδu dtu 

0
 

− λT(tf) δyf + L(tf)δtf (6.17)
 

Since δM should be zero at the minimum, the following equations are neces­
sary at the minimum of M , and equivalently of J and I: 

λ̇ = −Ly ẏ = Lλ = g Lμ = f = 0
 

Lu = 0 λ(tf) =  0 L(tf) = 0 
  

along with y(0) = y0. 

Example 6.7 
Consider the isothermal operation of the CSTR in Example 3.5 (p. 69). The 
reactant and catalyst concentrations, namely, y1 and y2, are governed by the 
state equations 

ẏ1 = u1(yf − y1) − ky1y2, y1(0) = y1,0 

ẏ2 = u2 − u1y2, y2(0) = y2,0 

where the controls u1 and u2 are, respectively, the volumetric flow rate of 
the CSTR and the catalyst mass flow rate, both per unit reactor volume. 
Let us say we want u2 to be increasingly higher for smaller amounts of the 
catalyst-to-reactant ratio. For this purpose we enforce the following equality 
constraint at all times: 

y2 1 y2 1 
= a − 1 or f ≡ − a − 1 = 0  

bu2 −c bu2−cy1 y1 

where a, b, and  c are some suitable parameters. Subject to the above state 
equations and equality constraint, the objective is to minimize the deviation 
of the state of the CSTR with minimum control action, i. e., to minimize the 
functional ttf 2

s sI = (yi − yi )
2 + (ui − ui )

2 dt 
i=10 

where the superscript s denotes the steady state value. 



165 Different Types of Optimal Control Problems 

Based on Equation (6.16), the Lagrangian for this problem is 

2  
L =

�
(yi 

i=1 

 − s  y )2 us
i )

2
i + (ui − 

 
+ λ1[u1(yf − y1) − ky1y2] 

y 1 
+ λ2[u2 − 2 

u1y2] + μ  

�  
− 1 

y bu2−c
1
− a 

 �
'    

f 

Then the necessary conditions for the minimum of I are as follows: 

'

⎡ 

⎢⎢ẏ1 

⎤ ⎡⎥⎥ ⎢⎢u1(yf −  ⎢ y1) − ky1y2 y1 

⎡
y1,

= 

⎤ ⎡ ⎤
0 

⎤
⎢⎣  
ẏ2 

⎥⎥ ⎢⎢ ⎥⎥ ⎢⎢ ⎥ ⎢ ⎥⎥⎦⎥ ⎣⎢ 
u2 − u1y2 

⎥ ⎢ ⎥ ⎥⎦⎥, ⎢  
 
⎥ =

  
2 y2,0 

t=0

⎢⎢
  

y

⎥
'

L

  
λ 

⎣ ⎦ ⎣ ⎦
'

⎡ T ⎢⎢λ̇
⎤ ⎡
⎥⎥ ⎢⎢−2(y − ys

y
1) +  2 

1 1 λ1(u1 + ky2) +  μ 2
= 

⎤
,

⎡
λ1 

y1  

⎤
= 

⎡ ⎤
   μ    
λ̇2 2(y  ys2  ) + λ 1ky1 + λ2u1  

⎥⎥ ⎢⎢
λ2 

⎥⎥ ⎢⎢⎢
0

⎥⎢ ⎥ 0

⎣ 

⎥⎢ ⎥⎥ ⎢⎢
− − 2 −

y1 

⎥⎥
 

⎢⎢ ⎥
tf

⎢ ⎥⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎦ 
 '

−
  
Ly 

'
⎡ ⎢⎢L s

u1 

⎤ ⎡⎥⎥ ⎢⎢2(u1 − u1) + λ 1(yf − y1) − ⎢ λ2y2 

 

⎤ ⎡
0

⎤
⎢ = = ⎣   a ln b    
Lu

⎥
2

⎥ ⎢⎢ ⎥⎥
 

⎥⎥⎦ ⎢⎢⎣
2(u2 − us

2) + λ 2 + μ 0 
bu2−c 

⎥⎥ ⎢⎢ ⎦⎥⎥⎦ ⎣

y
 2 − a 

 
1 

Lμ =  1 = 0  
y bu2−c
1

−
 

'   ' 
f 

 �2  
L(t ) =  

 
(y − ys)2 + (u − us  

 )2f i i i i 

 
+ λ1[u1(yf 

i

− y1) − ky1y2] 
=1 

 
y2 1 

+ λ2[(u2 − u1y2)] + μ 

�
− a 

y1 

 
− 1 = 0  

bu2−c

 ��
tf 
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6.3.2 Algebraic Inequality Constraints 

Consider the optimal control problem in which the objective is to minimize 
the functional ttf 

I = F [y(t),u(t)] dt 

0 

subject to 

ẏ = g[y(t),u(t)], y(0) = y0 

and the inequality constraints 

fi(y,u, t) ≤ 0, i = 1, 2, . . . , l  or f(y,u, t) ≤ 0 

where each fi and its derivative with respect to y and u are continuous. 
The augmented objective functional for this problem is M , which is given by 

Equation (6.15) on p. 163. From the John Multiplier Theorem (Section 4.5.1, 
p. 113), the following equations must be satisfied at the minimum of M , and  
equivalently of I: 

λ̇ = −Ly ẏ = Lλ = g Lμ = f ≤ 0 Lu = 0 

λ(tf) =  0 L(tf) = 0  μ ≥ 0 μTLμ = 0 

along with y(0) = y0 where L is the Lagrangian given by Equation (6.16). 

Remarks 

The number of inequality constraints, l, can be greater than m, the  number  of  
controls. That the number of active constraints at any time does not exceed 
the m is assured by the constraint qualification. It requires that if p inequality 
constraints are active (i. e., fi = 0  for  i = 1, 2, . . . , p), then p should be the 

∗rank of the matrix of partial derivatives of f with respect to u. Note that 
p is the number of linearly independent rows or columns of the matrix (see 
Section 4.3.2.1, p. 97). 

Example 6.8 
Let us consider Example 6.7 with its equality constraint replaced with the 
inequality 

y2 1 − a − 1 ≤ 0 
y1 bu2−c 

Then the necessary conditions for the minimum are 

∗ This is one of the four constraint qualifications, any one of which must be satisfied to ob­
tain the necessary conditions for the minimum in inequality constrained problems (Arrow 
et al., 1961). See Takayama (1985) for a thorough exposition. 
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• the ones in the previous example except Lμ = 0, which is replaced with 

y2 1 
Lμ =  a  1 

y u2 c
1 
−
 
b − −

 
≤ 0 

and 

•	 μ ≥ 0, and the complimentary slackness condition, i. e., 

y
μ 

�
2 

1 
− a 

y

 
1 

 1 = 0  
bu2 −c

−
 �

Example 6.9 
Let us consider Example 6.3 (p. 159) without the selectivity constraints and 
impose the constraints Tmin ≤ T ≤ Tmax on the temperature control. Thus, 
instead of the selectivity constraints, we have the two inequalities 

−T + Tmin ≤ 0 and  T − Tmax ≤ 0 

For this modified problem, the Lagrangian is given by 

L = H + μ1(−T + Tmin) +  μ2(T − Tmax) 

= −a y e E2/T 
2  E /T 

2 + a3y3e 3 − λ1 1y
2 a  /T
1 e E1     + λ2 a1y

2 E1/T − a2y2  E2/T
1 e
 e

+ λ
 

y 2
2e E /T − a3y3e E3/T


3 a2

 
+ μ1(

 
μ2

 
−T + Tmin) +  (T − Tmax) 

The necessary conditions for the minimum are ⎡ 
2 ⎢ẏ1 

⎤ ⎡⎥ ⎢ −a1y1 e
E1/T

⎤ ⎡
y1 

⎤ ⎡
1
⎤

⎢⎢ ⎥⎦⎥ = 
 
⎢⎣ẏ 2 

ẏ3 

⎣⎢a1y2 eE1/T /T 
1 − a2y2eE2 , y = 0

 2   
   

a2y
E2/T E3/T

2e	 3

⎥⎣⎢
y3

⎢
− a3y e

⎢⎢
 

⎥⎦ ⎣⎢⎢⎦⎥⎥⎥ ⎥
0 

⎥
t=0

⎥⎥
L

⎦

˙	

'
λ ⎡ ⎢λ1 

⎤ ⎡⎥ ⎢2( λ

  
E1/T

'
− 1 + λ2)a1y1e

⎤ ⎡⎥ ⎢λ1 0⎢⎣⎢λ̇2 = ⎣⎢⎢⎦⎥⎥ (−1 − λ /T
2 + λ E2

3)a2e

⎤
⎥⎥ ⎢⎦, ⎣⎢λ2 = 0

     

⎡
 

⎤
 

˙	λ E3/T
3 (1 − λ3)a3e λ' ' 3

⎥⎥ ⎢⎢⎢ ⎥⎥⎦⎥ ⎣ ⎦⎥
   0 

tf 

−Ly 
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1 
 −  λ 2 L = − ( λ + )a y E E1/T E2/T

T  1  2 1 1 1e + ( λ
T 2

−1 − λ2 + 3)a2y2E2e 

+(1 − λ )a y E e E3/T
3 3 3 3

 
− μ1 + μ2 = 0  

⎡ ⎤ ⎡ ⎤ ⎡  ⎣Lμ1⎦ ⎣−T + Tmin 0 
 = ⎦ ≤ ⎣  

Lμ2 T − Tmax 0 

⎤⎦

 
 
−  2 ( λ )a 1/T L(t ) = λ + y e E + (−1 − λ + λ )a E2/T

f 1 2 1 1 2 3 2y2e 

+(1 − λ3)a3y3e E3/T + μ1(−T + Tmin) + μ 2(T − Tmax)
 
 = 0  
tf 

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ T⎣μ1 0 μ
  

−T + 0 
  and  1  T

  min  =   
μ2 

⎦ ≥ ⎣
0 
⎦ ⎣

μ2 
t=0 

⎦ ⎣
T − T

⎦ ⎣ ⎦
  max 0 ' ' 
Lμ 

6.4 Integral Constraints 

Integral constraints could be equality or inequality constraints. We first con­
sider integral equality constraints in an optimal control problem with free 
state and free final time. 

6.4.1 Integral Equality Constraints 

Consider the objective to minimize 

ttf 
I = F [y(t), u(t)] dt 

0 

subject to 

ẏ = g[y(t), u(t)], y(0) = y0 
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and the integral equality constraints ttf 
Fi(y,u, t) dt = ki, i = 1, 2, . . . , l  

0 

where each Fi and its partial derivative with respect to y and u are continuous. 
According to the Lagrange Multiplier Rule, the above problem is equivalent 
to the minimization of the augmented functional 

f

M = 
ttf  tl  

F + λT(−ẏ + g)
 
dt+ 

�
μi 

 t
Fi dt  ki
 

i=1


−
0 0 

 

=

ttf  tf 

   ' +   μT  H F λ
 ' − Tẏ dt− μTk =

t
(L− λTẏ) dt

 
− μTk (6.18) 

0 L 0 

where 

1. μ = 
  
μ1 μ2 . . .  μl 

 T
is the vector of time invariant Lagrange 

multipliers corresponding to the integral equality constraints; 

2. F and k are respective vectors of Fis and k is; and 

3. L is the Lagrangian defined as 

L ≡ H +  =  μTF F + λTg + μTF (6.19) 

Note that the μis are undetermined constants in contrast to λis, which are 
time dependent. 

The variation of M is given by [compare with Equation (6.17) on p. 164] ttf 
δM =

 
(Ly + λ̇)Tδy + (Lλ − ẏ)Tδλ + LT

u δu 
 
dt− λT(tf) δyf

0 
tf 

+  L(tf)δtf + δμT
 t

Lμ 

 
' ' dt− k (6.20) 

 
0 F 

Since δM should be zero at the minimum of M , the following equations must 
be satisfied at the minimum of M , and equivalently of I: 

λ̇ = −Ly ẏ = Lλ = g Lu = 0 ttf 
λ(tf) =  0 L(tf) = 0  F dt = k 

0 

along with y(0) = y0. Observe t hat L μ is the vector F, and the last equation 
is the set of the integral constraints. 
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Remarks 

The integral constraints are equivalent to having additional state equations 

dyn+i 
= Fi, yn+i(0) = 0, yn+i(tf) =  ki; i = 1, 2, . . . , l  

dt 

with state variables yn+i, i = 1, 2, . . . , l. The reader can easily verify this 
equivalence by taking the integral on both sides of the above equations and 
applying the boundary conditions. Hence, an integral constraint is equivalent 
to a differential equation for an additional state variable with the initial and 
final conditions specified. Consequently, there is no limit on the number of 
integral constraints in an optimal control problem. 

Example 6.10 
Let us re-state the problem of batch distillation in Section 1.3.1 (p. 5). The 
objective is to minimize the functional 

ttf 
I = − u dt 

0 

subject to the state equations 

ż1 = −u, z1(0) = z1,0 

ż2 = u[z1 − y(z1, z2)], z2(0) = z2,0 

and the purity specification 

ttf 
(y ∗ − y)u dt = 0  

0 

The Lagrangian for this problem is given by 

L = −u− λ1u+ λ2u(z1 − y) +  μ(y ∗ − y)u 

Note that while λ1 and λ2 are time dependent, μ is a constant. The necessary 
conditions for the minimum are as follows: ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ 

ż1 −u z1 z1,0⎣ ⎦ = ⎣ ⎦, ⎣ ⎦ = ⎣ ⎦ 
ż2 u(z1 − y) z2 z2,0 

t=0' ' 
Lλ 
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λ

 ⎢⎢ ˙ ⎥⎥ ⎢⎢ ∂y  ∂y
1 −λ2u 1 − + μu λ1 0 ⎢⎢ ⎥⎥ ⎢⎢ ∂z= 1 

 
∂z1 , =⎣ ⎦  ∂y  

 

⎣ ∂y    
λ̇2 λ2u + μu 

⎥ ⎢
λ2 

⎥ ⎢
0

⎥
 ' ∂z2 

⎥⎥⎥ ⎥ ⎥⎦ ⎣⎢⎢⎢ ⎥⎥ ⎢⎦ ⎢⎢ ⎥⎣ ⎦⎥
−

Lu = 1  λ1 + λ2(

  ∂z2  tf

Lz 

− − ) +   z1 − y μ(y ∗

'
− y) = 0  

ttf tf 

 ∗ Lμ dt =
t
(y − y)u dt = 0  

0 0 

L(tf) =  
 
−u− λ1u+ λ2u(z1 − y) + μ (y ∗ − y)u 

 
= 0  

tf 

6.4.2 Integral Inequality Constraints 

Consider the optimal control problem in the last section, but with integral 
equality constraints replaced with the inequality constraints 

ttf 
Fi(y,u, t) dt ≤ ki, i = 1 , 2, . . . , l  

0 

In this case, Equation (6.18) provides the augmented functional M whose 
variation is given by Equation (6.20). From the John Multiplier Theorem 
(Section 4.5.1, p. 113), the necessary conditions for the minimum are 

λ̇ = −Ly ẏ = Lλ = g Lu = 0 

λ(tf) =  0 L(t   f) = 0 μ  0 ttf  ttf ≥

μT Lμ dt− k = 0  Lμ dt ≤ k 

0 0 

The integral constraints are equivalent to the differential equations governing 
the additional state variables as follows: 

dyn+i 
= Fi, yn+i(0) = 0, y

 n+i(tf) ≤ ki; i = 1, 2, . . . , l  
dt
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Example 6.11 
Let us consider Example 6.10 with its equality constraint replaced with 

ttf 
(y ∗ − y)u dt ≤ 0 

0 

In other words, we want distillate purity greater than or equal to y ∗. Then  
the necessary conditions for the minimum are 

tf 

• those of Example 6.10 except 
t
Lμ dt = 0, which is replaced with 

0 

ttf ttf 
Lμ dt = (y ∗ − y)u dt ≤ 0 

0 0 

• as well as 
tf 

μ ≥ 0 a nd μ  
t
(y ∗ − y)u dt = 0  

0 

6.5 Interior Point Constraints 

Consider the objective to minimize the functional 

 
ttf 

I = F [y(t),u(t)] dt 

0 

subject to the state equations 

ẏ = g[y(t),u(t)]; y(0) = y0 

and the interior point constraints 

q[y(t1), t1] = 0  

where   T 
q = q1 q2 . . . ql 
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is the vector of functions depending on y(t1) and  t1, which is an unspecified 
or free time in the interval [0, tf]. With the help of Lagrange multipliers, the 
above problem is equivalent to that of minimizing the augmented functional 

ttf 
M = F + λT(−ẏ + g) dt + μT q 

0 tt1 ttf 
= (H − λT ẏ) dt + (H − λT ẏ) dt + μT q 

0 t1 

where H = F + λT g and 

T 
μ = μ1 μ2 . . .  μl 

is the vector of time invariant Lagrange multipliers corresponding to the in­
terior point constraints. With the help of 

a ≡ Hy 
Tδy + Hλ 

Tδλ + Hu 
Tδu 

the variation of M is given by 

tt1− 

TδM = a − λTδẏ − ẏ δλ dt + H − λT ẏ δt1 − H − λT ẏ δt1 
t1− t1+ 

0 ttf 
T+ a − λTδẏ − ẏ δλ dt + H − λT ẏ δtf 

tf
 
t1+
 

+ q Tδμ + μT qy(t1)δy(t1) +  qy(t1 )ẏ(t1)δt1 + qt1 δt1 ' ' 
= qy(t1)δy1 [compare with 
Equation (6.12) on p. 158] 

where 

t1− ≡ t1 − |δt1|, and t1+ ≡ t1 + |δt1|, with δt1 → 0 

and δy1 is the variation in y for unspecified t1, similar to yf given by Equa­
tion (6.7) on p. 155. 

Applying integration by parts to the time integrals of λTδẏ and combining 
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the integrals having the same integrand, we get 

ttf 
tT  tf  δM λ δy − ẏT 1−

 ˙= (a + δλ) dt − λTδy − λTδy + H λTẏ δt1 
0 t1+ 

− 
t1− 

0 

      
− 
 
H − λT ẏ

 
δt1 + 

t1+ 

 
  H − λTẏ

 
δtf 

tf 

T + qT δμ + μ
 
qy(t1 )δy1 + qt1 δt1 

Expanding a and using Equation (6.8) o

 
n p. 156 as well as its equivalents for 

t1  and t1+, which are, respectively, −

δy(t1 ) =  δyt1 − ŷ̇(t1 )δt and δy(t ) =  δy  ŷ̇(t )δt− − 1 1+ t1 − 1+ 1 

we finally obtain at the minimum of M 

tf 

δM =

t  
˙(Hy + λ)Tδy + (Hλ − ẏ)Tδλ + Hu

T
 δu 
 
dt

0 

δμ  + qT + 
 
μTqy(t1 ) + λ(t1+) − λ(t1 )−

 
 δyt1 

 + 
 
μTqt1 + H(t1 ) − H(t1+) δt1 − λT(tf) δyf + H(tf)δt− f = 0  

Thus, the necessary conditions for the minim

 
um of M , and equivalently of I, 

are 

λ̇ = −Hy ẏ = Hλ Hu = 0 
  q = 0 λ(t1 ) =  λ(t− 1+) +  qy

T (t1 )
μ H(t1 ) =  H(t1+) − − μTqt1

λ(tf) = 0  H(tf) = 0  y(0) = y0 

Example 6.12 
Based on the chemotherapy example in Section 1.3.8 (p. 15), we pose a prob­
lem in which the ratios of immune-to-cancer and healthy-to-cancer cells must 
be equal to some desired values during the treatment period. Hence, it is 
desired to minimize the number of cancer cells (y4) at the final time tf as well 
as the use of the drug, i. e., the functional 

tf tf 

I = y4(tf) +
t
 u dt = 

t
[ẏ4 + u] dt 

0 0 

where u is the drug injection rate. The drug concentration y1 and the number 
of immune, healthy, and cancer cells (y2, y3, and y 4) are governed by the state 
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equations 

dy1 
= u− γ y

dt
 6 1

dy2 y2y4
 
= ẏ ,in + r y1λ2

2 2  γ y y  γ y  α y 1  e −
dt β2 + 

− 3 2 4 − 4 2 − 2 2 
y4
 

−
dy3
 

= r3y3(1 − β3y3) − γ5y3y4 − α3y3 1 − e −y1λ

 
3

 
dt
 
dy4
 

= r1y4(1 − β1y4) − γ1y3y4 

 
4 

 
− γ2y2y4 − α1y

 
1 − e −y1λ1

dt 

 
along with the initial conditions 

yi(0) = yi,0, i = 1 , 2, 3, 4 

and the interior equality constraints 

y2 y
= a d 3

4 

⏐⏐⏐   an
y t y4

1 

⏐⏐
t

e

⏐ ⏐
 = b
1 

wher  t1 is an unspecified time in the interva

⏐
l [0, tf] and  a and b are certain 

specified constants. 

With the help of the state equation for y4, the objective functional becomes 

tf 

I = 
t  

r1y4(1 − β y
1y4) − γ y y 1λ1

1 4 3 − γ2y2y4 − α1y4 
 
1 − e −

 
+ u 
 
dt 

0 

which needs to be minimized subject to all state equations as well as the two 
interior equality constraints. 

The Hamiltonian for this problem is given by 

H = (1 + λ 4)
 
 r1y4(1 − β1y4) − γ1y3y4 − γ2y2y4 − α1y4 

y2y4 

 
1 − e −y1λ1

  
+ u 

+ λ1[u− γ6y1] +  λ2 

 
ẏ2,in + r2 − γ

y
− 

 3y2y4 − γ4y2 
β2 + 4 

α2y2 
 
1 − e −y1λ2 

  
+ λ3 

 
r3y3(1 − β  − γ y1λ3

3y3) 5y3y4 − α3y3 
 
1 − e −
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The necessary conditions for the minimum are as follows: 

⎡ 

ẏ1 

⎤ ⎡⎢⎢⎢ ⎥⎥ ⎢  ⎥ ⎢ u− ⎢ γ6y1 

⎤

2 

⎥⎥⎢⎢ ⎥⎥⎥⎥⎢y
= 

⎢⎢ ˙ ⎢⎢⎢ y y
ẏ ,  2 4 
2 in + r2  γ3y2y4  4  e y⎢ ⎥ γ2y   1

− 1λ2⎢ ⎥ ⎢  α2y2  ⎢ β2 + y4 
− − −  −

⎥⎥ ⎥
⎢⎢ẏ3⎥⎢  ⎥⎥ ⎢⎢⎢ r3y3(1 − β3y3) 4 − α3y3 

⎥
− γ5y3y

 
1 − −

⎥⎥⎥
⎢

 

 ⎢⎣ 
⎥⎥ ⎢ e y1λ3⎢⎣ 

⎥
⎦  

ẏ4 r y y1λ
 

1
1y4(1 − β1 4) − γ1y4y3 − γ2y2y4 − α1y4 

 
1 − e−

⎥⎥⎥⎥
'

H

  
λ 

 ⎦
'

 
y1 y2 y3 y4 

 
= 
 
y1,0 y2,0 y3,0 y4,0 

t=0 

 

⎡ ⎤ ⎡
λ

⎤
⎢⎢λ̇ ⎥ λ y 2⎥ ⎢⎢(1 + 1λ1 y1λ2 

1 ⎢ 4)α1y4λ1e
− + λ1γ6 + λ2α2y2e

− + λ2 e−y1 3

⎢⎢⎢ �⎥⎥⎥⎥
3α3y3

⎢⎢⎢⎢ r˙ ⎢  2y4 
λ (1 + λ )γ y − λ − γ y − γ − α

 
1 − e−y1λ2

⎥
⎢ 2 ⎢ ⎥ 4  4

y

 �
⎢ ⎥ ⎢ 2 4 2 3  4 2

β  +  

⎥⎥⎥⎥
2 4⎥⎥ ⎢  ⎢⎢⎢λ̇ ⎥ = 

3 ⎥ ⎢⎢⎢ (1 + λ4)γ1y4 − λ3 r3(1 − 2β3y3) − γ5y4 − α3 
 
1 − e−y1λ3

⎥⎥⎥  ⎥⎥
⎢⎢⎢ ⎥⎥⎥ ⎢⎢⎢    ⎢⎢λ̇4 ⎥⎥ ⎢⎢ − (1 + λ4) r1(1 − 2β1y4) − γ1y3 − γ2y2 − α1 1  −y1λ

 ⎢ − e 1⎦ ⎣ 

⎥⎥⎥
⎣  r2y2 r y y

⎥
 − λ2 − 2 2 4 − γ3y2 + λ3γ5y3 

  ⎥
' β2 + y4 (β + y4)2 

2 

⎥  ⎥⎥⎦
 

−Hy 

  T 

  '
λ1 λ2 λ3 λ4 = 0 0 0 0 

tf 

  

Hu = 1 + λ 1 

H(tf) = 0  

H(t−) =  H(t+) 
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 2 
=

− 0
=  

q2 

⎤ ⎡ ⎤ ⎡ ⎤⎦ ⎣
y3 − by4 

⎦
t1 

⎣
0
⎦
 

⎡  
 ⎢λ1 

⎤ ⎡
λ1 

2

⎤ ⎡ T⎢
λ2 

⎥⎥⎥ ⎢⎢
λ

⎥⎢ ⎥ ⎢∂q1 ∂q1 ∂q1 ∂q1 

⎢⎢ ⎥⎥ ⎢⎢  ⎥⎢ ⎥⎥ ⎢⎢ μ1 ⎢∂y1 ∂y2 ∂y3 ∂y= + 4 

⎤ ⎡ ⎤

⎣⎢λ 3 ⎦⎥ 
⎢⎣λ 3 ⎥⎦ 

⎣ ∂q2 ∂q2 ∂q2 ∂q2 

⎥ ⎢
∂y  ∂y3 ∂yλ 4 

⎥ ⎢ ⎥
λ  ∂y
4 1 24 

t

⎥⎥
 

 

⎢⎦  
μ2 

⎥⎥
1− t1+ 

⎣⎢ ⎥
q

⎦
⎡ ⎢ 1

  ⎤ x

λ

'
(t )1

 

'
⎢ ⎥ ⎡ ⎤  ⎢ ⎥⎥ T

1
= ⎢λ2 0 1 0 −a μ

 ⎥  
⎡ ⎤

⎢⎢ +
λ
 3 
⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎥⎦ 0 0 1 

 
−b μ2 

λ4 
t1+ 

 

6.6 Discontinuous Controls 

Consider the problem described in Section 6.5 (p. 172), but without the in­
terior point constraints. In this modified problem, if the controls happen to 
be discontinuous (i. e., have finite jump discontinuities) at time t1, then the 
states defined by 

ẏ = g(y,u) 

would have different left and right-hand side derivatives with respect to time 
at t1. In other words, there would be corners at t1 in the state versus time 
trajectories. See, for example, Figure 3.4 (p. 77). 

Following the approach of Section 6.5, the necessary conditions for the 
minimum in the present problem can be easily shown to be 

λ̇ = −Hy ẏ = Hλ Hu = 0 

q = 0 λ(t1 ) =  λ(t1+) H(t1 ) =  H(t− − 1+) 

λ(tf) = 0  H(tf) = 0  y(0) = y0 

The necessary conditions at the time of discontinuity t1 are 

λ(t1 ) =  λ(t1+)  and  H(t− 1 ) =  H(t1+) −
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which are also known as Weierstrass–Erdmann corner conditions. They  
imply the continuity of H and λ on the corners at the minimum. 

6.7 Multiple Integral Problems 

Optimal control problems involving multiple integrals are constrained by par­
tial differential equations. A general theory similar to the Pontryagin’s mini­
mum principle is not available to handle these problems. To find the necessary 
conditions for the minimum in these problems, we assume that the variations 
of the involved integrals are weakly continuous∗ and find the equations that 
eliminate the variation of the augmented objective functional. 

Example 

To illustrate the above approach, let us consider the optimal control problem 
of determining the concentration-dependent diffusivity in a non-volatile liquid, 
as described in Section 1.3.4 (p. 9). 

The objective is to find the diffusivity function (gas diffusivity versus its 
concentration in liquid) that minimizes the error between the experimental 
and the calculated mass of gas absorbed in liquid, i. e., 

ttf ttf tL 2 
2

I = (mc −me) dt = cA dz −me dt 

0 0 0' ' 
(mc−me) 

The calculated mass of gas in liquid is governed by the state equation, i. e., 
Equation (1.16) on p. 9, which is expressed as 

c c dD D 2G ≡ −ċ + D 1 +  czz + 1 +  + c = 0 (6.21) zρ ρ dc ρ ' ' 
g 

along with the initial conditions 

c(0, 0) = csat(t = 0) (at the gas–liquid interface) 

c(z, 0) = 0 for 0 < z  ≤ L 

∗ Recall from Section 4.3 (p. 88) that it means having continuous partial derivatives of the 
integrands — a precondition for the Lagrange Multiplier Rule. 
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and the boundary conditions 

c(0, t) =  csat(t) 
 

for 0 < t ≤  tf 
cz(L) = 0  

The state equation, G = 0, constitutes a partial differential equation con­
straint. Applying the Lagrange Multiplier Rule, the equivalent problem is 
to find the control function D(c) that minimizes the augmented objective 
functional ttf 

 
tL 

J = I + λG dz dt 

0 0 

subject to the initial and boundary conditions. Since the partial differential 
equation is a series of constraints at each point in time t and depth z, the  
Lagrange multiplier λ is a function of t as well as z. 

Applying the necessary condition for the minimum, δJ = 0,  we  obtain  

+

ttf tL 

δI (δλG + λδG) dz dt = 0 (6.22) 

0 0  
δJ 

The above equation will

'
 result in a n

  
umber of equa

'
tions — all being necessary 

conditions for the minimum. To satisfy δJ = 0, we will expand the variational 
terms and apply the same reasoning as was done in Section 3.2 (p. 58). Essen­
tially, we will find the equations which when satisfied eliminate each additive 
term on the left-hand side of Equation (6.22). 

The first term of the integrand in Equation (6.22) is eliminated with the 
satisfaction of G = 0, i. e., Equation (6.21). 

Next, we have 

δI = 
ttf � L tf L 

2(mc − me) 
t

δcA dz 

�
dt = 

t t
2A(mc − me)δc dz dt 

0 0 0 0 

and 

δG = −δċ+ gcδc + gcz δcz + gczz δczz + gDδD 

where g is the right-hand side of the state equation, Equation (1.16) on p. 9, 
or the term as indicated in Equation (6.21). Note that g depends on c, cz, 
czz , and  D. 
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Substituting the above expressions for δI and δG in Equation (6.22), we 
obtain 

ttf tL 

δJ = 2A(mc − me) +  λgc δc + λ − δċ+ gcz δcz + gczz δczz 

0 0 

+ gDδD dz dt = 0 (6.23) 

Next, we simplify the terms containing δċ, δcz, and  δczz. Integrating these 
terms by parts, we get 

ttf tL tL ttf tL ttf � 
tf 

˙− λδċ dz dt = − λδċ dt dz = − λδc − λδc dt dz 
0 

0 0 0 0 0 0 

ttf tL ttf tL � 
L ∂ 

λgcz δcz dz dt = λgcz δc − (λgcz )δc dz dt 
0 ∂z
 

0 0 0 0
 

ttf tL t tf L∂ 
λgczz δczz dz dt = λgczz δcz − (λgczz δc)∂z 0
 

0 0
 
0 tL � 

∂2 

+ (λgczz )δc dz dt 
∂z2

0 

Note that we have applied integration by parts twice to obtain the last equa­
tion. The last three equations when substituted into Equation (6.23) yield 

ttf tL 
∂ ∂2 

˙δJ = λ + 2A(mc − me) +  λgc − (λgcz ) +  (λgczz ) δc dz dt − 
∂z ∂z2
 

0 0
' ' 
δJ1 

tL ttf
 
tf
 ∂ 

λδc dz − λgcz − (λgczz ) δc(0, t) dt + 
0 ∂z z=0
 

0 0
' ' ' ' 
δJ2 δJ3 
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ttf   t

 
f 

∂ L

λgcz − (λgczz ) δc(L, t) dt + 
=  

0

t  
λgczz δcz 

L 

 
dt + 

∂z z 0' 
δJ

  
4

' '0   ' 
 δJ5 

ttf tL 

λgDδD dz dt = 0  

6 

We

'0 0  
δJ

 will now find

  
 the 

'
equations that eliminate the terms δJ1 to J6, as  

indicated in the above equation, so that the necessary condition δJ = 0 i s  
satisfied for the minimum. 

Elimination of δJ1 

This term is eliminated by defining 

∂ ∂2 

λ̇ = −2A(mc − me) − λgc + (λgcz ) )
∂z 

− (λgc
∂z2 zz 

After substituting the expressions for the derivatives gc, gcz , and g czz in the 
above equation, we obtain the costate equation 

λ c
λ̇ = −2A(m 2 2

c − me) − Dcc z − 

 
1 +  

  
λDcczz + λDcccz − Dλzz

 
(6.24) 

ρ ρ 

Elimination of δJ2 

Because the initial concentration of the gas in the liquid is known at the 
interface and is zero elsewhere, δc is zero for all z at t = 0. However, since 
the final gas concentration is not specified, we enforce 

λ(z, tf) = 0, 0 ≤ z ≤ L (6.25) 

to eliminate δJ2. The above equation is the final condition for Equation (6.24). 

Elimination of δJ3 

Now c(0, t) is specified to be the equilibrium concentration csat(t) at the in­
terface throughout the interval [0, tf]. Thus, δc(0, t) is always zero so that δJ3 

is zero. 
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Elimination of δJ4 

Since c(L, t) is not specified, δc(L, t) is not necessarily zero. Therefore, we 
eliminate δJ4 by specifying 

λ(L, t) = 0, 0 ≤ t ≤ tf (6.26) 

which is the first boundary condition for Equation (6.24). 

Elimination of δJ5 

The above equation along with the enforcement 

λ(0, t) = 0, 0 ≤ t ≤ tf (6.27) 

eliminates δJ5. This specification is the second boundary condition for Equa­
tion (6.24). 

Elimination of δJ6 

Elimination of this term requires that the coefficient of δD in the integrand 
be zero, i. e., 

c 1 
λgD = λ

� 
 1 +  

 
c + c 2zz z 

�
= 0, 0 ≤ z ≤ L, 0 ≤ t 

ρ
≤ tf (6.28) 

ρ 

The coefficient λgD is the variational derivative of J with respect to D. 
To summarize, the necessary conditions for the minimum are 

1. The state equation, Equation (6.21), and its initial and boundary con­
ditions 

2. The costate equation, Equation (6.24), and its final and boundary con­
ditions 

3. Equation (6.28), which is the stationarity condition. 
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Exercises 

6.1 Utilize the results of Section 6.1.1 to find the necessary conditions for 
the minimum of ttf 

I = F0[y(tf)] + F1[y(t),u(t)] dt 

0 

subject to 
ẏ = g[y(t),u(t)], y(0) = y0 

6.2	 Show that for L defined in Equation (6.16) on p. 163, 

dL ∂L  
= 

dt ∂t 

at the minimum. 

6.3 For the batch reactor of Example 6.3 (p. 159), find the necessary condi­
tions to maximize the final mole fraction of the intermediate product, y2(tf), 
with the specification y3(tf) =  y3,f. 

6.4 Find the necessary condition for the minimum in Example 6.7 (p. 164) 
with additional constraints 

u1 ≥ u1,min and u2 ≤ u2,max 

throughout the time interval [0, tf]. 

6.5 Repeat Exercise 6.3 in presence of the following selectivity constraints: 

y2 = b1y1 and y2 = b2y3 

instead of y3(tf) =  y3,f. 

6.6 Find the necessary conditions for the minimum in the heat exchanger 
problem described in Section 1.3.3 (p. 8). 

6.7 Find the necessary conditions for maximum oil production in the Vapex 
problem described in Section 1.3.7 (p. 13). 
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Chapter 7
 

Numerical Solution of Optimal 
Control Problems 

The solution of an optimal control problem requires the satisfaction of dif­
ferential equations subject to initial as well as final conditions. Except when 
the equations are linear and the objective functional is simple enough, an an­
alytical solution is impossible. This is the reality of most of the problems for 
which optimal controls can only be determined using numerical methods. 

In this chapter, we introduce the gradient and penalty function methods, 
which are quite effective in solving a wide range of optimal control problems. 
Given initial guesses, these methods help in determining the local optimum 
(i. e., minimum or maximum) of the objective functional of a problem. We 
cannot discount the possibility of having a number of local optima in an 
optimal control problem. To strengthen the globality of the optimum, we 
need to apply these methods with several initial guesses and compare the 
resulting optima. Note that finding the maximum in a problem is equivalent 
to finding the minimum of the negative of the objective functional. 

7.1 Gradient Method 

We introduce this method to determine the minimum in the optimal control 
problem of Section 6.1.1 (p. 153) in which both final time and final state are 
free. 

7.1.1 Free Final Time and Free Final State 

The objective of the problem is to find the vector of control functions u(t) 
and the final time tf that minimize 

ttf 
I = F [y(t), u(t)] dt 

0 

185 
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subject to 
ẏ = g[y(t),u(t)], y(0) = y0 

The above problem is equivalent to minimizing the augmented functional ttf 
J = F + λT(−ẏ + g) dt (6.4) 

0 

subject to y(0) = y0. From Section 6.1.1, the necessary conditions for the 
minimum of I are 

ẏ = g, y(0) = y0 , λ̇ = −Hy, λ(tf) =  0, Hu = 0, and H(tf) = 0' ' ' ' 
state equations and costate equations and
 
initial conditions final conditions
 

In the gradient method, the state and costate equations are solved using 
initial guesses for the control u and the final time tf. The guessed u and tf 
are then improved using, respectively, 

1. Hu, the variational derivative of J with respect to u at each time in the 
interval [0, tf], and 

2. H(tf), the partial derivative of J with respect to tf. 

The above partial derivatives are the components of the gradient of J . The  
state and costate equations are solved again using the improved u and tf, 
which are further improved using the resulting gradient of J . This procedure, 
when repeated, leads to the satisfaction of the remaining necessary conditions, 
Hu = 0 and H(tf) = 0, and thus to the minimum. The step-wise iterative 
procedure of the gradient method is as follows. 

7.1.2 Iterative Procedure 

Guess control functions and the final time in the beginning, and carry out the 
following steps: 

1. Integrate the state equations forward to the final time using the initial 
conditions at t = 0 and the control functions. 

2. Calculate the objective functional using the control functions, the final 
time, and the corresponding state as determined by the state equations. 

3. Integrate the costate equations backward to t = 0 using the final condi­
tions at the final time, the control functions, and the state determined 
in the previous step. 

4. Improve the control functions and the final time using the gradient infor­
mation and repeat Step 1 onward until there is no further reduction in 
the objective functional. 

The last step employs the improvement strategy that is described next. 
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7.1.3 Improvement Strategy 

With the state and costate equations satisfied at the end of Step 3 above, the 
variation of the augmented objective functional becomes [see Equation (6.9), 
p. 156] ttf 

δJ = HTδu dt + H(tf)δtf (7.1) u 

0 

In the above equation, Hu or the coefficient of δu is the variational derivative 
of J with respect to u at a given time in the interval [0, tf]. Similarly, H(tf) 
or the coefficient of δtf is the partial derivative of J with respect to the final 
time tf. The improvement strategy is to achieve maximum reduction in J by 
changing u(t) and  tf, which are not necessarily optimal. The straightforward 
way is to change u(t) and  tf, respectively, by 

δu(t) =  −EHu(t) and  δtf = −EH(tf) (7.2) 

where E is some positive real number. With these changes, the variation in J 
becomes ttf 

δJ = −E HTHu(t) dt + H2(tf)u 

0 

For sufficiently small E, the changes δu, and  δtf are small enough so that the 
change in J is given by 

J(u + δu, tf + δtf) − J(u, tf) =  δJ ' ' 
Jnext 

The above change in J is the most negative for some optimal E. Hence, based 
on this E, the most improved (i. e., reduced) functional value Jnext results from 

unext(t) =  u(t) +  δu(t) and  tf,next = tf + δtf (7.3) 

and the corresponding state ynext. Thus, Equations (7.2) and (7.3) form the 
strategy to improve u and tf. Since  u and tf (as well as unext and tf,next) along  
with the corresponding states satisfy the state equations, 

J = I and Jnext = Inext 

from the definition of J in Equation (6.4) on p. 154. 

7.1.3.1 Numerical Implementation 

To implement the improvement strategy numerically, we split the time inter­
val into N subintervals of equal length and use numerical integration [e. g., 
composite Simpson’s 1/3 Rule given in Section 9.12 (p. 275) for even number 
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of subintervals] to calculate δJ as well as J . Thus,  J or I is rendered into a 
function dependent on the vector of optimization parameters 

T 
p ≡ u(t0) u(t1) . . .  u(tN ) tf (7.4) 

where t0, t1, . . . , tN form the time-grid of (N + 1) equispaced grid points in 
the time interval  [0, tf]. 

However, a complication arises with this approach. An improvement in tf 
changes the time grid, thereby requiring the estimation of controls and states 
on the new time grid for the next round of improvements. We avoid this 
situation by linearly transforming the independent variable t in the variable 
interval [0, tf] to a new independent variable σ in the fixed interval [0, 1]. 

Transformation of the Independent Variable 

Let the new independent variable σ be given by the linear relation 

σ = at+ b 

where a and b are some unknown constants. Substituting, respectively, the 
initial and final values of σ and t in the above equation, we obtain 

1 
0 =  b and 1 = atf + b =⇒ a = 

tf 

Hence 

t dσ 1 dyi dyi dσ dyi 1 
σ = , = , and = = 

tf dt tf dt dσ dt dσ tf 

Based on the above relations, the objective of the optimal control problem is 
to find the control u and the final time tf that minimize ttf t1 

dσ 
I = F [y(t),u(t)] dt = tfF [y(σ),u(σ)] dσ 

dσ 
0 0 

subject to 
dy 

= tfg[y(σ),u(σ)], y(0) = y0
dσ 

The Hamiltonian is then given by 

H = tf(F + λT g) 

Necessary Conditions for the Minimum 

The above problem is equivalent to minimizing the augmented functional t1 t1 
dy 

H − λT dyJ = tfF + λT − + tfg dσ = dσ 
dσ dσ 

0 0 
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subject to y(0) = y0. The variation δJ is given by [compare with Equa­
tion (6.14) on p. 161] 

t1 
dλ dy

δJ = (Hy + )Tδy + (Hλ − )Tδλ + HTδu dσ − λT(1) δy(1) udσ dσ 

t1 
H 

+ dσ δtf (7.5) 
tf 

0' ' 
Jtf 

where Jtf , as indicated above, is the partial derivative of J with respect to 
the final time tf. Since  δJ = 0 at the minimum, the necessary conditions for 
the minimum are 

dy dλ 
= tfg, y(0) = y0, = −Hy, λ(1) = 0 

dσ dσ' ' ' ' 
state equations and costate equations and 
initial conditions final conditions 

t1 
H 

Hu = 0, Jtf = dσ = 0  
tf 

0 

Improvements in u and tf to Reduce J or I 

These improvements are done in Step 4 of Section 7.1.2 (p. 186) where the 
state and costate equations are satisfied so that 

t1 t1 1 

  H 
J = I = tfF dσ and δJ = Hu

T
 δu dσ + dσ δtf 

tf 
0 0 

t
0  

Jtf 

First, we compute  

'   '
the integrals in the above equation numerically over the 

fixed σ-interval [0, 1]. The interval is split into N subintervals of equal length 
using (N + 1) equi-spaced grid points 

σ0 = 0, σ1, σ2,  . . . ,  σN = 1  

For example, using composite Simpson’s 1/3 Rule (Section 9.12, p. 275) for 
an even N , 
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 �N N
1

 
  T  T 

� 
  T δJ = H (σ )δu(σ ) + 4 H (σ )δu(σ ) + 2 H (σ )δu(σ )+ 
3N u 0 0 u i i u i i

i=1,3,5,... i=2,4,6,... 

Hu
T (σN )δu(σN )

 
+ 

1  
H(σ0 4

�N  N  
) +  H(σi) + 2

�
 H(σi) +H (σN ) 

3Ntf i=1,3,5,... i=2,4,6,... 

 
δtf'

J

  
tf 

' 
where the vector 

∇J ≡ 
  
Hu(σ0) Hu(σ1) . . .  Hu(σN ) Jtf 

T

is the gradient of J . 

 
Next, we consider the vector of optimization parameters, p,  defined in Equa­

tion (7.4). Let a change in p to reduce J be given by 

δp ≡ 
 
δu(σ0) δu(σ1) . . .  δu(σN ) δtf 

T 

According to Appendix 7.A (p. 229), the reduction in J per unit

 
 size of δp is 

maximum along the direction of −∇J , i. e., opposite to that of the gradient 
∇J . This direction is known as the direction of the steepest descent. It  
can be easily seen that Equations (7.2) and (7.3) already utilize the steepest 
descent direction to improve u as a continuous function of t, and  tf. 

Now a change of magnitude E0 in p along the steepest descent direction is 
given by 

δp = E0 ('−∇J/  l∇Jl ) ≡ −E∇J

unit vector 
along −∇J 

where E  E0/ J . For some optimal E, the

'
 improved functional value Jnext ≡ l∇ l

obtained from 
pnext = p + δp 

and the corresponding state ynext is expected to be less than J as much as 
possible. Note that 

J = I and Jnext = Inext 

because the controls and the corresponding states satisfy the state equations. 
The improvement in pnext translates to the improvements 

unext(σi) =  u(σi) − EHu(σi); i = 0, 1, . . . , N ; and  

tf,next = tf − EJtf 
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which reduce J . 
Subsequent reduction of J is achieved as follows. Based on the improved 

controls and final time (namely, unext and tf,next), Steps 1–3 of Section 7.1.2 
(p. 186) are repeated, and ∇J is recalculated and utilized to repeat the im­
provements and reduce J . This iterative procedure continued until the reduc­
tion in J becomes insignificant or the norm of ∇J becomes negligible. This 
minimization procedure is known as the gradient algorithm. It  affords  a  
simple and effective way to solve a wide range of optimal control problems. 

Remark on Gradient Improvement 

A number of methods have been developed to improve the steepest descent 
so that the minimum in a problem is attained in a least possible number 
of iterations. Since the gradient of a function is zero at the minimum, one 
approach is to use the quadratically convergent Newton–Raphson method 
(see Section 9.11, p. 273) to zero out the gradient. However, the method 
needs the Jacobian of ∇J , which is also known as the Hessian of the J . The  
Broyden–Fletcher–Goldfarb–Shanno (BFGS) method (see Press et al., 
2007) ingeniously utilizes the gradient information (i. e., δp) to  construct  the  
Hessian and provides the optimal improvement pnext to bring the maximum 
reduction in J . The BFGS method is known to be one of the most efficient 
and stable optimization methods. The numerical examples in this book are 
solved using this method. 

Number of Grid Points 

Note that the above numerical implementation provides a solution of an op­
timal control problem as discrete values of optimal controls and states on the 
grid of the independent variable. The solution becomes more accurate as we 
increase the number of grid points, i. e., N . In the limit of N tending to in­
finity, the solution has optimal controls and states as continuous functions of 
the independent variable. 

In practice, we solve an optimal control problem with increasing values of 
N up to a limit beyond which either there is no significant difference in the 
solution or the computations become very intensive. Note that larger the N 
the larger is number of discrete control values to be optimized and the harder 
it is to solve the problem. 

7.1.4 Algorithm for the Gradient Method 

Based on the above development, the algorithm is as follows: 

1. Transform the optimal control problem from the variable time interval 
[0, tf] to the fixed σ-interval, [0, 1] 

2. Assume a value for tf and N . Discretize the σ-interval [0, 1] using N 
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equi-spaced grid points. Assume a value of the control function u at 
each grid point. 

3. Integrate state equations forward using the initial conditions and the 
control function values. Save the values of state variables at each grid 
point. 

4. Evaluate the objective functional using the values of control functions 
and state variables. Save the objective functional value. 

5. Integrate costate equations backward using the final conditions, the con­
trol function values, and the saved values of the state variables. Save 
the values of costate variables at each grid point. 

6. Improve  u and tf using the gradient of the objective functional as follows. 
Change u by − EHu at each discrete point and tf by − EJtf where E is a 
positive real number, which causes maximum reduction in the objective 
functional. 

7. Repeat computations Step 3 onward until there is no further reduction in 
the objective functional or the norm of the gradient becomes negligible. 
When either event happens, the u, tf, and corresponding state variables 
are optimal. 

The above algorithm is explained in more detail with the help of the fol­
lowing example: 

Example 7.1 
Consider the reaction A + B −→ C carried out in a fed-batch reactor. The 
volume y1 of the reaction mixture, and the concentrations y2, y3, and  y4, 
respectively, of A, B, and C are governed by 

dy1 
= u1,	 y1(0) = y1,0

dt
 

dy2 u1(y0 − y2)
 a/u2= − k0e y2y3, y2(0) = y2,0
dt y1 

dy3 u1y3 a/u2= − − k0e y2y3, y3(0) = y3,0
dt y1 

dy4 u1y4 a/u2= − + k0e y2y3, y4(0) = y4,0
dt y1 

where the control 

•	 u1 is the time dependent volumetric flow rate (cm3/min) of the reactor 
feed with y0 (g/cm

3) concentration of A, and 
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• u2 (K) is the reactor temperature as a function of time. 

It is desired to find the optimal controls u1(t) and u 2(t) that maximize y4(tf), 
i. e., the final concentration of C. Thus, the objective is to minimize 

y4(tf) tf 
dy

I 4
= −y4(tf) = − 

t
 dy4 = − dt 

dt 
0

t
0 ttf 

1y4 
= 

 
u − k0e

a/u2y2y3 

 
dt 

y1 
0 

subject to the state equations. 

Transformation to Fixed σ-Interval 

The equivalent problem in the fixed σ-interval [0, 1] is to minimize 

t1 
u y

I = 1 4
tf 

0

 
 

 
dσ 

y1 
− κy2y3

 '    
F 

where we have introduced 

'
κ ≡ k a/u2

0e

The state equations are 

dy1 
= tfu  


 1, y1(0) = y1,0
dσ

dy2 
= tf 

dσ

�
u1(y0 − y2)
  κy2y3 

y1 
−

�
, y2(0) = y2,0

dy3 
= tf 

 
u1y− 3 − κy2y3 

 
, y3(0) = y3,0

dσ y1 

dy4 
 

u
 1y4 

= tf − + κy2y3 , y4(0) = y4,0
dσ y1 

 
The Hamiltonian is then given by 

 

�
u1y 4 u (y0 

H = tf  1  y
κy2y3 + 2) 

λ1u1 + λ2 
−

 κy2y3 
y1 

−
�

y1 
−

�
�  

u y u y
+λ3 − 1 3 − 

�
+ 1 4 

κy2y3 λ4 

�
− + κy2y3 

y1 y1 

��
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Necessary Conditions for the Minimum 

The necessary conditions for the minimum of I are ⎡ ⎤
⎢⎢⎢dy1 

 

⎡ ⎤ ⎡ ⎤ ⎡⎥ ⎢ ⎥ ⎢ ⎥ ⎢⎥⎥ ⎢⎢ u1 ⎥⎥ ⎢⎢y1 ⎥⎥ ⎢⎢y1,0 
dσ

⎤
⎢dy2
dσ

⎥⎥ ⎢⎥
t

⎥ ⎥⎥⎢⎢  

⎥
 = f 

⎢
dy3 

⎢⎢u1(y0 − y2)  κy2y3 y2 
y1 

−
⎥ ⎢

3 

⎥⎥⎥
, 

⎥
u1y3  κy2y

⎢⎢
y3 

⎥⎥ ⎢
⎢ 2

⎥⎢ =

⎥⎢ ⎥ ⎥⎥ 0

 

⎢⎢ ⎢⎢ ⎥ ⎢y ,  ⎥⎥⎢⎢ ⎢ ⎥⎢  

⎥⎥⎥ ⎢⎢ ⎥ ⎢⎢ − −
⎥ ⎢⎢⎢⎢⎢

⎢⎢⎢⎢ σ⎣ 
⎥ ⎢y3,0 

d ⎥ y1 

dy4 

d

⎢ ⎢⎦⎥ 
⎢⎢⎣ u  1 ⎦ ⎣⎢ 

y4 

⎥⎥
⎦⎥⎥⎥
⎥ ⎥

y4  
 

− + κy2y3 

⎥ ⎥⎥
σ y1 

⎥⎥⎥
 

⎢
' σ

⎣  
0

=0

 

' 
⎢
y4,

⎥⎥
H

  
λ 

⎦⎥

⎡
dλ1 

dσ 

⎤ ⎡⎢ ⎥ ⎢ (1 − λ4)u1y4 λ2u1(y0 y2) λ3u1y3
+2 

− ⎢ ⎥⎥ y2 −⎢ ⎢⎢ y y2⎢  

2

⎥ 1 1 1 

⎤
⎢dλ  

 
u

+ κy⎢⎢⎢ ⎥ ⎢⎥⎥ ⎢⎢ λ⎥ ⎢⎢  1
(1 − 4)κy3 + λ2 3 + λ3κy3 

⎥

⎢ dσ ⎥ = ⎢ yt 1 

⎥
 

 
⎢ ⎥ f

⎥⎥⎥
, 

dλ

 
⎥⎢⎢⎢ 3 ⎢ u

 ⎥⎥ ⎢ κy  + 1⎢⎢ (1− λ4) 2 λ2κy2 + λ3 

 
+ κy2 

dσ

d
⎥ y1 ⎦ 

 ⎥⎥⎥⎥
⎢⎣ λ4 ⎣⎢  u

⎥
 1

⎥
−(1 − λ

dσ 4)
y

⎥
1 

⎥⎥
'    

−Hy 

⎦

 
λ1 λ2 λ3 λ4 

 T  
=

T

'
 
0 0 0 0 

σ=1 

 
⎡ ⎤ ⎡⎢ ⎥ (1 

 

− λ )y λ (y  y ) λ y⎢Hu1⎥ ⎢⎢ 4 4  2 0 2 3 3 
+ λ1 + 

−
y y

− 
= t 1  

⎤
= 

⎡
0

⎤
 

⎣⎢⎢ 1 y1

 
Hu

⎥ ⎢ ⎥
2 

⎥ ⎢ ⎥⎥ ⎢⎢ ⎥⎥⎥⎦ f 
 

⎢⎣ aκy   
(1 + 2y3  

 λ2 + λ3 − λ4)
2 

⎦
 

u2

⎥ ⎣⎢
0

⎥⎦
1 
H 

Jtf =

t
dσ = 0 
  

tf
 
0
 

The gradient algorithm to solve this problem is as follows. 
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Gradient Algorithm 

1. Set the iteration counter k = 0. Assume tk 
f and an even N . Obtain the 

fixed σ-grid of (N + 1) equi-spaced grid points 

σ0(= 0), σ1, σ2,  . . . ,  σN −1, σN (= 1) 

We use k in a superscript to denote the iteration number.
 

At each grid point, assume control function values as follows:
 ⎤⎡ 
ku1 (σi) 

u k ≡ u k(σi) =i 
⎣ ⎦, i = 0, 1, . . . , N  

ku2 (σi) 

2. Integrate state equations forward from σ = 0 to 1 using the initial 
kconditions and the control function values ui , i = 0, 1, . . . , N . Save  the  

values of state variables at the grid points as ⎤⎡ 

y k ≡ y k(σi) =i 

⎢⎢⎢⎢⎢⎢⎣ 

ky1 (σi) 

ky2 (σi) 

ky3 (σi) 

ky4 (σi) 

⎥⎥⎥⎥⎥⎥⎦ 

, i = 0, 1, . . . , N  

k3. Evaluate the objective functional using the controls u s and the state i 
kvariables yi s. Using composite Simpson’s 1/3 Rule, the objective func­

tional value is given by 

N N
1 

Jk = Ik = A0 + 4  Ai + 2  Ai + AN
3N 

1,3,5,... i=2,4,6,... 

where 

k k 
k k k u1 y4 a k kAi ≡ tfF (yi ,ui ) =  t − k0 exp y , i  = 0, 1, . . . , N  f k k 2 y3 y u1 2 

4. Check the improvement in I for k >  0. Given a tolerable error ε1 > 0, 
if ⏐⏐Ik − Ik−1 

⏐⏐ < ε1 

then go to Step 10. 

5. Integrate costate equations backward from σ = 1 to 0 using the final 
k kconditions, the controls u s, and the state variables y s. Save the values i i 
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of costate variables at the grid points as 

λk ⎢ (σi) ⎢⎢ 1 

 

⎡ 

⎢λk 
2 (σi) 

⎤
λk

 ≡ λk
i (σi) = ⎢ , i = 0 , 1, . . . , N  ⎢λk ⎣ (σ ) 

 3 i

⎥⎥⎥⎦⎥⎥ 
λk 
4 (σi) 

⎥

6. Evaluate the gradient of Jk by calculating the partial derivatives ⎡ ⎣Hu1 yk
i ,u

k
 ( i ,λ

k
 

u ≡ Hk
,i  u(σi) =  i )

Hk 

⎤⎦; i = 0, 1, . . . , N  
H (yk,uk

2 i i ,λ
k

u  i ) 

N  N  
k 1 

and k J Hk = 
 

 
 

�
 

tf 0 + 4  Hi + 2  Hk + 
3Nt i Hk

N
f 1,3,5,... i

�
=2,4,6,... 

 
where Hk ≡ t

 
F (yk k ,u ,λk  k k k

i f i i i ) + λ T
i g(yi ,ui ,λi )

 
; i = 0, 1, . . . , N  

Check the magnitude of the gradient. Given a small positive real number 
ε2, if the norm of the gradient    2 �N  �  2 2 

Huj (y
k  
i ,u

k
i ,λ

k) + Jk
i tf < ε2

i=0 j=1 

   
then go to Step 10. 

7. Improve control functions by calculating 

k+1  ui 
 = uk − EHk

i u,i, i = 0 , 1, . . . , N  

where E is a positive real number causing maximum reduction in Ik . 
Assign 

k+1 k u i → u i ; i = 0, 1, . . . , N  

8. Improve the final time using 

 tk+1 = tk − EJk
f f tf 

and assign 
k+1 t → tkf f 

9. Increment k  by one and repeat calculations Step 2 onward. 

10. Terminate the algorithm with the following result: 



y1,0 
 103 3cm y4,0 

30 g/cm k0 6 ×  107 cm3/(g · min) 

y2,0 
30 g/cm y0 10 3g/cm N 100 

y3,0 40 3g/cm a −8420 K 
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• The optimal objective functional value is Ik . 
• The optimal control û(t) is represented by uk

i , i = 0, 1, . . . , N . 
•  The optimal final time is tkf . 
• The optimal state ŷ(t) is represented by yk

i , i = 0, 1, . . . , N . 

Results 

Table 7.1 lists the parameters used to solve the optimal control problem with 
the above algorithm. In this problem, the final time and final states are free. 
It is desired to find two controls, u1(t) and u 2(t), and the final time tf that 
maximize the final product concentration y4(tf). 

Table 7.1 Parameters for the problem of Example 7.1 

The initial and optimal states are plotted in Figures 7.1 and 7.2, respec­
tively. The corresponding controls are shown in Figure 7.3. 
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Figure 7.1 The initial states versus time for Example 7.1 
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With the initially guessed final time of 60 min, the initial controls pro­
vided I = −4.12, which corresponds to the final product concentration of 
4.12 g/cm3 . 
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Figure 7.2 The optimal states versus time for Example 7.1. The final time has 
reduced 
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Figure 7.3 The initially guessed and optimal controls for Example 7.1 
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The application of the gradient algorithm minimized I, i. e., maximized the 
product concentration to 7.56 g/cm3 . The final time was reduced from 60 to 
50.3 min. Figure 7.4 plots I versus the iteration of the gradient algorithm. 

−4 

−5 

J −6 

−7 

−8 
0  10  20  30  40

iteration 

Figure 7.4 The objective functional versus iteration for Example 7.1 

7.1.5 Fixed Final Time and Free Final State 

The objective in this problem (see Section 6.2.1, p. 161) is to find the u that 
minimizes 

I = 
ttf 

F [y(t), u(t)] dt 

0 

subject to 

ẏ = g[y(t), u(t)], y(0) = y0 

The final time tf is specified, i. e., fixed. 

Example 7.2 
Let us consider the problem of Example 7.1 (p. 192) with the final time fixed 
at 60 min. In this case we apply the gradient algorithm on p. 195 with tk 

f fixed
at 60 min and skip Step 8 of the algorithm. 
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Results 

For the same set of parameters and initial controls used in Example 7.1, Fig­
ure 7.5 shows the optimal states with the fixed final time. The corresponding 
controls are shown in Figure 7.6. 
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Figure 7.5 The optimal states versus time for Example 7.2. The final time is fixed 
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Figure 7.6 The initially guessed and optimal controls corresponding to Figure 7.5 
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The optimal I is −7.51, corresponding to the final product concentration 
of 7.51 g/cm3 . When the final time was free and available for optimization in 
the last example, we got better results — more production in less time. The 
reason is that free final time affords more freedom (than when it is fixed) in 
the optimal control of a process. 

7.2 Penalty Function Method 

This is a simple method for solving an optimal control problem with inequal­
ity constraints. As the name suggests, the method penalizes the objective 
functional in proportion to the violation of the constraints, which are not en­
forced directly. A constrained problem is solved using successive applications 
of an optimization method with increasing penalties for constraint violations. 
This strategy gradually leads to the solution, which satisfies the inequality 
constraints. 

To illustrate the penalty function method, we consider the following optimal 
control problem. 

7.2.1 Free Final Time and Final State on Hypersurfaces 

The objective in this problem is to find the control u and the final time tf 
that minimize 

ttf 
I = F [y(t), u(t)] dt 

0 

subject to 

ẏ = g[y(t), u(t)], y(0) = y0 

and the l-dimensional hypersurface 

q[y(tf)] = 0 

This problem is equivalent to finding the minimum of the functional 

ttf 
M = 

 
 F + λT(−ẏ + g)

 
dt + μTq 

'0   ' 
J 



202 Optimal Control for Chemical Engineers 

where μ is the vector of Lagrange multipliers corresponding to the hypersur­
face. From Section 6.1.3 (p. 158), the necessary conditions for the minimum 
of M are 

ẏ  ˙= g y(0) = y0 λ = −Hy λT(tf) =  μT qy(tf ) 

Hu = 0 H(tf) = 0  q = 0 

The gradient algorithm as such cannot work with the above equations. With 
an assumed control if we integrate the state equations forward from the initial 
conditions, there is no guarantee that the state will satisfy q = 0 at the final 
time. 

The penalty function method addresses this difficulty by prescribing 

μ = Wq 

where W is an l × l diagonal weighting matrix with all positive diagonal 
elements. With this arrangement, 

λT(tf) =  qT W q
 y(tf)

μ� 

and the augmented objective function

'
al

  
 becom

'
es 

M = J + (Wq' )T ' q = J + qT   Wq
 '  

μ penalty 
function

'
 

where the last term, which is known as the penalty function, does not con­
tribute to the augmented functional M as long as all constraints q = 0 are 
satisfied. 

In contrast, if a final state condition, say, qi = 0, is violated, M is enlarged 
or penalized by a positive penalty term d q2ii i . For sufficiently large dii, the
penalty term would increase M to such an extent that its minimization would 
necessitate qi to be suitably close to zero. Because of this fact, sequential 
minimization of M each time with increased magnitude of W would lead to 
the minimum that satisfies q = 0. This minimization procedure is called the 
penalty function method, which fits easily with any optimization algorithm 
to enforce constraints. The computational algorithm combining this method 
with the gradient algorithm is as follows. 

Computational Algorithm 

To determine u and tf at the minimum, 

1. Initialize the outer counter r = 0. Choose a real number α > 1. 
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2. Set the weighting matrix W = αr 1 where 1 is the l × l identity matrix 
given by ⎡ 

0
⎤
 

1 = 

⎢1 0 . . .  ⎢ ⎥⎥⎥⎢0⎢⎢  1 . . .  0 

⎣⎢ .   0 .0 . 0   
0 0 . . .  1

⎥⎥⎥
 

3. On the problem transformed to the fixed σ-in

⎦
terval [0, 1], apply the 

gradient algorithm of Section 7.1.4 (p. 191) with 

λT(1) = q'T  W'q y(1)

μ� 

For r > 0,  the initial guesses for the controls and the final time are, 
respectively, given by 

r
i 

 u ; i = 0, 1, . . . , N  and trf 

When the gradient algorithm converges in, say, k iterations, save the 
state, the control, and the final time, i. e., 

y ki , 
 u ki ; i = 0, 1, . . . , N ; and t kf 

4. Increment the counter r by one and assign 

y k → y r, u k → u r, i = 0, 1, . . . , N ; and t k r 
i i i i f → tf 

5. Check whether the constraint q = 0 is satisfied. Given a positive real 
number ε3 close to zero, if 

 
lql, i. e .,  �
l 

i=1 

then go to Step 3. Otherw

�
ise, th

 
qi(yk

N )

e const

 
 
2 

> ε3 

raint is satisfied, and the values 

y ri , u r  
i , i = 0 , 1, . . . , N ; and t rf 

correspond to the minimum. 

Example 7.3 
Consider the batch reactor problem in Example 7.1 (p. 192) with selectivity 
constraints at the final time as the vector of two hypersurfaces ⎡ 

y4 − b1y2 

⎤ ⎡
0 

q[y(tf)] =  =  
y4 3 0 

⎤
− b2y

Following is the computational 

⎣
algorithm 

⎦
to so

⎣
lv

⎦
e this problem using the 

penalty function method: 
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Computational Algorithm 

1. Set the counter r = 0. Initialize the weighting matrix as ⎡ 
r⎣α 0 

W = 
0 αr

⎤⎦
2. Apply the gradient algorithm of Section 7.1.4 (p. 191) with ⎡⎢⎢λ1 

⎤T ⎥ ⎡ ⎤⎥ T

⎢⎢ ⎥⎥ ⎢⎢y4 
λT(1) = λ =

− b1y2 
 

2  

⎡
⎥

 

⎡ ⎤ ⎤
  y4 − b2y3 

⎥
σ=1 λ3 

q

⎢⎢⎣αr 0 ⎥⎥ ⎢⎢−b1 0 1⎢    
⎥⎥⎣⎢ ⎦⎥⎥

σ=1 

⎣
0 αr 0 −b2 1 '   

� 

⎦
W

⎦ ⎣ ⎦
' '   ' '

q

  
y(1) 

'
⎡ ⎤T 

=  αr

⎢⎢ −b1(y4 − b1y2) ⎢⎢⎢⎢ −b2(y4 − b2y3) 
 

⎥⎥
2y4 − b

⎥
⎣  

1y2 − b2y3 

⎥⎥⎥⎦
Recall that σ is the transformed time in the fixed interval [0, 1], and 
σ = 1 corresponds to the final time tf. When the gradient algorithm 
converges in, say, k iterations, save the state, the control, and the final 
time, i. e., 

 k k   k yi , T , i = 0, 1, . . . , N ; and tf 

3. Increment the counter r by one and assign 

 k →  r k → r   k y r 
i yi , Ti Ti ; i = 0, 1, . . . , N ; and tf → tf 

4. Check whether the constraint q = 0 is satisfied. For a positive real 
number ε3 close to zero, if �� 2  

qi(yk
N

 2 
) > ε3 

i=1 

then go to Step 2. Otherwise, the constraint is satisfied, and the values 

y ri , T r
i ; i  = 0, 1, . . . , N ; and t rf 

correspond to the minimum. 
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Results 

We present the results for b1 = 5  and  b2 = 2 and the same set of parameters 
and initial controls as used in Example 7.1. 

Figure 7.7 shows the convergence of the penalty function method. At each 
outer iteration r, the plotted objective functional value is the optimal with cor­
responding constraint violation quantified as lql. It was 17.2 at the very be­
ginning (corresponding to the initial controls) and dropped finally to 5.9×10−8 

at the convergence, which was attained in 11 outer iterations. 
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Figure 7.7 The intermediate, optimal objective functional Î , penalty factor α, and  
the constraint norm �q� versus outer iterations 

Figure 7.8 shows the optimal states obtained at the convergence of the 
penalty function method. The states correspond to the optimal controls, 
which are shown in Figure 7.9. The final time was reduced from 60 to 42.8 min. 

The selectivity constraints are satisfied at the optimal final time of 42.8 min. 
The optimal objective functional is −6.35, which corresponds to the final 
product concentration of 6.35 g/cm3 . 

Compared to the problem in the absence of the selectivity constraints (Ex­
ample 7.1), the final product concentration has reduced a bit due to the 
imposed selectivity constraints. 

0  
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Figure 7.8 The optimal states versus time for Example 7.3 
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Figure 7.9 The initially guessed and optimal controls versus time for Example 7.3 
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7.2.2 Free Final Time but Fixed Final State 

The objective in this problem is to find the control u that minimizes ttf 
I = F [y(t), u(t)] dt 

0 

subject to 

ẏ = g[y(t), u(t)], y(0) = y0, and y(tf) =  yf 

The final state fixed as y(tf) =  yf is the vector of hypersurfaces 

q[y(tf)] ≡ y(tf) − yf = 0 

at the final time tf. From Section 6.1.3 (p. 158), the necessary conditions for 
the minimum of M are 

ẏ = g y(0) = y0 λ̇ = −Hy λT(tf) =  μT qy(tf) = μT 

Hu = 0 H(tf) = 0  q = 0 

considering the fact that qy(tf ) is an identity matrix. 
Applying the penalty function method developed in Section 7.2.1 (p. 201), 

 μ = Wq, λT(tf) =  μT = qT W 

and the objective functional M becomes 

M = J + (Wq)Tq = J + 'qT Wq 

penalty 
function 

The computational algorithm to determine the optim

  
al c

'
ontrol is the same as 

on p. 202. 

Example 7.4 
Consider the batch reactor problem in Example 7.3 with the final state fixed 
as 

yi(tf) =  yi,f; i = 1, 2, 3 

instead of the final selectivity constraints. 
The computational algorithm to solve this problem is as follows. 

Computational Algorithm 

This modified problem is solvable by the algorithm of the last example using 
the vector of hypersurfaces ⎡ ⎢y1 − y1,f 0

q[y(tf)] = y

⎤
⎢ ⎥⎢ ⎥⎣ 2 − y2,f ⎥⎦ = 0

  

⎡⎢⎢⎢⎣ 

⎤⎥⎥⎥⎦ 
y3 − y3,f 0 
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and the final costate vector ⎡ ⎤T
λ

⎡ T T ⎢ 1⎥ ⎢y r
 1 − y1,f α 0 0 y1 − y1,f 

λT(1) = ⎢⎢  ⎣λ 2 

⎤ ⎡ ⎤ ⎡ ⎤

λ3 

⎥ ⎥ ⎢ ⎥ ⎢ ⎥⎥⎦ = ⎢⎢ r⎣y2 − y2,f 0 αr 0 = α y
   2 − y

   2,f  
y r ' 3 

σ
− y3,f 

⎥⎥ ⎢⎢
0 0 α

⎥⎥ ⎢⎢
y3 

=1 σ=1
− y  3,f 

⎥⎥
σ=1

q� 

⎦ ⎣ ⎦ ⎣ ⎦
' '

W

Results 

  '

This problem was solved with 

y1,f = 5×   103 y2,f = 0.5 y3,f = 0.5 (g/cm3) 

and the same set of parameters and initial controls as used in Example 7.3. 
The constraint violation in terms of lql was 1182 at the very beginning 

with initial controls and converged finally to 1.1×10−3 in five outer iterations. 
Upon convergence, the final values of y1, y2, and y 3 were 

y 3
1,f = 5×   10 y 3

 2,f = 0.4993 y3,f = 0.4993 (g/cm ) 

and the optimal objective functional was −7.5, which corresponds to the final 
product concentration of 7.5 g/cm3 . The optimal final time reduced from 60 
to 48.1 min. Figure 7.10 shows the optimal states obtained at the convergence. 
The corresponding optimal controls are shown in Figure 7.11. 
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ŷ1 ŷ2

 ,
ˆ

 
2

y  

2
1
0
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Figure 7.10 The optimal states versus time for Example 7.4 upon convergence of 
the penalty function method 

0  



209 Numerical Solution of Optimal Control Problems 

500 

400 

 
,
ˆ
2

u
 300 

,
ˆ
1

u
 u1 u2 

2
u

,  
1 200 û1 û2 
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Figure 7.11 The initially guessed and optimal controls corresponding to Fig­
ure 7.10 

7.2.3 Algebraic Equality Constraints 

The objective in this problem is to find the control u that minimizes 

I = 
ttf 

F [y(t), u(t)] dt 

0 

subject to 

ẏ = g[y(t), u(t)], y(0) = y0 

and l algebraic equality constraints 

f(y, u) = 0  

It is assumed that the partial derivatives fy and fu are continuous, and the 
dimension of f is less than that of u. As shown in Section 6.3.1 (p. 163), the 
equivalent problem is to find the minimum of the augmented functional 

M = 
ttf  tf 

F + λT(−ẏ + g) + μ Tf T L

0

 
dt = 

t
0 

 
 − λ ẏ

 
dt 

 60  
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where μ are the time dependent multipliers associated with the algebraic 
equalities and 

L =  F + λTg + μTf = H + μTf 

is the Lagrangian. The necessary conditions for the minimum of M , and  
equivalently of I, are  

ẏ = g y(0) = ˙y0 λ = −Ly λ(tf) =  0 

f = 0 Lu = 0 L(tf) = 0  

Since the algebraic equations f = 0 are not expected to be satisfied with 
an initially assumed control, we penalize the Lagrangian. The approach is 
similar to that in Section 7.2.1 (p. 201). We set μ = Wf at each time in the 
interval [0, tf]. Thus, the objective functional 

ttf 
M = 

 
F + λT(−ẏ + g) +  'fT  Wf'  d

n

 
t

0 pe alty 
function 

is penalized through the penalty function whenever any algebraic constraint 
is not satisfied. The computational algorithm to determine the minimum is 
as follows. 

Computational Algorithm
 

To determine u and tf at the minimum,
 

1. Initialize the outer counter r = 0. Choose a real number α >  1. 

2. Set t he l × l diagonal weighting matrix
 

r W = α
 1 

for the (N + 1)  grid  points  of  the  σ-interval to  be  considered in the  
gradient algorithm. 1 is the l × l identity matrix. 

3. Apply the gradient algorithm of Section 7.1.4 (p. 191) with the following 
initial guesses if r > 0:  

r r ui ; i = 0, 1, . . . , N  and tf 

Note In this case, the augmented objective functional is M whose gra­
dient in the transformed σ-interval [0, 1] is 

 ∇M ≡ 
 
Lu(σ0) Lu(σ1) . . .  Lu(σN ) Mtf 

 T



  
  

      

� � 

� � 
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where 

 L(σi) = t f 
 
F (yi,ui) + λ i

T
 g(yi,ui)

 
+ [f(yi,ui)]

TW f(yi,ui); i = 0, 1, . . . , N  

μ� 
i 

Using composite Simps

'
on’s 1

  
/3 Rule,

'
 given that the state equations are 

satisfied, 

  1 
 = 

 N N


M A
 0 + 4

�
 Ai + 2

�
 Ai + AN


3N
1,3,5,... i=2,4,6,... 

 
where Ai ≡ tfF (yi,ui) + [f(yi,ui)]

TWf(yi,ui); i = 0, 1, . . . , N  

The improvements in u and tf are, respectively, −ELu at each grid point 
and −EMtf where 

t1 N N

Mtf = dσ = H0 + 4  Hi + 2  Hi + HN 
tf 3Ntf 1,3,5,... i=2,4,6,...0 

and Hi ≡ tf F (yi,ui,λi) +  λT g(yi,ui,λi) ; i = 0, 1, . . . , N  i 

4. When the gradient algorithm converges in, say, k iterations, save the 
state, the control, and the final time, i. e., 

k k k yi , ui ; i = 0, 1, . . . , N ; and  tf 

5. Increment the counter r by one and assign 

k r k r k r y → y u → u i = 0, 1, . . . , N ; and  t → ti i , i i ; f f 

6. Check whether the constraints f = 0 are satisfied throughout the time 
grid. Given a positive real number ε3 close to zero if 

H 1 

N l

i=0 j=1 

then go to Step 3. Otherwise, the constraints are satisfied, and the 
values 

r r r y u i = 0, 1, . . . , N ; and  ti , i ; f 

correspond to the minimum. 

2k kfj (yi ,u ) > ε3i 
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Example 7.5 
Consider the batch reactor problem in Example 7.1 (p. 192) subject to the 
following algebraic equality constraint throughout the time interval [0, tf]: 

2 u1 = b1y3 + b2y3 

In this case, 
f ≡ u 2

1 − b1y3 − b2y3 = 0  

and the weighting matrix is just an element αr at the r-th outer iteration. 
The corresponding Lagrange multiplier at a grid point σi in the σ-interval is 

r −  μi = fiα = (u1,i b y2 r
1 3,i − b2y3,i)α

Results 

Using the above algorithm, this problem was solved with b1 = −0.1, b2 = 5,  
and the same set of parameters and initial controls as used in Example 7.1. 

With initial controls, the constraint violation in terms of lql was 55.7, 
which reduced and converged to 3.3×10−2 in 10 outer iterations. At conver­
gence, the optimal objective functional was −4.45, which corresponds to the 
final product concentration of 4.45 g/cm3 . The optimal final time reduced 
from 60 to 33.3 min. 

Figure 7.12 plots the initial and final relations between u1 and y3. The  
final relation is obtained at the convergence and matches with the imposed 
constraint, f = 0.  
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y3 

Figure 7.12 The relation between u1 and y3. The thin solid line at convergence is 
seen to overlap with the imposed constraint 
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The optimal states obtained at the convergence are shown in Figure 7.13. 
Figure 7.14 shows the corresponding optimal controls. 
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Figure 7.13 The optimal states when the algebraic constraints are satisfied upon 
convergence in Example 7.5 
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Figure 7.14 The initially guessed and optimal controls corresponding to Fig­
ure 7.13 
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7.2.4 Integral Equality Constraints 

The objective in this problem is to find the control u that minimizes 

ttf 
I = F [y(t),u(t)] dt 

0 

subject to 

ẏ = g[y(t),u(t)], y(0) = y0 

and l integral equality constraints 

ttf 
Fj (y,u, t) dt = kj , j  = 1, 2, . . . , l  

0 

As shown in Section 6.4.1 (p. 168), the equivalent problem is to find the min­
imum of the augmented functional 

ttf 
M = (L − λT ẏ) dt− μTk 

0 

where μ is the vector of time invariant Lagrange multipliers, μis, correspond­
ing to the integral equality constraints, L is the Lagrangian given by 

L = H + μTF = F + λT g + μTF 

and F and k are respective vectors of Fj s and  kj s. The necessary conditions 
for the minimum of M , and equivalently of I are 

λ̇ = −Ly ẏ = Lλ = g Lu = 0 ttf 
λ(tf) =  0 L(tf) = 0  F dt = k 

0 

along with y(0) = y0. 
When solving this problem using the penalty function method, the integral 

constraints are enforced by specifying 

ttf 
μj = Fj (y,u, t) dt − kj α, j = 1, 2, . . . , l  

0 



    
  

� 
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where α is a real number greater than unity. With this specification, the 
augmented functional becomes ttf ttfl 2 

M = H − λT ẏ dt + Fj dt − kj α 
j=10 0' ' 

penalty function 

The summation term above is the penalty function, which is positive whenever 
any integral equality constraint is violated. 

Example 7.6 
Consider the batch reactor problem in Example 7.1 (p. 192) subject to the 
following integral equality constraints: 

tf 
1 
ttf 

1 
u1 dt = ū1 and 

t
u2 dt = ū2 

tf tf 
0 0 

which specify the average values of the controls over the operation time of the 
reactor. In the transformed σ-interval [0, 1], the constraints become 

t1 t1 

u1 dσ = ū1 and u2 dσ = ū2 

0 0 

The augmented objective functional is then given by 

1 l  
1

2 
dy 

M 
t

 = 

 
H − λT

 
dσ + 

� t
uj dσ 

0

 
α

=1

− ūj  
dσ 'j 0    

penalty function 

where H is provided in Example 7.1. 

'

Results 

Using the algorithm on p. 210, this problem was solved with ū1 = 60  cm3/min, 
ū2 = 350 K, and the same set of parameters and initial controls as used in 
Example 7.1. 

With initial controls, the constraint violation in terms of lql was 29.3, 
which reduced and converged to 1.4×10−5 in nine outer iterations. At con­
vergence, the optimal objective functional was −7.3, which corresponds to the 
final product concentration of 7.3 g/cm3 . The optimal final time in this case 
increased  from  60 to 64 min.  

The optimal states obtained at convergence are shown in Figure 7.15. Fig­
ure 7.16 shows the corresponding optimal controls. 
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Figure 7.15 The optimal states when the integral equality constraints are satisfied 
upon convergence in Example 7.6 
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Figure 7.16 The initially guessed and optimal controls corresponding to Fig­
ure 7.15 

 

 



7.2.5 Algebraic Inequality Constraints 

This problem is similar to that in Section 7.2.3 (p. 209) except that the alge­
braic equality constraints are replaced with the inequalities 

f(y,u) ≤ 0 

Recall from Section 6.3.2 (p. 166) that the necessary conditions for the mini­
mum are 

ẏ = g y(0) = ˙y0 λ = −Ly λ(tf) =  0 

f ≤ 0 Lu = 0 L(tf) = 0  μ ≥ 0, μTLμ = 0 

where L = F  + λTg + μTf . 
To handle the inequalities, the penalty function method is slightly modified 

as follows. At any time, the multipliers corresponding to the inequalities are 
prescribed as 

μ = We 

where e is vector of l elements  
0 if f j (t) ≤ 0 

ej = j = 1, 2, . . . l  
1 if f j (t) > 0 

Thus, the augmented objective functional 

tf 

M = 
t  

F + λT(−ẏ + g) + e  TW f 
 
dt

0 μ�

has the penalty function eTWf , which is positi

'
ve

  
 an

'
d enlarges M whenever 

any inequality is violated. The computational algorithm to find the minimum 
is as follows. 

Computational Algorithm
 

To determine u and tf at the minimum,
 

1. Initialize the counter r = 0. Choose a real number α >  1. 

2. Set t he l × l diagonal weighting matrix
 

W  = αr
 1 

for the (N + 1)  grid  points  of  the  σ-interval to  be  considered in the  
gradient algorithm. 1 is the l × l identity matrix. 
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3. Apply the gradient algorithm of Section 7.1.4 (p. 191). Use the following 
initial guesses if r >  0: 

r r u i = 0, 1, . . . , N  and ti ; f 

Note In this case, the augmented objective functional is M whose gra­
dient in the transformed σ-interval [0, 1] is 

T ∇M ≡ Lu(σ0) Lu(σ1) . . .  Lu(σN ) Mtf 

where 

  L(σi) = tf F (yi,ui) + λ T
i g(yi,ui)

+ ['f(yi,ui)]
TW f(yi,ui); i = 0, 1, . . . , N  

μ� 
i 

Using composite Simpson’s 1

  
/3 Rule,

'
 given that the state equations are 

satisfied, 

 

 

 � 1 
N N


M = A0 + 4  Ai + 2
�
 Ai + AN


3N
1,3,5,... i=2,4,6,... 

 
where Ai ≡ tfF (yi,ui) + [f(yi,ui)]

TWf(yi,ui); i = 0, 1, . . . , N  

The improvements in u and tf are, respectively, −ELu at each grid point 
and −EMtf where 

t1 N N

Mtf = dσ = H0 + 4  Hi + 2  Hi + HN 
tf 3Ntf 1,3,5,... i=2,4,6,...0 

and Hi ≡ tf F (yi,ui,λi) +  λT g(yi,ui,λi) ; i = 0, 1, . . . , N  i 

The elements of ei (i = 0, 1, . . . , N) are determined as follows:
 

0 if  fj (t) ≤ 0
 
ej,i = ; j = 1, 2, . . . l; i = 0, 1, . . . , N  

1 if  fj (t) > 0 

4. When the gradient algorithm converges in, say, k iterations, save the 
state, the control, and the final time, i. e., 

k k k y u i = 0, 1, . . . , N ; and  ti , i ; f 

H 1 

5. Increment the counter r by one and assign 

k r k r k r k r y → y u → u e → e i = 0, 1, . . . , N ; and  t → ti i , i i , i i ; f f 
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6. Given a positive real number ε3 close to zero, if the error �N 
r r rE = [ei ]

Tf(yi ,ui ) > ε3 (7.6) 
i=0

then some constraints are violated. Therefore, go to Step 3. 

Otherwise, the constraints f ≤ 0 are satisfied, and the values 

r r r y ui , i  = 0, 1, . . . , N ; and  ti , f 

correspond to the minimum. 

Example 7.7 
Consider the batch reactor problem in Example 7.1 (p. 192) subject to the 
following inequality constraints throughout the time interval [0, tf]: 

u1 ≥ u1,min and u2,min ≤ u2 ≤ u2,max 

These constraints can be expressed as ⎤⎡⎤⎡⎤⎡ 

f = 
⎢⎢⎢⎣ 

f1 

f2 

⎥⎥⎥⎦ 
≡ 
⎢⎢⎢⎣ 

−u1 + u1,min 

−u2 + u2,min 

⎥⎥⎥⎦ 
≤ 
⎢⎢⎢⎣ 

0⎥⎥⎥⎦ 
0 

f3 u2 − u2,max 0 

Results 

Using the above algorithm, this problem was solved with 

u1,min = 50  cm3/min, u2,min = 300 K, u2,max = 400 K 

and the same set of parameters and initial controls used in Example 7.1. 
As observed from Figure 7.3 (p. 198), the initial controls do not violate 

the inequality constraints of the present problem. Hence, the initial con­
straint violation in terms of E in Equation (7.6) was zero. Finally, when the 
penalty function algorithm converged in six outer iterations, the value of E 
was 4.5×10−5 . The effect of the penalty function was to suppress any viola­
tion of the constraints during the iterations of the computational algorithm. 
At the convergence, the optimal objective functional was −5.9, which corre­
sponds to the final product concentration of 5.9 g/cm3 . The optimal final 
time decreased slightly from 60 to 58.3 min. 

The optimal states obtained at convergence are shown in Figure 7.17. Fig­
ure 7.18 shows the corresponding optimal controls, which satisfy the inequality 
constraints. In the absence of the inequality constraints, the optimal controls 
would be those in Figure 7.3 (p. 198), which violate two of the constraints. 
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Figure 7.17 The optimal states when the inequality constraints are satisfied upon 
convergence in Example 7.7 
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Figure 7.18 The initially guessed and optimal controls corresponding to Fig­
ure 7.17 
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7.2.6 Integral Inequality Constraints 

This problem is similar to that in Section 7.2.4 (p. 214) except that the integral 
equality constraints are replaced with the inequalities 

ttf 
Ij ≡ Fj (y,u, t) dt ≤ kj , j  = 1, 2, . . . , l  

0 

From Section 6.4.2 (p. 171), the necessary conditions for the minimum are 

ẏ = g y(0) = y0 λ̇ = −Ly λ(tf) =  0 

Lu = 0 L(tf) = 0  I ≤ k μ ≥ 0 

and μT(I − k) = 0  where  I is the vector of the integrals Ij s. 
Similar to Section 7.2.5 (p. 217), we prescribe μ = We where e is a vector 

of l elements 
0 if  Ij − kj ≤ 0 

ej = j = 1, 2, . . . l  
1 if  Ij − kj > 0 

Thus, M has the penalty function eTW(I − k), which is positive and enlarges 
M whenever any integral inequality is violated. 

Computational Algorithm 

The algorithm is the same as that on p. 217 except for the following changes: 

• μ, W, and e  are uniform across the σ-interval. 

• f appearing in the algebraic inequalities is replaced with (I − k). 

Example 7.8 
Consider the batch reactor problem in Example 7.1 (p. 192) subject to the 
following integral inequality constraints: 

t

 
f tf 

1 1 
u1 dt  ū1 and u2 dt  ū2 

tf 

t
≤

tf 

t
≤

0 0 

which specify the upper limits to the average control values over the operation 
time of the reactor. 

Results 

Using the above algorithm, this problem was solved with ū1 = 60  cm3/min, 
ū2 = 350 K, and the same set of parameters and initial controls as used 
in Example 7.1. The optimal states obtained at convergence are shown in 
Figure 7.19. Figure 7.20 shows the corresponding optimal controls. 
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4

y
,
ˆ

40 

,
ˆ

 
3

y
 ,
ˆ

 
2

y 30 

2
1
0
 

/  
1 20 

ŷ
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Figure 7.19 The optimal states when the integral inequality constraints are satis­
fied upon convergence  in  Example  7.8  
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Figure 7.20 The initially guessed and optimal controls corresponding to Fig­
ure 7.19 

The initial constraint violation in terms of E in Equation (7.6) was 39.1. 
Upon convergence in just one iteration, E reduced to zero. At the conver­
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gence, the optimal objective functional was −6.9, which corresponds to the 
final product concentration of 6.9 g/cm3 . The optimal final time in this case 
increased from 60 to 62.9 min. 

Problems with Fixed Final Time 

The final time is not an optimization parameter in these problems. Thus, 
these problems are straightaway solvable by the algorithms in the previous 
sections using the specified final time and discarding the improvements to it. 

7.3 Shooting Newton–Raphson Method 

Some times the stationarity condition Hu = 0 of an optimal control problem 
can be  solved t o  obtain an explicit e xpression f or  u in terms of the state y and 
the costate λ. That expression, when substituted into state and costate equa­
tions, couples them. Thus, state equations become dependent on λ and must 
be integrated simultaneously with the costate equations. The simultaneous 
integration constitutes a two point boundary value problem in which 

1. the state is specified at the first boundary, i. e., at the initial time; 

2. the costate is specified at the second boundary, i. e., at the final time; 
and 

3. the state and costate equations depend on state as well as costate vari­
ables. 

The shooting Newton–Raphson method enables the solution of this problem. 
With a guessed initial costate, both state and costate equations are integrated 
forward or “shot” to the final time. The discrepancy between the final costate 
obtained in this way and that specified is improved using the Newton–Raphson 
method. 

We explain the shooting Newton–Raphson method with the help of an 
optimal control problem having one state, one control, and fixed final time. 
The objective of the problem is to find the control function u(t) that minimizes 
the functional 

tf 

I = 
t

F [y(t), u(t)] dt 

0 
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subject to 

y = g[y(t), u(t)], y(0) = y0 

The necessary conditions for the minimum are 

dy dλ 
= g, y(0) = y0, = −Hy, λ(t ,  and H

  f) = 0 ' u = 0  'dt d t
state equ

  
ation and costa e eq

c  

' '
t

initial ondition final c

  
st i

u

'   
at o

  
narity 

ation and conditio
o

'
n 

ndition 

Two Point Boundary Value Problem 

Suppose that it is possible to solve Hu = 0 and obtain an explicit expression, 
u = u(y, λ). Utilizing this expression, the state and costate equations for the 
minimum turn into the two point boundary value problem 

dy 
= g[y, u(y, λ)] = g(y, λ), y(0) = y0

dt 

dλ 
= '−  Hy'[y, u(y, λ), λ] = h (y, λ), λ(tf) = λ f

dt  
h 

Application of the Newton–Raphson Method 

Consider the final costate obtained from the simultaneous forward integra­
tion of the above equations with λ(0) guessed as λ0. The final costate is a 
function of λ0, i. e ., λ (λ0, tf). Its difference from the specified costate λf is the 
discrepancy function 

f(λ0) ≡ λ(λ0, tf) − λf (7.7) 

which can be zeroed out by iteratively improving λ0 using the Newton– 
Raphson method (Section 9.11, p. 273). Thus, the improved value λ0,next 

is given by 
f(λ0)

λ0,next = λ0 − �
∂f  
∂λ0 

�
tf 

where, from Equation (7.7), the derivative �
∂f  
∂λ0 

�
t

�
∂λ  

= 
∂λ0

f 

�
tf 

Derivative Evaluation 

Observe that the above derivative is the final-time value of the time dependent 
variable 

∂λ  
(t)

∂λ0 

We will now find the equations governing this variable. 
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Equations Governing ∂λ/∂λ0 

Differentiating the state and costate equations with respect to λ0, we  get  

∂ dy ∂g  ∂ dλ ∂h  
= = 

∂λ0 dt ∂λ0 ∂λ0 dt ∂λ0 

d ∂y  ∂g ∂y  ∂g ∂λ  d ∂λ  ∂h ∂y  ∂h ∂λ  
or = + = + 

dt ∂λ0 ∂y ∂λ0 ∂λ ∂λ0 dt ∂λ0 ∂y ∂λ0 ∂λ ∂λ0 

∂y  ∂λ  
where (0) = 0 (0) = 1 

∂λ0 ∂λ0 

The last two equations arise from differentiating with respect to λ0 the initial 
conditions for the state and costate equations, which are, respectively, 

y(0) = y0 and λ(0) = λ0 

Based on the above development, the computational algorithm for the 
shooting Newton–Raphson method is as follows. 

Computational Algorithm
 

To determine u at the minimum,
 

1. Guess the initial costate, λ0. 

2. Integrate simultaneously to the final time the differential equations for 
the state, costate, ∂y/∂λ0 , and ∂λ /∂λ0 using the respective initial con­
ditions. 

3. Use  ∂λ/∂λ0 so obtained at the final time to improve λ0 using the 
Newton–Raphson method. 

4. Go to Step 2 until the improvement is negligible. When that happens, 
the state and control are optimal. 

Example 7.9 
Consider an isothermal liquid-phase reaction A −→ B in a CSTR in the 
presence of a solid catalyst. The process model is given by 

dy 
= u(yf − y) − ky2 , y(0) = y0

dt 
where y is the concentration of species A, u is the time dependent volumetric 
throughput per unit reactor volume, yf is y in the feed, and k is the reaction 
rate coefficient. In a given time tf, it is desired to find the u(t) that minimizes 
the deviation in y and u from the reference condition (ys, us), i. e., ttf 

I = (y − ys)2 + (u − us)
2 dt 

0 



  

� �
� �
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The Hamiltonian for this problem is given by 

H = (y − ys)
2 + (u − us)

2 + λ u(yf − y) − ky2 

The necessary conditions to be satisfied at the minimum are the process model 
or the state equation with the initial condition, the costate equation with the 
final condition, i. e., 

dλ 
= −2(y − ys) +  λ(u + 2ky), λ(tf) = 0  

dt 

and the stationarity condition 

Hu = 2(u − us) +  λ(yf − y) = 0  

Two Point Boundary Value Problem 

The last equation yields the expression for the optimal control 

λ(y − yf) 
u = + us

2 

which, when substituted into the state and costate equations, results in the 
two point boundary value problem 

dy λ(y − yf) 
= + us (yf − y) − ky2 , y(0) = y0

dt 2 

dλ λ(y − yf) 
= −2(y − ys) +  λ + us + 2ky , λ(tf) = 0  

dt 2 

The optimal control solution is essentially the solution of the above differen­
tial equations with boundary conditions at opposite end points of the time 
interval. In order to solve the equations using the shooting Newton–Raphson 
method, we need the derivative state equations to provide λλ0 . 

Equations for λλ0 

The shooting Newton–Raphson method will use the derivative λλ0 at tf to 
improve the guess λ(0) = λ0, thereby zeroing out λ(tf). We differentiate 
with respect to λ0 the latest state and costate equations as well as the initial 
boundary conditions 

y(0) = y0 and λ(0) = λ0' ' 
assumed 
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to obtain the following derivative equations: 

dyλ0 λ(yf − y) (yf − y) 
= − + us yλ0 + (y − yf)λλ0 + λyλ0 − 2kyλ0dt 2 2 

dλλ0 λ(yf − y) λ 
= −2yλ0 + + us + 2ky λλ0 + (y − yf)λλ0 + (λ + 4k)yλ0dt 2 2 

along with the respective initial conditions 

yλ0 (0) = 0 and λλ0 (0) = 1 

Computational Algorithm 

1. Set the iteration counter, k = 0. Guess the initial costate, λk 
0 . 

2. Integrate simultaneously to the final time the last four differential equa­
tions for the state, costate, yλ0 , and λ λ0 using the respective initial 
conditions. 

3. Improve λ k 
0 by calculating 

k 

λk+1 f(λ
= λk 0 ) 

0 0 − 
λλ0 (λ

k 
0 , tf) 

4. Check the improvement in λ0. Given a small real number E >  0, if 

λk+1 
0 − λk 

0 > E  

then go to Step 2. Otherwise

⏐⏐
 the state a

⏐⏐
nd control provide the minimum. 

Results 

Using the above algorithm, this problem was solved with the parameters listed 
in Table 7.2. The initial guess of λ(0) = 0 provided λ(tf) = 15.7. Figure 7.21 
shows the optimal state, costate, and control obtained at the convergence, 
which was obtained in nine iterations. 

The minimum objective functional value was 2.4 with final λ(tf) of  O(10−11). 
The initial and optimal costates are shown in Figure 7.22. 

Table 7.2 Parameters for the problem of Example 7.9 

3 3 3 
y0 5 g/cm ys 8 g/cm yf 10 g/cm

us 5 min−1 k 10−3 cm3/(g · min) tf 1 min  
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Figure 7.21 The initial and optimal states and controls in Example 7.9 
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7.A Derivation of Steepest Descent Direction 

Consider a continuously differentiable function f = f(x) where x  is the vari­
able vector 

x1 x2 . . .  xn 

For a small change 

  T 

dx = 
 
dx1 dx2 . . .  dxn 

 T 

the change in f is given by 

n  ∂f  
df =

�
dxi

∂xii=1 

Let the magnitude of dx be denoted by ds. Thus,  

ds =

�
n 

dx2
ii=1 

Then the change in f per unit change

�
 in ds is 

�n   
n  df ∂f dxi T = = v w = v w 

ds ∂x

�
i i 

i ds 
i=1  i=1 

v wi i 

where v is the gradient of f , a

' 
nd

' ' 
 w i

'
s the unit vector along dx. 

7.A.1 Objective 

Next, consider the problem of minimization of f by changing x by dx of length 
ds along a direction. For a decrease in f due to the change, the rate df/ds 
has to be negative. The objective is to find the direction or a unit vector w 
that results in the most negative rate df/ds or, equivalently, minimizes the 
rate, which from the last equation is 

n

viwi 

i=1 

This problem is subject to the constraint that w, being a unit vector, must 
have unit magnitude, i. e., 

n
2K ≡ w − 1 = 0  i 

i=1 
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Applying the Lagrange Multiplier Rule, the equivalent problem is to find the 
w that minimizes 

= 
�n  n  

J viwi + λ wi 
2
  1

i=1 

 �
i=1 

−
 

where λ is a Lagrange multiplier. Now, at the minimum of J 

�n  
dJ = (vi + 2λwi)dwi + dλ

i=1 

 �n  
w2

i   

 
= 0

i=1 

− 1

Hence, the necessary conditions for the minimum are 

�n  
   2 vi + 2λwi = 0; i = 1, 2, . . . , n and wi  1 = 0  

i=1 

−

which yield, respectively, 

vi 1 n v
wi = − ; i = 1, 2, . . . , n  and λ = 

� l
2λ 2 

�
v2i = 

l
i=1 2 

Substituting the expression for λ in that for wi above, we obtain 

vi 
wi = − ; i = 1, 2, . . . , n  lvl 

at the minimum. From the above result, the optimal w or ŵ is the unit vector 
opposite to the direction of v, i. e., the gradient of the function f . 

7.A.2 Sufficiency Check 

To ensure that the above result guarantees the minimum, we consider the 
second order Taylor expansion of f with respect to w at ŵ, keeping the 
corresponding λ fixed at lvl/2. Thus, for sufficiently small dw, 

1 
J(ŵ + dw, λ) − J(ŵ, λ) = dJ(ŵ, λ) +  d2J(ŵ, λ)

2 

Since dJ(ŵ, λ) is zero being the necessary condition, and the constraint K = 0  
implies dK = 0,  we  obtain  

n  n  1 
J(ŵ + dŵ, λ) − J(ŵ, λ) =  d2J(ŵ, λ) = λ  

�
dw 2i + dλ

=1 

�
ŵidwi

2 
i 'i=1

� 
2

   
(dK)/2=0 

l n
vl  = dw > 0

'
2 i

i=1 
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Thus, J(ŵ, λ), i. e., df/ds corresponding to ŵ, is indeed the minimum. The 
above result shows that df/ds is minimized by 

Tv1 v2 vn 
ŵ	 = − . . .  lvl lvl lvl 

which is a unit vector in the direction opposite to the gradient of the func­
tion f(x). Simply put, the rate of function decrease is maximum along the 
steepest descent direction, i. e., opposite to the gradient of the function. 
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Exercises 

7.1 Simplify the calculation of Ik and Jk in the gradient algorithm for Ex­tf 
ample 7.1 (p. 192). 

7.2 Following Kelley (1962), modify the algorithm for the gradient method 
on p. 191 to determine the final time tf using the following conditions for the 
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minimum of I with respect to tf: 

dI 
= F (y,u) = 0

dt 
n m  d2I � ∂F  dyi u

>
 

� ∂F  d i 
= +  0 

dt2 ∂yi dt  ∂ui	 dt i=1 i=1 
gi 

7.3 A CSTR carrying out a first

' 
 ord

'
er exothermic reaction is described by 

(Luus and Lapidus, 1967) 

dy1	 a−  + 2y1 
= 2y1 − a1 + (y1 a1) exp   (y1 + 0.5a1)u, y1(0) = y1,0

dt

 
 y1 + 4a1
 

−
dy

 
2 a

 2y1
 
= a1 − y2 − (y2 + a1) exp  , y2(0) = y2,0

dt	 y1 + 4a1 

 
where y1 and y2 are, respectively, the deviations of temperature and concen­
tration from the steady state values. The control u is related to the coolant 
flow rate. Find the u that minimizes state deviations and control action given 
by 

tf 

I = (y2 2
1 + y2 + a3u 2) dx 

t
0 

for the following set of parameters: 

y1,0 = 0.05 y2,0 = 0  tf = 0.78 

a1 = 0.5 a2 = 25  a3 = 0.1 

7.4 Repeat Exercise 7.3 with the following additional constraints: 

0.4 ≤ u ≤ 1.4 

7.5	 Consider the process of production planning described by 

dy 
= u, y(0) = 0 

dt 

where y is the product inventory, and u is the production rate. It is desired 
to find the u that minimizes the cost functional ttf 

2I = (a1u + a2y) dt 

0 

subject to the following constraints:
 

y(tf) =  yf and u ≥ 0
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Using a suitable computational algorithm, solve the above problem for 

a1 = a2 = yf = tf = 1  

Compare the optimal u with the analytical solution (Kamien and Schwartz, 
1991) given by 

a2(2t− tf) yf 
u = + , u  ≥ 0 

4a1 tf 

7.6 The integral equality constraints of the optimal control problem in Sec­
tion 7.2.4 (p. 214) may be transformed into differential equations. Using this 
approach, 

a. derive the necessary conditions for the minimum, 

b. formulate an algorithm using the penalty function method to find the 
minimum, and 

c. solve Example 7.6 (p. 215). 

7.7 Repeat Exercise 7.6 to solve Example 7.8 (p. 221). 

7.8 Solve Example 7.8 (p. 221) in the presence of the following additional 
constraint: 

u2 ≤ 400 K 

throughout the time interval [0, tf]. 
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Chapter 8
 

Optimal Periodic Control 

Optimal periodic control involves a periodic process, which is characterized 
by a repetition of its state over a fixed time period. Examples from nature 
include the circadian rhythm of the core body temperature of mammals and 
the cycle of seasons. Man-made processes are run periodically by enforcing 
periodic control inputs such as periodic feed rate to a chemical reactor or 
cyclical injection of steam to heavy oil reservoirs inside the earth’s crust. The 
motivation is to obtain performance that would be better than that under 
optimal steady state conditions. 

In this chapter, we first describe how to solve an optimal periodic control 
problem. Next, we derive the pi criterion to determine whether better periodic 
operation is possible in the vicinity of an optimal steady state operation. 

8.1 Optimality of Periodic Controls 

Consider the objective to minimize the functional ttf 
I = F [y(t), u(t)] dt 

0 

where tf > 0 is the time period of the control u, and the state is governed by 

ẏ = g[y(t), u(t)] 

with the periodicity condition 

y(0) = y(tf) 

The above problem is equivalent to minimizing the augmented functional ttf 
J = 

 
F + λT(−ẏ + g)

 
dt 

0 

subject to y(0) = y(tf). 
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8.1.1 Necessary Conditions 

Similar to Section 6.1.1 (p. 153), the variation of J is ttf 
δJ = (Hy + λ̇)Tδy + (Hλ − ẏ)Tδλ + HTδu dt + λT(0) δy(0) u 

0 

− λT(tf) δyf + H(tf)δtf 

Note that the above equation has one additional term, λT(0) δy(0), when 
compared to Equation (6.9) on p. 156. The reason is that δy(0) in the present 
problem is not zero since y(0) is not fixed but equal to y(tf). This periodicity 
condition for the general case of unspecified tf means that y(0) is equal to the 
final state yf. As  a  result  

δy(0) = δyf 

Considering this fact, the necessary conditions for the minimum of J , and  
equivalently of I, are  

λ̇ = −Hy ẏ = Hλ = g Hu = 0 

λ(0) = λ(tf) y(0) = y(tf) H(tf) = 0  

From now on, we will use τ instead of tf in the periodic problems. 

Example 8.1 
Consider the periodic operation of the batch reactor in Example 2.10 (p. 45) 
with the objective to minimize tτ 

E 
I = − ckxa dt, k = k0 exp − 

RT 
0 

subject to 
ẋ = −akxa , x(0) = x(τ) 

using the temperature T (t) as the control over a fixed time period τ . 
The Hamiltonian for this problem is 

H = −ckxa − λakxa 

Thus, for I to be minimum, the necessary conditions are as follows: 

ẋ = −akxa , x(0) = x(τ)' ' 
Hλ 

λ̇ = akxa−1(c + λ), λ(0) = λ(τ)' ' 
Hx 

kE 
HT = − x a(c + aλ) = 0  

RT 2 
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Note that if τ is not fixed, then we have the additional necessary condition 

−  
 

a  a H(τ) = ckx + λakx
 

= 0  
τ 

Example 8.2 

Consider the CSTR described in Example 6.7 (p. 164) but under periodic 
operation in which the objective is to minimize 

tτ �2  
I =

 
(yi −  ys s 2 

i )
2 + (ui − ui )

 
dt 

i=10 

where τ is a fixed time period. The state is governed by 

ẏ1 = u1(yf − y1) − ky1y2, y1(0) = y1(τ) 

ẏ2 = u2 − u1y2, y2(0) = y2(τ) 

as well as the equality constraint 

tτ tτ 
1 

u1 dt = a or u1 dt = aτ 
τ 

0 0 

which requires the average CSTR throughput to be some desired value a. The  
Lagrangian for this problem [see Equation (6.19), p. 169] is given by 

�2   
s   L = (yi − yi )

2 + (u s
i  ui )

2 + λ1[u1(yf  y1)  ky1y2]
 
i=1
 

−  − −

+ λ2[u2 − u1y2] + μu 1 

Note that the Lagrange multipliers λ1 and λ2 are time dependent, while the 
multiplier μ is time invariant. The necessary conditions for the minimum of 
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I are as follows: ⎡ 

ẏ1 

⎤ ⎡
u1(yf − y1) − ky1y2 

= 

⎤
, 

⎡ ⎤ ⎡ ⎤
⎢⎢

   
ẏ2 

⎥⎥ ⎢⎢
u2  u1y  

⎥⎥
 

2

⎢⎢⎢⎢ ⎥⎢ y1 ⎥  
⎥⎢ ⎦⎥ ⎥ y1

= 
⎥⎢ ⎥ ⎥⎣ ⎢⎣ ⎥⎦  − ⎣ 

y2 

⎥ ⎢⎣
⎢⎢⎢⎥ ⎦  ⎦⎥ 
y2 '   ' t=0 τ

Lλ ⎡  

1 

⎤ ⎡ T T⎢⎢λ̇ ⎥⎥ ⎢⎢ ⎥ = ⎢⎢−2(y − s
1  y1) + λ 1(u1 + ky2)

⎤ ⎡
λ1

⎤ ⎡⎥⎥ ⎢ ⎢⎢⎢⎢⎢ ⎥⎥⎥⎥  λ1 

, = 

⎤
⎢⎣ 

⎥⎦ 
⎢⎣     

λ̇ s
2 −2(y2 − y2) + λ 1ky1 + λ2u1 

⎥⎥⎥⎦ ⎢⎣
λ2 

⎦⎥ ⎣⎢
λ2 

τ

⎥⎥
−

⎦ 

'   ' τ 

Ly ⎡ ⎤ ⎡⎢⎢Lu1 ⎥⎥ ⎢⎢2(u s
1 − u1) + λ 1(yf − y1) − λ2y2 + μ

= 

⎤ ⎡ ⎤
   
Lu 2(u2  us ) + λ 2 

⎥⎥⎢  

⎢⎥ ⎢⎢0⎢⎣ 

⎥⎥⎢
2 

⎥ ⎢⎢
− 2

⎥⎥ =
 

0

⎥⎥⎣ ⎦ ⎣ ⎦ ⎦ 
 

tτ τ 

Lμ dt = 
t

u1 dt = aτ 

0 0 

Inequality Constraint 

If we do not want the CSTR throughput to surpass some maximum value a, 
then the equality constraint in the above problem has to be replaced with the 
inequality tτ τ 

1 
u

 1 dt 
τ

≤ a or u1 dt ≤ aτ 

0 

t
0 

In this case, the necessary conditions for the minimum are given by (see 
Section 6.4.2, p. 171) 

τ

• the ones above except 
t
Lμ dt = aτ , which is replaced with 

0 

tτ τ 

Lμ dt = 
t

u1 dt ≤ aτ 

0 0 
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• μ ≥ 0, and the complimentary slackness condition 

 tτ 

μ u1 dt − aτ 

 
= 0  

0 

8.2 Solution Methods 

The solution of a optimal periodic control problem requires the integration 
of state and costate equations, both subject to periodicity conditions. Other 
than this integration aspect, the solution methods for optimal periodic control 
problems are similar to those for non-periodic problems. Therefore, we will fo­
cus on the methods to integrate state and costate equations under periodicity 
conditions. 

A periodicity condition implies that the initial and final values of a state 
(or costate) variable are equal to a single value. Thus, in a optimal periodic 
control problem, the set of state as well as costate equations poses a two 
point boundary value problem. Either successive substitution or the shooting 
Newton–Raphson method may be used to integrate the periodic state and 
costate equations. 

8.2.1 Successive Substitution Method 

This is a simple but slow method in which a set of state (or costate) equations 
is integrated assuming the initial conditions. The final conditions obtained 
from integration are then substituted for the initial conditions in the next 
round of integration. This procedure is repeated until the initial and final 
conditions match. 

8.2.2 Shooting Newton–Raphson Method 

This method was introduced in Section 7.3 (p. 223) to solve a two point bound­
ary value problem. We illustrate this method to solve a set of state equations 
with periodicity conditions. They require zeroing out the discrepancy function 

(
⏐ 

f y0) =  y(y0)
⏐⏐ 

 − ' y0'   '  τ' 
initial state 

final state vector 
vector 
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where we use  y0 to denote the initial state vector y(0). Starting with some 
guess, y(0) is improved iteratively using the Newton–Raphson method, i. e., 

−1 
y0,next = y0 − [fy0 ] f(y0) (8.1) τ 

where [fy0 ] is the Jacobian τ ⎡ 

 ∂y1 ∂y1⎢⎢ ∂y1 − 1 . . .  ⎢⎢∂y1,0 ∂y2,0 ∂yn,0 

⎤
⎢⎢ ∂y⎢ 2 ∂y2 ∂y−   2

1 . . .

⎥⎥
⎢ 0  ∂yn,0

⎥
⎢ ∂y1,  ∂y2,0  

⎥
(8.2) ⎢⎢⎢ . .   . .. .   . . . . . . 

⎥⎥⎥⎥
 ∂yn ∂yn ∂yn 

⎥⎥⎥⎢⎣⎢  
. . .  

∂y1,0 ∂y2,0 ∂yn,0 
− 1 

⎥⎥⎥
τ 

which is obtained by differentiating f(y0) with respect to y

⎦
0, i. e ., y (0). 

Evaluation of the Jacobian 

The above J acobian i s  the matrix  fy0 evaluated at the final time τ . The t ime  
dependent elements of fy0 are governed by differential equations that arise 
from the state equations. For example, differentiating the i-th state equation 
and the initial condition, 

yi = gi and yi(0) = yi,0 

with respect to yj,0 yields the following differential equation:   �n  d ∂yi ∂gi ∂yk 
�
∂yi 

�  
1 if i  = j 

= , =
dt ∂yj,0 ∂yk ∂yj,0 ∂yj,0 t=0 0 if i  = j

k=1 

whose integration provides the desired value of ∂yi/∂yj,0 at the final time. 
The computational algorithm to solve state equations with periodicity con­

ditions  is as follows.  

Computational Algorithm 

1. Assume the initial conditions for the state equations. 

2. Using the initial conditions, integrate simultaneously the differential 
equations for state variables and ∂yi/∂yj,0 s, which constitute fy0 . 

3. Improve the initial state using 

1 y0,next = y0 − [fy0 ]
− f(y0)τ 

Go to Step 2 until the improvement is negligible. 
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4. Repeat the above steps for costate equations. 

Example 8.3 
Consider a CSTR under periodic operation governed by the state equations 

dy1 
= u1(yf − y1) −R, y1(0) = y1(τ)

dt 

dy2 
= u2 − u1y2, y2(0) = y2(τ)

dt 
2where y1 and y2 are concentrations of the reactant and catalyst, R = k0y1 y2 

is the rate of production, yf is the reactant concentration in the feed, and u1 

and u2 are, respectively, the volumetric throughput and catalyst mass flow 
rate per unit reactor volume. The controls u1 and u2 have the time period τ . 
The objective is to find the controls and the time period that maximize the 
average R, i. e., minimize tτ 

1 2I = − k0y1 y2 dt 
τ 

0 

Transformation to Fixed σ-interval 

We begin by transforming the problem to the fixed σ-interval [0, 1], as was 
done in Section 7.1.3.1 (p. 187). The equivalent transformed problem on this 
interval is to find the controls and the time period that minimize t1 

2I = −k0y1 y2 dσ ' ' 
0 F 

subject to the state equations 

dy1 2 = τ u1(yf − y1) − k0y1 y2 , y1(0) = y1(1) 
dσ 

dy2 
= τ u2 − u1y2 , y2(0) = y2(1) 

dσ 

where the controls u1(σ) and  u2(σ) have the time period of unity. The Hamil­
tonian for this problem is 

2 2H = −k0y1 y2 + τ λ1 u1(yf − y1) − k0y1 y2 + λ2(u2 − u1y2) 

In terms of H , the augmented objective functional is given by t1 
dy1 dy2

J = H − λ1 − λ2 dσ 
dσ dσ 

0 
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The necessary conditions for the minimum are 

1. the state equations in the σ-interval 

2. the costate equations
 

dλ1
 
= 2k0y y + τλ

 1 2 1(u1 + 2k0y1y2), λ1(0) = λ1(1) 
dσ

dλ2  = k y2 
1 + τ(λ 2

 0 1k0y + , λ2(0) = )
dσ 1  λ2u1) λ2(1  

3. the stationarity conditio⎡ ns ⎤ with  con  ⎡ respect to the⎤ ⎡ ⎤trols u1 and u2, i. e .,  
  ⎣Hu1 ⎦ 1) 0 

 = τ⎣λ1(yf − y ⎦ =  
Hu2 λ2 0 

4. the stationarity with respect to the time period

⎣
 τ , i

⎦
. e .,  

Jτ

 
 − F 

 =

t1 
H

τ 
0 

 
dσ = 0 (8.3) 

Satisfaction of Periodicity Conditions 

In order to integrate the state and costate equations satisfying the periodicity 
conditions, we need the respective derivative differential equations for the 
shooting Newton–Raphson method. 

Derivative State Equations 

For each i = {1, 2}, taking the partial derivatives of 

1. the state equation for yi and 

2. the initial condition yi(0) = yi,0 

with respect to all guessed initial states — y1,0 and y2,0 — yields the following 
derivat  state  ive  equat� ions: 

d ∂y1 ∂y
  −  1 ∂y  

= u1 + 2k0y
2 2 ∂y1

τ ( 1y2) − k0y1

�
, (0) = 1 

dσ ∂y1,0 ∂y1,0 ∂y1,0 ∂y1,0 

d 
 

∂y1 
 �

∂y1  ∂y2 ∂y
 1

= τ −(u1 + 2k0y1y2) − k0y
2
1

�
, (0) = 0 

dσ ∂y2,0 ∂y2,0 ∂y2,0 ∂y2,0 

d 
 

∂y2 
 

∂y2 ∂y2 
= −τu1 , (0) = 0 

dσ ∂y1,0 ∂y1,0 ∂y1,0 

d 
 

∂y2 
 

∂y2 ∂y2 
= τu

 1 , (0) = 1 
dσ ∂y2,0 

−
∂y2,0 ∂y2,0 



  
  
  � �
  � �
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Derivative Costate Equations 

Similar differentiation of the costate equations yields the following derivative 
costate equations: 

d ∂λ1 ∂λ1 ∂λ1 
= τ(u1 + 2k0y1y2) , (0) = 1 

dσ ∂λ1,0 ∂λ1,0 ∂λ1,0 

d ∂λ1 ∂λ1 ∂λ1 
= τ(u1 + 2k0y1y2) , (0) = 0 

dσ ∂λ2,0 ∂λ2,0 ∂λ2,0 

d ∂λ2 2 ∂λ1 ∂λ2 ∂λ2 
= τ k0y + u1 , (0) = 0 1dσ ∂λ1,0 ∂λ1,0 ∂λ1,0 ∂λ1,0 

d ∂λ2 2 ∂λ1 ∂λ2 ∂λ2 
= τ k0y + u1 , (0) = 1 1dσ ∂λ2,0 ∂λ2,0 ∂λ2,0 ∂λ2,0 

The integration of the derivative state and costate equations provides the 
derivative values at the endpoint σ = 1. These values are needed in the 
Jacobian of the Newton–Raphson method [see Equations (8.1) and (8.2)]. 

Following is the computational algorithm of the shooting Newton–Raphson 
method to solve the optimal periodic control problem. 

Computational Algorithm 

1. Set the iteration counter k = 0. Assume τk and an even  N . Obtain the 
fixed σ-grid of (N + 1) equi-spaced grid points 

σ0(= 0), σ1, σ2,  . . . ,  σN −1, σN (= 1) 

At each grid point, assume a value for controls, initial state, and initial 
costate as follows: ⎡ ⎤ 

ku1 (σi)k k k u ≡ u k(σi) =  ⎣ ⎦, i  = 0, 1, . . . , (N − 1); and u = ui N 0
ku2 (σi) ⎡ ⎤ ⎡ ⎤ 
k λky1 (σ0) 1 (σ0)k y ≡ y k (σ0) =  ⎣ ⎦, λ0 

k ≡ λk(σ0) =  ⎣ ⎦ 
0 

k λky2 (σ0) 2 (σ0) 

2. Integrate state equations as follows: 

2.a Set the counter s = 0. Assume the initial state 

T 
s y = k 
0 y1

k
,0 y2,0 



        

  

�� ��
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2.b Integrate forward from σ = 0 to 1, the state equations along with 
kderivative state equations using the control functions ui s. 

2.c Improve the initial state by applying Equations (8.1) and (8.2), 
i. e., ⎤⎡ ⎤⎡−1 ⎤⎡⎤⎡ ∂y1 ∂y1− 1 

∂y1,0 ∂y2,0 

⎢⎢⎢⎢⎣ 

⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎦ 

⎥⎥⎥⎥⎦ 

sy1(1) − ys+1 s 1,0y y1,01,0 ⎦ = ⎣⎣ ⎦− 
s+1 s 

∂y2 ∂y2y y2,0 2,0 s− 1 y2(1) − y2,0 ''''
∂y1,0 ∂y2,0s 'σ=1 

]−1 f (y0)[fy0 σ=1 

2.d Calculate the vector of change in y0, 

T 
s+1 s s+1 se = (y − y (y − y1,0 1,0) 2,0 2,0)
 

Given  a  small real number  E >  0, if
 

either lel or f(y 0) > E  

s+1 sthen assign y → y0, increment  s by one, and go to Step 2b. 0 
Otherwise, the integration of the state equations is complete. 

3. Save the values of state variables at the grid points. ⎡ 
ys⎣ 1(σ

i 
i) 

yk ≡ y k (σi) =

⎤⎦, i = 0 , 1, . . . , N  
ys 
2(σi)

4. Evaluate the objective functional. For example, using composite Simp­
son’s 1/3 Rule, 

N  N  
Jk = Ik 1 

= F + 4  F + 2  F + F
3N 

 
0 

�
i i N

1,3,5,... i=2

�
,4,6,... 

 
where 

k  Fi ≡ −k0(y1,i)
2yk2,i; i = 0, 1, . . . , N  

5. Check the improvement in Ik for k > 0.  Given a tolerable error ε1 > 0, 
if

then go to Step 12. 

⏐⏐Ik − Ik−1 ⏐⏐ < ε1 

6. Integrate costate equations as follows: 

s+1 yy0 '''0 



  

        

  

  � � 
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6.a Set the counter s = 0. Assume the initial costate 

T 
λs = λk λk 
0 1,0 2,0 

6.b Integrate forward from σ = 0 to 1, the costate equations along 
with the derivative costate equations using the control functions 
k ku s and the state variables yi s.i 

6.c Improve the initial costate by applying Equations (8.1) and (8.2), 
i. e., ⎤⎡ ⎤⎡−1 ⎤⎡⎤⎡ ∂λ1 ∂λ1− 1 

∂λ1,0 ∂λ2,0 

⎢⎢⎢⎢⎣ 

⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎦ 

⎥⎥⎥⎥⎦ 

sλ1(1) − λs+1 sλ λ 1,0
1,01,0⎣ ⎦ = ⎣ ⎦− 

s+1 sλ λ ∂λ2 ∂λ22,02,0 s− 1 λ2(1) − λ2,0 ''''
∂λ1,0 ∂λ2,0 'σ=1 

]−1 f (λ0)[fλ0 σ=1 

6.d Calculate the vector of change in λ0, 

T 
s+1 s s+1 se = (λ − λ (λ − λ1,0 1,0) 2,0 2,0) 

Given  a  small real number  E >  0, if 

either lel or lf(λ0)l > E  

then assign λs+1 → λ0
s , increment  s by one, and go to Step 6b. 0 

Otherwise, the integration of the costate equations is complete. 

7. Save the values of costate variables at the grid points. 

λs+1 λs 
0 0 '''

⎤⎡ 
sλ1(σi)

λk ≡ λk
i (σi) = ⎣ ⎦, i  = 0, 1, . . . , N  

sλ2(σi) 

8. Evaluate the gradient by calculating the partial derivatives ⎤⎡ 
k kHu1 (yi ,ui ,λi

k)
Hk = Hk 

u,i u (σi) = ⎣ ⎦; i = 0, 1, . . . , N  
k kHu2 (yi ,ui ,λi

k) 

N N

0 + 4  N3N 
1,3,5,... i=2,4,6,... 

k k k kH(yi ,ui ,λ
k
i ) − F (yi ,ui ,λ

k
i )where Ai

k = ; i = 0, 1, . . . , N  
τk 

1 
Jk Ak = τ Ak + 2  Ak + Ak 

i iand 
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Check the magnitude of the gradient. Given a small positive real number 
ε2, if the norm of the gradient 

N 2�� 2 2 
k kHuj (yi ,ui ,λi

k) + Jτ
k < ε2 

i=0 j=1 

then go to Step 12. 

9. Improve control functions by calculating 

k+1 k u = u − EHu
k
,i, i  = 0, 1, . . . , N  i i 

where E is a positive real number causing maximum reduction in Ik . 

10.  Improve  the time period using  

τk+1 = τk − EJk 
τ 

11. Repeat calculations Step 2 onward after assigning 

τk+1 k+1 k→ τk and u → ui , i = 0, 1, . . . , N  i i i 

and incrementing k by one.

12. Terminate the algorithm with the following result: 

• The optimal objective functional value is Ik . 
• The optimal control û(t) is represented by uk

i , i = 0, 1, . . . , N . 
• The optimal time period is τk . 
• The optimal state ŷ(t) is represented by yk

i , i = 0, 1, . . . , N . 

Results 

Using the above algorithm, the optimal periodic control problem was solved 
for the parameters listed in Table 8.1. The objective is to find two control 
functions and the time period that maximize the average reaction rate. 

Table 8.1 Parameters for the problem of Example 8.3 

3 yf 5 g/cm

3 2
k0 6 × 107 (cm /g) /min 

N 40 

     

The initial and optimal states are plotted in Figure 8.1. The corresponding 
controls are shown in Figure 8.2. 
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ŷ1 ŷ2 
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Figure 8.1 The initial and optimal states for Example 8.3 
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û
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Figure 8.2 The initially guessed and optimal controls for Example 8.3 

With the initially guessed time period of 6 min, the initial controls provided 
I = −7.8 × 10−2, which corresponds to the average production rate of 7.8 × 
10−2 g/min. 

The application of the algorithm minimized I, i. e., maximized the product 
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concentration to 0.12 g/min. The optimal time period increased to 6.8 min. 
Figure 8.3 shows the convergence of I to the minimum. 

−0.07 

−0.08 

−0.09 

I −0.1 
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−0.12 

−0.13 
0  10  20  30  40  50  60

iteration 

Figure 8.3 The objective functional versus iteration for Example 8.3 

8.3 Pi Criterion 

The pi criterion is a sufficient condition for the existence of a periodic solu­
tion that is better than the neighboring optimal steady state solution of an 
optimal periodic control problem. Using the criterion, we would like to know, 
for example, whether the time-averaged product concentration in a periodic 
process can be more than what the optimal steady state operation can pro­
vide. In other words, we would like to check if oscillating the optimal steady 
state control with some frequency and time period improves on the steady 
state solution. 

We derive the criterion for a general periodic problem of finding the mini­
mum of the functional 

tτ 
1 

I = F (y, u) dt, τ > 0 (8.4) 
τ 

0 
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subject to the following constraints: 

ẏ = g(y,u), y(0) = y(τ) (8.5) 

1 
tτ 

v(y,u) dt = 0 (8.6) 
τ 

0 
τ 

1 
t

w(y,u) dt ≤ 0 (8.7) 
τ 

0 

Integrating Equation (8.5) after dividing it by τ yields 

 
y u) dt = 0 

 

tτ 
1

g( ,
τ

0 

Using the following notation for the integrals in the problem 

τ 
1 

I(y,u) ≡ F (y,u) dt 
τ 

t
0 
τ 

1 
Ii(y,u) ≡ 

t
gi(y,u) dt i = 1, 2, . . . , n  (8.8) 

τ 
0 
τ 

1 
Ii(y,u) ≡ vi(y,u) dt i = n+ 1, n+ 2, . . . , p  (8.9) 

τ 

t
0 

1
Ii(y,u)  

tτ 
 ≡ wi(y,u) dt i = p+ 1, p+ 2, . . . , q  (8.10) 

τ 
0 

we introduce the following functional �n  �p  �q  
J(y,u,λ,μ,ν) ≡ I(y,u) +  λiIi(y,u) +  μiIi(y,u) +  νiIi(y,u) 

i=1 i=n+1 i=p+1 

incorporating the multipliers λis, μis, and νis. Now in terms of the Lagrangian 

n  p  q  
L(x,u,λ,μ,ν) ≡ F (y,u)+  

�
λigi(y,u)+  

�
μivi(y,u)+  

�
νiwi(y,u) 

i=1 i=n+1 i=p+1 

(8.11) 
the functional J can be written as 

τ 
1 

J(y,u,λ,μ,ν) =  
t

L(y,u,λ,μ,ν) dt 
τ 

0 
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J at Optimal Steady State 

Under the steady state, both u and y are time independent. Then the above 
problem reduces to the minimization of 

I = F (y, u) 

subject to 

ẏ = g(y, u) = 0  
τ 

1 
v(y, u) dt = v(y, u) = 0  

τ 

t
0 tτ 

1 
w(y, u) dt = w(y, u) ≤ 0 

τ 
0 

Let the pair (ȳ, ū) denote the optimal steady state solution with the corre­
¯sponding multipliers λ, μ̄, and ν ̄ . The necessary conditions for this solution 

are provided in Appendix 8.A (p. 260). Since this solution minimizes J , sat­
isfying the state equation and the constraints, 

tτ 
1

  ¯        ¯J(ȳ, ū,λ, μ̄, ν̄) = I(ȳ, ū) = L(ȳ, ū,λ, μ̄, ν̄) dt 
τ 

0 

In deriving the above equation, we have considered the fact that all equality 
constraints are satisfied at the optimal steady state, and the multipliers are 
zero for inactive inequality constraints (see Section 4.5, p. 109). 

Further Reduction of I 

We ultimately need to determine whether in the vicnity of the optimal steady 
state pair (ȳ, ū), the objective functional I could reduce further for some 
admissible pair of state and corresponding control, (y, u), where 

y = ȳ + δy and u = ū+ δu 

The pair (ȳ, ū), as well as the control ū, is called proper. 

Assumptions 

We assume that 

1. the Lagrange Multiplier Rule is applicable 

2. F is twice differentiable, and the derivatives of gi, vi, and w i are con­
tinuous in the neighborhood of the optimal steady state solution (ȳ, ū) 
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The first assumption implies that the constraint qualification or normality 
condition (see Section 4.3.2, p. 96) is satisfied. It ensures that an infinite 
number of solution pairs exist near the optimal steady state solution pair 
(ȳ, ū). This pair, as well as ū, is called normal when the normality condition 
is satisfied. 

Next, we retain the multipliers at the optimal steady state and obtain 
¯the change in J from its optimal steady state value, i. e., J(y,u,λ, μ̄, ν̄)  

¯
−

J(ȳ, ū,λ, μ̄, ν̄). This change is given by 

n  p  q0  
 ¯I + 
�

λiIi(y,u) +  
�

μ̄iIi(y,u) +  
�

ν̄iIi(y,u) 
i

− Ī
=1 i=n+1 i=p+1 tτ τ 

1 1 1 
L− ¯ ¯  ¯= (  L) dt =

τ τ 
0

t
(δL+ δ2L) dt 

2 
0 

where q0 is the number of inequalities satisfied as equalities and the overbar 
¯as in I indicates the steady state value. In the last equation, we have used 

Equation (2.33) on p. 52 and considered a sufficiently small change along δy 
and δu at ȳ and ū, respectively. Note that the multipliers are zero for inactive 
inequalities, which are   ¯satisfied as strict inequalities. Also, all Iis are zero for 
the q0 equalities since they are satisfied by the steady state solution. 

From the result proved in Appendix 8.B (p. 261) for the normal steady state 
pair (ȳ, ū), we have 

¯Ij (y,u) = δ Ij ≡ δIj (ȳ, ū; δy, δu); j = 1, 2, . . . , n+ p+ q0 (8.12) 

Therefore, from the last two equations, we obtain 

�n tτ 
 �p  �q0  1 

 
1 

 ¯I ¯
ī + ¯ ¯ ¯ ¯+ λiδI μ̄iδIi + ν̄iδIi 

i=1 i=n+1 i=p+1 

− I = δL+ δ2L

0 

 
dt (8.13) 

τ 2 

In terms of the variations of L and all Iis obtained from their definitions in 
Equations (8.11) and (8.8)–(8.10), we have tτ tτ 

  1 � 
 =

 n p q
1 0

¯ ¯δF + ¯δL dt λ
 iδḡi + 

�
μ̄iδv̄i + ν̄iδw̄i dt 

τ τ
i=1 i=n+1 i= +10

�
p0 

 
τ 

1 
t n  p  q0  

¯ ¯ ¯ ¯ ¯= δF dt+ 
�

λiδIi + μ̄iδI
τ i + ν̄iδIi

i=1 i=

�
n+1 i=

�
p+10 

Substituting the last equation in Equation (8.13), we obtain tτ τ

 
t  

1 1 
I − Ī = ¯ ¯δF dt+ δ2L dt (8.14) 

τ 2τ ' 0   0

I

'   ' 
¯δ

'
δ2 Ī
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We shall return to the above equation after coming up with an admissible 
pair (y,u), or equivalently, an admissible variational pair (δy, δu). 

Admissibility Criteria 

The pair (y,u) is admissible if and only if it satisfies the constraints — Equa­
tions (8.5) and (8.6) and Inequality (8.7). 

If (y,u) is admissible, then the related variational pair (δy, δu) is called 
admissible as well. This pair must satisfy some constraints, which are de­
termined as follows. For (y,u) the constraints in terms of sufficiently small 
variations δy and δu near (ȳ, ū) become 

ẏ̄ + δẏ = ḡ+ ḡyδy + ḡuδu, ȳ(0) + δy(0) = ȳ(τ) + δ y(τ)tτ τ 
1 1 

(v̄ + v̄yδy + v̄uδu) dt = 0, 
t
(w̄ + w̄yδy + w̄uδu) dt ≤ 0 

τ τ 
0 0 

The above constraints respectively simplify to 

δẏ = ḡyδy + ḡuδu, δy(0) = δy(τ) (8.15) tτ 
1 

(v̄yδy + v̄
 uδu) dt = 0 (8.16) 
τ

0 tτ 
1 

(w̄yδy + w̄uδu) dt ≤ 0 (8.17) 
τ 

0 

which are the equations that govern δy and δu. Note that the above simpli­
fication is due to 

τ τ 
1 1 

ẏ̄ = ḡ, ȳ(0) = ȳ(τ), 
t

v̄ dt = 0 and w̄ dt 
τ τ 

≤ 0 

0 

t
0 

which are obviously satisfied by the optimal steady state pair (ȳ, ū). As a 
consequence, the admissible variation pair (δy, δu) is constrained by Equa­
tions (8.15) and (8.16) and Inequality (8.17). 

Admissible (δy, δu) at the Optimal Steady State 

We propose the following control variation 

δu(t) = 2U cos(ωt) where  ω ≡ 2π/τ (8.18) 

at the optimal steady state control ū. After showing that the corresponding 
variational pair (δy, δu) is admissible, we will derive the sufficient condition 
for the resulting objective functional I(y,u) to be lower than the steady state 

¯I(ȳ, ū) or I . 
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We now apply the admissibility criteria of the previous section. For the 
variation pair (δy, δu) to be admissible, δu(t) should generate a state variation 
δy governed by Equation (8.15). Moreover, the variation pair must satisfy the 
remaining constraints, i. e., Equation (8.16) and Inequality (8.17). 

In the following treatment, we use the Fourier transform, the details of 
which are provided in Appendix 8.C (p. 264). Using Euler’s formula 

ix e = cos  x+ i sin x 

for x ≡ ωt, the control variation can be expressed as 

−iωt iωt δu(t) =  U e + e (8.19) 

From the definition of the Fourier transform and its inverse 

δu(t) =  δu(−1)e −iωt + δu(1)e iωt 

where 
δu(−1) = δu(1) = U 

are the Fourier coefficients of the proposed control variation δu. 

Satisfaction of Equation (8.15) 

Taking the Fourier transform on both sides of the differential equation given 
by Equation (8.15), we obtain 

δẏ(k) = (ikω)δy(k) = ḡyδy(k) + ḡuδu(k) 

Upon rearranging the transformed equation, we get 

δy(k) = (ikωI − ḡ )−1 ḡ δu(k) (8.20) y u' ' 
G(ikω) 

For the proposed δu, there are two Fourier coefficients δu(k=±1), each  being  
equal to U. Making these substitutions in the above equation and taking the 
inverse Fourier transform yields the corresponding 

−iωt iωt −iωt iωt δy = Gδu(−1)e + Gδu(1)e = GUe + GUe (8.21) 

where G ≡ G(iω) and  G ≡ G(−iω). Observe that δy(0) = δy(τ). Hence, 
the variational pair (δy, δu) satisfies Equation (8.15). 

Satisfaction of Remaining Constraints 

The variational pair (δy, δu) should also satisfy Equation (8.16) and Inequal­
ity (8.17) in order to be admissible. The left-hand side of an i-th constraint 
from Equation (8.16) or Inequality (8.17) is tτ 

T TδĪi =
1 

ā δy + ā δu dt; i = (n+ 1), (n+ 2), . . . , q  (8.22) y uτ 
0 
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where ā is, respectively, v̄i or w̄i. Substituting for δu and δy from Equa­
tions (8.19) and (8.21), we get tτ 

T −iωt iωt T −iωt iωt δĪi =
1 

(ā GUe + GUe + āu U e + e ) dt = 0yτ 
0 

after integrating and applying the limits. Basically, we have applied the result tτ 
τckiωt dt ki(2π/τ )t ce = e = 0 (8.23) 

kiω 0 
0 

for a constant c and a non-zero integer k. Hence, the pair (δy, δu) satisfies 
Equation (8.16) and Inequality (8.17) as well, and thus is admissible. 

Sufficient Condition or Pi Criterion 

We now utilize Equation (8.14), which provides the change in I from its 
optimal steady state value. For the present problem, δF̄ is zero since (ȳ, ū) 
is optimal. Expanding δ2L̄ in Equation (8.14), we obtain tτ 

1¯ T ¯ TL̄T T ¯ T ¯I − I = δy Lyy + δu δy + δy Lyu + δu Luu δu dt (8.24) yu2τ 
0 

T ¯ T ¯LT = UT G LyyG + ¯
yuG + G Lyu + L̄uu U (8.25) ' ' 

Π(ω) 

where Π(ω) is  an (m × m) matrix known as the pi matrix. Appendix 8.D 
¯(p. 265) provides the derivation of Equation (8.25). For I to be lower than I, 

obviously 
¯I − I = UTΠ(ω)U < 0 

or, in other words, the pi matrix has to be negative-definite. This result is 
known as the pi criterion. 

Example 8.4 
Consider a second order reaction A −→ B of  rate coefficient  k carried out in an 
isothermal CSTR. Assuming no volume change of mixing, the concentrations 
x1 and x2, respectively, of the reactant A and the product B are governed by 
the state equations 

ẋ1 = u2(u1 − x1) − kx2 
1 

ẋ2 = kx1
2 − u2x2 

where the two controls are 
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1. u1, the time dependent concentration of A fed to the reactor and 

2. u2, the volumetric flow rate in and out of the reactor 

both per unit reactor volume. For the periodic operation of time period τ , 
the objective is to maximize the average concentration of the product B, i.  e.,  
to find the minimum of tτ 

1 
I = − x2 dt 

τ 
0 

subject to the following two equality constraints: 

1. The average mass of A fed to the reactor should be some value α, i.  e.,  

tτ tτ 
1 1 

u1u2 dt = α or (u1u2 − α) dt = 0  
τ τ ' ' 

0 0 v1 

2. The average volumetric rate through the CSTR should be some value 
β, i.  e.,  tτ tτ 

1 1 
u2 dt = β or (u2 − β) dt = 0  

τ τ ' ' 
0 0 v2 

The Lagrangian for this problem is given by 

L = −x2 + λ1 [u2(u1 − x1) − kx1
2] + λ2 [kx

2 − u2x2]1' ' ' ' ' ' 
F g1 g2 

+ μ1 (u1u2 − α) + μ2 (u2 − β)' ' ' ' 
v1 v2 

Let the optimal state and control under steady state conditions be ⎡ ⎤ ⎡ ⎤ 
x̄1 ū1 

x̄ = and ū =⎣ ⎦ ⎣ ⎦ 
x̄2 ū2 

Sufficient Condition for (x̄, ū) to Be Proper 

The optimal steady state pair (x̄, ū) is proper if there exists a neighboring pair 
(x, u) that provides a lower objective functional value I than Ī, which is given 
by (x̄, ū). Assuming that the pair (x̄, ū) is normal, the sufficient condition 
for its properness is that the right-hand side of Equation (8.25) should be less 
than zero, i. e., the pi criterion 

UT T ¯ LT T ¯G LxxG + ¯
xuG + G Lxu + L̄uu U < 0 
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wher  
T  

e U = U1 U1 is the amplitude of δu = δu1 δu2 
T
, which i s  

the periodic control variation given by Equation (8.18) for some frequency 
ω = 2π/τ . Both U  and ω need to be specified. The matrices in the above 
inequality are as follows. 

The matrices G and G are given by 

G = G(iω) and  G = G(−iω) 

where for k = ±1, we have from Equation (8.20) 

 ⎨ −1 

ikω 0 ū   2kx̄  0 
G(ikω) = ⎩ 

⎧⎡
0

⎤ ⎡ ⎤⎬⎫⎣
  

I(  

⎦ − 
ikω

ikω)

⎣− 2 − 1  × 
2kx̄'   1 −ū' ' 2 

  
ḡ

⎦⎭  
x 

'
⎡
0

⎤ ⎣ū2 ū1 − x̄1  
 −x̄2 

⎦
 

ḡu 

¯ ¯ ¯Lxx, Lxu, and  are ⎡Luu the matrices of second order part

'
ial deri

 

  
vatives 

 

'

⎣− ¯ ¯ ¯2λ1k + 2λ2k 0 0 −λ
¯  ¯  

1
Lxx = Lxu =

¯0 0

⎤ ⎡ ⎤⎦
 

⎣
0 −λ2 

⎦
⎡  ⎣ ¯0 λ1 + μ̄

¯ 1
Luu = 

λ̄1 + μ̄1 0 

⎤

which arise from the vectors of partial

⎦
 ⎡ derivatives 

 
λ

 ⎣ 1(−u2 − 2kx1) + 2λ2kx1 
Lx =

⎤
−1 − λ2u2 

⎦ 

⎡  ⎣ λ1u2 + μ1u
 

2
Lu =

λ1(u1 − x1) − λ2x2 + μ1u1 + μ2 

⎤⎦

8.4 Pi Criterion with Control Constraints 

As long as the optimal steady state controls are normal and lie within but 
not at the boundaries of the set of admissible control values, the negative­



invalid ui = ūi + δui 

ūi = ui,max 

ui Δūi

valid ui = −Δu
 i + ūi + δu

 i ' v-
vi 

"

0	 t τ 

257 Optimal Periodic Control 

definiteness of the pi matrix is the sufficient condition for the neighboring 
controls to be optimally better. This condition does not hold if an optimal 
steady state control ūi lies at its boundary ui,max, as shown in Figure 8.4. In 
this case, δui given by Equation (8.19) becomes invalid since ui = ūi + δui 

trespasses the boundary for any non-zero U0. As shown in the figure, this 
situation can be avoided by adding a suitable constant vi to the right-hand 
side of Equation (8.19) such that ui lies within the boundary. 

Figure 8.4 Controls near the upper limit ui,max 

However, we need to derive the sufficient condition again. Let the control 
variation be given by 

  2π
δu = V + 2U cos(ωt) =  V + U e −iωt + e iωt , ω =  (8.26) 

τ 

where an element Vi of V is 

  

•	 zero if ūi is within and away from the control boundary, and 

•	 non-zero if ūi is at the control boundary — the value of Vi being such 
that ui is within the control boundary. 

From the definition of the Fourier transform and its inverse (see Appendix 8.C, 
p. 264) 

  −iωt	   δu(t) = δu(−1)e + δu(0) + δu(1)e iωt

where 
δu(0) = V and δu(−1) = δu(1    ) = U

are the Fourier coefficients of the proposed control variation δu. 



�

� 
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Satisfaction of Equation (8.15) 

Substituting the above Fourier coefficients of δu in Equation (8.20), we obtain 

−iωt iωt δy = GUe + �	 (8.27) GV + GUe 

where 
−1G ≡ G(0) = − ḡy ḡu 

Observe that δy so obtained satisfies Equation (8.15) as well as the periodicity 
condition δy(0) = δy(τ). 

Satisfaction of Remaining Constraints 

To be admissible, the variational pair (δy, δu) thus obtained should satisfy 
the constraints given by Equation (8.16) or Inequality (8.17). Thus, the 
corresponding δĪi given by Equation (8.22) should be zero for the equality 
constraints and non-positive for the inequality constraints. In the foregoing 
treatment, we assume that these constraints are satisfied so that (δy, δu) is  ad­
missible. In other words, the corresponding pair (y, u) satisfies Equation (8.6) 
and Inequality (8.7) on p. 249. 

Sufficient Condition or Pi Criterion with Control Constraints 

Switching to Equation (8.14) on p. 251 for the change in I from its optimal 
¯steady state value I, we should appreciate that δF̄ is not necessarily zero in 

the presence of control constraints. For example, if all controls under the 
optimal steady state lie within the control boundaries except ū1, which  is  at  
its upper limit u1,max, then for sufficiently small variations (δy, δu) for which 
δ2Ī tends to zero, Equation (8.14) yields 

tτ tτ	 tτ n
1 1	 1¯	 ¯I − Ī = δF̄ dt = Fui δui dt = Fu1 δu1 dt ≥ 0 
τ τ	 τ 

i=10 0	 0 

because of the following reasons: 

¯•	 Inside the control boundaries, Fui for i >  1 must be zero as δui can 
¯be either positive or negative. Otherwise, for a non-zero Fui , one could 

choose a suitable δui to contradict the above inequality, i. e., the mini­
¯mality of I. 

¯• I − Ī ≥ 0 since  I is the minimum. 

¯The term Fu1 is not necessarily zero. With ū1 at its upper limit, δu1 can only 
¯ ¯be negative. Its coefficient Fu1 thus could be either zero or negative for I to 

be minimum. Consequently, δF̄ is not necessarily zero. 
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Properness of (ȳ, ū)
 

 (ȳ, ū) ¯For the pair to be proper, I − I ≤ 0. From Equation (8.14)
 

tτ τ 
1 1 

I − ¯  ¯I = δF dt  ¯+ 
t

δ2L dt 
τ 2τ 

0  0  
¯δI δ2 Ī

Then  − ¯(I I) is less than zero 

'
if 

  ' '   '

•  and  δ2 ¯either ¯δI = 0 I is less than zero, or 

•  ¯both δI and δ2Ī are less than zero. 

 ¯ ¯Upon expanding δF and δ2L, we obtain  

 

¯I

tτ
1 

 − ¯ ¯I = (Fy δy + Fuδu) dt + 
τ 

0 
τ 

1 
t   

 T ¯  T ¯T    
 

 T ¯  T  ¯δy Lyy + δu Lyu δy + δy Lyu + δu Luu 
 
δu 
 
dt

2τ 
0 

Integrating the right-hand side of the above equation after substituting for 
δu and δy, respectively, from Equations (8.26) and (8.27), we finally get 

VTΠ(0)V ¯I − I = (Fy G�  + Fu)V + + UTΠ(ω)U 
 2  

¯δI
δ2 Ī 

Hence the sufficient co

'
nditio

  
n for (

'
ȳ, ū

'
) to  be prop

  
er i s  that  

'

� VTΠ(0)V 
(FyG + Fu)V ≤ 0 a nd  + UTΠ(ω)U < 0 (8.28) 

2 

where the matrices Π(0) and Π(ω) are given by, respectively, 

GT ¯)  = ¯  ¯ ¯Π(0 LyyG + LT
yu G + GTLyu + Luu and 

  
Π(ω) =  L T ¯G

�
T ¯

�
¯G +  

yy L G

�
 + G

�
T

yu Lyu + L̄uu 

Example 8.5 
Consider Example 8.4 (p. 254) with the additional control inequality con­
straint u ≤ umax. 

The sufficient conditions for properness of the optimal steady state pair 
(x̄, ū) stay the same as long as ū is less than umax. However, if a ūi = ui,max, 
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then an appr opriate control variation is given by Equation (8.26) in which the 
 

vector V = V1 V2 
T

ensures that u = ū+ δu does not exceed umax. 
Hence, Vi is 

 
•	 zero if the corresponding ūi < ui,max, or  

•	 some suitable value to ensure that the neighboring perturbed control 
ui < ui,max if ūi = ui,max. 

Thus, provided that the pair (y,u) satisfies the constraints of the problem, 
the sufficient conditions for properness, from Inequalities (8.28), are 

� VTΠ(0)V 
(Fx G + Fu)V ≤ 0 a nd  + UTΠ(ω)U < 0 

2 

where ⎡ 
0

 

⎤   ⎣  0 
F = ⎦  x and Fu = 

⎡ ⎤
−1

⎣ 
 0 

⎦
⎡ ⎤ 1⎡  −� ⎣−ū

 2 − 2kx̄1 0 ⎦ ⎣ū 2 ū
    − 

1 − x̄1
G = G(0) =  

2kx̄' 1 −ū  2 0 −x̄' '   2 

⎤
   

⎦
 

ḡx ḡu 

= G�T ¯Π(0) LxxG�  + ¯  
xu
T G GT ¯ ¯L   + Lxu + Luu

'

T 
 ¯

xu
T  ¯ ¯ ¯Π(ω) = G LxxG + L G

�
 + G

�
T
 Lxu + Luu

The  ¯ ¯ ¯matrices G, G, Lxx, Lxu, and L uu are the same as derived earlier in 
Example 8.4. 

8.A Necessary Conditions for Optimal Steady State 

We present the necessary conditions for the steady state minimum in the 
problem described by Equations (8.4)–(8.7) on p. 248. 

Let ū be the optimal control under steady state with the corresponding state 
¯ȳ, and multipliers λ, μ̄, and  ν̄; all of which are time invariant. According to 

the John Multiplier Theorem (Section 4.5.1, p. 113), the necessary conditions 
for the minimum of I subject to the equality and inequality constraints are 
as follows: 

g(ȳ, ū) =  0 

v(ȳ, ū) =  0 
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ν̄i ≥ 0  when w i(ȳ, ū) =  0  
for i = p+ 1, p+ 2, . . . , q  

and ν̄i = 0  when  wi(ȳ, ū) < 0
 

¯ ¯  
Ly(ȳ, ū,λ, μ̄, ν̄) = H y(ȳ, ū,λ, μ̄, ν̄) + μ ̄ Tvy(ȳ, ū) +  ν̄Twy(ȳ, ū) =  0 

¯ ¯  Lu(ȳ, ū,λ, μ̄, ν̄) = H u(ȳ, ū,λ, μ̄, ν̄) + μ ̄ Tvu(ȳ, ū) + ν ̄ Twu(ȳ, ū) =  0 

8.B Derivation of Equation (8.12) 

If we have 
1. an admissible and normal pair, (ȳ, ū), 
2. an admissible variation pair (δz, δv), and 
3. continuous first and second order partial derivatives of the integrands of 

Ij , j = 1, 2, . . . , q  
then there is an infinite number of admissible pairs (y,u) 
1. whose variations, δy and δu, are, respectively, equal to δz and δv; and  
2. which satisfy Equation (8.12) on p. 251, i. e., 

 ¯Ij (y,u) = δIj ≡ δIj (ȳ, ū; δy, δu), j = 1 , 2, . . . , n+ p+ q0 

¯where δIj is the variation of Ij at (ȳ, ū) along (δy, δu), and q0 is the 
number of inequality constraints satisfied as the equalities 

Ij (ȳ, ū) =  0, j =  p+ 1, p+ 2, . . . , q0 

We prove this result in five steps. 

Step 1 Let k ≡ n+ p+ q0. Then since (ȳ, ū) i s normal, t here exists a set o f  
variation pairs 

(δyj , δuj ); j = 1, 2, . . . , k  

such that the determinant 

 ���� ¯δ ( 1, δu1  ¯) u2) ¯I1 δy δI1(δy2, δ . . .  δI1(δyk , δuk)

�� ¯  ¯ ¯δI2(δy1, δu1) δI2(δy2, δu2) . . .  δI2(δyk , δuk) 
D = 

�
 ���   . . = 0 (8.29) .   . .  . . .. . .. 

���
 

�
�  � ¯ ¯ ¯  δIk (δy1, δu1) δIk (δy2, δu2) . . .  δIk(δyk , δuk)

���
 

Let there be a control 

���

k  
u ≡ ū+ 

�
βj δuj + Eδv 

j=1 



  

  
  

� �

� 

� 

� 
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for some real numbers E and β1, β2, . . . , βk. Dependent on these numbers 
there are infinite such controls. From the Embedding Theorem (Hestenes, 
1966) there exists for each u a unique solution y of the differential equations 

k

ẏ = g(y,u); y(0) = ȳ(0) + βj δyj (0) + Eδz(0) (8.30) 
j=1 

Thus, there are infinitely many admissible pairs (y,u). Each y has continuous 
first and second partial derivatives with respect to 

T 
α ≡ β1 β2 . . .  βk E 

for the non-zero norm lαl < δ0 for some δ0 > 0. Moreover, these partial 
derivatives are piecewise continuous so that∗ 

∂y 
∂E 

⏐⏐⏐⏐ 

⏐⏐⏐⏐ = δyj ; j = 1, 2, . . . , k  (8.31) 
∂y 

= δz, and 
∂βjα=0 α=0 

Step 2 Next, consider the equations 

Fj (β, E) ≡ Ij (y,u) − EδIj (ȳ, ū; δz, δv) = 0;  j = 1, 2, . . . , k  (8.32) 

They are obviously satisfied at α = 0 for which each Ij = Ij (ȳ, ū) =  0  as  well  
as E = 0. Now the partial derivative of F1 with respect to β2 is tτ tτ n

∂β2 ∂β2 τ ∂β2 τ ∂yi ∂β2 ∂ui ∂β2i=10 0 

n

∂F1 ∂I1 1 ∂g1(y,u) 1 ∂g1 ∂yi ∂g1 ∂ui
dt dt+= = = 

tτ 
1 ∂g1 ∂g1

δy2i + δu2i dt = δI1(y,u; δy2, δu2)= 
τ ∂yi ∂uii=10 

Therefore, 

∂F1 
= δI1(ȳ, ū; δy2, δu2) =  δĪ1(δy2, δu2)

∂β2 α=0 

In general, 

∂Fi 
= δĪi(δyj , δuj ) at  

∂βj 
α = 0; i, j = 1, 2, . . . , k  (8.33) 

∗ For example, δy1 (t) =  ∂ y(t) at  α = 0 is defined by the equations 
∂β1 ( ) n m ⏐t td ∂y ∂g ∂yi ∂g ∂ui ∂y ⏐ ⏐= + ; = δy1 (0) ⏐dt ∂β1 ∂yi ∂β1 ∂ui ∂β1 ∂β1 t=0i=1 i=1 

which are obtained from Equations (8.30) at α = 0. 
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T 
As a result, the Jacobian of F ≡ F1 F2 . . .  Fk with respect to 

T 
β ≡ β1 β2 . . .  βk at α = 0 is the non-zero determinant D in 
Equation (8.29). From the Implicit Function Theorem (Section 9.16, p. 277), 
Equations (8.32) are valid in an open region around β = 0 and have solutions 

βj = bj (E); |E| < δ1 > 0; j = 1, 2, . . . , k  (8.34) 

where the partial derivatives ∂bj /∂E are continuous, and 

bj (0) = 0; j = 1, 2, . . . , k  

Step 3 Differentiating Equations (8.32) with respect to E at E = 0,  and  
utilizing Equation (8.33) as well as the similarly derived equations 

dIj 
= δIj (ȳ, ū; δz, δv) at  E = 0;  j = 1, 2, . . . , k  

dE 

we obtain ⎡ ⎤⎡⎤⎡⎤ 
db1/dE 0δĪ1(δy1, δu1) δĪ1(δy2, δu2) . . .  δĪ1(δyk, δuk) ⎢⎢⎢⎢⎢⎣ 

⎢⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎥⎦ 

db2/dE 

. . . 

⎥⎥⎥⎥⎥⎦ 
= 

⎢⎢⎢⎢⎢⎣ 

0 

. . . 

⎥⎥⎥⎥⎥⎦ 

δĪ2(δy1, δu1) δĪ2(δy2, δu2) . . .  δĪ2(δyk, δuk) 

. . . . . . . . . . . . 

δĪk(δy1, δu1) δĪk(δy2, δu2) . . .  δĪk (δyk, δuk) dbk/dE �=0 

Since the determinant of the matrix in the above equation is non-zero from 
T 

Equation (8.29), we have, in terms of b = b1 b2 . . .  bk , 

∂b 
= 0 at E = 0  

∂E 

Step 4 Using the above result, the variations of y and u, are, respectively, 

k⏐⏐⏐⏐ 

⏐⏐⏐⏐ 
d ∂y dbi

δy = y[b(E), E] + δz = δz and = 
dE ∂bi dE '�=0 

= 0  

δu = δv similarly 

As a consequence, (δz, δv) is the variation pair of the family of infinite pairs 
represented by (y,u). Therefore, from Equations (8.32), which have solutions 
given by Equations (8.34), the infinitely many pairs (y,u) satisfy  

Ij (y,u) =  EδIj (ȳ, ū; δy, δu); j = 1, 2, . . . , k  

Since the variation of a functional is homogeneous, 

�=0 i=1 '

' EδIj (ȳ, ū; δy, δu) =  δIj (ȳ, ū; Eδy ); j = 1, 2, . . . , k  ', Eδu' ' 
δu0δy0 

0 
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In terms of the variations δy0 and δu0 as indicated, we obtain 

Ij (y,u) =  δIj (ȳ, ū; δy0, δu0); j = 1, 2, . . . , k  

Since δy0 and δu0 are, after all, respective variations in y and u, we  can  
rewrite the above equations as 

Ij (y,u) =  δIj (ȳ, ū; δy, δu); j = 1, 2, . . . , k  (8.12) 

Step 5 Finally, we need to show that the family of infinite pairs (y,u) sat­
isfies the inactive inequalities, i. e., the remaining strict inequalities 

Ij (y,u) < 0; j = k + 1, k + 2, . . . , q  (8.35) 

that are satisfied by the pair (ȳ, ū). Now for sufficiently small E 

Ij (y,u) =  Ij (ȳ, ū) +  EδIj (ȳ, ū; δy, δu); j = k + 1, k + 2, . . . , q  

Also 
Ij (ȳ, ū) < 0; j = k + 1, k + 2, . . . , q  

Combining the last two relations for a small enough E in the interval (0, δ1) 
[see Equations (8.34)], we obtain Inequalities (8.35). 

8.C Fourier Transform 

Given a function f(t), its Fourier transform, or  the  k-th Fourier coefficient 
is defined as tτ/2 

1 −ikωt dtf (k) = f(t)e 
τ 
−τ/2 

where ω = 2π/τ . The function in terms of the Fourier coefficients is then 
given by the inverse Fourier transform, 

∞
ikωt f(t) =  f (k)e 

k=−∞ 

which is the Fourier series. 
The Fourier transform of the derivative of f with respect to time is 

ḟ (k) = ikωf (k) 

The last two equations can be easily verified by using the definition of the 
Fourier transform. 
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8.D Derivation of Equation (8.25) 

We need to show that each right-hand side term of Equation (8.24) on p. 254 
is equivalent to the corresponding term in Equation (8.25). We will do that 
for the first term, i. e., derive 

τ 
1 
t

 
 T ¯ ¯  δy Lyyδy dt = UTG

T
 L

2τ yyGUT

0 

The rest of the equivalences may be similarly obtained by the reader. 
In the left-hand side of the above equation, we substitute δy from Equa­

tion (8.21) to obtain 

tτ 
1  

T  −iωt T  iωt  ¯ −  [(GU) e + (GU) e ] L [GUe iωt + GUe iωt] dt 
2τ yy 

0 

 
τ 

1 
=   (GU)T L̄ GU ¯

yy + (GU)T Lyy GU dt 
2τ 

t
0 

  
because the integrals of terms involving e±2iωt are zero [see Equation (8.23), 

¯p. 254]. Since Lyy is a symmetric matrix, the two terms of the last integrand 
are equal so that the last integral simplifies to tτ 

1  
2(GU)T ¯  ¯ ¯L

 yy GU dt = (GU)T Lyy GU = UTG
T
 Lyy GU 

2τ
0 

which is the first right-hand side term of Equation (8.25). 
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Exercises 

8.1 Find the necessary conditions for the minimum of 

tτ 
1 

I = F [y(t), u(t)] dt 
τ 

0 

subject to 
ẏ = g[y(t), u(t)], y(0) = y(τ) 

where τ is the time period that is free to change. 

8.2 Derive the stationarity condition given by [Equation (8.3), p. 242]. 

8.3 Develop a computational algorithm based on the penalty function method 
to solve Example 8.4 (p. 254) subject to the following constraints: 

tτ 
1 

u1 dτ = ū1 and u2 ≤ u2,max 
τ 

0 

Solve the problem for 

ū1 = 6  and  u2,max = 10  

8.4 Apply the pi criterion to the problem in Example 8.3 (p. 241), and derive 
the condition for the vector of optimal steady state controls to be proper. 

8.5 Find the controls that satisfy the pi criterion in Exercise 8.4 and utilize 
them as initial controls to solve the optimal control problem. 



Chapter 9
 

Mathematical Review
 

9.1 Limit of a Function 

Consider a function f (x) defined in the vicinity of x = x0. Then the limit of 
f (x) at  x = x0 is a real number L approached by f (x) as  x approaches x0. 
Symbolically, 

lim f (x) =  L 
x→x0 

During the approach process, x and f (x) may be greater or less than the 
respective targets x0 and L. The limit L may not be equal to f (x0). Also, 
the function may be not defined at x0. 

9.2 Continuity of a Function 

Consider the plot of f (x) versus  x. The function is said to be continuous 
when 

1. the function values are bounded (i. e., they do not shoot to positive or 
negative infinity) and 

2. the plot, which is a curve, is not broken. 

In other words, if a function is continuous at x = x0, then we can have a 
function value f (x) as  close  to  f (x0) as we wish by moving x near x0. Using  
the limit notation 

lim f (x) =  f (x0) 
x→x0 

where x and f (x) may be greater or less than the respective targets, x0 and 
f (x0). Note that the function is defined at x0, and the limit L = f (x0). 

267 
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With the help of absolute differences, |f(x) − f(x0)| and |x− x0|, the  above  
concepts are expressed more precisely as follows. 

A function f(x) is defined to be continuous at x = x0 when given any E > 0 
for which |f(x) − f(x0)| < E there exists a δ > 0 such that |x− x0| < δ. 

9.2.1 Lower and Upper Semi-Continuity 

In the definition of continuity, the inequality |f(x) − f(x0)| < E expands to 

f(x0) − E < f(x) and  f(x) < f(x0) +  E 

A function is lower semi-continuous at x0 when the left-hand inequality 

f(x0) − E < f(x) 

is satisfied for |x− x0| < δ. 
Similarly, a function is upper semi-continuous at x0 when the right-hand 

inequality 

f(x) < f(x0) +  E 

is satisfied for |x− x0| < δ. 
Thus, a function f(x) is continuous when it is both lower and upper semi-

continuous. 

9.3 Intervals and Neighborhoods 

The set of all values of x satisfying 

a < x < b,  a < b  

is called an open interval and is denoted by (a, b). Note that the end points 
are not included in an open interval. 

The set of x satisfying 

a ≤ x ≤ b 

is called an closed interval and is denoted by [a, b]. The end points are 
included in a closed interval. Sets (a, b] and  [a, b) are half- or semi-open (or 
closed). 

Open and closed intervals generalize to open and closed sets, which respec­
tively exclude and include the boundary elements. 

A neighborhood of an element x0 is an open set containing x0. 
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9.4 Bounds 

A lower bound of a set is a number with the following property: 

A member of a set is either less than or equal to the lower bound. Thus, 1 
and 2 are lower bounds of [2, 3] as well as (2, 3). There may be multiple lower 
bounds. Moreover, a lower bound may not be a member of the set. 

The greatest of the lower bounds of a set is called the infimum. Thus,  
2 is the infimum of [2, 3] as well (2, 3). Note that the first set contains the 
infimum, while the second does not. 

Similarly, a set member is either greater than or equal to the upper bound. 
The least of the upper bounds of a set is called the supremum. 

9.5 Order of Magnitude 

The order of magnitude of a real number is how many tens the number 
has. Thus, the order of magnitude of x is the integer part of the log10 x. 

An n orders of magnitude difference between two real numbers is a difference 
by a factor of 10n . 

9.5.1 Big-O Notation 

Consider a function f(x) as  x tends to some value x0. If the absolute value of 
the function is bounded by some positive constant c multiplied by the absolute 
value of x when x is sufficiently close to x0, then we can write 

lim f(x) c x , x x0 < δ > 0 
x→x0

| | ≤ | | | − |

The shorthand for the above expression is 

lim f(x) = O (x) 
x→x0 

where O(x) represents the bound c|x| as x tends to x0. 
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9.6 Taylor Series and Remainder 

The estimate of a f unction f (x) at a d istance h  from the reference point x = x0 

is given by the n-th order Taylor series or expansion �
df 
�

h2 �d2f 
�

h3 d3f hn dnf 
f(x0 + h) =  f(x0) +  h + + + + 

dx 2! dx2 
x x 3! 

�
dx3 

0 0 

�
n

x0 

· · ·
n! 

�
dx  

�
x0 

hn+1 dn+1f 
+ ' !

�
 d

�
(9.1) 

(n + 1) xn+1
ζ  

rema

  
inder 

where ζ lies in the interval (x0, x

'
0 + h). In the above equation, the last term 

is the remainder, which represents the sum of the remaining infinite number 
of terms 

hn+1 

(n + 1)!

�
dn+1f

�
hn+2 �dn+2f 

+ + 
 dxn+1 (n + 2)!  dxn+2

x0 

�
x0 

· · ·  

For a fractional value of h, the remainder becomes negligible as n is increased. 
For sufficiently large n or small h, the remainder is therefore discarded. It is 
of course assumed that the function is differentiable at least n times. 

9.7 Autonomous Differential Equations 

An autonomous differential equation does not carry the independent vari­
able explicitly, e. g., 

dy0 
= y0 − u 

dt 

On the other hand, the following is a non-autonomous differential equa­
tion: 

dy1 2 = y1t − ut
dt 

9.7.1 Non-Autonomous to Autonomous Transformation 

Any non-autonomous differential equation can be transformed into a set of 
autonomous differential equations by introducing additional state variables. 
For example, with the introduction of the new state variable 

y2 ≡ t 
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the last non-autonomous differential equation is transformed into the following 
set of autonomous differential equations: 

dy1 dy22 = y1y2 − uy and = 12dt dt 

9.8 Differential 

Let f be a function of the independent variable x. Then the differential of f 
at x = x0 is defined as the change df in f corresponding to the change h in 
x from x0 meeting the following requirements: 

1. The differential df is closer to the actual function change 

f(x0 + h) − f(x) 

than h, which is a real number close to zero. 

2. The differential df is a linear and continuous function of h at x0. 

Remarks 

The motivation for the above requirements is simplification. With negligible 
error, we would like to have a simple function df represent the function change 
corresponding to a variable change. 

Alternatively, we would like to compute the new function value f1 = f(x0 + 
h) in a simpler way∗ using 

f1 = f(x0) + df(x0; h) 

for small enough values of h that obviate any errors. The two arguments of 
df denote the dependency on the change h at a given x0. 

Putting it all together, the differential df of f at x0 is a linear and contin­
uous function of the variable change and satisfies 

f(x0 + h) =  f(x0) + df(x0; h) +  E(h) 

where the error E vanishes faster than h. So if we keep on reducing h, after  
a while when h takes a certain value h0, the error E would disappear and df 
would be an accurate representation of the function change in the interval 
[x0, x0 + h0]. 

∗ As opposed to evaluating f1 = f (x0 + h) all over again from the functional relationship. 
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9.9 Derivative 

The definition of the derivative follows from the differential. We multiply and 
divide df(x0; h) by  h in the last equation to obtain 

df(x0; h)
f(x0 + h) =  f(x0) +  h + E(h) 

h  
derivative 

where the derivative is the coefficient of 

'
h an

  
d is 

'
defined as 

df(x0; h) df ⏐⏐ f(x  f(  ⏐⏐ 0 + h) x0)
lim ≡  = lim 

−
h  h

 
→0 h →0 h dx x0

9.9.1 Directional Derivative 

The directional derivative of a function f(y) at y  = y0 along a unit vector v 
is defined as 

f(y0 + αv) − f(y∇vf(y0) ≡ lim 0)

α→0 α 

Thus, ∇vf(y0) quantifies the rate of change in f from y = y0 along v. 
If f(y) is differentiable at y0, then ∇ vf(y0) exists along any unit vector. 

Moreover, if y ≡ y0 + αv, then f  = f [y(α)], and 

f [y(α)] ∇vf(y0) = lim 
− f [y(0)] df 

= 
α→0 α 

�
dα 

�
α=0 

�n  � ∂f   
� �n  dyi

�
∂f  
�

 = = v
 i = fT

∂yi dα α=0 ∂y y0 
v 

i yi=1 i=1 0

where fy
T 
0 
denotes the vector fT 

y evaluated at y0.

Example 

The directional derivative of 

 y2 + y2 

f(y) =  1 2

2  √ √   
 = 3 2

T−  
  

at y0 along the unit vector v =
�

3/5
�
2/5
 
 
T
is 

 
 T 1 ∇vf(y0) = y1 y2 

  
v1 v2 

 
= √ 

y0 5 



273 Mathematical Review 

9.10 Leibniz Integral Rule 

Consider the following definite integral 

I = 
tb 

f dx 

a 

Then the derivative of I with respect to its upper limit is given by 

b+Δ b b

f dx− f dx 
dI I(b+Δb)  I(b) 

= lim 
− a a = lim 

t t
db Δb→0 Δb Δb→0 Δb 

bt+Δ b

f dx 

 b f(b)Δb 
= lim = lim = f(b) 

Δb 0 Δb Δb  → →0 Δb

Similarly, the derivative of I with respect to its lower limit is given by 

dI 
= −f(a)

da 

9.11 Newton–Raphson Method 

This is a numerical method to find the root of the function, i. e., the value of 
the independent variable that makes the dependent function zero. Using the 
first order Taylor expansion, the function value at xi+1 can be  expressed as  

= f(xi) +  f ' (xi)(xi+1 − xi)f(xi+1) ∼

When xi+1 is sufficiently close to the root, 

0 ∼= f(xi) +  f ' (xi)(xi+1 − xi) (9.2) 

Algorithm 

The above equation provides the following algorithm: 

f(xi) 
xi+1 = xi − ; i = 0, 1, . . .

f ' (xi) 

which is repeatedly applied to improve an initial guess x0 for the root. 
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Quadratic Convergence 

Sufficiently close to the root xr, the second order Taylor expansion gives 

 (xr − x )2 

f(xr) = 0 = f (xi) + f  ' − i   (xi)(xr  xi) +  f ''(ζ)
2 

where ζ lies in the interval (xi, xr). From the above equation, we subtract 
Equation (9.2) to get 

f '' (ζ) ' r −   xi+1' = −  x (x 2

2 ' (xi) 
new rror 

' r 
f 

 e old 
  − xi) 
error

'
 

Thus, the new error is proportional to the square of the old error. If the old 
error is 0.1, then the new error would be of the order 0.01. The next error 
would be of the order 10−4, and so on iteratively. The value xi+1 is said to 
converge quadratically to the root xr. 

Extension to Multivariable Functions 

The Newton–Raphson algorithm for multivariable functions is 

x i − J−1
i+1 = x i f(xi); i = 0, 1, . . .

where Ji is the Jacobian 

⎡ ⎤� � � � �⎢⎢ ∂f1 ∂f1 ⎢  
∂x1 

�
∂f1 

. . .⎢ ∂x⎢ x 2  x ∂xn
i i xi 

⎥⎥⎢⎢⎢� ∂f2 ∂f2 ∂f2

⎥

⎢⎢ . . .   

∂x1 

⎥�
xi 

�
∂x2 

�
xi 

�
∂xn 

�
xi 

⎥⎥
. . . . . . . . 

⎥⎥
⎢⎢⎢⎢⎢ . . . . 

⎥⎥⎥⎥
⎢⎢⎣⎢� 

⎥
∂fn 

� �
∂fn ∂f

⎥⎥⎥
 

 ∂x2  x ∂xn 
i

�
n 

. . .  
∂x1 x i 

� �
xi 

⎥⎥⎦
evaluated at x = xi. 
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9.12 Composite Simpson’s 1/3 Rule 

The basic Simpson’s 1/3 Rule rule provides the value of the integral 

tb 
b− a a+ b 

I = f(x) dx = f(a) + 4f + f(b)
6 2 

a 

by approximating the integrand f(x) with the quadratic function that inter­
polates the function values f(a), f [(a+ b)/2], and f(b). 

The value of I is improved by dividing the integration interval into a num­
ber of segments of equal length, applying the Simpson’s 1/3 Rule to each 
segment, and summing up the resulting values. This procedure finally yields 
the following composite Simpson’s 1/3 Rule 

txN N N
h 

I = f(x) dx = f(x0) + 4  f(xi) + 2  f(xi) +  f(xN )
3 

i=1,3,5,... i=2,4,6,...x0 

where h is the distance between any two successive xis forming a subinterval 
[xi, xi+1] where  i = 0, 1, . . . , (N − 1). 

Note that each segment in the integration interval [x0, xN ] has two subin­
tervals. Thus, the number of subintervals, N , is even and the number of xis 
being (N + 1) is odd. 

9.13 Fundamental Theorem of Calculus 

If a function f(x) is real and continuous in a closed interval [a, b] such that 
the primitive integral or the antiderivative 

tx 

F (x) =  f dx 

a 

is defined, then F (x) is continuous in [a, b], and differentiable in (a, b). The 
derivative of F with respect to x in (a, b) is  given  by  

dF 
= f 

dx 
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Moreover, if in the closed interval [a, b] the function f is real, but not 
necessarily continuous, and has the antiderivative F , then  tb tb 

dF 
F (b) − F (a) =  f dx = dx 

dx 
a a 

9.14 Mean Value Theorem 

If f (x) is a continuous function in the x-interval [a, b], then there is a real 
number c in the interval such that tb 

(b − a)f (c) =  f dx 

a 

9.14.1 For Derivatives 

Let f (x) be continuous in the x-interval [a, b] with the derivative dy/dx de­
fined in the open interval (a, b). Then there is point x0 in (a, b) such that 

df 
f (b) − f (a) = (b − a) 

dx x0 

This result is known as the law of the mean or the Mean Value Theorem for 
derivatives. 

9.14.2 For Integrals 

Let f (x) be continuous in the x-interval [a, b]. Then there is point x0 in [a, b] 
such that tb 

f (x) dx = (b − a)f (x0) 

a 

This result is known as the Mean Value Theorem for integrals. 

9.15 Intermediate Value Theorem 

Let f (x) be continuous in the x-interval [a, b] and  f (a) = f (b). Then according 
to this theorem, f (x) assumes each value between f (a) and  f (b) as  x changes 
from a to b. 
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9.16 Implicit Function Theorem 

Consider the set of functions 

f1(x1, x2, . . . , xn) =  c1 

f2(x1, x2, . . . , xn) =  c2 

. . . 

fm(x1, x2, . . . , xn) =  cm 

where m < n. Then according to this theorem, provided that 

• the vector of functions  T 
f(x) ≡ f1(x) f2(x) . . .  fm(x) 

is differentiable near a, 

 

• the derivatives of f with respect to x are continuous at a, and  

• the Jacobian determinant fx is not zero at x = a. 

we can obtain the set of solutions 

x1 = g1(xm+1, xm+2, . . . , xn) 

x2 = g2(xm+1, xm+2, . . . , xn) 

. . . 

xm = gm(xm+1, xm+2, . . . , xn) 

near T 
x = a = a1 a2 . . .  an 

where gis are differentiable functio

 
ns of xm+1, xm+2,

 
 . . . , and  xn. 

9.17 Bolzano–Weierstrass Theorem 

According to this theorem, there is at least one point of accumulation (or limit 
point) in a bounded set having an infinite number of elements. Alternatively, 
each bounded sequence in the set has a subsequence that converges to a point 
in the set. 

The point of accumulation and subsequence are described as follows. 
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Point of Accumulation 

Not necessarily in a set, its point of accumulation has in its each neighborhood, 
at least one non-identical point from the set. A closed set contains all of its 
accumulation points. 

Subsequence 

Given a sequence 
x1, x2, x3, x4, x5, . . .  

its subsequence is, e. g., 

x1, x3, x4, x6, x8, . . .  

which is contained in the original sequence. The order of the elements is 
preserved in the subsequence. 

9.18 Weierstrass Theorem 

According to this theorem, a function f(x) in a closed and bounded domain 
must attain minimum and maximum values. This theorem is also known as 
the Extreme  Value Theorem.  

9.19 Linear or Vector Space 

A linear or vector space is a set of elements known as vectors for which the 
following two operations: 

1. addition of vectors and 

2. multiplication of a vector by real numbers 

are defined. These operations satisfy the following rules: 

1. For any two vectors x and y, 

i. the sum (x+ y) is a vector 
ii. x+ y = y + x 
iii. (x+ y) +  z = x+ (y + z) for any vector z 

2. For any real number α, 

i. the product αx is a vector where x is any vector 
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ii. α(x + y) =  αx + αy for any two vectors x and y 

3. For any two real numbers α and β and any vector x 

i. (α + β)x = αx + βx 
ii. α(βx) = (αβ)x 

4. The space contains 

i. the zero vector, 0, such that x + 0 =  x 
ii. the unit vector, 1, such that 1x = x 
iii. the negative of x, denoted by −x, such that x + (−x) = 0  

for any vector x. 

Examples 

Examples of vector spaces are 

1. The set of real numbers for which the usual addition and multiplication 
are defined. 

2. The set of elements, each made of n components in an order for which 
vector addition and scalar multiplication are defined. For example, an 
element x is given by ⎡ 

x1 

x2 

⎤
x = 

⎢⎢⎢⎢⎢⎢ . . .  

⎥⎥⎥
xn

⎥
 

 

⎥⎥
3. The set of real-valued functions defined

⎣ ⎦
 on a fixed interval of the inde­

pendent variable. For example, if any two such functions or vectors are 
p(x) and q (x) for x  in [a, b], then the respective operations of addition 
and multiplication (by real number α) result in vectors 

r(x) = p (x) + q (x) and s (x) = αp (x) 

which are also vectors. 

It is easy to verify that the above examples obey the rules of a vector space. 

9.20 Direction of a Vector 

The direction of an n-component vector   T 
v = v1 v2 . . .  vi . . .  vn 



� 
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is characterized by the set of n direction ratios 

{d1, d2,  . . . ,  di,  . . . ,  dn} 

where 
vi

di = lvl 

Two vectors along the same direction have an identical set of direction ratios 
and vice versa. 

9.21 Parallelogram Identity 

For any two vectors a and b and a scalar α 

n
2la + αbl = (ai + αbi)

2 

i=1 

n
2 = (ai + α2bi 

2 + 2αaibi) 
i=1 

2 2 = lal + α2lbl + 2αa Tb 

9.22 Triangle Inequality for Integrals 

Given a function f(x) 
−|f(x)| ≤ f(x) ≤ |f(x)| 

Integrating each term in the above relation, we obtain 

tb tb tb 

− |f(x)| dx ≤ f(x) dx ≤ |f(x)| dx 

a a a 

which is equivalent to ⏐⏐⏐⏐⏐⏐ 

⏐⏐⏐⏐⏐⏐ 

tb tb 

f(x) dx ≤ |f(x)| dx 

a a 
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9.23 Cauchy–Schwarz Inequality 

The inequality is 
aT b ≤ lallbl 

where a and b are two n-dimensional vectors. 
For n = 2,  let  

 ≡
⎡    ⎣a 1 b1

a

⎤⎦ and b ≡
⎡

 

⎣ 

⎤

Then

⎦ 
a2 b2 

2    '(a1   + a2) (b2 + b2) − (a b + a b )2 = (a b − a b )2
 2 1 2  1 1 2 2  1 2 2 1  

�    a�2

ore,

'
�b�2 (a�b)2 ≥0 

Theref  aTb ≤ la

'   
llbl, w

'
hich

'
 can b

  
e easily

'
 gener

'
alized

  
 for hig

'
her dimen­

sions. 

9.24 Operator Inequality 

The inequality is 
lAbl ≤ lAllbl 

where A is an n ×m operator (matrix), and b is an m-dimensional vector. 
For n = m = 2,  let  

a
A ≡ 

�
11 a12 ≡ 

a21 a22 

�
and b 

�
b1
b2 

�
Then �

a11b1 + a12bAb = 2

a21b1 + a22b2 

�
and 

l l2  2  Ab = ('a11b1 +  a12b2)' + (

t

'a 21b1 +   a22b2)2   
1 t2 

Since 
2   

'
(a11 + a212)(b

2
1 + b22) − t 2

1 = (a11b2 − a12b1) ≥ 0 

we get 
2 2 t 2 2

1 ≤ (a11 + a12)(b1 + b2) 
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Similarly, 
≤  t2 (a2 a2 )(  b221 + 2

22 b1 + 2) 

Adding the last two inequalities, we get 

t + t ≤ (a2 + a2 + a2 + a2'1   2' 11 12 21 22) (b
2

 1 + b22)  
� � 2 Ab �  2  A�2 � b�

The above result in terms of

'
 A and b is

  
 

' '   '

lAb l ≤ lA ll bl 

which can be easily generalized for higher dimensions. 

9.25 Conditional Statement 

A conditional statement is a conjunction of a condition and the outcome 
generated by the condition. Consider the following statement: 

If y'ou drop the glass
 

condition (A) 

which can be symbolically re

  
presented

'
 as

'then   'it will cra  
−→ 
' ck. 

outcom

 

  
e (B) 

'

A −→ B 

As the arrow indicates, the flow of events is from A to B but not necessarily 
vice versa. In other words, B −→ A is not necessarily true. For example, 
if the glass cracked, then it was not because you dropped it but you poured 
boiling water into it. 

Given a conditional statement A −→ B, the satisfaction of A causes B. Con­
dition A is known as the sufficient condition. Its satisfaction is sufficient 
to cause the outcome B, which in turn is called the necessary condition. 
Outcome B is necessary for condition A to have been true. Put differently, if 
B did not happen, then neither did A. Using ¬ for negation, 

¬B  −→ ¬ A 

Thus, if the glass did not crack, then you did not drop it for sure. 
The conditional ¬B  −→ ¬ A is called the contrapositive of the original 

conditional A −→ B. The two conditionals are equivalent. One is the contra-
positive of the other. 
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9.26 Fundamental Matrix 

Consider the homogeneous linear differential equation 

dx 
= Ax 

dt 

in a time interval where x = x(t) is  an  n-dimensional vector, and A is an n×n 
matrix of constants. Then n-linearly independent solutions of the differential 
equation exist. Let us denote the solutions by column vectors: 

x1(t), x2(t),  . . . ,  xn(t) 

Then the fundamental matrix is the collection 

Ψ(t) ≡ x1(t) x2(t) . . .  xn(t) 

The general solution of the differential equation is 

n

x = cixi(t) ≡ Ψ(t)c 
i=1 

where c is a vector of some constants. If the initial condition at t = t0 is 
x(t0), then from the above equation, 

c = Ψ−1(t0)x(t0) 

and the solution in terms of the fundamental matrix is 

x = Ψ(t)Ψ−1(t0)x(t0) 
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