

ENGINEERING
SYSTEMS

INTEGRATION
Theory, Metrics, and Methods

ENGINEERING
SYSTEMS

INTEGRATION
Theory, Metrics, and Methods

Gary O. Langford

Boca Raton London New York

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

ENGINEERING
SYSTEMS

INTEGRATION
Theory, Metrics, and Methods

Gary O. Langford

Boca Raton London New York

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

The Open Access version of this book, available at www.taylorfrancis.com, has been made available under a Creative
Commons Attribution-Non Commercial-No Derivatives 4.0 license.

Cover: This exquisite view from space of the Aurora Australis (the southern lights) was taken by NASA’s Earth
Observatory on 11 September 2005. A giant solar flare erupted, sending charged protons and electrons 1.495 mil-
lion kilometers across space penetrating the Earth’s atmosphere. The artificially colored green ring glows in the
ultraviolet portion of the electromagnetic spectrum. From the ground in Australia, the Aurora Australis is seen as
a velvety Chimayo-inspired shimmer that warms your intellect. Photo credit: NASA Goddard Space Flight Center.

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2012 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

ISBN-13: 978-1-4398-5288-0 (hbk)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been
made to publish reliable data and information, but the author and publisher cannot assume responsibility for the
validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the
copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to
publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let
us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted,
or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, includ-
ing photocopying, microfilming, and recording, or in any information storage or retrieval system, without written
permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com
(http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers,
MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety
of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment
has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Library of Congress Cataloging‑in‑Publication Data

Langford, Gary O.
Engineering systems integration : theory, metrics, and methods / Gary O. Langford.

p. cm.
“A CRC title.”
Includes bibliographical references and index.
ISBN 978-1-4398-5288-0 (alk. paper)
1. Systems engineering. 2. Systems integration. 3. System analysis. 4. Product life cycle. I.

Title.

TA168.L315 2012
620’.0042--dc23 2011043570

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

Cover: This exquisite view from space of the Aurora Australis (the southern lights) was taken by NASA’s Earth
Observatory on 11 September 2005. A giant solar flare erupted, sending charged protons and electrons 1.495 mil-
lion kilometers across space penetrating the Earth’s atmosphere. The artificially colored green ring glows in the
ultraviolet portion of the electromagnetic spectrum. From the ground in Australia, the Aurora Australis is seen as
a velvety Chimayo-inspired shimmer that warms your intellect. Photo credit: NASA Goddard Space Flight Center.

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2012 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

ISBN-13: 978-1-4398-5288-0 (hbk)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been
made to publish reliable data and information, but the author and publisher cannot assume responsibility for the
validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the
copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to
publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let
us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted,
or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, includ-
ing photocopying, microfilming, and recording, or in any information storage or retrieval system, without written
permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com
(http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers,
MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety
of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment
has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Library of Congress Cataloging‑in‑Publication Data

Langford, Gary O.
Engineering systems integration : theory, metrics, and methods / Gary O. Langford.

p. cm.
“A CRC title.”
Includes bibliographical references and index.
ISBN 978-1-4398-5288-0 (alk. paper)
1. Systems engineering. 2. Systems integration. 3. System analysis. 4. Product life cycle. I.

Title.

TA168.L315 2012
620’.0042--dc23 2011043570

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

I dedicate this book to Teresa, Terry Todd, and Whitney.

vii

Contents

Disclaimer .. xiii
Foreword ..xv
Preface .. xvii
Author ... xix

 1 Importance of Integration ...1
Introduction ..1
Case Study Introduction ...3
Hubble Space Telescope Systems Engineering Case Study5

Introduction ...5
Hubble Space Telescope Description ..6
Integration Issues ..7
Integration Problems ..7
Integration Management ..8

Principles ...9
Principles of Integration .. 10

Principle 1: The Principle of Alignment .. 11
Principle 2: The Principle of Partitioning .. 13
Principle 3: The Principle of Induction .. 14
Principle 4: The Principle of Limitation ... 15
Principle 5: The Principle of Forethought .. 19
Principle 6: The Principle of Planning ... 21
Principle 7: The Principle of Loss ..23

Endnote ... 24
References ...25

 2 Essences of Interaction .. 29
Without Boundaries: Oneness ... 29
Boundaries ..30
Scope ..40
Boundary Conditions ..42
Boundary Extenders ..43
Objects and Boundaries ..44
Objects and Mechanism.. 47
Introduction to Interaction ...48
Energy, Material Wealth, Matter, and Information 49

Energy ...50
Matter .. 51
Material Wealth ... 51
Information .. 52

viii Contents

Property, Trait, and Attribute ...53
Property ..53
Trait ...54
Attribute ...55
Summary of Property, Trait, and Attribute ...56

Epistemology of Systems Engineering Integration 57
Metrics ... 57
General Nature of Objects ..60
Services and Products ... 62
Objects ...63

Object Types ...65
Constraint ... 70
Frameworks .. 70

Process Frame ..72
Object Frame .. 73
Key Variables ... 73
Essence of a Framework ... 74

Causality ...75
Causality, Mechanisms, and Correlation ... 79
Model for Objective Causalities ...80
Objective Causalities Framework .. 81

Objective Frame ...84
Subjective Frame ...85
Summary of Objective Causalities ...85

Cognitive Domain ... 89
Procedural Domain ... 91
Model and Representation Domain .. 92
Function... 93
Quality ... 98
References ...99

 3 Foundations in Systems Integration ... 103
Introduction .. 103

General Systems Thinking .. 105
Determining Systemness ... 108
Stability ... 108
Metastability .. 111
Instability ... 112
Integration Perspective ... 112

Essence of Integration ... 115
Purpose of Systems Integration ... 118

Automation .. 118
Technology ... 118
Improvements .. 119

ixContents

Tasks of Systems Integration .. 120
Defining Terms ... 123
General Ontology and Mereology of Integration.................................... 124

Nature of Physical Objects ... 125
Characterizing Objects for Integration .. 126
Nature of Intellectual Objects ... 127
Objective Measures of Performance ... 128
Value and Use: Objects ... 129

Performance-Based Value ... 130
Subjective Value: Processes .. 133

Management Processes .. 138
Processes as Intellectual Property .. 138

Subjective and Objective Ontology ... 139
Business Models ... 141
Risk and Loss .. 143
Prototype-Based Ontology, Logic, and Mereology 144
Objects as Models .. 146

Objects as Black Boxes .. 146
Objects as Related to Functions .. 147
Summary Overview of Objects ... 148

Integration Framework ... 149
Integration as Mechanism .. 151
Emergence ... 153
Dynamics of Integration ... 153

Integrative Mechanisms ... 156
Exploring Integration Concepts .. 157
Abstraction Classification of Integration ... 160
Social Classification of Integration ... 161
Model Classification of Integration .. 162

Consolidation of Thoughts on Integration ... 164
Strategy of Integration... 167
Power ... 169

Model-Based Systems Integration .. 171
Most Effective Strategy for Integration .. 172

Axioms of Integration ... 174
Endnotes .. 180
References ... 180

 4 Systems ... 189
Systemness .. 192
Emergence ... 193
Interface ... 195
Functional Analysis ... 197
Systems and Integration ... 198
System of Systems and Integration ... 203

x Contents

Organizational Models ... 206
Conclusion .. 212
References ... 212

 5 Integration in Systems Engineering Context.. 215
Introduction to Systems Engineering ... 215
Nature of Systems Engineering ... 218
Issues with Systems Engineering .. 220
Limits of Systems Engineering .. 224

Ask “Why?” ...225
Principle of Constraints .. 226
Clarion Call for Changes in Systems Engineering 226
Holism ..227
Synthesis ...228
Work of the Systems Engineer ..229

Systems and Engineering ... 231
Charter of Systems Engineering .. 232
Lifecycle Considerations ...233

Lifecycle Success ...235
Lifecycle Stages ..236
Lifecycle Measures .. 240

Lifecycle Measure: Time .. 244
Lifecycle Measure: Cost ... 244

Lifecycle Metrics ... 245
Lifecycle Metric: Money .. 245
Lifecycle Metric: Performance .. 246
Lifecycle Metric: Complexity .. 246

Lifecycle Sense ... 246
Introduction to Defining the Problem .. 247
Defining the Problem .. 248

Nested Problems ... 248
Hierarchical Problems .. 249
Like-Kind Problems ..250

Problem Domain Analysis ... 251
Characteristics of a Problem .. 252
Scope of a Problem ..253
Nature of a Problem ..253
Domain of a Problem ..255
Systems Engineer’s Perspective of a Problem255
Stakeholder’s Perspective of a Problem ...256
Verification and a Problem ..258
Integration and a Problem ...258

Characterizing the Need ... 259
Stakeholders .. 259

xiContents

Stakeholder Analysis ... 260
Classification of Potential Stakeholders ... 262

Complexity .. 265
Process Models ... 266

Scalable Process Models ... 267
Checklist for Scalability ... 268

Testing ... 269
System Design .. 271
Architecting .. 274
Validation .. 278
References ... 279

 6 Systems Integration Management ..283
Granularity ...284
Granularity and Integration ... 287
Abstraction ..288
Project Management .. 290
Integration as a Recursive Process .. 292
Measures of Integration .. 292
Quality ... 293

Types of Quality Loss Functions .. 298
Outline of the General Quality Loss Function 299

Integration Strategy ...300
Recursive Nature of Systems Integration ... 301
Integration Planning Concepts ..303
Events ...306

Integration Planning and Scheduling Steps308
Integration Plan ..309
Systems Integration Model ... 310
Patterns in Systems Engineering and Patterns
in Systems Integration ... 314

Three Tests for Iterative Thinking versus Recursive Thinking 318
References ... 321

Appendix 1: “To Manage” Decomposition ... 325

Appendix 2: Product Upgrades Based on Minimum
Expected Quality Loss...335

Glossary of Terms ..353

Index ... 375

xiii

Disclaimer

Any views, opinions, findings, conclusions, or recommendations expressed
or implied in this book are those of the author and do not reflect or represent
the official policy or position of the United States Government, the United
States Department of Defense, the United States Navy, the Naval Postgraduate
School, and the National Aeronautics and Space Administration, and nor do
they reflect or represent the official policy or position of the University of
South Australia, its School of Electrical and Information Engineering, or its
Defence and Systems Institute. Correspondence concerning this book should
be addressed to Taylor & Francis Group LLC/CRC Press, 6000 Broken Sound
Parkway Northwest, Suite 300, Boca Raton, Florida 33487.

xv

Foreword

Systems engineering is the glue that holds together complex creations and
enables them to perform beneficial functions. The current demand for sys-
tems engineers outpaces all but a very few other fields, and Gary Langford
is eminently qualified to inform those who seek to work or want to work
effectively in this crucial endeavor.

Engineering Systems Integration: Theory, Metrics, and Methods fills a glaring
gap faced when we consider and then carry out systems integration. This
book offers a sound approach to planning for systems integration. It treats
integration as a fundamental approach based on common-sense rationale.
The activities of integration are discussed in a clear and straightforward
manner.

Gary Langford brings his practical experience in integrating large and
small systems to a wide audience in different fields and disciplines. He has
woven considerable technical skills honed in industry with the right blend of
academics to deliver a much needed and most readable textbook. There is a
great need for this book.

Norm Augustine
Chairman and Chief Executive Officer (Retired)

Lockheed Martin Corporation

xvii

Preface

Our past and our plight are in the hands of dreamers and pragmatists.
Dreamers rule the gateways to our future, concerned with a world that could
be. Pragmatists build our next reality, driven by the success or failure of their
previous work. If they solve the wrong problem, or if in the wrong way they
solve the right problem, neither is a credit to mankind. Their solutions may
be clever, apt, and ingenious—exemplars of accomplishment—but they may
have failed a crucial test: failure to appreciate systems integration. The les-
sons are stern. Systems integration, misunderstood and ineptly executed,
wreaks havoc with other systems. We live with those other systems.

This book concerns the principles and practices of integrating parts to
form a system. This book is not a rehash of integration platitudes or without
mettle. The aim is to discuss the fundamental nature of integration, expose
the subtle premises to achieve integration, posit a substantial theory frame-
work that is both simple and clear, and elaborate on the discussion of inte-
grating in ways in which you may not be accustomed. The practices of
integration are substantially more than a narrative of fiddle-faddle banter
casually dispensed during planning sessions or abused when directing
other people’s work. Managers share the greater responsibility to not just say,
“just go integrate it.” The practicalities of integrating parts when we build or
analyze systems mandate an analysis and evaluation of existing integrative
frameworks of causality and knowledge. Integrating is not just a word that
describes a best practice, an art, or a single discipline. The act of integrating
is an approach, operative in all disciplines, in all we see, in all we do.
Integration is not found everywhere, but when it exists, we find systems.

Philosophy and reason, curiosity and questioning, and mystery and con-
templation are not enough to disentangle the concepts of integration. Nor will
they ever be enough. An idea begins with a single notion—a notion that
something is either right or wrong. That notion might be an extension to an
established natural or social “law,” a nuance imposed on theory or knowl-
edge structures of our thinking, or just a plain intuition, however inspired.
No discernable method need be followed. Whether right or wrong, the notion
persists, perhaps long after a spell of acquiescence or self-doubt. Yet the notion
yearns for completeness. The unrequited notion has no self-determination, no
humbleness; it just eats at you. Right requires justification, wrong requires
conviction. If you stay on the path of right, the guideposts are many, and you
never stray. But there is no one path for wrong, no lit way, no signposts, no
guide. To be wrong, you must glean from whatever right you allow as your
encumbrances. The greater the right, the greater the burden you carry, and
the less you can stray. The burden you carry is all that has come before you.

xviii Preface

Forever question what is right, find it where you may. Right can offer a hint
at perspective, a dash of method, a snippet of theory, a glint of an idea. But
the right you need is never enough to grasp, it is ever fleeting, never entombed
or made comfortable. Were right to be right, there would be no problems to
solve, no discord between practice and theory, no contemplation of experi-
ments, no compassion for research, no “what if.” Order and resolution would
prevail. As right cannot be right and never wrong, neither can right be all
wrong. There must be some right in right as there is some wrong in right.
Ask, “What is wrong with right?” But beware, the way of right is numbing,
but the way of wrong is treacherous. The fact that you have strayed off the
path of right is taken as irreverent and is offensive. You will sense ire from
the gentlest soul. Persist and you may or may not discover, you may or may
not be better for your journey. There may not be an end, you may never find
completeness. It is the journey that pits you against yourself.

I view everything as if it is flawed, whether by error in assumption, per-
ception, logic, or judgment. Although the natural consequence of my think-
ing might be perceived as mistrusting of all that is said and written, that
contrivance is untrue. Assumptions are tested, perceptions changed, logic
analyzed, and judgment is made malleable. The result is a staunch commit-
ment to intense study and reflection, development of countertheories, con-
juring novel ideas, exploring new approaches to solving problems, and
forging new ways to pose and answer questions with context more proper
and fit.

I am deeply indebted to my wife Teresa whose endearing patience made this
book a reality. No other person could have such tolerance and indulgence, for
I am a person oft referred to as “stubborn” and “difficult.” I think I heard “and”
and not an “or.” And to the few who tolerate my ideas, thank you for your labor
of patience: John Osmundson, James Lake, Tim Ferris, Eduardo Kujawski.

xix

Author

Gary O. Langford teaches systems engineering and system integration, and
is a practicing systems engineer; a NASA Ames fellow; visiting lecturer in
the Aeronautics and Astronautics Department, Stanford University; founder
and president of four U.S. corporations (one publicly traded on Nasdaq);
owner of an international consulting firm; earlier member of the boards of
directors of seven corporations (holding three positions as chairman of the
board); executive vice president of a merchant bank; manager of an aero-
space systems engineering department; contract research scientist; foreman
of a cannery nightshift operation; and lifelong learner. His work of thinking
in systems integration spans his education in physics, astrophysics, geophys-
ics, electrical engineering, sociology, business management, and systems
engineering. He has served as the principal investigator for contracts and
grants from the U.S. Navy, the U.S. Army, the U.S. Air Force, the U.S. National
Aeronautics and Space Administration (NASA), U.S. Customs and Border
Protection Agency, and the Temasek Defence Systems Institute, Singapore.
In addition to extensive work with corporations and universities in the
United States, he has engaged in collaborative research with researchers
from Australia, Singapore, South Korea, Japan, United Kingdom, Canada,
Turkey, and France.

Gary Langford is a senior lecturer in the Systems Engineering Department
at the United States Naval Postgraduate School and a doctoral candidate at
the Defence and Systems Institute, University of South Australia, Australia.
He has an AB astronomy degree from the University of California, Berkeley
and an MS physics degree from California State University, Hayward. Since
1976, Gary Langford has worked in all facets of systems engineering and
systems integration on projects ranging from $200 thousand to $1 billion. His
research interests include the creation and sustainment of systems.

1

1
Importance of Integration

Introduction

Society has the need to integrate. People build and integrate products and
 services. Specialists engineer complicated products and services, while systems
engineers work with many domain specialists (e.g., physicists, biologists, chem-
ists, sociologists, economists, psychiatrists, information specialists, corporate
managers, workers, and decision makers) to tackle complex systems and system
of systems. In essence, building systems is nothing more than integrating parts
into a whole. Objects interact with other objects through energy, matter, mate-
rial wealth, and information (EMMI). EMMI expresses the interactions
between objects. To span the types of interactions and integrations that are
observed in engineering, biology, sociology, and economics (essentially all
things natural and human-built), the forms of interaction need to cover all
that we do and all that we see. Different forms of enablers are or can be simi-
lar, can embody one another, and can exist in various combinations simulta-
neously (Burgin 2003). To the most common sets of the three forms of EMMI
(energy, matter, and information) we add material wealth as a further initiator
of an object’s mechanism (broadly speaking). The actions of interaction and
objects are covered in more detail in Chapter 2. Many authors* discuss inter-
actions based on various inputs: energy and matter (Sage and Armstrong
2000); energy and information (Morris and Pinto 2004); energy, material, and
information (Wieringa 1996; Oliver 1997; Kossiakoff 2003); and energy, matter,
and information (Miller 1978; Bornemann and Wenzel 2006; White 2007;
Edwards 2009; Tan et al. 2009; Wells and Sage 2009). Our reference to EMMI
will be used throughout this book to represent the inputs that drive mecha-
nisms to transform EMMI into outputs as well as into the losses of EMMI
needed to achieve those outputs. Outputs are the performances exhibited by
the object that transforms the input EMMI.

Society has a need for knowledge about the fundamentals of integration
and the use of integrated physical and intellectual entities (referred to as
“objects”). Generally speaking, physical objects are those entities that have

* Only a few of the more recent references are indicated.

2 Engineering Systems Integration

causal relations to other objects through the interactions of EMMI. This
notion suggests that no physical object is isolated from other physical objects.
Intellectual objects are entities by reason or principle. Physical objects have
boundaries, and intellectual objects have justification, motive, impetus, and
explanation. Humans, buildings, ships, factories, chairs, trees, and molecules
are physical objects. A software code or algorithm that drives a scanner or is
the command to print is an intellectual object embodied in physical objects.
Objects are covered in more detail in Chapters 2 through 4.

In its own right, integration stands head-to-head with discovery, applica-
tion, and teaching (Green 2008). Whether for academics or for anyone in soci-
ety (regardless of role), integration (along with discovery, application, and
teaching) is the key determinate of success in everyday life. Here we distin-
guish between integration and interaction, with integration providing adop-
tion of ideas and causal changes in being in contrast to interaction which
offers only the potential for integration. Emphasis may change with role, but
both interaction and integration are essential. Everyone discovers and learns;
everyone applies what they learn and some teach others; and everyone inte-
grates data and information to discover and apply what they know.

Fundamentally, integration is a method* that facilitates outcomes that are
beyond what an individual object can do either individually or by a number
of objects acting independently, that is, makes things happen that would
 otherwise not happen. The whole is crucially greater than the sum of its parts.
Integration makes things happen faster than with individual, interacting
objects. Individual objects are presumably optimized for their particular
needs. Transferring EMMI between individual objects that are not optimized
for such transfer will have nonoptimum transfer compared to a system that is
structured for passing EMMI. This is not to say that all paths in the integrated
whole are optimized compared to that of individual objects. Rather, those
paths that are optimized will outperform objects that are independent, but
merely interacting. An example of this independence is a team working to
complete a task versus individuals competing with a team. A few individuals
may outperform a team in many respects, but a team’s performance will in
general exceed that of any one individual. Integration provides an efficiency
of operation that reduces the overall EMMI required to perform various tasks
(assuming the task were even achievable by the individual objects). A team’s
effort takes less energy than individuals working as individuals. Consider a
sports team playing against a group of individuals. The sports team will have
practiced together and have developed techniques of play that combine to
produce an economy of actions versus that of an individual who must exert

* The logic of integration embodies reasoning greater than acts (the elemental structures of
activities). The enactments of integration reflect more judgment than processes (the aggrega-
tive effects of activities). The rationale and coherence of integration is systematic as well as
step-wise logical. As such, integration is a method. However, we refer to integration as a
process throughout the text. The reason reflects the emphasis on the details of implementing
integration (the method) through its various processes.

3Importance of Integration

individual performances above that of the opposing team. Building further
on the example of teams versus individuals, integration links related (and
often integral) objects into the same context to provide an overall manage-
ment of effort that benefits the team through efficiencies of communication,
planning, organization, directing actions, controlling their positions, and
exhibiting structured teamwork. Integration supports seamless action
between objects that promotes scale-wise fast and effective action for a range
of EMMI. However, the process of integration is neither inexpensive nor
instantaneous. And the result of integration may have unintended conse-
quences such as operations that are unsafe, change in failure rates due to
usage, and an overemphasis on one aspect of a decision or trade space to the
detriment of another aspect. A benefit of systems engineering integration is to
invest upfront to derive efficiency, economy of scale, or capability that would
otherwise be unobtainable. In essence, integration shows the manner and
means of putting objects to work in an efficient, collaborative environment.
Often, integration is the only means of doing what is otherwise not possible
by individual objects. As such, integration refers to the outcome—an outcome
that is observable by both demonstration and measurement. The simple
notion of being able to accomplish a task by the use of one object as opposed
to accomplishing that same task for less EMMI with an integration system
advocates for and stimulates an interest in integration. From the user’s per-
spective, integrated systems offer higher cost savings and efficiencies than
the outcome of what can be extracted from a set of unrelated products or ser-
vices. Integration makes EMMI available to objects throughout the system, as
is appropriate to the movement of EMMI from object to object. Just the distri-
bution process of information alone changes the meaning and context of the
information as EMMI moves from one object to another. Each object trans-
forms the input EMMI into an output EMMI by the process of changing the
input through the actions of the object’s mechanism(s). Information integrity
is essential and integration can provide the requisite integrity by its struc-
tures and processes of building the whole by the synergistic combination of
its parts (i.e., the objects that comprise the system). Sometimes, distribution of
EMMI needs to occur quickly and integration can provide it. The transforma-
tion of EMMI from the initial set of input EMMI through a structured form of
distribution throughout the structure of objects is an economy of action fos-
tered by the process of integration. In general, that economy of action is
unequaled by the actions of individual interacting objects.

Case Study Introduction

Oftentimes, lessons from previous projects (referred to as cases) can be
assembled and reviewed to glean lessons. In developing an appreciation for
how certain aspects of these projects seemed to affect or be affected, the

4 Engineering Systems Integration

power of hindsight is often too critical of the progress from one stage to the
next. By the knowledge of the results of the project work or by ignorance of
what actually transpired, lessons taken from these cases can be extracted
and applied to similar, representative examples of current work studied.
After a bit of review and introspection, patterns of behavior or events may
develop that suggest a commonly occurring set of variables and outcomes.
At some point, a behavioral model might be constructed that represents a
more detailed examination of a portion of the lessons, grounded in a set of
perspectives, measurement theory, and the objective actions. We refer to
such a set as a case study. A more formal discussion of case studies, from the
point of view of what is misunderstood about case study research, is written
by Flyvbjerg (2006) wherein he points out, “Forget the conventional wisdom,
go ahead and do a case study.” There is valuable information to be gleaned
from case studies: they can be useful for formulating hypotheses, hypotheses
testing, theory construction, and developing general theories (Eisenhardt
1989). Yet, the ultimate learning comes from practice. Systems engineering
is a discipline of employing practices that have proven useful in various
situations. Learning to integrate, to prepare the engineered objects for inte-
gration (systems engineering), and to manage integration (systems integra-
tion management) are steeped in practice without much theory to guide
improvements. Knowing the limits of what one can do is just as important as
knowing what to do. Stated bluntly, following a set of practices (or best prac-
tices) neither guarantees nor implies your project will be better or as good as
those from the retinue of projects from which the practices were derived.
Rather, it is knowing how to satisfice the perfect product or service and know
how to deal with the constraints of development time and budget as well as
meeting the lifecycle costs that defines what the best practice should be.
Perfect products or services are difficult to come by—often unachievable due
to negotiations or compromises to cope with key stakeholders, sundry prob-
lems caused by applying inappropriate or inadequate skills to the engineer-
ing activities, and ineffectual management discipline or knowledge to do or
know what needs to be done. Regardless of the historical precedence, the
application of best practices, or the systems engineering and management
skills, products, and services (perfect or not so perfect) embody the key prin-
ciples of systems integration. Examining these principles (that are evident in
one or more case studies) exposes the actions and circumstances that have
major influence on the outcomes of system integration. Perhaps the most one
should expect from a case study is to observe the aftermath of principles
being followed. A method founded on an appropriate set of principles pro-
vides managers, systems engineers, and engineers with a practical guide for
action and a set of heuristics that should be a stalwart guide.

When attempting to integrate two objects where one or a combination of
both objects requires an amount of rework that is more constrained by cost
or time than starting anew, the result is a failure to integrate. Failure to inte-
grate objects may have several root causes. But integration failures can be

5Importance of Integration

classified into two categories: those failures that are a result of all that trans-
pired before integration and those failures that are a direct consequence of
the integration activities. Integration failures that are inherent in the devel-
opment work prior to integration can be a symptom of a poorly defined
problem (i.e., redefined or corrected before integration is completed); a
missed stakeholder or stakeholder requirements and therefore unknown,
incorrectly interpreted, or ignored needs; a system design or architecture
that inadequately responds to the stakeholder requirements or needs; or
 mismanagement of the efforts leading up to and including the integration
activities (specifically any subprocess of planning, directing, controlling,
communicating (Kasser and Shoshany 2000), organizing, and team-build-
ing). Integration failures that occur during the process of integration have
several root causes, including mismanagement (focused on poor alignment
of resources with required tasks, poor communication, and unreliable func-
tionality which is attributable to one or another object) and poor integration
skills, tools, or test equipment. Within the integration stage of work, com-
munication between team members needs to be called out specifically as a
key issue to succeed with integration. Beyond simply communicating what
members of the team are doing and why, systems engineers with broader
knowledge of the stakeholders, the implications of the design and the archi-
tecture, acceptance criteria, manufacturing, user intentions, and key sensi-
tivities of stakeholders will improve the effectiveness of the integration team
in achieving functional interoperability. And, engineers with specialization
and expertise will improve the efficiency of integration. Both background
specialties are important to successful integration (Nissen et al. 2006).

Identifying the category of integration failure from an analysis of case
studies helps (1) to recognize the relation between formative work in systems
engineering and system integration and the integration activities, (2) to
 provide insight into identifying what to look for and improve in the forma-
tive work, and (3) to develop a better sensitivity to the need for recursive
thinking rather than iterative thinking.

Hubble Space Telescope Systems Engineering Case Study

Introduction

Even with adaptive optics,* viewing stellar objects from Earth-based
 telescopes is limited by the Earth’s atmosphere and environmental effects.

* Adaptive optics compensate for much of the Earth’s atmospheric turbulence that reduces the
“seeing” to less than the diffraction-limited performance of a telescope. The mechanism of
adaptive optics is to compensate for errors in a spherical wavefront by changing the longitu-
dinal location of segments of the optical system. The effect is to correct for deviations in the
incoming radiation by distorting one or more of the optical elements in the optical train of
the telescope (Tyson 1991).

6 Engineering Systems Integration

On April 24, 1990, the Hubble Space Telescope* was launched from Kennedy
Space Center, Florida and carried in the Shuttle Orbiter payload bay aboard
the STS-31 mission of the Space Shuttle Discovery. Some three-and-a-half
years later in December 1993, the crew on STS-61 from the Space Shuttle
Endeavor installed subsystems of corrective optics and replaced solar arrays
and gyroscopes, added new instruments and computer equipment, and
extended the space telescope’s lifecycle. This second mission corrected the
problems with initial implementation of the primary mirror (housed within
the Ritchey–Chretien Cassegrain telescope). The optical flaw had reduced
the performance of the telescope’s resolving power. The result had been a
 blurring of the images which used the primary mirror (Mattice 2005). The
development and operational teams overcame the engineering and techni-
cal obstacles, the external influences, and the political guidance to provide a
magnificent system that was part of a spectacular system of systems (inde-
pendent researchers from around the world, astronauts, and space shuttle
with its infrastructure support, space tracking network, and the Hubble
Space Telescope (to highlight but a few components)). With new equipment
and improvements brought and implemented by the space shuttle mission
STS-125 in April 2009, the Hubble Space Telescope is expected to continue
operations into 2014. The Hubble Space Telescope was described (Mattice
2005) in terms of its technical characteristics, its mission, and development
and integration issues.

Hubble Space Telescope Description

The primary mirror is a first-surface optical slab 2.4 m in diameter, provid-
ing 10 times better resolution than Earth-based telescopes, nominally 0.1
 arc-seconds. Several other major telescopes are integrated into the Hubble
Space Telescope’s physical, electrical, thermal, and data electronics struc-
ture. Hubble’s dimensions are: length of 13.3 m (43.6 ft) and diameter of
4.3 m (14 ft); its weight (measured at Earth-sea level) is 24,973 lb; its solar
arrays deliver 4400 W; and its data rate to support science is 1 megabits per
second.

Hubble’s mission is to serve as a permanent space-based observatory at
600 km (320 ± 5 nm) altitude (low-Earth orbit) with an orbital inclination of
28.4°. One Earth orbit takes 95 min to complete, and while the Hubble Space
Telescope operates 24 h, seven days a week, not all of the time is spent observ-
ing sectors of the sky to support the schedules of observers. Pointing to new
sectors, avoiding the Sun or Moon, switching electronic modes and commu-
nicating data (from and to Earth), and calibrating instruments constrain both
the ground support operations and the available “seeing” time.

* In the early days of work on the Hubble Space Telescope, the project was called the Large
Space Telescope (LST) (1973/4).

7Importance of Integration

Integration Issues

Optical systems designed to operate on ground-based mounts endure as
exemplars of stability and precision. Building a very large, meticulously
crafted optical instrument into a package (that has passed thousands of tests
simulating launch and deep space temperatures and pressures) that will
then be accelerated to three times the acceleration of gravity in the Shuttle
Orbiter payload bay and ferried to orbit is a time-consuming, exacting sys-
tems engineering, engineering, and systems integration feat.

The types of subsystems on the Hubble Space Telescope include physical, elec-
trical, optical, electronic, thermal control, power (generation, distribution, and
management), communications, computer processing and storage, pointing,
orbital stability, and operational/housekeeping configurations. Representative
performance issues focus on optical reflectivity and light baffling, pointing
accuracy, weight management, power consumption, and adhering to proper
temperature design parameters. Representative quality issues focus on the size
of the optical airy disk, pointing variances, power fluctuations, and temperature
excursions beyond design variances from specifications.

Integration Problems

There is a veritable rule for systems that are planned to launch into space and
expected to operate unattended for years—if they do not work on the ground,
they will not work in space. Unfortunately, these systems can work perfectly on
the ground, and still not work in space. The space environment is one that is
difficult to emulate on Earth. Specifically, large vacuum chambers that have full
instrumentation to test the completed system are extremely rare. Large-sized
vacuum chambers with thermal and vibration controls to mimic the intense
heat of the Sun and the deep cold of dark space are even rarer. The Hubble
Space Telescope was larger than existing chambers and thus not subjected to
the full range of tests that would cover launch conditions and the gravitational
anomalies that would occur over the course of its 83,000 orbits around Earth.
Smaller, unit-sized elements up to subsystems were tested instead. Additionally,
the practice had been to build two “payloads,” one a qualification unit for
launch and one a backup unit, both built to near the same specifications. In case
of a component or subsystem failure of one, the backup was a ready solution to
stay on schedule. However, for the Hubble Space Telescope, the systems inte-
gration approach was to “design–build–test–fix” in an iterative fashion that
conformed to the prime contractor’s previous work experience.

Compounding the systems integration problems, the project was over bud-
get* and severely behind schedule, and subsystems were failing their accep-
tance tests. Everything from the scientific instruments to the ground and
control system needed considerable work to improve reliability to sustain

* Original budget estimates were $200 million, compared to a final cost near $2 billion (Mattice
2005).

8 Engineering Systems Integration

the 24-h, 7-day on-orbit operations. Lifecycle issues including costs, opera-
tional tempo, refurbishment strategy (transport the Hubble Space Telescope
back to Earth for upgrades and routine 3-year maintenance versus maintain-
ing the system on-orbit from the space shuttle), and retention of key person-
nel needed to be integrated into all planning, including the development
planning, integration planning, and operational planning.

Additionally, the space shuttle crews needed to equip and train for space
walks of long duration, operate the remote arm to load and unload the
Hubble Space Telescope, and manage the controls that linked the Hubble
Space Telescope to the space shuttle.

Integration Management

The overall responsibility of management of systems engineering and sys-
tems integration was given to the prime contractor, Lockheed Missiles and
Space Company (Lockheed), and Perkin Elmer (contractor for the primary
mirror). Lockheed management needed to align the interests of a broad-base
of key stakeholders, including various NASA (National Aeronautics and
Space Administration) centers, the European Space Agency, representatives
from the U.S. Air Force, astronomers and scientists, contractors, and employ-
ees. One of the more innovative actions by Lockheed was to search through
the skills of their existing engineering staff to determine who could help
uncover problems with the design, architecture, and implementation of the
subsystems. Sometimes, small teams of Lockheed scientists and engineers
were formed with a mix of senior systems engineers and their recent hires
just out of college. Other times, lone systems engineers set out to consider the
consequences of various designs and specifications. The mix of skills and
enthusiasm on these teams helped inspire a quest for excellence that left noth-
ing unturned within Lockheed’s domain as the prime contractor. Even when
the results of a mathematical model indicated that the specification for the
cleaning of the primary mirror was insufficient to meet the design require-
ment, Lockheed confirmed the model predictions and informed relevant par-
ties about potential problems with the cleaning specification for Hubble Space
Telescope’s primary mirror. In a strongly collaborative environment, the inte-
gration of the Hubble Space Telescope moved forward. But in spite of resolute
persistence and scrutiny, a defect in the curvature (a spherical aberration
flaw) of the primary mirror went undetected at Perkin Elmer until the Hubble
Telescope was placed in operation after its 1990 launch into orbit. The users
were the first to point out the defect. The test configuration that was designed
to detect such an error had been set up incorrectly which resulted in the pri-
mary mirror being polished to the wrong shape. The integration and test pro-
cedures at Perkin Elmer were inadequate and documentation necessary to
reproduce the test configuration could not be found (Allen et al. 1990).

Some rules of thumb regarding integration activities for software provide
insight into the integration activities of the Hubble Space Telescope.

9Importance of Integration

Approximately half of the first demonstrable software objects pass their
unit tests, while the failed units undergo rework. However, nearly half of
all software units that eventually pass this early testing fail their integra-
tion and system test (Mishler et al. 2007). Given the “design–build–test–fix”
approach, integration for the Hubble Space Telescope probably began as early
as possible to use the success and failures from testing as valuable feedback
to help guide planning and to indicate progress. As such, integration and
testing was used as part of developing the subsystem, blurring the distinc-
tion between development, integration, and testing.

Principles

Beginning the discussion on systems integration with principles may seem a
bit stilted, as it seems to weigh toward an academic discussion away from
any practical value. However, when the range of phenomena is very broad,
the subject complicated, the practice encumbered with lore, legends, and
superstitions, principles help defeat the viciousness of myths. The “bird’s-
eye view” enables us to distill the exactitudes without “losing our bearings”
(Ashby 1962).

A principle is a means of organizing thoughts to articulate a pattern of
behavior that frames or structures action. In essence, a principle represents
both the context and concepts* that enable us to classify and interpret a situ-
ation in terms of previous situations. A situation is a sequence of events
where an event describes an activity that relates an input EMMI to an output
EMMI through a causal mechanism. An event is something that happens, an
action that takes place, or an occurrence. An event is a change in an object
due to the transformation of input EMMI into output EMMI. Changes in an
object may be causal to changes in other objects. In this manner, events can
be identified as precipitating or triggering other events. Events can result in
interactions or integrations. Events have structure, can be sequenced through
mechanistic transformations of EMMI, and are distinctively recognizable as
objects (i.e., physical or intellectual).

The framework in which a principle is described has both observation and
measurement, that is, both subjectivity and objectivity. The scope (or in this
case, the applicability) of a framework determines the completeness for a
given event or sequence of events. For systems integration, the events are
grouped or evaluated by principle, each underpinned with a fundamental or
undisputed law, doctrine, or assumption that is justifiable on the basis of
another principle (e.g., treat others as you would like to be treated); a rule;

* Including interactions and integrations of the concepts.

10 Engineering Systems Integration

a heuristic process*; a factual basis or underlying set of data or circumstances;
or a commonly accepted truth that has validity in certain circumstances.
Therefore, a principle is a description of that which has to be, or that which is,
or guidance that is arguably sound, or inevitably consequential of something
else. Principles are verifiably correct—as proven by both experience and
experiment. Principles can be combined, worked into a coherent body of
knowledge, and accepted as a basis for reasoning, logic, and action.

Ultimately, the test of a principle is through its applicability for a given
circumstance and context. The validity of a theory and its framework for
evaluating theoretical efficacies determines the utility of the principle for a
particular fitness of use. The fitness of a principle to a circumstance is a mea-
sure of its completeness.

Principles of integration extract insular thinking from the quagmire of
confusion, help guide decisions based on the sound and the good of a
 particular situation, and present a logic that creates an air of confidence. In
as much as the principles help others justify their actions, the mere fact of
discussing and employing principles facilitates decision fitness† and decision
making throughout an organization (Howard and Matheson 1984), rein-
forces the teamness that inspires success, and provides a top-level perspec-
tive that retains purpose, objectivity, and planning prowess.

Principles of Integration

From a variety of case studies and reports on integration failures (Allen and
Cohen 1967, 1977; Cooper 1979; Hoopes and Postrel 1999; Zaitun et al. 2000;
Richey 2004; Burkatzky 2007; Leblond 2007), a few guiding principles can be
derived. For our purposes, principles are defined as the root causes of events.
We hold such root causes to be valid indicators of related, subsequent events.

Knowledge is valuable. This is a principle that relates knowledge and value,
where knowledge is the object and value is the modifier of that object. A
change in the value of knowledge indicates a change in knowledge; however,
a change in knowledge may neither be an indicator of a change in the value
of the knowledge nor the value of the change in the knowledge. Therefore, a
principle is a widely held “truth” based on inviolability.

* Heuristics can be thought of generally as the steps of solving a problem by trial and error
rather than by the distinctness of rules or factors thought through (Wu, citing and elaborat-
ing on the definition of heuristics from the Encarta dictionary, Wu and Adams 2006).

† Decision fitness (as described by Strategic Decisions Group) is illustrated as a chain of steps
that describe the appropriate frame for the decision, the creative and doable alternatives that
are possible, the meaningfulness and reliability of the information used, the clear values and
tradeoffs, the logically correct reasoning, and the commitment to action (Howard 1983).

11Importance of Integration

The empirical setting for integration for human-built systems is product or
service development; for nature, it is chemistry, physics, and biology. Both
human-built and naturally occurring systems are either involved with life-
forms* or not. Empirical sociology offers well-developed tools and method-
ologies to help explore the subjective nature of systems engineering, systems
integration, and systems engineering integration management to uncover
the key principles (Lazarsfeld 1993).

Principle 1: The Principle of Alignment

Alignment of strategies for the business enterprise, the key stakeholders, and the
project results in better outcomes for product or service development.

The integration plan should align with the strategies of the project, of the
business enterprise in which the project is supported, and of the dealings
with key stakeholders. Knowing the needs of the project and how those
needs are supported by the business enterprise and the key stakeholders is
important in keeping high-level visibility with the decision makers. The
business enterprise has two requirements that the project must satisfy:
(1) providing revenue and profits consistent with the enterprise policies, and
(2) operating within the limited and constrained environment imposed by
the realities of the project. Fundamentally, the enterprise is in business to
make money with the projects being one of the means of fulfilling the needs
for revenue and profitability. Stakeholders have their own perspectives about
the results of the project, ranging from providing the deliverable product or
service within the limitations of budgets and schedules; satisfying some
political or social need; or perhaps responding to an issue of safety or sur-
vival. Stakeholder and enterprise needs are laid out in a contractual form
before the project is begun. Laying out the requirements for the product or
service is the objective basis on which the contract is formulated and agreed.
Systems engineers place great importance on working with stakeholders to
determine requirements, verify that the work accomplished satisfies the
requirements, and deliver to satisfy the user requirements. Presumably, the
requirements satisfy a need and solve a problem for the stakeholder. Often,
one of the steps in systems engineering is to assure the customer, the user,
and other key stakeholders that the requirements have been evaluated and
matured to cover all aspects of the problem. In this basic manner, systems
engineering is fundamentally iterative. Reanalyzing, reevaluating, and
relooking the requirements help develop a comprehensive set of parameters
that can be modeled by decomposing seemingly complex objects (physical
and intellectual) into simpler objects with greater detail. These objects are
comprehensible by their nature, more easily dealt with because of their limited
scope, and readily parsed into tasks due to their definability and tractability

* No definition attempted. Life-forms are presumed to have a modicum of cognitive structure(s)
and consciousness.

12 Engineering Systems Integration

by common procedures and tools. The subject of objects has been a topic of
great concern with contributions from before Plato to Einstein (Einstein
1950), Gödel (Gödel 1951 [1995]), and after (Korman 2011). For this presenta-
tion, objects can be either physical or intellectual. All that is not physical is
 intellectual. A person is a physical object, but the thoughts of a person are
intellectual objects. The paper on which numbers can be written is a physical
object, but the idea or concept of numbers is intellectual. Physical objects
always appear to have a location in space (Everett III 1957) and are only mea-
surable in that position space (Lyre 1995), whereas intellectual objects exist
mentally. Physical objects can move or be moved from one location to another,
whereas intellectual objects move only when represented as physical prop-
erty. Software listings (in some readable form) are intellectual property that
is represented in physical media. And, physical property can be represented
as intellectual property. The digital media which contains an algorithm is
the physical expression of the algorithm before it is placed into operation
within the executable environment of a computer microprocessor. Physical
objects are made up of component objects that may be themselves divisible.
A unit of material wealth may be physical in its representation as money
made of paper or coin and the intellectual aspect is what decisions can be
made after spending the money on a physical object (i.e., product or service).
A whole can be represented as an object, either physical or intellectual.
Changing the physical location of a physical object may concomitantly
change the location of its parts. If the physical object is connected, tightly
coupled, and with high cohesion, then the constituent parts change location
as a whole. In this regard, consider as one the physical constituent objects of
the solar system as being comprised of Sun, planets and their moons, comets,
asteroids, and space dust. A gravitational disturbance of the trajectory of the
Sun and the orbiting bodies around it caused by a passing star might break
the connection between the Sun and its orbiting bodies by reducing the cou-
pling and cohesion of some or all of the physical objects orbiting the Sun.
Similarly, intellectual property (as an object) may have constituent parts that
are separable by EMMI.

Physical and intellectual objects comprise products and services. Physical
and intellectual objects facilitate inputs and outputs of EMMI. As such, inte-
gration is accomplished by the EMMI that is received by an object.

In spite of the quite dissimilar needs of the key stakeholders (e.g., business
enterprise, project, customer, user, and funding sources), general agreement
is reached through a negotiated contract. Alignment of strategies of key
stakeholders with the goals of the project and the delivery of the agreed
product or service is paramount for success.* Integration of the various stake-
holder strategies into an integration plan (as well as into the project plan and
the systems engineering plan) for objects follows from this alignment.

* Success is defined as delivering the functional requirements and the performance require-
ments, within the budget and time constraints.

13Importance of Integration

Principle 2: The Principle of Partitioning

Partitioning of objects can create tractable problems to solve if and only if boundary
contiguity is achieved.

Integration success thrives on simplicity. Simplicity is often achieved
by decomposing a high-level concept that embodies a few high-level objects
into multiple low-level objects in a hierarchical fashion. The high-level
objects (i.e., intellectual or physical) set the limits for all of the object
 boundaries, that is, no object within the hierarchy of objects will have a
boundary limit that exceeds that of its logical high-level object. An
 additional constraint for these multiple lower-level objects is their individ-
ual subboundaries do not overlap or underlap each other’s boundaries, if
the objects are on the same level. Further, an individual object (regardless of its
level in the hierarchy) is distinguishable by its mechanism, that set of
actions that converts an input into an output. The results of an object’s
transformation of EMMI through the actions of its mechanism(s) are the
object’s contribution to the performance of itself as well as the larger aggre-
gation of objects. Partitioning an object or a set of objects into more objects
can create more manageable work packages to build and integrate the
objects. The ease of integration is facilitated, if and only if the object’s
boundaries are contiguous in terms of adjoining physical structures,
enabled functions that do not overlap or underlap with other functions,
and with whom user behaviors are uniquely identifiable. The object or
objects that are partitioned at the top level must be uniquely distinguish-
able and must cover the complete domain of the higher level partition(s).
There should be nothing left out of this top-level partitioning that does not
extend to the boundaries of the system. In other words, every object needs
to fall into a partition and stay within the boundaries of the top-level object.
The three boundaries (i.e., physical, functional, and behavioral) of each
object are by themselves the maximum extent of the object’s presence. In
aggregation, the objects form the system and its boundaries. When decom-
posing an object to its component objects, the combined boundaries of the
components must extend to the top-level boundaries of the parent object.
This condition of contiguity ensures that all that was conceptualized at the
top level was indeed included, nothing more (i.e., overlap condition) and
nothing less (i.e., underlap condition). Figure 1.1 illustrates the overlap and
underlap conditions.

Integration success requires that partitioning be carried out according to
this principle. Overlapping or underlapping boundaries between objects cre-
ates shared control over object mechanisms (overlapping condition) or lack
of control over a portion of an object (underlapping condition) which is iden-
tified as causing problems during development and integration. These
 conditions that portend integration problems are not normally found in
interfaces or interface specifications as both of these conditions are symp-
tomatic rather than causal for such problems.

14 Engineering Systems Integration

Principle 3: The Principle of Induction

Inductive reasoning should guide integration management and recursive thinking.
Using a process-driven approach to the development of a product or ser-

vice has been shown to be effective assuming that setting objectives and
orchestrating work toward accomplishing those objectives is causal to
achieving these objectives. If one assumes this objective-driven paradigm to
be an acceptable practice, then it is important to recognize that managing
integration and application of systems engineering processes to build prod-
ucts or services involves several distinctly different types of thinking. While
systems engineering thinking is primarily iterative in nature (as the princi-
pal way of getting consensus on a reasonable set of requirements), the think-
ing to accomplish integration is principally recursive, that is, enabling a
forecast of events based on one or more of the preceding events or emerging
patterns of behaviors associated with individual or sets of objects (“one set
means more”). For systems engineering, iterative means getting to consen-
sus, or in essence one set of requirements fits most stakeholders (“one set fits
most”). Management of both the systems engineering activities and the sys-
tems integration activities requires inductive reasoning. Induction deals
with the inferential processes that increase knowledge given the uncertainty
(Holland 1986).

A process can be conceived as capturing a level of abstraction that carries
with it the conceptualization of all its included activities. The result(s)
achieved when these activities are accomplished are not only expected to
be greater than any one activity but they are also presumed to be greater
than the simple sum total of the tasked roles and assignments. For activi-
ties, a meaningful (yet indirect) measure of one activity versus another
activity is an evaluation of the relative differences between results for the
two activities. In essence, the “plan ahead” series of activities taken to
achieve an outcome distinct from that of an unorganized approach is
termed as a process.

Inductive thinking is often mischaracterized as rule based or rule driven.
There are essentially two types of rules that drive the management of sys-
tems engineering and systems integration: rules of thumb and rules of dumb.

Object A

(a) (b)

Object B Object A Object B

FIgure 1.1
(a) Overlapping and (b) underlapping boundaries.

15Importance of Integration

Rules of thumb (i.e., “know what is best”) span a shared view of the nexus of
goal-driven technology developments (Burns and Machado 2007) and social
interactions. These rules of thumb include: small groups can be managed
easier than large groups; single points of contact prevent miscommunica-
tions (e.g., is easier to deal with one supervisor rather than two supervisors);
communications is vitally important (both as an indicator of collaboration
and the structure in which the communication is provided); and do not over-
or underdelegate authority and responsibility. Rules of dumb present a dif-
ferent image of the social organization as these rules sometimes reflect or
embody “project legend”—the organizational culture, social interactions,
and interpretations of policies and rules of behavior. Rules of dumb (i.e.,
“hope for the best”) include patterns of behaviors that are readily detectable
with minimal effort on the part of management. These rules of dumb include
not informing management when falling behind in progress toward an
objective (attempting to hide a missed deadline), and delivering partially
completed or inadequately completed work (expecting to continue develop-
ment during rework cycles). In essence, rule-driven execution of work
requires inductive reasoning to keep abreast of both systems engineering
work and systems integration work. In general, rules are helpful in keeping
track of models that represent reality. But in keeping with those models,
their accuracy is questionable in any specific instance, for example, “how
close the budget or schedule is to the actuals.” Therefore, inductive reason-
ing more accurately captures the tenor of work by generalizing approaches,
posing and investigating ideas, and collecting evidence that suggests the
dynamics of interplay between social and physical processes, rather than
mere guesswork based on urban or office rules (Haas 1992).

Principle 4: The Principle of Limitation

Integration is only as good as architecture captures stakeholder requirements.
Not all architects have the presumed advantage of preparing an optimum

architecture based on the inputs of key stakeholder and an expert system
designer (or team* of designers). Some architects must work with very little
information or sift through conflicting information. And not all system inte-
gration efforts benefit from the work that goes into the system design or the
system architecture. However, in both instances, the architecture remains a
key ingredient for successful integration. The other key ingredient for inte-
gration is a concept of operations. The concept of operations and the system
design imbue the architecture with its primary emphasis as represented by

* A team is defined as members of an organization who have only common interests, where
“an organization is a group of people whose actions (decisions) agree with certain rules that
further their common interests” (Marschak and Radner 1972).

16 Engineering Systems Integration

the stakeholder needs for solving their problem.* The conceptual architecture
(high-level aspects) and the concept of operations are hand-in-hand related to
the system design. The conceptual architecture, the concept of operations,
and the system design are highly influenced by the budget limitation.
Consequently, the lower-level architecture is commensurably cost-constrained.
Once the ramifications of the budget have limited the architecture (at the top
level), each architectural component at the lower level(s) are constraint driven
by allocation of resources. It is the duty of the architect to capture the full
measure of implications from the requirements and inculcate the requisite
functions into the object descriptions within the system architecture. The
purpose of the architecture is to combine the requisite functions at the high-
est level (built on the subfunctions that have been partitioned within the
lower levels) to satisfy the needs of the key stakeholders.

The essential steps in using the architecture and the concept of operations
for integration planning begin first by developing a prioritized listing of
system-level functions that are key to satisfying the stakeholders. These
functions should reflect the customer and user requirements as well as the
derived requirements that have come about from the system design work
and elaboration of the concept of operations. The aim is to identify the
objective(s) that must be achieved in the delivered product or service.

Second, the relations between objects in the architecture are identified
and summarized through their connectivity, coupling, and cohesion.
Connectivity is the physical connection between objects. Connection is
established by an interaction of one object with another through EMMI. In
the case of a physical connection (one where there is a physical touching of
one object with another object), there might be additional connectivity
through other EMMI (e.g., with a computer circuit) that passes electrical
energy that carries information regarding financial information. Coupling
is the characterization of the strength of interaction between two objects.
With high coupling, the individual depositing money into their bank’s
automated teller machine expects a high degree of coupling between the
transaction and the crediting of the deposit to their bank account. The dis-
play on the automated teller machine may indicate the deposit, displaying

* Depending upon the expectations from the acquirer of systems engineering skills at the
beginning of the systems engineering development work, the system design and the concept
of operations may be either peripherally related to each other or, in certain instances, strictly
dependent. The product or service needed by the acquirer can be specified in advance of
beginning the systems engineering development which orchestrates the building, integra-
tion, and delivery. The starting point for systems engineering development may be stipu-
lated in terms of top-level requirements and a concept of operations. However, the system
design may or may not be described in much detail. If the system design is described in more
than simple and general terms, the system design may reflect only the top-level requirements
without detailing specific details that define instances of implementation. The alternative is
to have a reasonably detailed first draft of the system design. In either case, the operational
concept may reasonably represent the stakeholder needs with or without specifying too
many details in the system design. (See Endnote 1 at the end of this chapter.)

17Importance of Integration

the new balance in the bank accounting records. However, if there is a
problem with the printing of a receipt (i.e., the written record of the account
number, date, time, and location of the deposit), then there may be low cou-
pling between the event of the deposition transaction and the written con-
firmation. Cohesion is the characterization of the measure of binding
between two objects through their interaction(s). The strength of interac-
tion means that two objects can be coupled under various conditions in
which their interactions can change each other, whereas tight coupling
presents as the observed causality between two objects. Loose coupling
implies either that many variables are at work and therefore observations
show weak causality between actions of the two objects, or that the obser-
vations do not reveal the linkage(s) between the two objects (although the
connectivity and the relation between the two objects are represented or
known). Coupling is a measure of the relation between objects. Unlike cou-
pling which is determinable by a relation-in-fact through connection(s) that
are direct and causal, cohesion is the consequence of a relation-by-degree.
The relation-by-degree is observable, identifiable, and referenced to a par-
ticular object. Tight coupling can spawn dependencies that are distinguish-
able as causal. Tight coupling presumes a high degree of “trust” between
objects. In contrast, cohesion is the manner in which one object relates to
another object. Cohesion is formed by interactions of EMMI across bound-
aries of two or more objects. Some of these interactions are by process,
some by functions, some by behaviors, some coincidental, and some tem-
poral. All these types of interactions can be summarized as cohesion by
structure and coupling by circumstance. Any manner and means of inter-
action may result in a form of cohesion. An operative definition of cohesion
is the minimum number of objects which, if removed from a group of
objects, would disconnect the interactions of the group. This definition is a
modification of that presented by Moody and White (2003). The many per-
tinent definitions of coupling and cohesion can be applied to systems inte-
gration as the overall point and expectation of integration are to bring
together objects to produce cooperative, unified system-level functionality
(Pikula and Siemion 2007).

In essence, the measurable concepts of connectivity, coupling, and cohe-
sion are other ways of expressing interactions between objects. Coupling and
cohesion are defined as measurable concepts rather than specific measures
(Darcy et al. 2005). As such, coupling and cohesion are direct indicators of
interaction. If either coupling or cohesion is of small consequence, then two
objects are interacting and have met the threshold for interaction.

From an integration perspective, connectivity, coupling, and cohesion
are designed into the structure and action(s) of each object and exhibit
the characteristics expected by the design, concept of operations, and the
architecture. Integration testing confirms that the objects behave in the
manner expected by demonstration of their functionalities with various
performances.

18 Engineering Systems Integration

Third, the physical, functional, and semantic structures of the architecture
need to be identified and included as an integral part of systems integration.
The semantic structures (i.e., data model (Feng and Yang 1994)) should reveal
the perspective of the user within the system (or system of systems) architec-
ture to recognize and facilitate an appreciation for the utility of the data that
crosses the interfaces between system objects (Fritz 2006). The meaning of
the data (distinct from the information that is transmitted) is an important
aspect of providing the user with a mapping of knowledge to system physi-
cal and system functional domains.*,†

Fourth, all the mappings of functions to physical entities, semantics to
functions, and user behaviors to functions support the integration activities
through various views of the architecture. Architecture is the venue for con-
nectivity, coupling, and cohesion to be explained in terms of the requirements
that the product or service must be operative. Architecture is the venue for
representing the key stakeholder needs and requirements as modified by
their values, preferences, and desires. System integration depends on archi-
tecture, without which system integration cannot succeed.

Fifth, integration can be seen as a rationalization of the functions of the
product or service and its operational use. Once the product or service is put
into operation, the issues relating to integration change to process integra-
tion. Since the use of a product carries with it its own history of events, pro-
cesses will evolve to accommodate those events. Existing operations are
changed by the architecture of new products or services. When architecting
a system, the difficulties in creating a common set of parameters and rela-
tions to describe the architecture are compounded by interpreting the diver-
gence of the operational situation and the objectives when the product or
service is put into use. Combining this divergence with organizational
changes, new objectives that may result in new products and services, and
the missing common working processes, transferring architectural knowl-
edge from an old or legacy system to a new system may be problematic for
the user and the associated interactions with the product or service in the
user’s environment and enterprise. Specifically, the integration of knowledge
from the legacy operations to the new operations are skewed by the new
product’s or service’s architecture. The ownership and interpretation of
information from the newly operational system become an issue for the
design and integration level of the enterprise data information system.
Integration must take place in multiple domains at multiple levels to com-
plete the integration of a new product or service into the user’s enterprise. At

* The term information is used in the sense of data with a context. When information is com-
bined with a model for relating the implications of scaling to a set of defined metrics and
interpreting the data within a context that is representative of logic and reason, we have
knowledge. The word information is used widely in this book to refer to data, information,
and knowledge.

† The physical and functional domains are also an integral part of the product or service
architecture.

19Importance of Integration

this juncture, the integration may take on the proportions of a system of sys-
tems integration. The more ambitious the integration, and the more out of
control are the interfaces (i.e., not under change control or management), the
more difficult the integration of the new product or service into the existing
user’s environment and enterprise.

In addition to the product’s or service’s functional aspects of integration,
the overall determination of the process view of the integration level needs
to be determined explicitly.

Principle 5: The Principle of Forethought

Integration is a primary, key activity, not an afterthought considered as the result of
development.

Integration must neither be considered nor treated as an afterthought or as
a consequence of development. The key determinants of integration must be
considered during the planning stages for integration: the defining of
requirements; the considerations of the problem solution incorporated in the
system design; the achievement and satisfaction of key stakeholder needs
carried out by architecture; and the building of physical entities that embody
the expected functionalities (and their performances), and engender the
desired behaviors from the users. Integration must not only be planned
upfront but also used to guide scheduling of development tasks so the cul-
ture, skills, and style of the development team are incorporated into building
and testing of the product or service. In this manner, the organizational pro-
cesses carried out by the team and the politics embedded in the tasking are
not just assumed but considered important for integration work which is
exactly where the results of every factor that can impact on the work is finally
revealed. In essence, the system-level perspective is embedded in these for-
mative tasks to reflect not only the specific instances for object development,
test, and integration, but further to incorporate the system-level view in the
integration activities (Ring et al. 2007). To avoid unpleasant surprises, the
satisfactory technical solution is modified by the social and political environ-
ment (Brooks 1972).

Fundamental to integration planning and execution is the notion of fore-
thought and measurement. Integration requires the structures of knowledge,
the benefit of information, and meaningful data to determine the alternative
ways in which to integrate a product or service. Thinking in systems to
make the key decisions before planning and development begin results in
more meaningful integration with complex products (Dirk 1994) and services.
Measures and measurement are the only substantive means of testing and
verifying the results of building and assembling objects. Ineffective measures
confound the integration efforts (Bullock 2006).

Integration is a daily focus, with periodic updates to the integration plan.
Integration is an explicit goal of acquisition, with key stakeholders who
represent the buyer, the seller, and the user. Often, integration require-

20 Engineering Systems Integration

ments are left unstated, as they are sometimes assumed. Systems engineers
are trained to focus on the task at hand (as reinforced by the systems engi-
neering process models) and most find it expedient to not think too far
ahead as the current work is most demanding. However, planning for inte-
gration alleviates problems that surface during integration that are caused
by ineffectual measurements, trade-offs that show preference for one
design or a particular decision versus another, and ill-conceived schedule
or allocation of resources to overcome technical problems. Moreover, if the
allocated baseline changes (occasionally, frequently, or continually), the
integration plan will no longer hold the advantage of being the plan, but
will be subjugated to a piece of historical rhetoric of no utility or value
(Collens and Krause 2004).

Reliability of the product and service is based on the aggregation of the
reliability of the product or service components in addition to the interac-
tions of the components. Developing the aggregate reliability of a group of
objects begins with forethought about the system design. That forethought
includes exploratory thinking about how to produce a system design that
carries with it a set of meaningful alternatives (meaningful from the per-
spectives of the different stakeholders, such that each alternative emphasizes
a major component of a stakeholder’s needs and position on requirements).
When selecting a system design, these meaningful alternatives help deter-
mine the context for further exploration of the design space. Often, these dis-
cussions surface additional requirements, modify the concept of operations,
and sometimes suggest not so subtle changes in the systems architecture.
Integration planning carries those system design parameters through archi-
tecting and development with the aim of preparing the objects for integra-
tion. Incorporating object reliability into the integrated structures is not an
afterthought (Ferris 2007).

In those instances of product or service development of a large effort in
which integration includes a great number of transfers of data across subsys-
tem interfaces or in support of the interfaces with users, integration planning
is substantially more than merely identifying, designing, and managing
interfaces. The semantic architecture (the structures, interactions, and pref-
erences that are made meaningful by data that is made interoperable by the
design and implementation of the system objects) exposes information rele-
vant to the user, a portion of which is presented to the user either in sum-
mary fashion or in the form of an analytical depiction of key results. Greater
than half of the software in a project can be integral to the user interface
(Oliver et al. 1997 citing Brown 1988).

At best, this technique of building systems is a guess at building objects
so that performances are met. Support for this practice comes from tech-
nology that has been shown to move data at sufficient rates and quantities
that many such transfers are done within reasonable periods. In other
words, the users have not complained too much. Modeling and simulation
certainly help in the determination of meeting performances but the

21Importance of Integration

guess-and-try-again approach to integration is time-consuming and dollar-
expensive. Consequently, integration as an afterthought is time-consuming
and dollar-expensive (McKenna et al. 2006). The issue of forethought is
completely masked by the predominant influence of interfaces between
objects as the central focus for integration. Much of the planning that is
done for integration is concerned with the interfaces between objects. Early
in the development stage, much attention (and therefore tasks and docu-
mentation) is placed on linking the subsystems with various connections
across an interface. Interfaces are managed to be consistent with the
planned interactions between objects, each iteration adding more detail
and refining the actions of the transfers of data. The expectation of the
engineers is that by moving data through objects, subfunctions and there-
fore system-level functions are enabled to satisfy the performance require-
ments. While planning for interfaces is indeed a necessary and essential
process, it should neither mask nor undermine the importance and enact-
ments of forethought.

Principle 6: The Principle of Planning

Integration planning is predicated on pattern scheduling (lowest impact on budget),
network scheduling (determinable impact on budget), and ad hoc scheduling (unde-
termined impact on budget).

Integration planning requires knowledge of the completion dates for
developing objects. But knowing which tasks are to be completed is not the
key for planning. Rather, the problem for planning for integration is in iden-
tifying how long the tasks will take to complete. Systems engineering man-
agement planning works within the systems engineering process models to
lay out the tasks (break down the tasks) into a structure (referred to as the
work breakdown structure or WBS). The key issue is in determining the
type and amount of resources, the delays due to factors internal and exter-
nal to completing the task, and the overall impact(s) of missing a scheduled
milestone or delivery.

Task durations should be assessed only based on inputs from engineers,
systems engineers, and management specialists who have direct and appli-
cable experience with integration planning. Still, the theory of planning for
integration rests principally on one of two fundamental premises: integra-
tion planning predicated on the scheduled needs for the optimum sequenc-
ing of objects or ad hoc by the dictates of what is completed. Planning for
integration involves knowing what technological problems need to be
resolved, recognizing the skills and resources that are available to prepare
objects for integration, and protecting the project team from disruptions
that have significant impact(s) on the progression toward milestones. In
this regard, integration can be thought of as having explanatory variables
for propitious aggregation, starting with the systems design and architec-
ture baselines.

22 Engineering Systems Integration

For deterministic scheduling (or pattern scheduling), that is, all that is
known regarding the task durations, the planning can be based on a
sequence vector in a time-domain set, which is optimized for costs, or
alternatively a sequence vector in a cost-domain set, which is optimized for
task times. Deterministic scheduling has the lowest impact on budgets.
Therefore, the sequencing can be defined for every task duration and need
not be dependent on a preference under either the budget or temporal con-
straints. The sequencing can be modeled as tasks, where every task has the
same duration but with different resource requirements and risks. The
results of such modeling in this simple case are either unrealistically sim-
ple or very dependent on the demands for resources (and as reflected in
higher risks). In this manner, integration can be modeled after aggregation
theory (Hildenbrand 2008).

A common variation of the simplest case is to develop a network model,
such as that used to plan projects. Network scheduling techniques that
are based on the theory of constraints and the concept of the critical
chain* (Goldratt and Fox 1984) and are extended by adding additional
tasks to absorb risk have the highest chance of predetermining the inte-
gration sequence and schedule. Network scheduling predicts the impacts
on budgets and schedule for various sequences and durations of objects
that are planned to be integrated. Adding additional tasks to accommo-
date risk is an alternative to simply padding individual task and project
estimates with what is often referred to as “management reserve.”
Management reserve can be swept up by the business enterprise, squan-
dered on “essential” but noncritical issues, and seen as a psychological
cushion to deal with the uncertainties associated with problematic or
inept management. The management reserve is often thought of as “good
enough,” as “insurance sufficient,” or as “the lifeboat to save the project.”
However, if 8% of the management reserve is allocated at the beginning
of the project to the early identified risk areas, with the remaining 20%
retained for a second look at risk before the start of development, then the
network schedule can incorporate risk in terms of additional tasks that
are allocated according to the areas of risks, each task having budgets
and schedules. For integration planning, the sequencing of the objects is
derived from the network schedule in the same manner as with the sim-
plistic deterministic scheduling.

Given the uncertainties associated with object development, many large
systems engineering projects are resigned to on-demand (ad hoc) schedul-
ing with whatever objects become available. In this ad hoc fashion, integra-
tion efforts are saddled with emulators that are built to represent what an
in-progress object should be like when completed. Integration to emulators
allows a first look at the issues of integration to build subfunctions. However,

* A critical chain is “the longest chain of dependent events and takes into account both task
dependencies and resource conflicts” (Goldratt and Fox 1984).

23Importance of Integration

by its nature these early first-look integrations are designed to be an itera-
tive means of filling in until the test-ready object can be made available.
Ad hoc scheduling reduces the orderliness of integration to a somewhat
chaotic clustering of objects that seem ready but lack their reciprocal objects
from which to build functions. There are two strategies from which to proceed.
First, the objects that seem ready for integration may be shelved until their
counterpart objects also seem to be ready to be integrated, at which time the
two objects may begin the integration process. Alternatively, an emulator
may be constructed that presumes to match the as-yet-completed object and
integration may proceed with the seemingly finished object with that of the
simulator. When the as-yet-completed object seems ready, the two objects
can be integrated together or, should there be other circumstances that pro-
hibit that type of integration, the second object can also be integrated to a
like-kind emulator. The procedures of using emulators to perform integra-
tion is time-consuming, problematic, and never quite the same as integrat-
ing the intended objects. The most significant difference between an
emulator and the “real” object is noticed in the performance of the emulator.
Typically, the performance of an emulator is significantly slower than the
“real” object. For example, during the development of a new microprocessor
chip, emulators are used by software developers to test their code before the
microprocessor chips have been returned from the foundry, packaged, and
tested.

Principle 7: The Principle of Loss

When two objects are integrated, both objects give up some measure of autonomous
behavior.

For every action there is a loss (the law of action*). That loss is quantifiable
as EMMI. When two objects interact, there is a loss. When two objects are
integrated, energy is expended (there is a loss). When EMMI is transferred
from one object to another across an interface, EMMI is expended. Interaction
is different from integration and integration is different from interaction.
There must be interaction to accomplish integration; however, an interaction
does not portend the integration of two objects. In either case, EMMI is
expended. Interaction and integration are covered in more detail in Chapter 2.

Whether integration for a system or integration for a system of systems,
there are fundamental questions regarding the losses incurred to sustain
operations of the system. An analysis of losses is a means of discussing what
it takes at the system level to operate. What is the amount of EMMI expended
to achieve various levels of performance?

Further, there are fundamental losses that arise in a system of systems
integration that are not apparent in integrating a system. In a system of sys-
tems, integration is different than that of a system. Integrating a system into

* This could be considered Newton’s fourth law of motion.

24 Engineering Systems Integration

a system of systems results in a set of systems that are both integrated and
interoperable to achieve a set of metasystem functions in which all the com-
ponent systems participate (to varying degrees). Bringing people together
with a system can be thought of in terms of system of systems integration.
Typical of system of systems integration is a preponderance of highly complex
exchanges of EMMI between systems sometimes coupled with a loss of indi-
vidual system capability. For example, what is the effective mix of integra-
tion and autonomy? Giving up autonomy is another form of loss. In systems
integration, the relation between objects is expressed as connectivity, cou-
pling, and cohesion. However, for system of systems integration, the notion
of autonomy is more germane at the system level. For the system of systems,
what flexibility is sacrificed at the individual system level when an interface
is integrated? The integration of one system with another system (i.e., a
system(s) of systems) brings about challenging issues, such as joint opera-
tions, joint interoperability, and the dimensions of distributed command (‘to
direct’*) and control. The systems engineer considers the political, social,
and technical integration of system(s) of systems. The secondary domain of
systems engineering is that of developing the structures and overseeing the
engineering tasks to build objects, and integrating object by object to achieve
functionalities and performances. Beyond functions and performance, inte-
gration requires adaptability and flexibility to reach the required degree of
system stability. The intended result of integration is to facilitate the exchange
of EMMI that is required to achieve the system(s) objectives. For every inter-
action, there results a loss of EMMI. For every integration into a system, there
results a loss of EMMI. For every integration of a system into a system of
systems, there results a loss of EMMI.

Endnote

 1. The type of acquisition, the amount of detail in the system design, and the degree
of specificity for the concept of operations are typical considerations for starting
the systems engineering development work. The U.S. government acquisitions
for the Department of Defense often presents a set of general system requirements
(with some degree of specificity for core aspects) and a concept of operations as
the starting point for systems engineering development work. As a consequence
of the acquisition process, which at some point asks potential bidders to propose
their ideas and means for building and integrating a product or service to a set of
requirements, reasonably explicit and detailed descriptions of a system design
and a concept of operations are included in the proposal submission. The systems
engineering work for the U.S. Department of Defense is required by regulation

* Function are designed by single quote marks; whereas processes are designed by double
quote marks.

25Importance of Integration

DoD 5000.2-R to transform the required operational need into an integrated sys-
tem design, but does not specify whether the degree of linkage between the sys-
tem design and the concept of operations. As such, the acquirer presents the
designated systems engineering and integration contractor with toplevel require-
ments and a concept of operations that reasonably reflects the consensus view of
what is to be built. The specifics of the system design are left to the systems engi-
neering development work to determine, explicate, or refine.

 However, contrast this style of acquisition with one in which the top-level
requirements and a concept of operations are the starting points for systems
engineering development. The range of outcomes for the product or service
may vary considerably from that resulting from an upfront limitation on the
resultant system design. The trade spaces for the constraints of cost, schedule,
and functional performances, the interaction to further define the end product
or service, and the degree to which more creativity can cast new thoughts to
solve the problem of the customer(s) and uses is broader reaching. The overall
difference between greater or few limitations is perhaps a bit more time spent
on upfront design and architecture, but the development and integration may
be significantly less problematic.

 The basis for this optimism for reducing costs for systems engineering develop-
ment and integration work is that by adding more thinkers upfront deals directly
with one of the primary reasons (if not the primary reason) why systems engineer-
ing was initially conceived as the means to solving increasingly complex prob-
lems. There are two issues that premise this discussion: First, the system design
represents the consensus view of what the stakeholders need to solve their prob-
lem. Getting to the system design takes considerable analysis and thought.
Without due consideration by many, varied thinkers, the right objects that make-
up the system (system components) will not be identified and the architecture
will not be optimized to provide what is needed. Second, “The first need for sys-
tems engineering was felt when it was discovered that satisfactory components
do not necessarily combine to produce a satisfactory system” (Schlager 1956).

 The solution to the customer and user needs requires integrating the right
components in the right way. Integration requires a sound system design and a
sound architecture as a minimum to provide the requisite product or service.
Allowing systems engineers to assist in the upfront work of assessing the current
and future trends in capabilities (explicitly determining what the problems are
that need to be solved), determining the need for the system, analyzing the gaps
in future systems or system of systems, identifying the top-level requirements,
specifying the initial capabilities, developing the key performance parameters,
and posing a system of systems architecture that shows the fit of a future capabil-
ity into the trend line of current, soon to be concurrently interoperable, systems.

References

 Allen, L. Commission. 1990. The Hubble Space Telescope Optical Systems Failure Report.
National Aeronautics and Space Administration.

26 Engineering Systems Integration

 Allen, T. J. 1977. Managing the Flow of Information Technology. Cambridge, MA: MIT Press.
 Allen, T. J. and Cohen, S. 1967. Information flow in R&D labs. Administrative Science

Quarterly 14: 12–19.
 Ashby, F. G. 1962. Principles of the self-organizing system. Principles of Self-Organization:

Transactions of the University of Illinois Symposium. London: Pergamon Press.
 Bornemann, F. and Wenzel, S. 2006. Managing compatibility throughout the product

life cycle of embedded systems—Definition and application of an effective pro-
cess to control compatibility. INCOSE 2006—16th Annual International Symposium
Proceedings: Systems Engineering: Shining Light on the Tough Issues. Toulouse:
International Council on Systems Engineering (INCOSE).

 Brooks, H. 1972. A framework for science and technology policy. IEEE Workshop on
National Goals, Science Policy, and Technology Assessment. Warrenton, VA.

 Brown, C. M. L. 1988. Human-Computer Interface Design Guidelines. Norwood: Ablex
Publishing.

 Bullock, R. K. 2006. Theory of Effectiveness Measurement. PhD thesis, Wright-Patterson
Air Force Base, Air Force Institute of Technology, 188pp.

 Burgin, M. 2003. Information: Problems, paradoxes, and solutions. Triple C: Cognition,
Communication, Co-operation—Vienna University of Technology (http://tripleC.uti.
at) 1(1): 53–70.

 Burkatzky, F. H.-H. 2007. Development of Measurement Scales for Project Complexity and
Systems Integration Performance. PhD thesis, School of Management, Walden
University, 161pp.

 Burns, T. R. and Machado, N. 2007. Technology and Complexity: The Perspective of ASD
on Comlex Sociotechnical Systems, Uncertainty, and Risk. Stanford: Stanford
University, 48pp.

 Collens, J. R. and Krause, B. 2004. Theater Battle Management Core System: Systems
Engineering Case Study. Center for Systems Engineering, Wright-Patterson Air
Force Base, Air Force Institute of Technology, 74pp.

 Cooper, R. G. 1979. The dimensions of industrial new product success and failure.
Journal of Marketing 43: 93–103.

 Darcy, D. P., Kremerer, C. F., Slaughter, S. A., and Tomayko, J. E. 2005. The structural
complexity of software: An experimental test. IEEE Transaction of Software
Engineering 31(11): 982–996.

 Dirk, M. J. 1994. Systems thinking for product development. NCOSE Symposium, San
Jose, pp. 231–237.

 Edwards, M. 2009. The impact of technical regulation on the technical integrity of
complex engineered systems. INCOSE International Symposium. Singapore:
International Council on Systems Engineering.

 Einstein, A. 1950. The Meaning of Relativity. Princeton: Princeton University Press.
 Eisenhardt, K. M. 1989. Building theories from case study research. The Academy of

Management Review 14(4): 532–550.
 Everett III, H. 1957. “Relative state” formulation of quantum mechanics. Review of

Modern Physics 29(3): 454–462.
 Feng, S. C. and Yang, Y. 1994. A dimension and tolerance data model for concurrent

design and systems integration. Factory Automation Systems Division.
Gaithersburg: National Institute of Standards and Technology, 38pp.

 Ferris, T. L. J. 2007. Some early history of systems engineering—1950’s in IRE publica-
tions (Part 1): The problem. INCOSE 2007: System Engineering: Key to Intelligence
Enterprises. International Council on Systems Engineering.

27Importance of Integration

 Flyvbjerg, B. 2006. Five misunderstandings about case-study research. Qualitative
Inquiry 12(2): 219–245.

 Fritz, D. 2006. The semantic model: A basis for understanding and implementing data
warehouse requirements. www.TDAN.com.

 Gödel, K. 1951 [1995]. Collected Works, Volume III. Oxford: Oxford University Press.
 Goldratt, E. and Fox, J. 1984. The Goal. Croton-On-Hudson: North River Press.
 Green, R. G. 2008. Tenure and promotion decisions: The relative importance of teach-

ing, scholarship, and service. Journal of Social Work Education 44(2): 117–127.
 Haas, P. M. 1992. Introduction: Epistemic communities and international policy coor-

dination. International Organization 46(1): 1–35.
 Hildenbrand, W. 2008. Aggregation theory. The New Palgrave Dictionary of Economics,

2nd edition, 26pp.
 Holland, J. H., Holyoak, K. J., Nisbett, R. E., and Thagard, P. R. 1986. Induction:

Processes of Inference, Learning, and Discovery. Cambridge, MA: The MIT Press.
 Hoopes, D. G. and Postrel, S. 1999. Shared knowledge, “glitches”, and product devel-

opment performance. Strategic Management Journal 20: 837–865.
 Howard, R. A. 1983. The evolution of decision analysis. In: R. A. Howard and

J. E. Matheson (Eds), The Principles and Applications of Decision Analysis, Vol. 1.
Menlo Park, CA: Strategic Decisions Group, pp. 6–13.

 Howard, R. A. and Matheson, J. E. 1984. Influence diagrams 1981. In: R. A. Howard
and J. E. Matheson (Eds), Readings on the Principles and Applications of Decision
Analysis, Vol. 2. Menlo Park, CA: Strategic Decisions Group, pp. 719–762.

 Kasser, J. E. and Shoshany, S. 2000. Systems engineers are from Mars, software engi-
neers are from Venus. Thirteenth International Conference “Software & Systems
Engineering & Their Applications”. Paris.

 Korman, D. Z. 2011. Ordinary objects. Stanford Encyclopedia of Philosophy. published
online by Stanford University, http://plato.stanford.edu/archives/spr2007/
entries/ordinary-objects/. Retrieved August 13, 2011.

 Kossiakoff, A. and Sweet, W. N. 2003. Systems Engineering Principles and Practice.
Hoboken: John Wiley and Sons, Inc.

 Lazarsfeld, P. F. 1993. On Social Research and Its Language. Chicago: University of
Chicago Press.

 Leblond, P. 2007. The fog of integration: Reassessing the role of economic interests in
European integration. Economic Interests and European Integration. Edinburg:
University of Edinburg, April 8, 2006, 32pp.

 Lyre, H. 1995. The quantum theory of ur-objects as a theory of information. International
Journal of Theoretical Physics 34(8): 1541–1552.

 Marschak, J. and Radner, R. 1972. Economic Theory of Teams. New Haven: Yale
University Press.

 Mattice, J. J. 2005. Hubble Space Telescope: Systems Engineering Case Study. Center for
Systems Engineering, Wright-Patterson Air Force Base, Air Force Institute of
Technology, 90pp.

 McKenna, B., Gualtieri, J., and Elm, W. 2006. Joint cognitive systems: Considering the
user and technology as one system. INCOSE 2006—16th Annual International
Symposium Proceedings, International Council on Systems Engineering.

 Miller, J. G. 1978. Living Systems, New York: McGraw-Hill Inc.
 Mishler, J., Carleton, A., and Nichols, B. 2007. How to talk to a program manager. 10th

Annual Systems Engineering Conference. Software Engineering Institute, Carnegie
Mellon University.

28 Engineering Systems Integration

 Moody, J. and White, D. R. 2003. Structural cohesion and embeddedness: A hierarchi-
cal concept of social groups. American Sociological Review 68(1): 103–127.

 Morris, P. W. G. and Pinto, J. 2004. The Wiley Guide to Managing Projects. Hoboken:
John Wiley & Sons, Inc.

 Nissen, M. E., Orr, R. J., and Levitt, R. E. 2006. Streams of shared knowledge:
Computational expansion of organization theory. Monterey: Naval Postgraduate
School, 40pp.

 Oliver, D. W., Kelliher, T. P., and Keegan, J. G. 1997. Engineering Complex Systems with
Models and Objects. New York: McGraw-Hill.

 Pikula, M. and Siemion, A. 2007. Design patterns in application integration based on
messages. Software Engineering. Warsaw: Polish-Japanese Institute of Information
Technology, Master: 101.

 Richey, G. K. 2004. F-111: Systems Engineering Case Study. Center for Systems Engineering,
Wright-Patterson Air Force Base, Air Force Institute of Technology, 90pp.

 Ring, J., Bahill, T., Blackmon, T., Cloutier, R., Clymer, J., Hodgson, R., Jacoby, C.,
Krane, S, Lloyd, K., Newman, R. A., Orr, J., Rose, C., Skipper, J., Sorenson, R.,
and Steiner, R. 2007. Discovering a strategy for whole systems modeling—Panel
4.3.0. INCOSE 2007: Systems Engineering: Key to Intelligence Enterprises; 17th
Annual International Symposium, International Council on Systems Engineering,
17th Annual International Symposium Proceedings, San Diego.

 Sage, A. P. and Armstrong, J. E. 2000. Introduction to Systems Engineering. New York:
John Wiley & Sons, Inc.

 Schlager, K. J. 1956. Systems engineering—Key to modern development. Institute of
Radio Engineering EM-3: 64–66.

 Tan, Y. H., Teo, S. H., Lee, K. S., and Lim, H. S. 2009. DSTA’s journey in systems archi-
tecting. 3rd Asia-Pacific Conference on Systems Engineering (APCOSE). Singapore:
Asia-Pacific Conference on Systems Engineering.

 Tyson, R. K. 1991. Principles of Adaptive Optics. San Diego: Academic Press.
 Wells, G. D. and Sage, A. P. 2009. Engineering of a System of Systems. Hoboken: John

Wiley & Sons, Inc.
 White, D. R. 2007. Innovation in the Context of Networks, Hierarchies, and Cohesion.

Dordrecht: Springer Methods Series.
 Wieringa, R. J. 1996. Requirements Engineering: Frameworks for Understanding.

Amsterdam: John Wiley & Sons, Inc.
 Wu, M. and Adams, R. 2006. Modelling mathematics problem solving item reponses

using a multidimensional IRT model. Mathematics Education Research Journal
18(2): 93–113.

 Zaitun, A. G., Mashkuri, Y., and Wood-Harper, A. T. 2000. Systems integration for a
developing country: Failure or success? A Malaysian case study. The Electronic
Journal on Information Systems in Developing Countries 3(5): 1–10.

29

2
Essences of Interaction

Without Boundaries: Oneness

The first one to have advocated that nature had oneness of character and a
reality as only a whole was Parmenides* (Kirk et al. 2009). The view ascribed
to Parmenides for philosophical inquiry is captured in three questions: What
is it that is? What is it that is not? What is it that cannot be? This reinforces
unity as the object of knowledge—the universal element of nature. That
unity as an object is what we term as integration. The process of integration
is to unify.

Since 500 BC Parmenides’ tenor of logic has inspired thinking about time,
motion, change, and unity. But not everyone agreed. In a lecture on the
 philosophy of science in 1967, Professor Paul Feyerabend (University of
California, Berkeley) showed respect for Parmenides’ logic of enquiry, but
condemned his Monist logic. Later, Feyerabend wrote, “This theory illus-
trates a desire that has propelled the Western sciences from their inception
up to the present time—the desire to find unity behind the many events that
surround us” (Feyerabend 1993). However contorted or prescient the Western
philosophical lineage is from Parmenides to the present day, all disciplines
and methods of research are affected. But to suggest that the provenance is
faulty is counter to the splendid logic that should guide inquiry:

Knowledge is not a series of self-consistent theories that converges
towards an ideal view; it is not a gradual approach to the truth. It is
rather an ever increasing ocean of mutually incompatible (and perhaps
even incommensurable) alternatives, each single theory, each fairy tale,
each myth that is part of the collection forcing the others into greater
articulation, and all of them contributing, via this process of competi-
tion, to the development of our consciousness. Nothing is ever settled . . .
Feyerabend (1993)

The profound influence of Parmenides on Socrates and Aristotle speaks to
the inherent attractiveness and objective importance of this general notion

* Parmenides of Elea (se. 500 BC).

30 Engineering Systems Integration

of unity to modern-day thinkers. Parmenides, the first protagonist of unity
as the object of knowledge, and Feyerabend, the harbinger of an anarchistic
view of method (Lakatos and Feyerabend 1978), sparked the foundations of
my reasoning. The result was a realization that thinkers of systems (e.g.,
systems theorists, systems biologists, and systems engineers) may have
tried to answer a question that is unanswerable, and further, they may have
struggled against an objective that is unachievable. The way of Parmenides
has been debated, contracted, and supported. Yet the fundamental notion of
unity, that of integration, has persisted in its historical form. The result is a
rather commonplace view of integration that the whole is made up of the
parts. At the most general level, a central question posed by the thinkers of
systems directed interest to principles that could be gleaned from widely
observed patterns, behaviors, and properties. The goal was to interpret
said patterns, behaviors, and properties in a prophetic manner. This pre-
sentation endeavors to build a consistent, congruous, and symbiotic set of
concepts that reveal the robustness of integration as well as its subtle, yet
important, qualities.

Boundaries

All objects have boundaries that exhibit piece-wise continuous attributes in
the spatial,* functional, and behavioral domains. Some objects have continu-
ous physical boundaries, while a system is comprised of objects that are
interconnected and exchange EMMI. Some objects have continuous func-
tional boundaries, while a system is comprised of pair-wise objects that have
continuity of functionality. However, from a neophyte sociologist’s perspec-
tive, the behaviors of objects may have deep-seated relations but may appear
as quite discontinuous. The physical, functional, and behavioral boundaries
can be characterized by different traits, different properties, and different
attributes. But the differences do not negate the requirements for object-to-
object connectivity—the matter-to-matter joining that forms the boundary.
Connectivity is the condition that is determinable when two objects have
had an interaction. The send object is aware of the interaction only if the
receive object in some manner communicates actively or passively with the
send object. An object that changes its EMMI because it receives a communi-
cation from another object is said to be aware of an interaction with that
object. Awareness may be due to an acknowledgment from the receiving
object (a change observed in the receive object is an acknowledgment).

* The term “spatial” is used to indicate the physical world; “spatial domain” is used to indicate
the physical world of objects that they may be interpreted differently if the context suggests
a difference.

31Essences of Interaction

Awareness may also be due to a communication from a third-party object
who had not participated in the interaction but received a communication
from the receive object that indicated that receive object had indeed received
EMMI from the send object. Two objects that have interacted and who have
communicated with each other are said to be aware of each other. Otherwise
the condition of awareness is unsatisfied. Objects may be connected with
awareness condition being satisfied. Connection without the awareness con-
dition* satisfied means there is no communication between the receive object
and the send object.

Physical objects can be thought of as a solid object, a network of physical
objects, and structures with holes, voids, and gaps. The structures may be
rigid or flexible or small or large.

Other objects are disconnected, physically, but have a functional or behav-
ioral relation that connects various parts. Objects join to form functions or
functional boundaries are identifiable as an extension of the effects of physi-
cal boundaries. A functional boundary results from the uses of an object as
manipulated by another object via the connection between the two objects.
Unlike a physical boundary that follows the materials of one object, all
boundaries are porous—they can be crossed, changed, or broken. Physical
boundaries can pass EMMI by mechanisms. Functional boundaries (where
the action exists due to an interface between two objects) can be changed by
changing one or both of the objects. Changing an object’s mechanism(s) or
physical structure may change the function that results from the juxtaposi-
tion with another object. Behavioral boundaries can be changed by changing
the interface between objects, or the objects themselves. Remove or break a
toaster and change behaviors of individuals who previously used the toaster.

If two objects are in space held in close proximity by mutual gravitational
attraction, the physical boundary of each object is localized to the continuous
surfaces of each object, respectively. The functional boundary is identifiable
(and in this case testable) by removing one of the objects (logical equivalent
of falsification). Should the remaining object show (or reveal) no change in its
behaviors, no function was established due to the other (now removed)
object. In other words, the EMMI (interaction) between the two objects was
insufficient to result in a functional dependency. If there is no functional
dependency then there are no behavioral changes. If one does not “see” an

* For example, the gravitational “tug” by binary planet, for example, the Earth–Moon system
is defined as two objects having a reciprocal gravitational connection, where the center of
mass of neither object is at the logical center of either’s physical structure. The closer the logi-
cal center of mass approaches the average distances of their separation, the greater the influ-
ence that is exerted by both objects. In other words, there is no observable wobble in the
center of mass position. Since the center of mass of the Earth–Moon system is approximately
near the surface of the Earth, the wobble should be observable by our technology from out-
side our solar system. This technique of searching for wobble is one of the approaches for
searching for “blue dots”—Earth-like planets orbiting other stars. From a systems integration
perspective, oftentimes the observables indicate the dynamics of operations, and therefore
illustrate the benefit of inductive logic, Principle 3: The Principle of Induction.

32 Engineering Systems Integration

object, there can still be changes in behavior. A person can anticipate objects
and possible functions and act differently because of those anticipations.
While there may be no commonly accepted EMMI supporting a feeling or
attitude, a person may make plans, change direction, set new rules, or do the
unexpected “just because,” these actions may suggest other mechanisms and
other EMMI at work, or below threshold EMMI and mechanisms operative
that are suggestive of various events.

Functional boundaries are formed at the interface of objects. If there is no
interface, there is no function and vice versa. With an interface arises behav-
ior. Similarly, if there is no function, there is no behavior; but if there are
behaviors, there are interface and function as well. A functional boundary
exposes the interaction(s) between objects. A physical boundary shows phys-
ical matter in space. Objects can come nearby and have distant physical
boundaries and not have functions created (as there is no interface). Two
airplanes passing at 2000 km distance may have no interface in contrast to
two airplanes too close to each other either observed visually or by radar/
laser radar (EMMI). Functional boundaries can extend beyond the physical
boundaries of objects. Behavioral boundaries can extend well beyond func-
tional boundaries. An event sequence that happens in one location can be
deemed a pattern that when recognized or anticipated can be predicative of
behaviors at another location. Behaviors of animals (including humans)
seem bounded by cognitive recognition of patterns as stimulated by physical
objects and functions, all enabled by EMMI.

To differentiate one entity from another or one system from another, we
speak of boundaries. A boundary demarks the limit or extent of a defined
domain; divides the essential nature of something from that of something
else; or restricts properties and traits to one or another entity in some
notional or corporal sense. Boundaries are either notably distinct or vague
by their lack of uniqueness or reference to something else. A boundary that
is arbitrarily set at 500 m from an object (object A) may be designated as a
range of interest from that object. That range may be specified by a distance
that delineates a domain of concern, but not necessarily to anything that is
pertinent at a distance of 500 m. In the region of the boundary at 500 m
from object A, the interests at that distance are referenced from object A
not to any other object that is at 500 m from object A. In this case, the
domain is a radius (of a circle) or ray that is 500 m in length (in a particular
direction). The domain is defined by the 500 m distance from object A in
some manner that has blithe ignorance and unconcern about objects else-
where. However, while the 500 m boundary limits the purview of object A,
the so-described boundary does not imply a complete disregard for objects
outside the boundary, only that the considerations due to these outside-
the-boundary objects are dealt with in a different manner. In this example,
the boundary changes how object A behaves or is supposed to behave.
Boundaries help differentiate the characteristics of one entity from that of
another entity.

33Essences of Interaction

One could think of boundaries as ontological entities in themselves. In this
view, the object is distinct from a boundary, as a boundary is distinct from
an object; and boundaries are infinitely small, yet distinct in their character-
istics of indicating a difference between an object and something else (or
nothing else). The boundedness of an object encompasses all that is this
object and none of which is not this object. The boundary in this view is not
object, but can be all else as it is ontologically not object. This view recog-
nizes that boundaries can be different from that of an object or that of not
object. An object is depicted in Figure 2.1.

For this presentation, we distinguish between interaction and integration.
Objects that interact are in a nonbinding relation with other objects. Objects
that interact and create a binding relation with other objects are referred to
as integrated. As such, we refer to boundaries as the limit of an object’s inte-
gration with that of other objects. Therefore, an object includes its boundary
(i.e., the boundary is ontologically part of the object). The maximum extent
of the boundary of an object is that object. Referring to a whole and its parts
(all of which we refer to as objects, without distinction), the whole is made
up of parts—all parts are integrated so that the parts act in concert to imbue
the whole with characteristics that are unlike its individual parts. A part
that is on the boundary of the whole acts like the whole and not like the
part, as if the part were separate from the whole and acting on its own. By
this construct, we refer to the parts on the boundary as boundary objects.
Boundary objects interact with the whole, as well as objects that are outside
the whole. Interactions with the whole reflect the properties of integration,
whereas interactions with objects outside the whole act as the whole, rather
than as the boundary object would have acted were it independent of the
whole. Boundaries are not necessarily restricted to just a physical sense of
boundedness and further reflect a broader notion of interactions that
includes functional and behavioral. Figure 2.2 depicts three objects e1.1.1,

Able to receive
input (EMMI)

Able to perform
(output EMMI)

Able to loss EMMI while
achieving performance

Control
Mechanism

Physical boundary (before
mechanism enabled)

Functional boundary (after
mechanism enabled)

Behavioral boundary (after
mechanism enabled)

FIgure 2.1
Object.

34 Engineering Systems Integration

e1.1.2, and e1.1.3 interacting with each other in the following manner: object
e1.1.1 interacts with object e1.1.3. Object e1.1.3 interacts with object e1.1.1. Object e1.1.2
interacts with object e1.1.3.

The interactions are such that the three objects do not change their proper-
ties, traits, or attributes.* In other words, the interactions do not result in a
causal change that has some degree of permanence and stability in any of
the objects. The physical boundaries of these three objects are said to be at
the furthest physical extent of the physical object. For the interacting pair of
objects e1.1.1 and e1.1.3, the functional boundary of object e1.1.1 extends to e1.1.3,
and the functional boundary of object e1.1.3 extends to e1.1.1. The functional
boundary of object e1.1.2 extends to e1.1.3; however, the functional boundary of

* A property is embodied in an object that is physical or represents something that is physical.
A property can be real (physical or material) or intellectual (conceptual, nonphysical, or
intangible). A physical property of matter is mass. Intellectual property is a representation of
real, physical property, such as software (which represents a process that is enacted through
physical objects). A trait is a property within its context. For example, the context may be that
the object is moving in which case the activity of moving mass must be responsive to bound-
ary conditions for the moving mass. A trait is the nexus of the property along with its condi-
tions. While an object has a physical boundary, the conditions in which that boundary is
effective or by which that boundary signifies the capabilities and capacities of the object, is a
trait. Both objects and traits have mechanisms due to physical matter. Attributes are mea-
sures and measurements, configuration and structure, and constraints (e.g., time, cost, and
scope), performances and losses due to achieving the performances of functions. Systems are
made up of objects, the association of properties of objects and their relations (combined
properties and contexts are referred to as traits), and attributes. These three terms are used to
describe the composition of a system. The definitions of property, trait, and attributes vary
significantly by discipline and by author (Blanchard and Fabrycky 2011).

Object e1.1.1 interacts with object e1.1.3

Object e1.1.3 interacts with object e1.1.1

Object e1.1.2 interacts with object e1.1.3

Object e1.1.1

Object e1.1.3 Object e1.1.2

Domain d1.1

FIgure 2.2
Interacting objects.

35Essences of Interaction

object e1.1.3 does not extend to e1.1.2. A view of a functional boundary is
depicted in Figure 2.3.

The behavioral boundaries are different than either the physical or func-
tional boundaries, as they are affected not only by the physical and func-
tional boundaries, but also by the anticipation of the physical and functional
boundaries. For animate objects such as a person, the anticipation of an
object may change the behavior of that person even though neither of the
object’s physical or functional boundaries extend to the person. For example,
a person planning to buy a new bicycle may walk several bike paths that are
potential routes for commuting to work to ascertain the scenery and safety
issues. The anticipation of purchasing a bicycle has induced certain behav-
iors. For behavioral boundaries, see Figure 2.4.

Boundaries mark the end of one factor, but not necessarily the beginning
of something else. The limit of something is not the same as the beginning of
nothing. And, the beginning of something is not the end of something else.
Boundaries are predicated on a perspective—delineated to stipulate the out-
ermost domain of interest. Boundaries signify the importance, the maximum
extent, essentially, the interest of the one who draws the boundaries. A
boundary is about your limits, not those of someone else. It is about your
action, not someone else’s action. It is about what you believe, not what
someone else believes. Consider the metaphor of chess-play as a project. The
chess board is a geospatial construct to portray moves, limit the play, and
constrain the opponents’ strategies. The game-play focuses on the strategy

Performance
measured at

functional boundary
(output EMMI due to
object 1 and object 2)

Receives input
(EMMI)

Output
EMMI
(from

object 2)

Losses EMMI while transforming input
EMMI into output EMMI

Physical boundary (after
mechanism enabled)

Control

Control

Object 2 mechanism

Object 1 mechanism
Physical boundary
(after mechanism

enabled due to object 2)

Performance at
physical boundary
(output EMMI due

to object 1 and
object 2)

Functional boundary (after
mechanisms enabled)

Losses EMMI while transforming input
EMMI into output EMMI

FIgure 2.3
Functional boundary of two objects.

36 Engineering Systems Integration

of two players each moving “pieces” according to a set of rules.* Each piece
takes up one square of the board exerting its “influence” over other squares
according to rules of movement for its particular type. These rules govern
the capability of a player to attack and take the opponent’s pieces. The physi-
cal boundary of the chess piece is limited to one square. By the nature of the
rules governing play for the pieces, a player may use the functions of the
pieces (e.g., 1.0 ‘project power,’ 1.1 ‘protect another piece,’ 1.2 ‘attack an oppo-
nent’s piece,’ or 1.3 ‘exert influence over a vacant square’). The functional
boundaries of the pieces are shown as distinct squares over which the oppo-
nent may risk either losing a piece or by disputing its control. The behavior
of the players is affected by the physical location and the functional capabil-
ity of the pieces. From each player’s perspective, the game progresses by
moving pieces to 1.0 ‘project power,’ 2.0 ‘force the opponent to change strat-
egy,’ 3.0 ‘construct traps,’ or 4.0 ‘retreat’ (for example).

* Both players start with the same number and type of pieces, but oppose each other by block-
ing or attacking and removing “taking” each other’s pieces. Winning is defined by either
capturing the opponent’s piece referred to as the “king” or by forcing the opponent to
resign—in either case winning the game. Pieces are differentiated by color and type—one
color representing each player, a physical design signifying type of piece. Each player has 16
pieces occupying a single square on a board of 64 equal area squares. Play begins with a
particular layout which is identical for both players positioned on opposite sides of the
square of squares.

Receives input
(EMMI)

Output
EMMI
(from

object 2)

Losses EMMI while transforming input
EMMI into output EMMI

Physical boundary (after
mechanism enabled)

Control

Object 1
mechanism

Control

Object 2
mechanism

Physical boundary
(after mechanism

enabled due to object 2)

Performance at
physical boundary
(output EMMI due

to object 1 and object 2)

Functional boundary (after
mechanisms enabled)

Losses EMMI while transforming input
EMMI into output EMMI

Behavioral
boundary (after

mechanisms
enabled)

Performance
measured at

functional boundary
(output EMMI due to
object 1 and object 2)

Performance
measured at

behavioral boundary
(output EMMI due to
object 1 and object 2)

FIgure 2.4
Physical, functional, and behavioral boundaries.

37Essences of Interaction

The boundaries drawn by each player are based on the physical location of
their pieces, by their functional capability (and uses), and by the behavior of
the opponent either due to the physical and functional factors or in anticipa-
tion thereof. The functional boundaries of each piece extend beyond the
physical boundary of the one square in which the piece is located, while the
behavioral boundary due to the physical location and the functional capabil-
ity are reflected in the immediacy that confronts the position through the
progression of pieces or in anticipation of what may occur as a consequence
of the moves seen as well as what could be forthcoming. The players can
control their own pieces and influence the opponent to move in certain ways.
In other words, those who draw boundaries can control only themselves
regardless of their intentions of exerting influence on the actions of others.
To better appreciate the difference in perspective when a boundary is defined
(or moved and redefined as in chess), view the game-play from the oppo-
nent’s side of the board. The game may appear remarkably different from
another perspective. The patterns that are clear from your initial viewpoint
may be discernable after considerable study. The strategy of moving pieces
to trap an opponent’s piece may appear to be problematic from that new
perspective. The different vantage point may reveal influences and strategies
that went unseen previously.

Drawing or declaring boundaries is sometimes deemed necessary, but at
the same time immobilizing. Scoping must be necessary and sufficient. It is
necessary to place limits on (i.e., bound) the concerns that in a practical man-
ner cannot go infinitely in all directions for all factors. It is immobilizing to
be faced with a poor design and architecture that does not encompass all
that is necessary for effective operations once the product or service is used.
And it is wasteful not to scope the work effort (e.g., through the WBS) to
 provide focus and intensity for the project team.

The planners, designers, makers, builders, and users of products or ser-
vices must consider boundaries—all three boundaries: the physical, the
functional, and the behavioral aspects that define an object. Boundaries can
represent the primary domain of interest in which a product or service is
expected to affect or be affected by objects. The intent of a boundary is to
indicate the expected interactions that will occur with a product or service
once placed into operations.

Sometimes, boundaries are simply stated or declared by fiat. This being a
somewhat arbitrary designation, boundaries may not be perceived as afford-
ing the most propitious view of phenomena within the bounded domain.
Indeed, there may be altogether unnecessary and insufficient justification for
boundedness. That a boundary could be physical (e.g., road barrier that is
positioned physically between oppositely moving traffic), functional (e.g.,
prevent a vehicle from crashing head-on into oppositely moving traffic), or
behavioral (e.g., promoting closer scrutiny by the drivers of vehicles that
travel in the same direction of traffic, without having to be concerned about
appositively moving head-on vehicles)—attempts a sort of isolation by the

38 Engineering Systems Integration

preponderance of the effects contained within. Alternatively, one could think
of the boundedness as those characteristics as not contained in the bounded
domain. Yet this boundary presumes or ignores the significance of (the cir-
cumstances that arise when boundaries are permeable to energy, matter,
material wealth, or information that enters a bounded domain and interacts
with object(s) within that bounded domain) that which “bleeds” through (or
enacts across) the boundary. The intended and often times prevailing assump-
tion is that the bleed-through influences or phenomena are minor or insignifi-
cant. Therefore, bleed-throughs are thought to be ignorable for the “practical”
purposes of inquiry or engineering of products. It is exactly this somewhat
ill-advised disregard for the consequences of boundaries that confounds the
development and operations of systems. Problems arise when developing
products and services when the key stakeholders realize that the require-
ments need revision, additions, or deletions. Such requirement changes are
most disruptive for schedules and can add significantly to the costs of devel-
opment. The greatest impact on cost and schedule is realized, the further into
the development that changes are made. In a significant part, it is this bound-
ary that presents itself as the demarcation for observing patterns, behaviors,
and properties. And, it is this boundary that we find enigmatic, whether
ascertained as a limit of concern or as determined by fiat. In the case of our
universe it is surmised that “the boundary becomes indistinguishable from
its contents” (Schiller 2009).

The arbitrariness of demarcation between things poses two problems for
defining a system. First, the impacts of consequential bleed-throughs across
demarcations may invalidate any preference or benefit imparted by an
imposed isolation. That preference may be for convenience, expediency, or
desirability (e.g., analysis may be easier). The consequences of a subjective or
capricious decision about boundaries may introduce a randomness (or limi-
tation) that increases the error in both the precision and accuracy of knowl-
edge needed to design a product or service. Second, the ascertainment of
patterns, behaviors, and properties is dependent on perspective. The per-
spective of the designer, the user, the customer, and other key stakeholders
will at first be different. Within the boundaries of an entity (if such a concept
has meaning), the observation of patterns will be different inside the domain
of the product or service than that from an external vantage point. What may
appear as dependencies that presage or present as patterns, behaviors, or
properties may be dependent on other factors unobservable from the per-
spective of the observer. The result could be false data, erroneous informa-
tion, misleading analysis, and theory in conflict with information. The
perspective from which one examines an object or process with respect to its
boundaries (observer view) will determine the kind and quality of data
obtained and how the information is interpreted.

We can rationalize an idealized boundary that demarks platonic objects
and process so as to avoid the problems of arbitrary demarcation by instead
posing a condition by which the boundary might circumvent the problems

39Essences of Interaction

of observer view. Consider a boundary that encompasses an entity’s physical,
functional, and behavioral incarnations throughout its lifecycle. Lifecycle
covers the temporal domain for all events associated with an entity, for
example, a product, service, or system. This situation also includes all influ-
ences on the bounded domain that are external to the presumed boundary.
Moreover, all other entities in the universe (bounded or otherwise) are like-
wise isolated from the hypothesized bounded entity throughout that enti-
ty’s lifecycle. Since all bounded entities over their lifecycle include all
influences by other systems, the boundedness is never violated. There are
no influences that have an effect on the hypothesized bounded system, as
determined by those influences enacting across the boundaries of the
hypothesized bounded system. Therefore, the bounded entity has not inter-
acted with the rest of the universe. If such a hypothesized bounded entity
existed, there would be no observables from which to know about it. As
there would be no interacted with the hypothetical bounded entity, there
would be no evidence of any kind that betrayed its invisible existence.
Therefore, no entity can be formed or sustained in isolation from all else
that is observable outside the bounded entity.*

For our purposes we can and do define boundaries, but that process need
not be onerous or lend itself to problems for integration. With regard to
integration, all types of boundaries need to be considered. Those types of

* If everything in the universe is made of the same fundamental elements (classically speak-
ing, protons, neutrons, and electrons) that are fashioned in similar but perhaps circumstan-
tially different ways, it seems likely there could exist such a hypothesized entity as a bounded
isolated entity. While there can certainly be situations that defy direct observation of a region
of space, we have limited means and tools to observe the influence of objects that are without
such lifecycle boundaries as with the hypothesized entity. So either directly or indirectly we
can detect many regions of space. However, to be blunt, for while it does seem likely that a
bounded entity can exist in nature or otherwise for relatively brief lifecycles, long lifecycle
entities (on the order of half the age of the universe would seem to be rather unlikely occur-
rences). The perceived continuum of discretely bounded entities (e.g., stellar systems, globu-
lar clusters, and galaxies) appear bounded in a fashion by gravitational forces that bare
themselves to our knowledge of astrophysics. As we begin to explore in more meaningful
ways to glean more information from phenomena at great distances from Earth, we notice
the difference between what we expect locally from classical Newtonian physics versus that
of quantum mechanics. Classically, measurements of an entity’s position in time correspond
to a referenced physical location. Our everyday experience reinforces this notion of seeing an
object at a particular location and then if that object moves, observing it later at another loca-
tion. However, that is not the case with quantum systems. When quantum systems interact,
their local description challenges classical explanation (Bell 1965).

 The quantum mechanical notion of “action at a distance” can be expressed through EMMI
and the properties, traits, and attributes of objects. We can observe based on the limits of our
technology and peer nearly 13.4 billion light years away. Is that the boundary of the universe?
Our observations suggest a theory that we see a primordial broth of the beginnings of the
universe, a prime example of integration that has taken time to nurture and mature. The
concept of boundaries at the level of our universe or its constituent galaxies, stars, and EMMI
is beyond the discussion in this introductory presentation of systems integration. Relying on
the Parmenides’ notion of unity is palliative only as we think little about the subject. The
burden of naivety is shouldered by erudites.

40 Engineering Systems Integration

boundaries that are important to integration relate to the physical object,
they represent the extent of the uses of that object by other objects, and they
relate to the behaviors of those users of the functions of the objects. How the
boundaries interact is not always straightforward from the perspective taken
by the observer. Different observers may perceive boundaries differently
and in conflict with other observers.

From an integration perspective, the physical boundaries are the primary
focus from which the functional and behavioral aspects are realized.
Analysis and evaluation of boundaries should and can be performed before
finalizing requirements for a product or service. Bringing together two
objects exposes the functions of a product or service, whereas operating (or
testing) those objects makes observable the behaviors of users (and other
stakeholders). Any interaction that has a significant impact on the product or
service needs to be considered and accommodated in the design, architec-
ture, operation, and disposal. The lifecycle issues need to be considered in
systems engineering and in systems integration. Each of these boundaries
extends the EMMI transformed by the object’s mechanism(s). From the per-
spective of an observer who is focused on establishing boundaries from an
object (an object-centric boundary perspective) the most limiting of these bound-
aries is likely the physical boundary—the matter that comprises the object.
That the physical boundary is considered limiting is meant to imply that the
object minimum extent is deemed physical, and the functional and behav-
ioral impacts carry on far beyond the physical boundary. The object’s physi-
cal boundary (i.e., the physical boundary of the product or service) is most
often extended by the user behaviors due to the object’s functions. The func-
tional boundaries are determined by the temporal and spatial relations
between a “user” (object) and a product or service (object). The behaviors that
result because of the objects or their function(s) (or in anticipation of same)
are similarly bounded by the lifecycle of these kindred behaviors.

Scope

Products and services have scope; projects have scope. For many engineer-
ing projects, the scope of the product or service is defined spatially by a
physical boundary. And in turn, sometimes the physical boundary is stated
as the spatial extent of the product or service. For example, a hardback book
is often considered spatially to be the extent of its physical dimensions (i.e.,
length, width, and depth). When the book is shipped, its weight is consid-
ered in addition to its physical dimensions. When the book is transported,
its physical characteristics usually dominate the important boundary con-
sideration. When the book is read, its physical dimensions play a role in the
boundary considerations, as the book may need to be held and the pages

41Essences of Interaction

will need to be turned. A book that is quite large may weigh too much to
hold or may not facilitate easy handling to support the turning of pages.
One of the functions of the book is to convey information. Should the book
influence the reader through an interaction with the cognitive structures of
the reader’s perspective, the functional boundary of the book extends
beyond the physical limitations of the words on each page. The publisher
and author of the book have used the book (i.e., an object) to promote a form
of learning. The scope of the work of the publisher is determined by the
work that must be done to have the book accepted by the reader. Consistent
with the Project Management Body of Knowledge, systems engineering par-
lance determines the scope of the book through the project’s WBS (Turner
1993).* Work that is necessary to develop, integrate, and sell a book is the
scope of the project. The scope of the work deals with the project as an
enterprise rather than with the boundaries of the product or service when
put into operations. Scope and boundaries are indeed quite different, but
they are related. The casual definition that the boundary is or in some man-
ner equal to the scope ignores the relation between the product’s or service’s
boundary of operations and the effort that result in providing the user with
a product or service.

Scope can be managed, whereas boundaries exist because of the design
and use of products and services. When requirements change, scope changes.
When requirements change, boundaries may or may not change. The pro-
cesses that define a project’s scope include developing a vision for the prod-
uct or service, a roadmap that shows how the product will evolve over time,
how technologies will mature and be replaced, when various upgrades will
be released, what milestones will be delineated, and how the product or
 service criteria will be implemented.

For example, scope considers the contents of a book. When the reader
 considers the information gained from the book’s contents and then
 integ rates that information into their cognitive structures, the book has
been used to convey information. When the reader applies that knowledge
and thereby influences someone else, the boundary of the book has been
extended by behaviors. The boundaries of the book can be said to encom-
pass physical, functional, and behavioral aspects. The physical boundary is
determined by the publisher and enabled by printing, cutting, and binding.
The functional boundary is determined by the book contents and enabled
by the cognitive structures of the reader. The behavioral boundary is deter-
mined by the reader and the listener(s). There certainly may be additional
types of boundaries other than physical, functional, and behavioral, but
these three are necessary and sufficient for systems engineering. These
three boundary types capture the objective nature of the product both for
its development and its use. Regardless of the boundaries, the project scope
is defined in terms of procedures and events.

* Referenced in the Project Management Body of Knowledge.

42 Engineering Systems Integration

Examples of scope include: work planned or accomplished; processes and
procedures planned or accomplished; organizational entities involved or not
involved; transactions to be completed or to be ignored; interactions or inte-
grations scheduled or left unscheduled; items budgeted or not budgeted;
information exchanged or kept confidential; ideas on an agenda to be dis-
cussed or left out; and concepts considered germane versus passed over or
disregarded.

Carrying the metaphor of the chess match further, scoping refers to the
rules of play. There are differences between tournament play (with penalties
to player who distract their opponents, e.g., receiving calls on a cell phone,
recording moves of pieces) and clocking time for beginning and ending
play. The scoping of procedures and rules most often have only peripheral
bearing on the boundaries of the game board. In essence, scoping guides
the “work” (i.e., game-play) that is to be accomplished in connection with
the game.

Defining the boundary of a product or service provides general guidance
from which to scope the development and integration project. Scoping a
project helps determine what should be included and not included within
the limitations set by the product or service boundaries. Scoping a work
effort assists the project team in making the myriad of decisions that con-
stantly present “opportunities” to stray from the project’s objectives. Scoping
at the rule-level of carrying out project work reinforces the high-level policy
and management guidance that is offered to show the path that is accept-
able and presents the least expensive, most time-efficient way to complete
the project.

Boundary Conditions

A condition is the circumstances that encompass an object; the factors that
affect the manner and ways in which the object interacts; the situation in
which the object operates; or the terms under which an object behaves. An
object is influenced by its sensitivities to conditions. If an object is burdened
by excess mass due to ice accumulation and adherence (i.e., sticking) to its
exterior surface (e.g., wings of an aircraft), then ice is a factor for take-off and
flight safety. The physical boundary of an aircraft’s wings may interact with
that of the atmosphere and result in ice “forming” on the wings. The bound-
ary condition for the formation of ice may be temperature, humidity, and
airflow over the wing’s surfaces. The physics of icing metallic surfaces begins
with nucleation centers that occur due to contaminants, edges, corners, and
in general, surface roughness. Increasing the temperature, lowering the
humidity, or increasing airflow may prevent ice formation on the wings.
The boundary condition for de-icing of the aircraft wings is then potentially

43Essences of Interaction

controllable by design and implementation of a capability that mitigates ice
formation. Boundary conditions mediate the flow of EMMI across interfaces
at boundaries.

Boundary conditions can be defined as mediation of capabilities that enact
across boundaries. Consider a flow of EMMI between two objects, one defined
within a bounded systems, the other left undefined (and therefore not included
within the boundary of the bounded system). Describing the conditions which
determine the interaction between these two objects are equally acceptable as
boundary conditions. How those conditions exist, how those conditions apply,
and how those conditions affect EMMI at the boundaries are boundary condi-
tions. Boundary conditions are a way of limiting how EMMI affects a bounded
object. It is most often boundary conditions that drive usage of bounded sys-
tems—how those systems can be operated, how they interact with objects and
systems that are outside their boundaries, and how the users of such systems
need to behave to accomplish their intended tasks.

Boundary Extenders

The interaction between two objects results in the enabling and use of
function(s). Should that use be transferable from one object to another, the
boundary for that function is extendable by that use. The condition to extend
a boundary (or to not extend a boundary) is the boundary condition. To
extend the boundary means to allow the object’s EMMI to be transferred (or
otherwise extended). The boundary of the object’s functional domain is
reached when the use that originated with the user and the object remains
unused, that is, the end of the function’s use (or appropriately, the end of the
lifecycle of the function or the end of stability for the function). The behav-
iors of people (generally users and stakeholders) that result because of the
objects or use(s) of the object are similarly bounded by the lifecycle of kin-
dred behaviors.* If the originating object were to be destroyed, the function
would necessarily cease, while the behaviors might or might not continue.
The limit of influence of an object is reached when the receiving object’s
mechanism transforms input EMMI into an output that is related to but not
distinguishable directly from the original object’s output EMMI. In other
words, the receiving object’s behavior would appear indiscernible from that
which would be expected given a variety of inputs. In essence, the transfor-
mation of input EMMI into output EMMI that occurs from object to object
results in a change in the EMMI from object to object.

* More accurately, it is more than the mere uses of the object, but also behaviors that occur due
to the object or in anticipation of the object.

44 Engineering Systems Integration

One would suspect that this manner of changing EMMI would occur
between every object, and that no two objects would maintain the exactitude
of the original EMMI. Therefore, each event that represents a transformation
of EMMI by an object records that event as an illustration of the causality
associated with events. An event is depicted in Figure 2.5. An event only
occurs after an object has received input EMMI. An event is observed after
the enactment of the object’s mechanism and an output EMMI has been
released from the object. Events extend boundaries.

Objects and Boundaries

Objects are comprised of matter or energy in ways that manifest as physical
properties, for example, an electron is an object. An object can be anything
physical. Objects can also be anything symbolic, conceptual, relational, or
“intellectual” as long as there is a physical manifestation of whatever form
the object takes (Thurstone 1946). That two physical objects are touching
means some of the constituent objects in one object have explicit physical
contact with constituent objects in another object. It is currently beyond
human skills to engineer two surfaces so that both have a continuous, unin-
terrupted area of surface contact along the entire length of the zone of
touching. In some circumstances atoms or molecules from one object “drift,”
“migrate,” or adhere to other objects. A mixing of physical constituent objects
of one object with another object does not blur the physical boundary of
either object (unless the objects develop changes in properties or traits). Alien
objects intermingle with other constituent objects routinely (Langford 1971).
If the properties of an object change due to these alien objects then there is
integration. We loosely describe that area or volume of contact as the connec-
tion. When two objects are connected we mean that they are joined by such
contact and not be impeded by those spots where no contact exists. The two

Receives input
(EMMI)

Output
(EMMI)

Losses EMMI while transforming input
EMMI into output EMMI

Control

Mechanism

Physical boundary (after
mechanism enabled)

FIgure 2.5
Event.

45Essences of Interaction

objects have coupling and cohesion indicative of the type and kind of con-
nection. If either object were to move, then the result of joining is to support
the motion of both objects along their conterminous joint. For physical
objects that are said to be connected, one can envision a boundary that sig-
nifies the end of one object and the beginning of another object. However, if
the surfaces of the two objects were of the same composition and of the
same structure, and were engineered to be perfectly contiguous throughout
the touching zone, the physical interactions at that supposed boundary
might not support the general notion of a boundary between the two objects.
Were the boundaries to become chemically active (e.g., ionic or covalent),
these previously independent surfaces might combine or fuse in some way.
To fuse is to combine objects such that the identity of the results of the fused
material is no more or no less than the constituent matter from both objects
(Varzi 1997). Integration is different from fusing (e.g., data fusion) in that an
integrated set of objects has characteristics that are different from either of
the constituent matter. When two objects fuse they retain their individual
characteristics except in the boundary regions of blending, which is a region
of hybridization of both objects. If the two objects were identical in both
their matter (in all respects, as if matter from one object were part of the
matter from the other object, however physically separated the two objects
were before their coming into physical contact) and in their constraints and
limitations (ostensibly due to their local environments formed by their
respective objects), then the fusion zone might take on related or similar
characteristics as found in either of the two objects. The notion of a bound-
ary incorporates the idea that there are other objects, distinct and distin-
guishable. Further, the notion of boundary provides a clear demarcation
between the objects so objects retain some degree of complete or partial
independence. The test for independence depends on detecting changes in
characteristics and separability. These notions of boundary suggest
dependence(s) that in some manner influence the action of objects and pos-
sibly change their respective freedom of self-control or undisputed or unin-
fluenced motion. Separability of the two objects requires that objects have
no lasting effects as a consequence of their connections. That there is no
lasting effect is to summarize the concept of interaction. Were the objects to
change in ways that affected their abilities or capabilities and retain those
changes after separation, they would have experienced integration for the
time in which they were connected (and perhaps for some time later).

That objects have boundaries that come into contact is colloquially referred
to as touching. When we touch something we do not expect to become part
of what we touch, we do not expect to be changed in any way. Yet, some
interactions are more than a casual brush with another object. If we were to
breath in air that was contaminated with a virus that in some way resulted
in us becoming ill, our bodies are said to have been unable to “defend”
against the infectious agent. Sometimes we acquire an immunity (resistance
as a consequence of antibodies or sensitized leucocytes (white blood cells)) to

46 Engineering Systems Integration

the infectious pathogenic agent. Immunity is the result of an interaction
between the body (object) and the pathogen object (a protein-coated shred of
deoxyribonucleic acid (DNA) or ribonucleic acid (RNA)) has now become
part of the body’s DNA or RNA structures. In the case of a virus touching the
DNA or RNA in our body, the touching is likely an integration of proteins.
The boundaries of both objects are presumed to be in physical contact. As we
will determine, boundaries are more than physical. Functions and behaviors
of objects can be juxtaposed (and even separated by great distances), yet still
have causal effects.

Consider the case of a boundary between two people—one being the car-
rier of the virus (sender object), the other being the recipient of the virus
(receiver object). Neither person comes into physical contact with the other,
but a cough from the sender expels a pathogenically contaminated mix of air
into the surrounding environment. The boundary of the sender’s body is
breached by the cough with the resultant spray extending into a volume out-
side the physical boundary of the contaminated object. The receiver moves
through that contaminated region of air breathing in the virus, and later
developing symptoms of the infection. The function of the sender ‘to hack
and expel air’ from their lungs, throat, and mouth extends the consequences
of the object, which is the same as their normal breathing—extending the
consequences of the object by expelling matter (object). The function to ‘to
hack and expel air’ from the sender has extended the boundary of the object.
The physical boundary is therefore extendable by a function of the object.
The functional boundary of the contaminated air has a lifecycle, that is, from
the moment the pathogen has left the sender’s body until the virus is no lon-
ger pathogenic or is physically unable to enter a host susceptible to infection
by the pathogen.

Now we find that the habits of the infected receiver are unsanitary. The
physical boundary of the sender’s body has been extended by behaviors
through the enactment of a function(s). The receiver incubates the virus for
a period, develops symptoms, and becomes contagious. During this conta-
gious time, the receiver shakes hands with another unsuspecting person
and transmits the virus from hand to hand (physical boundary). The habits
of the infected person are extending the boundary of the originally sick
person, each person in turn becoming a vector for the pathogen. The physi-
cal boundary of an object is extensible by functions and by behaviors. The
physical boundary has been referred to as the bona fide boundary and the
extended boundaries (by function and behaviors) as the fiat boundaries
(Smith 1994, 1995).

Objects can be physical or abstract (abstract in some incarnation, but trans-
formed in the physical domain for the purpose of boundaries). Objects
receive inputs, have mechanisms, transform inputs into outputs, and have
losses. Their mechanisms transform inputs into outputs. The inputs are pos-
sible combinations of EMMI. Through their mechanisms, objects can trans-
form the inputs into an output and send the results. Mechanisms are broadly

47Essences of Interaction

defined to be that which operate in the context of forces.* Mechanisms have
various controls that govern the transformations of inputs into outputs.
Losses result from transforming input(s) into output(s). Outputs are measur-
able as performance(s). For reference: Figure 2.1 depicts the basic structure of
an object.

Arrowheads indicate the direction of “movement” of EMMI. The boundar-
ies of the object correspond to physical, behavioral, and functional influences
on other objects. Boundaries are definable from either the object’s view or
that of another object. James Lake argued that “functional congruence must
exist between phenomena that underlie a specified symptom pattern and
phenomena operationalized as the mechanism of action . . .” (Lake 2007).

Objects and Mechanism

Mechanisms are the means by which objects and processes change. Change
means that an object or process is different at one instance from the previous
or next instance. Change is precipitated by EMMI. For objects, EMMI exerts
force(s) that influence(s) some or all the structures that comprise the object.
The structures (Reed 2008) (e.g., mechanical, electrical, and chemical) give way
to the influences of the forces derived from EMMI. Structures may give way to
these influences depending on their susceptibility to such influence. When
structures give way, they can have an impact on other structures influencing
these other structures depending on the coupling and cohesion between the
structures. Structures that give way in turn may influence other structures to
give way. The properties of structures (those intrinsic characteristics that have
resilience, i.e., relaxation and restoring action) have a semblance of reliability
if their variations due to some range of force and that force’s influence. For
some structures, their intrinsic properties reinforce the similarity in nature of
giving way based on like-kind influences on the structure(s). We refer to a
mechanism as beginning with that which EMMI influences and ending with
that which the mechanism produces as a result of that input EMMI.
Mechanisms respond to EMMI and transform EMMI into a different EMMI.
That transformation depends on the type of object and the circumstances and
environment that provide that object with a context for transforming EMMI. In
this way, mechanisms can be characterized by an enabling space, a transacting
space, and an outcome space (Trockel 1999). That objects have structures

* Force is defined as the influences of EMMI on objects. Were there no influence on an object,
there would be no force. That the influence should be measurable or detectable is of no con-
sequence to this definition, as influence is relative. The test for influence is determined by the
net of power (i.e., work done) on an object as observed by the outputs of that object’s mecha-
nism; changes in the object’s properties, traits, or attributes; or other such changes in bound-
ary, boundary conditions, physical issues, and functional or behavioral issues (Kocsis 2008).

48 Engineering Systems Integration

imbues those structures with the mechanistic characteristics that result in
giving way to influences from EMMI. The effect of a mechanism is to trans-
form an input EMMI into an output EMMI. The output EMMI is parsed for
convenience into two components: one describable as performance, the other
as losses. Performance is measurable (with appropriate instruments with suf-
ficient accuracy and precision). By definition, the major component(s) of the
output EMMI are loosely considered to be the primary performance(s) of the
object due to the input EMMI. All other output EMMI are said to result from
achieving the primary performances attributable to the object for an input
EMMI and context. These other output EMMI are defined as losses.

Introduction to Interaction

An action is the release or receipt of something due to the enactment of a
mechanism. A mechanism is that which operates in the context of forces. An
object sends (releases, sets free, or give ups) EMMI through the process(es) of
an internal mechanism. Similarly, an object receives (accepts, collects, or
takes up) EMMI. An interaction is defined by identifying the sending and
receiving objects. Two objects are said to interact when the actions of both
objects can be described as precipitating changes. The changes in objects due
to an interaction are related to the effect(s) of the interaction. Those effects
may include uniquely identifying the object that “sends” as well as the
mechanism of the receiving object that is shown to be induced or stimulated
to operate because of the action of receiving (that which was sent by the other
object). However, an interaction does not by itself describe the causality of
the interaction. Causality requires that the relation between two objects be
modeled as the change in the sending object, the change in the receiving
object, and the context of both the sending and receiving objects. Context is
the situation or framework (Aerts et al. 2003) in which the interaction between
two objects takes place. As such, interactions reveal a temporary dependency
of the receiving object on the sending object within a context. Therefore, the
context of the interaction may include multiple dependencies, for example,
dependencies between the sending object and its context, the receiving object
and its context, differences in contexts between the two objects, and the
impact of context(s) on the object that is sent (and the object that is received,
if the object sent is not what is received). It is through interactions that rela-
tions between objects are discernable. We will come back to causality in the
discussion on emergence.

Interaction is characterized by the transfer of something from one object
(sender) to another object (receiver). If the mechanism of the receiving object
is enacted, then the input is transformed into something within the design
limitations of the mechanism and the receiving object will attempt to use

49Essences of Interaction

what is received. If what is received exceeds the design limits of its various
mechanisms or is incompatible in some way, the receiving object may reject it,
store it, or accommodate it. Regardless of the response by the receiving object,
an interaction specifies that two events occur—one associated with the sender
and one with the object. Whenever an interaction occurs, something is
exchanged between the two objects, however one object may not have the
capacity to discern the other object. A change in anything is associated with
a change in energy. When something is taken away, energy is lost. When
something is added, energy increases. And the actions of accepting or reject-
ing something are also events (which consume energy). Regardless of the
type of action, energy is expended and lost. For every action there is a loss.

Energy, Material Wealth, Matter, and Information

The released energy, matter, material wealth, or data that is accepted by
another object represents a limitation on the receiving object and constrains
how the receiving object transforms input to output EMMI. An element
interacting with another element is subject to time constraints (e.g., delay
time for mechanism to operate and release energy, matter, information, or
capital wealth, spatial distance between the elements, and types of releases).
For example, energy is expended to perform the (service) processes of “mov-
ing wood” and “piling wood,” together termed as “move wood.” A small
amount of that energy may have been exchanged with the pieces of wood
through contact with the “mover of wood” (the entity that performed move
wood). Move wood was not “free,” that is, not without the expenditure of
energy. To expend the requisite energy, mover of wood needed to have suf-
ficient energy to perform move wood, replenish the energy expended, or live
with a reduced capacity to expend energy. Energy comes in many forms,
including from food and water. But no use of energy is free. The cost is
always either in generating energy or in converting energy from one form to
another. Continuing to expend energy without replenishment defines the
nonreplenished lifecycle. For example, a nonrechargeable battery has an
intended use and design lifecycle—one without replenishment.

Both generation and conversion involve losses. In general, no consumption
of EMMI is free. Consumption, by the fact that a mechanism is active to
enable consumption, means that EMMI is expended. And similarly, there is
a loss in generating or converting EMMI. Interaction is defined as the trans-
fer of EMMI. Therefore, interactions result in losses. Additional losses are
incurred by generating or replenishing the transferred EMMI. Integration,
like interaction, requires EMMI, albeit significantly more. This distinction
between interaction and integration is seen in writings about interactions
between entities through flows of material wealth, goods, and information in

50 Engineering Systems Integration

contrast to economic integration which includes various levels of cooperation
(not seen with interactions), a wide range of benefits (not seen with interac-
tions), a confluence of political and economic power (not seen with interac-
tions), and a mechanistic change from that seen with interactions to as a
removal of constraints with integrated structures. Interaction is broadly
 different than integration (Nieminen 2005).

energy

Fundamentally, there appears to be only a few items that can be transferred
between objects. EMMI are the primary items that appear to go from one
object to another. Energy is transferable in many forms, including chemical,
kinetic, and heat. The means of transfer can be related to the amount of force
applied within the “sending” object. One model of this transfer relates to
increasing the force applied to overcome the internal resistance of a mecha-
nism that controls “sending” energy. When the resistance to the force by the
mechanism is overcome, energy is expelled or “sent” from the object. Consider
the case when the force is applied in an ever-increasing incremental fashion
(such as if multiple send and receive interactions take place between two
objects). Consider that in this case, the internal resistance of the mechanism is
greater than some of the transferred energy. Each one of the instances of
applied force is insufficient to stimulate the mechanism of the receiving
object. Force is being applied, but the mechanism of the receiving object is not
prompted to work. That mechanism could be the simple feat of detecting any
energy that impinges on the receiving object. Energy is transferred but not
detected by the receiving object. Force exists, but is below the threshold of
“detection” by the receiving object and no energy is either gained or lost by
the receiving object. No mechanism in the receiving object is enacted.

An object’s resistance to change in location by an external force is related
to the amount of mass of the object, the degree of coupling and cohesion*
(Purao and Vaishnavi 2003; Darcy et al. 2005) of its bounded matter, and the
impediments that restrict its movement. In the case of physical interaction,
physical force is related to the rate of change of momentum of the object. We
are concerned with the energy and force associated with the movement of an
object, but not from the potential energy that might exist or from a force that
may be applied (but is below the threshold of moving an object). From the
perspective of interactions, if there is no movement, then there is no energy
loss. Applying Newtonian physics, consider two pieces of wood, one piece
resting on the other on the Earth’s surface. In the Earth–wood–wood domain,
each piece exerts a force on the Earth as well as a force on each other. The net
of forces keep the top block from sliding “down” the bottom block due to the

* Drawing from the literature in software, coupling is the degree that one element influences
another element “binding,” and cohesion is the degree of relatedness between the cause and
effect(s) observed.

51Essences of Interaction

horizontal components of the force of gravity opposed by the opposite force
due to the peaks and valleys that characterizes the surface roughness that
“locks” the two blocks together. Forces do not interact, masses interact (and
therefore energy changes). The piece of wood on the bottom (i.e., sandwiched
between the top piece of wood and the Earth) exerts a force on the Earth
equal to its mass plus the mass of the piece of wood above multiplied by the
acceleration of Earth’s gravity (mean acceleration at the Earth’s surface equals
9.83 m/s2). In this static situation where there is no relative movement
between any of the three objects, we observe no interaction. Even though the
three objects (two pieces of wood and the Earth) are touching (and there is a
force in the direction of the Earth’s core), there is no movement. If there is no
movement, there is no exchange of energy, and therefore no interaction.
Physically, the surface fibers of the wood are mechanically locked together
through their touching peaks and valley of surface roughness. Likewise, the
bottom piece of wood does not move under the weight of the block above.
The forces that are operative in the example Earth–wood–wood domain have
not resulted in any movement. We are assuming there is no temperature dif-
ferential between the Earth and the pieces of wood (i.e., no thermal energy
transfers), and no other bonding between the Earth and the pieces of wood
or between the pieces of wood. Simple contact between objects is not an
interaction, unless there is an exchange of EMMI. For an interaction to occur
there must be a transfer of energy, not the mere presence of a force.

Matter

Energy is also related to mass, where mass is the intrinsic property of matter
(as measured by quantity of material). Matter is the structure of physical
objects. An interaction based on transferring mass from one object to another
results in a loss of mass (and energy) from the sending object and a possible
net gain in mass (and energy) by the receiving object. The energy it takes for
the receiving object to “take on” the mass may (or may not) require more
energy than is the gain realized from the interaction. A net loss is possible.
As with any EMMI interaction, the receiving object may or may not have a
net positive gain due to the interaction, depending on the amount of EMMI
expended through the interaction process.

Material Wealth

Matter is sometimes expressed as material wealth (De Marco 1960). Material
wealth can be thought of as cash, investments (e.g., stocks, bonds, and
 marketable securities), and other equivalents (credit and debit cards). The rate
of interaction of material wealth can be changed by enactments of law (e.g.,
taxes and encumbrances); interactions with individuals or institutions through
 investments, exchanges, financial transactions, and barter; general economic
 decisions that impact on the normal actions of living in society, and profligate

52 Engineering Systems Integration

lifestyle choices. Material wealth includes all that has the capacity to be con-
verted into cash or cash equivalents. Therefore, one’s time coupled with a
means to generate material wealth during that time could be considered mate-
rial wealth. Exchanging time, exchanging information, exchanging matter,
and exchanging energy for remuneration in money are examples of the fungi-
bility of material wealth. Broadly speaking, material wealth creates the finan-
cial capacity to perform work for money, similar to that of energy representing
the capacity for work through mass. Material wealth has its place in both
human endeavors as well as for natural processes. Material wealth is all that is
referenced by mechanism coupled with abundance or plenitude. Some por-
tions of the ground have an abundance of ground water, while others have a
scarcity of ground water. For natural systems, material wealth can be thought
of as a reserve from which to draw, given appropriately enabled mechanisms.

Information

Energy, matter (mass), and material wealth can all be thought of as informa-
tion. The term information is used in the sense of data with a context. When
information is combined with a model of relations and data flow, the impli-
cations of scaling and interpreting the data within a context forms the basis
for knowledge. The word information is used widely in this book to refer to
data, information, and knowledge.

Information is an inherent attribute of energy, matter, and material wealth.
Information is carried by or in all three. The independence of information as
a primary agent of interaction recommends its inclusion due to the inherent
nature of objects interacting with objects. In other words, information is
included in the nature of the interaction as well as in the essence of an object.

Whereas energy and matter are intrinsically related to mass, information
and material wealth are constructs based on human behavior. Energy and
matter are absolute in their embodiments as an object. In other words, only
one object is necessary to describe energy or mass. Their role in interactions
is to effect the changes that have occurred in two objects. Unlike energy and
mass that have existence in one object, material wealth and information exist
only as a result of transfer from one object to another. All the gold on Earth
has no meaning other than as mass and energy unless another object pro-
vides the context of “need” or “want.”* As a means of expressing an attribute
ascribable to gold, an interaction between two objects is the only means of
determining the “value” of the gold. The consequences of an interaction are
predicated on those properties, traits, and attribute.

* Need is something you must believe will solve the problem, is possible, is affordable, can be
provided when desired, and does not cause another problem of such significance that offsets
the benefit of solving the original problem. A want is something that will solve the problem,
but is not necessarily possible, affordable, deliverable, or acceptable. A need is absolute and
unconditional. A want is a desire, as yet unfulfilled.

53Essences of Interaction

Information and material wealth are likewise embodied in energy and
matter as the means for their interactions. For material wealth and informa-
tion, the interaction process is a determinant process for the meaning of the
material wealth and information.

Objects can be interpreted to have value and exhibit material wealth.
Material wealth carries with it information. Both energy and matter also
carry information, both as the conveyance of information that is specifi-
cally encoded within the energy or matter and as energy and matter
 individually. Among the many things that information signifies, for the
purpose of deepening the appreciation for the types of mechanisms that
are operative within objects, information can be gleaned from energy,
matter, or material wealth by deriving data from the properties, traits, and
attributes of the input EMMI, from the output EMMI, and from the lost
EMMI. Due consideration must be given to provenance, congruence, and
trust (Sztompka 1999).

Property, Trait, and Attribute

Property

Mass, m, is a unique property of matter. Property is tangible and physical
(Hoppe 2004). Intellectual property is the property that can be shown to be
tangible and represented in a physical form. Verbal communications is not a
representation of intellectual property, but rather a process from which
physical property can be used to represent both the intangible knowledge
and the procedures by which that knowledge is transferred to something
tangible, such as paper or recording on media. Properties have mechanisms.
Objects can be physical or cognitive—both have mechanisms. Physical
mechanisms can be related to energy and forces (traits of matter), while intel-
lectual mechanisms can be related to procedures (e.g., legal methods, strate-
gies, and steps—summarized as activities). Physical objects are the physical
things we build. Intellectual objects are the processes that we use to build
physical objects. In this context, services are considered to be physical objects
with mechanisms describable as services.

Knowledge is an object. A mechanism of knowledge is the mental proce-
dures to build cognitive frames and the enactment of procedures to carry out
placing the knowledge in tangible form. The corporeal representation(s) of
both the knowledge and the mental procedures and physical activities is
shown as the piece of paper on which the knowledge is represented.

For integration, requirements, needs, design, and architecture are all
objects of the intellectual kind—representable as knowledge (with cognitive
structures, mechanisms (procedures), and representations (or models)).

54 Engineering Systems Integration

Trait

Energy, E, is the confluence of matter and constant motion (i.e., motion that is
constant in terms of the ratio of distance traveled by a mass, divided by the
time to travel that distance, is termed as velocity, v). A trait is an object char-
acterized by its boundary conditions. It is not the point that matter and
motion may be different; rather that matter moving at a constant rate is dif-
ferent than matter not moving. Energy does not move matter. That difference
between matter moving at a constant velocity and matter not moving is
termed as the energy associated with the matter moving at a constant veloc-
ity, where E = 1/2 mv2 (kinetic energy). Energy, E, is also characterized by a
mass moving at constant velocity vector (defined similarly as scalar speed
and direction) as momentum, P = mv. For matter that is not moving, E = 0,
and mass, m, has a defined magnitude that is not equal to zero. Compare the
kinetic energies of a mass moving, first at constant velocity and then at a
constant velocity that is three times greater than that first velocity. The
kinetic energy difference is nine times (due to the squaring of the veloci-
ties—one velocity being three times greater than the other velocity), while
the difference in momentum is three times. Motion can be considered to be
limited by the amount of energy that is represented in the moving mass
object, or conversely, the energy that is available for the moving mass object
limits the motion of the mass. As such, motion (or energy) can be construed
as reflective of a boundary condition. Motion of an object is suggestive of
either a limit on the amount of energy (or movement) that is available for
motion or a constraint that is imposed internal to the object that results in
motion. In either interpretation, the mass stays the same. The mass object
and the boundary conditions of the mass object moving have a trait termed
as energy. Neither is energy a property of matter, nor is it an attribute of mat-
ter. Energy is a trait of the object called moving (constant velocity) mass. We can
describe energy as a mechanism that can produce a force that causes motion.
Force is also a trait of the object called moving (accelerating) mass. With a con-
stant force, the momentum, mv, increases linearly. Consequently, force and
motion of mass are comparable. Force moves matter.

Force, F, is characterized by an accelerating mass where the motion of
acceleration, a, is constant in terms of the ratio of the distance traveled by a
mass, divided by the time to travel that distance, divided again by that time
to travel that same distance. This difference between an accelerating mass
and a mass that is at rest is what we term as force, where F = ma. Force is the
rate of change of momentum. Mass, as an object, at rest exerts no force due to
motion (which is zero). Consider a mass positioned on a table that is situated
normal to the force of gravity on the Earth’s surface. The motion of the table
is the same as the motion of the mass, both of which are connected to the
Earth through their mutual attractions by the mechanism of gravity (inher-
ent in all matter). The Earth, therefore, all objects, including the table and
mass, are rotating. None of these objects are at rest (in an absolute sense).

55Essences of Interaction

The force of gravity is represented as F = ma, where the variable a is the accel-
eration of gravity, shown as F = km1m2r−2, with k = 6.673 × 10−11 m3 kg−1 s−2 and
r the distance between the centers of mass of the object with mass m1 and the
object with mass m2. The much greater force of gravity due to the Earth is
pulling the mass toward the Earth while the table is resisting the Earth’s
force by countering with a force equal to that of the mass object. The result is
a force of attraction that suggests that the mass is static, while in fact it is not.
If the same mass-table object were situated normal to the force of gravity on
the Moon’s surface, that force of Moon’s gravity would be approximately
one-sixth that of the Earth’s gravity. The reference frame for the measure-
ment of movement has changed from the Earth to the Moon, with associated
changes in the magnitudes of the gravitational attractions, but the force
remains. In neither the Earth nor the Moon situation is the mass at rest. In
both situations, the mass is experiencing boundary conditions; therefore,
neither is force a property of matter nor is it an attribute of matter. We can
describe force as a mechanism that can produce motion. Force is a trait of the
object called moving (accelerating) mass. Energy and force are different than
matter (Burgin 2003).

For integration, traits are matter with contexts (i.e., boundary conditions).

Attribute

In contrast, attributes are measures of properties and traits. Length is a mea-
sure of distance and size is a measure of volume or area. Attributes are
objects characterized by their constraints. Distance traveled per amount of
fuel (or energy) is one measure of piston wear or engine wear (Smith and
Bahill 2010). Attributes do not have mechanisms. Kilometer per liter has no
mechanism, nor does it have a boundary that limits it. The measurement of
a kilometer or the number of liters is mechanistic by the nature of measure-
ment. We know that the burning of a liter of fuel results in delivering a force
to the tires that in turn interact with the road surface. Further, we know that
burning a liter of fuel results in motions of an internal combustion engine-
driven vehicle. For example, knowledge (an object with properties, traits,
and attributes) is required to perform various activities. There are proce-
dures (mechanisms) that when followed achieve a degree of precision and
accuracy, and there are formalizations that are called for to represent the
measured quantities in a tangible form (object). The tangible form can be
conveyed to others as data or information. However, the data or information
(e.g., distance traveled or distance with context, respectively data and infor-
mation) are not mechanisms by themselves. There is no energy, no force, no
mechanism, no boundary, and no movement; therefore, kilometer per liter
is neither a property nor a trait. Attributes can be considered measures of
performance. Measures of performance are testable.

If we were to limit the number of kilometers that were driven, we could
determine to some degree the amount of fuel (or energy) that was used or

56 Engineering Systems Integration

could be consumed by knowing the fuel (or energy) consumption. However,
to determine the fuel (or energy) consumption to a higher degree of accuracy
and precision, we would further need to know the constraints imposed on
the system. The limitations are given by the domain of the problem, while
the constraints are a structural property of the solution. For example, limit-
ing the size of the fuel tank or energy source places a maximum amount of
fuel or energy that is available for use. The variability in the use of that fuel
or energy is due to the heat of the engine, the weight of the vehicle, the alti-
tude and slopes of the driving course, the rate of release of fuel, and the
speeds of the vehicle (to mention a few factors).

Summary of Property, Trait, and Attribute

Systems have properties associated with the intrinsic nature of objects (corre-
sponding to a mechanism); traits associated with conditions and mechanisms;
and attributes that are imputed to intangibles that represent measures. From
an integration perspective, we deal with objects, traits, and attributes. These
are the three components of integration that need to be managed. Objects
(both real and intellectual) are signified by their mechanisms, the engines that
result in the interactions with EMMI. Traits illustrate the context (conditions,
e.g., boundary conditions) in which the object is active. Attributes (measures)
describe the constraints that are applied to the object’s properties and traits.

Properties, traits, and attributes are testable. Properties are fundamental to
objects and as such are not measures of performance, for example, mass is
not a performance, although it can be verified as satisfying requirements
through testing or analysis. Traits (properties in context) are related to the
context of an object. A moving object can be measured for speed, relative to
a standard of measurement and a reference point. We sometimes think of
such standards as absolutes; however, they are relative in an absolute sense.
Measuring to a set of standards requires close attention to the validation of
that standard for its intended uses, for example, its fitness for use, given the
particulars of the measurement circumstances. If the task is to measure the
airspeed of a glider, then the standard for measurement could be terra firma
(i.e., ground speed). However, the standard for measurement over the open
ocean presumes a nonmoving surface (firm by all accounts), which is instead
represented by a moving surface of water. Were the glider to attempt a water
landing, the movement of the glider and water necessarily need to be
matched in both speed and direction of movement for a very smooth touch-
down. The direction of the water movement is potentially both horizontal
and vertical (depending on the sea-state). In the horizontal direction, if the
glider travels faster than the water movement and in the same direction as
the movement of the waves, the glider will be tangled in waves—engulfed
or inundated. In brief, smooth water landings are quite difficult to achieve.
The standard for measuring relative velocity to a multidimensionally mov-
ing surface can be quite complex—deserving close consideration.

57Essences of Interaction

Epistemology of Systems Engineering Integration

The epistemology of systems engineering integration intends to provide a
basis for the measurement of a system as a system (through its properties,
traits, and attributes) (described by David Cropley as “characteristics, fea-
tures, or properties” (Cropley 1998)). But that is rarely the case. Founded on
the somewhat roguish testing regime followed for building products or ser-
vices, we test what is convenient and expedient, not what is necessary and
sufficient. In short, because it can be tested as part of development, we con-
spire to test and then presume that the test in some fashion reflects on what
is both beneficial and pertinent for integration. This portrayal of testing
should not be taken as an incisive rail against current practices in systems
engineering. Indeed, it is not. The very nature of systems engineering is iter-
ative; each pass at the work designed to improve on the previous incarnation,
while systems engineering integration is recursive by design. It is expected,
planned, and appropriate to test. However, testing to suggest improvements
in work is not adequate to provide sufficient confidence in an artifact that it
is ready for integration. Were the artifacts designed according to an ideal-
ized set of perfect requirements, and specified without fault, the integration
work would then proceed with difficulties mired in different interpretations
of what was done, wrapped in a medley of social behaviors. Epistemology
provides the basis for certainty (Ferris 1997). But within epistemological
thought, the reasons for believing that measurements are accurate and pre-
cise are mirrored by the reasons that data are marked by inaccuracies and
imprecision. These issues of error are further complicated by trust or lack
thereof in the data (or in the means of measuring or recording the data).

Metrics

The concern for integration is to develop a set of metrics for determining how
well integration is proceeding. Those metrics could be in terms of the amount
of time taken to achieve some specified level of integration; the amount of
time that is remaining to achieve some specified level of integration; the trust
(or lack of trust) that verification or validation will be satisfactory; the level
(percentage or degree) of completeness (or lack thereof); the utility that can be
ascribed to the integration that is accomplished (or remaining to be accom-
plished); and the utilization of resources to accomplish the level or the time to
complete integration. In all, numerous metrics can be devised to determine
how successful the integration efforts are compared to a standard or a mea-
sure in absentia. The concern for integration is to know what the leading
(or lagging) indicators are to better gauge how well the work is progressing

58 Engineering Systems Integration

(or not). Management and systems engineers do not appear to have much
control over integration. It is as if the entire integration effort is on autopilot
with the integration effort taking on a life of its own—growing in time and
swelling in its use of resources. Metrics include inputs from customers as to
their satisfaction of the integration effort (Bahill and Briggs 2001). A word of
caution is appropriate: customers and users (sometimes domestic, sometimes
foreign) have unique metrics for their environment that may appear effica-
cious, but are inappropriate for an integration effort (Friedman 2010).

The disclaimer about metrics covers the pertinent issues of falsification
through specious data or data collection; willingness to acknowledge prob-
lems based on metrics; knowing what to investigate to determine root cause;
and determining the appropriateness of the metric as a determinant of inter-
est. Having many metrics is usually the beginning of learning how integra-
tion is enabled and impacted on by the work, resources, and policies that
invigorate it. Having the right metrics provides a clear focus on the issue;
results in the correct decisions; and works toward the common goal.

The quintessential discovery, however, is to have focus on a single overall
objective to coalesce and bind the spirit and interests of both the enterprise
and the customers (and users). As such, the enterprise conspires to integrate
the customer’s decisions into the company’s decisions, integrate the custom-
er’s needs with that of the project objectives, and integrate the customer’s
loyalty with the loyalty of that of the enterprise’s workers.

The alignment of a single metric with the goals of the organization may
not be as complicated or difficult as it may at first seem. In the case of an
enterprise whose business is to deliver access to data (a service), the single
metric of bits per second might adequately represent the totality of the busi-
ness model. All business personnel would see their positions as fostering
their support and focus on the company’s metric, “provide individual users
with greater than one megabit per second.” If this metric accurately cap-
tures the goals and objectives of the enterprise as well as the customer’s
and user’s view and uses of the enterprise’s product or service, then the
primary interest among the key stakeholders is broadly and generally in
agreement. Such an enterprise might be an Internet service provider
(Internet access—a service), Internet search engine (content search—a ser-
vice), or a library (content provider—a service). No doubt there may be other
metrics deemed important by the key stakeholders, but these other metrics
will always seem less important than bits per second for users. The totality
of services available to the customers and users, when combined in various
ways, should focus and maintain the customer and user loyalties to the ser-
vice-providing enterprise. Yet, even though a single metric can rally enter-
prise support and endear customers and users, other metrics are important.
Figure 2.6 depicts a process flow diagram that relates metrics to customer,
enterprise, and project.

Figure 2.6 illustrates the driving inputs for work to be accomplished by
a project within an enterprise. From the customer, the project goals and

59Essences of Interaction

objectives are laid out; the requirements delineated (as best known at the
time); and the limitations of funding are specified along with the spending
rate, milestones, reviews, and delivery schedule(s). In addition, any other
resources that are available or are specified to support the project are
included in the discussion. A contract between the customer and the enter-
prise is signed and the enterprise determines what resources will be made
available to the project (consistent with their business policies and rules), and
what constraints will be placed on the project (for revenue generation, prof-
itability, and use of intellectual property). The project will be enabled by
the business policies, governed by regulations and rules, and monitored
according to enterprise metrics (also made known to the project). The proj-
ect office will carry out its planning and decision-making processes to
match the available resources (from the customer and the enterprise) to
satisfy the goals and objectives set down by the customer. For planning
purposes, a set of tasks will be developed in concert with the available

Customer Inputs

• Goals & Objectives
• P roduct or Service

Requirements
• Funding Limitation
• Milestones and

Delivery Schedule
• Available Resources

Project Processes

• Match Resources to Goals &
Objectives

• Develop Plan and Procedures
for Managing Project
According to Constraints

• Develop Plan for Systems
Engineering Development
According to Limitations,
Constraints, Resources, and
Requirements, Milestones, and
Reviews

• Determine Project Model
based on Key Events
(Interactions), Objects
(Physical and Intellectual), and
Organization

• Develop Plan for Systems
Engineering Integration to
Deliver Requisite Product or
Service

Outputs

• Determination of
Tasks

• Allocation of
Resources to Tasks

• Schedule of
Milestones and
Reviews

• Reporting and
Documentation

• Project Metrics

Enterprise Inputs

• Contract with Customer
• Available Resources
• Project Constraints
• Business Policies & Rules
• Enterprise Metrics

Constraints

• Determine Project Scope
• Develop Schedules for

Tasks
• Assign Budgets to Tasks
• Allocate Skills to Tasks

FIgure 2.6
Process schematic showing metrics.

60 Engineering Systems Integration

resources, skills, and limitations. A specific plan and set of procedures will
be written to discuss project management given the constraints of project
scope, task schedules, task budgets, and available (and planned) skills.
Further, the customer and enterprise resources that are to be made available
will be allocated to the tasks. Milestones, reviews, and schedules for the
same will be proposed along with reporting and documentation require-
ments. Project metrics will be reflective of the enterprise metrics and tailored
to meet the specific needs of the project (and the customer).

Metrics are not about trade-offs between what best to do versus what is
expedient. Metrics are used to represent that state of being, the determinant
of “how is it going?” both in the minds of the integrators and that of the sys-
tems engineer(s) and project management. Metrics are about the shared
value of what the common goal needs to be. Never losing sight of that com-
mon goal is enlivening for customers, users, and the project team (the busi-
ness or the enterprise).

General Nature of Objects

Capturing the full measure of actions that are enacted by the objects in eco-
nomics, sociology, management, systems engineering, physics, and other
disciplines requires that the properties are delineated, the traits are identi-
fied, and the attributes are settled on early in the analysis for either building
a product or service or analyzing and evaluating an existing system. The
binding of the objects with their traits (conditions) and modifiers (attributes)
describe objects and interactions within the natural and human-built con-
structs; the determination of what is important to interactions (and therefore
integrations) between objects must be broadened beyond the sending of
energy and matter for the sake of only energy and matter, to include systems
for matters involving human and social issues. Social interactions, knowl-
edge, and information are the primary elements of exchange (Burgin 2003).
Both material wealth (value) and information (patterns) are bounded (or con-
strained) by energy and matter, yet distinguishable from the energy and
matter that carry the value and patterns for social interactions. The transfer
of knowledge and information are enacted through physical matter and
energy constructs, as well as representing material wealth. For economic
transactions, material wealth is a primary element of exchange, with energy,
matter, and information concomitantly involved. The embodiment of mate-
rial wealth is likewise through physical and energy constructs.

For “forces” other than physical, various disciplines have developed con-
structs similar in nature to those most familiar in physics and engineering
as being the impetus for change. Information processing acts as an eco-
nomic force (Shaw 1990), the role of heads of families acts as a social force

61Essences of Interaction

(Kunovich 2009), and information (defined as data, context, and the model
of interactions) is sometimes thought of as an intrinsic attribute of a message
that precipitates human or computer (human surrogate) action (Shannon
and Weaver 1963). The broader definition of “force” captures the general
notion of overcoming resistance to change. For the purposes of interaction,*
that change is internal to an object. Speaking only of an object’s internal
actions, the force imparted due to the interaction is opposed by the internal
resistances of the object (e.g., mechanism and its control, and the environ-
ment of the object’s internal structure, as distinct from the mechanism of
conversion). In this sense, the object’s mechanism reconciles the action of
the object as a consequence of the interaction. That change in the object due
to the interaction results in a change in the object’s energy. Therefore, the
energy represents the capacity of the changed object. Interaction results in
a change in capacity.

The empirical form of interaction takes place through forces that act on
mechanisms. Another metaphorical interpretation of interaction could be
thought of as the exchange of capacity that results in actions of the objects.
Since both objects have undergone change due to an interaction, there can be
both individual object changes as well as change to the context in which the
objects have interacted. The local environments may have received energy
lost from the enactments of the object’s internal mechanisms; the absorption
of heat resultant from the physical heating of the atmosphere along the path
of transmissions; or the reduction in the interpretable information due to a
reduced signal-to-noise ratio due to volumetric dissipation of energy over
distance. Both objects have experienced losses due to the interaction. The
aggregate consequence of the metaphor of two-object interaction is not the
simple sum of one action from the sending object with that of the action of
the receiving object. The objects, their internal mechanisms, their actions,
their losses, and the resulting changes they undergo are different. Systems
are built up of objects that interact and can behave differently from one inter-
action to the next.

Examples of the transfer of energy, in the case of physical matter, include
photons and electrons that collide with other physical objects. Transfers of
energy also occur through forms of matter or ideas as representations of
material wealth (including money, information, and knowledge). To reiterate,
if there is no change in an object, there is no energy loss. Change can result
from interaction that is internal or external. No change can occur without an
interaction. Therefore, various constructs of energy could include building a
spacecraft, designing a banking system, presenting materials to an audience,
acting on plans to travel, paying for an item at the check-out counter, discuss-
ing philosophy, painting a house, or investing in education.

* For the purposes of integration, that change is an aggregation of the objects within a system.

62 Engineering Systems Integration

Services and Products

Consider the action of piling wood, that is, that of moving the pieces of wood
from one location to another. We call this action a service. An action (in sup-
port of a need) is called a service. We consider the pieces may have been
moved several times (each time a service). Services are queues and accesses
to facilitate the exchange and use of energy, matter, material wealth, or infor-
mation. Products are usually thought of as physical items that have various
functionalities. Products and services have functions. We could consider a
pile of wood to be a product. Not all products are integrated. A cut piece of
wood is a product that can be purchased at a hardware store or lumber yard.
The wood is the result of many processes, including planning, cutting a tree,
to milling, to grading (for quality), pricing, shipping, inventorying, stocking,
to selling. Many products went into the pile of wood, individually consid-
ered as products. The aggregation of wood is a product of labor (move wood).

Products have only limited physical properties and attributes that can be
used, but services are only constrained by access rather typically than lim-
ited. Limitations are conditions of boundaries, and once imposed they are
immutable. The physical design of some products, for example, a single-hand
instrument telephone, limits the number of people who can use the product,
versus a product that is designed to accommodate a service with such restric-
tion, for example, a speaker phone made of technology that supports com-
munications with a small group of people. Technology would seem to be the
limitation for carrying the communications beyond one to only a few people.
Limitations can be thought of as the budget earmarked and the schedule
determined for a project, whereas constraints are the apportionments of
money distributed to the tasks along with its designated schedule.
Constraints, however, are conditions of allocations, that once established are
changeable, however vicissitudinous. Constraints are flexible within the
overall limitations set for the project. Labor hours saved on one task may
benefit another task, as dollars overspent on a task may force different behav-
iors on other tasks. Therefore, products have limited scalability in contrast to
services. Services can be enabled (e.g., through technology) to be more scal-
able than products. Of course, a personal service (one-on-one) may not be
scalable. Depending on the design, access to service functions can be made
more scalable than access to product functions. Scalability is doing what is
done with either more people performing the same activity or with one
person being able to do more through some economy of numbers, technol-
ogy, or process. Scalability is all about either doing what you do with more
people doing the same thing or being able to do more with one person.
Scalability in the first instance (more people doing the same thing with the
same product) implies that each person requires a product, that is, scalability
by single-user products. Scalability in the second instance (being able to do
more with one person) is through efficiency by using a service. Scalability in

63Essences of Interaction

this second instance implies perhaps a single product that (through services)
provides a similar functionality as with multiple products. So, by either
increasing the number or speeding up a service, scalability is achieved.
Products and services can be thought of as different in this regard. For exam-
ple, project management and systems engineering can be thought of as two
distinct but related services, the end result of which is a product (or
service).

While products and services are different, both provide for functionalities
that can result in uses with various performances. The ability to perform or,
as Taguchi (1986) prefers to think of it, the variance in the performance can be
thought of as the quality of the product or service. In contrast to products that
are built and then subsequently delivered, services are built and used simul-
taneously (Kotler and Keller 2007). The differences between products and ser-
vices include how products and services are used and thought of, how they
are delivered, how users behave once they have access or use, how users
behave because of the product or service, how the management processes are
planned and enacted, and how products and services are integrated into
operations. Indeed, it serves the producers of products well to think of the
services provided by their products with equal consideration to those
intended uses as a product. What decisions will the customer make because
they have purchased a piece of wood? The customer may be thinking about
using the wood as means to support a bookcase. The service provided by the
wood is to support a bookcase. The product function of ‘to support’ is not
designed into the wood product per se, only envisioned by the customer who
purchased and the user who used the wood to support a bookcase.

While our perception of integration may be skewed by the framing of a par-
ticularly vexing issue, the nature of integration does not change. The nature of
integration is to result in the exchange of energy, matter, information, and
capital wealth. The goal of integration should be to enable this exchange in an
energy-efficient manner, consistent with the limitations imposed on a lifecycle
basis and the constraints allocated in the architecture of the system.

Objects

We commonly think of an object as a fundamental element, entity, or repre-
sentation. It may be atomic or an aggregation of entities. Objects can be physi-
cal or abstract. Objects may be conceptual, phenomenological, or ideological.

Some but not all objects are teleological. Animal objects can be said to be
exhibit processes that are purposeful (Bainswanger 1990). Teleological pro-
cesses explain phenomena by the purpose(s) or their end(s) they serve rather
than by causes postulated to explain behaviors. Bainswanger (1990, p. 119)
describes three conditions for teleological action: self-generation, significant

64 Engineering Systems Integration

value of the action to the object, and significant value ascribed to the cause.
As we have observed, action is self-generated only if the object is a source
kind. Human-built objects may be comprised of source objects, but the other
kinds of objects are necessary for integration into a system (otherwise, the
objects simply interact).

Objects may be comprised of other objects, each of which is related by
interactions. Objects can be ordinary or elemental. Ordinary objects are
 macroscopic in size—perhaps represented as a piece of wood, a broom, a
component of a subsystem of a large electrical grid, an eye or arm, or a
human. Objects are distinguishable from other objects and nonobjects by
their boundaries and boundary conditions, their mass and energy, their
information and knowledge, their material wealth, their functions, and the
behaviors they induce because they are available or anticipated.

Objects have boundaries. However, boundaries are neither fixed nor
impassable. They simply pose a limit at which the endogenous operations of
an object are expected to be* or are substantially diminished. External actions
may affect an object regardless of the boundaries of that object. These bound-
aries can be of several types: behavioral, functional, physical, abstract, pro-
cess, and representational. Boundaries of an organization can be determined
by behaviors, physical objects (entities), functions, abstract concepts, pro-
cesses, and representations (or models). Boundaries are not always easily rec-
ognized. Behaviors of various types form boundaries by which some people
in an organization will not cross. These might be legal or ethical boundaries.
Different organizations may have varying degrees of adherence to ethical
boundaries, some visible some not. Behaviors are describable in terms of
observed reactions to influences of energy, matter, material wealth, or infor-
mation. Functional boundaries illustrate the limits on the use for a product or
service. Physical entities (objects) may have a visible corporeal boundary, for
example, the physical edge of a dustpan that when placed on a flat surface
such as a floor provides a function of ‘to ramp to’ so dust can be swept into the
dustpan. Functions are identifiable at boundaries of objects. In essence, a
function denotes a boundary and a boundary condition—the circumstances
in which the function can be used by a user (act as a ramp and repository for
dust, in this case). By simple analogy, the boundary conditions for all macro-
scopic objects are describable in terms of observed reactions to influences of
energy, matter, material wealth, or information on the boundary of an object.
Abstract concepts hold that unrelated items can be juxtaposed and bounded.
A photograph of a red chess piece with a black and yellow car battery on a
stark white background may not offer any recognizable pattern to a group of
 people. However, the mere physical presentation of the photograph is recog-
nizable as an abstraction bounded by the edge of the visible imagery. The
photograph can be thought of as a limiting measure of bits of information to

* Intentions (i.e., the cognitive conceptions) are ascribed to the fulfillment of needs through
uses of human-built artifacts.

65Essences of Interaction

be transmitted in a noisy communication channel (Shannon 1948a, 1948b;
Cover and Thomas 1991). Representational boundaries might be models of
what a person considers being the extreme limit of endurance, or the absolute
maximum number of pounds of ice cream that are possible for one person to
eat in a 20-min sitting.* These boundaries represent models by which a per-
son acts. Representations are the results of processes.

An object is distinguishable as a microscopic object, indicative of sub-
atomic particles, atoms, and molecules. Similarly, the six types of boundaries
(behavioral, functional, physical, abstract, process, and representational)
apply. Living systems have boundaries as listed in the six types. For objects,
behaviors are describable in terms of observed reactions to influences of
energy or matter. While the literal application of material wealth (e.g., money)
or information would not seem to have an effect on elemental objects, both
are convertible into energy and matter which do have such influence. For
this reason, objects are said to be subject to influence (i.e., exhibit behaviors)
from transfers of energy, matter, material wealth, and data.

Object Types

Objects are differentiable by their input and output characteristics. Type 0
interactions are self-induced through internal mechanisms. The Sun’s inter-
nal mechanism to radiate is an example of a Type 0 interaction. Type 0 inter-
actions are the results of stored energy used to drive an internal mechanism.
Type 0 interactions are typical of “sources” of energy. Type 0 interactions are
one type of energy source to enable or sustain the interactions necessary for
a system. The outputs of EMMI can be received by other objects and interact
with those objects.

Type 1 interactions result from the complete absorption of EMMI. By the
nature and enactment of its internal mechanism, the receiving object remains
anonymous or unacknowledged. A Type 1 interaction is potentially receiv-
able by objects, but is not received, is received and not recognizable as an
accurate representation of the sending object, or is received and the receiving
object does not respond to the sending object. Type 1 interactions are inhib-
ited or masked by physical, functional, or behavioral reasons (internal or
external to the receiving object). A human yells for help believing someone
will hear the clarion call. But no sound is heard by a rescue team. No one
responds to the calls for help. It is the nature of a Type 1 interaction to be the
interaction that could have been (but was not for some explainable reason).
All things natural and human/animal-made can interact in a Type 1 man-
ner. Type 2 interactions are sent and received. The Sun releases energy that
intersects and collides with Earth. Type 2 interactions include an electron
moving exoatmospherically toward Earth under the influence of Earth’s
gravitational field (EaG-field), experiencing a “collision,” being captured by

* Strict rules of safety apply; not meant as a challenge.

66 Engineering Systems Integration

a hydrogen atom, and releasing energy, or an autonomous robot that auto-
matically reroutes internal electrical energy to recharge batteries without an
indication of the remaining charge needed to maintain a minimum thresh-
old for operations of all its subsystems. The yelling for assistance is a general
request directed to anyone, regardless of language. The autonomous robot’s
rerouting of energy may be based on elapsed time since last recharge, or a
software algorithm that relies on internal sensor inputs to estimate reserve
capacities of its rechargeable batteries. A Type 1 interaction is initiated from
within. In contrast, a Type 2 interaction eliminates (or discharges or “sends”)
EMMI due to some external receipt of EMMI. Examples of Type 2 interac-
tions include the person responding to the yelling for help. Type 1 interac-
tions reflect the internal needs or intentions of an entity, for example, the
self- initiated requirements for survival. Type 1 interactions are in response
to internal processes, the mechanically induced self-regulation for fulfilling
basic needs. Type 2 interactions are the responses to external stimuli, the
simultaneous or reflexive reactions based on are capabilities within the enti-
ty’s structure. Regardless of the type of interaction, the mechanical processes
that carry out the actions of the “send” and “receive” functions are limited
by the entity’s capacity to initiate a “send” or respond to a “receive.” Further,
the mechanics of interaction also preserve the constraints of the entities.
The architecture of the entity and the mechanism for interaction are con-
strained by their design and implementation. Therefore, interacting entities
are subject to limitations, conditions, and constraints.

Limitations describe the extremes of operability of an entity at its boundar-
ies (the physical extend of an entity). Limitations are methodological or pro-
cedural schemas that either define or signify intended extremes. Limitations
can be organization or mechanistic, procedural (rules and policies), and social
(customary and acceptable behaviors). Limitations are sometimes described
as conditions of boundaries (i.e., boundary conditions). Once the limitations
are instantiated in the entity, they form an immutable structure. For example,
the physical design of some products, for example, a single-handset tele-
phone, is optimized for a single user. The limitations are imposed through
both the design and technology which combine to provide a distance at
which a voice can be heard (from the perspective of both the person speaking
and the person listening). Limitations can also be thought of as the budget
earmarked and the schedule determined for a project. The project costs shall
not exceed $10 million and the deliverables are due no later than 2 years from
the start of a fully executed contract. These are limitations agreed to by the
parties, stated in the contract between the parties, and enforced by penalties.
The parties to the contract are limited by the agreement. Limits apply to what
can be done versus boundaries that apply to the physical extent of entities.

Within the limitations of the contract, constraints are the apportionments
of money distributed to the tasks along with its designated schedule.
Allocations impose conditions on objects and processes. The concept of
interaction captures the observation that an entity or agent (for another

67Essences of Interaction

entity) initiates or responds to an entity or agent subject to limitations, condi-
tions, and constraints.

We distinguish between objects who have Type 1 or Type 2 interactions with
Type 1 objects or Type 2 objects. Type 1 objects produce Type 1 interactions
(internally initiated) and Type 2 objects produce Type 1 or Type 2 interactions
depending on conditions and context. In other words, Type 2 objects can elicit
a response and respond to an input, whereas Type 1 objects eliminate energy,
matter, material wealth, or data only due to an internal process. Both Type 1
and Type 2 objects can interact. Examples of Type 1 objects are uranium ore, a
uranium-enriched nuclear reactor core, or the Sun. Examples of Type 2 objects
are an electronic resistor, a car, a building, or a piece of wood. The piece of
wood interacts only after experiencing an input from another object, for exam-
ple, friction due to touching another piece of wood. If the force of friction
between two stacked pieces is sufficient to resist the force of gravity (that
would “pull” one block downward), then the pieces of wood do not move. No
energy is transferred. However, if the piece on top is piled high with more
pieces, the friction at the boundary between the lower pieces may become
insufficient to resist the force of gravity and the upper pieces slide down the
lower pieces. When the movement occurs, energy is transferred between the
moving pieces. Type 2 objects require an input of EMMI or they do not inter-
act. In the case of pieces of wood, touching is not interacting. Only when the
pieces move is there interaction. Type 1 objects do not require an input to elim-
inate EMMI. This elimination of EMMI from Type 1 objects may result in inter-
action with a Type 2 object if conditions permit. Both Type 1 and Type 2 objects
change when eliminating EMMI. The extent of activities of Type 1 and Type 2
objects is limited to interactions. Interaction between Type 1 and Type 2 objects
is a necessary condition for integration. Both Type 1 and Type 2 objects are
required for integration. Interaction that involves two objects “sending” and
“receiving” energy, matter, material wealth, or data (in an informational sense)
is required for integration. Integration implies a system.

For example, consider placing a piece of wood (object) on top of another
piece of wood (object). Being careful to place the wood so there is either some
overlap or some measure of stability in their placements, add another piece
of wood to the “pile.” If each piece of wood that was placed in the pile stayed
exactly where it was placed, then it is not interacting (as there is no move-
ment). However, since the friction between each piece of randomly placed
wood is probably insufficient to resist the effects of Earth’s gravity, most
likely the blocks of wood settle and move as they are placed (or thrown) onto
the pile. Consequently, the sliding blocks of wood interact with other pieces
of wood in the pile. The interaction of a piece of wood is a Type 2 interaction
as energy is transferred due to the movements. The interaction only takes
place once another block of wood is placed so that it touches and moves. As
the pile grows, the pieces of wood are touching on any one or more of their
sides or edges. The action of one piece of wood on another represents the
physical boundary that inhibits the “free” movement of the wood and

68 Engineering Systems Integration

 the basis for energy transfer if the blocks of wood move. The action of board-
on-board due to friction is a property of the wood surfaces and a trait of the
circumstances surrounding the movements of those surfaces. The action of
movement is due to the mechanism enabled by the force of gravity. The result
of such a mechanism is observed in the ability to add wood to make and
grow a pile in height and breadth. However, if there was no friction between
the wood pieces and between the wood pieces and the surrounding terrain,
the wood pieces would just slide from their placement on another piece of
wood (also presumably sliding unabated) and continue their motion without
constraint according to the local topography. On level ground (again assum-
ing no friction and no other impediments), no pile is possible. Without fric-
tion no energy is transferred from block to block or from block to the Earth’s
surface. Motion would continue unabated, undamped. One of the conditions
for integration is that the constituent parts must interact. No integration and
no system are possible without interaction. In this case, the piling of wood
requires interaction due to friction to build a pile. If a piece of wood retains its
original (prepile properties and attributes) and does not change as a result of
interaction with another object (e.g., a piece of wood), then the pile of wood
will remain just that—individual pieces of wood in a pile (every piece of
wood remaining exactly where it was placed). Regardless of the force of fric-
tion, only Type 2 objects are included in the pile of blocks of wood. No inte-
gration is possible by the process of “piling the wood” (Figure 2.7).

Contrast the rather random acts of piling wood versus stacking lumber.
Stacked lumber (assuming that it was carefully placed so the stack had lateral
and longitudinal stability) would not move due to the Earth’s gravity. The
stability of the stack is in fact ensured in part due to Earth’s gravity. As there
is no relative motion between the stacked lumber, there is no transfer of

FIgure 2.7
Wood pile. (Courtesy of Timothy L.J. Ferris, photo taken in Pebble Beach, California.)

69Essences of Interaction

energy between the boards. Again, only Type 2 objects are involved—no
integration is possible with the wood.

The whole of either the pile or the stack will be equal to the simple sum of
its parts. Consequently, the pile of wood built through interactions with other
pieces of wood (and the ground) is not a system as there is nothing more or
less than the individual pieces of wood regardless of their being piled or
stacked. Interaction per se does not always result in a system—an integrated
whole. The pile or stack of wood could be taken apart without changing the
properties or attributes of any piece of wood. The parts are as distinct before
helping comprise the pile as when the parts are conceived of as a pile. There
is no integration, merely concomitant action where each part remains a part
but never becomes a whole by parts or by itself. Systems can be conceptual-
ized as self-reliant entities that are simultaneously wholes and parts (Koestler
1968). In other words, neither the pile nor the stack of wood would be consid-
ered as a piece of wood, and neither would a piece of wood be considered as
a pile. But a piece of wood would be considered as part of the pile. Neither the
pile nor the stack of wood is a system, although there can be interaction
between the pieces of wood. The pieces retain their exact identity, properties,
and attributes before being placed into the pile as well as after being piled.
Knowing something about part of a system portends some insight into the
interactions and objects of another part of the system (Kuhn 1974).

All interaction is point to point (Buede 2009), object to object. People inter-
act with a book when they look at the book. If light reflects from the book and
impinges onto the retina, the contents of the book can be resolved and with
proper training, the book can be read. The brain collects the light energy and
interprets the “encoded” data (the reading process). If the reader puts in no
effort in interpreting the information (by simply staring at the book with
no focused cognitive activity), the contents may be unrecognized and leave
no “footprint” or impression on the reader. The interaction with the book is
that of “looking,” but not of reading. Page after page of looking without read-
ing does not result in anything gained from the interaction with the book.
Yet the person has perhaps spent considerable time with the book, only to
later realize there was no retention, no cognitive awareness of the book’s
content, and no lasting effects of the interaction with the book. No knowledge
was gained—there has been no integration of the reader’s cognitive struc-
tures with the contents of the book. Interaction without integration occurs all
too often (in the case of education). Of course there are other times when we
may watch a movie, be totally engrossed in its content, and later wish the
nightmares would go away. We would probably prefer a natural immunity to
certain diseases rather than submit to the integration of viruses and the resul-
tant compromise of our immune system. Integration is not always desirable.

Interactions between objects may or may not result in integration. But
integrated systems are by definition interacting. We build structures that
are capable of interacting. But until they do interact in various ways, those
structures are not systems.

70 Engineering Systems Integration

Constraint

The tapestry of relations between objects and processes and their properties,
traits, and attributes constitute the domains where constraints are present.
“A constraint is a relationship that is maintained or enforced in a given con-
text” (Mayer et al. 1995). For this presentation we use the term relation* which
is meant to be the general term for the degrees of connectivity, coupling, and
cohesion that affiliate or bind objects and processes. A constraint exists
according to the conditions that govern an object or process. These condi-
tions are specified by the amount of EMMI that is available for an object or
process. The mechanism of the object acts as based on the amount and kind
of EMMI. The output of the object is a transformation of that input EMMI
and the effects of that EMMI on the object’s mechanism. Similarly, the condi-
tions under which a process is enabled and driven by input EMMI through
its procedures (a similar notion as mechanism for objects) and then carried
out by objects is likewise constraining for the process as well as for the pro-
cesses that interact with the constrained process and with the objects that
interact with the constrained process. An object or process under such condi-
tions is said to be constrained. Interactions with a constrained process or
object is constraining on all objects or processes that interact therewith. The
governing condition that initially established a constraint propagates that
constraint through interactions with other processes or objects. There may
be some processes or objects that are unaffected by the constraint as their
mechanisms are either not sensitive to the constraints imposed by the inter-
acting process or objects or in some manner unaffected by the conditions
imposed by the EMMI. This lack of sensitivity could be due in part to a very
low coupling or cohesiveness or a mechanism whose response is longer than
the lifecycle of the constraining interactions (or the lifecycle of the propaga-
tion of those constraining interactions).

Frameworks

We interpret observations, postulate principles, and derive laws starting from
theory. Our interpretation of observations is confounded by our perspective,
measurement, and biases. Theories can be thought of as consigned principles,
that is, fundamental statements that are comprehensive in their applicability
and generality through their agreement with observation. Empiricists rely on
observable regularities from which to build a formal model. This aim of this
model is to characterize the causal links that result in the observed regulari-

* We use the term relationship to signify an association or dependence of people with other
people.

71Essences of Interaction

ties (Klepper 1996). This structure and narrative that embodies and condi-
tions the model is termed as a theory frame or (referred to a framework). A
framework aids in formulating hypotheses and identifying the “. . . kinds of
causal conditions and process patterns that seem relevant for a given range of
issues, they offer concepts that correspond to these identifications, and they
give reasons for the choices made” (Rueschemeyer 2009).

The essence of models and theory can be explained through frameworks.
A framework is characterized by consistency of logic, and the continuity of
method. However, to be pertinent for systems integration that involves many
disciplines and fields, a framework must also be applicable across disciplines
and scalable from micro- to macrosituations. Frameworks can be used to
analyze situations. A situation is defined as the constrained and limited
characteristics of a set of properties, traits, and attributes.

The goal of the framework should focus on describing a general model of
integration—one that applies equally well to systems, system of systems, and
nonsystems. The allure of general systems theory (sometimes referred to as
“systems theory”) strived to point out the similarities between the disciplines
with regard to their construction, while over time the desire was to develop
models that would more inextricably link at least two different fields of study
(Boulding 1956). The systems theory movement captured the good intentions
that recognized the (1) striking similarities in the system likenesses covered
by the subject matter across various disciplines and fields, and (2) the often-
times equivalent thinking, knowledge structures, and processes, and models
of various phenomena. But beyond a few intriguing correspondences, on fur-
ther investigation, nothing conclusive seemed to coalesce into a definitive
theory for any two fields. Two quotations seem relevant.

The voyage of discovery is not in seeking new landscapes but in having
new eyes.

Marcel Proust (1871–1922)

There is a soul of truth in things erroneous.

Herbert Spencer (1820–1903)

Although these two authors were contemporaries, they may not have
known each other; the context of their remarks is not readily apparent, but
their striking correlation in general feeling suggests that there might be more
to what we know than in the way we express what we see. The systems theo-
rists spoke often and kindly about the concept of integration, but not with
regard to bringing ideas together. System theorists observed supposed pat-
terns and suggested principles that indeed are important. Those principles,
once placed in the context of a proper framework, become the gems of dis-
covery that so eluded these early thinkers.

A framework of integration should be operative regardless of the type of
objects that are to be integrated. The concepts of integration should apply
equally well to all objects, systems, the discussion on systems, and systems

72 Engineering Systems Integration

engineering, and every other discipline and field that bring things together
with the purpose of relating the whole as more than its parts. Such a legiti-
mate framework would help capture the essential ingredients of the systems
thinking. Yet, it is neither a multitude nor a family of frameworks that is
required for this role. A single, all-inclusive framework can be constructed in
which consistency and capaciousness are both conveyed and comprehensible.
However, if the framework was purely theoretical, it would tend to (1) cover
only a limited number of object classes and variability, or presumably lose its
relevance; (2) not necessarily enlighten the practice of systems thinking (or
systems engineering); and (3) ignore that which it could not explain. And if
the framework were particularly practical, (1) observables would appear
without implicating any tenet of causality; (2) there may be no context for
what one knows with regard to what one does not know (without reference to
pre-existing conditions); and (3) there may be no reliable means to plan actions
for that which one does not know in advance (assumptions must be all encom-
passing, therefore predetermining the answer by trivializing the problem).

The approach to developing a consistent, utilitarian framework is to apply
a few general principles (some from systems theory) to explain empirical
phenomena and then predict new behaviors that should be observable in all
systems. To that end, the focus is on descriptive measures that confirm our
normal thinking about concepts that help guide us through investigation
and interpretation of our actions. The commonly thought-of notions of inves-
tigation, management, research, construction, decision making, and analysis
should be enlightened by this framework that we tat. This framework should
make apparent the rationality, inference, or discrimination that is commen-
surate with our innate ability to explain, convey meaning, and carry out our
everyday tasks. The desired framework will reflect a combined theoretical
and practical presentation.

Frameworks are comprised of frames, each frame representing a set of con-
cepts that together are a different perspective of the domains that make up
integration, that is, the defining objects and the interactions between objects.
For integration, those domains are (1) the processes that when enacted pro-
vide the guidance needed to bring objects together, and (2) the results of
those processes—the products or services that we desire as satisfaction of
our goal. The process domain governs the building of objects while the prod-
uct (or service) domain is the result of those efforts to put parts together.

Process Frame

The model of the roles played by cognition, procedures, and representations
of cognition and procedures (herein referred to as models or representations)
within the process frame is representative of the management processes. The
model of the roles played by the physical, functional, and behavioral charac-
teristics (of the user) within the product (or service) frame is the result of
the work to build the product or service. Both the process and product

73Essences of Interaction

(or service) frames are comprised of a recurring collection of variables
(termed the key variables) that are always seen to be essential to the observed
effects of the work. For example, the typical management planning, proce-
dures that are laid down and enacted, and the results of that planning and
worker’s undertaking are captured in the three classes—cognitive, proce-
dures, and representations. The effects of management processes are demon-
strated and replicated by every project or experiment without exception.
While the details may be different, the basic processes of management are
carried out by the process frame.

Object Frame

The model of the physical incarnation of products and services is exempli-
fied by objects. Objects are or represent material structures, material wealth,
and information. From these physical entities come energy or matter. We
interpret energy and matter as energy or matter, and in certain instances we
interpret energy or matter as material wealth or information, or both mate-
rial wealth and information. The Sun (object) is a physical structure, made of
mass and emitting energy. That the energy conveys information about the
make-up of the exterior of the sun is discernable through investigation with
spectroscopes and analysis of the spectrum derived, therefrom. The energy
has conveyed data, which when collected and organized by a sensor, result
in information. The sun’s energy impinges on the Earth, activates cellular
structures (plants as objects) to grow (assuming nutrients, soil, protections,
water, etc. are also provided). Those plants have value, are marketable, and
can be sold. The barter of goods for plants (objects for objects), or plants for
money, are reflective of a value system for material wealth. The effects of
EMMI from an object and from the object itself are demonstrated when we
build or use a product or service.

Key Variables

If one of the key variables in either frame is omitted, similar to an experi-
ment (and approach) that fails to replicate the result of another experiment
(that is thought to be very similar by its nature and specifics), then the results
achieved when all the key variables are incorporated exposes either a change
in experimental (or project) conditions or is suggestive that another key vari-
able is operative and has been omitted in one of the experiments. This is not
to say all of the variables that conspire to realize a given experimental result
are included as key variables. Most certainly there are other variables with
some import. But the omission of a key variable is essential to bringing about
the desired result. Missing a key variable points out a deficiency in the for-
mulation of what is necessary to give the framework its predictive worth.
Frames capture the key variables, that is, the minimum set of variables that
are necessary and sufficient to explain the resultant experimental results in

74 Engineering Systems Integration

a fashion that the experiment can be shown to be replicated, that is, similar
results are consistently achieved. Other variables may exist that have effects
(perhaps noticeable under certain conditions) that might refine the primary
results of an experiment that is predicated on the key variables. But the prin-
cipal correlations and patterns due to the key variables are not changed sub-
stantially, except in those cases when specific conditions apply. Research
often focuses on new conditions that may be suggestive of new key variables,
or perhaps a new theory that explains the totality of variables in a manner
consistent with previous theories and also predicts new phenomena.

essence of a Framework

A framework that is all inclusive of the subjective direction to accomplish a
task is needed in conjunction with the objective results of those accomplish-
ments. The hallmark of a framework for integration is its consistency to
reproduce similar results from each use. A framework that is characterized
by consistency has logic, continuity of method, applicability across disci-
plines and fields, scalability from the micro to macro (and vice versa), and
the flexibility to accommodate a variety of differences across and within its
classifications. Most importantly, the definitive framework for integration
should focus on the eventual prospects of at least not inhibiting the develop-
ment of a definitive theory of systems integration. To investigate the essential
elements of systems integration, a framework is developed and presented
that reflects causality in a system—that which derives from cause to effect.
An integration framework provides the basis for identifying principles
that have substantial theoretical foundation(s). Systems integration can be
thought of as having fundamental provenances, a few of which are listed:
(1) engineering principles (which are interdisciplinary), (2) systems thinking
(multidisciplinary), (3) economics (determination of value, risk, and conse-
quences), (4) acquisition (the catalyst that moves a concept through develop-
ment into operations), (5) social science (the mechanisms of human behavior),
and (6) management (the processes that govern the direction, control, com-
munications, planning, organization, and team-building). The field of sys-
tems integration applies principles from science, nature, and sociology
to build desirable and worthwhile systems. Systems thinking extends this
paradigm by attempting to encompass metalessons from all disciplines.
Metalessons signify the maturation of the discipline through considered dis-
cussions about the philosophical bases for theories, the provenances of mod-
els, the efficacy of frameworks, and the operative frames that capture the
essences of an experiment. Systems thinking continues to contribute to the
development of systems theory through the discovery of universal princi-
ples that transcend discrete disciplines. It is more than pattern recognition
that drives these discoveries. It is the recognition that frameworks not only
clarify knowledge what is known but also point to missing elements. Systems
thinking and systems integration together empower systems engineers to

75Essences of Interaction

consider the whole problem and possible solutions in the context of lifecycle
issues, including costs and time constraints, and achievement of system per-
formance. So, it is also incumbent on those who analyze systems to discern
the mechanisms and behaviors that are represented through certain vari-
ables. Therefore, the charter of systems thinkers is to create ideas, build
products and services, and analyze behaviors and other clues that suggest
mechanisms that are often incomprehensible or unachievable by other
means. The systems integration framework originates from this merger of
systems thinking, systems theory, fundaments, and principles.

The intent of this discussion is to develop an integration framework that
reflects theory and best practices in systems fields—engineering, sociology,
psychology, biology, cybernetics, computer science, economics, management,
and the like.

Building on and expanding the work of Schlager and Blomquist (Schlager
and Blomquist 1999), frameworks should be compared based on nine fac-
tors: scope and boundary of inquiry; underlying model; impact of deci-
sions; role of stakeholders; conceptualizations and explanation of action;
measures; and metrics of quantification. If the framework was particularly
theoretical, it would tend to (1) cover a limited number of object classes and
variability; (2) not necessarily contribute to the practice of systems engi-
neering; and (3) overlook what it could not explain. If the framework was
overly practical, observations would be made in the absence of implica-
tions; there would be no context for defining facts in the context of what
remains unknown; and there would be no reliable method to plan contin-
gencies around unknown variables.

Causality

If interaction is the cement of systems, then by this presentation, the causality
of events is caused by the concoction of objects, mechanisms, and behaviors
that have conspired or happened. The three driving determinants that form
the scientific foundation of the causal mechanical perspective are (1) the suf-
ficiency of the EMMI that activates a receiving object mechanism and was
transformed into performance (and losses) that in turn carries on similarly
with another object, and so forth (termed as the modal causality); (2) the local
circumstances surrounding a specific event (termed as the proximate causal-
ity); and (3) the conditional causality that related modal causality to proxi-
mate causality. As a group, these three types of causality are termed as the
objective causalities.

Modal causality is the root cause of all events. Modal causality is the
basic source of events (the historical provenance) that provides the founda-
tional causes from which local circumstances (proximate causality) and the

76 Engineering Systems Integration

 apparent most direct event (conditional causality) arise. Combined objective
causalities are the sine qua non of causes. The modal causality provides the
historical trails of events, that is, limits what is causally possible; the proxi-
mate causality focuses through localization in time and space, that is, further
limits the likelihood of an event, whereas the conditional causality completes
the triad of objective causalities by constraining the context and circum-
stances surrounding the sequences and trails of events. The number of
modal trails is literally countless; some of the extraordinarily high number of
proximate events are perhaps identifiable, while the conditional constraints
are usually readily observable just prior to an event.

Objective causalities are posited to be both necessary and sufficient to ren-
der a complete explanation of an event—substantiating the causal connection.

That the necessary and sufficient EMMI is received by an object trans-
formed into performance, to, in turn, activate another object, which in turn
combines in some way with other objects, leads to a “trail” of connection by
interactions. A receipt of EMMI by an object (object to object) represents an
event. An event is defined as the enactment of a mechanism by input EMMI
transformed into output EMMI (performance).

Events transpire as a result of every enactment of a mechanism, whereas
functions occur at the interface between two objects. Similar to objects and
their enactments at the atomic level scaled to enactments at the galactic level,
each object that receives EMMI’s describable as events according to the same
form and structure of input and output.

A building suffers damage in an earthquake, then fails structurally and
collapses. The events that lead up to the building’s destruction are immi-
nently describable. Beginning at some point in mid-sequence, the land
became available for use as a building site; permits and permission were
obtained; the architecture was submitted, reviewed, and approved; con-
struction followed established practices; routine and special inspections
were accomplished according to regulations; people then occupied the build-
ing; the building shook and then collapsed. There were countless events that
occurred in these much abbreviated trails of events leading up to the col-
lapse. Another trail of events transpired within the Earth’s crust. The crustal
movements that occurred leading up to the precipitous release of energy was
defined as the earthquake that shook the building. As the ground shook and
the building collapsed, a cause and effect were determined. One trail of
events might have involved an inspector who missed an important set of
weld joints during a routine inspection in the early days of construction.
Another trail of events might involve an earthquake engineer who contacted
the geological survey regarding the geotechnical specifics associated with
the building site. Perhaps the geology data were incomplete or the earth-
quake engineer underestimated the potential impact of an earthquake.
Another trail of events might be the Earth’s geographical properties that
were changed due to a volcanic eruption, half-way around the Earth. While
the connectivity of these trails most certainly lead to the collapse, the risk

77Essences of Interaction

of the building collapse can be only partly determined. The event in question
(the “focus” event—the earthquake) is the event that one wants to discuss in
terms of the details of causality. That the focus event is preceded by objec-
tively measurable events is complicated because these events are mostly
countless, with a few being identifiable. The level of delectability of proxi-
mate events challenges technology and human cognition. If any one of these
objective events is implicated in a proximate event, then it is usually termed
as a “direct” causal event (insurance companies may associate an earthquake
with an increase in seasonal rain (as was the case in the year prior to the 1906
San Francisco earthquake), but that correlation may not be known to be
causal). Direct causal events are those events that share the responsibility for
the event along with its direct consequences. Should a building inspector not
observe or by circumstance ignore a safety item designated as critical, the
action of the inspector may be implicated in the collapse of the building. As
such, the inspector may bear some responsibility for the collapse, being asso-
ciated with a proximate cause.

Causality in its most general sense means to not be random. There is
always a pertinent and identifiable relation between an object and an event, or
an object and a process, or a process and a process, or an object and an object.
The notion of randomness is rejected for this presentation. Fundamentally, if
our knowledge was sufficient to know the meaning of all events, all objective
causes, and all circumstances, then (and only then) could the notion of ran-
domness be rejected. As the aim of this book is to explore boundaries, iden-
tify constraints, and posit relations between objects and processes for the
purposes of interaction and integration, the deeper the exploration, the
greater the information, and (perhaps) the better match with our perceived
realities. Certainly, the greater our acceptance of the results, the “deeper our
debt” to the like-kind guiding notions.

Objective causalities exactly imply the sequence of events, one instant at a
time. The determination of the boundaries of the objects spans any number
of events until the output EMMI of the sending object (to be here considered
as the cause, i.e., the cause-object) is transformed by another object. It is rea-
sonably arguable that every object at least has the potential to transform
their input EMMI into something that is different, but perhaps not so differ-
ent that the change is discernable following examination by an outside
observer. So, at best, an outside observer might perceive only a few events,
misexamine some, not detect changes, and maybe not even recognize a
change as having taken place. The result is a blurring of objects (their physi-
cal boundaries, their functions, and behaviors) and their respective bound-
aries. It is suggestive that identifying mechanisms may be difficult at the
elemental object level and that only after some degree of integration will
mechanisms be discernable and examinable.

But only an arbitrariness contrived by our will limits the extent of the phe-
nomena about which we inquire. Human consciousness implicitly limits per-
ceptions in a way that may seem arbitrary and capricious (to a different

78 Engineering Systems Integration

observer), resulting in arbitrary categories of objects, and by extension, arbi-
trary boundaries between them.* Therefore, the unanswerable question
remains, “What is a system?” By inference, without being able to define a
system, the objective to discuss, extend, or build a system would appear prob-
lematic. We cannot consider that which we cannot conceptualize or define.
The rationalities of inference are based on induction (Mill 1882; Holland 1962;
Newell and Simon 1972; Holland et al. 1986; Hutter 2007), abduction (Peirce
1934), deduction, comparative (Przeworski and Teune 1970), and systemic
thinking (Francois 1999). And, inferring a system is neither knowing nor con-
templating the interaction and integration that must take place. Yet we pre-
sume to answer the question of “what is a system” when we contemplate
systems as such things as people, families, planets, oscillating gadgets, trees,
cities, networks, ships, and insects. This is a question that is remarkable by its
innocent fundamental nature, yet unanswerable as presented. The question is
intractable, having either an infinite number of answers or none. Like the
universe such questions may have no bounds.

The domain of knowledge that has accompanied our inquiry over the past
2500 years does not have the requisite features or power to example all that
is required to provide an answer. But we are not without choices. Continuing
to invoke philosophical notions that have maneuvered our thinking and
enquiry has helped humankind with both conceptual and material progress.
This choice is available, adopted, and widely practiced. I pose another choice:
consider applying the Parmenides method—What is it that is? What is it that
is not? What is it that cannot be?—not to the question of what is a system, but
as what processes are involved in making a system. The answers might be
suggestive of processes that portend systemness rather than a literal answer
to the question: What is a system? With some contemplation on how to think
about the problem of determining how integration works and does not work
(i.e., not beginning with a definition, but instead investigating the nature of
integration from objects that are not integrated, objects that could be inte-
grated, and objects that we believe are integrated, and then having more luck
than we deserve when developing constructs to try out) the results just might
happen to turn out to be robust and offer insights. At the very least, the past
five years of research on integration has shown me too many false hopes and
exposed a paltry few nuggets of insight. Fortunately, those nuggets served as
guideposts to develop a reasonably robust consistency of ideas. These are

* Private communication with Dr. James H. Lake, board-certified psychiatrist, clinical assistant
professor, Department of Psychiatry and Behavioral Sciences, Stanford University Hospital,
Stanford, California, September 13, 2011. Dr. Lake asks us to “consider the concept of an
inherent human/psychological ‘need’ to think about the universe in an ordered way, which
inevitably leads to attempts to categorize things in terms of hierarchies or systems? Kant
discusses this concept, i.e. there is no ‘pure seeing’ (or other perception), but only ‘seeing
aspect’ which is the imposition of the mind’s order onto the world.” Dr. Lake continued,
“Would it be helpful to include discussion of time in your ontology, as causality in relation to
time was Parmenides’ major concern?”

79Essences of Interaction

offered for your consideration and comment. Our challenge is to begin
unraveling the enigmas of integration that brings us systems.

Causality, Mechanisms, and Correlation

A foundational element of scientific investigations and theories is an appre-
ciation of the importance of mechanisms. Mechanisms illustrate the empiri-
cal causalities of events. This view of causality suggests that events are
precipitated by mechanisms from which we infer causality. Events are the
results of actions through mechanisms. We term the sequence of events
 causality—event by event. Causality is not correlation and correlation is not
causality. Causality is formed from the modal threads of events leading to
the proximate events (nearby in space and time) from which the conditions
are stipulated to select the necessary and sufficient events. Causal events
have both provenance and pertinent specificity. Correlated events have
nexus, without satisfying the three types of causal events required for strict
demands of recognizing cause(s) and effect(s). Correlated events may pro-
vide a clue to indicate a causal chain, but correlation by itself fails to identify
key variables that feign causality. This difference between correlated and
causal events suggesting simple probabilistic occurrences is an inadequate
test for causality (Sage and Armstrong 2000).

In all situations, where dense threads and networks of events intertwine,
there may appear to be a limit to one’s ability to identify an adequate test for
causality. This effect of integrated objects (i.e., systems) is suggested in the
social sciences and the natural sciences. Perhaps the difficulty resides in our
inability to identify the event chains leading up to a particularly targeted
event or miss characterizing correlation and causality. We are left again with
determining cause and effect based on probabilistic effects of one object
caused by another object. While this mathematical approach is appealing and
generally reasonable tractable, the question arises—what amount of historical
events are necessary to establish modal causality. Often, there is due attention
to the proximate events and conditional events, but the causal provenance
may be either unknown or quantifiably small. Before the proximate events,
the usefulness of modal causality is to establish the event lineage that leads to
the determination that an event is indeed possible. Were there no detectable
lineage, then one would need to account for and explain spontaneous events.
Spontaneous events would arise from essentially no outside source of EMMI,
only from their internal mechanism(s) within their physical boundaries. We
may be somewhat limited in our appreciation for events that occur without
input EMMI and that limitation we can deal with through a scientific approach
to causality. But even the reliance of one object forming spontaneously
 suggests the question—”how” while it is difficult to fathom the notion of a

80 Engineering Systems Integration

beginning in a physical sense, the question “how” is answered simply as
there is no beginning and no ending, only a continuum of object and action.
In this matter, the issue of spontaneous events is dealt with without reference
to other equally interesting questions, such as why, where, who, when, and
what.

Determining the number of modal chains of events is important for ana-
lyzing proximate events, with the objective of identifying conditional events.
Missing a modal event may prevent us from uncovering a conditional event.
The impact of missing a conditional event is to suggest the existence of a
spontaneous event—which has been disregarded as previously described.
Not allowing spontaneous events simplifies the analysis of proximate events
to identify conditional events.

Model for Objective Causalities

The earthquake-building failure example points to several components of a
model that can be built for objective causalities (modal, proximate, and con-
ditional). A model shapes what we see and how we act (Senge 2006).

The aim is to advance a means of capturing the key relations that are fun-
damental to objective causes. A model that gives justice to the sensitivities of
the variables, yet fairly captures all that is reasonably germane. The test of
sensitivity should concern all that enlightens the conditional causes, that is,
those that are constraining for integration. Limiting the purview of the
model, we add worth to understanding what we observe (it is conditional on
our actions and relatively straightforward to analyze) and viability to its use
as a tool from which to analyze and evaluate for planning and predicting.
The test of reasonableness is built into the model’s ability to support theory
which facilitates confirming these predictions. However, a model without an
adequate framework may not capture the essence of how to think about the
subject, its premises, and its nuances—in this case, perhaps the modal and
proximate causes. Therefore, the model must consider the limitations that
are imposed on the work, the confounding and proximate causes that affect
the work, and the conditional issues that are seemingly under our control.
For a project, the modal causes include the funding limits (total and incre-
mental) and the schedule limits (total and by stage or deliverable); the proxi-
mate causes include the influences of family members on the work habits of
the project team (either individually or collectively); while the conditional
causes include project management’s allocation of resources and skills.

A framework structures the sequences of relations shown within the
dimensions of the model and expands on relations by applying various prin-
ciples (Garud and Kumaraswamy 1995). Frameworks facilitate managing of
concepts.

81Essences of Interaction

The model for objective causalities must deal with objective behavioral
issues and objects as well as their mechanical properties (the objective com-
ponent), and the processes to provide the objective component through cog-
nition or rules, procedures or activities, and models or representations of
cognition or procedures (the subjective part). The model for objective causali-
ties is rationally consistent with a core interpretation (Luhmann 1982) of the
Luhmannian perspective of systems theory (Luhmann 1995a, b).* These two
parts form the model from which a framework is devised to guide thinking
and management of relations. The objective part encapsulates the resultant
product or service that is built by the systems engineer while the subjective
part is describable as the management process used by the system engineer
to satisfy the requirements of the new product or service (i.e., perhaps a
 system). The objective part can also be construed as nature’s objects interact-
ing with EMMI, with the subject part construed as the set of allowable inter-
action, the procedures of those interactions, and the manner of representing
those means that are recognizable by the objects to be integrated.

Objective Causalities Framework

A framework for objective causalities applicable to interaction and integration
must reconcile the sociological aspects of systems integration, integration
method, processes, activities, and acts (referred to as the subjective factors)
with the physical and functional aspects of the product and service during
development (and integration) and when operational (referred to as the objec-
tive factors). The blending of these social and engineering aspects results in a
nexus of cognitive and literal activities that build products and services.
Figure 2.8 depicts a diagram showing events (customer, developer’s enter-
prise, and developer’s project). The causal events that impact on the project
(the customer and the enterprise) are initiated in the past. The modal causali-
ties reflect these historical modes from which near-term events are resultant.
Budgets and schedules are limited during the modal causality phase by the
source of funding for a capability. The customer determines a set of require-
ments that are consistent with the limited funding and schedule, then begins
the processes to either purchase the product or service or have the requisite
requirements satisfied by a custom development and integration. A contract

* Within the ongoing debates of sociological theory, two basic views have emerged—the view
of social processes as systemic or as consensual decision making. Since systems engineering
is as much a social science as it is an engineering discipline, the debate is relevant to the dis-
cussion of integration. Systems engineering is about building products and services. The
social aspect of management, economics, and team activities are important and germane.
The engineering aspects of bringing technologies and structures together in a meaningful
way reveal the efficacy of the resultant product or service (Bausch 1997).

82 Engineering Systems Integration

is initiated and the enterprise begins to define a solution based on the initial
set of requirements from the customer. The formation of a team for the project
represents the proximate causalities that determine that the key directions
and decisions will guide the project. Interactions between the project team
members and the customer reveal a series of problems that will strain the
limited funds and most likely delay the delivery schedule(s). One of the proj-
ect workers is determined to take time off to rest but is told that the work is
too critical to even rest. The worker quits (one of the conditional causalities).
A difficult situation was then compounded and the customer canceled the
project. The subjective frame intersects the objective frame in a framework
that combines the three different causalities. The only caveat is that the cau-
salities must have objective (quantifiable) measures.

The modal causalities define all that influences the framework for integra-
tion. Those influences include all that led customers to become customers,
users to become users, developers to become developers, companies and
regulations to organize the work environment, and future stakeholders to be
impacted upon by the results of project work (i.e., products or services that
are developed and integrated). The modal causalities are those that make up
who and why we are. Modal causalities determine the relations between the
past and the future for all things. Either someone is a participant or they are
not; either resources of a certain type will be used or they will not. The exis-
tence of the customer, the project, the product, or the service is determined
by modal causalities. Therefore, the existence of the objective causalities
framework for a particular project is deterministic due to modal causalities.

Proximate causalities are determined by the customer’s requirements; the
project’s initiation, formation, and organization; the bringing together of a

Project

Modal
causalities

Proximate
causalities

Conditional
causalities

Subjective frame

Objective
frame

Cognition Procedures Models

Behaviors
functions

objects

Social and management domain

Product
or

service
domain

Nexus of
objective causalities

Limitations of
budgets and

schedules

Customer

Developer

Constraints
imposed on
budgets and
schedules

FIgure 2.8
Framework for objective causalities.

83Essences of Interaction

team of workers; the allocation of resources; the development of an overall
schedule and budget; and the organizing of work tasks. The focus of the
proximate causalities is to define and enable the project work. The previously
determined specifics of the work packages, the assignment of personnel, the
interim due dates, the allocations of specific resources, and allotment of facility
usage are all indicators of proximate causalities. The customer exists, the proj-
ect exists, the work exists (all due to modal causalities), but the particulars are
coming into existence as decisions are made (the work of proximate causali-
ties). Proximate causalities were most often conditional causalities, showing
the historical traces of decisions that have resulted in the present. However,
all proximate causalities are not known (nor knowable).

The conditional causalities are very local, indeed. Going to work on time,
staying late, taking vacation, using or not using a particular method or tool,
having a conversation (or not), and checking your work all point to condi-
tional causalities. Conditional causalities are controllable to an extent.

The management processes for systems engineering (i.e., planning, com-
municating, directing, controlling, team building, and organizing) are for-
mulated and carried out through processes. The results of the systems
engineer’s work are the physical object and their connections that provide a
user with function and result in various behavior. The relation between the
physical object and the function that it enables it at the interface with another
physical object is referred to as the consistency (or integrity) between an
object’s function and the structure formed by the objects (Clark and Fujimoto
1990). The management processes that guide the building of products and
services result in the construction of objects and their resultant functions.
Therefore, for functional integration to occur, there must be a frame of plan-
ning, organizing, directing, communicating, controlling, and working with
other people (teamness), referencing Garud (1995) for the work of Astley and
Brahm (1989) who states “the functional integration of modules as part of a
coherent system, an overarching ‘framework’ of planning and coordination
would be necessary.” The systems engineering activities and procedures are
defined in the 3 × 3 matrix of tasks for the framework of objective causalities.

As Glennan points out in “Rethinking Mechanistic Explanation” (Glennan
2002), there appears to be a seemingly irresolvable difference between the
approaches to interpreting the fundamental nature of scientific explana-
tions. Salmon (1984) proposed a causal approach to unification via mecha-
nisms, and Kitcher (1989) proposed unification based on patterns that explain
unification. Unity is a sought-after concept that illustrates the reuse of vari-
ous social mechanisms (some of which may be considered fundamental)
(Hedstrom and Swedberg 1998; Gross 2009). That social scientists (Torres
2008), biologists, chemists, physicists, economists (Williamson 2009), and
systems engineers should adopt a mechanistic view attests to the pervasive
nature of proof that appears required to pose arguments that are by some
means convincing. It would seem that if we can appreciate a mechanistic
way of transforming one thing into another we have comfort in being able to

84 Engineering Systems Integration

describe the result of the transformation of an input into an output. With a
plethora of mechanisms that appear to be active ubiquitously, the pleasure of
characterizing all of them may be daunting. But this monumental task does
not obviate the power of mechanisms as unifying transformers of EMMI.
Regardless of these apparent difficulties, causality can be modeled using
mechanisms and produce results acceptable for systems engineering and
systems engineering integration. The further development of a theory of
integration relies on a mathematical formulation (following the mereology
proposed by Stanislaw Leśniewski (Stanford University 2007)), more experi-
mentation across a wider set of disciplines and fields, the discovery of more
principles and fundaments, and extension of current cognitive structures.

The global perspective of mechanisms (Glennan 2002) is only partly
described by these two mentioned approaches for unification. Other approaches
should be assumed to exist. In fact, mechanisms may be reexamined, refined,
and replaced, but mechanisms will be a fundamental part of the model and
integral to the framework. The same is to be said about the frames. The objec-
tive frame will follow the objective user behaviors, the product’s functions, and
the physical entities. The subjective frame will represent the cognitive part
(however that is conceived or formulated), the procedures to carry out the cog-
nition, and the thinking about the models or representations of the cognitions
and procedures. The general nature of a project for people to build or change
ideas into a product or service is the essential character, the essence of the
objective causalities framework. For convenience, the framework is broken into
two regimes, each representing a frame—one subjective, the other objective.
Subjective and objective measures are discussed in Chapter 3.

Objective Frame

The objective causalities framework also translates into the natural regime
(i.e., without human interventions) in the same manner, retaining its invio-
late character. The phases of the lifecycle may change or be redefined or
eliminated. However, the general nature of nature is to exist within the para-
digms of low energy usage to achieve stability, and once past the threshold(s)
of stability, transition through instability with catastrophic releases of
energy. The complete transformation of energy to matter and matter to
energy is representative of the observations and laws of nature that we are
beginning to recognize in greater detail.

The objective frame of the framework of objective causalities is the final
result of the work efforts managed under processes—the physical objects,
the product or service functions, and the objective behaviors that were deter-
mined by the development team to result from the use of the product or
service or in anticipation of the product or service.

The importance of the model and framework for objective causalities is
in its general utility as a descriptive means to gauge the general nature of
causality. As such, systems engineering can be replaced with any discipline

85Essences of Interaction

or field of work—the framework be adapted and applied appropriately
regardless of the type of product or service that is desired.

From a systems engineering perspective, the processes take a lifecycle per-
spective that incorporates: conceptualization, planning, design, develop-
ment, testing, and delivery of the product or service, then continuing with
acceptance, operations, support, maintenance, upgrades, and ending with
disposal. From a systems integration perspective, the process takes on an
event-driven perspective that endeavors to provide stability in operations for
products and services.

Subjective Frame

Social processes form the subjective frame of the framework of objective cau-
salities. The role of the social process for systems engineering is to describe
the cognition and cognitive structures that deal with objects. In the case of
people, the subjective frame deals with thoughts that guide people, inspire
them, support them, provide needed resources, and encourage, cajole, or
compel them. The management of the project for systems engineering is a
social process (Yasui 2010). The set of factors that make up this social think-
ing process (subjective frame) are consistent with scientific sociological
investigations that divide the factors into planning, procedure (mechanisms),
and models of the plans and procedures (mechanisms). In this sense, proce-
dures are termed as mechanisms. For clarity and to avoid confusion with
dual use of the term mechanism, “mechanism” is used in the engineering
and science sense to describe the inner workings of an object, while “proce-
dures” are used instead of social mechanisms in describe processes.

For natural objects, the results of interaction may be sporadic interaction or
aggregations of a temporary nature or integrations that are metastable or
stable. A natural process has an input (EMMI) that responds according to a
set of rules and is enacted through a set of procedures and activities which
are exemplified by accurate representations of the enactment of the mecha-
nistic rules and the mechanistic procedures and activities. The output of the
process is the performance of the process, activities, or acts.

The result of a set of processes (referred to as the result of a procedure (i.e.,
social mechanism) or procedure) is called an event. One process could be
referred to as an event, a set of processes can be referred to as an event (or set
of events), or an abstraction of processes (or a single process) can be referred
to as an event. An event implies the activation of a mechanism (i.e., physical
mechanism) that is embodied within an object.

Summary of Objective Causalities

The frame of objective causalities is applicable to building cars (when engi-
neers formulate plans, follow procedures, and model expected results), to
delivering cars with requisite physical characteristics, required functions

86 Engineering Systems Integration

(with acceptable performance(s) and acceptable loss(es) to achieve those per-
formances); predicated on their design, architecture, development, and inte-
gration work to achieve the requisite desired behaviors that accompany the
physical object and accommodate the other objects that are (or deemed to be)
part of the race event. Beyond the objects of cars and people, the framework
can be used to construct the objects that comprise the totality of the “race
event.” The “race event” could include the “crash” event, or not, depending on
the objective of constructing the “race event.” This grand ensemble would
include objects of the race, formulated by planning and carrying out
process(es) for procedures to manage the organizing of which cars compete in
which race (assuming more than one race), where the cars will be positioned
before and after the race, where the winner will be stationed or presented
with the results of winning, and where the car will be serviced before leaving.
Every aspect of the abstraction referred to as “the race” is definable with the
framework of objective causalities. The bringing together of the “race event”
constituent objects depends on definable interactions that are either observed
or deemed reasonable given the before and after events. No doubt there will
be emergent attributes that result from the “race event.” As we will find in
Chapter 3, emergence is commonplace. Temporary emergence(s) arises dur-
ing the event, for example, a mechanic using a wrench tightens a lug nut,
scrapes the fender, and rips a shirt sleeve (the rate of ripping a shirt is an attri-
bute of the interaction between the shirt and the means of ripping; whereas
the rip in a shirt is an attribute of the shirt). Temporary emergence can be
sustained as long as the appropriate EMMI is available and the context and
circumstances support the emergent attribute(s). This reversible circumstance
is metastable, with the mechanic recovering fully, the car repainted, and the
rip in the shirt sleeve mended. Unless there are irreversible actions (such as
could result from a devastating car crash), the only interactions that occur are
included in the “race event.” The notion of time that in some manner links
events can be investigated by dividing up “race event” into its causal trails, its
proximate conditions, and its local circumstances.

If all interactions were stopped at the same instant, all objects would cease
their behaviors, and all motion would cease simultaneously. In the next
instant of infinitesimally small time duration, all interactions, behaviors,
and motion would be allowed to continue for an infinitesimally small time
duration, but then frozen again an instant later. Captured in the method is
the time localization of an event, and at what spatial position (e.g., location)
it occurred. Comparing that moment of occurrence with that of a measure-
ment standard (such as time in seconds, or increments thereof), the event
can be said to have occurred at a specific time. The onset of this infinitesi-
mally small period of activity to the beginning of the next infinitesimally
small period of activity is referred to as the duration of the event. Events
concatenate and intertwine coextensively ad infinitum, one instant in a
sequence trail of instances. Objective causalities are defined as the relation
between two events—that one event uniquely determines the next event

87Essences of Interaction

because the period of separation is infinitesimally small, that EMMI from
one object was indeed the determinant factor for the activation of an
object’s mechanism, and that the output of an object is causally enabled by
a single-input EMMI.* An event is theoretically the result of all objects, all
interactions, and all EMMI in the universe, some interactions being directly
involved at a specific instance. The expression of a single event is immedi-
ately cogged into a trail of chained events that proceeds to interact and per-
haps integrate with other objects. Each object through its properties, traits,
and, attributes can either retain its independence or develop various forms
of dependencies in an integrated structure with various degree(s) of stabil-
ity. Events concatenate and intertwine coextensively ad infinitum, as one
instant in a sequence. Causality is the relation between two events—with
one event uniquely determining the next event.

Objective causalities are exceedingly problematic to follow event by event.
It is only after some measurable grouping of events has occurred that we
may be capable of detecting and discerning some sibilance of causality (or at
best correlation). The functions of objective causalities are those that occur
between grossly detectable objects or by their influences of EMMI.

For human-made objects, the functions of objective causalities (1) relate
the management or policies and rules of development with the sustain-
ment of the objects; (2) support analyses of the events that result from the
process domain; and (3) identify the considerations from which to discern
the expected (or anticipated) behaviors of the users with those physical
entities, functions, performances, and losses (Garud 1995). The framework
of objective causalities relates the management of development and the
sustainment of human-made objects (products and services) to the activi-
ties and events that must be completed. These activities (or project tasks in
the case of systems engineering or systems integration) are defined in a
3 × 3 matrix that is the nexus of the cross-framed correlations between pro-
cesses and the objects, that is, between the subjective and the objective
frames, respectively. The objective causalities framework for integration is
shown below. The 3 × 3 matrix that relates the subjective frame to the objec-
tive frame is laid out in blank rows and columns. For interaction and inte-
gration we refer to the framework as the integrative systems framework.†
Figure 2.9 illustrates the flow of work through the systems framework that
integrates the subjective and objective frames of information and data.

* Of course, this discussion opens up the issues of simultaneously received EMMI, an insuffi-
ciency of one EMMI that requires additional EMMI to activate the mechanism, other causal
factors within the object or the environment, and so forth. For the purposes of this book, we
ignore all other such effects. These other effects are certainly interesting to ponder and will
be dealt with using the mathematical representations of mereology following (Stanford
University 2007).

† Given that the operands for process (abstractions, procedures, and models) and the operands
for objects (behaviors, functions, and physical entities) act in a 3 × 3 matrix, the integrative
systems framework is also referred to as the “3 × 3 matrix.”

88 Engineering Systems Integration

Figures 2.8 and 2.9 are similar. The explicit depiction of causalities is shown
in Figure 2.8, while the procedural work-up based on those causalities is
show in Figure 2.9.

This match-up of the subjective and objective frames occurs in the sequence
outlined below, always beginning with cognitive structures, completing a
nexus of one subjective–objective item, then moving on to the next nexus.
Progressing through the 3 × 3 matrix begins with a work-up beginning with
the subjective frame. Depending on your style, manner, and preferences for
thinking about objects and processes, it may be more comfortable to begin
with one or the other of the subjective or objective domains. Different people
can also participate, proving their thinking styles better fit for one domain or
the other. That said, it is advantageous to first focus on the social and man-
agement issues (cognition, procedures, models) if you think like a manager;
on the product or service issues (e.g., objects) if you think like an engineer; on
user behaviors if you think like a systems engineer; on functions if you think
like a systems engineering integrator, on boundaries and user behaviors if
you are an eclectic-systems integrator-thinker. Additional roles can be read-
ily mapped to the 3 × 3 matrix. For convenience, a typical sequence is delin-
eated beginning with cognition, progressing through each item in its domain
that matches with the objective frame; then next to all items indicated for
procedures; finally covering all items indicated for models.

•	 Cognition–objects; cognition–functions; cognition–behaviors
•	 Procedures–objects; procedures–functions; procedures–behaviors
•	 Models–objects; models–functions; models–behaviors

Detailing each of these conjunctions of domain items indicates the scope
that is considered when mapping the frames to enlighten the integration
effort. Beginning with the subjective frame each domain item is described.

Subjective frame

Objective
frame

Cognition Procedures Models

Behaviors

Functions

Objects

Social and management domain

Product
or

service
domain

3 × 3
Framework

FIgure 2.9
Integrative systems framework 3 × 3.

89Essences of Interaction

Cognitive Domain

The cognitive domain involves the abstractions and reasoning that take
place when thinking about a particular subject. All types and modes of
thinking are involved with the cognitive domain, including conceptualiza-
tion and interpretation. Another view of the integrative framework is shown
in Figure 2.10. The specific topics covered for the nexus of processes (subjec-
tive) and product or service issues (objective) frames are outlined in the
3 × 3 matrix.

For the cognitive domain, the relations between concepts that are impor-
tant to the user and reflective of the user’s intentions should be represented
in the product or service through the design of objects, the enactment(s) of
functions that reflect the uses as well as the decisions that will be made with
or as a consequence of the product or service.

The cognitive domain spans many disciplines and skills, including psychol-
ogy, sociology, psychiatry, creative thinking, problem solving, management,
and integration. The cognitive domain encapsulates the cognitive structures of
questions, knowledge, information, and data. Beginning with the cognitive
structures (the subject frame) places the context for objects. Context is most
important for determining the utility of processes that build, integrate, or
enable objects. The following listing spans many of cognitive structures for the

Integration method

Processes

Abstractions
(and reasoning)

Mechanisms,
procedures, activities

Models,
representations

O

B

J

E

C

T

S

P
r
o
d
u
c
t

*

S
e
r
v
i
c
e

User behaviors
(associated with

or due to
product*service)

Conceptualization
pertinent to user
behaviors due to
product*service

Process and
mechanisms describing
user behaviors due to

product*service

Models or
representations

of the user
behaviors

Functions
(associated with

or because of
objects that
comprise

product*service)

Conceptualization
delineating uses

provided by
product*service

Process and
mechanisms achieving
complete portroyal of

product*service
functions

Models or
representations

showing all
functions

Physical entities
(associated with

or because of
objects that
comprise

product*service)

Identifying and
interpreting the
product*service

physical artifacts,
and ascribing

meaning

Process and
mechanisms resulting
in the development of
all physical elements

Models or
representations
of all physical

elements

FIgure 2.10
Integrative framework–nexus of processes and objects.

90 Engineering Systems Integration

process of “to plan.” Cognition is a vast field of study. When particularizing
the 3 × 3 for a specific integration project, a complete process decomposition is
necessary to identify the objective and subjective causalities that are relevant
to the project. This decomposition should be completed before starting to out-
line the objective causalities within the framework of integration.

 1. Cognitive structures (i.e., “to plan physical entities”) take into
account the physical entities that will be delivered. Typical questions
include: How will the user use, support, and in general deal with the
physical objects? What decisions will the user make because of the
physical objects? Where will the user place the physical objects?
How many users will be needed for the physical object(s)?

 2. Cognitive structures (i.e., “to plan function”) take into account the
functions, functional performances, and losses that result from
achieving those functional performances. How will the user enable
and use the functions? Given the functional performance(s), what
decisions will the user make? How will those decisions change the
user’s uses of the physical objects or functions? What other functions
might the user require to carry out their work? What processes are
necessary to assist the user to make full use of the delivered object(s).

 3. Cognitive structure (i.e., “to plan behaviors”) takes into account the
behaviors of the users before the physical entities are used, during
their use, and after their use. When the physical objects are not in
use, what should the users anticipate?

 4. Cognitive structures (i.e., “to organize physical entities”) take into
account how the physical entities will be organized for use; how
they will be organized by functions(s); and how those organizations
impact on how the users make decisions and behave organization-
ally before, during, and after use. How do users organize their work,
with and without the objects?

 5. Cognitive structures (i.e., “to direct physical entities”) take into
account how the objects are commanded or placed into operations;
how the functions are sequenced for various types of operation; and
how the users orchestrate their work—guiding their uses from one
task to the next.

 6. Cognitive structures (i.e., “to control function”) account for the feed-
back required by the physical objects (e.g., user interface); the knowl-
edge that a function is being performed properly; the confirmation
(and adjustment, if necessary) to achieve the desired performance;
the recognition and adjustment of the losses resulting from the sys-
tem performances to satisfy a constraint or a limitation; and the
changes required in behavior to complete the tasks.

 7. Cognitive structures (“to communicate physical entities”) account for
the physical expressions through physical entities of communications;

91Essences of Interaction

the physical means of carrying out communications; enactments of
the functions that facilitate communications; the thinking (pre-,
during, and postcommunications) that is required to carry out, plan
for, and enable communications.

Procedural Domain

 1. Procedural structures (i.e., “define”) take into account the wasted
effort resulting from duplication of effort associated with overlap-
ping roles and responsibilities; the sometimes contentious sparring
between fiefdoms when resources are constrained, or power trumps
corroboration. Alternatively, the spirit-increased productivity in a
highly competitive environment may encourage duplication, inspire
aggressive developments in strong ozone environments,* and foster
good sense decisions based on strong questioning and demanding
reasonable levels of proof for statements and work efforts.

 2. Procedural structures (i.e., “accommodate change”) take into account
the facts of change and the rate of change. At stake is the reliability
of the procedures to result in the desired outcomes. The credibility
of the work is suspect when the credibility of the procedures does
not show resilience to change. Often the rate of change is over-
whelming if the premise of sound procedures is long-term stability.

 3. Procedural structures (i.e., “architecture for power”) take into account
the need to assign roles and delegate responsibility and accountabil-
ity as a means to achieve and sustain good governance.

 4. Procedural structures (i.e., “paradoxy”†) take into account the stake-
holder requirements for differentiating products and services from
“other” products and services. Especially important for new product
or service development is the demand to distinguish the product or
service from competitive offerings. User behaviors often reflect the
novelty in products and services in their feelings toward their work,
their colleagues, and their involvement in teamness. Procedures that
were developed in 1816, will necessarily have cultural, social, and
stereotypical baggage reflecting a management style and manner.
Procedures should reflect the enterprise metrics, the business ethics,
and the project specifics.

* High energy dissociates air molecules leading to higher levels of ozone in the atmosphere.
One who has high energy and does not hold back on sharing it is said to have “high ozone,”
or affectionately referred to as “ozone.”

† Even if the product or service is new inside, the look and feel must also be “new.” New has
cachet, represents “cool,” “state of the art,” and “leading edge” (Luhmann 1995b).

92 Engineering Systems Integration

Model and Representation Domain

 1. Model representations (i.e., “show meaning”) take into account the
need to convey the concepts and procedures that were conjured and
worked out to give to others. But until the ideas and activities are
analyzed and evaluated, recorded and documented, and referenced
and controlled, concepts remain concepts, and ideas for work remain
just that, ideas.

 2. Model representations (i.e., “support meaning”) take into account the
uncertainty that remains after the documents have been read and
more questions remain. Were it possible to write all that is required
for everyone to understand and acquire the information they need to
accumulate appropriate knowledge, there would be no need for “sup-
port meaning.” But only a fortunate, few people take away the mean-
ings from only corporeal, material presentations. Representations of
functions, or objects, of user behaviors, and of processes provide the
paradigm for systems thinking, systems engineering, and systems
integration. But the paradigm for products and services is different.
Theirs is the interactions with all else in their operational environ-
ments; in other words all but the previous list. By example, represen-
tations of a function or object are the product or service. However, the
product or service should not be thought of as its representations,
rather it should be thought of in its environment and contexts as it
interacts with all else. This is neither a mission nor application-centric
view nor a data-centric view. It is not focused on its internal architec-
ture or its user’s intentions. “Support meaning” is the view of interop-
erability at the highest level of abstraction. Model representation
“support meaning” is the understanding of operations from the view-
point of “others.” Model representation “support meaning” is the ulti-
mate determinant for integrative success. Did the product or service
do what it was supposed to do? If yes, success. Every stakeholder did
the job intended—system designers adequately captured require-
ments; system architects adequately provided what was need when
and where it was needed; developers overcame the adversities of
project foibles and engineered reliable objects; system integrators
produced value without pretense; systems engineers thought appro-
priately in systems; and users made the right decisions. Support
meaning is the physical realizations on which success is built.

 3. Model representations (i.e., “defend meaning”) take into account a
broad range of subjective issues that trump all things thought.
Within the province of a project, people working with people often
approach their use of time in different ways, ways that are sometimes
counterproductive to efficient execution of work tasks. Having

93Essences of Interaction

 communicated verbally (procedure) the results of a decision (abstrac-
tion and cognition), the workers are free to interpret, modify, and
defend what they heard. Without the physical documentation, the
decision can be changed by behaviors and circumstances. The num-
ber of workers, the number of requirements, the number of changes,
and the number of decisions stack to beyond what anyone person can
sort and make sense out of. Leaving a trail of information that mod-
els and represents what has happened and what is planned synchro-
nize a lock-step team response.

Function

Objects have boundaries that extend beyond the physical entity. Objects
that physically connect with other objects (i.e., touching) have a defined
boundary at the exact location and instant of contact. That contact may be of
some permanence, episodic, periodic, temporary, occasional, or one-time.
Regardless of the temporal nature of the contact, the physical connection of
two objects results in an interface. That interface is the boundary between
the two objects. Specifically, the exchange of EMMI between two objects
and satisfaction of the interface boundary conditions creates a function*
that did not exist before the connection. Interfaces between physical objects
act as mechanisms that transfer EMMI, that is, the influence of one object’s

* Several definitions of functions and functional frameworks have been posed and described in
the literature (Van Wie et al. 2005), but these have not been tailored explicitly to the issues of
interaction and integration. A common theme in these definitions is to relate functions to
behaviors and structure. Sorting through the differences in meaning for the same word across
multiple disciplines is daunting, and trying to reconcile the multitude of definitions (each sup-
ported by varying degrees of scholarship) is overwhelming. Rather than approach the essence
of integration in that manner of simply defining terms, a few observations guided by intro-
spection were foundational ideas for many of the definitions in this book. Consider a wooden
block (object) sliding on a hard surface (object). This scenario demonstrates two objects inter-
acting to perform the function of “to move.” From a discussion of this experiment, the nature
of interaction can be exhibited in great detail. Taking care to reflect on the variables and their
relations in this experiment, then applying the basic premises of systems begins to reveal the
nature of integration. The word “function,” for example, has multiple meanings spanning
mathematics and sociology, while the word “system” is defined conveniently for biology, soci-
ology, cybernetics, engineering, and systems engineering. In the case of the work “system,”
there is notable deference given to political motivations by systems engineers for defining
“system” just beyond the evolving capability of the engineer. In the mid-1950s engineers rec-
ognized the need for systems engineering and differentiated systems engineering thinking as
broader than the focused disciplines of engineering. Over time these engineering domains
broadened to ply the practices in a broader (more system’s fashion). Similarly with systems
engineering, the evolving marketplace has extended systems engineering from its beginnings
to systems, system of systems, and systems of systems. It is a bold ascertain that the differ-
ences between engineering and systems engineering could be interpreted as having an
inkling of political interpretation (Hall and Fagen 1956; de Souza 2008).

94 Engineering Systems Integration

structure on another object’s structure acts as a surrogate mechanism.
Therefore, the interface exposes a mechanism on the common boundary of
the two objects. That surrogate mechanism vanishes when the objects lose
their connection. Since mechanisms provide a means of exploiting the
transfer of EMMI between two objects, there is a potential advantage from
the perspective of another object that can in some way manipulate that
“exposed” mechanism. That advantage reveals itself an as additional capa-
bility not seen within the internal structure of an object. For example, a user
(object) may pick up a hammer (object). That the hammer rests on a work-
bench offers the user no advantage in driving a nail into a piece of wood.
The hammer is potentially available for use. That the user comes in contact
with the hammer (through the activity, “pick-up hammer”) takes advan-
tage of the interface that joins the user’s hand and the hammer. The process
of the “pick-up hammer” is only achievable if the user’s hand (or logical
extensions by some other means) comes in contact with the hammer. The
capability that is not available to either of the two objects is enacted at the
moment of making a connection. It is the connectivity of two objects
through EMMI that results in a new capability. The capability exists
because of the interaction between the hammer and the user, while the
capability is said to be enabled by the act of connecting the hammer and
the user. That there is a connection reduces the degrees of freedom of both
objects. Reducing a degree of freedom is termed as a limitation, if the
reduction in the degrees of freedom is out of the control of the receiving
object. When an object is used (exchanging EMMI with another object),
both objects have a constraint imposed on them that was not operable (in
existence) before the interface was established. The limitations are differ-
ent for each object. From the perspective of the send object, its internal
allocation of EMMI (e.g., output versus losses) is deemed a constraint. That
constraint results in output EMMI that is received by another object. The
receive object is limited by the input EMMI and in turn allocates the EMMI
according to its internal constraints. The primary difference between a
limitation and a constraint is the perspective from which the EMMI is
either input (limitation) or is allocated (constraint). The constraints are dif-
ferent for each object. When an object is constrained, a function results.
When there are multiple constraints, there are multiple functions.

From a functional perspective, a hammer and a piece of wood are dramati-
cally similar. The difference between a solid metal hammer and a piece of
wood is related to the differences in the internal mechanism(s) of the two
objects. These differences result from their individual properties and traits.
For example, one object’s internal mechanism absorbs incident radiation
(EMMI) and converts it to heat, while another internal mechanism reradiates
that converted heat to beyond the physical boundary of that object. The other
object turns out to have very low thermal conductivity and reradiates very
little. Other differences in properties for the two objects, for example, are
the mechanisms of absorbing mechanical shock and the temperatures for

95Essences of Interaction

melting and evaporation. The hammer and the piece of wood are similar in
a functional manner, but their differences in properties result in different
performances for those functions. As objects, the piece of wood and hammer
have many common uses for humans (i.e., the wood and hammer present
nearly the same functions during interactions with people). If the shapes of
the hammer and piece of wood were similar, then the wood object could be
used to drive nails into wood. The density and hardness of the hammer
would seem to be greater than that of the wood, so driving nails would dent
the wood, whereas the hammer might not experience denting. The function
of ‘to hammer’ is carried out by a person with either the wood or the ham-
mer, resulting in the nail being driven into a wallboard. The performance of
the function ‘to hammer’ is different for the hammer and wood.

From a user’s perspective, the object’s performances (due to properties,
traits, configuration, shape, size, etc.) distinguish the hammer and the piece
of wood. Many users recognize this distinction and will employ a 2 × 4* to
drive a nail, remove another piece of wood that is hinged by a nail, pry open
a door that is jammed, or prop open a box lid. Both the hammer and the piece
of wood offer mechanical properties supportive of these and many other
such functions. The enactment of an object’s function at the interface between
one object and another object signifies the functional boundary of two
objects. However, unlike the physical boundary which is the limit of the
interaction of an object’s matter, the functional boundary begins at the physi-
cal boundary and extends by the object’s EMMI to the furthest extent of the
influence of its EMMI. Integration is object to object, with emphasis on dem-
onstration of functions.

From the perspective of a user, functions are expressed in part through
their use(s) and their performance(s). Uses are often thought of as perfor-
mances, so uses and performances are dependent factors. Generally, there is
a mix of functional requirements and performance requirements that drive
a project’s development and integration processes. To achieve functional
performance(s), the sending object’s mechanism results in loss of EMMI and
the receiving object’s mechanism experiences a loss. Should that loss exceed
the output performance, the object’s function is said to “have degraded,”
“does not function,” or “does not have the function.” If the function’s perfor-
mance ceases to be produced by either the sending or receiving objects’
mechanism, the function can also be said to not exist or to be degraded such
that the function is unavailable.

From an integration perspective, objects are connected to demonstrate
functions. Testing for functions is usually accomplished by measuring the
performance(s) that can be achieved by the connection between two objects.

Should an automobile not move because of not having a source of
energy from gasoline, diesel, electrically charged battery, compressed air,

* A “2 × 4” is an unspecified length of lumber that is nominally 4 cm thick by 9 cm length,
 having been reduced in size from a historical sizing of 2 inches by 4 inches.

96 Engineering Systems Integration

hydrogen, or by being pushed by another object, for example, the function’s
performance of the ‘to move’ function is zero. If the source of power is oper-
ative and has sufficient EMMI for the automobile’s mechanism to function
as designed and fulfill its tasks, then the object’s performance is said to be
measurable. Should there be a nominal value, m, that is expected as the mea-
sure of a function’s performance (under various conditions and circum-
stances) the performance is said to have a target performance value. If there
is a variation in performance that is characterized as distributed over a
small range of performances centered on the value for the target perfor-
mance, then the target performance is regulated or controlled by a mecha-
nism. By pressing down on the accelerator in the automobile, the performance
output of the car’s movement can be controlled according to the constraints
imposed by the design of the automobile and the allocations that result in
the various constraints. The variance in the output of the mechanism(s)
(termed as the variability in performance) for a given input (in this case
from the action of the driver (user) of the automobile driving the automo-
bile) can be considered to be the quality of the function “to drive.” A func-
tion is describable in terms of its performances and its variability in
performance (quality) (Taguchi 1986). The functional boundaries of an
object are measurable by its performance(s) and its losses that result in
achieving those performances.

In addition to an object being recognizable by its physical boundaries and its
functional boundaries, the behavioral boundary of an object is determinable
by either the behaviors exhibited by the receiving object due to the influences
of receiving EMMI or in anticipation of the receiving EMMI. The behavioral
boundary of the sending object results from its influences due to either its
physical boundary or its functional boundary. This is to say that the sending
object has responsibility for its action(s) and that determining the results of
physical and functional boundaries is an important activity for integration.
Knowing the boundaries of the objects to be integrated helps delineate the
sequencing of objects for demonstration of functions. Recognizing that some
objects require multiple interfaces to demonstrate a top-level function demands
great care in building up all the subfunctions during the integration process.

No single object results in a function. A single object has no physical use
without some sort of connection (based on Type 1 or Type 2 interactions)
with another object. In general, that connection is through EMMI. The con-
nection can be made physically with matter or remotely with energy, mate-
rial wealth, or information. Each physical boundary is porous to energy,
material wealth, and information. The boundary is determined by various
connections between objects. The boundary conditions at an interface are
describable in terms of coupling, cohesion, abstraction, and granularity
(size of the increments of EMMI) of the EMMI that is transferred.

An automobile has the function of “travel” when the wheels are in contact
with road and they have sufficient traction with the surface of a road to the
car to move without the interface between the wheels and the road.

97Essences of Interaction

The term “function” includes what something is used for (i.e., user intent),
what it could be used for (i.e., design intent), in addition to what it was acci-
dentally used for (Ariew 2002) (i.e., opportunistic intent). Function can be
understood as belonging to one or more of these categories. Function is
defined relative to a particular stakeholder’s perspective. For example,
from the point of view of a developer, the function of a subsystem A might
be the interface between two subsystems B and C. But from the point of
view of a user who wants to encourage the adoption of a new interface
protocol, subsystem A may be their only means to guarantee payment of
license fees for use of their protocol. Both functions (interfacing subsystems
B and C and enforcing payment for using protocol) are ascribed to the same
set of objects and are adequately defined, although they may differ in perfor-
mance and quality based on the stakeholder’s perspective. The set of objects
for one function should be considered from the various stakeholder perspec-
tives and represented as dependent representations of overlapping functions
mapped to the same set of objects.

A system function may have any number of performance parameters and
likewise several quality requirements associated with each performance.
Functions can be added, deleted, or changed. The output EMMI from a sin-
gle object that interacts with a second object to produce another output, the
totality of outputs is called performance. Specifically, this performance is the
performance of the function. As a means of accountability, performance
measures aid in understanding how well functions achieve their goals.
Performance measures allow for comparative ratings from which to deter-
mine similarities between functions.

A function occurs because of the interaction between two objects, commen-
surably at the physical interface between two objects. The interaction of EMMI
between two objects enables an output (performance) that is dependent on the
mechanisms of two objects acting across their common interface. If provision
is made (designed and architected into the product or service) then a user may
access that interface and be enabled to “use” the function, but not the interface.
It is important to realize that while being respectful to the prevalent emphasis
on interface specifications, the key issues for integration reside with the enact-
ment of functions (their connectivity, coupling, and cohesion) and not solely
with the transfer of data between objects. Functions can be compared by their
combined performances of the two objects. For example, two cars racing on a
dirt tract have various measures one of which is determinable by the winner
of the race, that one crosses the finish line before the other (assuming both cars
started at just after the signal to begin the race). The race event involves two
cars, each performing their individual functions of ‘to race.’ The objects of the
two cars and the starting line from the start of the race; and the function of ‘to
race’ for each car is formed by a car’s interaction with the dirt tract. The perfor-
mance of that interaction helps determine the change in speed of each car.

The performance of the process of racing is comparable to other pro-
cesses. The performance of the process of one car racing is to either win or

98 Engineering Systems Integration

lose. The performance of the function of one car is in their instantaneous
speed or its acceleration. In this example of cars racing, the aggregate
human-construed object of “the two-car race” has a lifecycle. By chance if
the two cars were to collide with each other, they would interact through
EMMI. And further, if by chance the two cars ejected their drivers
unharmed, then burst into flames and burned as an aggregated mass, parts
of two cars might disintegrate, or fuse, or retain an individual similitude to
their precrash structures. Again, this event referred to as “crash” can be
described as an interaction, or should the resultant object take on proper-
ties, traits, and attributes different than those of the precombined objects,
then the “crash” can be described as an integration.

Quality

That functions may have a measurable performance and a loss attributable to
achieving that performance is inherent in the structure of objects. Quality
can be associated with the loss (Taguchi 1986, 1990; Taguchi et al. 2005). In
this manner, quality refers to the consistency of performance, or alterna-
tively, the deviation from a target value (i.e., the performance requirement).
Quality indicates how well a function is accomplished by the system and is
a measure of the loss due to the performance of that function. Quality can be
represented as a loss function (Taguchi 1986; Taguchi et al. 2005) (see Chapter
6 and Appendix 2). The greater the loss resulting from the deviation from a
performance that is nominally the best, the poorer the quality. Overall, the
quality imputed to a set of objects characterizes the stability of the
performance(s) and the function(s) ascribed to that set of objects. The impli-
cations of poor stability relates to (1) nondelivery of the set of object’s func-
tionality, (2) delivery of the set of object’s functionality (within the range of
performance tolerance), or (3) delivery of performance beyond the range of
specified performance tolerances. Functions describe the intentions of the
design. For functions, integration is the relationship between the mechanis-
tic intentions expressed through the design and the performance of objects
through their EMMI.

The losses to achieve various performances are of two types—controllable
losses and uncontrollable losses. Controllable losses can be measured and
fairly determined to be associated with specific events. The losses due to
variation in performance are controllable to the point that variations due to
stochastic noise are controllable. Losses due to conversion efficiencies for
EMMI are controllable by the mechanisms of transformation of input EMMI
into output EMMI. If the mechanism for transforming EMMI is of a certain
type that results in a conversion efficiency (input/output) of say 80%, then
there is a 20% loss that does not translate into output performance. That 20%

99Essences of Interaction

may be reduced by changing the mechanism of conversion. For example,
changing from incandescent light bulbs to florescent lighting improves the
conversion efficiency of electrical energy to lumens outputted. The result is a
13-W florescent bulb that has the equivalent steady-state output of a 60-W
incandescent light bulb. There are slight differences in the “color” wave-
length of the emitted photons and the lifetimes of the photon generation
mechanisms are also different.

Take for example, cooking a package of dried noodles. Undercooking the
noodles by 90% of the suggested cooking time of 4 min results in 24 s of heat-
ing water with only a negligible amount of heat transfer to soften (i.e., “cook”)
the noodles. These barely warm, wetted noodles are unlikely to be eaten.
The result is that such undercooked noodles will be thrown away with a
loss of the purchase price, water for cooking, 24 s of energy consumption,
the energy expended by the person(s) cooking to prepare the noodles for
cooking, placing water in a pan, cooking, removing, and tasting the “cooked”
noodles. These tasks can be translated into costs and attributed to under-
cooking noodles. In contrast, cook the same noodles for 24 min (700%) longer
than the suggested cooking time. The noodles are hydrolyzed, substantially
devoid of flavor, without physical substance (as desired from noodles cooked
according to suggested cooking instructions). The losses are considered in
the same manner as with the undercooking. In both cooking sequences, the
“cooked” products were discarded (full loss of purchase prices). The result is
more spent (i.e., more loss) from cooking the overcooked noodles than with
that of the undercooked noodles. The loses due to variation about a perfor-
mance (due to regulation of enactment(s) of mechanism(s)) results in an inef-
ficiency in achieving a desired output for losses due to the mechanism
transforms are the total losses of the functional mechanism.

References

Aerts, D., Broekaert, J., and Gabora, L. (Eds) 2003. A case for applying an abstracted
quantum formalism to cognition. Mind in Interaction. Amsterdam: John Benjamins.

Ariew, A., Cummins, R., and Perlman, M. (Eds) 2002. Functions: New Essays in the
Philosophy of Psychology and Biology. Oxford: Oxford University Press.

Astley, W. G. and Brahm, R. 1989. Organizational Designs for Post-Industrial Strategies:
The Role of Interorganizational Collaboration. Greenwich: JAI Press.

Bahill, T. A. and Briggs, C. 2001. The systems engineering started in the middle
process: A consensus of systems engineers and project managers. Systems
Engineering 4(2): 156–166.

Bainswanger, H. 1990. The Biological Basis of Teleological Concepts. Irvine, California:
Ayn Rand Institute Press.

Bausch, K. C. 1997. The Habermas/Luhmann debate and subsequent habermasian
perspectives on systems theory. Systems Research Behavior Science 14: 315–330.

100 Engineering Systems Integration

Bell, J. S. 1965. On the Einstein-Podolsky-Rosen paradox. Physics 1: 195–200.
Blanchard, B. S. and Fabrycky, W. J. 2011. Systems Engineering and Analysis. Upper

Saddle River: Prentice Hall.
Boulding, K. 1956. General systems theory—The skeleton of science. Management

Science April: 661–671.
Buede, D. M. 2009. The Engineering Design of Systems: Models and Methods. Hoboken:

John Wiley & Sons, Inc.
Burgin, M. 2003. Information: Problems, paradoxes, and solutions. Triple C (Cognition,

Communication, Co-operation) 1(1): 53–70.
Clark, K. and Fujimoto, T. 1990. The power of product integrity. Harvard Business

Review 68(6): 107–118.
Cover, T. M. and Thomas, J. A. 1991. Elements of Information Theory. New York: John

Wiley & Sons.
Cropley, D. H. 1998. Measurement, theory, and information. Information and Control

41: 275–304.
Darcy, D. P., Kremerer, C. F., Slaughter, S. A., and Tomayko, J. E. 2005. The structural

complexity of software: An experimental test. IEEE Transaction of Software
Engineering 31(11): 982–996.

De Marco, E. P. 1960. Engineering Economy. New York: The Macmillan Company.
de Souza, R. A. 2008. Maturity curve of systems engineering. Systems Engineering. MS

thesis, Monterey: The Naval Postgraduate School, 114pp.
Ferris, T. L. 1997. Foundation for medical diagnosis and measurement. School of

Physics and Electronic Systems Engineering. PhD thesis, University of South
Australia, 350pp.

Feyerabend, P. 1993. Against Method, Third edition. New York: Verso.
Francois, C. 1999. Systemics and cybernetics in a historical perspective. Systems

Research and Behavioral Science 16: 203–219.
Friedman, A. H. 2010. Improving enterprise decision-making: The benefits of metric

commonality. Aeronautics and Astronautics. MS thesis, Boston: Massachusetts
Institute of Technology, 102pp.

Garud, R. and Kumaraswamy, A. 1995. Technological and organizational designs for
realizing economies of substitution. Strategic Management Journal 16: 93–110.

Glennan, S. S. 2002. Rethinking mechanistic explanation. Philosophy of Science
69(September): S343–S353.

Gross, N. 2009. A pragmatist theory of social mechanisms. American Sociological Review
74: 358–379.

Hall, A. D. and Fagen, R. E. 1956. Definition of system. General Systems 1: 18–28.
Hedstrom, P. and Swedberg, R. 1998. Social Mechanism: An Analytical Approach to Social

Theory. Cambridge: Cambridge University Press.
Holland, J. H. 1962. Outline for a logical theory of adaptive systems. Journal of the

Association for Computing Machinery 9(3): 279–314.
Holland, J. H., Holyoak, K. J., Nisbett, R. E., and Thagard, P. R. 1986. Induction:

Processes of Inference, Learning, and Discovery. Cambridge, MA: The MIT Press.
Hoppe, H. H. 2004. Property, causality, and liability. The Quarterly Journal of Austrian

Economics 7(4): 87–95.
Hutter, M. 2007. Universal algorithmic intelligence: A mathematical top-down

approach. Manno, Switzerland, Dalle Molle Institute for Artificial Intelligence
(IDSIA), Galleria 2, CH-6928 Manno-Lugano, 70pp.

101Essences of Interaction

Kirk, G. S., Raven, J. E., and Schofield, M. 2009. The Prescocratic Philosophers. Cambridge:
Cambridge University Press.

Kitcher, P. 1989. Scientific Explanation: Minnesota Studies in the Philosophy of Science.
Minneapolis: University of Minnesota Press.

Klepper, S. 1996. Entry, exit, growth, and innovation over the product life cycle. The
American Economic Review 86(3): 562–583.

Kocsis, J. G. 2008. Determining Success for the Naval Systems Engineering Resource Center.
Department of Systems Engineering. MS thesis, Monterey, CA: United States
Naval Postgraduate School, 101pp.

Koestler, A. 1968. The Ghost in the Machine. New York: Macmillan.
Kotler, P. and Keller, L. K. 2007. A Framework for Marketing Management. New Jersey:

Prentice Hall.
Kuhn, A. 1974. The Logic of Social Systems. San Francisco: Jossey-Bass.
Kunovich, R. M. 2009. The sources and consequences of national identification.

American Sociological Review 74: 573–593.
Lakatos, I. and Feyerabend, P. 1978. For and against method: Including Lakatos’s lec-

tures on scientific method and Lakatos-Feyerabend correspondence. Chicago:
University of Chicago Press.

Lake, J. 2007. Textbook of Integrative Mental Health Care. New York: Thieme Medical
Publishers, Inc.

Langford, G. O. 1971. Experimentally Obtained Metastable Atom Excitation Functions for
Helium, Methane, and Ammonia. MS thesis, Department of Physics. Hayward,
CA: California State College.

Luhmann, N. 1982. The Differentiation of Society. New York: Columbia University Press.
Luhmann, N. 1995a. Social Systems. Stanford, CA: Stanford University Press.
Luhmann, N. 1995b. The paradoxy of observing systems. Cultural Critique Fall: 37–55.
Mayer, R. J., Crump IV, J. W., Fernandes, R., Keen, A., and Painter, M. K. 1995. Toward

a business constraint discovery method (IDEF9), p. 11. Information Integration for
Concurrent Engineering (IICE) Compendium of Methods Report. College Station,
Texas, Knowledge Based Systems, Inc. and the United States Air Force Materiel
Command, Wright-Patterson Air Force Base, 149pp.

Mill, J. S. 1882. A System of Logic, Ratiocinative and Inductive, Being a Connected View of
the Principles of Evidence, and the Methods of Scientific Investigation. New York:
Harpter & Brothers.

Newell, A. and Simon, H. A. 1972. Human Problem Solving. Englewood Cliffs, NJ:
Prentice Hall.

Nieminen, A. 2005. Towards a European Society: Integration and Regulation of Capitalism.
Helsinki: University of Helsinki, 465pp.

Peirce, C. S. 1934. Collected Papers: Volume V. Pragmatism and Pragmaticism. Cambridge,
MA: Harvard University Press.

Przeworski, A. and Teune, H. 1970. Logic of Comparative Social Inquiry. Malabar,
FL: John Wiley & Sons.

Purao, S. and Vaishnavi, V. 2003. Product metrics for object-oriented systems. ACM
Computing Surveys 35(2): 191–221.

Reed, I. 2008. Justifying sociological knowledge: From realism to interpretation.
Sociological Theory 26(2): 101–129.

Rueschemeyer, D. 2009. Usable Theory: Analytic Tools for Social and Political Research.
Princeton: Princeton University Press.

102 Engineering Systems Integration

Sage, A. P. and Armstrong, J. E., 2000. Introduction to Systems Engineering. New York:
John Wiley & Sons, Inc.

Salmon, W. 1984. Scientific Explanation and the Causal Structure of the World. Princeton:
Princeton University Press.

Schiller, C. 2009. The Adventure of Physics—Vol. VI: A Speculation on Unification. Motion
Mountain. ISBN: 978-300-021946-7. Retrieved July 29, 2011, from creativecom-
mons.org/licenses/by-nc-nd/3.0/de

Schlager, E. and Blomquist, W. 1999. A comparison of three emerging theories of the
policy process. Political Research Quarterly 49: 651–672.

Senge, P. M. 2006. The Fifth Discipline: The Art & Practice of the Learning Organization.
New York: Doubleday Currency.

Shannon, C. (1948a). A mathematical theory of communications. The Bell System
Technical Journal 27: 379–423.

Shannon, C. (1948b). A mathematical theory of communication. The Bell System
Technical Journal 27: 623–656.

Shannon, C. F. and Weaver, W. 1963. The Mathematical Theory of Communication.
Chicago: University of Illinois Press.

Shaw, M. 1990. Prospects for a discipline of software. IEEE Software 7(6): 15–24.
Smith, B. 1994. Fiat Objects. ECA194 Workshop, Amsterdam: ECCAI.
Smith, B. 1995. Formal ontology, common sense, and cognitive science. International

Journal of Human Computer Studies 43: 641–667.
Smith, E. D. and Bahill, A. T. 2010. Attribute substitution in systems engineering.

Systems Engineering. 13(2): 130–148.
Stanford University 2007. Stanford Encyclopedia of Philosophy. Stanislaw Leśniewski.

Published online, http://plato.stanford.edu/entries/lesniewski/. Retrieved
August 13, 2011.

Sztompka, P. 1999. Trust: A Sociological Theory. Cambridge: Cambridge University Press.
Taguchi, G. 1986. Introduction to Quality Engineering: Designing Quality into Products

and Processes. Tokyo, Japan: Asian Productivity Organization.
Taguchi, G. 1990. Introduction to Quality Engineering. Tokyo, Japan: Asian Productivity

Organization.
Taguchi, G., Chowdhury, S., and Wu, Y. 2005. Taguchi’s Quality Engineering Handbook.

Hoboken, NJ: John Wiley & Sons, Inc.
Thurstone, L. L. 1946. Comment. American Journal of Sociology 52: 39–50.
Torres, P. J. 2008. A Modified Conception of Mechanisms. Heidelberg: Springer

Science + Business Media B.V.
Trockel, W. 1999. Integrating the Nash Program into Mechanism Theory. Los Angeles:

Department of Economics, University of California and Bielefeld University,
13pp.

Turner, J. R. 1993. The Handbook of Project-Based Management. London: McGraw-Hill.
Van Wie, M., Bryant, C. R., Bohm, M. R., McAdams, D. A., and Stone, R. B. 2005.

A model of function-based representations. Artificial Intelligence for Engineering
Design, Analysis and Manufacturing 19(2): 89–111.

Varzi, A. C. 1997. Boundaries, continuity, and contact. Nous 31: 26–58.
Williamson, J. 2009. Probabilistic Theories of Causality. Oxford: Oxford University.
Yasui, T. 2010. A new systems engineering approach for a socio-critical system: A case

study of claims-payment failures of Japan’s insurance industry. Systems Engineering
14(4): 349–363.

103

3
Foundations in Systems Integration

Introduction

One could ask why the concept of integration has not been considered a sub-
ject requiring thorough examination of joining parts to make a whole, or
involving profound contemplation of the whole as constituent parts. The
process of joining things together in some manner that involves interfaces
and transfers of various types is perhaps the most widely talked about, least
understood subject in any discipline. Individuals not versed in systems engi-
neering often seem unable to appreciate the befuddlements indicative of
 performing systems integration, or more insidiously, system of systems inte-
gration. Systems engineers and systems integration engineers often find
integration vexing and problematic, but forge on with the work because it
appears tractable (especially given enough time and money). In general,
well-intentioned people know what they want to integrate and why. If the
technology is mature and in some form of use, then integration may seem
possible (buying into the platitudes that off-the-shelf works so why not use
it). A few of the torments of integration center on dealing with unreliably
performing technology that has been designed and architected into objects;
having rushed objects from iterative thinking that underpins development
into the processes of integration which benefit more from recursive thinking;
reducing budgets for integration tasks; and shortening schedules to delivery.
The usual desire for integration is for interoperability of objects and pro-
cesses to achieve some effect in their intended operational environment.

Indeed, the typical guidance for integration planning offers such plati-
tudes as “human factors considerations must be included in every solution”
and “do no harm.” The nuts and bolts of planning are in defining a sequence
of activities that will bring together the objects into objects, and then into
being as the system (object). Given the uncertainties of developing new
objects that will be integrated into a system, planning for integration would
seem to be problematic at the outset. Typically, the inputs to the integration
plan are the system design and architecture products, the objects that will be
developed, schedules and resources for the work tasks, and the plans for
various types and levels of testing. Systems integration planning is usually

104 Engineering Systems Integration

completed early in the lifetime of the project to develop a new product or
service.* Integration should not be relegated to that effort which results in a
whole by following some set of best practices.† The principles discussed in
Chapter 1 offer specific guidance on how to better perceive integration and
therefore how to apply appropriate practices. Best practices for one type of
work may not work as best practices for a different kind of work. Systems
engineering is quite different from systems integration. The planning is dif-
ferent, the structures are different, and the thinking is different. Systems
engineers (as others) do systems integration planning and object integration
itself. For example, integration of uncannily interactive objects is not ame-
nable to cook-book implementation. The best chefs improve their recipes
each time they prepare a dish of food, sometimes trying new ingredients or
increasing or decreasing their amounts, and revising the cooking times.
Perfection is reached when the recipe in the chef’s head (intellectual object)
is written down (physical object) and is shown to be scalable from small to
large portions, when the customer feedback is strongest, and when the pro-
cesses and procedures are time-efficient and cost-effective. Once the recipe is
worked through, tested, mapped and synchronized with kitchen processes,
and integrated with the procedures, skills, and habits of the kitchen staff,
then (and only then) will the recipe be considered a success. Unlike devel-
oping a new product or service that is (by definition) unlike the previous
project, the project team must instead rely on principles that will be applied
to the specific circumstances of the new project. For integration of a new
product or service, waiting for the component objects to be developed likely
leads to missed opportunities to demonstrate early many low-level subfunc-
tionalities. The essential issue is recognizing when an object is ready for inte-
gration at various levels of functionality. The common, but erroneous,
perception is to “perform integration when the hardware and software com-
ponents are developed and delivered by the development team.”‡ Citing
principles from Chapter 1, Principle 5: The Principle of Forethought sug-
gests developing a plan that includes early identification and testing of
object subfunctionalities, that is, integration begins as soon as two objects
can be integrated. Implementation of activities supporting Principle 5 can
be derived from Principle 2: The Principle of Partitioning. Identifying the
partitionable subfunctions early lowers the risk of development that results
by waiting until a subsystem or equivalent object has completed develop-
ment and unit testing.

* The emphasis in this book is on developing new products and services. A few notes have
been added to deal with the differences for upgrading or integrating an existing product or
service with another product or service. These notes are by no means comprehensive or com-
plete. They only serve to point out a few differences with that of new product development.

† For systems engineering, a best practice is iterative development and improvement. For sys-
tems engineering integration, a best practice is successive approximation based on recursive
thinking.

‡ Care has been taken to not cite references for such faux pas statements.

105Foundations in Systems Integration

The subtleties of integration are wrapped in a puzzling ontology that has
as yet defied simple, sustained scrutiny. This book suggests that integration
is more than bringing together different parts (objects) in a manner to be
merely combined or summed. Fundamentally, integration is not the act of
combining two or more objects into a whole. Nor is the discipline of integra-
tion a process that orchestrates acts of aggregation and combination. Rather,
integration is a method of dealing with the logic and rigor necessary to know
what and when to bring parts together, parts that might already be within
wholes and parts that are barely parts (speaking to definitize objects in this
case). Integration is nominally part and wholes, but the wholes are different
than the individual parts. Further, the boundaries of the objects suggest
what should be partitioned and integrated, rather than some other delinea-
tion or mapping onto design or architecture of the future product or service.
The difference of thinking in integration* results in a system.

general Systems Thinking

Systems integration builds on an assemblage of principles that are relevant
for general systems theory (Boulding 1956; von Bertalanffy 1968; Miller 1978;
Jain 1981; Rapoport 1986; Klir 2001), pertinent to systems engineering, as well
as the practices of every discipline and field—all work. Without a broad
appreciation of general systems theory, which abstracts domain-specific
knowledge to a set of high-level criteria that reflect discipline knowledge, the
attempts to perform integration (of thoughts, or data, for example) from other
disciplines may be done in the absence of proper foundation and context.
The difference between data and information is context. The difference
between information and an integrated form that relates the totality of expe-
rience subjective and objective experiences in a cogent, relevant, and useable
form is knowledge. Consider human systems integration and the question of
potential or actual losses incurred at the system level for two design strate-
gies: just-in-time versus on-demand information. At issue is the timeliness
and quality of flow of information, that is, the losses incurred due to poor
integration and ineffective use of humans in a computer-enabled environ-
ment. The work of systems theory explicates the relations, dimensionalities
of boundaries, interfaces to objects and processes, forms of interaction
(EMMI), and the functions and behaviors that determine and evoke action.
This fabric of concepts weaves general systems theory. An all-inclusive fabric
is needed—a fabric characterized by consistency of logic, continuity of
method, applicability across disciplines, scalability from the interdomain’s
micro- to macrostructures, and capaciousness. Most importantly, the opti-
mal fabric needs to focus on the eventual goal of describing a definitive
theory of systems integration. Systems integration contributes to the devel-
opment of general systems theory through universal principles and laws

* Specifically in terms of partitioning objects according to their three types of boundaries.

106 Engineering Systems Integration

that transcend discrete partitions of thinking, for example, disciplines and
fields. For the purposes of thinking in systems, partitioning must be consid-
ered with great care. Boundary confounds, partitions constrain, and infer-
ences drawn need to be generalizable. Together, thinking in systems and
thinking in integration empower systems engineers and systems integrators
to consider the problem space as a whole and therefore the possible solution
sets in the context of lifecycle issues or discrete events. The fabric of general
systems theory rightly originates from this merger of thinking in systems
and thinking in integration. To suggest a fabric that improves descriptive
and empirical results and accounts for unobserved phenomenon, a set of
best thinking* for systems theory and the guiding principles from systems
integration need to be blended. Together, systems thinking and systems inte-
gration form this theoretic fabric. The balance between theory and principle
can be maintained by committing to two conditions: For every theoretical
construct there shall be a corresponding principle that typifies the duality of
their applications, and for every principle there shall be a corresponding
theory that embodies its use and relates to the fabric through its context.

A consensus on general system theory (von Bertalanffy 1928, 1968), its inte-
gration into systems engineering (Boldyreff 1954), the development of cyber-
netics (Wiener 1948; Ashby 1957), the dynamic behaviors of complex systems
(Forrester 1958), the relevance of chaos theory (Lorenz 1963), the maturation
of sociology (Buckley 1967), the considerations of living systems (Miller
1978), the structures of information systems (Lewis 1994), and the acquisi-
tion, building, and integrating of complex systems (e.g., military customers
(Schilling 2005)), focus on spatial and temporal conformities, forces, mecha-
nisms, control, and hierarchical levels of entangled interactions.

The argument generally posed in support of general systems theory
focuses attention on spatial and temporal conformity, forces, mechanisms,
control, and hierarchical levels related through complex relationships. That
focus presumes that spatial and temporal constructs determine the perspec-
tives of contexts, properties, and states. Rather, we determine to focus on
events rather than the typical spatial and temporal constructs; we develop a
mereology of objects and processes. Therefore, we revise the traditional
thinking that systems are referred to as hierarchical or multilevel (Simon
1962, 1973) and characterize these appearances as hypothetical rather than
derived from a natural orderliness or empirical data set. For example, hierar-
chy can be represented in linear Hilbert space (Gabora 2002) where states
are defined as mathematical objects reflecting the properties of measure-
ments. These measurements are grounded in a definable physical reality.
Combinations of number, type, and state(s) of elements also include forces.
Forces can be further differentiated into mechanisms and controls. Therefore,
number, type, state(s), and forces are the essential components of complex
systems. In this way, Gabora avoids the need to define explicitly the term

* Rules of thumb, rules of dumb.

107Foundations in Systems Integration

“complexity” which has evaded attempts to operationalize—in formal math-
ematical terms. Further, systems can be constructed through their recursive
(Schiemenz 2002) and recombinant conceptions, the natural result could be
the appearance of hierarchy and can be modeled as such. While some notion
of hierarchy is relevant and perhaps inevitable, we have concern about com-
mensurability of levels across fields. Cross-field abstractions are different
and identifying corresponding levels of abstractions is both contrived and
problematic. Further, systems theory was predicated on inductive rationales
and the observations of nonlinear actions (von Bertalanffy 1968). The sup-
porting structure for inductive thinking applied conforms to the adaptations
and conveniences of the authors (Holland 1986). We take away the general-
ized form that includes eight characteristics of theory and principle for sys-
tems integration:

•	 Knowledge can be represented by rules of condition to achieve
action (initial, operating, and output conditions are made up of force
and mechanism).

•	 Rules are based on current and future events (rather than states),
suggesting that causality is related to multiple kinds of inputs and
partitioning of objects and processes.

•	 Rules regarding automata are similarly defined and enacted in
lower-level and higher-level structures.

•	 Superordinate relations value the metasystems with more structure
than those objectively associated with lower levels.

•	 Synchronic and diachronic rules promote superordinate relations.
•	 Multiple sources of weak interactions as initiators result in measur-

able outputs, the result of which is integration.
•	 Two classes of mechanism are possible—those that revise parame-

ters (for objects) and those that generate plausibility useful rules (for
processes).

•	 Mechanisms require initiators that fall within bounds of the required
thresholds to result in measurable outputs (and losses).

We build on these characteristics to develop the framework for objective
causalities and to investigate the workings of interaction and integration. We
promote inductive thinking to explore the depth and breadth of knowledge
associated with actions and events (regardless of discipline), the Gestalt
principles of similarity, and the notional construct of models of how interac-
tion and integration show their effects. The one and the many, that is, the
considerations of integration, are describable from quantum mechanics
(Aerts 1983); to cosmogony, referencing Parmenides (Fairbanks 1898); and
cosmology (envisioning grand organizations) (Senge 2006). That description
is systemness.

108 Engineering Systems Integration

Determining Systemness

Consider placing two pieces of wood together, one on top of the other, so that
their individual intrinsic properties and traits resist movement through the
forces of friction and gravity. Each piece of wood is a part (object). Stacking
the wood makes two parts (object), yet these two parts do not make a whole
that is different than the individual pieces of wood. The wood parts interact
as a result of their physical contact, but they are not integrated. Each piece of
wood retains its individuality. Now, nail these two pieces of wood together—
the three parts (two pieces of wood and a nail) combined to make a whole.
The interactions are between the wood (part 1) and the wood (part 2), the
wood (part 1) and the nail (one end), and the wood (part 2) and the nail (the
other end). Additionally, one end of the nail interacts with both pieces of
wood (during the “drive the nail” procedure). But the wood is still the wood
and the nail is still the nail. Neither the wood parts nor the nail have changed
because of the combining; they are still individually the same pieces of wood
and the nail. Yes, there is now a hole in both pieces of wood, but the pieces
retain their substantial identities and characteristics. Were the nail to be
removed from the pieces of wood, the hole would probably remain depend-
ing on the age of the wood, the moisture content within the fibers of the
wood, and the size of the nail (i.e., the hole). Interaction—yes, but no integra-
tion has occurred. The wood–wood–nail aggregation is not a system.

Combining the two pieces of wood with a nail provides some additional
benefits (and different functionality) over that of a nail, or one piece of wood,
or the placement of one piece of wood on another piece of wood, or the place-
ment of a nail on top of the two stacked pieces of wood, or the placement of
two stacked pieces of wood on top of a nail. If the wood were nailed so that
one plane face of the wood was along the x-axis and the other plane face of
wood was along the y-axis, then the wood–wood–nail combination would
form a right angle. Figure 3.1 depicts the configuration of wood–wood–nail.

A piece of wood (object e1.1.2) is joined to another piece of wood (object e1.1.3)
by a nail (object e1.1.1). This new object (object e2) can be used, for example, as
a bookend to provide lateral support for edge-standing books or as a bracket
to hold a shelf.

Stability

In some sense, stability can be thought of as a change in a “state” which has
certain properties that are desirable to maintain. We can think of “trigger
events” that change the stability and therefore the “state”; the desirable state
is lost. In this case, stability is defined as the ability to apply restoring forces
to mitigate events that trigger changes in the status quo. One example of a
stable system that can turn unstable is a supply chain. In the world of provid-
ing goods to people, there are oftentimes a number of organizational entities
involved in moving goods that fall betwixt the completion of a product or

109Foundations in Systems Integration

service and operational employment by the users. Moreover, products and
services are sometimes moved from one organizational entity to another as
the products and services make their way to customers and users. Supply
chains can be architected to be customer-centric, being driven by the buyer’s
timeline for purchasing their desired quantities or amounts. Other supply
chains are architected to be supplier-centric, instead accounting for the spe-
cific needs of the suppliers in preference to the buyers. Supply chains are
appropriately viewed as systems (Haskins 2007). Products* and services
(objects and EMMI) flow from one organizational entity to another (objects).
Information (EMMI) regarding what is needed to satisfy perceived supply or
demand signals from suppliers and customers are referenced to what objects
are available in the chain of flows between organizational entities. Money
(EMMI) also flows between objects. From the perspective of interaction and
integration, supply chains are representable as objects, EMMI, and processes
(Kleindorfer and Van Wassenhove 2004). The stability of the supply chain
(which is normally thought of as a single sequencing of events) is dependent
on both the supply process and the demand process. All objects in the chain
act as supply and demand operators. In other words, thinking of supply
chains from only the perspective of the buyer or seller of a product or service
can lead to instabilities in movement of objects, information that is delayed
or distorted, and ineffectual satisfaction of the needs of buyers or sellers.
When an instability in supply or demand is propagated through the supply
chain, wildly unstable operations (“the bullwhip effect”) are observed. The
reliance on delayed or distorted information in a chain of decisions can lead
to an increase in the volatility of a supply-driven system (Sousa 2004). The

* Sometimes referred to as “boxes.”

Object e1.1.1 interacts with object e1.1.2

Object e1.1.2 interacts with object e1.1.1

Object e1.1.2 interacts with object e1.1.3

Object e1.1.3 interacts with object e1.1.2

Object e1.1.1 interacts with object e1.1.3

Object e1.1.3 interacts with object e1.1.1

Object e1.1.2 interacts with object e1.1.1

Object e1.1.2

Object e1.1.3 Object e1.1.1

Object e2

FIgure 3.1
Objects interacting.

110 Engineering Systems Integration

volatility increases geometrically as the information ripples through the sys-
tem, each object attempting to over- or undercompensate for the abnormal
input. Return to stability can require a “reset” of the inputs or a change in
the controls that govern each mechanism in the chain of events.*

From an integration perspective, the stability of the supply chain is describ-
able in terms of structural asymmetric flows of objects and EMMI. Satisfying
supply for highly varying demands for products or services requires the
supply system to be broadly scalable in several dimensions—in essence a
network supply chain having high levels of capacity achieved in a single
chain or in a web of chains. Systems engineers might refer to such a web as
having back-up or redundant traits. Systems integrators might think in terms
of redundant functions. Stability in a system is achievable and sustainable in
multiple ways.

For a system, stability is essential to maintain its system-like characteris-
tics. From this example of “the bullwhip effect” an errant input causes a
chain of events that can ripple, interaction by interaction, leading to unstable
operations or configurations of objects. Considering both the example of a
supply chain and the example of the bookend, object e2 in Figure 2.1, stability
is an important facet of both a system and groupings of objects. In the case of
the supply chain, instability might be an over- or undersupply or demand;
therefore, the supply chain can be thought of as always being stable in its
flows (to a first order), but instable in its supply or demand. As such, the sta-
bility of a supply chain is dictated by the people who drive the supply and
who make demands for products or services. Extrapolating these causes for
instability for the supplier or the customer or user, an effective means of
stabilizing supply and demand to meet highly variable needs is to develop a
network of suppliers that supply through a network of chains to respond
effectively to highly variable demand. Effectiveness is determined by the
quality of the delivery of the product or service, that is, the deviation from
the desired quantity and timeliness of delivery. In the case of the bookend,
instability might be a loosely connected set of wood blocks, a nail that
detaches easily, or wood that splits apart due to cracks generated from driv-
ing the nail. The implications of these examples are that often just grouping
objects is sometimes as desirable as systems.† Therefore, stability in the book-
end is achieved by reducing the variation in physical connections from that
of “firmly” connected.

Not all groupings or integrations increase value or utility from the perspec-
tive of the buyer or seller. Likewise, integration is not necessarily better than
aggregations. Integration is more than achieving certain effects from a system
or system of systems through it operations. Integration requires appropriate

* Interactions can be thought of as resulting in a single, one-time event, as a sequence of inter-
actions, each precipitated singularly by the previous interaction (chain of events) or multiple
interactions, each precipitating multiple interactions (cascade of events).

† While there are many aspects of systems that are desirable, simple aggregations or conglom-
erations of objects are equally important and should be justifiably as important as systems.

111Foundations in Systems Integration

interaction (as in the example of the supply chain) to establish and maintain
stability. And, stability for a grouping depends on the uses of the final prod-
uct or service.

Metastability

For a system to exist and sustain itself as a system, it requires a semblance of
metastability or stability to continue as a system. While stability is achiev-
able through interaction, system properties and traits are only sustainable
as an integrated system.* We define metastability of a system based on the
naturally occurring metastabilities in galactic nebulae (Langford 1971).
Metastability is the intrinsic property of a group of objects that persists in an
apparent equilibrium of interactions between objects where only a small dis-
turbance in the established interaction can dramatically change (reduce or
increase) the system’s lifetime. Such an aggregation that is sometimes not-a-
system and at other times a system seems precariously close to existing or not
existing as a system. We referred to such an entity as a ProtaSystem—one
that is transitional between acting as an aggregate of objects and a system of
objects. Changes to a ProtaSystem could result in complete loss of some mea-
sure of presumed stability or, alternatively, through a progression of changes
a substantial increase in the group’s lifetime (and might now be referred to
as a system if system-like properties were sustained). ProtaSystems are meta-
stable, while Systems and NotaSystems are stable. Figure 3.2 depicts these
differences.

Even with stability, systems have varying lifetimes, so ProtaSystems are
characteristically sufficiently unusual that their anomalous behaviors tend
to take considerable investigation to ply a measure of appreciation for the
cause(s) and effects of the transitional characteristics. The importance of
metastable systems in the natural world cannot be understated. These tran-
sitional ProtaSystems are incubators for stars and planets and breeding
grounds for sea and land species. An example of a metastable system is
galactic nebulae where stars and planets are birthed. Interactions between
atoms and molecules are sufficiently long so as to produce spectral lines that
are not observed in the Earth’s atmosphere (and therefore perplexing for
many years). In the case of a metastable system with an unequivocal loss in
stability or dramatic improvement in stability, the objects show changes that
are observable in their properties as well as in their traits.

* The statement that system properties and traits are only sustainable as an integrated system
would seem to be a tautology. The degree to which the system properties and traits are stable
depends on both the spatial extent of those properties and traits and the degree of stability.
Some systems are quite stable (i.e., have very long lifetimes, but are metastable for long peri-
ods). For example, animals and plants living in tide pools are not always under water and not
always out of water. Yet, tidal pools are teaming with life that would seem to cling precari-
ously to a very small area of existence.

112 Engineering Systems Integration

Instability

Instability is not the opposite of stability. Instability results in loss of func-
tionality or performance. The consequences of instability are generally
correlated with loss of value. Aggregations of objects generally have only
a few EMMI events with determinable losses, should an object fail to per-
form as expected. A system comprised of objects has a multiplicity of func-
tions with an intricate set of variables that determine performances. There
is a higher level of dependencies built into systems rather than with an
aggregation of objects. Losses are higher when systems cease to be systems.
Our dependencies on systems are higher than on aggregations of objects.
We depend on the Sun–Earth* system for life. Whether objects are grouped
and actively sending EMMI as aggregates (NotaSystem), protasystemic
aggregates (MetaSystem), or systemic aggregates (System), stability is
determined by their ability to provide steady, reliable, and durable func-
tions and performances. From an interaction and integration perspective,
stability is only achieved and measurable by functions, their performances,
and related quality.

Integration Perspective

Integration may seem explicitly fundamental to all structures, but it is
more appropriate to say that it is interaction that is explicitly fundamental
to all structures, with integration being different than interaction. Systems

* Probably should include the Moon, since tidal and weather effects are strong determinants
for moving and mixing the atmosphere, providing the dynamics for orbital stability, and
facilitating crustal movements that cause magma to flow, soil to rejuvenate, plant life to flour-
ish over eons.

NotaSystem

NotaSystem

NotaSystem

NotaSystem

ProtaSystem

ProtaSystem

ProtaSystem
System

System

System System

System

Stable

Stable

Metastable

FIgure 3.2
Metastability and stability.

113Foundations in Systems Integration

do not exist everywhere and do not exist in stable configuration at all
times. Therefore, integration neither occurs everywhere nor at all times.
Why and where does integration occur? Why and when does integration
not occur? While it may seem intuitive that interaction is inherent through-
out the lifetime of a system (implying stability), it is more accurate to con-
sider the lifetime as a continuum of integration. Rather than thinking of
lifecycle as conception to disposal, it is more appropriate from a product
or service’s perspective to think of various stages of interaction and inte-
gration. The lifecycle paradigm is from the perspective of the customer,
developer, and user. The integration perspective is from the perspective of
the product or service. Systems are opportunistic, by their ability to adapt
to changes in EMMI.

The system is the result of integration, or conversely, integration is the
result of achieving system behaviors. Lifecycle can be thought of as merely
the temporal interpretation of integration, whereas the events of integration
are interpretable in terms of lifecycle stages. Posing lifecycle as the primary
orchestration and organization of systems engineering in itself is not new.
And in the recent past, several have suggested an integration process model
(Project Management Institute 2000; Booher 2003; Jain et al. 2010; Tvaryanas
2010) suggesting that there is a distinguishable difference between lifecycle
process models and integration process models. The paper by Rashmi Jain
specifically proposes a systems integration process model (Jain et al. 2010)
that is based on a lifecycle view of systems integration. The systems engi-
neering process models do in fact regiment the portal to the fundamentals of
integration, but without sufficiency in detail and interactiveness with other
processes and with a dearth of discussion concerning objects and processes.*
Without integration, no process would integrate with another process, no
object would combine with objects to make a system, and no product or ser-
vice functions would be group-governing and reflective of the whole. Every
process, every function, and even the physical space that encompass the
domain of interest exist only because of interaction and integration, and both
necessarily for a system. Integration requires interaction, but interaction

* I confess I am unable to appreciate the writings of many authors who profess to discuss inte-
gration. To be clear, their reasonings seem to apply the word integration aptly as if I already
knew what it meant and how to do it. Were it merely to bring two parts together to form a
whole, then the difficulty of integration would be rather uninteresting and perhaps easy. Yet,
I have found integration to be extremely interesting, but most certainly not easy. Integration
seems very fundamental, perhaps at the level of existence. Integration silently poses as an
invisible cement that permeates, binds, and forms all that we are and much of what we do.
Humans are systems that live and work in systems. We also build and work with objects that
are not systems. What is a system and what is not a system? Systems interact with nonsys-
tems and systems. It is difficult not to interact with either. Somehow the prevailing views of
integration are logically premised or defined as simply putting parts together to form a
whole—or at least simple stated by many accounts. Integration will only be simple when we
know how to recognize it, how to describe it, and how to do it.

114 Engineering Systems Integration

does not imply integration. Lifecycle is merely the temporal interpretation of
integration, not the impetus.

Rather than thinking of integration in a lifecycle sense or in a process
sense (as is typical through the use of systems engineering process models),
this presentation focuses on the progression and results of interaction and
integration for a set of processes and objects (the mereology of integration).
Thinking in systems engineering terms for integration means addressing
and answering three questions: Is the concept solution effective in solving
the impetus problem such that the needs of the stakeholders are satisfied? Is
the design and architecture effective in enabling the appropriate functions
with their requisite performances and quality to implement the proto-solu-
tions? Is the system of objects and EMMI realized in such a manner as to
verify the effectiveness of the concept through testing? Figure 3.3 depicts a
view of a systems engineering for integration.

A high-level summary of the systems engineering process model (i.e.,
development and integration) is mapped to an integration systems model
which depicts the process model view in terms of an integration systems
model. The three questions are laid out as factors and issues that conspire to
show concept effectiveness, proto effectiveness, and system effectiveness.
For each stage in the integration systems model, the risk is reduced due to
integration as a means to answer the three questions.

There is a noticeable change in the type of thinking required to answer the
questions as the product or service progresses through development and into
integration. Concept effectiveness is strongly interactive with proto effec-
tiveness through iterations. The result of that interactive (iterative) relation is

Objects Object
interactions

EMMI Object to object
EMMI

End to end
EMMI

Object on
objects EMMI

Development Integration

Objects

Elicit
requirements

Define
functions

Design and
architect

Test object to
object EMMI

Test end to
end EMMI

Test object on
objects EMMI

Concept-
effective

Needs Problem

Stakeholders

Proto-
effective

Objects Prioritize

Interactions

Iterations

Processes

System-
effective

Tests Objects

EMMI

Recursions

FIgure 3.3
Integration systems model.

115Foundations in Systems Integration

an integration of concepts and ideas that signify whether the planned inte-
gration approach will be effective. Effectiveness is determinable by both the
subjective measures of the team’s work (Giachetti and Rojas 2007) and the
objective measures of the results of the team’s work (Rahming 2009). The
transition from proto effectiveness to systems effectiveness is indicated by
interaction that favors forward-looking coordination to demonstrate func-
tionality as a consequence of integration over iterations and rework to cor-
rect problems with objects and their EMMI.

Beginning with needs, problems, and stakeholders, a set of requirements
is laid down, revised, and agreement reached by the key stakeholders.
Based on this initial set of requirements, the project establishes direction,
pacing, skill sets, resource requirements, project metrics, and work pack-
ages. A concept of operations is developed, which, when combined with the
creativeness of a designer and architect, results in a set of specifications.
These specifications are coordinated through tasking for the development
team to make a product or service (build and test, and integrate and test).
Objects and interactions with EMMI are defined to conceptualize a solution
that is consistent with the budget, schedule, and available resources, and
that when implemented will be both sufficient and necessary for solving the
defined problem. Objects and their interactions with EMMI are delineated,
organized, and prioritized to lay out the blueprints for the task of building
and testing, and integrating and testing. When finally combined, the
objects and interactions produce the set of EMMI that meets the perfor-
mance and quality requirements for the resultant product and service. The
transformation of a proto-effective set of objects and their EMMI into a
system of objects and system EMMI marks the essence of an integrated
product or service.

Essence of Integration

Integration can be described as occurring naturally through mechanisms
that work according to various processes to transform subatomic particles
into atoms, atoms into molecules, molecules into structures, structures
(e.g., stars and planets, products and services) into superstructures (e.g., galaxies
and clusters of galaxies).* If we think of integration as transforming parts
into a whole (as is commonly viewed), integration has been variously defined
for enterprise applications (Gold-Bernstein and Marca 1998); local applications,
data, functionality, and processes (Dueker and Vrana 1995; Giachetti 2004);

* Subatomic particles appear to be systems, as do atoms, molecules, living things, stars and
planets, and some products and services.

116 Engineering Systems Integration

organization (Ashby 1962; Galbraith 1977); and connections of elementary-
level subcomponents to higher-level assemblies, subsystem, or system
(Ducamp and Lagarrigue 2007). Systems engineers view integration as that
means of building a system (INCOSE 2008), rather than thinking of integra-
tion as the consequences of what happens when individual objects are put
together. A systems-level view of integration emphasizes end-to-end func-
tionality enforced through system design and architecture. For human-built
systems, a function can generally be thought of as how objects are used to
accomplish something, that is, a capability of a system. For naturally occur-
ring systems, a function can be generally thought of as how objects interact
with other objects to work within their mechanisms to gain or sustain stabil-
ity, that is, showing some degree of preference for low-energy expenditures
(Katifori et al. 2010). A function is the essence of interaction between two
objects, and for integration, a function is a structural property of the relations
between objects. The essence of integration is providing functions that are
unachievable by any individual object; performances that surpass the totality
of individual functions; and quality that engenders stability for availability of
those functions, and stability in the performance of those functions.

A natural system is often thought of as having capacity—capacity to with-
stand environmental “hardships.” However, a predominant theme for sys-
tems engineers who build and “integrate” systems is to consider integration
in terms of recursive or progressive approaches while working with data
and interfaces (Buede 2009). Typically, one scheme or a combination of sev-
eral schemes is imposed to carry out the mechanics of software integration
through data and interfaces. These schemes include top-down, bottom-up,
thread, mixed, and various combinations of top-down and bottom-up. The
International Council on Systems Engineering (INCOSE) Systems Engineering
Handbook (INCOSE 2010) recommends a bottom-up approach to integration,
beginning with the atomic-level* data items (Broersen 2003) that enable the
most detailed functionality (the most detailed functionality in the system
hierarchy) to build from the individual objects into subsystems, with the
final output enabling top-level system functionalities. This bottom-up view
of integration deals with the specifics of each object through interfaces, data
items, and timing—the details of ensuring the fundamental connectivity
and flow of EMMI between objects.

There is no correct way to integrate objects. There are, however, ways more
correct than others, depending on the circumstances surrounding develop-
ment and integration. An example of a propitious means of integration
builds processes based on the principles developed in Chapter 1. Consider a
project that is behind schedule and over budget, with objects still in develop-
ment, and no integration work yet started. Let us assume that we have a
strong alignment of strategies (Principle 1: The Principle of Alignment), and
further let us assume we have followed good practices in planning (Principle

* The smallest discernable level of operation.

117Foundations in Systems Integration

6: The Principle of Planning). Yet, even with the key stakeholders in violent
agreement with regard to strategies and good recognition of patterns for
planning and scheduling, the project development work lags. If the key
stakeholders agree on strategy, then the problems in development may be
due to requirements to engineer with less mature, less reliable technology in
order to achieve advancements over existing systems. A very bad decision
would be to push unreliable technology in engineered objects into an inte-
gration environment. A very good decision would be to insert a suitable sur-
rogate technology into the engineered objects to serve as a “placeholder”
during integration. Since only a portion of the engineering work is predi-
cated on less reliable technology, and a primary objective of integration is to
provide for a stable system (builds on Principle 2: The Principle of
Partitioning), integration can proceed along with development. The key to
integrating with surrogates is modularity in functionality (Stone 1997).
Industry recognizes the need for modular functionality, but resists making
the investments required to realize modularity. Modularity of functionality
means that all perceptions, uses, interactions, and embodiments of function-
ality are equivalent. The difference is the physical delivery of the function.
In other words, the function is provide, but the performance(s) and qualities
of those performances are not equivalent to the same function provided by
different physical objects. The form (physical representation) and the fit
(dimensionalities) may be different. The performance(s) may be different.
And the deviations from the performance target(s) may be different, but the
function is present and reliable. As form, fit, and function are generally
described in the product baseline, the process model would need to be
amended to allow for functional equivalency through modularity. For exist-
ing products and services, the modularity of form, fit, and function is a pre-
eminent expectation and requirement (Herald et al. 2007). Thinking in
integration is more about making the product or service a reality. Thinking
in systems engineering is a focus on making components comply with spec-
ifications that reflect requirements, that is, what product or service should
do. Should-do thinking is systems engineering development, whereas will-
do thinking is systems integration.

The emphasis on functionality (as defined in this book) for integration
(as defined in this book) is different than how the term modularity is used
in other contexts; in fact there is a wide disparity in definitions (Gershenson
et al. 1999). A typical view of modularity expresses the dissimilar nature
and independences of module components from other aggregations of
components, along with simplicity as a hallmark of improved lifecycle
issues (Stryker and Jacques 2009).

Whether the objects are elementary particles or artifacts within subsys-
tems, integration is a deterministic factor in achieving wholeness (that of
systems wholeness). Integration can be observed and appreciated through
human endeavors by design, architecting, and implementation. As a natural
phenomena, objects act through their energy and matter mechanism, and

118 Engineering Systems Integration

follow similar logic that has been applied to products and services. By this
commensurability of logic, examples, and structures, the intent is to lay out
a general view of integration—one that transcends the particulars of any one
discipline, trade, or practice. Systems integration applies Principle 3:
The Principle of Induction to develop recursive thinking that presupposes
the patterns that must be followed in integrating a product or service given
circumstances.

Purpose of Systems Integration

As the primary objective of integration is to provide for a stable system, the
purpose of systems integration is to make provisions for achieving system
performances that meet the requirements of the system. By all intentions,
integration realizes the functions that offer performance and quality increases
over that of human-centric operations.

Automation

As is often the case, automation replaces people. The corollary is that auto-
mation can save money sans people-intensive operations. Historically, labor
costs increase at a faster rate than lifecycle costs associated with highly reli-
able machines employing mature, proven technology. Institutionalized
technology produces fewer wasted resources than directly attributable to
humans through human activities. Evidence of automation “improvements”
creep into our daily lives. Automated teller machines have eliminated bank
walk-in deposits and nominal money withdrawals. Check-out from stores
(e.g., grocery, hardware, and apparel) are piloting and implementing self-
check equipment and procedures. Systems integration applies technology
to bring together systems that offer advantages over individual actions
using NotaSystem objects.

Technology

Technology* is the scientific, mechanical, electronic, or chemical means of
improving people’s performances or by providing or enhancing their indig-
enous functions. These improvements provide for (1) making better decisions,
(2) doing more work faster, and (3) doing work that could not be accomplished

* Institutionalized technology is defined as technology that is congruously integrated into an
enterprise, organization, or operational setting.

119Foundations in Systems Integration

before by any one individual. As such, engineering is an enabler to bring
technology to people. And systems engineering facilitates lifecycle thinking
to not only make improvements but also to achieve improvements taking into
account lifecycle issues, reducing impacts on stakeholders (including the
environment), and mitigating unintended consequences due to the building,
operations, or disposal of a product or service. The systems engineer fights
with technology and knows its cost; the project manager knows the value of
technology and is fearful of its nature; and the systems integrator knows the
price of technology and provides value in products and services.

Improvements

Many of the improvements due to integration may not be readily apparent at
first glance. Even people working on a project assume many integrations of
technology, often taking for granted the “invisible” work needed to integrate.
Accounting of integration work is mixed with development and testing
activities. Obtaining a clear perspective of what integration is and is not is
blurred from this perspective, as is the general feeling for how much cost is
included in integration efforts. Broadly defining integration as plans, meth-
ods, and tools (Hassellbring and Reichert 2004), integration covers a great
percentage of work done on a project. Therefore, improvements due to inte-
gration occur naturally throughout the spectrum of project work. Narrowly
defining integration as only that period designated for integration of the sys-
tem and not for individual system objects is commonplace and widely
accepted for products developed for the U.S. Department of Defense (Haskins
2007). With this thinking about integration (as a stage in which a product or
service goes through), improvements due to integration are quantifiable in
terms of time and money. But broadly speaking, integration is the removal of
all impediments that inhibit system stability. Improvements due to integra-
tion then occur as a consequence of method and processes (Giachetti 2004).

Automations and improvements due to integration materialize after devel-
oping the inherent properties or traits of an object. These properties and
traits are especially noticeable when they are singled out as essential (either
by requirements or by recognition of significance) during an attempt at inte-
gration with an existing object or system. For example, the properties of the
Hubble Telescope mirror were acknowledged early when developing the key
requirements for low weight and good thermal properties. When integrating
a new technology that calls for changing test procedures, problems can arise
when old ideas and plans for testing are assumed to be applicable to new
technologies. Integration looks at processes as well as objects to achieve req-
uisite performances. Particularly careful and considered analysis is required
when upgrading or changing an existing product or service. Upgrades and
changes deserve specific discussions as a great percentage of systems engi-
neering work is focused on improving, sustaining, or extending the life of

120 Engineering Systems Integration

systems already in operations.* These improvements increase the effective-
ness and efficiency of integration, provide for more suitable capability for the
users, improve the performances of the overall system and particularly for
certain functions, and help the users make better decisions because of the
delivered service or product.

Tasks of Systems Integration

The major (top-level) tasks of systems integration are (1) characterizing and
providing the requisite objects in the form of products or services, and
(2) defining the interactions and integrations that are conducive to providing
operational effectiveness (e.g., process integration, functional integration,
physical integration, and behavioral integration). These tasks are carried out
in a step-wise fashion.

Systems integration combines an engineering approach to building a
proto-product or proto-service from disparate objects with a systems engi-
neering approach to thinking in systems about the product or service. There
are 12 basic steps for carrying out integration. These steps are listed as
sequential, but in fact they required both iterative and recursive ordering
and thinking.

The 12 steps of integration for new product development cover the general
planning and scheduling of events as well as the specifics of the events
(including objects, interactions between objects, and processes).

 1. Integration planning
 a. Identify the key events that demonstrate subsystem and system

functionalities.
 b. Coordinate the team’s work and activity flows to accommodate

the key events.

* The topic of upgrades and integration is beyond the scope of this book. However, a brief
discussion is warranted to point out the key issues from an integrator’s perspective.
Integration for upgrades or changes is neither bottom-up nor top-down, but rather at the
level of interactions between objects. The information needed resides in design and architec-
ture of the existing system, the operational concept, the key requirements, and the expected
results from the upgrade or change. An analysis of the physical, functional, and behavioral
baseline (existing product or service) is completed to identify and evaluate the impacts of an
upgrade of change in terms of the systems operations, the user interactions, the user environ-
ment (including procedures, social, and economic issues). Scenarios should be developed to
posit the range of actions possible, the conditions under which those actions become causal
to systems operations, and when the futurity of events warrant a further investigation and
evaluation. The investigation would include the kinds, types, and frequencies of decisions
that are made due to the upgraded or changed system, or due to the anticipation of the
upgraded or changed system.

121Foundations in Systems Integration

 c. Establish the sequencing of events that need to occur to demon-
strate the bottom-up development of subfunctions.

 d. Determine the degree of work concurrency that can be sup-
ported by the project resources and satisfy the needs for devel-
opment of the various subfunctions.

 2. Integration scheduling
 a. Schedule the dates of the events identified in Step 1.
 b. Plan for and schedule the durations of both the integration work

and the events.
 3. Identifying two objects that are to be integrated (object A) and

(object B)
 a. Begin by first specifying the lowest level of integration for a

defined object A, where object A will become a minimum com-
ponent necessary to demonstrate an identified subfunction (mul-
tiple subfunctions may be possible with the defined object A,
suggesting that the integration team must decide on the integra-
tion method and approach to demonstrate single or multiple
subfunctions).

 b. Based on the subfunction associated with defined object A,
define an object B that will become the complementary object
that when combined with object A will provide for the demon-
stration and testing of the identified subfunction. Depending
on the decision made regarding object A and single or multiple
subfunctions, object B will follow with that decision as its guid-
ance for single or multiple subfunctions. However, only object
A and object B should be considered as the objects for that deci-
sions, meaning no additional objects should be allowed to enter
into the subfunction demonstration. Should the level of detail
of the defined object A (or object B) offer more than one “oppor-
tunity” for integration, the level of detail is too high and a lower
level of detail needs to be defined and used as object A (or
object B).*

* For upgrading or changing existing products or services, the level of detail for object A is
already specified and built, existing as the “as-is” determinant of object A or object B. In the
case of an upgrade or change to an existing product or service, the object added to the exist-
ing product or service (object B) should be integrated one subfunction at a time. Whether the
integration should be as a completed object B with all subfunctions included depends on the
method and approach for integration testing and the desires of the stakeholders of the exist-
ing product or service (object A). Should the operations of object A be critical, real-time,
involve issues of safety, then a not-in-service (but fully operational) product or service
should be used for integration. Preferences of the integration team and users (of object A)
should determine the approach for integration. However, if object A cannot be taken out of
service or a not-in-service object A is unavailable, then the subfunction should be integrated
one at a time.

122 Engineering Systems Integration

 4. Determining the boundaries of object A
 a. Physical
 b. Functional
 c. Behavioral
 5. Determining the boundaries of object B
 a. Physical
 b. Functional
 c. Behavioral

 6. Specifying the interactions that characterize the relation(s) between
object A and object B

 a. Boundary conditions
 b. EMMI

 7. Describing the interaction(s) between object A and object B
 a. Inputs
 b. Outputs
 i. Performance(s)
 ii. Loss(es)

 8. Describing the characteristics of the interaction(s) that serve as a
function for the user (verification)

 a. Conditions for the function (test planning)
 b. Boundaries to enable the function (test planning)
 c. Limits of the function (test planning)

 9. Attempting to demonstrate the function
 a. Test setup
 b. Measurement approach and meaning

 10. Evaluating the conditions for the functions* of
 a. Reliability
 b. Availability
 c. Vulnerability
 d. Susceptibility
 11. Analyzing the boundaries that enable the function

* For the purposes of this book, we define requirements only in terms of functional require-
ments. In other words, there is no accommodation for “nonfunctional requirements.” As
such, reliability, availability, vulnerability, susceptibility (and the like genre of “ilities”) are
deemed as functional requirements with target performance(s) and quality requirements
representing deviations from those requirements.

123Foundations in Systems Integration

 12. Determining the limits of the function (validation)
 a. Scenarios and vignettes*
 b. Environmental limitations†

 c. Use limitations‡

Defining Terms

The style of presentation in this book is to develop a reasonably consistent
set of defined terminologies that will clarify the concepts and usage of
terms related to integration work. This lexical exercise (the semantic cir-
cumambiency) does not attempt to develop nor cannot potentially achieve a
complete ontology for use with integration, systems engineering, or sys-
tems engineering management (Quine 1960). Appropriately then, the author
takes a first step and makes an exiguous effort to formulate a set of quasi-
defined terminology. Words have meaning. While that meaning is often
ambiguous in both written and verbal usage, it is important to agree on
consistent usage of terminology in order to express the nuances of meaning
uncovered by research.

The terms defined in this book by no means stand up to rigorous stan-
dards demanded by scholarship. They only purport to elucidate sufficiently
enough to assist the reader in differentiating between the customarily used
terms in a manner that is meaningful for the purposes of integration. For
example, it is quite common in systems engineering to refer to functional
decomposition and then proceed to decompose processes (as if functions
were the same as processes); lump verification and validation together (as if

* Scenarios are the futurity of possible outcomes of event; vignettes are more detailed
sequences of events that highlight particulars about a scenario (a possible set of circum-
stances, conditions, and constraints, i.e., the environment of the future).

† Scenarios limit the concept of operations and the architecture to the environment of the
future. Vignettes work within the structured future environment to determine how a sys-
tem’s architecture will respond to various interactions with objects through EMMI. Scenarios
and vignettes are useful tools to discover missing or influential stakeholders, uncover pos-
sible sequences of events that are particularly interesting (causal), and to develop strategies
to explore consequences and uncertainties that follow from the consequences of a decision or
actions taken.

‡ Validation of current uses of a product or service involves determining what the product or
service is capable of doing. Validation of future uses of a product or service (aside from being
problematic because of the unknowns associated with the scenarios and vignettes) requires
people other than today’s users to posit those future uses. Today’s users are steeped in today’s
product and service, and oftentimes find difficulties extracting themselves from today’s
thinking. A group of potential users of a future product or service should be presented with
a paucity of information, only appropriately and sufficiently linked to the general notion of
today’s product or service so as not be encumbered thinking about tomorrow’s product or
service in its future environment.

124 Engineering Systems Integration

they were not only similar, but cognitively the same methods enacted by the
same people at the same time*; or view requirements analyses and specifica-
tions as interchangeable). They are not interchangeable. The general use of
some terms in this book, such as methodology, method, processes, and mecha-
nisms, is detailed where they are explicitly used in the context of integration.

Then, briefly, methodology indicates a set of methods that are consistent
with a theoretical foundation that is based on principles and philosophical
assumptions. Method connotes a systematic, step-wise logical way of carry-
ing out processes. Approach are the specific steps, that is, the way. Processes
are a set of goal-oriented activities carried out according to an intended
theme or approach. Processes are driven by cognitive activities that result in
procedures (referred to as social mechanisms in sociology) whose output are
models (or representations) of what was thought of as modified by what was
done to make happen what was envisioned. As regards social mechanisms,
Neil Gross (University of British Columbia) provides a review of social
mechanisms as sometimes unobservable structures or processes, sometimes
observable and thereby with apparent motive(s), as low-level building blocks,
as causal, as means to transform (events) by mechanisms, as an intermediary
process, and as chains of actors dealing with chains of problems—the pro-
cesses by which cause and effect are founded (Gross 2009). Procedures are
carried out through activities. Activities are sets of behaviors expressed in an
orderly array of acts (many of which might have some relevance to the activity).
Acts relate to activities (through an approach) that in turn relate to a process,
consistent with a method that might be part of a methodology that is harmoni-
ous with a theory. The causality of an interaction is also forced through the lens
of the method of discovery and the theory of its interpretation.†

General Ontology and Mereology of Integration

The kind of universe that can support the existence and observation of phys-
ical objects allows for the creation of an ontology of “things.”‡ Things can be
restrictive or inclusive based on philosophy and principles. This kind of

* Clear distinction is made in most presentations (books, papers, and talks); however, the
 conceptualization of “V&V” remains prevalent.

† There is much to say about causality in regard to integration. Determined by objects (their
mechanisms) and EMMI, integration presumes causal relations between objects and pro-
cesses. That our knowledge of systems and engineering is most likely flawed in many
respects, our presumption for being able to integrate objects, let alone predict what might
happen when we attempt to integrate objects is particularly impudent. Yet, that is the very
essence of advancing our knowledge. I say, forgive the brazen ones, their mistakes are tomor-
row’s advancements. In the words of a major Russian poet, F. Tyutchev, “An idea once
expressed is a lie” (Turchin 1977).

‡ “Things” are defined as contrivances that justify cognitive structures for thinking.

125Foundations in Systems Integration

 universe is not “aware” of these contrivances, nor is this kind of universe cog-
nizant of rules governing such contrivances. Our worldviews afford us a great
deal of freedom, while this kind of universe most likely has much less. By
delimiting properties of EMMI, we proffer definitions and explanations; we
“justify” theories and pretend laws of nature; and we add to wisdoms and
inklings of “great” thinkers. Were the reasonings of the “great” thinkers by
some measure “correct?” If so, how would we know? The ontology for integra-
tion posited by the author presumes the kind of universe where objects (both
physical and intellectual) and their EMMI are secondary to space–time. Space–
time does seem to prefigure kinds of relations that are possible. This kind of
universe might support* the ontology and mereology posed in this book.

The way in which integration is viewed determines what should be consid-
ered as the variables of integration and how those variables should be grouped.
The totality of these variables and their grouping(s) is the ontology of integra-
tion (these theoretical worldviews—classical, relational, and mechanistic—are
described in Section “Nature of Physical Objects”). The author suggests that
there are at least three theories of integration that are consistent with thought-
ful reasoning about the lifecycle of products or services, in which integration
has a relation to lifecycle stages. The difference between the three theories can
be summarized by the following example. Consider an object that is moving
and emitting (or conveying) EMMI. Movement is relative to a reference frame
and EMMI is conditioned on the environment, the inputs and outputs, and the
mechanism of the object. Further, movement and EMMI may be related (as is
the case for decelerating charged particles, i.e., electrons or protons, emitting
x-rays, termed bremsstrahlung†). Therefore, the object’s movement may be
related in some ways to the object’s properties, traits, and attributes.

Nature of Physical Objects

From a perspective of classical mechanics, that is, the worldview most fre-
quently adopted when engineering a product or service, objects are thought
of as having various performances, all of which are measurable to a degree,
sufficient to satisfy the needs of customers and users. For this reason, an
acceptable ontology for integration of human-built products and services can
be based similarly on a view that objects have performance, which is in agree-
ment with classical Newtonian physics. We term this as classical integration.

Alternatively, a relational view of products and services can be posited
based on the relative measures according to a measurement standard or
standards. For example, instead of integration based on a set of objects with
various performances for their functions, relational integration depends on
the interactions between objects to derive the functions which in turn are
measurable. We term this as relational integration. It is only when two

* Might not.
† German, bremsen “to brake,” and strahlung “radiation.”

126 Engineering Systems Integration

objects interact that they exhibit the function. In the relational integration
case, functions are relative to the objects that interact, rather than as a single
object with its individual performance. This view of the world is described
in a quantum mechanical sense as relational quantum mechanics (Rovelli
1996, 1997).

And lastly is a worldview that recognizes the objective nature of objects by
their measurements (typical of engineering) and the subjective nature of
people’s interactions with those objects (typical of sociology). The ethos for
this alternative perspective of integration is based in part on a philosophical
foundation that supposes that integration is describable as many, one, and
does not exist—a blending and restatement of the concepts expressed by
Stanislav Leśniewski (Henry 1972).* The substance of this formal ontology of
integration is based on the genres “entity” and “activity” (Machamer 2004).
In Machamer’s book, “object” and “process” are differentiated (and carry-
ing with them all the historically significant encumbrances that these two
words harbor) as a workable ontology. Objects have mechanisms that in
themselves are entities and activities, objects and processes. Objects have
properties (intrinsic to their being that object), traits (the combination of the
object’s properties and the object’s environment), and attributes (that which
is associated with the object, but neither intrinsic nor situational (e.g., envi-
ronmental)). In keeping with the formalisms of Leśniewskian mereology
(Surma et al. 1992) as reviewed by Woleński (2000–2001), objects exist as
objects; the constituents (parts) of objects are objects; and compositions,
agglomerations, and combinations of objects are objects. No object has any
property that is not a property of an object. Leśniewski presented the idea of
a theory of relations for parts and whole (i.e., a mereology) (Simon 1987) as
objects. Translating and editing Leśniewski’s lecture notes, editors Srzednicki
and Stachniak presented Leśniewski’s development of the logical theory of
relations between objects showing that relations do not depend on recogniz-
ing objects as sets of points (Srzednicki and Stachniak 1988), but rather as
either distinct entities (objects) or domains that embody objects.

Characterizing Objects for Integration

For this book, for the relations for parts and whole (i.e., object-and-object),
we view mechanistically through the interactions of objects with EMMI
(i.e., EMMI-to-object). By a mechanistic interpretation, the whole of objects
that are integrated is the totality of the objects that comprise a system (an
object). The notion that objects may be in a specified conceptual region and
that the objects are in some way related presumes a relation that is more than
spatial. For if it were not for interaction of EMMI, one object would have no
influence on another object. The case for EMMI-on-object (i.e., interactions)

* Stanislav Leśniewski considered the worldview of one, many, does not exist; in contrast to
Parmenides’ worldview of one, does not exist, cannot exist.

127Foundations in Systems Integration

has been made in various ways (e.g., rock breaks window*; Olson 2002). The
presentation in this book applies the logic of EMMI as the harbinger of inter-
action that is enacted by or through objects and their mechanisms (pro-
cesses). That the whole of objects does not satisfy various conditions for a
system does not detract from either the concept of the whole or from the
parts (which are objects in themselves). As a whole, there are various con-
ditions to retain the properties and traits of the whole (i.e., remain as a
stable system).

Nature of Intellectual Objects

That objects are physical is only part of the whole. The objective whole for
products and services is also comprised of intellectual parts. We must realize
that building a product involves both the end result (i.e., the product or ser-
vice) and the processes employed to produce the product or service. To that
end, objects that represent physical objects are also to be considered as
objects—the type referred to as intellectual. Intellectual objects means
anything that is embodied in a physical object, such as an idea that is
expressed on paper or in some tangible form; trademarks that represent a
physical object(s); service marks that represent a service that is enabled by a
physical object(s); copyrights (by written or other corporeal manifestations)
that confer ownership or legal rights in chattel, real property; inventions,
methods, techniques, approaches, specifications, know-how, algorithms,
data, and software program techniques that are reduced to tangible form
whether embodied in design, drawings, or sketches; discoveries that are cre-
ated, conceived, or reduced to practice and documented; or netlists and
source documentation, and tables and figures. The determination of intel-
lectual property as objects is that it is both perceived and performed by the
intellect and reduced to a tangible form. Intellectual property as objects only
becomes a member of the type of objects when the physical manifestation of
the intellectual content is reduced to something physical. Telling someone
(object-to-object interaction) something that is wholly cerebral and not
reduced to a physical entity retains the intellectual nature but not the
aspect of property. Intellectual thought may be recognizable, desirable,
credible (or not), but unless that thinking (or communication of that thinking)
is conveyed in or reduced to a tangible form, the intellectual content is not

* The underlying topology of human near rock; human near window; human juxtaposed,
picks up rock; throws rock; rock intersects spatial domain of window; rock breaks window
can be described mereologically as object (human) performs acts and activities (process) to
pick up rock (object); human (object) throws (process) rock (object) (rock is matter (EMMI)
that is expelled from human by human mechanisms); trajectory of rock (object) collides with
and imparts energy (EMMI) to glass window (object). Energy absorption mechanism of
window (object) is insufficient to maintain stability of glass (process); and glass shatters
(process), sending glass flying (objects). The topology of the configuration is altered, one
piece of glass becoming many.

128 Engineering Systems Integration

property, the object is. Property is tangible in form and characteristics,
expresses value, and embodies rights, privileges, obligations, permissions,
and penalties. Intellectual property (sometimes referred to as intellectual
capital) continues to be recognized as the most important asset of many
major corporations.* Intellectual property is the basis for new technology,
innovation, and invention. The valuation of intellectual property is widely
debated and often contentiously determined. When a buyer and seller of
intellectual property agree on value, mergers and acquisitions result,† prod-
ucts are built and sold to customers, and international agreements become
the means of trade and commerce.

Objective Measures of Performance

Physical and intellectual objects (i.e., intellectual property objects) have
objective measures that relate directly to the performance(s) of products and
services. There is a wide disparity in defining objective measures, so the
term “objective measure” is limited in this book to that which is quantifiable
in terms of performance. Objective measures include any item or combina-
tion of items that are categorized as EMMI. The amount of money something
costs, the measured speed of an object, the amount of energy released from
the Sun, and the quantification of mass launched into orbit are all objective
measures. Additionally, the belief that an object will have various functions
with performances, while being cause enough to invoke processes (cogni-
tion, carrying out procedures, and even corporeal realization of that think-
ing, e.g., writing down thoughts), is considered to be subjective measures.
However, the objective measure of having one written document that
describes thinking, determining the mass of the paper on which the thoughts
are recorded, counting the number of words and number of letters, and
determining the size of the document (length, width, and depth) is embed-
ded in the process frame as an object. Similarly, the user’s anticipations of an
object are determinable and identifiable as subjective measures. These
include any behaviors. In this book, the author defines behaviors by the use
of an operational definition (Kerlinger and Lee 2000) that particularizes
objects and processes in ways that are measurable. Behaviors are the move-
ments of objects by processes, processes that result in objects, and objects
interacting with other objects. This definition of behaviors is generalized
from that used in systems engineering. Systems engineering considers
behaviors (as captured in behavioral diagrams) to be activities, sequences of
activities, and states of “machines” (Object Management Group 2007). In
software engineering, behaviors are defined as characteristics of equipment,
for example, reliability, loss, run speeds, and dimensions of various objects

* As early as 1883, the Paris Convention for the Protection of Industrial Property brought con-
sensus to recognizing intellectual property as an important aspect of business.

† Assuming that the acquisition or takeover is not “hostile” in the classic business sense.

129Foundations in Systems Integration

(Rockwell Software 2004). Further, behaviors are derived from objects and
processes, functions are provided by joining objects and facilitating use by
design, and users use objects to perform various types and kinds of work.
“In the behavioral approach to system theory a system is regarded as a
subset of a function space, the behavior, containing the input/state/output-
trajectories . . .” (Trumpf 2002). Behaviors that do not have empirical data are
subjective by this definition.

Sometimes, the term “objective measures of performance” or “performance
measures” is used (United States Department of Defense 2010) instead of
objective measures. For example, in predicting the objective measures of per-
formance for road pavements, crack widths, crack depths, and joint displace-
ments are considered (Garcia-Diaz and Riggins 1985). Performance measures
are observed and measured according to a reference scale or standard of
measurement. Every object has at least one objective measure (and most
often several), since there is something physical that is usually measurable
(in the classic engineering and physics sense). Measures of performance
might be the speed of an object or the amount of money an object costs.
Often there is a “target” value (quantity and unit, e.g., kilometers per hour)
in which performance is measured along with an acceptable variance about
that target value (quantity and unit, e.g., kilometers per hour). These objec-
tive measures are used in testing to determine how well the object performs
to a target value within the bounds of a specified variance that is deemed to
satisfy an objective for stability (or quality). For the objects that undergo
testing, a value and use can be ascribed, referenced to the perspective of a
user and their specific circumstances.

Value and use: Objects

Rather than contriving and discussing value in an economic sense based on
categorizing various things, it is useful to consider the categories of objects
first, and then determine their value. Knowing that integration deals with
object and processes is a key determinant of determining what is valuable
for integration. Integration is concerned with the value of an object that is at
its peak performance and how that differentiates from an object that has lost
functionality and has degraded performance. Then, thinking generally
about commodities, we acquire a sense as to why something is useful and
valuable.* To wit, a logical set of choices for characterizing products and ser-
vices is in terms of use, value, and price. Use can be defined by a set of design
parameters that maximize a preference function (Antonsson 2001), value
can be described in a subjective and objective sense, neither of which fully
captures the broad conceptions of value (von Böhm-Bawerk 2005). In the

* Naturally, we consider useful and not valuable, valuable and not useful, and valuable and
useful. The preferential order of value and use indicates a priority according to the general
notions of the key stakeholders for a specific project, product, or service.

130 Engineering Systems Integration

words of Eugene von Böhm-Bawerk, “economic valuation of a good is noth-
ing but a reflection of a more basic valuation which we accord to the life and
welfare purposes which goods serve to attain.” We extend that fundamental
notion of value to encompass the cause by which objects are used to achieve,
attain, or accomplish—that of the performance of an object. An object that
performs well and is costly is not as valuable as an object that performs simi-
larly and costs less. This tenet has been espoused by Miles and forms the
basis of value engineering (Miles 1961, 1972).

The difference between the two approaches of use and value with regard
to thinking of objects and their intended development, integration, and uses
is first, fundamentally how one thinks and speaks about objects, and second,
how one views the nature of importance of objects. Whether our perceptions
of objects are influenced by thinking in terms of uses or value guides how
objects are construed in the workplace, how they are managed, and how
they are accommodated in the systems of financial accounting (whether by
principles or by heuristics). This topic is significantly beyond this introduc-
tory text as it impacts on business models, enterprise architecture, project
organization and management, and business strategy.

Performance-Based Value

There is a cliché that has dominated the scientific world for centuries, perme-
ated the social world nearly to the point of paranoia, inspired dramatic rheto-
ric and oratory, and has seemingly captured the minds of “thinking”
people—to go counter to objective reality spins a web of doom for scientists,
offers displeasing moments for sociologists, and takes the form of dispelling
remarks from others. Perhaps there is not as much drama as this would
seem, but the reconciliation of objective measures with subjective measures
remains to be a much-needed exploration and resolution. Since the concepts
of integration span all disciplines and fields and all thinking and doing, the
ontology of integration must not only be cognizant of the necessity, but also
embody the sufficiency of integrating subjective and objective structures.
Whether by subjective or objective measures, the presumed goal of integra-
tion is to form something of value.

Value is measurable subjectively and objectively. Objective value is often
characterized by measures of amount (by numerical counting). Subjective
value is often characterized by esteem, opportunity, or some form of intan-
gibles. There are different types of value spanning use, esteem, cost,
exchange, scrap, and various performances as compared with standard ref-
erences. Value can be thought of both for objects and processes. Objects can be
imbued with value by their properties (e.g., resilience of gold due to various
types of deteriorations (such as rusting)) and by their performance(s). Faster

131Foundations in Systems Integration

cars often command higher prices than slower cars. The general notion of
value seems to require a precondition for establishing the initial value and a
postcondition (or anticipation of a postcondition) that presumes a final or
residual value. In the case of gold, the initial value may be identical as the
final value, assuming that there is no interaction with a mechanism of sup-
ply and demand or other influence-driven change from that an individual
would self-impose. For example, there are no buy–sell dynamics that influ-
ence an individual to think the value of the gold has changed. Leaving the
possibility open that there are some values that are determined by self (with-
out outside influence), the value that is ascribed to products and services can
be thought of as both driven by self and by nonself influences. Some of the key
determinants of subjective value are (1) historical significance, (2) cultural
legacy, (3) family heirloom, (4) esthetic beauty, (5) uniqueness, (6) scarcity,
(7) marketing, and (8) sales.* For our purposes, objective value will be deter-
mined by performance measures that are determined relative to the amount
of EMMI required to achieve that performance. EMMI can be considered for
an instant, taken over a stage during which the performance is being created
(i.e., development), or considered in a lifecycle sense.

Value of a performance measure is nothing more than measuring the func-
tion of a product or service that embodies that performance. Every function
is characterized by its performance(s). Each function has at least one perfor-
mance and most often many performances. For example, the function of ‘to
write’ (as distinguished from the process of “to write”) has various perfor-
mances. How fast does one write? How many letters? What are the sizes of
the letters? How often are the letters written? Each question is suggestive of
at least one performance that relates the function of ‘to write’ to an empirical
result through a performance measure. Person A is paid $60 per hour and
writes 12 words per minute. The value of the performance of person A with
regard to words/$ is 12 words/$. Person B is paid $45 per hour and writes 10
words per minute. The value of the performance of person B with regard to
words/$ is 13.33 words/$. If both person A and person B have the same
defect rate, then the value of person B with regard to words/$ is higher than
that of person A. Value V per enactment of a function is defined as the ratio
of performance P to investment I. This representation is the fundamental
premise of value engineering (Miles 1961, 1972). Value compares what is
received in performance of a function with what is (was) invested to achieve
that performance. If two products with factually comparable functions and
performance are offered for different prices and they are normalized in
terms of the geneses of both performance and investment,† a higher value is
associated with the lower-priced product. Whereas the value of a function

* Private communication with Stevenson Higa, purveyor of fine art and crafts, chairman of the
board, Images International Corporation, Hawaii (1998).

† Normalized means the performances and investments are equivalent by their measures and
amounts, for example, same conditions, same discount rates, and same period of time.

132 Engineering Systems Integration

may vary with time, additional investments made during the system life-
cycle to maintain performance are an acceptable way to determine the life-
cycle costs for a given function. The aggregation of all performances that are
ascribed to a function must be included in the determination of value for that
function, or the recognition that there may be one performance of a function
that is either more appropriate to the use of that function, or significantly
more important in some aspect over that of the other performances. The sys-
tem value, V(t), is given by

V t F t
P t
I t

F t

() ()
()
()

()

∑ = ∗∑ γ

where F(t) is a function or nonlinear summation of subfunctions that are
enacted by the product or service, P(t) is the performance measure (units of
EMMI appropriate to the use of the function(s) F(t)), I(t) is the investment*
(e.g., dollars or other equivalent convenience of assets that are required to
achieve performance P(t), the time, t, measured relative to the onset of initial
investment in the project (or a period, or portion of a lifecycle, or over the
lifecycle), and γ is the normalization factor (dimensionless). The summation
is simplified for the purpose of this discussion, and generally aggregated
over all subfunctions, subperformances, and subinvestments.

The change in performance of a system object due to an interaction of
EMMI from another object is equal to the work done. Performance can also
be described with reference to the cost/(unit time), as well as to the total time
over which the performance occurs. Incorporating and factoring the variable
of time express the value equation in terms of the measure of performance per
rate of investment.

V t F t
P t

I t t t
F t

() ()
()

() /
()

∑ = ∗ ∗∑ 1 γ

By including time explicitly, the value of a function can be measured in
terms of performance per investment rate (e.g., labor rate) times the normal-
ization factor γ divided by t.

Value is variously described beginning with the ancient Greek Protagoras†
(an early humanist, a champion of pragmatism, and a master Sophist) con-
tinuing subjectively in sociological contexts as illustrated by expressive cog-
nition (Kuwabara 2011), as encompassed by classical sociological theory and
behavioral models (Zafirovski 2005) in game theory as an alternative to

* In this case, material wealth; in general, energy, matter, material wealth, or information
(EMMI).

† Protagoras, 485–421 BC … things are to you such as they appear to you and to me such as
they appear to me …

133Foundations in Systems Integration

objective probability (Kyburg and Smokler 1964; Dastou 1994), in knowledge
management for modeling (Rocha 1999), in public administration (Shingler
et al. 2008), in business valuation (Kwon et al. 2002), in engineering analysis
for reliability (Bhatt 2000), for product support (United States Department of
Defense 2011), for management strategies (Chow and Van der Stede 2006),
and in economics for the dual nature of money with objective and subjective
qualities (Zyphur et al. 2006). In systems engineering, subjective value and
its measure are often included as part of building and integrating products or
services (Bernstein 2001), as measures of project success (Parsons 2005), for
software testing (Hamlet 2007), and as determinants of systems engineering
quality (Valerdi and Davidz 2009). Importantly, the recognition of the systems
engineers’ need to embrace both the subjective and objective components of
developing and integrating products and services was instilled from the
mid-1960s. By the late 1990s, that favor was both prevalent and acknowl-
edged as an important distinction for systems engineering (Sproles 2000).

Subjective Value: Processes

Similarly, economic value of a process is derivable from Eugene von Böhm-
Bawerk, “economic valuation of a good is nothing but a reflection of a more
basic valuation which we accord to the life and welfare purposes which goods
serve to attain.” The words “to attain” are suggestive of a set of measures that
can be developed to determine the value of a process. However, the set of mea-
sures for a process that focuses on activities are different from that of measures
of performance. Measures of performance relate to functions. Various schemes
and measurement scales for measuring processes have been proposed, includ-
ing “… cost, schedule, risk, and improvements” (Millard 1999). The key deter-
minants of value for a process, first, are subjective. That there is no quantitative
reference is implicit in subjectivity and subjective measures. However, no doubt
there is value in processes. Process can be patented, bought, sold, and improved
to increase production, build products, and deliver services. And processes can
be ineffective, inefficient, and cumbersome. People conjure processes, commu-
nicate to others about their thinking about processes, and manage processes.
People estimate costs of and spend money to deal with processes.

Process is the amalgamation of activities and tools that combine ideas.
Two processes are differentiable when they require different skills from the
same person, need different equipment for the same job, and use different
tools for the same activity. Generalizing from definitions of software pro-
cesses by Humphrey (1989) and Lonchamp (1993), a process is a partially
organized set of activities, tools, and practices carried out by humans who
are constrained by, for example, resources, budgets, schedules, scope, and
policies.

134 Engineering Systems Integration

Processes have inputs, outputs, and losses to achieve those outputs.
Processes are measurable with objective measures such as cost, number of
people, and the amount of loss to achieve certain results. Processes are com-
parable to other processes subjectively. Yet it is quite difficult to say that one
process is better than another. What can be said is that there are noticeable
differences between processes, some taking more labor, some requiring
more resources, and some costing more money. However, in isolation, these
objective measures have little meaning as their bases are quite different and
therefore not comparable. Were there only a few processes that when com-
bined produce a certain result, the combinatorial advantages and disadvan-
tages of these processes might be discernable compared to another set of
like-kind processes. In this case, the comparison would be to ascertain if
there was a combinatorial advantage determined by the number of people
involved with the process, the total costs of the processes, and the amount of
time it takes to complete the work prescribed by the processes. For example,
two sports team compete in a “game,” each team bringing its different pro-
cesses to test the consequences of their processes on “game day.” In a similar
fashion, processes of a like kind can be “tested” given that the competing
process sets agree to a set of rules and standards by which to measure the
outcomes of the “test.” Short of a game-play equivalency, there would not seem
to be an objective, rational basis on which to measure a process empirically.

Further, processes can be measured and improved relative to themselves
(Goldberg et al. 1994). If the same process is measured according to a set of
objective measures in a simulated “game-play,” then enacted again using the
same rules and standards in a subsequent “game-play” situation, then the
before and after comparisons of objective measures indicate the degree of
controls that are operative on the activities within the process. If there are
random sources of perturbations, then the variations in the objective mea-
sures can be collected and evaluated for a set of “game-play” “tests.”

The basic unit of dimension for a process is an act—a single factor signi-
fying that a process might be evaluable in isolation is termed as an act, a
single step in a string of steps that when combined are recognizable as an
activity. Activities combine into processes. At the level of an act, the actor
(in this example, the human) may take form as “walking” between a desk
and a lab. That “walking” is part of a series of like-kind acts, concatenate to
the activity of “going to the lab.” That the combination of “going to the lab,”
“setting up an experiment,” “running the experiment,” and “taking data”
is considered the process of “running an experiment” signifies the manner
in which processes and their subtasks can be granularized (or partitioned).
There are many ways to granularize acts and activities, and there is no
standard. So the practice of valuing a process is problematic. You might
note an advantage to moving your desk into the lab to ‘save time’ (a func-
tion). Changing the activities changes the processes. It is notably difficult
to perform the same routine task in the same way each time that task is
performed. Consequently, there is variation in the acts, in the activities, and

135Foundations in Systems Integration

in the process(es). Measuring that variation is difficult, if even noticeable.
Defining processes is problematic, implementing processes is problematic,
describing processes is problematic, and quite intuitively, integrating pro-
cesses is problematic (GAO 2009).

From an integration perspective, processes guide the work. The systems
engineering process model describes the stages in which the project team
focuses on various milestones and deliveries. Moving from one stage to the
next stage is process driven (by the work to complete the assigned tasks).

The aim of process integration is to improve the management of capital,
assets, and operations, that is, increase the value of the organizational efforts.
Convenient measures of process integration are operating efficiency and
capital effectiveness. These measures of the target process are always refer-
enced to another “like-kind” process, or self-referenced in the manner of
“game-play.” Particular attention needs to be given to the reference process.
Should the reference process be a previous enactment of itself, clear and
open objectivity must accompany both the measurements and the evalua-
tions that compare the target process to the reference process. It is very easy
to measure that which you want to see, whether the evidence is there or not.
An objective third party is one means to prevent intellectual contamination
of the measurement process, analyses, and evaluations.

Further, a process can be compared to an entirely different process that has
a different provenance, background, subject, intention, and industry focus.
For example, compare an apple-growing process with that of painting orange
fences. Aside from both processes having a common abstraction* of fruit, the
apple–orange comparison has no objective basis from which to make mea-
surements or comparisons. But wait. The assumptions that go into the deter-
minations of the apple–orange processes do not have to be the same or for
that matter even be similar. One can have as a reference an entirely different
process as long as there is a common overriding theme that is similar for
both the reference(s) and the target process. In the apple–orange process
comparison, we find that both processes engage workers. The apple process
uses seasonal workers and the orange painting process uses student labor.
Management for both processes concerns supporting their workers year
round, in spite of their seasonal and part-time employments. Embedded in
both the apple–orange processes are the vestiges of policies that provide sus-
tainment, support, and team-building benefits. The comparison of processes
should be focused on the “game-play” scenario, which in this case is worker
retention. Worker retention regardless of the type of work is important to

* Abstraction is an insufficiency of details to describe completely all that is needed so that the
EMMI that is necessary to enact a mechanism is available as needed. An abstraction that is
too high implies less detail than required. An example of too high an abstraction is captured
in the statement “Exit room.” The level of abstraction is important to convey meaning. “Exit
room” may mean to leave the room in which you are currently located; you must go to
another room to exit (indicated by the statement “Exit room”; or whichever notion you think
is irrelevant, you must exit the room.

136 Engineering Systems Integration

both sets of managers. As a result of the retention policies and team-building
activities, both sets of workers deliver more productive hours per dollar than
their competitors in their respective markets. The key in evaluating the effec-
tiveness of these retention policies is wrapped in process integration. Some
retention efforts are based on maintaining critical skills so that new hires
can be trained and the workforce is improved and shaped to provide a stable
cadre of skilled workers. Another perspective is to think of the skill base as
human capital that can be developed and managed (Todd and Parten 2008).
In the case of the apple–orange comparison, the process integration effort
was based on the specific needs of each individual worker. Rather than view
the process as critical-skills-centric retention or human-capital-centric
retention, apple–orange process managers focused on people-centric reten-
tion. Process integration depends completely on the focus of integration.
That focus is more influential for decision-making and management roles
than design and architecture.

The aim of process integration may be to (1) improve (e.g., maximize) pro-
duction (output) efficiency or effectiveness; (2) increase the independence
from changes in the operational environment, improve user satisfaction,
immunize the assumptions and decisions from technology and legislative
vagaries, and enhance the interoperability with known and unknown future
systems; (3) expand the partnering opportunities through network-centric
operations; and (4) deliver process visibility through standards, shared data,
and interpretable protocols.

Measurements performed for one class of abstraction can be combined
and correlated with measurements made for the other classes of the same
abstraction. These measurements are correlated through the integrative
domain framework as long as the conditions for integration within the limi-
tations and constraints are satisfied. Either or both of the subjective and
objective frames can be used as the reference frame in which to associate and
connect measures and measurements for both frames. The purpose for a
reference (in the general sense a class of abstraction, object, or process) is to
bring additional information together in such a way as to highlight the
relation between the reference and the additional information. The relation
between the reference and the additional information is to provide a basis for
comparing, contrasting, and evaluating the additional information relative
to a set of information. The reference serves as a perspective from which to
view additional information. For example, if object is chosen as the reference
domain for integration, the objects and processes associated with that class
would be expressed within the physical context (objects). The perspective
posed by the physical context serves as the lens through which to examine
the nature and conditions of the objects and processes. If there are various
kinds of associations or patterns between the functions or processes with
physical entities, then the perspective of object might either suggest that
relation or explicitly show it. Similarly, the function frame, or in general,
the process domain can be used separately as the reference perspective to

137Foundations in Systems Integration

observe and interrogate the measurements of objects or behaviors. Sometimes
there may be one domain that seems natural for a particular measurement—
the one in which relevant patterns appear and all of the variables relate caus-
ally to the patterns. It is prudent to not only include the other domains in the
measurement framework but also to consider the other classes of integration.
In other words, relying on only one interpretation of patterns (regardless of
their supportive interpretations, and corroboration of variables by others),
the alternative views may be the only way to discover a problem, provide
insight, or innovate another solution.

Creating value through processes means providing options to deal with
contingent needs, establishing supply chains for goods and services, build-
ing value chains to manage stakeholder value, and improving governance
(Rouse 2004). Processes manage variation, shape interactions, and result in
decisions (Rebovich 2005). Processes form interpersonal relations via their
human carriers, promote project cohesion, and instill metrics for measuring
work (Bausch 1997). Systems engineering processes for the U.S. Department
of Defense often exclude consideration of certain categories of lifecycle sup-
port costs and system readiness (leaving those for sustainment budgets) dur-
ing development and integration of new products or services (GAO 2003).
Project management often considers their primary roles as minimizing dis-
tractive external influences and providing sufficient resources to carry out
the work. Overall, there is considerable thought and effort expended by proj-
ect management to maximize the positive mettle of the project, that is, stir
the spirit of teamness.

Conceptualizing, defining, designing, architecting, developing, integrat-
ing, operating, and disposing of a product or service span the lifecycle pro-
cesses of a product or service. Processes are enabled by objects. People
(objects) using (processes) materials and other assets (objects) build, inte-
grate, and deliver (processes) products or services (objects) to customers and
users (objects). Users (objects) use (processes) products and services (objects)
to perform or enable (processes) work (objects). Processes are inexplicably
intertwined with objects, but processes and objects are dissimilar, distin-
guishable, and separate. Processes include the cognitive aspects of preparing
for and carrying out of the procedures that result in something done. Like
objects, processes have value and are measurable. The value of processes is
determinable by the results achieved by those processes.

However, there would seem to be no ready method, no easy way of deter-
mining value in a process since there are substantial differences in the
makeup, uses, and interpretations of processes. Comparing one process with
another process in itself is a reference by which unlike kinds can be contem-
plated. Comparing a process to itself (either before or after changes are made)
is a self-referencing process. Either of these two methods allow a summary
finding that while there are two different processes, and if whose objective
functions are similar, their results will have an equivalency of meaning (sub-
jectively), but not necessarily objectively.

138 Engineering Systems Integration

Management Processes

There is a long-standing tradition of separating processes for managing
activities from processes specific to doing work. In systems engineering the
separation is seen with the project manager (whose role is to manage the
project) and the systems engineer (whose role is to orchestrate product devel-
opment and integration to deliver requisite functionality, performances, and
quality). The project manager guides (works with) the systems engineer
within the context of the organizational processes and external limitations of
time, budget, and resources. The systems engineer works with the multidis-
ciplinary team to determine requirements, and builds the desired solution
within the constraints of time, money, and scope. The project management
processes deal with the interactions with managers and various team mem-
bers to plan, organize, direct (command), communicate, control, and team
build. Appendix 2 delineates some of the processes of management. The pro-
cess for systems engineering (managed by the chief systems engineer or the
systems engineering manager) follows the systems engineering process
model. Integration is concerned with both kinds of processes—that for man-
aging the project and for developing and integrating the product or service.
An adequate general reference to project management is periodically
updated and released by the Project Management Institute, Inc., an earlier
version of which is referenced (Project Management Institute 1996).

Processes as Intellectual Property

Processes can be turned into intellectual property (intellectual object) through
cognitive thinking and procedures that result in the patent process. Process
patents are recognized as valuable when reduced to an application and
granted. In that way, processes become objects. Intellectual objects can
become processes and be representative of the value embodied in the intel-
lectual property. Intellectual objects are recognized as valuable when put into
use. Physical objects are valuable due to their intrinsic properties as well as
their uses and convertibility into other objects. The concept of converting one
object into another object through various mechanisms results in EMMI, a
EMMI that change with the conversion of objects. This conversion of objects
and the resultant changes in EMMI is both a social phenomenon and a means
of interaction and integration. Another way of thinking about objects and
processes is to recognize that EMMI derived from objects are inputs to objects
that enable procedures and procedures result in EMMI to objects; further,
objects are the result of procedures and procedures are the outputs of objects.
By these we recognize that objects are objectively determined while pro-
cesses are subjectively determined. Therefore, the distinction between pro-
cesses and objects is essentially the distinction between the subjective
domain and the objective domain. Both domains can be construed as social,
or physical, or other means of categorizing, but significantly, subjective
and objective considerations are the superclassifications for integration. We

139Foundations in Systems Integration

determine that the subjective and objective classifications be the frames in
which integration is viewed and enacted. Further, the unique relation between
objects and processes in their elemental forms shows that they are not com-
parable, and they relate through other classifications, and have distinct,
determinable values. For interaction and integration, the ontology we seek
is objects, EMMI, and processes.

Subjective and Objective Ontology

Objects and processes have been both implied and stated as ontological struc-
tures for business systems (Tronstad 1997), architecture (Koopman 1995),
socioeconomic issues (Osorio et al. 2010), and a myriad of other applications
(Gailey 1985; Breuker et al. 1997). Objects as metaphysical entities have a long
history of debate and deliberation, extending back in time for 2000 years.

Objects are vestiges of the functional viewpoint—the view that what the
product or service must do is based on physical objects that produce various
behaviors (Shishko 1995; Harel and Politi 1998; Defense Acquisition University
2001; Rodriguez et al. 2004; Guenov and Barker 2005; Eriksson et al. 2008;
Cechini et al. 2009; Do et al. 2010). That objects and processes (among other
are choices for representing many things human-built) are the raison d’être for
systems engineering is based on the necessity of testing and demonstration to
verify that the work is appropriate to satisfy the requirements and to validate
the product or service for utility and fitness of use. The functional view is
objective; objects are objective. Objective measures can be quantitative or
qualitative, but both types deal with the numerical counts of items.

Processes are subjective. Subjective implies things influenced by personal
feelings, biases, or intuitive thoughts. Subjective measures are reflected in
survey or questionnaires that respondents use to express their opinions or
interpretations of events, nonfinancial deciphering of business, operations,
or product and service utilities, and use (Chow 2006). Sometimes, subjective
measures are used to determine how a constraint or condition impacts on
development work or integration (for example). The subjective data provide
insights into what moderation and interpretations are necessary to go along
with the objective data for planning tasks and allocating resources to com-
plete integration (NASA 1990). Processes are subjective both by their design
and their enactment.

While both objective and subjective measures are necessary (neither one
being sufficient with the other), the correlation between them is poor (Parsons
2005). Systems engineering and in particular systems engineering integra-
tion rely on both objective and subjective measures to bring a product or
service to its deliverable configuration and operability. The combining of
objective and subjective measures is particularly important for our ontology

140 Engineering Systems Integration

of objects and processes—objective being objective and processes being sub-
jective. The correlation between objects and processes is through the proce-
dures carried out by the systems engineers and the systems integrators to
build products and services. That correlation depends on developing metrics
for both subjective measures and for objective measures that are related to
the same concomitant object and process (i.e., procedure, activity, or act (in
decreasing level of sophistication and complexity)). For example, the process
of transporting an object from one location to another may depend on the
mass of the object, the number of objects, and the size of the objects. If the
procedure is to have people lift the objects and all of these three dependencies
have high numerical values, then the process of transportation may be dra-
matically different than if the numerical value for each is one (assuming the
same units of measure applied to both situations). Moving a patient that
weighs 150 kg from a gurney to a bed may take four orderlies. Moving 300
patients a day may take 1200 orderlies if all patients weighed 150 kg. These
objective measures do not communicate the problem, which is the harm done
to the skeletal frames and muscles of the orderlies by repetitively lifting these
weights. Were such a scenario to be scripted and followed, the first reports
from the orderlies would be for “aching muscles and sore backs.” After a
period of fatigue, the next reports would show more serious injuries, requir-
ing time off from work for rest and rehabilitation for the orderlies. The subjec-
tive measures of soreness and feelings of pain vary widely between people,
but nonetheless are indicatively correlated to the objective measures described.
Both objective and subjective measures need to be considered when building
metrics to monitor an enterprise, a business, a project, procedure, or activity.

Since objects and processes in a project are established and carried out in
relation to each other, the socioproduct or socioservice nexus is more than an
interaction of the objective and subjective issues. Objective and subjective
issues are integrated. As such, the proper discussion of a project is within the
framework of objective and subjective issues with appropriate metrics.

The mereology we determine is objects as objects, events as actions, and
processes as procedures, activities, and acts. The equivalency of EMMI as
input for objects is matched with the results of processes as inputs for other
processes, and that of mechanisms for objects is matched with procedures
for processes. Processes make objects from other objects; objects make pro-
cesses from other processes. The relations between objects and processes are
the topology that signifies their connection as mereological entities. At this
point, a rigorous mathematical development could follow, which is beyond
the scope of this introductory presentation.*

* Mathematical rigor can blind correct reasoning albeit proffering a deeper analysis. But the
question is, a deeper analysis of what? Mathematics is a language that models things that
resist naive simplicity. To begin with numbers is to admit an uneasiness of the nature of
something. (See Endnote 1 at the end of this chapter.)

141Foundations in Systems Integration

Further, we infer that mereological arguments for objects need only be
contrasted with a socioeconomic view to determine the subjective and objec-
tive components of the two frames. The objective frame deals with the objects
and the functions that derive from those objects. The subjective frame
encompasses the processes and the behaviors. But the characteristics of the
objective and subjective frames is determined by the type of business model
used in the enterprise. It is here that we must decide what our centric view
will be. Further, the process management and product or service manage-
ment also complicate the simple parsing of mereological entities and onto-
logical constructs along objective and subjective lines. For development
projects (product- or service-centric), the frames are best shown as all that is
related to the product or service from the user perspective and all that is
related to the management processes that govern the project. The interplay
between the product frame and the project frame is the systems engineering
work that is accomplished to build and integrate the product or service.

Note that the output of the process frame is an object that is related to the
project management and the output of the product frame is a process that is
related to the product. The integration approach for the product- or service-
centric business models is the intersection of the two frames—subjective and
objective. That intersection is referred to as the structure for the product- or
service-centric business model integration or the product- or service-centric
business model integration framework. Collectively, the business model inte-
gration frameworks are referred to as the systems integration frameworks.

Business Models

Business models are descriptive of the management of value for an entity,
for example, a product or service, or at the business or enterprise level. The
process of “to manage” is taken here to mean “planning,” “organizing,”
“communicating,” “directing” (or “commanding”), “controlling,” and “team
building.” The essential characteristics of a business model require the
enterprise be describable in terms of its key traits, for example, managing the
enterprise, delineating the needs of the enterprise, prioritizing the relative
importance of these needs, evaluating the scalability and externalities of the
internal operations and external processes, identifying the efficacies of the
products and services in the user environments, determining the causal
boundaries and boundary conditions, and identifying all interactions both
internal and external to the enterprise* with internal-to-external and
 external-to-internal delineations.

* Enterprise or business are used interchangeably, whereas, project can also be applicable and
serve equally well given the context of the discussion.

142 Engineering Systems Integration

Business models are as much about generating revenue and profit as they
are about offering the means of deriving value for stakeholders of the entity
through its interactions. One can construe three kinds of business models:
event- centric, object-centric, and process centric. Event-centric business
models focus on the primary interaction(s) that results in economic benefits
to the business entity and in utility (or uses) for the customers or users. An
event-centric business model is inclined to focus on providing the customer
and user the best value for the sales transaction, specifically the interaction
between the customer (object) and the seller (object) for the exchange (or bar-
ter) of the product or service for material wealth (money). An object-centric
business model is concerned primarily with the product or service (object)
and its interactions with the user (object) or the user’s environment (object).
A process-centric business model deals with organizational dynamics and
input–output flows. Their focus is on supply chains, logistics, or other means
of support. When architecting the business model at the enterprise level,
these three business models are singularly concerned with optimizing their
particular view and dynamics of operations. When architecting the project
model to deliver a product or service, these three business models deal with
requirements in entirely different ways. The typical development environ-
ment for products and services adopts the object-centric thinking with the
elicitation and determination of requirements. Development and integration
are particularly concerned with verifying that the product or service satisfies
requirements, while validation is left as a final step before placing the prod-
uct or service into operation. The emphasis on human systems integration,
the bringing together of the user, the product or service, and the user’s envi-
ronment are discussed and included in the object-centric discussion, but not
to the level of importance or adequacy that would be the focus from an event-
centric (or interaction-focused) conceptualization of the development project
(Tvaryanas 2010).

The business model encompasses the concepts of enterprise, business, and
project. Unlike the concept of enterprise which deals with the “big picture”
(Kasser and Mackley 2008), the system of processes and objects that under-
take activities that are goal directed (vision driven) and cognitively related,
business is focused on the revenue, profit, and loss aspects of survival.
“. . . enterprise is a mental image of that organization’s current and future
reason for existing” (Morris and Pinto 2004). Business is embodied in the activ-
ities that ensure or pretend to ensure survivability. The business model is con-
cerned with the interactions, events, objects, and organization for long-time
survival. Within the construct of the enterprise and business is the singular
notion of project. Projects have beginnings and ends, specific objectives, mea-
surable outputs, and some real or outward appearance of planning. Enterprise
means to attain effectiveness, business means to survive, and project means to
accomplish. The enterprise aims to lay out the nature, vision, and boundaries
of work. The business lays out the interactions, organizations, processes, and
objects. The focus of the project is to deliver a product or service with requisite

143Foundations in Systems Integration

functionality, performances, and quality. The project is a socioeconomic entity
that devises a way to achieve an objective over a specified period within a
budget (e.g., in the case of product development and product integration).
Enterprise, business, and projects can be modeled, those models representing
the key measures of performance and the metrics for success.

Risk and Loss

Determining value can be thought of in terms of a certain amount of perfor-
mance for a given lifecycle cost. To a first order, this is sufficient for integra-
tion. The subtleties of a second-order analysis include a definitive
characterization of risk and loss. Risk and loss are sometimes addressed
without an ontological framework to structure relations and to derive mean-
ing. Hence, sometimes simple tables or diagrams are used to reflect the views
of key personnel as to what is a risk or what the consequences may be if a
problem is realized. Simple by their means and interpretation, the risk man-
agement guidelines followed by many people in government and industry
often incompletely characterize the insidious nature of what conspires to
harm people, products, and services (United States Defense Acquisition
University 2003).*

Generally, risk is a structural property of the interactions between objects,
whereas specifically, risk is inherent in the interactions involving the enter-
prise, business, and project. As stated by Kuwabara (2011) in discussing
social exchanges, referencing Molm et al. (2000), “risk is a structural property
of exchange” The business model must be true and faithful to all types
and significances of interactions, capturing all interactions to expose the
structural inherences and opportunities for risk.

Along with risk, enterprises face loss. We often think of opportunity or
peril in terms of risk and sometimes associate risk with a loss. That loss
could be monetary or social or some form of harm or loss of life. This book
characterizes loss in terms of a generalized loss function that attributes
EMMI losses to deviations from a target performance value (see Appendix
2). Further, not all losses are attributable to variance about a performance
target; some losses result from not having a target value (meaning that the
function was not provided and therefore had no performance value). By
determining the type and value of losses the business model can be evalu-
ated in terms of its overall effectiveness in providing a reliable flow of prod-
ucts or services, support, and maintenance.

* A more comprehensive analysis of risk is taught and practiced in various universities
(Kujawski and Miller 2007).

144 Engineering Systems Integration

Similarly, for the event-centric business model and the organization-centric
business model, the determination of frames and the systems engineering
framework justly and logically is constructed as with the product- or service-
centric business model. For all three types, various conceptions of wholes
and parts have been developed independently and adapted to situations
great and greater, including a definitive discussion of parts based on the
formal theories of mereology from Leśniewski and the works of Leonard
and Goodman (Leonard and Goodman 1940). A key tenet of holism in gen-
eral systems theory builds on the reciprocity of wholes and parts (Ashby
1962) and the notion that objects are simultaneously wholes and parts
(Koestler 1968). This evolution of the relations between objects was extended
in sociology (Kuhn 1974) to recognize the observation that knowing some-
thing about a system portends a level of information about another part of
the system. Next, we determine that while there may be differences between
objects, there are representative objects that are descriptive of a type of
object, described as mereological pluralism—whereby an object may well
have systematic differences with respect to their whole or their parts—the
principle of extensionality (Korman 2007). And finally, our objects must
exhibit mereological constancy (Simon 1987). Specifically, over time the
object remains the object maintaining its essential qualities and its proper-
ties. The object’s traits may change because of the environmental influences
on the object and the attributes may change due to aging (for example).
However, the object remains the object in its wholeness. For example, a 1928
car ditched in a canyon, overgrown with vegetation, and long forgotten still
retains the intrinsic (e.g., basic, essential, and fundamental) qualities of the
original 1928 car (i.e., the car that was), with paint giving way to rust, and
seat leather pecked to feather nests. The objects that comprise the car remain
(even if some were looted).

Prototype-Based Ontology, Logic, and Mereology

We introduce an ontological structure of integration, the starting point and
perspective of which incorporates both objective and subjective components.
The objective components of the structure are based on objects, EMMI, func-
tions, and behaviors due to same. Since integration by human actions is
sociologically based, a subjective component is essential to capture the
notion of the processes used to build something. Humans use objects to
build and integrate objects. An object is a structure of anything that receives,
transforms, and sends EMMI. An object can also serve as a means to facili-
tate communication or to make something known. For example, a radio
(when operated according to its designed uses) produces sound. The radio is
a physical object, with the emanating sound, its EMMI. The ontology that

145Foundations in Systems Integration

encapsulates integration spans the project that produced the radio, the radio
station that transmitted the signals which were decoded by the radio, the
user(s) of the radio, the listeners of the sound, and the behaviors of the users
and the listeners as a consequence of their interaction with the radio, the
sound from the radio, the transmitting station, the recording artist(s), and so
forth—the list of stakeholders being quite lengthy (estimated to be in the
tens to hundreds). By defining the boundary of the “music” broadly, rather
than limiting it to one radio, the stakeholders’ number can run into the mil-
lions and billions by counting individuals rather than groups of individuals.
Objects and their EMMI are essential components of the ontology, but only
when included in the context of the (social) processes enacted to realize the
delivered product or service, the uses, and disposal—in short, the process
associated with the product or service lifecycle.

Objects, EMMI, and processes form the subtypes of a prototype-based
ontology (Sowa 2000)—a formal distinguishable from their supertype(s).
By comparing members of a subtype, the typical member of the subtype is
necessarily different from typical members of other subtypes.

The ontology of integration is concerned with all that is product conceptu-
alization, development and integration, and use and disposal (the complete
lifecycle sense). This consideration of integration includes objects, EMMI,
and sociological processes and behaviors. The object built is the result of the
building process. The object used is the result of what was built. The object
use is the result of the building process and the functions by design, by use,
and by accident. From the perspective of use (i.e., delivered and operational
product or service), the objective of an object is corporeal, real in every sense.
An object is recognized as having physical meaning; measurable properties,
traits, and attributes; and value for its performance(s). The building of objects
is also objective, measurable, and valued for the result, that is, the result of
building and delivering the object. Systems engineers (and other builders
of products and services) are the creators of systems, systems comprised of
objects. The process begins with an object and building up of other objects
from elemental objects.

Objects appear to be formed from other objects. Building on our knowl-
edge of the most elementary particles (objects), we observe a few properties
that seem to be present in other configurations (also referred to as objects).
The concepts of interaction and integration appear operative at the most
elemental levels of objects to the most integrated forms of objects (galaxies
and the universe*). Objects are comprised of (or convertible into) matter†
with mass or electric charge (that is representable as mass).

* We refer to the universe as the system—the system has no boundaries, i.e., without limit in
all respects. As such, the universe is ontologically one.

† Matter may not be the only substance that is comprised of energy or mass (or its derivatives
such as force and momentum), but for convenience we loosely interpret all such “things” as
matter.

146 Engineering Systems Integration

Objects as Models

We investigate objects as models and discuss two perspectives: black box
and as related to function.

Objects as Black Boxes

With regard to using objects, we distinguish between natural occurrences
based on its rules and that of human endeavors that are guided by rules of
humans and rules of nature that build systems, and driven by human inten-
tions. We also recognize that humans are not the only animal, and include
all living organisms irrespective of their cognitive prowess, physical abili-
ties, relevant skills, and available tools. The expectation is to provide an all-
inclusive discussion about interaction and integration using the analogy of
human-built objects.

While the focus is on objects, the model is constructed from two perspec-
tives: (1) an observer who sees perhaps only some of what the object is
receiving and sending (“black box”* approach (Ashby 1957)) and (2) a func-
tional representation (Van Wie et al. 2005) of the object’s uses. From a limited
amount of information, the observer begins to infer something about the
contents of the object and how the outputs relate to the inputs. Often the
observer will recognize patterns in the inputs and outputs. From the per-
spective of the object (that may “know” nothing of the patterns that are pro-
duced because of its output(s)), its internal workings may be fully or only
partly engaged. Different patterns may result (again without the tacit over-
sight from that of an object). Those objects that do not ‘manage’† their inputs
or outputs lack the substance to achieve or to remain stable. The perspective
of an object is one that should reveal natural groupings based on what objects
can and cannot do in their environment of rules and intentions.

The black box approach is restricted by its means to provide thorough
explanations, thereby limiting its utility to a very simplistic view. For these
purposes, the superficiality does not hamper our discussions, but rather
points to a great body of literature on mechanisms. In this book, we establish
that objects have mechanisms which mediate for both inputs and outputs
(send and receive, respectively). We make no effort to detail or investigate
mechanisms; there are far too many observed, proposed, and hypothesized.
Every field and discipline has had or is still engaged in debate about mecha-
nisms, to which our discussion on integration would hope to benefit.
Consequently, the specifics of the output are likewise not detailed (as these

* Black box method of testing is the analysis of input transformation to output based on not
knowing the internal workings, logic, or configuration of the object.

† The subfunctions of ‘to manage’ mean ‘to plan,’ ‘to organize,’ ‘to direct,’ ‘to control,’ ‘to com-
municate,’ and ‘to team build,’ that is, ‘to create consensus,’ ‘to foster teamness,’ ‘provide for
(or support) stability,’ or the logical equivalence.

147Foundations in Systems Integration

outputs are grossly driven by the inputs and the object’s mechanism). As the
trend continues and more researchers settle on a mechanistic view, a more
fundamental outlook can be prepared for interaction and integration. For
now we consider mechanisms as the intermediary processes by which inputs
are transformed into outputs (Gross 2009). The multinuanced and suggestive
statement that “mechanisms thus constituted functions” (Gross 2009) is elab-
orated in this book at some length. Indeed, the association between mecha-
nism and function, and function and process has been suggested widely.
Consequently, there are great differences in definitions and uses of the terms
“mechanism,” “function,” and “process.” Some writers describe mechanisms
as functions, functions as mechanisms, mechanisms as processes, processes
as functions, and processes as functions. In systems engineering, the com-
mon reference is to this function and that process, while then referring to
functions that are decomposed into subfunctions and objects and processes
that are linked in flows. By most definitions, the use of the term “function” is
really defined as process. Then to carry the contradiction even further, the
terms “function” and “process” are used interchangeably. But overall there
does not appear to be much confusion and it does not seem to pose a problem
for building systems, as systems are integrated and built fairly routinely.
Instead, this presentation suggests there is a missed opportunity to improve
systems engineering by observing the nature of functions and how they dif-
fer from processes and mechanism.*

Objects as related to Functions

The second perspective of objects bridges the gap between objects with
spatially extended boundaries to that of objects having point-like structure
and a granular hierarchy where one object is comprised of other objects
and drawn or grouped together by similarity, proximity, or functionality
(Zadeh 1997). The abstraction of an object from a corporeal shape to a dimen-
sionless entity is at once the same as carrying two thoughts about the same
subject. The abstraction of a chair is causally carried along with a cognitive
representation of a chair—both of which are operative and logically coexis-
tent. As with physical objects, these cognitive objects have boundaries and
boundary conditions. Thus, it follows from the black box approach which
suggests that a bounded object can have internal mechanisms, inputs, and
outputs, and can behave as though the object (with its extended boundaries)
is point-like. Whereas an extended spatial model of objects is important for
detailing their inner workings, the point-like model is pertinent to looking

* Private communication with Dr. James H. Lake, board certified psychiatrist, clinical assistant
professor, Department of Psychiatry and Behavioral Sciences, Stanford University Hospital,
Stanford, California, 13 September 2011. Dr. Lake comments, “There still does not seem to be
a consensus on core definitions in systems theory and this has resulted in confusion in the
field and lack of progress in systems engineering theory and applications.”

148 Engineering Systems Integration

for patterns. Patterns expose different perspectives—no pattern may suggest
an ineffective perspective versus a discernible pattern, that can possibly be
optimized for greater clarity with regards to the type of pattern needed to
coincide with the circumstances of the integration effort. For example, should
a pattern of functionality or behavior be expected to result in a robust, inte-
grated structure? If so, then what patterns would be discernible given a par-
ticular order of integrating objects? Further investigation and planning may
be necessary to observe the modes of operation for the structure. Then a
decision can be made as to the notion of working to quell the periodic
response, or ignore, or enhance it. The combining of objects provides the
opportunity to investigate the functions and their primary dependencies.

To glean more information from objects and their interactions as they
relate to integration, a functional model can be developed with the goal of
acknowledging the generally discussed natural relations between the topical
notion of function (a relation between objects in time and space, i.e., that
which is enabled or required to accomplish something) and the entities that
are characterized as objects. The functional model proceeds from a func-
tional decomposition of a top-level abstraction of a function, for example, ‘to
walk.’ Subfunctions are developed following the procedures of functional
decomposition. An essential part of functional decomposition for integration
purposes is to carefully examine the three types of boundaries (physical,
functional, and behavioral). For a functional decomposition, mapping to
both the physical and behavioral aspects of the product or service lays out
the relations between objects that will become the sequencing for integra-
tion. For example, to demonstrate a particular function, these decomposition
diagrams show the two objects that when connected demonstrate the func-
tion. The performance of that function is enabled, first by the connection,
second by the partitioning that differentiates the function from other func-
tions, and third by the coupling and cohesion between the EMMI that is
exchanged between the two connected objects.

Summary Overview of Objects

From a systems engineer’s perspective, an experiment is more than just a
scientific investigation based on a hypothesis, carrying out an experiment, and
ending with the confidence that the observations and results are somewhat
correlated with the experiment. The wholeness that we investigate may not
be pliable and yield to the traditional scientific method. Analytical reduc-
tionism from high level to lower levels does not seem to capture all of the
system parts (i.e., objects comprised of objects do not decompose into objects
that are deemed to be the parts) (Koestler and Symthies 1968; Troncale 1977).

Thinking in systems for a moment suggests how the scientific method
might be modified to allow for some ambiguity in experimentation, while
retaining within a scientifically posed, process-driven method or methodol-
ogy. Heeding the perils of rigorously and inflexibly following a particular

149Foundations in Systems Integration

method of investigation, Feyerabend (1993) poses two notions (in the words
of the author): if the results of an experiment are not what they seem to be (by
a strictly scientific approach), then rather than suggest a flaw in the experi-
ment, consider first the impact of the underlying perspective of the observer,
and second, consider the impacts that may occur outside the physical bound-
aries defined for the experiment. Reflecting on Feyerabend’s reference to
these two notions, the author poses integration as thinking in systems,* and
therefore stated as thinking in integration. Thinking in integration means
developing an approach for investigating the fabric of systems theory and
systems integration that is broadly applicable to all experiments, all exam-
ples, and grossly produces similar results as the scientific method, yet offers
insights that are not apparent.

The following approach addresses the broader question: how best to
interpret the results of an experiment involving objects? The approach
begins by

 Initial ideation (concept for investigation)
 Statement of the problem (the causal prediction)
 Statement of the need (what question(s) are answered)
 Stakeholders (perspectives)
 Hypothesis (claims about the nature of the variables and effect(s))
 Method (notions, procedures, models/representations): “white box”†

tests
 Approach: thinking in systems
 Design of experiment (hypothesis analysis and testing)
 Principles and theory (framework and schemas for asking questions)

Integration Framework

It is reasonable to surmise there are snippets of theory (e.g., general systems
theory and social theories) that apply to integration, there are possible theoreti-
cal constructs (reference the theoretical worldviews—classical, relational, and
mechanistic—described in Section “Nature of Physical Objects”), and there are
frameworks that seem to capture key issues, but there is no fully developed

* There is a terrifically insightful and significant book by Donella H. Meadows with the title,
Thinking in Systems (Meadows 2008). She was the lead author on the book, Limits to Growth.
Additionally, thinking in systems for planning was aptly applied for building complex prod-
ucts and services in the early 1980s (Taylor 1981).

† White box method of testing focuses on the identification and evaluation of the internal logic
and procedures that are based on knowledge of the workings and configuration of the inter-
nals of the object.

150 Engineering Systems Integration

theoretical basis for integration. The key may lie with the framework that cap-
tures the essential ingredients for an effective theory. While there are specific
frameworks that help describe situations of integration in most disciplines, these
are not particularly well suited to lay a foundation on which to extend their nar-
rowly focused body of knowledge (1) to posit a compendious improvement for
the general practice of integration, (2) to identify improvements in current meth-
ods of systems engineering, and (3) to apply a consistency of language and
meaning to facilitate both these practices and improvements. A general frame-
work characterized by logic, continuity of method, applicability across disci-
plines, and scalability within the microscale to the capaciousness macroscale
would seem rather questionable. A most propitious outcome would be a theory
framework that would focus on the eventual goal of helping to show the way to
help explain how integration works. Perhaps such a framework might provide
additional insight into quantifiable measures, functional metrics, sensitivities of
the variables, and a predictive capability. The end result would be a definitive
characterization of integration that could broadly be applied.

While we interpret observations, postulate principles, and derive laws
(sometimes) beginning with theory, while for integration, theory seems illu-
sive. We can work through theory frameworks based on principles that are
fundamental statements that are both comprehensive in their applicability
and generally agree with empirical evidence.* Particular care needs to be taken
when developing a framework for integration. The framework we seek must
be an integrative framework that combines the methods of human (or natural)
activities with that of the outcomes of those activities. Integration is for all
objects (both natural and constructed). In the most general sense, the frame-
work needs to be relevant to all integrations, regardless of perspective. The
framework must encompass the metaphysical bases that have driven our
thinking, helped structure our ideas, and supported our theories over the past
several thousand years. Narrowly defined frameworks within a discipline
must have substance within the general framework or be corrected. This set of
requirements could seem to be a forged gauntlet of expectations that when
thrown down would challenge a reconciliation of terminology, a reconsidera-
tion of earlier results, but most importantly a rather concentrated awareness of
what could be gained by exploring the nuances of the framework’s structure.

The benefits of a general theory framework for integration are threefold.
First, by limiting the framework to methods of human activities and out-
comes of those activities, the explanation of integration can be made clear
and the discussion clarified by counterposed arguments, both based on
principles and assumptions. Second, judgments may be based on the evi-
dence within the framework as validated by empirical observations. Third,
in addition to being predictive of relations and explanations of the identified

* Laws are recurring rules or collection of recurring rules that have been demonstrated effective
under certain conditions.

151Foundations in Systems Integration

variables, the framework must suggest new models of practice (and likely,
possible extensions of theory).

Simplicity is a desired outcome so that both circuitous and the sublime
notions find their places. The ultimate aim is to formulate a theory frame-
work that is both holistic by design and sufficiently introspective to be useful
to disciplines (Swanson 2007).

If the framework was particularly theoretical, it might tend to (1) cover a
limited number of categories and variability, (2) not contribute to the practice
of integration, and (3) overlook what it could not explain. If the framework
was overly practical, observations might be made in the absence of their
implications; there might be no discernable context for defining relations
between variables in the context of what remains unknown; and there would
be no reliable method to extend best practices beyond some limits of ambi-
guity. Systems engineering suffers from an overly practical implementation
without a theory framework that is integral to its proclamations and variety
of usages (in spite of “standards”).

Integration as Mechanism

Objects interact and systems become systems through integration. Working
from a sociological neopositivist position—the aim of which is naively stated
to associate causal actions with events—a workable framework can be sub-
stantiated on theoretical grounds that integration is mechanistic by its
nature. The discursive objects of integration—illation, ontology, epistemol-
ogy, axiology, methodology, metaphysics, and ideological inferences and
deductions—form the essence of integration, its nature, that is, the indispen-
sible qualities exhibited by it abstractions, decompositions, and extractions.
The concept of integration is itself an integration of cognitive representations
or models of reality. If there is logic to integration, then that logic shall (1) be
defined as sufficient to support detailed analysis and interpretation of within
a framework of relevant variables; (2) be based on a consistent set of assump-
tions; (3) stipulate the ontology of formalisms that translate into each other;
(4) reside within the traditions of epistemology; (5) agree on a narrative that
elicits particular interpretations of phenomenology; (6) be a consistent set of
metaphysical facts that relate “phenomena as a whole to other genera of exis-
tence” (Lewes 1875); (7) support a set of value structures that are at least
partially, piece-wise predictable; and (8) apply methodology to define and
transform relations into knowledge (Lazarsfeld 1993). The methods of inte-
gration are bound in natural processes and inspired by human methods. We
refer to integration as a method.

All things in parts that become whole are boffo examples of the processes
that result in integration. Integration must deal with the inconsistencies and
cross-purposes of all constituent parts, the end result being the integrated

152 Engineering Systems Integration

whole. The role of integration is not that of a mediator that negotiates or
moderates the exchange between objects. Integration is the result of accept-
ing and using what is offered as parts. Acceptance is enforced by a mecha-
nism or a control on a mechanism, or failure of a mechanism or control on a
mechanism. The result of acceptance of an exchange between objects is the
distinct possibility that integration with that object may ensue.

Integration transforms an interacting set of objects into a system. Objects
that exchange EMMI may be interacting, but unless there is a transformation
of one or both of the objects, the result of that transformation will not exhibit
system properties and attributes.

Every object interacts through EMMI. If every object received exactly the
same EMMI from the same source at the same time and transformed that
EMMI with the same mechanism into the same output simultaneously, then
all objects would be exactly the same and their outputs would also be the
same. Any deviation from the exactness in any regard signifies difference in
the outputs of the objects, meaning the EMMI received will then be different.
The greater the variation in any of the parameters of the objects, the greater
the differences in the outputs. If the outputs vary, and the receiving EMMI
vary, and mechanisms vary, then the variability in EMMI creates a rich envi-
ronment of EMMI from which to spur diversity of interactions. Should the
objects have even a modicum of differences, the variety in the kinds of
objects can become quite large after a long period of interactions and integra-
tions (which can change mechanisms substantially).

Each object has its own course of action, reasonably independent of other
objects until it becomes entwined in a ProtaSystem or system or system of
systems—three structures that exhibit some or all of the properties of a sys-
tem. With increased dependencies, an object’s mechanism may habituate to
the norm of its received EMMI within one of these three structures. This
means that the mechanisms are exercised by EMMI and the exercise may
encourage a preferential response to an EMMI that results overtime in slight
changes to the mechanism. Those changes would seem to be to accommo-
date a slightly higher efficiency in the transformation of EMMI with a resul-
tant slightly lower loss (waster). If this preference does not occur or does not
result in a preference, then the objects are merely interacting and in no way
have they experienced integration. For example, in the family environment
(an integrated object), habituation is the accommodation of an object’s mech-
anisms to the EMMI received. Children’s behaviors are influenced by family
dynamics—grandparents, parents, and siblings (or their logical equivalents).
The mechanisms of the children and that of the direct (first-order) stakehold-
ers in the family are encouraged, energized, or discouraged through inter-
actions. The results of these interactions are for the family members to
become aware of the experiences and behaviors of each other, whether
deemed acceptable or not. Awareness is at a minimum a conscious apprecia-
tion for the manner in which one might deal with another person’s behav-
iors. Whether one acts on that information is an entirely different issue. The

153Foundations in Systems Integration

point from a mechanistic perspective is that cognitive thinking has taken
place regardless of the actions taken. The mechanisms (in this case proce-
dures and mechanisms) have habitualized to their environment through
interactions and have not exercised (or discovered) other mechanisms of
dealing with a set of EMMI from different objects. A typical example of this
is being shown something for the first time and not realizing how to think
about it to gain a greater appreciation for what is shown.

Emergence

“Emergent” refers to the unaccountable effects of combining of objects
(Lewes 1875). Rather than pit one mind against another in detecting the
cause for effects (whether accountable or not), we broaden the view of emer-
gence to any effect that is the result of combining objects through the pro-
cesses of EMMI is emergence. This more general definition impacts on not
only the way we appreciate effects of interaction (i.e., that every interaction
has the potential of changing the attribute(s) of one or more objects) but even
the least observant or perceptive observer should not be disheartened by
their emergence being merely an as yet unexplained phenomena. Conceivably
every unexplained phenomena can have an explanation eventually, and
therefore the notion of emergence would only be valid until we all gain addi-
tional knowledge. It is more satisfying to observe the effects of interaction,
and note those changes in attributes that result and then particularly inves-
tigate whether any properties have changed. Emergent properties have last-
ing effects whereas ephemeral emergent attributes are reversible. Emergence
is due to traits of an object or objects.

Dynamics of Integration

The combining of acts into activities into processes, the aggregation and cor-
relation of thinking into knowledge, and the enactment of behaviors based
on knowledge and various behaviors are future signs of integration. Integration
has immediate and continuing influence on society, how individuals think,
how individuals and groups behave, and what we build.

Things combining into new things is the result of integration. Systems
integration influences society profoundly, but sometimes in subtle ways.
How we think, how we behave, and what we build are the manifestations
and results of mechanisms of integration. The outcomes of integrating
objects are the structures of society, the phenomena of the physical world,
our cognitive nature, the products we build, the services we provide, and the

154 Engineering Systems Integration

essence of existence. We adapt and add to current structures of integrated
wholes with newly constructed or changes in artifacts that alter functional-
ity or services or acts that constitute differences in how artifacts are used.
Overall, we are affected by a continual change in our behaviors (both indi-
vidual and social). Combining the objective domain with the social domain
results in a dynamic environment, one in which we often struggle to engi-
neer or model effectively. The interplay between the social behaviors of indi-
viduals and groups of individuals with that of the physical environment
(human-built and natural) changes the stability of social interactions, the
physical interactions, and the natural phenomenology. The impacts are nom-
inally destabilizing. These impacts can be observed immediately or felt grad-
ually over time; some aspects short-lived other consequences long-lasting.
The importance of discerning that convergence is possible and then recog-
nizing it likely suggests a meaningful appreciation of the impacts of
emergence.

Culture is a consequence of such convergence. New needs appear—needs
consistent with the desires, capabilities, technologies, abilities, and standards
to which a society is accustomed. Changes in physical structures, culture,
and a litany of other factors impose determinants on human behavior
(Malinowski 1944). This insight is a fundamental step necessary to address
the integration of social mechanisms with product functions—the arena of
systems engineering and systems engineering project management.

The notion of objects coming together and remaining or forming in a sta-
ble configuration is the essential concept of integration. In macroeconomics,
integration can be thought of as the removal of impediments that prevent
stable associations (El-Agraa 1989). Therefore, successful integration is based
on the removal of a political impediment with the causal variables of degree
of cooperation and decision making describing the various behaviors formu-
lated in the context of a political framework. The result is a discussion on
integration of country economies as a stable political outcome. The mecha-
nism of this integration is the elimination of impediments to enhance coop-
eration between economies (Pelkmans 1998). Likewise, in designing or
merging business processes found in the organizational science field, inte-
gration is defined as a mechanism that merges independent processes that
result from functional differentiation (Galbraith 1977). When an organiza-
tion compartmentalizes its business units, there are often mismatched func-
tions from one unit to another. The uniting of the cross-unit functions is
termed as integration. These views of integration are adopted in many fields,
including business, economics, information technology, and systems engi-
neering. Integration is variously, but similarly, defined in the context of inter-
faces and data. For example, for organizational information, integration is
defined at the network level, the data level, the application level, and the
business process level (Giachetti 2004). It follows from these views of integra-
tion that the process of removal necessarily precedes the establishment of a
whole that exhibits long-term stability. These views are methodological by

155Foundations in Systems Integration

description.* Further, integration may be viewed on a normative basis—one
that is inspired by axiological reference to a standard.

Integration can be thought of as an entity (object or process) acting on
another entity in such a way as to change itself, the other object, or both.
Such a description follows from the methodological representations of inte-
gration, and is consistent with simple models of physics, representative of a
widely accepted worldview, and true to various philosophies and principles.
Much of what is found in this writing follows such a Newtonian logic.

Integration is the result of interaction and not merely the acts of interacting
per se. Interaction is a necessary process to achieve integration. The charac-
teristics of the integrated whole are distinguishable from those of the inter-
acting entities. It is both the activity of interaction and the results of those
activities that we distinguish as integration. To explore the nature of integra-
tion, it is convenient to work within a framework that characterizes the objects
and the concept of change (where “change is the relation between objects
separated by a time interval” (Turchin 1977)), the interactions between
objects (described as activities), and the consequences of the properties and
attributes of objects, their interactions, and change. The integrated whole can
be represented by the processes that created its integrated structure(s) and
the observable consequence(s) of the integrated whole.

Processes require cognitive direction, purposeful activities that drive from
one condition to another (via inputs and outputs), and models that represent
cognitive structures as well as corporeal results of the activities. Processes,
when combined, form a goal-driven set of cognitively inspired activities that
result in physical representations of those thoughts and acts. Managed pro-
cesses form the mechanisms of integration for directed human artifacts. One
dimension of the integration framework is the set of processes that portray
the mechanisms of integration.

The other dimension of the framework of integration is the observable conse-
quences of the integrated whole, that is, the product or service. The integrated
whole is then said to have various uses—described as product or service func-
tions that are intended to be put to some purpose. Functions are embodied in
the structures of physical objects and services. We view the physical embodi-
ments (i.e., objects) through their properties and attributes, the functions (either
intended or circumstantial) through their qualities, traits, and performances,
and the processes engendered from the product or service through the behav-
iors of the users. The observable consequences of the integrated whole form
from the physical objects. The functions result from the physical juxtaposition
of the objects. The behaviors of the users are influenced in some ways by the
objects and their physical presentation. The behaviors are difficult to associate
causally solely with the objects, as the environmental, social, cultural, and polit-
ical environments provide an intricate context.

* Metaphysical concepts, epistemological essences, and ontological structure are missing.

156 Engineering Systems Integration

Overall, the framework of integration is the coalescence of managed activi-
ties (to produce a product or service) and the uses (of that product or service).
The managed activities portray the mechanisms of integration while the
uses capture how the integrated whole is capable of acting.

We observe the results of integration as evidenced by our own thoughts.
Thinking is an integral whole of conscious statements, intellectual and phys-
ical contexts, critical comparisons and evaluations, analytical and abstract
processes, and individual acts of recall. Our thoughts sometimes cause us to
engage in various behaviors that are sometimes describable as either acts or
activities (i.e., a sequence of acts that have contextual relevance). For refer-
ence, a process is a set of activities that are associated with a particular objec-
tive. The outcome of an act, activity, or process is a representation or model
of either the cognitive experience or the behavioral experience. The represen-
tation of the cognitive experience is behavior, and the representation of the
behavior(s) is something written, spoken, or built.

Integrative Mechanisms

The mechanisms of integration are a universal “cement.” The mechanisms of
integration construct, bind, and instigate (or allow for) change in the natural
and social world. The results of integration are both summative and forma-
tive—at once being both. Integrations build on previous integrations while
simultaneously forging new arrangements of coalescent parts. Integration
drives the studies of every discipline and field, permeates our thinking about
theory, and guides our research. It seems that it is part of nature’s work to
provide for interaction and integration. The animal kingdom endeavors to
build structures (humans build artifacts) and integrate structures (or arti-
facts) into systems.

We distinguish between those objects that merely interact, leaving no last-
ing change on one or the other object, with that of a dependency in which one
object relies on the other for sustainment. It would seem a safe presumption
that the essence of integration lies somewhere in the realm of the discussion
on causality. There is academic support for structural realism (also termed
neorealism) and object. But it is insufficient to begin the discussion of integra-
tion with causality. While causality is causal, it is not the root of causality. So,
while David Hume has positioned causality as the “cement of the universe,”
unfortunately, causality is a concept with which we have continued to strug-
gle. However, a somewhat satisfying explanation for integration can be
gleaned from a discussion on mechanisms. The relations between causality
and mechanism are often obscured and tortured by confounding symptoms
of causal factors. We sometimes find it satisfying to think in terms of mecha-
nisms. A mechanistic view invokes a sensibility about the relation between
cause and effect. Mechanisms, depending on the philosophical bent, help
determine your view of reality; issues of stability can be thought of as driven
by mechanisms. A mechanism can be thought of as resulting from a process

157Foundations in Systems Integration

or a set of processes, an event or sequence or confluence of events, the juxta-
position of something physical, or enactments of something physical.

For human-built products, the mechanisms of integration are the pro-
cesses comprised of individual acts or combined acts that constitute activi-
ties; the events that result from applying the function of a product or service,
or the combining or dissociation of objects. These mechanisms of integration
construct, bind, and instigate or allow for change in the natural and our
social world. Summarizing the general nature of mechanisms: mechanisms
have physical structure or result from physical structure, enactments of
structure or changes in structure modify behavior(s), and modifications are
often observed and measured. Mechanisms of integration are of three types:
those that depend on process (Machamer et al. 2000), those that express
themselves through events (Bechtel and Abrahamsen 2005), and those that
are inherent in the physical domain (e.g., the mechanics of object motion, or
avoidance of the effects of object motion) (Glennan 2002). The results of inte-
gration are both summative and formative—at once being both. Integrations
build on previous integrations while simultaneously forging new arrange-
ments of coalescent parts. Integration drives the studies of every discipline
and field, permeates our thinking about theory, and guides our research.
Integration is a unifying process that satisfies Parmenides’ reality of one.*

exploring Integration Concepts

Integration deals with the inconsistencies and cross-purposes of all constitu-
ent parts, but neither as a mediator nor as an adjudicator. Integration is not
the trade space for suppositions either imposed as limitations on a project or
as constraints a posteriori in the form of allotments of time, cost, or skills. The
role of integration is not that of a mediator that negotiates or moderates the
exchange between objects. Integration is the result of accepting and using
what has been offered a priori from the various outputs of the systems engi-
neering lifecycle process: a formative feasibility study that precedes the project;
determination of requirements through stakeholder elicitation and analysis;
preparation of the design that provides for the general context of the work
throughout the solution system’s lifecycle; development of an architecture
that determines the qualitative worth of the system; and specification of vari-
ous design models (i.e., representations) that serve as the implementation

* It seems to be the nature of enquiry to examine phenomena for patterns, behaviors, and prop-
erties. The importance of patterns, behaviors, and properties has been thought fundamental
to explaining nature and human habitudes. Whether it is perception or realness, the quest for
a set of common, universal observations has rationalized a 2500 year enquiry to discover the
essence of the universe. The first to advocate that nature had oneness of character and a real-
ity as only a whole was Parmenides of Elea, [se.500 BC] (Kirk et al. 2009). Parmenides’ view of
enquiry (What is it that is? What is it that is not? What is it that cannot be?) reinforces unity
as the object of knowledge—the universal object of nature. Since 500 BC his tenor of logic has
inspired thinking about time, motion, change, and unity.

158 Engineering Systems Integration

guidelines for the system’s developers (e.g., in development—logic, data,
physical, functions, performance, software, etc., and in operations—mainte-
nance, operational reliability, affordability, etc.). The trade spaces examined
in each of these systems engineering development stages are inputs to frame
the tasks and complete the planning for integration.

Integration is believed to have a reasonably common and acceptable mean-
ing across disciplines, generally expressed as combining things to make a
whole. However, there are few mentions of the workings of integration in the
literature. How do you combine things? In what fashion should objects be
combined? When is a whole a whole? When is a whole not a whole? The
subtleties of integration are largely lost or not discussed in presentations on
integration, most narrowly focusing on a one- or two-sentence definition. It is
as if the subject of integration was unworthy of elaboration, taken to mean the
common view of “you know, just do it.” From that point onward, the word
integration is used with great candor, often applied with zeal to anything that
would seem to benefit from being put together with something else.

The subject of integration is the entry discussion for systems, thinking in
systems, and systems engineering. Even as a topic for systems science, inte-
gration has been substantially ignored. This book offers a look at the
essence of integration for the purpose that integration be considered and
discussed as an enigmatic science. My aim is to pose the topic of integration
as a topic for mainstream enquiry and inference,* to investigate it from
beyond the peripheral duties of a few technical artisans, intimate with the
skills and techniques of integration. Even for theorist and craftspeople familiar
with practical methods and tools, the tendency has been to rely on the sys-

* The settled rationale of Western scientific advancement has been to unify existing paradigms
of thought around epistemic, methodological, and empirical qualities. Researchers in every
discipline apply various principles to developing theories supported by careful examination
of phenomenological variables that are thought to be significant. While the wisdoms and
knowledge cast during the past several thousand years are closely coupled with basic princi-
ples of earthy truths, the procedures of enquiry are driven by methods of experimentation
and reason. The verities of biases and perspectives of observation advance knowledge in one
of two ways—either through a rather step-wise continuous extension of previous thought and
knowledge or as a result of amalgamating precipitous changes in direction of thinking to
disrupt an existing paradigm and thrust enquiry into new areas with perhaps different form.
The test for knowledge is in our ability to use what and how we think as influenced by emo-
tion and experience. Indeed, the progress of knowledge is merely the integration of inspira-
tion with evidence that is compelling to a preponderance of learned review. This nexus of the
theory of knowledge, the principles and procedures of enquiry, and measurable observations
is the nature of enquiry that concerns the development of every field of endeavor. Enquiry is
the development of “truths” that represent knowledge. The growth in any discipline is
immediately hampered if set within a myopic view of domain-specific principles. Without a
broad appreciation of abstractions that do or could transcend traditional disciplinary bound-
aries, precipitous advances are rare. It is the unity of truths which abstracts domain-specific
knowledge to a simple, small set of generalizations that has help change our structures of
knowledge through better verification and falsification of existing observations. (See Endnote
2 at the end of this chapter.)

159Foundations in Systems Integration

tem principles which are apparent across some disciplines and not continue
their quest for puzzling information that might challenge and possibly mod-
ify an accumulating body of systems knowledge. Pointing out potential new
areas of research, reviewing existing “established” knowledge, and posing
elementary questions should be wildly endorsed and properly reviewed
(Troncale 2006) rather than bewildering the experts or forcing an embarrass-
ing rationalization that their field of expertise did not surface the fundamen-
tal nature and contexts of integration. Systems theorists assume that systems
are systems, but it will become clear that systems can have great diversity
and that one must be careful in extrapolating from one system to another, as
there are various types of systems.

Is placing sand inside a plastic bottle integration? Does that activity imply
that the whole is the sand in the plastic bottle? Is the sand–bottle object a
system? Then turn the plastic bottle upside down. Is that activity disintegra-
tion? Is the upside-down sand–bottle object a system? A system upside
down? Does the sand–bottle object signify a whole? Does the whole have at
least three partitions: the plastic bottle, the sand, and the air? In other words,
does the relation between objects satisfy some hypothetical minimal test for
the process of integration?

Remove a card from a “full deck” of cards. Is the deck of cards still a deck
of cards? Or has the whole (stipulated as the deck of cards) changed so that
it is no longer a deck? Does the activity of adding the “missing” card back
into the deck constitute integration? When playing a game “with a deck of
cards” does the deck of cards still exist in some distributed fashion across
several players? Depending on the rules of the game, the deck may again be
reconstituted into a full deck. Recognizing the integral whole of the full
deck, if these players were asked about the nature of a deck of cards, they
might answer they were playing with a deck of cards (or a subset that when
combined with the remaining cards would constitute a full deck). Does this
card example suggest some type of relation between a deck of cards (as an
integral whole of individual cards) and the distribution of the cards accord-
ing to some rules such that at any moment in the game there exists a relation
between the remaining cards of the deck and the distributed cards? In other
words, while the dealer acts in such a manner to provide cards under the
condition that the cards are to be returned, the cards are still considered to
act as a deck. Whether the cards are together or distributed, they remain a
“deck” but can be considered to be different levels of abstraction of “deck.”
While the events of the game change the level of abstraction of the deck (i.e.,
missing cards are counted as part of the deck), the cards reconstituted as the
deck are indeed defined as the deck. However, the two concepts of “deck”
are not the same—one interacting due to their placement in the deck, the
other interacting card-to-card, but not all cards with all cards. The physical
interactions distinguish the two concepts of deck. The functions of the cards
are due to the local touching of a subset of cards, that is, the cards that are

160 Engineering Systems Integration

dealt in “hands” to players representing unique sets of cards that result in
functions that drive user (player) behaviors. The functions result from cer-
tain sequences or other relations between cards in the “hands” that are dis-
cernable by the players. That which could be combined and that which is
combined are not the same if integration is as commonly stated and defined.
The parts of the unique sets of cards in a “hand” do not represent the whole
of the game-play for all rules and conditions of the game. Integration must be
more than the mere combining of things to make a whole.

At the most basic level, we first realize that an object can be put together
with another object to make something that is comprised of these two objects,
neither of which combines with the other in any fashion except as a juxtapo-
sition in space and as events in time.

The abstraction class is comprised of emotions, feelings, and conceptual-
izations; the social class is comprised of behaviors, money, power, and influ-
ence; and the model class is the logical description of a representation of a
proposed structure to achieve the best overall effect. The perspectives of the
class measurement framework are shown within the domains—objects and
processes. For objects, some of the possible key measurable properties are
dimensionality, mass, orientation, environment, temperature, pressure,
force(s), and motion. For functions, some of the possible key measurable
properties are stakeholder need(s), inputs (i.e., the release, (e.g., energy, matter
(the condition of having mass), information, or capital wealth (e.g., money)),
mechanism to transform input into output, condition (or state of the ele-
ment), regulation (stability of the element), output (performance), and loss (to
achieve output performance)). For processes, some of the possible key mea-
surable properties are potential uses (of physical and function items) man-
aged and unmanaged factors, acts and activities, output (results), constraints
(time, money, skills, rules, policies), and loss (to achieve results).

Abstraction Classification of Integration

To begin to describe integration we discern the primary classifications of
integration—classifications that are completely descriptive of the various
aspects of an integrated system. That is not to say that these classifications
are only descriptive of integrated systems, rather to say that integrated systems
will be represented by the classifications, as well might other kinds of aggre-
gations or combinations of objects and processes. In the early stages of con-
ceptualizing a system, we observe the various types of thinking (which we
refer to as commonly defined cognition), the various social mechanisms
enacted by people (which we refer to as procedures), and the representations
of objects and processes (which we refer to as models or “representations”).
The three classifications of integration do not overlap. Therefore, the actions
of abstractions span ideas independently of the social or model classifica-
tions. We can think of these classifications in terms of business models that
delve into the relations between the socioeconomic values in businesses

161Foundations in Systems Integration

(Hedman and Kalling 2003; Shaw 2007); within the dynamics of supply
chains (Jitpaiboon 2005); for services firms (Ray 2003); and for complex soft-
ware development organizations (Bodenstaff 2010).

We refer to the class of integration as an abstraction integration (or “cognitive
integration”)—that is, two things connected conceptually and cognitively
considered as entities in object or process thinking. The abstraction concep-
tualizations could be tempered by temporal or cost constraints, influenced
by requirements, or limited by project scope without necessarily considering
either the procedures needed to carry out the ideas or the representations of
those ideas or procedures. It is necessary to think about the objects that are
to be built, the functions that are to be delivered, and the actions of the users
without knowing how to set in place or document those procedures. By
example, reading is an abstraction of visual processing of data taken from a
book. Intentions are abstractions, as are feelings, emotion, theorizing, think-
ing, interpreting, and questioning. Abstraction integration portrays (and
structures) objects and processes within the context of the observer’s thought
structures, but without needing anything more than other abstractions.
Abstractions can be used to correlate objects and processes.

Similarly, the concepts involved when playing a game that requires a full
deck of cards are representative of integration by abstraction. Removing and
not returning any card to the deck destroys the physical “deck”—the deck no
longer being fit for use in the game. A deck is a deck, except when it is not a
deck. Yet, for the purposes of the game, the deck is still considered a deck in
an abstraction sense. The physical and temporal aspects of the location of the
cards are accepted conceptually as indicative of the rules of the game, and
therefore an abstraction. In this case, the deck is defined as four individual
suits (or types of cards) that each have 13 separate cards with the same
denomination, for a total of 52 cards. The cards are integrated by abstraction
for game-play as determined by the observer’s context for their individual
cards, according to the rules of the game.

Social Classification of Integration

A second class of integration is termed as social integration, the integration
focused on the procedures (or social mechanisms (Moody and White 2003;
Reed 2008)) of carrying out the cognitive issues of process and the physical
realization of the objects and procedures as a means of documenting the
ideas. Unlike integration by abstraction (which is to achieve meaning by cog-
nitive association) and model integration (which is based on the things that
represent the product or service), social integration relates the general socio-
logical issues (including economics, political science, and social behaviors)
through activities, events, and physical entities. The ways of acting out
abstract cognitive thoughts or the involuntary responses to stimuli are con-
sidered behaviors. Social integration captures the dynamics of how the prod-
ucts are used by people and how the context and content of communication

162 Engineering Systems Integration

are intonated through vocalization and gestures for others to hear and see.
How the players play their hand dealt according to the rules of a card game
is an example of social integration—the bringing together of the individual
behaviors of the players within the context of the rules of the game. The strat-
egy involved in the card play belongs to the abstract class, while the written
record of the score and the analyses and evaluations regarding the value of
the chips belong to the model integration class.

Model Classification of Integration

A third class of integration (model or representation integration) deals with
the intended functionality of combining things into a whole. Unlike integra-
tion by abstraction where the user ascribes meaning by the association of
constituent things (specifically, the abstract notion of one combination of
cards winning over other combinations), model integration illustrates func-
tionality according to a purpose. Text is a representation of ideas; a physi-
cal image of a broom is a representation of a broom, rather than the broom
itself (the broom can also be a representation of a broom); and a symbol is
a representation of something such as an object, or cognitive structures, or
procedures. The purpose and the game-play is set out in representations
(or models) that portray various design specifications. The specifications
include diagrammatic forms that illustrate the systems engineered product,
the schematics of a physical structure, the information exchanges across a
network, and the illustration of flowing energy or pressure in a physical
experiment. Examples of model integration include everything that is objec-
tified, such as conceptualizations written down and the embodiments of
procedures that are enacted or documented.

For example, in the earliest days of physics, Isaac Newton (1642–1727) for-
mulated three laws of motions. They can be described as (1) no action, no
movement, or no change in constant movement (i.e., an object at rest remains
at rest, or if in motion continues in constant motion); (2) quantification of
action is the amount of matter (mass) multiplied by the rate of change in rate
of the motion (i.e., a force is directly proportional to its acceleration (the pro-
portionality constant given by the object’s mass)); and (3) for every action there
is an equal and opposite reaction. These ideas concerning motion remain
foundational to our formulation(s) of physics. They were and continue to be
stated in the context of the model class physical domain.

The formal term in systems engineering is for written requirements, docu-
ments reflecting design, architecture, integration plans, test plans, verifica-
tion plans, and validation plans, to mention a few. For the specification plans
that are provided to the developers of the product or service, the types of
representations include

•	 Logic and data representations
•	 Physical entity representations

163Foundations in Systems Integration

•	 Functional representations
•	 Performance representations
•	 Quality representations
•	 Hardware representations
•	 Software representations
•	 Usability and user interface representations
•	 Maintenance representations
•	 Support representations
•	 Logistics representations
•	 Operational reliability
•	 Manufacturability and assembly representations
•	 Affordability representations
•	 Reliability representations
•	 Behavioral representations

As with abstract integration, the domains of the model class of integration
span objects and process, the attributes of things objective and subjective.
A product (e.g., a deck of cards) that is manufactured has an intended use.
The cards come packaged in a box or wrapper. One of the functions of the
physical wrapper is to contain the physical extent to which the deck can be
separated into individual cards. Some functions of a deck of cards include ‘to
entertain’ (play games), ‘to act as building tiles to construct structures’ (build
houses made of cards), ‘glide’ (when ‘pitched’ in an atmosphere), ‘to shim’
(act as a jack for leveling uneven supports), ‘pick teeth’ (flossing), ‘jimmy’
(open doors, disengage locks), ‘act as a paperweight,’ ‘act as a combustible to
start or sustain a fire,’ ‘cover an eye,’ ‘to symbolize an abstract or corporeal
concept,’ and ‘act as an injurious projectile.’ All these functions of a manufac-
tured deck of cards are determined by the needs and wants of the user. The
process domain characterizes the human activities that result in the repre-
sentations. These processes span the set of acts that when concatenated into
like-kind or singularly related activities result in the formation and enact-
ment of a process.

The combination of the abstraction, social, and model classes constitutes
the whole of the integration description. These classes link the common set
of limitations, the constraints allocated within the project and temporal con-
straints that synchronize the interpersonal relations, intellectual discus-
sions, and the various corporeal representations for the product or service.

Newton, as observer and subsequently as communicator, was separated
from his experiment with the motions of an apple and therefore used the
physical domain in which to describe that motion. Carrying out his methods
and approach to the experiments falls into the model class (his organization
and enactment of tasks or activities fall into the process domain, his

164 Engineering Systems Integration

 milestones are in the function domain, and his experimental apparatus and
“laboratory” fall into the physical domain). His intuition, creativity, and ana-
lytical thinking fall into the abstract class (his brain was in the physical
domain, his activities of thinking were in the process domain, and the events
of his discoveries were in the functional domain). His behaviors fall into the
social class (his speech and involuntary mannerisms are in the physical
domain, his control of language is in the process domain, and his actions are
in the function domain). The synthesis of Newton’s processes, actions, and
physical entities resulted in the communication of his three laws of motion
as an integrated set of abstraction, model, and social dynamics. Thinking of
modern quantum physics where we observe the influence of the observer’s
actions on the outcome of the experiment illustrates the importance of incor-
porating the domains of process, physical, and functions with the amalga-
mation of the integration classes: abstraction, model, and social.

Consolidation of Thoughts on Integration

That two things can come together in such a way to form a whole, that is,
something new that is in itself considered complete, is a matter of curiosity.
It is both the nature and context of this integration that we observe daily. But
that two components somehow can be made to form a whole and that this
whole may not resemble its components is mysterious. How can the whole be
perceived to have even some properties different from that of its original
components? Integration can result in a whole where the properties of the
whole are the same as the properties of the individual constituent parts. An
example of this integration is the sand in the plastic bottle. The plastic bottle
contains the sand, but the containment is not a property. Containment is a
condition of the integration of sand in the plastic bottle. The properties of the
sand, that is, attributes or characteristics are different and distinct from the
properties of the plastic bottle. Whereas the condition of the sand being con-
tained in the plastic bottle is the set of circumstances that circumscribe the
sand, in essence they impose a restriction on the sand due to its situation or
environment when integrated with the plastic bottle. That an integration
should result in a whole that is completely reflective of its constituents, we
refer to as a spurious system.

We can think situationally of systems integration as a constructed balance
between the constituent parts and the whole—a set of circumstances and
events that once enacted transform the parts into a whole, but without reci-
procity to reconstitute the parts from the whole. To illustrate, consider mak-
ing soup as a metaphor for systems integration. We consider the three classes
of integration: abstract, social, and model. Consider the associative feelings
that are engendered by the smell and taste of the soup. These feelings may

165Foundations in Systems Integration

rekindle memories of past experiences, people, or situations. These are
abstract in nature, dissociated with present realities, but reminiscent of
another time, different circumstances, or emotions. Drawing from a recipe,
memory, or trial and error, the plan is to capture that memory and make the
soup. The chef gathers ingredients and enacts processes to prepare, combine,
and cook (i.e., model) with the intention to provide sustenance, preserve the
memory, and likely offer the soup as a means to brand the restaurant and its
epicurean delights—the soup offered as the signature dish. The chef,
preparer(s), and the soon-to-be eater(s) conduct themselves in appropriate
ways, exhibiting manners and deportments indicative of social custom and
habits.* Depending on the remembered ingredients and the preparation and
processes, the result might be turned into a soup de jure or de facto.† However,
unlike the simple admixture of water and salt, for example, where salt can be
dissociated from its water bond and both ingredients restored to their origi-
nal parts. The ingredients for this particular soup undergo an irreversible
blending that is more than an interaction. The new signature soup will be the
result of integration. The saline solution is a spurious system—an assembly
of constituent parts revealing its distinct parts before and after processing
(e.g., through evaporation). The soup has chemical compositions that are
changed by heat.

Integration is more than merely combining or assembling parts to make a
whole. Integration is a coalesce of objects interacting in unpredictable ways.
Integration, when achieved, may not be repeatable in the same way. The
end results involve more than one science, subject, or skill. Integration requires
a wide range of activities to put something together, with all fields and
 disciplines inextricable intertwined. Soup is not conceived, made, or eaten
only as product (model class), only through skilled kitchen management
(social class), or only because of feelings (abstract class).

The classes of integration are conglomerated, yet specialized and reflective
of the differences between them. Their inherent differences are fundamen-
tal, and have correspondingly been inculcated into our thinking through our
institutions of learning. This book presents the three classes of integration as
codependent specializations that are neither normative nor prescriptive. If
integration was so shackled to any particular field or discipline, nothing
could be discovered, built, or discussed. All disciplines, all fields, and all
work transcend the classes of integration as we think to solve problems and

* A necessary condition for a successful project is to have broad and substantial stakeholder
agreement and stakeholder support. Principle 1: The Principle of Alignment results in better
outcomes.

† De jure is defined as the rightful (that which is intended) embodiment of human work in the
form of products and services. De facto is the accidental embodiment of systems that are
caused by human or natural workings (that which is unintended). De facto systems can be
thought of as emergent systems that have developed as a result of circumstances. An exam-
ple is the introduction of nonnative plants into an area; the dumping of ship’s ballast in for-
eign waters and establishing nonnative species; and the movement of various types of insects
(e.g., killer bees) into new regions.

166 Engineering Systems Integration

ask questions, gather resources, develop plans, manage “the work,” build the
products or services, deliver the goods, assimilate feedback on the custom-
er’s experiences with the goods, sustain the goods in use, and finally revamp,
replace, or dispose. Soup as integration is a nexus of classes (abstract, social,
and model), all three contributing at the proper time in the proper way to
support the whole throughout its lifecycle. Systems integration is a method
of system science; a method of systems engineering; a method of all disci-
plines; all fields; and all work.

But it is not science to know how to convert one thing into another or put
two things together or give something a name. The subtleties of integration
are wrapped in connecting things in ways that satisfy the expectations for
the degree of dependency between objects (coupling) and the manner in and
degree to which the objects relate to each other (cohesion). Defining things
and their limits (referred to as granularity) of influence is a significant chal-
lenge for integration, as is interpreting the level of utility (referred to as
abstraction of categories or hierarchy of uses of the whole). Both abstraction
and granularity are particularly vexing for integration. The techniques and
formulations of determining abstractions and partitions that are descriptive
of things are not science. Integration as a science is part of a continuum of
activities starting with an object that is doing something, why it is doing it,
and what the consequences of doing it are.

An object that does not interact with another object cannot be integrated,
as there is no exchange of EMMI between the objects. In this case the objects
are termed as static, having no impact on anything else, except conceivably
within or on themselves. Thinking about integration presupposes lifecycle
issues. When we speak of “having no impact” the implication is there is no
impact during the lifecycle of the activities. An object that is static has
no impact on any other object during its lifecycle. In other words, there is no
interaction with another object, that is, no consequential impact of one object
on another (ever). It is likely that static objects exist in the universe. But then
by definition, static objects are not detectable. If any exist, we would never
know it. Interaction is the correlative influence of two objects on each other.

Static objects are differentiable from active objects. First, active objects are
measurable, and second, active objects are linked causally to other objects.
The object doing something is characterized by doing something. That
something is measurable as the release of (e.g., transmitting, sending, caus-
ing something to be taken, or acting as an agent with power to convey)
energy, matter (the condition of having mass), information, or capital wealth
(e.g., money). Collectively, these items are termed the release. If the release is in
some manner taken into another object, the releasing object is said to have
acted on the receiving object. In this initial discussion, the acted on object has
participated (by taking in the release) but not responded to the releasing object.
The acted on object may experience effects ranging from none, to some sort of
internal activity, to destruction of some or all of its functionality due to its
reaction to the release. If the receiving object had no response, then the condition

167Foundations in Systems Integration

of having no impact is satisfied and the releasing object is static. It is arguable
that something always happens to the acted on object, but that reaction may
not be observable, that is, below the threshold of detectability or causality. If
it is determined by reasoning or experimentation, the acted on object should
have a reaction, but nothing is observed, the reaction is determined to be
unknown. If the reaction is observable then we need both a perspective from
which to consider the observable in the context of patterns in addition to a
framework in which to make measurements according to that context. If the
functionality of the acted on object is degraded or destroyed, then the capac-
ity* of the acted on object ‘to manage’ the release was exceeded. Now, if one
object’s release(s) invokes the receiving object to release(s), the two objects are
said to be interacting. If the two objects begin to interact in a cause/effect
manner, the two objects are said to be interacting and exchanging (termed
exchanging) releases.

Strategy of Integration

To develop an overall strategy for integration, we need to accommodate the
types of systems (NotaSystem, ProtaSystem, System, and System of Systems)
and bring together the classes of integration (abstract, social, and model) so
that the attributes and parameters within the domains (objects and pro-
cesses) can be related to provide for the causal factors that result in products
and services.

At this point, we should be beyond the initial stages of thinking about
integration and are now willing to appreciate the nature of integration. What
does it mean to not be integrated? It is not integration to know how to config-
ure or test the interfaces between objects and processes. Are the objects nec-
essary, and insufficient? If there is no interaction (direct or otherwise)
between two objects, then neither of these objects can be integrated. Without
action there is no mechanism to facilitate integration.

Differentiation is determined as a need for integration (Bernstein 2001). If
the desire for the whole is to have increased differential value over that of its
constituent parts, then the strategy for integration formally identifies the
starting and ending structures of integration while recognizing the goal is to
increase value (Chapter 2) of the product or service. The value of systems
engineering is predicated on its ability to integrate disparate components
and a wide range of fields and disciplines. This effort is exacerbated by con-
tradicting requirements constituted at the beginning of the work and then

* The maximum power, ability, and extent of storing, containing, absorbing, or grasping.

168 Engineering Systems Integration

changed or modified* over the course and execution of the development
work. Systems engineering is held to a higher standard than just satisfying
the need for providing value through the constituent parts of the product or
service. Systems engineering is presupposed to be a redaction of engineer-
ing. This view was held by the formulators of systems engineering at Bell
Laboratories (Schlager 1956), reinforced by the widespread use by the U.S.
DoD beginning in the 1950s with the U.S. Air Force and into the late 1960s
with the first U.S. military standards for systems engineering. Even in the
near past (Stem et al. 2006) systems engineering has earned the entrusted
means of engineering and providing large, enigmatic systems. The problems
faced by systems engineering can involve incongruous technologies, compo-
nents, and systems, each with various intricacies and confounding multidis-
ciplinary problems. The mischievous whole exemplified by hundreds of
millions of interacting elements is not amenable to simple reductionist meth-
ods. Inductive and illative thinking is mandatory. The strategy of systems
integration is a second cousin to these discussions. Systems integrators are
faced with two problems: first, unraveling the domain parameters as indi-
cated in the objective and subjective frames (objects and process), and sec-
ond, once partitioned into tasks, these parameterized pieces of work enabled
by processes and focused on objects need to come together in an integrated
way to provide a network of reliably interacting elements. The elements are
the three parts of the subjective domain (cognitive, procedure, and model)
and the three parts of the objective domain (objects, functions, and behav-
iors). The nature of integration is relegated to instance of interactions for
objects and processes, humans and products, or humans and services.
Detailing the combined objective and subjective frames spells integration.
Integration is deliciously detailed—a method in which an insidious mistake
is made more distressing by its own consequence.

Differentiation implies power and change. Strategies of integration rely on
power—the ability to do what you have sufficient force to do. The result of
power is change or status quo. The detectability of change in the inherent
traits, attributes, and peculiarities (i.e., properties) of objects or processes is
determinable within the context of the classes and domains of integration.
That there are objective causalities, objective and subjective measures, met-
rics, and measurement frames determines that change or status quo can be
detected. That there is a sufficiency of power needs to be ascertained. Andy
Sage suggested a three-level perspective on applying systems engineering to
engineer systems (Sage and Armstrong 2000). Carrying forward with our
interpretation of integration through the mereology of processes and objects
is strongly suggestive that the drivers for change are judicious use of power.
In the social sciences, the requirement to separate the experimenter from the

* Changes and modification come from key stakeholders, including customers, users, and
project team. Changes are a natural and expected part of systems engineering. However,
changes are neither desirable nor acceptable for integration.

169Foundations in Systems Integration

experiment is a most arduous task. The social class is inextricably involved
with the model and abstract classes in the measurement framework of all
three domains. In political science, there is a somewhat pervasive antago-
nism toward rationalizing power (Diaz et al. 2004).

Power

While much has been written about power in innumerable contexts, includ-
ing sociology, psychology, and economics, regarding its expression, its rela-
tion to causal factors, its capability and ability, and the impacts on the actors
(e.g., people, groups, organizations, and governments), very little has been
said about power and integration. Such a discussion helps to illuminate
some aspects of power that are discussed elsewhere, but perhaps not in the
same way. For objects that interact (and sometimes integrate), the concept of
power can be expressed in terms of dominance (through overwhelming
magnitudes of EMMI) or an ability to influence (through the proper release
of EMMI that has effects on another object’s mechanisms). At the fundamen-
tal level of interaction, power is the limit imposed by one object on its EMMI.
In other words, power is both an object’s EMMI and the object’s constraints
that limit another object’s access to EMMI. For humans, power is EMMI and
access to EMMI. Objects value EMMI as their means to make things happen.
One object, in turn, can change the makeup of the EMMI it receives into
other kinds of EMMI. Changing the output of EMMI by the rate of releasing
outputs, the magnitude of an individual output, the average “power” of a
series of individual outputs, and taking care as to which objects have access
to the EMMI may bring more power to any object than would otherwise
occur. The rate of doing work is another form of power as mediated by an
object’s output EMMI. The changes in EMMI may be thought of as delega-
tion (in an organizational sense), as veto (in a decisional sense), as a means of
sustainment (in a distributional sense), as a means of communication (in an
informational sense), as a means of commerce (in a material wealth sense),
as a means of influence (in a political or social sense), as a means of leverage
(in a economics sense), and as a means of exchanging EMMI (in an integra-
tion sense). Fundamentally, every object has a mechanism to transform
EMMI into an output; therefore, every object has some measure of power.
Metaphorically, we can refer to objects as the constituent parts of products
and services, as people, and as organizations of people. Objects that combine
into an integrated whole would seem to have more power to influence other
objects than do individual objects.

The partitioning (or allocation) of EMMI is sometimes portrayed as exer-
cise of power. In this regard, power has two components, the resource of
EMMI and the access to that resource. For integration of a system of systems,
the meaningful expression of architecture of this exchange of EMMI is a

170 Engineering Systems Integration

managed process. How individual systems are given access to or exchange
EMMI is reflective of the participation of the individual systems. The man-
agement of EMMI within the system of systems structure is portrayed and
enforced by the architecture and protocol that affects each system within the
system of systems. Essential to managing EMMI is the recognition that
the persistence of power is related to the lifecycle of the meaningfulness of
the input EMMI, for example, old information has marginal utility. For
EMMI to be recognized as power, the architecture must reinforce both the
importance of access to receive EMMI as well as the pertinent influence it
represents. Whether power is examined as a political relation (McClurg and
Young 2010) or a social relation (Nieminen 2005), the results are similar. The
conception of power as a relation (Dahl 1969) is the essential driving influence
for designing and architecting a system of systems. Partitioning the sending
of and access to EMMI is the task of the system of systems integrator.

However, EMMI enshrined as a resource is not power. Rather, it is the
access to that resource which represents power, that is, the use of that resource
is always mediated by access. Both the resource and access to the resource
are power.* Power could be prioritized according to the amount of the
resource and the amount of access to that resource. In the subjective domain,
the abstract class entangles the thinking prioritization and the means of
accessing the resource, the social class of integration encompasses the proce-
dures that define access, and the model class orchestrates the kinds of repre-
sentations that will be corporeally referenced. In biology, the symbiotic
relation between different organisms and plants is often thought to be an
essential component in nature’s balance. Which class of integration could be
ignored? Ignoring the abstract class would eliminate the systems theories
that consider the metainteractions occurring across the planet. Ignoring the
model class excludes lifecycle analysis from which to determine long-term
impacts. Omitting the social class isolates the impact of humans on the envi-
ronment. At the class level, one scenario suggests that intellectualism drives
the need to mitigate “wasteful” social behaviors, which in turn results in
“improved” models of behavior. Within the integration measurement frame-
work, the object and process domains provide each class with substantial
preferences, always any one over any of the others. The benefit of analyzing
the structures of integration reveals the causal relations between factors
(influences, circumstances, and elements), mechanisms, and enablers.
However, the difficulty with viewing the results of integration is that much
of the causal, interpretive facets, and mechanisms are concealed. Processes,
behaviors, and events that occur between structuring the integration prod-

* Along with the World Wide Web evolved a number of business models that advantaged
access over distribution. The concept of power did not change. An example of broadening the
power by empowering more people (through greater access and independence is peer prod-
uct (Koszarek 2008).

171Foundations in Systems Integration

ucts (classes and domains) and the final resultant integrated whole are often
invisible. This observation suggests a strategy for integration.

Making appropriate investments in key resource areas such as informa-
tion systems, tools to improve efficiency, training and education for the project
team, the customers, and the users* provide substantial paybacks in both
systems engineering and integration. For the specifics of the project, these
concepts extend to increase the likelihood that integration will provide the
highest amount of strategic value through the product or service. Another
investment that pays off is for systems that can be modeled. Model-based
systems engineering offers the allure of describing both the objective and
subjective domains for the objective causalities.

Model-Based Systems Integration

Systems engineering has evolved a more formal approach to integration,
albeit still methodological. The U.S. Department of Commerce, National
Institute of Standards and Technology (NIST) derive a model of integration
for systems engineering starting from a defined systems perspective
(Barkmeyer et al. 2003) that is premised on the interplay of models. At the
most abstract level, integration is a process (in contrast with this book’s care-
ful characterization of integration as a method in which processes play a
dominant role) for bringing parts together to form a whole—in this case a
system. What is meant, termed as “technical integration,” is to ensure
interoperability by turning an integratable component into an interoperable
component. Technical integration is a procedural list of tasks that identify
interface requirements (inputs and outputs) and data entities that when
transferred ensure interoperability between the identified components. The
systems perspective is comprised of models that describe the organizational
structure of resources (the system structure model), the rules for conducting
business operations (the policy models), and the logical, physical structures
of communications (the network models). These three models form a web of
planned interfaces that presumably span the scope of interactions that will
result in integration. For technical integration to succeed, the behaviors of
the components must be completely represented by the models. The diffi-
culty of building all of the known and emergent behaviors into the models is
compounded by the continuing iterations of discovery of what a component
does and is supposed to do, and then coupled with the addition of new
requirements that naturally result from the interactions with stakeholders
during design, architecting, development, and testing, it can completely
undermine the efficacy of the models. On large-scale system integration or
system of systems integration efforts, technical integration is challenged and
has not yet been shown to be effective. As stated in the NIST report, there
must be a consistency between the functional and behavioral characteristics

* Users who become mixed up turn into Suers.

172 Engineering Systems Integration

of components and their roles in the business process activities. Change a
function, add a function, change a business process, and the characteristics
of the components change. Changes in characteristics at the component level
change the interfaces or data or both. Moreover, the NIST report further stip-
ulates there must be technical and stakeholder agreement on the (1) form, fit,
and function of information; (2) interpretation of data to be consistent with the
business processes; (3) rules signifying the business process enactments to be
represented fully by the components and their behaviors; and (4) combined
effects on integration of increased time, costs, and reduced performances.
Some of the notable recent failures in integration (reference the U.S. Army’s
Future Combat System, and other GAO referenced failures) suggest that tech-
nical integration may not encompass a sufficiency of integration theory to offer
a favorable guide for systems engineering. Consistent with the view that sys-
tem integration is operative at both the system level as well as through its ele-
ments, the Systems Engineering Handbook published by the International
Council on Systems Engineering (INCOSE) states that integration is performed
on the system, its elements, and external systems (INCOSE 2008), and the
Institute for Telecommunications, U.S. Department of Commerce states that
integration is defined as the progressive linking of system components to
merge functional characteristics into an interoperable system.

Most effective Strategy for Integration

After investing in systems engineering and systems integration and improve-
ments in the effectiveness of skills and efficiencies for work, arguably the
most effective strategy for planning to integrate a human-built system is first
to represent the totality of the system’s uses through its system-level function-
alities, that is, in terms of a simulation model of what the system will do and
how the system will operate when completed. The fundamental difference
between the strategies of object-to-object versus object-to-system model inte-
gration is the inherent inaccuracies of piecewise continuous structures. The
effectiveness of object-to-object integration assumes that the objects can in
fact be integrated and further that the interfaces and data exchanges can be
identified and characterized before the onset of the integration work. Were this
assumption of piecewise continuity untrue, the individual tasks involved in
the integration effort would need to deal with an unknown set of interfaces,
undetermined data types and characteristics, and perhaps different protocols
for the data transfers. If the interfaces are known, the data types determined,
and the protocols specified, then the effectiveness of object-to-object integra-
tion simply rests with no changes being made during development. However,
very few (if any) development projects are completely, precisely, and accu-
rately defined before planning for integration (typically begun in the first few
months of the development project); very few (if any) development projects
experience no changes once integration has begun; and very few (if any)
development projects find no errors with the objects or in their EMMI before

173Foundations in Systems Integration

integration is complete. Even if all the issues, rework, and problems were both
tractable and recognized so they could be included in the early integration
planning, not all of the daily changes can be accomplished within the period
allocated for the specific integration tasks. The allocation of project resources
and the requisite skills of the individuals working the tasks constrain the
completion of work that is anticipated but as yet unplanned. Further, all inter-
faces and all data exchanges for all objects need to be defined for the entire
system before the assumption of piecewise continuous, successful integration
of parts is an effective strategy, deterministically. The issues with piecewise
continuous in conjunction with integration are twofold: first, the individual
tasks associated with integration of an object-to-object strategy are nondeter-
ministic, and second, the number and duration of iterations to complete the
integration is also nondeterministic. Piecewise continuous integration (object-
to-object) is inefficient, portending unexpected delays in integration and per-
haps unplanned, additional expenditures.

A more effective strategy for integration is to represent the totality of the
system’s objects, identifying the expected (1) system-level functionalities,
performances, losses to achieve those performances, and boundary and
boundary conditions; (2) physical entities and their mechanisms, EMMI,
boundaries, and boundary conditions; and (3) the expected behaviors from
users of the new system as well as their behaviors due to their anticipation of
tasks for the new system, their boundaries, and boundary conditions. In
essence, it is a simulation model of what the system will do and how the
system will operate when completed. A simulation model (Hoover and Perry
1989) uses the variables that comprise relations between the system func-
tions in logic that addresses the impacts of context and environment through
system behaviors. System properties and attributes are discussed in terms of
objects and EMMI. The importance of using a simulation model to facilitate
planning for integration is to predict how each object will interoperate with
the system (as a whole). Joining each object through EMMI with the system-
level perspective reveals the service each object provides to support system
functionalities. The paradigm of integration is not achieved by an object-to-
object but rather an object-to-system model. Change the model of the system
and simultaneously change the actions of all objects. To integrate is to unite
an object with the system model—the result of revealing, identifying, speci-
fying, describing, and detailing the functions enabled by the system’s inter-
face with that of the object. Therefore, integration is not object to object, not
interface to interface, and not data for data.

Unlike systems engineering that is intensely iterative, integration of
human-built systems is system focused to achieve end-to-end perfor-
mances. Integration is neither systems engineering nor profoundly repeti-
tious. Repetition in integration is expensive, time consuming, and tactically
inefficient. Moreover, iterative integration is strategically ineffective.

Human-built systems integration achieves an architecture that provides
services to objects with EMMI enabling the mechanisms of objects.

174 Engineering Systems Integration

Consequently, system design and architecture are profoundly important to
integration. The system architecture is a comprehensive statement of the sys-
tem’s physical configuration and connectivity in terms of its infrastructure of
objects (and their mechanisms), support for EMMI, provisos for functions,
preference for various performances, and origins and impetuses for losses.
The social situation of human-built systems requires integration to accom-
modate environments and behaviors beyond that of any single discipline.

Systems integration is the unification of the objects and their interactions
of energy, matter, material wealth, and information to provide system-
level functionalities and performances.

The systems integrator is concerned with connecting objects through
EMMI to provide the requisite emergent properties and attributes.

Axioms of Integration

First axiom—inaction: An object that does not interact with another object
cannot be integrated. An object that interacts with another object can be sub-
ject to integration, under certain conditions. However, conditions must be
right for integration. We consider four types of conditions: conditions that
relate to boundaries of functions, objects, and behaviors due to objects (or in
anticipation of objects); conditions within each of the interacting objects that
cause or enable the continuance of mechanisms whether in their operative or
initial phase of action; conditions that maintain the isotropic properties of
the objects; and conditions that satisfy the constraints imposed by the releases.
That is also to say that for integration to occur the conditions must support
it. In nature, the conditions appear to be predicated on low-energy interac-
tions, sometimes initiated with one-time actions of substantial energy.

Second axiom—action: An object that interacts with another object releases
(gives up or loses) EMMI. Friction (due to mechanical drag, electromagnetic
fields, gravitational fields, and molecular bonding) counters forces. There is
no free lunch. You must lose something to do something. Perpetual motion
is impossible. Integration of objects must consider the losses due to the
actions of integration and the results of integration. Integration results in a
loss caused by the collective releases and acceptances of energy, matter,
material wealth, or information.

Third axiom—mechanisms: An object is enabled through the properties and
traits of its structure. The intrinsic makeup and circumstances of structures
is influenceable by forces (EMMI) to change or be restored. The result is to
transform EMMI that is incident onto an object into an output across the
physical boundary of that object.

Fourth axiom—interaction: An object that releases energy, matter, material
wealth, or information in time or space as a consequence of another object is

175Foundations in Systems Integration

limited. An object interacting with another object is subject to time limita-
tions (e.g., delay time for mechanism to operate and release energy, matter,
information, or material wealth, spatial distance between the objects, and
types of releases). Interacting objects are subject to conditions and limitations.

Fifth axiom—inactivity: A process that does not interact provides no access
to “power.” Power is encapsulated in resources, human skills, rules, budgets,
schedules, or EMMI. Integration requires access to power to be activated and
operative.

Sixth axiom—degrees of freedom: A process that interacts with another pro-
cess constrains the other processes or objects. Interaction is a means of giving
up, expending, or losing EMMI.

The axioms of integration are indicative of a physical reality that is posed
through a small number of simple observations and interpretive logic. Posing
a question about the outcome(s) of interaction between objects (or alterna-
tively stated as that which is induced to occur by releases from objects) high-
lights the measures and the measurement of change as important issues.

The functions reside within the physical world: functions are enacted at
the boundaries of physical entities and express themselves in the functional
world, while processes are carried out by physical entities, as observed in the
physical, functional, and behavioral worlds.* In sociology, the concept of
functionalism, that is, the functions of individual objects (e.g., people and the
boundaries between the physical entities that impact people’s behaviors and
the people) combine to make the whole of society that is expressive through
a set of “norms,” “customs,” “traditions,” and “institutions” (Giddens 1986).
Functions are typified by the events which result from enactment of the
mechanisms which produce output performance. The framework that cap-
tures functions was expanded to include the physical environment (Gailey
1985). The discussion on functions, processes, and physical entities requires
the construction of a framework that maps the reality of functions through
each of the three classes of integration—abstraction, model, and social.

To investigate the essential objects of integration, a framework needs to reflect
causality in a system. A framework needs to be based on a set of principles and
laws that have standing both theoretically and empirically. Integration can be
thought of as having two provenances: (1) principles which are intradisciplinary
and (2) holism. Integration relies on the principles of causality (Simon 1966;
Pearl 2001), the principle of perturbation (Langford 2006; Groah 2007), and the
principle of action (Langford 2009). Integration extends this paradigm by
attempting to encompass metalessons from all other disciplines.

To arrive at a framework that shows improved utility (over that of other
frameworks) across many experiments (with some modicum of variability)
and accounts for unobserved phenomenon (that which we surmise exists,
but as yet have not confirmed), principles representing the best practices of

* The term “world” is used generally to categorize loosely. The intention is to “bag” them up so
as to not lose something.

176 Engineering Systems Integration

human integration and a set of generally applicable principles and funda-
ments need to be considered as the baseline of experiments. The principles
and fundamentals help formulate a theoretical and practical basis for inte-
gration. The test for selecting principles and fundaments is to discern their
relevance, applicability, and reflectivity of the best practices used by
researchers and practitioners in the various disciplines and fields involved
with systems integration (either by its execution or from is application for
analysis). The framework must be constructed to maintain a balance between
theory and practice that are the distilled and abstracted lessons* and essences
of empirical observations and anecdotal evidence. This balance is main-
tained by adhering to a governing set of rules:

•	 For every theoretical construct (theory, model, framework, or
frame), there shall be corresponding best practices that typifies the
application.

•	 For every best practice there shall be a corresponding theory that
embodies its use and relates to the framework through its context.

A theoretical construct for systems integration spans all the apparent rela-
tions and underlying principles that relate to the empirical observations and
conjectural notions the key variables that have been shown to represent the
substantial essences of integration. Some degree of verification of each rela-
tion and principle is required. The form and method of verification are not
stipulated, but must pass scrutiny by reasonable inquiry, analysis, and evalu-
ation (often considered part of peer review). As the relations between key
variables begin to form, the categorization may be accomplished in any num-
ber of ways—the result being a consistency of defined terms that can be seen
replicated from experiment to experiment. Here, the notion of experiment is
broadly considered as any grouping of tasks that are goal directed. A project
is intended to be an experiment for this purpose. The critical determinant of
a theoretical construct is to first ensure the causal objects have been identi-
fied; second, define the objects in a manner consistent with their relations
and categorization; third, parse the categorizations into like-kind frames
(frames reflect the commonality typical in a discipline or field that have
proven efficacious in analyzing, evaluating, and predicting in a verifiable
way); and fourth, determine the relations between the frames (if any) that
when juxtaposed provide a causal mapping between the relations (and
thereby the frames). This portrayal is consistent with Michael Stankosky’s
view that if a subject (in his case knowledge management (Stankosky 2000))
“. . . is to be applicable, universal, and relevant across all enterprises, and
rightly claim its place among academic disciplines in this knowledge age,
knowledge management requires theoretical support” (DiGiacomo 2003).

* Lessons learned; lessons spurned.

177Foundations in Systems Integration

To be effective as theoretical constructs, some means of determining what
is most widely used and found to be effective within a discipline or field is
described as best practices (or more succinctly stated, those practices that
have achieved a modicum of success, but without knowing why they were
successful). Best practices are the heuristics and methods used widely in the
discipline or field that have been proven (empirically or anecdotally) to pro-
vide some degree of acceptability by their practitioners. Often, a hallmark of
acceptability is the assumed repeatability of the practice. Other times, the
practice is presumed to result in losses that are acceptable to the stakehold-
ers. Some of the best practices in acquisition for products and services pro-
vided through systems engineering are modularity, use of commercially
supported procedures and methods, performance-based standards, technol-
ogy updates and insertions that support lifecycle cost affordability, and the
funding pilot programs to demonstrate concept feasibility (United States
Department of Defense 2010). In some instances, commercial best practices
from one industry are incompatible with commercial best practices from
other industries and often both incompatible with military best practices
(Pennock et al. 2007). Even like-kind industries may have incompatibilities.
Often, only a subset of best practices is widely appropriate, suggesting that a
more general practice is apropos. For systems integration, we must take great
care when considering the broad implications of best practices.

On a procedural level, the same U.S. Department of Defense acquisition
guidebook suggests incorporating best commercial practices (evaluation of
commercial off-the-shelf equipment, lifecycle planning, fostering strong
relationships with vendors and subcontractors, and protection of intellectual
property rights), collaborative team environments, modeling and simulation,
and electronic business solutions. Best practices now extend beyond a few
routines that were found to be useful on some projects, to comprehensive
studies that are reflected in the U.S. Department of Defense directives that
are mandated by law for all systems engineering efforts: using DoD stan-
dard data and following data administrative policies, and assessing infor-
mation operations risks.

Best practices should be based on principles and standards. The project
manager, charged with using systems engineering to deliver a product or
service, must grapple with either using standardized agreements, parts, pro-
cesses, and methods or building and tailoring their own set of principles and
project standards. Locally contrived standards are a natural consequence of
new technologies and new approaches to design and architecture. Usually
the projects are a mix of work that include compliance with standards in many,
but not all instances of work. Recognized international and national standards
usually represent voluntary acceptance and wide commercial market adop-
tion, but the genesis of new standards are often stimulated by project managers
that move outside of the standards to innovate. The project managers and
systems engineers look to best practices based on systems engineering
worldwide. Systems engineering knows no geopolitical or disciplinary borders.

178 Engineering Systems Integration

The sources for best practices come from any place where successful meth-
ods and techniques are discovered and used (INCOSE 2007).

Best practices are determined to be what is necessary to be successful.
Moreover, best practices are generally based on principles. For example, the
systems theory principle that systems can be conceptualized as self-reliant
entities that are simultaneously wholes and parts (Koestler 1968) is applied to
an issue for managing the project’s use of random access memory (RAM)
inside computers. By treating RAM as an integral part of the systems engi-
neering process (reviewed at milestones and discussed in status meetings),
the reliability of a subsystem can be calculated based on architecting varying
degrees of parallel and series processing to manage the reliability of various
components in a computer or network. These allocations and reliability cal-
culations assist the systems engineer to determine the real implications of
various allotments of memory. Further, the allocation and testing of RAM
can be coordinated across the development team and across the phases of
development. Since the context for RAM is often performance for products
and services, integration is particularly impacted should the allocation be
insufficient to buffer the required amount of data (i.e., may reduce perfor-
mance) or is in excess of the needs for optimum data transfer (i.e., increases
costs and does not impact performance). In either case, the reliability of the
transfer process may be affetced because of throttling or overflow conditions
(Government 2005). For integration, the architecture is the essential guide-
post—the roadmap for what is connected to what and how those connec-
tions facilitate or squash various system behaviors.

The imposition of following best practices as a dominant view in systems
engineer should make systems thinker wary. The reason for standards and
best practices is to create an environment of greater predictability in prod-
uct and service developments that, while new in many aspects, push indi-
vidual intellectualism to the edges of knowledge. Such projects are the
most daunting. New technologies may be immature at the beginning of
work and never rise to a level of predictability that endows it to be included
in the development effort. Integration of the outcomes of imperfect intel-
lectualism or snarling, untameable technology is difficult and doomed.
That systems engineering is sometimes effective in delivering needed per-
formance is often shadowed by costly overrun budgets and schedule slip-
pages (Table 3.1).

Similar to a generalized framework for functions and physical entities,
processes are formulated as activities (and primal acts). Processes result in
decisions about what to do (in contrast to functions that are the behaviors
that the user wants to perform as a consequence of the product). Processes
describe the intentions of the architecture. As a process, integration is the
combining of a systematic series of actions that take place in a definite man-
ner, directed to bring about a particular interaction between objects and sets
of objects.

179Foundations in Systems Integration

TABLe 3.1

Systems Engineering Is Sometimes Effective in Delivering Performance

Programs
Program

Costs (Total)
Development

Costs
Development

Schedule Comments

Crusader
artillery
vehicle

$4.3 billion
(estimated
in 2001)

+ 55% (cost
excess over
initial
estimates, as
determined
in 2001)

+ 26% (schedule
slippage in
2001) with the
expectation of
14 years of
development

Program began in 1999
with expected
production in 2008.
Program was cancelled
in February 2004. It was
determined there was no
need for the program.
Emphasis was for
applied technology
development.

Comanche
helicopter

In excess of
$14.6 billion

+ 127% (cost
excess over
initial
estimates, as
determined
in 2001)

+ 119%
(schedule
slippage in
2001)

Program began in 1994
with 2 years of systems
engineering to
determine if
requirements were
feasible given cost
and schedule limits.
The result was a
determination that an
additional $0.5 billion
was needed to develop
immature technology. A
key driver was to reduce
operating and support
costs. The competing
requirements “resulted
in an inflexible system
solution.” Emphasis was
for applied technology
development.

Caterpillar
797 mining
truck

+ 5% at
completion

0% at
completion

Emphasis was
for on-time
delivery

Program began in 1997
and completed in 18
months. The need
was identified in 1996
and the project
met the expectations
of the customers and
users.

NASA
FUSE

+ 20% at
completion

0% at
completion

Emphasis was
for on-time
delivery

By making trade-offs of
resolution, bandwidth,
and time on-orbit, the
program met the critical
NASA need.

Source: Data from GAO 2001. GAO-01-288, Best Practices: Better Matching of Needs and Resources
Will Lead to Better Weapon System Outcomes. Washington, D.C., U.S. Government
Accountability Office, 80pp.

180 Engineering Systems Integration

Endnotes

 1. Numbers for the sake of numbers can invariably and conveniently be expressed
in some form of statistics. That averages and distributions represent our world
is presumptuous. This may seem polemic, but it is not intended to disparage
mathematics. In fact, many of my best friends are numbers. They are who they
are and represent what they say. However, not for expediency, not for deference
to the trappings of intellectualism, and not for pretence of elegance should
thinking be so restricted at the onset of a quest for knowledge. When the hard-
ships of cognitive toil have fallen to gumption, when all that could be wrong is
found wrong, and when there is no inconsistency of a worldview, then the jour-
ney must begin again with the elegance of mathematics. If one’s view was that
events are causal and objects and processes are necessary and sufficient, mecha-
nisms would be deterministic. According to this view, however contrived or
misguided, there is no chaos, no aggregate, nor a strictly summative notion.
There is no like-kind object, and no two objects would necessarily be identical.
To this end, the universe is a library filled with information, awaiting sublime,
correct reasoning. To this end, there are systems and there is integration.

 2. The trade practiced by researchers is to apply notional contributions to theory
that reflect established and accepted principles of formal and systematic inves-
tigation or examination. The result is an effort to persuade others and bring
forth new knowledge that is enacted through the processes and functions of
enquiry—the acts and mechanisms of asking and answering questions. Yet
what results from enquiry is a discord between theory and fact—an ever-pres-
ent misalignment of theory, principles, and observations. Often this disagree-
ment is based on interpretations of patterns, behaviors, and properties. At issue
is our explanation of phenomena that is derived by postulating principles, and
inferring laws. We seek truths through enquiry. But an occasional result of
enquiry is a theory that explains certain phenomena and but challenges some of
the means of actualizing knowledge. The impact of enquiry can be said to rele-
gate the dogma of present theory to the history of future inferences.

References

Aerts, D. 1983. The description of one and many physical systems. Proceedings of the
25th Cours de Perfectionnement de l’Association Vaudoise des Chercheurs en Physique.
Les Foadements de la Mécanique Quantique, Montana.

Antonsson, E. K. 2001. Imprecision in Engineering Design. Pasadena, CA: California
Institute of Technology.

Ashby, F. G. 1962. Principles of the self-organizing system. Principles of Self-
Organization: Transactions of the University of Illinois Symposium. London:
Pergamon Press.

Ashby, W. R. 1957. Introduction to Cybernetics. London: Chapman & Hall Ltd.

181Foundations in Systems Integration

Barkmeyer, E. J., Feeney, A. B., Denno, P., Flater, D. W., Libes, D. E., Steves, M. P., and
Wallace, E. K. 2003. Concepts for Automating Systems Integration. Gaithersburg,
MD: National Institute of Standards and Technology, 90pp.

Bausch, K. C. 1997. The Habermas/Luhmann debate and subsequent Habermasian
perspectives on systems theory. Systems Research Behavior Science 14: 315–330.

Bechtel, W. and Abrahamsen, A. 2005. Explanation: A mechanist alternative. Studies in
the History and Philosophy of the Biological and Biomedical Sciences 36: 421–441.

Bernstein, J. I. 2001. Multidisciplinary Design Problem Solving on Product Development
Teams. PhD thesis, Technology, Management, and Policy Program. Boston:
Massachussetts Institute of Technology, 259pp.

Bhatt, S. 2000. The Application of Power Quality Monitoring Data for Reliability Centered
Maintenance. Palo Alto, CA: Electric Power Research Institute (EPRI), 19pp.

Bodenstaff, L. 2010. Managing Dependency Relations in Inter-Organizational Models. PhD
thesis, Centre for Telematics and Information Technology. Enschede, The
Netherlands: University of Twente, 307pp.

Boldyreff, A. W. 1954. Systems Engineering. Santa Monica, CA: Rand Corporation, 16pp.
Booher, H. R. 2003. Introduction: Human systems integration. In H. R. Booher (Ed.),

Handbook of Human Systems Integration. New York: John Wiley and Sons, chapter
1, pp. 1–30.

Boulding, K. 1956. General systems theory—The skeleton of science. Management
Science April: 661–671.

Breuker, J., Valente, A., and Winkels, R. 1997. Legal Ontologies: A Functional View. New
York: ACM.

Broersen, J. 2003. Modal Action Logics for Reasoning about Reactive Systems. PhD thesis,
Dutch Research School for Information and Knowledge Systems. Amsterdam:
de Vrije Universiteit, 256pp.

Buckley, W. F. 1967. Sociology and Modern Systems Theory. Englewood Cliffs, NJ:
Prentice Hall.

Buede, D. M. 2009. The Engineering Design of Systems: Models and Methods. Hoboken:
John Wiley & Sons, Inc.

Cechini, F., Woolley, R., Ghotb, H., Krueger, M. E., Tighe, W., Lewis J., Jacoby, C.,
and Rantowich, N. 2009. Systems Engineering Guidebook for Intelligent
Transportation Systems. California Division of the United States Department of
Transportation Federal Highway Administration and the California Department
of Transportation.

Chow, C. W. and Van der Stede, W. A. 2006. The use and usefulness of nonfinancial
performance measures. Management Accounting Quarterly 7(3): 1–8.

Dahl, P. A. 1969. The Concept of Power. New York: Free Press.
Dastou, L. 1994. How probabilities came to be objective and subjective. Historia

Mathematica 21: 330–344.
Defense Acquisition University 2001. Systems Engineering Fundamentals. Fort Belvoir,

VA: Systems Management College, 222pp.
Diaz, C., Sassaman, L., and Dewitte, E. 2004. Comparison between two practical mix

designs. Proceedings of the 9th European Symposium on Research in Computer
Security. LNCS.

DiGiacomo, J. 2003. Implementing Knowledge Management as a Strategic Initiative. MS
thesis, Graduate School of Business and Public Policy. Monterey: United States
Navy Postgraduate School.

182 Engineering Systems Integration

Do, Q., Campbell, P., Cook, S. C., and Solomon, I. S. D. 2010. Tailored systems engi-
neering processes and artifacts for small-scale projects. 4th Asia-Pacific Conference
on Systems Engineering (APCOSE 2010). Keelung, Taiwan.

Ducamp, C. and Lagarrigue, A. 2007. MV2 tool presentation: A management tool for
the validation and verification of requirements by Airbus. INCOSE 2007—17th
Annual International Symposium Proceedings. San Diego: International Council on
Systems Engineering, 13pp.

Dueker, K. J. and Vrana, R. 1995. Systems integration: A reason and a means for data
sharing. In H. J. Onsrud and G. Rushton (Eds.), Geographical Information Systems.
Brunswick, NJ: Center for Urban Policy Research (Rutgers), 149–155pp.

El-Agraa, A. M. 1989. The Theory and Measurement of International Economic Integration.
London: Macmillan.

Eriksson, M., Borg, K., and Borstler, J. 2008. Use cases for systems engineering—An
approach and empirical evaluation. Systems Engineering 11(1): 39–60.

Fairbanks, A. 1898. Parmenides: Fragments and Commentary. London: K. Paul, Trench,
Trubner, pp. 86–135.

Feyerabend, P. 1993. Against Method. 3rd Edition. New York: Verso.
Forrester, J. W. 1958. Industrial dynamics—A major breakthrough for decision mak-

ers. Harvard Business Review 36(4): 37–66.
Gabora, L. and Diederik, A. 2002. Contextualizing concepts using a mathematical

generalization of the quantum formalism. Journal of Experimental and Theoretical
Artificial Intelligence 14: 327–358.

Gailey, C. W. 1985. State of the state in anthropology. Dialectrical Anthropology
(Dordrecht, Springer) 9: 65–89.

Galbraith, J. R. 1977. Organizational Design. Reading, MA: Addison-Wesley.
GAO 2001. GAO-01-288, Best Practices: Better Matching of Needs and Resources Will Lead

to Better Weapon System Outcomes. Washington, D.C., U.S. Government
Accountability Office, 80pp.

GAO 2003. Best Practices: Setting Requirements Differently Could Reduce Weapon Systems
Total Ownership Costs. Washington, DC: U.S. Government Accountability Office,
77pp.

GAO 2009. Defense Acquisitions: DoD Must Balance Its Needs with Available Resources
and Follow an Incremental Approach to Acquiring Weapon Systems. Testimony
before the Committee on Armed Services, United States Senate, Washington,
DC: U.S. Government Accountability Office, 25pp.

Garcia-Diaz, A. and Riggins, M. 1985. Serviceability and distress methodology
for predicting pavement performance. Transportation Research Record 997:
56–61.

Gershenson, J. K., Prasad, G. J., and Zhang, Y. 1999. Modular product design: A life-
cycle view. Journal of Integrated Design & Process Science 3(4): 13–26.

Giachetti, R. E. 2004. A framework to review the information integration of the enter-
prise. International Journal of Product Research 42(6): 1147–1166.

Giachetti, R. E. and Rojas, J. A. 2007. Simulating coordination of human-robot teams
for military operations. Proceedings of the 2007 Industrial Engineering Research
Conference, Nashville, TN.

Giddens, A. 1986. The Constitution of Society: Outline of the Theory of Structuration.
Berkeley: University of California Press.

Glennan, S. S. 2002. Rethinking mechanistic explanation. Philosophy of Science
69(September): S343–S353.

183Foundations in Systems Integration

Gold-Bernstein, B. and Marca, D. 1998. Designing Enterprise Client/Server Systems.
Upper Saddle River, NJ: Prentice Hall.

Goldberg, B. E., Everhart, K., Stevens, R., Babbitt III, N., Clemens, P., and Stout, L.
1994. System Engineering “Toolbox” for Design-Oriented Engineers. Marshall Space
Flight Center, Alabama: National Aeronautics and Space Administration
(NASA), 306pp.

Government, U.S. 2005. DoD Guide for Achieving Reliability, Availability, and
Maintainability. Department of Defense. Washington, DC.

Groah, J., Smoller, J., and Temple, B. 2007. Shock Wave Interactions in General Relativity:
A Locally Inertial Glimm Scheme for Spherically Symmetric Spacetimes, New York:
Springer.

Gross, N. 2009. A pragmatist theory of social mechanisms. American Sociological Review
74: 358–379.

Guenov, M. D. and Barker, S. G. 2005. Application of axiomatic design and design struc-
ture to the decomposition of engineering systems. Systems Engineering 8(1): 29–40.

Hamlet, D. 2007. Software component composition: A subdomain-based testing-the-
ory foundation. Software Testing, Verification, and Reliability 17: 243–269.

Harel, D. and Politi, M. 1998. Modeling Reactive Systems with Statecharts: The
STATEMATE Approach. New York: McGraw Hill.

Haskins, C. 2007. A systems engineering framework for eco-industrial park forma-
tion. Systems Engineering 10(1): 83–97.

Hassellbring, W. and Reichert, M. (Eds.) 2004. Proceedings of the GI-/GMDS Workshop
on EAI (Enterprise Application Integration). Oldenburg, Germany: EAI Industry
Consortium.

Hedman, J. and Kalling, T. 2003. The business model concept: Theoretical underpin-
nings and empirical illustrations. European Journal of Information Systems 12: 49–59.

Henry, D. P. 1972. Medieval Logic and Metaphysics. London: Hutchinson & Co. Ltd.
Herald, T. E., Verma, D., and Lechler, T. 2007. A model proposal to forecast system

baseline evolution due to obsolescence through system operation. Conference on
Systems Engineering Research CSER. Hoboken, NJ: Stevens Institute of Technology.

Holland, J. H., Holyoak, K. J., Nisbett, R. E., and Thagard, P. R. 1986. Induction:
Processes of Inference, Learning, and Discovery. Cambridge, MA: The MIT Press.

Hoover, S. V. and Perry, R.F. 1989. Simulation: A Problem-Solving Approach. Reading,
MA: Addison-Wesley.

Humphrey, W. S. 1989. Managing the Software Process. Reading, MA: Addison-Wesley.
INCOSE 2007. Systems Engineering Vision 2020. INCOSE, San Diego, California,

International Council on Systems Engineering, 32pp.
INCOSE 2008. In C. Haskins (Ed.), INCOSE Systems Engineering Handbook, Version 3.1.

Systems Engineering Handbook: A Guide for System Life Cycle Processes and Activities.
San Diego, California, 304pp.

INCOSE 2010. In C. Haskins (Ed.), Systems Engineering Handbook. San Diego:
International Council on Systems Engineering (INCOSE), 382pp.

Jain, R., Chandrasekaran, A., and Ozgur, E. 2010. A systems integration framework
for process analysis and improvement. Systems Engineering 13(3): 274–289.

Jain, V. 1981. Structural analyses of general systems theory. Behavioral Science 26:
51–62.

Jitpaiboon, T. 2005. The Roles of Information Systems Integration (ISI) in the Supply Chain
Integration Context—Firm Perspective. PhD thesis, College of Business
Administration. Toledo: The University of Toledo, 279pp.

184 Engineering Systems Integration

Kasser, J. E. and Mackley, T. 2008. Applying systems thinking and aligning it to sys-
tems engineering. 18th INCOSE International Symposium. Utrecht, Holland:
International Council on Systems Engineering.

Katifori, E., Szollosi, G. J., and Magnasco, M. O. 2010. Damage and fluctuations
induce loops in optimal transport. Physical Review Letters 104(29 January):
048704–048708.

Kerlinger, F. N. and Lee, H. B. 2000. Foundations of Behavioral Research. 4th Edition.
Belmont, CA: Cengage Learning.

Kirk, G. S., Raven, J. E., and Schofield, M. 2009. The Prescocratic Philosophers. Cambridge:
Cambridge University Press.

Kleindorfer, P. R. and Van Wassenhove, L. N. 2004. Managing risk in global supply
chains. In Gatigon, H. and Kimberly, J. (Eds.), The Alliance on Globalization.
Cambridge: Cambridge University Press, Chapter 12.

Klir, G. 2001. Facets of Systems Science. New York: Kluwer Academic-Plenum Publishers.
Koestler, A. 1968. The Ghost in the Machine. New York: Macmillan.
Koestler, A. and Symthies, J. R. (Eds.) 1968. Beyond Reductionism. The Alpbach

Symposium. Tyrol, Austria, Hutchinson of London, 438pp.
Koopman, P. J. 1995. A taxonomy of decomposition strategies based on structure,

behavior and goals. Design Engineering 83(Design Engineering Technical
Conferences Vol. 2): 611–618.

Korman, D. Z. 2007. The Naive Conception of Material Objects: A Defense. PhD thesis,
Austin: University of Texas

Koszarek III, W. E. 2008. Peer Production in the U.S. Navy: Enlisting Coase’s Penguin. MS
thesis, Systems Engineering Department. Monterey, CA: United States Naval
Postgraduate School, p. 79.

Kuhn, A. 1974. The Logic of Social Systems. San Francisco: Jossey-Bass.
Kujawski, E. and Miller, G. A. 2007. Quantitative risk-based analysis for military

counterterrorism systems. Systems Engineering 10(4): 273–289.
Kuwabara, K. 2011. Cohesion, cooperation, and the value of doing things together:

How economic exchange creates relational bonds. American Sociological Review
76(4): 560–580.

Kwon, D., Watts-Sussman, S., and Collopy, F. 2002. Value frame, paradox and change:
The constructive nature of information technology business value. Sprouts:
Working Papers on Information Environments, Systems and Organizations 2(4 Article
11): 196–220.

Kyburg, H. E. and Smokler, H. E. (Eds.) 1964. Studies in Subjective Probability.
New York: John Wiley & Sons.

Langford, G. 2006. Reducing risk of new business start-ups using rapid systems engi-
neering. Asia-Pacific Systems Engineering Conference. Singapore: National
University of Singapore Temasek Defence Systems Institute.

Langford, G. 2009. Foundations of value based gap analysis: Commercial and mili-
tary developments. 19th Annual International Symposium of the International
Council on Systems Engineering. Singapore: National University of Singapore
Temasek Defence Systems Institute.

Langford, G. O. 1971. Experimentally Obtained Metastable Atom Excitation Functions for
Helium, Methane, and Ammonia. MS thesis, Department of Physics. Hayward,
CA: California State College.

Lazarsfeld, P. F. 1993. On Social Research and Its Language. Chicago: University of
Chicago Press.

185Foundations in Systems Integration

Leonard, H. S. and Goodman, N. 1940. The calculus of individuals and its users.
Journal of Symbolic Logic 5: 45–55.

Lewes, G. H. 1875. In R. James (Ed.), Problems of Life and Mind. Boston: Osgood and
Company.

Lewis, P. J. 1994. Information Systems Development: Systems Thinking in the Field of
Information Systems. London: Pitman.

Lonchamp, J. 1993. A structured conceptual and terminological framework for soft-
ware process engineering. Proceedings of the 2nd International Conference on the
Software Process (ICSP 2). Berlin, Germany: IEEE Computer Society Press.

Lorenz, E. N. 1963. Deterministic non-periodic flow. Journal of Atmospheric Sciences 20:
130–141.

Machamer, P. 2004. Activities and causation: The metaphysics and epistemology of
mechanism. International Studies in the Philosophy of Science 18(1): 27–39.

Machamer, P., Darden, L., and Carver, C. 2000. Thinking about mechanisms. Philosophy
of Science 67(March): 1–25.

Malinowski, R. 1944. A Scientific Theory of Culture. Chapel Hill: The University of
North Carolina Press.

McClurg, S. D. and Young, J. K. 2010. A Relational Political Science. Political Networks
Paper Archive. Carbondale: Southern Illinois University, 11pp.

Meadows, D. 2008. In D. H. Meadows (Ed.), Thinking in Systems: A Primer. Sustainability
Institute, White River Junction, Vermont: Chelsea Green Publishing.

Miles, L. D. 1961. Techniques of Value Analysis and Engineering. New York: McGraw-Hill
Book Company, Inc.

Miles, L. D. 1972. Techniques of Value Analysis and Engineering. New York: McGraw-Hill, Inc.
Millard, R. L. 1999. Value Stream Analysis and Mapping for Product Development. MS

thesis, Aeronautics and Astronautics. Boston: Massachusetts Institute of
Technology, 139pp.

Miller, J. G. 1978. Living Systems. New York: McGraw-Hill Inc.
Molm, L. D., Takahashi, N., and Peterson, G. 2000. Risk and trust in social exchange:

An experiment test of a classical proposition. American Journal of Sociology 105:
1396–1427.

Moody, J. and White, D. R. 2003. Structural cohesion and embeddedness: A hierarchical
concept of social groups. American Sociological Review 68(1): 103–127.

Morris, P. W. G. and Pinto, J. 2004. The Wiley Guide to Managing Projects. Hoboken:
John Wiley & Sons, Inc., p. 213.

NASA 1990. Manager’s Handbook for Software Development, Revision 1. Greenbelt, MD:
National Aeronautics and Space Administration.

Nieminen, A. 2005. Towards a European Society: Integration and Regulation of Capitalism.
Helsinki: University of Helsinki, 465pp.

Object Management Group 2007. Unified Modeling Language: UML Superstructure
Specification, v2.1.1, 732pp.

Olson, E. T. 2002. The ontology of material objects. Philosophical Books 43(4): 292–299.
Osorio, C. A., Dori, D., and Susman, J. 2010. COIM: An object-process based method

for analyzing architectures of complex, interconnected, large-scale socio-techni-
cal systems. Systems Engineering. Wiley Online Library (wileyonlinelibrary.com)
1–19.

Parsons, V. S. 2005. Project performance: How to assess the early stages. 26th ASEM
National Conference. Organizational Transformation: Opportunities and Challenges,
Virginia Beach, American Society for Engineering Management.

186 Engineering Systems Integration

Pearl, J. 2001. Causality: Models, Reasoning, and Inference. Cambridge: Cambridge
University Press.

Pelkmans, J. 1998. European Integration: Methods and Economic Analysis. London:
Longman.

Pennock, M. J., Rouse, W. R., and Kollar, D. L. 2007. Transforming the acquisition
enterprise: A framework for analysis and a case study of ship acquisition.
Systems Engineering 10(2): 99–117.

Project Management Institute 1996. A Guide to the Project Management Body of
Knowledge, 1–930699–45-X. Pennsylvania: Project Management Institute, Inc.

Project Management Institute 2000. A Guide to the Project Management Body of
Knowledge. Newtown Square, Pennsylvania: Project Management Institute, Inc.

Quine, W. V. O. 1960. Words and Object. Cambridge, MA: The MIT Press, Massachusetts
Institute of Technology.

Rahming, K. B. 2009. Applying Risk Management to Reduce the Time in Lay-Up While
Increasing the Cost Effectiveness of a Nimitz (CVN 68) Class Aircraft Carrier in Dry
Dock during the Execution Phase of a Refueling and Complex Overhaul. MS thesis,
Systems Engineering Department. Monterey, CA: United States Naval
Postgraduate School, 137pp.

Rapoport, A. 1986. General Systems Theory: Essential Concepts and Applications.
Tunbridge Wells, Kent: Abacus Press.

Ray, A. S. 2003. Adapting the Building System Integration Method to Portray Architectural
Organizations. MS thesis, Architecture. Texas A&M University, 134pp.

Rebovich, G. 2005. Systems thinking for the enterprise: New and emerging perspec-
tives. Enterprise Systems Engineering Theory and Practice. Bedford: Mitre
Corporation, 2, 85pp.

Reed, I. 2008. Justifying sociological knowledge: From realism to interpretation.
Sociological Theory 26(2): 101–129.

Rocha, L. M. 1999. Evidence sets: Modeling subjective categories. International Journal
of General Systems 27(6): 457–494.

Rockwell Software 2004. Arena packaging: Template user’s guide. Template User’s
Guide, Wexford, PA: Rockwell Automation, 112pp.

Rodriguez, W. D., Massenburg, W. B., Lengerich, A. W., Stone, D. T. K., and Catto, W.
2004. Naval Systems Engineering Guide. Department of the United States Navy.
Washington DC: Defense Acquisition University, 295pp.

Rouse, W. B. 2004. Value-centered R&D organizations: Ten principles for character-
izing, assessing, and managing value. Systems Engineering 7(2): 167–185.

Rovelli, C. 1996. Relational quantum mechanics. International Journal of Theoretical
Physics 35: 1637–1678.

Rovelli, C. 1997. Half Way through the Woods. Pittsburgh: University of Pittsburgh Press.
Sage, A. P. and Armstrong, J. E. 2000. Introduction to Systems Engineering. New York:

John Wiley & Sons, Inc.
Schiemenz, B. 2002. Managing complexity by recursion. European Meeting on

Cybernetics and Systems Research. Vienna, Austria.
Schilling, M. A. and Parparone, C. 2005. Modularity: An application of general sys-

tems theory to military force development. Defense Acquisition Review Journal
12(3): 278–293.

Schlager, J. 1956. Systems engineering: Key to modern development. IRE Transactions
EM-3(3): 64–66.

187Foundations in Systems Integration

Senge, P. M. 2006. The Fifth Discipline: The Art & Practice of the Learning Organization.
New York: Doubleday Currency.

Shaw, D. R. 2007. Manchester United Football Club: Developing a network orchestra-
tion model. European Journal of Information Systems 16(5): 628–642.

Shingler, J., Van Loon, M. E., Alter, T. R., and Bridger, J. C. 2008. The importance of
subjective data in public agency performance evaluation. Public Administration
Review 68(6): 1101–1111.

Shishko, R. 1995. NASA Systems Engineering Handbook. National Aeronautics and Space
Administration Jet Propulsion Laboratory. Pasadena: California Institute of
Technology, 186pp.

Simon, H. A. 1962. The architecture of complexity. Proceedings of the American
Philosophical Society 106: 467–482.

Simon, H. A. 1973. The Organization of Complex Systems. New York: Braziller.
Simon, H. A. and Rescher, N. 1966. Cause and counterfactual. Philosophy of Science 33:

323–340.
Simon, P. 1987. Parts: A Study in Ontology. Oxford: Clarendon Press.
Sousa, G. W. L. 2004. Impact of Alternative Flow Control Policies on Value Stream Delivery

Robustness under Demand Instability: A System Dynamics Modeling and Simulation
Approach. PhD thesis, Industrial and Systems Engineering. Blacksburg, VA:
Virginia Polytechnic Institute and State University, 268pp.

Sowa, J. F. 2000. Knowledge Representation: Logical, Philosophical, and Computational
Foundations. Pacific Grove, CA: Books/Cole.

Sproles, N. 2000. Complex systems, soft science, and test & evaluation or ‘Real Mean
Don’t collect soft data’. SETE2000 Conference, Australia.

Srzednicki, J. T. and Stachniak, Z. (Eds.) 1988. S. Leśniewski’s Lecture Notes in Logic
Nijhoff International Philosophy Series. Dordrecht: Kluwer.

Stankosky, M. A. 2000. A theoretical framework. Knowledge Management World (special
millennium issue), p.15.

Stem, D. E., Boito, M., and Younossi, O. 2006. Systems Engineering and Program
Management: Trends and Costs for Aircraft and Guided Weapons Programs. Santa
Monica: Rand Corporation, 199pp.

Stone, R. B. S. 1997. Towards a Theory of Modular Design. PhD thesis, College of
Engineering. Austin, TX: The University of Texas, 289pp.

Stryker, A. C. and Jacques, D. R. 2009. Modularity versus functionality—A survey
and application. 7th Annual Conference on Systems Engineering Research 2009.
Loughborough University, UK: CSER 2009, University of Southern California.

Surma, S. J., Srzednicki, J. T., Barnett, D. I., and Rickey, F. (Eds.) 1992. Leśniewski,
Collected Works. Volumes I and II. Dordrecht: Kluwer.

Swanson, R. A. 2007. Theory framework for applied disciplines: Boundaries, contrib-
uting, core, useful, novel, and irrelevant components. Human Resource
Development Review 6(3): 321–339.

Taylor, T. C. 1981. Perspectives on some problems of concept selection, management
and complexity in military systems development. Naval War College Review
34: 55–65.

Todd, H. M. and Parten, D. S. 2008. A Systems Engineering Approach to Address Human
Capital Management Issues in the Shipbuilding Industry. MS thesis, Department of
Systems Engineering. Monterey, CA: United States Naval Postgraduate School,
247pp.

188 Engineering Systems Integration

Troncale, L. 1977. Linkage propositions between fify principal systems concepts.
North Atlantic Treaty Organization Conference Series: International Conference on
Applied General Systems Research, New York: Plenum.

Troncale, L. 2006. Towards a science of systems. Systems Research and Behavioral Science
23: 301–321.

Tronstad, Y. D. 1997. A business systems engineering model architecture. Proceedings
of the Seventh Annual International Symposium of the International Council on
Systems Engineering, Los Angeles.

Trumpf, J. 2002. On the Geometry and Parametrization of Almost Invariant Subspaces and
Observer Theory. PhD thesis, Mathematics Department. Wurzburg: Universität
Wurzburg, 206pp.

Turchin, V. F. 1977. The Phenomenon of Science—A Cybernetic Approach to Human
Evolution. New York: Columbia University Press, p.128.

Tvaryanas, A. P. 2010. A Discourse on Human Systems Integration. PhD thesis, MOVES
Institute. Monterey, CA: United States Naval Postgraduate School, 642pp.

United States Defense Acquisition University 2003. Risk Management Guide for DoD
Acquisition. Fort Belvoir, Virginia: Defense Acquisition University Press.

United States Department of Defense 2010. Defense Acquisition Guidebook, Version 5 May.
Department of Defense. Washington DC: Defense Acquisition University, 310pp.

United States Department of Defense 2011. Defense Acquisition Guidebook, 29 July 2011.
Department of Defense. Washington DC: Defense Acquisition University,
381pp.

Valerdi, R. and Davidz, H. L. 2009. Empirical research in systems engineering:
Challenges and opportunities of a new frontier. Systems Engineering 12(2): 169–181.

Van Wie, M., Bryant, C. R., Bohm, M. R., McAdams, D. A., and Stone, R. B. 2005.
A model of function-based representations. Artificial Intelligence for Engineering
Design, Analysis and Manufacturing 19(2): 89–111.

von Bertalanffy, L. 1928. Kritische Theorie der Formbildung. Berlin: Borntraeger.
von Bertalanffy, L. 1968. General System Theory: Foundations, Development, Applications.

New York: George Braziller.
von Böhm-Bawerk, E. 2005. Basic Principles of Economic Value. Grove City, PA:

Libertarian Press, Inc.
Wiener, N. 1948. Cybernetics: Or the Control and Communication in the Animal and the

Machine. Cambridge, MA: MIT Press.
Woleński, J. (2000–2001). In S. J., Surma, J. T., Srzednicki, D. I., Barnett, and V. F.,

Rickey (Eds.), S. Leśniewski, Collected Works, Vols. I–II, Nijhoff International
Philosophy Series, Vol. 44/I–II Dordrecht: PWN-Polish Scientific/Kluwer
Academic Publishers, 1992, pp. xvi + 382 (Vol. I), pp. 383–794 (Vol. II) ISBN
0–7923–1512-X. Modern Logic 8(3 & 4): 195–201.

Zadeh, L. A. 1997. Toward a theory of fuzzy information granulation and its centrality
in human reasoning and fuzzy logic. Fuzzy Sets and Systems 90(2): 111–127.

Zafirovski, M. 2005. Social exchange theory under scrutiny: A positive critique of its
economic-behaviorist formulations. Electronic Journal of Sociology 2: 1–40.

Zyphur, M. J., Islam, G., and Franklin, M. S. 2006. On Money and Valuation. Saussure,
Applied Semiotics/Sémiotique appliquée.

189

4
Systems

The fundamentals of interaction are predicated on the action of one object
influencing another object. The objects may be same or different. For our
purposes, an object is something that exists (i.e., has meaning in the physical
world). This is not to say that things that are not physical have no meaning. It
rather implies that there are things that exist that are not objects, and that are
considered to exist yet differently than as objects. Our mereology distin-
guishes between objects and processes, where processes are comprised of
things not physical. Objects have properties and characteristics, and can be
considered either a fundamental constituent (at subatomic dimensions) or an
aggregation of sorts of other objects (parts). We use the word object to sig-
nify an item of unit importance that is appropriate and consistent with the
level of analysis necessary and sufficient to relate objects and processes to
integration.

Systems are made up of objects. For convenience, levels of detail are often
related by the single descriptive word object. Development efforts generate
words such as components and subcomponents, assemblies and subassem-
blies, and modules and submodules to coincide with a particular phase of
work, some measure of a task, or in a gross sense, a category of like-kind
entities. In a hierarchical fashion, greater detail is relegated to lower-level
positioning in that hierarchical description. We have defined a framework in
which to organize the variables of groupings of objects. Some of those group-
ings may be systems or system of systems, some may not. Those that are not
systems fall into two categories: not a system (NotaSystem) and a prototypi-
cal system (ProtaSystem). NotaSystem has only a few properties of a system
and ProtaSystem has many. There are no characteristics of NotaSystem that
differ from two objects interacting occasionally. A single object receives no
EMMI, is therefore not under the influence of a force that activates its mecha-
nism, and consequently has no output. A single (by definition) noninteract-
ing object is NotaSystem (by definition). However, two objects can be
distinguished by their properties, traits, and attributes as NotaSystem, a
ProtaSystem, a System, and a System of Systems.* That objects have other
characteristics has been covered in the previous two chapters. Those charac-
teristics include properties (intrinsic to the object), traits (properties posed in

* Recall that we do not distinguish between objects by their design or amount of detail. An
object is an object.

190 Engineering Systems Integration

a particular context, such as environment), and attributes (those items that
are neither intrinsic properties nor traits, but associated with the object).

From Chapter 1, we summarize the principles of integration, and then dis-
cuss the implications of those principles with reference to systems.

Principle 1: The Principle of Alignment: Alignment of strategies for the
business enterprise, the key stakeholders, and the project results in
better outcomes for product or service development.

Principle 2: The Principle of Partitioning: Partitioning of objects can create
tractable problems to solve if and only if boundary contiguity is
achieved.

Principle 3: The Principle of Induction: Inductive reasoning should guide
integration management and recursive thinking.

Principle 4: The Principle of Limitation: Integration is only as good as
architecture captures stakeholder requirements.

Principle 5: The Principle of Forethought: Integration is a primary, key
activity, not an afterthought considered as a result of development.

Principle 6: The Principle of Planning: Integration planning is predicated
on pattern scheduling (lowest impact on budget), network schedul-
ing (determinable impact on budget), and ad hoc scheduling (unde-
termined impact on budget).

Principle 7: The Principle of Loss: When two objects are integrated, both
objects give up some measure of autonomous behavior.

From Chapter 2, we defined the mereology of systems as objects and pro-
cesses. The framework for integration is shown in Figure 4.1.

From Principle 2: The Principle of Partitioning, we note that objects can be
grouped and partitioned, functions may or may not track with groupings of

Object

ObjectFunction

Object

• Direction of arrow shows movement of EMMI from end to head

• Dashed line illustrates the perceptions from the user’s perspective

User

Process

Tool

FIgure 4.1
The mereology of systems.

191Systems

objects, and behaviors may track with objects and have somewhat some
degree of coupling and cohesion with functions. The ontology of systems is
depicted in Figure 4.2.

One object releases EMMI that impinges on another object. Should the
objects exchange EMMI, an interaction is said to have occurred. The release
of EMMI from object “A” is “a”; the release of EMMI from “B” is “b”. Release
“a” causes object A mechanism “Am” and control “Ac” to produce output
“Ad”. “Ad” causes mechanism “Bm” (of object “B”) with control “Bc” to pro-
duce output “Bd”.

Exchange interaction “A with B” results in no change in “A” or “B”.
Sustained exchanges require drawdown of resources from both “A” and “B”
as both experience losses attributable to their releases. A and B can be assem-
bled as A and B. For example, under optimal conditions, two distinctly dif-
ferent types of musical instruments can be distinguished by the human ear.
When the two instruments are played together they present as sounds As
and Bs. The playing duet is an aggregation of A and B. The musicians are Ap
and Bp; the music is Ax and Bx. The conduction of the two musicians follows
the cognitive structures that drive orchestration processes and are written
down. A and B are juxtaposed to gain the optimal experience at one location
in the music hall. The plan (design) is laid out, the players are informed and
working as a team, and the physical layout of the musicians is followed. The
totality of the layout, music, orchestration, and conduction is the architecture
of the concert (a process). The concert is carried out; the audience distinctly
hears both instruments and their harmonization. The concert is over, every-
one leaves. NotaSystem? ProtaSystem? System? System of Systems?

Subjective

Object

Tool

Object

Object

• Direction of arrow shows movement of EMMI from end to head
• Dashed line illustrates the perceptions from the user’s perspective

Use

User

Idea

Behavior

Process

Objective

Activity model

Function

FIgure 4.2
The ontology of systems.

192 Engineering Systems Integration

The service provided by the concert is entertainment. For integration
classes consider the classes: abstraction, social, and model. The abstraction
class of integration deals with the emotions and feelings of the players and
conductor and audience. The social class of integration deals with the behav-
ioral mechanisms of people. The model class of integration deals with the
physical representations of the concert.

Consider the boundaries of the objects and processes, that is, the greatest
extent in which an object, combinations of objects, functions, and behavior
due to the presence of object (or anticipation of the presence of objects) has
on the stakeholders during the lifecycle of these same objects and processes
and all other processes and objects with whose lifecycle they may interact.
Each of these concepts relates to stakeholders; therefore, the number of
stakeholders for the simplest of systems may in general be quite extensive.
For human-built systems, changing or establishing the boundaries may
change the dimensions of the physical, functional, behavioral, or processes.
A pertinent issue for human-built systems is the impact of not including
stakeholders whose lifecycle processes, physical entities functions, and
behaviors interact in a causal manner with that of the system under evalua-
tion. In the case of developmental products and services, missing stakehold-
ers may represent requirements that are omitted from consideration. If
those requirements are identified, the system will need to incorporate them,
ignore them, or plan their inclusion during an upgrade phase. Of particular
interest are the integration aspects of the concert (generally referring to all
objects and processes). Performing a stakeholder analysis is key at this
point. The implication of the analysis so far is that there will be a number of
hidden requirements that need to be brought out with objects and proce-
dures during the integration process. Flexibility and scalability must be
built into the concert.

Systemness

A system requires sustained interactions that arise from a sufficient density
of the appropriate types of objects with the appropriate types of mecha-
nisms, fed by the appropriate types of EMMI. The bringing together of
objects and EMMI in sufficient densities and interactions is a minimum step
in integration. When integration occurs, a system is said to have come into
operation, that operation is stable, and has a lifetime. Before integration
occurs, however, parts of the system may exist in various forms (termed as a
ProtaSystem). A ProtaSystem is both a primitive system with inconsistent or
partially enacted sustainment mechanisms, with the first manifestations of
systemic behaviors. These behaviors may include (1) equifinality (various
sorts of degeneracy that are inherent in the existing structure of objects);

193Systems

insufficient density of objects of the kind and location needed to sustain
interactions; inadequate EMMI needed for sustainment, including squelching
of the mechanism due to saturation, below threshold inputs, and insufficient
suffusion; and incompatibility of EMMI and mechanisms (Troncale 2011);
(2) isomorphicity—the similarity of mixes and kinds of objects observed in
systems (von Bertalanffy 1968); and (3) inadequate or inappropriate
emergence(s); and unsustainable losses of EMMI from any cause. Integration
is the process of setting up or by chance satisfying the conditions that lead to
an integrated set of objects (i.e., system).

The integration framework is shown in Figure 2.8. The framework shown
is an expanded 3 × 3 matrix. The relations between the subjective domain
and the objective domain are spelled out as the items in each frame
 intersect. Objects are designated as products and services; processes are
designated as abstractions (cognitions), mechanisms (procedures), and
models (representations).

Objects achieve their usefulness from a systems perspective when con-
nected and interacting. The object’s mechanisms and properties provide
capability when not connected, but no uses are possible without interaction
with another object.* Objects behave differently when connected compared
to when not connected.

Emergence

Consider a simple pendulum suspended from a wooden beam above the
floor, which leaves freedom of motion in circular motions and only restricted
in vertical motions by the height of the beam above. Let the pendulum swing
in the Earth’s gravitational field. The pendulum is comprised of a string
 (typical of that used to fly kites—lightweight, pliable, highly susceptible to
transverse forces (gets pushed around a lot)), but quite strong in the longitu-
dinal direction; tightening is braid when pulled; a mass, m, that is one hun-
dred times more massive than the string to which it is secured by a tied
knot; a point of suspension, comprised of a loop of high-grade brass which
is screwed into the beam and securely tightened to the point that only
a mechanical steel tool is capable of loosening and removing the brass loop;
the beam is massively supported by a structure of walls and joists, all of
which have a mass in excess of one million times that of mass, m; the struc-
ture is securely embedded in a foundation that rests on terra firma.

* A person (object) picking up a hammer (object) is interacting with the hammer (from the
perspective of the person). Without the interaction between the two objects, no functions
exist, no use is attempted, no performance is accomplished, and no result is achieved.

194 Engineering Systems Integration

There are several aspects of the pendulum that are germane, including the
function of friction that occurs at the connection of the string to the brass
ring; the maximum storage of energy in the string-mass object at the highest
point in its swing; the vector force of gravity (presumed to be radially toward
the Earth’s center); the frictional force of air molecules on the moving mass
(from the perspective of the moving mass); and the initial input of EMMI that
displaces the pendulum and starts the pendulum’s oscillations.

The initial position of the mass m is either displaced from the vertical that
is established along the line between the pivot and the center of Earth’s mass
or along that centerline to the Earth’s center of mass. In either case, energy
will be expended. If the mass is not displaced from the centerline, then addi-
tional displacement would be required to raise the mass along the circum-
ference of a circle with radius of length of string, l. If displaced, the mass wall
“fall” and be put into motion along the arc of the circle that is scribed by the
string from the pivot point at the location of the brass ring.

The motion of mass will continue along the arc (precessing due to the
Earth’s motion beneath the swinging mass, as permitted by the manner in
which the string was tied to the pivot point). The interaction between the
pivot material and the string’s material is expected to create friction with the
resultant loss of energy of the string-mass object due to its rubbing. There
may also be additional losses due to the string and mass colliding with
atmospheric molecules, or perhaps eddies and currents of low and high den-
sities of air molecules (referred to as turbules). All effects of friction impart
losses to the string-mass object. The net result of these effects will be to
dampen the swinging motion of the mass, resulting in a decay in the height
that the mass will return to on each swing. Over time, this dampening
motion will result in the mass being returned to its nondisplacement posi-
tion along the line drawn from the pivot point on the beam to the Earth’s
center of mass. Missing from the objects needed for sustainment is a source
of EMMI needed to overcome the losses, that is, there is no restoring force to
make up for the losses that are expected from the pendulum experiment. An
object will provide the initial EMMI to begin the oscillatory motion of the
mass relative to vector representing the centerline of gravity. It is expected
that the simple pendulum will become an object that will swing for multiple
minutes before losing sufficient energy so as no longer reach one-third of the
height displacement of the first swing position of the mass. The string places
a constraint on the mass and the mass constrains the string. The mass is
restricted to the swing and will not move lower than the length of the string
and the string is pulled taut, acting more like a rod than a limp twine. The
performance of the string-mass object can be stated as maximum displace-
ment of mass, m, or the height of mass m above some measurable distance
from the floor or from the beam. Identifying a standard of measurement will
provide a consistent error in distance regardless of the location of the string-
mass object during it oscillations. A measure of effectiveness might be the
number of oscillations per unit time or the rate of change in the height of

195Systems

mass m above the fixed reference point. The effectiveness reflects the ability of
the string-mass object to minimize its losses and maximize its performance
within the context of the connections and environment.

Interactions between the ground and the building structure, the structure
and the beam, the beam and the brass ring, the brass ring and the string,
and the string and the brass ring reveal emergence, that is, the trait of ten-
sion on the string. Emergence is necessary for integration, but by itself is
insufficient.

There are three types of emergence: intrinsic, temporary, and reversible.
The intrinsic emergence results with a change in the properties of one of
the objects participating in an exchange of EMMI, that is, an interaction. The
property changes of an object that are irreversible become permanent emer-
gent properties. Changes in attributes (e.g., change in the markings on the
mass or change in the checking of the beam, or change of clothes for one of
the experiments) are reversible. Reversible changes showcase temporary
emergence. Temporary emergence can be sustained for as long as the appro-
priate EMMI is available and the context and circumstances support the
emergent attribute(s). Irreversible changes in properties due to interactions
are typical of emergent properties of an object(s). It is possible to have revers-
ible changes in properties given the appropriate EMMI and conditions and
circumstances (termed as reversible emergence). Such reversible changes in
properties represent stable changes in objects that are stable in two EMMI
conditions—one before the (reversible) change and one after the change has
been reversed. Both situations are stable, the one that represents the change
is termed as metastable. The (reversible) temporary emergence is also
termed as metastable. Constraints placed on objects result in emergence (all
three types).

Identifying the function(s) of an object begin by noting how the object is
and can be connected to other objects. Once connected, determine what the
various combinations of connection and objects can do (in the physical, func-
tional, and behavioral sense). Since the function derives its existence from
the interface between objects (with the object’s mechanisms working in
 concert) to support the needs to maintain the interface, a requirement for
interface stability is necessary.

Interface

Interfaces (in their simplest form) are comprised of two objects connected
together by EMMI. Interaction requires both objects to exchange EMMI. That
means the connection derives from EMMI. For example, consider two similar
pieces of wood (similar in terms of properties, traits, and attributes). One piece
of wood placed on top of the other piece of wood provides a connection via

196 Engineering Systems Integration

physical contact. The two pieces of wood will remain connected (in contact)
as long as their forces of friction generated by their resistance to movement
are stronger than the forces imposed by external events to move one piece
relative to the other piece. The function of the two pieces of connected wood
might be to make a cavern in which to build a fire and create a thermal cavity
for generating a higher temperature (e.g., building on the concept of cavity
radiation). There is no force expected that would move one piece relative to
the other, so with gravitational and lateral stabilities the fire can reach higher
temperature with a stable cavity in place, that is, the dimensions of the cavity
remain constant. In this case, the function of the connection between the two
pieces of wood is to create a physical cavity.

That objects can be configured to provide functions is an inherent trait of
interacting objects. The interface between two objects can be viewed as a
boundary, that which separates one object from another object. That there
are three types of boundaries (physical, functional, and behavioral) points
integration efforts in three, sometimes different, directions. Whether the
physical boundary of the product or service is the most important aspect is
normally ill defined in the set of initial requirements. In general, products
and services are considered to be tools for carrying out particular functions.
Since functions are distinguished only by the type of function, the
performance(s) of the types of functions, and the quality related to the per-
formances (sometimes, quality is ascribed to the function directly—functions
with high quality equates to a product or service of high quality). Therefore,
most new products or services angle to take advantage of advancements in
technology, so that new products or services offer different functions (or
combinations of functions), improvements in performance or quality (or
both), or show increased value for the same sets of functions (perfor-
mances and quality) by delivering at a lower price. From an integration
perspective, functions are functions, only the objects and processes may
change. As such, boundaries become more important for proving func-
tionality and significantly important when integrated to achieve a sys-
temic relation between constituent objects. The interface is the result of
objects and EMMI. Managing an interface means managing the symptom,
not the cause. The distinction is mighty when integration efforts are con-
fronted with functions that fall short of their performance requirements.
Passing unit tests and interface checking should not suggest nor necessarily
imply that the risk has been reduced in a development effort. And neither
does passing these early development tests mean that earned value is as
calculated.

If an earned value calculation indicates 25% of the work is completed and
is on budget and on schedule, and the work completed for early testing indi-
cates that all is progressing “nicely,” the underlying premises may be faulty.
If integration budgets swell to 50%, then the risk apportionment should be
normalized to the allocation of risk across like-kind projects. Currently,
earned value is based only on the project that is ongoing. Rather, it would be

197Systems

interesting to determine if any advantages accrue to an index baseline of
“standards of reference” to gain better insight into the problems faced by
integration activities.

Functional Analysis

Fundamentally, functions serve as the means to constrain an object of which
it is a part through connection. Constrained objects, in turn, constrain pro-
cesses. And, if processes are constrained by budgets, schedules, skills, scope,
policies, or rules, then objects and functions are constrained. Functional
analysis attempts to partition and provide more detail to delineate functions
so that they can be mapped into objects that can be built and integrated.
Systems engineering perform decomposition, analysis, and synthesis in a
highly iterative fashion to weed out overlapping and underlapping func-
tions, provide unencumbered interfaces, and provide a workable structure of
events to facilitate clear and unambiguous integration.

The value of functions is to describe either the intended or incidental uses
of connected objects. Objects can be of two types—physical and intellectual.
Function can be explained in terms of performance of objects and by the
individual losses of the objects attributable to achieving those performances.
Functional analysis explains the capacities of an object (Cummins 1975)
through these performances and losses. Functional analysis views an object
by its possible uses given those performances and losses, in other words, by
their mechanism(s). Functional analysis is widely applicable and found in
use from the physical world of engineering to biology (e.g., cardiovascular
system, neurological system, endocrine system), architecture (e.g., placement
and access to services; views of nature and lighting of streets and buildings),
sociology (e.g., the set of rules governing safe travel by vehicles on the roads;
the criminal justice system of incarceration versus supervised rehabilitation
in half-way houses, the communication of an order to evacuate in the face of
a pending disaster by civic leaders), and economics (e.g., the introduction of
wireless smart-card technology to aid in commerce crossing international
borders, and identification of card holders via biometrics).

Functional analysis is often thought about and described as a hierarchical
decomposition of terms from top-level abstractions to lower-level details.
From the perspective of objects, no such reductionist portrayal is accurate or
representative of how functions are constructed or conceived by users
(objects). One can think of a network of objects or more appropriately, an
interconnected set of objects whose EMMI interoperate as per design or mat-
ter of expediency.

Cummins (1975) makes the case that functions are inherently related to
behaviors of objects. In that interpretation of relations between properties

198 Engineering Systems Integration

and traits of physical objects, functions and their induced behaviors would
seem essential complements to the roles of the user. That view is suggestive
of the functions as being both part of the decision-making processes of the
users and the corporate enactments with which the objects are employed to
gain access to the desired performances. These behaviors are both formative
when anticipating the use of an object and summative when actually using
the objects. For integration, the functional boundaries with the users are not
tested to any extent as part of the systems engineering activities. Some
degree of consideration is given to the human systems integration concept.
However, full implementation in an operational environment has been tradi-
tionally generally left to the user. That is changing. As an example, the role
of the acquirer (i.e., the customer) is moving from that of the buyer who takes
delivery to that of a participant in the decision-making processes of the proj-
ect. The customer has begun to identify their ownership of “trade-spaces.”
Taking on this role of an active participant will precipitate changes in the
integration strategy, the extent of testing and integration, and the purview of
development. Traditional development may extend in the “after-sale”
 environment to bring about integration of processes. The result might be to
better target interoperability requirements, more focused integration needs,
and alignment of product and service architectures with that of the opera-
tional environment, typically a system of systems environment.

Systems and Integration

There are five necessary and sufficient conditions for integrating to achieve a
proto-system (whether natural or human-built). They are the requisite num-
ber of objects, the kind of objects, the density of objects in a region of interac-
tion, the adequacy of the EMMI in terms of rate (average EMMI for a period
of time), and the specific characteristics of the EMMI. The factors that drive
objects and that are found causal can be mixed to achieve various levels of
systemness. The factors that are significant are object, boundary, function,
property, trait, attribute, output, self-reliance, control, and performance. The
duration of lifetime or stability of systemness is determined by the boundary
conditions and variances about the performances of the functions. Within
these categories of factors we find emergence (trait) and trust (self-reliance).
Table 4.1 compares the types of systems with these factors. The systems listed
are NotaSystem, ProtaSystem, System, and System of Systems. These system
types are summarized by a one- or two-word characterization of the type.

Systems have properties that are different from those of their constituent
objects. Systems show emergence related to the properties of their objects
and in aggregate reveal themselves through system properties. This type of
emergence is different from that of interacting objects, which is reversible.

199Systems

TA
B

Le
 4

.1

Fa
ct

or
s

T
ha

t D
et

er
m

in
e

Sy
st

em
ne

ss

Fa
ct

or
N

o
In

te
ra

ct
io

n
N

ot
aS

ys
te

m
M

u
tu

al
P

ro
ta

S
ys

te
m

C
on

so
li

d
at

e
(S

yn
th

es
is

)
S

ys
te

m
In

te
gr

at
ed

S

ys
te

m
 o

f
S

ys
te

m
s

U
n

it
ed

O
bj

ec
t

O
ne

Tw
o

(m
in

im
um

)
Tw

o
(m

in
im

um
)

Tw
o

ob
je

ct
s,

 e
ac

h
w

it
h

th
re

e
m

ec
ha

ni
sm

s,

m
in

im
um

Tw
o

ob
je

ct
s,

 e
ac

h
w

it
h

m
in

im
um

 o
f s

ix

m
ec

ha
ni

sm
s

B
ou

nd
ar

y
O

ne
A

t l
ea

st
 o

ne
 o

bj
ec

t’s

bo
un

d
ar

y
is

 e
xt

en
d

ed

ph
ys

ic
al

ly

O
bj

ec
ts

’ b
ou

nd
ar

ie
s

ar
e

ex
te

nd
ed

 p
hy

si
ca

lly
O

bj
ec

ts
’ b

ou
nd

ar
ie

s
ar

e
ex

te
nd

ed
 p

hy
si

ca
lly

,
fu

nc
ti

on
al

ly
, a

nd

be
ha

vi
or

al
ly

O
bj

ec
ts

’ b
ou

nd
ar

ie
s

ar
e

ex
te

nd
ed

 p
hy

si
ca

lly
,

fu
nc

ti
on

al
ly

, a
nd

be

ha
vi

or
al

ly
Fu

nc
ti

on
N

o
fu

nc
ti

on
s

N
o

ne
w

 fu
nc

ti
on

s,

ea
ch

 o
bj

ec
t r

et
ai

ns
 it

s
fu

nc
ti

on
al

it
ie

s

Fu
nc

ti
on

(s
) a

d
d

ed
 d

ue

to
 c

ha
ng

es
 in

m

ec
ha

ni
sm

s,
 r

es
ul

ti
ng

in

 n
ew

 o
bj

ec
ts

N
ew

 fu
nc

ti
on

s
ad

d
ed

 d
ue

to

 c
ha

ng
es

 in
 m

ec
ha

ni
sm

s,

m
an

y
ne

w
 o

bj
ec

ts
 r

es
ul

ts

N
ew

 fu
nc

ti
on

 a
d

d
ed

d

ue
 to

 c
ha

ng
es

 in

ob
je

ct
s

Pr
op

er
ty

In
tr

in
si

c
In

tr
in

si
c

A
 fe

w
 o

bj
ec

ts
 w

it
h

ir
re

ve
rs

ib
le

 p
ro

pe
rt

ie
s

ch
an

ge
 to

 n
ew

 o
bj

ec
ts

Ir
re

ve
rs

ib
le

 p
ro

pe
rt

ie
s

at

th
e

sy
st

em
 le

ve
l

R
ev

er
si

bl
e

pr
op

er
ti

es
 a

t
th

e
sy

st
em

 le
ve

l

Tr
ai

t
Pr

op
er

ty
 in

 c
on

te
xt

Pr
op

er
ty

 in
 c

on
te

xt
, n

o
ch

an
ge

 in

m
ec

ha
ni

sm
s

O
bj

ec
t’s

 p
ro

pe
rt

ie
s

in

co
nt

ex
ts

 w
it

h
ea

ch

ob
je

ct
’s

 p
ro

pe
rt

ie
s

O
bj

ec
ts

’ p
ro

pe
rt

ie
s

in

co
nt

ex
t w

it
h

an
ot

he
r

ob
je

ct
s’

 p
ro

pe
rt

ie
s

O
bj

ec
ts

’ p
ro

pe
rt

ie
s

in

co
nt

ex
t w

it
h

an
ot

he
r

ob
je

ct
s’

 p
ro

pe
rt

ie
s

A
tt

ri
bu

te
C

ha
ra

ct
er

is
ti

c
of

lik

e-
ki

nd
 o

bj
ec

ts
R

ev
er

si
bl

e
ch

an
ge

s
in

at

tr
ib

ut
es

So
m

e
ir

re
ve

rs
ib

le

ch
an

ge
s

in
 a

tt
ri

bu
te

s
M

an
y

ir
re

ve
rs

ib
le

 c
ha

ng
es

in

 a
tt

ri
bu

te
s

R
ev

er
si

bl
e

ch
an

ge
s

in

so
m

e
at

tr
ib

ut
es

R
ec

ip
ro

ci
ty

N
on

e
M

in
im

um
 in

te
ra

ct
io

n
(r

eq
ui

re
s

tw
o

ob
je

ct
s)

M
in

im
um

 r
eq

ui
re

d
 to

su

st
ai

n
so

m
e

in
te

ra
ct

io
ns

Sa
ti

sfi
es

 th
e

la
w

 o
f s

ys
te

m

re
ci

pr
oc

it
y

fo
r

so
m

e
E

M
M

I

Sa
ti

sfi
es

 th
e

la
w

 o
f

sy
st

em
 r

ec
ip

ro
ci

ty

co
nt

in
ue

d

200 Engineering Systems Integration

TA
B

Le
 4

.1

(c
on

ti
nu

ed
)

Fa
ct

or
s

T
ha

t D
et

er
m

in
e

Sy
st

em
ne

ss

Fa
ct

or
N

o
In

te
ra

ct
io

n
N

ot
aS

ys
te

m
M

u
tu

al
P

ro
ta

S
ys

te
m

C
on

so
li

d
at

e
(S

yn
th

es
is

)
S

ys
te

m
In

te
gr

at
ed

S

ys
te

m
 o

f
S

ys
te

m
s

U
n

it
ed

O
ut

pu
t

Si
ng

le
 o

bj
ec

t
A

s
in

d
ep

en
d

en
t

ob
je

ct
s

So
m

e
ob

je
ct

s’
 o

ut
pu

ts

m
ay

 b
e

sy
ne

rg
is

ti
c

O
bj

ec
t’s

 o
ut

pu
ts

 a
ff

ec
t

sy
st

em
-l

ev
el

 o
ut

pu
ts

O
bj

ec
ts

’ o
ut

pu
ts

 a
re

au

to
no

m
ou

s,
 y

et
 a

ff
ec

t
sy

st
em

-l
ev

el
 o

ut
pu

ts
Se

lf
-r

el
ia

nc
e

Se
lf

-r
el

ia
nt

 (t
ru

st
 in

th

ei
r

ow
n

ex
pe

ri
en

ce
)

O
bj

ec
ts

 m
ai

nt
ai

n
se

lf
-r

el
ia

nc
e

(t
ru

st
 in

th

ei
r

ow
n

ex
pe

ri
en

ce
)

M
os

t o
bj

ec
ts

 m
ai

nt
ai

n
se

lf
-r

el
ia

nc
e

(s
om

e
re

ly

on
 o

th
er

s
an

d
 m

us
t

tr
us

t)

O
bj

ec
ts

 a
re

 d
ep

en
d

en
t,

si
m

ul
ta

ne
ou

sl
y

w
ho

le
s

an
d

 p
ar

ts
 (a

ll
m

us
t t

ru
st

in

 e
ac

h
ot

he
r)

O
bj

ec
ts

 m
ai

nt
ai

n
se

lf
-r

el
ia

nc
e,

 b
ut

 a
re

si

m
ul

ta
ne

ou
sl

y
w

ho
le

s
an

d
 p

ar
ts

(o

bj
ec

ts
 in

d
ep

en
d

en
tl

y
ve

ri
fy

)
C

on
tr

ol
Se

lf
-c

on
tr

ol
O

bj
ec

ts
 m

ai
nt

ai
n

se
lf

-c
on

tr
ol

Fe
w

 o
bj

ec
ts

 s
ho

w

d
ep

en
d

en
ci

es
, m

os
t n

ot
C

on
tr

ol
 u

ni
fie

s
or

 g
ui

d
es

ac

ti
on

(s
) o

f o
bj

ec
ts

C
on

tr
ol

 u
ni

fi
es

 o
r

gu
id

es
 a

ct
io

n(
s)

 o
f

gr
ou

p
of

 o
bj

ec
ts

, w
it

h
au

to
no

m
y

Pe
rf

or
m

an
ce

O
bj

ec
t h

as
 in

d
ep

en
d

en
t

pe
rf

or
m

an
ce

(s
)

O
bj

ec
ts

 h
av

e
in

d
ep

en
d

en
t

pe
rf

or
m

an
ce

(s
)

O
bj

ec
ts

 h
av

e
fe

w

d
ep

en
d

en
ci

es
 w

it
h

m
os

t o
bj

ec
ts

 s
ti

ll
au

to
no

m
ou

s

A
ll

ob
je

ct
s

ar
e

d
ep

en
d

en
t

an
d

 c
on

tr
ib

ut
e

to

sy
st

em
-l

ev
el

pe

rf
or

m
an

ce
(s

)

A
ll

ob
je

ct
s

ar
e

in
d

ep
en

d
en

t,
no

na
lig

ne
d

, a
nd

co

nt
ri

bu
te

 to

sy
st

em
-l

ev
el

pe

rf
or

m
an

ce
(s

)

201Systems

Systemic emergent properties are irreversible. From a causality perspective,
systems are predicated on sustained interactions between objects. The
 antecedent events that postured some objects for salient contributions are no
longer operative in a system. This formalism results from the irreversibility
of the systemic emergent properties of some of the objects. Other objects that
are not so postured retain their reversibility and exhibit emergent attributes.
When these objects are combined, the aggregate behavior can be representa-
tive of the emergent properties of the objects, or the emergent attributes of
objects, or a combination of both types of objects. Antecedent events,
although causal in terms of the formation of a system, serve to provide the
objects and EMMI, but are precursors rather than directly involved in the
integration process. Therefore, systems are of two types, those formed from
only proximate events and those formed by proximate and objective events.
Systems that are summative are built up of individual objects and smaller
clusters of objects (i.e., proximate and objective events), while normative sys-
tems are based on proximate and objective events that come together as
agglomerates to form a system of systems.

All the existing definitions of systems capture a portion or all of the super-
ficial notions that elements interact (e.g., work together) within a boundary to
perform functions jointly that are unachievable as individual elements. Such
definitions generally lead the discussion on how systems thinkers think of
their tasks. Specifically, these definitions are how systems engineers go about
their building of systems. Somewhat intuitively, thinking in systems’ context
fosters a general feeling about what is important. Systems engineers “feel”
that importance—considered to be the art of systems engineering. But when it
comes to designing and architecting a system, that art needs to be integrated
into a product or service. Even the seasoned professionals are overwhelmed
with thousands of items to track and 100,000 objects to develop. The intrica-
cies of interacting objects overwhelm the marked abilities of the seasoned
group of tenacious systems engineers. In any reasonably sized system, there
are literally millions of EMMIs (objects interacting in ways that are much less
predictable and significantly more volatile than can be tamed). It falls on
these systems engineers and systems engineering integrators to apply their
skills learned from wrangling over decisions based on trade studies, test
results, stakeholder needs and wants, political expediencies, and most aptly
their best-informed guesses. But this is not the way to bring order and stabil-
ity to planning, budgeting, and scheduling.

It should now be intuitively clear that a precise definition of system is
naive. Even trying to encapsulate a clear, comprehensive, and simple concep-
tion of systems is challenging.

Following the definition of a system according to Palmer (2009), a system
can be conceptualized in terms of the behavior of its objects (descriptive of
the essence of their system); the context of the minimum energy structures
(reflective of the design and architecture); the perspective of the definer (pro-
viding a referenced view); and the methods that epitomize its functioning

202 Engineering Systems Integration

(the socioeconomic realities of projects). Working these concepts into a defi-
nition that can be used in a precising manner:

a system is a bounded, stable group of objects exhibiting intrinsic
emergent properties that through the interactions of energy, matter,
material wealth, and information provide functions different from
their archetypes.

Said more abstractly and succinctly (but with loss of precision):

a system is a bounded, stable group of objects exhibiting intrinsic emer-
gent behaviors based on interactions of energy, matter, material wealth,
and information.

And finally, paired down to its barest abstraction (with loss of precision
and accuracy):

a system is a group of stable objects showing intrinsic emergence based
on interactions.

The systems engineering integrator concept of a system is a provisional
goal that results in a valuable product or service. The systems engineer’s
concept of a system is a provisional goal that results in the design, building,
and integration of objects through their interactions to deliver the functions,
performance, and quality needed by their customers. Systems engineers are
concerned with both systems and system of systems by design and architec-
ture. Systems engineering integrators are concerned with both systems and
system of systems within the context of the product or service operating in
its operational environment. Systems engineering is a collaborative, interdis-
ciplinary approach to managing and carrying out the transformation of
requirements and resources into a system through design, building, and
integration of objects. Systems engineering integration is a collaborative,
value-enhancing approach to demonstrating functionalities and perfor-
mances of products and services.

But it may be fruitless to focus more effort to move beyond these general
statements of systems engineering and systems engineering integrators as
there is a public recognition of several myths in systems engineering (Kasser
2010). As Joe Kasser points out, there are (1) a plethora of standards; (2) many
process models that can be used; (3) more dependences on people for success
than on any one systems engineering method; and (4) needs for better tools,
techniques, and procedures. There should be no illusion that there is not just
one “brand” of systems engineering widely accepted as standard practice. In
fact, in spite of their differences, several versions of systems engineering have
proven reasonably effective in building products and services (Honour 2011).
Several examples of systems engineering guides are the Naval Systems
Engineering Guide (Rodriguez et al. 2004), two guides from NASA (Shishko

203Systems

1995; National Aeronautics and Space Administration 2007), and the INCOSE
handbook (SE Handbook Working Group 2010). The principal difference in
success with various systems engineering approaches appears to depend on
the ability of systems engineers to use systems thinking, know how to adapt
the systems engineering processes to the project, and possess excellent oral
and written communications skills (de Souza 2008). In addition, the systems
engineer must create innovative solutions to mischievous problems, exercise
sound engineering judgment, and apply effective management and leadership
skills.

At the heart of systems thinking and systems integration is the set of issues
that are deemed important to include in research (Ferris et al. 2003). The
framework for systems integration reflects the engineering domain special-
ties, and the disciplines of sociology and management.

Systems integration is the unification of the objects and their interactions
of energy, matter, material wealth, and information to provide system-
level functionalities and performances.

System of Systems and Integration

The general type of engineered and a systems-engineered system is one in
which people are involved in the system’s use during operations and sus-
tainment. People are systems in themselves. People exhibit individual and
group object emergent properties, having boundaries and boundary condi-
tions, and are integrated into a metastable state that has a lifecycle. The
occurrence of people’s behaviors in conjunction with that of the engineered
system is often referred to the system. If what is built as a product or service
is a system, then that artifactual object when combined with the human
system(s) becomes a system of systems (Ackoff 1971; Osmundson et al. 2007;
Lane and Boehm 2008). The casual nature of building a system of systems is
similar to that of building a system if and only if the goal of the system of
systems is thought of as an all-encompassing system. In other words, even
though each individual object (system) is completely bounded and integrated
and exhibits system emergent properties and attributes, the system of sys-
tems needs to be thought of as a system with antecedent parts (each of which
are systems). Each part needs to be viewed as a part of a larger system (i.e., a
system of systems) and not as individual systems with some connectivity
and interactions with EMMI. The United States Department of Defense
Acquisition Guidebook (United States Department of Defense 2010) defines a
system of systems as a “set or arrangement of systems that results from inde-
pendent systems integrated into a larger system that delivers unique capa-
bilities.” Similarly, the U.S. Department of Defense has adopted a guide for

204 Engineering Systems Integration

systems of systems (Director of Systems and Software Engineering 2006).
These guides further illustrate the intent of integration of systems into a
system of systems. But the salient issue, the number one concern, for inte-
grating individual systems into a system of systems is that of sharing EMMI
in such a way so as to provide the system with various functionalities and
performances, robustness and resilience, and predictable and acceptable
losses to achieve and participate in the system of systems.

Applying the framework of objective causality to an example of sharing
the functions of “to manage” in a system of systems, consider an incorpo-
rated (doing business under the fictitious name of Doctors, Ltd., a legal
entity) of a group of doctors entering into a contract to use the services and
facilities of a local hospital (also incorporated as a legal entity, doing busi-
ness under the fictitious name of Hospital, Ltd.). Doctors, Ltd. is a system
comprised of all six types of objects—object that interact with EMMI by
send, by receive, by send and receive, by receive and send, as an extension,
and as a source. Each medical professional in Doctors, Ltd. is a person (i.e., a
system). Doctors, Ltd. has an office with equipment, patients with whom
they consult, suppliers who transact business with the doctors (both indi-
vidually as well as a group). Currently, Doctors, Ltd. uses Hospital, Ltd. ser-
vices and facilities on an ad hoc basis. Patient records are kept by both
Hospital, Ltd. and Doctors, Ltd. Both send invoices to the patients and often
the patient is billed for duplicate charges, as the exact nature of the activities
is not clearly delineated. The responsibility for billing is muddled. The infor-
mal arrangements are not resulting in the desired behaviors and effects.
Both Hospital, Ltd. and Doctors, Ltd. desire to remedy this confusing situa-
tion as the patients have complained and some have gone to other doctor
groups having affiliations with other hospitals and have not returned to
either Hospital, Ltd. or Doctors, Ltd. The interactions between Hospital, Ltd.
and Doctors, Ltd. have not resulted in a system of systems with acceptable
performance of their macrofunctions. Losses in goodwill and future reve-
nues are significant and increasing. Indeed, Hospital, Ltd. and Doctors, Ltd.
are interacting as two systems, but they are not a system of systems. The
metasystem functions of unified billing, governance, and accountability do
not exist. There are no metafunctions. Hospital, Ltd. and Doctors, Ltd. agree
to enter into an agreement to provide metafunctions, improve their macro-
functions, and realign their microfunctions to enable improved interopera-
bility. In addition to resolving billing issues, the Hospital needs to increase
its medical staff of doctors without incurring additional overhead charges.
Doctor, Ltd. agrees to take adjunct positions on the hospital staff. Yet, both
Hospital, Ltd. and Doctors, Ltd. desire to remain somewhat independent,
even while participating in their system of systems. The first step in their
efforts to build metafunctions is to identify the kinds of functions that would
benefit both parties to the agreement as well as the patients. Without present-
ing the details of the systems engineering aspects in developing a system of
systems, the focus will be on the particulars of integration. Applying the

205Systems

framework of conditional causality, the processes that will result in changes
to physical entities (perhaps beginning with new procedures to deal with the
problems identified with patient billing), the additions of metafunctions that
serve some of the needs of all parties within the system of systems, and the
desired behaviors of the stakeholders involved in all causal effects that deal
with or are a consequence of interaction with the system of systems, will be
defined and agreed to before beginning the planning for integration. For
planning purposes, the sharing of management functions is deemed to be
the best means to manage the functions of the system of systems. There are
many means and options to enact and manage the system of systems func-
tionalities, including, by tacit agreement, through procedures, and with vari-
ous types of physical entities (e.g., computers and software). The management
functions of ‘to plan,’ ‘to organize,’ ‘to direct,’ ‘to control,’ ‘to communicate,’
and ‘to provide teamness’ are laid out for Hospital, Ltd. and Doctors, Ltd.
Table 4.2 illustrates a few of the considerations for objects, events, and EMMI
that exemplify the partitioning of power.

Table 4.2 illustrates the comparison for objects, events, and EMMI for
Doctors, Ltd. (DL) in a systemic relationship with Hospital, Ltd., illustrat-
ing the reciprocal relations between objects based on a sharing of power.
The architecture that supports and enables the interactions is one com-
prised of people who perform the management functions at all three levels

TABLe 4.2

Objects, Events, EMMI Mapped to “To Manage” Processes

To Manage
Processes

Doctors, Ltd. (DL) Hospital, Ltd. (HL)

Objects Events EMMI Objects Events EMMI

Plan work DL
doctors

Request
facilities

Information Administrative
staff

Reserve
facilities

Information

Organize
work

DL
doctors

Take
adjunct
positions

Material
wealth and
matter

Patients Schedule
HL
patients
with DL

Information

Direct work DL
doctors

Schedule
DL and
HL
patients
with DL
doctors

Information Administrative
staff

Request
scheduling
HL
patients
with DL
doctors

Information

Control work DL
doctors

Comply
with HL
rules

Information Administrative
staff

Promulgate
policy and
rules

Information

Communicate DL
doctors

Convey
status

Energy and
information

Administrative
staff

Convey
status

Energy and
information

Foster
teamness

DL
doctors

Show
reason

Matter and
information

HL staff Show
reason

Matter and
information

206 Engineering Systems Integration

of abstractions for the system of systems. For planning purposes, both
Hospital, Ltd. and Doctors, Ltd. manage their own personnel; for organizing
and directing work, the subservience of doctors from Doctors, Ltd. tracks
whether the patients are from Hospital, Ltd. or Doctors, Ltd. Controlling
work is principally with Hospital, Ltd, as the established work relation is
arms-length, at-will, for hire status. Teamwork is expected at all levels of
interaction and is encouraged by accommodating reasonable requests and
maintaining frequent and congenial communications.

Whether natural or human-built, the process of integrating systems (the
joining of objects to achieve an effect) is describable with the framework of
objective causality.

Organizational Models

Organization and architecture (i.e., structure) are the two key structural
factors that make up the fundamental functionalities at the metalevel of a
system of systems. Once the structure is formulated and constructed, other
issues need to be considered and dealt with, such as how each subsystem
interoperates with the metasystem model, how effective are the functions
that form the metafunctions enabled by the subsystems, what overall subper-
formances cause substantial losses for the metaperformance, and how the
metafunctions are constrained and limited by the operations, supporting
subfunctions, and various human behaviors (if people are involved in opera-
tions). While there are any number of ways to structure a system of systems,
presumably large variability in organizational performance is normally not
characterized by its structure. It is usually assumed that to a large degree
organizational structure is a mentioned factor, but not necessarily significant.
The voluminous literature on measures of effectiveness for organizations is
replete with discussions about horizontal and vertical integrations, matrix
and line organizations, and lifecycle models (Quinn and Cameron 1983) that
for the most part describe their physical, functional, and behavioral aspects.
These publications fit within lines of inquiry that follow strategies of staging
where an organization fits within a continuum of changes (lifecycle); surmis-
ing what is right (or wrong) with existing organizational notions (diagnos-
ing and evaluating); and analyzing the organizational dynamics based on
presumptions of static structures (work groups and management), external
pressures (business market competitiveness), or human dynamics (covers
mergers and acquisitions). Within these broad strategies, various attributes
are investigated, including influences, preferences, and power. This por-
trayal is not meant to be either a survey or an exhaustive description, but
rather to suggest another strategy which applies directly to the integration of
a system of systems. That is, organizations seem to be distinguishable by a

207Systems

structuring of power (including distributing power, storing power, and
using power). By power, it is meant to control the access to something that is
useful to others. Much has been said about gaining power, applying power,
retaining power, and using power, all of which apply quite aptly to people
and organizations, organizational effectiveness, and countering the effects
of changing organizations. Consider an organization that is rich in mate-
rial wealth. They judiciously use their wealth to work with others through
loans of various types of resources and joint ventures that utilize this
wealth. The company develops partnerships, creates a strong interest for
others to do business with them, and promotes a goodwill that earns respect
from their peers and solicitors. Contrast this company with another com-
pany that has resources that are equal in value and importance to potential
solicitors and partners, but has not engaged in partnerships or allowed
access. The company that extends access to its material wealth exerts power,
whereas the company that hoards has expressed no interest in allowing
access, nor engages in any way to use those resources. These two companies
stand contraposed to a company that has material wealth and uses it to
engage a select few or feigns a threatening demeanor to those in disfavor.
Providing access to power (which is not a new theme for consideration) lies
at the heart of the design and architecture of a system of systems, and there-
fore, is essential to the integration strategy and outcome. Recognizing there
are different kinds of power (economic power is recognizable in political
arenas, but may not be equivalent to social power or knowledge power),
access to power is the common link for planning integration. Architecturally,
the access may be person to person or by agreement through some auto-
mated trusted agent.

Power structures (the essential elements of an organization that protect,
store, support, and manage* desirable resources) form the key elements that
make the valuable resources a sought-after commodity. These essential ele-
ments may be formal as is the case with set policies and procedures or they
may be informal (Land 1985), on a person-to-person or person-to-machine
basis. For an integrated system of systems, those valuable resources are
EMMI, the users of the valuable resources are subsystems (objects), and the
power structures regulate access. This discussion concerning access to power
and power structures presumes that the systems engineering has provided
an acceptable level of reliability, maintainability, stability, boundedness, and
predictability. Mahoney and Weitzel (Mahoney and Weitzel 1969) determined
that reliability was one of the most critical requirements of organizational
effectiveness for both general business and research and development orga-
nizations. Reliability of access to valuable resources is particularly important
for system of systems.

* “To manage” is to “plan,” “organize,” “direct,” “control,” “communicate,” and “team-build”
those essential elements.

208 Engineering Systems Integration

From a systems engineering integration perspective, the need for an
effective system of systems presumes that requirements are determinable,
objectifiable, and buildable. Requirements determinability is a matter of
identifying the needs of the designers, customers, and users* of system of
systems, eliciting data and information from knowledgeable stakeholders,
then applying a process to deliver the physical, functional, and behavioral
properties and attributes desired in the system of systems.

In the most general sense, there are multiple combinations of measures of
effectiveness which are relatable to organizations and organizational pro-
cesses. Without the benefit of significant research to guide this discussion,
there seems to be four kinds of organizational power structures. These kinds
appear to be consistent across organizations, whether they are inculcated
into groups of people, companies, or governments of countries. These orga-
nizational power structures are termed as the item, the syndicate, the aggre-
gate, and the agglomerate.† No particular preference is given to any one or
another of these power structures. No one is better or worse, only tailored to
match circumstances. They are merely structures that need to be accommo-
dated with design and architecture when building a system of systems. We
can think of the architecture of a system of systems as that of a system, with
the architecture supporting the governance of the system of systems, the
processes that provide for the metafunctions, and the power structure of its
organization. In many ways, the architecture of the organization is akin to
that of the architecture of the product (Yassine and Wissmann 2007), with
the notable exception being the power structure. The reason why organiza-
tion power structures are distinct and not included in products derives from
the nature of the subsystems and their independence. Within a product that
is a system, autonomous operating capability with connectivity to other sys-
tems operations is inconsistent with the product being a system. Semi-
autonomous operation that has connectivity to a system is termed as a system
of systems.

The item is a unitary power structure with a single entity that determines
access to valuable resources. An example of an item power structure is a
monolithic organization that has a consistent set of policies that governs uses
of power and access to valuable resources. Decisions made by central gover-
nance are policy, with no exception other than as is agreed to by the central
governance. An example is that of the small business owner, whose authority
over access to valuable resources is inviolable. There may be one or many
objects at the level of governance of an item power structure.

The syndicate is typified by many objects which have decision-making
authority, act as a group once consensus is reached, but have a myriad of

* More generally, the set of stakeholders (significantly beyond the designer, customer, and user)
for a typical system number in the multiple 100s and grow geometrically with the number of
subsystems within a system.

† The vaguest of association with dictionary definitions or those defined with more precision
is the intent for their usage in this presentation.

209Systems

informal habits that can dominate with local decision making for exceptions.
Yet, in spite of these exceptions, the group’s consensus is both tolerant and
forgiving of local decisions. An example of a syndicate power structure is the
World Wide Web. The governance is fundamentally through protocols and
policy implemented through standards which represent central governance.
The users of the web participate and by their adherence and compliance
with the standards and protocols they participate with the common goal of
accessing valuable resources. Power is locally managed by independent
 subsystems (web portals, as objects) which have local authority to grant and
provide access to valuable resources.

The aggregate is exampled by a football team or a group of doctors who
are the managers of a private hospital. Each member of the football team
(object) can arrange for a few complimentary seats (or if that is in keeping
with the team’s policies, then a few complimentary season tickets in the most
sought-after seats). Individual members of the governing board of doctors
may arrange for a private room, when otherwise there would be no preferen-
tial treatment. The staffs of both organizations accede to such requests in
part because it is considered acceptable behavior for key personnel or there
may be an implied coerciveness about the demand (request) that is made.
The Internet does not exhibit the power structure of an aggregate organiza-
tion because its central governance regulates the broad policy for accessing
all resources as a necessary condition (but it is not sufficient in the main to
access all valuable resources). Power structures that have a distributed qual-
ity are not items, and those whose distributed nature does not represent the
interests of the requestors for access are not aggregates. And those power
structures that have a distributed quality that does not represent the inter-
ests of the requestors for access and that does not have access to all valuable
resources is not an agglomerate.

The agglomerate is a combination of the syndicate’s and the aggregate’s
organizational power structures. The agglomerate has centralized control
and governance for those issues that have significance in binding the sub-
systems together, similar to a syndicate’s power structure. But the subsys-
tems act as autonomously as possible within the limits imposed by policy,
similar to an aggregate power structure. An example of an agglomerate is a
multinational corporation that is contracted with suppliers competing to
provide parts on a competitive basis. The suppliers are integrated into an
inventory management system (perhaps just-in-time delivery-style supply
chain) to facilitate a significant reduction in the inventory that must be
stocked to support production. The suppliers retain their autonomy and
independence, while participating in a metafunction at the system of
 systems level. The approach taken by the subsystems is to gain special
favors that are made available by decision makers in the multinational
corporation.

Countries exhibit organizational behaviors that are consistent with a sys-
tem of systems power structures. Singapore presents an item-like power

210 Engineering Systems Integration

structure—highly focused, centralized, and monolithic from their gover-
nance to the ideals and responsibilities of their citizens. The People’s Republic
of China operates as an aggregate power structure—centralized, yet respon-
sive to local needs. The United States and the European Union (Nieminen
2005) are examples of an agglomerated organizational power structure—
operating with highly independent states (in the United States) or countries
(in the European Union) where both subsystems have high degrees of auton-
omy and authority. The differences between the United States and the
European Union, albeit substantial in most dimensions, are materially alike
when it comes to their architectures which enforce and sustain access to
power. The rules can be quite different, the circumstances distinct, and the
particulars novel, but the physical entities provide substantially the same
functionalities at the metasystem’s level, with a resultant access to valuable
resources that is substantially similar.

The two organizations, Hospital, Ltd. and Doctors, Ltd., are representative
of two different categories of system of systems. Doctors, Ltd. is a syndicate
of doctors with a limited set of partners acting in concert to set policy and
providing centralized management. The essential characteristic for a system
of systems is that there are many individual systems with common skills
and generally the functional goals. Another example of a syndicate is the
group of people who use the Internet. The Internet users have common tools,
similar skills to exploit Internet and web content, and all share in the same
benefit of gathering, exchanging, or posting information. Pursuit to their
particular rules, the syndicate may share as partners in some benefit (e.g.,
profits, in the case of Doctors, Ltd.).

Hospital, Ltd. is a privately held entity with shareholders, who elect a
Board of Directors to manage the affairs of the business. For our purposes,
we refer to this category of organization as an amalgamation—a blend of
different interests and skills that have particular influence on the outcome
of the business operations. The difference between the categories of amalga-
mations and syndicates is the predominant theme of stakeholders deriving
different benefits from their association with each. Stakeholders in Hospital,
Ltd. may be participating purely for the cachet of being involved with the
medical profession (and a hospital in particular) and the political benefits
derived from the same in local government. While this difference between
system of systems (as syndicates and as amalgamations) may seem particu-
larly inconsequential, the differences imply quite different architectures
and therefore very different planning for integration. The simplistic differ-
ence of quite different goals is handled easily through architecture by
emphasizing that all parties can accomplish their goals (once it is recog-
nized how to phrase and present the relation between the goals and the
benefits for the business that are derived from the architecture). The more
troublesome factors that impact on architecture are the degree of autonomy
expected by the two organizations based on their mindsets and previous
business structures. Changing a business architecture is not only quite a

211Systems

difficult set of tasks, but also most disruptive to operations and worker’s
habits. Each organization has a “style” and culture of work that is instru-
mental in bringing out the subtleties of the architecture. Even recognizing
the nuances is often insufficient to keep from disrupting workflow and
efficiency.

The fourth category of a system of systems organizational power structure
is the agglomerate—a decentralized scheme of controlling access to valuable
resources, with central control over policies that impact on various groups.
As with the syndicate and the amalgamation, the agglomerate has groups
organized for a particular purpose or convenience, but each with a different
mix of incentives. Those incentives are sometimes locally contrived and
enacted without the limits set by the central controlling entity. As with the
syndicate, the amalgamation is comprised of like-minded individuals who
are focused on nearly the same goal—supporting the organization with vari-
ous specialties that add to the total skills of the organization. And consistent
with an agglomerate, individuals in the amalgamation have very different
agendas for their association with the organization, differences with regard
to accessing valuable resources, and perhaps local control over such access.
An amalgamation is comprised of a group of stakeholders or subsystems
with (perhaps significantly) different views about the operations, value of
the valuable resources, and access to those valuable resources. The subsys-
tems and individuals in the organization want to be in the organization and
participate in the same operations as are offered by the system of systems.
They have a preference to continue working within the current group or
subsystem, but their allegiance can be compromised (as referenced to either
the policies of the central or local governance). Members and subsystems of
the syndicate have greater solidarity than do members or subsystems of an
amalgamation.

The group of doctors at Doctors, Ltd. self-organized into a syndicate, each
doctor agreeing to give up some degree of autonomy and self-reliance to join
with other doctors. The syndication of professional skills as a legal entity
(Doctors, Ltd.) has value to Hospital, Ltd. as an organized group of medical
practitioners with whom they have an established rapport, credibility, and
trust. Rather than dealing with one doctor at a time, the system of systems
(Doctor, Ltd.) has its own metafunctions that illustrate coupling, cohesive-
ness, and connectivity through EMMI sufficient for metastability. The essen-
tial emergent property of Doctor, Ltd. is suggested through the filling in by
one colleague for another colleague in case of emergencies. This “covering”
holes in a schedule are typical systemic behavior that is motivated by factors
such as desire to help, economic incentives, sacrificing for the good of the
group, reinforcement of teamness, wanting to maintain the relationship with
the patient through continuity of experience with the same medical practice,
and so forth. Such behavior is less common in private, individual medical
practice because of the limited amount of time in a doctor’s schedule to cover
for another doctor.

212 Engineering Systems Integration

Conclusion

The discovery of the many aspects of integration is akin to the search for an
ontology that is coherent within a discipline or field of research and required
to be interoperable across disciplinary boundaries. A most elementary test of
an ontology is consistency. That consistency should be tested at the concept
level, shown by practice, locally explainable by frames, comprehensible by
an integrative framework of those frames, a posited theory that explains and
predicts through empirical measurements based on multiple perspectives,
and subjected to expert peer review (Smith 2008).

References

Ackoff, R. L. 1971. Towards a system of systems concepts. Management Science
17(11): 661–671.

Cummins, R. 1975. Functional analysis. Journal of Philosophy 72: 741–765.
de Souza, R. A. 2008. Maturity Curve of Systems Engineering. MS thesis, Systems

Engineering. Monterey: The Naval Postgraduate School, 114pp.
Director of Systems and Software Engineering 2006. System of Systems Systems

Engineering Guide: Consideration for Systems Engineering in a System of Systems
Environment. Washington DC: Office of the Under Secretary of Defense
(Acquisition Technology and Logistics), 92pp.

Ferris, T. L. J., Cook, S. C., and Honor, E. C. 2003. A structure for systems engineering
research. Proceedings of SETE 2003. Canberra, Australia: Rudges Capital Hill.

Honour, E. C. 2011. Improved correlation for systems engineering return on invest-
ment. Conference on Systems Engineering Research (CSER). Redondo Beach:
University of Southern California.

Kasser, J. E. 2010. Seven systems engineering myths and the corresponding realities.
Systems Engineering Test and Evaluation Conference, Adelaide.

Land, F. 1985. Is an information theory enough? The Computer Journal 28(3): 211–215.
Lane, J. A. and Boehm, B. 2008. System of systems lead system integrators: Where do

they spend their time and what makes them more or less efficient? Systems
Engineering 11(1): 81–91.

Mahoney, T. A. and Weitzel, W. 1969. Managerial models of organizational effective-
ness. Administrative Science Quarterly 14(3): 357–365.

National Aeronautics and Space Administration 2007. Systems Engineering Handbook.
Washington DC: NASA, 360pp.

Nieminen, A. 2005. Towards a European Society: Integration and Regulation of Capitalism.
Helsinki: University of Helsinki, 465pp.

Osmundson, J. S., Langford, G. O., and Huynh, T. V. 2007. System of systems manage-
ment issues. Asia-Pacific Systems Engineering Conference 2007. Singapore: National
University of Singapore Temasek Defence Systems Institute, 9pp.

213Systems

Palmer, K. D. 2009. Emergent Design: Explorations in Systems Phenomenology in Relation
to Ontology, Hermeneutics and the Meta-Dialectics of Design. PhD thesis, Division
of Information Technology, Engineering, and the Environment. Mawson Lakes,
University of South Australia, 679pp.

Quinn, R. E. and Cameron, K. 1983. Organizational life cycles and shifting criteria of
effectiveness: Some preliminary evidence. Management Science 29(1): 33–51.

Rodriguez, W. D., Massenburg, W. B., Lengerich, A. W., Stone, D. T. K., and Catto, W.
2004. Naval Systems Engineering Guide. Department of the United States Navy.
Washington DC: Defense Acquisition University, 295pp.

SE Handbook Working Group 2010. Systems Engineering Handbook: A Guide for System
Life Cycle Processes and Activities. San Diego: International Council on Systems
Engineering (INCOSE).

Shishko, R. 1995. NASA Systems Engineering Handbook. National Aeronautics and
Space Administration Jet Propulsion Laboratory. Pasadena: California Institute
of Technology, 186pp.

Smith, B. 2008. Ontology (Science). Nature Proceedings. hdl:10101/npre.2008.2027.2.
Troncale, L. 2011. Would a rigorous knowledge base in systems pathology add signifi-

cantly to the SE portfolio? Conference on Systems Engineering Research (CSER),
Redondo Beach: University of Southern California.

United States Department of Defense 2010. Defense Acquisition Guidebook, Version 5
May. Department of Defense. Washington DC: Defense Acquisition University,
310pp.

von Bertalanffy, L. 1968. General System Theory: Foundations, Development, Applications.
New York: George Braziller.

Yassine, A. A. and Wissmann, L. A. 2007. The implications of product architecture on
the firm. Systems Journal 10(2): 118–137.

215

5
Integration in Systems Engineering Context

Introduction to Systems Engineering

Systems engineering was originally envisioned to deal with the complexity of
products from inception through their delivery (Schlager 1956). Ten years
later, with the promise of being able to develop new, flexible means of control-
ling equipment through software programming structures, systems engi-
neering changed its repertoire and emphasis from discovering and integrating
satisfactory components to a broader systems perspective which spanned the
lifecycle of the product or service. “The integration phase is usually a long
one, since it extends throughout the entire period of design and construction
of the experimental system equipment” (Schlager 1956). The backbone of sys-
tems engineering is integration, integration in both the general sense of
bringing ideas, people, and objects together in the form of a project to deliver
a product or service, and in the specific instance of discovering and integrat-
ing satisfactory components.

Much has changed since Kenneth Schlager wrote these early thoughts
about a new field of engineering called systems engineering. According to a
RAND Corporation report (Stem et al. 2006 citing Przemieniecki 1993), sys-
tems engineering came into its own right as a discipline along with the
development of the U.S. missile program in the 1950s. Prior to that, systems
engineering was a fledgling, deracinated from the rank-and-file engineers
who knew their problem set was broader than their training. A progeny of
two needs, one commercial and the other military, systems engineering was
challenged to address two seemingly different types of problems—those
that were defined in terms of requirements (for customers who had specific
needs) and those that were driven by the economics of services (those who
wanted to lower costs and improve the user’s experience). Customers with
specific needs often drive development with hard requirements for technical
performance—more than currently available in the existing product, some-
times pushing the edge of what is physically possible. Customers driven by
the economics of better service to their customers often consider schedule
before cost. Commercial firms must be attentive to market demands that are
often driven by product fashion and perceptions of quality of service. The

216 Engineering Systems Integration

result is a presumed difference in management methods and systems engi-
neering approaches to solve problems.

While these problems appear different due to the driving influences of
performance, schedule, or costs, they are most alike in many respects.
Performance-driven requirements rely on a collective of parties in opposi-
tion to achieve an “at will” consensus. In other words, a buyer (one who puts
forward a set of requirements) and a seller (one who proposes to satisfy those
requirements) come to an agreement on a proposed schedule and budget to
deliver various product or service performance(s). Systems engineering pro-
vides the thinking and the approach to establishing performance, cost, and
schedule trade-offs, in deference to the needs of the buyer and the seller.
With the approach carefully planned, the systems engineer originates tasks
that become the mainstay of the work for budgeting, assigning skilled
workers, and monitoring progress. The premise of the deal (e.g., contract)
is that two parties (at “arm’s length”: without conflicts of interest) agree on
the deliverables, progress milestones, payment schedule, acceptance criteria,
and methods.

In contrast, consider the firm that has an existing installed base of prod-
ucts or services or an infrastructure in use by its users (or customers). If the
seller determines that an economic advantage is possible through innovation
or changes in the functions (for example) for its offerings, systems engineer-
ing first sets out the objectives (i.e., requirements). The technical approach,
management supervision, progress milestones, and acceptable product or
service performance(s) are proposed by the systems engineers and, if accept-
able, agreed to by the decision makers overseeing the activities supporting
the installed customer base. In both cases, the systems engineering planning
guides the development work to produce the desired product or service
performances. The results of systems engineering fall into two domains. The
subjective domain (i.e., the cognitive structures that provide planning, meth-
ods, and approaches; procedures that follow a model of steps that signify the
phase of work and the expectations for each phase; and models and repre-
sentations of the results of planning and procedures, such as requirement
documents, trade-off analyses, and build-to specifications). The purpose of
the subjective domain is to engage engineers and subject matter experts to
work with the systems engineering plans to build and test physical entities
with the appropriate functional traits so that the users can exhibit the sets of
behaviors that effectively exploit both the physical entities and their resul-
tant functions. Systems engineering takes subjective information and turns
it into objective properties, traits, and attributes. The process of transforming
knowledge into objects that work as a part or as a whole is integration.
Systems engineers deliver their most beneficial performance on problems
whose boundaries (physical, functional, and behavioral) reach well beyond
what is often presented in a set of requirements. Even a widely defined scope
of work may impact on systems of import unbeknownst to the buyer and the
seller. A review by a qualified systems engineer is most appropriate for any

217Integration in Systems Engineering Context

project, including building a building (e.g., impacts environment, transporta-
tion throughput, electrical utilities, and potable water distribution); building
infrastructure (e.g., impacts on environment and movement of people); and
building means of transportation (e.g., impacts on environment, movement
of people, means of commerce, density of people).

The problem that systems engineers faced then was in determining which
new technologies could be used to improve existing services while simulta-
neously lowering the cost of delivering those enhanced services. With a head
of steam that sometimes drove adoption of new, immature technology, sys-
tems engineers took on the role of being the objective, rational gatekeepers to
protect the investment in infrastructure and systems. That role required
skills that spanned various types of research, mandated familiarity with
fundamental development that extracted techniques and ideas from research
and prepared them for pilot modeling, prescribed an appreciation for the
infrastructure that was already in place and the user behaviors that were
already adapted to certain types of products and services, and the sensitivi-
ties of economic implications from operations. The early systems engineers
focused on establishing performance and cost objectives for technologies
they determine would improve existing infrastructure and services. Today’s
systems engineers are sometimes handed technology and saddled with
making it work within a schedule and budget.

With an appetite for systems and system of systems that have more func-
tionality with greater depth and sophistication, systems engineering is
challenged. However, it is not that the new technology is inappropriate for
consideration or maturation. “The development and acquisition of new sys-
tems usually requires the use of new technologies in order to meet require-
ments unachievable with the current state-of-the-art” (Ender et al. 2009).
Rather, it is the complexity and reliability that baffle systems engineering
and confound integration. It is inconceivable that any other method,
approach, or discipline besides that embodied in systems engineering could
deal with the vagaries imposed on building complex systems and achieving
sufficient levels of system reliability.

Of course there is a method to this decision process, which may be depen-
dent on the structure of the acquisition system. For commercial ventures,
new technologies undergo extensive testing before subjecting customers and
users to unreliable products or services. Marketplace feedback can be swift
and thunderous. Given alternatives, customers will begin to work with other
vendors and suppliers. The less reliable, less functional, and less perfor-
mance systems are replaced by others. For entrepreneurial ventures, new
technologies must be proven along with an objectively supportable view that
there will be marketplace acceptance before the entrepreneurial venture
may be considered for institutional funding from sophisticated investors.
The funding and support go to those whose ideas will dramatically change
existing markets or establish new markets that are both strong revenue gain-
ers and offer high profit margins. The “play” for the investors is to sell their

218 Engineering Systems Integration

investment positions for high profits. For governments, specifically, the U.S.
government DoD, acquisitions of large, complex systems often signify a
“grab for gusto” mentality. Pushing for the incorporation of new, immature
technology into system or system of systems designs (supposedly as produc-
tion or manufactured items) is nonsensical. Production and manufacturing
are designed to take a product or service and make more of them, not fix
problems that are within the domain of product or service development. The
province of production and manufacturing is to take the integrated product
or service and to replicate the interactions in finished goods. Immature tech-
nology might offer the promise of new performance and exciting functional-
ity; however, that promise is only realized through research and development.
A production product or service will not (and does not) function or perform
any better than the initial protoproduct or protoservice. Without extensive
rework, or redesign for production or manufacturing, a development prod-
uct or service is just that—development. Limiting production to a few num-
ber of “demonstration” products or services is often a means to begin
improving reliability. Working together, engineering developers and sys-
tems engineers mature the engineering embodiments of technology, all the
time improving the system reliability. For example, the Hubble Space
Telescope case study (Chapter 1) emphasized the lesson learned from having
to delay the launch to orbit. That time spent was integration time to mature
and achieve the requisite interactions on a sustained, reliable basis. Had
the Hubble Space Telescope been pushed into operational status on orbit
according to its intended launch schedule, NASA would have an unreli-
able, crippled system that would most likely have had to be returned to the
development environment for retrofits, improvements, and upgrades
(Mattice 2005). In other words, the integral set of ideas embodied in the sys-
tem design, concept of operations, and architecture is no better than the
reliability and maintainability of the constituent components. Integration is
the aspect that wraps all the systems engineering, engineering, and manage-
ment efforts into the product or service and the product or service into the
operational environment.

Nature of Systems Engineering

The cognitive functioning of the systems engineer is unique and as distin-
guishable from all other disciplines or fields as buyers are to sellers. As
the topic of the product or service may be the same for all parties, the
methods, approach, and tools are different. Systems engineering is distin-
guishable from all others by its emphases on three aspects of providing
solutions to problems: (1) the product or service as an enabler of the desired
user behaviors, (2) satisfying the stakeholders’ needs can be done in one of

219Integration in Systems Engineering Context

many ways, (3) and the desired consequences of the product or service for
people, infrastructure, and environment need to be incorporated by design
and architecture. These three considerations are of equal importance to the
systems engineer.

The product or service is the focus for the development project and with
which responsibility rests for assuring no adverse consequence accrues to
users and other future stakeholders. The product or service perspective
concentrates on the lifecycle of product lines or service(s). Recognizing a
substantial investment has been made in infrastructure, the systems engi-
neers are keenly aware of the mandates from people and respect for the
environment that embodies the mantra “do so, but do no more harm than
it takes to do so.” This real cost of doing something should not be greater
than the benefit of what is done. The accomplishment should be greater
than the effort it takes to achieve the accomplishment. The loss to achieve a
level of performance should be kept to a minimum. The systems engineer
thinks in lifecycle issues, the net action accomplished for the total
investment.

Giving preference to the perspective of stakeholders and the product or
service results in potential carelessness with regard to lifecycle stakeholders,
collective investments, and the environment. The needs of each of these con-
cerns must be considered in the design and architecture to place the product
or service on a presumed no-net harm path, and the actual work and materi-
als used becomes the means of carrying out the plan of no-net harm done.
When any one of the focuses (product or service, stakeholders, infrastruc-
ture, or environment) is given preference over the others, a lifecycle issue
needs to be analyzed and resolved before development begins. What distin-
guishes systems engineering is that of thinking in systems, enabling by
engineering, and integration by preference. Integration is broadly consid-
ered by systems engineers as the most important aspect of systems engineer-
ing. It is through integration that all thoughts come together and result in
ideas that are different from each of the thoughts, that products and services
emerge from objects and labor, and that all disciplines can combine to tackle
complexity.

Systems engineering remains rooted in the classical formulation of reduc-
tionist theory—that which supposes a hierarchical decomposition of the
highest, most general-level conceptualization downward through succes-
sively greater detail. It is not that the hierarchical schema is inherent to sys-
tems engineering or that it is even necessary. It is a comfortable approach to
the thinking of the practitioners—one that provides a good-enough recon-
noitering of the relations between objects, their functions, and the behaviors
of the eventual users of the product or service.

The descriptive formulation of systems engineering casts a summative
perspective of what systems engineering is. That pervasive is often fostered
by back office conversations centering on wasted efforts to define problems
(when it is clear what needs to be solved), iterative thinking about what

220 Engineering Systems Integration

individual items mean (when it is clear what needs to be done), and paper-
work that documents processes and functions (when it is clear that when an
expert is hired, all that matters is the result). The author believes it is good
practice to approach systems engineering and systems integration as key to
the science of thinking, which does not depend on luck for their results. To
this end, the systems engineering methodology is prescriptive about what
must be done and how to do it.

The development of systems engineering process models (the structure of
determining which stage of work should be done and for how long) stan-
dardized a meaningful way to consider project status, technical progress,
and the impacts of constraints on allocations of resources. There has been
neither any empirical study on the efficacy of systems engineering process
models nor an enduring debate as to the appropriateness of one model ver-
sus another given circumstances, constraints, and the kinship of project
variables with technology. The lack of foundation for systems engineering
(other than “it worked better than what was tried before”) is troubling.

Issues with Systems Engineering

As systems engineering is currently instantiated, sometimes it is limited in
terms of its capacity to consistently (1) determine the correct problem (e.g.,
through gap analysis); (2) identify critical stakeholders before architecting
the system; (3) determine the breadth and depth of requirements; (4) integrate
cross-disciplinary knowledge, and (5) account for lifecycle needs, to name a
few. A better set of data and information about the premises and limitations
of the current practice of systems engineering would aid in resolving the
issues. The common practice of systems engineering currently deals with
many problems, five of which are highlighted below:

•	 If systems engineering processes are employed but result in a prod-
uct that does not achieve one or more of its goals—performance,
budget, or on-time completions—then the stakeholders have not
received the solution that was intended.

•	 Since stakeholders drive requirements, it is prudent to identify which
stakeholders most determine the driving requirements. For exam-
ple, the adversary is often one of the most influential stakeholders,
and is often characterized as a “threat;” the full consideration of all
aspects of the adversary is rarely included. While the interaction
between the adversary’s radar and the surface of an aircraft will be
a paramount issue, the time line for an adversary’s decision process
is not included in the aircraft’s skin design. This time line can be

221Integration in Systems Engineering Context

extremely important when the focus is on designing an aircraft skin
that has a variable signature rather than a fixed signature. Stakeholder
analysis is not taught, defined, or detailed in any forum. This often
results in a set of requirements that are either missed or known but
not acted on.

•	 There are the inadequacies in the process of determining the mini-
mum set of requirements needed to assure that the constraints of
budget and schedule are met. These inadequacies include poor
stakeholder analysis, subsequent steps involved in the logic, proto-
typing, modeling, simulation, and analysis that is often flawed.
Many requirements are discovered late in the development cycle,
resulting in significant losses caused by extensive modifications or
scrapping of the project. Integration will only be as good as what is
provided. If the objects do not encompass the requisite functionality,
then integration will do nothing to change that. The responsibility
for providing the essential subfunctions is solely that of develop-
ment. Integration merely combines objects in such a way to high-
light both the functionality and the performance(s) that result from
integration with other objects. Systems engineering is the domain of
producing a product or service, development provides the requisite
objects, and integration brings those objects together in such a way
and manner to realize the essences of the system design, the stake-
holder preferences through the architecture, and the requirements
to satisfy the concept of operations.

•	 There are inherent difficulties when integrating cross-disciplinary
knowledge. Consider, for example, human systems integration and
the question of potential or actual losses incurred at the system level
for two design strategies for movement of information: just-in-time
versus on-demand. At issue is the timeliness and latency of flow of
information, that is, the losses incurred due to poor integration and
delaying a decision maker. The integration inefficiencies stem from
the concurrency of data within the system (e.g., correlation of one
data item with another data item representative of the best correla-
tion of these two data items given that there may be a more relevant
data item in the system that is unavailable due to lack of access to it
or because it is unknown at the time of correlation). Integration
brings out the direct measures of coupling and cohesion between
objects and their relations through EMMI.

•	 Lifecycle issues are regarded as important when scoping work; how-
ever, initial budgetary constraints often restrict the efforts devoted
to lifecycle engineering and planning that can be considered or
designed into the system. The result is to sacrifice the long-term
interests of minimizing the total lifecycle cost for the expediency of
a lower up-front investment.

222 Engineering Systems Integration

While these problems are addressable in multiple ways (such as training,
following best practices (as defined in this book), and education), the issues
and compounding factors may reflect a more general problem that potentially
overwhelms the ability of the systems engineer to deal with the many con-
flicting interests. In keeping with the reasoning of the U.S. Government
Accountability Office (GAO 2009a), established dogma has failed to achieve
desired results because many government acquisitions “lack early and disci-
plined systems engineering analysis” and allow “new requirements to be
added well into the acquisition cycle.” These two issues are indicative of a
mind-set by the acquirers that there are more important factors than simply
following what is known to work reasonably well. Systems engineering is
coopted by the dictates of pushing forward with little regard for neither engi-
neering logic nor systems engineering reason. Whereas it is the purview of
systems engineering to (1) translate needs into requirements, (2) build a solu-
tion that is responsive to those requirements, and (3) deliver a product or
service that solves the problem, systems engineering cannot solve problems
associated with human frailties. Most specifically, it is the determinable trait
of inflexibility in those that make demands on systems engineering and quite
explicitly engineering systems integration to provide more system function-
ality, performance, and quality for less (time and money). When viable system
solutions exists that meet most of the stakeholder needs, or all of the require-
ments, the quest for new technologies in a “would be production or manufac-
turing environment” is wishful thinking. Wishful is making a decision when
you know better; wanting is making a decision when you do not know any
better. Need is quite a different matter. Such wishful thinking should not be
regarded as statistical reasoning and incorporated into a risk analysis and
shown as a risk item. Regardless of the acquisition mentality that precedes
buying a product or service, if the intended outcome is a production or manu-
facturing environment, pushing immature technologies into a development
environment should most likely not be thought of as risky from the outset,
but rather as problematic from the outset, bordering deterministically, as a
failure. However, it is pure folly to insert those same immature technologies
into objects that are integrated when neither the existence of functionality
nor the reliability of performance has been reasonably demonstrated during
development. Integration cannot shed new insights that were not previously
known by the developers. Neither does the integration process even pretend
to show developers their possible options to rectify problems. Integration is
not the “work around” or “rescuer” of the development problems that will
somewhat mask or ameliorate the conditions under which those problems
persist. Pushing ahead and integrating with the hope that the new technol-
ogy will emerge in an acceptable implementation is wasteful of resources
(time, talent, money, facilities, and equipment).

But there are mitigating factors that underlie the wishful thinking.
Sometimes, there is thought to be no choice. For the entrepreneur, there is no
choice. To do what others can do is failure before start-up. No investor will

223Integration in Systems Engineering Context

plop down their money on last year’s story or yesterday’s technology. If there
is no sizzle, there is no sale. For the military planners in the United States,
there is perceived to be no choice. To secure project or program funding, the
new product or service must have significantly more performance than is
currently available, satisfy needs that look into the future, and technical
dominance that is the envy of the best dreamers. Consequently, military
acquisition professionals and planners expect to have overruns in both
schedule and budget. They also expect to fall short of the lofty set of require-
ments, but still take delivery of a product or service that will engender pride
and esprit de corps. The landscape of the future military means offering pretty
cool things to attract talent and interest. Unlike the start-up entrepreneur
whose goals might include fame and fortune, the military planners must
envision tools to prevail in conflict. Those tools mean products, services, and
competent military personnel. For the commercial developers, the “litmus
test” is different. The determination of the correct set of requirements is mar-
ket acceptance leading to revenues and profitability. Each product or service
does not need to be a major success, nor does each product or service require
a built-in or implied synergy with other product and service offerings by the
same company. Comparing the commercial products and services with mili-
tary products and services is more than just competitive issues in opera-
tional or marketplace environments. The results of a bad day are quite
different—there is no comparison between a few sales lost to competition
and lives lost. Systems engineering and systems integration are active
enablers in all three situations: the entrepreneur pushes technology into pro-
totype form, and then develops full-up working systems that are then
worked over by manufacturing engineers before going into production or
manufacturing. A problem in the marketplace with a one-product company
is disastrous for the company and they most likely will go out of business.
Commercial companies fare better with multiple products and services than
entrepreneurs. Commercial products and services can be ventured into mar-
kets to try out various functions, to determine buying habits, and establish
pricing. But unlike entrepreneurial and commercial ventures, military plan-
ners can ill afford to be wrong in functionality or performance, but they can
spend more than expected and take longer time than projected (as long as
the product or service is available when needed). Following recommenda-
tions by the U.S. Government Accountability Office, the U.S. military needs
to incorporate systems engineering into the early planning stages of new
products and services (GAO 2001) and adopt an incremental, capabilities-
based view of adding capability and achieving product and service objec-
tives for functionality and performance (GAO 2001, 2005, 2008). In the words
of General George S. Patton, Jr., “Never tell people how to do things. Tell
them what to do and they will surprise you with their ingenuity,” as cited in
the United States Naval Institute Proceedings (Christie 2006).

Supporting evidence that systems engineering is quite effective in deliver-
ing requisite performance, within schedule and budget limitations, has been

224 Engineering Systems Integration

studied meticulously and analyzed by the U.S. Government Accountability
Office (GAO 2001). Their summary view is shown in Table 3.1.

Limits of Systems Engineering

The inability to show improvement over time in developing systems is
sometimes perceived as a suggestion (1) that systems engineering lacks a
sufficient theoretical foundation on which its practice is built, (2) that an
improved model of the underpinnings of systems engineering from systems
theory may help ameliorate the above deficiencies; and (3) that systems engi-
neering as it is currently described and enacted does not reflect an accurate
determination of the boundaries and implications of what is possible.

Broadly considered, concepts (associated with a set of properties (Poh 1993)
and context (Aerts and Gabora 2005)) and categories (Draucker et al. 2007)
form the basic components of any structure or classification that describes
work. While some variability in how systems engineering is applied and
how the techniques are presented in books could be an issue in themselves,
there is a generally agreed set of terms in common usage with 60 years of
development history. Systems are built with lessons and practices handed
down from project to project. For example, the systems engineering body of
knowledge is scheduled for release in 2012 as a second draft for review and
broad-based comments. A body of knowledge should point out the boundar-
ies of usefulness, the conditions under which techniques are applicable, and
when practice does not reconcile with the knowledge. The discipline of sys-
tems engineering continues in its tradition of refining its practices. Then why
should one question whether, in theory, systems engineering is the panacea
for projects with greater complexities? Is change in what we instruct and
practice necessary? These questions are generally becoming less and less
the norm as systems engineering matures. Returning to the aim of this
book, it is not that systems engineering is flawed and unacceptable, but
rather that the flaws need to be addressed so systems engineering can scale
in robustness to take on the complex problems that inevitably confront deci-
sion makers. Arguably, the key to success in any endeavor is being able to
put ideas, people, processes, and things together. That requires interaction
and integration.

The difficult problems faced yesterday have no comparison and little in
common with the problems that must be solved in the future. Systems engi-
neering as currently practiced has great utility and is useful for solving
many problems, but it does not scale to the solutions needed tomorrow. For
example, environmental issues continue to defy solutions that have known
side effects. The populations of planet Earth have the desire for lower-cost
products and services (that challenges our quest for new and appropriate

225Integration in Systems Engineering Context

materials); food and shelter (continue to haunt governments’ mandate to
provide for the needs of their people); and new energy sources (that do not
contribute deleteriously to the evergreening* of our planet).

Ask “Why?”

To test the limitations of systems engineering, consider the consequences of
a rapidly changing environment. As such, there would not be any reasonable
moment of stability; instead the only predictable events would be that what is
happening now would soon be changed. The result would be an expectation
of instability predicated on the expectation of frequent unpredictable events.
If one were to harbor an attitude in such a dynamic and changing environ-
ment, that either change was harmful or living in the past was in some way
better than the uncertain future. Stakeholders might be rendered incapable
of focusing on any one problem, the result of which would carry over into
the solution domain. The consequence might be their shaping of the problem
space as an expression for their need of stability. Without applying a diver-
sity in thinking through some structured methodology (e.g., systems engi-
neering†), a haphazard response with hodgepodge solutions to ill-defined
problems is bound to occur. Cognitive structures and thought processes that
are fully responsive to defining, scoping, and characterizing the problem
should be the preferred treatment. But what is the test for such thinking. Best
beware if the logic presented does not survive the “why” test. You can ask
the question “Why?” of the materials presented and you can also ask as the
presenter “Why?”. When presented with a statement, simply ask the ques-
tion, “Why?”. Listen to the answer. Then ask the question “Why?” again, and
then again until the responder indicates they do not know the answer to
your last “Why?”. The importance of the question is not to expose anyone’s
ignorance other than that of yourself. The question “Why?” by itself is liber-
ating. The answers of the question “Why?” should be thought provoking.
And the implication of the question “Why?” will free your mind (and those
inquisitive souls still listening) to be questioned, share knowledge, investi-
gate, analyze, and remain flexible (Semler 2004). A person thinking in sys-
tems who engineers a solution for a problem that satisfies the needs of a
stakeholder(s) will have structured their answers in logical fashion, be cog-
nizant of the trade spaces and the trade-offs, have thought through a system
design that captures the essence of a set of solutions, have architected the
needs, preferences, and influences into the enactments of the systems design,
and can relate all the previous items to the end result product or service in a
descriptive fashion of the behaviors that should be expected when the solu-
tion is implemented. Compare that response (from a systems engineer) with

* Evergreening is a made-up term that refers to the systems engineering, building, use, and
sustainment of holistic living conditions.

† Admitting bias to systems engineering thinking is respectable, even without writing it.

226 Engineering Systems Integration

that from others—the difference is profound and enlightening. Without
some depth of knowledge about conceptualizing, designing, architecting,
developing, and integrating (i.e., systems engineering) products and ser-
vices, the actions to be responsive fully to situational changes and complex
problems are deficient. Any deficiencies should be immediately suggestive of
a potential problem that results from the realities of the work that could be
accomplish in keeping with the evolving expectations of stakeholders (along
with their appetites for new and novel solutions).

Principle of Constraints

When a set of solutions that appropriately satisfy the needs of key
stakeholder(s) is identified, a problem can be solved potentially. And when
key stakeholders have need(s), a problem exists. Finding the problem rather
than merely identifying the symptoms of the problem is the first task of sys-
tems engineering. “When a problem is framed appropriately, we have a clear
purpose: we agree about what we’re doing, why we are doing it, and how we
will know when we’re successful. We also have explored the context of the
problem, and have identified a perspective or point of view about what needs
to be examined” (Spetzler 2003). A principle of constraints could be stated as:
change without full measure of consideration and response eventually
results in failure of action influenced by the environment. Or, alternatively,
enlightened diversity in thinking spawns invention and innovation consis-
tent with ever-changing circumstances. But this is not to say that only sys-
tems engineering relies on principles, but rather that principles should guide
the analysis and evaluation of information. Since systems engineering began
its evolutionary development, it has merely been slow adapting to emerging
and transforming surroundings and conditions. In this manner, systems
engineering is similar to all disciplines and fields, and changes occur only
after it is reliably shown that changes are merited. We observe a trend in
ever-increasing sophistication and complexity in solutions desired by stake-
holders. And similarly, stakeholders are also lagging behind in their needs
as all parties struggle to identify the problem that appropriately can be
solved with incremental improvements in technology within the limitations
of funding and best estimates of when the new product or service is needed.
Needs notwithstanding, stakeholder demands are the driving force for sys-
tems engineering. By their nature, systems engineers will push their skills to
the limit to solve problems.

Clarion Call for Changes in Systems engineering

If it were not for a preponderance of agreement among practitioners, educa-
tors, and policy makers, systems engineering might have fared better. Keeping
up with increasing complexity; attempting to adapt to an exponentially pro-
gressive advance in intricate, interwoven, and conflicting set of stakeholder

227Integration in Systems Engineering Context

requirements; and more emphasis on training in the practice of systems
engineering rather than educating for insights and research opportunities
have stifled creativity and innovation in the very people who have the predi-
lection for such work. The illusion that tends to silence the cynics, contrarians,
and curmudgeons is that the demands of stakeholders would seem not to be
inherently evocative of structural difficulties in the practice of systems engi-
neering. The “If it isn’t broke, don’t fix it” mentality, or “It’s good enough”*
wisdom reinforces a pervasive elixir that systems engineering is sufficient in
the main as currently devised. And therefore, the effective instructional
strategy should be to continue with current materials and methods of pre-
sentation and practice. The warning signs of an inconsistency between
stakeholder purpose and the means and methods of systems engineering
have been visible and chronicled by the U.S. Government Accountability
Office for the last decade (GAO 2001, 2008, 2009b).

Holism

Systems engineering is used throughout this book to highlight, expose,
and example the application of the structures and concepts of integration.
Integration is a part of systems engineering as much as it is a part of all
disciplines, fields, and thinking. By applying the principles of holism† to pro-
mote metathinking (thinking in systems through interaction and integration),
isomorphisms‡ build on the correspondences and similarities in form and
relations across disciplines (von Bertalanffy 1968, Finkelstein 1993), reduc-
tionism§ is used to analyze and separate constituent elements, and perturba-
tion helps identify nonlinearities in performance and results to quantify
losses (Taguchi 1986, Groah 2007). The principle of perturbation (that nonlin-
earities cause measureable loss) suggests that the nonlinearities of gover-
nance and work activities are indeed the realities of integration. And further,
that integration is inherently nonlinear helps answer the question as to why
the whole is equal to more than the mere summation of the parts. Systems
are inherently holistic, interacting in nonlinear fashion.

* The most annoying response!
† Holism is defined as the fundamental principle of a whole made up of parts, interconnected

parts that cannot exist independently without the whole. Systems are holistic, and since the
universe is made up of parts (interacting and integrated), the universe is holistic by its nature
and construct. This definition is by no means meant to trivialize a subject that in itself domi-
nates the great thinkers and many lifetimes of scholarly works.

‡ Similarities in concepts or structures, objects or behaviors, all things and factors considered.
§ Systems engineers need to be wary of a strictly reductionist schema for systems engineering.

The holistic perspective is that of the system, not reductionistic schemas. “Western man
needs to balance his intense devotion to analytical reductionism with anasynthetic words
which link his success at reduction to needed successes in holism” (Troncale 1977 citing
Koestler and Symthies 1968).

228 Engineering Systems Integration

Synthesis

Holism considers the elements of a system as connected causally (ubiquitous,
universal dependencies formulated both temporally and spatially). The
mechanism that forms “. . . a whole from open, interacting parts such that the
whole may exhibit desired, or requisite, emergent properties, capabilities
and behaviors” is synthesis (Hitchins 2007). However, integration is more
than synthesis. Synthesis is that intermediate step which encompasses emer-
gence. However, emergence by itself does not result in a system, but rather a
ProtaSystem. Synthesis is founded on the notion of action at a distance—the
impact of forces acting on things possibly displaced in time and place from
the original action. Synthesis joins and merges the results of interactions
between system elements to sustain the emergent properties that distinguish
ProtaSystems de jure or de facto. Using reductionist methods, systems engi-
neers reduce abstract issues into a formal hierarchy of attributes, traits, and
properties (i.e., physical, functional, and behavioral aspects that can be
mapped into tasks that seemingly represent smaller, more tractable packages
of events or activities). In an iterative fashion a “high-level” task is decom-
posed in a set of subtasks, then into supporting tasks, and so forth. The tasks
conform to processes that have been predetermined to satisfy skills, budget,
and schedule constraints.

From this descriptive definition, classical systems engineering formulates
and combines objects at various stages in the systems engineering process.
To this end, classical systems engineering integration is thought to imply a
sense of participation or membership, one that supposes participation results
in more than an individual member could derive on its own, that is, a system
is greater than the sum of its parts. Moreover, it is reasoned that a system (or
nonsystem) can be integrated classically with another system (or nonsys-
tem) through their respective, relevant interacting objects. Integration
occurs at both the conceptual and corporeal levels through these objects.
For engineers and management, integration is planned to be two objects
combined and made operational through various interfaces representing
connectivity and flows of energy, matter, material wealth, or information.
The result of integration is more than mere extensions of physical boundar-
ies as is with synthesis. Integration brings full extensions of functional and
behavioral boundaries, in addition to physical boundaries. Synthesis can be
thought of as weak integration, which is to say, consolidation of objects, but
shy of integration. Synthesis is a required step, a step that is often a final
stage for many objects. The example of a simple, swinging pendulum illus-
trates synthesis. A string tied to a fixed pivot point swings a mass tied at the
other end. Emergence results as a tight string due to the connectivity, high
coupling, and high cohesion. Synthesis has revealed the value of physical
boundaries and the boundary conditions. And integration occurs with an
observer who needs time-keeping and whose problem is one of not knowing
how far a ship has traveled on sea, that is, navigation. Integration is quite

229Integration in Systems Engineering Context

different from synthesis to demonstrate the simple, but elegant, demonstra-
tion of cyclic, gravity-enabled motion. Following the footfalls of Derek
Hitchins, bottom-up integration (that “mechanistic, building-block approach,
as opposed to a holistic, organismic method, and, as such, is unable to accom-
modate the internal subsystem trades necessary to satisfy overall system
constraints, . . .” (Hitchins 2003)) fails to achieve a system in an efficient fash-
ion. Integration requires synthesis to advance to a ProtaSystem and holism to
achieve the rights and features of a system. ProtaSystems do not exist with-
out synthesis; systems do not exist without synthesis and integration—the
difference is in the degree of interactions across the boundaries of the objects.
Systems engineering requires both synthesis and integration to deliver prod-
uct and service systems.

Work of the Systems engineer

The customary work of the systems engineer is to grind through the issues
of integration diligently, identifying the number and types of interfaces, the
quantities and frequencies of exchanges to assure the mechanical and elec-
trical connections are established, the data types and flows are identified,
and the expected behaviors are planned into the work to meet stated require-
ments. Trying to accomplish integration in this manner is a difficult and
problematic task. Since projects rarely fail during start-up or system design,
integration is usually relegated to early planning with the bulk of the work
scheduled for later in the project. The first opportunity to observe substan-
tial and measurable progress is during the development phase. It is here that
the first objects are built and tested. If those objects do not perform in an
acceptable manner, then the program schedule and budget should be consid-
ered at risk. The second opportunity to note significant progress is during
integration. Integration refers to the phase of bringing objects together spe-
cifically to enable functions (or their decomposed subfunctions). Nearly half
of the development budget can be spent on integration, with 80% of devel-
opment and integration costs associated with software (Maier 2006). These
percentages are typical of systems engineering projects, although the actual
amounts vary widely. But as a rule of thumb passed along by systems engi-
neers, there is a consistency across many projects. When planning for inte-
gration, the allocation of time and budget for integration often varies between
25% and 40%, indicating that the lessons learned is useful for rough plan-
ning. Depending on the amount of software (for an average-sized project),
the percentage of its allocation can be greater than 80%, depending on the
approach taken to develop, integrate, and test software. It seems straight-
forward to envision integration as the means for consuming a large portion
of expenditures to deliver a product or service. Integration of objects that
are insufficiently mature to have small variances in their performances
(assuming that performances of any sort are achievable) are saddled with

230 Engineering Systems Integration

unreliable demonstrations of functionalities. For software systems that are
considered very large, the lifecycle cost of the system is nearly equal to the
combined integration, rework, and maintenance expenditures. These are
estimated to be greater than 90% of the total cost of ownership (Jones 1994;
Donaldson and Siegel 1997). Regardless of the size of the project, a signifi-
cant portion of the systems engineering costs and the lifecycle costs are
wrapped up in integration work.

Systems engineers promote structure for processes, functions, and physi-
cal domains, and as such, integration is formally inculcated into systems
engineering processes. The nature of integration changes over the lifecycle
of the product, beginning with the bringing together of ideas to form a con-
cept, moving through development object by object: by aggregating parts
into units, units into components, into subassemblies, assemblies, and sub-
systems, then into operations with other systems, and finally eventual dis-
posal. Each stage of the lifecycle brings about integration.

Of importance to the systems engineer is that domain-specific knowledge
needs to be integrated with systems thinking (Troncale 1977). Both domain
knowledge (e.g., engineering) and systems reasoning are essential to estab-
lishing a means from which to appreciate systems engineering processes, as
these processes are reflective of both. Yet, thinking in systems is not found
naturally in domain knowledge. The specifics of the domain knowledge can
be all consuming without having to consider issues that seem to be beyond
the immediacy of dealing with a particular issue. However, it is sometimes
exactly those issues that seem to be beyond the defined boundary of the
problem that become problematic over the lifecycle of the new product or
service. It is not enough to just design and build a product or service. The
consequences of the product or service must be considered and incorporated
into the systems engineer’s work.

No human-built product or service is without interactions with another
object. Many products and services do not have a great number of interac-
tions with other objects and thereby lend themselves well to some degree of
insularity. The boundaries of these insular objects are not complicated with
interactions from other objects, and if their interactions are not integrative
with other objects, their independence is maintained. Insular products and
services do not face the encumbrances and difficulties of large-scale or other-
wise complex systems whose interactions may have grievous and deleterious
effects on systems that impact on our survival or goodwill. Systems engi-
neering and its equivalent thinking* in other disciplines and fields are well
equipped to deal with boundaries and interactions. It is the abstraction of
thinking across domains that distinguishes the systems engineer from the
engineer or domain specialist; the systems biologist who manages to unravel
seemingly disparate processes in living systems by enigmatic patterns, the

* That of bringing about the conceptualization and actualization of structures of thought,
equipment, or notions.

231Integration in Systems Engineering Context

systems sociologist who recognizes behavior patterns as symptomatic of
structure and processes, the systems psychiatrist who sees integrative medi-
cine as more effective (Lake 2007), and the systems mathematician who
appreciates the equal sign as signifying relations rather than equality.

Systems and Engineering

To engineer and build a system means to know what it takes to define a sys-
tem and to make a system. But just defining and building a system are insuf-
ficient in the main to deliver the system that is needed and will be used.
Defining a system is inadequate if the stakeholder needs do not address the
real problem (as opposed to merely addressing symptoms of the real prob-
lem). And, building a system that merely addresses symptoms of the real
problem only frustrates users, as much time and expense is wasted dealing
with symptoms. A common example is purchasing medicines that placate the
common cold. They do virtually nothing to cure the ailment, but only amelio-
rate the symptoms. We feel both frustration in not being able to do what we
want to do and misery which accompanies illness. Defining a system that is
needed is the first stage of systems engineering work. Some people know they
have problems and also have the wherewithal to ask for help. Their needs
may be sufficient to warrant paying someone to push technology and incor-
porate it into a product or service. Even if the needs are sufficient, such a prod-
uct or service may be unobtainable. Systems engineers are skilled in thinking
in systems and engineering to work alongside those people who have the
needs to solve complex problems. Key stakeholders are those who represent
the totality of the people who have various needs associated with the product
or service that is to be built by systems engineers. The stages of work are
stated generally and simply as (1) describing the problem in sufficient detail to
manage the development effort; (2) designing a set of alternative solutions
that reflect the functionalities that are wholly responsive to solving the prob-
lem within the limitations of budget and schedule; (3) architecting the arti-
facts to be consistent with the various relations and performances; (4)
developing and integrating the one solution that is consistent with the require-
ments, specifications, constraints, and conditions imposed by the system
boundaries, boundary conditions, skills, technologies, and policies; (5) veri-
fying that what was conceived and built as the system solution indeed
matched the requirements and specifications of the stakeholders; and (6) vali-
dating that the delivered system solution satisfied the stakeholder needs in
solving the defined problem. The systems engineering development process
is highly interactive, sometimes rigorously recursive, and necessarily itera-
tive. It is highly interactive because multidisciplinary teams of people and
subject matter experts are called on to participate; it is rigorously recursive for

232 Engineering Systems Integration

the planned revisiting of work previously attempted to reflect the newly
acquired information and knowledge for planning and staging new work;
and it is necessarily iterative to satisfy the persistent need to double check
the work, clarify issues, voice concerns, and fix what needs to be fixed so that
the cumulative work reflects the benefits of all the subsequent results.

Systems engineering can be extremely frustrating for a domain engineer,
expressly focused on these three habits that are inculcated in the systems
engineers thinking: (1) interactivity implies frequent, but not necessarily sub-
stantive, communications (often with nonengineers) to tease out subtleness
buried in the proposed concept of operations, or implied by requirements, or
ensconced as basic tenets of the problem statement; (2) rigorous recursion
exposes the misunderstandings and omissions typical of developing and
integrating something that has not be built previously; and (3) iteration
determines the eagerness to correct all problems and the tenacity to do the
right things so that the product can be built and delivered.

Charter of Systems Engineering

The charter of systems engineering is to create and express ideas and inte-
grate components into systems that are referred to as products or services.
These products and services are most often presumed enigmatic or incom-
prehensible by some methods, means, or fields of study. Each domain of
study is built on the premise of boundedness, framework for measurements
and interpretation, and theory. The essence of systems engineering is to
unbound the seemingly bounded, broaden the concepts to beyond recogni-
tion, open the solution domain to include the ridiculous, and consider the
issues and problems in an abstract space rather than as they are posed or
presumed to be real. No other discipline or field carries with it that world-
view. The rationale and purpose are clear to the systems engineer, but
 enigmatic to others. Specialty engineers (e.g., mechanical, electrical, and
materials) often find dealing with systems engineers frustrating and annoy-
ing. Why discuss issues and factors that are not germane to the problem at
hand? Why spend any time on any issue that does not go to solving the prob-
lem? Why “waste” valuable effort on talking about solutions, when simple
trade-offs analyses will surface the salient relations from which to make
decisions? Why indeed? The roots of systems engineering supposed the
problem was either incorrectly defined, in which case the solution might be
perfect, but inappropriate to solving the needs of the stakeholders, or cor-
rectly defined, but all that was needed to solve the problem was unavailable
to those charged with solving the problem. The distinguishable difference
between systems engineering and other engineering disciplines or fields is
the context of the thinking—that of thinking in systems (always thinking in

233Integration in Systems Engineering Context

systems). Every problem needs to be thought of as a system; every stake-
holder is considered as a system or system of systems; every solution reflects
not only the problem with which it is matched, but also its implementation
as a system or system of systems. Systems engineering exists only if its
implementations can result in the integration of its artifacts into the requisite
product or service.

No single discipline has developed the tools to engineer multidisciplinary
products or services. Systems engineering is more than engineering. Systems
engineering is the nexus of bringing together the variety and breadth of dis-
ciplines and fields required to accommodate the needs and priorities of
objects (e.g., people, organizations, and the environment) put at risk during
the product’s or service’s lifecycle. Each object put at risk has a stake in the
lifecycle of the solution and are referred to as stakeholders. Stakeholders
may be key stakeholders who impose requirements or are affected directly
from the building, delivery, or use by the primary users. By definition, all
stakeholders have needs that can be expressed as requirements. But nearly
all stakeholders are undeterminable at the onset of the work, that is, the con-
ceptualization that eventually will result in a set of requirements that will
drive systems engineering and integration will themselves help expose
additional stakeholders and new requirements. It is the role of the systems
engineer to elicit requirements, and by doing so identify the hundreds of
people, organizations, and situations that will be affected by the proposed
system over the system’s lifecycle.

Lifecycle Considerations

The allure of using systems engineering for solving vexing problems is
determined to a great extent by three issues: (1) how comfortably the solution
reflects lifecycle needs; (2) the broader context in which the design is consid-
ered to have utility; and (3) the flexibility to incorporate cross-disciplinary
views. These three issues are captured in a lifecycle thinking in systems.

Lifecycle needs are often mentioned in the same vein as low-cost solutions
that deliver high performance. Yet the realities of development within the
constraints of budget and schedule often imply and impose “hidden” require-
ments on the system design and architecture. These hidden requirements are
likely visible during the product or service lifetime, and are indeed traceable
to the original specification documents. Specifically, the requirements indicate
what the stakeholders need to solve their problem. Specifications are written
by the project team to guide the project work. And while the specifications
embody the letter and spirit of the requirements, the interpretation of these
specifications and the decisions made by the individual engineers may result
in more or less than what was stated in the requirements. Sometimes these

234 Engineering Systems Integration

differences between what is delivered and what was required are subtle, but
oftentimes not. For example, specifying the number of lines of code for a
module may improve the overall system performance, but make the develop-
ment time longer. So a typical rule is not to limit the developers in too many
ways, thereby permitting greater flexibility to achieve early testing of the
work. Once the module demonstrates proficiency in satisfying the specifica-
tion “passing” the tests, and being verified as both responsive to the needs
and suitable as per the specifications, little concern is shown for reworking
the module to some additional specification (in this instance, the number of
lines of code). The developers and planners assume that if there is a perfor-
mance issue that surfaces during integration, then work can be directed at
that time to deal with the issues. The particular module that is referred to in
this example may not be the one which is targeted for rework later on. In
other words, the decisions by the engineers are considered to be “good
enough” if the tests, verification, responsiveness, and suitability are demon-
strated. It is very difficult to specify all that is important for the system when
the system is not demonstrable, when all the functions and their perfor-
mances are known, and when all the losses that incur due to achieving those
performances are measured. What lurks in the “completed” and “acceptable”
modules only shows their combined action after the system is integrated and
most likely after it is in the hands of the user(s). It is important for systems
engineering and systems integration to estimate not only the performances
of the system’s functionalities, but also the losses that incur to achieve those
performances (Chapter 1, Principle 7). The lifecycle issues that impact on
the users are most often of the type that come from implementing the
specifications.

Lifecycle can be seen as a structured progression from an initial beginning
state to an end state, often thought of as from inception (beginning of life) to
disposal (end of life). Lifecycle is not comprised of sequential or successive
processes. Yet, lifecycle discussions are appropriate to all processes and activ-
ities. It is instructive to consider the lifecycle of the problem, the stakeholder
needs, the development effort, the product, and the product uses. If either the
lifecycle of the problem exceeds that of the need or the need exceeds that of
the problem, the problem has been solved differently than expected. Either
there is no longer a need to solve the problem (i.e., the problem has changed
from that originally defined) or there is no longer a problem that needs solv-
ing (i.e., the problem has vanished due to circumstances). In both cases, the
problem should be redefined to determine the stakeholders who need to solve
the newly defined problem (or if there is a newly defined need that addresses
a new problem). If the lifecycle of the product is greater than that of the need,
the product is overdesigned or the market changed. If the lifecycle of the
need exceeds that of the product (solution), and the problem remains the
same, there is market opportunity for an enterprise—the hallmark of a suc-
cessful lifecycle product.

235Integration in Systems Engineering Context

A product’s lifecycle refers to the overlapping, concurrent stages through
which the product passes from its earliest beginnings through design,
development, production, use, its discontinuance, and settlement of the final
legal actions. The concept of lifecycle divided into stages with processes
embedded within each stage is typical of systems engineering. At the end of
each stage, a decision is made whether to go on to the next stage or continue
the processes within the current stage.

Inception includes the earliest conceptualization of the problem that needs
to be solved or awareness of the opportunity that ignites compelling interest
in stakeholders. Disposal is the scrapping of a product as a consequence of it
having unacceptable or no utility for its intended or emergent purposes.
The key drivers of a product’s progression through its lifecycle result from
the trade-offs between economics and fear. In the case of commercial prod-
ucts, the economic success factors are revenue and profitability; the fear is
loss of market share, declining image, and deterioration of brand.

The arrows of lifecycle success converge to deliver the lowest lifecycle cost
alternative for a required system effectiveness by avoiding the congeries
of losses throughout the lifecycle. But lifecycle success does not favor any
one stage under the guise of politics, opportunity, innovation, selfishness, or
profitability. Such preferences for expediency may encourage the develop-
ment of a product that is a widely accepted; perhaps even considered respect-
able by seemingly rational benefits (e.g., the internal combustion engine
promotes modern industrialism). But losses accumulate from both manage-
able and unmanageable factors. And unintended consequences may result
from either category of factors. Success, therefore, should not be predicated
on ignoring or not exploring any particular stage(s) or activity, but rather on
the totality of losses accrued to the set of all stages—the lifecycle.

Lifecycle Success

Our past and our prospective plight are in the hands of dreamers and prag-
matists. Dreamers set the boundaries of our future, concerned with a world
that could be. Pragmatists build our next reality, driven by the success or
failure of their work. Neither is a credit to humankind if they solve the wrong
problem, or if they try to solve the right problem in the wrong way. Their
solutions may be clever, apt, and ingenious—boffo exemplars of accomplish-
ment—but they may have failed a crucial test: lifecycle success. Success over
a lifecycle is indicated by (1) an aggregation of activities, processes, or results
that accomplish their purpose, (2) the synergism of events that produce an
effect greater than the sum of their individual efforts, (3) the state of prosper-
ity or good fortune that is consequentially related to one’s intentions over an
extended time to attain eudaimonia, or (4) the semipermanent winning
record that is envied. By the first definition, success is found through the
processes of achievement, those acts that, when mixed or summed, combine

236 Engineering Systems Integration

and compound in a way that is strictly in definite proportion to the total of
the constituent results. In other words, while the activities and results may
have intertwined, there is no synergy—no greater effect than the sum of
their individual effects. We term this process of interchange and interplay as
the interaction between elements. An element is an artifact or atomic unit
that is one of the individual parts that comprise an entity, a cognitive pro-
cess, an operation, or an object within a system. It is the fundamental unit
which is perceived, known, or inferred to have existence (living or nonliv-
ing). Elements that are interactional may be capable of acting on or influenc-
ing each other under various conditions. However, these elements do not
have such undue influence so as to impart information, energy, material, or
wealth as part of their interaction. In other words, elements may interact, but
if they leave no imprint or lasting effect, their interaction is not causal.
Causality requires that another condition be met. The first enactments that
lead to success emphasize the aggregative effects, whereas the property of
emergence is embodied in the second portrayal of success. The interaction
between objects takes care to distinguish between interaction and integra-
tion (which relies on emergence).

Lifecycle success is challenged by development and integration: (1) figuring
out what product to build; (2) determining which parts are required;
(3) deciding on which parts to make or buy; (4) putting the parts together;
(5) keeping the parts together so they perform as expected; and (6) then dis-
posing of the parts when they no longer are useful to society.

Lifecycle Stages

Within the systems engineering parlance, lifecycle can be described as stages
that characterize the product as it transitions from a concept to its final dis-
posal (and the last lawsuit). The stages are defined for an individual project
as agreed upon by the stakeholders. The stages represent work that moves
the product or service through milestones, each milestone showing progress
toward the delivery of the requisite product or service. Systems engineering
lifecycle models are specified, tailored, and used to pace the events leading
through development and operations. In a general sense, these stages can be
characterized as follows:

•	 Conceptualization: The first stage concentrates on two activities—
defining the problem faced by stakeholders and determining their
need; conceptualizing the concept of solutions (CONSOLS) and the
concept of operations (CONOPS). Conceptualization is done to attract
financing and set a preliminary course to explore the stakeholder’s
problem, need, and solution space. Conceptualization increases the
likelihood of appealing to the profit or opportunities that may inter-
est investors. As more time is invested in conceptualization and

237Integration in Systems Engineering Context

searching for financing, the conceptualizer’s risk increases for not
being able to realize a return on investment. However, failing to
attract needed capital may or may not increase the risk of success.
Conceptualization is often presented as a case that justifies the
product (e.g., business case, business plan, or proposal).

•	 Financing: The second stage focuses on financing—determining
which financing source has sufficient interest, capital, and expertise
to consider and possibly fund the effort to accept or amend the pro-
posed solution to satisfy market demands. Financing is secured to
reduce the risk of not having sufficient resources to complete and
sell the product. Outside money is exchanged for a say in decisions
and a part of the results of all activities (make equivalent to other
areas, including process decomposition to first level).

If financed, the project begins work to prepare a design that captures the
preliminary set of top-level (most general) requirements. These require-
ments derive from the various stakeholders and represent their cardinal
interests and is responsive to the various delineations that bound the
solution(s) as well as the conditions under which the boundaries impact on
the design. Additionally, a CONSOLS (describe how it reduces risk) and a
CONOPS (describe how it mitigates risk) are prepared that relate the design,
the operational environment, and the key performance parameters that
 distinguish the solution from other existing and proposed solutions.
Preliminary design reduces the risk of failure by (1) providing confidence to
the developers and financiers; (2) showing transparency in the work and the
design, so that “independent” analysis and evaluation can be accomplished
before additional money is spent; (3) uncovering areas of work that necessitate
further study; and (4) addressing specific issues that were identified earlier
as items of risk.

•	 Preliminary design: The third stage transforms the revised CONSOLS
and CONOPS into requirements at appropriate levels of detail to
produce a design that can be evaluated for risk, utility, and market
acceptance (or mission dominance). Planning is performed.

•	 Detailed design and architecting: The fourth stage completes the design
by inductive reasoning, innovation, creativity, reductionist logic,
modeling and simulation, and prototyping. Alternative architec-
tures are formulated. The detailed design and architecting follows
from the preliminary designs to provide additional detail, derive
requirements from the stated requirements, and further specify
tasks and their outcomes. Sometimes protoproducts or protoser-
vices are developed to verify the stakeholder requirements and
needs are met (but as important, to validate that the team can in fact
build a model of something that represents a key function that is

238 Engineering Systems Integration

expected to be delivered after integration and test). In the case of
entrepreneurs, the funding sources will nearly always insist on see-
ing an early prototype as a means of validation of the business
model, technical capability, and proof of market viability (as deter-
mined by testimonials from potential customers and users). At this
stage, the risk of not meeting the requirements is reduced, but not
eliminated.

•	 Development: The fifth stage describes the bulk of development.
Development personnel and support staff are hired or contracted,
resources are allocated, parts are procured, and units and subassem-
blies are built and tested.

•	 System integration: The sixth stage blends with the fifth stage as
development transforms parts into subassemblies that are integrated
into subsystems and then into the protosystem. The protosystem can
be accepted by the acquisition stakeholder as the deliverable product
or service.* The protosystem can also be a production prototype that
the customer and user should then contract to improve reliability,
engineer for production or manufacturing, or use as a system that
has limited use in a reasonably benign, not critical environment.

•	 Manufacturing or production: The seventh stage deals with the engi-
neering of the protosystem to specify and deliver a manufacturable
end item product that satisfies stated requirements. Manufacturing
is the remaining test that the stakeholder requirements can be met
with more than a one-of-a-kind build. Batch or series construction
deals with using noncustom methods applied to problems that
would have been solved previously by hand-crafting custom solu-
tions. Supplying a more standardized product or service further
reduces the risk that more than one product or service can be built to
satisfy stakeholder’s requirements.

•	 Purchasing: The sixth stage involves the offer to sale and the accep-
tance to buy. To purchase means to recognize the problem; to iden-
tify a need; to determine if the problem and the need are applicable
to current and future intentions of the acquiring organization; to
gather information to increase organizational knowledge; to negoti-
ate; to agree on price, terms, acceptance, warranties, product sup-
port, maintenance; and delivery options and constraints. Purchasing
is the first test of the user’s acceptance of the product. That the prod-
uct is believable and should be accepted by the buyer reduces the
risk that no one will need it.

* There is sometimes a concerted effort that builds only a few protosystems that have robust
properties and traits according to a set of requirements that imply use in an operational set-
ting and environment. In those cases, the development effort must also include “design for
operations” which adds additional requirements and testing.

239Integration in Systems Engineering Context

•	 Operations: The seventh stage spans integration into existing opera-
tions for use, maintenance, support, training, upgrading, modify-
ing, documenting, and reporting. Acceptance by more than one
buyer and the user is another benchmark of risk reduction. Having
multiple and different customers buying shows that the product or
service is satisfactory (by its first impressions) given some variability
of conditions and circumstances. Use is the putting of the product
into service for a particular purpose. Most products or services serve
two purposes: to render its inherent or natural purpose and to assist
the user in making or carrying out decisions (if different from its
purpose). Use involves integration of the new product or service into
the existing organizational procedures, culture, social, and behav-
ioral environments.

•	 Disposal: The eighth stage addresses the final disposal of the product
or winding down of service and all related issues.

Each stage of the lifecycle is highly organized with checks and balances to
reduce the risk of finding problems in subsequent stages. One of the checks
is to verify that the activities and results of the work are in fact fully respon-
sive to the requirements and needs of the stakeholders. Through the early
stages of work, verification is most often comparison of ideas and prototypes
with written documents that either explain or describe the customer and
user’s intentions and requirements. Other checks include the processes of
systems engineering that stipulate the starting points for the stages along
with the criteria for leaving that stage and progressing to the next stage.
Often, rework is required on previous work, but the impetus is to move on to
the next stage as each stage reveals more data and information about the
product and service. For example, at disposal, one should expect to have
learned much of the product’s or service’s properties and traits, some of
which are converted into knowledge.

All previous stages contribute to reducing the risks of disposal, with par-
ticular emphasis on amount of money and planning that is incorporated into
the design and use.

Conceptualization reduces the risk of financing; financing reduces the risk
of preliminary design; preliminary design reduces the risk of detailed design
and development; detailed design and development reduces the risk of man-
ufacturing or construction; integration reduces the risk of not delivering what
is expected, which in turn reduces the risk of purchasing; and which reduces
the risk of use and the risks associated with disposal. The risks of disposal
may include lawsuits due to harm or safety concerns (e.g., radiation effects
and inhalation of asbestos), and unintended consequences that arise due to
social behaviors (violence associated with certain types of entertainment).

The lifecycle stages can be thought of designed to reduce risk of later
stages. The greatest uncertainties that threaten lifecycle success (i.e., bring
about risk) are discovered and dealt with by the activities that are carried

240 Engineering Systems Integration

out during the period of each stage. The transitions between stages are
planned points of stability. Major decision points typically follow mile-
stones at the end of each stage. Milestones are designed to show stakehold-
ers that the product is progressing through a stage and at an agreed juncture,
and the product is deemed ready to enter the next stage. Therefore, the major-
ity of product uncertainties are determined by observation and analysis dur-
ing the course of a stage, with only a small fraction identified at the entry or
exit point of a stage. In systems engineering parlance, the lifecycle stages are
captured by the systems engineering process models. Each stage of a process
model is bounded and delineated by processes that reduce the uncertainties
in a systematic, highly regimented environment. The principal risk of life-
cycle success is that of not achieving the desired level, kind, and degree
of integration.

Lifecycle success results from managing a product’s lifecycle to achieve
the lowest lifecycle cost for the desired level of product utility at a risk that is
deemed acceptable to the stakeholders. Those put at risk or who are posi-
tioned to lose or gain over the lifecycle of a solution are called the stakehold-
ers. The key stakeholders are those who are put at significant risk during any
one lifecycle stage. Stakeholder interests relate to one or more stages of the
product’s lifecycle. In the main, stakeholders fall into one or more of four
groupings—those representing the product, the customer or user, afflicted
parties or organizations, and the Earth’s biosphere and its purlieu. Building
successful products depends on satisfying this quadruplet of stakeholders.
Success is the attainment of a goal, if and only if, no stakeholder is burdened
with losses that are destabilizing or from which there is no recovery.

Lifecycle investigation—inquiry into the staging of activities, their recur-
rence, concurrency, and progression—involves lifecycle assessment and life-
cycle analysis. Lifecycle assessment develops knowledge of the consequences
arising from each stage, whereas lifecycle analysis examines the activities
and their relations in comprising the stage. Lifecycle investigation is a frame-
work for two critical economic analysis tools—management of product
worth and of product risk.

The activities in each stage of the product’s lifecycle and the manner in
which they are performed can add to the product’s worth by lessening or
eliminating risks. While there is an abundance of risks, lifecycle investiga-
tion is focused principally on one risk that is omnipresent and persistent.
That is the fundamental risk of integration. In the broadest sense, integration
is the combining of objects, whether two thoughts form an idea or take
action, two people form a team, two units perform a test, two subsystems
build a system, or two systems complete a system of systems.

Lifecycle Measures

A measure is a basis for comparison derived from a single, repeatable process
of assigning numbers to phenomena according to a rule. Lifecycle measures

241Integration in Systems Engineering Context

have traits of being relevant and appropriate. Allowing for the possibility
that not all measures capture key factors that are directly causal, we define
key measures as also contributing in a central way to the essential character
of the phenomena—that which is directly causal. Measures must be quanti-
fiable with some precision. Good measures have relatively high accuracy,
that is, low variance and high precision. Measures are distinct qualitatively
and quantifiable as an attribute of a phenomenon or matter (IEEE 1991).

Measures need not be applicable to all parts or the whole of the system.
Optimizations do not occur through analyses of measures.

Lifecycle measures that focus on low-level determinants may be useful for
estimating other development projects for budgeting, scheduling, and plan-
ning. Comparisons with other projects: An example of such a lifecycle mea-
sure is the number of source lines of code of software. Over the course of the
product or service lifecycle, the number of source lines of codes grows.
A comparable measure of the number of source lines of code for a specific
function for a project is the absolute number, growth rate in the number, the
ratio of the growth rate for one stage of the lifecycle versus another, the
rework number, and the same measures from one project to like-kind projects.
Other lifecycle measures focus on the mean time between failure, while still
others are concerned with a measure of effectiveness (which is only deter-
minable at the system level). For smaller projects, these lifecycle measures
are quite useful. However, for larger, complex projects lifecycle measures are
often inadequate due to the quite dissimilar nature of the prior projects.
Comparisons of new projects with non-like-kind projects are problematic.
There is another way, but it is also fraught with uncertainty.

Measurements, measures, frameworks, theory, variables (and their depen-
dencies), metrics, and causality are all essential ingredients for comparing
projects for both estimating purposes (in the case of new development
efforts) and planning purposes (in the case of operational issues).

An introduction to concepts of measurement suggests that there is an
inherent error in all that we measure. Measurement is the interpretation of
observations, where the interpretation requires a context and a conceptual-
ization of meaning. The interpretation is expressed through a framework—
the relationships, dimensions, interfaces, form, and fitness that act according
to the accepted standards. The framework is the logics of a scale by which to
compare various constructs. In total, the essence of a theory is made simple
and comprehensible through a framework. A theory, broadly defined and
widely recognized, is expressed in cognitive substance that explains phe-
nomena and guides our actions and experiences. Reasoned and rational
measurement premises a serious-minded, deeply rooted theory. At the heart
of any scientific explanation is a mechanism, the cardinal enactment of a
function; or an activity, the central workings of a process. Measurement is
fundamental to comparing measures.

When investigating potentially causal factors, it is posited that the mecha-
nisms and key activities that characterize various acts (i.e., events or

242 Engineering Systems Integration

 experiences) are essential to developing an understanding about the joint
occurrence of events or experiences.* Mechanisms are enacted (i.e., whether
by action or activities) through variables. Measures are the independent vari-
ables that are reference points from which other items can be evaluated.
Measures are fundamental to comparing projects.

Variables take on different numerical quantities or states of existence.
Variables differ from constants, and constants are stable within a defined
construct. Variables indicate the linkages between events and experiences
and help indicate the possible causal relations. Discovering indicators and
isolating variables are an integral part of the scientific method.† The investi-
gation into the relationships between events or between experiences is orga-
nized and progresses through method—the intervening substance and way
of going between principle and practice (Pawson 1989). Mechanisms convert
or arrange inputs into outputs basically mapping a set of characteristics into
outcomes. A mechanism converts inputs (independent variables) into out-
puts (dependent variables) (Reskin 2003). Constructs that relate multiple
independent variables are referred to as metrics. Mechanisms and metrics
are important for comparing projects.

The relations between the variables may suggest possible deterministic
qualities that influence the behaviors that are observed, perhaps consider-
ably. Under certain conditions, a variable may be restricted in a pair-wise
fashion with other variables to ascertain if their interactions are prima facie
suggestive of an inevitable consequence or deterministically causal by their
portrayal. By careful design of experiments or well-conceived gedanken
experiments‡ the independence of a variable can be investigated in this fash-
ion. The nature of a system or a system component can be construed as being
dependent on the variables that affect its make-up and design. However, to
quantify the system aspects and features, variables that are independent of
other influences (i.e., other variables) form the groundwork to describe the
system operations, be combined for accurate representations of the system
(i.e., models), and be predictive of situations in which the system is planned
to operate. Discovering and isolating independent variables or a set of vari-
ables whose combinatorial actions and influences act in concert as a single
independent variable is a primary task of the systems engineer, systems
architect, and systems integrator. The dependencies of variables are impor-
tant for comparing projects.

* The precedence for this position on mechanisms is based on the procedures of a physicist
who would first observe and then conjure a law of the basic or underlying phenomenon. The
law would be predicated on a mechanistic perspective that linked the observed behaviors
with a principle of action. The implication is that a simple causal relationship exists and is
descriptive of what is observed in nature. The causal relationships derive from variables that
capture these relationships.

† Method organizes and represents the structures, artifacts, concepts, means, and context into
the endeavor and exercise of the work.

‡ Thought experiments.

243Integration in Systems Engineering Context

For the purpose of comparing non-like-kind projects, typical of many new,
complex endeavors, integration offers a unique insight into many measures
of development. Specifically, the events of integration represent all that
has transpired during system design, architecting, and development. The
sequence of events can be represented as a Markov chain where the amount
of rework that is necessary for two objects to demonstrate requisite function-
ality is a strong measure of the progress toward final systems integration.
For these purposes, the amount of rework includes all the iterative actions
found predominantly before integration as well as the recursive thinking
that often occurs once integration begins. If there is a substantial percentage
of rework during physical structures, and hardware and software develop-
ment, then of the primary suspect causes (i.e., ill-defined requirements and
poor functional decomposition, or poor mapping of functions to physical
entities), partitioning problems are often the most likely to persist until inte-
gration reveals the consequences of poor partitioning. This is not to say that
the other root causes of rework have been eliminated. It is only that require-
ments and functional analysis can be reasonably checked and reviewed to
discover and correct issues. However, poor partitioning with mapping to
physical objects is significantly more difficult to detect and will present
problems such as different coupling or cohesion than is expected across
the physical interfaces between the two objects undergoing integration.
Coupling and cohesion due to poor partitioning of lower-level functions are
not normally completely thought through either at the system design or
shown in architectural views. Rework to correct partitioning or its symptoms,
coupling, and cohesion can occur during integration rather than earlier after
development testing. Since functions are demonstrable when two objects
are integrated, the function either is not shown or is demonstrated with poor
performance. In either case, rework is required for one or both objects.
There is no reasonable, clear dividing line between development and inte-
gration and arguably development and systems integration are often one
task after the next as they intertwine during the building of objects. But there
does come a point when the elementary objects are presented and tested,
then brought to the next object for integration. The framework of integration
points out the key measures of coupling and cohesion as symptoms of
improper partitioning. The measure of reworks provides insight into the
intricacies of the development stage—an often enigmatic and vexing morass
of uncertainty and risk for developers.

The practicalities of using rework as the only indicator of progress or for
estimating purposes is much dependent on the ability of the workers to show
consistency in their actions so that their rework as a percentage of work com-
pleted can be represented as a distribution function based on the type of
work, the stage of development, their years of experience, or some other mea-
surable variable. We refer to these factors as the unencumbered measures. In
addition, the influence of management or some other identifiable issue to
coerce the workers to deviate from their “natural” tendencies and thwart the

244 Engineering Systems Integration

unencumbered measures mentioned has a masking effect on the meaning of
the measure. The degree to which that masking effect can be quantified in a
period and averaged somewhat mitigates the masking effect if that period is
meaningful in the context of the overall usefulness of using the measure as
the primary indicator for determining progress or for estimation purposes.
Because although tests can be developed to “measure” the proficiencies of
the engineers for their statistical weightings, coercive effects complicate the
use of rework as a measure. Such tests of proficiency, for example, may be
applicable to software, but not to building physical entities. Whereas source
lines of code or function points (to mention a few) have been used to estimate
software work efforts, using rework metrics may provide supplemental, sup-
porting evidence that proves useful in some circumstances. Previous works
on physical structures and computer hardware also have various methods
and measures to estimate work. Combined with other such measures of
rework, the totality of measures may be sufficient to perform the necessary
comparisons for planning.

Lifecycle Measure: Time

A lifecycle stage is characterized as a distinct period within a sequence of
stages. Each stage is a conglomerate of periods of activities. Time can be con-
sidered a limitation that bounds the period between the notional onset of life
and the somatic moment of death of an entity. Time can also be regarded as
a constraint that restricts what is available within the defined limits. Each
stage can be constrained in different ways, for example, by budget, schedule,
available skills, and allocations of office space (for example).

A condition for lifecycle success requires the individual summation of each
type of constraint not exceed the limitation imposed on the type. In other
words, lifecycle success means not overrunning budgets or not exceeding
timetables to deliver the expected product. With regard to a limitation, time
refers to that of the lifecycle, and in the context of a constraint, time refers to
that apportioned to each stage (or that which is allocated to an activity within
a stage). Time is a consummate, independent measure of a cycle.

Lifecycle Measure: Cost

Cost is a measure of what is expended to attain or accomplish something.
Cost is the total of expenses that it takes to provide the totality of a product
or a portion of the product, within the context of the product’s lifecycle
(e.g., a stage or total lifecycle). Cost can also be construed as a constraint
within defined limits of an overall budget that is imposed on a stage or an
assemblage of stages. In this context, cost takes on the notion of “budget”—
the allocation of cost for a particular time or purpose. Budgets can be allo-
cated to each stage and expenditures monitored against those budgets.

245Integration in Systems Engineering Context

Cost, as a constraint, is apportionable by stage or over the product lifecycle.
When viewed over the product lifecycle, cost has been referred to as the total
cost of ownership. Lifecycle costs consist of the costs associated with the pro-
cesses (and it can be said, with the results of the processes) within a cycle or
the product lifecycle. Lifecycle success means not overrunning cost budgets
ascribed to delivering the expected product. Since cost is deemed to a sub-
stantial measure of lifecycle success, its management is an unassailable mea-
sure of a cycle or aggregation of cycles. Cost is a consummate, independent
measure of a cycle.

Lifecycle Metrics

Combinations of measures whose relations have meaning within a frame-
work are termed as metrics. Metrics, themselves dependent, relate multiple
independent variables to facilitate the quantification of a particular charac-
teristic. In addition to the properties indicated for measures (germane and
quantifiable with small variance), good metrics should (1) be complete as an
indication of a particular system-level attribute (to be meaningful), (2) have
verifiable physical meaning (to avoid misuse), and (3) indicate the degree of
satisfying an ideal performance. A metric is a quantitative assessment of the
degree to which a system, component, or function possesses a given measure.
For example, metrics can be used to quantify productivity and efficiency.

Unlike measures that need not be applicable to all parts or the whole of the
system, metrics do. Optimizations occur through analyses of metrics (not
measures). Metrics are the criteria that contribute to decision making.

Lifecycle Metric: Money

Money functions as a sanctioned, legitimate means of exchange (Newlyn
1978). Investments are represented by money or other exchange of intellectual
capital. For a monetary type of investment, labor and requisite skills can be
acquired to carry out the appropriate processes within the lifecycle stages.
Depending on the activities chosen and the manner in which those activities
are performed, a product may be engineered, managed, and maintained to
achieve desirability and usefulness. The total lifecycle investment can be
considered a limitation that bounds the amount for the project and a con-
straint regarding the rate of expenditure for each stage.

But while the notion of investment appeals to the human nature of want-
ing to get the most for the money, it is instructive to think of the product as a
means to store the value of that investment. Through a medium of exchange,
money is converted into a product and participation in the outcome of the
enterprise that produced the product. The participation may be as the buyer
and user of the product (as in the case of governments contracting for goods)
or as a partner in the enterprise that is intended to benefit from the sale and

246 Engineering Systems Integration

profitability of the product. In either case, the lifecycle success of money is
through an investment that returns benefits (usually preferred in monetary
terms) through planned uses of the product’s inherent functionalities. So,
unlike the independent measures of time and cost, investment through the
construct of money is a dependent metric of stored value for a given product
performance, based on several measures, including cost and performance.

Lifecycle Metric: Performance

Performance is the consequence of accomplishing work, the outcome of an
event. Performance is a metric of functionality, a dependent variable com-
prised of measures that give rise to a product’s utility. Performance is multi-
dimensional, having meaning only within a domain in which its measures
are continuous and quantifiable (Euske and Euske 2002). As such, the mecha-
nisms that deliver functionality do so based on an input (independent
variable(s)) while the performance (output metric) represents a measurable
set of dependent variables. The context of input and output (Reilly and Reilly
2000) and continuity of the measurements of all the variables must be consid-
ered when developing an understanding of performance. An example of
performance is the average speed (km/h) at which a vehicle of mass (kg)
travels between two locations, a stage, or the lifecycle of all travel between an
initial and final location. The ratio of three measures—distance (e.g., km)
times mass (kg) divided by the time (e.g., h)—is a performance metric. In the
case of an internal combustion engine, the lifecycle success of the perfor-
mance metric could be referenced to the quantity of gasoline consumed dur-
ing the travel. Therefore, performance is a metric that is relative to the
measures of time, mass, and distance. These measures are impacted upon by
temporal changes and events (Phelan 1993) in various reference frames: vehi-
cle, operator, and environmental. The mechanism(s) that converts the energy
stored in the vehicle’s gasoline into speed may change over time (due to wear
or nonoptimum tuning), by environmental events (headwind and rolling
friction), or due to operator effects (strong acceleration that averages over
time and distance to a constant velocity, but at a lower rate of efficient conver-
sion of gasoline).

Lifecycle Metric: Complexity

Complexity results from emergent properties of integrated objects, number
and types of processes, and the number, types, and frequency of interactions
between and within processes.

Lifecycle Sense

We observe the beginning and end of things to appear to be both a natural
occurrence and one that we contrive by our own intentions. But it seems that

247Integration in Systems Engineering Context

lifecycle is more than a structured progression; however, we apply our inten-
tions. Rather, lifecycle presents as a piece-wise continuous succession marked
by recursive, iterative processes and not that which is posed as discrete,
independent stages where processes are kempt and respectable. No stage of
a lifecycle or its totality satisfies this Utopian model. Yet, a lifecycle perspec-
tive makes sense in this regard if we allow discrete activities to recapitulate
and update previous findings. Posing lifecycle as the primary orchestration
and organization of systems engineering in itself is not new. The systems
engineering process models do in fact regiment the overall view of a product
in terms of lifecycle stages. But what is new is the discussion on lifecycle
through the portal of the fundamentals of integration. Lifecycle is active
within the framework of integration, rather than being the framework in
which integration is performed. While it seems intuitive that integration
occurs throughout the lifecycle, it is more accurate to consider lifecycle as a
continuum of integration. In fact, lifecycle is the result of integration. Without
integration, no process would show emergence, and product functions would
be self-governing and separate. This autonomy would perhaps reinforce
interactions, but would by definition not result in integration. Every process,
every function, and even the physical space that encompasses the domain of
interest exist only because of interaction and integration, both necessary for
a system. Integration requires interaction, but interaction does not imply
integration. Lifecycle is merely the temporal interpretation of integration.

Introduction to Defining the Problem

Systems engineers attach great significance to defining terms. Every project
has a litany of words and phrases that have specific meaning to people working
on the project. The explicit and expressed meaning of a word needs to be
clear and definitive about its uses, its opposites, and its causes, as well as
be descriptive of the thing (Swartz 1997), its model, or its representation.
The results of well-defined (i.e., nonoverlapping, nonunderlapping) terms
will be fewer errors made in judgment, fewer mistakes made due to miscom-
munication, less cause for variation from expectations, and agreed limita-
tions that will be shown respect. Typical of the interaction between buyer
and seller, defined terms are an agreement, a normative means by which to
work within a zone of comfort. Outside the definition is uncertainty, and
inside the definition is assurance that others will appreciate and understand
the meaning. You might say that without proper limitations and constraints,
the words you use might create a problem for others. But this characterization
of a problem incorrectly attributes the problem to the notion that by not
using an agreed-to (or prerationalized) definition, a problem is created. This
situation by itself does not pose a problem. In fact, the listener might simply

248 Engineering Systems Integration

have thought the word was clear, inferred meaning from context, guessed, or
ignored the word’s meaning and follow along with the discussion to take
away what could be gleaned. The problem may manifest itself later when
the word is used in a different or mistaken manner and a part is built that
does not pass a test or meet a requirement (whether or not the part(s) passed
their tests). Analyzing the part’s failure might focus on various aspects of the
design of the part, the building of the part, the testing or test set-up, milestone
reviews and oversight, or some aspect(s) of communications. The conse-
quence of a failed test means rework and analysis, which adds to schedule
and costs. If these difficulties are assumed to be part of development, and
taken into account when determining budgets and schedules for deliveries,
then there is no problem. A problem only exists when there is a difference
between what can be done and what you need to do, and you do not know
how to achieve what needs to be done. Defining the problem is a process
“. . . which transforms an indeterminate situation into a pattern of factual
data . . .” (Hall 1962).

Defining the Problem

A problem is devised in relation to a need or want of a solution that accom-
plishes something that cannot be done due to some objective reason(s), that is,
availability, technology, science, opportunity, resources, or desire. A problem
is relative to circumstances, meaning a problem for one person may not be a
problem for someone else. Problems are relative. Therefore, systems engi-
neers (and others) who aspire to find a set of solutions to a problem must be
mindful that there are problems great and small. Great problems demand an
apt consideration of the problem space, that is, the problems that exist in
association with other problems. Such association might be thought of as a
nesting of problems (mix of heterarchical and hierarchical relations), a strict
hierarchy of problems, or an affinity of like-kind problems.

Nested Problems

Nested problems are problems within problems with a relation to the other
problems through an abstraction. The relation between the problems is
amorphous, having more to do with the abstraction that categorizes the
problem than the relation between individual problems. Nested problems
are typically related to some abstract object, whether physical or intellectual.
An example of a nested problem within the domain of physical objects is that
of a house. The abstraction of the house could be considered as a shelter or
living environment. As a shelter, the house (with its myriad of functions that
support “to shelter”) and the boundary of house are well beyond the physical

249Integration in Systems Engineering Context

limitation of the bricks and mortar. Supplying water to the house includes
the systems of source, storage, and distribution. The problem domain for the
abstraction shelter includes all problems associated with each of the systems
that interact with the house. Problems with the source (e.g., insufficient rain
and runoff) have an impact on house and living in the environment of the
house. So the abstract problem of shelter subsumes many other problems
due to location, circumstance, specific design details, and habits of the
inhabitants. Nested problems intertwine like a cauldron of cooked and
drained spaghetti. Parsing the topology of nestedness can be taken in many
dimensions. Nested problems have different relations depending on the
relations between the dimensions in which the problem is expressed.
Figure 5.1 relates problem A (the abstraction of house) to the reservoir that
stores water (Problem A4) to the distribution of water from municipal storage
to the house (Problem A1) to piping the water to the rooms in which water is
desired (Problem A2) to the restricted use by the inhabitants (Problem A3).
In this example, the connection of the municipal water pipe to the house is
indicated as (Problem A5), while the source of water (rain) is disconnect
(Problem A6).

Hierarchical Problems

Problems of a hierarchical nature are related by the need to associate one
problem with another in a structure of subsets. Each problem is considered
to be a subset of another problem, with the highest level in the hierarchy
representing the totality of the subset problems. All the problems in the hier-
archy are related by a common factor that weaves a common theme throughout
their relations. Such a hierarchical structure of problems provides a convenient

Problem A
abstraction

Problem
A1

Problem
A2 Problem

A3

Problem
A4

Problem
A5

Problem
A6

FIgure 5.1
Nested problems related through abstraction.

250 Engineering Systems Integration

place for all problems related by the common factor. The problems repre-
sented in a hierarchy are deduced from the highest level, with each succes-
sive level a deduction from the level above. Unlike nested problems that can
have a mixed relation between problems (relation by hierarchy or heterarchy,
hierarchical problems are only related through decomposition). Take for
example, a problem with the foundation discovered after the building of a
house. The floors of the multistoreyed house slope slightly toward the front
of the house. The doors do not close, a gap showing at the floor and apparent,
because the doors either swing open or close in the unlatched position. With
the walls out of plumb, doors and windows do not function properly. The
foundation is a problem from which many structural subproblems arise.
Figure 5.2 illustrates the hierarchy of problems with the house. At the top
level, Problem A (the foundation) is decomposed into problems caused by
the foundation: Problem A2 (floors), Problem A1 (walls), Problem A3 (doors),
and Problem A4 (windows).

Like-Kind Problems

Problems of a like kind are related by similarities but not by circumstance.
The appearance of a problem, its resemblance to another problem, and the
problem’s general attributes, traits, or properties are sufficient to group one
problem with another completely unrelated problem. For example, a prob-
lem with the performance of a car from one manufacturer has many anec-
dotal similarities with the performance of a car from another manufacturer.
The manufacturer neither uses the same parts nor has the same processes
and procedures, yet both cars seem to exhibit the same type of performance
problem. Uncontrollable acceleration of both vehicles, separated by thirty

Problem A

Problem
A1

Problem
A2

Problem
A3

Problem
A4

FIgure 5.2
Problems within a hierarchy.

251Integration in Systems Engineering Context

years, from manufacturers on opposite sides of the globe may not be tightly
coupled situations; however, there may be a commonly practiced design
flaw, a set of parts with similar heritage, or a particular method and approach
to installation or testing that masks a potential problem. The categorization
of such a problem would be “uncontrollable acceleration.” Actual cause(s)
under investigation, perhaps, will never be known.

Problem Domain Analysis

Over the lifecycle of a problem, some things or people are affected and they
reside within the lifecycle boundaries of the problem, while others remain
outside those boundaries. Those within the lifecycle boundaries are termed
as stakeholders (lifecycle stakeholders). Whether the problem domain is
characterized as nested, hierarchical, or like kind, the domain will involve
stakeholders. As with systems engineering, an integration perspective relies
on defining the problem in a most important way: the problem stipulates the
solution. It is the role of the systems engineer and the systems integrator to
provide that solution. If the problem is ill defined, erroneously defined, or
undefined, the solution has no meaning. In other words, the work, resources,
and skills were misused. However, if the solution is defined in terms of the
problem domain, much insight is gained into the type of problem that needs
to be explored to define the problem with which systems engineering and
systems integration must deal.

The usual early work in systems engineering revolves around the triad:
stakeholder, problem, and need. A typical sequence is (1) ask the stakeholder(s)
what their needs are, surmise what the problem might be, discuss the prob-
lem to gain concurrence from the stakeholder, and then declare the problem
is (fill in the blank); ask the stakeholder(s) what their problem is, surmise
their needs, discuss their needs in terms of the problem to gain concur-
rence (or reach consensus), and then declare what the problem is (fill in the
blank); and have the stakeholder(s) tell their problem, what they need, reach
consensus, and then declare the problem is (fill in the blank). All too often,
very little time is spent on determining either what the problem is or what the
problem means. Defining the problem means more than just defining the
problem. Rather, defining the problem means exploring the domain of
the problem to determine what type of problem (nested, hierarchical, or
like-kind) needs solving.

If the discussion with the stakeholder(s) indicates a nested problem, then
the systems engineer needs to identify both the top-level abstraction and the
particular aspects of the nested set of problems that apply. Then, narrowing
down the applicable nested set will expose the causal problem that needs to
be addressed. As part of that analysis, conceptual solutions must be posed, a

252 Engineering Systems Integration

general systems design developed, a concept of operations presented, a high-
level architecture presented, and perhaps an initial feasibility study must be
completed. In this manner, the extent of the problem domain can be com-
pared within the nested problem space to assure that the correct problem
domain is identified. Nested problems require the most analysis and care to
discern the actual problem and the nature of the problem.

If the discussion with the stakeholder(s) indicates a hierarchical problem,
then the systems engineer needs to identify the root (or top-level) problem in
the hierarchy. Asking the question why at each level of the hierarchy exposes
the next higher level of the problem set. For example, why do I have a prob-
lem arriving at work at 8:00 a.m.? (I do not get up early enough to avoid the
traffic.) From this point, the questioning can (and should) proceed in any
number of directions. Why do I not get up earlier? (I stay up too late and I
need 8 h of sleep.) This question and answer suggest that the problem might
be related to trying to accomplish too much or taking too long to complete
certain tasks. The problem could be phrased as taking too much time to com-
plete tasks delays the start of required sleep, thereby causing me to be late to work.
The solution sets are plentiful:

Objective (1): Eliminate some of the previous day’s activities, and go to
bed earlier.

Objective (2): Learn to complete the work faster.
Objective (3): Train to get by on less sleep.
Objective (4): Get help with the tasks.
Objective (5): Negotiate with the boss to have some tasks completed

by others.
Objective (6): Some of the tasks are irrelevant; do not even start them.
Objective (7): Change jobs.

And further, why is there so much traffic when I want to commute by
bicycle? (Everyone needs to be at work at 8:00 a.m. as this is the current
schedule for all the business in the area.) This question and answer suggest
that the problem might be to encourage public transportation, lobby for bicy-
cle lanes, work from home, or go to the beach (or fishing) and work outdoors.
What problem domain is important enough for the stakeholders to reach
consensus? Defining the problem is itself problematic. Identifying a symp-
tom and offering a palliative solution are quickly revealed as eye candy.
Considered analysis upfront avoids false starts to the effect that the real
problem is discovered after exposing the sham during reviews.

Characteristics of a Problem

Identifying the problem is as much about understanding the context of the
problem as it is about knowing what the stakeholders believe they need. It is

253Integration in Systems Engineering Context

as much about knowing the constraints and limitations of the boundary con-
ditions and boundaries as it is appreciating the uses of the product or ser-
vice. It is also as much about the functions as it is about knowing what
decisions the users expect to make after they put the product or service into
operation. In order of importance, the defining characteristics of the problem
can be expressed by (1) the decisions that the users will make either because
the product or service exists or because in anticipation of the working with
the product or service; (2) the limitations imposed by the physical, functional,
and behavioral boundaries; (3) the constraints of cost, facilities, and other
nonlabor issues and resources; (4) the implications of thinking in systems
about the future of the proposed product or service; and (5) the revised needs
of the key stakeholders, as determined after the stakeholders have examined
and discussed the trade-offs imposed by the previous three items listed.

Scope of a Problem

Within the boundedness of the problem, the scope of the expected develop-
ment work can help define how much of the long-term solution will be deliv-
ered in the first tranche of value. The determination of the scope of the work
can be expressed by (1) the limitations imposed by the total development
costs, the deliverable functions, design and architected performance(s), and
the levels of quality expressed as the losses to achieve the deliverable system
performances; (2) the constraints imposed by the development schedule, sys-
tems engineering skills, and management skills; (3) and the degree of inte-
gration. The scope issues are a constant reminder that development uncovers
many issues that were not envisioned at the beginning of the project. Since
both boundary discussions and scope issues are contractual by their nature,
the discussions with key stakeholders are a convenient, albeit proper means
to deal with such issues.

Nature of a Problem

An example that points out the specific nature of a problem is that faced
when the project is on a tight schedule and a wrong decision in the begin-
ning days of work becomes expensive to correct later and co-opts the sched-
ule with undue additional work. Your mathematicians describe a means of
evaluating two conceptual designs developed for a project in the first week
of work. Both designs seem to address the needs of the customer and appear
workable to the engineers. However, there is no consensus or rationale for a
consensus that favors one design over the other as the designs are only rep-
resentative of a set of vague requirements from the customer. The designer
has inferred much and liberally made decisions to eliminate uncertainties.
Early designs are conceptual in nature and lack the refinements that are
reflected in later-stage design. The schedule of this project is compressed
more than the systems engineers found comfortable, but acceded to their

254 Engineering Systems Integration

project manager’s requests to streamline the development process. A part of
streamlining was to commit early to a design that met the requirements.
Typically, a design matures concurrently with the results from engineering
models and detailed analyses that expose additional requirements. As
there are relatively few tools that help shorten this transition time from
concept to a robustly considered scheme (Abeln 1990 as referenced in
Giachetti et al. 1997), a decision must be made with some uncertainty to
avoid time spent in rework. The technique offered by the mathematicians
is to apply fuzzy logic (a form of set theory introduced in the 1960s by Dr.
Lotfi Zadeh (Zadeh 1965)). The mathematicians plan to model the design
variables and specifications as a means of characterizing the differences
between the two designs. More specifically, the designs are based on dif-
ferent assumptions that are shown by differences in the objects and inter-
actions. Without a way to determine the implications of these assumptions,
there is little on which to base a choice. Unlike the work presented by
Zimmerman and Sebastian (Zimmerman and Sebastian 1994 as referenced
in Giachetti et al. 1997) to represent imprecision, the project’s mathemati-
cians believe that fuzzy logic can assist in the analyses of assumptions. By
representing assumptions as parts of one set (i.e., one design) versus
another set (i.e., the other design), and allowing for assumptions to have
partial membership in both sets, the designs can be instantiated in terms of
their dependencies on assumptions. Making a wrong choice (if in fact there
is a wrong choice) dooms the project to not deliver. Making a right choice
merely moves the possibility of making additional wrong (or right) deci-
sions in time. Presumably, if wrong decisions are made later in the project,
the impact will be less than making a wrong decision earlier. The systems
engineer rightly recognizes there is no room for material error—a cata-
strophically wrong decision at the beginning of the project is a problem.

Defining the problem can be depicted as summarizing the situation, elabo-
rating on a particular aspect of the situation, and explaining the situation
with relevant details. The forms of stating the problem (summarized, elabo-
rated, and explicated) are detailed as follows:

•	 Summarized: The difference between making a decision without
analysis and knowing that the design best suited to meet the schedule
needs to be chosen, and you have no viable plan to succeed indicates
you have a problem.

•	 Elaborated: The difference between making a decision without anal-
ysis (and without carefully soliciting and considering all the opin-
ions expressed by the project team) and knowing that the design
best suited to meet the schedule needs to be chosen (because difficult
times lie ahead for the entire project team should a catastrophically
wrong decision be made too early in development), and you have no
viable plan to succeed (should there be inordinate delays in the
work) indicates that you have a problem.

255Integration in Systems Engineering Context

•	 Explicated: The difference between making a decision without analy-
sis (in this case mathematical) [the part: what can be done] and with-
out carefully soliciting and considering all the opinions expressed
by the project team (people who will in great part determine the suc-
cess of the project and your decision) [combined as the part: what you
need to do] and you know the design best suited to meet the schedule
needs to be chosen because difficult times lie ahead for the entire
project team should a catastrophically wrong decision be made too
early in development and you have no viable plan to succeed (should
there be inordinate delays in the work) [the part: you do not know how
to achieve what needs to be done] you have a problem. The problem
involves not having enough schedule to make catastrophic mistakes
(in this case early on).

Domain of a Problem

The domain of the problem is succinctly characterized as a trait of the team’s
work and the project context rather than an intrinsic property of the proj-
ect. The team takes responsibility for determining the problem within the
structure and culture of the project. The problem does not present itself in
isolation. The problem is inextricably tied to the stakeholders, one of which
is the project team. But the problem is neither an inherent part of the project
nor the context of the project. In short, the project cannot be blamed for a
faulty problem statement, but the team can. Therefore, it is vital for the team
to diligently work to better the definition of the problem, to focus effort on
satisfying the needs of the stakeholders so the problem can be mitigated,
mollified, or solved, and to create a collaborative environment for all stake-
holders to share openly. If the problem was always thought of as success or
failure (representing an intrinsic part of the project), then every decision
would be in the vein of fatalism (an unavoidable necessity). Were fatalism the
operative doctrine, one would have not proposed to tackle the work (and by
any measure should not be a part of the team).

Systems engineer’s Perspective of a Problem

It is instructive to point out a key difference between systems engineers and
project managers. Indeed, the difference is so pronounced that it is the rare
individual that should perform both roles. In the example of the project
where the systems engineer needed to decide between two conceptual
designs, the project manager advocated compressing the development and
delivery schedule, resulting in acquiesce by the development team (including
the systems engineer). The sensitivity to a shortened schedule heightened
the importance for the systems engineer to take particular care, as there was
no time to mature a design as might be planned. The project manager’s
intuition instilled sufficient confidence to bring up the idea of compressing

256 Engineering Systems Integration

the schedule. But the systems engineer should not and cannot rely on intuition
for such matters. A systems engineer is inclined to analyze the details and
view the project as a system of systems. A manager may rely on the analysis
provided, but often has a good intuition for what the situation warrants to
initiate the project. Without the decision to compress the schedule, the work
may have been awarded to another group of developers. The first step is to
secure the work under conditions that are conducive to its successful com-
pletion. Since the project team agreed with the project manager, no problem
occurred. Isenberg (Isenberg 1984 as referenced by Busman 2008) suggests
that there are circumstances in which intuition is used. These include sens-
ing when a problem exists and circumventing detailed analysis and move
expeditiously to posit a solution. The approaches of the project manager and
the systems engineer are quite dissimilar, but their goal of a successful proj-
ect is paramount. The thinking of the manager and the systems engineer are
not only different, but they must also be different to provide the checks and
balances necessary to navigate project pitfalls. Interestingly, systems engi-
neers with different backgrounds interpret problems differently—applying
different sets of criteria using different approaches (Bernstein 2001). After
some discussion, most systems engineers will agree on the problem (and the
related subsets of needs that helped determine the problems).

Stakeholder’s Perspective of a Problem

A problem is devised in relation to a need that accomplishes something
that a key stakeholder cannot do because of some objective reason(s), that
is, availability, technology, science, opportunity, or resources, or condition
(limitation or constraints). A problem is also considered with regard to
circumstances. In relative terms, a problem for one person may not be a prob-
lem for another. Since problems are relative, the solutions are also relative
(often based on the predecessor systems that existed before the stakeholders
deemed that they had a problem).

For systems engineering, stating the problem was the founding notion.
Beginning with a key stakeholder who had a need that was causing a problem
(that could be defined) suggested a tangible benefit from finding a solution.
The engineering mind (and most other disciplines are challenged intellectu-
ally to solve problems, whether self-imposed or otherwise). The academic
literature and the public media bait the researcher with problems faced by
society, military, and government. Problems seem to be omnipresent, with
everyone gaining fame and fortune by solving “big” problems. Industry
rewards people who solve problems, so that revenue and profits can increase.
The betting public rewards companies who solve problems and gain market-
share. Waring nations are rewarded by winning battles and war(s) by solv-
ing the problem of defeating the adversary. Problem solving is tantamount to
one of the best roles which inspires movies and best-selling books. Heroines
and heroes might ask, “What is wrong with solving problem?” The answer

257Integration in Systems Engineering Context

would seem to be: some problems need to be solved now, some later, and
some not at all. Not all problems have an urgency to find a solution. For
example, military systems that take 10 years or more to build do not repre-
sent an urgent need. Instead, such a development schedule suggests that
new technologies are being inculcated through the design into the envi-
sioned product or service. If the lifecycle of a new technology is estimated to
be less than the time it takes to design and build the system with today’s
technology, and the system is needed for at least another lifecycle of the pro-
posed new technology, then the system should be built. The system design
should begin with the lowest-risk technologies and over time be upgraded so
that additional capability can be included as new technology is introduced
and proven. The result would be a planned upgrade using new technologies,
maturation of which results in the system have a potentially longer use in
operations. Longer use, however, does not automatically signify that the
newest technology reaches the operational environment first. Rather, the
technology makes it to the field when it is ready. Once the new technology is
proven and fielded, the existing systems (with the “older technology”) can be
upgraded to improve performance(s) across the family of systems that use
the new technology. Contrast this upgrade scheme with waiting longer to
field the first unit and losing out on the increased performance for a number
of years. But it is much more than merely losing out on some years of
enhanced performance during the formative years for the product. It is also
the missed opportunity to develop the supply chain, logistics, maintenance,
support, and training that is often more expensive to set up and sustain.
Early fielding provides many benefits (both in improved capability and costs
of operations). Moreover, the total cost of development for a limited series
production is significantly less than an extended development period. If
greater production is the intent of the acquisition, then once the production
prototypes are built (i.e., the limited series production units), manufacturing
engineering can present a more mature manufacturing item for scaled-up
production.

Defining the problem in systems engineering is akin to forming a question
that needs to be answered for integration. Integration relies on bringing
together objects that satisfy the metaphoric question: What does it take to
satisfy the needs of a specified group of stakeholders? From an integration
perspective, the needs of stakeholders must be considered both from the lim-
ited perspectives of the desired parts and from the whole. This implies that
the stakeholder requirements for physical, functional, and behavioral objects
must also be reflective of the lifecycle issues that will confront and pace the
whole. The question domain that describes the distinctive nature of product
or service features desired by the customer(s) can then be posed and answered
through integration. Does the integration of two physical objects result in the
required functionality and the resultant behaviors? Does the test that is
planned for a physical object represent the questions that eventually must be
answered if the unit fails. Of course, a functional requirement being met is

258 Engineering Systems Integration

the important determinant for systems engineering. But for integration,
requirements have already been established. As such, integration concerns
how the requisite parts form a whole. When an object fails a test, it is the fail-
ure of the performance of a function. The first and driving thought is not that
a functional requirement is shown to have a degraded or out-of-specification
performance. Testing is but a small part of assessing the efficacy of integra-
tion. Testing needs to be done as an audit to determine what functions are
demonstrated to some level of proficiency; what rework is necessary to achieve
the requisite level of performance; what system behaviors reveal about the
intended uses of the deliverable system; and what areas of risk may impede
completing the product or service. Testing highlights the test object’s perfor-
mance at a particular instance under certain conditions. The process of inte-
grating objects provides opportunities to test the performances of additional
functions, each object showing its worth in transforming EMMI. Assessing a
system’s performance is more than an aggregation of discrete instances of
tests. The end-to-end assessment is indicative of combined demonstration of
transformed EMMI into an output that represents the totality of system
behaviors and enactments. Assessment of a system involves integration, test-
ing, verification, and validation. Integration provides the sequencing of
objects to be tested. Testing indicates whether the functions are operative.

Verification and a Problem

Verification shows the mapping of the functions to the specifications, and
ultimately to solving the problem. That is the role of verification. Verification
is the means of establishing that the requisite functions of the product or
service have been provided. Verification is referenced to the specifications
that guided the engineering activities as well as the requirements which
guided the design and architecture. Integration concerns itself with answer-
ing the questions that plague engineers and systems engineers—how will
the performance requirements be met. Integration is more than simply pro-
viding object-to-object integration (i.e., providing functions). Integration
must also satisfy the performances that are required for each of the func-
tions. Validation illustrates the limits of the performances of the design, sys-
tem architecture, and implementation.

Integration and a Problem

Formulating a question requires that systems engineers who take respon-
sibility for performing appropriate analyses act independently to make
necessary decisions, acknowledge perspective and context, and are account-
able for the consequences of the question. That accountability is focused
on due diligence in preparing the integration plan, which results in the
questions that need to be asked and later in the answers. In addition, the
development of the integrated solution (or the answers to the questions
posed) must satisfy good engineering practice.

259Integration in Systems Engineering Context

Characterizing the Need

In developing a theory of integration, three needs arise: first, the salient factors
(e.g., assumptions, independent and dependent variables, measures, and mea-
surement) need to be identified, classified, and categorized; second, a model
must be posed that relates the facts, based on certain specified assumptions; and
third, the hallmarks of explanation and prediction must be laid out. Each of the
three needs address several problems. For every problem there may be multiple
needs. A need is a condition requiring relief. A need needs to be resolved and
managed. Needs have characteristics that distinguish them from wants. Needs
map to the intentions of stakeholders through the stated or unstated wants.
Stakeholders have need(s) and want(s). The systems engineer differentiates
needs from wants by reflecting the needs in the design and architecture base-
lines, weighing whether needs or wants are disguised and miscategorized.

A need has measurable requirements. Systems engineers define needs for
developing the product or services, while the program manager satisfies the
needs to support the project. The user of the new product or service defines
their needs. Users have needs. A need can be for an object’s properties, traits,
or attributes. The systems engineer’s role is to assure that all objects are
appropriately specified, that is, the need(s) are met.

Stakeholders

The word “stakeholder,” one who has a stake in the outcome, is most typically
an entity (a person either acting alone or representing an organization) who can
influence the conceptualization or funding of the development project, or the
product’s or service’s acceptance, operations, or disposal. A stakeholder is any-
one who significantly affects or is affected by decision-making activity the
influences the product or service. In a broader sense, it is someone with an inter-
est or concern, and specifically someone at risk due to the product or service.

Stakeholders have needs, as such it is important to capture their needs so
that the systems engineer can incorporate, acknowledge, or choose to ignore
specific requirements. Discovering stakeholders early in the development
work is less disruptive than later. Identifying and analyzing the needs of
stakeholders is referred to stakeholder analysis.

Stakeholder analysis is a methodology for identifying stakeholders and
analyzing their underlying value and interests in the system. The method-
ology involves several processes and tools that cater to discovering types,
significance, and value of stakeholders. At risk are the consequences of not
uncovering the current and potential future interests and objectives of
affected parties. Conjugate benefits include (1) a better appreciation of the
complexity of the system and the undertaking; (2) understanding of the

260 Engineering Systems Integration

stakeholder influence(s) and how to manage those influences; (3) a more thor-
ough examination of multiple-use objectives; (4) identification and resolution
of potentially conflicting requirements; and (5) exploration of architecture
alternatives. Additionally, stakeholder analysis encourages a forum to
improve mutual understanding about issues, ideas, and solutions that repre-
sent potential stakeholders not included or perhaps not even yet considered
stakeholders. Stakeholder analysis aids discovery of new stakeholders and
their requirements. This more extensive involvement increases the long-
term stability of the system’s appropriateness and applicability to changing
situations. The methodology outlined here becomes increasingly important
for systems of greater worth and complexity.

Stakeholder Analysis

Stakeholder analysis is the systematic gathering and analyzing of qualitative
information to determine whose interests should be taken into account when
developing and/or implementing a policy or program. The sheer number of
potential stakeholders that can influence system development can be quite
large. Therefore, instead of posing the question “Who should be considered
a stakeholder for a system?” an alternative question is “Who should not be
considered a stakeholder for a particular system?” Answers to these two
questions help further identify stakeholders.

Consequently, stakeholder analysis is an examination not only of the indi-
vidual stakeholders but also of how their motives, interests, and values affect
system development. In conducting a stakeholder analysis, a clear purpose
must be defined in the beginning or the analysis could lose focus and direc-
tion resulting from the large quantity of stakeholder inputs.

There are five major steps in stakeholder analysis: (1) identification of poten-
tial stakeholders; (2) classification of potential stakeholders; (3) determination
of potential stakeholder and system relationships; (4) determination of key
system stakeholders; and (5) definition of stakeholder requirements.

The list of potential stakeholders begin quite naturally with the customer(s)
and user(s) who have supplied requirements for the development project.
Expanding the list by referrals is the straightforward means to complete this
first step.

The next stage in the identification process is the creation of scenarios that
require potential stakeholder interactions. These scenarios may help iden-
tify additional stakeholders overlooked during the initial brainstorming
session. The scenarios should involve aspects of the system under develop-
ment. Each scenario is then adapted using events that give rise to the reason
behind the scenario. These adaptations take the form of parameter changes
related to timing, location, participants, or other pertinent factors that alter

261Integration in Systems Engineering Context

the assumptions or initial conditions. Additionally, the analyst explores
alternatives in the scenarios based on “what if” situations that represent dif-
ferent courses of action (i.e., the result of different choices). Each adaptation
will drive a different system response. By examining the different responses
from these variations, one will observe (or in some cases, discover) the
stakeholders that interact with the system.

Finally, a master list of potential stakeholders is compiled from the results
of the brainstorming session, augmented with the lists generated from
examination of the scenarios.

Any stakeholder analysis will result in a degree of uncertainty with
regards to the problem that needs to be solved and the requirements for a
corresponding set of solutions. A possible defect is missing a stakeholder of
consequence. Furthermore, participation by a group of people and represen-
tatives of organizations or entities brings with it a set of unique and dynamic
characteristics. As a result, personalities and agendas are complicating fac-
tors that must be endured, although they sometimes impose difficult limita-
tions and constraints.

After the stakeholder analysis is completed, it is useful to evaluate the spe-
cific methods and their consequences through which the system can be
thought of and analyzed. The comprehensiveness and usefulness of the stake-
holder analysis is revealed in discussions with stakeholders to explore the
earlier-stated requirements to ascertain if those requirements are certain in
the minds of the stakeholders, reflect the needs of the stakeholders, and may
be indicative of other requirements that have as yet been unsaid (whether
missed or simply omitted). For example, changes in a policy may have very
visible impacts on the design of the system. If the stakeholder expects changes
in policies from time to time, then it may be important to consider desensitiz-
ing the system design to small changes in policy using the stakeholder sen-
tience analysis as a feedback measure. Further, changes in policies do occur
whether they can be planned for in advance or not. Knowing which policies
the system design (or architecture) is most sensitive to allows the systems engi-
neer to consider defining back-up options should key policies change. These
back-up options would not become requirements, only discussion points from
which scenarios might be developed to investigate the sensitivities of planning
on the futurity of events. Rather than a prediction or a projection,* the futurity

* A prediction is a probabilistic statement that something will happen in the future based on
what is known today. A prediction generally assumes that future changes in related condi-
tions will not have a significant influence. In this sense, a prediction is most influenced by the
“initial conditions”—the current situation from which we predict a change. In contrast to a
prediction, a projection specifically allows for significant changes in the set of “boundary
conditions” that might influence the prediction, creating “if this, then that” types of state-
ments. Thus, a projection is a probabilistic statement that it is possible that something will
happen in the future if certain conditions develop. The set of boundary conditions that is
used in conjunction with making a projection is often called a scenario, and each scenario is
based on assumptions about how the future will develop.

262 Engineering Systems Integration

of events helps determine the interests of the stakeholders and their needs at
some point in the future.

Classification of Potential Stakeholders

Classification of potential stakeholders proceeds using the following steps:
(1) determination of the system boundaries, (2) classification of potential
internal stakeholders, (3) classification of potential first-order stakeholders,
and (4) classification of potential second-order stakeholders. First, to define
the system boundary, one must understand that it can be somewhat ephemeral
in nature. That is, the incidental interactions between stakeholders, the ele-
ments and domains that characterize the system, and external interactions
with other systems and stakeholders will change over time and therefore
change the system boundary. Scenario building and analysis are convenient
means to explore the role of stakeholders at various stages in the lifecycle of
a product or service.

Those stakeholders that interact only with internal system elements or
with other stakeholders are classified as internal stakeholders. Those stake-
holders that are in direct contact with the system but do not have direct
interaction with the internal stakeholders are considered first-order stake-
holders. Second-order stakeholders are defined as those stakeholders who
are connected indirectly to the system via interaction with first-order stake-
holders. Both first- and second-order stakeholders are classified as boundary
stakeholders because they interact with external entities across the system
boundary. Therefore, the group of internal and boundary stakeholders com-
prise the set of valid system stakeholders (Ku 2007). After classifying the
stakeholders, it may be necessary to prioritize them based on when they
influence the system. Determining the relationships between the potential
stakeholders and the system is an initial (and critical) step in prioritizing the
stakeholders. The purpose for prioritizing the stakeholders ensures that
vital inputs (stakeholder problems, needs, and requirements) are utilized to
develop the functional analysis, and thereafter, the system architecture for
the human capital management (HCM) strategy. Drawing from the pool of
potential stakeholders established during the previous steps, stakeholders
are grouped into different system roles, which assist their prioritization and
facilitates the selection of appropriate stakeholder inputs.

Stakeholder analysis helps identify the key system stakeholders—those
stakeholders who help form the acquisition and development, and then take
delivery of the product or service. Determining which stakeholders have sig-
nificant roles during development and which are focused on those aspects of
defining the project are most likely to either be involved early on or be repre-
sented for the early discussions regarding requirements. All stakeholders
must be represented during requirements analysis.

As with any set of requirements, not all stakeholder needs can be met.
There will always be some requirements that are not included or changed

263Integration in Systems Engineering Context

significantly from that which is desired by the totality of stakeholders. Not
all stakeholders will be happy with the compromises or the outcomes of
the requirements analysis. And fundamentally it is impossible to build a
system that does no harm. The reason for such a strong statement is rooted
in the recognition that when systems are built for commercial purposes they
are meant to compete in a lively and profitable manner. Other companies
lose marketshare and often substantial money. The stakeholders include not
only the developers and the customers and users of the new product or ser-
vice, but also the competitors who may be affected by loss of sales. All have
a stake in the requirements for the new product or service—with the compe-
tition wanting less functionality and lower performance which is completely
at odds with those stakeholders who want greater functionality, greater per-
formance, or a lower cost. Every system has stakeholders who at odds with
the requirements. Acquirers set the domain of the key stakeholders. Military
planners must consider the “competitive” environment for the products and
services they have developed. Adversaries are indeed key stakeholders, but
not in the same way as the developers. Consequently, systems are affected
by the key stakeholders during acquisition and development in a way that
grants them a higher importance and greater influence than those stake-
holders—the competitors and adversaries who hold completely opposite
views on the requirements.

Stakeholder importance is a qualitative measure based on the product
of the number of interactions a stakeholder has with other stakeholders,
and the worth of these interactions as determined by the worth activation
function—the measure of performance multiplied by the loss incurred if
the performance deviates from a target value of desired EMMI, then
divided by the expenditure of EMMI to achieve that performance. From the
work of Ku (2007), the importance of a stakeholder is based on the number
of interactions each stakeholder has with all other stakeholders (internal,
external, first-order). The more direct an interaction a stakeholder has with
others within the system, the more likely it is that the stakeholder’s actions
will affect the whole system rather than individual subcomponents of the
system.

Unlike stakeholder importance which is quantifiable in terms of EMMI,
stakeholder influence is a qualitative measure based on the types of rela-
tionships the stakeholders have with the system domain (internal, first-
order, or second-order) and the duration of these relationships throughout
the product’s lifecycle. The higher the risk of gain or loss a stakeholder has
with regards to the system domain, the greater the influence that stakeholder
may have over the system. Therefore, internal stakeholders may have greater
influence than first-order stakeholders may have. In turn, first-order stake-
holders may have greater influence than second-order stakeholders may. In
addition, the duration of the relationships has a bearing on the stakeholder’s
influence. If an internal stakeholder only interacts with the system during
the concept development phase, but a first-order stakeholder interacts with

264 Engineering Systems Integration

the system well into the deployment phase, the first-order stakeholder may
have a greater influence on the system than the internal stakeholder may.
Both the type and duration of stakeholder and system domain relationships
contribute to stakeholder influence (Ku 2007).

The selection of key stakeholders is based on the product of the stake-
holder’s importance and influence. From these factors, the stakeholders are
ranked as primary, secondary, and tertiary entities based upon thresholds
determined by the analyst(s). Primary stakeholder needs have direct input
into the development of the system’s functional analysis and the overall mea-
sure of effectiveness model. Secondary stakeholder inputs have limited
weighting in the development of the functional analysis and the overall mea-
sure of effectiveness model. However, these stakeholders will be incorpo-
rated to the maximum extent possible within system boundaries, as described
in subsequent sections of this chapter. Tertiary stakeholder inputs are con-
sidered beyond the scope of this analysis and will not be incorporated into
the functional analysis and the overall measure of effectiveness model.

The final step of the stakeholder analysis is the definition of stakeholder
requirements. This step is closely related to the stakeholder requirements
definition process described in Revision 3 of the INCOSE Handbook,
which states: “The purpose of the Stakeholder Requirements Definition
Process is to elicit, negotiate, document, and maintain stakeholders’
requirements for the system-of-interest within a defined environment”
(INCOSE, 2006, p. 4.2).

After identification of the primary, secondary, and tertiary stakeholders,
problem statements can be developed. Langford et al. (2007) defines a prob-
lem in the following terms: “Whenever there is a difference between what
can be done and what you want to do, and you do not know how to achieve
the desire, there is a problem.” For every stakeholder problem, several stake-
holder needs can be identified. A need arises from a condition faced by the
stakeholder that requires a solution to alleviate it.

Once stakeholder needs have been documented, they are used to derive
stakeholder requirements, which are essential for guiding system develop-
ment and serve to frame the project scope (INCOSE 2006). These require-
ments drive the development of the functional analysis, the overall measure
of effectiveness model, and system architecture. In addition, the stakeholder
requirements are used in gap analysis to determine the desired state sought
by the stakeholder (“where we want to be”) and, in conjunction with the per-
ceived existing state, establish the gaps to be addressed by the system
solution.

After the stakeholder analysis is completed, it is useful to evaluate the spe-
cific methods and their consequences through which the system can be
thought of and analyzed. For example, changes in certain policies may have
very visible impacts on the design of the system. It may be important to con-
sider desensitizing the system design to small changes in policy using the
stakeholder sentience analysis as a feedback measure.

265Integration in Systems Engineering Context

From a systems point of view, a stakeholder is an object of the system.
A system is a set of objects that are either dependent or independent but yet
interacting pair-wise—temporally or physically—to achieve a purpose.
Likewise the objects that interact with other objects outside the system form
the boundary of the system and are “boundary” objects. Objects that only
interact with other system objects (and have no interactions outside the sys-
tem) are “internal” objects. Both internal and boundary objects are system
objects. Boundary objects are also objects in the system with which they inter-
act. These definitions include both the permanent and episodic interactions
among objects of a system, systems of systems, or a system of systems. Thus,
the lasting and occasional interactions, as well as emergent properties and
behaviors of a system, are driven by the object within the system that are
driven through their EMMI from both other internal objects as well as exter-
nal objects. These interactions result in the transfer of EMMI. The transfer of
EMMI can result in various behaviors, for example, cooperative, competitive,
enhancing, enabling, destructive, and degrading.

Complexity

Complexity, scope, and extents underlie the challenge of detecting, engag-
ing, and integrating stakeholder issues into phases of the lifecycle of the sys-
tem. Complexity stresses the constructs of systems engineering practices
and modern management techniques. Complex systems have a great variety
of interactions, which transcends physical, information, and social interfaces.
The system complexity thus augments the management challenge because of
the large number and various types of system elements and stakeholders. In
this book, complexity is reflected by the number and types of interactions
that lead to integration of the elements of a system or among the systems of
a system of systems. Since an element of a system may also be or represent a
stakeholder of the system, increasing the number of stakeholders increases
the complexity. Managing complexity or managing stakeholders thus
amounts to managing the value and the worth activation function, and
therefore the number of interactions.

For issues that have numerous, multiplicatively tortuous boundaries (i.e.,
physical, functional, and behavioral) and complicated boundary conditions,
systems engineering seems to be the only discipline that has the tools and
methods to deal with the issues that we herein define as complex. Complexity
has been said to be an important concept, perhaps as important as the con-
cept of a system (Klir 2001). Since a great number of books, scholarly works,
and musings have been offered by ponders of complexity and its implica-
tions, there is not much more to say about the subject of complexity. It would
seem that complexity should be simple, rather than complex. The reason for

266 Engineering Systems Integration

this is there are a great number of things and issues that appear complex
scaled from the atomic level to the universe. There seems no limit as to what
can be complex. Complexity is omnipresent, commonplace, almost to the
point of being pointless because it is ordinary by its nature. But in the ordi-
nary, the humdrum of existence, the exceptional transpires. As phrased by
Klir, “Complexity (in the epistemological and methodological sense) is
thus associated with systems, that is, some abstractions distinguished on
objects that reflect the way in which the objects are interacted with” (Klir
2001). Complexity is the result of interactions between objects. Yet, more
interactions do not necessarily increase complexity. Complexity can increase
and decrease. Complexity can be seen as relative to the level of abstraction in
which one views two objects. For an atom, the constituent parts of protons
and neutrons may not be complex at that level of abstraction. But examine
the constituent parts of the proton and reveal details that are as yet unex-
plained. Scale up from an atom to molecules and then subsequently to a
human-built system that interacts with other systems. Regardless of scale,
we find complexity. Interaction is the defining process of complexity.
Interaction is the catalyst that results in integration. Integration is the process
of systems and of systems interacting with other systems. The fundamental
mechanism that drives complexity is interaction across the three types of
boundaries that lead to integration of the elements.

Process Models

In a simple and inaccurate form, systems engineering process models relate
work that needs to be done to a set of stages that map to the systems engi-
neering progression of defining the problem; designing and architecting
solutions; developing and integrating objects; and testing, verifying, and
validating to satisfy requirements. Again in a simple and inaccurate form,
process models indicate what should be done next, and how long it should
take. In addition to process models, maturity models have been developed to
describe various aspects of systems through the development process. These
maturity models include parameters such as capability and integration. Each
model is specialized to deal with perceived risk, verification of specifications
or requirements, domain interactions, or a catch-all of multiple factors.
Process models help to orchestrate the work as well as communicate what
type of work should be performed to reach the next milestone. Selection of
the process model for a systems engineering effort depends in part on the
preference of the acquirer, the skills of the developer, and the particular key
limitation (e.g., cost, budget, or performance) that is to drive the work.

Process models differ from acquirer to acquirer. Within the U.S. govern-
ment, multiple process models are used. Within industry, home-grown

267Integration in Systems Engineering Context

process models dominate the work, many adapted to the particulars of the
project or as an accommodation of the business enterprise. All have a high-
level graphical presentation that defines the organization of processes. All
relate that organization to milestones, progress reviews, and decision
points. All imply coordination, process architecture, requirements man-
agement, and goals and objectives. Some process models are designed to
work with particular standards, while some standards help to orchestrate
process models. There are literally dozens of process models and many hun-
dreds of references (IEEE 1220-1998 1998; Martin 1998; ANSI/IEEE 2000; Sage
and Rouse 1999; Sheard 2001; ISO/IEC-15288 2002; INCOSE 2010), including a
systems integration process model (Jain et al. 2010). All these models can be
adapted to virtually any project given enough understanding of the relations
and time to communicate both the intentions and the methods that will be
used for all stakeholders.*

Scalable Process Models

The effectiveness of a process model is at worst dependent on a preference
for one model over another and at best based on the circumstances sur-
rounding the project. While the process model must be tailored to the needs
of the acquirer (e.g., in their reporting to others, in their review of the work,
in their perception of risk, and in their decision to continue support) and
must also be matched to the skills of the project team, the process model
should always serve to improve and facilitate the problem solving and deci-
sion making, rather than in itself become the problem that must be worked
around. Assuming that the needs of the acquirer and the project team are
met, success with the chosen systems engineering process model depends
on satisfying two conditions. First and foremost, the resources needed to
succeed with the project must be available at the start of the project (GAO
2001). Second and nearly equal, the process model must be scalable. The
meaning of scalable for process models is the relation between the time it
takes to complete the project using the systems engineering process model
and the size of the problem that is to be solved (given that the two condi-
tions are satisfied). If the requirements are known in detail and the only
derived requirements are those that expound on the detail provided by the
acquirer, then a process model that begins with certainty (e.g., the iterative
waterfall model and like-kind kin†) will provide varying degrees of suc-
cess). All waterfall derivatives are scalable. The more requirements are
detailed up front, the more definite the outcome of development. The char-
acteristic of scalability that is important for systems engineering is the capa-
bility to cope and perform under changing requirements. Requirements that

* Stakeholders include the project staff.
† Example derivatives of the waterfall process model include the spiral and the vee process

models.

268 Engineering Systems Integration

up front are ill-formed, incomplete, or deemed unnecessary may have impor-
tance as the systems engineering activities begin to discover and detail
trade-offs and derive new requirements. The iterative nature of systems
engineering inculcates the maxim, “If at first you don’t succeed, try and try
again.” The trade-off for systems engineering is to live with an error and deal
with it later. Intentionally letting an error pass is unacceptable because some-
thing that is known to not work properly will bedevil integration work.
Functionality and performance will suffer.

Scalability is about doing what needs to be done with more people or
being able to do more with one person. Scalability in the first instance
(more people doing what needs to be done) is enabled by providing ser-
vices to support the people. Scalability in the second instance (enabling
people to do more is through efficiencies). The systems engineering process
model needs to work effectively in both instances. The desired scalability
is achieved when an economy of scale is reached. This economy is related
by the output level of the team per unit cost increasing at a nonlinear rate.
If the resources and the process model are as described above, an effective
scalability is achievable. Economies of scale result from both members of
the project team working in concert as well as the development objects
being synergistically integrated. One of the key factors in achieving such
an economy of scale is to instill a recognition of scalability by accessing the
processes through synthesis at the unit level first in development, and
again early in the integration work while at the same time supplanting
iterative actions with recursive thinking. One of the key factors in stimulat-
ing scalability is through the use of tools that are not limited by their access
to a single instance in a database. Multiple users of the same data through
single-threaded access thwart people in achieving economies of scale and
are therefore scalable. This way of thinking about scalability is the same as
enabling greater capability with respect to multiple simultaneous uses of
common tools and data. When magnified across the development or inte-
gration work, an improved use of resources results. In essence, the net-
working of process through common access provides scalability from very
small projects to diverse, multiple domain programs (NIST Special
Publication 1108 2010).

Checklist for Scalability

Satisfying the two key conditions (resources available at start of project and
scalability) is essential to realizing an economy of scale. The checklist for
scalability is as follows:

•	 Mandates, preferences, or desires of the key stakeholders (e.g.,
acquirers and users)

•	 Experience of the project manager and the business enterprise

269Integration in Systems Engineering Context

•	 Skills and experience of the systems engineers and the project team
•	 Time limitation to complete the project
•	 Budget limitation and schedule of payments for the project
•	 Economies of scale due to common access to network tools and

processes
•	 Applicability of approvals and milestones to the pace of development

and integration
•	 The level of functionality, performance, and quality desired
•	 The scope of the project (determines the set of heuristics necessary

to make decisions)

Without satisfying the two conditions for a successful project (i.e., resource
satisfaction at start and process model scalability), the project should be con-
sidered to have an undeterminable risk. Moreover, the view is that once a
systems engineering process model has been adopted, it should be sacro-
sanct. However, if the conditions warrant and the initial development work
determines that a change in the systems engineering process model would
help focus the work on a particular methodology or emphasize an aspect of
the work that is discovered to be most important, then consider tailoring the
model. Again, that change in the systems engineering process model needs
to be vetted carefully against the needs of the key stakeholders, and strict
unanimity is paramount.

Testing

Testing objects and integration are often indicted as being either related or
similar in nature. “Test and integration,” “integration and test,” or “integra-
tion test” appear frequently in reports, systems engineering documentation,
and in presentations by stakeholders involved with an acquisition activity.
Integration and developmental testing or integration and unit testing are key
to building a system. Integration has been thought of as “… progressively
linking and testing …”* The common usage of the word “integration,” while
suggestive of bringing objects together to build a system, should not be
thought of as building a system. Rather, the process of “integration” is more
accurately described as putting parts together in a particular order and fash-
ion to demonstrate the requisite system functionalities. Whether these parts
form a system (or not) has nothing to do with the process of putting them

* Institute for Telecommunications, United States Department of Commerce.

270 Engineering Systems Integration

together, but rather is a separate evaluation after the completion of the work.
Integrating objects merely brings their boundaries into some sort(s) of con-
junctive relation(s) through the exchange of EMMI. However, the mere con-
junctive relation(s) of individual parts, units, components, subassemblies,
assemblies, or subsystems does not satisfy the requirements for a system
unless all the various kinds of objects are operative. The goal of a project
may be to build a system, but a system is not a system until it satisfies the
requirements for a system. Integration is the means for building a system, as
it is the means to put anything together. The process of integration is neces-
sary to build a system, but it is not sufficient.

It is a learned response, whether by a previous stressful experience
(Kinnaird 2003), by warnings, or by procedures that systems engineers have
turned into the habit of testing what is determined that needs to be tested.
Sometimes items are included in that determination that has no more than a
reflexive stimulus (Gabora 2001) to evoke testing. The impetus for testing an
item should be based on something other than fear or instinct. As the prac-
tice of systems engineering has evolved and taken its lessons from engineer-
ing, the basis for a test is problematic. Certainly, we are unwilling to test
every part (e.g., every resistor, every wire, every washer, and every transistor
under every condition that is likely to occur in conjunction with a finished
product or service). Instead, systems engineering and projects have built-in
formalisms to provide a level of assurance that certain standards (ISO 9000
series) for the improvement of organizational performance are followed for
production of individual parts.*

Testing is a process to determine the difference(s) between an object’s prop-
erties, traits, and attributes under certain conditions in a given set of circum-
stances with that of a representation (or test model) of what is desired. The
representation includes the test setup; the test procedures; the test plan; the test
personnel; the test objectives; the data analysis (and tools); the theory in which
the measurements are planned, executed, and interpreted; and the biases (of all
parties). It is tacitly assumed that all factors not included in the representation
(or test model) are factually extraneous (and therefore not significant either to
a specific test or to a concatenation or totality of tests). Great care must be exer-
cised in planning and executing the testing of an object. Testing is a means of
comparison: comparing an object to the test model. Tests do not prove any-
thing; they only show a correspondence to an expected result (Aerts 1983).

What to test is extremely important for any project. Testing impacts on the
schedule, use of resources, budget, and final performance(s) of the product or
service. The high costs and impacts of remediating defects discovered after
the product or service is in operation cause great consternation when decid-
ing what to test (Boumen et al. 2006). From an integration perspective, the

* International Organization for Standardization, About ISO introduction http://www.iso.ch/
iso/en/aboutiso/introduction/index.html, website modified February 16, 2004, accessed
April 18, 2004.

271Integration in Systems Engineering Context

purpose of testing is to show that the functions are required by the final
product or service are substantiated in a manner that invokes the desired
behaviors of the users. Therefore, testing requires more than the test model
that is typical of most projects today. To assure that the required functional-
ity is present, testing must not only confirm the mechanical, electrical, chem-
ical, biological, computer hardware, and computer software issues, but also
the fitness for use and the sociological aspects of the user behaviors. There
are likely no quick fixes to the product or service after it has been placed into
operation, so the operative moments to deal with these issues is during the
system design phase when the subsystems are being identified and the
requirements are being allocated to components. System design involves
evaluating off-the-shelf components, evaluating alternatives, determining
the selection criteria, analyzing and allocating requirements from the system
requirements, and identifying the interfaces. Components are defined in the
system design in terms of their functionality and performance.

System Design

System design is the opportunity to conceptualize the user’s needs by
answering the following example questions:

•	 What decisions does the user need to make?
•	 How much information does the user need to make those decisions?
•	 From where will the information come?
•	 How much detail does the information need to assist the user?
•	 How does the user determine what information is needed?
•	 What level of trust does the user ascribe to the information?
•	 How should the information be represented?
•	 How should the information be presented to the user?
•	 What is the time line for the user’s decisions?
•	 Is there a natural sequence in which the information should be pro-

vided to the user?
•	 What are the differences between the users and their decisions?
•	 What procedures should be built into the product or service that are

most natural to assist the user in making decisions?
•	 What are the functional characteristics of the product or service that

the user requires to complete the user’s tasks?
•	 What are the performance(s) of the functions that are expected?

How do those expectations compare with the requirements?

272 Engineering Systems Integration

System design focuses on the functional nature of the interactions between
the product or service and the user. While system design does not impose an
architecture (which establishes the relations between the structural compo-
nents, e.g., physical entities, computer hardware, and computer software),
system design poses alternatives that could be considered as solving the
stated problem to some varying degrees. The match of the system design
alternatives to the most effective solution to the posed problem is a matter for
analyses and evaluations which then become some of the guidance for the
architectural alternatives. System design will tend to provide a general-level
perspective of the product or service through varying levels of detail down
to the component level. The iterations of design will result in the allocation
of requirements first to subsystems, then to assemblies, then to subassem-
blies, and then to components.*

An item that is a unit (the lowest level of an object that results from work)
can be tested. The decision to test at the unit level is fundamentally based on
the model of testing used on the project. Based on a study of development
teams across several industries, Wheelwright and Clark (Wheelwright and
Clark 1992) suggest that a design–build–test strategy seems to be more effec-
tive in creating an air of confidence in people’s work. This confidence is clearly
ill-founded as substantial amounts of rework are necessary throughout a
development cycle. Consequently, projects must develop a rework strategy
with procedures, inspections, and accommodations for revising work plans,
schedule, milestones, and budgets. Selecting an aggregation of units and
components for testing at a higher level eliminates low-level tests. The coun-
terargument from the engineer is that testing provides visibility into how
well the work matches with expectations. The point is that expectations are
often incorrect and while correcting work to match with expectations is sat-
isfying, it is ruinous with regard to schedule and budget. From an object’s
point of view, its design and implementation are only testable in conjunction
with another object, whose combination results in a function. If both objects
were built and tested to expectations, but the desired function was not dem-
onstrated, then one or both objects have a problem with mechanism(s), out-
puts, or inputs. With perfect execution of the work (as assumed in this
discussion), the design is faulty. Detecting faulty designs quickly is essential
for remaining within schedule and budget constraints and argues for build-
ing to functionality. The argument that without perfect execution the func-
tions were not demonstrable is specious. Poor execution of the work to build
an object that is deficient in some way may only reduce the performance
value of the functions, but may still demonstrate the function. The key issue
of what to test is not determined by testing all that can be tested, but rather
testing what needs to be tested. Sometimes it is simply better to plug the

* Projects vary as per their terminology for different levels of work. Here, components are
meant to be an element of a larger whole, that is above the individual part and the aggrega-
tion of parts into a unit. Components are aggregations of units.

273Integration in Systems Engineering Context

lamp cord into the circuit to test the lamp, rather than testing all the parts
individually. If the designer fails to allocate a requirement to a component
and that component is tested, the requisite functionality will not be demon-
strable (i.e., an essential requirement is missing). If, however, that require-
ment is allocated, but poorly implemented, the functionality will be shown,
but at a reduced performance. Arguing for a strategy of design–build–test
may encourage or inspire engineers, but it is not a logically defensible posi-
tion. An example to illustrate the point begins with a group of engineers who
build and install electric vehicle recharging stations in anticipation of wide-
spread acceptance and mass production of electric vehicles. Testing of the
components was extensive, as was the finished station. The test plan was
derived from the Systems Design documentation which included a compre-
hensive set of requirements. The requirements document was carefully con-
sidered by the urban transportation specialists, policy makers, city planners,
the recharging station engineers, and representatives of the electric vehicle
industry engineering groups. Due to a last-minute problem with a new bat-
tery design based on lithium-ion energy technology that provides the prime
energy to move the vehicle, the development team working on the electric
vehicle’s battery system revised their plans and reverted to a more reliable
design (but one known to have a tendency to catch fire when overheated due
to overcharging or high ambient heat). While the vehicle met the form, fit,
and function of the requirements documentation, the hazards issue was
dealt with as a safety issue and not one as a functional requirement for the
recharging station. Instead, the system of systems design had this safety
issue allocated to the electric vehicle. The designers of the electric vehicle
dealt with this issue in the user’s instruction manual both as a warning and
as a set of procedures. Since the allocation of the safety issue regarding the
electric battery was to the electric vehicle and not to the recharging station,
the recharging station was not robustly designed for a vehicle fire of the
sort produced by an overheated lithium-ion battery. Extensive safety testing
of the lithium-ion battery was carried out by the electric vehicle team for
mishandling, electrical malfunctions, overheating (due to various condi-
tions) explosions, inundation by water, and mishandling. According to the
Electric Power Research Institute, “whenever there is a concentrated quan-
tity of stored energy, the possibility always exists of creating high tempera-
tures that can lead to combustion” (Eckroad 2002). Regardless of the
intentions of the various groups of engineers, the belief in the strategy of
design–build–test resulted in two components that were tested extensively
and expensively. After the second fire destroyed the second charging station,
three lawsuits were filed against all parties of the electric vehicle-charging
station system.* There are several ways in which the problems that resulted
from the systems engineering process could have been addressed before
delivering an operational system. But the point was that extensive testing of

* This is a fictitious example based on two real events, both of a similar nature and outcome.

274 Engineering Systems Integration

a flawed design is wasteful. To circumvent a design problem, the integration
plan needs to more than simply define the sequence of activities that will be
accomplished to integrate components into subsystems and subsystems into
a whole. The plan is important by two measures: what function(s) are to be
demonstrated first, then second, and so forth, and how the users respond
(user behaviors) to their use of the function(s) (Federal Highway
Administration 2009). If integration planning relied only on architecture,
behaviors are process related but not user related. Process behaviors capture
the system performances of the product or service, not the behaviors of the
users. The system may perform in such a manner as to inhibit the user from
accomplishing their task in the requisite period of time. Architecture merely
reinforces the product or service performance, not the combination of user
and product or user and service behaviors. Naturally, the systems engineer
endeavors to design the system to accommodate and provide for user behav-
iors through architecture, functionalities, performances, user interfaces, and
physical adaptations. But since there is no one item that captures the behav-
iors, the only means of validating a product’s or service’s fitness are through
modeling, simulation, or actual use of the product or service. Integration
planning should provide for at least one of these three means of validation.
Testing by itself is not validation.

Architecting

Architecture is different from design, as different as marketing is from sales.
In some ways, an architect is like the salesperson who readies a pitch to reach
a deal. The pitch is derived from a plan which is in line with policies set
down by the position of product (the buyer’s perception of the product) in the
marketplace, by the product’s design, and by the manner in which the prod-
uct is thought to be useful. The architecture carries with it the organization
of the product or service (embodied in its objects and their interactions) to
provide the user with various functions. The premise of the architecture is
the flow of EMMI that satisfies the needs of the user, reinforces the desires of
the seller, is in agreement with what the customer expects, and is sustainable
during its lifecycle.

Whereas design has more to do with setting up the problem, architecture
must solve the problem. Architecture has more to do with the ways in which
the purpose of the design is to be achieved than with the selection of the
optimal means for realizing that design. Architecting brings order to mis-
leading, ill-fitting, and confounding data; at-odds opinions; differing values;
and problematic convergences. Architecture must sort these, implement the
decisions, and show that the resulting compromises satisfy the key stake-
holders. Designs that are not well defined, problems that are misstated, and

275Integration in Systems Engineering Context

needs that are unspoken merely frustrate the architect. But architect is not
deterred in the search for more than one set of solutions that satisfy the prob-
lem. The system design reflects innovation and creativity. The architecture
must be clever and robust.

When building an architecture, there is no route from beginning to end, no
hint from the design process as to the best perspective from which to reckon
with an architecture, no sequence of steps that can be followed, and no list of
rules to guide the work. Architecting is engineering and systems engineer-
ing in that the architect puts things together. Design identifies those things
and therefore the end of design is when architecting is finished. Change the
design, and most probably change the architecture. Change the architecture
and potentially change the design. The end of designing is the end of archi-
tecting. But it is not until the end of architecting that the design can sustain
its first verification with requirements. “Engineering aims for technical opti-
mization, architecting for client satisfaction” (Maier 2002). Design leads and
is interactive with architecting through the product or services physical
objects, functional characteristics, and the behavioral responses of the user.
Architecting is one of the many feedback loops to improve design. In this
iterative manner, architecting is much like systems engineering, moving
forward and stepping back to fix and refine, ever keeping the presence of a
solution that is more highly matched to solving the problem. With rework,
the evolving product or service improves at the unit level. Architecting is
that space somewhere embodying the art and science of solving a puzzle.

It is the aim of architecting to recognize that the problem is only the problem
which needs to be solved when viewed from a particular perspective. What
one person views as a problem may be different from that of another person.
The properties, attributes, traits, context, boundaries, and boundary condi-
tions of the problem suggest the types of solutions that can apply. The types of
solutions also suggest the type of problems that can be solved. The con-
straints of time, money, skills, policy, or rules further constrain the nexus of
problem and solution. Architecting needs to be responsive to all of these.

The architectural views are the greater variability cast by the perceptions
of attributes, context, boundaries, and boundary conditions of the problem.
The wide range of possible solutions is often noticed in industrial and
commercial enterprises. So, it is the job of the architect to pose the brilliant
solution that captures the essence of the design objectives given the resources,
limitations, stakeholder sensitivities, and constraints. Architecture brilliance
is portrayed by the simplicity, coherency, and robustness as seen through
the manageability of the objects and their mechanisms to solve the problem
easily, within budget, on schedule, and with all functionality, requisite
performances, and expected quality.*

The architect’s strategy may notice the breadth of the principal features
of the system design and use that as a key from which to tie other factors

* At a minimum.

276 Engineering Systems Integration

together. Then, the architect may develop one area in particular to suffi-
cient detail to surface as many details as possible. Others may develop all
areas concomitantly in parallel, developing similar levels of detail,
expanding and detailing iteratively at each level of abstraction. Then,
when the underlying structures are worked through, the definitions and
contexts are defined and clarified further. Regardless of the proclivities of
the work, a structure of abstractions from the top level leading to lower-
level detail is exacted. Much like the process of decomposition, the nature
of architecting is often to move from top to bottom, from bottom to top,
and from abstraction to detail and back. It is the iterative process of decom-
posing the design space and recomposing the elements that forms a pre-
liminary architecture. To use the iterative process successfully, the
architect must conceptualize a schema in the domain at each of the levels
of abstraction that captures the exact behaviors needed by the product or
service. This schema is an internal representation of each level of abstrac-
tion that includes what (and does not) belong, the degree of misalignment
of the layer of each abstraction that is acceptable, the organization of the
concepts (partitioning of the objects, functions, and behaviors), and the
actions that can potentially revise the schema (and under what conditions
those revisions may take place). To be successful, the architect must have
content knowledge, structural knowledge, domain-specific strategy, gen-
eral searching strategy, general representational strategy, and general
abstraction strategy.

Architecture describes what the system does and generally how it does
it. It reflects the optimizations and trade-offs that support the key opera-
tions. It identifies the processes to be performed by the subsystems and
components, defines the flows of information and interfaces between the
elements, and signifies the priorities. Architecture is explicitly concerned
with the views of what and how things are done in the context of the
domains. The domain of a relation is the set that contains all parameters
that identify the members of a relation. The domain is defined as the
sphere of activity that includes the physical entities, functions, processes
through their relations, and context. Domain analysis is defined as deter-
mining the (1) operations, (2) unit modularity of data and associated pro-
cessing (data), (3) properties and abstractions, and (4) appropriate
partitioning. Domain analysis provides a representation of the require-
ments of the domain. The domain model identifies and describes the
structure of data, flow of information, functions, constraints, and controls
within the domain.

For a domain, the system architecture view shows how multiple sys-
tems link and interoperate. Additionally, the system architecture
describes the internal construction and operations. These descriptions
should include the physical connections, location and identification of the
key nodes (or points of interaction), and the component performance
parameters.

277Integration in Systems Engineering Context

Architecting focuses on the major elements—the elements that are struc-
turally important to achieve the end-to-end functionality desired by the
system solution. Architecting is choosing the small set of mechanisms, pat-
terns of behavior and operations, and styles that are consistent with the
needs (and desires) of stakeholders. Architecture is a tool that allows us to
tame complexity. Architecting is not the whole design, but architecting is
design. (Design is not architecting.) Architecting is infrastructure, the foun-
dation of being able to move data. Moving data require paths (connectivity)
and interfaces that link the path to various nodes of processes or mecha-
nisms. The architecture consists of the network of connections, and the
movement of data (energy, material, money) through the network. Good
architectures are usually formed by a team of people who are committed to a
solving an agreed-upon problem, who embrace the same performance goals,
and who hold the same approach to resolving the vexing issues confronting
the characterization of the solution.

System architecture precedes hardware and software architecture. At the
system’s level, architecture reveals its relations outside the boundaries of
the product or service. Inside, architecture is an end-to-end (boundary-to-
boundary) solution. Integration is the key issue that distinguishes architec-
ture from design. Integration requires the forethought to prepare the
structures so that data can flow to and from nodes where it is needed at the
appropriate time. Architecture can and must be validated.

Much like designing, architecting brings order to misleading, ill-fitting,
and confounding data; at-odds opinions; differing values; and problematic
convergences. Designs that are not well defined, problems that are mis-
stated, and needs that are unspoken merely frustrate the architect, but do
not deter the search for more than one set of solutions that satisfy the prob-
lem. The system architecture views show how multiple systems link and
interoperate. Additionally, the system architecture describes the internal
construction and operations. These descriptions include the physical con-
nections, location and identification of the key nodes (or points of interac-
tion), and the object performance parameters. Architecting focuses on the
major objects—the objects that are important to achieve the structurally
supported end-to-end functionality envisioned by the system solution.
Architecting is choosing the key set of mechanisms, the desired patterns of
behavior and operations, and the styles that are consistent with the needs
(and desires) of stakeholders. Architecture is a tool that allows us to tame
complexity. Architecting is infrastructure, the foundation of being able to
move data. Moving EMMI requires pathways (connectivity) and interfaces
that link the path to various nodes of processes or mechanisms. The archi-
tecture consists of the network of connections, the movement of EMMI
through the connections of objects.

Integration is the key issue that distinguishes architecture from design.
Integration requires the forethought to prepare the structures so that EMMI
can flow between objects where it is needed at the appropriate time.

278 Engineering Systems Integration

Validation

Validation is an assessment of the operational system that exposes and quan-
tifies the systems’ limitations. The intent of validation is to determine if the
user’s needs are satisfied for different uses (often referred to as scenarios).
When the functions are provided, the physical entities are adequate, and the
user’s behaviors are as needed, the product or service is deemed fit for the
uses intended by the set of requirements. The concept of validation suggests
that requirements can be mapped into physical, functional, and behavioral
needs of key stakeholders. This mapping is indeed essential to confirm that
the product or service satisfies the key stakeholder’s requirements and is
found to be acceptable. Acceptance of a product or service is both formal and
definitive. The formality can be set out by contract stipulating terms and
conditions for acceptance, criteria that must be met, and other formal repre-
sentations as to fitness for use, warranties, and exclusions. Acceptance is
definitive from both the buyer’s and the seller’s perspective. On acceptance,
the buyer assumes a responsible role for the use of the product or service.
Of course, the seller may have both contractual and ethical obligations, in
addition to continue interest in assisting one of their customers.

From the perspective of integration, validation is the confirmation that inte-
gration had satisfactory results. Should there be problems discovered during
validation, they are more often of two cases: either a functionality is performed
inadequately for the expected use or there are inordinate losses to achieve the
desired level of performance. In both cases, the functionality is present and the
issue is one of performance. By the time of validation, the issue of functionality
has been adjudicated and settled: either the functionality is there or it is not
there. The customer decides what is acceptable or not and works with the
developer to either wait for the full cadre of functionality or move to validation
without some aspect included (perhaps with a waiver to permit the addition of
a missing function after validation). Missing functionality implies missing
object(s), missing (or inadequate) mechanism(s), or inappropriate EMMI. With
functionality present, system performance may be degraded due to effects that
were not adequately accounted for in the scenario or the product or service
failed to achieve what was necessary and sufficient. The remedy may be to
“tune” the performance(s), recognizing that there were trade-offs made during
design and development. Validation is also the process of demonstrating the
effectiveness of the new product or service. There may be several measures of
effectiveness (common ones include cost, temporal responsiveness, and resil-
ience). Validation is direct evidence that the new product or service meets the
requirements through its design, architecture, and implementation. Validation
is ongoing throughout the development phase beginning with engineering
models, then prototypes, and ending with production models and early man-
ufactured items that are limited to a few in a short series.

279Integration in Systems Engineering Context

References

Abeln, O. 1990. CAD-Systeme der 90er Jahre—Vision and Realitat. VDI-Berichte Nr. 861.1.
Aerts, D. 1983. The Description of One and Many Physical Systems, Brussels: Vrijo

Universiteit.
Aerts, D. and Gabora, L. 2005. A theory of concepts and their combinations I.

Kybernetes 34(1/2): 167–191.
ANSI/IEEE 2000. Architecture Standard 1471-2000. Recommended Practice for

Architectural Description of Software-Intensive Systems. New York: Institute of
Electrical and Electronics Engineers, Inc.

Bernstein, J. I. 2001. Multidisciplinary Design Problem Solving on Product Development
Teams. PhD thesis, Technology, Management, and Policy Program. Boston:
Massachusetts Institute of Technology, 259pp.

Busman, R. 2008. Intuition and the systems engineer: Learning from management.
INCOSE 2008 International Symposium: Systems Engineering for the Planet.
Amsterdam, the Netherlands.

Boumen, R., de Jong, I. S. M., van de Mortel-Fronczak, J. M., and Rooda, J. E. 2006.
Test time reduction by optimal test sequencing. INCOSE 2006—16th Annual
International Symposium Proceedings: Systems Engineering: Shining Light on the
Tough Issues, Toulouse: International Council on Systems Engineering (INCOSE).

Christie, T. 2006. What has 35 years of acquisition reform accomplished? Proceedings
of the United States Naval Institute February: 30–35.

Donaldson, S. E. and Siegel, S. G. 1997. Cultivating Successful Software Development:
A Practioners View, Upper Saddle River, NJ: Prentice Hall.

Draucker, C. B., Martsolf, D. S., Ross, R., and Rusk, T. B. 2007. Theoretical sampling
and category development in grounded theory. Qualitative Health Research 17(8):
1137–1148.

Eckroad, S. 2002. Handbook of Energy Storage for Transmission or Distribution Applications.
Palo Alto: Electric Power Research Institute, 300pp.

Ender, T. R., McDermott, T., and Marvis, D. 2009. Development and application of
systems engineering methods for identification of critical technology elements
during system acquisition. 7th Annual Conference on Systems Engineering Research
2009 (CSER 2009). Loughborough: University of Southern California.

Euske, L. and Euske, K. 2002. Theoretical and Conceptual Issues. Cambridge, UK:
Cambridge University Press.

Federal Highway Administration. 2009. Systems Engineering Guidebook for Intelligent
Transportation Systems. United States Department of Transportation. Washington,
DC: U.S. Government, 323pp.

Finkelstein, F., Land, F., Carson, E. R., and Westcott, J. H. 1988. Systems theory and
systems engineering, Measurement & Technology, IEE Proceedings, 135(6):
401–406.

Gabora, L. 2001. Cognitive Mechanisms Underlying the Origin and Evolution of Culture.
PhD thesis, Center Leo Apostel for Interdisciplinary Studies. Brussels: Free
University of Brussels, 275pp.

GAO 2001. Best Practices: Better Matching of Needs and Resources Will Lead to Better
Weapon System Outcomes. Washington, DC: U.S. Government Accountability
Office, 80pp.

280 Engineering Systems Integration

GAO 2005. Defense Acquistions: Assessments of Selected Major Weapon Programs.
Washington, DC: United States Government Accountability Office, 150pp.

GAO 2008. Defense Acquisitions: Assessments of Selected Weapon Systems. Reports: GAO-
08-467SP March, U.S. Government Accountability Office.

GAO 2009a. Defense Acquisitions: Assessment of Selected Weapon Programs. U.S.
Government Accountability Office.

GAO 2009b. Defense Acquisitions: DoD Must Prioritize Its Weapon System Acquisitions
and Balance Them with Available Resources. Washington, DC: United States
Government Accountability Office, 19pp.

Giachetti, R. E., Young, R. E., Roggatz, A., Eversheim, W., and Perrone, G. 1997.
A methodology for the reduction of imprecision in the engineering process.
European Journal of Operational Research 100: 277–292.

Groah, J., Joel, S., and Blake, T. 2007. Shock Wave Interactions in General Relativity: A
Locally Inertial Glimm Scheme for Spherically Symmetric Spacetimes. New York:
Springer.

Hall, A. D. 1962. A Methodology for Systems Engineering. Princeton: D. Van Nostrand
Company, Inc.

Hitchins, D. K. 2003. Advanced Systems: Thinking, Engineering, and Management.
Norwood: Artech House.

Hitchins, D. K. 2007. Systems Engineering: A 21st Century Systems Methodology. West
Sussex, England: John Wiley & Sons, Inc.

IEEE 1220-1998 1998. IEEE Standard for Application and Management of the Systems
Engineering Process. 1 May, Institution of Electrical and Electronics Engineers.

IEEE 1991. IEEE Standard Glossary of Software Engineering Terminology. New York:
Institute for Electrical and Electronic Engineers.

INCOSE 2006. Systems Engineering Handbook: A Guide for System Life Cycle Processes and
Activities. INCOSE Systems Engineering Handbook v.3. San Diego, International
Council on Systems Engineering (INCOSE), 4.2 of 24.

INCOSE 2010. In C. Haskins (Ed), Systems Engineering Handbook. San Diego:
International Council on Systems Engineering (INCOSE), 382pp.

Isenberg, D. 1984. How senior managers think. Harvard Business Review November–
December: 81–90.

ISO/IEC-15288 2002. System Lifecycle Processes. International Standards Organization.
Jain, R., Chandrasekaran, A., and Ozgur, E. 2010. A systems integration framework

for process analysis and improvement. Systems Engineering 13(3): 274–289.
Jones, C. 1994. Assessment and Control of Software Risks, Englewood Cliffs, NJ: Prentice

Hall.
Kinnaird, B. 2003. Use of Force: Expert Guidance for Decisive Force Response. Flushing,

NY: Looseleaf Law.
Klir, G. 2001. Facets of Systems Science. New York: Kluwer Academic-Plenum

Publishers.
Koestler, A. and Symthies, J. R. (Eds) 1968. Beyond reductionism. The Alpbach

Symposium. Hutchinson of London, 438pp.
Ku, P. 2007. Commanding the Global Fleet Station and the Joint Sea Base. M.S. thesis in

Systems Engineering Analysis. Department of Systems Engineering and
Department of Operations Research. Monterey: United States Navy Postgraduate
School, 95pp.

281Integration in Systems Engineering Context

Lake, J. 2007. Textbook of Integrative Mental Health Care. New York: Thieme Medical
Publishers, Inc.

Langford, G., Raymond, F., Thomas, H., and Ira, L. 2007. Gap Analysis, Rethinking its
Conceptual Foundations (Report Number: NPS-AM-07-051). Monterey, Graduate
School of Business and Public Policy, Naval Postgraduate School.

Maier, M. W. 2006. System and software architecture reconciliation. Systems
Engineering 7(2): 146–158.

Maier, M. W. and Rechtin, E. 2002. The Art of Systems Architecting. Second edition.
Boca Raton, FL: CRC Press.

Martin, J. N. 1998. Evolution of EIA-632 from an interim standard to a full standard.
8th Annual International Symposium of the International Council on Systems
Engineering, Vancouver, Canada, INCOSE.

Mattice, J. J. 2005. Hubble Space Telescope: Systems Engineering Case Study. Center for
Systems Engineering. Wright-Patterson Air Force Base, Air Force Institute of
Technology, 90pp.

Newlyn, W. T. 1978. Theory of Money. Oxford: Oxford University Press.
NIST Special Publication 1108 2010. NIST Framework and Roadmap for Smart Grid

Interoperability Standards. Release 1.0. United States Department of Commerce.
Washington, DC: National Institute of Standards and Technology, 145pp.

Pawson, R. 1989. A Measure for Measures: A Manifesto for Empirical Sociology. London:
Toutledge.

Phelan, P. 1993. Unmarked: The Politics of Performance. New York: Routledge.
Poh, K. L. 1993. Utility-Based Categorization. PhD thesis, Department of Engineering-

Economic Systems. Stanford: Stanford University, 238pp.
Przemieniecki, J. S. 1993. Acquisition of Defense Systems. Washington, DC: American

Institute of Aeronautics and Astronautics, Inc.
Reilly, G. P. and Reilly, R. R. 2000. Using a measure network to understand and deliver

value. Journal of Cost Management November/December: 5–14.
Reskin, B. F. 2003. Including mechanisms in our models of ascriptive inequality.

American Sociological Review 68: 1–21.
Sage, A. P. and Rouse, W. B. 1999. Handbook of Systems Engineering and Management.

Hoboken: John Wiley & Sons, Inc.
Schlager, K. J. 1956. Systems engineering—Key to modern development. Institute of

Radio Engineering EM-3: 64–66.
Semler, R. 2004. The Seven Day Weekend. New York: Penguin Group.
Sheard, S. A. 2001. Help! How do I make my organization comply with yet another

new model? Proceedings of the 11th Annual International Symposium, Melbourne,
Australia, INCOSE.

Spetzler, C. 2003. Garbage In, Garbage Out: Reducing Biases in Decision-Making. Executive
Briefing Series. Menlo Park, CA: Strategic Decisions Group.

Stem, D. E., Boito, M., and Younossi, O. 2006. Systems Engineering and Program
Management: Trends and Costs for Aircraft and Guided Weapons Programs. Santa
Monica: RAND Corporation, 199pp.

Swartz, N. (1997, November 8, 2010). Definitions, Dictionaries, and Meanings. Retrieved
July 19, 2011 from http://www.sfu.ca/~ swartz/definition.htm.

Taguchi, G. 1986. Introduction to Quality Engineering: Designing Quality into Products
and Processes. Tokyo, Japan: Asian Productivity Organization.

282 Engineering Systems Integration

Troncale, L. 1977. Linkage propositions between fify principal systems concepts.
North Atlantic Treaty Organization Conference Series: International Conference on
Applied General Systems Research. New York: Plenum.

von Bertalanffy, L. 1968. General System Theory: Foundations, Development, Applications.
New York: George Braziller.

Wheelwright, S. and Clark, K. 1992. Revolutionizing Product Development. New York:
Free Press.

Zadeh, L. A. 1965. Fuzzy sets. Information and Control 8: 338–353.
Zimmerman, H. J. and Sebastian, H. J. 1994. Fuzzy design-integration of fuzzy the-

ory with knowledge-based system-design. IEEE International Conference on
Fuzzy Systems, Orlando, Florida.

283

6
Systems Integration Management

Engineering practices reflect advances in technology to satisfy the demands
for products. This situation is quite similar to other fields that have a goal
to satisfy, a problem to solve, or a need to fulfill. There are stakeholders
whose requirements are expected to be met, procedures that are set up and
followed, and results that are measured in some fashion. According to the
Oxford English Dictionary, something devised or contrived for bringing about
some end or result is defined as a project (1290 AD). The view that the project
is a social structure that results in questions, investigating, questioning,
studying, examining, and building things is the focal point for systems
engineering management. “An engineering project starts because of a
social need for particular service” (Gosling 1962).

The process of performing management has been described as achieving
objectives by influencing others (MacKenzie 1969, 1988). The processes of
management have been variously described (Steiner 1969; Kerzner 2009) and
are often thought of as the means of systems engineering to carry out its
tasks. Similarly, systems integration requires a form of management that
guides the workers according to a set of processes. While the “to manage”
process can be broken down into many subprocesses, this presentation uses
“to plan,” “to organize,” “to direct” (or “to command”), “to control,” “to com-
municate,” and “to team-build.” The convention used in this text signifies
processes by double quotation marks, in contrast to the single quotation
mark used to indicate a function. These six processes (and their respective
decomposed subprocesses) adequately represent all the major processes
carried out as part of management. Within these six processes* of “to manage,”
the many other subprocesses that make up the first-tier decomposition of the
six major processes (listed above) are meant to be independent of each other
and concomitantly their respective decompositions into lower-level pro-
cesses are meant to be each hierarchically structured to reveal more detail,
while maintaining that same independence. The top-level decomposition of
“to manage” is shown in Figure 6.1 and the detailed structure of “to manage”
is outlined in Appendix 1.

It is particularly important in performing systems integration work to dis-
tinguish carefully between individual process and individual functions.
Combining, mixing, aggregating, or otherwise erasing the atomic nature of

* An alternative view of management is to describe the roles taken on by the people on a project.
“A role is an organizational identity that defines a set of allowable actions for an authorized
user” (Jansen 1998).

284 Engineering Systems Integration

processes or functions obscures interfaces, masks boundaries, and prevents
access by users. For integration, hiding an interface between objects prevents
integration at the exact level where the interaction between objects must
occur for efficiency, thereby forcing an interaction at either the wrong level of
abstraction or forcing an interaction with more objects than required. The
impact of not exposing the proper interfaces, the interfaces that minimize
the number of interactions that are required to transfer the requisite EMMI,
between objects at the correct level of granularity is the number one encum-
brance on effective integration (Park et al. 1997). Granularity can be thought
of as the partitioning of what is included in one object as opposed to includ-
ing it in another object. Granularity is the amount of action that is ascribed to
object(s) that have been grouped by the system design, by the engineer fol-
lowing the specifications, by the convenience as determined within the pur-
view of the engineer, and by the practicalities of the physical entities.

Granularity

The degree to which an object is composed of discrete objects each separably
enabled by mechanisms relates the minimal logic that can be partitioned.
The sense that it makes to associate one object with another is justifiable by
the resultant dependencies of the aggregate of discrete groupings; the sum-
mative impacts on the other objects; and the logicalness of the completed
partitioning. The reason for one grouping of objects versus another is more

“To plan”

“To direct”

“To communicate”

“To organize”

“To control”

“To team-build”

1.0

1.1.1 1.1.2

1.1.3 1.1.4

1.1.5 1.1.6

“To manage”

FIgure 6.1
“To manage” process decomposition.

285Systems Integration Management

than a matter of convenience. Various logics apply, including compliance
issues (e.g., standards, policies, and requirements); preferences based on logis-
tics or support; socioeconomic rationale that makes sense on a normalized or
weighted basis; or other justification that is rational and defensible based on
the rationale. Granularity is the parsing of objects (e.g., requirements) on the
same level of abstraction to differentiate one (in this case) requirement from
another. For the top-level process that describes “to manage,” each of the
portioned subprocesses is determined to have an approximately equal
amount of influence on an organization, that is, having equivalence with
regard to the totality of what is covered. There are also similarities in the
relations, each relation being associated with a common mechanism at the top
level of abstraction to a common set of procedures. In other words, the rea-
soning and rationale applied to partitioning objects (that are enacted to form
each of the subprocesses) should accommodate the needs of the stakehold-
ers, the limitations set by the boundaries, the constraints established and
imposed by the architecture, and the anticipated changes deemed most
likely as the product or service is used in an operational environment.
Granularity is said to be flexible (Kaindl and Dvetinovic 2008) and if that
flexibility is removed too early in the development process, integration is
made more difficult. By not removing essential flexibility through iterative
design and development, integration is made easier. The ease of integration
is managed by sensitivity and attention to this issue from the systems engi-
neers, the engineers, as well as the project management. A portrayal of gran-
ularity is shown in Figure 6.2.

Figure 6.2 illustrates a hierarchical graphical representation of granularity
and abstraction. For granularity, the partitioning of the system of systems (in
this case) into two systems (1.1 and 1.2) indicates that system 1.1 is an integral
whole, as distinct from system 1.2 (also an integral whole). While there may
be overlap in subfunctions, the design and architecture of system 1.1 is
unique and different from the design and architecture of system 1.2. If sys-
tems 1.1 and 1.2 were designed and built prior to their integration into a
system of systems, their respective lower-level subfunctions may only be
accessible through interfaces that have already been designed and built. If
one or both of systems 1.1 and 1.2 are being designed and built, then the
separability of the two systems as well as their interoperability will become
the major design and architecture drivers. These design drivers need to be
managed (i.e., planned, organized, directed, controlled, communicated, and
carried by consensus (team-building)).

The notion of overlapping processes or functions is a significant, germane
issue for granularity. Were a function to overlap with a similar, if not identi-
cal, function, in an adjacent set of objects, then there may be confusion as to
which of these identical functions should be available to the user. In the
least, there is a redundancy that may or may not be intended. Should there
be an underlap between functions, that is, a part of a function is missing,
or a whole function is missing, then that missing function will inhibit a

286 Engineering Systems Integration

local function to execute (or be available) as well as a system-level function
(or thread). Overlapping and underlapping functions (or processes) signify
problems in the design or construction of objects. These problems may or
may not be detected during design reviews or walkthrough once develop-
ment has begun. If missed before testing, they can appear as a performance
measurement that is out of range set by the specifications. All such overlaps
or underlaps are detected during integration when local and end-to-end
system-level functions are to be demonstrated.

System of systems

System 0.1

Subsystem

Subsystem

Assemblies

System 0.2

Assemblies

1.0

1.1
1.2

1.1.1

1.1.2.2

1.1.2

1.1.2.1

SubassembliesSubassemblies

1.1.2.2.21.1.2.1.1

ComponentComponent

1.1.2.2.1.21.1.2.1.1.1

Granularity

Abstraction

FIgure 6.2
Granularity and abstraction.

287Systems Integration Management

Granularity and Integration

Granularity deals with the organization of EMMI as mediated by the aggre-
gation of objects (and their mechanisms). Granularizing (or partitioning
physical entities, functions, and behaviors) into various domains is the most
important task for the designer and architect after all the requirements are
captured and characterized. Since it is exactly the iterative nature of systems
engineering that helps to surface and describe the system requirements, par-
titioning of objects is consequently iterative. If the granularity is too broad
(too coarse, or too wide in a hierarchical graphical representation), access to
the specific mechanism may be encumbered by other objects that must be
enacted. If the granularity is too narrow (too fine, or too narrow in a hierar-
chical graphical representation), access to the desired set of mechanisms
may be encumbered with multiple enactments or the desired mechanism
(and object) may be missing. While it is quite difficult to know in advance
what the optimum granularity should be, building in process managers (for
processes) and a common physical object structure (for functions) provides
flexibility without burdening either the design intent or the testing. A pro-
cess manager is a module of hardware with software that is an interface
between objects. A process manager (Pikula and Siemion 2007) creates a new
process instance based on the activity model embedded in an object or a
group of cooperating objects. That activity model maps the input or output
EMMI to the object’s internal processes. Each new process instance main-
tains the current state of the processes for external and internal actions so
that individual processes can be executed simultaneously. After one object
completes its operation, the process manager determines which mechanism
will execute next based on the state of the process instance that is completed
and that remains to be completed. Therefore, the suite of applications used
by the process manager can be enacted independently without regard to the
sequence of steps defined in the activity model or in the overall system of
systems operations. Process integration ensures application operational
independence and allows the process manager to be domain (or object)
independent because the process manager only needs to interpret the basic
constructs that form an activity model. Testing of a process manager is the
same for all process managers, since they are designed to be identical in both
hardware and software. It is in this manner that the granularity of processes
need not be determined as precisely as needed for efficient integration.
Building flexibility through process managers overcomes the designed inter-
faces between objects. Again, progressive refinements to design and build-
ing objects are fundamental to the systems engineering process. In contrast,
a goal of integration is to work with a design that has included sufficient
flexibility to allow recursive integration, without iteration. Here, recursive
refers to enabling a mechanism without redesigning either the interface for
input or output, or the mechanism.

288 Engineering Systems Integration

For ease of integration, the goal of granularity is to partition objects so that
each is composed of simple, independent groupings (Stevens et al. 1974).
However, the initial emphasis needs to be placed on the design of the objects
(i.e., a system that is being built from scratch), while second best is to orches-
trate the design through interoperability of objects that have strong similari-
ties across systems (i.e., a system of systems). Managing the interoperability
for integration requires clear partitioning in objects that can be considered
both as a whole (resultant output is reflective of a single unit of functional
operation) and as a part (required input is reflective of a single unit of func-
tional operation). The object’s roles of a whole and a part are focused on the
aggregate performance of a set of mechanisms that enable a single function.
These roles can be represented in a hierarchical view with the subfunctions
aggregating into a function (e.g., Figure 6.1). To simplify integration, to provide
the requisite interoperability, and to achieve lowest possible expenditures of
labor necessary to realize the deliverable product or service, engineering
efforts need to focus on (1) simple, independent objects, (2) a minimum num-
ber of interfaces, (3) a minimum number of connections across the interfaces,
and (4) achieving the set of object behaviors that are required. Managing the
integration efforts needs to focus on this engineering thinking in addition to
the systems engineering thinking that is associated with recursion. The two
challenges of managing integration are to first, recognize and manage to
achieve the easiest path to integration and second, to provide the necessary
resources and leadership to stay on that path.

Abstraction

A close second, and similar, abstraction to a higher level than is necessary
may mask the detail needed for a mechanism to be effective in transforming
input EMMI into an output. At a higher level of abstraction, the existence of
lower-level details may be acknowledged, and if they are, then an additional
exchange of EMMI will be necessary to extract what is necessary for the
mechanism to complete its transformation. If the lower-level details are not
acknowledged, not known, or obscured, then several additional exchanges
of EMMI may be needed. In both these cases, granularity and abstraction
interfere with the efficient transformation needed to present the requisite
functions. Here, abstractions are referred to constructions of varying degrees
of details shown “. . . by taking an exemplary case or instance and removing
detail” (Machamer et al. 2000). Abstraction is the result of redefining a previ-
ously constructed schema into a new set of schemas—by extracting common
features from specific instances, merging, and replacing with another that
has less detail, but yet embodies the general notion of what is missing along
with what remains.

289Systems Integration Management

For example, the process of “to manage” and the function of ‘to manage’
extend across the entire work domain that encompasses the integration
activity. The process of “to manage” overlaps exactly with the function of ‘to
manage’. Both are measurable, but in different ways. The process of “to man-
age” is measurable by comparison with another process of “to manage.” By
that, the differences between two processes are objectifiable by comparing
like-kind or similar processes, whereas the difference between two func-
tions is demonstrable through comparison of their performance(s). Both pro-
cesses and functions have mechanisms, inputs, and outputs, and losses that
result from achieving their outputs.

“to manage”: “command” and “control”

In the case of one of the decomposed processes “to command” (or “to
direct”) shown in Figure 6.3 and “to control” shown in Figure 6.4, the hierar-
chy of subprocesses highlights the differences between “command” and
“control” (or “direct” and “control”).

Take for example “provide resources” (1.1.3.2) in Figure 6.3 and “to report”
(1.1.4.5) in Figure 6.4. If the concepts of “command” and “control” were con-
sidered to be the same (i.e., the process “command” and the process “control”
are always used together without a means of differentiating them (Steinbit
2002)), then all of the “command” hierarchical subprocesses will be mixed
with the “control” subprocesses in levels of abstraction that may be different
(i.e., different levels in the hierarchy, the vertical graphical representation)
and with partitioning of when a process begins and ends (i.e., the horizontal

“To command”

“Direct subordinates”

1.1.3

1.1.3.3

“Assign missions”

1.1.3.1

“Evaluate risk”

1.1.3.5

“Focus activities”

1.1.3.4

“Provide resources”

1.1.3.2

“Analyze” “Prioritize”

1.1.3.2.1 1.1.3.2.2

FIgure 6.3
“To command” process decomposition.

290 Engineering Systems Integration

graphical representation) may be bounded and mixed different than if the
two processes of “command” and “control” were kept separate and distinct
(Bornman 1993). When integrating a system that is predicated on command-
ing and directing (or controlling), it is essential to separate the functions so
that the proper allocation can be made to physical entities and so the users
of the system can be exposed to the most effective functions to carry out
their work.

Project Management

The project may be charged with organizing simple tasks and tasks of sig-
nificant complexity; it may be established within an organization or may
arise as the confluence of like-minded people; it may be temporarily started
and stopped or proceed to its logical conclusion; or it may be part of a pro-
gram that involves many projects. Regardless of its context, constraints, or
structure, a project is temporary. It may be convenient to classify projects in
other ways to investigate a particular aspect or nuance that has particular

“To control”

“Handle constraints”

1.1.4

1.1.4.3

“Define limits”

1.1.4.1

“To report”

1.1.4.5

“Set requirements”

1.1.4.4

“Maintain performance”

1.1.4.2

“Monitor” “Identify”

1.1.4.2.1 1.1.4.2.2

“Allocate resources”

1.1.4.6

FIgure 6.4
“To control” process decomposition.

291Systems Integration Management

meaning in a specific context, but the fundamentals of a project by definition
are pervasive across these various circumstances.

After World War II, scientists were motivated to push technology as they
explored the limits of the known physical laws. Progress seemed only lim-
ited by imagination, yet the appetite for innovative products that could be
produced inexpensively seemed insatiable. Management techniques, appli-
cable since the industrial revolution, were being revised. The design of new
products was no longer governed by a single physical law or simple set of
rules. The confounding factors were the number of items in the product, the
myriad types of and relationships between these items, and the number of
these items that required choreographing to achieve the desired functional-
ity. The management systems that were used to develop such products were
not designed to deal explicitly with these confounding factors. Therefore,
visibility into the progress of work was limited, delays (due to changes in
work, insufficient skills of workers) were common, and predictability of sta-
tus and progress suffered. Systems engineering grew out of the need to build
products whose elements were inextricably intertwined.

The systems engineering view required its own brand of management, not
unlike what most others use, but postured to reinforce the focus on defining
requirements, system design, architecture, and integrative processes. Some
books on project management sometimes reference systems engineering
(Kerzner 2009), many systems engineering books included section(s) on
managing for systems engineering projects (Sage and Armstrong, 2000;
Hitchins 2007), and a few systems engineering books are devoted entirely to
the subject (Forsberg and Mooz 1996; Blanchard 1998). One can easily fail to
count or acknowledge all that has been written about project management.
However, the author knows of no writings that focus on the management of
integration. Aside from the litany of books, handbooks, organizations, profes-
sional journals, practicing managers, and consultants, new concepts arise with
the intention to replace, yet still add, only to add to the funambulation* that
ropes terms together into the web of ideas we term as project management.

For developing a product or service using systems engineering, the focus
is on managing the systems engineering process. The systems engineering
management plan (SEMP) lays out the plan, procedures, and the representa-
tions (or models) that are necessary to describe, provide, and be the docu-
mentation, milestones, reviews, and steps for the project team to carry out.
However, invariably the section on systems integration begins with the word
integration, follows through with words discussing integration, and then
ends with the word integration. Nowhere is there a discussion of any detail
about what management of integration means or even what is entailed.
Typically, integration is viewed as a phase of work that must occur as devel-
opment ends and prior to completing the product or service work.

* Tightrope walk.

292 Engineering Systems Integration

Integration as a Recursive Process

Fundamentally, building a product or service is an integrative process;
however, testing is not an integrative process. Planning for integration should
be based on developing system-level functions that are in-kind built up by
their subfunctions. The first step is to focus on those subfunctions that when
linked together with other subfunctions form an end-to-end thread that
stretches across the entire system. That end-to-end threat is referred to as a
system-level thread (or “thread”). Each time a subfunction is linked to
another subfunction (recall each function is the result of the integration of
two objects), the performance and quality of the linked subfunctions are
measured. Measures of performance and measures of quality are stipulated
as part of the test plan. The integration plan identifies the objects that are
to be linked together to provide the subfunctionality necessary to constitute
a thread.

Measures of Integration

The measures of quality are premised on two factors: quality is the achieve-
ment of a level of acceptable variability of each measure of performance, and
the variability in performance is representative of the user’s perception of
quality. For example, a vehicle is said to be moving at 60 km/h (a measure
of the vehicle’s performance). The accuracy of the measurement (its bias due
to systematic errors) is 0.003% of the measured performance; the precision of
the measurement (its uncertainty due to random errors) is 0.0002% of the
measured performance. The manufacturer of the vehicle offers an automatic
speed control device as an accessory. The variance (the spread of the mea-
surements for both accuracy and precision) matches a Gaussian distribution.
Based on the customer’s (user’s) requirements, the manufacturer will cus-
tomize the speed control device by setting its upper and lower limits. When
the vehicle speed is less than the lower limit or greater than the upper limit,
the speed controller will adjust the speed of the vehicle whether moving on
an incline (positive or negative slope) or on level ground. Assuming that the
precision and accuracy are measurably the same, the adjustment of the upper
and lower limit of performance is now only determined by the customer’s
willingness to pay the price asked for by the manufacturer. The smaller the
variance (i.e., the closer the lower and upper limits are to each other) around
the target value for the vehicle’s speed, the higher the price. However, the
price is not a linear function of the distance between the upper and lower
limits. As the distance between these limits approaches the exact target
value for the vehicle’s speed, the cost is significantly higher than near the

293Systems Integration Management

limits (which are further away from the target value). See Appendix 2 for a
derivation of the loss function that describes the quality based on a variance
from a target value of performance. Choosing a loss function depends on
whether the use is for making predictions, making estimations, estimating
risk, defining optimal testing procedures, or making sense of optimizations
(Hennig and Kutlukaya 2007).

Quality

Quality can be thought of in any number of ways, all leading to the notion of
great importance to the users of products and services, but defined inconsis-
tently (Reeves and Bednar 1994). Here we distinguish quality in the narrow
sense of only that which is measurable through an association with a func-
tion.* The interpretation that follows concerning quality is that quality is a
property of a function. As a property, quality is then deemed as conformance
to performance(s) for that function as objectified through a set of specifica-
tions. Functions have performances (a minimum of one per function), and
each performance has a quality (a minimum of one quality measure per each
performance). In this manner, the functions of a product or service are com-
pletely objectified by performances and qualities. When goods are within
specification they are considered to be of high quality, contrasted with low-
quality goods that are determined to be outside the bounds of specification.
To be within specification means the product or service should function as
expected, while outside specifications signifies potential problems such as
increased wear, unreliable operations, or inoperative functions. Such a
notion of quality is often typified by the statement: the quality is remem-
bered long after the price is forgotten. However, Taguchi (1986) proposed a
view of quality that relates to cost and therefore a loss measurable in mone-
tary terms. This loss accrues not only to the designer, developer, and manu-
facturer but also to the customer, user, and broadly to society as a whole. In
aggregation, these entities represent the ‘seller’ in a buy–sell relationship.
For the seller, their loss is accumulated, throughout the product lifecycle,
from conception to include adjudication of the last lawsuit, or the last simu-
lacrum of support. Whereas Taguchi offers that seller’s losses are incurred up
to the time that the product is shipped, we take a broader perspective and
extend the seller’s losses beyond the shipping event to include support,

* It is often said that quality of a product or service is due to having a certain set of features.
When a feature is “missing” (referenced to the desired set) the product can be considered to
be of lesser quality. Applying this logic for quality within the structure of functions, perfor-
mance, and quality is interpretable as a missing feature has a quality of zero (reflecting no
performance and no function). Therefore, the quality of a product or service with a “missing”
feature is of lower quality than a product with a “full” set of features.

294 Engineering Systems Integration

maintenance, and service. According to Taguchi, after the product is put into
use, it is society and the customer who bear the cost for low quality. However,
we distinguish between the customer’s and society’s responsibilities in con-
trast to those attributable to the seller. Even while the seller’s purview can be
narrowed to the Taguchi limit by eliminating all interactions with the cus-
tomer after the shipping event, our general perspective considers real costs
as well as the costs of negative customer reaction. Sellers sometimes have
difficulty in capturing and accounting for money and money-equivalencies
spent by customers to deal with problems, dissatisfaction, and inconvenience
associated with low quality. The approach here of developing and applying
a quality loss function allows quantitative evaluation of losses caused by
variations in behaviors and limits of performance specifications as they con-
sociate with various functions of the product (Choi and Langford 2008).

Since Taguchi’s quality loss function is primarily focused on manufactur-
ing, a more general formulation of loss functions is needed beyond his qua-
dratic formulation to assist in analysis and decision making that must be made
during other lifecycle stages of the product, including conceptualization,
research, development, integration, operations, maintenance, and disposal.

The requirement is for a quality loss function that is applicable for the life-
cycle of a product or service. Further, we must tackle head-on the definition
of product function and associated performance(s). Taguchi uses a quality
loss function to evaluate product performance relative to the performance
specification. When applying Taguchi methods, performance evaluation
becomes a most demanding task that challenges managers to distinguish
carefully between processes and functions, without providing the benefit
of firm definitions and theoretical standing. The diversity of definitions of
performance, the complexity of measuring performance, and the scarcity of
generally accepted performance measures compound these problems.

In general, there are at least seven distinct, although not necessarily mutu-
ally exclusive, performance measures used in practice. These are effective-
ness, efficiency, quality, productivity, quality of work life, profitability, and
innovation. Thus, performance can be defined as a concept that takes on
different meanings in different situations for different organizational sys-
tems (Kaplan and Norton 1992, 1993, 1996; Kumpe and Bolwijn 1994). For
example, efficiency, quality, time, innovation, and contribution to profit are
often used as performance or effectiveness measures. Taguchi used quality
(i.e., loss) as a performance measure for evaluating product performance.
When referring to EMMI, performance can be defined as the net work
accomplished during a period t. For example, the net work accomplished
during a period t is equal to the amount of work “completed” minus the
amount of rework required to finish the amount of work that was thought
to be completed. The units of loss can be in units of energy (joules or elec-
tron volts), mass (commonly, kilograms or pounds), material wealth (con-
verted into local currency, e.g., dollars), or information (bits as adopted by
Shannon for information (Shannon 1948)).

295Systems Integration Management

The quality loss function developed by Taguchi (1990) is used to describe
quality in terms of smaller-the-better (STB), larger-the-better (LTB), and
nominal-the-best (NTB) characteristics. An STB output response results
when it is desirable to minimize the performance, with the ideal target for
performance being zero. Examples of STB output responses are the wear on
a component, the amount of engine audible noise, the amount of air pollu-
tion, and the amount of heat loss. The LTB output response reflects cases
when it is desirable to maximize the result, the ideal target being infinity.
Examples of LTB output responses are strength of material or fuel efficiency.
The NTB characteristic results when there is a finite target point (or domain
of cooperative agreement) to achieve, often associated through a negotiated
outcome. In this case there are typically upper and lower specification limits
on both sides of the performance target, representing the maximum or mini-
mum acceptable bounds for the parties of the negotiation. Examples of NTB
characteristics are the plating thickness of a component, the length of a part,
and the output current of a resistor at a given input voltage.

A great many papers relate to the quality loss function largely from only
one side of the quality characteristics (Kapur and Wang 1996; Chung and
Chao 2005; Yahya and Chanwut 2007). Here, we derive a quality loss function
for broader applicability in managing quality characteristics, regardless of
domain and characterization, regardless of input and output, and irrespec-
tive of preference or specifics for any discipline or field. We are particularly
interested in loss functions as a means to determine the effectiveness and
efficiency of integration.

There is some common ground that reconciles traditional and Taguchi
views of quality. Quality is viewed as a step function such as a product or
service is good or bad. In reality of course, there may be a preponderance of
characteristics that in aggregation transition from acceptable to unacceptable
(or vice versa), but the general sentiment assumes that the product or service
quality is uniformly good between the lower specification and the upper
specification, and bad outside these limits. Even traditional decision makers
and those using Taguchi’s loss function will make the same judgments, as
they both will set upper and lower limits for acceptability. However, the lim-
its may not be equally distributed from a target value that is deemed the best
trade-off between good and bad. If decision makers consider both the posi-
tion of the average and the variance, and if the averages are equal and/or the
variances are equal, then the traditional decision maker and one using
Taguchi’s loss function will make the same decision. Typically, the traditional
decision maker calculates the percentage of defective units over time, when
both the average and the variance are different. Both the average performance
and variation from a target value are measures of quality (Taguchi et al. 1989).

Further, Taguchi formulates and it is widely held that the customer becomes
increasingly dissatisfied as performance departs farther from the target value
for performance of a function. His extensive work with manufacturers over
the last 30 years suggests that a quadratic curve best represents a customer’s

296 Engineering Systems Integration

dissatisfaction with a product’s or service’s performance. The customer’s
view of the product is restricted to the operational and disposal stage of the
product or service lifecycle. A straightforward and accurate means of repre-
senting a quality characteristic is through a function that uniquely defines
the relation between a loss in EMMI and the deviation of the quality char-
acteristic from its target value (Taguchi et al. 2005). For products or services
that are in operation, the quadratic form of loss functions matches well to
customer satisfaction (Taguchi et al. 2005).

A Taylor series expansion is often used to approximate a function as a
polynomial of terms whose first terms turn out to be reasonably close
approximations to that which would otherwise seems mathematically com-
plicated (Mason et al. 2003). The first derivative of a Taylor series expansion
taken about the target value is a quadratic curve when the target value is set
to zero. The curve’s minimum (or nominal position) is centered on the target
value, which (Taguchi et al. 1989) has shown to provide the best performance
in the eyes of the customer. However, identifying the appropriate perfor-
mance measures as well as selecting the best target value can be challenging.
Designers sometimes offer their best guess. The quadratic form was chosen
by Taguchi because it was both simple, and as it turned out, useful. Further,
after the Taylor expansion, higher powers in the series change the loss at the
target value by a very small margin, and for practical purposes can be
ignored within experimental error. Symmetric formulations of loss func-
tions are assumed to be approximate and accurate to a first order. This
assumption is shown to be accurate since the result of development is indeed
what is placed into service by users, that is, that which is equivalent to a
Taguchi validated quadratic form of loss function. The general loss function
discussed in this book, provides the quantitative means to evaluate integra-
tion from conceptualization through disposal by adapting the order of the
loss function to the desired phase in the product’s lifecycle. Asymmetric loss
functions are most useful when integrating systems into a system of systems.
The reason for this situation (as distinct and different from that of integrating
a system) is the requirement for reversibility of actions to allow a system to
remain a system when it is no longer a part of a system of systems.

The loss function offers a way to quantify the benefits achieved by reducing
variability around a target performance value. It can help justify a decision to
invest further to improve a function that is already capable of meeting specifi-
cations, but there exists a requirement to achieve the same (or better) perfor-
mance at a lower loss (e.g., in energy, matter, material wealth, or information).
According to Taguchi, the objective of minimizing the loss to a customer was to
improve product quality by minimizing the effects of variations in its perfor-
mance while striving to achieve the performance target value. The narrower
the performance limits, the higher the quality (and within the same design
space, the higher the cost). However, achieving higher quality does not need to
come at the expense of eliminating the causes of that variation. Eliminating the
causes within an existing design must be invoked through solutions that are

297Systems Integration Management

already included in the mechanisms, processes, and physical entities. The
designer’s and the architect’s intentions are to design robustness into the prod-
uct to mitigate excessive variation in achieving performance(s) so that value can
be imparted to the customer without an associated loss (Yao et al. 1999).

The generalized loss function covers all quality characteristics such as
NTB, STB, and LTB (Taguchi 1986, 1990). One party to a negotiation, conflict,
or point of view determines that more performance is better (considered as
LTB strategy) while the other party (in opposition in some way) considers
that STB demands on performance is required. The LTB (e.g., a buyer’s
strategy) benefits from larger values of performance, m, coupled with lower
loss. Alternatively, the STB (e.g., a seller’s strategy) faces higher losses from
delivering a higher performance, m. For example, a seller might want to
deliver greater product performance but is unwilling to accept increased
costs which when passed on through higher pricing to the consumer may
result in stiff competition that may lead to a reduction in market share. The
buyer might desire and come to expect greater product performance for
lower pricing as competitive factors, innovation, and new technologies offer
sellers a means to satisfy that need. The primal relation between a buyer and
seller is depicted in Figure 6.5.

0 0.5
–0.5

0

0.5

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

Y

1

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5
Target, m

Minimum loss

X

Lo
ss

es
 (E

M
M

I)

Performance

FIgure 6.5
Generalized loss function relating performance to quality.

298 Engineering Systems Integration

A simple, yet instructive, portrayal of a loss function is to view the seller
as having a decreasing value function as performance increases and the
buyer in the opposite position of having a decreasing value function as the
performance decreases (Langford 2009). This can be represented as
L(y) = k0 + k1y + k1m2, where L(y) is the combined loss of the buyer and seller,
and k0 is a constant equal to −2k1m.

Between any two contra-posed positions (whether weakly or strongly
held), the loss function indicates the minimum loss that can result from the
positions (assuming that both sides are willing to not gain any advantage
over the other). In essence, a loss function is useful in determining the
amount of EMMI that is used (i.e., lost) to achieve various levels of perfor-
mance for individual or aggregated functions. For integration, the func-
tionality of a system can be measured by both the performances of the
functions and the losses that are attributable to achieving those perfor-
mance. There is a direct correlation between a loss in EMMI and “utility,”
where utility is a measure of relative satisfaction (e.g., in economics or sys-
tems engineering). By applying the loss function to the management pro-
cesses, the workforce can be monitored in real time, the projection of
predicted work can be evaluated against current status, and metrics can be
established to analyze the impacts of applying resources (e.g., engineering
labor) to particular problem areas. By applying the loss function to the inte-
gration activities, the various functions can be evaluated by both their
demonstrations of performances as well as their losses in achieving those
performances. This determination of functional effectiveness helps to
define and design tests, revise integration sequencing, and outline valida-
tion schemes to facilitate better determination of the usefulness of a prod-
uct or service.

Types of Quality Loss Functions

For each quality characteristic, NTB, STB, and LTB, there exists some func-
tion that uniquely defines the relationship between economic loss and the
deviation of the quality characteristic from its target value. Taguchi has dem-
onstrated through practice the quadratic representation of the quality loss
function to be an efficient and effective way to assess the loss due to devia-
tion of a quality characteristic from its target value. For a product with a
target value m, from a customers’ perspective, m ± ∆0 represents the devia-
tion at which functional failure of the product’s or service’s component
occurs. When a product is manufactured or a service is provided with its
quality characteristic at the extremes, m + Δ0 or m − Δ0, some measure to
counter the loss must be undertaken by the customer.

Following the simplified loss function L(y) (average loss) with the charac-
teristic of NTB is the combined buyer–seller dynamics that can be described
as follows:

299Systems Integration Management

Nominal-the-best

L k y m k

A= − =()2 0

0
2∆

(6.1)

where k is a proportionality constant and can be described as the cost of each
unit (returned, modified, reworked) divided by the range limits of process
variability divided by 2, y is the measure of performance (e.g., output) for a
given function, m is the target value of y, and A0 is the loss per unit that
encompasses the lifecycle of the unit that must be expended to mitigate loss
(e.g., countermeasure). The loss function can also be determined for cases
when the output response is an STB response. Following the same procedure
as for the case of NTB, where the target value for performance is zero, the
loss function is described as follows:

Smaller-the-better

L ky k

A
y

= =2 0

0
2

(6.2)

where A0 is the consumer loss and y0 is the consumer tolerance.
For an LTB output response where the target is infinity, the loss function

can be written as follows:

Larger-the-better

L k

y
k A y= =1

2 0 0
2

(6.3)

Outline of the general Quality Loss Function

To achieve the desired level of quality and to determine the target value for
a product within each stage of a product’s lifecycle, stakeholders pose the
question—how much loss can or will be incurred? To address this question,
a general quality loss function must be developed—one that accounts for the
changes in the allowable variance from a performance’s target value. We
introduce a shape parameter that governs the amount of losses as a function
of the product’s or service’s lifecycle and present a function which covers all
three quality types from the perspective of a product’s or service’s stakehold-
ers. Through this effort we propose a general quality loss function covering
all lifecycle phases. It can be shown (Appendix 1) that given the following
notation and assumptions, a general quality loss function reduces to STB,
LTB, and NTB forms shown in Equations 6.1 through 6.3.

300 Engineering Systems Integration

The general loss function is shown below:

General quality loss function

 L x C m C x m xn
n n n n() ()= − + + −()2 1 2 2

s s (6.4)

Further, the relationship between proportionality constant Cs (under STB)
and for C1 (under LTB) is as follows:

Proportionality constants and target value

 C C m n
l s/ = 2

 (6.5)

where Cs is a proportionality constant of stakeholder’s loss per response of
quality, if the type of quality characteristic is STB, and means a proportion-
ality constant of developer’s or manufacturer’s loss per response of quality,
if the type of quality characteristic is LTB, and x is the response of quality;
Ln(x) is the total quality loss per piece in case of shape parameter n and
quality response x; and Ln is the expected quality loss per piece in the case of
shape parameter n and quality response x.

With the total quality loss (Ln(x)) consisting of the stakeholders’ loss plus
unknown losses, and if the level of quality equals the target value of the
quality (i.e., m), the total quality loss is to be zero (or the minimum loss that
is inherent in the system); the parameter n, the shape parameter, represents
the adaptation of the loss function to the specific uses intended by the cir-
cumstances in which the loss is to be determined; and the minimum value of
a shape parameter is close to zero and the value of the shape parameter in the
concept refinement phase of the acquisition phases varies from 0 to 1.

The loss function can be used to assist in decision making by considering
the impact(s) of one strategy versus another. Decision making is foundational
for determining the requirements for functions, the performances of those
functions, and the losses incurred to achieve those functions. The loss func-
tion is a mapping of a decision into an integration framework that reflects
the consequences of that decision.

Integration Strategy

Integration activities need to be sensitive to the differences in style and tech-
niques that pervade the social structures and strategies of the development
work. If the integration effort is primarily equipment engineering, then
a plan-driven strategy (Smartt and Ferreira 2011) is most typically found in
the workplace. A plan-driven strategy emphasizes well-defined roles and
responsibilities, partitioning of the effort into planned work packages, and
implementation through repeatable processes. Integration for simple, engineered

301Systems Integration Management

products or services relies on the plan-driven strategy. It is effective most of
the time. Repair people work on networks, products are manufactured, ser-
vices are provided, upgrades are installed, and routine operations are brought
together with commonplace and habitual practices. However, for products and
services that require systems engineering techniques and management, sys-
tems integration is fraught with difficulties and confounding predicaments.

It might seem troubling to learn that on some of the smaller systems engi-
neering projects, integration plans are considered optional; for the larger
more complex projects, integration plans are prepared as a matter of contrac-
tual obligation. One should expect these integration plans to be well thought
out and rationally prepared (“because it is not the plan that is important; it is
the process of planning”). However, in terms of overall planning effort, the
integration plans only lightly reflect the expectations of the planners. The
widely held belief with large integration efforts presumes significant delays
due to uncompleted developments on components and subsystems. The
integration plan is based on design documents, architecture, and best-case
scenario sequencing of components and subsystems. The integration plan is
notionally a plan, but most often laid down without the capability of man-
agement, systems engineering, and engineering to be able to achieve what is
laid down. Instead, the integration plan needs to represent the extent of
human activity that is organized to perform certain tasks at certain times,
following specified procedures that are derived from policies and rules,
resulting in a model or representation of the formative acts of cognition
(used to think about the plan and planning) and the physical and intellectual
portrayal of both the acts of cognition and the human activities that carry
out the procedures envisioned by the cognitive acts. These physical and
intellectual representations are the best efforts to match the cognitive and
procedural acts. Representations (or models) are the paper drawings, the
planning document, the written procedures, the reports on the activities,
the schematics and specifications that will guide the work from which the
physical entities will be built, the presentations, and all that is corporeal
concerning cognitive and procedural activities. In the integration frame-
work, this discussion is captured as the subjective frame. The integration
plan is thought of, written, and presented in a tangible form (e.g., paper,
digital account, or in various formats for presentation). The process of plan-
ning is fundamental to project management and absolutely fundamental to
systems integration.

Recursive Nature of Systems Integration

Planning is a periodic, recursive process. As such, the results of planning for
integration must necessarily be recursive. If something is objectively true,

302 Engineering Systems Integration

there is an implied impartiality that fairly weighs all facets. However, sys-
tems engineering is the process of transforming objective needs through
subjective processes to achieve an objective result. The subjectivity comes
from planning and the results of planning. Recursive implies that the answer
is not known, but rather is discoverable in the process of objectifying the
requirements and procedures into objects that satisfy the needs of key stake-
holders. Recursiveness is the property of a process that is identifiable by an
event (i.e., interaction between objects), deemed causal for that event, and
that has predictive qualities for the next event or chain of events. Recursive
processes are not iterative. Iterative processes are typified as refinements on
existing objects. Recursive processes are typified as refinements on future
objects.

Here, the issue of causality is not statistical, but rather based on experi-
mentation with the objects’ mechanisms to ascertain the relation between
the adjustable parameters of the objects. Statistical models are incomplete
because they are recursive (Heckman and Vytlacil 2006).* There are two such
types of recursive processes: (1) self-recursive: those that are determinable by
internal processes (e.g., modeling, simulation, integration, and testing) that
reveal or associate with patterns that help the decision makers move toward
an integrable set of objects) and (2) open-recursive: external processes that
reveal or associate with patterns that are not considered to be part of the
work domain of the project. Examples of self-recursive processes are pat-
terns of improved performance due to a particular physical configuration or
the need to change an existing (or in-progress) object to better reflect the
needs of future integrable objects. Self-recursive processes benefit from the
interactions between objects as they often produce patterns that are sugges-
tive of what needs to be accomplished next. For both types of recursiveness,
the operative model is that of a social network (Fowler et al. 2009), where the
work of the project development team is controlled to a great extent by the
subjective procedures that were used as well as the extrospective analysis
provided by key stakeholders. The nature of recursive processes lies in their
dynamics which tend to point out the next best step by exposing the conse-
quences of the previous steps. Unlike iterative processes that focus on redo-
ing what was done previously, recursive processes point to the future, the
next event in integration that is now less problematic than before. Systems
engineering process models are both iterative and recursive (Sopha et al.
2010), where the great reliance on iteration is meant to improve on what has
been done previously. Systems integration is recursive, in part due to the
nature of systems engineering that has been applied to the system design
and specifications for objects. So, by their natures, system integration is quite
different from systems engineering. The management of systems integration
is quite different from systems engineering also.

* The scientific model embodies nonrecursive causal models (Heckman and Vytlacil 2006).

303Systems Integration Management

For integration efforts that involve significant software work, a more agile
approach is sometimes adopted (Smartt and Ferreira 2011). The hallmark of
agility is to adapt (self-organize) the engineering activities to compensate for
the delays that have arisen during development. Both the plan-driven and
the agile-driven strategies to integration illustrate the inadequate predict-
ability of increasingly complex system developments. The lack of the sys-
tems engineering tools and their abilities to adequately plan and diagnose
the development effort for integration problems is readily apparent in the
strategies and methods currently used. For simple engineering integrations,
the plan-driven strategy suggests that complexity (multiple interactions
across the three kinds of boundaries: physical, functional, and behavioral) is
a key driver. When software is added to the project, neither the engineering
tools nor the systems engineering tools appear adequate. Integration is con-
sidered to consume the major portion of expenditures and is held as the most
likely cause of project problems.

To implement a strategy of planned integration while maintaining the
agility to adapt the sequencing of components and subsystems, the strategy
should be considered a policy that delineates all the actions required for inte-
gration in the integration plan. Integration planning should be mandatory,
not optional based on a perception of simplicity or fitting within a “normal”
routine. The reason: interactions can lead to integration—some interactions
are desired, perhaps some are not.

Integration Planning Concepts

Planning integration means more than just allocating time to various activi-
ties or sequencing those activities. Planning is predicated on the development
team working in an incremental fashion to (1) build the objects that are speci-
fied at the onset of the specification stage in the lifecycle process model,
(2) evaluate the functionality and performance(s) of those objects through
testing and modeling, (3) predict the adjustments that need to be made to the
objects associated with the next event (e.g., testing, simulation, and model-
ing), (4) broaden the scope of what is learned to all threads of objects that are
planned for development, and (5) determine the limit for applying what is
learned. Planning for integration is the distributing of tasks that reflect what
is known to be necessary but includes the ability to adapt to what is sufficient.
As tasks are assigned (according to a model of integration), the task manager
is responsible for ensuring that subtasks are allocated and completed suc-
cessfully. The task manager must collaborate with other task mangers so that
the lessons learned from the patterns of integration can be shared. Each task
and subtask should have a deliverable, and each task should have an entry in
a log that is maintained current on a daily basis. The accuracy of planning

304 Engineering Systems Integration

will be improved by having a reference log with adequate details to chroni-
cle the work activities and events. The significance of this log is understood
by the fundamental notion of planning: planning is only about the future.
The job of the task manager (and the supervision of the management, in
general) is to focus on establishing the procedures for readying all objects
for integration based on the strategy of reducing a multiobject problem to a
two- or three-object problem. This strategy is referred to as the recursive
strategy (Zhang and Norman 1994).

Planning deals with the future of present decision. According to Steiner
(1969), planning is a process which begins with objectives; defines strategies,
policies, and detailed plans to achieve them; establishes an organization to
implement decisions; and includes a review of performance and feedback to
introduce a new planning cycle. According to Drucker (1959), planning is a
continuous process of making present risk-taking decisions systematically.
It involves the best information about the future, it organizes the efforts needed
to carry out decisions, and it provides for measuring the results of the deci-
sions against the expectations. Planning includes who, what, where, when,
why, and how to be done in the future. For integration planning (as for all
planning), planning is not forecasting.* Planning is the charting of the course
to find the most probable future events. Planning is not what you would like
to do, want to do, or in fact, need to do. Planning is doing what you will do to
make happen what you must do. Integration planning is the process of estab-
lishing realistic objectives and the strategy to bring objects together in a sys-
tematic, logical fashion to show functionality that demonstrates (1) subfunctions
within a thread of a system function, (2) multiple subfunctions that interact
with each other, and (3) end-to-end (system) threads that illustrate the integra-
tive effects on system behaviors. In the short term (before verifying function-
alities), planning focuses on anticipating the unforeseen. The more plan Bs
(i.e., backup plans), the better in the early days before object-to-object integra-
tion. This notion that planning can help deal with problems is philosophically
based, borne out in anecdotages, and now steeped in the honored position of
common practice. For integration planning, it is more than meets our percep-
tions. In a systems engineering environment replete with changes in require-
ments, missing requirements, and requirements that are left unsaid (and
perhaps left undone), integration planning must deal with more than just the
complexities of the project (which includes the people and the results of their
work), and integration planning is the single-most visible element of how well
the project is progressing. All the indications of well-being that occur offer
false hopes and deceptive elusions of milestone completions. It is not until
integration that the true nature of the work is exposed and put to the first real
tests or viability. The planning of integration must endeavor to find the most
probable course of future events that will result in achieving the project objectives.

* Forecasting attempts to project the probable future events, often based on modeling or
simulation (e.g., weather forecasting).

305Systems Integration Management

The problem that must be solved with integration planning is to innovate and
find the unique events that will change the probabilities of success. Planning
helps expose those events so that the opportunities can be capitalized into
resources and activities to endure the hardships and anguishes that arise from
the inherent nature of building something that is new and as yet unexplored.
The focus of planning is on what should be done now to make desirable things
happen given the uncertainties that will show up in the future. “What futurity
do we have to factor into our present thinking and doing, what time spans do
we have to consider, and how do we converge them to a simultaneous decision
in the present?” (Drucker 1964).

Integration planning is not a schematic for the future; not a set of func-
tional plans; not a rigid series of tasks that must be attempted because they
were stated in a planning document; and not a complete set of all that is
known about what is to be integrated. But integration planning is an effective
means of scoping what is to be accomplished given uncertainties (uncertain-
ties that will be resolved over a series of events or alternatively a period of
time). The important point about integration planning is that it can be accom-
plished either in event-space or in the time domain (i.e., temporal space).
Event-space captures the events that need to occur to accomplish a set of
tasks. For integration planning, event-space is most useful as the combina-
tion of objects that provide various functionalities is for the most part known
after the preliminary design is completed. More often than not, the integra-
tion plans are time-based and laid out as if the objects will be completed at a
particular time. If one of two objects is completed and the other is not, then
the event-based planning has plan B (contingency) tasks to combine the work
forces of the completed object task with that of the uncompleted object task
to work together to demonstrate their object–object functionalities. This may
not be the case for time-domain planning, which may (1) try to integrate the
completed task with another completed task (based on the two assumptions:
any progress is making progress and the team completing their object can
then go on to work another object (and logically, sometimes to help with the
object that was supposed to have been completed), and (2) may embark on
tasks that are in fact counterproductive to the overall system integration
effort. It is particularly distressing to see integration activities that focus on
getting any objects to “work” with any other objects through the use of sim-
ulated interfaces. This practice requires the construction of simulations
based on the “completed” object and presumes that the completed object has
achieved its (near) final composition and outputs. This practice helps to rein-
force the iterative aspects of existing integration thinking. Build it close to
what is expected, then modify it to work with another component, then mod-
ify it again to work with yet another component, and so forth, each time
moving the components toward an anticipated “integrated” whole. However,
this chase to integrate is often met with a seemingly unending set of changes
that doom a project to cancellation, as the key stakeholders lose confidence in
the ability of the integration effort to result in a product.

306 Engineering Systems Integration

Integration planning sometimes assumes a model that covers the tasks
(and their subtasks or activities) that are planned to carry out integration.
Terms such as big-bang integration (where all components are brought
together at once), bottom-up integration that focuses on a functional approach,
modularity integration (Burkatzky 2007), top-down integration, agile inte-
gration, pipeline integration (Lewis 2006), are prevalent approaches to inte-
gration, and the list goes on (Burkatzky 2007). The sheer number of integration
models is suggestive that no one model has been widely accepted. An inte-
gration model (similar to systems engineering process models that describe
the steps and the milestones that must be met to move from one step to the
next) defines the nature of integration and the mechanisms for integration
for each pair-wise integration of objects to demonstrate the requisite func-
tionalities. In essence, the integration planning with the aid of an integration
model defines the components and interfaces of each function, the tests that
need to be performed to demonstrate the requisite functionalities, and the
level(s) of acceptability for the performances (and losses) of those functions.

Events

Planning for integration is foundational for knowing what tasks need to be
done, who is responsible for the tasks, and what activities need to be accom-
plished to complete the tasks. Planning focuses on the events—those occur-
rences that result in progress toward satisfying the set of requirements for
the product or service and that have measurable outcomes. Scheduling is the
association of temporal knowledge with an event.

Planning and scheduling present different views of events. Planning
shows sequencing, prescience, and concurrencies, that is, causal relation(s)
between events. Scheduling reveals the duration of the tasks and activities
leading up an event, the duration of an event, and the uncertainties in these
durations.

The concept of “project” includes stakeholders, tasks, and processes. The
result of a task is an event. For example, the project may be to hire people
(Appendix 1: Outline 1.2.8.6.1). The stakeholders include the hiring staff, the
applicants, the organizations who manage the advertising venues, the work-
ers with whom the new hire will be working, the people who are in contact
with the new hire (e.g., customers and people who associate the new hire
with the hiring organization), and the family members of the new hire. The
task for the hiring organization is to fill positions; the task for the applicants
is to be hired. The processes of “hire” include “advertise,” “review applica-
tion,” “interview,” “check references,” and associated activities (from the
perspective of the hiring organization). The processes “to be hired” for the
applicant include “learn of company intent to hire,” “fill out application,”

307Systems Integration Management

“send application,” “go to interview,” and associated activities. The two
tasks will result in the same event for the successful applicant and the hiring
company: countersigned employment contract. Each of the processes involve
stakeholders who receive inputs of EMMI, and transform those inputs into
various outputs by following procedures, common practices, and various
associated activities. Similarly, the function of ‘to hire’ involves the interac-
tion between the applicant and the hiring individual. For example, during
the interview, both the applicant and the hiring individual exchange EMMI
(e.g., acoustic waves, termed talking). The interaction between the applicant
(object A) and the hiring individual (object B) fulfills the function of ‘to inter-
view.’ The function of ‘to interview’ is a joint function involving both the
participants, the outcome of which is the event of INTERVIEW.* One of
the processes that results from this interaction is ‘to send’ the offer letter. The
event of SEND LETTER is the result of the function of ‘to send’ which sum-
marizes many actions that result in placing the letter in a postal drop box.
The interaction between the mailer and the postal drop box is the function of
‘to send.’ The outcome of each of the interactions that has occurred between
the applicant and other objects (e.g., application and the computer; applicant
and the transportation; applicant and the hiring manager; applicant and the
reading of the company’s offer letter) are all events. Each of these events
occurred in some order at certain times, lasting for certain durations. In this
manner, an event is exemplified by the properties or traits of the interacting
objects at a certain time, and at a certain place (Kim 1966; Goldman 1970;
Borghini and Varzi 2006). The precise location of an event can be considered
to be the mereological sum of the locations of the objects (Borghini and Varzi
2006). Events are characterized as having causal effects on other events.

An event occurs because an object transforms EMMI into an output.
Specifically, an event is the result of an interaction (driven by the mecha-
nisms of the two objects). An event is any detectable output from an object.
Events are antecedent or subsequent. The history and future of the project
are summarized by events. The relation(s) between events as objects with
antecedent, subsequent, or concurrent juxtapositions simultaneously in
event-space and the temporal domain define the plan and schedule for the
project. Therefore, events always have an orderliness that is discernable as a
pattern of behavior. Events that do not occur at the time indicated by the plan
are either “early” or “late,” as measured by the temporal reference to the
planned starting time of the event. Events that take shorter or longer than
indicated by the plan are either “ahead of schedule” or “behind schedule,” as
measured by the temporal reference to the planned length of time. Events
that are planned in a certain sequence are either “in order” or “out of order.”
Events that are planned as concurrent are either “in parallel” or “out of
phase.” Figure 6.6 illustrates planning and scheduling for objects as related
by EMMI exchanges through subfunctions.

* Capital letters signify EVENTS.

308 Engineering Systems Integration

Integration Planning and Scheduling Steps

The purpose of planning and scheduling for integration is to lay out the work
tasks so that the appropriate and sufficient resources, skills, and facilities are
brought together to complete the assigned work in pattern scheduling (lowest
impact on the budget), network scheduling (determinable, but with a higher
variance than pattern scheduling, impact on the budget), and ad hoc (undeter-
minable impact on the budget). The principle of planning (Principle 6) indi-
cates that the most effective means of integrating objects requires an effective
means of planning and scheduling. To achieve full pattern schedule with high
certainty of the pattern of object and events, the starting times, and the dura-
tions requires knowing all the tasks, all the objects, and all the events that
must occur to complete the project. For routine projects that have the benefit of
historical precedence and relevant project team experience, the task of inte-
gration planning and scheduling is tractable (although it should never be con-
sidered routine). An integration plan is always needed to consider the possible
scenarios that reflect project-specific details, such as the environment, suppli-
ers, and time and budget constraints. When the project is confronted with a
very complex system or system of systems, integration planning must be
founded on scenarios of hope, false hope, and despair (usually three to four
scenarios is sufficient to capture the degrees of uncertainty).

How well the project proceeds and is evaluated on the basis of the plan
depend on knowing these factors and the confounding factors during the
planning and scheduling stage. The integration plan is often limited by cost
or schedule considerations. Both these limitations result in constraints that
are also dependent on the skill set of the developers, integrators, and testers,
the availability of resources and facilities, the plans, the expectations, and
the technologies. It suffices to indicate that all that one needs and should be
known is probably not known for any such planning and scheduling.
Consequently, it is advisable to develop several plans and schedules based
on “what if” scenarios. Scenarios describe events or activities (enactments of
functions or processes) that synopsize a sequence of intentions or events to
assist in accounting for a plausible future (Peterson et al. 2003). Scenarios
can be used to explore the uncertainties of integration based on patterns of

EMMI
Object Object Object

SubfunctionSubfunction

Partial thread

FIgure 6.6
Objects exchanging EMMI through subfunctions.

309Systems Integration Management

behavior (order and schedules of objects). The Bayesian interpretation of sce-
nario development leads to the defining of object order, start time, and dura-
tion as probabilistic measures of the stakeholder beliefs that the pattern will
occur, given all that is relevant, known, and included by the stakeholders. In
this interpretation, the probability of an event occurring in the sequence
specified, at the starting time indicated, and having duration stipulated is
dependent on both the event and the stakeholder’s knowledge of the event
(Poh 1993). By this means, various scenarios can be scripted and evaluated,
using the variables of object pattern, start time, and duration to represent the
stakeholder knowledge.

There are four techniques for determining the pattern and behavior: expert
opinion (including engineers, financial analysts, systems engineers, and man-
agers); estimates of the work duration by similar types of tasks (e.g., by index
lines of code in the case of software, standard part or off-the-shelf part delivery
or manufacturing times); estimates of work by functions (e.g., using function
points for software estimation or applying functional analysis to compare like
functions with previous projects); and algorithmic comparisons with like-kind
work packages or work sequences. While today these techniques are heralded
as the best, they do not separate planning and scheduling using reverse view
perspectives. Scheduling moves temporally into the future, whereas planning
moves from the most future event (delivery of the product or service to the
events of present day—the reverse view perspective). A promising approach is
the use of augmented Lagrangian optimization (Guignard 1995; Li and
Ierapetritou 2010). The last 20 years have shown promising results and this
relatively unexplored approach deserves attention.

Integration Plan

An integration plan should include the strategy for bringing objects together
to demonstrate functionality. The integration plan is based on the system
design and the system architecture. Commensurate with the strategy and
sequencing for joining objects is the preparation of integration resources and
make-up of the integration teams. The integration plan also covers approach,
testing, and verification of the integrated subsystems, as well as laying out
the validation for the integrated system. The integration plan is the manage-
ment guide for integration, followed by both the systems engineers and
engineers. Integration is so important with large, complex, and expensive
systems that in 2005, the U.S. Government Accountability Office that reports
to the Subcommittee on Oversight of Government Management, The Federal
Workforce, and the District of Columbia, Committee on Homeland Security
and Governmental Affairs, United States Senate, recommended that the
Senior Executive Service within the Department of Homeland Security have

310 Engineering Systems Integration

their strategy and execution of project integration be made part of their
annual performance appraisals. The Under Secretary for Management in the
Department of Homeland Security stated that the integration plan will be
tied to such performance for the fiscal year 2010 performance cycle (GAO
2009). Integration is a top priority for acquiring systems.

Systems Integration Model

As the process for integration is summarized briefly as bringing the right
objects together at the right time, there is a strong basis for developing a
model for integration that is represented in an integration plan: Integration
plans are often (inadvertently) said to characterize integration as an iterative
process. Integration is anything but iterative. And sometimes it is stated that
a complex project may (added for emphasis) need a written plan for integra-
tion. Systems integration (i.e., integration that will lead to a system) requires
an integration plan. Integration planning would then focus on the objects
that when integrated resulted in some bit of functionality that is integral to
the final system. Further, it is often indicated that planning includes the
sequence in which components are to be integrated. It is desirable to demon-
strate links of functionality (i.e., small sequential subfunctions) that when
brought together in an end-to-end fashion, reveal a system function. In car-
rying out this notion of links of functionalities, integration has a sequence
where the sequence is focused on the end-to-end result, not necessarily any
particular link comprised of subfunctions. There is an important distinction
between providing links of functionality and attempting to demonstrate a
particular set of subfunction in a particular order. If the system design is
modularized by functions, then should a subfunction fail to be demonstra-
ble, a “substitute” replicate function could be provided as a backup (referred
to as plan B). Providing requisite functionality in such a modular form would
most likely result in lesser performance than indicated at the onset of the
work, but the system could be delivered with proven functionality, with an
upgraded capability provided at a later time. The progression of demonstrat-
ing functionality is tracked typically by schedule and amount expended to
achieve that functionality. Each demonstration of functionality is a verifica-
tion of the specifications, the system design, the architecture, and the require-
ments of the stakeholders. Specifics of the objects that when combined result
in the observed functionality is verification of the system architecture.

During the aftermath of integrating components, lessons learned are often
discussed. For integration planning, the integration plan is more often than
not a composite of sections from the systems engineering management plan,
the development plan, the systems engineering plan, and the testing plan
(other plans may also be included). The integration plan usually includes

311Systems Integration Management

the development aspects (schedule constraints, resources, facilities, labor);
the results of the development aspects (system design, preliminary design,
detailed design, architecture, descriptions of physical objects, interfaces
between physical objects, descriptions of product or service functionalities),
and testing plans (early-to-late stages). The iterative nature of systems engi-
neering transforms a set of initial requirements into design, architecture,
and then development. Throughout these steps, the requirements continue
to be refined, the design becomes more detailed, and the architecture
matures. By the time the development effort is readying for integration, the
system functionalities, the functional decomposition, and the allocation to
physical objects should be substantially completed. By the end of the detailed
design phase, the integration plan should be thought of as the baseline from
which refinements will be added during development.

Integration strategies come under various names from do it all at once “big
bang” or dividing the integration process into stages (Tahan and Ben-Asher
2005 citing Sommerville 2001) for incremental integration; or do it when you
can, or do it top down and bottoms up, or do it according to some other ratio-
nale. Perhaps the reason why there are so many choices is that no one strat-
egy seems to have proven very effective given the factors that confound
integration (e.g., unknown impacts of boundaries) (i.e., complexity). The
notion of iterative integration often means that one or both the compo-
nents undergoing integration will need to be changed. A failed integration
activity means just that, one or both components need to be changed.
Whether the changes are to be localized or are pervasive throughout an
object, the iterative notion of integration means failure. This is in sharp con-
trast to systems engineering that relies heavily for its success in dealing
with unknowns through iteration.

Building an integration plan requires a strategy and a model for integra-
tion. The strategy is at once the path we undertake to develop and build pairs
of objects that will provide the requisite functionalities. When these objects
are linked through interfaces with proper inputs and outputs of EMMI, the
resultant functions form the end-to-end chains (or threads) that demonstrate
the system-level functions. A systems integration strategy usually involves
planning for codevelopment of objects, orchestrated first at the component
level, and then at the subsystem level. The strategy aims to match the needs
of user’s requirement for functionality with the priorities the user ascribes
based on the minimally acceptable set of functions that demonstrate the
basic elements of the product or service. To be clear, this is not the “wish” list
of the user, nor is it what the user needs. The first objects to be integrated are
only those that are necessary and sufficient to show end-to-end viability of a
major system-level function. Integration activities focus on this one thread,
not all threads in parallel (Figure 6.7).

Once the main system thread is completed and demonstrated, parallel
threads, interacting threads, and subsidiary threads that add additional
functionality are then worked on in a similar manner. Again, the integration

312 Engineering Systems Integration

task is to link end-to-end functionalities, but this time through the first
demonstrated system thread (first demonstrated). Should there be com-
pletely parallel threads without any interactions, the system design and
architecture is that of a system of systems and a different integration plan
is necessary.

During the systems integration process, beginning with the most impor-
tant system-level thread, the critical objects that must provide linkages
between the subsystem functions are built and tested. Should an object that
is required to demonstrate a critical function not be available, the adjacent
objects that contribute to either of the two adjacent functions should be dem-
onstrated. For every object there are always two adjacent objects from which
to integrate and demonstrate functionality.

A systems integration model is a means of structuring the integration
work to better measure the progress of integration. It is quite likely that the
integration model that works for one set of objects and constraints will need
to be tailored for a different set of objects and constraints. It may be that one
model does not deal with all sensitivities that characterize a systems integra-
tion effort. This is not unlike the differences in systems engineering process
models. The systems engineering process models strive to first elicit a com-
plete, deliverable set of requirements that can be accomplished within the
constraints of time, budget, and skills; second, provide the structure to man-
age development work so that it conforms and is totally responsive to this
“legitimate” set of requirements; and third, deliver a product or service that
respects the integrity of the budget, schedule, and needed performances.
Within the management paradigm the work is presumed to be both tractable
and reliably similar in nature throughout the development work. However,
systems engineering is predominantly iterative for the bulk of its use, while
systems integration is predominantly recursive. Yet, the dominant view of
integration today retains its iterative actions—that of fix what needs to be
fixed, then work with the next object to make both of them work (fixing

Production start
(milestone C)

Development start
(milestone B)

Knowledge
point

Knowledge
point

Technology
development Integration Demonstration

Knowledge
point

Production

Engineering and management
development

Technologies
and resources

match
requirements

Design performs
as expected

Production can
meet cost,

schedule, and
quality targets

FIgure 6.7
United States Department of Defense acquisition cycle and decision knowledge points.

313Systems Integration Management

what needs to be fixed), and so on through the components, subassemblies,
assemblies, and subsystems. The recurring pattern is one of looking to the
objects at hand to assure they work together, knowing that if they do not
work together, then nothing will work with them later. In a recursive envi-
ronment, the dominant theme would be to determine a pattern that looks to
the future objects and how those objects will work together given the lessons
learned from the existing objects. Specifically, the functional analysis in the
systems engineering process model needs to be redone to accommodate the
lessons learned from the integration of the first few objects. For example, if
two objects are integrated successfully, they represent a function or set of
functions that were called out in the functional analysis step performed as
part of the systems engineering process model. Were it to be the case that all
such functions were found to result from the integration work, there would
be no problem or concern. But that is rarely, if ever, the case for systems of a
complex nature. Instead, the functions that were agreed to during the func-
tional analysis step were a “best match” with the physical entity, but not an
entirely best match. The iterative nature of systems engineering may not
have surfaced all of the functions and made the appropriate physical alloca-
tions. The means of finding these problems is usually left to modeling, simu-
lation, and testing (first at the unit level, and then at the component level).
The iterative nature of systems engineering results in an integrated system
some percentage of the time. The recursive nature of systems integration
should result in an integrated system a higher percentage of the time based
on (1) having refined the set of functions from the functional analysis stage
during the integration work (thereby better preparing and configuring the
object for integration); (2) extrapolating the patterns discernable in the early
systems integration work and apply those lessons learned to subsequent
objects (thereby applying the lessons learned to subsequent integration
activities); and (3) focusing the integration effort on the end-to-end system
functionalities that are demonstrable by the concatenation of subfunctions.
The extensive use for recursive systems integration is for complex systems
and system of systems integration. The failures of iterative systems integra-
tion are revealed most notably with the most complex of systems or system
of systems. The systems integration process model fits into the systems
engineering process models in the same fashion as integration is currently
conceived and enacted. For example, the number of U.S. Department of
Defense programs that are major and complex (GAO 2011) total 98 with a
total planned investment of $1.68 trillion.* One of those programs, the U.S.
Army Future Combat System, was terminated. As with many efforts, the
major difficulties seem to be recorded during integration, but in this case, the
difficulties were determinable in the system architecture, the integration of
new systems with legacy systems, and the degree of interoperability that

* The GAO reports $174 billion for 13 programs were removed from the portfolio of major
defense acquisitions while 15 programs (est. $77 billion) were added (GAO 2011).

314 Engineering Systems Integration

was required. This program is a prime example of the failure of iterative
integration. The U.S. Army indicated that the Future Combat Systems was
the “greatest technology and integration challenge it has ever undertaken”
(GAO 2007). The management challenge was stated as “. . . reducing integra-
tion risk and demonstrating product design prior to the design readiness
review” One of the particularly difficult issues for integration was the
inclusion of “. . . adapting the [new] technologies to space, weight, and
power demands of their intended environment” (GAO 2007). The term
“adapting” is not an integration task, it is a development task. The conse-
quence of including development activities in integration work simply com-
pounds an already difficult job. The Future Combat System program was
canceled in 2009.

Patterns in Systems Engineering and Patterns
in Systems Integration

A clear demarcation should be drawn between development (systems engi-
neering) and integration work (systems integration). The clear distinction is
determinable through the patterns of activity and how those patterns are
used. A pattern conveys the key aspects of design (Hennig and Cloutier
2011). Patterns can be used to facilitate the reuse of proven design knowledge
(Gordijn 2002). A pattern is a test to determine if an object meets certain cri-
teria, with the results of a test having meaning within the context of the test
and of the object; as such, the existence of a pattern indicates either potential
behavior (an increase in certainty) or to discounting previously hypothesized
behavior (which is an increase in uncertainty) (Hollywood et al. 2004).
Patterns are not just there, but rather can be created by (1) establishing a per-
spective from which to observe, (2) setting a set of contexts or circumstances
that prescribe the boundaries and boundary conditions, (3) stipulating a set
of independent and dependent variables that can be traced through causal
factors, (4) specifying the constraints under which the event is to occur, and
(5) advising as to how the measurement(s) should be accomplished. These
five factors are called the “duties” of a pattern. Patterns are held in high
regard as something that portends future event(s) or means something else
that is either relative or deterministic. Patterns may have meaning that only
applies to that which is at hand as these are restricted by their duties. It is the
nature of establishing the duties, as it is the nature of looking for patterns
that a single important factor in recognizing patterns is the experiences of
the observers—the greater the number of experiences, the more accurate
and intuitive the detection and interpretation of patterns. The intuitive
quality arises when patterns are improved by testing them against our
experiences (Alexander 1979). When engineers (and systems engineers)

315Systems Integration Management

review tests and test results for patterns during development (as opposed to
integration), the intent is to pass the test so the focus is on “fixing the prob-
lem” with the object. The expectation during systems engineering develop-
ment is to uncover, face, and fix problems. Consequently, the thinking during
systems engineering development is to loop back and fix problems. Should
an object pass its tests during development the task is to then either move on
to another object (repeating what was done on yet another object) or carry
forward with the same object and bring another object together with it for
another test. This bringing together of objects is (by definition) integration.
But bringing together objects that result in a failed test again focuses atten-
tion on the problem that must be solved to pass the test. Iteratively, the test
provides insight into the problem. Systems engineering is focused on itera-
tive activities to pass tests.

The iterative nature of systems engineering is built into the structure of
analyzing the results of the testing of an object. The purpose of analyzing
patterns to perform retrospective analysis is focused on improving the
chances of the object to successfully complete its prescribed tests. The view
that passing the tests is needed to give confidence to the design and imple-
mentation of the object is predicted on the belief that tests accurately demon-
strate some measure of meaningful progress toward project goals. The
difficulty arises when those beliefs translate into some measure that is quan-
tifiable in terms of schedule or rate of expenditure (i.e., earned value). If only
one object is tested, then no function is enabled (as it takes two objects to
comprise a function).

For acquisition, decision makers rely on events to help determine the sta-
tus of a project (or program). The acquisition cycle and knowledge points
(specifically for the U.S. Department of Defense (GAO 2011)) to aid with
decisions to continue with development work are indicated as technology
development, integration, demonstration, and production. Figure 6.8 illus-
trates these knowledge points in terms of a sequence of phases.

These are top-level categories that subsume a myriad of decision points.
Various versions of acquisition cycles and decision points are routine for
government and industry, some formalized while others are ad hoc.*
Regardless of the manner or formality, management review of development
work for new products and services is a key aspect of most projects. In the
case of the U.S. Department of Defense, technology development means
achieving a sufficient level of technology maturity by the start of system
development, coupled with the project’s resources matching its expected
needs. These two factors have been shown by the U.S. Government
Accountability Office to be key determinants of a project’s success. The first
decision point involves work under the auspices of the system engineering

* The systems engineering process models have many decision points, separated both by
stage of development and by milestones that signify that a step is completed and the next
step can begin.

316 Engineering Systems Integration

process model to carry the project to the start of development (sometimes
referred to as milestone B). The second critical issue for decision makers is
immediately prior to the stage of work called integration (which is often
termed as development). Integration occurs when the system design is deter-
mined to satisfy the customer requirements.

According to the U.S. Government Accountability Office, the first knowl-
edge point (knowledge point 1) encompasses the start of milestone B which
occurs at the culmination of technology development and at the start of inte-
gration. This is the time at which engineering development phase has begun
(sometimes referred to as milestone B). At this time, the requirements and
resources should be matched, the requisite technologies should be demon-
strated in their intended environments, and the preliminary design should
be completed. The systems engineering process models bring the system
design to this first major knowledge point with completion of the systems
design, architecture, concept of operations, and an integration plan (to
mention a few of the activities and a sampling of the plethora of documents
and reports).

The second knowledge point (knowledge point 2) is determined when the
system design of the product or service satisfies the customer requirements.
Knowledge point 2 occurs at the critical design review between integration
and demonstration. The design is proven stable through prototyping and no
substantial changes are permitted. The manufacturing drawings are releasable
to manufacturing. Requirements are met. Reliability rates are demonstrated.
This knowledge point assumes that the system design and architecture are
sufficiently stable to begin demonstrating various key subsystems of the
system. When the manufacturing processes are mature, the product or ser-
vice is shown to meet cost, schedule, performance, and quality targets in a
manufacturing environment (knowledge point 3).

There is no one point of particular interest for physical integration in this
description as it is masked in vague descriptions between knowledge
point 1 and knowledge point 3. The systems engineering process models
(not covered in this book) reveal more, but still present an inadequate case
for what integration is and how to accomplish it. The grossness of the

Phase I: pairing objects to form simple subfunctions

Phase II: arrange subfunctions to form a primary system thread

Phase III: add subfunctions to form all system level threads

Phase IV: improve performance for all system level threads

Phase V: outline validation strategy

FIgure 6.8
Technology development, integration, demonstration, and production sequence.

317Systems Integration Management

descriptions of these knowledge points and the details of what and when
is expected as described in the systems engineering process models serve
to reinforce the result in the inevitable leanings toward iterative thinking
significantly past when recursive. For the most part, the systems engineer-
ing process models associate design verification with development and
system verification with integration. There is much overlap in how the vari-
ous stages are defined in the numerous systems engineering process models,
so a definitive statement about when certain activities should occur is both
fruitless and perhaps misleading. The consequence is that many decisions
are left to the users of the systems engineering process models which
allows for the necessary tailoring to be accomplished based on the project
constraints, management preferences, and customer requests. The U.S.
Government Accountability Office and the systems engineering process
models reflect that integration is a work activity that fits within a domain
called development: as integration is related to bringing together objects as
part of the process of building a product or service. The integration frame-
work (Chapter 2) captures that thinking using process management and
product and service deliverables.

The first phase of the Systems Process Model for Integration (SysPMI) is
the identification of objects (by pairs, where pairing of a single object with
another object always involves two other objects at a minimum) that are
required to demonstrate the top-level function(s), the subfunctions that sup-
port the top-level (end-to-end) functions, and the associated functional flow
block diagrams (at the pertinent level). The identification of the objects and
the match with functions is referred to as the mapping of functions to physi-
cal entities (or physical entities to functions). Additionally, the behaviors of
the users are associated with the functions and the physical objects. From the
description of the physical entities, the functions, and the user behaviors, the
boundaries and the boundary conditions can be included in the descriptions
of the system functions.

The second phase of the SysPMI is the recognition and characterization of
the top-level system functions in the simplest form and structure of subfunc-
tions that is necessary to demonstrate the end-to-end system-level thread.
There can be multiple end-to-end system-level threads depending on the input
EMMI and the current actions of the system. The simplest case, the simplest
dataset, the simplest implementation, the simplest of physical structure,
computer hardware, computer software, and infrastructure and support
are the focus for demonstrating an end-to-end functionality. The few asso-
ciated performance(s) are to be measured and set down as the benchmark
performance(s) that demonstrate feasibility. Various types of models may
be useful to establish a model of what an end-to-end system function might
entail. The SysPMI accommodates both the modeling aspects and the
benchmark execution as part of Phase II. Phase II spans the test planning,
test execution, and benchmarking of the single-most important system-
level functional thread. The culmination of Phase I is the demonstration of

318 Engineering Systems Integration

the subfunction levels that concatenate to the highest-priority system-level
function (in its simplest form).

The third phase of the SysPMI covers the expansion of integration to the
prioritized top-level system functions and the critical independencies.
Phase III spans the test planning, test execution, and benchmarking of the
prioritized system-level functional threads. The culmination of the third
phase of the SysPMI is the demonstration of system-level functions in their
simplest forms based on their set(s) of subfunctions. To complete the third
phase, some object demonstrated in Phase I will need to have additional sub-
functions built into their physical entities. As additional subfunctions are
completed they will be tested to demonstrate additional functionality as well
as to show improvement(s) in the end-to-end system-level functions. Should
a system-level function be degraded from its benchmark performance by
the addition of a new functionality, the objects that were modified will be
analyzed to improve their handling of EMMI through adjustments of their
mechanisms.

The fourth phase of the SysPMI is the overall improvement of performance(s)
for all system-level threads by improving subfunctions. Mechanisms are
tuned, enhanced, improved, or replaced with improved components or
objects. Should new technologies or modifications to existing objects be
necessary, they are performed in the fourth phase (after the system has been
shown to provide the system-level functions and the optimized level of
performance(s) associated with those performances). The culmination of the
fourth phase of SysPMI is system-level testing.

The fifth phase of the SysPMI is preparation of the final version of the
validation strategy, upgrade strategy, and maintenance strategy. Furthermore,
the validation strategy is carried out in the fifth phase. Note that verification
occurs during all phases of the systems engineering work, from conceptu-
alization through development. Verification of the system design, architec-
ture, concept of operations, and specifications must be completed before
integration of physical objects to assure that only those objects and functions
that satisfy the specifications and meet the requirements end up having time
spent on them by the integration teams.

Three Tests for Iterative Thinking versus recursive Thinking

As successive phases of the SysPMI are implemented and progress toward
their objectives, the type of work transitions from iterative-centric thinking
to recursive-centric thinking. To discern how much thinking needs to be
involved with work in a particular stage, there are three questions that
should be answered. The first question deals with the scalability of the
objects to deal with inputs and outputs (including losses to achieve those
outputs) through their mechanisms in the same fashion that is determinable
from a sampling of data points (taken by modeling, simulation, or testing).
The relation between successive domains of data, taken in various regions

319Systems Integration Management

within the domain of validity for the variables on which the viability of the
object is predicted, is termed as the scalability. Scalability is not simply doing
more as the domain of interest increases. Scalability is not simply maintain-
ing the same (or similar) relation between variables as the quantification of
these variables increase or decrease. And, scalability is not simply maintain-
ing some semblance of fidelity as the variables change in either a decreasing
or an increasing manner. Scalability is the object’s adaptability as the
increases or decreases in the transformation of EMMI by its mechanism and
control in a manner that retains the same ratio of input to output regardless
of the amount of increase or decrease in EMMI. Scalability is the first ques-
tion that should be asked. The second question is to determine which part of
an end-to-end sequence (i.e., system-level function) is the object a part of.
Since two objects comprise a subfunction, two objects (at a minimum) will be
working together to form a subfunction. Testing both functions over the
domains of a few variables within their specification limits does not expose
the pertinent patterns that necessarily reveal inconsistencies in scalability.
A convenient means of discovering patterns of inconsistency is to construct
an end-to-end threat. Why just one? Because one key thread of system-level
functionality establishes a baseline of operations that can be improved
through better performances, added to additional subfunctions that build
toward additional system-level functionalities, and carry with them the pat-
terns that expose the constraints that impose limitations on scalability. The
third question that should be asked deals with the architecture that supports
all of the system-level threads. As designed, the system architecture pro-
vides various system resources to enact system functionalities. An equally
convenient way of thinking about the contributions of architecture is to envi-
sion the allocations of resources or the partitioning of resources. While
equivalent at the top level of thinking about the patterns to watch for, the
skills of the systems engineer vary considerably. Each systems engineering
speciality will view the patterns differently, depending on the observer’s
perspective, their skill set, and their experience. Asking the three questions
sensitizes the engineering staff to the issues of integration and not just pass-
ing the tests laid out for objects. Merely focusing on the iterations to improve
an object may have no impact on the issues of an object’s integrability with
other objects. One cannot presume that because an object passes one of its
tests, it can be integrated with another object. In fact, the discernable patterns
might show that scalability, the baseline for a basic thread of end-to-end sys-
tem functionality, and a piece-wise contiguous means of bringing objects
together is far more efficient than any other means of integration. But the
ultimate test of thinking that must be done to complete systems engineering
and to complete systems integration is clearly different—as distinguished by
iterative versus recursive methods. If the answers to the three questions are
a resounding “no time to deal with future implications of what is being done
today to fix today’s problems,” the thinking is iterative—priorities placed on
changing whatever needs to be changed to pass a test. However, if the

320 Engineering Systems Integration

answers to the three questions (scalability, one key thread, and multiple key
threads) are suggestive of patterns that expose weakness in the system
design, architecture, or implementation of specifications, then the objects
may be difficult to integrate.

Besides the differences in activities between iterative thinking and recursive
thinking there is a difference in the type of people that are performing the
work. For building the objects, the focus is on the engineering skills and abili-
ties necessary to be successful at building and testing. Iteration is key. Detecting
patterns may require different skills and capabilities that are neither normally
invoked nor discussed during critical times of “making the object work to pass
a test.” Granted, these particular events are stressful due to the strong depen-
dencies between the constraints of schedule, budget, and performance.
However, it is exactly at these times that the patterns are at their earliest stage
of detection. After each failed or successful test, a review with a senior systems
engineer (who has domain-specific knowledge and work experience) should
be involved in the discussions (however brief). The more senior the systems
engineer, the more likely the team is at detecting patterns that could help with
integration. The percentage contribution to a project from a systems engineer
(based on the number of years of experience) is related exponentially for
requirements analysis, project management, and cost management (as exam-
ples of activities performed by systems engineers). All three of these activities
depend on detecting and interpreting patterns and therefore reflect recursive
thinking more than iterative thinking. de Souza (2008) showed that there was
an exponential relation between the contribution to the project of a systems
engineer with respect to the number of years of experience. For requirements
analysis and management skills, a systems engineer with nearly 9 years of
experience contributes four times as much as a systems engineer with 4 years
of experience. However, cost management skills at 13 years of experience con-
tribute twice as much to the project as that of a systems engineer with nearly 9
years of experience. The level of contribution for requirements analysis and
project management skills are seemingly acquired faster than cost manage-
ment skills, but rising to a high level of proficiency after 14 years of experience.
The acquisition of systems engineering skills as gleaned from a triangulation
methodology compared data from recruitment advertising, review of systems
engineering-juried publications, and surveys of practicing systems engineers
indicated that systems engineering is a skill that is learned through project
work. Nearly all systems engineers have strong domain expertise in an engi-
neering specialty.

The influence on integration work as derived from the sampling of systems
engineering skills indicates the need for a structure of leadership (Honour
2004). Leadership in making the determination as to when thinking changes
should be made to encourage a greater measure of recursive thinking to iter-
ative thinking.

The recursive thinking associated with this part of development and
development in general is most pronounced toward the end of integration

321Systems Integration Management

(when objects have passed their individual tests but defy attempts to integrate
smoothly). Iterative thinking at the end of development takes a lesser role
in the discussion (although never disappears completely). At the beginning
of the development and build process, iterative thinking dominates with
recursive thinking left for water cooler talk. There is a gradual transition
from one type of thinking to another, both important, both representative of
the problem solving that must take place, and both determined by the task at
hand. For systems integration of some complexity, the issue is to begin recur-
sive thinking earlier in the integration process to prepare more effectively for
what lies ahead. The challenge of management is to recognize that recursive
thinking may not yet dominate, but one should always be mindful that they
are near the near of iterative thinking.

The SysPMI ties into the systems engineering process models as products
and services are prepared in their normal fashion and become available for
integration planning. A common place for integration to begin is after sub-
system verification (referring to the Vee process model (Forsberg and Mooz
1996)). Verification of the system design and implementations at the unit and
component levels also occur before major integration activities.

References

Alexander, C. 1979. A Timeless Way of Building. New York: Oxford University
Press.

Blanchard, B. S. 1998. Systems Engineering Management. New York: John Wiley &
Sons, Inc.

Borghini, A. and Varzi, A. C. 2006. Event location and vagueness. Philosophical Studies
128(2): 313–336.

Bornman, L. G. 1993. Command and Control Measures of Effectiveness Handbook (C2MOE
Handbook). Study and Analysis Center Study Directorate. For Leavenworth,
United States Department of Army TRADOC Analysis Command 42.

Burkatzky, F. H.-H. 2007. Development of Measurement Scales for Project Complexity and
Systems Integration Performance. PhD thesis, School of Management, Walden
University, 161pp.

Choi, D. O. and Langford, G. O. 2008. A General Quality Loss Function Development and
Its Application to the Acquisition Phases of the Weapon Systems. Monterey: United
States Naval Postgraduate School, 87pp.

Chung, H. C. and Chao, Y. C. 2005. Determining a one-sided optimum specification
limit under the linear quality loss function. Quality and Quantity 39: 109–117.

de Souza, R. A. 2008. Maturity Curve of Systems Engineering. MS thesis, Systems
Engineering. Monterey: The Naval Postgraduate School, 114pp.

Drucker, P. F. 1959. Long-range planning. Management Science 5(April): 238–239.
Drucker, P. F. 1964. Managing for Results. New York: Harper & Row.
Forsberg, K. and Mooz, H. 1996. Visualizing Project Management. New York: John

Wiley & Sons.

322 Engineering Systems Integration

Fowler, J. H., Heaney, M. T., Nickerson, D. W., Padgett, J. F., and Sinclair, B. 2009.
Causality in Political Networks. Carbondale: Southern Illinois University.

GAO. 2007. Defense Acquisitions: Assessments of Selected Weapon Programs. Washington,
DC: United States Government Accountability Office, 178pp.

GAO. 2009. Department of Homeland Security: Actions Taken Toward Management
Integration, but a Comprehensive Strategy Is Still Needed. Washington, DC: United
States Government Accountability Office, 52pp.

GAO. 2011. Defense Acquisitions: Assessments of Selected Weapon Programs. Washington,
DC: United States Government Accountability Office, 195pp.

Goldman, A. 1970. A Theory of Human Action. New York: Prentice-Hall.
Gordijn, J. 2002. Value-Based Requirements Engineering: Exploring Innovative e-Commerce

Ideas. PhD thesis, Dutch Graduate School for Information and Knowledge
Systems, 311pp.

Gosling, W. 1962. The Design of Engineering Systems. New York: John Wiley &
Sons, Inc.

Guignard, M. 1995. Lagrangean relaxation: A short course. Belgian Journal of Operation
Research 35(Special Issue Francoro 3–4): 5–21.

Heckman, J. J. and Vytlacil, E. J. 2006. Econometric Evaluation of Social Programs.
Amsterdam: Elsevier.

Hennig, C. and Kutlukaya, M. 2007. Some thoughts about the design of loss func-
tions. Statistical Journal 5(1): 19–39.

Hennig, J. T. and Cloutier, R. 2011. System of Systems Architecture Patterns Which Enable
Agility. CSER 2011, Redondo Beach, University of Southern California.

Hitchins, D. K. 2007. Systems Engineering: A 21st Century Systems Methodology. West
Sussex: John Wiley & Sons, Ltd.

Hollywood, J., Synder, D., McKay, K., and Boon, J. 2004. Out of the Ordinary: Finding
Hidden Threats by Analyzing Unusual Behavior. Santa Monica: RAND Corporation,
187pp.

Honour, E. C. 2004. Understanding the value of systems engineering. Proceedings of
the 14th International INCOSE Symposium. Toulouse: France.

Jansen, W. A. 1998. Inheritance Properties of Role Hierarchies. Gaithersburg: National
Institute of Standards and Technology, 10pp.

Kaindl, H. and Dvetinovic, D. 2008. Distinction between Requirements and Their
Representations. CSER 2008, Redondo Beach: University of Southern California.

Kaplan, R. S. and Norton, D. P. 1992. The balanced scorecard—Measures that drive
performance. Harvard Business Review January–February: 75–85.

Kaplan, R. S. and Norton, D. P. 1993. Putting the balanced scorecard to work. Harvard
Business Review September–October: 134–142.

Kaplan, R. S. and Norton, D. P. 1996. Using the balanced scorecard as a strategic man-
agement system. Harvard Business Review January–February: 75–85.

Kapur, K. C. and Wang, C. J. 1996. Economic design of specifications region for mul-
tiple quality characteristics. IIE Transactions 28: 237–248.

Kerzner, H. 2009. Project Management: A Systems Approach to Planning, Scheduling, and
Controlling. Hoboken, NJ: John Wiley & Sons.

Kim, J. 1966. On the psycho-physical identity theory. American Philosophical Quarterly
3: 277–285.

Kumpe, T. and Bolwijn, P. T. 1994. Towards the innovative firm challenge for R&D
management. Research Technology Management January–February: 38–44.

323Systems Integration Management

Langford, G. O. 2009. Product upgrades based on minimum expected quality loss.
Proceedings of the 19th Annual International INCOSE Symposium. Singapore:
International Council on Systems Engineering.

Lewis, J. W. 2006. Systems Engineering Model for Integrability (SEMI). INCOSE
2006—16th Annual International Symposium Proceedings: Shining Light on the
Tough Issues. Toulouse: International Council on Systems Engineering.

Li, Z. and Ierapetritou, M. G. 2010. Production planning and scheduling integration
through augmented Lagrangian optimization. Computers and Chemical Engineering
34: 996–1006.

Machamer, P., Darden, L., and Carver, C. F. 2000. Thinking about mechanisms.
Philosophy of Science 67(1): 1–25.

MacKenzie, R. A. (1969, 1988). Software engineering project management. IEEE
Computer Science Press (first appeared in Harvard Business Review November/
December 1969:11–14).

Mason, R. L., Gunst, R. F., and Hess, J. L., Eds. 2003. Statistical Design and Analysis of
Experiments. New York: Wiley-Interscience.

Park, D., Saavedra, R. H., and Moon, S., 1997. Adaptive granularity: Transparent
integration of fine- and course-grain communication. International Journal of
Parallel Programming 25(5): 419–446.

Peterson, G. D., Cumming, G., and Carpenter, S. R. 2003. Scenario planning: A tool for
conservation in an uncertain world. Conservation Biology 17(2): 358–366.

Pikula, M. and Siemion, A. 2007. Design patterns in application integration based on
messages. Software Engineering. Warsaw: Polish-Japanese Institute of Information
Technology. Master, 101pp.

Poh, K. L. 1993. Utility-Based Categorization Engineering-Economic Systems. PhD thesis,
Stanford: Stanford University, 238pp.

Reeves, C. A. and Bednar, D. A. 1994. Defining quality: Alternatives and implications.
Academy of Management Review 19(3): 419.

Sage, A. P. and Armstrong, J. E. 2000. Introduction to Systems Engineering. New York:
John Wiley & Sons, Inc.

Shannon, C. 1948. A mathematical theory of communications. The Bell System Technical
Journal 27: 379–423.

Smartt, C. and Ferreira, S. 2011. The Archetypes of Systems Engineering Strategy. CSER
2011, Los Angeles: University of Southern California.

Sommerville, I. 2001. Software Engineering. New York: McGraw-Hill.
Sopha, B. M., Fet, A. M., Keitsch, M. M., and Haskins, C. 2010. Using systems engi-

neering to create a framework for evaluating industrial symbiosis options.
Systems Engineering 13(2): 149–160.

Steinbit, J. P. 2002. NATO: Code of Best Practice for C2 Assessment. Washington, DC:
United States Department of Defense.

Steiner, G. A. 1969. Top Management Planning. Toronto: Collier-Macmillan Canada,
Ltd.

Stevens, W. P., Myers, G. J., and Constantine, L. L. 1974. Structured design. IBM
Systems Journal 13: 115–139.

Taguchi, G. 1986. Introduction to Quality Engineering: Designing Quality into Products
and Processes. Tokyo, Japan: Asian Productivity Organization.

Taguchi, G. 1990. Introduction to Quality Engineering. Tokyo, Japan: Asian Productivity
Organization.

324 Engineering Systems Integration

Taguchi, G., Chowdhury, S., and Wu, Y. 2005. Taguchi’s Quality Engineering Handbook.
Hoboken, NJ: John Wiley & Sons, Inc.

Taguchi, G., Elsayed, E. A., and Hsiang, T. C. 1989. Quality Engineering in Production
Systems. New York: McGraw-Hill.

Tahan, M. and Ben-Asher, J. Z. 2005. Modeling and analysis of integration processes
for engineering systems. Systems Engineering 8(1): 62–77.

Yahya, F. and Chanwut, P. 2007. A quartic quality loss function and its properties.
Journal of Industrial and System Engineering 1(1): 8–22.

Yao, L., Kiran, K., Janet, K. A., and Farrokh, M. 1999. Robust design: Goal formulations
and a comparison of metamodeling methods. ASME Design Engineering Technical
Conferences. Las Vegas, NV.

Zhang, J. and Norman, D. A. 1994. Representations in distributed cognitive tasks.
Cognitive Science 18: 87–122.

325

Appendix 1: “To Manage” Decomposition

1.0 Enterprise
1.1 External
1.2 Internal
 1.2.1 Finance
 1.2.2 Operate
 1.2.3 Sell
 1.2.4 Legal
 1.2.5 Build
 1.2.6 Support
 1.2.7 Lead
 1.2.8 Manage
 1.2.8.1 Plan
 1.2.8.1.1 Determine the problem or “opportunity”
 1.2.8.1.1.1 Research current conditions
 1.2.8.1.1.2 Conditions of own organization
 1.2.8.1.1.3 Conditions of competitors
 1.2.8.1.1.4 Conditions of market
 1.2.8.1.2 Identify all problems or potential opportunities
 1.2.8.1.2.1 List
 1.2.8.1.2.2 Prioritize
 1.2.8.1.2.3 Select which one(s) to address
 1.2.8.1.3 Specify objectives
 1.2.8.1.3.1 Determine the beginning state
 1.2.8.1.3.2 Identify the expected end state
 1.2.8.1.3.2.1 State the success condition
 1.2.8.1.3.2.1.1 Time phase the conditions
 1.2.8.1.3.2.1.2 Event phase the conditions
 1.2.8.1.3.2.2 State the failure condition
 1.2.8.1.3.2.2.1 Time phase the conditions
 1.2.8.1.3.2.2.2 Event phase the conditions
 1.2.8.1.3.3 State reason for project
 1.2.8.1.3.3.1 Background
 1.2.8.1.3.4 Define the concept of operations, the operational

model, the business model
 1.2.8.1.3.4.1 Develop the project statement
 1.2.8.1.3.4.1.1 Design
 1.2.8.1.3.4.1.2 Technology
 1.2.8.1.4 Determine requirements
 1.2.8.1.4.1 Determine course of action
 1.2.8.1.4.1.1 Identify work packages

326 Appendix 1: “To Manage” Decomposition

 1.2.8.1.4.1.2 Determine schedule
 1.2.8.1.4.1.3 Determine budget
 1.2.8.1.4.2 Estimate needed resources
 1.2.8.1.4.2.1 Personnel
 1.2.8.1.4.2.2 Funds
 1.2.8.1.4.2.3 Equipment
 1.2.8.1.4.2.4 Facilities
 1.2.8.1.4.2.5 Information
 1.2.8.1.4.2.6 Technology
 1.2.8.1.4.2.7 Time
 1.2.8.1.4.2.8 External support
 1.2.8.1.4.2.9 Infrastructure
 1.2.8.1.4.3 Define stakeholders
 1.2.8.1.4.4 Define boundaries
 1.2.8.1.4.4.1 Identify limitations
 1.2.8.1.4.4.1.1 Consult project audience and

stakeholders
 1.2.8.1.4.4.1.2 Review relevant written

materials
 1.2.8.1.4.4.1.3 Note source of identified

limitations
 1.2.8.1.4.4.2 Identify environmental barriers
 1.2.8.1.4.4.3 Identify economic barriers
 1.2.8.1.4.4.4 Identify legal boundaries
 1.2.8.1.4.4.5 Identify social and cultural boundaries
 1.2.8.1.4.4.6 Identify ethical boundaries
 1.2.8.1.4.4.7 Identify regulatory boundaries
 1.2.8.1.4.5 Determine measures of effectiveness and measures

of performance
 1.2.8.1.4.6 Create strategy
 1.2.8.1.4.6.1 Consider organization’s usual approaches
 1.2.8.1.4.6.2 Conduct risk–benefit analysis
 1.2.8.1.4.6.3 Select strategy
 1.2.8.1.4.6.4 Develop backup strategies
 1.2.8.1.4.7 Write plan
 1.2.8.1.4.8 Promulgate plan
 1.2.8.1.5 Identify risks
 1.2.8.1.5.1 Define “risk”
 1.2.8.1.5.1.1 Technical solution
 1.2.8.1.5.1.1.1 Failure to provide required

functionality
 1.2.8.1.5.1.1.2 Failure to provide required

performance
 1.2.8.1.5.1.2 Schedule

327Appendix 1: “To Manage” Decomposition

 1.2.8.1.5.1.2.1 Failure to assign required
resources

 1.2.8.1.5.1.2.2 Lack of available resources
 1.2.8.1.5.1.3 Cost
 1.2.8.1.5.1.3.1 Total cost exceeds budgeted

cost
 1.2.8.1.5.1.3.2 Rate of expenditures exceeds

cash flow constraints
 1.2.8.1.5.2 Implement practices to identify risks
 1.2.8.1.5.2.1 Establish risk management board
 1.2.8.1.5.2.2 Checklists for project risk areas
 1.2.8.1.5.2.3 Lessons learned from previous projects
 1.2.8.1.5.2.4 Resource availability lists
 1.2.8.1.5.2.5 Resource training records for applicable

skills
 1.2.8.1.5.2.6 Peer review of project plans
 1.2.8.1.5.2.7 Senior management review of project

plans
 1.2.8.1.5.3 Document all risks captured during definition and

risk identification
 1.2.8.1.6 Assess
 1.2.8.1.6.1 Estimate probability of occurrence of each risk

event identified
 1.2.8.1.6.2 Estimate the consequences of the occurrence of

each risk event
 1.2.8.1.6.2.1 Estimate the impact on technical solution

(measured in terms of impact on schedule
and/or cost)

 1.2.8.1.6.2.2 Estimate the impact on schedule (mea-
sured in terms of extra time required to
complete the project)

 1.2.8.1.6.2.3 Estimate the impact on cost (measured in
terms of dollars)

 1.2.8.1.6.3 Visualize risk assessments for technical solu-
tion, schedule, and cost using two-dimensional
plots

 1.2.8.1.6.3.1 Plot risk probabilities along the y-axis
 1.2.8.1.6.3.2 Plot risk consequences along the x-axis
 1.2.8.1.6.4 Categorize assessments based on data plots
 1.2.8.1.6.4.1 “High” risks have the greatest

consequences
 1.2.8.1.6.4.2 “Medium” risks have less impact on the

project than high risks
 1.2.8.1.6.4.3 “Low” risks have the least impact

328 Appendix 1: “To Manage” Decomposition

 1.2.8.1.7 Mitigate risks*

 1.2.8.1.7.1 Develop contingency plans for risks
 1.2.8.1.7.1.1 High risks are first priority for contin-

gency planning
 1.2.8.1.7.1.2 Medium risks are second priority for con-

tingency planning
 1.2.8.1.7.1.3 Low risks have last priority for contin-

gency planning
 1.2.8.1.7.2 Present contingency plans to senior management

for review and approval
 1.2.8.1.7.3 Risk management board monitors risks as the proj-

ect progresses and advises the project manager
 1.2.8.1.7.4 Implement contingency plans as directed
 1.2.8.1.7.5 Monitor success of contingency plans
 1.2.8.1.8 Validation of the plan
 1.2.8.1.8.1 The achievability of schedule
 1.2.8.1.8.2 Planned expenditures are compatible with budget
 1.2.8.1.8.3 Workforce is necessary and sufficient
 1.2.8.1.8.4 Facilities, assets, and equipment are necessary and

sufficient (appropriate)
 1.2.8.1.9 Verification of the plan
 1.2.8.1.9.1 Schedule meets the objectives
 1.2.8.1.9.2 Planned expenditures satisfy the budget and

rate
 1.2.8.1.9.3 Workforce is adequately trained and competent
 1.2.8.1.9.4 Facilities, assets, and equipment are adequate
 1.2.8.1.10 Adjustments
 1.2.8.1.10.1 Performance
 1.2.8.1.10.2 Organization
 1.2.8.1.10.3 Communications
 1.2.8.1.10.4 Team building
 1.2.8.1.10.5 Direct
 1.2.8.1.10.6 Control
 1.2.8.1.11 Phases of work stipulated for milestones and reviews

(selected process model)
 1.2.8.2 Communications—the activity of conveying information
 1.2.8.2.1 Knowledge management
 1.2.8.2.1.1 Convert
 1.2.8.2.1.2 Identify
 1.2.8.2.1.3 Access
 1.2.8.2.1.4 Create/capture
 1.2.8.2.1.5 Represent
 1.2.8.2.1.6 Leverage

* Project Manager’s Portable Handbook, David I. Cleland and Lewis R. Ireland, pp. 339–344.

329Appendix 1: “To Manage” Decomposition

 1.2.8.2.2 Specify the problem that needs to have a communication
 1.2.8.2.3 Identify the need for the message
 1.2.8.2.4 Determine the recipients
 1.2.8.2.5 Conceptualize the form of the message content
 1.2.8.2.6 Conceptualize the message content
 1.2.8.2.7 Draft the message content
 1.2.8.2.8 Type of content
 1.2.8.2.8.1 Physical
 1.2.8.2.9 Trust
 1.2.8.2.9.1 Content
 1.2.8.2.9.2 Address
 1.2.8.2.9.3 Channel
 1.2.8.2.9.4 Delivery
 1.2.8.2.9.4.1 Act of
 1.2.8.2.9.4.1.1 Building, inputting, and out-

putting message
 1.2.8.2.9.4.1.2 Encrypting
 1.2.8.2.9.4.1.3 Decrypting
 1.2.8.2.10 Finalize the message content
 1.2.8.2.10.1 Identify recipient(s)
 1.2.8.2.10.2 Specify address of recipient(s)
 1.2.8.2.10.3 Confirm address of recipient(s)
 1.2.8.2.10.4 Determine the available channels for conveying

message to recipient(s)
 1.2.8.2.10.4.1 Media
 1.2.8.2.10.4.1.1 TV
 1.2.8.2.10.4.1.2 Visual (broadcast/cable)
 1.2.8.2.10.4.1.3 Digital storage media
 1.2.8.2.10.4.1.4 Radio
 1.2.8.2.10.4.1.5 Print advertising
 1.2.8.2.10.4.1.6 Word of mouth
 1.2.8.2.10.5 Determine the temporal requirements for

delivery
 1.2.8.2.10.5.1 Start time
 1.2.8.2.10.5.2 End time
 1.2.8.2.10.5.3 Elapsed time
 1.2.8.2.10.6 Determine the needs of the channel to accommo-

date the message
 1.2.8.2.10.7 Select the channel(s) for the message to recipient(s)
 1.2.8.2.10.8 Encrypt
 1.2.8.2.10.9 Transmit
 1.2.8.2.10.10 Receive
 1.2.8.2.10.11 Acknowledge receipt
 1.2.8.2.10.12 Decrypt
 1.2.8.2.10.13 Acknowledge content

330 Appendix 1: “To Manage” Decomposition

 1.2.8.3 Organize
 1.2.8.3.1 Create organizational structure
 1.2.8.3.1.1 Hierarchy
 1.2.8.3.1.2 Flat
 1.2.8.3.2 Create team
 1.2.8.3.2.1 Define roles
 1.2.8.3.2.1.1 Assign personnel to tasks
 1.2.8.3.2.1.1.1 Negotiate agreements to assure

availability
 1.2.8.3.2.1.2 Define responsibilities
 1.2.8.3.2.1.3 Give and explain tasks
 1.2.8.3.2.1.4 Integrate team
 1.2.8.3.2.1.5 Create operating practices and procedures
 1.2.8.3.2.1.5.1 Define processes
 1.2.8.3.2.1.5.2 Define interactions between

processes
 1.2.8.3.2.1.6 Set up tracking systems
 1.2.8.3.2.1.6.1 Financial
 1.2.8.3.2.1.6.2 Personnel
 1.2.8.3.2.1.6.3 Sales
 1.2.8.3.2.1.6.4 Production
 1.2.8.3.2.1.6.5 Support
 1.2.8.4 Control
 1.2.8.4.1 Determine performance standards/requirements
 1.2.8.4.2 Monitor actions and results
 1.2.8.4.2.1 Stay within time constraints
 1.2.8.4.2.2 Stay within budget constraints
 1.2.8.4.2.3 Personnel
 1.2.8.4.2.4 Facilities
 1.2.8.4.2.5 Resource expenditures
 1.2.8.4.3 Address problems
 1.2.8.4.3.1 Time problems
 1.2.8.4.3.2 Budgetary problems
 1.2.8.4.3.3 Personnel problems
 1.2.8.4.3.3.1 Hire employees (redundant)
 1.2.8.4.3.3.2 Fire employees
 1.2.8.4.3.3.3 Hire contractors
 1.2.8.4.3.4 Share information (reporting)
 1.2.8.4.3.4.1 Inform superiors
 1.2.8.4.3.4.1.1 Progress
 1.2.8.4.3.4.1.2 Problems
 1.2.8.4.3.4.2 Keep project team members informed
 1.2.8.4.3.4.3 Keep clients informed
 1.2.8.4.3.5 Manage resources
 1.2.8.4.3.5.1 Time

331Appendix 1: “To Manage” Decomposition

 1.2.8.4.3.5.2 Money
 1.2.8.4.3.6 Conduct audits
 1.2.8.4.3.6.1 Financial
 1.2.8.4.3.6.2 Production
 1.2.8.4.3.6.3 Operations
 1.2.8.5 Direct
 1.2.8.5.1 Obtain assets
 1.2.8.5.2 Project start-up activities
 1.2.8.5.2.1.1 Baseline
 1.2.8.5.2.1.1.1 Design
 1.2.8.5.2.1.1.2 Technology
 1.2.8.5.3 Assign tasks
 1.2.8.5.4 Close-out
 1.2.8.5.4.1 Develop action plan to resolve problems
 1.2.8.5.4.2 Obtain approvals for tested and final deliverables
 1.2.8.5.4.3 Communicate lessons learned to staff
 1.2.8.5.4.4 Assist in reassigning staff
 1.2.8.5.4.5 Celebrate project success
 1.2.8.6 Team build
 1.2.8.6.1 Hire
 1.2.8.6.1.1 Prepare
 1.2.8.6.1.1.1 Planning for human resources
 1.2.8.6.1.1.1.1 Appropriate staff available
 1.2.8.6.1.1.1.1.1 Number
 1.2.8.6.1.1.1.1.2 Type
 1.2.8.6.1.1.1.2 Adequate level of training

and skills
 1.2.8.6.1.1.1.2.1 Legal
 1.2.8.6.1.1.1.2.2 Technical
 1.2.8.6.1.1.1.2.3 Administrative
 1.2.8.6.1.1.1.3 Appropriate facilities
 1.2.8.6.1.1.1.4 Required infrastructure and

support
 1.2.8.6.1.1.2 Planning for hiring
 1.2.8.6.1.1.2.1 Determination of needs
 1.2.8.6.1.1.2.1.1 Short-term
 1.2.8.6.1.1.2.1.2 Mid-term
 1.2.8.6.1.1.2.1.3 Long-term
 1.2.8.6.1.1.3 Resources available for hiring
 1.2.8.6.1.1.3.1 Budget
 1.2.8.6.1.1.3.2 Facilities
 1.2.8.6.1.1.3.3 Support
 1.2.8.6.1.1.3.4 Equipment
 1.2.8.6.1.1.3.5 Tools
 1.2.8.6.1.1.4 Start date determined

332 Appendix 1: “To Manage” Decomposition

 1.2.8.6.1.1.4.1 Minimum range
 1.2.8.6.1.1.4.2 Maximum range
 1.2.8.6.1.1.5 Status of new hire
 1.2.8.6.1.1.5.1 Permanent
 1.2.8.6.1.1.5.2 Temporary
 1.2.8.6.1.1.5.3 Consultant
 1.2.8.6.1.1.6 Contract guidance (if applicable)
 1.2.8.6.1.1.7 Identify reporting manager
 1.2.8.6.1.1.8 Roles and responsibilities
 1.2.8.6.1.1.9 Job title and position
 1.2.8.6.1.1.10 Compensation
 1.2.8.6.1.1.10.1 Money
 1.2.8.6.1.1.10.2 Equity
 1.2.8.6.1.1.10.3 Perquisites
 1.2.8.6.1.1.11 Organizational identity
 1.2.8.6.1.1.12 Legal and company requirements
 1.2.8.6.1.1.12.1 EEO
 1.2.8.6.1.1.12.2 Policy
 1.2.8.6.1.1.12.3 Legal
 1.2.8.6.1.1.12.4 Positions restrictions
 1.2.8.6.1.1.13 Security
 1.2.8.6.1.2 Advertise/search
 1.2.8.6.1.2.1 Direct placement
 1.2.8.6.1.2.1.1 Duration (specific days)
 1.2.8.6.1.2.1.1.1 Start date
 1.2.8.6.1.2.1.1.2 End date
 1.2.8.6.1.2.1.2 Content
 1.2.8.6.1.2.1.3 Image
 1.2.8.6.1.2.1.3.1 Size
 1.2.8.6.1.2.1.3.2 Location
 1.2.8.6.1.2.2 Contract
 1.2.8.6.1.2.2.1 Services provided
 1.2.8.6.1.2.2.2 Start date
 1.2.8.6.1.2.2.3 Duration
 1.2.8.6.1.2.2.4 Termination
 1.2.8.6.1.2.2.5 Payment
 1.2.8.6.1.2.2.6 Intellectual property rights
 1.2.8.6.1.3 Screen and select
 1.2.8.6.1.3.1 Minimum requirements
 1.2.8.6.1.3.2 Desired requirements
 1.2.8.6.1.3.3 Excessive requirements
 1.2.8.6.1.3.4 Letters of reference
 1.2.8.6.1.3.5 CV or resume
 1.2.8.6.1.3.6 Cover letter
 1.2.8.6.1.3.7 Portfolio of work

333Appendix 1: “To Manage” Decomposition

 1.2.8.6.1.4 Interview
 1.2.8.6.1.4.1 Follow process
 1.2.8.6.1.4.1.1 Legal
 1.2.8.6.1.4.1.2 Company
 1.2.8.6.1.5 Checking
 1.2.8.6.1.5.1 Technical
 1.2.8.6.1.5.2 References
 1.2.8.6.1.5.3 Citizenship
 1.2.8.6.1.5.4 Summation of opinions
 1.2.8.6.1.6 Select
 1.2.8.6.1.6.1 Comparison and threshold
 1.2.8.6.1.6.1.1 Internal
 1.2.8.6.1.6.1.2 External
 1.2.8.6.1.7 Approval from hiring authority
 1.2.8.6.1.7.1 Updated plan
 1.2.8.6.1.7.1.1 Budget check
 1.2.8.6.1.7.1.2 Skills inventory
 1.2.8.6.1.7.2 Updated organization
 1.2.8.6.1.8 Offer
 1.2.8.6.1.8.1 Confirmation
 1.2.8.6.1.8.1.1 Salary
 1.2.8.6.1.8.1.2 Conditions
 1.2.8.6.1.8.1.3 Location
 1.2.8.6.1.8.1.4 Position
 1.2.8.6.1.8.1.5 Title
 1.2.8.6.1.8.1.6 Perquisites
 1.2.8.6.1.9 Orientation
 1.2.8.6.1.9.1 Confidentiality agreement
 1.2.8.6.1.9.2 Employment agreement
 1.2.8.6.1.9.3 Rights agreement
 1.2.8.6.1.9.4 Assignment agreement
 1.2.8.6.1.9.5 Company policy concurrence
 1.2.8.6.1.9.6 Set-up account for work
 1.2.8.6.1.9.7 Benefits
 1.2.8.6.1.9.8 Ownership
 1.2.8.6.1.9.9 Orientation
 1.2.8.6.1.9.10 Security
 1.2.8.6.2 Sustain
 1.2.8.6.2.1 Train
 1.2.8.6.2.2 Education
 1.2.8.6.2.3 Promotion and advancement
 1.2.8.6.2.4 Assignments
 1.2.8.6.2.5 Surveying
 1.2.8.6.2.6 Security
 1.2.8.6.3 Exit

334 Appendix 1: “To Manage” Decomposition

 1.2.8.6.3.1 Notice of intentions
 1.2.8.6.3.1.1 Schedule
 1.2.8.6.3.1.2 Use of benefits
 1.2.8.6.3.2 Status change
 1.2.8.6.3.2.1 Account termination
 1.2.8.6.3.2.2 Account suspension
 1.2.8.6.3.2.3 Account accrual
 1.2.8.6.3.3 Notifications
 1.2.8.6.3.3.1 Planning
 1.2.8.6.3.3.2 Budgeting
 1.2.8.6.3.3.3 Organization
 1.2.8.6.3.3.4 Legal
 1.2.8.6.3.3.5 Property accounting
 1.2.8.6.3.3.6 Security
 1.2.8.6.3.4 Exit interview
 1.2.8.6.4 Maintain focus
 1.2.8.6.5 Maintain motivated team
 1.2.8.6.5.1 Recognize performance
 1.2.8.6.5.1.1 Salary increases
 1.2.8.6.5.1.2 Promotions
 1.2.8.6.5.1.3 Job assignments
 1.2.8.6.5.2 Oversee/approve requests for annual/administra-

tive leave
 1.2.8.6.6 Mentor team members
 1.2.8.6.6.1 Complete regular performance appraisals
 1.2.8.6.7 Train team members
 1.2.8.6.8 Provide technical expertise and guidance
 1.2.8.6.9 Establish values

335

Appendix 2: Product Upgrades Based
on Minimum Expected Quality Loss

Introduction (Langford 2009)

Maintenance and sustainment costs are typically one-third of the develop-
ment costs, as was briefed to the Government Accountability Office
(Chaplain 2008) for the Space Shuttle, to 70% of the lifecycle costs for the
general category of software (Boehm and Basili 2001). Often, managers
responsible for maintenance and sustainment target costs reductions of the
order of 15–20% to improve product profitability. Perhaps such actions
assume that customers are pleased by both the gesture to reduce costs and
the company’s interests in supporting fielded products. However, for cus-
tomers, perhaps the most meaningful consideration of continued product
support is lower cost of ownership.

The authors posit that the upgrade cycle for fielded products could be
based on the expected quality loss that results from the period of the upgrade.
The consequence would be a Pareto-efficient determination of the upgrade
period. To achieve Pareto-efficiency (based on the principle that one-sided
benefit to a party to a negotiation results in an inequitable distribution of
losses), losses for all stakeholders must be considered and incorporated into
a cooperative exchange of benefits and losses. A common distinction between
the interests of stakeholders can be depicted graphically as leaning toward
either smaller or larger than some position that will eventually be the negoti-
ated settlement. That is, the agreement between two stakeholders is defined
as the position whereby neither side to a negotiation has an unfair or dis-
proportionate advantage. For the purpose of this paper, the mathematics
simplifies by assuming an idealized negotiation (Figure A2.1) where two
parties incur equal losses about a center point target value, m.

The minimum loss depicted as the quality loss function in Figure A2.1
defines the target value of the critical performance characteristic, m, as a nego-
tiation between two strategies with opposite demands on quality for a given
investment. One party to the negotiation determines that more performance
is better (considered as larger-the-better (LTB) strategy) while the other party
considers that smaller-the-better (STB) demands on performance is required.

336 Appendix 2: Product Upgrades Based on Minimum Expected Quality Loss

The LTB (buyer’s strategy) benefits from larger values of performance, m,
coupled with lower loss. Alternatively, the STB (seller’s strategy) faces higher
losses from a higher-performance requirement, m. For example, a seller
might want to deliver more product performance but is unwilling to accept
increased costs which may lead to reduced marketshare, while the buyer
might expect more product performance for lower costs. Figure A2.2 illus-
trates LTB and STB strategies plotted with performance indicated on the
x-axis and the loss on the y-axis.

Simple addition of the two curves, x and 1/x, results in a pictorial represen-
tation of negotiation, based on both parties achieving the minimum loss.
Figure A2.3 shows the resultant quality loss function. The competition
between one party espousing STB and another party posturing LTB is in
essence a negotiation between two parties that results in defining a working
regime that reflects their mutual interests, solution, and requirements. The
property of Pareto-efficiency (that one-sided benefit to a party to a negotia-
tion results in an inequitable distribution of losses) should guide the selec-
tion and agreement of m. The result of a Pareto-efficient determination of m
is a minimum loss for that negotiation (Figure A2.3). Such a negotiation is
representative of the desire by the buyer and seller to have a product upgrade
at exactly the Pareto-efficient point, m.

From Figure A2.3, the resultant quality loss distribution has a minimum at
m = 1, representing the minimum loss that can be caused after the upgraded

Performance
–3

0

1

2

3

4

5

6

–2 –1 0

Target value, m

1 2 3 4

–δ +δ

Lo
ss

es

High
specification

limit

Lower
specification

limit

FIgure A2.1
Pareto-efficient negotiation.

337Appendix 2: Product Upgrades Based on Minimum Expected Quality Loss

0
0

1

2

3

4

5

6

7

Lo
ss

es

8

9

10
Y

y = 1/x

y = x

X

1 2 3 4 5
Performance

6 7 8 9 10 11 12

FIgure A2.2
Smaller-the-better (STB: y = x, seller) and larger-the-better (LTB: y = 1/x, buyer).

0
0

1

2

3

4

5

6

7

Lo
ss

es

8

9

10 Y

X

1 2 3 4 5
Performance

6 7 8 9 10 11 12

Minimum
loss

FIgure A2.3
Combining two loss distributions that compete for a definitive product upgrade period, m.

338 Appendix 2: Product Upgrades Based on Minimum Expected Quality Loss

product is shipped. This minimum loss represents the most effective peri-
odicity for the product upgrade within the product’s specified environment,
given the conflicting constraints of STB and LTB. The goal of the stakeholder
negotiations is to minimize the total system losses due to and during the
course of upgrading and releasing upgraded products. There are an infinite
number of quality loss functions, each with a minimum loss determined by
cooperative negotiation between buyer and seller. But there is only one
Pareto-efficient quality loss function that reflects the optimized minimum
loss during a product upgrade cycle (Figure A2.4).

Losses to the buyers can result from an early release of an upgraded prod-
uct that may not take full advantage of better technology. These losses may
manifest through lower performances of product functions, relative to the
lost opportunity available from more current and relevant technologies.
Later release of an upgrade product may deprive customers of productivity
that could have been achieved given an earlier release of the upgrade.
Premature release of an upgraded product may require fixes and patches to
achieve an acceptable operational effectiveness, while perfectly functioning
upgrades may be function rich, but performance poor.

The result of an early or late release is in effect to slide the performance
target parameter m horizontally as the quality loss functions show an

Performance

Minimum
loss

0 1 2 3 54 6 7 8 9

X

Y

Lo
ss

es

FIgure A2.4
Pareto-efficient quality loss function optimized for minimum loss.

339Appendix 2: Product Upgrades Based on Minimum Expected Quality Loss

increase in their losses about the point m (Figure A2.4). Therefore, the
resultant quality loss function only has a minimum value when Pareto-
efficiency is achieved. The range of possible curves (Figure A2.4) can be
determined by applying Bayes’ framework to predict the Pareto-efficient
solution either if the true distribution of past observations is known or if one
computes a universal distribution, defined as the weighted sum of distribu-
tions based on the complexity (Hutter 2001). Hutter goes on to prove that by
using a universal probability distribution where lower weights are assigned
to more complex distributions, the universal distribution is nearly as good as
using the unknown true distribution. By applying Hutter’s approach, the
Pareto-efficient solution can be defined.

Outline of the General Quality Loss Function (Choi and
Langford 2008)

Quality Characteristics

To achieve the desired level of quality and to determine the period for
upgrading a product, stakeholders pose the following question—how much
loss can I incur for various upgrade periods? This question can be answered
by considering the results of an analysis based on a general quality loss func-
tion. We introduce a shape parameter that governs the amount of losses as a
function of the periodicity, m, for the product upgrade. Since the product
upgrade has competing interests between the user and the developer whose
product is to be upgraded, we present a function which covers nominal-the-
better (NTB).

Traditionally, quality is viewed as a step function that signifies a good
product from a bad product. A good product is distinguishable by achieving
its performance with fewer losses than that of a bad product. This view
assumes that product quality is uniformly good between the lower specifica-
tion and the upper specification. Sometimes traditional decision makers and
those using Taguchi’s loss function will make the same judgments if both the
positions of the average and the variance as well as the averages are equal
and/or the variances are equal. Both the average performance and variation
from a target value are measures of quality (Taguchi et al. 1989).

The principle of Taguchi quality is based on the observation that custom-
ers become increasingly dissatisfied as performance falls further away
from a specified target value. His work with industry over the last 35 years
suggests that a quadratic curve best represents this customer’s dissatisfac-
tion with a product’s performance. When the target value is set to zero, the
first derivative of a Taylor series expansion taken about the target value is
of quadratic form. The best achievable performance at the curve’s mini-
mum is centered on the target value. However, identifying the appropriate

340 Appendix 2: Product Upgrades Based on Minimum Expected Quality Loss

performance measures and selecting the best target value is not an easy
task. And further while it has been productive to improve product quality
by reducing the performance variability, defining and implementing
appropriate testing to achieve only a handful of nonconforming products
are confounded by misclassifying items as rejected/accepted or rejecting
conforming items (Arts 1998). Testing is an early feedback that presupposes
and validates specifications that are indeed sometimes the designer’s best
guess at the customer’s interests. In actuality, the quadratic form was cho-
sen by Taguchi because it was both simple, and as it turned out, useful.
Further, after the Taylor expansion, higher powers in the series change the
loss at the target value by a very small margin, and for practical purposes
can be ignored within experimental error. We constructed a general qual-
ity loss function that would satisfy Taguchi conditions when the quadratic
order was satisfied.

The quality loss function developed by Taguchi (1990) is used to describe
quality in terms of smaller-the-better, larger-the-better, and nominal-the-
best characteristics. A smaller-the-better output response results when it is
desirable to minimize the performance, with the ideal target for performance
being zero. Examples of smaller-the-better output responses are the wear on
a component, the amount of engine audible noise, the amount of air pollu-
tion, and the amount of heat loss. The larger-the-better output response
reflects cases when it is desirable to maximize the result, the ideal target
being infinity. Examples of larger-the-better output responses are strength of
materiel or fuel efficiency. The nominal-the-best characteristic results when
there is a finite target point (or domain of cooperative agreement) to achieve,
often associated through a negotiated outcome. In this case there are typi-
cally upper and lower specification limits on both sides of the performance
target, representing the maximum or minimum acceptable bounds for the
parties of the negotiation. Examples of nominal-the-best characteristics are
the plating thickness of a component, the length of a part, and the output
current of a resistor at a given input voltage.

The loss function is a means to quantify the benefits achieved for the cus-
tomer by reducing variability around the target. It can help justify a decision
to invest, determine how much process improvement is needed when the
product is already capable of satisfying specifications, or determine the
appropriate period for a product upgrade. Accomplishing the goal of improv-
ing quality by minimizing the effects of variations in performance did not
necessarily need to come at the expense of eliminating the causes of that
variation. The aim was to immunize the product design to variations that
imparted customer value without an associated loss (Yao et al. 1999).

Types of Quality Loss Functions

Taguchi considers three cases of quality loss functions, including nominal-
the-best, smaller-the-better, and larger-the-better. The methodology used to

341Appendix 2: Product Upgrades Based on Minimum Expected Quality Loss

deal with the larger-the-better case is slightly different from that for the
smaller-the-better and nominal-the-better cases. However, for each quality
characteristic there exists some function that uniquely defines the relation-
ship between economic loss and the deviation of the quality characteristic
from its target value. Taguchi found the quadratic representation of the quality
loss function to be an efficient and effective way to assess the loss due to
deviation of a quality characteristic from its target value. For a product with
a target value m, from a customers’ perspective, m ± Δ0 represents the devia-
tion at which functional failure of the product or component occurs. When a
product is manufactured with its quality characteristic at the extremes,
m + Δ0 or m − Δ0, some measure to counter the loss must be undertaken by the
customer. The loss function L (average loss) with characteristic of nominal-
the-best (NTB) is described in Equation A2.1.

Nominal-the-best

L k y m k

A= − =()2 0

0
2∆

 (A2.1)

where k is a proportionality constant and could be the cost of each unit
(returned, modified, reworked) divided by the range limits of process vari-
ability divided by 2, y is the measure of performance (e.g., output) for a given
function, m is the target value of y, and A0 is the cost of the countermeasure.
The loss function can also be determined for cases when the output response
is a smaller-the-better response. The formula is a little different, but the pro-
cedure is much the same as for the case of nominal-the-best. For the case of
smaller-the-better (STB), where the target is zero, the loss function is described
as the following:

Smaller-the-better

L ky k

A
y

= =2 0

0
2 (A2.2)

where A0 is the consumer loss and y0 is the consumer tolerance.
For a larger-the-better (LTB) output response where the target is infinity,

the loss function can be written as the following:

Larger-the-better

L k

y
k A y= =1

2 0 0
2 (A2.3)

342 Appendix 2: Product Upgrades Based on Minimum Expected Quality Loss

Assumptions

The following seven assumptions are made to develop a general quality loss
function:

 A1: The total quality loss (Ln(x)) consists of the stakeholders’ loss plus
unknown losses.

 A2: If the level of quality equals the target value of the quality (i.e., m), the
total quality loss is to be zero (or the minimum loss that is inherent
in the system).

 A3: If the acquisition phase is production and deployment, the value of
shape parameter n is equal to 2.

 A4: The minimum value of a shape parameter is close to zero and the
value of the shape parameter in the concept refinement phase of the
acquisition phases varies from 0 to 1.

 A5: When the acquisition phases are the technology development or
system development and demonstration phase, the range value of
shape parameter varies from greater than one to less than two.

 A6: After the production and deployment phase, the value of the shape
parameter is greater than two.

 A7: The probability distribution of the quality response remains the
same regardless of the acquisition phases.

Notation

 Cb: Baseline cost with a constant value.
 Cs: If the type of quality characteristic is smaller-the-better, this means

a proportionality constant of stakeholder’s loss per response of qual-
ity. Additionally, if the type of quality characteristic is larger-the-
better, it means a proportionality constant of developer’s or
manufacturer’s loss per response of quality.

 Cl: If the type of quality characteristic is larger-the-better, this means a
proportionality constant of developer’s or manufacturer’s loss per
response of quality. Additionally, if the type of quality characteristic
is smaller-the-better, it means proportionality constant of the stake-
holder’s loss per response of quality.

 n: Shape parameter for representing an acquisition phase of a weapon
system (n > 0).

 x: Response of quality.

343Appendix 2: Product Upgrades Based on Minimum Expected Quality Loss

Ln(x): Total quality loss per piece in the case of shape parameter n and
quality response x.

 Ln: Expected quality loss per piece in the case of shape parameter n and
quality response x.

According to the assumption A1 and Equations A2.1, A2.2, and A2.3, a
general quality loss function can be described as the following Equation
A2.4. Equation A2.4 covers all quality characteristics such as nominal-the-
best, smaller-the-better, and larger-the-better.

General form

 L x C C x C xn
n n() = + + −

b s l (A2.4)

After applying the assumption A2 into Equation A2.4, we can get Equations
A2.5 and A2.6 as follows. If the response of quality equals to the target value
(i.e., m), the total quality loss is to be zero (Equation A2.5) and the result of
differentiation for the response of quality having the target value (i.e., m) is
also to be zero as Equation A2.6.

 L m C C m C mn
n n() = + + =−

b s l 0 (A2.5)

 L m nC x nC xn
n n′ () = − =− − −

s
1 1 0l (A2.6)

If we incorporate the specific value of n into Equations A2.5 and A2.6, we
obtain the general loss function as follows. If the value of n equals to 1, we
obtain the following results:

 L m C C m C m1
1 1 0() = + + =−

b s l (A2.7)

 L m C m C mn
′ () = − =−

s
0 2 0l (A2.8)

After solving Equations A2.7 and A2.8, we obtain the following results:

 C C m C C ml = = −s b s 2 2,

If n equals to 2, we obtain the following results:

 L m C C m C m2
2 2 0() = + + =−

b s l (A2.9)

 L m C m C m2 l
′ () = − =−2 2 03

s (A2.10)

344 Appendix 2: Product Upgrades Based on Minimum Expected Quality Loss

After solving Equations A2.9 and A2.10, we obtain the following results:

 C C m C C ml s b s = = −4 22,

After iterating in the above manner, we generate a quality loss function as
shown in Table A2.1.

As shown in the last row of Table A2.1, we present the general quality loss
function, detailed as follows:

L x C m C x C m x

C m C x m x

n
n n n n

n n n n

()

()

= − + +

= − + +

−()

−()

2

2 1

2

2 2

s s s

s s

 (A2.11)

Shapes of Quality Loss Function

As the value of n (shown in Equation A2.11 for the general quality loss func-
tion) changes, the shapes of quality loss function also change. To illustrate
these changes, we plot the value of quality loss versus the response of quality
with Cs = 2 and m = 3, in Figure A2.5, according to the change in the value of n.

As shown in Figure A2.5, the quality loss function with the red line is for
n = 1, the blue line is for n = 2, the green line is for n = 3. By plotting the loss
functions with different values of n, we observe that the width of the quality
loss function depends on the value of n. In order words, the larger the value
of n, the narrower the performance width of the quality loss functions.

In order to clearly see the proportionality between the quality losses as the
value of n changes, we calculate all the related values in Table A2.2.

Expected Quality Loss

Now, suppose that the probability density function of X is normal with mean
μ and variance σ2. The probability density function of X will be of the follow-
ing form:

f x x x() exp () ,= − −





−∞ ≤ ≤ ∞1
2 2

2

2σ π
µ

σ
 (A2.12)

TABLe A2.1

Results of Iterative Process for Generating a Quality Loss Function

n Cl Cb Ln (x)

1 C C ml s= 2 C C mb s= −2 1 L x C m C x C m x1
1 1 2 1 12() = − + + × −

s s s

2 C C ml s= 4 C C mb s= −2 2 L x C m C x C m x2
2 2 2 2 22() = − + + × −

s s s

3 C C ml s= 6 C C mb s= −2 3 L x C m C x C m x3
3 3 2 3 32() = − + + × −

s s s

4 C C ml s= 8 C C mb s= −2 4 L x C m C x C m x4
4 4 2 4 42() = − + + × −

s s s

n C C m n
l s= 2 C C mn

b s= −2 L x C m C x C m xn
n n n n() = − + + −2 2 2

s s s

345Appendix 2: Product Upgrades Based on Minimum Expected Quality Loss

0
0

1

2

3

4

5

6

7

8

9

10
Q

ua
lit

y l
os

s

Quality response
1 2 3 4 5 6 7 8 9 10

n = 1

n
=

2

n = 4

n = 5

n
=

3

FIgure A2.5
Shapes of the general quality loss function.

TABLe A2.2

Values of Quality Loss According to the Value of n

Response of
Quality (x) n = 1 n = 2 n = 3 n = 4 n = 5

1.00 8.00 128.00 1352.00 12,800.00 117,128.00
1.50 3.00 40.50 330.75 2278.13 14,595.20
2.00 1.00 12.50 90.25 528.13 2782.56
2.50 0.20 2.42 16.56 90.05 432.64
3.00 0.00 0.00 0.00 0.00 0.00
3.50 0.14 1.72 11.76 63.57 303.29
4.00 0.50 6.13 42.78 239.26 1191.33
4.50 1.00 12.50 90.25 528.13 2782.56
5.00 1.60 20.48 153.66 947.00 5315.79
5.50 2.27 29.86 233.51 1520.47 9117.15
6.00 3.00 40.50 330.75 2278.13 14,595.20
Quality loss
function

L x x xn
n n n n() = − × × + × + × × −2 2 3 2 2 32

Baseline cost

− × ×

= − × ×

2

2 2 3

C mn

n

s −12 −36 −108 −324 −972

346 Appendix 2: Product Upgrades Based on Minimum Expected Quality Loss

The expected loss per item is calculated according to Equation A2.13.

E L n L L n f x xn x[()] () ()x ≡ =
−∞

∞

∫ d (A2.13)

where f(x) is the probability density function of the normal random variable.
By substituting the general quality loss function and probability density

function into Equation A2.13, the equation can be rewritten as follows:

L L n f x x C m x m x
x

n x s
n n n n= = − + + − −


−∞

∞
−()∫ () () () exp

()
d 2

1
2 2

2
2

2σ π
µ

σ



= − − −





+

−∞

∞

−∞

∞

∫

∫

d

ds s

x

C m
x

x C xn n() exp
()

2
1
2 2

1
2

2

2σ π
µ

σ σ π
eexp

()

exp
()

− −





+ − −




−∞

∞

−()

∫ x
x

C m x
xn n

µ
σ

σ π
µ

σ

2

2

2
2

2

2

1
2 2

d

s 
−∞

∞

∫ dx

 = + +L L Ln n n1 2 3 (A2.14)

where

L C m
x

x C mn
n n

1

2

22
1
2 2

2= − − −





= −
−∞

∞

∫ s sd() exp
()

σ π
µ

σ
 (A2.15)

L C x
x

xn
n

2

2

2

1
2 2

= − −





−∞

∞

∫ s d
σ π

µ
σ

exp
()

 (A2.16)

L C m x
x

xn
n n

3
2

2

2

1
2 2

= − −





−()

−∞

∞

∫ s d
σ π

µ
σ

exp
()

 (A2.17)

Because it is difficult to integrate Equations A2.16 and A2.17 in a closed-
form solution, we adopt Taylor series expansion as the following. Taylor
series for xn and x−n at target value of x (i.e., m) is as follows:

347Appendix 2: Product Upgrades Based on Minimum Expected Quality Loss

x
f m

k
x m

f m
k

x m R

k
n

n

n
k

k

k
k

k

n
k

n= − = − +

=

=

∞

=
∑ ∑

() ()()
()

()
()

()
(

Π Π

Π
Π

Π

0 0

1
−−

− +

= − =

=

−

−

=

∞

∑

∑

k
m x m R

x
f m

k
x m

f m
k

k

n
n k k

n

n
k

k

k
k

)
() ()

()
()

()() ()

0

0
Π Π

kk

n
k

n

k

k

n
n k k

x m R

k
n k
n

m x m R

=

=

− −

∑

∑

− +

= − − +
−

− +

0

0

1
1

1
1

()

()
()
()

() ()
Π

Π
Π nn

Rn: Error after n terms
By ignoring terms higher than the fourth order, we get the following forms:

x

k
n

n k
m x mn

k

n k k≈
−

−
=

−∑ 1

0

4

Π
Π

Π
()

()
() () (A2.18)

x

k
n k
n

m x mn k

k

n k k−

=

− −≈ − − +
−

−∑ 1
1

1
1

0

4

Π
Π

Π
()

()
()

() () (A2.19)

After substituting Equations A2.18 and A2.19 into Equation A2.14, we
obtain the following results:

L C m

L C x
x

x

C
k

n

n
n

n
n

1

2

2

2

2

1
2 2

1

= −

= − −





≈

−∞

∞

∫

s

s

s

d
σ π

µ
σ

exp
()

()
Π

Π
Π(()

() () exp
()

n k
m x m

x
x

C

m

k

n k k

n

−
− − −





=

+

=

−

−∞

∞

∑∫
0

4 2

2

1
2 2σ π

µ
σ

d

s

nnm E X m
n n

m E X mE X m

n n n
m

n n

n

− −− + − − +

+ − −

1 2 2 21
2

2

1 2
6

(())
()

(() ())

()() −−

−

− + −

+ − − −

3 3 2 2 3

4 4

3 3

1 2 3
24

(() () ())

()()()
(()

E X mE X m E X m

n n n n
m E Xn −−

+ − +



































4

6 4

3

2 2 3 4

mE X

m E X m E X m

()

() ())

348 Appendix 2: Product Upgrades Based on Minimum Expected Quality Loss

L C m x
x

x

C m
k

n
n n

n k

3
2

2

2

2

1
2 2

1
1

= − −





≈ −

−()

−∞

∞

∫ s

s

d
σ π

µ
σ

exp
()

()
Π

Π(()
()

() () exp
()n k

n
m x m

x

k

n k k− +
−

− − −





=

− −

−∞

∞

∑∫ 1
1

1
2 2

0

4 2

2Π σ π
µ

σ 

=

− − + + − +

− +

− −

d

s

x

C m

nm E X m
n n

m E X mE X m

n n
n

1
1

2
2

1

1 2 2 2(())
()

(() ())

()(()
(() () ())

()()()

n
m E X mE X m E X m

n n n n
m

+ − + −

+ + + +

−

−

2
6

3 3

1 2 3
24

3 3 2 2 3

4((() ()

() ())

E X mE X

m E X m E X m

4 3

2 2 3 4

4

6 4

−

+ − +



































Therefore, the expected quality loss in the case of the normal distribution
of quality characteristic is of the following form:

L C

n m E X mE X m

n m E X mE X m E Xn

n

n=

− +

− − + −

−

−
s

2 2 2 2

2 3 3 2 2

2

3 3

(() ())

(() () () mm

n n
m E X mE X m E X m E X mn

3

4 2
4 4 3 2 2 3 411

12
4 6 4

)

()
(() () () ())+ + − + − +







−
























(A2.20)

where

E X x
x

x

E X

E X

E X

n n() exp
()

()

()

()

= − −





=

=

=

−∞

∞

∫ 1
2 2

1

2

2

0

1

2

σ π
µ

σ

µ

µ

d

22 2

3 3 2

4 4 2 2 4

3

6 3

+

= +

= + +

σ

µ µσ

µ µ σ σ

E X

E X

()

()

349Appendix 2: Product Upgrades Based on Minimum Expected Quality Loss

In order to show the trend of the expected quality loss according to the
position of the target value, we consider three cases of the mean of quality
output, by using a numerical example.

Case 1: the target value of the quality characteristic is equal to the mean
of quality.

Case 2: the target value of the quality characteristic is greater than the
mean of quality.

Case 3: the target value is less than the mean of quality.

Before suggesting the results of the application, we should assume the
inputs for demonstrating the trend of the expected quality loss as indicated
in Table A2.3.

First, consider Case 1 and observe the trend of expected quality loss as the
value of n varies, through a numerical example. After substituting the data
from Table A2.3 into Equation A2.20, we obtain the expected quality loss, as
shown in Equation A2.21.

L C m n n n

n n

n
n

n

= + +

= × + × +

−

−

s /(())

. (. . (

2 2 2 4 2 4

2 2 2 4

11 4

0 3 0 25 10 0 25 1

σ σ

11 42n))/
 (A2.21)

For Cases 2 and 3, after applying the same method used in Equation A2.21,
we obtain the expected values, respectively. In order to compare the expected

TABLe A2.3

Data for Application with Normal Distribution

Given data for the general quality loss function

•	Baseline	cost	(Cb) −2C mn
s

•	Cost	incurred	in	the	case	of	smaller-the-better	(Cs) 0.3
•	Cost	incurred	in	the	case	of	larger-the-better	(C1) C m n

s
2

Given data for the normal distribution

•	Mean	of	quality	(μ) 10

•	Variance	of	quality	(σ2) 0.25
•		nth moment of the probability distribution is given

by the Riemann–Stieltjes integral
1st: 10

2nd: 100.25
3rd: 1007.5
4th: 10150.1875

Three cases

•	Case	1:	m = μ 10

•	Case	2:	m > μ 11

•	Case	3:	m < μ 9

350 Appendix 2: Product Upgrades Based on Minimum Expected Quality Loss

quality loss among three cases, we need to display the expected quality loss
to the value of n as shown in Figure A2.6.

The expected quality loss function for Case 1 is shown by the black line,
Case 2 by the dark gray line, and Case 3 by the light gray line. By plotting the
expected quality loss functions having different values of n, we show that
the amount of the expected quality loss depends on the value of n, regard-
less of the position of the target value. In order words, if the value of n is
increasing, then the slope of the function is increasing.

The amount of the expected quality loss change is proportional to the
value of n. We show all the related values in Table A2.4.

1
0

20

40

60

80

100

1.5 2 2.5 3 3.5

m > μ

m < μ

m = μ

4 4.5

120

5
Value of n

Ex
pe

ct
ed

 q
ua

lit
y l

os
s

FIgure A2.6
Expected quality loss with normal distribution.

TABLe A2.4

Expected Value of Quality Loss with Normal Distribution

n Case 1 (m = μ) Case 2 (m = μ) Case 3 (m = μ)

1 0.06375 0.84468 0.841435
2 0.58125 5.72216 5.29792
3 7.59375 53.9438 37.7437
4 122.025 847.425 439.425
5 1879.22 14,126.7 5831.72

351Appendix 2: Product Upgrades Based on Minimum Expected Quality Loss

Conclusion

A general quality loss function having a shape parameter is developed
which is applicable to evaluate the expected quality loss for quality charac-
teristics such as nominal-the-best, smaller-the-better, and larger-the-better.
Additionally, we present an appropriate range of shape parameter values in
the proposed general quality loss function to accommodate the impacts of
upgrades to fielded systems.

By plotting the loss functions with different values of shape parameter n,
we show that the width of the quality loss function depends upon the value
of n. In order words, if the value of n is increasing, then the slope of the
expected quality loss function is increasing. When we calculate the expected
quality loss, we consider the normal probability distribution. Similar results
are obtained with the exponential distribution, truncated exponential distri-
bution, and truncated normal distribution. To show applicability of the pro-
posed general quality loss function to the periodicity of upgrading fielded
systems, we present the quality loss function and demonstrate a process for
determining acceptance level of periodicity through numerical examples.

Therefore, the proposed general quality loss function can be used to justify
a decision to release a product upgrade, and determine a specification limit
on the release dates that minimizes the expected quality loss.

The limitations of this study are as follows: (1) We adopt Taylor series expan-
sion for the general quality loss function. Due to this, the expected quality loss
using the proposed function has nominal errors. (2) Since we have difficulty in
obtaining actual data for quality loss associated with upgrading products and
periodicity, we cannot present a validation of shape parameter value, n.

References

Arts, G. R. J. 1998. Test Limits in Quality Control Using Correlated Products Characteristics,
ISBN 90-365-1129-1, The Netherlands: University of Twente.

Boehm, B. and Basili, V. R. 2001. Software defect reduction top 10 list. Software
Management Journal January: 135–137.

Chaplain, C. T. 2008. GAO -08-581T 24, U.S. Government Accountability Office,
April.

Choi, D. O. and Langford, G. 2008. A General Quality Loss Function Development
and Its Application to the Acquisition Phases of the Weapon Systems,
NPS-SE-08-007, Technical Report, Naval Postgraduate School, November.

Hutter, M. 2001. General Loss Bounds for Universal Sequence Prediction, Technical
Report IDSIA-03-01, Instituto Dalle di Studi sull’Intelligenza Artificiale, Manno-
Lugano, Switzerland, April.

352 Appendix 2: Product Upgrades Based on Minimum Expected Quality Loss

Taguchi, G., Elsayed, E. A., and Hsiang, T. C. 1989. Quality Engineering in Production
Systems, Tokyo: McGraw-Hill.

Taguchi, G. 1990. Introduction to Quality Engineering. Tokoyo: Asian Productivity
Organization.

Yao, L., Kiran, K., Janet, K. A., and Farrokh, M. 1999. Robust design: Goal formulations
and a comparison of metamodeling methods. ASME Design Engineering Technical
Conferences, September 12–15, Las Vegas, NV.

353

Glossary of Terms

Abstraction: Abstraction is an insufficiency of details to describe completely
all that is needed so that the EMMI that is necessary to enact a mech-
anism is available as needed.

Abstraction classification of integration: We refer to the class of integration
as an abstraction classification of integration (or “cognitive integra-
tion”)—that is two things connected conceptually and cognitively
considered as entities in object or process thinking.

Act, activity: An act is the change in an object that is distinguishable as one
increment in a sequence of acts, which combine to make an activity.

Action: An action is the release or receipt of something due to the enactment
of a mechanism.

Aggregation: An assemblage of discrete objects or processes that have rela-
tions of convenience, but not in any particular way or pattern.
Aggregations do not have relations due to interaction, but show no
evidence of integration.

Alignment: Objects or processes (and their logical derivatives, e.g., functions
or procedures, respectively) having cooperative association and
affiliation.

Archetype: The detailed extractions from an original pattern or roothold
that is related through levels of abstractions.*

Architecture: Conceptual and logical structures of objects and processes (and
their logical derivatives, e.g., functions or procedures, respectively).

Artifact: An object or process made by humans.*
Attribute: Attribute is a measure and measurement, configuration and

structure, and constraint (e.g., time, cost, and scope), performance,
and loss due to achieving the performances of a function.

Axiom: Assumed to be self-evident.*
Behavior: A behavior is describable in terms of observed reactions to influ-

ences of energy, matter, material wealth, or information. A behav-
ior is the movement of objects by processes; processes that result in
objects; objects interacting with other objects. Behaviors are defined
by the use of an operational definition (Kerlinger and Lee 2000)
that particularizes objects and processes in ways that are
measurable.

* The definition is adapted from or modeled after the dictionary resources provided through
www.wordweb.co.uk, WordWeb Pro thesaurus/dictionary, Version 5, 2007, Anthony Lewis;
these sources include the Oxford Dictionary of English, Oxford University Press, 2005, and the
Chambers Dictionary (11th Edition), Chambers Harrap Publishers Ltd., 2008, and WordNet
database, Princeton University, 2006.

354 Glossary of Terms

Behavioral boundary: Behaviors that are defined as having no more influ-
ence as a result of the object(s) through their functions and interfaces.

Black box testing: Black box method of testing is the analysis of input trans-
formation to output based on not knowing the internal workings,
logic, or configuration of the object.

Body of knowledge: A body of knowledge is the collection of data and infor-
mation that has been formed into broadly applicable and widely
accepted cognitive structures that are derived from theory, approach,
method, procedures, tools, and techniques. These cognitive struc-
tures may be based on causal beliefs, convictions that suggest valid-
ity, broadly considered methodology which inculcates the study of
research and interpretive practices applied to data and information,
and the shared notions about the appropriateness of mereological
and ontological thinking.

Boundary: Boundaries mark the end of one factor, but not necessarily the
beginning of something else. Boundaries are predicated on a
perspective.

Boundary condition: Boundary conditions can be defined as mediation of
capabilities that enact across boundaries. Boundary conditions are a
way of limiting how EMMI affects a bounded object. Boundary con-
ditions mediate the flow of EMMI across interfaces at boundaries.

Business model: A business model is descriptive of the management of
value for an entity, for example, that of a product or service, or that
which pertains at the business or enterprise level. The essential
characteristics of a business model require the enterprise be describ-
able in terms of its key traits, for example, managing the enterprise;
delineating the needs of the enterprise; prioritizing the relative
importance of these needs; evaluating the scalability and externali-
ties of the internal operations and external processes; identifying the
efficacies of the products and services in the user environments;
determining the causal boundaries and boundary conditions; and
identifying all interactions both internal and external to the enter-
prise with internal-to-external and external-to-internal delineations.
(Enterprise or business are used interchangeably, whereas, project
can also be applicable and serve equally well given the context of the
discussion.) The business model encompasses the concepts of enter-
prise, business, and project. The business model is concerned with
the interactions, events, objects, and organization of survival. The
business model must be true and faithful to all types and signifi-
cances of interactions, capturing all interactions to expose the struc-
tural inherences and opportunities for risk.

Case study: A behavioral model might be constructed that represents a more
detailed examination of a portion of the lessons, grounded in a set of
perspectives, measurement theory, and the objective actions. The set
of perspectives is referred to as a case study.

355Glossary of Terms

Causality: The sequence of events we term as causality—event by event.
Causality requires that the relation between two objects be modeled
as the change in the sending object, the change in the receiving
object, and the context of both the sending and receiving objects.
Causal events have both provenance and pertinent specificity.
Causality is formed from the modal threads of events leading to the
proximate events (nearby in space and time) from which the condi-
tions are stipulated to select the necessary and sufficient events.

Change: Change means that an object or process is different one instance
from the previous or next instance.

Characteristic: The qualities that are descriptive of something.*
Classifications of integration: The combination of the abstraction, social,

and model classifications of integration constitutes the whole of the
integration description. These classifications (or classes) link the
common set of limitations, the constraints allocated within the proj-
ect and temporal constraints that synchronize the interpersonal
relations, intellectual discussions, and the various corporeal repre-
sentations for the product or service.

Cognition: The acts and activities of knowing.*
Cognitive domain: The cognitive domain involves the abstractions and rea-

soning that takes place when thinking about a particular subject.
Cohesion: The manner in and degree to which the objects or processes relate

to each other.
Combination: An arrangement or assemblage of discrete objects or pro-

cesses that are in totality thought of in a particular way construct,
but where the objects or processes are interacting, and show evi-
dence of some integration.

Complexity: Complexity results from emergent properties of integrated
objects, number and types of processes, and the number, types, and
frequency of interactions between and within processes. Complexity
can be seen as relative to the level of abstraction in which one views
two objects.

Concept: A thing that is thought of and generally described.*
Condition: A condition is the circumstance that encompasses an object; the

factors that affect the manner and ways in which the object interacts;
the situation in which the object operates; or the terms under which
an object behaves.

Conditional causality: The most apparent direct cause. Related modal
causality to proximate causality. Constrains the context and circum-
stances surrounding the sequences and trails of events.

Connectivity: The joining of objects or processes by interaction or to facilitate
interaction.

Constraint: Constraints are a structural property of the solution. Constraints
are the results of boundary conditions. Constraints are conditions
of allocations that once established are changeable, however,

356 Glossary of Terms

vicissitudinous. Constraints are flexible within the overall limita-
tions set.

Context: Context is the situation or framework (Aerts et al. 2003) in which
the interaction between two objects takes place.

Correlation: Correlated events have nexus, without satisfying the three
types of causal events required for strict demands of recognizing
cause(s) and effect(s). That correlation depends on developing metrics
for both subjective measures and for objective measures that are
related to the same concomitant object and process (i.e., procedure,
activity, or act (in decreasing level of sophistication and complexity)).

Cost: What was spent in money or material wealth to accomplish or produce
an object or process. Cost is a consummate, independent measure of
a cycle.

Coupling: The degree of dependency between objects or between processes.
Customer: The person or organizational entity (object or process) that buys

products or services (objects or processes).
Cycle: An event or series of events that are regularly repeated in the same

order.*
Deduction: An inference based on a principle, rule, or process.*
De facto: The accidental embodiment of systems that are caused by human

or natural workings (that which is unintended). De facto systems
can be thought of as emergent systems that have developed as a
result of circumstances.

Definition: Descriptive, explanatory, ostensive, stipulative, explicative, rec-
ipe, or examples of a word (sometimes referred to as a term) or a
concept (Swartz 1997).

Definitional: Defined as limiting the extent of a meaning of a noun.*
De jure: The rightful (that which is intended) embodiment of human work

in the form of products and services.
Deonitic: Study of duty, ethics, and piety.*
Dependent: Enabled or sustained by interaction with an object or process.
Design: Design is the conceptualization of the needs of the stakeholders.
Domain: Domain is the sphere of activity that includes the physical entities,

functions, processes as related through their relations and context.
Element: An element is an object and process, combined or integrated.
Embodiment: The tangible or material form.*
Emergence: Any effect that produces a change in intrinsic properties, traits,

or attributes that results by combining objects through the interac-
tions of objects with EMMI. Emergence is due to the traits of an
object or objects, process or processes.

EMMI: Energy, matter, material wealth, and information. EMMI expresses
the interactions between objects.

Energy: Energy is the capacity to do work, that is, to make change.
Engineering: A workable definition of engineering is found on the

Accreditation Board for Engineering and Technology (ABET) site

357Glossary of Terms

www.abet.org and interpreted functionally by Andy Sage (Sage and
Armstrong 2000, p. 30). “Engineering is that profession in which
knowledge of the mathematical and natural sciences gained by
study, experience, and practice is applied with judgment to develop
ways to utilize, economically, the materials and forces of nature for
the benefit of mankind.”

Enterprise: The enterprise aims to lay out the nature, vision, and boundaries
of work. The enterprise has two requirements for business that a
project must satisfy: (1) providing revenue and profits consistent with
the enterprise policies, and (2) the operating within the limited and
constrained environment imposed by the realities of the project.

… enterprise is a mental image of that organization’s current and future
reason for existing (Morris and Pinto 2004)

To enterprise means to undertake the actions and activities neces-
sary to carry out the business of an individual, group, or legal entity.
To enterprise means to attain effectiveness.

Epistemology: The theory of knowledge that provides for measures and
measurement of properties, traits, and attributes of objects.
Epistemology aims to quantify the relation between an object and
an observer’s cognitive structures (Ferris 1997).

Event: An event is the enactment of a mechanism by input EMMI which is
then transformed into output EMMI (i.e., performance). Events tran-
spire as a result of every enactment of a mechanism. The result of a
set of processes (referred to as the result of a mechanism or proce-
dure) is called an event. One process could be referred to as an event,
a set of processes can be referred to as an event (or set of events), or
an abstraction of processes (or a single process) can be referred to as
an event. An event implies the activation of a mechanism that is
embodied within an object.

Force: Force is defined as the influences of EMMI on objects. Were there no
influence on an object, there would be no force. That the influence
should be measurable or detectable is of no consequence to this
definition, as influence is relative. The test for influence is deter-
mined by the net of power (i.e., work done) on an object as observed
by the outputs of that object’s mechanism; changes in the object’s
properties, traits, or attributes; or other such changes in boundary,
boundary conditions, physical issues, and functional or behavioral
issues (Kocsis 2008).

Frame: A set of concepts that together represent a unique, singularly charac-
terized perspective that is different than other perspectives.

Framework: A framework is the logics and consistency of method for a
group of frames. The structure of concepts and narrative is termed
as a framework. A framework is characterized by its (1) consistency

358 Glossary of Terms

of logic, (2) continuity of method, (3) applicability across disciplines
and fields involved in the frames, (4) scalable from the interdomain’s
micro to macro instances and events, and (5) showing the requisite
capaciousness to convey the needs of the scope of intentions that are
inherent in its needs. Most importantly, the framework maintains
focus on the eventual goal of describing a definitive theory of sys-
tems engineering.

Function: A function is defined as an action that is realized when objects
interact. Specifically, the exchange of EMMI between two objects
and satisfaction of the interface boundary conditions create a func-
tion that did not exist before the connection. A function is described
relative to a particular stakeholder’s perspective. A function is the
essence of interaction between two objects; and for integration, a
function is a structural property of the relations between objects.
A function is the result of the interaction or integration of two
objects. A function manifests itself as a trait of interaction. A func-
tion provides for a use.

Functional boundary: Determined by two objects and their interfaces with
cognitive structures and thinking. Functional boundaries are
formed at the interface of objects. No interface, no function. Interface,
then function.

Fundament: The foundation, essential nature, or basis of something.*
General systems thinking: Thinking in terms of systems to bring partial

patterns into full view by changing perspective, granularity, and the
abstraction of cognitive structures to a generality that is applicable
across all observations, fields, disciplines, and frameworks.

Granularity: Granularity is the result of partitioning objects or processes
into some sort of heterarchical or hierarchical conceptualization of
the relation between granules.

Granule: That which is within its limits or constraints is termed as a granule.
Group: A combination of objects or processes that interact.
Heterarchy: A classification schema which depicts relations between objects

or between processes or between objects and processes as self-
referenced, self-adjudicated as appropriate to the context in which
the relation exists. Unlike hierarchical arrangements, heterarchical
structures are unilevel, planar representations of the various aggre-
gations and combinations of objects and processes.

Hierarchy: A classification scheme which depicts relations between objects
or processes as successively subordinate (e.g., by detail or trait) in
conjunction with like-kind classes of relations between objects or
processes.

Holism: Holism is defined as the fundamental principle of a whole made
up of parts, interconnected parts that cannot exist independently
without the whole.

Illative: Making or stating an inference from premise(s).*

359Glossary of Terms

Independent: Unencumbered by influences outside of an object’s boundary
or process limitations.

Induction: The logic of deriving a general law from an observation, perspec-
tive, measurement theory, and causalities framework. Induction
assumes that (1) knowledge can be represented by rules that govern
conditions, (2) rules are based on current and future states (suggesting
causality is pluralistic), (3) rules are defined and enacted similarly in
hierarchical or heterarchical structures, (4) subsets and supersets of
objects or processes identify with the higher levels (in hierarchical
thinking) and with primary reference objects and processes (in heter-
archical thinking), (5) synchronic and diachronic rules promote
superordinate relations, (6) interactions between objects that are of
inconsistent frequency or are barely over thresholds necessary to
activate mechanisms result in measurable outputs, (7) two classes of
mechanism are possible—those that revise parameters and those
that generate plausibility and rules, (8) mechanisms require interac-
tions that lie within the range of the parameters that control the
mechanisms to result in measurable output, and (9) a depth and
breadth of knowledge associated with actions and events, processes,
and activities are structured within frames that are consistent with
the causalities framework (or integration framework). This definition
is extracted from and inspired by Holland et al. (1986).

Influence: The effect(s) on an object or process.
Information: Data with context.
Instability: Instability results in loss of functionality or performance. The

consequences instability is generally correlated with loss of value.
Instability is not the opposite of stability. Instability is the tendency
to change in a manner that does not maintain either the systemic
properties and traits of a system (objects and processes) or the indi-
vidual properties and traits of an object or process.

Instance: A single occurrence of an enactment of a mechanism.
Integration: Integration is the unification of the objects through their interac-

tions of energy, matter, material wealth, and information to provide
system-level functionalities and performances. Integration is a coalesce
of objects, interacting in perhaps unpredictable ways. Integration is the
combining of a systematic series of actions that take place in a definite
manner, directed to bring about a particular interaction between
objects and sets of objects. Integration is the method of setting up or by
chance satisfying the conditions that lead to a set of objects we refer to
as a system. Integration is a collaborative, value-enhancing approach
to demonstrating functionalities and performances of products and
services. Integration is a method that facilitates outcomes that are
beyond what an individual object can do either individually or by a
number of objects acting independently, that is, make things happen
that would otherwise not happen.

360 Glossary of Terms

Integration requires the structures of knowledge, the benefit of
information, and meaningful data to determine the alternative ways
in which to integrate a product or service.

Integration is defined variously as a unifying process (Kirk et al.
2009), the progressive linking of system components to merge func-
tional characteristics into an interoperable system (Haskins 2007),
the whole is greater than the sum of its parts.*

Integration frame: The integration frame is one dimension of the integration
framework. In the case of the causalities framework, one of the inte-
gration frames is the set of processes that portray the mechanisms of
integration. The other integration frame is the objects and their asso-
ciated representations as functions and behaviors that represent the
product or service. An integration frame is a constituent part of
the framework that represents the structural member that defines
the framework.

Integration framework: An integration framework provides the basis for
identifying principles that have substantial theoretical foundation(s).
Integration framework that reflects theory and best practices in sys-
tems fields—engineering, sociology, psychology, biology, cybernet-
ics, computer science, economics, management, and the like. The
integration framework provides the venue and rules for combining
the items within the integration frames (termed frames).

Integrative mechanism: The mechanisms of integration construct, bind, and
instigate (or allow for) change in the natural and social world. The
mechanisms of integration are a universal “adhesive.”

Intellectual objects: Intellectual objects are entities by reason or principle.
All that is not physical is intellectual. A person is a physical object,
but the thoughts of a person are intellectual objects.

Interaction: Interaction is defined as the transfer of EMMI. Interaction is
characterized by the transfer of something from one object (sender)
to another object (receiver).

Interface: An interface is within the boundary that separate two objects or
two processes. Physical connection of two objects results in an inter-
face. Functions occur at the interface between two objects.

Iterative: To do again or to do something similar to that which was done
before with the aim of improving on what was done before. Iterative
processes are typified as refinements on existing objects or existing
processes.

Juxtapose: Being placed or placed close together physically, functionally, or
behaviorally.

Key stakeholder: Key stakeholders are those who represent the totality of
the people who have various needs associated with the product or
service that is to be built, used, and disposed. Those needs could be
embodied in some form of substantial risk, consequential opportu-
nity, significant influence, or essential support.

361Glossary of Terms

Knowledge: Knowledge is an object. A mechanism of knowledge is the men-
tal procedures to build cognitive frames and the enactment of proce-
dures to carry out placing the knowledge in tangible form. The
corporeal representation(s) of both the knowledge and the mental
procedures and physical activities is shown as the piece of paper on
which the knowledge is represented.

Knowledge is not a series of self-consistent theories that converges
towards an ideal view; it is not a gradual approach to the truth. It is
rather an ever increasing ocean of mutually incompatible (and perhaps
even incommensurable) alternatives, each single theory, each fairy tale,
each myth that is part of the collection forcing the others into greater
articulation, and all of them contributing, via this process of competi-
tion, to the development of our consciousness. Nothing is ever settled …
(Feyerabend 1993)

Law: A law is a recurring rule or a collection of recurring rules, proven
empirically.

Lifecycle: Lifecycle is associated with the product or service as that which
occurs from conception to disposal, from the earliest moment of
thought to the settlement of the last lawsuit. It is more appropriate
from a product’s or service’s perspective to think of lifecycle as vari-
ous stages of interaction and integration. The lifecycle paradigm for
a product or service is from the perspective of the customer, devel-
oper, and user. Lifecycle is the result (or a symptom) of integration.

Lifecycle costs: Lifecycle costs consist of the costs associated with the pro-
cesses (and it can be said, with the results of the processes) or an
object (and the consequences of the object) within a cycle or the
product’s lifecycle.

Lifecycle success: Lifecycle success means not overrunning cost budgets
ascribed to delivering the expected product or service.

Lifetime: The duration in which the product or service, object, or process
exhibits properties and traits that are indicative of the characteristic
nature of the product or service, object, or process.

Limitation: The limitations are given by the domain of the problem.
Limitations are conditions of boundaries, and once imposed they
are immutable.

Logic: Logic for integration is (1) defined as sufficient to support detailed
analysis and interpretation of within a framework of relevant vari-
ables; (2) based on a consistent set of assumptions; (3) stipulated as
the ontology of formalisms that translate into each other; (4) residing
within the traditions of epistemology; (5) agreeing on a narrative
that elicits particular interpretations of phenomenology; (6) being a
consistent set of metaphysical facts that relate “phenomena as a
whole to other genera of existence” (Lewes 1875); (7) supporting a set
of value structures that are at least partially, piece-wise predictable;

362 Glossary of Terms

and (8) applying methodology to define and transform relations into
knowledge (Lazarsfeld 1993).

Loss: Loss is the relative, quantifiable difference in EMMI between the per-
formance of a function at its target value and that measurement at
any other value of performance. Loss can be thought of in terms of a
generalized loss function that attributes EMMI losses to deviations
from a target performance value, and as a result of not having a tar-
get performance value (meaning that a function was not provided or
available for use and therefore had no performance value).

Management: Management is the set of processes used to deal with people
to enterprise with products and services within the context-appro-
priate limitations and constraints. The five processes of management
are “to plan,” “to communicate,” “to direct (or command),” “to con-
trol,” “to organize,” and “to team-build.” In total, these five processes
form the overarching management process “to manage.”

Mapping: To place in one object or process within the context of another
object or process, where the correspondence between sets of objects
or processes is repeatable, persistent, and valid by comparison with
standards, metrics, or shared representations.

Material wealth: Material wealth can be thought of as cash, investments
(e.g., stocks, bonds, and notes), and other equivalents (credit and
debit cards). Material wealth includes all that has the capacity to be
converted into cash or cash equivalents. Therefore, one’s time could
be considered material wealth. Exchanging time, exchanging infor-
mation, exchanging matter, and exchanging energy for remunera-
tion in money are examples of the fungibility of material wealth.
Broadly speaking, material wealth creates the financial capacity to
do work through money, similarly to that of energy representing the
capacity for work through mass. Material wealth has its place in both
human endeavors as well as for natural processes. Material wealth is
all that is referenced by abundance or plenitude.

Matter: Matter may not be the only substance that is comprised of energy or
mass (or its derivatives such as force and momentum), but for conve-
nience we loosely interpret all such “things” as matter.

Measurement: Measurement is the process of quantifying properties, traits,
or attributes of a domain. A measurement model must be defined to
reach a consensus about the particular meaning of the measurement
and the relation of the measurement to other meanings. A measure-
ment model reflects a certain perspective of the measurement (which
encompasses its meaning and relations). One must be concerned
about the (1) relationships between the measures (empirical proper-
ties) and the properties, traits, and attributes; (2) mapping of proper-
ties, traits, and attributes into a numerical relationship (the measure)
to codify the empirical relationship; and (3) meaningfulness of state-
ments and measurements made about the properties, traits, and

363Glossary of Terms

attributes. The validity of a measurement is concerned with the
relations between the measurement and the theories and concepts
behind the application of the theory in which the measurement is
interpreted and made predictive. Specifically, validation of a mea-
sure of stability is the process of ensuring the measure is a proper
characterization (e.g., numerical) of the claim (i.e., trait) of stability.
Measurement is generation of conclusions about the observed
(Ferris 1997).

Measures: Measures are properties, traits, and attributes that are qualita-
tively and quantitatively determinable.

Mechanism: Mechanisms are the means by which objects and processes
change. The effect of a mechanism is to transform an input EMMI
into an output EMMI. A mechanism is that which operates in the
context of forces.

Mereology: The formulation and study of relations for parts and their whole.
Metastability: Metastable combinations of objects and processes are stable

for most practical purposes due to their long-lived properties and
traits. Yet the system theoretically is unstable as large disturbances
due to EMMI result in perturbations that show the more common
(nonemergent) characteristics of the objects and processes.

Method: A generalized set of specifications for accomplishing objectives,
from the perspective of the person designing or carrying out the
method. Method is the overall plan by which work progresses from
what one thinks they know to what others do not know.

Metrics: A metric is a convenient grouping of variables in which each vari-
able is a partial determinate of a property, trait, or attribute. As such,
metrics are representative of perspectives that are used to appreciate
the difference between one instance or event and another instance
or event. Metrics represent the shared value of what the common
goal needs to be. Metrics determine how well work is proceeding
according to a set of measures (or measures in absentia, i.e., not pres-
ent by direct observation, but acknowledged as significant), stan-
dards, and measurement theory. Metrics are not about trade-offs
between what best to do versus what is expedient. Metrics are used
to represent that state of being, the determinant of “how is it going?”
Metrics are not measurements, and measures are not metrics.

Milestone: An event that is recognized as significant.
Modal causality: Modal causality is the root cause of all events. Modal cau-

sality limits what is causally possible. Modal causality is the basic
source of events (the historical provenance) that provide the founda-
tional causes from which local circumstances (proximate causality)
and the apparent most direct event (conditional causality) arise.

Model: A model is a relation or set of relations between variables that are
representative of an object or process (termed the objective part of the
model). A model is based on a value or a set of values and a principle

364 Glossary of Terms

or set of principles that form the (subjective) basis for the relations
making up the objective part of the model.

Model classification of integration: Model or representation classification
of integration (referred to as model or representation of integra-
tion) deals with the intended functionality of combining things
into a whole.

Nature: The nature of an object is that set of characteristics that distinguish
one object from another object. It is an object’s character and behavior
as determined by its intrinsic properties. By inheritance, we differ-
entiate from that which is a trait or an attribute, both of which are a
consequence of experiencing interactions with other objects.

Need: Need is something you must believe will solve the problem, is possible,
is affordable, can be provided when desired, and does not cause
another problem of such significance that offsets the benefit of solving
the original problem. A need is absolute and unconditional.

Nexus: A linkage or series of connections linking two or more objects or
processes.*

NotaSystem: Objects that are grouped and actively sending EMMI as an
aggregation, in other words—not a system. There are no character-
istics of NotaSystem that differ from two objects interacting occa-
sionally. Both objects retain their individual characteristics and
exhibit only perhaps a temporary change in attributes. A single (by
definition) noninteracting object is NotaSystem (by definition).
NotaSystems are stable.

Object: We commonly think of an object as a fundamental element, entity, or
representation. It may be atomic or an aggregation of entities. Objects
are or represent material structures, material wealth, and informa-
tion. From these physical entities comes energy or matter. Objects
can be physical or abstract (e.g., intellectual). Objects may be concep-
tual, phenomenological, or ideological. Objects may be comprised of
other objects, each of which is related by interactions. Objects can be
ordinary or elemental. Objects have boundaries.

Object frame: The frame whose domain is objects and their relations and
behaviors.

Object type: Objects are differentiable by their input and output character-
istics (indicative of the type of object). Regardless of the type of
object that is interacting, the mechanical processes that carry out
the actions of the “send” and “receive” functions are limited by the
object’s capacity to initiate a “send” or respond to a “receive.”
Further, the mechanics of interaction also preserve the constraints
of the objects.

Objective causalities: Combining modal with proximate causalities form
the sine qua non of causes. Objective causalities are posited to be both
necessary and sufficient to render a complete explanation of an
event—substantiating the causal connection. Objective causalities are

365Glossary of Terms

posited to be both necessary and sufficient to render a complete
explanation of an event—substantiating the causal connection
between objects and processes.

Objective frame: The objective frame follows the objective user behaviors,
the product’s functions, and the physical entities. The objective
frame of the framework of objective causalities is the final result of
the work efforts managed under processes—the physical objects,
the product or service functions, and the objective behaviors that
were determined by the development team to result from the use of
the product or service or in anticipation of the product or service.

Objective measure: An objective measure is that which is quantifiable in
terms of performance. Objective measures include any item or
combination of items that are categorized as EMMI. Sometimes,
the terms “objective measures of performance” or “performance
measures” are used (United States Department of Defense 2010)
instead of objective measures. Every object has at least one objec-
tive measure (and most often several), since there is something
physical that is usually measurable (in the classic engineering and
physics sense). Objective measures are used in testing to determine
how well the object performs to a target value within the bounds of
a specified variance that is deemed to satisfy an objective for stability
(or quality).

Objective ontology: The objective ontology defines the semantics for objec-
tive frame. Specifically, the nature of being and reality are embodied
in the conceptualization of an object.

Objective value: Objective value is often characterized by measures of
amount (by numerical counting).

Performance: Performance is the action associated with a function.
Performance is measured by the extent to which various standards
are met.

Performance-based value: Performance-based value is the recognition of
utility by the objective measure of some aspect of a function, or the
subjective measure of some aspect of a process or procedure. There
are different types of value spanning use, esteem, cost, exchange,
scrap, and various performances as compared with standard refer-
ences. Value can be thought of both for objects and processes.

Performance measures: Performance measures are observed and measured
according to a reference scale or standard of measurement.

Perspective: The way of determining, identifying, considering, and using
facts and their relative importance.*

Physical boundary: Determined by the limits of matter of one object.
Power: At the fundamental level of interaction, power is the limit imposed

by one object on its EMMI. The result of power is change or status
quo. Said another way, power is both an object’s EMMI and the
object’s constraints that limits another object’s access to EMMI.

366 Glossary of Terms

For humans, power is EMMI and access to EMMI. Objects value
EMMI as their means to make things happen. The rate of doing
work is another form of power, as mediated by an object’s output
EMMI. Fundamentally, every object has a mechanism to trans-
form EMMI into an output; therefore every object has some mea-
sure of power.

Prediction: A prediction is a probabilistic statement that something will
happen in the future based on what is known today. A prediction
generally assumes that future changes in related conditions will not
have a significant influence. In this sense, a prediction is most influ-
enced by the “initial conditions”—the current situation from which
we predict a change.

Price: The amount of EMMI that is required to acquire an object or process.
Principle: Principles are general and fundamental statements that are com-

prehensive in their applicability and in general agreement with what
people observe.

Problem: In general, a problem is perceived to be a source of difficulty, harm,
unwelcomeness, or perplexity that someone or something needs to
remedy. The determination of a need by an affected stakeholder to
identify the set(s) of problems is an essential ingredient to identify-
ing possible alternative solutions that are deemed adequate and
acceptable. Disagreement over what is the problem will carry over
into which solutions are adequate. Disagreement as to the solutions
will indicate which problems are acceptable to solve. If there is
agreement over what the problem is, yet the solutions are found to
be unacceptable by various stakeholders, then the problem is either
misstated or symptomatic of another more fundamental problem.

Procedure: Procedure is a step-by-step outline of what must be done.
Process: A process can be articulated as a systematic pattern, a coordinated

set of procedures, tasks, activities, or acts that result from the con-
version of inputs into outputs. Process is the amalgamation of activ-
ities and tools that combine ideas. A process requires all things that
are both necessary and sufficient to accomplish or achieve an
intended output. Processes are comparable to other processes,
 subjectively. From an integration perspective, processes guide the
work.

Generalizing from definitions of software processes by Humphrey
(1989) and Lonchamp (1993), a process is a partially organized set of
activities, tools, and practices carried out by humans who are con-
strained by, for example, resources, budgets, schedules, scope, and
policies.

Process frame: The frame whose domain is processes and their relations and
behaviors.

Process model: The systems engineering process model describes the
stages in which the project team focuses on various milestones and

367Glossary of Terms

deliveries. The process model signifies what stage is next and what
events constitute that stage.

Property: A property is embodied in an object that is physical or represents
something that is physical. A property can be real (physical or mate-
rial) or intellectual (conceptual, nonphysical, or intangible). A physi-
cal property of matter is mass. Intellectual property is a representation
of real, physical property, such as software (which represents a pro-
cess that is enacted through physical objects).

ProtaSystem: Prototypical systems exhibit some changes in properties,
traits, and attributes due to interactions between objects. Before inte-
gration occurs, parts of a system may exist in various forms (termed
a ProtaSystem). ProtaSystems are unstable.

Proximate causality: Proximate causality focuses through localization in
time and space, that is, further limits the likelihood of an event.

Quality: Quality is the achievement of a level of acceptable variability of
each measure of performance, and the variability in performance is
representative of the user’s perception of quality.

Recursive: Recursive implies that the answer is not known, but rather is dis-
coverable in the process of objectifying the requirements and proce-
dures into objects that satisfy the needs of key stakeholders.
Recursiveness is the property of a process that is identifiable by an
event (i.e., interaction between objects), deemed causal for that event,
and that has predictive qualities for the next event or chain of events.
Recursive processes are not iterative. Recursive processes are typi-
fied as refinements on future objects or future processes.

Risk: Risk is a structural property of the interactions between objects,
whereas specifically, risk is inherent in the interactions involving the
enterprise, business, and project. As stated by Kuwabara (2011) in
discussing social exchanges, referencing Molm et al. (2000), “Risk is
a structural property of exchange …”.

Scalability: Scalability is all about doing what you do with either more peo-
ple doing the same thing, or being able to do more with one person.
Scalability in the first instance (more people doing the same thing
with the same product) implies each person requires a product, that
is, scalability by single-user products. Scalability in the second
instance (being able to do more with one person) is through effi-
ciency by using a service. Scalability in this second instance implies
perhaps a single product that (through services) provides a similar
functionality as with multiple products. So, by either increasing the
number or speeding up a service, scalability is achieved.

Scenario: A scenario is a descriptive narrative of possible futures. A scenario
represents a history of the future. The set of boundary conditions
that is used in conjunction with making a projection is often called a
scenario, and each scenario is based on assumptions about how the
future will develop. A projection is a probabilistic statement that it is

368 Glossary of Terms

possible that something will happen in the future if certain condi-
tions develop. In contrast to a prediction, a projection specifically
allows for significant changes in the set of “boundary conditions”
that might influence the prediction, creating “if this, then that” types
of statements.

Scenarios describe events or activities (enactments of functions or
processes) that synopsize a sequence of intentions or events to assist
in accounting for a plausible future (Peterson et al. 2003). Scenarios
can be used to explore the uncertainties of integration based on pat-
terns of behavior (order and schedules of objects). The Bayesian
interpretation of scenario development leads the defining of object
order, start time, and duration as probabilistic measures of the
stakeholder beliefs that the pattern will occur, given all that is rele-
vant, known, and included by the stakeholders. In this interpreta-
tion, the probability of an event occurring in the sequence specified,
at the starting time indicated, and having duration stipulated is
dependent on both the event and the stakeholder’s knowledge of
the event (Poh 1993).

Scope: The extent of one’s purpose or aim within a boundary. Scope is deter-
mined by work that will satisfy the stakeholders. Scope of a prod-
uct or service is defined spatially by its physical, functional, and
behavioral boundaries.

Social classification of integration: The classification of integration focused
on the procedures (or social mechanisms (Moody and White 2003;
Reed 2008)) of carrying out the cognitive issues of process and the
physical realization of the objects and procedures as a means of doc-
umenting the ideas. Social classification of integration (referred to as
social integration) captures the dynamics of how the products are
used by people and how the context and content of communication
is intonated through vocalization and gestures for others to hear
and see.

Specifications: Based on a requirement that stipulates what is needed, speci-
fications are defined as the detailed description of how to make
something according to a set of procedures, by employing certain
resources, by applying various standards and practices, and staying
within a set of guidelines, policies, and rules.

Stability: Stability is defined as the ability to apply restoring forces to miti-
gate events that trigger changes in the status quo. Stability is achiev-
able through interactions in certain circumstances, that is, when
properties and traits are only sustainable.

Stakeholder: More general than key stakeholders, stakeholders are all those
people and their agency agreements or obligations to represent oth-
ers and affect a performance related in any way to the lifecycle of a
product or service object or process.

Strategy: Strategy is a process that provides for achieving an intended result.

369Glossary of Terms

Structure: The arrangement of parts; the relations between parts; the manner
of grouping, aggregating, or combining parts; and the classification
and categorizing of parts.

Subjective frame: The subjective frame represents the cognitive part (how-
ever, that is conceived or formulated), the procedures to carry out the
cognition, and the thinking about the models or representations of
the cognitions and procedures. The set of factors that make up this
social thinking process (subjective frame) are consistent with scien-
tific sociological investigations that divide the factors into planning,
procedure (mechanisms), and models of the plans and procedures
(mechanisms) for clarity and to avoid confusion with dual use of the
term “mechanism”; “mechanism” is used in the engineering and sci-
ence sense while “procedures” are used instead of social mechanisms.
Subjective implies things influenced by personal feelings, biases, or
intuitive thoughts.

Subjective measure: Subjective measures are measures that are based on
personal beliefs or reflect biases (as determined in an objective
manner). The belief that an object will have various functions with
performances (with some level of quality) is a subjective measure.
User’s anticipations of an object are determinable and identifiable as
subjective measures. These subjective measures include behaviors.
Subjective measures are used to determine how a constraint or con-
dition impacts development work or integration.

Subjective ontology: Ontological structures based on method or processes.
Subjective value: Subjective value is often characterized by esteem, oppor-

tunity, or some form of intangibles.
Synthesis: Synthesis joins and merges the results of interactions between

system elements to sustain the emergent properties that distinguish
ProtaSystems de jure or de facto. Synthesis is that intermediate step
which encompasses emergence. However, emergence by itself does
not result in a system, but rather a ProtaSystem. Synthesis is founded
on the notion of action at a distance—the impact of forces acting on
things possibly displaced in time and place from the original action.

System: A system is a bounded, stable group of objects exhibiting intrinsic
emergent properties that through the interactions of energy, matter,
material wealth, and information provide functions different from
their archetypes. Said more abstractly and succinctly (but with loss
of precision), a system is a bounded, stable group of objects exhibit-
ing intrinsic emergent behaviors based on interactions of energy,
matter, material wealth, and information. And finally, paired down
to its barest abstraction (with loss of precision and accuracy), a sys-
tem is a group of stable objects showing intrinsic emergence based
on interactions.

A system is comprised of objects that are interconnect and
exchange EMMI. A system is comprised of pair-wise objects that

370 Glossary of Terms

have continuity of functionality. No system is possible without
interaction. The system is the result of integration, or conversely,
integration is the result of achieving system behaviors.

Following the definition of a system according to Palmer (2009),
a system can be conceptualized in terms of the behavior of its
objects (descriptive of the essence of their system); the context of
the minimum energy structures (reflective of the design and
architecture); the perspective of the definer (providing a refer-
enced view); and the methods that epitomize its functioning (the
socioeconomic realities of projects). “In the behavioral approach to
system theory a system is regarded as a subset of a function space,
the behavior, containing the input/state/output-trajectories …”
(Trumpf 2002).

Systemic behaviors: Systemic behaviors may include (1) equifinality (various
sorts of degeneracy that are inherent in the existing structure of
objects); insufficient density of objects of the kind and location
needed to sustain interactions; inadequate EMMI needed for sus-
tainment, including squelching of the mechanism due to saturation,
below threshold inputs, and insufficient suffusion; and incompati-
bility of EMMI and mechanisms (Troncale 2011); (2) isomorphicity—
the similarity of mixes and kinds of objects observed in systems (von
Bertalanffy 1968); and (3) inadequate or inappropriate emergence(s)
and unsustainable losses of EMMI from any cause. Integration is the
process of setting up or by chance satisfying the conditions that lead
to an integrated set of objects (i.e., system).

System of systems: A system of systems is a set of systems that are both
integrated and interoperable to achieve a set of metasystem func-
tions in which all the component systems participate (to varying
degrees).

Systemness: Systemness is a sufficiency of sustained interactions that
arise from an adequate density of the appropriate types of objects
with the appropriate types of mechanisms, fed by the appropriate
types of EMMI. The factors that are significant to systemness are
object, boundary, function, property, trait, attribute, output, self-
reliance, control, and performance. The duration of lifetime and
stability of systemness are determined by the boundary condi-
tions and variances about the performances of the functions.
Within these categories of factors we find emergence (trait) and
trust (self-reliance).

Systems engineering: The charter of systems engineering is to create and
express ideas and integrate components into systems that are referred
to as products or services. The essence of systems engineering is to
unbound the seemingly bounded, broaden the concepts to beyond
recognition, open the solution domain to include the ridiculous, and
consider the issues and problems in an abstract space rather than as

371Glossary of Terms

they are posed or presumed to be real. No other discipline or field
carries with it that worldview.

Systems integration: Systems integration is the unification of the objects and
their interactions of energy, matter, material wealth, and informa-
tion to provide system-level functionalities and performances.

Target value: The designated performance requirement.
Technology: Technology is the scientific, mechanical, electronic, or chemical

means of improving people’s performances or by providing or enhanc-
ing their indigenous functions. These improvements provide for (1)
making better decisions, (2) doing more work faster, and (3) doing work
that could not be accomplished before by any one individual.

Testing: Testing is a process to determine the difference(s) between an
object’s properties, traits, and attributes under certain conditions in
a given set of circumstances with that of a representation (or test
model) of what is desired. The representation includes the test setup;
the test procedures; the test plan; the test personnel; the test objec-
tives; the data analysis (and tools); the theory in which the measure-
ments are planned, executed, and interpreted; and the biases (of all
parties). It is tacitly assumed that all factors not included in the rep-
resentation (or test model) are factually extraneous (and therefore
not significant either to a specific test or a concatenation or totality of
tests). Testing highlights the test object’s performance at a particular
instance under certain conditions. Testing needs to be done as an
audit to determine what functions are demonstrated to some level of
proficiency. Testing indicates whether functions are operative and to
what degree (i.e., performance). Testing is a means of comparison:
comparing an object to the test model. Tests do not prove anything;
they only show a correspondence to an expected result (Aerts 1983).

Theory: A theory, broadly defined and widely recognized, is expressive
through its structure and narrative, its cognitive substance. The role
of theory is to organize, explain, and predict actions and events.
While theory inspires various frameworks from which to view and
interpret empirical data and qualitative aspects that imbue various
values (e.g., cultural, societal, and individual), it is the practices of
systems engineering, systems engineering integration, and systems
integration that indurate the applicability of theory’s use.

Time: Time is a linear sequence of real numbers based on a quantity measured
by the angle through which the earth turns on its axis. Time is a
universal standard by which observations of various measures are
compared (Feigenbaum 2008).

Trait: A trait is the nexus of the property along with its conditions that dis-
tinguishes it from other traits.

Type 0 interactions: Type 0 interactions are the results of stored energy used
to drive an internal mechanism. Type 0 interactions are typical of
“sources” of energy. Type 0 interactions are one type of energy

372 Glossary of Terms

source to enable or sustain the interactions necessary for a system.
The outputs of EMMI can be received by other objects and interact
with those objects.

Type 1 interactions: Type 1 interactions result from the complete absorption
of EMMI without external provocation, resulting only from the
nature and enactment of its internal mechanism. A type 1 interaction
is potentially receivable by objects, but is either not received, is
received and not recognizable as an accurate representation of the
sending object, or is received and the receiving object does not
respond to the sending object. Type 1 interactions are inhibited or
masked by physical, functional, or behavioral reasons (internal
or external to the receiving object). A type 1 interaction is initiated
from within. Type 1 interactions reflect the internal needs or
 intentions of an entity, for example, the self-initiated requirements for
survival. Type 1 interactions are in response to internal processes, the
mechanically induced self-regulation for fulfilling basic needs.

Type 2 interactions: Type 2 interactions are sent and received. A type 2 inter-
action eliminates (or discharges or “sends”) EMMI due to some
external receipt of EMMI. Type 2 interactions are the responses to
external stimuli, the simultaneous or reflexive reactions based on
are capabilities within the entities structure.

Types of requirements: Requirements are either stated or unstated. Unstated
requirements are the result of not knowing (i.e., unanticipated or
unforeseen); or knowing but not incorporating. Misstated require-
ments result from an inadequate appreciation for relations or context,
and adequate appreciation, but with a different interpretation, or an
adequate appreciation, but with a different priority. Pretermitting
requirements are acknowledged, but unincorporated.

Use: Use is the putting of the product into service for a particular purpose.
The use of an object is the result of the building process and the func-
tions that are enabled by design, by application, and by accident.

Validation: Validation is an assessment of the operational system that
exposes and quantifies the systems’ limitations. The intent of valida-
tion is to determine if the user’s needs are satisfied for different uses
(often referred to as scenarios). When the functions are provided, the
physical entities are adequate, and the user’s behaviors are as needed,
the product or service is deemed fit for the uses intended by the set
of requirements. The concept of validation suggests that require-
ments can be mapped into physical, functional, and behavioral
needs of key stakeholders. Validation is also the process of demon-
strating the effectiveness of the new product or service. Validation
is direct evidence that the new product or service meets the
 requirements through its design, architecture, and implementation.
From the perspective of integration, validation is the confirmation
that integration had satisfactory results.

373Glossary of Terms

Value: “… an economic good has value; and the height of this value is mea-
sured according to the—marginal utility which one can obtain with
the unit of labor” (von Böhm-Bawerk 2005).

Variables: Properties, traits and attributes that change due to interactions,
that is, with EMMI.

Verification: The process of confirming the truth or accuracy by describing
the characteristics of interactions, the enactments of mechanisms or
procedures, or the consequences of EMMI.

Vignette: Vignettes are more detailed sequences of events that highlight
particulars about a scenario (a possible set of circumstances, condi-
tions, and constraints, e.g., the environment of the future).

Want: A want is something that will solve the problem, but is not necessarily
possible, affordable, deliverable, or acceptable. A want is a desire, as
yet unfulfilled.

White box: White box method of testing focuses on the identification and
evaluation of the internal logic and procedures that are based on
knowledge of the workings and configuration of the internals of
the object.

Whole: The whole is the totality of the group, the aggregation, the combination,
or the integration. The whole is always greater than the sum of its parts.
A whole can be represented as an object, either physically or intellectu-
ally, or as a process, either procedurally or as activities (or acts).

References

Aerts, D. 1983. The Description of One and Many Physical Systems Brussels. Vrijo
Universiteit.

Aerts, D., Broekaert, J., and Gabora, L. (Ed) 2003. A case for applying an abstracted
quantum formalism to cognition. Mind in Interaction. Amsterdam: John Benjamins.

Feigenbaum, M. J. 2008. The Theory of Relativity—Galileo’s Child. arXiv:0806.1234v1
[physics.class-ph]. Ithaca, NY: Cornell University Library, 31pp.

Ferris, T. L. 1997. Foundation for Medical Diagnosis and Measurement. PhD thesis, School
of Physics and Electronic Systems Engineering, University of South Australia,
350pp.

Feyerabend, P. 1993. Against Method. Third edition. New York: Verso.
Haskins, C. 2007. A systems engineering framework for eco-industrial park formation.

Systems Engineering 10(1): 83–97.
Holland, J. H., Holyoak, K. J., Nisbett, R. E., and Thagard, P. R. 1986. Induction:

Processes of Inference, Learning, and Discovery. Cambridge, MA: The MIT Press.
Humphrey, W. S. 1989. Managing the Software Process. Reading, MA: Addison-Wesley.
Kerlinger, F. N. and Lee, H. B. 2000. Foundations of Behavioral Research. Fourth edition.

Belmont, CA: Cengage Learning.
Kirk, G. S., Raven, J. E., and Schofield, M. 2009. The Prescocratic Philosophers. Cambridge:

Cambridge University Press.

374 Glossary of Terms

Kocsis, J. G. 2008. Determining Success for the Naval Systems Engineering Resource Center.
MS thesis, Department of Systems Engineering. Monterey, CA: United States
Naval Postgraduate School, 101pp.

Kuwabara, K. 2011. Cohesion, cooperation, and the value of doing things together:
How economic exchange creates relational bonds. American Sociological Review
76(4): 560–580.

Lazarsfeld, P. F. 1993. On Social Research and Its Language. Chicago: University of
Chicago Press.

Lewes, G. H. 1875. Problems of Life and Mind. Boston: James R. Osgood and Company.
Lonchamp, J. 1993. A structured conceptual and terminological framework for soft-

ware process engineering. Proceedings of the 2nd International Conference on the
Software Process (ICSP 2). Berlin, Germany: IEEE Computer Society Press.

Molm, L. D., Takahashi, N., and Peterson, G. 2000. Risk and trust in social exchange:
An experiment test of a classical proposition. American Journal of Sociology
105: 1396–1427.

Moody, J. and White, D. R. 2003. Structural cohesion and embeddedness: A hierarchi-
cal concept of social groups. American Sociological Review 68(1): 103–127.

Morris, P. W. G. and Pinto, J. 2004. The Wiley Guide to Managing Projects. Hoboken:
John Wiley & Sons, Inc, p. 213.

Palmer, K. D. 2009. Emergent Design: Explorations in Systems Phenomenology in Relation
to Ontology, Hermeneutics and the Meta-dialectics of Design. PhD thesis, Division of
Information Technology, Engineering, and the Environment. Mawson Lakes:
University of South Australia, 679pp.

Peterson, G. D., Cumming, G., and Carpenter, S. R. 2003. Scenario planning: A tool for
conservation in an uncertain world. Conservation Biology 17(2): 358–366.

Poh, K. L. 1993. Utility-Based Categorization Engineering-Economic Systems. PhD thesis,
Stanford: Stanford University, 238pp.

Reed, I. 2008. Justifying sociological knowledge: From realism to interpretation.
Sociological Theory 26(2): 101–129.

Sage, A. P. and Armstrong, J. E. 2000. Introduction to Systems Engineering. New York:
John Wiley & Sons, Inc.

Swartz, N. (1997, November 8, 2010). Definitions, Dictionaries, and Meanings. Retrieved
July 19, 2011, from http://www.sfu.ca/~swartz/definition.htm.

Troncale, L. 2011. Would a rigorous knowledge base in systems pathology add signifi-
cantly to the SE portfolio? Conference on Systems Engineering Research (CSER).
Redondo Beach: University of Southern California.

Trumpf, J. 2002. On the Geometry and Parametrization of Almost Invariant Subspaces and
Observer Theory. PhD thesis, Mathematics Department. Wurzburg: Universität
Wurzburg, 206pp.

United States Department of Defense. 2010. Defense Acquisition Guidebook, Version 5
May. Department of Defense. Washington DC: Defense Acquisition University,
p. 310.

von Bertalanffy, L. 1968. General System Theory: Foundations, Development, Applications.
New York: George Braziller.

von Böhm-Bawerk, E. 2005. Basic Principles of Economic Value. Grove City, PA:
Libertarian Press, Inc.

375

Index

Note: n = Footnote

A

Abstract concepts, 64
Abstraction, 135n, 136, 288, 353. See also

Granularity; Integration;
Procedure; Process model
of categories, 166

EMMI, 288
hierarchical subprocesses, 289, 290
integration classification,

160–161, 353
“to command” process

decomposition, 289
“to control” process

decomposition, 289, 290
“to manage” process, 289
of processes, 85
and reasoning, 89

Acceptance, 152, 278
marketplace, 217, 223
purchasing as user’s, 238, 239

Acquisition cycle, 312
Acquisition process, 24–25
Action, 48, 134, 174, 353. See also

Process
Active objects, 166
Activity model, 287
Adaptive optics, 5n
Agglomerate, 208, 209

power structure, 210, 211
Aggregate, 208, 209

power structure, 210
Aggregations, 112, 353
Agile-driven strategies, 303
Alignment of strategies, 11–12, 190
Archetype, 353
Architecture, 18, 274, 276, 277, 353

building, 275
changing business, 210–211
constraints on, 66

expression of, 169–170
for integration, 15, 178
and interactions, 205
in lifecycle stage, 237
for power, 91
and system, 16, 277

Artifact, 353
Attribute, 34n, 55–56, 353
Automation, 118
Awareness, 30–31
Axiom of integration, 353

action, 174
degrees of freedom, 176
inaction, 174
inactivity, 175
interaction, 174–175
mechanisms, 174

B

Behavior, 353
boundaries, 31, 35, 36, 354
functions and, 46
in integrative framework, 88, 89
rules of, 15

Best practices, 104n, 177–178
Big-bang integration, 306
Black box approach, 146–147, 354
Bleed-throughs, 38
Body of knowledge, 224, 354
Bottom-up integration, 229, 306
Boundary, 14, 30, 32, 354

analysis, 122
awareness, 30–31
behavioral boundaries, 31
bleed-throughs, 38
condition, 42–43, 354
connectivity, 30
declaration, 37
determination of objects, 122

376 Index

Boundary (continued)
as end of one factor, 35–37
event, 32
extenders, 43–44
functional boundary, 31, 32
integrated objects, 33
intent of, 37
objects, 33
observation of patterns, 38
as ontological entities, 33
physical boundaries, 31, 32
spatial domain, 30n
stakeholders, 262

Bounded entity, 39n
Bullwhip effect, 109, 110
Business model, 141–143, 354

C

Case study description, 4–5, 354
Causality, 75, 87, 355

conditional causality, 76, 83, 355
correlation, 79
direct causal events, 77
mechanisms, 79
modal causality, 75–76, 82, 363
proximate causality, 76, 82–83, 367
in regard to integration, 124n
tight coupling as, 17

Change, 47, 61n, 355
Chess-play, 36n
Clarion Call for changes, 226–227
Classifications of integration, 355
Cognition, 90, 160, 355. See also

Abstraction
in subjective frame, 82, 88

Cognitive domain, 89, 355
integrative framework, 89
process decomposition, 90–91

Cohesion, 17, 50n, 355. See also
Coupling

Complexity, 217, 246, 265–266, 355
Compliance issues, 285
Concept, 355

abstract concepts, 64
of change, 155
of connectivity, 17
of converting one object into

another, 138

of critical chain, 22
decomposition, 13
effectiveness, 114
of enterprise, 142
of functionalism, 175
of integration, 71, 151, 157, 227
integration planning, 303–306
of interaction, 66–67
of lifecycle, 235
of power, 169, 170n
systems engineering integrator, 202
unity, 83
of validation, 278, 372

Concept of operations (CONOPS),
16, 25, 115, 236

Concept of solutions (CONSOLS), 236
Conceptualization, 236–237, 239

abstraction, 161
in integrative framework, 89

Condition, 355
overlapping, 13

Conditional causality, 75, 76, 83, 355
Connectivity, 16, 30, 355

in systems integration, 24
CONSOLS. See Concept of

solutions (CONSOLS)
Constraint, 62, 70, 355–356

principle of, 226
Context, 356
Correlation, 356
Cost, 244–245, 356
Coupling, 16, 17, 50n, 356. See also

Cohesion
Culture, 154
Customer, 356
Cycle, 356

D

De facto, 165n, 356
De jure, 165n, 356
Decision

fitness, 10n
knowledge points, 312
making, 300

Deduction, 356
Deoxyribonucleic acid (DNA), 46
Design, 356
DNA. See Deoxyribonucleic acid (DNA)

377Index

Domain, 276, 356. See also
Problem domain analysis

cognitive, 89
convergence, 154
of knowledge, 78
procedural, 91
process, 72
product, 72
representation, 92
social and management, 82, 88
spatial, 30n
specialists, 1
subjective, 168, 216
of systems engineering, 24

E

EaG-field. See Earth’s gravitational
field (EaG-field)

Earth’s gravitational field
(EaG-field), 65

Economic force, 60
Economic valuation, 130, 133
Economy of action, 3
Element, 356
Embodiment, 356
Emergence, 153, 193–195, 356
EMMI. See Energy, matter, material

wealth, and information
(EMMI)

Empirical sociology, 11
End-to-end thread. See System-level

thread
Energy, 50–51, 356
Energy, matter, material wealth, and

information (EMMI), 1, 49,
287, 356

for abstraction, 288
and change, 47, 132
EMMI-on-object, 126, 127n
energy, 50–51
in events, 307
information, 52–53
loss quantification, 23
material wealth, 51–52
matter, 51
object interaction, 152, 169,

191, 308
partitioning, 169

quality loss function
determination, 298

transferring, 2
Engineering, 356–357

practices, 283
Enquiry, 158n
Enterprise, 142, 357
Epistemology, 357
Error in measurement, 241
Event-centric business model, 142, 144
Events, 9, 32, 44, 85, 87, 302, 306–307,

357. See also Integration
planning

advantages, 307
antecedent, 201
causal events, 77
EMMI, 307
event-space, 305
of integration, 243
at interface, 76
by mechanism, 76
planning and scheduling

for objects, 307–308
project, 306–307
proximate, 355
in “to manage” processes, 205

Evergreening, 225n
Expert opinion, 309

F

Feyerabend, Paul, 29, 30
First-order stakeholders. See

Internal stakeholders
Force, 47n, 60, 61, 357
Forecasting, 304n
Forethought, 19–21
Formation, 32
Frame, 72, 357
Framework, 70, 71, 74–75, 81–84,

151, 241, 357–358
developing utilitarian, 72
frame, 72
of integration, 71–72, 190
integrative, 89, 193
key variables, 73–74
object frame, 73
process frame, 72–72
scope of, 9

378 Index

Framework (continued)
systems integration frameworks, 141
3 × 3 matrix, 87

Funambulation, 291n
Functional boundaries, 31, 32, 36,

35, 358
Functions, 31, 76, 93, 175, 358. See also

Quality loss function
characterization, 131
conditions evaluation for, 122
demonstration, 122
and interaction, 116
interfaces, 93–95
limits determination, 123
object connection for, 96
of objective causalities, 87
performances, 98, 293
quality, 98–99
role of, 197
subfunctions, 148
system function, 97, 112

Fusing, 45. See also Integration

G

GAO. See U.S. Government
Accountability Office (GAO)

General systems theory, 71, 105
tenet of holism in, 144

General systems thinking, 105–107, 358
Granularity, 96, 166, 284, 358. See also

Integration; Abstraction
and abstraction, 285, 286
activity model, 287
EMMI, 287
goal of, 288
grouping of objects, 284–285
overlapping processes, 285, 286
performance measurement, 286
process manager testing, 287
top-level process, 285

Group, 358

H

HCM. See Human capital
management (HCM)

Heterarchy, 358

Heuristics, 10n
Hierarchical problems, 249–250
Hire processes, 306
Holism, 227, 358
Hubble Space Telescope, 6
Hubble Space Telescope systems

engineering, 5
integration management, 8–9
integration problems, 7–8

Human capital management
(HCM), 262

I

Identifying objects to be
integrated, 121

Illative, 358
thinking, 168

Immunity, 46
Inaction, 174
Inactivity, 175
INCOSE. See International Council

on Systems Engineering
(INCOSE)

Induction, 359
Information, 18n, 359
Instability, 112, 359
Institutionalized technology, 118n
Integral whole, 156, 285. See also

Whole
Integrated objects, 33, 79
Integrated whole, 2, 12, 33. See also

Whole
characteristics of, 155
objects’s influence, 169

Integration, 2–3, 18, 359–360. See also
Abstraction; Fusing;
Granularity; Interaction;
Systems integration

case study description, 4–5
classifications of, 355
economy of action, 3
epistemology of systems

engineering, 57
forethought, 19–21
frame, 360
importance of, 1
issues, 7

379Index

logic of, 2n, 151
management, 8–9
problems, 7–8
success, 13

Integration axioms
action, 174
best practices, 177–178
degrees of freedom, 175
inaction, 174
inactivity, 175
interaction, 174
mechanisms, 174
principles and fundaments, 176
processes, 178
systems engineering and

performance delivery, 179
theoretical construct, 176

Integration dynamics, 153
abstraction classification of

integration, 160–161
culture, 154
domain convergence, 154
integrated whole, 155
integration concepts exploration,

157–160
integrative mechanisms, 156–157
logic to integration, 151
mechanism, 151–153
model classification, 162–164
social classification, 161–162

Integration plan, 309–310. See also
Integration planning

Integration planning, 103–104,
120–121, 311. See also Events

event exposure, 305
event-space, 305
models, 306
objectives, 304
and scheduling, 308–309
task manager collaboration,

303–304
Integration principles, 10

of alignment, 11–12
application of, 104
of forethought, 19–21
of induction, 14–15
of limitation, 15–19
of loss, 23–24

of partitioning, 13–14
of planning, 21–23

Integrative framework, 89
Integrative mechanisms, 156–157, 360
Intellectual capital. See

Intellectual property
Intellectual objects, 2, 12, 127–128, 360.

See also Process
Intellectual property, 128
Intellectual thought, 127
Interaction, 2, 29, 48–49, 109, 166, 174,

266, 360. See also Function;
Integration

agreement as, 247
boundaries, 30, 32, 44–47
boundary conditions, 42–43
boundary extenders, 43–44
complexity, 265–266
connectivity, 30
EMMI and, 1
and integration, 113–114, 145, 155
integrative systems framework, 87
interacting objects, 33–35, 109
mechanism, 47–48
objects, 33, 44–47
oneness, 29–30
point to point, 69
scope, 40–42
strength, 17
system performance, 132

Interface, 93–95, 195–197, 360
Internal stakeholders, 262, 263
International Council on Systems

Engineering (INCOSE),
116, 172

Item, 208, 209–210
Iterative development and

improvement, 104n
Iterative thinking, 321. See also

Recursive thinking
effect of, 103
tests for, 318–321

K

Key stakeholder, 360
Knowledge, 10, 53, 29, 359, 361

point, 312, 315, 316

380 Index

L

Large Space Telescope (LST).
See Hubble Space
Telescope

Larger-the-better (LTB), 295,
335, 336

output response, 295, 340
quality loss function, 297, 299
target value, 300

Lifecycle, 39, 114, 234–235, 361
inception, 235
needs, 233
sense, 246–247
success, 235–236, 240, 361

Lifecycle measures, 240
cost, 244–245
error in measurement, 241
time, 244
unencumbered measures, 243
as variables, 242

Lifecycle metrics, 245
complexity, 246
money, 245–246
performance, 246

Lifecycle stages, 236, 239–240
conceptualization, 236–237, 239
design and architecting,

237–238
development, 238
disposal, 239
financing, 237
investigation, 240
manufacturing, 238
operations, 239
purchasing, 238
system integration, 238

Lifetime, 361
Like-kind problems, 250–251
Limitations, 56, 62, 66–67, 361

environmental, 123
of integration plan, 308
for object, 94
principle of, 15–19
to test system, 225

Logic, 361–362
Loose coupling, 17
Loss, 143, 362
LTB. See Larger-the-better (LTB)

M

Management, 362
Mapping, 362
Material wealth, 51–52, 60, 362
Mathematics, 140n
Matter, 51, 145n, 362. See also

Material wealth
Measurement, 241, 362–363
Measures, 362
Mechanisms, 47, 363
Mereology, 363
Metastability, 111, 112, 363
Method, 363
Metrics, 57–60, 242, 363
Milestone, 240, 363
Modal causality, 75–76, 82, 363

establishing event lineage, 79
limitation on budgets and

schedules, 81
Model, 363–364

classification of integration,
162–164, 364

and representation domain, 92–93
Money, 245–246

N

NASA. See National Aeronautics and
Space Administration
(NASA)

National Aeronautics and Space
Administration (NASA),
202–203

National Institute of Standards and
Technology (NIST), 171

Nature, 364
Need, 52n, 233, 364

characterization, 259
in integration systems model, 114

Nested problems, 248–249, 252
NIST. See National Institute of Standards

and Technology (NIST)
Nominal-the-best (NTB), 295, 339, 341

buyer–seller dynamics, 298, 299
output response, 295
quality loss function, 297

Not a system (NotaSystem), 111, 189, 364
factors for systemness, 199–200

381Index

NotaSystem. See Not a system
(NotaSystem)

NTB. See Nominal-the-best (NTB)

O

Object-centric business model, 142
Objective causalities, 76, 77, 85–88,

364–365
framework, 81–84
model for, 80–81
objective frame, 84–85, 88, 365
subjective frame, 85, 88

Objective measure, 128–129, 131,
139, 365

Objective ontology, 139, 365, 141
Objective value, 130, 365
Objects, 33, 44, 46, 60–61, 63–66, 139,

144, 145, 148–149, 189. See also
Process

as Black Boxes, 146–147
and boundaries, 33, 44–47
characterization for

integration, 126–127
connection, 96
frame, 73, 364
grouping of, 284–285
interaction, 109, 122, 152
mechanisms of, 46–48
object value and use, 129–130
object-centric business model, 142
objective measure, 128
planning and scheduling

for, 307–308
progressive refinements in

designing and building, 287
as related to functions, 147–149
types, 65–69, 364

Oneness, 29–30
Ontology and mereology of

integration, 124, 144–145
EMMI-on-object, 126, 127n
intellectual objects, 127–128
object characterization for

integration, 126–127
object value and use, 129–130
objective measures of

performance, 128–129, 131

performance-based value, 130–133
physical objects, 125–126

Open-recursive process, 302
Organization, 206
Organizational models, 206

architecture, 206
power structures, 207, 208
“to manage”, 204–206, 207n

Overlapping condition, 13
boundary, 14

P

Parmenides, 29n, 30
Pareto-efficiency, 335, 336

quality loss function, 338
Partitioning, 13
Patterns, 314

ascertainment of, 68
and behavior techniques, 309
of behaviors, 15
cognitive recognition of, 32
discernable, 319
interpretation of, 137
perspectives of, 148
scheduling, 22, 308
in systems engineering and

integration, 314–321
Perceptions, 365

human consciousness on, 77
on quality of service, 215
of systems theory, 81
user’s, 190, 191

Performance, 48, 132, 246, 294, 365
based value, 365
of emulator, 23
LTB and STB, 336, 337
measures of, 128–129, 131, 133
outputs, 1
systems engineering in

delivering, 179
target performance value, 96
variability in, 292

Physical boundaries, 36, 40, 365
continuous, 30
distance and, 32, 34
extendable, 46
functional boundaries, 31

382 Index

Physical boundaries (continued)
from integration perspective, 40
spontaneous events, 79
synthesis and, 228

Physical objects, 1–2, 12, 31, 125–126
Plan-driven strategy, 300–301, 303
Power, 169, 365–366

model-based systems
integration, 171

most effective integration
strategy, 172–174

structures, 207, 208
Prediction, 366
Price, 366
Principles, 9–10, 366

of alignment, 11–12
of forethought, 19–21
of induction, 14–15
of limitation, 15–19
of loss, 23–24
of partitioning, 13–14
of planning, 21–23
of Taguchi quality, 339–340

Problem, 366
characteristics, 252–253
defining, 247, 248, 254–255
domain, 255
hierarchical problems, 249–250
like-kind problems, 250–251
nature, 253–254
nested problems, 248–249
scope of, 253
stakeholder’s perspective of, 256–258
statement development, 264
systems engineer’s perspective

of, 255–256
Problem domain analysis, 251

discussion with stakeholder, 251–252
integration, 258
problem characteristics, 252–253
problem domain, 255
problem nature, 253–254
scope of problem, 253
stakeholder’s perspective

of problem, 256–258
systems engineer’s perspective

of problem, 255–256
verification, 258
work in systems engineering, 251

Procedural domain, 91
Procedure, 366
Process, 133, 139, 178, 366

abstraction, 136
and action, 48, 134, 174, 353
basic unit of, 134
centric business model, 142
comparability, 135
creating value, 137
decomposition, 90–91
differentiation, 133
frame, 72–72, 366
integration aim, 135, 136
in integration perspective, 135
as intellectual property, 138–139
interpersonal relations, 137
management, 138
measurement, 134
“to manage”, 204–206, 325–334

Process models, 114–115, 220, 266–269,
366–367

scalability checklist, 268–269
scalable process models, 267–268

Process-centric business model, 142
Product of labor, 62
Product upgradation

combining loss distributions, 337
costs reductions, 335
losses to buyers, 338
minimum loss, 338
pareto-efficiency, 335, 336
quality loss distribution, 336
quality loss function, 335, 338

Products, 62–63
Project, 142, 143, 283, 306
Project management, 290–291

process, 138
role, 137
skills acquisition, 320
systems engineering view, 291
technology development, 291

Property, 34n, 53, 56, 367
Proportionality constants, 300
Protagoras, 132
ProtaSystem. See Prototypical

system (ProtaSystem)
Prototype-based ontology,

logic, and mereology,
144–145

383Index

Prototypical system (ProtaSystem),
189, 199–200, 367

conditions for integrating, 198
Proximate causality, 76, 82–83, 367

Q

Quality, 98–99, 293, 367, 339. See also
Systems integration
management

customer’s dissatisfaction, 295–296
expected loss, 344–350
generalized loss function, 297
loss distribution, 336, 337
loss values, 344
measures of, 292
of product or service, 293n
as step function, 295
using Taylor series expansion, 296

Quality loss function, 293, 294, 335.
See also Product upgradation;
Systems integration
management

assumptions for, 342
for broader applicability, 295
EMMI determination, 298
expected quality loss, 344–350
general, 299–300
generalization, 297
iterative process for, 344
loss minimization, 296–297
LTB, 335, 336, 341
notations used, 342–343
NTB, 339, 341
performance, 294
principle of Taguchi quality, 339–340
quality characteristics, 295, 297
to quantify benefits, 340
requirement, 294
shapes of, 344, 345
STB, 335, 336, 337, 340, 341
symmetric formulations, 296
Taylor series expansion for, 296
types, 298–299, 340
values of quality loss, 344

R

RAM. See Random access
memory (RAM)

Random access memory (RAM), 178
Reasoning, 89
Recursive process, 367

agile-driven strategies, 303
causality issue, 302
integration as, 292
plan-driven strategy, 303
self-recursive process, 302
systems integration, 301–302, 313
thinking, 320–321
types, 302

Recursive thinking. See also
Iterative thinking

inductive reasoning, 14
in integration, 103, 104n
leadership and, 320
principle of induction

for, 118, 190
transition in thinking, 321

Recursiveness, 302
Reductionist theory, 219, 227n
Relational integration, 125–126
Relationship, 70n
Ribonucleic acid (RNA), 46
Risk, 143, 367. See also Loss
RNA. See Ribonucleic acid (RNA)
Rules of dumb, 15
Rules of thumb, 15

S

Scalability, 62–63, 267, 319, 367
checklist, 268–269
as weakness indicator, 320

Scalable process models, 267–268
Scenarios, 123n, 367–368
Scheduling, 121
Scope, 40–42, 368

framework, 9
in problem analysis, 253
of work, 253

Second-order stakeholders, 262
Self-recursive process, 302
SEMP. See Systems engineering

management plan
(SEMP)

Services, 62–63
Simplicity, 13
Situation, 9

384 Index

Smaller-the-better (STB), 295, 335,
336, 337

loss function, 341
output response, 295, 340
proportionality constants, 300
quality loss function, 297

Social classification of integration,
161–162, 368

Social force, 60
Social processes, 81n
Socioeconomic rationale, 285
Sociological theory, 81n
Software listings, 12
Spatial domain, 30n
Specifications, 233, 368. See also

Verification
Stability, 108–111, 112, 368. See also

Instability; Metastability
long-term, 154
points of, 240
poor, 98
of systemness, 198

Stakeholder analysis, 260–262
classification, 262–265
defining stakeholder

requirements, 264
key stakeholder selection, 264
problem statement

development, 264
stakeholder classification, 262–265
stakeholder importance, 263
stakeholder influence, 263

Stakeholders, 233, 259–260, 263, 265,
283, 306, 368

Static objects, 166
STB. See Smaller-the-better (STB)
Subjective frame, 82, 84, 85, 88,

141, 369
Subjective measures, 139, 369
Subjective ontology, 139, 141, 369.

See also Objective ontology
Subjective value, 130, 369. See also

Process
Success, 12n
Successive approximation, 104n
Syndicate, 208–209, 210
Synthesis, 228–229, 369
SysPMI. See Systems Process Model

for Integration (SysPMI)

System, 78, 113, 145n, 189, 202, 231, 370.
See also Boundary; Integration
principles; Process

System of Systems, 198, 199–200,
203, 370

architecture, 206
design, 271–274
emergence, 193–195
framework for integration, 190
function, 97
functional analysis, 197–198
and integration, 198–203, 238
interface, 195–197
level thread, 292
ontology of, 191
organization, 206
Parmenides and, 78
power structures, 207, 208
systemic emergent properties, 201
systemness, 192–193, 199–200
systems engineer’s concept

of system, 202
threads, 311, 312
“to manage”, 204–206, 207n
value, 132

Systemic behaviors, 369
Systemic emergent properties, 201
System-level thread, 292
Systemness, 108, 192–193, 199–200, 370
Systems engineer, 104, 231

cognitive functioning of, 218
engineer’s concept of system, 202
role, 104
view on integration, 116
work of, 229–231

Systems engineering, 4, 81n, 215–218,
370–371. See also Integration
principles; Lifecycle

acquisition cycle, 315
acquisition process, 24–25
architecture, 274–277
best practice, 104
charter of, 232–233
Clarion Call for changes in, 226–227
constraints principle, 226
determination of requirements, 223
development process, 231
for domain engineer, 232
Evergreening, 225n

385Index

holism, 227
integration, 57, 224
issues with, 220–221
iterative, 14, 104n, 315
knowledge points, 315, 316–317
limits of, 224
management processes for, 83
objective and subjective

measures, 139
patterns in, 314
and performance delivery, 179
process models, 114–115, 135, 220,

266–269, 315n, 316
product or service perspective, 219
reason for failure, 222
reductionist theory, 219, 227n
should-do thinking, 117
stakeholders perspective, 219
synthesis, 228–229
system design, 271–274
technology development, 315, 316
to test limitations, 225–226
testing objects, 269–271
triad of, 251
validation, 278
wishful thinking, 222

Systems engineering management
plan (SEMP), 291

Systems integration, 103, 115–118, 120,
166, 203, 371. See also
Integration axioms; Integration
dynamics; Integration
principles; Lifecycle

averages and distributions, 180
challenges, 288
concepts exploration, 157–160
defining terms, 123–124
determining systemness, 108
framework, 141, 149–151, 156, 360
general systems thinking, 105–107
goal of granularity, 287–288
hiding interface for, 284
instability, 112
integration perspective, 112–115
integration principles’

application, 104
interacting objects, 109
measures of, 292–293
mechanism types, 157

metastability, 111, 112
model-based, 171
notional contributions, 180
object types, 65, 66, 371–372
object’s roles, 288
patterns in, 314
planning, 103–104
process model, 114–115
as recursive process, 292
social classification

of, 161–162, 368
stability, 108–111, 112
strategy, 167–169, 172–174
successive approximation, 104n
SysPMI phases, 317–318
tasks, 120–123
tests for iterative thinking vs.

recursive thinking, 318–321
theory and principle for, 107
thoughts consolidation, 164–167

Systems integration management, 283n.
See also Systems integration
model; Integration planning;
Quality loss function; Quality

abstraction, 288–290
focal point for, 283
granularity, 284–287
management process, 283, 284
project management, 290–291
recursive nature, 301–303, 313

Systems integration model, 310, 312
acquisition cycle, 312
decision knowledge points, 312
engineering process

models, 312–313
functionality demonstration, 310
integration plan, 310, 311
in recursive environment, 313
system threads, 311, 312
total planned investment, 313–314

Systems integration purpose, 118
automation, 118
improvements, 119–120
technology, 118–119

Systems Process Model for Integration
(SysPMI), 317, 321

expansion of integration, 318
final version of strategies

preparation, 318

386 Index

Systems Process Model for Integration
(SysPMI) (continued)

identification of objects, 317
recognition and

characterization, 317–318
thread performance improvement, 318

Systems theory. See General systems
theory

T

Taguchi quality, principle of, 339–340
Target value, 300, 371
Team, 15
Technical integration, 171
Technology, 118–119, 371
Testing, 258, 269–271, 371

Black box method of, 146n
as early feedback, 340
for functions, 98
integration, 17
of objects, 269–271
White box method of, 149n

Theory, 241, 371
balance between theory

and principle, 106
frame, 71
framework, 151
general systems theory, 105
reductionist, 219
sociological, 81
theoretical construct, 176

Things, 124n
Thoughts consolidation, 164–167
Time, 371
“To command” process. See

“To direct” process
“To communicate” process, 283
“To control” process, 205, 283

decomposition, 289, 290
“To direct” process, 283

decomposition, 289
“To manage” process, 204–206,

207n, 283, 285
for abstraction, 289
decomposition, 284, 325–334
subfunctions, 146n

“To organize” process, 283
“To plan” process, 89–90, 283

“To team-build” process, 283
Total quality loss, 300
Trait, 34n, 54–55, 56, 371
Transfer of energy, 61
Type 0 interactions, 65, 371–372
Type 1 interactions, 65, 66, 372
Type 2 interactions, 65, 66, 372

U

U.S. Government Accountability
Office (GAO), 222

GAO report, 313n
Underlapping condition, 13

boundary, 14
Unencumbered measures, 243
Unity, 29, 83

as object of knowledge, 30
Parmenides’ notion of, 39n

Use, 372

V

Validation, 278, 372–373
of current uses of product

or service, 123n
as final step, 142, 316
limits of performances, 258

Value, 373
Variables, 242, 373
Variance, 292
Verification, 373
Vignette, 373

W

Want, 372, 52n
White box method, 373, 149n
Whole, 1, 12, 33, 113n, 373, 158–160.

See also Holism
greater than components,

2, 167, 227
integral, 285
integrated, 69, 155–156
integration and, 104
mischievous, 168
objects as part of, 127

Wishful thinking, 222

	9781439852880
	9781439852880_text

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 45.39, 441.83 Width 188.97 Height 11.12 points
 Origin: bottom left

 1
 0
 BL

 Both
 281
 CurrentPage
 416

 CurrentAVDoc

 45.3889 441.8344 188.966 11.1157

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0d
 Quite Imposing Plus 2
 1

 3
 406
 3
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 6.120 x 9.250 inches / 155.4 x 234.9 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20121121132248
 666.0000
 Blank
 440.6400

 Tall
 1
 0
 No
 1090
 152

 None
 Right
 18.0000
 0.0000

 Both
 460
 AllDoc
 498

 CurrentAVDoc

 Uniform
 193.6800
 Bottom

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0d
 Quite Imposing Plus 2
 1

 0
 406
 405
 406

 1

 HistoryList_V1
 qi2base

