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Chapter 1 

Introduction and Foundations 

Inventory management and pricing decisions based on quantitative models 
both in industrial practice and academic works often rely on minimizing 
expected cost or maximizing expected revenues or profits, which refers to 
the concept of risk-neutrality of the decision maker. Although many useful 
insights in operational problems can be obtained by such an approach, it 
is well understood that incorporating attitudes toward risk is an important 
lever for building new theories in other fields, such as economics and finance. 
To give an example, modern portfolio theory in finance relies heavily on 
consideration of risk attitudes. The level of dispersion associated with an 
investment might be as important as the expected gain from the investment. 
Hence, it is necessary to find appropriate measures of risk and the appropriate 
objectives related to or including these risk measures. 

In operations management, inventory and pricing problems especially share 
commonalities with the fields mentioned above. In particular, decisions have 
to be taken in a stochastic environment and the policy affects the risk 
associated with the resulting outcome. Inventory problems of their nature 
can be considered similar to investment problems in finance. Hence, it is 
important to include risk preferences in such decision problems. Moreover, 
this importance is supported by recent empirical findings. 

In an experimental study, Schweitzer and Cachon (2000) show that for 
high-profit products the ordering decisions reflect risk aversion. Similarly, 
through an experimental newsvendor setting, Brown and Tang (2006) show 
that the subjects tend to order less than the expected profit-maximizing 
quantity because they are concerned about potential profit loss or probability 
of making an acceptable profit. 

Besides the risk aversion of the decision makers, using expected profit 
as the objective implies an analytical assumption. "In many cases, the use 
of the expected value as an objective can be justified by the law of large 
numbers: if the process is repeated, the arithmetic average of the observed 
profits will approach the expectation." (Collins, 2004). Specific to inventory 
problems, when the ordering decision is repeated many times under the 
very same conditions, using expected profit as the objective function can 
be justified. However, "if the decision is not frequently repeated or if the 
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outcome is large relative to wealth optimizing the expectation would not be 
the appropriate objective for a risk-averse individual." (Collins, 2004). 

Following these arguments, research on risk-averse inventory models, in 
particular the well-known newsvendor model with different objective func-
tions to reflect risk preferences, has become an important stream. For 
example, Eeckhoudt et al. (1995) uses the concept of the expected utility 
framework by modifying profit realizations with a concave increasing utility 
function and Lau (1980) maximizes the probability of achieving a profit 
target. 

After the axiomatic foundation of coherent risk measures by Artzner et al. 
(1999) the application of risk measures to inventory models became popular. 
For example, in an early draft, Chen et al. (2004) uses the conditional 
Value-at-Risk as objective and Jammernegg and Kischka (2007) proposes 
a convex combination of low and high profits, which can be interpreted as 
a mean-deviation rule. In these works results about optimal policies and 
structural properties are described. 

However, the different risk measures are special cases of the general class 
of spectral risk measures introduced by Acerbi (2002). In our work we apply 
the spectral risk measures to the inventory control and the inventory control 
& pricing problem and derive optimal policies as well as structural properties. 
By doing so we are able to unify the results obtained so far in the literature 
under the common concept of spectral risk measures. 

In the following section we introduce the newsvendor model and present 
the main properties and results of the risk-neutral problem for both the 
inventory and inventory & pricing problems. 

1.1 The N ewsvendor Model 

The newsvendor model is a famous problem and building block of quantitative 
inventory management. It is applicable for products with short life cycles 
which become obsolete at the end of the period and cannot be stocked in order 
to satisfy any demand during the next periods. Fashion apparel retailers who 
must submit orders in advance of a selling season with no further opportunity 
for replenishment, manufacturers who have to choose the capacity before 
launch of a new product which will quickly become obsolete, or managers who 
have to decide on a special one-time promotion typically face the newsvendor 
problem. It also has wide applicability in service industries such as airlines 
and hotels where the key decision is capacity which cannot be stored and 
the product is generally perishable. The tendency towards short product 
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life cycles and the growing share of service industries implies/supports the 
continuing interest in the newsvendor problem. 

1.1.1 The inventory problem 

The classical single-period, single-item, linear cost inventory control problem 
- the well-known newsvendor problem - is to decide on the ordering quantity 
before market demand is known, so that at the time of ordering demand 
is uncertain. The purchase cost per unit is c, and the product is sold to 
customers at a unit price p, which is set exogenously in the classical price-
taking problem. Unsold copies be can returned to the supplier at a price v. 
To avoid trivial problem instances, it is generally assumed that O < c ~ p 
and v < c holds. 

If demand D, i.e. the quantity that the newsboy would be able to sell on 
a certain day, turns out to be equal to or greater than the ordered quantity 
y, then he makes a profit II(y, D) 1 of (p - c)y. In the case that D < y the 
newsvendor makes a profit of pD + v(y - D) - cy. 

So, for a given order quantity y, the newsvendor's profit II(y) can be 
written as 

II(y) = pmin(D, y) - cy + v(y - D)+ = (p - c)y - (p - v)(y - D)+. (1.1) 

The objective in classical inventory models, i.e. models assuming a risk-
neutml decision maker, is to maximize expected profit EII(y), where we 
define E as the expectation operator. If demand D were known at the time 
of ordering, it is easy to see that the optimal decision for the newsvendor 
would be to order y* = D, since the function II (y) is a continuous piecewise 
linear function increasing up toy = D and decreasing afterwards. However, 
since demand is not known at the time of ordering, the problem becomes 
more difficult. 

The demand D has to be understood as a random variable with a known 
demand distribution. In fact, since for real problems the exact demand 
distribution cannot be known either, it has to be well estimated based on 
collected random observations from the past. Demand can then be described 
by its corresponding cumulative distribution function (cdf) F(x) := Jp>(D ~ x) 
and probability density function (pdf) f(x). Since demand cannot be 
negative, clearly F(x) = 0 for any x < 0. 

1 In the following we will omit the second argument of profit and write II (y) keeping in 
mind the dependency of profit on demand. 
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Since the average profit tends to the expected profit if the newsvendor 
continues his business for a long period of time, from a statistical point 
of view it makes sense to optimize the expected value "JEII(y). Note that 
for simplicity y is considered as a continuous rather than integer variable, 
which can be justified if the order quantity is reasonably large. Hence, the 
optimization problem can be formulated as 

where 

max"JEII(y), 
y 

EII(y) = 1Y (px + v(y - x) - cy) dF(x) + fu00 (p- c)ydF(x). 

Using integration by parts it is possible to reformulate this as 

"JEII(y) = (p- c)y - (p- v) 1Y F(x) dx. 

The function "JE II (y) is concave in y with a first derivative 

d dy "JEII(y) = p - c - (p - v)F(y). 

(1.2) 

(1.3) 

Now let p-1 (w) be the inverse function of cdf F, which is defined for 
w E [O, 1). Because v < c <pit follows that O < (p- c)/(p- v) < 1 and the 
optimal solution to (1.2) is 

y*(p) = arg max "JE II(y) = p-1 -- . ( p-c) 
yEJR+ p - V 

(1.4) 

A more general, alternative problem formulation to (1.3), which can be 
commonly found in the literature, is defining marginal overage and underage 
cost of the order quantity. Overage cost c0 is the realized cost of ordering 
one unit too much when demand was lower than the order quantity, while 
underage cost Cu reflects the realized cost of ordering one unit too few for 
the case demand was higher than the order quantity (see e.g. Cachon and 
Terwiesch, 2006, for several examples). 

In this work, however, we write the problem in terms of price p, cost 
c, salvage value v, and a non-negative shortage penalty cost s, explicitly, 
and do not use the model formulation based on underage and overage cost, 
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mainly because of notational simplicity. While the case where overage cost 
occur is fully equivalent with our formulation (let v = c - c0 ), the situation 
with shortages needs some additional consideration. 

The formulation based on overage and underage cost is more general 
than our model assumptions as it allows to consider lost-sales as well as 
backordering business environments. Operating in a lost-sales business means 
that in a stockout situation at least the full profit margin of the product is 
lost. As an example, we can think of a customer entering a retailer where a 
certain product is out of stock. The customer does not postpone his purchase 
until the product is replenished but buys the product from a competitor or 
refrains from buying the product at all. The underage cost refers to profit 
margin, possibly plus some additional shortage penalties, so Cu 2'. p - c. This 
case is fully considered by our model by letting s = Cu - (p - c) 2'. 0. 

The backordering case, however, refers to a business where the profit 
margin is not (completely) lost in a stockout situation; the customer still 
buys the product. However, the customer might ask for some discounts to 
accept late delivery, or the retailer might face higher cost due to express 
deliveries, etc., so underage cost might not be zero. In the backordering case 
the relation O :S: Cu < p - c holds, which implies s = Cu - (p - c) < 0. In the 
following analysis we are not considering this case as we assume s 2'. 0. 

Now we are ready to extend (1.1) by shortage penalty cost and define our 
objective function for the risk-neutral decision maker. In the following, we 
also derive the optimal order quantity. 

Definition 1 (Profit function of a risk-neutral decision maker). Let p, c, v 
ands be the retail price (marginal revenue), product cost, salvage value and 
shortage penalty cost, where p > c > v and v, s 2'. 0. Random demand D has 
a known distribution with cdf F and density f. The resulting profit II (y) is 

Il(y) = (p - c)D - (c - v)(y - D)+ - (p - c + s)(D - y)+. (1.5) 

A risk-neutral decision maker will maximize expected profit lEII(y) by 
optimizing the order quantity y. This leads us to the following 

Proposition 1 (Optimal order quantity for a risk-neutral decision maker). 
The optimal order quantity y* for a risk-neutml decision maker is 

1 (p-c+s) y* = arg max lEII(y) = p- --- . 
yEJR+ p-V + S 

(1.6) 
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Proof. Using (1.5), the expected profit is 

IE II(y) = (p-c) IE D-(c-v) foy (y-x)J(x) dx-(p-c+s) i0\y-x)f(x) dx. 

Taking the derivative, equating to zero and solving for y leads to the well-
known critical fractile solution 

d 1Y 100 -d IEII(y) = -(c - v) f(x) dx + (p - c + s) f(x) dx 
y O y 

by Leibnitz' rule 

ddy IE II(y) = -(c - v)F(y) + (p - c + s) ( 1 - F(y)). Hence, 

F(y*) = p - c + 8 and 
p-v+s 

y* = F-1 ( p - C + s ) . 
p-v+s 

• 

Important performance measures for a newsvendor from a customer's 
perspective are service levels, in particular the cycle service level (CSL) and 
the fill rate (FR). The CSL is defined as the probability that.no stockout 
during the selling season occurs. Sometimes called in-stock probability, it is 
the probability of having satisfied all demand, so the firm had stock available 
for each customer (Cachon and Terwiesch, 2006). This occurs if demand is 
not larger than the order quantity y, so 

The fill rate defined as 

CSL= IP'(D:::::; y) = F(y). 

FR= IE min(D,y) 
D 

(1.7) 

(1.8) 

is the expected fraction of demand satisfied. We note here that FR = 
Em~w,y) can be found commonly in the literature as approximation of the 
fill rate (see for example in Tempelmeier, 2005). 

While service levels imply customer (external) orientation as a performance 
measure, the probability of missing a certain profit target level PL L is an 
internally oriented performance measure for the inventory problem. It can 
be defined as the probability that profit stays below a given level L. For 
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example, in some managerial situations it might be important to reach a 
certain target or budgeted profit level L, but any overachievement does not 
significantly increase utility. The performance measure PL L now expresses 
the probability that this profit target level could not be reached. We can 
define the probability of missing a profit level L as 

PLL := W'(II :SL) (1.9) 

where in the special case L = 0 the probability of any negative profit 
realization is considered (cf. Jammernegg and Kischka, 2007, Lau, 1980). 

Further extensions to the model can be found for example in the review 
of Khouja (1999), and a comprehensive presentation of the single period 
problem in general can be found, for example, in Porteus (1990). 

1.1.2 The inventory & pricing problem 

When price is a decision variable2 , single period models turn into extended 
newsvendor problems. In addition to the ordering quantity, an optimal price 
is set to be charged during the period. The resulting model is now more 
complex because of the optimization of two variables. 

The need to consider pricing and inventory problems simultaneously was 
first discussed by Whitin (1955). He provides a newsvendor model with 
pricing where a stochastic price-dependent demand function is assumed. He 
derives an optimality condition which equates the expected loss from not 
selling a marginal unit with the expected profit from selling the marginal 
unit. 

One of the most important issues in joint pricing and inventory models 
is how to include uncertainty in the models. The common practice is to 
represent the demand function as a combination of a deterministic function 
and an error term. d(p) is a deterministic decreasing function of price and E is 
a random variable with distribution function FE(c). Two typical approaches 
are to combine the two terms in an additive or a multiplicative fashion. 
In additive models, demand is represented as the sum of the deterministic 

2 Note that we will discuss the pricing related aspects from an inventory control point 
of view. This generally means that we consider simplified price-demand response 
functions, while in the (empirical) marketing literature more sophisticated response 
functions are used. 
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price dependent function and the random term, i.e. D(p) = d(p) + E. The 
corresponding expected profit is 

Jy-d(p) 

II(p, y) = (p- c)y - (p- v) -oo (y - (d(p) + c:) )dFe(c:). (1.10) 

In multiplicative models, demand is the product of the two terms, i.e. 
D(p) = d(p)E, and expected profit is 

r/d(p) 
Il(p,y)=(p-c)y-(p-v) Jo (y-(d(p)c:))dFe(c:). (1.11) 

In the additive case, the mean value of the random term is generally 
assumed to be zero, and in the multiplicative case it is assumed to be one. 
Thus, for both cases, expected demand corresponds to the deterministic part, 
IED(p) = d(p). It is common to assume d(p) = a - bp with a> 0, b > 0 in 
the additive models, and d(p) = ap-b with a > 0, b > 1 in the multiplicative 
models (Petruzzi and Dada, 1999). It is also possible to consider any general 
function as long as it is decreasing in p. 

Mills (1959) was the first to write the demand function explicitly as an 
additive demand model: D(p) = d(p)+E. The main consideration is to show 
the effect of uncertainty on the optimal price. For the constant marginal 
cost case optimal price under uncertainty is always smaller than that under 
certainty, but optimal ordering quantity can move in either directions. When 
marginal cost is increasing or decreasing optimal price may change in both 
directions depending on the shape of the demand curve. 

Karlin and Carr (1962) also study a single period model similar to Mills 
(1959). However, they introduce the uncertainty in a multiplicative manner 
i.e. D(p) = d(p )E. Under this condition, the result is opposite of that under 
additive uncertainty. Under multiplicative uncertainty the optimal price is 
higher than the price under the assumption of deterministic demand. The 
main difference between additive and multiplicative models is the relation 
of price to the variance and coefficient of variation of demand. Under the 
additive model, while the coefficient of variation increases in price, the 
demand variance is constant. Under the multiplicative demand model, the 
coefficient of variation of demand equals that of the random term, which is 
independent of price, but the variance of demand is decreasing in price. 

Young (1978) defined the demand function in a manner that combines 
both additive and multiplicative models, i.e. D(p) = d1(p)E + d2 (p). When 
d1 (p) = 1, the formulation corresponds to the additive case, and when 
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d2 (p) = 0, it corresponds to the multiplicative case. Young (1978) verifies 
both results of Mills (1959) and Karlin and Carr (1962), and generalizes 
their results by describing the optimality conditions in terms of variance and 
coefficient of variation. However, she does not provide an explanation about 
the contradicting results of additive and multiplicative cases. 

Petruzzi and Dada (1999) try a more integrated framework in order to 
provide a possible explanation of this conflict. The idea is that price is a 
measure to decrease the variance and coefficient of variation of demand, but 
it works differently for additive and multiplicative models. In the former 
case, "it is possible to decrease the demand coefficient of variation without 
adversely affecting the demand variance by choosing a lower price"; for the 
latter case, on the other hand, "it is possible to decrease demand variance 
without adversely affecting the demand coefficient of variation by choosing 
a higher price". As a result, it is intuitive that the optimal price should be 
lower than the deterministic price in the additive model and higher in the 
multiplicative model. 

Throughout the analysis, they use a transformation of the profit function 
by defining a safety factor z, and describe the optimal price as a function of z. 
For the additive case z = y - d(p), and for the multiplicative case z = y / d(p). 
If the realization of the random term, c, turns out to be greater than u then 
shortages occur, where s is the shortage cost per unit of unsatisfied demand. 
If c is less than u, leftovers occur. 

Using a sequential approach, they first write the optimum price p* as a 
function of z, and solve the objective function for the optimal stocking factor 
z*. They find the corresponding optimal price p* and optimal ordering 
quantity as y* = d(p*) + z* for the additive case and y* = d(p*)z* for the 
multiplicative case. 

Yao et al. (2006) present the most general assumptions for the multiplica-
tive and the additive models. They employ two important concepts: the 
price elasticity of demand and the generalized failure rate. They assume that 
the deterministic demand function has increasing price elasticity and that 
the error term has strictly increasing failure rate. Under these conditions 
they show that for both the additive and the multiplicative models the 
optimal policy is unique. 

While the literature is dominated by the additive and the multiplicative 
uncertainty models, there are a small number of papers in which different 
demand models are analyzed under different approaches. Polatoglu (1991) 
studies a model without any assumptions on the structure of the demand-
price relation and the inclusion of uncertainty. The distribution function 
of random demand D(p) is defined as a general price dependent function 
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F(p, x ). Existence and uniqueness of the optimal policy constitute the focus 
of the study. Kocab1y1koglu and Popescu (2009) study a general demand 
model without any assumption of additive or multiplicative structure, but 
they still use the classical definition, i.e. D(p) represents the demand as a 
combination of a deterministic and a random part. However, in addition 
to the additive and multiplicative forms, their model is also applicable for 
more general structures such as D(p) = log(E - bp) or D(p) = exp(E - bp). 
Their main assumption is the strict concavity of the revenue function in price 
for any risk realization. This assumption allows them to easily show the 
concavity of the profit function with respect to price and ordering quantity. 

Yano and Gilbert (2004), Chan et al. (2004) and Elmaghraby and Ke-
skinocak (2003) provide comprehensive reviews on combined pricing and 
inventory models both in the single-period and the multi-period settings. 

1.2 Terminology, definitions used and conventions 

We feel it is important to discuss and clarify the definitions of some technical 
terms used in this work. In particular, the term "risk" needs some further 
discussion since no unique definition exists in the literature. In finance 
literature risk generally refers to a potential loss, while classical economic 
theory generally deals with gains, so that risk describes a situation where 
gains are random variables associated with a known distribution function ( cf. 
Muller and Stoyan, 2002, p. 265). Hanisch (2006) defines as risk of a decision 
alternative the possibility, that an undesired realization might occur, for 
example a (negative) deviation of some expected outcome3 . 

Hence, as the term "risk" is concerned with undesired deviations from 
expectation, it has to be distinguished from "dispersion", which includes 
deviations in any direction. Clearly, a problem without stochasticity, i.e. 
without any dispersion, carries no risk; however a reduction of risk does not 
necessarily imply a reduction of dispersion. 

The risk preference, i.e. risk-averse, risk-neutral or risk-seeking behaviour, 
refers to the attitude of the decision maker towards randomness. In Chapter 2 
we will discuss this in detail and provide a definition of these terms. 

Note that the term "risk" is sometimes used in the context of decision 
making to differentiate between a stochastic decision problem with full 

3 In German: ,,Unter dem Risiko einer Handlungsalternative wird demgegeniiber die 
Moglichkeit einer ,schlechten' Realisierung, sei es eine (negative) Abweichung von 
der erwarteten Entwicklung, sei es ein mit einer Alternative verbundener Verlust, 
verstanden." 



1.3 Structure of the work 11 

knowledge of the underlying distribution functions, decision making under 
risk, in contrast to decision making under uncertainty or robust decision 
making, where it is not assumed that the full distribution function is known 
to the decision maker (cf. Schneewei6, 1967, or Laux, 2005). With respect 
to this classification our work falls into "decision making under risk" as we 
assume the distribution function of random demand to be known to the 
decision maker. 

1.3 Structure of the work 

In Chapter 2 we discuss the foundations of decision making under risk 
considering risk preferences of the decision maker for the case of general profit 
distributions. Since the main contributions to the field of risk management 
have been done in the field of finance and economics, most of the relevant and 
reviewed literature will come from that side. However, we will keep the later 
application to inventory control models in mind and discuss the literature in 
this light. As an example, while the finance literature deals mainly with loss 
distributions, we discuss the content based on profit distributions. A large 
part of this chapter will be dedicated to the conditional Value-at-Risk and 
its optimization, as well as the generalization of this measure to spectral risk 
measures. 

The subsequent chapter discusses the single-period inventory control 
problem under consideration of risk preferences. We generalize results 
described in the literature so far by using the concept of spectral measures 
of risk for a newsvendor without incurring shortage penalty cost, as well 
as for the case of positive shortage penalty cost. A brief discussion on the 
application of risk-averse newsvendor models in the supply chain context 
finishes this chapter. 

Chapter 4 analyzes the combined inventory & pricing problem with risk 
preferences. We derive optimality conditions and structural properties for 
the problem with zero shortage penalty cost and conduct a numerical study 
for the inventory & pricing problem with shortage penalty costs. The finally, 
Chapter 5 concludes the work. 





Chapter 2 

Risk Measurement and Optimization 

Different ways of considering and modeling risk preferences exist in inventory 
& pricing problems. These include approaches like the expected utility 
framework, mean-deviation criteria, maximizing the probability of reaching 
a certain target profit level, or the use of explicit risk measures, e. g. the 
conditional Value-at-Risk as discussed later on in this chapter. In the 
following we will briefly discuss different ways to consider risk preferences 
and discuss some of their properties. We describe the use of particular 
risk measures such as the Value-at-Risk and the conditional Value-at-Risk, 
and discuss spectral risk measures for the specific purpose of modeling risk 
preferences within inventory & pricing problems. 

Since in our analysis we deal with profit distributions rather than with 
loss distributions, we consider the use of risk preferences on profit. Hence, 
undesirable deviations from expectations come from the lower (i.e. left) tail 
of distributions. Note that this is different than classical (financial) risk 
analysis where it is mainly loss distributions that are are considered. 

The main intention of this chapter is to clarify the notation and to describe 
theory and results needed for the subsequent analysis of the inventory & 
pricing problem. Clearly, we do not intend to give a complete introduction 
to the theory of decision making under risk. For that purpose we refer the 
reader to Bamberg and Coenenberg (2004), Hanisch (2006), Fischer (2004a), 
or Menges (1974). 

2.1 Early approaches to risk measures 

Early approaches of considering risk and risk preferences of the decision 
maker include the expected utility framework, which dates back to the 
works of Bernoulli (1738) and got strong support by the famous work of von 
Neumann and Morgenstern (1944). Shortly thereafter, Markowitz (1952) 
introduced an important approach to risk modeling with the portfolio theory 
by considering the mean and standard deviations of assets for decision making. 
However, using standard deviation or variance has some serious flaws, as 
it is a symmetric measure to risk which implies that undesired downside 
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deviations of profit are treated the same way as desired but exceptional 
deviations to higher profits. 

2.1.1 Expected utility theory 

"It is no exaggeration to consider expected utility theory the major paradigm 
in decision making since the Second World War" (Schoemaker, 1982). The 
expected utility (EU) framework has been used successfully so far in many 
prescriptive, i.e. normative and descriptive, i.e. positive models in manage-
ment science, and in inventory control in particular. It is not the outcome 
of a risky prospect which is considered as basis for decision making but a 
function of it transformed by a risk utility function. 

To understand the main idea behind this, let us look at the well-known St. 
Petersburg paradox discussed by Daniel Bernoulli as early as 1738. The issue 
in this game is why people are willing to pay only a small amount of money 
for a game of infinite expected outcome. The game goes as follows: A fair 
coin is flipped as many times as it is necessary to produce a "head" for the 
first time. The payoff of the game doubles with each toss it requires to see a 
head. So, if it takes n tosses to produce a head, the payoff is 2, 4, 8, ... , 2n 
with corresponding probabilities 1/2, 1/4, 1/s, ... , (1/2t. The expected payoff 
of this game is infinite, since r;:=l (1/2t2n = oo. However, most people are 
only willing to pay a small amount of money to participate in such a game. 
By introducing a logarithmic utility function implying diminishing increases 
in utility for equal increases in wealth, Bernoulli was able to show that the 
expected utility of the game was finite (see Schoemaker, 1982, for a proof). 

While Bernoulli (1738) provides mainly a positive model to describe 
empirically observable behavior, von Neumann and Morgenstern (1944) 
introduce an axiomatic foundation for decision making under risk and, hence, 
are able to provide normative models for decision theory. They present simple 
axioms (see Bamberg and Coenenberg, 2004, for a detailed discussion) which 
are sufficient to guarantee that the decision maker's preference about the 
ordering of alternatives in a decision problem fits with the ordering by their 
expected utility values. The expected utility in their setting is calculated 
based on risk utility functions which can be empirically constructed from 
questions like "Which certain amount is equally attractive to you as a lottery 
with equal probabilities for € 10 and € 10,000?" By considering comparisons 
between certain amounts and lotteries, not only the diminishing value in 
wealth under certainty can be considered, but also the decision maker's 
preference towards risk. Among others, Fischer (2004b) points out very 
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clearly the difference between value functions constructed under certainty 
and risk utility functions under uncertainty. 

Consequently, an important concept is that of risk aversion. If a decision 
maker prefers any lottery less than the sure outcome of its expected value, 
he is said to be risk-averse. On the contrary, if the decision maker prefers the 
lottery to the sure outcome of its expected value, he is risk-seeking. In the 
special case that the decision maker is indifferent between any lottery and its 
expected value, he is called risk-neutral. Only in the final case can decision 
or optimization based directly on the expected value of the outcomes be 
justified. This is also an important motivation for normative risk-averse 
( and risk-seeking) models in the field of operations management, which will 
be presented and discussed in the following chapters. 

Any concave increasing utility function reflects risk-averse behavior, while 
a convex increasing utility function reflects risk-seeking behavior. The 
concavity of the utility function implies that the decrease in the utility from 
a decrease in wealth is higher than the increase in the utility from an increase 
in wealth. Hence, the decision maker is more sensitive to losses than to 
gains. 

Formally, a risk utility function u(W) maps a random variable of wealth, 
W, into the real numbers. Arrow (1971) and Pratt (1964) propose the 
negative ratio of the second to the first derivative of the utility function as a 
measure for the degree of risk aversion, so 

u"(W) 
,(W) := - u'(W) . (2.1) 

Depending on the change in ,(W) with respect to W the decision maker 
is said to have decreasing, constant, or increasing absolute risk aversion 
(DARA, CARA, IARA). Note that total or final wealth, W, includes the 
initial wealth, wo, and the profit from operations, i.e. W = wo + II. 

However, albeit its interesting properties and powerful theoretical results 
obtained by the use of the EU framework, the main challenge in the appli-
cation remains as the specification of the decision makers utility function. 
Remember that the utility function represents two distinct attitudes of the 
decision maker: the degree of the diminishing utility in wealth and the 
decision maker's attitude toward risk, which are inseparable from the utility 
function. 

An approach to circumvent this problem is to find ways to measure the 
risk of alternatives so that the decision maker can base his decision not only 
on the return of an investment, but also has a way to directly address the 
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riskiness of the alternatives. So - as Levy (2006) points out - while the 
EU framework does not consider risk and return separately but takes into 
account the whole distribution of returns, the use of dedicated risk measures 
allows separation of these two aspects of decision making. Hence, in the 
following we will discuss different ways of assessing risk by using different 
explicit risk measures. The selection of an appropriate risk measure, however, 
is not trivial, as in a normative framework any proposed risk measure needs 
to be based on carefully selected axioms1 . 

2.1.2 Symmetric and downside risk measures 

For stochastic problems, next to the mean as the measure of location, the 
variance as a measure of statistical dispersion is the "classical" risk measure 
used to describe probability distributions. The variance of a random variable 
II is defined as 

Var(II) := IE (JI - IE(JI)) 2 

and the standard deviation, SD(JI) := JVar(II), are used widely as risk 
measures, e. g. as an important measure in finance for the portfolio theory 
by Markowitz (1952). Though larger variance implies higher risk, i.e. the 
danger of an undesirable outcome increases, at the same time the "chance" 
of higher than expected outcomes increases too. Hence, being a symmetric 
risk measure variance not only penalizes downside deviations, but also 
the desirable upside deviations2 . Therefore, variance does not provide a 
satisfying risk measure, except for the case where the outcome distribution 
is close to a symmetric distribution, for example the normal distribution. 

Ismail and Louderback (1979) analyze profit distributions for a firm facing 
stochastic demand with several alternative objective functions. They show 
that especially for, but not limited to, the case of positive shortage penalty 
cost the profit distribution can be far away from being symmetric. In 
their paper they conclude that the shape of profit distributions changes 
significantly depending on price, production cost, quantities, holding costs, 
shortage penalty cost, demand variance, and so on, so that "the profit 
variance cannot be a reasonable measure of relative risk." 

1See Acerbi (2004) for a motivation to use a deductive approach based on axioms of 
coherency which leads to a clear and unambiguous quantitative definition of risk 
measures. 

2 Note that the terms "higher" and "upside deviation" are used here in the sense of 
"better", not necessarily larger. Hence, for the case of loss distributions, higher outcomes 
refer to lower loss. 
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A common measure for symmetricity of a probability density function is 
the skewness Skew(JI) defined as the third standardized moment 

IE(JI - IE(JI) )3 

Skew(JI) := SD(JI)3 

Symmetric distributions, e.g. the normal distribution, have a skewness of 
zero, positive skewness refers to a fat tail on the right side, negative skewness 
refers to fat left tails. 

As a consequence of the aforementioned drawbacks of symmetric measures, 
there have been several risk measures introduced which explicitly consider 
downside risk. These risk measures ignore positive deviations and consider 
only the one-sided, undesirable downside deviation from an expected outcome. 
This definition of risk measures is more in line with the human understanding 
of risk. In his empirical work, Mao (1970) finds that the perception of 
"riskiness" by decision makers fits with downside risk measures rather than 
symmetric risk measures. He concludes, "To accurately portray this attitude 
toward risk, we need a measure of risk which not only summarizes variability, 
but also distinguishes between positive and negative variations. In this 
respect, semivariance3 is a better measure of risk than ordinary variance." 

This allows us to formulate the following: 

Definition 2 (Risk). Let JI be any random variable, where the utility u(JI) 
is monotone in the realization of JI. We define the term "risk" as a measure 
p(JI) on JI of one-sided deviations from an arbitrarily chosen value m. 

Furthermore, we say a decision maker is 

1. "risk-averse", if his objective is the minimization of undesirable devia-
tions from m, and 

2. "risk-seeking", if his objective is the maximization of desirable devia-
tions from m. 

2.1.3 Value-at-Risk (VaR) 

An often-used concept for risk measurement which (implicitly) considers 
one sided deviations from the expectation is the Value-at-Risk (VaRa), The 

3 As a risk measure already discussed by Markowitz (1959). It is defined as the expected 
value of squared negative deviations of possible outcomes from a certain point m, e.g. 
from zero or expected value. So, SemVarm (JI) := IE[(JI - m)-] 2 . 
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concept of VaRa as a measure of risk was introduced by JP Morgan in 19944 

and became famous after considering it as a risk measure in the 2001 proposal 
of the Basel Banking Supervisory Committee. Quoting Szego (2005), VaRa 
was designed and proposed to answer "the following very relevant and precise 
questions: 

• How much one can expect to lose in one day, week, year, ... with a 
given probability? 

• What is the percentage of the value of the investment that is at risk?" 

Before further discussion, let us define VaRa (see e.g. Rockafellar and 
U ryasev 2002). 

Definition 3 (Value-at-Risk). The VaRa associated with a profit random 
variable II with distribution function FII is 

VaRa(II) = min{1/JIFII(7f!) 2 a}. (2.2) 

As long as FII is continuous and strictly increasing, there is a unique 7µ 
satisfying (2.2). Otherwise, if the inverse distribution Fii 1(a) does not exist, 
FII has a jump such that a is in an interval of confidence levels with lead to 
the same VaRa. If there exists a whole range of solutions, FII is constant at 
a for a range of profit realizations 1r. In this case the lower endpoint of the 
interval is defined as VaRa . 

Statistically, VaRa is the a-quantile of the random variable's distribution. 
So, VaRa is simply the minimum outcome of a random variable within a 
certain confidence interval 1 - a. Hence, using confidence intervals, it is very 
simple to estimate the maximum loss or the minimum profit. Thereby, the 
width of the confidence intervals reflects the level of risk aversion, i. e., the 
risk preference of the decision maker. A larger confidence interval - implying 
a smaller a - refers to higher levels of risk aversion. 

However, VaRa as a concept to measure risk has serious flaws. We will 
discuss this in more detail after a short discussion on how risk can be 
measured in the following section. 

2.1.4 Artzner's axioms of coherency: How to measure risk 

In the financial context, Artzner et al. (1999) studies market risks and discuss 
the measurement of those risks. In their paper, they introduce a set of four 

4See e.g. Holton (2002) for the history of VaRor with consideration of the developments 
in the banking and securities firms in the 20th century. 
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properties and call each risk measure that satisfies these properties "coherent" 
measures of risk. In this section we present the concept of coherent measures 
in the literature. 

An explanation of the need for coherent risk measures is given by Szego (2005) 
by relating properties of risk measures to (intuitive) properties of a measure 
of distance between two points: 

"We recall the three conditions that any ... [function] defining the 
distance between two points ... must satisfy: 

• the distance between a point and itself is zero; 

• the distance does not change by inverting the two points; 

• given three points, the distance between any pair cannot be 
larger than the sum of the distances between the other two 
pairs." 

While all of those three properties sound intuitive and any potential 
measure of distance necessarily has to satisfy them, analogous conditions 
for risk measurement are not satisfied by many of the existing approaches, 
such as the VaR0 • Artzner et al. (1999) propose a set of properties that any 
acceptable risk measure p( II) must satisfy. 

Definition 4 (Coherent measure of risk). Let II be any random variable 
and p( II) a function defining the risk of II. The risk measure p( ·) is called 
coherent, if and only if it satisfies the four properties 

1. Translation equivariance: p(II +a)= p(II)+a. Adding a sure outcome 
of amount a to the random outcome of II increases the risk measure 
by exactly this amount a. 

2. Subadditivity: p(II + Z) ::::; p(II) + p(Z) for all random variables 
II and Z. The risk of joint operations cannot be higher than the 
risk of two independent, single operations. This property implies that 
merely splitting up operations of a company into different independent 
divisions cannot reduce the total operational risk. 

3. Positive homogeneity: p(>.II) = >.p(II) for all random variables II and 
all positive real numbers>. ~ 0. 

4. Monotonicity: II -<so(l) Z => p(II) ~ p(Z) for all random variables 
II and Z, where -<sD(l) denotes stochastic dominance of order 1 so 
that the cumulative distribution functions (cdf) of II and Z are ordered, 
Fn(z) ~ Fz(z) for all z. 
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Artzner et al. (1999) state that only those risk measures satisfying all 
of the above properties can lead to conclusive results in risk measurement. 
For a broader review of different risk measures with respect to Artzner's 
axioms see e.g. Hanisch (2006), and references therein. A discussion of 
VaR,. follows in the next section. 

As an example, we now illustrate that variance is not a coherent measure 
of risk. In particular, variance does not satisfy any of the axioms stated 
above. 

1. Translation equivariance is violated since 

Var(II +a)= Var(II) =I- Var(II) + a. 

2. Subadditivity Var(·) is not subadditive for any correlated random 
variables, II and Z: 

Var(II + Z) = Var(II) + Var(Z) + 2COV(II, Z) 
> Var(II) + Var(Z) for COV(II, Z) > 0. 

3. Positive homogeneity does not hold since 

Var(>..II) = >..2 Var(II) =I- >.. Var(II). 

4. And finally, the Monotonicity property does not necessarily hold, 
which can be easily seen, for example, if we let II ~ Unif(0, 1) and 
Z ~ Unif(0, 3), so II -<sv(i) Z but Var(II) < Var(Z). 

2.1.5 VaR in view of Artzner's axioms 

After the work of Artzner et al. (1999) the ability of VaR,. to measure risk 
in a valid way was seriously questioned (for a strong criticism see Szego, 
2005). 

A major point is the definition of VaR,. as a single point in the value 
distribution. While its definition of the worst outcome within a certain 
confidence interval, e.g. 95%, sounds intuitive and helpful, Acerbi et al. 
(2008) state that this implies at the same time considering the best possible 
outcome for describing the risk associated with the worst 5% cases of a 
distribution. "Once we have selected these cases", Acerbi et al. (2008) raise 
the question, "why should we be interested in the least loss irrespectively of 
how serious all the other losses are?" 
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This issue raises problems for value distributions with fat (left) tails, which 
is revealing for rare events with high losses. On the contrary, for the case 
when the value distribution has a positive skewness, the problems mentioned 
above seem to be less serious. 

However, analyzing Artzner's axioms, Pflug (2000) shows that VaR0 is 
translation equivariant, positively homogeneous and monotone, but does not 
necessarily satisfy the subadditivity property. This might cause the problem 
that a risky operation could be reduced in its risk by splitting it up into two 
distinct divisions. Further, risk assessment for a whole company becomes 
problematic since optimizing single (risky) operations with respect to the 
risk measure does not necessarily end up in a risk optimum for the whole 
organization. As an example, it is not guaranteed that, despite compliance 
with risk limits for each product group in a company, the total risk level is 
within the desired levels. 

Due to these problems, VaR0 - although ostensibly easy and intuitive -
does not seem to be appropriate as a risk measure for inventory-related risk, 
and, moreover, is particularly inappropriate once it is used as an objective 
function within an optimization procedure of some profit (or cost). However, 
there are papers proposing VaR0 for inventory control (Tapiero, 2005, uses 
VaR0 for inventory control, although in a slightly different setting) and even 
for the capacity constrained multi-product setting (as an example see Ozier 
et al., 2009). 

2.2 Conditional Value-at-Risk (CVaR) 

A natural extension of VaR0 is to not only consider the o:-quantile itself, 
but to consider the conditional expected value of this tail of the distribution, 
that is the mean of the 1000:% worst realizations. The resulting measure is 
the so-called conditional Value-at-Risk (CVaR0 ), or as some authors refer 
to it, expected shortfall. Introduced by Rockafellar and Uryasev (2000), the 
conditional Value-at-Risk can be seen as a response to the serious conceptual 
problems of VaR0 • An excellent review and introduction to the concept of 
CVaR0 can be found for example in the tutorial of Sarykalin et al. (2008). 

The conditional Value-at-Risk has several advantages over VaR0 : 

1. It is coherent in the sense of Artzner's axioms (see Pflug, 2000, for 
a proof). In particular, CVaR0 satisfies the subadditivity axiom, so 
that it can be used for aggregating risk over several operations to a 
firm-wide risk measure. 
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2. It also takes rare events below Fi/(o:) into consideration. More 
important for the application of the risk measure, however, 

3. CVaRa can be formulated as a maximization problem and allows for 
incorporation into optimization problems on decisions y affecting the 
random variable of outcome II(y). 

2.2.1 Definition of conditional Value-at-Risk 

The conditional Value-at-Risk for a given confidence level a is defined as 

CVaRa(II) = - Fi/(w) dw. 11°' 
a o 

(2.3) 

CVaRa as an objective function again implies sensitivity about the lower 
values of profit. When a= 1, all possible values of profit are considered, so 
the problem is identical to the risk-neutral problem. However, for any a < 1, 
only a lower fraction of the sample space is considered. For example, a = 5% 
implies that the decision maker only considers the 5% worst outcomes of 
the sample space and bases his decision or optimization on these events. 
Consequently, his approach implies risk aversion by optimizing outcome 
given that one of the 5% worst cases arose such that he cuts his losses. 

Note that for the special case where the random variable has a continuous, 
strictly monotone increasing cdf, CVaR°' equals the conditional expected 
value given the outcome is below the Value-at-Risk, so 

CVaRa(II) = lE(IIIII::; VaRa(II)). 

However, in the newsvendor problem we need to consider discontinuous 
distribution functions of profit. In particular, as will be shown later, there 
is a discontinuity in the profit distribution FII(1r) at a certain value ir such 
that FII(1r) is continuous and monotone increasing for all 1r < ii" and 1 for 
all 1r ~ ii". The problem of a discontinuity of the cdf is shown in Figure 2.1, 
where for a certain random variable II, FII(1r) = a does not exist. In this 
case the shaded area in the left plot represents the conditional expectation 
given 1r::; VaRa(II), which does not correspond to the actual CVaRa, which 
is indeed the shaded area in the right plot. 

A common possibility to circumvent the problem is by rescaling the original 
variable II which has a jump at ir by a, so that we come up with a new 
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Figure 2.1: Distribution of fl where 'I/; such that Fn('I/;) = a does not exist. The 
conditional expectation given 1r ~ VaR0 (ll) in the left plot (shaded area divided 
by a) does not result in the correct CVaRa, as can be seen by comparison with 
the correct area in the right plot. 

random variable tJ which corresponds to the a-tail of II. The distribution 
of fI, F iI can be defined as 

for 7l' < 7f 

otherwise. 
(2.4) 

As a consequence, the conditional Value-at-Risk can easily be calculated by 
taking the expected value of ft, so CVaRa(II) = JE(ll). The rescaling of II 
to tJ is also illustrated in Figure 2.2. As can be seen, this definition rescales 
the distribution by a so that instead of the original distribution between the 
horizontal zero-line and a-line, it forms a new distribution function between 
zero and one ( see Rockafellar and U ryasev, 2002). 

Another way to overcome the problem of the discontinuity in the cdf is to 
use the generalized inverse distribution function defined as p- 1 (w) := inf{u : 
u ~ w) as discussed by Pflug and Ruszczynski (2004). Let a+ := F(F- 1(a)), 
then CVaRa can be represented by 
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Figure 2.2: Distribution of II where Fn(1r) = a does not exist (left). The rescaled 
distribution Ftr(1r) = Fn(1r)/a for 7r < if' is used for further CVaRa calculation 
(right). 

Graphically, this refers to taking the conditional expectation as in the left 
plot of Figure 2.1 and subtracting the difference in the area between the left 
and the right plot, i.e. (a+ - a)Fi/(a), rescaled by 1/a. 

For the analysis of the inventory problem later on in Chapter 3 we will 
use both of these approaches. For some problems, it will be convenient to 
rescale the demand distribution and consider this transformed distribution 
for the newsvendor problem. This helps us to use results obtained already 
in the literature on the risk-neutral newsvendor, which can then be applied 
to the newsvendor with a transformed distribution function. 

2.2.2 Optimization of CVaR 

As long as CVaR0 is used as a performance indicator, applying (2.3) is 
perfectly fine to calculate CVaR0 for a given sample, e.g. for realizations of 
a newsvendor's profit. But once we want to maximize an objective function 
containing CVaR0 by optimizing some control, the problem becomes a little 
bit more tedious. Now we have to consider two distinct cases, which we will 
describe in the following example. 

Assume there is a newsvendor making a random profit JI and the only 
control available is the order quantity y. Furthermore, profit depends on 
random demand, D. Now, we can distinguish two cases in the relation 
of JI and D. In the first case the function between demand and profit is 
monotone, so that a higher realization of demand results in higher profit 
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and vice versa. 5 An optimization of the order quantity y based on the 
o:%-worst profit realizations can be simply done by considering the o:%-worst 
demand cases only. In the second case, however, no monotone relation 
between demand and profit exists anymore. This is the case, for example, 
if our newsvendor considers penalty costs for unsatisfied demand in his 
objective function. Now, low profits is a result of low and high demand due 
to low sales in the first case and high penalties in the latter case. For the 
optimization on the order quantity it is no longer possible to consider a subset 
of demand realizations, but for each quantity the profit has to be sorted and 
the lowest a-fraction of it evaluated. Since the monotonicity does not hold, 
the optimization requires repeated resorting of profit. Consequently, for a 
practical application in numerical computation on a discrete set of scenarios, 
standard minimization algorithms implemented in software products get into 
troubles when trying to optimize (2.3) as an objective function due to the 
discrete reshuffling of scenarios as pointed out by Acerbi (2004). 

Rockafellar and Uryasev (2000, 2002) and Pflug (2000) propose an elegant 
way to overcome the problem of sorting while optimizing. In their approach, 
CVaRo: is defined as the solution to a concave maximization problem over 
an auxiliary variable 'lj!. 

Proposition 2 (Fundamental CVaRo: maximization formula). Let y be 
the control variable of random profit II(y), e.g. the order quantity for a 
newsvendor. 

1. The following formulation is equivalent to the definition of CVaRo: in 
(2.3), 

CVaRo:(Il(y)) = max f(y, '!j!), 
,t,EIR 

where f(y, '!j!) is defined as 

1 
f(y, '!j!) := 'ljJ + - IE(II(y) - '!j!)-. 

Q: 

(2.6) 

(2.7) 

2. Maximizing CVaRo:(II) with respect to y is equivalent to maximizing 
r(y, '!j!) over all (y, ¢) in the sense that 

max CVaRo:(II(y)) = max f(y, ¢) (2.8) 
yEJR+ {y,,t,)EIR+ x IR 

5 Note that the relation could be inverse as well, so that a higher realization of the state 
variable D leads to a lower realization of profit. This still refers to case 1 as the 
relation is still monotone. 
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See Rockafellar and Uryasev (2002, Theorem 10, 14) for a proof. Note 
that as a side effect of the optimization of CVaR0 , the argument '¢ that 
maximizes (2.6) corresponds to VaRa (cf. Pflug, 2000). Hence, by solving 
the optimization problem, the optimal control to maximize CVaRa and its 
corresponding VaRa are found. 

An important additional result concerns the concavity of the optimization 
problem, summarized in the following: 

Corollary 1 (Concavity of CVaR0 ). If II(y) is concave with respect toy, 
then CVaRa(II(y)) is concave with respect toy as well. Indeed, in this case 
r (y, 'l/J) is jointly concave in (y, 'l/J). 

See Rockafellar and Uryasev (2002, Corollary 11) for a proof. This result 
will turn out to be very useful for proofs of concavity of the profit with 
respect to order quantity in the following chapters. 

2.3 Spectral measures of risk 

The risk measures discussed in the previous sections are some special cases 
of a more general class of risk measures, the so-called spectral measures of 
risk, introduced by Acerbi (2002)6 . To understand spectral measures, we 
can think of the CVaRa as a weighted average of realizations of a random 
variable II, where the weights are 1/o: for the worst 100a% outcomes and 
zero weights are assigned for the better outcomes. 

2.3.1 Definition of spectral measures of risk 

Clearly, it can be seen that this is a special case of a more general probability-
weighted average in the form of 

(2.9) 

where the function </>(w) for w E [0, 1] allows us to specify, in general, a 
function of weights over the probability range and hence, indirectly, over the 
inverse distribution function Fi/. We will call </> the risk spectrum of the 
risk measure M(II). 

Acerbi (2002) defines three conditions on the risk spectrum and shows 
that M(II) is coherent if and only if</> satisfies these conditions: 

6 Note that similar definitions were made under the name of law-invariant co-monotone-
additive coherent measure of risk by Kusuoka (2001). 
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l. Positivity: The risk spectrum is non-negative in its domain, 

cp(w) 2 0 Vw E [O, 1] 

2. Normalization: The risk spectrum adds up to 1, 

fo 1 c/>(w)dw = 1 
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3. Monotonicity: The risk spectrum is non-increasing in its domain, 

Note that these conditions imply that any risk measure which neglects 
the leftmost end of the tail cannot be coherent, as is the case with VaR,,. 
Furthermore note that the risk spectrum being non-increasing makes a risk 
measure which puts more weight on low rather than on high outcomes. This 
implies risk-averse behavior of the decision maker. A risk-neutral decision 
maker would apply a constant risk spectrum and a risk-seeking decision 
maker would apply a non-decreasing risk spectrum. Important however is 
the fact that the risk spectrum is monotone in the probability. 

In our work, we also allow the risk spectrum to be increasing (non-
decreasing) in its domain to model risk-seeking behavior of the decision 
maker, we only require monotonicity. However, we need a forth, additional 
assumption, which is that the risk spectrum be finite. So, let us summarize 
this in the following: 

Definition 5 (Admissible risk spectrum). We call a risk spectrum cp(w) with 
w E [O, 1] admissible, if and only if it satisfies the positivity, normalization 
and monotonicity criteria and, additionally, is finite for all w. 

In the next two examples it can be seen that both CVaR,, and VaR,, 
are special cases of a general spectral risk measure with a particular risk 
spectrum. Furthermore, the risk spectrum of CVaR,, satisfies the conditions 
of coherency while the risk spectrum of VaR,, does not. 

Example 1 (CVaR,,). From (2.9) it is easy to see that CVaR,, is a special 
case of a spectral risk measure with risk spectrum 

cp(w)={t 
w ::; Q: 

otherwise. 
(2.10) 
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The risk spectrum is a piecewise constant function, with a decreasing single 
step in w = a. If we plug (2.10) in (2.9), we get (2.3) again. Note that 
the risk spectrum satisfies the conditions of coherency, in particular the 
monotonicity condition. 

Example 2 (Mean-CVaRo:)• A commonly used extension of the pure CVaRo: 
formulation is a convex combination of CVaRo: and the expected value, which 
leads to a mean-CVaRo: formulation. This risk spectrum uses two parameters, 
a,.XE[0,l]. 

ef>(w) = {tA 
1-o: 

w ::S:a 
otherwise. 

(2.11) 

Again, a refers to the confidence interval of CVaRo:, while .X defines the 
weight of the CVaRo: on the overall risk spectrum (hence 1 - .X is the weight 
of the expected value). Unlike the pure CVaRo:, this risk spectrum is able to 
represent risk-averse, risk-neutral and risk-seeking decision making behavior. 
When A > a, relatively more weight is given to the lower realizations, 
which implies risk aversion; while for .X < a the relative weight of the lower 
realizations is smaller than of the others, which is risk-seeking behavior. For 
the special case A = a the relative weights of lower and higher realizations 
are the same, hence, the decision maker is risk-neutral. 

Example 3 (VaRo:)• Also VaRo: can be seen as a special case of (2.9). 
Since VaRo: considers one specific outcome only, in particular the best of 
the a% worst, the risk spectrum is a positive single peak at point a. The 
risk spectrum is not finite and does not satisfy the monotonicity condition 
here, since a single peak of infinite height is the strongest possible violation 
of monotonicity. See Acerbi (2004) for a more formal discussion of VaRo: as 
a spectral measure. 

While measuring the level of a decision maker's risk aversion is simple in 
the case of the CVaRo: (a smaller a implies a higher level of risk aversion), 
when using general risk spectra it is no longer that easy to compare the level 
of risk aversion. However, to be able to derive structural properties of the 
optimal solution with respect to the level of risk aversion later on, we need 
an objective way to assess risk aversion. In order to do so, we introduce the 
following: 

Definition 6 (Order of risk aversion). Let DM1 and DM2 be two decision 
makers with risk spectra ¢ 1 and <P2, respectively. We call the aggregated risk 
spectra <I>i(w) = J0w ef>i(t) dt risk transformation functions. 
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1. DM1 is called more risk-averse than DM2 at probabilityw ififl1(w) > 
ifl2(w). 

2. Moreover, we call DM1 strictly more risk-averse than DM2, if (a) 
holds for at least one specific w and, additionally, if ifl1(w) 2: ifl2(w) 
holds for every w E [0, 1]. 

Definition 6, concerning the ordering of risk aversion, implies that any risk-
averse decision maker has a risk transformation function ifl(w) > w for all w. 
The task of the risk transformation function is to transform the distribution 
function of the state into a "virtual" distribution of a "virtual" state where 
implicitly the risk preference of the decision maker is considered; see the 
discussion about the rescaling of the distribution function in the specific 
case of a CVaRa decision maker in Section 2.2.1, in particular Figure 2.2 
( cf. Rockafellar and U ryasev, 2002). Since for any risk-averse decision maker 
g,- l ( t) < t holds, the risk transformation is a downward transformation of 
the quantile, so F(x) < Fcp(x) if F(x) denotes the distribution of the state 
and Fcp(x) := if, (F(x)) the transformed distribution. 

To illustrate the concept of ordering with an example, consider a risk-
neutral decision maker facing a newsvendor problem as presented in (1.2), 
where the optimal cycle service level, i. e. the target quantile, was found to 
be 12=£. Once the decision maker becomes risk-averse, the distribution of p-v 
the state will be transformed or rescaled such that Fcp(x) > F(x) for any 
x, which implies that the optimal order quantity will be smaller than the 
risk-neutral solution (for a detailed discussion of this point see the analysis 
of the inventory problem in Chapter 3). 

For the later analysis we need the following definition of a parameter 
measuring the risk preference. 

Definition 7 (Parameter of risk preference). We define 1/ as a generic, 
ordinal scaled, monotone increasing parameter of the decision maker's risk 
preference. Further, it is normalized, such that rJ = 1 refers to risk neutrality, 
any 1/ < 1 implies risk aversion and rJ > 1 risk-seeking behavior. 

Definition 7 based on Definition 6(b) introduces an ordinal scaled7 param-
eter of the decision maker's risk preference. We say that the risk preference 
increases in T/· As an example, decision maker 1 with T/l = 0.6 has a lower 
risk preference than decision maker 2 with ri2 = 0.8, although both are 
risk-averse. A decision maker 3 with ry3 = 1.2 has a higher risk preference 

7There is the restriction that T/ only allows power transformations as we normalize the 
parameter so that T/ = 1 refers to the risk-neutral preference. 
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Figure 2.3: Two decision makers with dif-
ferent risk spectra: Decision maker 
DM1 with CVaRa risk spectrum, a= 
0.5 (solid line) compared with deci-
sion maker DM2 using a mean-CVaRa 
risk spectrum with a= 0.1, ..\ = 0.5 
(dashed line). While DM2 is more risk-
averse for lower probabilities ( < 0.3), 
the pure CVaRa decision maker DM1 
becomes more risk-averse for the higher 

1 w probability ranges. 

than decision maker 1 and 2, and he is risk-seeking. Note, however, that 
we cannot formulate a direct relation between a specific value of T/ and the 
parameters of the underlying risk-spectrum. As an example, there exists no 
function that maps o: and ,\fora mean-CVaRa risk spectrum into T/· All 
we can say for this example is that for any ,\ > o:, the corresponding T/ < 1 
(risk aversion), and for any ,\ < o:, T/ > 1 (risk-seeking), with the special case 
of risk neutrality for the equality of both parameters. 

This generic parameter of the risk spectrum is used later on to derive 
general results with respect to the level of risk preference. It allows us, 
independent of the underlying risk spectrum, to conduct sensitivity analysis 
on the problem. For example, we are able to draw conclusions such as the 
objective function is increasing in the risk preference, etc. When we perform 
numerical analysis, so when concrete risk spectra are used, we specify the 
corresponding parameters of the risk spectra. As an example, in numerical 
plots with a mean-CVaR0 risk spectrum, we specify directly o: and,\, and 
not TJ. 

Note that it is not always possible to strictly order the risk preferences 
of the decision maker. It is easy to imagine that the risk transformation 
functions can intersect. See Figure 2.3 for an example of two decision makers 
where the first one applies a pure CVaR0 risk spectrum and the other a 
mean-CVaR0 formulation. We will see later for the inventory problem in 
Chapter 3 that the ordering of the optimal decision, i.e. the optimal order 
quantity, for two risk-averse decision makers depends then on the target 
cycle service level. 
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2.3.2 Discussion on how to model the risk spectrum 

While a risk spectrum satisfying Definition 5 can be any finite, monotone, 
non-negative, normalized function to guarantee coherence of the decision, 
little discussion has been done so far in the literature about the concrete 
formulation of risk spectra. Dowd et al. (2008) review some of the "natural" 
formulations of risk spectra, such as decreasing exponential functions and 
power functions, which we will use later in Chapters 3 and 4 to model the 
risk preferences of the decision maker for inventory and pricing problems. 
Sriboonchitta et al. (2009) relate classical risk utility functions to risk spectra. 

Following Dowd et al. (2008), a common formulation used for risk utility 
functions is the power utility function. Accordingly, we can formulate a 
weighting function on the probabilities similar to the power utility function 
in the EU framework, 

1 1 1 cp(w) = k(l - w)"•- , (2.12) 

where the parameter k E (0, oo) reflects the degree of risk-aversion of the 
decision maker such that higher values of k refer to higher levels of risk-
aversion. It can be easily seen that for any finite k this function satisfies all 
properties in Definition 5. Moreover, for k < l the risk spectrum reflects 
risk-averse behavior, k = l refers to the risk-neutral case where¢ is constant, 
and any k > l results in risk-seeking behavior. If 0.5 < k < l the risk 
spectrum is concave, which implies a progressive marginal sensitivity on the 
probabilities, while for the case k < 0.5 the decision maker has a diminishing 
marginal sensitivity and the risk spectrum is convex. The case k = 0.5 is a 
special case with a linear risk spectrum. Hence, this proposed risk spectrum 
is quite flexible by choosing the appropriate parameter. Note, however, that 
¢(1) = 0, which implies that the risk spectrum does not (implicitly) contain 
the expected value of profit. An example of a power risk spectrum is shown 
in Figure 2.4 (left) for different parameter values. 

Another possible risk spectrum based on the exponential risk utility 
function is the exponential risk spectrum, defined as 

ue-uw 
¢(w)= l-e-u' (2.13) 

where u reflects the level of risk-aversion. For a strictly positive parameter 
u > 0, this risk spectrum also satisfies all properties in Definition 5. It 
(implicitly) considers a mean-risk formulation since ¢(1) =/- 0. Hence, the risk 
spectrum can be decomposed into a mean-risk formulation, where mean has 
a weight ¢(1) and the risk part 1 - ¢(1). Increasing values of the parameter 
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1 Figure 2.4: Two examples of risk spectra: Power risk spectrum ¢(w) = ¾ (1 - w)•- 1 

for k = {0.33; 0.5; 0.67} (left). Note that for such power functions any 0.5 < k < 1 
leads to a concave risk spectrum, while k < 0.5 results in a convex risk spectrum. A 
linear risk spectrum is the special case of k = 0.5. In the right plot, an exponential 

risk spectrum rf>(w) = ~~:~: for u = { 1; 2; 4} is shown. 

u again increase the diminishing marginal sensitivity in probability about 
profit. 

2.3.3 Optimization of general spectral measures of risk 

With the same arguments as in the optimization of CVaR0 , the application of 
a spectral risk measure as a performance indicator is easily possible by using 
(2.9) to describe the riskiness in the desired form. Once the decision maker 
intends to optimize an objective function based on spectral measures, the 
same problem that we faced for the optimization of CVaR0 in Section 2.2.2 
will come up again: the problem of resorting. Acer bi and Simonetti (2002) 
extend the method of Pflug/Rockafellar/Uryasev to the general spectral 
measure M. 

Proposition 3 (Fundamental maximization formula). Let y be the control 
variable of random profit Il(y), e.g. the order quantity for a newsvendor. 
Let us further define a f(y, '¢) such that 

(1 d</> 
f(y, '¢) := </>(1) lE Il(y) - Jo dw { w'¢(w) + lE(II(y) - 1/J(w))-} dw. (2.14) 
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1. If the decision maker is risk-averse, i.e. the risk spectrum <p is de-
creasing, the following formulation is equivalent to the definition of 
the spectral risk measure in (2.9), 

M(II(y)) = max r(y, ¢). 
,;., 

(2.15) 

Further, maximizing M(II(y)) with respect toy is equivalent to maxi-
mizing the functional r(y, ¢) over y and the function¢ : (0, 1) • IR 
in the sense that 

maxM(JI(y)) = maxr(y,¢) 
y (y,,t,) 

(2.16) 

2. If the decision maker is risk-seeking, i. e. the risk spectrum cp is 
increasing, the following formulation is equivalent to the definition of 
the spectral risk measure in (2.9), 

M(JI(y)) = min r(y, ¢). 
,;., 

See Acerbi and Simonetti (2002) for a proof. 

(2.17) 

From this formulation it is immediately clear that the sorting problem 
of the outcomes cannot be replaced by separating them into two subsets 
with a single variable¢, as was the case with CVaRo:. Now each possible 
realization has to be distinguished from the others since it potentially carries 
a different weight with it. Hence, the single auxiliary variable 1/1 in the case 
of CVaRo:-optimization now turns into a continuous function 1/J(w) defined 
for w E (0, 1) and the maximization has to be carried out on r by optimizing 
the whole function 1/J(w). 

An important additional result concerns the concavity of the optimization 
problem, summarized in the following: 

Corollary 2 (Concavity of M). If JI(y) is concave with respect toy, then 
M(JI(y)) is concave with respect toy as well. Indeed, in this case r(y,¢) is 
jointly concave in (y, ¢). 

See Acerbi and Simonetti (2002) for a proof. Again, this result will turn 
out to be very useful for proofs of concavity of the profit with respect to 
order quantity in the following chapters. 

Although formulations (2.15) and (2.17) allow for very general definitions 
of risk spectra, the optimization becomes very difficult to solve in the 
truly continuous case. Especially to ease numerical optimization, the risk 
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t!Aq,1 
······---~!Aq,2 

·c-, -~u b.4>3 Figure 2.5: Example of a discretized risk 
spectrum with J = 3 jumps. The 
height of each jump j is f:::..¢i < 0. 
Note that the case ¢(1) > 0 is not 
considered a jump anymore. l W 

spectrum can be discretized into a piecewise constant function with a finite 
number of J jumps at o: = o: 1 , ... , O:J < 1. The height of each jump 
is A</>1 = </>(w+) - </>(w-) for j = 1, ... , J, where </>(w+) denotes the risk 
spectrum at w evaluated from the right and </>(w-) is evaluated from the 
left. See Figure 2.5 for an illustration of a discretized risk spectrum. Note 
that A</>1 < 0 for all j implies risk aversion while the case t::..¢1 > 0 for all j 
implies a risk-seeking preference by the decision maker. 

The discretization of the risk spectrum reduces the problem to an opti-
mization problem of J auxiliary variables 'ljJ1 , so r(II, 1/J) can be written 
as 

J 

r(II, 1/J) = </>(1) IE(II) - L A</>j {wj'I/Jj + IE(II -1/Jj)-}. (2.18) 
j=l 

The optimization of (2.18) over the vector 1/J can be again carried out with 
high efficiency by using standard optimization algorithms implemented in 
software tools. 
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Inventory Problem with Risk Measures 

While a lot of results have been obtained so far for the classical risk-neutral 
newsvendor problem, fewer works have considered a risk-averse or risk-
seeking decision maker for the inventory problem. Early works generally 
cover risk preferences by applying the expected utility theory framework. 
Profit or losses from operations are added to the newsvendor's final wealth. 
A transformation of final wealth by the utility function allows a comparison 
of different order quantities in a relative sense, so that an optimal order 
quantity can be found. Structural results of these works are not always 
comparable because different models are considered. 

A close approach to ours of considering risk-aversion is Choi and Ruszczynski 
(2008), where law invariant measures of risk1 are used. The authors find 
structural properties of the optimal order quantity for an inventory problem 
without shortage penalty cost. Their work is extended in Choi et al. (2009) 
to the multi-product case. 

The analysis of the inventory problem depends mainly on whether or not 
shortage penalty cost have to be considered. It can be seen that the presence 
of such shortage penalty cost might result in a major change in the optimal 
policy. As discussed earlier, shortage penalty cost is the per-unit cost of 
having too few units available, which exceeds the mere lost revenues, so 
s = Cu - r > 0. To understand the impact of penalty cost, we need to look 
at the relation between random demand and random profit, specifically at 
the correspondence between the ordered random demand and ordered profit 
in the sense that the n-lowest demand realization results in the n-lowest 
profit realization for each n. 

Lemma 1. Let D and II be the random demand and profit, respectively, 
with realizations x and 1T. Without shortage penalty cost, so s = 0, there 
exists a one-to-one correspondence of the order of demand realizations x and 
the order of resulting profit realizations 1T. 

1 Note that the concept of law invariant measures of risk is identical with spectral risk 
measures. 
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Proof To show that without shortage penalty cost random profit has the 
same ordering as random demand, it is sufficient to see that in this case 1r is 
(weakly) monotone increasing in x. Using (1.5) we can write 

{ (p- c)x - (c - v)(y- x) 
II(y,x) = ( ) p-cy 

x~y 
X > y. 

(3.1) 

Hence, II(y,x) is increasing in x up to x = y and then constant. D 

A main consequence of Lemma 1 is that in the case s = 0, the operation 
becomes riskier the higher the order quantity is, and undesirable deviations 
from a certain profit level can always be reduced by ordering less initially 
(and hence accepting a lower expected profit). In the extreme case of not 
ordering at all, i.e. y = 0, both expected value and profit variability reduce 
to zero. However, once the decision maker considers shortage penalty cost, 
clearly this relation no longer holds. Minimizing risk now becomes a trade-off 
between costs resulting from overstocking and, unlike the previous case, costs 
from ordering too few due to shortage cost. 

Hence, we will discuss the inventory problem with and without shortage 
penalty cost separately. In this chapter we will discuss the inventory problem 
with explicit consideration of risk preferences of the decision maker. While 
the focus is on the analysis under risk measures, in Section 3.1 we will start 
with a review of the existing literature on the problem, including approaches 
other than using risk measures, e. g. using the expected utility framework. 
Sections 3.2 and 3.3 are dedicated to the detailed analysis of the model 
with risk measures, without and with shortage penalty cost, respectively. 
Applications in the field of supply chain coordination and contracting under 
consideration of risk preferences will complete the chapter. 

3.1 A review of inventory control with risk 
preferences 

One of the early papers including risk aversion in the newsvendor context 
is Lau (1980), who considers three different objectives for a risk-averse 
newsvendor: a mean-deviation tradeoff, a utility function and the probability 
of achieving a minimum profit. Lau (1980) offers a formulation of the 
expected utility from profit with a utility function approximated by a 
polynomial. He gives an implicit solution for the optimal order quantity, but 
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it can only be solved numerically and he cannot present properties of the 
optimal solution. 

Eeckhoudt et al. (1995) examine the newsvendor problem with more 
general utility functions, but their setting is not the standard newsvendor 
setting: after demand realization, emergency ordering is possible at a cost 
of e where c S: e s; p. They show that risk aversion leads to lower order 
quantities. 

Eeckhoudt et al. (1995) show: 

1. If the newsvendor has decreasing absolute risk aversion, he orders more 
when he has larger initial wealth. 

2. y* increases in v and e similar to the risk-neutral case. 

3. Changes in the cost and selling price can affect the order quantity 
in both directions. y* might decrease as p increases and c decreases, 
which never happens in the risk-neutral case. The complication arises 
because of the two different effects of these parameters: the effect on 
the marginal benefit of y and the effect on the total wealth. 

Wang et al. (2008) observed the last point shown by Eeckhoudt et al. 
(1995) in a numerical study and this observation caused a criticism of the 
expected utility theory for risk-averse newsvendor model. They observe that 
the newsvendor decreases his order quantity as the selling price increases, 
and in some cases it can be decreased almost to zero if the selling price is 
too high. A small degree of risk aversion for low to intermediate levels of 
return implies an irrationally high degree of risk aversion at the higher levels 
of return. While this problem was identified and treated in some fields of 
economics, "there is a lack of critical evaluation of expected utility theory 
for more complex settings such as the newsvendor problem" (Wang et al., 
2008). 

Keren and Pliskin (2006) solve the risk-averse newsvendor problem for 
a uniform demand distribution and provide a simple closed-form solution. 
They show that even with shortage penalty cost, a risk-averse newsvendor 
orders less than the risk-neutral. However, it is questionable how valuable 
the insights derived from using uniform distribution is since it might give 
counterintuitive results in case of risk aversion (see Collins, 2004). 

Wang and Webster (2009) use a special form of utility functions: a 
piecewise linear loss aversion utility. The newsvendor considers his initial 
wealth as a reference level such that a final wealth below this level is 
considered as a loss and above it as a gain. He is more sensitive to losses 
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than gains but within each region the utility is linear in wealth. They show 
that the risk aversion may lead to higher order quantities if the shortage 
cost is high and the relative uncertainty of demand is low. 

Lau (1980) considers a mean-deviation objective with the standard devia-
tion of profit as the deviation measure. When there is no shortage penalty, 
i.e. s = 0, he shows that the risk-averse newsvendor orders less than the 
risk-neutral one, and he claims that the same should hold when s > 0 
without giving a proof because of the complexity of the problem. However, 
Wu et al. (2009) state that they disprove the claim of Lau (1980) for power 
distributed demand. They consider the case with positive shortage cost and 
they use the variance of profit as the deviation measure. They show that 
depending on the distribution parameter, the risk-averse newsvendor might 
order more than the risk-neutral. Chen and Federgruen (2000) come to the 
same result when they formulate the objective on cost parameters. 

Chen and Federgruen (2000) model the risk-averse newsvendor problem in 
three different ways under the mean-variance criterion. One main result of the 
work is: for a risk-averse newsvendor, the two objectives, profit maximization 
and cost minimization, might result in different decisions. They explain 
this difference by the dependence of revenue and cost, which yields to: 
Var(Profit)# Var(Revenue)+Var(Cost). Moreover, the decisions are different 
when the cost is formulated differently. They assume zero shortage cost and 
write the profit function for demand, D, as: II(y) = (p-c)y-(p-v)(y-D)+, 
and additionally they write two different cost functions which are equivalent 
when the newsvendor is risk-neutral: C1 (y) = (c-v)(y-D)+ +(p-c)(y-D)-
and C2(Y) = -v(y - D)+ + p(y - D)- + cy. When the mean-variance rule 
is applied for the profit, they show that the risk aversion leads to lower 
order quantities if s = 0. When the objective is defined as the minimization 
of expected cost and the variance of cost the result is more interesting. 
Assuming a power demand distribution as in Wu et al. (2009), they come 
up with the following result: depending on the distribution parameter, 
risk aversion may lead to higher order quantities even without shortage 
cost. Moreover, the size of overage and underage costs do not necessarily 
have an effect on this result. Hence, the difference between risk-averse 
and risk-neutral decision y* is significantly affected by the specific demand 
distribution. 

Collins (2004) shows similar results with numerical examples using the 
definition of overage cost c0 and underage cost Cu ( recall the discussion in 
Section 1.1.1). He uses the mean-variance rule for the cost but he does not 
specify the cost parameters in detail. He uses c0 and Cu without decomposing 
them into shortage cost, salvage value, etc. For gamma, negative binomial, 
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and normal demand distributions he shows that if the cost of underage is 
larger than the cost of overage, Cu ~ c0 , the risk-averse newsvendor orders 
more than the risk-neutral one. What defines the direction of the difference 
between the risk-averse and risk-neutral order quantity is the relative size 
of c0 and Cu, but not if they include shortage cost or not. Even if there are 
no shortage costs and no salvage value, if Cu = p - c ~ c0 = c, so the profit 
margin is more than 50%, the risk-averse newsvendor orders more than the 
risk-neutral one. However, such a result is not possible when the objective 
is written on profit. 

When the mean-variance rule is applied on cost or profit, different results 
come up because of the variance factor. The means are optimized at the 
same level, which is the solution to the risk-neutral newsvendor. However, 
the variance of profit and the variance of cost shows different properties. 
When there is no shortage cost, the distribution of profit has a bound where 
demand equals order quantity. For all D ~ y profit is the same, so the 
variance comes from the lower tail. In order to decrease this variance, the 
tail should be decreased which means decreasing order quantity. At the very 
extreme, when y = 0 there is no variance on profit. However, the distribution 
of cost has both tails even if y = 0. When the problem is formulated on 
cost it is written as c0 = c - v and Cu = p - c, and each unit of demand 
above y costs Cu, which, in fact, is an opportunity cost. This term causes the 
distribution of cost to become unbounded. For each y the variance of cost is 
proportional to c0 , which comes from the lower tail of demand, and to Cu 

from the upper tail, and the quantity that gives the lowest variance depends 
on the relation of the two parameters, independent of their decomposition. 

Collins (2004) points out an important issue: how critical it is to include 
risk aversion in the models. He mentions that in some cases the risk-averse 
and the risk-neutral solutions are so close that it might not be worth it 
to include risk aversion in the analysis and so to deal with complicated 
models. Specifically, for symmetrical demand distributions, if c0 = Cu then 
the risk-averse and risk-neutral decisions are the same and the closer the 
two cost parameters are, the closer the solutions. Moreover, for the uniform 
distribution the two solutions are always equal independent of the difference 
between c0 and Cu. Since a uniform distribution is commonly used for 
numerical examples, this result is specifically important and one should be 
careful about deriving general insights from these examples. 

As a third approach, Lau (1980) studied the problem of maximizing the 
probability of achieving a profit level L with and without shortage cost. 
When there is no shortage cost the result is quite simple: the optimal order 
quantity is y* = p~c. Hence, the solution does not depend on the demand 
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distribution at all, since the profit has a one-to-one correspondence with 
demand for all D < y*, and for all D 2: y* it stays in the targeted level 
L. For any decrease in y* it becomes impossible to reach L, and for any 
increase more demand is required to cover the cost c which means a decrease 
in the probability. 

When the shortage cost is positive, given y, two different demand values 
can give the same profit level, so the distribution of profit is no longer a 
monotone function of demand. Lau (1980) presents the general solution 
method and gives explicit solutions for some demand distributions, such as 
normal and uniform distributions. Interestingly, for the uniform distribution, 
the optimal order quantity does not depend on salvage value at all. 

From the discussion on mean-deviation objective, we know that when 
the problem is formulated in terms of cost, the solution becomes more 
complicated. Independent of shortage cost, the monotonic behaviour in 
demand ceases to exist and we expect that a simple solution like the one 
presented by Lau (1980) cannot be valid anymore. 

After the axiomatic foundation of coherent risk measures by Artzner 
et al. (1999), the application of risk measures in inventory modeling became 
popular. CVaR0 , specifically, has become an important measure of risk in 
inventory modeling . .Jammernegg and Kischka (2007) study the CVaR0 

problem focusing on the effect of risk aversion on performance measures. They 
formulate the objective function as a convex combination of the expected 
profit and the CVaR0 of profit, so that they can cover both risk-averse and 
risk-seeking behaviour. Ahmed et al. (2007) solve the CVaR maximization 
problem for the newsvendor model with shortage cost. They formulate the 
objective in terms of cost, and the focus is on proving the existence of an 
optimal solution. Inclusion of shortage cost and the different formulation does 
not allow a simple solution, but they show that an optimum exists. Gotoh 
and Takano (2007) consider both the CVaR0 and mean-CVaR0 models with 
shortage cost. They use two different objectives, one formulated on profit 
and one on cost. In the following sections, the CVaR0 and mean-CVaR0 

models are analyzed in more detail. 

3.2 Basic inventory control problem 

In the following section we will analyze the newsvendor's inventory problem 
under spectral risk measures and derive the optimality conditions. We will 
derive some structural properties about the optimal solution, i.e. the optimal 
order quantity. Further, we discuss the problem with respect to different 
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performance measures such as the cycle service level. After having discussed 
the inventory problem with general risk spectra, we will look at special cases 
of risk spectra such as the CVaRa or mean-CVaRa formulations as well as 
some continuous risk spectra such as the power and exponential function, in 
Section 3.2.2. We will conclude this section with a numerical analysis of the 
inventory problem for different formulations of the demand distribution and 
risk spectrum. 

3.2.1 Optimal policy and structural properties for the basic 
inventory problem 

We are now ready to apply general risk spectra to the basic inventory control 
problem, i.e. the newsvendor problem without shortage penalty cost. 

Proposition 4 (Newsvendor with a general risk measure). Let the objective 
function of a newsvendor using a spectral risk measure be 

max M(fl(y)), 
yEIR+ 

(3.2) 

where 

M(JI(y)) = (p - c)y - (p - v) 1Y (y - x)</>(F(x))J(x) dx. (3.3) 

The risk measure is concave in the order quantity y, and the optimal order 
quantity y*, is 

(3.4) 

where <I>- 1 (w) denotes the inverse risk transformation function. 

See Appendix A for a proof. 
This result shows us that the optimal order quantity of a newsvendor 

optimizing a measure using a general risk spectrum can be expressed in a 
very compact way. While for a risk-neutral newsvendor the critical fractile 
~ refers directly to the optimal cycle service level, CSL*, a risk-averse or 
risk-seeking newsvendor will deviate from this solution. 

Based on Proposition 4 we can obtain structural properties of the optimal 
solution with respect to the cost parameters as with the risk-neutral problem. 
From the monotonicity of F and <I> we can immediately derive the following 



42 Chapter 3. Inventory Problem with Risk Measures 

Corollary 3. The optimal cycle service level CSL* and the optimal order 
quantity y* are increasing in the selling price p and salvage value v and 
decreasing in cost c. 

Note that these results are in line with the results for the risk-neutral 
newsvendor. In the following proposition we derive structural results about 
the optimal cycle service level and the optimal order quantity with respect 
to the risk preference using (3.4). 

Proposition 5. For a newsvendor without shortage penalty cost, the optimal 
cycle service level CSL* and the order quantity y* increase in the risk 
preference T/ · 

Proof. From Definition 6 we know that <I> decreases in T/, and its inverse <1>- 1 

increases in T/· It follows immediately that y* increases in ry. • 
This result generalizes results previously described in the literature. For 

a newsvendor applying a CVaR0 objective function, Chen et al. (2004) 
show that the optimal order quantity for a risk-averse newsvendor will not 
exceed the risk-neutral optimal order quantity. For different formulations of 
mean-deviation rules similar results were found. Jammernegg and Kischka 
(2007) find that the optimal order quantity is increasing in a (i.e. decreasing 
in the level of risk aversion) and decreasing in .X (higher values of ,X puts 
higher weights on the a-quantile and lower weights on the expected value 
and, hence, imply a higher level of risk aversion). 

The intuition behind this behaviour is clear: Since the newsvendor incurs 
no shortage penalty cost other than lost profit p - c, the risk in profit comes 
only from unsold leftover inventory. Hence, by reducing the order quantity, 
the newsvendor can always reduce his risk by accepting the reduced expected 
profit. Later in Section 3.3 we will see that in the case of positive shortage 
penalty cost this is no longer true. 

Continuing the discussion about non-strict ordering of <I> from Section 2.3.1, 
where we gave an example of two intersecting risk transformation functions 
in Figure 3.1, we can see now that in this case the order of the optimal cycle 
service level and order quantity depends on the critical fractile. For smaller 
ranges of the target cycle service level, decision maker DM1 will order more 
than decision maker D M2 and act less risk-averse; for larger ranges this 
relation will change. While for some ranges of the critical fractile, e.g. for 
low selling prices, decision maker DM1 orders more than DM2 , but as the 
critical fractile increases this relation changes. 
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Figure 3.1: Two decision makers with 
£2..=.E 1------+----.,..,..,. different risk spectra: DM1 with 
P2-v .,. .,. .,. CVaR0 risk spectrum, a= 0.5 (solid 

E.l..=.£ 
P1-v 

0 

line), DM2 with mean-CVaRa risk 
spectrum, a= 0.1, .,\ = 0.5 (dashed 
line). Note that the optimal cycle ser-
vice level is the transformed critical 
fractile. For a low price p1 DM1 or-
ders more than DM2, while for a high 

1 CSL price p2 this relation changes. 

Proposition 6. The expected profit lE II of a newsvendor using a spectral 
measure of risk is maximized for the risk-neutml optimal order quantity. 
lE II decreases the more the newsvendor's risk preference deviates from risk 
neutrality. 

Proof. Recall that lE II is concave in y, with its maximum in the risk-neutral 
optimal order quantity. From Proposition 5 we know that y* increases in T/· 
Hence, lE II is unimodal in the risk preference. • 

This result was already described by .Jammernegg and Kischka (2007) for 
a newsvendor using a mean-CVaRa risk spectrum (see the discussion later 
in Example 6). 

While the cycle service level can be seen as an external, i. e. customer 
oriented performance measure, the probability of missing a profit target level 
as defined in (1.9) is an internally oriented performance measure. 

Lemma 2. Let L be a given profit target level. The probability of missing 
the profit level L is the probability that profit is below the target. For a 
newsvendor without shortage penalty cost 

{
F (<c-v)y+L) 

PLL := IP'(II:::; L) = l p-v 
for L:::; (p - c)y 

for L > (p - c)y. 

Hence, in the case of y 2'. p~c, P LL is monotone increasing in y. 

See Appendix A for a proof. 

(3.5) 

Note that in the special case L = 0 the probability of any negative profit 
realization is considered ( cf. J ammernegg and Kischka, 2007). 
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Proposition 7. Let a newsvendor with a general admissible risk spectrum 
order y* such that it maximizes his risk measure M(y). PL L increases in 
the risk preference for any L :S (p - c)y and is 1 otherwise. 

Proof Using Proposition 5, the optimal order quantity y* increases in r,. 
From Lemma 2, PLL increases in y for L :S (p-c)y and is 1 otherwise. Hence, 
PL L increases in the risk preference for L :S (p - c )y and is 1 otherwise. • 

This result was already found by Jammernegg and Kischka (2007) for a 
mean-CVaRa decision maker for the case L = 0. In this case the optimal 
probability of missing the profit target is increasing in a and decreasing in 
>.. Very related to Proposition 7 is Lau (1980), who describes a situation 
where a budgeted profit might be established such that a manager may be 
interested primarily in maximizing the probability of reaching this budget. 
In this case it might be less important if the limit is strongly exceeded or 
just reached. Lau (1980) derives the optimal order quantity which we can 
formulate in the following: 

Corollary 4 (Maximizing the probability of reaching a profit target). The 
optimal order quantity y*, which maximizes the probability of reaching a 
certain profit target level L, is 

* L y =--
p-c 

(3.6) 

On this result Lau (1980) comments "This result is somewhat strange: 
to maximize the probability of attaining L, one sets the decision variable 
such that L is also the largest possible profit attainable." However, we think 
this result is quite intuitive: since the profit distributions are ordered with 
respect to y up to (p - c)y, once the newsvendor already ordered y* = p~c 

there is no benefit from ordering a single unit more, since the maximum 
potential profit increase is not considered, while the worst profit outcome, 
-cy, is decreasing. If the newsvendor orders one unit less than (3.6), he 
cannot reach the profit target level at all. 

Let us state here that the primary use in this work of the probability of 
missing a profit target level is as performance measure, not as objective 
function. Hence, the result of Corollary 4 is mainly presented for the sake 
of completeness. Among the recent works, Shi and Chen (2007) consider 
maximizing the probability of reaching a profit target level in a supply chain 
context, and in Shi et al. (2010) a combined inventory and pricing approach 
is taken. 
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3.2.2 Specific examples of risk spectra in the basic inventory 
problem 

Using some examples, we will now show how the general spectral measure 
can be used to solve the inventory problem for already-known formulations, 
such as the expected value solution, the CVaR0 objective function or a 
mean-deviation objective where deviation is expressed by CVaR0 • As all 
of these formulations are special cases of spectral measures, the examples 
illustrate the flexibility of using general risk spectra in the problem analysis. 

Example 4 (Expected value). A first example is the expected value formu-
lation derived in (1.4). Using the expected value implies neutrality about 
the variability of the outcome, hence the spectral function does not assess 
higher weights to lower outcomes. The risk spectrum is 

¢(w) = 1. (3.7) 

It can be easily seen that applying (3.7) to (3.4) results in the optimal order 
quantity for a risk-neutral newsvendor 

y* = p-l (p - C) 
p-v 

as previously stated in (1.4). 

Example 5 (CVaR0 ). As we discussed earlier in Section 2.3 when describing 
the general spectral measure, CVaR0 is another special case where the risk 
spectrum is a constant function ¼ in the range O ... a as in (2.10), so that 
the risk transformation function is 

{
Wl 

<I>(w) = 1 a 

Its inverse is then 

w:::; a 
otherwise. 

fort E [O, 1] 

so that the optimal order quantity is 

y* = p-l (a . p - C) . 
p-v 

(3.8) 

(3.9) 

(3.10) 
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This result can be found for example in an early draft of Chen et al. (2004), 
who, in their work, specifically used the CVaR°' objective function to model 
risk-averse decision making behaviour. 

An observation we can make for a CVaR°' spectrum is that the optimal 
cycle service level is limited by a. If we consider DM1 in Figure 3.1 again 
(the solid line), then it is easy to see that the maximum cycle service level 
CSLmax = a is reached for <I> = 1, so for limp• oo ~- This implies that 
independent of the profitability of the product, the optimal order quantity 
will not exceed a certain amount, p-1(a). 

This implies, for the distribution of profit, that the optimal order quantity 
will be such that VaRa(II(y*)) = (p - c)y* (see Gotoh and Takano, 2007, 
or Chen et al., 2008b). The intuition behind this is that a CVaR°' decision 
maker only considers profit outcomes below VaR°'; any realization above 
VaR°' is not considered. Hence, using the fact that the maximum possible 
profit realization under the "best" demand state is (p-c)y, there is no benefit 
from ordering any quantity where the resulting VaRa(II(y)) is smaller than 
(p - c)y. 

Example 6 (Mean-CVaR°' objective). The mean-CVaR°' objective function 
is a special case where the risk spectrum is a piecewise constant function 
with a single step in a as in (2.11). Recall that this risk spectrum has two 
paramters. It is composed out of a CVaR°' part with parameter a and the 
expected value in a convex combination, where the weighting factor is >.. Its 
risk transformation function is 

<I>(w) = 0 w w _ a {
.>. < 
>. + }=~ (w - a) otherwise. 

The inverse risk transformation function in this case is 

<l>-1 t _ >. { 
f!t 

( ) - (l + ~=~ (t - >.) 
t ~ >. 
otherwise. 

Plugging (3.12) in (3.4) leads to the optimal order quantity 

{ 
p-1 lg_ E.::.£) * .>. p-v 

y = p-1 E.::.£ + a->. c-v) 
p-v 1-A p-v 

E.::.£ < >. p-v -

otherwise. 

(3.11) 

(3.12) 

(3.13) 

A mean-CVaR°' objective of this type was already proposed and the optimal 
policy found in Jammernegg and Kischka (2007) and Gotoh and Takano 
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(2007). While the latter are mainly interested in finding a linear program-
ming formulation for solving the capacity constraint multi-product case, 
.Jammernegg and Kischka (2007) derive structural properties for the risk-
averse (o: < ,\) as well as for the risk-seeking (o: > ,\) behaviour. They show 
that the optimal order quantity y* and the optimal cycle service level CSL 
are increasing in o: and decreasing in ,\, hence decreasing in the level of risk 
aversion. 

Note that as long as the critical fractile E=£ is smaller than -\, the solu-p-v 
tion of the mean-CVaR,. optimizer is not different from the pure CVaR,. 
optimizer. 

Further, Jammernegg and Kischka (2007) point out that expected profit 
decreases the more risk-averse or risk-seeking the decision maker becomes. 
This result can be obtained considering the fact that the optimal order 
quantity of a risk-neutral decision maker results in the maximum expected 
profit, and by the monotonicity of the order quantity in the risk preference. 

3.2.3 Numerical study of the basic inventory control problem 

In this section we will present a numerical study in order to illustrate the 
findings introduced in the previous section and will discuss some of the 
structural properties of the problem in more detail. 

For numerical analysis of the basic inventory control problem we use the 
following parameters: selling price p = 10, production cost c = 6, salvage 
value v = 3, no shortage penalty costs are considered (see Section 3.3.3 
for numerics of the inventory problem with positive shortage penalty cost). 
Additionally, for the mean-CVaR,. risk spectrum, whenever it is not stated 
otherwise, we set ,\ = 0.5. 

To model demand uncertainty, in the following we assume two parametric 
distributions of demand. 

1. A Weibull distribution D ~ Weib(2, 100) is used as a general rule, 
since it is shown to be a "Newsvendor distribution" by Braden and 
Freimer (1991). The expected demand, JED= 88.62 units, the optimal 
risk-neutral cycle service level is CSL*= 0.5714 and the corresponding 
optimal order quantity is y* = F- 1(0.5714) = 92.05 units. 

2. A Gamma distribution D ~ Gamma(µ, a 2 ) will be used for all cases 
where the effect of demand variance is of interest, since the Gamma 
distribution allows for changing variance while keeping the mean con-
stant, which is not possible for the Weibull distribution. Expected 
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demand is again JED=µ= 88.62; CSL* and y* depend on the actual 
variance. 

Note that both distributions have a positive support which fits with the 
assumption of a non-negative demand D, unlike the commonly used normal 
distribution. 

We use the following definitions of both distribution functions. We define 
the Weibull distribution with two parameters, the shape I and scale J 
parameter, as 

F(x)=l-e-(fr', (3.14) 

with corresponding density, 

1 (x),-l (x)"I J(x) = J J e- ~ . (3.15) 

For the Gamma distribution we use as parameters mean µ and variance a2 

directly, so that we can modify them independently. Hence, we define the 
cdf as 

( 2 ) r IE... xH. 
F(x) = " , " , 

r (~) 
(3.16) 

where here r is defined as the complete Gamma function and I is the lower 
incomplete Gamma function2 . All numerics are calculated using the R 
language and environment for statistical computing (R Development Core 
Team, 2010). 

Results from the numerical study 

As stated in Proposition 5, y* is monotone in the level of risk aversion for 
the inventory problem without shortage penalty cost. Figure 3.2 shows the 
monotonicity of y* in the level of risk aversion for a mean-CVaRa and a 
power risk spectrum. Note that in the mean-CVaRa model, for a fixed a, 
y* is decreasing in A, which can be seen from the perfect ordering of the y* 
lines in the first plot of Figure 3.2. 

2The Gamma function is defined as r(z) := f0
00 tz-Ie-t dt. The lower incomplete 

gamma function is defined on the same integrand, -y(z, r) := J; tz-Ie-t dt. Note that 
there exist efficient numerical approximations for the (incomplete) Gamma function as 
well as for the probability and density of the Gamma distribution in the R environment 
for statistical computing. 
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Figure 3.2: Optimal order quantity y* for a mean-CVaRa (left plot) and a power 
(right plot) risk spectrum objective function. Note that the circles on the lines 
correspond to the risk-neutral y* and for each line separate between risk-averse 
(left) and risk-seeking (right) behaviour. 

In Figure 3.2 we can see that the risk preference can have a big impact on 
y*. For example, with the power risk spectrum, y* changes between 20 and 
120. However, the size of the difference depends on the parameters of the 
demand distribution. Figure 3.3 shows the effect of demand variance on y*. 
The lines are ordered with respect to 1J and they get more and more distant 
as variance increases. Clearly, risk preference is an issue of uncertainty or 
randomness, and if we see variance as a measure of uncertainty, it is obvious 
that large variance causes a more significant impact of the risk preference 
on the decision. 

In Figure 3.4 we illustrate the expected profit evaluated at y* with respect 
to the risk preference obtained by maximizing the risk-measure for a mean-
CVaR0 and a power risk spectrum. Clearly, the expected profit is maximized 
in the risk-neutral case and decreases when the decision maker deviates from 
risk neutrality, becoming more risk-averse or more risk-seeking. Hence, there 
are some profit levels smaller than the risk-neutral expected profit which can 
be reached by an order quantity which is optimal for a specific risk-averse, 
as well as for a risk-seeking, decision maker. 

Figure 3.5 considers a 90% confidence interval of profit, CIJI, and the 
maximum and minimum possible profits, 7rmax and 7rmin, respectively. For 
most of the o:-levels and all k the upper border of the confidence interval 
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Figure 3.3: Optimal order quantity y* for a mean-CVaR0 {left} and power {right} 
risk spectrum as a function of demand variance 172 , where D ~ Gamma(µ, 172 ). 

0 

risk-averse risk-seeking 

0.0 0.2 0.4 0.6 0.8 

a 
1.0 

g 

risk-seeking 
filL,-----~--+-----~--~ 

0.0 0.5 1.0 

k 
1.5 2.0 

Figure 3.4: Expected profit with corresponding y* for a mean-CVaRa (left plot) and 
a power (right plot) risk spectrum with demand D ~Weib(2,100}. Note that the 
vertical line separates risk-averse ( a: < >. and k < l) from risk-seeking ( a: > >. and 
k > l) behaviour. 
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Figure 3.5: Expected profit with corresponding y• for a mean-CVaRa (left plot) 
and a power (right plot) risk spectrum with a 90% confidence interval Cl II and 
maximum/minimum profit 7rmax and 7rmin, respectively. 

corresponds to ?l"max· Note that the size of the confidence interval, as well as 
the range ?l"max - ?l"min, is increasing in 'TJ· 

In Figure 3.6 the probability of missing different profit targets is shown. 
As the left plot shows, PL L is 1 for order quantities below (p - c )y and 
increasing in y for any quantity larger than this threshold. It can be easily 
seen that PL L is ordered with respect to the target level L in the sense 
that the higher the profit target level, the larger PL L is. The right plot 
shows PL L at y* with respect to the level of risk aversion, specifically with 
respect to k for a power risk spectrum. The structure shown in the left plot 
is almost directly carried on to the right one because of the monotonicity of 
y* ink. 

3.3 Inventory control with shortage penalty cost 

We will now discuss the case where the newsvendor considers shortage 
penalty cost in addition to lost revenues in case of a stockout situation for 
each unit short. Similar to the basic inventory problem without shortage 
cost we will formulate the problem for a general risk spectrum and illustrate 
properties for specific examples afterwards. 
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Figure 3.6: Probability of missing a profit target L, i.e. I'l'(II ~ L) with different order 
quantities (left) and with the degree of risk aversion k, where the corresponding 
optimal order quantity for a power risk spectrum is used. 

3.3.1 Optimal policy and structural properties for the inventory 
problem with shortage penalty costs 

Once the newsvendor considers shortage penalty cost for unsatisfied demand, 
the ordering of profit is not the same as of demand anymore, as discussed in 
Lemma 1. If we consider for now the maximum possible profit realization for 
a given quantity y as the profit target, so Ih = (p - c)y, then a deviation 
of this profit target can happen now for a demand realization larger than y 
(i.e. profit loss due to understocking) in addition to the realizations smaller 
than y (i.e. profit loss due to overstocking). 

Recall that the newsvendor's profit function with shortage penalty cost 
can be written as 

{ (p - c)D - (c - v)(y - D) 
II(y) = 

(p-c)y-s(D-y) 

with cdf F11(1r) = IF'(II(y) -5, 1r). 

D -5, y 
D >y, 

(3.17) 

In Figure 3. 7 the profit distribution for a newsvendor without and with 
shortage penalty cost are shown. The cdf of profit without shortage penalty 
cost has a jump in (p - c)y to 1, since there is a probability mass on this 
profit realization. For the case with shortage penalty cost such a point 
does not exist, and therefore the profit cdf is continuous. Further, without 
shortage penalty cost, the minimum possible profit is -(c-v)y and the profit 
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Figure 3.7: Cumulative distribution function of profit without considering (left), and 
while considering (right) shortage penalty cost with parameters p = 10, c = 6, 
v = 3; s = 0 (left) and s = 5 (right). 

distribution has a limited support to the left. With shortage penalty cost the 
minimum possible profit is -oo with demand oo, so the profit distribution 
has unlimited support on the left tail. 

Figure 3.8 depicts profit with respect to demand for a given quantity, y. 
Note that the maximum possible profit is 7rmax = (p - c)y. Let us for now 
consider any profit 1r1 E [-(c - v)y, (p - c)y). Each profit in this range will 
happen with exactly two different demand realizations; with demand x 1 < y 
and with a corresponding demand x1 > y. Equating both cases of (3.17) for 
1r(x, y), we can express x in terms of x, so 

- p-v x=y+(y-x)--. 
s 

(3.18) 

Note that the corresponding upper demand level x for a given x depends on 
y. This becomes immediately clear from Figure 3.8 if we keep x constant 
and increase y. In this case 7r max increases. Since the slopes of both parts 
of this piecewise linear function stay the same (p - v for x ::; y and -s for 
x > y), x is necessarily increasing. 

From Figure 3.8 we can see that the probability that profit is below 
1r1 is composed of two parts: (a) the probability that demand is below 
x, and (b) the probability that demand is larger than x. From (3.18) we 
can express x as a function of x, so we are able to express the sum of the 
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X 

Figure 3.8: Profit II as a func-
tion of random demand D. 
Maximum profit 7rmax is reached 
for D = y. If no short-
age penalty cost are considered 
(s = 0), II remains constant 
for any D > y, while for the 
case with shortage penalty cost 
(s > 0), II decreases in D. 
Note that in the latter case, 
each profit realization above 
-(c - v)y can happen with 
exactly two different demand 
levels. 

two probabilities in terms of x < y as long as we also consider negative 
realizations of demand. Profit realizations below -( c - v )y can only occur in 
the case where demand D > y ( 1 + 9), which would correspond to x < 0. 
Hence, if we only consider the demands in the range (-oo, y] or alternatively, 
[y, oo), we are able to cover all possible profit realizations. In the following 
analysis we will use the range ( -oo, y], which implies considering negative 
demand realizations x < 0, although they happen with probability 0. 

Lemma 3 (Profit distribution). Let II be random profit with distribution 
Fn(1r) and D random demand with distribution F(x). There exist two 
mutually exclusive demand levels, x E ( -oo, y] and x E (y, oo) where profit 
equals 1r. Hence, 

{ 
F ( 1r+(c-v)y) + l _ F ( (p-c+s)y-,r) 

Fn(1r) = p-v s 
1 

for1r :S (p - c)y 
(3.19) 

for 1r > (p - c)y, 

with density 

{ 
_1 f ( 1r+(c-v)y) + l f ( (p-c+s)y-,r) 

fn(1r) = p-v p-v s s 
0 

for1r :S (p - c)y 

for1r > (p - c)y. 
(3.20) 
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See Appendix A for a proof. Since we formulated the profit distribution for 
x <yin Lemma 3, by (3.17) xis such that 1r(x, y) = (p-c)x- (c-v)(y-x). 
Plugging in 1r(x, y) in (3.19), 

Frr ( 1r(x, y)) = F(x) + 1 - F (y + (y - x)p: v) . 

Further, since we previously defined x := y + (y - x)7, 

Frr ( 1r(x, y)) = F(x) + 1 - F(x). (3.21) 

Note that (3.21) forms a new distribution function for any x ~ y. Con-
sidering (3.18), in the following we call the new distribution function 

G(x) := Frr ( 1r(x, y)) = F(x)+l-F(x) with density g(x) := f(x)+ f(x)7. 
Note that even if we do not write it explicitly, the order quantity y is a 
parameter of the distribution function G(x). 

In light of the above discussion we are now ready to formulate the risk 
measure in the following proposition. 

Proposition 8 (Newsvendor with a general risk measure). Let the objective 
function of a newsvendor using a spectral risk measure be 

max M(ll(y)), 
yEIR+ 

(3.22) 

where 
M(ll(y)) := (p - c)y - (p - v) J_Y

00 
G,t,(x) dx (3.23) 

and 
G,t,(x) := 1P(G(x)) = IP(F(x) + 1 - F(x)). 

The risk measure is concave in the order quantity y. Furthermore, we can 
write the optimal order quantity y* as the solution to the first order condition, 

M'(ll(y')) - dM~:(y)) 1,-,. - 0, (3.24) 
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where the first derivative of the risk measure with respect to the order quantity 
y is 

M'(y) = 1-~ (-(c - v)g(x)<t>( G(x)) dx 

+ [Yoo 1r(x,y)d~~) <t>( G(x)) dx 

+ 1-~ 1r(x, y)g(x) 2¢' ( G(x)) dx 

( p-v) + (p - c)yf(y)<f>(l) 1 + -s- . 

See Appendix A for a proof. 

(3.25) 

The concavity result follows from the general results obtained by Acerbi 
(2002) stated in Proposition 3(a). As mentioned earlier, G(x) forms a new 
distribution function on demand for a specific order quantity, so that for each 
ya different G exists. For a given y, one can think of Gas cdf of the sum of 
two exclusive, conditional random demands. Hence, when shortage penalty 
costs are considered, we can transform the demand distribution F into a 
distribution G such that the same ordering of profit and demand exists. 
Important, however, is that now we have to consider negative demand 
realizations. Although having a probability of zero, each of them has a 
corresponding positive demand realization x > y, where the newsvendor 
incurs shortage penalty costs. 

Instead of explicitly formulating M(ll) for the case of a risk-averse decision 
maker, one could also use the maximization formula by Acerbi (2002) directly. 
However, to be able to solve (2.15) numerically, the risk spectrum has to 
be discretized into a piecewise linear function with a resolution of J steps. 
This discretized</> can be used for an optimization using (2.18). However, 
the complexity of the optimization problem grows in the number of steps 
since the optimization has to be carried out over (y, '¢J), or J + 1 variables. 
Additionally, for the case of a risk-seeking decision maker a joint optimization 
on (y, '¢) does not seem possible anyway. 

Using (3.23) together with (3.25) allows for using highly efficient single 
dimensional numerical optimization algorithms. The reason why we are 
able to reduce the ( J + 1 )-dimensional optimization problem to a single 
dimensional one is that we are taking advantage of the specific ordering of 
profit realizations, while Acerbi's method does not assume any knowledge 
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on the ordering of profit3 . A more detailed discussion about the derivation 
can be found in the proof of Proposition 8 in Appendix A. 

3.3.2 Specific examples of risk spectra in the inventory problem 
with shortage penalty cost 

As we did in the previous section for the basic inventory control problem, we 
can now look at special cases of risk spectra already used in the literature 
and describe the optimal policies and structural properties found so far. Note 
again, that for the risk-neutral case, i.e. for the expected value optimization, 
<f>(w) = 1, the transformations described in the previous section are not 
necessary. When all random realizations are given the same weight, the 
different ordering of the demand realizations compared to profit realizations 
is not relevant. It is easy to find the optimal order quantity y* for this case 

as y* = p-I (E=~!:); see the discussion of the risk-neutral problem in the 
introduction in Section 1.1.1. In the following, we will give as examples the 
pure CVaR0 optimizer and a mean-CVaR0 optimizer. 

Example 7 (CVaR0 decision maker with shortage penalty cost). Unlike the 
general formulation of the optimal order quantity in 3.25 the problem can 
be solved for the optimal order quantity y* in closed form in the following 

Lemma 4 (Optimal order quantity for a CVaR0 optimizer with shortage 
penalty cost). 

* p - V p-I ( p - C + S) S p-I ( C - V ) y =--- a--- +--- 1-a--- . 
p-v+s p-v+s p-v+s p-v+s 

(3.26) 

See Appendix A for a proof. 
While this explicit formulation specifically for the CVaR0 decision maker 

of the optimal policy was previously derived by Gotoh and Takano (2007), 
we present a proof based on the optimization of (3.22). Their original proof 
is based on the CVaR0 optimization by Rockafellar and Uryasev (2000) and 
solves the problem for both y* and optimal Value-at-Risk 1/J*. Note that the 
case without shortage penalty cost is a special case of (3.26); as for s = 0, 
the right term vanishes and the weighting factor for the first term becomes 
1, so that the whole equation reduces to the solution of the CVaR0 solution 
without shortage penalty cost in (3.10). 

3 Note that Acerbi (2002) calls the problem of not knowing the ordering of profit with 
respect to the state variable "reshuffiing" of profit. 
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Example 8 (Mean-CVaRa decision maker with shortage penalty cost). 
Extending the results of the CVaRa decision maker of the previous example 
leads to the result of a mean-CVaRa decision maker. 

Lemma 5 (Optimal order quantity for a mean-CVaRa optimizer with 
shortage penalty cost). The optimal order quantity y* is that y which solves 
the following system of equations 

~ ( (p - c + s)(l - F(x0 )) - (c - v)F(x0 )) 

+ 1 - A ((p - c + s)F(x0 ) + (c - v)F(x0 ) - (p - v + s)F(y)) = 0 
1-a 

F(x0 ) + 1 - F(x0 ) = a. 

(3.27) 

(3.28) 

The proof is omitted here and provided with Example 9 where a general 
piecewise constant risk spectrum is considered. 

It seems to be impossible to find an explicit formulation for y* for general 
demand distributions, although for specific families of distributions an explicit 
solution can be obtained by plugging in the distribution function. Solving 
both equations numerically is highly efficient compared to applying numerical 
optimization algorithms on M(ll(y)) as defined in (3.23) directly, since no 
numerical integration has to be carried out. 4 

Example 9 ( General piecewise constant risk spectrum with shortage penalty 
cost). The results of the mean-CVaRa example can be further generalized 
by considering a piecewise constant risk spectrum, e. g. to discretize a 
continuous risk spectrum in a piecewise constant function with J jumps as 
shown and discussed in Section 2.3.3. The risk spectrum in w was already 
shown in Figure 2.5, while the corresponding inventory problem is illustrated 
in Figure 3.9. If J jumps exist, then there are J + 1 levels of¢, so ¢1 ... ¢J+l· 
The demands where the jumps occur are then x1 ... XJ. Further, we define 
x0 := -oo and x'.J+i := y, i.e. the smallest and largest demand realization 
in the demand range of interest. Recall from the discussion in Section 3.3.1 
that considering the demand range (-oo, y] is enough to cover all possible 
profit realizations. 

4 The computation of the distribution function might require numerical integration 
techniques, if no closed-form expression exists. An example for such a cdf is the 
Gamma distribution. In those cases, generally efficient approximations implemented 
in numerical software packages (e.g. R) exist. 



3.3 Inventory control with shortage penalty cost 59 

¢,1 

tf>J 
Figure 3.9: A discretized risk spectrum 

with J jumps in the probability 

¢>1+1 
range, so that J + l levels of ¢> ex-
ist. The profit levels at the bor-

i= 0 1 2 ... J J+l ders of each range i are Ili = 

II= -oo 71"j 11"2 11"J (p- c)y 
-oo, 1r1, ... , 1r 1, (p - c)y, with corre-
sponding demand levels below y of 

D = -oo XJ x2 Xj y D = -oo,x1, ... ,x'.,,y. 

Lemma 6 ( Optimal order quantity of a newsvendor with piecewise constant 
risk spectrum considering shortage penalty cost). Let x'f be the demand 
where 

F(x't) + 1 - F(x't) = wi, (3.29) 

so that x'f are the demands in the range (-oo, y] up to which point the profits 
are weighted with <Pi- We can formulate M using a piecewise constant </> as 

J+l x'.' 

M(JI(y)) = L<Pi 1,,• ((p-c)x-(c-v)(y-x))g(x)dx. 
i=l 1.-1 

(3.30) 

The optimal order quantity y* satisfies the following system of equations 
(i. e. the first order condition): 

dM(II(y)) = 0 = 
dy 

J+l 

= L <Pi ( (p - c + s)(F(x't_ 1 ) - F(x't)) - (c - v)(F(x't) - F(x't_ 1 ))), 

i=l 

(3.31) 

F(x't) + 1 - F(x't) = wi for all i = l ... J. (3.32) 

See Appendix A for a proof. 

Note that for J jumps a system of J + l nonlinear equations has to be 
solved. 
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Figure 3.10: Optimal order quantity y* for a mean-CVaR0 (left plot) and a power 
( right plot) risk spectrum objective function with shortage penalty cost. Note that 
the circles on the lines correspond to the risk-neutral y* and for each line separate 
between risk-averse (left} and risk-seeking (right} behaviour. 

3.3.3 Numerical study of the inventory control problem with 
shortage penalty cost 

For the numerical analysis of the inventory control problem with shortage 
penalty cost we use the same set of parameters as with the numerics for the 
basic inventory problem in Section 3.2.3. Additionally, we assume a shortage 
penalty cost s = 5 unless otherwise noted. 

Figure 3.10 shows the optimal order quantity in the level of risk aversion. 
Unlike the case of zero shortage penalty cost, now y* is no longer monotone in 
the level of risk aversion. While the order quantity increases as the decision 
maker becomes risk-seeking, the order quantity is not non-increasing as the 
decision maker becomes more risk-averse. For some ranges of risk-aversion 
the quantity is reduced. However, as the decision maker becomes very 
risk-averse ( the risk preference is extremely low), her focus turns towards 
reducing the impact of the very rare case where demand is extremely high 
and high shortage penalty cost are realized. Hence, the order quantity 
increases again. 

Note that y* goes to infinity as o: or k gets closer to zero. In Figure 3.10 
this property is not very clear, but if we increase the penalty cost to s = 30 
this effect becomes more clear, as can be seen in Figure 3.11. Hence, we see 
that a risk-averse decision maker might order more than a risk-neutral one. 
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Figure 3.11: Optimal order quantity y* for a mean-CVaRa (left plot) and a power 
(right plot) risk spectrum objective function with large shortage penalty cost, s = 30. 
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Figure 3.13: Expected profit with corresponding y* for a mean-CVaR, (left plot) and 
a power (right plot) risk spectrum with shortage penalty cost. 

The effect of demand variance on y* is shown in Figure 3.12. Similar to 
the case without penalty cost (see Figure 3.3), the difference between y* 
with respect to risk aversion gets larger as variance increases. Note that for 
a risk-averse newsvendor, i.e. a = 0.2 or k = 0.5, if there is no shortage 
penalty cost, y* is decreasing in variance (see Figure 3.3), while now, when 
s = 5, it is increasing. However, this is not a general rule but depends on 
the cost parameters. For example, if the shortage penalty cost is decreased 
to s = 3, y* is again decreasing in variance for a = 0.2 and k = 0.5 as in the 
case of zero penalty cost. 

In Figure 3.13 we illustrate the expected profit for a mean-CVaRa and a 
power risk spectrum. The expected profit is maximized in the risk-neutral 
case and decreases once the decision maker becomes more risk-seeking. For 
the case of risk aversion, however, the expected profit is no longer monotone 
since the optimal order quantity is not monotone in the level of risk aversion 
as shown in Figure 3.10. 

Figure 3.14 shows the 90% confidence interval and the maximum possible 
profit at y* with respect to the level of risk aversion. In any case, the 
minimum possible profit is -oo, and this causes the confidence interval to 
be larger compared to the zero penalty cost case. Specifically, for small 
a and k, when s = 0 the newsvendor is able to significantly decrease the 
difference between 7r max and 7r min by ordering very little and consequently 
achieving quite a tight CI (see Figure 3.5). However, here when s > 0, even 
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Figure 3.14: Expected profit with corresponding y* for a mean-CVaR0 (left plot) 
and a power (right plot) risk spectrum with a 90% confidence interval Cl II and 
maximum profit 7l'max• Note that minimum profit is -oo. 

when the newsvendor is very risk-averse, he is not able to reach such a small 
confidence interval. 

Figure 3.15 depicts the probability of missing different profit target levels. 
Note that unlike the case without shortage penalty cost, PLL has no jump 
at (p - c)y anymore but is a continuous function. When using the optimal 
order quantity, the shape of P LL is influenced by the shape of the optimal 
order quantity in the level of risk aversion as shown in Figure 3.10. The 
non-monotonicity of y* causes the increasing-decreasing-increasing shape of 
PLL, e.g. for L = 150. 
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Figure 3.15: Probability of missing a profit target L, i.e. 'P(II::::; L) with different 
order quantities (left) and with the degree of risk aversion k, where the corresponding 
optimal order quantity for a power risk spectrum is used. 

3.4 Applications in supply chain management 

So far in this chapter, we have discussed the inventory control problem from 
the view of a single decision maker, as when the news vendor is a single 
entity or an agent in a supply chain. The problem can also be viewed from 
a supply chain perspective. When risk sensitivity is included in supply 
chain coordination issues, the complications are twofold: the optimal policies 
and coordinating contracts become more complicated, and the objective of 
the whole chain gets more difficult to describe. "When each of the agents 
maximizes his expected profit, the objective of the supply chain considered 
as a single entity is unambiguously to maximize its total expected profit 
( ... ). Regardless of the measure used, when one or more agents in the supply 
chain are risk-averse, it is no longer obvious as to what the objective function 
of the supply chain entity should be." (Gan et al., 2004). 

Lau and Lau (1999) and Tsay (2002) focus on return policies concerning 
a single manufacturer and a single retailer who are both risk-averse. Lau 
and Lau (1999) assume both parties have mean-variance objective functions 
and all of the leftover inventory on the retailer's side can be returned to 
the manufacturer, so the policy parameter is just the salvage value and not 
the proportion of leftovers that can be returned. They obtain the optimal 
wholesale price and salvage value for normally distributed demand, but the 
optimality refers to maximizing the manufacturer's objective function. They 
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show that as the manufacturer becomes more risk-averse, he sets both the 
salvage value and the wholesale price lower, which basically means that he 
tries to put more of the risk on retailers' shoulders. Since the problem is 
modeled from the side of the manufacturer the supply chain performance is 
not taken into account. 

Tsay (2002) assumes a single manufacturer, single retailer setting, both 
maximizing their mean-standard deviation objective. The manufacturer 
sets the return policy and then the retailer sets his selling price after the 
uncertain demand is revealed. The demand distribution is modeled as a 
two-point distribution, i.e. low with probability p, high with 1 - p. The 
policy is either a no-returns policy or a full-return for full-credit policy, so not 
a continuum as in Lau and Lau (1999). They find the equilibrium under each 
policy. In case there are no returns the manufacturer's risk sensitivity has 
no effect since there is no uncertainty on his side. When the retailer orders 
too few because of his risk aversion, the manufacturer lowers the wholesale 
price to increase the retailer's order. As a result, depending on the demand 
parameters, the retailer's risk aversion might cause his expected profit to 
increase because of the decreasing wholesale price. In case of full-return for 
full-credit, a retailer's risk sensitivity has no effect on the policy parameters, 
while depending on the degree of his risk aversion the manufacturer may 
lower the wholesale price when he accepts returns. 

When the manufacturer is risk-neutral he increases the wholesale price if 
he accepts returns. However, returns make his profit more variable and one 
way to decrease variability is by decreasing the variability on sales. Hence, 
if he is risk-averse he lowers the wholesale price, which induces lower retail 
prices and smaller variability in profit. Hence, all else equal, the retailer 
should search for a risk-averse supplier. 

Agrawal and Seshadri (2000) assume a risk-neutral manufacturer selling 
items to a number of newsvendors who differ in their risk sensitivity, which 
is measured by a mean-variance rule. Newsvendors operate in identical and 
independent markets and the selling price of the product is the same in each 
market. The manufacturer does not know the degree of risk aversion of each 
single newsvendor, but he knows the distribution of risk aversion among 
them. Under this setting they design a menu of contracts which should be 
offered by a risk-neutral intermediary who bares the risk of the newsvendors 
in different proportions depending on the contract that the newsvendor 
selects from the menu. Each contract in the menu includes a risky part 
which comes from the uncertain profit and a fixed side-payment from the 
intermediary to the newsvendor. The more risk-averse newsvendors select 
one of the contracts with a large side-payment. Chen and Seshadri (2006) 
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prove the optimality of Agrawal and Seshadri's menu of contracts in the 
sense that it maximizes the intermediary's return, which means designing 
a setting that increases the order quantities to the optimal level in the 
risk-neutral case. However, as mentioned by the authors, if pricing is also 
considered, the existence of an intermediary might cause higher retail prices 
and lower consumption. 

While Lau and Lau (1999) and Tsay (2002) do not mention coordination 
at all, Agrawal and Seshadri (2000) consider the total order quantity in the 
channel but none of them considers Pareto optimality. 

Gan et al. (2004) are the first to examine coordinating contracts based on 
Pareto optimality with risk-averse agents. Their definition of supply chain 
coordination assumes "no agent's payoff can be improved without impairing 
someone else's payoff and each agent receives at least his reservation payoff." 
They differentiate between the channel's external and internal problem as 
the order/production quantities, and the allocation of profit. When there is 
at least one risk-neutral agent within the supply chain, as a Pareto optimal 
sharing rule, he can take all the risky profit and give side-payments to 
the other agents when the external decision is set to maximize the chain's 
expected profit. This statement is in line with the results of Agrawal and 
Seshadri ( 2000). 

In order to develop coordinating contracts Gan et al. (2004) consider 
a supply chain with a single retailer and a single manufacturer. When 
both agents maximize their mean-variance tradeoffs, or an exponential 
utility function, the revenue-sharing contract and the buy-back contract can 
coordinate the chain if a side-payment to the retailer is included. If the 
manufacturer is risk-neutral it is Pareto optimal if he bears all the risk and 
just gives a fixed payment to the retailer. This result is extended by Chen 
et al. ( 2008a). 

However, the results cannot be generalized to a concave utility function. 
They give an example where the manufacturer is risk-averse at low returns 
and risk-neutral at higher levels. For this specific example they show that 
neither the buy-back nor the revenue sharing contract can coordinate the 
channel since it is not possible to develop a proportional sharing rule. They 
mention that for general cases new contract forms should be designed. 

Gan et al. (2005) study a supply chain with a risk-neutral manufacturer and 
a retailer who has a constraint on the probability of reaching a certain profit. 
The standard revenue-sharing and buy-back contracts do not coordinate 
the channel anymore. They construct a coordinating contract which is 
quite complicated compared to the contracts for expected profit maximizing 
agents. 
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Chen et al. (2008a) study a decentralized supply chain with multiple 
risk-neutral or risk-averse agents. They introduce the concept of rational 
contracts and analyze a supply chain with multiple risk-averse suppliers 
and a single risk-averse retailer. For the second case, the authors identify 
conditions of coordinating contracts and propose specific contracts based on 
the level of risk aversion among the suppliers and the retailer. Chen et al.'s 
contract includes fixed side-payments as mentioned by Gan et al. (2004) 
and also the concept of intermediaries mentioned by Agrawal and Seshadri 
(2000). They show that if the level of risk aversion is the same between all the 
players in the supply chain, any contract that coordinates the risk-neutral 
case coordinates this case as well. If the retailer and the manufacturers have 
different levels of risk aversion the type of the coordinating contract changes 
depending on who the least risk-averse player is. 

Wang and Webster (2007) study supply chain coordination contracts 
between a single risk-neutral supplier and a single risk-averse retailer using 
a piecewise linear utility function as already discussed in Wang and Webster 
(2009). Their results indicate that coordinating contracts based on the 
assumption of risk neutrality may result in markedly lower supply chain 
profit when retailers are loss-averse; hence, suppliers should consider the 
impact of loss aversion in contract design, in particular when dealing with 
small retailers for whom the assumption of risk neutrality is less likely to 
hold. 

Lastly, two papers on newsvendor networks by Tomlin and Wang (2005) 
and van Mieghem (2007) include risk aversion in the network design problem. 
Tomlin and Wang (2005) consider unreliable resources and uncertain demand. 
They show that for a risk-averse decision maker, dedicated sourcing may 
be more preferable than the flexible one. The only uncertainty in van 
Mieghem (2007) is the demand uncertainty and he shows that the risk-averse 
newsvendor may increase network capacity more than the risk-neutral one. 

The main conclusions of the papers presented in this section are: when 
the agents with different degrees of risk aversion require different contracts, 
some of the coordinating contracts assuming risk neutrality do not work 
under risk aversion, and one way of dealing with this problem is introducing 
risk-neutral intermediaries into the channel. In the end, when risk aversion 
is considered, the contracts and/or the design of the supply chain become 
more complicated. 





Chapter 4 

Inventory & Pricing Problem with Risk 
Measures 

While the inventory control problem with risk preferences has been intensively 
analyzed by different authors in different settings, this variety of models, 
approaches and results cannot be found for the combined inventory and 
pricing problem. Basically, only two important works have been published so 
far. Agrawal and Seshadri (2000) study a newsvendor problem with pricing 
within the expected utility framework, while Chen et al. (2009) analyze the 
problem under a CVaR0 objective function. 

Agrawal and Seshadri (2000) consider general demand distributions for 
both additive and multiplicative uncertainties, using a concave utility func-
tion as objective. They show that the risk aversion affects the pricing decision 
differently depending on the relation of price and demand. Consequently, 
the ordering decision is also affected differently. Under multiplicative uncer-
tainty, increase in risk aversion leads to an increase in price and decrease 
in quantity. Under additive uncertainty, risk aversion results in a decrease 
in price and the effect on quantity depends on the relation of the degree of 
risk aversion and the price elasticity of demand. Indeed, the opposite effect 
of risk aversion on price is not surprising. Independent of risk attitude, the 
demand variability is controlled by changing the price in different directions 
for different uncertainty models. The risk-averse newsvendor uses price as 
a hedge against demand uncertainty, but in opposite ways under the two 
uncertainty models. We will see that under some assumptions this effect 
also holds true for the case when spectral risk measures are used as objective 
functions. 

In the following we discuss the properties of the inventory & pricing 
problem again under a spectral risk measure. While some of the properties 
of this problem can be found for any combination of the deterministic 
demand d(p) and the stochastic error term E, for most of the analysis 
we need to specify this relation. Hence, in the following, we use the two 
most common combinations: the additive and the multiplicative demand 
models. Recall from introductory Section 1.1.2 that in the additive case, 
D(p) = d(p) + E, and in the multiplicative demand model, D(p) = d(p)E, 
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where d(p) denotes the deterministic price-dependent demand function, and 
E denote a price-independent demand error. 

For the following analysis it is of great advantage if we do not consider 
the ordering decision y directly, but use a stocking factor z instead: in the 
additive model y = d(p) + z and in the multiplicative model y = d(p)z. 
The transformation of the order quantity to a stocking factor was already 
used by Petruzzi and Dada (1999) for the analysis of the joint inventory & 
pricing problem under risk neutrality. If we define in this chapter F as the 
distribution function of demand error and f its density, then we can write 
the risk measure of profit from the stocking factor as 

M(II,(p,z))=(p-c)z-(p-v) 1~ <I>(F(c))dc. (4.1) 

Recall from Definition 4 that translation equivariance of the risk measure 
implies M(X +a)= a+ M(X). Hence, using (1.10), for the risk measure of 
the additive demand model, we can write 

M(Il(p, y)) = Iloet(P) + M(Ilc:(P, z)), (4.2) 

where Ilnet(P) is the deterministic profit (a "sure" income) and M(Ilc:(P, z)) 
denotes the risk measure of stochastic profit arising from demand error 
uncertainty. Note that II net (p) is a function of price p only, as in the 
deterministic case the order quantity always equals demand, so y = d(p) and 
Ilnet(P) = (p- c)d(p). 

For the multiplicative demand model we take advantage of the positive 
homogeneity of the risk measure, M(>.X) = >.M(X). By reformulating (1.11) 
we can write 

M(Il(p, y)) = d(p) x M(Ilc:(P, z)). (4.3) 

Hence, the risk measure of the complete operation, i. e. the risk measure of 
II(p, y), can be decomposed into the factor d(p), and the risk measure of 
stochastic profit made with the demand error Ilc:(P, z). 

For the joint optimization problem it does not make any difference if (p, y) 
or (p, z) is optimized as both formulations lead to the same p*, and the 
optimal quantity depending on the demand model used, y* = d(p) + z* in 
the additive and y* = d(p) z*. In the following analysis we use both ways of 
formulating the problem, we write the model based on y or z depending on 
whichever formulation is more convenient. Note, however, that structural 
properties of price differ if the optimal price for a constant y or for a constant 
z is analyzed. As far as possible, we try to formulate and analyze both cases. 
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4.1 The basic inventory & pricing problem 

For the case that an explicit risk measure is used, we extend the results 
obtained in the literature so far by transforming the risk-averse or risk-
seeking inventory & pricing problem into a risk-neutral problem. The 
idea behind this is that the application of any spectral risk measure can 
be seen as a transformation of the underlying demand distribution (see 
the discussion about rescaling the distribution function in Section 2.3.1). 
Once risk transformation functions cl> preserve certain properties of the 
demand distribution to the transformed distribution, any results found in 
the literature about the risk-neutral problem using those properties on the 
demand distribution also apply for the transformed problem under risk 
measures. In the following section we will describe these properties in more 
detail and show which risk transformation functions preserve them. 

4.1.1 Necessary properties of the demand (error) distribution 
and risk spectra preserving them 

An important property of distribution functions is the failure rate. Lariviere 
(2006) defines the failure rate (or hazard rate) of a random variable as follows: 

Definition 8 (Failure rate). Let X be a rondom variable with distribution 
function F and density f. Its failure rote is defined as 

h(x) = f(x) 
1 - F(x) 

(4.4) 

Moreover, we say the rondom variable has increasing failure rote (!FR) if 
h'(x) ~ 0 for all x. 

Definition 9 (Generalized Failure rate). Let X be a rondom variable with 
distribution function F and density f. Its generolized failure rote is defined 
as 

h9(x) = xf(x) . 
1 - F(x) 

(4.5) 

Moreover, we say the rondom variable has increasing generolized failure rote 
(IGFR) if h9'(x) ~ 0 for all x. 

Barlow and Proschan (1996) list distribution functions satisfying the IFR 
and IGFR property, respectively. Among them are the exponential, uniform, 
normal, truncated normal and subsets of Weibull or gamma distributions. 
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We can transform the problem under the risk measure to a standard risk-
neutral problem by transforming the demand (error) distribution function 
with the risk transformation function. Recall from Section 1.1.1 that the 
expected value inventory problem can be written as 

Ell(y) = (p- c)y - (p- v) foy F(x) dx, (4.6) 

which we reformulated later on in Section 3.2 for using risk measures as 

M(ll(y)) = (p - c)y - (p - v) foy <I>(F(x)) dx. 

Note that instead of integrating the demand distribution directly, a risk-
transformed distribution Fc/>(x) := <I>(F(x)) with density fcf>(x) = </>(F(x))f(x) 
is used. If we write 

M(ll(y)) = (p - c)y - (p - v) foy F¢(x) dx, (4.7) 

it can be seen easily that the objective is identical with ( 4.6) and, hence, 
properties of the first problem hold as long as the necessary properties of F 
are preserved to Fe/>. In particular, we need Fe/> to have increasing failure rate 
for the later analysis of the inventory & pricing problem. Because of this 
reason, we analyze the common risk transformation functions, i.e. CVaR0 , 

mean-CVaR0 , power and exponential functions, and summarize the results 
in the following paragraphs. 

Definition 10 (Risk transformation functions preserving IFR and IGFR). 
Let the failure rate h(x) and generalized failure rate h9 (x) of the distribu-
tion F be increasing in x, and let Fq, be the risk-transformed distribution 
with density fcf>- We say a risk spectrum is failure rate preserving if the 
transformed failure rate 

f(x)</>(F(x)) 
1 - <I>(F(x)) 

and the transformed generalized failure rate 

hg (x) = xfcf>(x) 
cf> 1 - F<t>(x) 

are increasing in x. 

xf(x)¢>(F(x)) 
1 - <I>(F(x)) 

(4.8) 

(4.9) 
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Lemma 7 (Examples of failure rate preserving risk spectra). The CVaR0 

risk spectrum as defined in (2.10) and the power risk spectrum as defined in 
(2.12) are failure rate preserving. 

Proof. 

1. CVaR0 risk spectrum: The transformed distribution is F,t,(x) = ¾F(x) 
for any F(x) < a. Plugging in for the failure rate results in 

f(x) 
h,t,(x) = a - F(x)' 

such that 
1 - F(x) 

h,t,(x) = h(x) x a_ F(x). 

Since the second term is increasing in x for any a < 1 and the failure 
rate h(x) is increasing in x by definition, h,t,(x) is increasing in x for 
x < p-1(a). For any x;?: p-1(a), the distribution F,t,(x) = 1. 

2. Power risk spectrum: For ¢(w) = ¼(l-w)i-1 and <l>(w) = 1-(1-w)t 
the failure rate of the risk-transformed distribution is 

1 
h,t,(x) = h(x) x k' 

Hence h,t,(x) is increasing in x if h(x) is increasing in x. 

• 
Note that the two other commonly used risk spectra, the mean-CVaR0 

and the exponential risk spectrum, do not preserve IFR as can be seen from 
Figure 4.1. Especially for the case of a mean-CVaR0 risk spectrum the 
transformed failure rate h,t,(x) has a downward jump at w = F- 1(a), exactly 
where the risk spectrum ¢(w) changes its level from¾ to ~=~-
4.1.2 Results for the joint optimal inventory & pricing problem 

Here we present properties of the inventory & pricing problem for both addi-
tive and multiplicative demand models based on the IFR preserving property 
as discussed above. An important result concerns the joint-unimodality in 
price and order quantity. After deriving this we present structural properties 
of the joint-optimal controls in certain parameters, such as level of risk 
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Figure 4.1: Failure rate h(x) and risk-transformed failure rate hq,(x) for a mean-
CVaRa {left) and exponential (right) risk spectrum. It can be seen that the 
risk-transformed distribution F1> does not show the IFR property anymore, although 
the distribution F has IFR. 

aversion, cost and salvage value parameters. In Section 4.1.3 we will analyze 
the pricing-only problem for either a given order quantity or a given stocking 
factor. Clearly, structural results for the single-dimensional optimization will 
differ from the joint-optimization problem. To clearly distinguish between 
the two cases, in the following we will denote by p*, y*, and z* the joint 
optimal controls, while the optimal price for a given quantity or stocking 
factor will be denoted by p*(y) and p*(z), respectively. Note that we do 
not analyze the behaviour of y* (p) and z* (p) in detail, as this refers to the 
inventory-only problem which was discussed already in Chapter 3. 

An important result of the (risk-neutral) price-setting newsvendor problem 
was obtained by Yao et al. (2006). They show that for a certain class of 
demand functions, the expected profit is unimodal (quasi-concave) in both 
price and quantity. In particular, if the deterministic demand has increasing 
price elasticity (IPE) and the random term has increasing failure rate (IFR), 
then the expected profit is unimodal. 

Let €(p) denote the price elasticity of demand d(p), then €(p) = _P;;~)). 
Note that the price elasticity is the relative change of demand for a relative 
change in price. We can state the following: 
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Definition 11 (IPE). A deterministic demand function d(p) has increasing 
price elasticity (IPE), if 

dt 
dp ~ 0 for allp. (4.10) 

Yao et al. (2006) give an intuitive explanation: "As the price increases by 
a certain percentage, the demand decreases by a larger percentage, which 
makes it less desirable to raise the price further." They further show that 
for a wide range of important demand functions such as 

1. linear d(p) = a(Pmax - p); 

2. power d(p) = (1 + p)-a for a> 1; 

3. exponential d(p) = p-ae->..p for a > 0, A > O; or 

4. iso-elastic d(p) = p-a for a > 1 

functions, among others, the IPE property holds. 
Combining the result of Yao et al. (2006) with spectral risk measures leads 

to the following proposition about the unimodality of the risk measure in price 
and quantity, (p, y). Note, however, that as discussed in the introduction of 
this chapter, we will decompose the demand into its deterministic part and 
the stochastic demand error. We assume the distribution of the error term, 
F(E), is continuous with density f(E) and invertible, so p-1(F(E)) = E. 

Proposition 9 (Unimodality of the risk measure with respect to price and 
quantity). Let ¢(w) be an admissible risk spectrum. The corresponding risk 
measure M(II(p, y)) is jointly unimodal (quasi-concave) in (p, y) if 

1. the demand error has an increasing failure rote (IFR), or the demand 
error is a positive rondom variable and has an increasing generolized 
failure rote (IGFR), and 

2. mean demand IED(p) has increasing price elasticity (IPE), and 

3. the risk tronsformation function <I>(w) preserves IFR or IGFR, respec-
tively. 

Proof. Part (a) and (b) of Proposition 9 were shown by Yao et al. (2006), 
so as long as (c) holds, the problem can be transformed into a risk-neutral 
problem and properties already found in the literature of the risk-neutral 
solution can be used. • 
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It is common to assume, without loss of generality, that the mean demand 
error is O for the additive model and 1 for the multiplicative model. Any mean 
different from these values can be easily captured by a transformation of the 
deterministic demand function. Hence, we assume that the demand error 
distribution of an additive model has negative and positive support, while 
the distribution for the multiplicative model has only a positive support. For 
the rest of this section we assume that the demand error distribution and the 
risk transformation function satisfy the conditions stated in Proposition 9, 
unless otherwise stated. 

Note that unlike the optimal order quantity in the inventory problem, no 
explicit formulation of optimal price p* for a general distribution and general 
risk spectrum can be found. For the joint price-quantity optimization in the 
case of an additive demand model, a single-dimensional numerical search of 
the maximum risk measure on price is indeed possible on 

f z'(p) 
M(II(p)) = (p - c)d(p) + (p - c)z*(p) - (p - v) F<t,(E) dE. 

-d(p) 
( 4.11) 

When the demand model is of multiplicative form, the search must be carried 
out on 

[ 
r•(p) l 

M(II(p)) = d(p) (p - c)z*(p) - (p - v) Jo F<t,(E) dE . ( 4.12) 

where the optimal stocking factor for both formulations is 

z*(p) = ~- 1 (F (:=:)) · 
Since the problems in (4.11) and (4.12) are unimodal in their arguments and 
have a lower bound on price, i. e. p* > c, a numerical optimization using 
standard single dimensional optimization techniques is still very efficient. 

An immediately following results concerns the monotonicity of optimal 
price p* with respect to cost c. 

Proposition 10 (Monotonicity of the optimal controls p* and y* with 
respect to c). If the mean demand IED has /PE, the distribution of demand 
error, F, has /FR, and the risk spectrum is failure rate preserving, 
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1. then the risk measure of profit, M(ll(p, y)) is strictly supermodular1 

in (p*, c), so that the optimal price p* is increasing in cost c; 

2. the optimal critical fractile CSL* is decreasing inc, i.e. dCf/* ~ 0, 
where the equality holds for iso-elastic d(p); 

3. the optimal order quantity y* is strictly decreasing in c. 

Proof. Yao et al. (2006) showed that the IPE and IFR properties are sufficient 
for the risk-neutral problem. If, in addition, the risk spectrum is failure rate 
preserving, the problem can be transformed into a risk-neutral problem such 
that the sufficient properties still hold. D 

With respect to salvage value we are not able to derive general structural 
results for both demand formulations. While p* and y* are monotone 
in the salvage value for the additive model, this no longer holds for the 
multiplicative demand formulation. The reason why the behaviour is not 
necessarily monotone is that while both price and quantity tend to increase 
in salvage value, the increase of each of the two controls has the opposite 
effect on the other. The increasing price due to the increase in salvage value 
leads to a decrease of d(p), which causes the order quantity to decrease. This 
is in contradiction to the direct effect of the salvage value on quantity for 
a given price, hence the resulting behaviour depends on whichever effect 
dominates. We can summarize these findings in the following: 

Proposition 11 (Monotonicity of p* with respect to v). If, for an additive 
demand model, the mean demand, IE D, has /PE, the distribution of demand 
error, F, has IFR, and the risk spectrum is failure rate preserving, 

1. the risk measure of profit, M(ll(p, y)) is strictly supermodular in (p*, v), 
so that the optimal price p* is increasing in v; 

2. the optimal critical fractile CSL* and the optimal stocking factor z* 
are increasing in v. 

See Appendix A for a proof. Chen et al. (2009) previously derived the 
results for the specific case of the CVaR0 risk spectrum, where for the 
multiplicative demand model a monotonicity result can also be found if 

1 A continuous, differentiable function f(x, y) is supermodular, if and only if its cross 

derivative is positive, 82/j~~y) :::: 0. Topkis (1998) showed that a positive cross partial 

derivative implies that the optimal x* (y) is increasing in y. If 82/;~~y) S 0, f(x, y) is 
submodular and x• (y) decreases in y. 
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salvage value is sufficiently small. Unfortunately, we are not able to find 
monotonicity results about the behaviour of y* with respect to v in the 
additive model for a general risk spectrum. For a CVaR0 risk spectrum, 
Chen et al. (2009) are able to show that y* is strictly increasing in v. 

Proposition 12 (Monotonicity of p* with respect to the level of risk aversion, 
ry). Let 'f/ denote the risk preference according to Definition 7. 

1. For an additive demand model, the risk measure of profit is supermod-
ular in (p*, ry), hence, p* is increasing in 'T/· 

2. For a multiplicative demand model, if H(c) :=xf,e(e) is increasing lry F,1,(e,TJ) 

in E:, then p* is increasing in 'f/, and if H ( c) is decreasing in E:, then 
p* is decreasing in 'T/. 

See Appendix A for a proof. Note that this additional technical assumption 

for the specific case of a CVaR0 decision maker reduces to (;A:)))' > 0, 

which was found by Chen et al. (2009) as an additional assumption for p* 
being increasing in 'T/ for the multiplicative demand model. 

Based on the monotonicity result of the optimal price we can immediately 
derive monotonicity results for the optimal cycle service level and the optimal 
stocking factor in the following: 

Corollary 5 (Monotonicity of CSL* and z* in 'T/). The optimal cycle service 
level 

CSL*= <I>-1 (p* - C) 
p* -v ( 4.13) 

is increasing in 'T/, if the optimal price p* is increasing in 'T/· This also implies 
that the optimal stocking factor z* = p- 1 (CSL*) is increasing in 'T/· 

Proof Recall from Definition 6(b) that <I> decreases in 'T/ and <I>- 1 increases 

in 'T/· By p* increasing in 'T/, CSL*= <I>- 1 (~:=~) increases in 'T/ since v < c 
by definition, and consequently z* = F- 1 (CSL*) increases in 'T/· • 

Note that this monotonicity result ofp*, CSL* and z* specifically for the 
CVaR0 risk spectrum was found previously by Chen et al. (2009). 

If we want to understand the behaviour of the optimal order quantity y*, 
we need to consider two opposite effects induced by the change of the level 
of risk aversion. On the one hand, the decreasing deterministic demand d(p) 
due to higher optimal prices in 'T/ suggests a lower order quantity; on the 
other hand there is the opposite effect of the increasing optimal stocking 
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factor z(p*). Hence, a monotonicity result of y* with respect to 'T/ cannot be 
stated, as the optimal policy depends on whichever effect dominates. In the 
following numerical analysis in Section 4.1.4, Figure 4.3 shows an example 
of such a non-monotone behavior of the order quantity in the level of risk 
aversion. 

4.1.3 Results for the pricing-only problem 

After having discussed the behaviour of the problem in the joint-optimum 
price and quantity, we can derive additional structural properties of optimal 
price for a given quantity or a given stocking factor. 

Proposition 13 (Monotonicity of optimal price p*(y)). If the distribution 
of demand error F has /FR and the risk spectrum is failure-rate preserving, 
the optimal price p*(y) is decreasing in the order quantity y. 

See Appendix A for a proof. Note that this result is in line with the 
findings of the risk-neutral model as found, for example, in Kocab1y1koglu 
and Popescu (2009) and Ankan and Jammernegg (2009). The optimal price 
with respect to the stocking factor can be derived in the following: 

Corollary 6. The optimal price p* ( z) is increasing in the stocking factor z. 

See Appendix A for a proof. 

Corollary 7. The optimal price p*(z, TJ) for a given stocking factor z is 

1. increasing in 'T/ for the additive demand model, and 

2. decreasing in 'T/ for the multiplicative demand model. 

See Appendix A for a proof. 
This is a particularly interesting result. Two common ways of assessing the 

variability of a random variable, in particular when assessing demand, are the 
variance, Var( D(p)), and the coefficient of variation, CV ( D(p)) = 8~~~)). 

Petruzzi and Dada (1999) already describe that the impact on demand 
variability of a price change for the risk-neutral setting has an opposite 
direction for the additive and the multiplicative models. In the additive 
model, demand variance Var(D(p)) = Var(E) does not depend on price and 
CV(D(p)) = d(p)i~)E increases in p. The variability for the multiplicative 
model has the opposite behavior: demand variance Var(D(p)) = d(p) Var(E) 
is decreasing in p, while the coefficient of variation CV(D(p)) = d~1~~<ffl is 
constant in price. 
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Mills (1959) shows for the additive model that the optimal price of a 
deterministic demand situation is always larger than the optimal price 
under demand uncertainty, while Karlin and Carr (1962) show the opposite 
behaviour for a newsvendor with multiplicative demand model. Therefore, 
the optimal price of a deterministic demand situation is always smaller than 
under demand uncertainty. Hence, in both models, the newsvendor uses 
price to reduce demand variability. We can observe a similar behaviour 
for risk-averse newsvendors with respect to the degree of risk aversion. 
From Corollary 7 we see that for a fixed stocking factor in the additive 
demand model, the optimal price decreases the more risk-averse a newsvendor 
becomes, and for the multiplicative model the optimal price increases the 
more risk-averse a newsvendor becomes. Hence, when getting more risk-
averse, both use price to reduce demand variability ( either the variance or 
the coefficient of variation). 

4.1.4 Numerical study of the basic inventory & pricing problem 

In this section we present a numerical study of the inventory & pricing 
problem in order to illustrate the findings introduced in the previous section 
and we discuss some of the structural properties of the problem in more 
detail. Furthermore, we can look at properties where no explicit analytic 
solution or structural properties could be found. In the following we present 
interesting aspects and properties of the problems analyzed. In this section 
we only consider IFR and IGFR preserving risk spectra, respectively, in 
particular the power risk spectrum. Additionally, in Section 4.1.5, we pay 
special attention to the mean-CVaR0 risk spectrum. 

We use the following parameters for the analysis unless otherwise noted: 
production cost c = 2, salvage value v = 1, and no shortage penalty costs 
are considered (see Section 4.2 for numerics with positive shortage penalty 
cost). As demand model we use for the 

• multiplicative model: D(p) = 1000p-2E with E ~ Gamma(l, 0.8), and 
for the 

• additive demand model the linear function d(p) 
E ~ N(O, 20). 

100 - lOp with 

Note that the criterion H(E), as defined in Proposition 12(b), for the Gamma 
distribution in the multiplicative model is increasing for Var(E) < 1 and 
decreasing for Var(E) > 1 and lE E = 1. 
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Figure 4.2: Optimal order quantity as a function of price, y*(p). Additive (left) and 
multiplicative demand model (right). 

Non-monotonicity of y*(p) for additive and multiplicative models 

In Figure 4.2 we see that for both the additive and the multiplicative 
models the optimal order quantity is non-monotone in price, so y*(p) is first 
increasing and then decreasing in p. This non-monotonicity comes from two 
opposing effects of the increase in price as described in Ankan et al. (2007). 
On the one hand, a larger price increases the profitability of the product, 
meaning that the critical fractile g increases such that the quantity tends 
to increase. On the other hand, the increase in price leads to a decrease 
of expected demand, which naturally should have a decreasing effect on 
the order quantity. As a consequence, for small prices the order quantity 
increases as the first effect dominates, and decreases for higher prices, since 
the second effect dominates for larger prices. 

By numerically comparing different parameter sets it seems that the price 
up to which y* (p) is increasing is not very sensitive to the level of risk 
aversion, specifically for the multiplicative demand model. The optimal 
quantity for a given price changes dramatically with T/· 

Note that high prices in the additive model lead to unexpected behaviour. 
If we define the reservation price of a product Pr such that the deterministic 
demand at this price d(Pr) = 0, we see that the order quantity at Pr, 
depending on the level of risk aversion, is still clearly different from zero. The 
reason is that demand variance is independent of price, so also for any p ;?: Pr 
the newsvendor orders a positive, and in fact constant, quantity, just to take 
advantage of the demand error. This response is somewhat unsatisfactory on 
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a practical level, since it implies a completely price-independent probabilistic 
demand. As a consequence, the additive model should only be applied when 
prices are small such that the corresponding demand is sufficiently large. To 
model the demand behaviour with high prices and low demand levels the 
multiplicative model is generally a better choice. 

Behaviour of y* in T/ for additive and multiplicative model 

In the discussion following Corollary 5 we described that the behaviour of 
the joint optimal order quantity y* in T/ is non-monotone since it depends on 
whether the effect of the decreasing demand in price or the increasing quantity 
due to a less risk-averse preference dominates. In general, the numerical 
analysis shows that for an extremely risk-averse newsvendor (TJ --+ 0), the 
order quantity decreases to zero (y* --+ 0), as this allows her to reduce the 
risk to its minimum. Hence, y* is necessarily increasing in T/ for small T/· 
Depending on the demand model, the increase can be monotone, or up 
to a certain level of T/· An analysis of different parameters suggests that 
for an additive linear demand model, y* is increasing in T}; the same result 
could be found for any multiplicative demand model. Only for an additive 
power demand model were we able to find non-monotone y* behaviour as 
illustrated in Figure 4.3. 

We need to comment further on the additive power demand model. As we 
showed in Proposition 12(a), p* is increasing in T/· At some level of T/ price is 
large enough such that the demand effect of the deterministic demand part 
vanishes and the price-independent demand error contributes most to profit. 
In this case, y* is increasing in T/· 

For the multiplicative demand model we can distinguish two cases de-
pending on the criterion H(E): If H is increasing in its argument, from 
Proposition 12(6) p* is increasing in T/, which causes mean demand to de-
crease and the profitability of the product to increase. However, as we see 
in the Figure 4.4, TJ has a very small effect on p*. As we know from the 
inventory-only problem, y*(p) for a given p increases in T/· By the numerical 
study we can observe that the latter effect dominates because the pricing 
effect is very small so that y* is increasing in T/· 

When H(E) decreases, p* decreases in T/, so that mean demand increases 
and the profitability decreases. Changes in T/ do have stronger impact on p* 
in this case. The increase in mean demand and the increase in y* (p) for a 
given p clearly dominate the loss of profitability of the product such that y* 
is again increasing in T/, even at a larger rate than in the case of increasing 
H(E). 
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Figure 4.3: Joint optimal order quantity y* for two additive (left) and multiplicative 
(right) demand models. The additive models differ in the deterministic demand 
function: linear demand, d(p) = 100 - lOp (left up) and power demand, d(p) = 
lO00p- 2 (left bottom). 

Monotonicity of p* for the multiplicative model 

While p* is monotonically increasing in T/ for the additive model as shown 
in Proposition 12(a), the behaviour for the multiplicative model is not that 
clear. In part (b) of the same proposition we found a criterion H(c) defined 
on the risk-transformed distribution function such that p* is increasing in T/ 
if H(c) increases in its argument, and vice versa. Figure 4.4 illustrates this 
relationship: for high demand variance the criterion is strictly decreasing, 
so that p* is decreasing in ry; for low values of demand error variance the 
criterion increases and, hence, p* (y) also increases. For the special case that 
the criterion is constant (dashed plot), p* does not change with T/· 

The reason for this behavior is similar to the discussion on Corollary 7. 
The variance of demand in the multiplicative demand model depends on 
price, since Var(D(p)) = Var(d(p)c) = d(p) 2 Var(E). Hence, it is possible to 
decrease demand variance by increasing price. Whenever error variance is 
large, and therefore has a significant impact on the overall performance, as 
the newsvendor becomes more risk-averse he uses price to reduce demand 
variance compared to the risk-neutral case. Recall that in contrast to this, 
the demand variance in the additive model is constant in price, but the 
coefficient of variation cv = s~}x~)) increases in price. Hence, the risk-
averse newsvendor with an additive demand model decreases price, again to 
reduce demand variability. 
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Figure 4.4: Joint optimal price p* (left) for multiplicative demand models and the 
correspondig H(e:) (right) from Proposition 12{b) for different variances of demand 
error. 

Analyzing the effect of different values of k specifically for the power risk 
spectrum, we see that only the scaling but not the shape of H ( c) changes 
with k, so whether or not H(c) for this formulation is increasing or decreasing 
does not depend on k. 

Expected profit and confidence intervals 

We illustrate in Figure 4.5 the expected profit of a newsvendor with multi-
plicative demand model and power risk spectrum for different risk aversion 
levels. Clearly the maximum expected profit is obtained for the risk-neutral 
parameters. The level of 'I} has a considerable effect on the confidence interval 
of profit: while the expected profit decreases compared to the risk-neutral 
case as the decision maker becomes more risk-averse, the confidence interval 
gets tighter. In the case where the decision maker is risk-seeking, the oppo-
site effect becomes true: the expected profit is decreasing compared to the 
risk-neutral case, and the confidence interval gets broader, which implies 
higher possible profit realizations for the risk-seeking newsvendor. A similar 
behaviour can be found if the underlying demand model has an additive 
structure. 
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Figure 4.5: Expected profit (left) and 80% confidence interval with maxi-
mum/minimum profit realizations (right) for multiplicative demand model. 

CD 
ci 

C\l 
ci 

CSL 
FR 

risk-averse 

~~l.cd 
0.0 0.5 1.0 

k 

risk-seeking 

I I 
1.5 2.0 

CD 
ci 

C\l 
ci 

- CSL --- FJ3.- .. 

risk-averse risk-seeking 

Figure 4.6: CSL and FR in T/ for joint optimal (p*, y•) for multiplicative (left) with 
Var(E) = 2 such that H(c) is decreasing and additive (right) demand model. Under 
each plot the difference !lSL = FR - CSL is shown. 



86 Chapter 4. Inventory & Pricing Problem with Risk Measures 

q 

co 
c:i 

... 
c:i 

"' c:i 

L=0 
L = 50 
L = 100 

0 se 

L=0 
L = 50 
L = 100 

o risk-seeking 
c:i '-,---~-----~---.-' c:i '-,---~-----~---.-' 

0.0 0.5 1.0 

k 
1.5 2.0 0.0 0.5 1.0 

k 
1.5 2.0 

Figure 4.7: Probability of missing a profit target, PLL(TJ) for joint optimal (p*,y*) 
for multiplicative (left) and additive (right) demand models. 

Customer service levels with respect to T/ 

As we discussed earlier, customer service levels are important externally-
oriented (customer-oriented) performance measures. In Figure 4.6 both the 
cycle service level (CSL) and the fill rate (FR) are shown in the level of 
risk preference T/· As we already know from Corollary 5, for the additive 
demand model and multiplicative with increasing H(c), CSL is increasing 
in T/· If, for the latter, H(c) is decreasing, i.e. p* is decreasing in T/, then 
the effect of increasing demand dominates the decrease in profitability so 
that CSL remains increasing in T/· 

Overall, our numerical analysis shows that, independent of the demand 
model formulation, both the cycle service level and the fill rate are increasing 
in T/, although we are not able to find an analytical proof for this behaviour. 
Hence, a newsvendor might not only consider behaving in a risk-seeking way 
because of the chance for higher profit realizations, but also to increase his 
service levels. According to this analysis we can further comment that the 
differences between CSL and FR are larger for the risk-averse than for the 
risk-seeking newsvendor. 

Probability of missing a profit target with respect to TJ 

Similar to the discussion of the inventory-only problem in Chapter 3 we can 
now also consider the probability of missing a profit target PL L at level 
L as an internally, cost-oriented performance measure. In Figure 4. 7 we 



4.1 The basic inventory & pricing problem 

,.__ 
I-----~ 

>. = 0.75 
>. = 0.80 
>. = 0.85 

"''-r----~~--~----r-' 
5 10 15 20 

p 
5 10 15 

p 

87 

a= 0.05 
a= 0.1 
a= 0.15 

20 

Figure 4.8: Optimal pricing problem for a newsvendor with mean-CVaRc, risk spec-
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and demand error~ Gamma(l,0.8), fixed a= 0.1 (left) and fixed>.= 0.8 (right). 
The dots indicate the corresponding optimal prices. 

show the behavior for both demand models. As in the case without pricing, 
the minimal PL L is found for (p, y) such that these controls lead to the 
the maximum possible profit. For both demand models, P Lo is strictly 
increasing in 'f/ with P Lo = 0 in the limit of 'f/ • 0. In this case, the optimal 
quantity q* • 0, so that the resulting profit is zero without any variability. 
For any L > 0, a very risk-averse newsvendor might find (p*, z*) such that 
L cannot be reached at all, even if c = z. 

4.1.5 Analysis of the mean-CVaR risk spectrum 

In this section we are specifically interested in the mean-CVaRa risk spectrum. 
The reason for this is twofold. On the one hand, mean-CVaRa formulations 
are the most common extensions of the basic CVaRa problem in the literature. 
On the other hand, some problematic issues arise when a mean-CVaRa risk 
spectrum is applied to an inventory & pricing optimization due to its lack of 
the IFR or IGFR preserving property. Since this condition, as specified in 
Proposition 9, is no longer satisfied, the unimodality of the risk measure of 
profit is not guaranteed, as illustrated in Figure 4.8. 

As can be seen from Figure 4.8, the risk measure of profit for a mean-
CVaRa risk spectrum is not necessarily unimodal in price, due to the 
non-increasing transformed failure rate. As the plots show, there can be a 
local maximum in the range of prices, where the correspondig CSL< a, so 
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the level of risk spectrum in the optimal price is ¾. Another local maximum 
can be for higher price ranges with correspondig CSL> a, where¢= ~=~. 
Whichever local maximum is the global depends on the parameters of the 
risk spectra ( compare solid and dashed/ dotted plot). So, not only is the 
optimization problem no longer unimodal, but there is no relationship where 
one of the modes always dominates. However, our numerical analysis suggests 
that there are at most two modes in the optimization problem. If we order 
the optimal quantity y*(p) for each price, the optimization problem is still 
not unimodal as illustrated in Figure 4.9. 

As Figure 4.10 shows, the optimal order quantity for the mean-CVaRa risk 
spectrum reacts in a very special way to price. While the optimal quantity 
is first increasing and then decreasing in price for the CVaRa and power risk 
spectra (Sec. 4.1.4), now y*(p) is increasing and decreasing twice because of 
the sharp jump at a in the risk spectrum. Recall from (3.13) that 

{
p-1 ;!!~) 

y*(p) = >. p-v 
p-1 ~ + a->.~) 

p-v I->. p-v 

~ <.X p-v -

otherwise. 

Hence, in the range of p such that ~ :S: .X, we observe the increasing 
and decreasing shape of y* (p), as we discussed in the previous section for 
Figure 4.2. At ~ = .X, the risk spectrum changes from ¾ to the lower level 
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t~. As a consequence, for prices larger than, but still in the neighborhood 
of, this limit, the first effect again dominates. Due to the lower level of the 
risk spectrum the increase in profitability is now valued or considered more 
than before, so that optimal quantity is again increasing in price. Clearly, 
at some high price levels the first effect diminishes and the second effect 
dominates so that, ultimately, the order quantity is decreasing in price. 

4.2 The inventory & pricing problem with shortage 
penalty cost 

The joint inventory & pricing problem with positive shortage penalty and 
with consideration of the risk preferences is the most challenging problem, 
technically. To our knowledge, no analytical results exist in the literature 
yet. Unfortunately, we are also unable to derive analytical results. Hence, 
we need to rely on a comprehensive numerical study in order to gain insights 
into this problem. As we did for the previous sections, we will use standard 
parameters unless otherwise noted in the respective plots. In particular, we 
will use the same set of parameters, distribution functions and risk spectra 
as in Section 4.1.4, except that we will now assume shortage penalty cost 
s = 5. 
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Taking advantage of the translation equivariance of the spectral risk 
measure, we are able to formulate the additive problem as 

M(II(p, y)) = (p - c)d(p) + (p - c)z - (p - v) 1-~ Gct,(e) de, (4.14) 

where Gct,(e) = <I>(G(e)) = <I>(F(e) + 1 - F(E)) and f = z + (z - e)~ 
similar to (3.18) and Proposition 8. Due to positive homogeneity we can 
write the multiplicative problem as 

M(II(p, y)) = d(p) [(p - c)z - (p - v) fo 2 Gct,(e) de] . (4.15) 

In the following, we first analyze the unimodality of the problem with 
respect to price. Afterwards, we analyze structural properties of the optimal 
controls (p*, y*) with respect to T/, considering different parameter sets. 
An analysis of performance indicators such as expected profit, confidence 
intervals of profit, service level measures and the probability of missing a 
profit target conclude the section on the inventory & pricing problem with 
shortage penalty costs. 

4.2.1 Joint optimality and unimodality 

As with the problem without shortage penalty costs, we look at the failure 
rate and generalized failure rate of Fct, for the additive and multiplicative 
models, respectively. The corresponding plots are shown in Figure 4.11. 
However, it is important to notice that neither rate is purely dependent on 
the demand distribution anymore, but they also depend on the parameters 
of the problem, since we model the effect of shortage penalty costs by a 
transformation of the demand distribution function. So, in particular for 
each price, the failure rate or generalized failure rate is different. Due to 
this dependency on price, IFR or IGFR is not necessarily sufficient for a 
unimodal behaviour in price, meaning it is no longer sufficient for having a 
single optimal price. Hence, we need to look at the risk measure of profit 
with respect to price specifically. Nonetheless, our numerical analysis shows 
that when applying admissible risk spectra (according to Definition 5) for 
different paramter sets, the IFR and IGFR properties preserve. 

The optimal pricing problem, when numerically analyzed with various 
distribution functions for admissible risk spectra such as power or CVaRa 
risk spectra, results in a unimodal optimization problem as in Figure 4.12. 
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Figure 4.13: Joint optimal y* for different levels of demand variability with additive 
(left) and multiplicative (right) demand model with a power risk spectrum. 

We were not able to find a single instance of a non-unimodal problem. 
Hence, although not being able to prove the unimodality of the optimization 
problem, we have strong numerical support that using an admissible risk 
spectrum is sufficient for the unimodality of the joint inventory & pricing 
problem with shortage penalty costs. 

4.2.2 Joint optimal controls 

Again, it is interesting to observe the structural properties of the optimal 
controls (p*, y*) in the joint optimization problem. Looking at the optimal 
quantity y* we can observe that for all problem instances a high order 
quantity can be caused by two reasons. First we observe high order quantities 
for extreme risk aversion (low values of ry). Here the newsvendor is mainly 
concered with shortage penalty costs, which causes her to place higher orders 
to avoid them. In the other extreme, when the newsvendor becomes more 
and more risk-seeking (large ry), she increases the order quantity to increase 
the possibility for high random profit realizations. 

In Figure 4.13 we see the optimal quantity y* for different demand error 
variabilities, where for this specific set of cost parameters the order quantity 
is increasing in demand variability. For high ordering cost c the critical ratio ;: =~!: decreases so that optimal order quantity can become decreasing in 
demand variability. 
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Figure 4.14: Joint optimal y• for different levels of shortage cost s with additive (left) 
and multiplicative (right) demand models with a power risk spectrum. 

Figure 4.14 illustrates the behaviour of y* for different shortage penalty 
costs. While in the additive problem the optimal quantities are ordered with 
respect to s such that a higher s leads to higher y*, this relation does not 
hold for the multiplicative model. The reason behind this is that although 
the optimal price in the additive model as shown in Figure 4.15 increases in 
s, the increase is typically very small compared to the multiplicative model. 
If price stays almost constant, the effect of s is mainly on the quantity, 
where we know from the inventory-only problem that y* is increasing in 
s. For the multiplicative model, however, we see s significantly affecting 
both quantity and price. For higher levels of T/ the relative increase in price 
"overcompensates" the increase ins such that mean demand and optimal 
order quantity decrease. 

Figure 4.16 shows the joint optimal price p* for different levels of demand 
variability. A main initial observation is that in the additive model p* is 
increasing in T/, while for the multiplicative model the opposite behaviour 
can be true. We can find the same explanation, as we did for the problem 
without shortage penalty cost. In the additive model the coefficient of 
variation is increasing in price, hence a risk-averse newsvendor can reduce 
risk by increasing price. For the multiplicative model, variance is decreasing 
in price, so the newsvendor will increase price the more risk-averse he is. 

Note that for the additive model there are two ranges of T/ with respect to 
the ordering of p* to demand error variability. In the low range an increase 
in the standard deviation results in a decrease of p*, while for the high range 
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Figure 4.17: Expected profit (left) and confidence intervals of profit (right) for multi-
plicative demand model, power risk spectrum. 

p* increases. This is an interesting observation as it shows that for any r, the 
newsvendor, to some extent always considers both risk and prospect of the 
operation. Depending on the parameters, either of the two might dominate 
and determine the structural behaviour of p* with respect to variability. 

With the same argument as before we can say that if the risk consideration 
dominates, the newsvendor will decrease price if demand is more variable, 
as we can see in the example with k = 0.5. The newsvendor uses price to 
compensate for the higher demand variability. If we consider k = 1.5, we 
can see clearly that now the prospect consideration dominates the behaviour. 
The price is increased to over-proportionally take advantage of variability. 
We can also say that in the case of small demand error variability, the 
newsvendor uses price mainly as a tool to optimize the deterministic part of 
demand, hence the influence of r, is rather small. For the case where demand 
error variability is high enough, price can be more effectively used as a tool 
to adjust profit variability, and the effect of a change in r, on p* gets stronger. 
In this case the newsvendor can give up some of the deterministic profit in 
order to increase the profit made due to the stochastic demand error. 

4.2.3 Joint optimal performance measures 

Finally, we can analyze the different performance measures as we did in the 
previous sections. It is obvious that the maximum expected profit is realized 
for the risk-neutral newsvendor as illustrated in Figure 4.17. However, due to 
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the non-monotonicity of the optimal controls, in particular y* in r,, expected 
profit for the extremely risk-averse case does not behave monotone in r, but 
increases again as the newsvendor becomes more risk-averse. The decision 
maker is so obsessed with avoiding shortage penalties that he orders more 
and as a "by-product" his expected profit increases. We believe that this is 
an interesting result, that increasing risk aversion might lead to increasing 
expected profit. 

A similar effect can be observed if we look at the service levels in Figure 4.18. 
Both service levels are increasing in r, for wide ranges of r,, except for the 
very risk-averse case. The increasing order quantity for very risk-averse 
newsvendors also leads to higher service levels. For the internally-oriented 
probability of missing a profit target we can observe non-monotone behaviour 
as illustrated in Figure 4.19. In the risk-seeking case, the more risk-seeking 
the newsvendor becomes the higher the probability of missing a profit target 
is, since he is willing to accept more risk in order to have the chance of higher 
profit realizations. As the newsvendor becomes more risk-averse, PLL is 
decreasing up to a certain level and increasing again for the very risk-averse 
cases. 
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Chapter 5 

Conclusion 

In this work we studied the stochastic single-period, single-item inventory 
control & pricing problem under spectral measures of risk. The class of 
spectral risk measures is general in the sense that it can express risk-averse, 
risk-neutral and risk-seeking risk preferences. It can cover the well-known 
CVaRa, as well as mean-deviation criteria or continuous risk functions; the 
power and exponential risk spectra are special cases of spectral risk measures. 
Using this class of risk measures allows us to generalize structural results 
obtained so far in the literature. 

We divided the problem analysis into two main parts: first we derived 
optimality conditions and structural results for the inventory-only problem, 
and in the second part we added price as a decision variable such that 
we anaylzed a combined inventory & pricing problem. In both parts we 
considered the situation without and with positive shortage penalty cost 
separately, as the latter case causes additional technical difficulties. 

In the first part of the work, where price is assumed not to affect the 
demand distribution with zero shortage penalty cost, we were able to prove 
the concavity of the optimization problem and we could derive simple, closed-
form expressions for the optimal order quantity based on a transformation 
of the demand distribution according to the risk preferences. We were able 
to show that both the optimal cycle service level and the order quantity 
increase in the risk preference, meaning that they decrease as the decision 
maker becomes more risk-averse. This behaviour can be explained by 
saying that increasing order quantity increases the chance of higher profit 
realizations, but comes with a higher risk of more leftover inventory. This 
classical trade-off of the newsvendor model results in different optimal policies 
since, as risk preferences increase, the decision maker values the chance of 
higher realizations more than the risk of leftover inventory. An analysis of 
performance indicators such as expected profit, cycle service level and fill 
rate as two common service levels and the probability of loss as an internal 
indicator concluded the inventory problem with zero shortage penalty costs. 

The inventory problem with positive shortage penalty costs is technically 
more demanding. The reason for this is that now random demand and 
profit realizations are no longer ordered in the same way, since the same low 
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profit realization can be caused either by high leftovers with low demand, 
or, alternatively, by high shortages with high demand. Because of this the 
risk measure of profit cannot be written directly in terms of the demand 
distribution. To overcome this problem either an optimization approach 
can be used, as proposed by Rockafellar and Uryasev (2002), or in our very 
specific situation we can take advantage of additional knowledge about profit 
realizations. As leftovers and shortages are two mutually exclusive events, we 
were able to sum up their probabilities after some rescaling and rewrite the 
problem as if there was no shortage penalty cost. Then we were again able to 
write the problem in terms of the demand distribution and show concavity 
results for the optimization. Although, in general, an explicit formulation for 
the optimal order quantity can no longer be found, the problem is reduced to 
a single-dimensional concave optimization problem for general risk spectra, 
while the general formulation by Acerbi (2002) results in an optimization 
problem with an infinite number of degrees of freedom. In the specific case 
of a piecewise constant risk spectrum we were able to formulate the problem 
as a system of non-linear equations which can be solved efficiently. 

Using a numerical study we were able to conclude that the optimal order 
quantity is no longer monotone in the risk preference when positive shortage 
penalty costs must be considered. The explanation for this is that for 
high risk preferences the newsvendor will order more because he wants to 
increase the chance for higher profit realizations. On the other hand, as the 
newsvendor becomes very risk-averse, he is mainly concerned with shortage 
penalties, as these are generally not bounded from above. As a consequence, 
he will again increase his order quantity to hedge against the rare high 
demand events which cause extreme losses. 

The second main part of the work was concerned with the combined 
inventory & pricing problem. Mean demand now depends on price. As is 
common in the related literature, we used the additive and the multiplicative 
demand models to combine the deterministic demand with the stochastic 
error. To ensure unimodality of the joint optimization problem we needed to 
restrict the risk spectra used to a subset which perserve certain properties. 
We can show by an example that the mean-CVaRa risk spectrum does not 
preserve these properties and may result in multiple local price optima. 
Instead, the power risk spectrum satisfies all required conditions and turns 
out to be a flexible model as it can cover risk-averse, risk-neutral and risk-
seeking preferences, and is implicitly a mean-deviation formulation already. 

A main structural result for the combined problem concerned the price 
in the risk preference. For the additive model we were able to show that 
optimal price is increasing in the risk preference, while for the multiplicative 
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model numerical analysis shows that the optimal price is decreasing in the 
risk preference, under the condition that demand error variability is large 
enough. This result is particularily interesting as it shows the different 
strategies used by the newsvendor to hedge against or deal with demand 
uncertainty, since in the additive model the coefficient of variation of demand 
increases in price (with constant variance), while the variance decreases in 
price for the multiplicative model (with constant coefficient of variation). 

Considering also shortage penalty costs for the joint problem resulted 
clearly in the technically most challenging model. In contrast to the previous 
models, here we were no longer able to derive results analytically; instead, we 
conducted a numerical study in order to gain insights into this problem. For 
unimodality of the problem we can numerically identify the same conditions 
on the distribution functions and risk spectra as for the problem with zero 
shortage penalty costs. The optimum price in the risk preference is again 
increasing for the additive and decreasing for the multiplicative demand 
model, while optimal quantities are non-monotone for both cases. Positive 
shortage penalty costs also affect the service levels because in the extremely 
risk-averse case, both measures approach one. 

There are plenty of opportunities for further extension of the work. One 
extension could be with respect to the estimation of the underlying demand 
model. Typically, linear or log-linear regression is used to estimate the 
response of demand on price. The commonly used least-squares minimization 
treats all observations equally so that the regression model might be good 
on average but for the rather rare outcomes with bad consequences the 
regression model might not explain demand very well. Hence, similar to 
applying spectral risk measures, it could be interesting to apply weighted 
regression for the demand modeling to be able to specifically estimate the 
lower tails of the demand distribution. 

While the current work is strongly based on a normative foundation, a 
positive study about how good different risk spectra might reflect empirically 
observeable decision making behaviour could be very helpful. Based on 
these results the model could be used for supply chain contracting issues, for 
example where a single manufacturer delivers to multiple risk-averse retailers, 
where the manufacturer needs to anticipate the response of the retailers on 
the pricing decision. Furthermore, additional research on technical properties 
of risk spectra could be done in order to find risk spectra other than CVaR0 

and power risk spectrum, where the necessary conditions for the pricing 
problem are fulfilled. 

A challenging task could be the extension of the model to a multi-product 
setting. Choi and Ruszczynski (2008} and Choi et al. (2009} analyze approx-
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imation techniques for quantity optimization when a product portfolio is 
considered under general law-invariant coherent risk measures. A main con-
clusion of their work is that the whole product portfolio has to be considered 
in the optimization when risk measures are applied. To our knowledge, work 
with respect to the pricing problem in such a setting has not yet been done. 

A natural further extension of this work concerns dynamic multi-period 
models. It would be very interesting to see if, for the inventory-only problem, 
a basestock policy, or in the inventory & pricing problem, a basestock listprice 
policy, turns out to be optimal. 
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Appendix A 

Proofs 

Lemma 8. (See Jammernegg and Kischka, 2007, appendix B) Let F be 
the continuous, strictly increasing distribution function of demand D. The 
distribution function of profit, Fn is 

{
F (,r+y(c-v)) 

Fn(1r) = p-v 
1 

for 1r < (p - c)y 

otherwise, 
(A.1) 

so that Fn is continuous and strictly increasing for 1r < (p - c)y. The 
generalized inverse distribution function of profit, Fi/(w), is then strictly 
increasing for w E [O, F(y)) and (p- c)y for w E [F(y), 1]. 

Proof. Using the profit formulation as in (1.1), II(y) = pmin(D, y) - cy + 
v(y- D)+, one can easily see that with a given order quantity y when D = y, 
a maximum possible profit of (p - c)y can be achieved. 

Case 1: 1r > (p - c)y. For any D > y, no further profit improvements can 
be made. Hence, 

Fn(1r) = 1 for D > y. 

Case 2: 1r s; (p - c)y. For the case D ~ y, random profit can be written as 

II = pD - cy + (y - D)v. 

Exchanging variables, 

Fn(1r) = W'(II ~ 1r) 
= W'(pD - cy + (y - D)v ~ 1r) 

= W, (v ~ 7r + y( C - V) ) 
p-v 

= F ( 7r + y( c - V) ) . 
p-v 

D 
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Proof of Proposition 4 

Since for the problem without penalty cost an ordered relation between 
demand realizations and profit realizations exists (i.e. the 100a% lowest 
demand result in the 100a% lowest profit for any a), we can use the definition 
of the risk measure as in (2.9) directly for the optimization. Hence, we can 
write the objective function, M(II(y)), as 

1F(y) 11 
M(II(y))= cp(w)Fi/(w)dw+(p-c)y cp(w)dw. 

0 F(y) 

Let 4>(w) := J;' cp(u) du, then 

{F(y) 
M(II(y)) = lo cp(w)Fii 1 (w) dw + (p- c)y (1 - 4>(F(y))), 

where Fii 1 (w) for w E [O, F(y)) using Lemma 8 is a continuous, monotone 
increasing function. Hence, we can change the direction of integration and 
write 

J(p-c)y 
M(II(y)) = 1rcp(Fn(1r)) dFn(1r) + (p - c)y (1 - 4>(F(y))). 

-(c-v)y 

Replacing profit distribution Fn with demand distribution Fusing Lemma 8 
leads to the formulation of the risk measure for the newsvendor problem, 

M(II(y)) = foy [xp - cy + (y - x)v]cp(F(x)) dF(x) + (p- c)y [1 - 4>(F(y))]. 

We are now ready to derive the first order condition to explicitly formulate 
the optimal order quantity, y*. Using Leibnitz' rule, 

dM [Y dy = -(c + v) lo cp(F(x)) dF(x) + (p - c)[l - <I>(F(y))] = O, 

Solving for 4>(F(y)), 

4>(F(y)) = p - c. 
p-v 

Note that <1>- 1 (w) exists for every w E [O, 1] since cp(w) is finite by definition. 
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Finally, we derive the second order condition to show that the optimization 
problem is concave in y, so 

d2 M 
dy2 = -(c - v)</>(F(y))f(y) - (p- c)</>(F(y))J(y) < 0, 

since v < c < p and </>( ·) 2 0, f ( ·) 2 0 by definition. Hence, the problem is 
a concave maximization problem in y. • 

Proof of Lemma 2 

Using (1.9) and (1.1) the probability of profit being smaller than a target 
level Lis 

PLL = IF(II:::; L) = IF((p - c)y - (p - v)(y - D)+:::; L) 

= JPl (max(y - D; 0) 2 (p- c)y - L) 
p-v 

= {JPll ( D :::; (c-;2~+L) for (p - c)y - L 2 0 

for (p - c)y - L < 0 

= {Fl ( (c-;2~+L) for (p - c)y - L 2 0 

for (p - c)y - L < 0. 

It can be easily seen that for any y 2 p~c, PL L is monotonically increasing 
in y since p- l is increasing in its argument. D 

Proof of Lemma 3 

The probability of profit being smaller a certain level, JPl(JI:::; 7r) is composed 
of two parts: the event where D :::; y and a second event where D > y. 
Note that these two events are mutually exclusive, therefore for the joint 
probability we can simply add up the probabilities of the two events. Recall 
from (3.17), 

JI(y) = {(p- c)D - (c - v)(y- D) D:::; y 
(p - c)y - s(D - y) D > y. 

Now we can plug in the profit in the distribution function of profit, Fn(7r) := 
JPl(JI:::; 7r), and add up the probabilities of the two exclusive demand events, 
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so that we can express the profit distribution F rr as a function of the demand 
distribution F. 

Frr(1r) = IP' ( Il(y):::;; 1r, D:::;; y) + IP' (Il(y):::;; 1r, D > y) 

= IP' ( (p - c)D - (c - v)(y - D) :::;; 1r, D:::;; y) 

+ IP' ( (p - c)y - s(D - y) :::;; 1r, D > y) 

= IP' ( D :::;; 7f + p( ~ ~ v )y) + IP' ( D > (p - c +/ )y - 7f) 

= F ( 7f + p( ~ ~ v )y) + 1 - F ( (p - c +s s )y - 7f) . 

Proof of Proposition 8 

• 

Using Acerbi's method easily helps us to show the concavity of M(Il(u)) 
with respect toy. We can formulate the risk measure as in Proposition 3, so 

M(Il(y)) = maxr(y,7µ), 
,µ 

where r is defined in (2.14). Since random profit Il(y) is concave in y, 
immediately from Corollary 2 it follows that M(Il(y)) is concave in the order 
quantity. 

It remains to derive the risk measure in terms of demand. Since (p - c)y 
is the maximum possible profit realization for a given y, we can write the 
risk measure in terms of the profit distribution as 

l (p-c)y 
M(Il(y)) = -oo td<P(Frr(t)). 

Exchanging the variable of integration t over profits by demand x, it follows 
that 

M(Il(y)) = lyoo 1r(x, y) d<P(G(x)) 

= lyoo ((p - v)x - (c - v)y) (!(x) + f(i)p: v) ¢( F(x) + 1 - F(i)) dx. 
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Using integration by parts, 

M(II(y)) = (p- c)y- (p- v) J_Y
00 

<I>(F(x) + 1- F(x)) dx. 

• 

Proof of Lemma 4 

Recall that for a CVaR0 decision maker ¢ = ¼ for O ~ w ~ a and 0 
otherwise. Now, let x 0 < y be the demand up to which the corresponding 
profits are considered by having positive weights, so where </>(Fn) = ¼- The 
corresponding demand level larger y, i.e. x0 , can be derived as shown in 
(3.18), so 

Hence, x 0 should satisfy 

p-v Xo=y+(y-xo)--. 
s 

G(x0 ) = F(x0 ) + 1 - F(x0 ) = a. (A.2) 

Since x 0 depends on y, when y changes also x 0 should change so that (A.2) 
is satisfied again. Thus x 0 is implicitly a function of y. Now we can define 
x 0 ' = dJ~' and x0 ' = df~', taking the derivative of (A.2) with respect to y 
leads to 

x 0 ' f(x 0 ) - x0 ' f(x 0 ) = 0. (A.3) 

Based on the general formulation of M(JI) in (3.23) we can write 

1 jx" p-v M(JI(y)) =- ((p - c)x - (c - v)(y - x))f(x)- dx 
fr -oo s 

+ ± J_x~ ((p- c)x - (c - v)(y - x))f(x) dx. 

Substituting x for x in the first integral leads to 

i r= 
M(JI(y)) =~ lx" ((p - c)y - s(x - y))f(x) dx 

+ ± J_x~ ((p - c)x - (c - v)(y - x))f(x) dx, 
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taking the derivative with respect toy using (A.3), 

M'(II(y)) = i ( (p - c + s)(l - F(x 0 )) - (c - v)F(x0 )). 

Using (A.2) we can solve this for 

and 

F(xo*) = a.p - c + s, 
p-v+s 

c-v 
F(x 0 *) = 1 - a.---, 

p-v+s 

* p-v p-l ( p-c+s) s p-l ( c-v ) y = --- a.--- + --- l - a.--- . 
p-v+s p-v+s p-v+s p-v+s 

Proof of Lemma 6 

• 

Following the same line of argument as in the proof of Corollary 4, we now 
define J demand levels as 

xf = y + (y - xf) P - v for all i = 1 ... J, 
s 

and xg := -oo and x'.J+i := y, so x0 = oo and x'.J-+1 = y which satisfy 

F(xf) + 1 - F(xf) = wi for all i = 1 ... J. 

The risk measure can be formulated as 

M(II(y)) = t <Pi [ 1;:'-1 ((p - c)y - s(x - y))f(x) dx 

+ 1~~
1 
((p - c)x - (c - v)(y - x))J(x) dx] · 
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Taking derivatives leads to the first order condition as the system of equations 

dM~:(y)) = ~¢i[(p-c+s)(F(xf_1)-F(x?)) 

- (c - v)(F(x?) - F(x?- 1))] = 0, 

F(x?) + 1 - F(x?) = wi for all i. 

Proof of Proposition 11 

For the additive model, we write the objective function as 

D 

!z"(p) 
M(ll(p, z*(p))) = M(ll(p)) = (p-c)d(p)+(p-c)z*(p)-(p-v) -oo F¢(c) de:, 

with cross derivative 

82 M(ll(p)) = dz*(p) (i _ p - c) > O. 
8v8p dv p-v 

The second term is positive by definition since p ~ c ~ v. To see that 
z*(p) is increasing in v, we take the derivative with respect to v from 
F¢(z*(p)) = ~' 

dz*(p) 
dv 

1 p-c 
f<t>(z*(p)) (p - v) 2 > O. 

Hence, the risk measure of profit is supermodular in (p*, v), sop* is increasing 
in V. 0 

Proof of Proposition 12 

We write the objective function in terms of the degree of risk aversion, "7 
using the optimal stocking factor z* (p). Note that the risk-transformed 
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distribution function F¢(e) changes with r,. Let us first show part (a) for 
the additive model. 

J
z*(p) 

M(JI(p, z*(p))) = M(JI(p)) = (p-c)(d(p) +z*(p))- (p-v) -oo F¢(e) de. 

The cross derivative is 

f)2 M(JI(p)) = oz*(p) ( _ F ( *( ))) -Jz*(p) 8F¢(e) d a a a 1 <1> z P a e, T/ p T/ -oo T/ 
(A.4) 

where F¢(z*(p)) = ~- By Definition 6(b), <I>(w) decreases in r,, hence 
also F¢(e) = <I>(F(e)) decreases in r,. Furthermore, the optimal z*(p) = 
Fi 1 (~) for a given p increases in r,. Hence, since O ::::; F¢(z*(p)) ::::; 1 

the first term in (A.4) is positive, while the second term is negative so 
that the whole expression is positive. This is sufficient for M(JI(p)) being 
supermodular in (p*, r,) and p* being increasing in r,. 

Now we can show part (b) for the multiplicative model. The first derivative 
with respect to price is 

hence 
d'(p*) = _ d(p*) foz*(p*\1 - F¢(e)) de . 

p* J0z•(p*\1 - F¢(e)) de - cz*(p*) 

Recall that E(p) denotes the price elasticity, 

( *) _ _ p*d'(p) _ * J0z*(p*\1 - F¢(e))de d 

f P - d(p*) - p p* Jt(p•\1 - F¢(e)) de - cz*(p*)' an 

* d(p*) - p* d' (p*) -cz* (p*) 
1 - E(p ) = -------,--- = ---------. (A.5) 

d(p*) p* f0z•(p*)(l - F¢(e))de - cz*(p*) 
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Using integration by parts, we can rewrite the denominator as 

1 - E(p*) = -cz*(p*) . 
p* J0z•(p") e/<t>(e) de 

(A.6) 

The cross derivative is 

{)2 M(II(p)) 
a,,,ap 

= d'(p) -p _<I>_ de+ p--p (1- F<t>(z*(p))) - cz*(p) [ 1z*(p) 8F (e) 8z*( ) l 
o a,,, a,,, 

+ d(p) [- ioz"(p) a~~e) (e) de+ az;~p) (1 - F<t>(z*(p)))l , 

where F<t>(z*(p)) = 7, so 

a2 M(JI(p)) = - r"(p) 8Fip(e) de. (d(p) + pd'(p)) + d(p/z*(p) ~ 
a,,,ap lo a,,, a,,, p 

Since d(p*) + p*d'(p*) = d(p*)(l - E(p*)) from (A.5), we can write 

a2 M(JI(p)) I 
a,,,ap 

p=p• 

= d(p*) [-(1 -€(p*)) r"(p*) 8F<1>(e) de+ 8z*(p) I . ~]-lo a,,, a,,, p* 
p• 
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Plugging in (A.6), 

[ 

* r•<p•) aF¢(E) ] 
a2 M(JJ(p)) I = d(p*) ~ z (p*) ~o • 8ry dE + 8z*(p) I . ~ 

8ri8p p* 1z (p ) 8ri P* 
p=p• EJ¢(E) dE p• 

0 

1
z*(p*) 8F (E) 8z*(p) I 1z*(p*) 

z*(p*) _<t>_dE+-- · E/¢(E)dE 
0 8ri 8ri 0 

p• = d(p*)~ 
p* 

Since 
8z*(p) 8F¢(E) I 1 a;, = -a;;- X f<t>(z*(p))' 

c:=z• (p) 

we can write 

a2 M(JJ(p)) I C ( r•(p*) )-1 1 
8ri8p p=p• =d(p*) p* lo E/¢(E) dE f<t>(z*(p*)) 

X [z*(p*)f (z*(p*)) r*(p*) 8F¢(E) dE 
<t> lo ari 

8G(z*(p*)) 1z*(p*) l 
- 8 Ef<t>(E)dE, 

T/ 0 

where the first terms are all positive and the expression in [ • ] can be written 
as 

r*(p*) 8F¢(E) 8F¢(z*(p*)) { z*(p*)!¢(z*(p*)) _ E/¢(E)} dE (A.7) 
lo 8ri ari 8F,i,(z•(p•)) oF,p(c:) · 

01} 01] 

This expression is positive if 

.!!__ ( ~f<t>(x) ) > O, 
dx 8'7F¢(x) 

so if the second fraction in (A.7) is increasing in E. • 
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Proof of Proposition 13 

Let us first show the monotonicity of p* (y) for an additive demand model. 
Note that for ease of expression we show the derivations without considering 
salvage value, so v = 0. It can be easily extended to v > 0. We can write 

J
y-d(p) 100 

M(Il(p, y)) = p(d(p) + e)/¢(e) de+ PYl¢(e) de - cy. 
-d(p) y-d(p) 

Using y = d(p) + z, 

J
y-d(p) 

M(JI(p, y)) = (p - c)y - p (z - e)fcp(e) de. 
-d(p) 

Using integration by parts, 

J
y-d(p) 

M(Il(p, y)) = (p - c)y - p F¢(e) de. 
-d(p) 

The first order condition for optimal p* (y) is then 

aM(~(p, y)) I = Jy-d(p) [1 - F¢(e) + pd'(p)fcp(e)] del _ . = 0. 
p •( ) -d(p) P-P (y) p=p y 

(A.8) 
Note that F¢(-d(p)) = 0. Using the implicit function theorem, 

dp*(y) __ a2 M(II(p, y)) (a2 M(II(p, y)))- 1 I 
dy - 8y8p 8p2 ' 

p=p•(y) 

where the second term is negative because of the second order condition for 
optimality of p* (y). For a decreasing p* (y) it remains to show that the first 
term is negative. It can be written as 

82 M(Il(p, y)) 
ayap = l - F¢(Y - d(p)) + pd'(p)J¢(Y- d(p)) (A.9) 

Now, let R(p,e) := -pd'(p) 1!i,~(c) so that 

1 - Fcp(e) + pd'(p)J¢(e) = (1 - F¢(e))(l - R(p, e)). 
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Now we show that for p = p*(y), (A.9) is negative by contradiction. Assume 

(1 - F4>(c))(l - R(p,c))l,,=y-d(p) ~ 0. 

Because (1-F¢(•)) ~ 0 it follows that 1- R(p,c)l,,=y-d(p) ~ 0. R(p,c) is 
increasing in c, since F has IFR and the risk spectrum preserves the IFR 
property, which implies that 1!]..~ie) is increasing inc. Hence, 1- R(p, c) > 0 

for any c E (-d(p), y - d(p)). It follows that 

jy-d(p) (1 - F¢(P, c))(l - R(p, c)) dcl > 0, 
-d(p) p=p•(y) 

which is a contradiction to (A.8). 

The proof for the multiplirotive demand function is very similar. The 
cross derivative is 

82 M(II(p, y)) ( y ) pd'(p) y ( y ) 
ayap = l - F4> d(p) + d(p) d(p/4> d(p) . (A.10) 

We can define R(p,c) := P~;~)) 1°!#.~c~) which is increasing inc. Using the 

same argument by contradiction as before, (l-F4>(c))(l-R(p, c)) I _--11,_ < 0, 
e- d(p) 

which implies that (A.10) is negative for p = p*(y) and p*(y) is decreasing 
in y. • 

Proof of Corollary 6 

It is easy to see that the risk measure of the profit from the demand error, 

M(JI,,(p, z)) = (p - c)z - (p - v) 1~ F4>(c) de, 

is supermodular in (p, z), since 

a2M(JI,,(p,z)) = 1- F ( ) 0 
azap 4> z > . 

Hence, independent of the underlying demand model p* is increasing in 
z. • 
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Proof of Corollary 7 

Let us first show the behaviour for the additive demand model. We write 
the risk measure of profit as a function of p and T/, 

M(II(p, z)) = (p - c)(d(p) + z) - (p - v) j_~ F4>(e) de, 

with cross derivative, 

a2 M(II(p, z)) - -Jz !_F ( ) d a a - a <t> e e > 0· p T/ -oo T/ 

This holds since by Definition 6(b) F<I> is decreasing in T/· Hence, the risk 
measure is supermodular in (p*, ri) for a given z and p*(z) is increasing in T/· 

Now we can show the behavior for the multiplicative demand model. Here 
the risk measure of profit is 

M(II(p, z)) = d(p) [(p - c)z - (p - v) 1oz F4>(e) de] , 
with cross derivative 

82 M~;~, z)) = -( d'(p)(p - v) + d(p)) foz :T/ F4>(t:) dt:. (A.11) 

The integral is with negative the same reasoning as before in the additive 
model. What remains, is to show that the first term is negative. The first 
order condition for optimality of price is 

8M(~;p,z)) =-(d'(p)(p-v)+d(p)) 

x 1zF4>(e)de+z(d'(p)(p-c)+d(p))I =0. 
p=p•(z) 

Since p - c < p - v, we can write 



124 Appendix A. Proofs 

Since F4,(·) ~ 1, the integral is smaller than z and the right term is positive. 
Hence, the first term is negative, so that also (A.11) is negative. The problem 
is submodular in (p*, 17), so p*(z) is decreasing in 17. • 
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