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Preface

The present volume comprises topics about the theory of harmonic analysis and its
applications.Wehope that it is aworthy addition to the references on orthogonal poly-
nomials, homogenous polynomials, and wavelet spheroidal analysis.

All scientific work involves an armada of people. First, we wish to thank our pro-
fessor, Samir Ben Ammou, professor of mathematics in the Department of Mathemat-
ics in the Faculty of Sciences atMonastir University, Tunisia, who supported this work
by accepting us as members of his laboratory, The Computational Mathematics Labo-
ratory He also provided funding for participation in scientific conferences where dis-
cussions with specialists occurred and thus improved the work.

We would also like to thank Professor Slaiem Ben Farah, the dean of the Faculty
of Sciences at Monastir University, for his unforgotten help with providing funding
for us to participate in scientific conferences, especially the International Colloquium
on Harmonic Analysis, Probability Theory and Their Interactions held in Hammamet,
Tunisia, December 15–19, 2014, the International Colloquium on Random Matrices and
Orthogonal Polynomialsheld inHammamet, Tunisia,March 22–27, 2015, and theFourth
Tunisian–Japanese Conference on Geometric and Harmonic Analysis on Homogenous
Spaces and Applications held at Monastir, Tunisia, 18–23 December, 2015.

We also wish to thank the staff at De Gruyter, especially the executive boardmem-
bers, Dr. Anke Beck, the editorial director for mathematics, physics, and engineering,
Dr. Konrad Kieling, and also the project editor, Dr. Astrid Seifert. We thank all of them
for their hospitality, co-operation, collaboration, and for the time they spent on our
project.

The present book stems from lectures and papers on the topics developed and are
gathered, re-developed, improved, and sometimes completed when there are miss-
ing developments. However, naturally, it is not exhaustive and may be critiqued, cor-
rected, and improved by readers. So, we welcome comments and suggestions.

We also want to stress the fact that originally we planned to present more applica-
tions, especially applications of spheroidal wavelets. We regret their absence, which
was due to the time constraints of the editor. We hope that what is presented in this
volume will allow readers to become acquainted with the topics presented.
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1 Introduction

The present work provides the scientific community with a unified collection of de-
velopments in applied mathematical problems and as mathematical theory. First, we
wish to acknowledge that this book is the result of the work of two doctoral students,
Sabrine Arfaoui and Imen Rezgui, who were supervised by the third author until Oc-
tober 2014. These studies took place at the Computational Mathematics Laboratory
UR11ES51 headed by Professor Samir Ben Ammou, a recent student of École Nationale
des Ponts et Chaussées de Paris. The work focused on a special class of wavelets and
their applications. It is proposed to develop special wavelet bases that are related to
special functions in one part and adapted to spherical geometry in another.

Since their appearance, and especially over the last decades, wavelets have
proved to be powerful bases for many domains, such as numerical analysis, sig-
nal/image processing, physics, biomaths, medicine, and data analysis. Their power
stems from the fact that they do not require a large number of coefficients to accurately
represent general functions and large data sets. This allows compression and efficient
computations.Wavelets also offer both theoretical characterization of smoothness, in-
sights into the structure of functions and operators, and practical numerical tools that
lead to faster computational algorithms. Classical constructions have been limited to
simple domains, such as intervals, cubes, Cartesian representations, tensor products,
etc. So, one main challenge may be the construction of wavelets on general domains
as they appear in graphics applications. In the present context, we aim to present
wavelet constructions for functions defined on the sphere. We aim to show that using
special functions, such as orthogonal polynomials, homogenous polynomials, and
Bessel functions and their relatives, canbe sources for well-adaptedwavelets. Readers
will notice that the constructed schemes lead to extremely easily implemented bases
and allow fully adaptive algorithms.

In [14], a polynomial wavelet-type system adapted to the sphere is presented in
order to expand continuous functions into wavelet series on the sphere. The method
is characterized by an optimum order of growth of the degrees of polynomials. How-
ever, and as the authors themselves have already noticed and declared, the wavelet-
type system presented is not suitable for implementations as no explicit formulas for
coefficient functionals have been provided and the fact remains that the growth of the
degrees of polynomials is too rapid.

In [142], a simple technique for constructing biorthogonal wavelets on the sphere
with customized properties is developed. The construction is an incidence of a fairly
general scheme compared to [152] and [153]. The authorsmentioned an important task
about wavelets on the sphere showing that efficient wavelet algorithms have practical
applications since many computational problems are naturally stated on the sphere.

The first notion developed in this book is orthogonal polynomials. These are well-
known because of their link to many mathematical, physical, engineering and com-
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2 | 1 Introduction

puter sciences topics, such as scattering theory, automatic control, signal analysis, po-
tential theory, approximation theory, andnumerical analysis.Orthogonalpolynomials
are special as they are orthogonal with respect to some special weights allowing them
to satisfy someproperties that arenot fulfilledwithother polynomials. Suchproperties
havemade themuseful candidates to resolve enormous problems in physics, probabil-
ity, statistics, and other fields. In the present work, we aim to review orthogonal poly-
nomials by recalling the original definitions, reproduce their properties, and develop
some cases related to themostwell-knownmethod to reproduce some classes of them.

Next, as a natural extension of orthogonal polynomials, we present a review of
homogenouspolynomialsandtheir interactionswithharmonicanalysisonthesphere.
Specifically, we study the constructions of the spherical harmonics and develop the
main results of the theory of harmonic analysis on the sphere, such as the addition
theorem and the Fourier transformation. The link with some special features, such as
ultra-spherical polynomials and Bessel functions are also reviewed.

As in all research studies where the track is unpredictable, this work uses many
notions. As mentioned, we are exploring special wavelets. These are naturally related
to special functions. That is why we immediately plunged into the context of spe-
cial functions, that is, some particular mathematical functions that have more or less
established names and notations due to their importance in mathematical analysis,
functional analysis, physics, or other applications. A detailed study of the most well-
known types of these functions has been conducted. We detail the definitions, prop-
erties, and characterizationsof Bessel, Hankel, and zonal functions. Proofs have been
developed, sometimes in detail, relative to the base references and sometimes orig-
inally developed in the case of a lack of references. Graphic illustrations and some
examples of applications are sometimes mentioned, such as differential equations,
integro-differential equations, and time series.

Special functions are indispensable in many topics ranging from pure mathemat-
ics to applied fields. Thus, it is important to study their properties. Although many
properties and characteristics of such functions appear in many mathematical doc-
uments, there is no unified treatment of the topic. With this book, we are filling this
hole in the literature.

The last topic is spherical wavelets, which may be considered as a class of spe-
cial functions. We made use of zonal, spherical harmonics, homogenous, as well as
orthogonal polynomials. Recall that the spherical harmonics form the basis of the
Hilbert space L2(Sn), where Sn is the unit sphere of Rn, n ∈ ℕ. Harmonic analysis on
the sphere is the natural extension of Fourier series, which studies the expressibility
of functions and generalized functions as sums of the fundamental exponential func-
tions. The exponential functions are simpler functions, and are both eigenfunctions of
the translation-invariant differential operator and group homomorphisms. Here also,
spherical harmonics are simple and eigenfunctions of some differential operators.



2 Review of orthogonal polynomials

2.1 Introduction

Developments and interests in orthogonal polynomials have seen continuous and
great progress since their appearance. Orthogonal polynomials are connected with
many mathematical, physical, engineering, and computer sciences topics, such as
trigonometry, hypergeometric series, special and elliptic functions, continued frac-
tions, interpolation, quantummechanics, partial differential equations. They are also
be found in scattering theory, automatic control, signal analysis, potential theory,
approximation theory, and numerical analysis.

Orthogonal polynomials are special polynomials that are orthogonal with respect
to some specialweights allowing them to satisfy someproperties that are not generally
fulfilled with other polynomials or functions. Such properties have made them well-
known candidates to resolve enormous problems in physics, probability, statistics and
other fields.

Since their origin in the early 19th century, orthogonal polynomials have formed
a somehow classical topic related to Legendre polynomials, Stieltjes’ continued frac-
tions, and the work of Gauss, Jacobi, and Christoffel, which has been generalized by
Chebyshev, Heine, Szegö, Markov, and others. The most popular orthogonal polyno-
mials are Jacobi, Laguerre, Hermite polynomials, and their special relatives, such as
Gegenbauer, Chebyshev, and Legendre polynomials. An extending family has been
developed from the work of Wilson, inducing a special set of orthogonal polynomi-
als known by his name, which generalizes the Jacobi class. This new family has given
rise to other previously unknown sets of orthogonal polynomials, including Meixner
Pollaczek, Hahn, and Askey polynomials.

Orthogonal polynomials may also be classified according to the measure applied
to define the orthogonality. In this context, we cite the class of discrete orthogonal
polynomials that form a special case based on some discrete measure. The most com-
mon are Racah polynomials, Hahn polynomials, and their dual class, which in turn
include Meixner, Krawtchouk, and Charlier polynomials.

Alreadywith the classification of orthogonal polynomials, one candistinguish cir-
cular and generally spherical orthogonal polynomials, which consists of some special
sets related to measures supported by the circle or the sphere. One well-known class
is composed of Rogers–Szegö polynomials on the unit circle and Zernike polynomials,
which are related to the unit disk.

Orthogonal polynomials, and especially classical ones, can generally be intro-
duced by three principal methods. A first method is based on the Rodrigues formula
which consists of introducing orthogonal polynomials as outputs of a derivation.
The second method consists of introducing orthogonal polynomials as eigenvectors
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4 | 2 Review of orthogonal polynomials

of Sturm–Liouville operators, or equivalently, solutions of second-order differential
equations. The last method is based on a three-level recurrence formula.

In this chapter, we aim to review orthogonal polynomials by recalling the original
definitions, reproduce their properties, and develop some cases related to the most
known method to reproduce some classes of them.

2.2 Generalities

This section reviews basic definitions aswell as properties of orthogonal polynomials.
To do this, we first restrict ourselves to the field ℝ, and when it is necessary we recall
that the development remains valid on the complex field ℂ.
Definition 1. A Hilbert space is a vector space equipped with a scalar product,
which makes it a complete space relative to the scalar product induced norm.

Definition 2. Apolynomial P of degree n onℝ is formally defined by the expression

P(X) = n∑
k=0

akXk ,

where X is the variable and aks, 0 ≤ k ≤ n, are elements of ℝ called scalars and
known as the polynomial coefficient such that an ̸= 0.
Remark 3. The polynomial function associated with the polynomial P, which will
also be denoted by P, is the function defined on the whole space ℝ by P(x) =∑nk=0 akxk. We denote by ℝ[X] the set of all polynomials on ℝ. Of course, it is well
known that ℝ[X] is a vector space on ℝ with infinite dimension and that for any
n ∈ ℕ, the set ℝn[X] of polynomials on ℝ with degree at most n is a vector space
with dimension n + 1 on ℝ.
Definition 4. A set of polynomials B = (P0, P1, . . . , Pn , . . . ) in ℝ[X] is said to be
staggered with the degrees iff deg(Pi) = i, ∀i.
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The following result shows one important property of staggered degrees polynomi-
als confirming the ability of such polynomials to be good candidates for polynomial
spaces bases.

Proposition 5. Any finite setB = (P0, P1, . . . , Pn) of staggered degrees polynomials
in ℝn[X] is linearly independent.
Proof. Let (α0, α1, . . . , αn) be scalars in ℝ such that ∑ni=0 αiPi = 0. This means that
for all x ∈ ℝ,∑ni=0 αiPi(x) = 0. By considering the nth-order derivative on x, we obtain
αn d

nPn
dxn = 0. Consequently, αn = 0. Next, proceeding by induction on n, we prove

that all the coefficients αi are null. Hence, B is a free set in E. Observe next that the
dimension of E (dim E = n + 1) coincides with the cardinality of B. Therefore, B is a
basis of E.

Theorem 6 (GRAM–SCHMIDT). Let {fn}n≥0 be a countable systemof linearly indepen-
dent elements in a prehilbertian space. Then, there exists an orthonormal system{gn}n≥0 such that for any n, Vect{g0, g1, . . . , gn} = Vect{f0, f1, . . . , fn}.
Proof. We proceed by induction to construct the system {gn}n≥0. Let g0 = f0. Then
element g1 will be defined by

g1 = f1 − αg0 .
As we want g0 and g1 to be orthogonal, we obtain⟨g0, g1⟩ = ⟨g0, f1⟩ − α⟨g0, g0⟩ = 0 .
So that, α = ⟨g0,f1⟩⟨g0,g0⟩ . Otherwise, we subtract from f1 its orthogonal projection on g0,
i.e.,

g1 = f1 − ⟨f1, g0⟩⟨g0, g0⟩ g0 .
Hence, clearly we have Vect{0, g1} = Vect{f0, f1}.
Next, g2 is defined analogously by subtracting from f2 its orthogonal projections on(g0, g1). In other words,

g2 = f2 − ⟨f2, g1⟩⟨g1, g1⟩ g1 − ⟨f2, g0⟩⟨g0, g0⟩ g0 .
It is straightforward that g2 is orthogonal to g0 and g1. Assume next that gn is well
known. gn+1 will be obtained as follows:

gn+1 = fn+1 − n∑
i=0

⟨fn+1, gi⟩⟨gi , gi⟩ gi .
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We check easily that for all k ≤ n,⟨gn+1, gk⟩ = ⟨fn+1, gk⟩ − n∑
i=1

⟨fn+1, gi⟩⟨gi , gi⟩ ⟨gi , gk⟩= ⟨fn+1, gk⟩ − ⟨fn+1, gk⟩⟨gk , gk⟩ ⟨gk , gk⟩ = 0 .
Obviously, the elements gn are not normalized. To do this, we divide each one by its
norm. The equality Vect{g0, g1, . . . , gn} = Vect{f0, f1, . . . , fn} is straightforward.
Definition 7. Let I be an interval inℝ nonreduced to a point and let ω be a positive
continuous function on I. ω is said to be a weight function iff∫

I

|x|dω(x) dx < ∞, ∀d ∈ ℕ .

We denote by the next Cω(I) the vector space of continuous functions on the interval I,
satisfying ∫

I

|f(x)|2ω(x) dx < ∞ . (2.1)

It results from hypothesis 7 that the polynomials are elements of Cω(I). On this space
of functions, a scalar product can be defined by⟨f, g⟩ = ∫

I

f(x)g(x)ω(x) dx . (2.2)

The integration interval I will be called the orthogonality interval.

Definition 8. A set of polynomials (Pi)i≥0 is said to be orthogonal iff it satisfies
(1) Degree(Pi) = i; ∀i ∈ ℕ.
(2) ⟨Pi , Pj⟩ = 0; ∀(i, j) ∈ ℕ2; i ̸= j.

The following result shows some generic properties of orthogonal polynomials, as
they are special cases of staggered degree polynomials and consequently they also
form good candidates for polynomial spaces orthogonal bases.

Proposition 9. Let (Pi)i≥0 be a set of orthogonal polynomials. Then
(1) ∀n ∈ ℕ; (P0, P1, . . . , Pn) is an orthogonal basis ofℝn[X].
(2) ∀(n, p) ∈ ℕ2; n ≥ p + 1 󳨐⇒ Pn ∈ (ℝp[X])⊥.
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Proof. The first assertion is a consequence of Proposition 5 and the orthogonality of
the set (P0, P1, . . . , Pn). (We can also use the second point in Definition 8 to prove
the independence of the Pjs, j = 0, . . . , n). Next, as ℝp[X] is generated by the set(P0, P1, . . . , Pp) and n ≥ p + 1, which means that Pn ⊥ Pj, for all j = 0, . . . , p, so it is
orthogonal to ℝp[X].
Remark 10. Sometimes we need to use unitary orthogonal polynomials Pn. Thus,
we need to multiply them by constants so that λnPn becomes unitary or not. So, in
the following, we will not differentiate between the two notions and will use the
notation (Pn)n and λnPn depending on the context.
Properties 11. The unitary orthogonal polynomials satisfy the following asser-
tions:
(1) P0(x) = 1.
(2) Degree(Pn) = n, ∀n ∈ ℕ.
(3) ∫I Pn(x)Q(x)w(x) dx = 0, ∀Q ∈ ℝ[X] such that Degree(Q) < n.
(4) ℝn(X) = Vect(P0, . . . , Pn), ∀n ∈ ℕ.
Proof. (1) P0 is a unitary constant polynomial. So, it is equal to 1.
(2) It follows from the first assertion in Definition 8.
(3) As Degree(Q) > n so Q ∈ ℝn[X]⊥. Thus, assertion (3).
(4) Holds from Proposition 9.

Lemma 12. Let (P0, . . . , Pn) be a unitary orthogonal polynomial set. Hence,
(1) (P0, . . . , Pn) is a basis ofℝn[X].
(2) Pn is orthogonal to ℝn−1[X].
Indeed, Firstly, we know that dimℝn[X] = n + 1 = card(P0, . . . , Pn). On the other
hand, (P0, . . . , Pn) is orthogonal; hence, it is linearly independent. Thus, it consists
of a basis inℝn[X].
The second point follows from the fact that Pn is orthogonal to (P0, . . . , Pn−1), which
means that it is orthogonal to ℝn−1(X) = Vect(P0, . . . , Pn−1).
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2.3 Orthogonal polynomials via a three-level recurrence

Theorem 13 (Recurrence rule). Let (Pi)i≥0 be a set of orthogonal polynomials. There
exist scalars (an)n, (bn)n, and (cn)n such that

Pn+1 = (anX + bn)Pn + cnPn−1; ∀n ∈ ℕ∗ .
More precisely,

an = kn+1kn , bn = −an ⟨XPn , Pn⟩‖Pn‖2 and cn = − anan−1
⟨Pn , Pn⟩⟨Pn−1, Pn−1⟩ ,

where kn is the coefficient of Xn in Pn(X).
Proof. Without loss of generality, we can assume that (Pi)i≥0 is orthonormal. Let B =(XPn , Pn , Pn−1, . . . , P0) be a set of staggered degree polynomials in ℝn+1[X]. So, it is
linearly independent in ℝn+1[X]. Consequently, it forms a basis of ℝn+1[X]. Conse-
quently, there exist then scalars an , bn, cn and αi, 0 ≤ i ≤ n − 2 such that

Pn+1 = anXPn + bnPn + cnPn−1 + n−2∑
i=0
αiPi .

Next, using the orthogonality property of (Pi)i≥0, we obtain⟨Pn+1, Pi⟩ = an⟨XPn , Pi⟩ + αi‖Pi‖2 = 0, ∀0 ≤ i ≤ n − 2 .
On the other hand, ⟨XPn , Pi⟩ = ⟨Pn , XPi⟩ .
Since XPi ∈ ℝn−1[X], we obtain ⟨XPn , Pi⟩ = 0 .
Consequently,

αi = 0, ∀0 ≤ i ≤ n − 2 .
Hence,

Pn+1 = (anX + bn)Pn + cnPn−1 . (2.3)

We now evaluate the coefficients an , bn, and cn. Recall that Pn can be written as

Pn(X) = knXn + kn−1Xn−1 + ⋅ ⋅ ⋅ + k0 .
By identification of the higher degree monomials in (2.3), we obtain

an = kn+1kn .
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Next, the inner product of (2.3) with Pn gives⟨Pn+1, Pn⟩ = an⟨XPn , Pn⟩ + bn⟨Pn , Pn⟩ + cn⟨Pn−1, Pn⟩ .
Using the orthogonality of the set, we get

an⟨XPn , Pn⟩ + bn⟨Pn , Pn⟩ = 0 .
Hence,

bn = −an ⟨XPn , Pn⟩⟨Pn , Pn⟩ .

Next, using the inner product with Pn−1 and using again the orthogonality of the set,
we obtain

an⟨XPn , Pn−1⟩ + cn⟨Pn−1, Pn−1⟩ = 0 .
Hence,

cn = −an ⟨XPn , Pn−1⟩⟨Pn−1, Pn−1⟩ = −an ⟨Pn , XPn−1⟩⟨Pn−1, Pn−1⟩ .
Next, denote XPn−1 = ∑ni=0 αiPi as the decomposition of XPn−1 in the basis of polyno-
mials (Pi)0≤i≤n. By observing the higher degree monomials in the decomposition, we
get

Xkn−1Xn−1 = αnknXn ⇐⇒ αn = kn−1kn = 1
an−1

.

On the other hand, ⟨XPn , Pn−1⟩ = ⟨Pn , XPn−1⟩= αn⟨Pn , Pn⟩ + n−1∑
i=0
αi⟨Pn , Pi⟩

= αn⟨Pn , Pn⟩ + n−1∑
i=0
αi0= αn⟨Pn , Pn⟩.

Consequently,

cn = −an ⟨Pn , XPn−1⟩⟨Pn−1, Pn−1⟩ = −an αn⟨Pn , Pn⟩⟨Pn−1, Pn−1⟩ = − anan−1
⟨Pn , Pn⟩⟨Pn−1, Pn−1⟩ .

Hence,
Pn+1 = anXPn + bnPn + cnPn−1 ,

where

an = kn+1kn , bn = −an ⟨XPn , Pn⟩⟨Pn , Pn⟩ and cn = − anan−1 ⟨Pn , Pn⟩⟨Pn−1, Pn−1⟩ .
In the case where (P0, . . . , Pn) is orthonormal, we obtain

an = kn+1kn , bn = −an⟨XPn , Pn⟩ and cn = − anan−1 .
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Favard presented the converse of Theorem 13, which states that under suitable condi-
tions, a sequence of polynomials satisfying the three-level equation stated there can
be orthogonal relative to a suitable weight function.

Theorem 14 (Favard’s theorem). Let {cn}∞n=0 and {λn}∞n=0 be sequences in ℝ, and{Pn}∞n=0, a set of polynomials satisfying
Pn(x) = (x − cn)Pn−1(x) − λnPn−2(x), ∀n ∈ ℕ∗ ,

where P0(x) = 1 and P1(x) = x − c1. Then, there exists a unique linear form φ onℝn(X) for which φ(PkPm) = 0 whenever k ̸= m.
Proof. We proceed by steps.
Step 1. We claim that Degree(Pn) = n, ∀n ∈ ℕ. Indeed, for n = 0, P0(x) = 1. Hence,
Degree(P0) = 0. For n = 1, P1(x) = x − c, so it is of degree 1. Assume next that
Degree(Pn) = n and prove the same for Pn+1. The three-level relation above yields
that

Degree(Pn+1) = Degree((x − cn+1)Pn(x)) = 1 + n .
Hence, we proved by recurrence on n that Degree(Pn) = n, ∀n ∈ ℕ.
Step 2. Consider the space ℝn[X] of polynomials on ℝ with degrees at most n. It re-
sults from Step 1 that the set Bn = (P0, . . . , Pn), satisfying that the three-level rela-
tion is a degree-straggled set of polynomials. Henceforth, it is a basis of ℝn[X]. Let
φ : ℝn[X] 󳨀→ ℝ be the continuous linear form defined on such a basis by

φ(P0) = 1, φ(P1) = ⋅ ⋅ ⋅ = φ(Pn) = 0 .
It holds from the Riez–Fréchet theorem that there exists a function ω such that

φ(P) = ⟨P, ω⟩ = ∫
ℝ
P(x)ω(x)dx .

We now prove that
φ(PkPm) = 0, ∀0 ≤ k ̸= m ≤ n .

For k < m, denote Pk(x) = ∑ks=0 αs(k)xs. We get

φ(PkPm) = k∑
s=0
αs(k)φ(xsPm) .

On the other hand, xsPm can be written as

xsPm = m+s∑
i=m−s

diPi .

Hence,

φ(xsPm) = m+s∑
i=m−s

diφ(Pi) = 0 .
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2.4 Darboux–Christoffel rule

Recall that an element P in a vector space equipped with an orthonormal basis( ̃P0 . . . , ̃Pn) can be written as
P = n∑

k=0
⟨ ̃Pk , P⟩ ̃Pk .

In the case of Cω(I), this means that

P(x) = n∑
k=0
(∫
I

̃Pk(y)P(y)ω(y)dy) ̃Pk(x)
= ∫
I

( n∑
k=0
̃Pk(y) ̃Pk(x)) P(y)ω(y)dy

= ∫
I

Kn(x, y)P(y)ω(y)dy
= ⟨Kn(x, y), P⟩ ,

where we denoted

Kn(x, y) = n∑
k=0
̃Pk(y) ̃Pk(x) = n∑

k=0

Pk(y)Pk(x)‖Pk‖2 .

Definition 15. Kn(x, y) is called the Darboux–Christoffel kernel.
We now state the famous Darboux–Christoffel theorem, which characterizes orthogo-
nal polynomial sequences [98].

Theorem 16. Let {Pn}n≥O be a set of orthogonal polynomials. Then the following as-
sertions hold:
(1) Kn(x, y) = kn

kn+1hn
Pn+1(x)Pn(y)−Pn(x)Pn+1(y)

x−y ; x ̸= y.
(2) Kn(x, x) = kn

kn+1hn (P󸀠n+1(x)Pn(x) − P󸀠n(x)Pn+1(x)).
where hn = ‖Pn‖2.
Proof. Without loss of generality, we can assume that the system {Pn}n≥0 is orthonor-
mal. So that hn = 1 for all n. For the first point, we proceed by induction on n. Let
x ̸= y. When n = 0, the left-hand side term becomes

K0(x, y) = P0(x)P0(y) = 1 .
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The right-hand side term becomes

k0
k1
P1(x)P0(y) − P0(x)P1(y)

x − y = k0
k1
P1(x) − P1(y)

x − y = k0
k1
k1x − k1y
x − y = k0 = 1 .

Hence for n = 0, assume next that the property is true for n − 1. This means that

Kn−1(x, y) = kn−1kn Pn(x)Pn−1(y) − Pn−1(x)Pn(y)
x − y , (2.4)

and we check the validity for n. To do this, recall that the three-level induction rule in
Theorem 13 implies that

Pn+1 = (anX + bn)Pn + cnPn−1 .
Thus,

Pn+1(x)Pn(y) − Pn(x)Pn+1(y) = [(anx + bn)Pn(x) + cnPn−1(x)] Pn(y)− Pn(x) [(any + bn)Pn(y) + cnPn−1(y)]= an(x − y)Pn(x)Pn(y)+ cn [Pn−1(x)Pn(y) − Pn(x)Pn−1(y)] .
Using the induction hypothesis (2.4), we obtain

cn [Pn−1(x)Pn(y) − Pn(x)Pn−1(y)] = −cn kn
kn−1
(x − y)Kn−1(x, y)= an

an−1
kn
kn−1
(x − y)Kn−1(x, y)= an(x − y)Kn−1(x, y)

Consequently,

kn
kn+1

Pn+1(x)Pn(y) − Pn(x)Pn+1(y)(x − y) = kn
kn+1

an(x − y)Pn(x)Pn(y)(x − y)+ kn
kn+1

an(x − y)Kn−1(x, y)(x − y)= Pn(x)Pn(y) + Kn−1(x, y)= Kn(x, y) .
The next assertion is obtained from 1 by letting y → x.
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Example 2.1. We set here some examples of induction relations for the most
known orthogonal polynomials.

(1) Legendre polynomials

Pn+1 = 2n + 1n + 1 XPn − n
n + 1Pn−1, ∀n ∈ ℕ∗ .

(2) Chebyshev polynomials

Pn+1 = 2XPn − Pn−1, ∀n ∈ ℕ∗ .
(3) Hermite polynomials

Pn+1 = 2XPn − 2nPn−1, ∀n ∈ ℕ∗ .
Proposition 17 (Existence of real zeros). Let (Pn)n≥0 be a set of orthogonal polyno-
mials. Then, for all n ≥ 0, Pn has n distinct real zeros in the integration interval.
Proof. Let a1, . . . , am be the real zeros of Pn in the orthogonality interval, each one
used just one time. It is straightforward that Pn is sign changing on the orthogonality
interval. Pn(X) can be written in the form

Pn(X) = ∏
1≤i≤n
(X − ai)Q(X) ,

where Q is a nonsign changing polynomial on the orthogonality interval. We shall
prove that m = n. For this, let S(X) = ∏1≤i≤m(X − ai). It consists of an m󸀠󸀠 degree
polynomial that is sign changing at each point ai, 1 ≤ i ≤ m. S(X)Pn(X) is then not
sign changing on the orthogonality interval and hence for S(X)Pn(X)ω(X), where ω is
a weight. Thus, ⟨Pn , S⟩ ̸= 0. On the other hand, Lemma 12 yields that Pn is orthogonal
to all polynomials with lower degrees. Hence ⟨Pn , S⟩ = 0 which is a contradiction. So,
it results that m = n, and thus, Pn has n zeros in the orthogonality interval which are
simple.

2.5 Continued fractions

In this section, we emphasize the relation between continued fractions and orthogo-
nal polynomials.
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Definition 18. A continued fraction is a formal expression

F = b0 + a1

b1 + a2⋅ ⋅ ⋅ + an
bn+⋅⋅⋅

with either finite or infinite stages.

Remark 19.
(a) When ∀x ∈ ℝ, there exists a continued fraction representing it, with a0 ∈ ℤ

and aj ∈ ℕ, ∀j ≥ 0, and bj = 1, ∀j ≥ 0.
(b) Some functions can also be presented with continued fractions.

Notations. Let {an}∞n=1 and {bn}∞n=0 be in ℝ. We will apply the following notation for
the continued fraction F:

F = b0 + a1||b1 + a2||b2 + ⋅ ⋅ ⋅ + an||bn + ⋅ ⋅ ⋅ . (2.5)

We also denote Fn = Rn
Sn , n ∈ ℕ, to designate the fraction obtained by the truncation

of F of the order n:

Fn = RnSn = b0 + a1||b1 + a2||b2 + ⋅ ⋅ ⋅ + an||bn .

The following results have been proved in [98].

Proposition 20. Let (Rn)n and (Sn)n be defined by
R0 = b0, S0 = 1 ,

R1 = b0b1 + a1, S1 = b1 ,
Rn = bnRn−1 + anRn−2, Sn = bnSn−1 + anSn−2 forn ≥ 2 .

Then,
Fn = RnSn .

Proof. Define the function

fn(x) = b0 + a1||b1 + a2||b2 + ⋅ ⋅ ⋅ + an||bn + x ,
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and remark firstly that
fn(x) = fn−1 ( an

bn + x) .
We claim that

fn(x) = Rn−1x + RnSn−1x + Sn .

The proposition is obtained by setting x = 0.Wenowproceed by recurrence. For n = 1,
we have

f1(x) = b0 + a1
b1 + x = b0x + (b0b1 + a1)1.x + b1 = R0x + R1S0x + S1 .

So, the proposition is valid for n = 1. Assume next that it remains valid for n ≤ k. We
check it for n = k + 1.

fk+1(x) = fk ( ak+1
bk+1 + x)= Rk−1( ak+1bk+1+x ) + Rk

Sk−1( ak+1bk+1+x ) + Sk= ak+1Rk−1 + bk+1Rk + Rkxak+1Sk−1 + bk+1Sk + Skx= ak+1Rk−1 + Rk(bk+1 + x)
ak+1Sk−1 + Sk(bk+1 + x) .

Setting x = 0, we get
fk+1(0) = Rk+1Sk+1

= ak+1Rk−1 + Rkbk+1ak+1Sk−1 + Skbk+1 .

Definition 21. Rn and Sn are called, respectively, the partial nth numerator and the
partial nth denominator of Fn.

Corollary 22. It holds that

RnSn−1 − Rn−1Sn = (−1)n+1a1, . . . , an , ∀n ≥ 1 .
Proof. By induction on n. For n = 1, we have

R1S0 − S1R0 = (b0b1 + a1)1 − b1(b0) = a1 .
So, assume that the result is valid for n, i.e.,

RkSk−1 − Rk−1Sk = (−1)k+1a1, . . . , ak , ∀1 ≤ k ≤ n .
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Then,

Rn+1Sn − Sn+1Rn = Sn(bn+1Rn + an+1Rn−1) − Rn(bn+1Sn + an+1Sn−1)= −an+1(−Rn−1Sn + RnSn−1).
The induction hypothesis yields that

Rn+1Sn − Sn+1Rn = −an+1 [(−1)n+1a1, . . . , an] = (−1)n+2a1, . . . , an+1 .
Recall that in Proposition 20, we have

Rn = bnRn−1 + anRn−2 and Sn = bnSn−1 + anSn−2 .

By setting

b0 = 0, bn = x − cn , a1 = λ1 ̸= 0, an+1 = −λn+1 ̸= 0 ∀n ≥ 2 ,
we obtain Rn = (x−cn)Rn−1−λnRn−2. And thus, we obtain the orthogonal polynomials
recurrence formula

Pn+1(x) = (x − cn+1)Pn(x) − λn+1Pn−1(x) .
2.6 Orthogonal polynomials via Rodrigues rule

A literature review of orthogonal polynomials reveals that there are many methods
to obtain such polynomials. One is explicit and based on the Rodrigues rule, which
applies derivation. Let

Pn(x) = 1
knω(x) dndxn [ω(x)Sn] ,

where S is a polynomial in x, ω is a weight function, and kn is a constant. We have
precisely the following result.

Theorem 23 ([98]). Let I = [a, b[⊂ ℝ and ω is a weight function on I and (ϕn)n∈ℕ be
a set of real functions on I satisfying
(1) ϕn is Cn on ]a, b[ for all n.
(2) ϕ(k)n (a+) = ϕ(k)n (b−) = 0 for all k, 0 ≤ k ≤ n − 1.
(3) Tn = 1

knω (ωϕn)(n) is a polynomial of degree n, (kn is a normalization constant).
Then, (Tn)n∈ℕ is orthogonal. The converse is true iff ω is C∞.
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Proof. It suffices to prove the orthogonality. For n < m, we have
⟨Tn , Tm⟩ = b∫

a

Tn(x)Tm(x)ω(x)dx
= b∫
a

Tn(x) 1
kmω(x) (ωϕm)(m)ω(x)dx

= b∫
a

Tn(x) 1km (ωϕm)(m)dx
= (−1)m b∫

a

(Tn(x))(m)ωϕmkm dx

= 0 .
The fourth equality is a consequence ofHypothesis (2) and the integration by the parts
rule. The last equality is a consequence of Hypothesis (3).

2.7 Orthogonal polynomials via differential equations

A large class of orthogonal polynomials is obtained from first-order linear differential
equations of the type

a(x)y󸀠󸀠 + b(x)y󸀠 − λny = 0 , (2.6)

where a is a polynomial of degree 2, and b is a polynomial of degree 1, where both are
independent of the integer parameter n, and finally, λn are scalars. y is the unknown
function. By introducing the operator T : ℝ[X] 󳨀→ ℝ[X] such that T(y) = ay󸀠󸀠 + by󸀠,
the solution y appears as an eigenvector of T associated with the eigenvalue λn. We
introduce next a resolvent function ω > 0, which permits us to express the operator T
on the form T(y) = 1

w (awy󸀠)󸀠. The equality T(y) = ay󸀠󸀠 + a󸀠y󸀠 + aw󸀠

w y󸀠 shows that ω is a
solution of the differential equation aω󸀠 + (a󸀠 − b)ω = 0. So, it is of the form ω = eA,
where A is a primitive of b−a󸀠a . Recall now that⟨T(f), g⟩ = ∫

I

(aωf 󸀠)󸀠(x)g(x)ω(x)dx = [aωf 󸀠g]I − ∫
I

a(x)f 󸀠(x)g󸀠(x)ω(x)dx .
Iff the weight ω vanishes on the frontier of the integration interval I, we obtain⟨T(f), g⟩ = −∫

I

a(x)f 󸀠(x)g󸀠(x)ω(x)dx = ⟨f, T(g)⟩ .
This means that the operator T is symmetric.

Denote for the next Tn : ℝn[X] 󳨀→ ℝn[X] the restriction of T on ℝn[X]. It is
straightforward that ℝn[X] is invariant under the action of Tn since the degrees of a
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and b are less than 2 and 1, respectively. So, we can arrange the pairs (λ, y) into a se-
quence (λk , yk), where we re-obtain the eigenpairs of the operator Tn for k = 0, . . . , n.
Next, observing that a(x) = a2X2 + a1X + a0 and b(x) = b1X + b0, it results that
Tn is an endomorphism on ℝn[X]. Thus, there exists a T-eigenvector’s orthonormal
basis of such a space. In particular, there exists at least an eigenvector Pn of degree n,
which may be assumed to be unitary and satisfying

aP󸀠󸀠n + bP󸀠n = λnPn .
Thismeans that for n ̸= m, we obtain λn ̸= λm and thus the polynomials Pn are orthog-
onal.

2.8 Some classical orthogonal polynomials

In the previous sections, we reviewed the three most well-known schemes to obtain
orthogonal polynomials. The first one is based on the explicit Rodrigues derivation
rule, which states that the nth element of the set of orthogonal polynomials, which is
also of degree n, is obtained by

Pn(x) = 1
knω(x) dndxn [ω(x)Sn] ,

where S is a suitable polynomial in x.
The next method is based on an induction rule as in (2.3) and eventually necessi-

tates that the first and the second elements of the desired set of orthogonal polynomi-
als be known. It states that

Pn+1 = (anX + Bn)Pn + cnPn−1 , (2.7)

where an, bn, and cn are known scalars.
Finally, the last scheme consists of introducing orthogonal polynomials as the so-

lutions of ordinary differential equations (ODEs) of the form

a(x)y󸀠󸀠 + b(x)y − λny = 0 ,
where a is a 2-degree polynomial and b is a polynomial with degree 1 and λn are
scalars. The idea consists of developing polynomial solutions of the ODEs. Accord-
ing to the coefficients of each equation, we obtain the desired class of polynomials,
such as Legendre and Laguerre.

In this section, we propose to revisit some classical classes of orthogonal polyno-
mials and show their construction with the three schemes.
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2.8.1 Legendre polynomials

From Rodrigues rule
Legendre polynomials consist of polynomials defined on the orthogonality interval
I = ]−1, 1[ relative to the weight function ω ≡ 1, the polynomial S(x) = (x2 − 1),
and the constant kn = 2nn!. The nth Legendre polynomial, usually denoted in the
literature by Ln, is obtained by

Ln(x) = dn
dxn [(x2 − 1)n2nn! ] .

Using the Leibniz rule of derivation, Ln(x) can be explicitly computed. We have

Ln(x) = 1
2nn!

n∑
k=0

Ckn ((x − 1)n)(k) ((x + 1)n)(n−k) = 1
2n

n∑
k=0
(Ckn)2 (x − 1)n−k(x + 1)k .

For example,

L0(x) = 1, L1(x) = x ,
L2(x) = 12 (3x2 − 1), L3(x) = 12 (5x3 − 3x) ,
L4(x) = 18 (35x4 − 30x2 + 3), L5(x) = 18 (63x5 − 70x3 + 15x) .

From the induction rule
Legendre polynomials can also be introduced via the induction rule

Ln+1 = 2n + 1
n + 1 XLn − n

n + 1Ln−1, ∀n ∈ ℕ∗
with initial data L0(x) = 1 and L1(x) = x. It yields, for n = 1, that

L2(x) = 3
2 xL1(x) − 12L0(x) = 3

2 x
2 − 12 .

For n = 2, it yields that
L3(x) = 53 xL2(x) − 23L1(x) = 53 x (32 x2 − 12) − 23 x = 52 x3 − 32 x .

Applying the same procedure, we obtain

L4(x) = 18 (35x4 − 30x2 + 3) , and L5(x) = 1
8 (63x5 − 70x3 + 15x) .

From ODEs
Legendre polynomials are obtained as the polynomial solutions of the following ODE:(1 − x2)y󸀠󸀠 − 2xy󸀠 + n(n + 1)y = 0, x ∈ I = ]−1, 1[ . (2.8)
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Using the notations of Section 2.7, this means that a(x) = 1 − x2, b(x) = −2x and λn =−n(n + 1). In the sense of the linear operator T, the polynomials Ln can be introduced
via the operator

T(y) = (1 − x2)y󸀠󸀠 − 2xy󸀠 = ((1 − x2)y󸀠)󸀠 ,
which corresponds to the weight function ω(x) = 1 and a(x)ω(x) = 1 − x2. Note that
aω vanishes at the frontiers ±1 of the orthogonality interval I. Furthermore, in terms
of eigenvalues as in equation (2.7), if we suppose that the same eigenvalue λn is asso-
ciated with at least two eigenvectors Pn and Pm, we obtain (n − m)(n + m − 1) = 0,
which has no integer solutions except n = m. This confirms that the eigenvalues and
eigenvectors are one to one, which means that the eigenvectors (polynomials) are or-
thogonal. Figure 2.1 illustrates the graphs of the first Legendre polynomials.

For clarity and convenience, wewill develop the polynomial solutions. So, denote
P(x) = apxp+ap−1xp−1+⋅ ⋅ ⋅+a1x+a0 as a polynomial solution of degree p of equation
(2.8). We obtain the following system:

{{{{{{{{{{{{{
2a2 + n(n + 1)a0 = 0,

6a3 + (n2 + n − 2)a1 = 0,[(n(n + 1) − (p − 1)(p + 1)]ap−1 = 0,[(n(n + 1) − p(p + 1)]ap = 0,(k + 1)(k + 2)ak+2[(n(n + 1) − k(k + 1)]ak = 0, 2 ≤ k ≤ p − 2.
Hence, p = n and

{{{{{{{{{
2a2 + n(n + 1)a0 = 0,

6a3 + (n2 + n − 2)a1 = 0,[(n(n + 1) − n(n − 1)]ap−1 = 0,(k + 1)(k + 2)ak+2[(n(n + 1) − k(k + 1)]ak = 0, 2 ≤ k ≤ p − 2.
For example, for n = 0, we obtain

P(x) = a0 .
For n = 1, we get

P(x) = a1x .
For n = 2, we obtain

P(x) = −a0(3x2 − 1) .
For n = 3,

P(x) = −a1 (53 x3 − x) .
For n = 4, we have

P(x) = −a0 (353 x4 − 10x2 + 1) .
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Fig. 2.1: Legendre polynomials.

Next, for n = 5, we obtain
P(x) = a1 (215 x5 − 143 x3 + x) .

Now, using the orthogonality of these polynomials on [−1, 1], we obtain the same
polynomials.

2.8.1.1 Commentaries
One important question is how to choose the polynomial S in Rodrigues rule to be
equivalent with the same outputs of the recurrence rule and the ODE scheme.

Firstly, the degree of S is fixed in an obvious way as deg Pn = n, ∀n.
Hence, for example, in the Legendre case, S should be of degree 2, that is,

S(x) = a + bx + cx2, c ̸= 0 .
Thus,

Ln(x) = en dndxn (Sn(x)), en = 1
2nn! .

Consequently, from the induction rule of Legendre polynomials we obtain, for n = 2,
L2 = 32 xL1 − 12 L0

e2(S2(x))󸀠󸀠 = 32 e1x(S󸀠(x)) − 12 e0 .
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As a result, {{{{{{{
b2 + 2ac + 2 = 0
6bc − 3b = 0
6c2 − 6c = 0 .

Hence, we obtain
c = 1, b = 0, a = −1 .

Or equivalently,
S(x) = x2 − 1 .

2.8.2 Laguerre polynomials

From the Rodrigues rule
These polynomials are obtained via the Rodrigues rule with ω(x) = e−x, S(x) = x and
the constant kn = n! by

Ln(x) = exn! dndxn (e−xxn) = n∑
k=0

Ckn
k! (−x)k .

The first polynomials are then

L0(x) = 1, L1(x) = 1 − x ,
L2(x) = 12 (x2 − 4x + 2), L3(x) = 16 (−x3 + 9x2 − 18x + 6) ,
L4(x) = 1

24 (x4 − 16x3 + 72x2 − 96x + 24) ,
L5(x) = 1

120 (−x5 + 25x4 − 200x3 + 600x2−600x + 120) .
It holds clearly from simple calculus that these polynomials are orthogonal in the in-
terval [0,∞[ relative to the weight function ω(x) = e−x.
From the induction rule
Laguerre polynomials are solutions of the following recurrent relation:(n + 1)Ln+1(x) + (x − 2n − 1)Ln(x) + nLn−1(x) = 0
with the first and second elements L0(x) = 1 and L1(x) = 1 − x. For n = 1, we get

2L2(x) + (x − 3)L1(x) + L0(x) = 0,
which implies that

L2(x) = 12 (3 − x)(1 − x) + 12 = 12 (x2 − 4x + 2) .
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Next, for n = 2, we obtain
3L3(x) + (x − 5)L2(x) + 2L1(x) = 0,

which means that
L3(x) = 1

6
(−x3 + 9x2 − 18x + 6) .

Similarly, we can obtain

L4(x) = 1
24 (−x4 − 16x3 + 72x2 − 96x + 24)

and
L5(x) = 1

120 (−x5 + 25x4 − 200x3 + 600x2 − 600x + 120) .
From ODEs
To apply the ODE procedure, we set I =]0,∞[ as the orthogonality interval, a(x) = x,
b(x) = 1 − x, ω(x) = e−x and consequently, the operator T will be T(y) = xy󸀠󸀠 − (1 −
x)y󸀠. We observe immediately that a(x)ω(x) = xe−x is null at 0 and has the limit 0
at +∞. Furthermore, P(x)ω(x) is integrable on I for all polynomial P. In the present
case, equation (2.7) becomes (n +m)(n −m) = 0 and the eigenvalues are λn = −n. The
associated ODE is

xy󸀠󸀠 − (1 − x)y󸀠 + ny = 0 .
It is straightforward that for all n, the polynomial Ln is a solution of this differential
equation. Figure 2.2 illustrates the graphs of some examples of Laguerre polynomials.

2.8.3 Hermite polynomials

From Rodrigues rule
Hermite polynomials are related to the orthogonality interval I = ℝ with the weight
function ω(x) = e−x2 . Denote Hn as the nth element, i.e., a Hermite polynomial of
degree n. Hn is explicitly expressed via Rodrigues rule as follows:

Hn(x) = (−1)nex2 dndxn (e−x2) .
As examples, we get

H0(x) = 1, H1(x) = 2x, H2(x) = 4x2 − 2 ,
H3(x) = 8x3 − 12x, and H4(x) = 16x4 − 48x2 + 12 .

From the induction rule
Hermite polynomials Hn can be obtained by means of the induction rule

Hn+1 = 2XHn − 2nHn−1, ∀n ∈ ℕ∗ ,
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Fig. 2.2: Laguerre polynomials.

with the initial data H0(X) = 1 and H1(X) = 2X. So, for n = 1, 2, 3, 4, 5 we obtain as
examples

H2(X) = 4X2 − 2, H3(X) = 8X3 − 12X, H4(X) = 16X4 − 48X2 + 12 ,
H5(X) = X5 − 10X3 + 15X, H6(X) = X6 − 15X4 + 45X2 − 15 .

From ODEs
Hermitepolynomials are also solutionsof a second-orderODE in the interval I = ℝ. Us-
ing the notations of Section 2.7 this means that a(x) = 1, b(x) = −2x, and ω(x) = e−x2
as a weight function. It is immediate that a(x)ω(x) = e−x2 , which has 0 limits at the
boundaries of the interval I. Furthermore, P(x)ω(x) is integrable on I for all polyno-
mials P. By means of the eigenvalues of the linear operator T, Hermite polynomials
are eigenvectors of T(y) = y󸀠󸀠 − 2xy󸀠 associated with eigenvalues λn = −2n. The corre-
sponding ODE is

y󸀠󸀠 − 2xy󸀠 + 2ny = 0 .
Some examples of Hermite polynomials are illustrated in figure 2.3.
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Fig. 2.3: Hermite polynomials.

2.8.4 Chebyshev polynomials

From Rodrigues rule
Chebyshev polynomials are related to the orthogonality interval I = ]−1, 1[ and the
weight function ω(x) = (1− x2)−1/2. Denoted usually by Tn for the Chebyshev polyno-
mial of degree n, these are explicitly expressed via the Rodrigues rule as

Tn(x) = (−1)n(1 − x2) 12√π2nΓ(n + 1
2 ) dn

dxn ((1 − x2)n− 12 ) ,
where Γ(x) = ∫+∞0 tx−1e−tdt is Euler’s well-known function. It is immediately seen (by
recurrence for example) that

Γ (n + 12) = (2n)!√π22nn!
, ∀n ∈ ℕ ,

and hence, the first Chebyshev polynomials can be obtained as

T0(x) = 1, T1(x) = x, T2(x) = 2x2 − 1
T3(x) = 4x3 − 3x, T4(x) = 8x4 − 8x2 + 1, T5(x) = 16x5 − 20x3 + 5x .

From the induction rule
Chebyshev polynomials are solutions of the induction formula

Tn+1 = 2xTn − Tn−1, ∀n ∈ ℕ∗ ,
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with initial data, T0(x) = 1 and T1(x) = x. Let, Tn(x) = ∑nk=0 ankxk, then
n+1∑
k=0

an+1k xk = 2x n∑
k=0

ankx
k − n−1∑

k=0
an−1k xk

n+1∑
k=0

an+1k xk + an+1n+1x
n+1 + an+10 = n∑

k=0
2ank x

k+1 − n−1∑
k=0

an−1k xk

= n+1∑
k=1

2ank−1x
k − n−1∑

k=0
an−1k xk

n−1∑
k=1
(an+1k − 2ank−1 + an−1k ) xk + an+10 + an−10+ (an+1n − 2ann−1) xn + (an+1n+1 − 2ann) xn+1 = 0 .

We obtain the following system:{{{{{{{{{{{{{
an+10 + an−10 = 0
an+1n = 2ann−1 .
an+1n+1 = 2ann
an+1k = 2ank−1 − an−1k , 1 ≤ k ≤ n − 1 .

We have
T0(x) = 1⇐⇒ a00 = 1

and
T1(x) = x ⇐⇒ a10 = 0, a11 = 1 .

Hence,
T2(x) = a22x2 + a21x + a20

From the above system, we obtain{{{{{{{
a20 = −a00 = −1 .
a21 = 2a10 = 0 .
a22 = 2a11 − a02 = 2 ,

which means that
T2(x) = 2x2 − 1 .

Now, replacing n by 2 in the system we obtain{{{{{{{{{{{{{
a30 = −a10 = 0 .
a32 = 2a21 = 0 .
a31 = 2a20 − a11 = −3 .
a33 = 2a22 − a13 = 4 .
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Therefore,
T3(x) = 4x3 − 3x .

Next, for n = 3, the system becomes{{{{{{{{{{{{{{{{{{{

a40 = −a20 = 1 .
a43 = 2a32 = 0 .
a41 = 2a30 − a21 = 0 .
a42 = 2a31 − a22 = −8 .
a44 = 2a33 − a24 = 8 .

Thus,
T4(x) = 8x4 − 8x2 + 1 .

Now, by replacing n with 4, the system yields{{{{{{{{{{{{{{{{{{{{{{{{{

a50 = −a30 = 0 .
a54 = 2a43 = 0 .
a51 = 2a40 − a31 = 5 .
a52 = 2a41 − a32 = 0 .
a53 = 2a42 − a33 = −20 .
a55 = 2a44 − a35 = 16 .

Hence,
T5(x) = 16x5 − 20x3 + 5x .

So, we obtain the same Techebythev polynomials as for the Rodrigues and ODE rules.

From ODEs
We set I = ]−1, 1[, a(x) = 1 − x2, b(x) = −x and ω(x) = (1 − x2)−1/2. The linear
operator T is then given by

T(y) = (1 − x2)y󸀠󸀠 − xy󸀠 .
It is straightforward that a(x)ω(x) = √1 − x2 vanishes at ±1 and the eigenvalues
λn = −n2 give rise to eigenvectors (polynomials), Tns. This yields that the Tns are
the corresponding solutions of the ODE(1 − x2)y󸀠󸀠 − xy󸀠 + n2y = 0 .
Remark 24. Chebyshev polynomials Tn can be explicitly defined on [−1,1] by

Tn(x) = cos(nArc cos(x)) .
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Indeed, by consideringMoivre’s rule (cos θ+ i sin θ)n = cos nθ+ i sin nθ, and by setting
for θ ∈ [0, π], x = cos θ, we obtain sin θ√1 − x2. This implies that

cos(nθ) = cos(n arccos(x)) = [ n2 ]∑
m=0

C2mn (−1)mxn−2m(1 − x2)m , n ∈ ℕ .

Next, we observe that

cos((n + 1)θ) + cos((n − 1)θ) = 2 cos θ cos(nθ) .
Henceforth, we obtain explicit Tns as above. Figure 2.4 illustrates the graphs of the
first Chebyshev polynomials.

Remark 25. It holds that a second kind of Chebyshev polynomial already exists. It
is defined by means of the Rodrigues rule as

Un(x) = (−1)n(n + 1)√π
2n+1Γ(n + 3

2 )(1 − x2) 12 dn
dxn ((1 − x2)n+ 12 ) , x ∈ [−1, 1]

or by means of trigonometric functions as

Un(cos θ) = sin(n + 1)θsin θ , ∀n ∈ ℕ∗ .
Thesepolynomials satisfy the same induction rule as thepreviousbutwithdifferent
initial dataU0(x) = 1 and U1(x) = 2x. Finally, similar to other classes of orthogonal
polynomials, they satisfy the ODE∀x ∈ ℝ, (1 − x2)U󸀠󸀠n (x) − 3xU󸀠n(x) + n(n + 2)Un(x) = 0 .

2.8.5 Gegenbauer polynomials

From Rodrigues rule
Gegenbauer polynomials, also called ultraspherical polynomials, are defined relative
to the weight function ω(x) = (1 − x2)p−1/2, where p is a real parameter, and to the
orthogonality interval I = ]−1, 1[. From the Rodrigues rule, these are defined as

Gpm(x) = (−1)mΓ(p + 1
2 )Γ(n + 2p)

2mm!Γ(2p)Γ(p + m + 1
2 ) (1 − x2) 12−p dmdxm ((1 − x2)p+m− 12 ) . (2.9)

Hence, by applying the Leibniz derivation rule, we obtain

Gpm(x) = Cpm [xm − am−2xm−2 + am−4xm−4 + ⋅ ⋅ ⋅ ]
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where
Cpm = 2mΓ(p + m)m!Γ(p) ,

am−2 = m(m − 1)
22(p + m − 1) , am−4 = m(m − 1)(m − 2)(m − 3)24(p + m − 1)(p + m − 2) , . . . .

From the induction rule
Gegenbauer polynomials Gpm can also be introduced via the induction rule stated for
p ≥ −12 by

mGpm(x) = 2x(m + p − 1)Gpm−1(x) − (m + 2p − 2)Gpm−2(x) , (2.10)

already with
Gp0(x) = 1 and Gp1(x) = 2p(1 − x) .

This gives, for example,

Gp2(x) = 2p(p + 1) [x2 − 1
2p + 2]

and
Gp3(x) = 43p(p + 1)(p + 2) [x3 − 3

2p + 4 x] .
Furthermore, we notice that Gpm is composed of monomials having the same parity of
the index m.
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Remark 26. The following assertions hold:
– Gpm(−x) = (−1)mGpm(x).
– Gp2m+1(0) = 0.
– Gp2m(0) = (−1)mΓ(p+m)Γ(p)Γ(m+1) .

From ODEs
Gegenbauer polynomials Gpm are solutions of the ODE(1 − x2)y󸀠󸀠 − (2p + 1)xy󸀠 + m(m + 2p)y = 0 ,
in the interval I = ]−1, 1[ with coefficients a(x) = 1 − x2, b(x) = −(2p + 1)x and
c(x) = m(m + 2p). These polynomials can be introduced as the eigenvectors of the
linear Sturm–Liouville-type operator T defined by

T(y) = (1 − x2)y󸀠󸀠 − (2p + 1)xy󸀠 .
By choosing ω(x) = (1 − x2)p− 12 , we observe that a(x)ω(x) = (1 − x2)p+ 12 vanishes at
the boundary points ±1. The eigenvalues are λm = −m(m + 2p).
2.9 Conclusion

In this chapter, we outlined the concepts and the main properties and characteris-
tics of orthogonal polynomials. Some basic notions concerning orthogonal polynomi-
als are recalled that are related to weight functions, integration theory, linear algebra
theory of vector spaces, their basis, and orthogonal systems and their relation to or-
thogonal polynomials. Next, the three mainmethods for introducing orthogonal poly-
nomials were reviewed. The first method uses Rodrigues formula and it yields orthog-
onal polynomials as outputs of a higher order derivatives of some special functions.
The second is based on recurrence relations, which yield orthogonal polynomials as
sequences of functions defined by a three-level induction rule. We recalled and re-
developed Favard’s results on orthogonal polynomials as well as its reciprocals. The
last method consists of orthogonal polynomials as solutions to ordinary differential
equations or equivalently as eigenfunctions of Sturm–Liouville operators. Some con-
cluding and illustrating examples are provided to enlighten theoretical developments.



3 Homogenous polynomials
and spherical harmonics

3.1 Introduction

In this chapter, we present a review of homogenous polynomials and their interac-
tions with harmonic analysis on the sphere. Specifically, we will study constructions
of spherical harmonics and develop the main results of the theory of harmonic anal-
ysis on the sphere, such as the addition theorem and the Fourier transformation. We
will prove the linkwith some special features, such as ultraspherical polynomials and
Bessel functions.

Spherical harmonics are initially derived from the Laplace equation on the sphere.
They are found in many scientific fields, starting with pure mathematics, where they
appear as an extension of Fourier analysis of spherical domains. In physics, spheri-
cal harmonics have been used as basic solutions or modes of well-known equations,
such as the Laplace, Poisson, Schrödinger, diffusion, and wave equations. Spherical
harmonics also appear in acoustics, geophysics, computer graphics, crystallography,
and recently in 3D image processing, where they are used to model complex phenom-
ena and therefore providemodels or approximations of the solutions to the equations
governing them.

Because of their relationships and interactionswith all these areas, spherical har-
monics have been the subject of numerous classical andmodernmathematicalworks.
A first theory related to the basic constructions of spherical harmonics is the concept
of homogenous polynomials. These polynomials are the combinations of monomials
xα = xα11 xα22 ⋅ ⋅ ⋅ xαnn , where |α| = ∑ αi is a fixed integer that acts as a degree as for single-
variable polynomials. This will partly be relevant to the development of homogenous
polynomial theory.

As a first step, we will recall the exact solution of the Laplace equation in spher-
ical coordinates in the three-dimensional Euclidean space as a concrete example of
construction and proof of the existence of spherical harmonics. Next, homogenous
polynomial theory will be developed. We will show especially that the homogenous
and harmonic polynomials may serve as generator systems and bases in the Hilbert
space of square integrable functions on the sphere. This marks the starting point for
the basic construction of spherical harmonics. Such bases, when projected orthogo-
nally with respect to some elements of the sphere, reproduces some kernels known as
zonal harmonics, which will be revisited and explained. Recall that zonal functions
are widely applied in harmonic analysis and approximation theory, where they have
a central role.

The first section of this chapter will be devoted to the development of some differ-
ential operators on the sphere, mainly the Laplace operator. A spherical coordinates
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solution will be provided in Section 3 in order to show examples of spherical harmon-
ics. Section 4 will cover homogenous polynomials. Basic properties will be revisited
and applied next for harmonic polynomials in Section 5. Later in this section, har-
monic homogenous polynomials will be proved to have a central role for providing
orthonormal bases in L2(Sn−1). Fourier transforms, and thus convolution operators,
will be presented in Section 6. Hecke and Bochner–Hecke theorems will be proved to
show the strong relation with special functions, especially Bessel functions. Finally,
the theory of zonal functions will be developed in Section 7, where we revisit the fa-
mous addition theorem.

3.2 Spherical Laplace operator

In this section, we review some basic concepts of spherical analysis, such as differen-
tial operators and especially the Laplacian. Recall that the n-sphere is

Sn−1 = {x = (x1, x2, . . . , xn) ∈ ℝn; x21 + x22 + ⋅ ⋅ ⋅ + x2n = 1} .
Recall also that the polar representation on ℝn is defined by
x(r, φ, θ1 , . . . , θn−2) =((((((

(

x1
x2
x3
x4
...

xn−1
xn

))))))
)
=((((((
(

r sin θn−2 sin θn−3 . . . sin θ2 sin θ1 cosφ
r sin θn−2 sin θn−3 . . . sin θ2 sin θ1 sinφ
r sin θn−2 sin θn−3 . . . sin θ2 cos θ1
r sin θn−2 sin θn−3 . . . cos θ2

...
r sin θn−2 cos θn−3

r cos θn−2

))))))
)

The parameter r = √x21 + x22 + ⋅ ⋅ ⋅ + x2n is the Euclidian distance to the origin O,
θi ∈ [0, π[ and φ ∈ [0, 2π[.
For example, on the real spaceℝ3, we obtain the spherical coordinates’ system

x(r, φ, θ) = (x1x2
x3
) = (r sin θ cosφr sin θ sinφ

r cos θ
)

where r > 0 is always the Euclidian distance to O, θ ∈ [0, π] is the polar distance, and
φ ∈ [0, 2π[ is the longitude. The orthonormal vector system is locally composed of

er = (sin θ cos φsin θ sinφ
cos θ

) , eφ = (− sinφcosφ
0
)

and

eθ = er ∧ eφ = (− cos θ cosφ− cos θ sinφ
sin θ

) .
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By setting t = cos θ, we obtain the explicit gradient on ℝ3 in spherical coordinates
∇ = er ∂∂r + 1r (eφ 1

sin θ
∂
∂φ + et sin θ ∂∂t) = er ∂∂r + 1r ∇∗ . (3.1)

∇∗ is said to be the surface gradient. We can also define the rotational operator, also
called the curl, for all C1-functions F as

L∗ξ F(ξ) = ξ ∧ ∇∗ξ F(ξ) . (3.2)

Already on ℝ3, the curl is expressed by means of spherical coordinates as

L∗ = −eφ sin θ ∂∂t + et 1
sin θ

∂
∂φ . (3.3)

Definition 27 (Laplace operator [162]). The Laplace operator, also called the Lapla-
cian and denoted by ∇2 or ∆, is the second-order differential operator defined ex-
plicitly on second-order differentiable functions bymeans of Cartesian coordinates
as follows:

∆ = n∑
k=1

∂2

∂x2k
.

It is related to many problems in both mathematics and physics and it appears in
quasi-differential equations found in natural phenomena. We recall as an example
the famous Dirichlet problem.

Definition 28 (Spherical Laplacian [162]). Let u be a C2 function onℝn and denote
f̃ (x) = f( x‖x‖ ). The spherical Laplacian known also as Laplace–Beltrami operator of
u is defined by

∆Sn−1 f = (∆f̃ )/Sn−1 ,
where ∆ is the Laplace operator on ℝn.
Remark 29. ∆Sn−1 can be defined equivalently by means of the following relation:

∆u = 1
rn−1
[ ∂∂r (rn−1 ∂u∂r ) + ∆Sn−1u] . (3.4)
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Lemma 30. For all f , that is C2 on the sphere and all ρ ∈ SO(n), it holds that
∆Sn−1 (f ∘ ρ) = (∆Sn−1 f) ∘ ρ .

LetM ∈Mn(ℝ) and f : ℝn 󳨀→ ℝ and denote fM the function defined onℝn by fM(x) =
f(Mx). Then, for all x ∈ ℝn, we have

∆fM(x) = n∑
i,k=1
⟨Li , Lk⟩ ∂2f

∂xi∂xk
(Mx) ,

where Li are the rows of M and ⟨Li , Lk⟩ is their natural inner product ℝn . Conse-
quently, for M = ρ, this leads to ⟨Li , Lk⟩ = δik the Kronecker product. Hence,

∆(f ∘ ρ)(x) = (∆f) ∘ ρ(x) .
For x ∈ Sn−1, this yields that

∆Sn−1 (f ∘ ρ) = (∆Sn−1 f) ∘ ρ .
The following lemma shows that ∆Sn−1 is also symmetric.

Lemma 31. Let f and g be C2 on the sphere Sn−1. Then,⟨∆Sn−1 f, g⟩ = ⟨f, ∆Sn−1 g⟩ .
The proof is a simple application of the Green–Ostrogradsky formula.

3.3 Some direct computations on S2

The purpose of this section is to provide some examples of spherical harmonics by
means of the resolution of the Laplace equation ∆P = 0 on the sphere S2 and an in-
troduction to spherical harmonics. The general definition and general properties will
be introduced later. In the spherical coordinate system, the Laplace equation is

1
r2
∂
∂r (r2 ∂P∂r ) + 1

r2 sin θ
∂
∂θ (sin θ ∂P∂θ ) + 1

r2 sin2 θ
∂2P
∂φ2 = 0 . (3.5)

For a solution P with separated variables, P(r, θ, φ) = R(r)Θ(θ)Φ(φ), this yields that
1
r2

1
R
∂
∂r (r2 ∂R∂r ) + 1

r2 sin θ
1
Θ
∂
∂θ (sin θ ∂Θ∂θ ) + 1

r2 sin2 θ
1
Φ
∂2Φ
∂φ2 = 0 .
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Multiplying with r2, this becomes

1
R
∂
∂r (r2 ∂R∂r ) + 1

sin θ
1
Θ
∂
∂θ (sin θ ∂Θ∂θ ) + 1

sin2 θ
1
Φ
∂2Φ
∂φ2 = 0 .

Or equivalently,

1
R
∂
∂r
(r2 ∂R

∂r
) = − 1

sin θ
1
Θ
∂
∂θ
(sin θ ∂Θ

∂θ
) − 1

sin2 θ
1
Φ
∂2Φ
∂φ2 = 0 .

The left-hand side part is independent of (θ, φ); however, the right-hand side part is
independent of the variable r. Hence, these are constant, which means that

1
R
∂
∂r (r2 ∂R∂r ) = K (3.6)

and
1

sin θ
1
Θ
∂
∂θ (sin θ ∂Θ∂θ ) + 1

sin2 θ
1
Φ
∂2Φ
∂φ2 = −K (3.7)

for some constant K. The elementary solutions of (3.6) are of the form

R(r) = K(rl + r−(l+1)) .
Equation (3.7) yields that

sin θ
Θ

∂
∂θ (sin θ ∂Θ∂θ ) + K sin2 θ = − 1Φ ∂2Φ∂φ2 . (3.8)

Using analogous arguments and by seeking Fourier modes solutions, we obtain

Φ(φ) = Keimφ ,
where m is an appropriate constant. Now, the first part of (3.8) becomes

1
sin θ

∂
∂θ (sin θ ∂Θ∂θ ) + (l(l + 1) − m2

sin2 θ
)Θ = 0 . (3.9)

Denoting x = cos θ, we obtain
∂Θ
∂θ = ∂Θ∂x ∂x∂θ = −∂Θ∂x sin θ .

Consequently, (3.9) becomes

(1 − x2)∂2Θ
∂x2
− 2x ∂Θ∂x + (l(l + 1) − m2

1 − x2)Θ = 0 .
The polynomial solutions of such equation are the well-known Legendre polynomi-
als. Such polynomials are defined for l ∈ ℕ and m ∈ [−l, l] ∩ ℤ. Explicitly, these are
expressed as

Ll,m(cos θ) = (−1)m2l l!
√2(l − m)!(l + m)! (1 − cos2 θ) m2 ∂l+m(cos2 θ − 1)l∂(cos θ)l+m .
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Hence, the Laplace equation solutions are finally the so-called spherical harmonics
defined by

Yl,m(r, θ, φ) = (Cml rl + Dml r−(l+1)) Lml (cos θ)eimφ .
On the sphere (r=constant), these functions become

Yl,m(θ, φ) = Cml Lml (cos θ)eimφ ,
where Cml is a normalization constant given by

Cml = √2l + 14π
(l − m)!(l + m)! .

The system (Yl,m)−l≤m≤l is orthonormal in the vector space L2(S ∗ n − 1). Here, we list
some explicit expressions of these spherical harmonics.
– l = 0:

Y0,0(θ, φ) = 1
2
√1
π

– l = 1:
Y1,−1 = (θ, φ) = 1

2
√ 3
2π

sin θe−iφ

Y1,0 = (θ, φ) = 1
2
√3
π cos θ

Y1,1 = (θ, φ) = −12 √ 3
2π sin θeiφ

– l = 2:
Y2,−2 = (θ, φ) = 1

4
√15
2π sin2 θe−2iφ

Y2,−1 = (θ, φ) = 1
2
√15
2π

sin θ cos θe−iφ

Y2,0 = (θ, φ) = 1
4
√5
π (3 cos2 θ − 1)

Y2,1 = (θ, φ) = −12 √152π sin θ cos θeiφ

Y2,2 = (θ, φ) = 1
4
√15
2π sin2 θe2iφ

– l = 3:
Y3,0 = (θ, φ) = 1

4
√7
π
(5 cos3 θ − 3 cos θ) .
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3.4 Homogenous polynomials

Definition 32. Let E and F be the ℝ-vector spaces and f : E → F be a function. f is
said to be homogenous with degree k iff∀λ ∈ ℝ, ∀x ∈ E, f(λx) = λkf(x) .
We say that f is positively homogenous with degree k iff∀t ≥ 0, ∀x ∈ E, f(tx) = tk f(x) .
Definition 33. A polynomial P on ℝn, n ∈ ℕ, is said to be homogenous with degree
k ∈ ℕ∗, if it is of the form

P(x) = ∑
|α|=k

Cαxα , ∀x ∈ ℝn ,
where α = (α1, . . . , αn) ∈ ℕn∗, |α| = ∑ni=1 αi, xα = ∏ni=1 xαii , x ∈ ℝn and Cα are real
numbers called the coefficients of P.

Corollary 34. The polynomial function associated with a homogenous polynomial P
is homogenous with the same degree.

The following result shows the first characterizations of the space of homogenous
polynomials [162].

Theorem 35. For all k, denote Pk(ℝn) the vector space of all homogenous polynomi-
als with degree k onℝn and dnk its dimension. It holds that
(1) dnk = dimPk(ℝn) = Ckn+k−1.
(2) Pk(ℝn) is invariant by means of O(n).

To prove this theorem, we need the following preliminary result.

Lemma 36. Let Γkn be the number of possible choices of n elements (not necessarily
different) from {0, 1, . . . , k} with their sum equal to k. Then,
(1) Γ1n = n.
(2) kΓkn = (n + k − 1)Γk−1n .
(3) Γkn = Ckn+k−1.
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Proof. (1) The set of choices is composed of an n-tuple where all the components are
zero except one of them, which should be equal to 1. Thus, a total number of n combi-
nations.
(2) Consider the alphabet An = {x1, x2, . . . , xn}. It consists of combining words with
k letters fromAn. A word is a series of characters a = xi1xi2 . . . xik . Two situations are
possible. The word a is of the form a = x1xi2 . . . xik , or it did not start with the letter
x1. In the first case, the total number is the same as the words composed of k−1 letters
from the alphabet An, and since the choice of the xis is the same for all of them, we
obtain a total number nΓk−1n . In the second case, where the word a did not start with
xi, we obtain k − 1 possibilities to fix its first letter. Next, complete the word a with
k − 1 letters from An. Thus, a total number of (k − 1)Γk−1n . Finally, since the order of
the letters in a is the same for all the alphabets An, we obtain

kΓkn = nΓk−1n + (k − 1)Γk−1n .

Hence,
Γkn = (n + k − 1)k

Γk−1n .

(3) It reposes an iteration procedure of the previous relation. We get

Γkn = (n + k − 1)k Γk−1n= (n + k − 1)k
(n + k − 2)
k − 1 Γk−2n= ⋅ ⋅ ⋅= Ckn+k−1 .

Proof of Theorem 35. The first assertion is a consequence of Lemma 36.We proceed to
proving the second. Let ρ ∈ O(n) and P ∈ Pk(ℝn). It is straightforward that P ∘ ρ(λx) =
P(λρ(x)) = λkP(ρ(x)), hence, a homogenous polynomial with degree k.

Example 3.1.

dimPk(ℝ2) = k + 1 and dimPk(ℝ3) = (k + 1)(k + 2)2
.

This may be checked directly. Indeed, a basis of Pk(ℝ2) is formed with all products
XiYk−i, i = 0, . . . , k+1. Similarly, a natural basis ofPk(ℝ3) is formedwith all products
XiY jZk−i−j, i, j = 0, . . . , k + 1. For example, for i = 0, we get k + 1 couples (j, k − j),
j = 0, . . . , k. For i = 1, we get k couples (j, k − 1 − j), j = 0, . . . , k − 1. And so on. We
get a sum k + 1 + k + k − 1 + ⋅ ⋅ ⋅ 1 = (k+1)(k+2)2 .
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Definition 37. A polynomial P is said to be harmonic iff its Laplacian is zero, i.e.,
∆P = 0. The space of all harmonic homogenous polynomials of degree k onℝn will
be denoted PHk(ℝn) and snk its dimension.

Theorem 38. For all k, it holds that

Pk(ℝn) = PHk(ℝn) ⊕ |x|2Pk−2(ℝn) .
For k = 2p even,

P2p(ℝn) = p⨁
j=0
|x|2p−2jPH2j(ℝn) .

For k = 2p + 1 odd,
P2p+1(ℝn) = p⨁

j=0
|x|2p−2jPH2j+1(ℝn) .

Furthermore, for all k, snk = dimPHk(ℝn) = dnk − dnk−2.
Proof. Consider the inner product ⟨., .⟩, which corresponds to (xα , xβ) the quantity⟨xα , xβ⟩ = α!β! if α = β and 0 else,

and also consider the mapping

Φ : Pk−2(ℝn) 󳨀→ Pk(ℝn)
P 󳨃󳨀→ Φ(P) = |x|2P.

It is straightforward that Φ is injective. Consequently, Pk−2(ℝn) is isomorphic to
Φ(Pk−2(ℝn)) = |x|2Pk−2(ℝn). Now, consider similarly the mapping

φ : Pk(ℝn) 󳨀→ Pk−2(ℝn)
P 󳨃󳨀→ φ(P) = ∆P ,

which is surjective with kernel

ker(φ) = PHk(ℝn) .
Hence,

dimPk(ℝn) = dimPk−2(ℝn) + dimPHk(ℝn) .
Furthermore,

Pk(ℝn) = |x|2Pk−2(ℝn) ⊕ PHk(ℝn) .
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Proposition 39. Let P ∈ Pk(ℝn). There exists Q ∈ PH(ℝn) such that
P/Sn−1 = Q/Sn−1 .

Proof. We divide the proof into two cases.
– k = 2p. Theorem 38 implies that

P(x) = p∑
j=0
Cj|x|2p−2jP2j+1(x), or P2j+1 ∈ PH2j+1 .

So, consider the polynomial Q(x) = ∑pj=0 CjP2j+1(x). It is obvious that Q is harmonic,
not necessarily homogenous, and it satisfies

P(u) = p∑
j=0
CjP2j(u) = Q(u); ∀u ∈ Sn−1 .

– k = 2p + 1. Again, Theorem 38 implies that

P(x) = p∑
j=0
Cj|x|2p−2jP2j(x), or P2j ∈ PH2j .

Consider analogously Q(x) = ∑pj=0 CjP2j(x), which is also harmonic, not necessarily
homogenous, and also satisfies

P(u) = p∑
j=0
CjP2j+1(u) = Q(u); ∀u ∈ Sn−1 .

3.5 Spherical harmonics

Definition 40. A function f defined on the sphere Sn−1 is said to be a spherical har-
monic iff it is the restriction of a harmonic homogenous polynomial P on Sn−1, that
is, ∃P ∈ PH(ℝn) such that

f(u) = P(u), ∀u ∈ Sn−1 .
The degree of f is that of P. The space of all spherical harmonics onℝn with degree
k will be denoted byHSk(Sn−1).

The following proposition is proved in [162].
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Proposition 41.
(1) dimHSk(Sn−1) = dimPHk(ℝn).
(2) HSm(Sn−1)⊥HSn(Sn−1), ∀m ̸= n.
(3) L2(Sn−1) = ⨁+∞k=0HSk(Sn−1).
(4) ∀f ∈ HSk, ∆Sf = −k(k + n − 2)f .
Proof. (1) Consider the linear mapping

L : PHk(ℝn) 󳨀→ HSk(Sn−1)
P 󳨃󳨀→ L(P) = P/Sn−1 .

Observing the definition of HSk(Sn−1), we deduce that L is surjective. Next, let P be
such that L(P) = 0, then, for all x ∈ ℝn \ {0}, we obtain

P(x) = P (|x| x|x|) = |x|kP ( x|x|) = |x|kL(P)(x) = 0 .
So, L is also injective. Consequently, HSk(Sn−1) and PHk(ℝn) are isomorphic, thus,
with the same dimension.
(2) Let P ∈ HSk(Sn−1) and Q ∈ HSl(Sn−1), n ̸= m inℕ. We claim that

⟨P, Q⟩L2(Sn−1) = 0 .
Indeed, P and Q are restrictions of harmonic homogenous polynomials P̃ ∈ HSn(ℝn)
and Q̃ ∈ HSm(ℝn) on Sn−1. So, it results from Green’s formula that

∫
B(0,1)

P̃(x) ∆P̃(x)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=0
−Q̃(x) ∆Q̃(x)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=0
= ∫
Sn−1

P(ξ)∂P∂ν (ξ) − Q(ξ)∂Q∂ν (ξ)dσ(ξ) = 0 ,
where ν is the outward normal vector of Sn−1. Observing next that for a homogenous
polynomial P of degree s that

∂P
∂ν = sP ,

we obtain ∫
Sn−1

P(ξ)Q(ξ)dσ(ξ)(m − n) = 0 ,
which yields the orthogonality ofHSm(Sn−1) andHSn(Sn−1).
(3) Observe firstly that on the Sn−1, the quadratic elementary polynomial

Q(x) = x21 + x22 + ⋅ ⋅ ⋅ + x2n = 1 .
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Otherwise, from Theorem 38, the sum of the spacesHSk(Sn−1) gives the space of re-
strictions on Sn−1 of all homogenous polynomials. So, it results from the compactness
of Sn−1 and the well-known Stone–Weierstrass theorem that such a sum is dense in
the space of continuous functions on Sn−1 relative to the uniform topology and hence
relative to that of L2. Thus,

L2 (Sn−1, dσ) = +∞⨁
k=0

HSk(Sn−1) .
(4) Let f ∈ HSk(Sn−1), restriction of P ∈ PHk(ℝn), and denote

f̃ (x) = 1‖x‖k P(x) .
Obviously, for x ∈ Sn−1, we have f(x) = f̃ (x) = P(x). By applying the Leibniz law, we
obtain

∆f̃ = ∆( 1‖x‖k) P + 2⟨∇ 1‖x‖k , ∇P⟩ + 1‖x‖k ∆P= k(k − n + 2) 1‖x‖k+2 P − 2k2 1‖x‖k+2 ∆P .
Observing that on the sphere ‖x‖ = 1, we obtain

∆Sf = −k(k + n − 2)f.
Lemma 42. There exists an orthonormal basis {Yn,j}1≤j≤snk of HSk(Sn−1) composed
of spherical harmonics of degree k so that any spherical harmonics Y in HSk(Sn−1)
is written in a unique way as

Y = snk∑
j=1
Cn,jYn,j .

Proof. HSk(Sn−1) is a finite-dimensional vector space with the canonic basis formed
by the restriction of (xα)|α|=k on the sphere Sn−1. So, the Gram–Schmidt procedure
yields an orthonormal basis.

The following result is knownas the addition theoremof spherical harmonics. It is
a basic result in harmonic analysis of homogenous polynomials that relates the theory
of spherical harmonics to the theory of orthogonal polynomials. For more details on
such relationships and a proof in a special case, refer to [162].
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Theorem 43. Consider an orthonormal basis {Yn,j}1≤j≤snk of Pk(Sn−1). The following
assertion holds:

snk∑
j=1
Yk,j(ξ)Yk,j(η) = snk

ωn−1
Pk,n(ξ.η), ∀ξ, η ∈ Sn−1 ,

where Pk,n is the Legendre polynomial defined by

Pk,n(t) = k!Γ (n − 12 ) [k/2]∑j=0 (−1)j (1 − t2)j tk−2j
4j j!(k − 2j)!Γ(j + n−1

2 ) .
Proof. Denote F(ξ, η) the left-hand term in the addition rule above, i.e.,

F(ξ, η) = snk∑
j=1
Yk,j(ξ)Yk,j(η), ξ, η ∈ Sn−1 . (3.10)

We claim that F is invariant under the action of O(n). Indeed, let A ∈ O(n) and Hk,j ∈
Pk(ℝn) be such that

Hk,j|Sn−1 = Yk,j, ∀j .
It is straightforward that the function x 󳨃󳨀→ Hn,j(Ax) is also a harmonic homogenous
polynomial onℝn of degree k. Consequently, ξ 󳨃󳨀→ Yk,j(Aξ), j = 1, . . . , snk is a spheri-
cal harmonic of degree k. Hence, it can be written as

Yn,j(Aξ) = snk∑
m=1

α(j)m Yk,m(ξ) ∀ξ ∈ Sn−1 .
Next, observing that A is orthogonal, we get∫

Sn−1

Yk,m(Aξ)Yk,l(Aξ)dω(ξ) = ∫
Sn−1

Yk,m(ξ)Yk,l(ξ)dω(ξ) = δml .
Hence, ∫

Sn−1

Yk,m(Aξ)Yk,l(Aξ)dω(ξ) = snk∑
i,m=1

b(j)i b
(l)
m δim .

Or equivalently,

δml = ∫
Sn−1

Yk,m(Aξ)Yk,l(Aξ)dω(ξ) = snk∑
m=1

b(j)m b
(l)
m , ∀m, l ∈ {1, . . . , snk } .
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This means that the matrix B = (b(j)m )m,j=1,...,snk is orthogonal. Consequently, ∀ξ ,
η ∈ Sn−1

F(Aξ, Aη) = snk∑
j=1
Yk,j(Aξ)Yk,j(Aη)

= snk∑
j=1

snk∑
m,l=1

b(j)m b
(j)
l Yk,m(ξ)Yk,l(η)

= snk∑
m=1

Yk,m(ξ)Yk,m(η)= F(ξ, η) .
Hence, F is invariant under the action of orthogonal transformations. It follows
(see [16, 54, 59, 143, 162]) that

F(ξ, η) = F(ξ, ξ)Pk,n(ξη) and F(ξ, η) = F(η, η)Pk,n(ξη), ∀ξ, η ∈ Sn−1
and that Pk,n is the Legendre polynomial of degree k defined precisely in Theorem 43.
This means in particular that F(ξ, ξ) = F(η, η) and thus constant on Sn−1. Otherwise,
observing that

F(ξ, ξ) = snk∑
j=1
|Yk,j(ξ)|2 ,

we obtain by means of the integration on the whole sphere Sn−1 that

F(ξ, ξ)ωn−1 = snk .
Remark 44. Let f : Sn−1 󳨀→ ℝ. Then, it can be written as a linear combination of
spherical harmonics

f(η) = ∞∑
k=0

snk∑
m=1

Km,nYk,n(η),
where Km,n are called the spherical harmonic coefficients or spherical harmonic
transforms of f at the order (m, n), and are obtained from the inner products⟨f, Yk,n⟩.
3.6 Fourier transform of spherical harmonics

Let P be a homogenous polynomial on ℝn. Denote
L2P(ℝn) = {f ∈ L2(ℝn); ∃f0 : ℝ+ → ℝ such that f(x) = f0(|x|)P(x)}
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and for λ ∈ ℝ, we denote
Hλ(ℝn) = {{{{{f : ℝ+ → ℝ such that ∫

ℝ+

|f(x)|2xλdx < +∞}}}}} .

It holds that for λ = n+2k −1,Hλ(ℝn) is the adherence of Σ = (E−παrr ; α > 0). We can
consider Σ⊥ inHλ(ℝn) and prove that Σ⊥ = {0}.
Definition 45. Let f : ℝn 󳨀→ ℝ. The profile of f is defined by f̃ : ℝ+ 󳨀→ ℝ such that
f(x) = f̃ (|x|).
Definition 46. Let f : ℝn 󳨀→ ℝ. The radial transform of f is f : ℝn 󳨀→ ℝ defined
by

f (x) = 1
ωn−1

∫
Sn−1

f(|x|u)dσ(u) ,
where ωn−1 is the volume of the sphere Sn−1 and dσ is the Lebesgue measure on
Sn−1.

Lemma 47. Let dσ be the Lebesgue measure on Sn−1. We have

σ̂(t) = 2π|t|1−n/2J n
2 −1(2π|t|) ,

where for λ ∈ ℝ, Jλ is the Bessel function
Jλ(x) = 1

2π

π∫
−π
e−i(λt−x sin t)dt .

Proof. Recall that the Fourier transform of σ is defined by

σ̂(t) = ∫
Sn−1

e−2iπtξdσ(ξ) .
As the measure dσ is invariant under rotations, we can assume without loss of the
generality that t = (|t|, 0, . . . , 0). We obtain

σ̂(t) = ∫
Sn−1

e−2iπ|t| cos θdσ(ξ) ,
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where θ is the angle (t, e1), with en = (1, 0, . . . , 0). In spherical coordinates, this
means that

σ̂(t) = ωn−2 π∫
0

e−2iπ|t| cos θ sinn−2 θdθ .

Denote next r = cos θ. We obtain

σ̂(t) = ωn−2 1∫
−1
e−2iπ|t|r(1 − r2)(n−3)/2dr .

Observe next that

ωn−2 = π n−3
2

Γ( n−12 )
and on the other hand,

Jλ(2π|t|) = |πt|λ
π1/2Γ(λ + 1/2) 1∫

−1
e−2iπ|t|r(1 − r2)λ−1/2dr ,

so we obtain the desired result.

Lemma 48. Let f : ℝn 󳨀→ ℝ be a radial function with profile f̃ . Then,
̃̂f(r) = 2πr1−n/2 +∞∫

0

f̃ (s)J n
2 −1(2πrs)sn/2ds = +∞∫

0

f̃ (s)σ̂(rs)sn−1ds .
Indeed, for x = rξ ∈ ℝn, (ξ ∈ Sn−1), we have

f̂ (x) = ∫
ℝn
f(ζ)e−2iπxζ dζ

= +∞∫
0

Sn−1 f(s)e−2iπrsξηsn−1dsdσ(η)
= +∞∫

0

f̃ (s)σ̂(rs)sn−1ds .
Hence, Lemma 48.

Theorem 49. Let f be a function of the form f(x) = e−π|x|2P(x), where P ∈ Pk(ℝn).
Then,

f̂ (x) = i−k f(x) .
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Proof. It suffices to show that f(x) = e−π|x|2xα, with |α| = k. For this choice, we have
f̂ (x) = ∫

ℝn
e−π|y|2yαe−2iπxydy

= n∏
m=1
∫
ℝ
e−πy2myαmm e−2iπxmymdym

= n∏
m=1

e−πx2m(−ixm)αm= i−ke−π|x|2xα .
The following theorem is known as the Bochner–Hecke theorem.

Theorem 50. Let n ≥ 2, k ≥ 0, P ∈ Pk(ℝn) and f0 be measurable on [0, +∞[ such
that

+∞∫
0

|f0(r)|2rn+2k−1dr < +∞ .

Then,
F(x) = f0(|x|)P(x) ∈ L2(ℝn) and F̂(x) = g0(|x|)P(x) ,

where g0 is measurable on [0, +∞[ such that ∫+∞0 |g0(r)|2rn+2k−1dr < +∞. More
precisely,

g0(r) = 2π
ikrλ

+∞∫
0

f0(t)Jλ(2πrt)tλ+1dt, with λ = n + 2k − 2
2

.

Proof. The first part is trivial as we have

∫
ℝn
|F(x)|2dx = +∞∫

0

|f0(r)|2rn+2k−1dr ∫
Sn−1

|P(η)|2dσ(η) .
The second part follows from Lemma 48 and Theorem 49.

3.7 Zonal functions

In this section,we review the basic concepts of zonal functions.We revisit their Fourier
transforms and reproduce the proof of the well-known Bochner–Hecke theorem. We
first recall a result on the existence of zonal function sites (see [48, 65, 162]).
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Theorem 51. For all u ∈ Sn−1, there exists Zku ∈ HSk(Sn−1) such that
Y(u) = ∫

Sn−1

Y(v)Zku(v)dσ(v) .
Furthermore, Zku satisfies the following assertions:
(1) Zku(v) = ∑l Yl(u)Yl(v); for all orthonormal basis (Yl)l ofHSk and ∀u, v ∈ Sn−1.
(2) Zkρu(ρv) = Zku(v), ∀ρ ∈ SO(n) and ∀u, v ∈ Sn−1.
(3) Zku(u) = dk

wr−1 , ∀u ∈ Sn−1.
Proof. Let Y ∈ HSk(Sn−1) and ∀(Yl)l be an orthonormal basis ofHSk. Then, Y is of the
form

Y = ∑
m
αmYm , where αm = ∫

Sn−1

Y(v)Ym(v)dσ(v) .
Consequently, for u ∈ Sn−1, we obtain

Y(u) = ∑
m
∫
Sn−1

Y(v)Ym(v)dσ(v)Ym(u)
= ∫
Sn−1

Y(v)∑
m
Ym(v)Ym(u)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Zku(v)

dσ(v)
= ∫
Sn−1

Y(v)Zku(v)dσ(v).
Hence, Y(u) and (1) hold.
(2) For ρ ∈ SO(n) and u, v ∈ Sn−1, we have

Zkρu(ρv) = ∑
m
Ym(ρu)Ym(ρv).

Recall that the right-hand side part is invariant under the action of O(n). Thus,
Zkρu(ρv) = ∑

m
Ym(u)Ym(v) = Zku(v).

(3) For u ∈ Sn−1, we have
Zku(u) = ∑

m
Ym(u)Ym(u) = ∑

m
|Ym(u)|2 = snk

ωn−1
.

Definition 52. Zku defined in Theorem51 is called the zonal function of degree k and
the pole u.
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Proposition 53. Let v ∈ Sn−1. Then there exists φku such that
φku(uv) = Zku(v) ∀u ∈ Sn−1.

Indeed, it follows from Theorem 51 that Zku is invariant under orthogonal transforma-
tions. Thus, it depends only on the angle (u, v). Consequently, there exists φku defined
on [−1, 1] such that

Zku(v) = φku(uv) ∀u ∈ Sn−1.
This result allows us to link with the definition of the zonal function based on
L2[−1, 1].
Definition 54. Let ξ ∈ Sn−1 and G : [−1, 1] 󳨀→ ℝ be a function. The function

Gξ : Ω 󳨀→ ℝ
η 󳨃󳨀→ Gξ (η) = G(ξ.η)

is called the ξ-zonal function on Ω.

These definitions confirm that it suffices to define zonal functions relative to one of
the vectors in a coordinate system to cover the entire sphere.

Proposition 55. Let en = (0, . . . , 0, 1) be one pole of the sphere Sn−1. The following
assertions hold.
(1) For all u ∈ Sn−1, there exists ρ ∈ SO(n) such that ρen = u.
(2) Zku(v) = Zken (l−1v); ∀u, v ∈ Sn−1.
(3) φku(uv) = φken (uv); ∀u, v ∈ Sn−1.
Proof. If u = en, it suffices to take ρ − Id. If not, we consider the rotation ρ centered
at O and transforming en to u. Hence, (1).
(2) We have

Zku(v) = Zkρen(ρρ−1v) = Zken (ρ−1v).
(3) We have

φku(uv) = Zku(v) = Zken (ρ−1v) = φken (enρ−1v) = φken (ρenρρ−1v) = φken (uv).
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This means that to compute the zonal function Zku, it suffices to evaluate φken (t) for
t ∈ [−1, 1]. So, let v ∈ ℝn, v = rη with r > 0 and η ∈ Sn−1. Let r cos θ = env. Hence,

φken (env) = rkPk(cos θ) ,
where Pk is a polynomial of degree k. Since Zku is harmonic, it holds that(1 − t2)P󸀠󸀠k (t) − (n − 1)tP󸀠k(t) + k(n + k − 2)Pk(t) = 0.
This leads to the following characterization of zonal functions.

Theorem 56. Let n ≥ 3, k ≥ 0, and u ∈ Sn−1. Then,
Zku(v) = skn

wn−1
P
n−2
2
k (uv) ,

where Pλk is the unique polynomial of degree k associated with λ, i.e., a polynomial
solution of {(1 − t2)P󸀠󸀠 − (2λ + 1)tP󸀠 + k(2λ + k)P = 0,

P(1) = 1.
3.8 Conclusion

In this chapter, the basic concepts and properties of the spherical Laplace operator
and homogenous harmonic polynomials were reviewed. In addition, spherical har-
monics as well as their Fourier transforms were studied. Finally, zonal functions as
special cases of spherical harmonics have been revisited. Basic theorems, such as the
addition theorem, Hecke theorem, and Bochner–Hecke theorem have been presented
withmore detail. As we have seen in this chapter, spherical harmonics are strongly re-
lated to orthogonal polynomials, such as Gegenbauer polynomials, which are linked
to the well-known Bessel function, which is a particular case of a wider class of func-
tion known as special functions. These will be the subject of a forthcoming work.
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4.1 Introduction

The main motivation behind this chapter about special functions is that these func-
tions are applied in the quasi-field of mathematical physics and that there is no liter-
ature dedicated on them and their basic properties with efficient proofs and original
references.

Special functions are, as their name indicates, special in their definitions, appli-
cations, proofs as well as their interactions with other fields. It is thus important to
understand their basic properties.

They appear in the treatment of differential equations, such as heat and Schrö-
dinger equations, quantum mechanics, approximation theory, communication sys-
tems, wave propagation, probability theory, and number theory.

Special functions are also related to orthogonal polynomials, as both of them are
generated by second-order ordinary differential equations. We cite mainly Legendre,
Gegenbauer, and Jacobi polynomials. They are also associated with infinite series, im-
proper integrals, and Fourier transforms, yielding special transforms, such as Bessel,
Jakobi, Hankel, and Dunkl transforms of functions.

Historically, special functions differ from elementary ones, such as powers, roots,
trigonometric, and their inverses, mainly with the limitations that these latter classes
have known. Many fundamental problems such as orbital motion, simultaneous os-
cillatory chains, and spherical body gravitational potential were not best described
using elementary functions. This makes it necessary to extend elementary function
classes to more general ones that may describe unresolved problems.

In the present chapter, we aim to recall special functions most frequently applied
in scientific fields, such as Bessel functions, Mathieu functions, the Gamma function,
the Beta function, and Jacobi functions.

4.2 Classical special functions

4.2.1 Euler’s Γ function

Euler’s Gamma function was introduced by Bernoulli and Christian Goldbach in the
17th century by extending the factorial to nonintegers. But the problem remained un-
solved until the work of Leonhard Euler, who was the first to point out a rigorous for-
mulation based on infinite products. Next, Euler’s Gamma function has been applied
in numerous contexts in both mathematics and physics, such as integration theory,
number theory, probability, group theory, and partial differential equations (PDEs),
andhas also been extended to themeromorphic function on thewhole complex plane.
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Definition 57. Euler’s Γ function is defined by the following integral expression
known sometimes as the second-kind Euler integral, defined for x ∈ ℝ∗+ by

Γ(x) = ∞∫
0

tx−1e−tdt .

Proposition 58.
(1) Euler’s Γ integral converges for all x > 0.
(2) The function Γ is C∞ on ]0, +∞[ and we have

Γ(k)(x) = +∞∫
0

e−t(ln t)k tx−1dt, ∀x > 0, ∀k ∈ ℕ .

(3) Euler’s Γ function can be extended on the half-plane Re(z) > 0.
Proof. (1) For x > 0, denote f(t, x) = tx−1e−t. First note that f(t, x) > 0 for all t ∈(0, +∞). When t → 0, f(t, x) ∼ tx−1 and

1∫
0

tx−1dt = 1x
is convergent. So

1∫
0

f(t, x)dt
is also convergent. Now, note that there exist A,M > 0 constants such that t2f(t, x) <
M whenever t > A and thus

+∞∫
A

f(t, x)dt ≤ +∞∫
A

1
t2
dt .

The last integral is convergent. So

+∞∫
A

f(t, x)dt
is also convergent. Finally, the integral Γ(x) is convergent for all x > 0.
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(2) Let a, b ∈ ℝ with 0 < a < b and ϕ : [a, b]×]0, +∞[󳨀→ ℝ such that ϕ(x, t) =
tx−1e−t. It consists of a C∞ function that satisfies

∂(k)ϕ
∂xk
(x, t) = (ln t)ktx−1e−t ,

which is also continuous on [a, b]×]0, +∞[. In addition, for k ∈ ℕ∗, we have
– ∀x ∈ [a, b], the function t 󳨃→ ∂kϕ

∂xk (x, t) is continuous on ]0, +∞[.
– ∀t ∈]0, +∞[, the function x 󳨃→ ∂kϕ

∂xk (x, t) is continuous on [a, b].
– ∀(x, t) ∈ [a, b]×]0, +∞[, we have󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∂kϕ∂xk (x, t)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ (ln t)kmax(ta−1, tb−1)e−t .
Hence, the function Γ is C∞ on ]0, +∞[ and ∀k ∈ ℕ∗, ∀x > 0,

Γ(k)(x) = +∞∫
0

(ln t)k tx−1e−tdt .
Hence (3.3).
(3) We will prove by recurrence the proposal

Pm: Γ can be extended on −m + 1 > Re(z) > −m, ∀m ∈ ℕ.
Indeed, P0 holds because Γ is analytic on {Re(z) > 0}. Therefore, it is analytic on{1 > Re(z) > 0}. Next, for 0 > Re(z) > −1, we have 1 > Re(z + 1) > 0. Hence, Γ(z + 1)
is analytic. In addition, Γ(z) = Γ(z+1)

z . Thus, Γ is holomorphic on {0 > Re(z) > −1}
with 0 being a simple pole corresponding to the residues 1. So, Γ can be extended to
a meromorphic function {Re(z) > −1}with a simple pole at 0. Hence, the property P1.
Next, applying the recurrence rule, we obtain

Γ(z) = Γ(z + n)∏n−1k=0(z + k) .
Properties 59. The following assertions are satisfied.
(1) Γ(x + 1) = xΓ(x); ∀x > 0.
(2) Γ(n + 1) = n!, ∀n ∈ ℕ.
(3) Γ( 12 ) = √π.
(4) Γ(n + 1

2 ) = (2n)!√π22nn! , ∀n ∈ ℕ.
Proof. (1) An integration by parts gives

Γ(x + 1) = +∞∫
0

txe−tdt = x +∞∫
0

tx−1e−tdt = xΓ(x) .
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(2) Putting x = n ∈ ℕ∗ in assertion (1), we get
Γ(n + 1) = nΓ(n) = n(n − 1)Γ(n − 1) = n!Γ(1) = n! .

Hence the appointment of generalized factorial function for Γ.
(3) We have

Γ(12 ) = ∞∫
0

1√t e−tdt .
Putting x = √t, we get

Γ (12) = 2 ∞∫
0

e−x2dx .

Hence, (Γ (12))2 = 4 ∞∫
0

∞∫
0

e−(x2+y2)dxdy .

Now, using the polar coordinates system, x = r cos θ and y = r sin θ, with r ∈ (0,∞)
and θ ∈ (0, π2 )we get

(Γ (12))2 = 4
π
2∫
0

∞∫
0

e−r2 rdrdθ = π .
Therefore, Γ(12 ) = √π.
(4) By recurrence on n. For n = 0, we have Γ(0 + 1

2 ) = Γ(12 ) on the left and √π on the
right. So, the assertion is true for n = 0. Assume next that it is true for n. We shall then
check it for n + 1.

Γ (n + 1 + 12) = (n + 12) Γ (n + 12)= (n + 12) (2n)!√π22nn!= (2n + 2)!√π
22n+2(n + 1)!= (2(n + 1))!√π
22(n+1)(n + 1)! .

The next result shows some asymptotic behaviors of Euler’s Γ function.

Theorem 60. Euler’s Γ function satisfies the so-called Stirling formula,

Γ(x + 1) ∼ √2πx ( xe)x as x 󳨀→ +∞ .
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Proof. Recall that

Γ(x + 1) = +∞∫
0

txe−tdt .

By setting t = x + √xu, we obtain
Γ(x + 1) = +∞∫

−√x

e−x−√xuex ln(x+√xu)√xdu
= ( xe)x√x +∞∫

−√x

e−√xu+x ln(1+
u
√x )du .

Now, it suffices to prove that the last integral tends to √2π as x → +∞. Denote Γ1(x)
as this integral and let

f(x, u) = {{{e
−√xu+x ln(1+ u

√x ) if u ≥ −√x
0 if not .

We get

Γ1(x) = +∞∫
−∞

f(x, u)du .
For fixed u ∈ ℝ, we have

lim
x󳨀→+∞ f(x, u) = lim

x󳨀→+∞ exp(−√xu + x ln(1 + u√x))= lim
x󳨀→+∞ exp(−√xu + x( u√x − 12 u2x + θ (1x )))= exp(−u22 ) .

On the other hand, if u ∈] − √x, 0], as |u|√x < 1, we obtain
f(x, u) ≤ exp(−u2

2
) .

Finally, for u ∈]0, +∞[, f(x, u) is a decreasing function of x on ]0, +∞[. We deduce for
u > 0 and x ∈ [1, +∞[ that

f(x, u) ≤ f(1, u) = (1 + u)e−u .
So, for all u ∈ ℝ and all x ∈ [1, +∞[, we have 0 ≤ f(x, u) ≤ g(u), where g is the
integrable function defined by

g(u) = {{{e−
u2
2 , if u ≤ 0(1 + u)e−u , if not u ≥ 0 .
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By the dominated convergence theorem, we obtain

Γ1(x) → +∞∫
−∞

e
−u2
2 du = √2π, as x → +∞ .

Now, by setting t = √xu , we get f(x, u) = eh(t,u), where
h(t, u) = u2t2 (−1t + ln (1 + 1t )) ,

which is decreasing in t.

Proposition 61. Euler’s Γ function satisfies the so-called Gauss formula for all x > 0,
1
Γ(x) = lim

n󳨀→+∞
x(x + 1) ⋅ ⋅ ⋅ (x + n)

n!nx .

Proof. Applying the recurrence relation n times, we obtain

Γ(x)x(x + 1) ⋅ ⋅ ⋅ (x + n) = Γ(x + n + 1) .
Therefore,

x(x + 1) ⋅ ⋅ ⋅ (x + n)
n!nx = Γ(x + n + 1)Γ(x)n!nx∼ √2π(x + n + 1)x+n+ 12 e−(x+n+1)

Γ(x)√2π(n + 1)n+ 12 e−n−1nx∼ 1
Γ(x) ( x + n + 1n )x ( x + n + 1n + 1 )n+1 e−x (1 + xn)n= 1
Γ(x) .

Proposition 62.
(1) The infinite product∏+∞k=1(1 + z

k )e −z
k is normally convergent on every compact ofℂ and therefore defines an analytic function of z.

(2) Euler’s Γ function satisfies the so-called Gauss–Weierstrass formula for z ∉ −ℕ,
1
Γ(z) = lim

n→+∞
z(z + 1)(z + 2) ⋅ ⋅ ⋅ (z + n)

n!nz= zeγz lim
n󳨀→+∞

n∏
k=1
(1 + zk) e −z

k ,
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where γ is the Euler–Mascheroni constant given by

γ = lim
n󳨀→+∞(n−1∑

k=1

1
k − ln n) .

Proof. (1) Put uk(z) = (1 + z
k )e −z

k − 1. A simple Taylor development gives

|uk(z)| ≤ |z|2n2
whenever |z|n is bounded independent of n and z. Hence, the infinite product converges
uniformly on every compact set in ℂ to an analytic function.
(2) Observe that

Γ(z) = +∞∫
0

tz−1e−tdt = lim
n→+∞

n∫
0

tz−1 (1 − tn)n dt .
This is a consequence of the application of the dominated convergence theorem. So,
next, integrating by parts, we obtain

Γ(z) = lim
n→+∞

n!nz
z(z + 1)(z + 2) ⋅ ⋅ ⋅ (z + n)

whenever z ∉ −ℕ. So the first part is proved. Next, observe that
z(z + 1)(z + 2) ⋅ ⋅ ⋅ (z + n)

n!nz
= zn−z n∏

k=1

z + k
k
= zez(γn−log n) n∏

k=1
e−

z
k

n∏
k=1
(1 + zk)

where γn = ∑n−1k=1
1
k . Next, we obtain

z(z + 1)(z + 2) ⋅ ⋅ ⋅ (z + n)
n!nz = zez(γn−log n) n∏

k=1
e−

z
k (1 + zk) ,

which implies by the limit on n that

1
Γ(z) = lim

n→+∞
z(z + 1)(z + 2) ⋅ ⋅ ⋅ (z + n)

n!nz = zeγz lim
n󳨀→+∞

n∏
k=1
(1 + zk) e −z

k .

Proposition 63. For z ∈ ℂ \ ℤ,
Γ(z)Γ(1 − z) = π

sin(πz) .
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The proof is based on the following lemma, which canbe obtained by simple appli-
cation of Fourier series theory on the function f(t) = cos(st), where s ∈ ℂ. The re-
sult may also be established by direct methods based on the simple relation ez =
limk→+∞(1 + z

k )k. Thus, the proof of this lemma is left to the reader.

Lemma 64. ∀z ∈ ℂ, we have
sin(πz) = πz∏

n≥1
(1 − z2

n2
) . (4.1)

Proof of Proposition 63. Let

an(z) = z(z + 1)(z + 2) ⋅ ⋅ ⋅ (z + n)n!nz .

Proceeding as in the proof of Proposition 62, we obtain

an(z)an(1 − z) = z (1 + 1 − zn ) n∏
k=1
(1 − z2

k2
) .

The limit on n gives
1

Γ(z)Γ(1 − z) = lim
n→+∞ an(z)an(1 − z) = z∏

k≥1
(1 − z2

k2
) = sin(πz)

πz
.

Consequently,
Γ(z)Γ(1 − z) = π

sin(πz) .
Remark 65. The meromorphic function Γ has no roots on ℂ.
Proposition 66.
– Convexity of Γ: Γ is strictly convex on ]0, +∞[.
– Asymptotic behavior of Γ at∞: limx󳨀→+∞ Γ(x) = +∞.
– Asymptotic behavior of Γ at∞: limx󳨀→+∞ Γ(x)

x = +∞.
– Asymptotic behavior of Γ at 0+: limx󳨀→0+ Γ(x) = +∞.
Proof. (1) Recall that the function Γ is twice differentiable on ]0, +∞[ and ∀x > 0, so
we have

Γ󸀠󸀠(x) = +∞∫
0

(ln t)2tx−1e−tdt > 0 .
Hence, it is convex.
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(2) Since the function Γ is increasing on )0, +∞[, for x big enough, we have
Γ(x) = (x − 1)Γ(x − 1) ≥ (x − 1)Γ(1) = x − 1 .

We deduce that limx󳨀→+∞ Γ(x) = +∞.
(3) For x > 1, we have

Γ(x)
x
= (x − 1)

x
Γ(x − 1) 󳨀→ +∞ as x 󳨀→ +∞ .

We deduce that the graph of the function Γ has at +∞ a vertical asymptotic direction.
(4) For x > 0, Γ(x) = Γ(x+1)

x → Γ(1)
0+ = +∞ when x 󳨀→ 0+.

So limx󳨀→0+ Γ(x) = +∞. In addition, we have precisely, Γ(x) ∼ 1
x as x → 0+.

4.2.2 Euler’s beta function

The origin of Euler’s beta function goes back to differential calculus and integrals. It
was introduced in the Arithmetica Infinitorum published by Wallis. Newton next dis-
covered the binomial formula and introduced Euler’s beta function, which was then
developed for other versions, such as the incomplete and the corrected versions. The
beta function is given by Euler in the following form:

β(p, q) = 1∫
0

tp(1 − t)qdt
and is known as the first-kind Euler integral. But since Legendre’s work, it appears in
a slightly modified form

β(p, q) = 1∫
0

xp−1(1 − x)q−1dx, p > 0, q > 0 .
It is apparent that such a function is symmetrical in (p, q), i.e.,

β(p, q) = β(q, p) .
The beta function also has another integral representation. Indeed, by setting t = y

a ,
a > 0, it becomes

β(p, q) = 1
ap+q−1

a∫
0

yp−1(a − y)q−1dy .
Again, setting t = sin2 θ, we get a trigonometric form

β(p, q) = 2 π
2∫
0

(sin θ)2p−1(cos θ)2q−1dθ .
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Finally, with the variable change t = y
(1+y) , we get

β(p, q) = +∞∫
0

yp−1(1 + y)p+q dy .
In the following,wewill apply oneof these representationswithoutmentioning it each
time. The form applied will be understood from the development.

Proposition 67.
(1) The beta integral converges whenever x, y > 0.
(2) The beta integral is continuous on ]0, +∞[×]0, +∞[.
(3) The beta integral remains valid on the quarter complex plane Re(x), Re(y) > 0.
Proof. (1) Whenever p, q > 0 we have

tp(1 − t)q ∼ tp , t → 0+ and tp(1 − t)q ∼ (1 − t)q , t → 1− .

Hence, the integral is convergent.
(2) On ]0, +∞[×]0, +∞[, the function (p, q) 󳨃→ ft(p, q) = tp(1− t)q is continuous for all
t ∈ (0, 1). Furthermore, tp(1 − t)q ≤ 1, ∀t, p, q. Thus, the integral is uniformly conver-
gent to a continuous function on ]0, +∞[×]0, +∞[. Next, by recurrence on k ∈ ℕ, we
can prove that beta is k-times differentiable according to p and q. We can also prove
that

∂kβ
∂pk
(p, q) = 1∫

0

(log t)k tp(1 − t)qdt ,
∂kβ
∂qk
(p, q) = 1∫

0

(log(1 − t))k tp(1 − t)qdt
and for n + m = k,

∂kβ
∂pnqm (p, q) = 1∫

0

(log t)n(log(1 − t))mtp(1 − t)qdt .
(3) For p, q ∈ ℂ, we have

|tp(1 − t)q | = tRe(p)(1 − t)Re(q), ∀t ∈ (0, 1) .
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Properties 68.
(1) pβ(p, q + 1) = qβ(p + 1, q), ∀p, q ≥ 0.
(2) β(p, 1) = 1

p .
(3) β(12 , 12 ) = π.
(4) ∀n ∈ ℕ and ∀p > 0, β(p, n) = n−1

p β(p + 1, n − 1).
(5) ∀n ∈ ℕ and ∀p > 0, β(p, n) = (n−1)(n−2)⋅⋅⋅2⋅1p(p+1)⋅⋅⋅(p+n−1) .
(6) ∀m, n ∈ ℕ, β(m, n) = (m−1)!(n−1)!(m+n−1)! .
(7) ∀p, q > 0, β(p, q) = ∫10 yp−1+yq−1

(1+y)p+q dy.
(8) ∀p, 0 < p < 1, β(p, 1 − p) = ∫10 yp−1+y−p

(1+y) dy.
(9) ∀p, 0 < p < 1, β(p, 1 − p) = π

sin πp .
(10)∀p, q > 0, β(p, q) = Γ(p)Γ(q)

Γ(p+q) .

Proof. (1) Integrating by parts, we get

β(p, q + 1) = 1∫
0

q
p
xp(1 − x)q−1dx = q

p
β(p + 1, q) .

(2) We have

β(p, q) = 1∫
0

xp−1(1 − x)q−1dx .
So,

β(p, 1) = 1∫
0

xp−1dx = 1
p .

(3) Taking q + 1 = n ∈ ℕ, we get
β(p, n) = n − 1

p
β(p + 1, n − 1) .

(4) Observing that β(p, 1) = 1
p , we get by iteration

β(p, n) = 1 ⋅ 2 ⋅ ⋅ ⋅ (n − 1)
p(p + 1) ⋅ ⋅ ⋅ (p + n − 1) .

(5) If we take p = m ∈ ℕ in the previous equation, we obtain

β(m, n) = (m − 1)!(n − 1)!(m + n − 1)! .
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(6)

β (12 , 12) = 1∫
0

x−
1
2 (1 − x)− 12 dx (x = u2)

= 2 1∫
0

du√1 − u2= π .
(7) We have

β(p, q) = +∞∫
0

yp−1(1 + y)p+q dy
= 1∫

0

yp−1(1 + y)p+q dy + +∞∫
1

yp−1(1 + y)p+q dy⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
I

(y with 1
y in I)

= 1∫
0

yp−1 + yq−1(1 + y)p+q dy .
(8) For 0 < p < 1, we get

β(p, 1 − p) = ∞∫
0

yp−1(1 + y)dy
= 1∫

0

yp−1(1 + y)dy + ∞∫
1

yp−1(1 + y)dy
= 1∫

0

yp−1 + y−p(1 + y) .

(9) Recall that 1
1+y = ∑∞n=0(−1)nyn whenever 0 < y < 1. Hence,

1∫
0

yp−1

1 + y dy = ∞∑n=0 (−1)np + n .

Similarly, we have
1∫
0

y−p

1 + y dy = ∞∑n=1 (−1)np − n .

Therefore,
β(p, 1 − p) = ∑

n∈ℤ

(−1)n
p − n = π

sin πp .
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(10) By setting t = y2 in the Γ integral, we obtain
Γ(p) = 2 +∞∫

0

y2p−1e−y2dy .

Thus,

Γ(p)Γ(q) = 4 +∞∫
0

+∞∫
0

x2q−1y2p−1e−(x2+y2)dxdy .

Next, applying polar coordinates x = r cos θ and y = r sin θ, this yields that
Γ(p)Γ(q) = 4 +∞∫

0

π
2∫
0

(r cos θ)2q−1(r sin θ)2p−1e−r2drdθ
= 4 +∞∫

0

r2(p+q−1)e−r2dr
+ π2∫
0

(cos θ)2q−1(sin θ)2p−1dθ
= 41

2
Γ(p + q)1

2
β(p, q)= Γ(p + q)β(p, q) .

The following result relates the differentiability of beta to Euler’s Γ function. The proof
is an immediate consequence of the last property above.

Proposition 69. The function beta is differentiable and we have

∂
∂p
β(p, q) = β(p, q) ( Γ󸀠(p)Γ(p) − Γ󸀠(p + q)Γ(p + q) ) = β(p, q) (ψ(p) − ψ(p + q)) ,

where ψ is the so-called di-Gamma function defined by ψ(p) = Γ󸀠(p)
Γ(p) .

In the following, we introduce the complete and incomplete beta functions.

Definition 70. The complete Beta function is defined for a, b > 0 by
β(p; a, b) = p∫

0

ta−1(1 − t)b−1dt . (4.2)

The incomplete (regularized) beta function is

Ip(a, b) = β(p; a, b)β(a, b) ; a, b > 0 . (4.3)
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Fig. 4.1: Representations of the beta function.

Figure 4.1 illustrates the graph of the beta function.

4.2.3 Theta function

The theta function appears inmany areas, such asmanifolds, quadratic forms, soliton
theory, and quantum theory.

Definition 71. The function θ is defined for (z, τ) ∈ ℂ2 such that Im(τ) > 0, by
θ(z, τ) = ∑

n∈ℤ
eiπn2τe2inπz . (4.4)

Proposition 72. We have
(1) ∀τ such that Im(τ) > 0, θ(., τ) is a holomorphic function on ℂ.
(2) θ(z + 1, τ) = θ(z, τ), ∀τ such that Im(τ) > 0.
(3) θ(z + τ, τ) = e−iπτe−2iπzθ(z, r).
Proof. (1) For all τ, the function z 󳨃→ eiπn2τe2iπnz is holomorphic on ℂ. Moreover, for
all compact K ⊂ ℂ, we have

sup
z∈K
|eiπn2τe2iπnz| ≤ e−πn2 Im(τ)e2πRn ,
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with R such that K ⊂ D(0, R). Hence, the series∑n e−πn2 Im(τ)eRn is convergent, which
yields that∑n eiπn2τe2iπnz is holomorphic.
(2) ∀z, τ, we have

θ(z + 1, τ) = ∑
n∈ℤ

eiπn2τe2iπn(z+1)

= ∑
n∈ℤ

eiπn2τe2iπnz(e2iπ)n
= ∑
n∈ℤ

eiπn2τe2iπnz

= θ(z, τ) .
(3) ∀z, τ, we have

θ(z + τ, τ) = ∑
n∈ℤ

eiπn2τe2iπn(z+τ)

= ∑
n∈ℤ

eiπn2τe2iπnz(e2iπ)n
= ∑
n∈ℤ

eiπ(n2+2n)τe2iπnz

= ∑
n∈ℤ

eiπ((n+1)2−1)τe2iπnz

= e−iπτ ∑
n∈ℤ

eiπ((n+1)2)τe2iπnz

= e−iπτ ∑
n∈ℤ

eiπn2τe2iπ(n−1)z

= e−iπτe−2iπzθ(z, r) .
Proposition 73.
(1) For all τ such that Im(τ) > 0, we have

√ τ
i θ(z, τ) = e −iπz2

τ θ ( zτ , −1τ ) . (4.5)

(2) For t > 0, let Θ(t) = θ(0, it). Then,√tΘ(t) = Θ (1t ) .
Proof. Denote for x ∈ ℝ, f(x) = eiπx2τe2iπxz. From the well-known Poisson summation
formula, we obtain

θ(z, τ) = ∑
n∈ℤ

f(n) = ∑
n∈ℤ

f̂ (n) .



66 | 4 Review of special functions

On the other hand, note that

f(x) = Gα (x + zτ) e −iπz2
r with α = −2iπτ and Gα(t) = e− αt22 .

Therefore,

f̂ (ω) = Ĝα (. + zτ) (ω)e −iπz2
τ

= e2iπ zτ ωe −2π2ω2
α √2π

α
e

−iπz2
τ

= e2iπ zτ ωe πω2iτ √ 1−iτ e −iπz2
τ

= e2iπ zτ ωe −iπω2
τ √ i

τ
e

−iπz2
τ .

Hence, ∑
n∈ℤ

f̂ (n) = √ iτ e −iπz2
τ ∑

n∈ℤ
e2iπ

z
τ ne

−iπn2
τ = √ iτ e −iπz2

τ θ ( zτ , −1τ ) .
Consequently,

θ(z, τ) = √ iτ e −iπz2
τ θ ( zτ , −1τ ) ,

or equivalently, √τ
i θ(z, τ) = e −iπz2

τ θ ( zτ , −1τ ) .
4.2.4 Riemann zeta function

The Riemann zeta function is often known in number theory and in particular in the
study of the distribution of prime numbers.

Definition 74. The Riemann zeta function is defined for x > 1 by
ζ(x) = +∞∑

n=1

1
nx . (4.6)

Remark 75. The definition may be extended to complex numbers x = a + ib with
a > 1.
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Proposition 76. The ζ Riemann’s function satisfies the so-called Euler’s multiplica-
tion

ζ(x) = ∏
p∈P

1(1 − p−x) , ∀x > 1 ,
where P is the set of prime numbers.

Proof. For x > 1, we have
ζ(x) = 1 + 1

2x
+ 1
3x
+ 1
4x
+ 1
5x
+ ⋅ ⋅ ⋅

Thus,
1
2x ζ(x) = 1

2x + 1
4x + 1

6x + 1
8x + 1

10x + ⋅ ⋅ ⋅
Or equivalently, (1 − 1

2x ) ζ(x) = 1 + 1
3x + 1

5x + 1
7x + 1

9x + ⋅ ⋅ ⋅
Multiplying again by 1

3x , we get

1
3x (1 − 1

2x ) ζ(x) = 1
3x + 1

9x + 1
15x + 1

21x + 1
27x + ⋅ ⋅ ⋅

Hence, (1 − 1
3x ) (1 − 1

2x ) ζ(x) = 1 + 1
5x + 1

7x + ⋅ ⋅ ⋅
Next, by following the same process we get for p ∈ P,(1 − 1

px ) ⋅ ⋅ ⋅ (1 − 1
11x ) (1 − 1

7x ) (1 − 1
5x )(1 − 1

3x ) (1 − 1
2x ) ζ(x) = 1 + ∑n>p 1

nx .

Next, note that the last summation goes to 0 as p →∞. Therefore,

ζ(x) ∏
p∈P
(1 − px) = 1 .

Hence,
ζ(x) = ∏

p∈P

1(1 − p−x) .
Proposition 77.
(1) ζ is continuous, nonincreasing, and convex on ]1, +∞[.
(2) ζ is C∞ on ]1, +∞[ and

ζ (k)(x) = (−1)k ∞∑
n=2

(ln n)k
nx ; ∀k ∈ ℕ and x > 1 .
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Proof. (1) Let a > 1. For n ∈ ℕ∗, the function x 󳨃→ 1
nx is continuous on [a, +∞[.

Moreover, ∀x ∈ [a, +∞[, | 1nx | = 1
nx ≤ 1

na .

Thus, the series ∑n 1
na is normally convergent. Hence, the sum ζ is continuous on[a, +∞[. This being true for all real a ∈]1, +∞[. Henceforth, ζ is continuous on]1, +∞[.

Next, the monotony of ζ follows from the fact that for all n ∈ ℕ, the functions
x 󳨃→ 1

nx is nonincreasing on ]1, +∞[.
Finally, to prove the convexity of the function ζ , recall that for all n ∈ ℕ, the func-

tions x 󳨃→ 1
nx is convex on ]1, +∞[. So, ζ is convex on ]1, +∞[ as a sum of convex

functions ]1, +∞[.
(2) Let a > 1. For all n ∈ ℕ, the function fn : x 󳨃→ 1

nx , is C
∞ on [a, +∞[ and for x ≥ a

and k ≥ 1, we have 󵄨󵄨󵄨󵄨󵄨f kn (x)󵄨󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(−1)k (ln n)kna
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ (ln n)kna .

Note that∑n (ln n)kna converges by the Bertrand rule of numerical series. So, we deduce
that for k ≥ 1, the series∑n f (k)n is normally convergent on [a, +∞[. As a result, ζ is Ck
on [a, +∞[ for all k. Hence, it is C∞ on [a, +∞[ for all a > 1. So, it is C∞ on ]1, +∞[
and the derivatives are obtained as stated above.

Proposition 78. The ζ function satisfies
– limx󳨀→+∞ ζ(x) = 1.
– limx󳨀→1+ ζ(x) = +∞.
Proof. (1) Note first that the series ∑n≥1 1

n2 converges. Henceforth, the series ζ(x) is
uniformly convergent on the interval [2, +∞[. Furthermore,

lim
x→+∞

1
nx
= {{{1, for n = 1 ,

0, for n > 1 .
So, by applying the limit on ζ(x) at infinity we get

lim
x󳨀→+∞ ζ(x) = 1 + ∑n≥2 0 = 1 .

(2) holds from the fact that ζ is nonincreasing on ]1, +∞[ and that∑n≥1 1
n = +∞.
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Proposition 79. The ζ function can be extended on the band Ω = {z ∈ ℂ; Re(s) > 1}
in a holomorphic function. With higher derivative ζ (k), k ∈ ℕ is given by

ζ (k)(z) = +∞∑
n=1

(−1)k lnk n
nz

. (4.7)

Proof. (1) The function fn(z) = 1
nz , n ≥ 1 is holomorphic, and the series ∑n fn is uni-

formly convergent on all sets of the form Ωa = {z ∈ ℂ; Re(z) > a} for all a > 1. So the
sum ζ is holomorphic on Re(z) > 1.
(2) For k ∈ ℕ, we have f (k)n (z) = (−1)k lnk nnz . On any set Ωa, the series∑n f (k)n is uniformly
convergent. Hence, ζ is Ck and its derivative of order k is given by (4.7).

Proposition 80. The function ζ has ameromorphic extension onℂ, with a single pole
in 1 which is simple.

To prove this result, we need to recall that the well-known Bernoulli numbers, de-
noted by Bn, form a sequence of rational numbers. These numbers were first studied
by Jacques Bernoulli in the context of computing summations of the form Sm(n) =∑n−1k=0 km for different integer values m. It holds that these quantities are polynomials
of the variable n with degree m + 1. Hence, we can write them in the form

Sm(n) = 1
m + 1 m∑

k=0
Ckm+1Bkn

m+1−k . (4.8)

Thenumbers Bk are called theBernoulli numbers. These numbersmay also be defined
by means of a generator function as

x
ex − 1 = ∞∑k=0 Bkk! xk . (4.9)

Generally, these numbersmay be extended to polynomials. Thewell-known Bernoulli
polynomials are obtained from the following relation:

zexz
ez − 1 = ∞∑k=0 Bk(x)k! xk . (4.10)

It yields a sequence of polynomials of degree k in x. For more details, refer to [67].
These are applied in numerous fields. We recall here one application that will be used
later. It consists of the well-known Euler–Maclaurin summation rule for functions.
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Proposition 81. Let f be C2k function on [p, q], p, q ∈ ℤ and k ∈ ℕ. It holds that
f (p) + f (q)

2 + q−1∑
i=p+1

f (i) = k∑
j=1

B2j(2j!) (f (2j−1)(q) − f (2j−1)(p))
+ q∫
p

f(x)dx + Rkp,q ,
where Rkp,q is the rest

Rkp,q = − 1(2k)! q∫
p

f (2k)(x)B2k(x − [x])dx
where B2k(.) is the Bernoulli polynomial of degree 2k.
Proof of Proposition 80. By applying Euler–Maclaurin summation to the function
f(x) = 1

(1+x)z on the interval [0, n], we get
1 + (1 + n)−z

2 + n−1∑
i=1
f (i) = n∫

0

f(x)dx + k∑
j=1

b2j(2j)! (f (2j−1)(n) − f (2j−1)(0)) + Rk .
Letting n tend to +∞, we will have

1
2
+ +∞∫

0

(1 + t)−zdt⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
(z−1)−1

− p∑
l=1

b2l
2l!
f (2l−1)(0) − ∞∫

0

B2p(t)(2p)! f (2p)(t)dt ,
where

f (k)(x) = −z(−z − 1) ⋅ ⋅ ⋅ (−z − k + 1)(1 + x)z+k = (−1)k z(z + 1) ⋅ ⋅ ⋅ (z + k − 1)(1 + x)z+k .

So for Re(z) > 1,
ζ(z) = 1

2
+ 1
z − 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

meromorphic

+ p∑
l=1

b2l(2l)! z ⋅ ⋅ ⋅ (z + 2l − 2)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
holomorphic function

+Ip
with

Ip(z) = − +∞∫
0

z ⋅ ⋅ ⋅ (z + 2p − 1)(1 + t)z+2p B2p(t)dt .
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Now, the function z 󳨃→ z⋅⋅⋅(z+2p−1)
(1+t)z+2p B2p(t) is holomorphic and we have for all δ > 0 and

all z; Re(z) ≥ 1 − 2p + δ,󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 z ⋅ ⋅ ⋅ (z + 2p − 1)(1 + t)z+2p B2p(t)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ |b2p|z ⋅ ⋅ ⋅ (z + 2p − 1)(1 + t)1+δ .

So, Ip is holomorphic on Re(z) > 1 − 2p.
Proposition 82. The function ζ can be expressed in the integral form as follows.

ζ(z) = 1
Γ(z) 1∫

0

(− ln u)z−1
1 − u du = 1

Γ(z) +∞∫
0

tz−1

et − 1dt, Re(z) > 1 ,
where Γ is the Euler function.

Proof. We have

ζ(z)Γ(z) = ∑
n≥1

Γ(z)
nz = ∑n≥1 +∞∫0 e−u (un)z−1 dun .

By setting u = nt, we obtain
+∞∫
0

e−u (un)z−1 dun = +∞∫
0

e−nttz−1dt .

Hence, using the monotone convergence theorem, we obtain

ζ(z)Γ(z) = ∑
n≥1

+∞∫
0

e−nttz−1dt = +∞∫
0

e−t 1
1 − e−t tz−1dt = +∞∫

0

tz−1

et − 1dt .
Proposition 83. The function ζ satisfies the following quasi-induction rule:

ζ(x) = 2xπx−1 sin (πx2 ) Γ(1 − x)ζ(1 − x); ∀x ∈ ℂ \ {0, 1} .
Proof. Let ε be such that 0 < ε < π and n ∈ ℕ. Consider the path Cnε represented in
Figure 4.2 and the function

fs(z) = (−z)s−1ez − 1
with s being fixed. So, applying the residue theorem and letting R → +∞, ε → 0, and
next n → +∞, we get

2iπ(2π)s−1ζ(1 − s)2 sin (πx2 ) = Γ(s)ζ(s)2i sin(sπ) .
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Next, using Proposition 63, we get(2π)s−1ζ(1 − s)2 sin (πx2 ) = ζ(s) 1
Γ(1 − s) .

Or equivalently
ζ(s) = 2sπs−1 sin (πx2 ) ζ(1 − s)Γ(1 − s) .

R

ε

–R

R

2 inπ

–2 inπ

2 iπ

–2 iπ

inπ

–R Fig. 4.2: The path Cnε .

Finally, Figure 4.3 graphically illustrates the ζ function.

4.2.5 Hypergeometric function

The origin of hypergeometric functions goes back to the early 19th century, when
Gauss studied the second-order ordinary differential equation

x(1 − x)y󸀠󸀠 + [c − (a + b + 1)x]y󸀠 − aby = 0 (4.11)

with some constants a, b, and c in ℝ. Next, by developing a solution of (4.11) on a
series of form ∑n αnxx, we obtain for c, a − b, and c − a − b not integers, a general
solution given by

y = F(a, b, c, x) + Bx1−cF(a − c + 1, b − c + 1, 2 − c, x) (4.12)

where F is the series

F(a, b, c, x) = Γ(c)
Γ(a)Γ(b) ∞∑n=0 Γ(a + n)Γ(b + n)Γ(c + n) xn

n! ,
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0–5 5

1

–1

2

–2

10–10

Fig. 4.3: General shape of the zeta function for (−10) to +10.

which is often denoted by 2F1(a, b, c, x), converges uniformly inside the unit disk and
is known as the hypergeometric function.

When a, b, and c are integers, the hypergeometric function can be reduced to a
transcendental function such as

2F1(1, 1; 2; x) = −x−1 ln(1 − x) .
Theorem 84. F is differentiable with respect to x and

∂F
∂x (a, b, c, x) = abc F(a + 1, b + 1, c + 1, x) .

Proof. Write

F(a, b, c, x) = ∞∑
n=0

αn(a, b, c)xn ,
where

αn = Γ(c)
Γ(a)Γ(b) Γ(a + n)Γ(b + n)Γ(c + n)Γ(n + 1) .
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Inside its convergence domain, we have

∂F
∂x
= ∞∑
n=0
(n + 1)αn+1xn .

Observe next that(n + 1)αn+1(a, b, c) = a(a + 1) ⋅ ⋅ ⋅ (a + n)b(b + 1) ⋅ ⋅ ⋅ (b + n)n!c(c + 1) ⋅ ⋅ ⋅ (c + n)= ab
c
αn(a + 1, b + 1, c + 1) .

Hence,

∂F
∂x = abc ∞∑n=0 αn(a + 1, b + 1, c + 1)xn = abc F(a + 1, b + 1, c + 1, x) .

Theorem 85. For 0 < Re b < Re c, Re a < Re c − Re b, and |x| ≤ 1, it holds that
Γ(b)Γ(c − b)

Γ(c) F(a, b; c; x) = 1∫
0

tb−1(1 − t)c−b−1(1 − tx)−adt .
Proof. Let, for |x| < 1,

I = 1∫
0

tb−1(1 − t)c−b−1(1 − tx)−adt .
It is straightforward that I is a convergent integral. Next, we have

(1 − tx)−a = ∞∑
n=0

(−a)(−a − 1) ⋅ ⋅ ⋅ (−a − n + 1)
n! (−tx)n

= ∞∑
n=0

(a)(a + 1) ⋅ ⋅ ⋅ (a + n − 1)
n! (tx)n

= ∞∑
n=0

Γ(a + n)
Γ(a)Γ(n + 1) tnxn .
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Hence,

I = ∞∑
n=0

Γ(a + n)
Γ(a)Γ(n + 1) xn 1∫

0

tb+n−1(1 − t)c−b−1dt
= ∞∑
n=0

Γ(a + n)
Γ(a)Γ(n + 1) xn Γ(b + n)Γ(c − b)Γ(c + n)= Γ(c − b)Γ(b)Γ(a) ∞∑

n=0

Γ(b + n)Γ(c − b)
Γ(c + n)Γ(n + 1)Γ(b) xn= Γ(c − b)Γ(b)Γ(a) F(a, b; c; x) .

Theorem 86.
F(a, b, c, 1) = Γ(c)Γ(c − a − b)Γ(c − a)Γ(c − b) .

Proof. Taking x = 1 in the integral expression of the hypergeometric function in The-
orem 85, one obtains

Γ(b)Γ(c − b)
Γ(c) F(a, b; c; 1) = 1∫

0

tb−1(1 − t)c−a−b−1dt = Γ(b)Γ(c − a − b)Γ(c − a) .

Therefore,
F(a, b, c, 1) = Γ(c)Γ(c − a − b)Γ(c − a)Γ(c − b) .

Proposition 87. We have
(1) F(n, 1, 1, x) = (1 − x)−n.
(2) xF(1, 1, 2, x) = − log(1 − x).
(3) limβ↔∞ F(1, β, 1, xβ ) = ex.
(4) limβ→∞ xF(α, β, 32 , −x24αβ ) = sin x.
(5) limβ→∞ xF(α, β, 12 , −x24αβ ) = cos x.
(6) xF(12 , 12 , 32 , x2) = arcsin x.
(7) xF(12 , 1, 32 , −x2) = arccos x.
Proof. (1) Denote y(x) = (1 − x)−n . It is straightforward that y is a solution of (4.11) for
a = n, and b = c = 1, and with y(0) = 1. So, (4.12) says that

y(x) = F(n, 1, 1, x) + Bx1−1F(n − 1 + 1, 1 − 1 + 1, 2 − 1, x) = CF(n, 1, 1, x)
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with B and thus C being constants. Observing next that F(n, 1, 1, 0) = 1, we get C = 1
or equivalently B = 0.
(2) Again the function y(x) = −x−1 log(1 − x) is a solution of (4.11) for a = b = 1, and
c = 2. Hence, it is of the form

y(x) = F(1, 1, 2, x) + Bx1−2F(0, 0, 0, x) ,
or equivalently, − log(1 − x) = xF(1, 1, 2, x) + Bex ,
which by setting x = 0 gives B = 0.
(3) Recall firstly that

F (1, β, 1, xβ) = Γ(1)
Γ(1)Γ(β) ∞∑n=0 Γ(1 + n)Γ(β + n)Γ(1 + n) xn

βnn! ,

which means that
F (1, β, 1, x

β
) = ∞∑

n=0

Γ(β + n)
βnΓ(β) xnn! .

So, let K ∈ ℕ be fixed such that 2|x| ≤ K and denote

un(β) = Γ(β + n)βnΓ(β) xnn! .
It is straightforward that for β ≥ K, we have

|un(β)| ≤ vn = |un(K)| = Γ(K + n)KnΓ(K) |x|nn! .

Next, observe that
lim
n→+∞

vn+1
vn
= |x|
K
< 1 .

Hence, the D’Alembert rule affirms that the series F(1, β, 1, xβ ) converges uniformly in
β in the interval [K, +∞[. Observing now that

lim
β→+∞

un(β) = 1 ,
we get

lim
β→+∞

F (1, β, 1, x
β
) = ∞∑

n=0

xn

n!
= ex .

(4) Recall that

F (α, β, 32 , −x24αβ) = Γ(32 )
Γ(α)Γ(β) ∞∑n=0 Γ(α + n)Γ(β + n)Γ(32 + n) (−1)nx2n

4nαnβnn! .

Denote
σn(α) = Γ(α + n)αnΓ(α) xnn! .



4.2 Classical special functions | 77

We get

F (α, β, 32 , −x24αβ) = ∞∑n=0 σn(α)σn(β) Γ(32 )
Γ(32 + n) (−1)nx2n4nn! .

Using similar arguments as for (3) above and the properties of Euler’s Γ function, we
get

lim
α,β→+∞

F (α, β, 32 , −x24αβ) = ∞∑n=0 (−1)nx2n(2n + 1)! = sin x
x .

(5) Follows by quite the same techniques as the previous assertion.
(6) Observe that

F (12 , 12 , 32 , x2) = 1
2Γ(12 ) ∞∑n=0 Γ(12 + n)1

2 + n x2n
n! .

Next, using the well-known relation Γ(x + 1) = xΓ(x), for x > 0, we obtain
F (12 , 12 , 32 , x2) = ∞∑n=0 (2n)!

2n+1(2n + 1)(n!)2 x2n = arcsin xx .

(7) Follows by the same arguments as assertion (6).

Definition 88. The hypergeometric function may be generalized for a =(a1, . . . , ap) and b = (b1, . . . , bq), p, q ∈ ℕ by

pFq(a1, . . . , ap; b1, . . . , bq , x) = ∞∑
n=0

αnxn ,

where
α0 = 1 and αn+1

αn
= (n + a1)(n + a2) ⋅ ⋅ ⋅ (n + ap)(n + b1)(n + b2) ⋅ ⋅ ⋅ (n + bq) 1

n + 1 ,

or differently by

pFq(a1, . . . , ap; b1, . . . , bq; x) = ∞∑
n=0

(a1)n(a2)n ⋅ ⋅ ⋅ (ap)n(b1)k(b2)n ⋅ ⋅ ⋅ (bq)n xnn! ,
where (a)n is the increasing factorial or the Pochhammer symbol given by(a)n = (a + n − 1)!(a − 1)! = Γ(a + n)Γ(a) = a(a + 1)(a + 2) ⋅ ⋅ ⋅ (a + n − 1) .

4.2.6 Legendre function

Legendre functions are fundamental solutions of the Laplace equation on the sphere.
There are two classes of solutions that are related to the parameters λ and μ, whichwill
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be explained later. In the following, we denote the first kind by Pλ and the second kind
by Qλ. The associated Legendre functions corresponding to Pλ and Qλ are denoted by
Pμλ andQ

μ
λ , respectively. These are respective generalizations of Legendre polynomials

Pℓ(x) and associated Legendre polynomials Pmℓ (x), to noninteger values of ℓ and m.
Definition 89. The Legendre functions are solutions of the general Legendre equa-
tion (1 − x2)y󸀠󸀠 − 2xy󸀠 + [λ(λ + 1) − μ2

1 − x2 ] y = 0 ,
where λ and μ are generally complex numbers called, respectively, the degree and
the order of the associated Legendre function.

The case of Legendre functions corresponding to μ = 0 and λ ∈ ℕ reduces to orthogo-
nal Legendre polynomials.

Proposition 90.
(1) For μ = 0, the following integral form is a Legendre function:

Fλ(z) = 1
2πi ∫

C

(t2 − 1)λ
2λ(t − z)λ+1 dt ,

for |z − 1| < 2 where C is a circle surrounding the points 1 and z and not −1.
(2) For λ ∈ ℂ and |x| > 1, x ∈ ℝ, we get

Fλ(x) = 1
2π

π∫
−π
(x + √x2 − 1 cos θ)λ dθ

= 1
π

1∫
0

(x + √x2 − 1(2t − 1))λ dt√t(1 − t) .
Proof. (1) Applying the derivatives of Fλ, we get(1 − z2)F󸀠󸀠λ (z) − 2zF󸀠λ(z) + λ(λ + 1)Fλ(z)= λ + 12πi ∫

C

(t2 − 1)λ
2λ(t − z)λ+3 (λt2 − 2(λ + 1)zt + λ + 2)dt

= λ + 12πi ∫
C

d
dt
(t2 − 1)λ+1
2λ(t − z)λ+2 dt = 0 .
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So, Fλ satisfies the Legendre equation.
(2) Consider for the integral form the circle C centered at x with radius r = √x2 − 1.
We first obtain

t2 − 1 = √x2 − 1eiθ2(x + √x2 − 1 cos θ), θ ∈ [−π, π] .
Hence, (t2 − 1)λ

2λ(t − z)λ+1 dt = √x2 − 1λeiλθ2λ(x + √x2 − 1 cos θ)λ2λ√x2 − 1λ+1ei(λ+1)θ i√x2 − 1eiθdθ .
As a result,

Fλ(x) = 1
2π

π∫
−π
(x + √x2 − 1 cos θ)λ dθ .

Next, setting t = 1+cos θ
2 , we obtain

Fλ(x) = 1
π

1∫
0

(x + √x2 − 1(2t − 1))λ dt√t(1 − t) .
Proposition 91. The following are Legendre functions:
– The first-kind function Pμλ defined for |1 − z| < 2 by

Pμλ (z) = 1
Γ(1 − μ) [1 + z1 − z ]μ/2 2F1 (−λ, λ + 1; 1 − μ; 1 − z2 ) ,

where Γ is Euler’s Gamma function.
– The second-kind function Qμλ (z) defined for |z| > 1 by

Qμλ (z) = Cλμ (z2 − 1)μ/2zλ+μ+1 2F1 ( λ + μ + 12 , λ + μ + 22 ; λ + 32; 1z2 ) ,

where Cλμ = √πΓ(λ+μ+1)2λ+1Γ(λ+3/2)e
iμπ, and 2F1 is the hypergeometric function.

Proof. It suffices to show that the functions

F(z) = 1
Γ(1 − μ) [1 + z1 − z ]μ/2 2F1 (−λ, λ + 1; 1 − μ; 1 − z2 ) , |1 − z| < 2

and for |z| > 1,
F(z) = Cλμ (z2 − 1)μ/2zλ+μ+1 2F1 ( λ + μ + 12

, λ + μ + 2
2

; λ + 3
2
; 1
z2
)
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are solutions of the general Legendre Definition 89. We will develop the first part. The
second follows by similar techniques. So, for simplicity denote

H(z) = 1
Γ(1 − μ) 2F1 (−λ, λ + 1; 1 − μ; 1 − z2

) ,
A(z) = 1

1 − z2 , B(z) = [1 + z1 − z ]μ/2
and Z = 1−z

2 . Standard calculus yields that(1 − z2)H󸀠󸀠(z) + 2(μz)H󸀠(z) + λ(λ + 1)H(z) = 0 , (4.13)

F󸀠(z) = μA(z)B(z)H(z) + B(z)H󸀠(z) ,
and

F󸀠󸀠(z) = μ(μ + 2z)A2(z)B(z)H(z) + 2μA(z)B(z)H󸀠 (z) + B(z)H󸀠󸀠(z) .
Now, recall the Legendre equation

(1 − z2)y󸀠󸀠 − 2zy󸀠 + [λ(λ + 1) − μ2

1 − z2 ] y = 0 .
Replacing y by F and taking into account equation (4.13), we show that F is a Legendre
function.

Proposition 92. The Legendre function Fλ satisfies the following three-level induc-
tion rule: (λ + 1)Fλ+1(z) − (2λ + 1)zFλ(z) + λFλ−1(z) = 0 .
Proof. Let C be the contour as above. We have

Fλ(z) = 1
2λ+1πi

∫
C

(t2 − 1)λ(t − z)λ+1 dt .
Classical arguments show that Fλ is holomorphic and

F󸀠λ(z) = (λ + 1)2λ+1πi
∫
C

(t2 − 1)λ(t − z)λ+2 dt .
On the other hand,

d
dt
(t2 − 1)λ+1(t − z)λ+1 = 2(λ + 1)t(t2 − 1)λ(t − z)λ+1 − (λ + 1)(t2 − 1)λ+1(t − z)λ+2 .

Hence,

0 = ∫
C

(2t(t2 − 1)λ(t − z)λ+1 − (t2 − 1)λ+1(t − z)λ+2 ) dt .
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Consequently,

1
2λ+1πi

∫
C

(t2 − 1)λ(t − z)λ = 1
2λ+1πi

∫
C

t(t2 − 1)λ(t − z)λ+1
− 1
2λ+1πi

∫
C

z(t2 − 1)λ(t − z)λ+1= Fλ+1 − zFλ(z) . (4.14)

Differentiating with respect to z, we obtain

F󸀠λ+1(z) − zF󸀠λ(z) = (λ + 1)Fλ(z) .
Thus,

0 = ∫
C

d
dt [ t(t2 − 1)λ(t − z)λ ] dt

= ∫
C

[(t2 − 1)λ(t − z)λ + 2λt2(t2 − 1)λ−1(t − z)λ − λt(t2 − 1)λ(t − z)λ+1 ] dt
= ∫
C

(t2 − 1)λ + 2λ[(t2 − 1) + 1](t2 − 1)λ−1(t − z)λ − λ[(t − z) + z](t2 − 1)λ(t − z)λ+1
= ∫
C

[(λ + 1) (t2 − 1)λ(t − z)λ + 2λ (t2 − 1)λ−1(t − z)λ − λz (t2 − 1)λ(t − z)λ+1 ] dt .
Finally using (4.14), we deduce that

0 = (λ + 1)[Fλ+1(z) − zFλ(z)] + 2λFλ−1(z) − λzFλ(z)= (λ + 1)Fλ+1(z) − (2λ + 1)zFλ(z) + 2λFλ−1(z) .
4.2.7 Bessel function

Bessel functions form an important class of special functions and are applied almost
everywhere inmathematical physics. They are also known as cylindrical functions, or
cylindrical harmonics, because they are part of the solutions of the Laplace equation
in cylindrical coordinates met in heat propagation along a cylinder. In pure mathe-
matics, Bessel functions canbe introduced in three ways: as solutions of second-order
differential equations, through a recurrent procedure as solutions of a three-level re-
current functional equation, and via the Rodrigues derivation formula.
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Definition 93. The Bessel equation is a linear differential equation of second order
written in the form

y󸀠󸀠 + 1
x
y󸀠 + (1 − v2

x2
) y = 0 ,

where v is a positive constant.

Remark 94.
(1) Any solution of Bessel’s equation is called the Bessel function.
(2) Given two linearly independent solutions y1 and y2 of Bessel’s differential

equation, the general solution is expressed as a linear combination

y = C1y1 + C2y2 ,
where C1 and C2 are two constants.

Theorem and Definition 95. Bessel’s differential equation has a solution of the form

Jv(x) = ( x2)v ∑k≥0 (−1)k
k!Γ(v + k + 1) ( x2)2k . (4.15)

The function Jv is called the Bessel function of the first kind of the order v.

Proof of the Theorem. We will search a nontrivial solution of the form

y = xp∑
i≥0
aixi = ∑

i≥0
aixi+p ,

where p is a real parameter. By replacing y and its derivatives in Definition 93, we get∑
i≥0
ai(i + p)(i + p − 1)xi+p + ∑

i≥0
ai(i + p)xi+p + (x2 − v2) ∑

i≥0
aixi+p = 0 .

Or equivalently,∑
i≥0
[(i + p)(i + p − 1) + (i + p) − v2] aixi+p + ∑

i≥0
aixi+p−2 = 0 ,

which means that ∑
i≥0
[(i + p)2 − v2] aixi+p + ∑

j≥2
aj−2xj+p = 0 .

Therefore,
a0(p2 − v2) = a1((p + 1)2 − v2) = 0
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and
ai((i + v)2 − v2) + ai−2 = 0, ∀i ≥ 2 .

For p = v, we get a1 = 0 and
i(i + 2v)ai = −ai−2, ∀i ≥ 2 .

Thus,
ai = − ai−2

i(2v + i) , ∀i ≥ 2 .
Hence, the coefficients a2k+1, and

a2k = (−1)k a0
22kk!(v + k)(v + k − 1) ⋅ ⋅ ⋅ (v + 1) , ∀k ≥ 0 .

Taking a0 = 1
2v Γ(v+1) , and observing that

Γ(v + k + 1) = (v + k)(v + k − 1) ⋅ ⋅ ⋅ (v + 1)Γ(v + 1) ,
we get

a2k = (−1)k 1
22k+vk!Γ(v + k + 1) , k ≥ 0.

As a result, the solution of the equation will be

y = ( x
2
)v ∑

k≥0

(−1)k
k!Γ(v + k + 1) ( x2)2k .

Remark 96.
(1) For p = −v, the solution of Bessel’s equation in Definition 93 is called Bessel’s

function of the first kind with the order −v and is denoted by J−v(x) with
J−v(x) = ( x2)−v ∑k≥0 (−1)k

k!Γ(k − v + 1) ( x2)2k .

(2) For v, noninteger Jv and J−v are linearly independent and therefore the general
solution of the Bessel equation is of the form

y(x) = C1Jv(x) + C2J−v(x) .
(3) The same solution can be obtained by choosing p + 1 = v in the proof of Theo-

rem 95.

Proposition 97. For v = n ∈ ℕ, we have
Jn = (−1)nJ−n .
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Proof. We have

J−n(x) = ∑
k≥0

(−1)k
k!Γ(k − n + 1) ( x2)2k−n= ∑

m≥0

(−1)m+n(m + n)!Γ(m + 1) ( x2)2m+n= (−1)n ∑
m≥0

(−1)m
m!Γ(m + n + 1) ( x2)2m+n= (−1)n Jn(x) .

Example 4.1. For v = 0,
J0(x) = ∑

k≥0

(−1)k
k!Γ(k + 1) ( x2)2k = ∑k≥0 (−1)k(k!)2 ( x2)2k ,

which is an even function. Else, J0(0) = 1. For v = 1, we obtain
J1(x) = ∑

k≥0

(−1)k
k!Γ(k + 2) ( x2)2k+1 = ∑k≥0 (−1)kk!(k + 1)! ( x2)2k+1 ,

which is an odd function and satisfies J1(0) = 0.
Definition 98. The Bessel function of the second kind of the order α denoted usu-
ally by Yα and is given by

Yα(x) = {{{
cos(πα)Jα(x)−J−α(x)

sin(πα) , for α ∉ ℤ
limv→α cos(πv)Jv(x)−J−v(x)

sin(πv) , for α ∈ ℤ .

Proposition 99. For α ∈ ℤ, Yα is a solution of Bessel’s differential equation, singular
at 0 and satisfying precisely limx→0 Y0(x) = ∞.
Proof. For α ∉ ℤ, Yα is a linear combination of Jα and J−α. Hence it is a solution of the
Bessel’s differential equation. We now prove this for α ∈ ℤ. It holds for all v ∉ ℤ and
all x that

x2Y󸀠󸀠v (x) + xY󸀠v(x) + (x2 − v2)Yv(x) = 0 .
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Letting v → α ∈ ℤ, we obtain
x2Y󸀠󸀠α (x) + xY󸀠α(x) + (x2 − α2)Yα(x) = 0 .

Next, we show that limx󳨀→0 Yα(x) = +∞. Indeed, for α ∉ ℤ, Yα is a linear combination
of Jα and J−α. So it is a solution of Bessel’s differential equation. Next, substituting Yv
for v ∉ ℤ in the differential equation and letting v tend to α we get a solution Yα for
α ∈ ℤ. Yα is singular at 0 because of the powers ( x2 )α and ( x2 )−α . We now prove the
remaining part. Recall that

Yα(x) = limv→α cos(πv)Jv(x) − J−v(x)sin(πv) .

We have for v = α, sin(πv) = 0, cos(πv) = (−1)α, (−1)αJα(x) = J−α(x). By applying
L’Hôpital’s rule, we obtain

Yα(x) = lim
v󳨀→α

∂
∂v [cos(πv)Jv(x) − J−v(x)]

∂
∂v sin(πv)= 2

π Jα(x) [ln x2 + C] − 1π α−1∑
k=0

Γ(α − k)
k! ( x2)2k−α

− 1π ∞∑k=0 (−1)k ( x2 )2k−αk!Γ(α + k + 1) [ α+k∑m=1 1
m + k∑

m=1

1
m] ,

where C is Euler’s constant. For α = 0, we obtain
Y0(x) = 2

π
J0(x) [ln x2 + C] − 2π ∞∑k=0 (−1)k(k!)2 k∑

m=1
( 1m) ( x2)2k−α .

Thus limx󳨀→0 Y0(x) = +∞.

Definition 100. The Bessel generating function of the first kind is given by

u(x, t) = +∞∑
n=−∞

Jn(x)tn .
Lemma 101. For all x ∈ ℝ and t ∈ ℝ∗, we have

u(x, t) = e x
2 (t− 1t ) .
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Proof. We have

e
x
2 (t− 1t ) = ∑

k≥0

( xt2 )k
k! ∑m≥0 (− x2t )mm!

= ∑
k≥0
∑
m≥0
(−1)m tk−mm!k! ( x2)k+m .

Setting k = m + n, we get
e
x
2 (t− 1t ) = ∑

m≥0
∑

n+m≥0
(−1)m tn

m!(n + m)! ( x2)2m+n= ∑
m≥0
∑
n≥−m
(−1)m tn

m!Γ(n + m + 1) ( x2)2m+n
= ∑
m≥0

+∞∑
n=−∞
(−1)m ( x2 )2m+n

m!Γ(n + m + 1) tn
= +∞∑
n=−∞

∑
m≥0
(−1)m ( x2 )2m+n

m!Γ(n + m + 1) tn
= +∞∑
n=−∞

Jn(x)tn= u(x, t) .
Theorem 102. The Bessel function Jn satisfies

Jn+1(x) = 2n
x Jn(x) − Jn−1(x), ∀n ∈ ℕ .

Proof. Differentiating the generating function u with respect to the variable t we ob-
tain

∂u
∂t = ∂∂t ( +∞∑n=−∞ Jn(x)tn) = +∞∑n=−∞ nJn(x)tn−1 = +∞∑n=−∞(n + 1)Jn+1(x)tn .
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On the other hand, we have

∂u
∂t
= ∂
∂t
(e x

2 (t− 1t )) = x
2
e
x
2 t − x

2t2
e

x
2t

= x2 e x
2 (t− 1t ) (1 − 1

t2
)= x2u(x, t) (1 − 1

t2
)

= x2 +∞∑n=−∞ Jn(x)tn (1 − 1
t2
)

= x2 +∞∑n=−∞ Jn(x)tn − x2 +∞∑n=−∞ Jn(x)tn−2= x2 +∞∑n=−∞ Jn(x)tn − x2 +∞∑n=−∞ Jn+2(x)tn .
By identification, we obtain

nJn(x) = x2 Jn−1(x) + x2 Jn+1(x), ∀n ≥ 0 .
Therefore

Jn+1(x) = 2nx Jn(x) − Jn−1(x), ∀n ≥ 0 .
Theorem 103. The Bessel function Jn is differentiable and its derivative satisfies

J󸀠n(x) = 1
2 [Jn−1(x) − Jn+1(x)] .

Proof. Differentiating the generating function u with respect to x, we obtain

∂u
∂x = 1

2 (t − 1t ) e x
2 (t− 1t ) = 12 [ +∞∑n=−∞ Jn(x)tn+1 − +∞∑n=−∞ Jn(x)tn−1] .

On the other hand,
∂u
∂x = +∞∑n=−∞ J󸀠n(x)tn , ∀n ≥ 1 .

Consequently
J󸀠n(x) = 1

2 [Jn−1(x) − Jn+1(x)] .
Remark 104. In the particular case n = 0, we obtain

J󸀠0(x) = −J1(x) .
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Theorem 105. The first-kind Bessel function can be expressed by the integral form

Jn(x) = 1
2π

2π∫
0

cos(x sinφ − nφ)dφ . (4.16)

In particular, for n = 0, we have
J0(x) = 2

π

π
2∫
0

cos(x sinφ)dφ .

Proof. Recall that

e
x
2 (t− 1t ) = +∞∑

k=−∞
Jk(x)tk .

Setting t = eiφ, we get
eix sinφ = +∞∑

k=−∞
Jk(x)eikφ , (4.17)

which is the Fourier series of the 2π-periodic function f(φ) = eix sinφ. Therefore,
Jn(x) = 1

2π

2π∫
0

eix sinφe−inφdφ = 1
2π

2π∫
0

cos (x sinφ − nφ) dφ .

In particular, for n = 0, we have
J0(x) = 1

2π

2π∫
0

cos (x sinφ) dφ = 2
π

π
2∫
0

cos (x sinφ) dφ .

Proposition 106. Let λ and μ be two different roots of the Bessel function Jv(x). The
Bessel functions Jv(x) satisfy the following orthogonality property:

1∫
0

xJv(λx)Jv(μx)dx = 0 .
Proof. Denote

yv,λ(x) = Jv(λx) and yv,μ(x) = Jv(μx) .
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Then, yv,λ and yv,μ are solutions of the following Bessel-type differential equations:(xy󸀠v,λ)󸀠(x) + (λ2x − v2x ) yv,λ(x) = 0 (4.18)

(xy󸀠v,μ)󸀠(x) + (μ2x − v2x ) yv,μ(x) = 0 . (4.19)

Multiplying the first one by yv,μ and the second by yv,λ and integrating on (0, 1), we
get (λ2 − μ2) 1∫

0

xJv(λx)Jv(μx)dx = 0 .
Therefore, since λ ̸= μ, we get

1∫
0

xJv(λx)Jv (μx)dx = 0 .
Figures 4.4 and 4.5 illustrate the graphs of the first and second kind Bessel functions.

4.2.8 Hankel function

Hankel functions are applied as physical solutions for incoming or outgoing waves in
cylindrical geometry. These are linearly independent solutions of the complex-param-
eter Bessel equation

x2 d
2y
dx2
+ x dydx + (x2 − α2)y = 0 , (4.20)

where α is an arbitrary complex number.

201510

x

50
0

0.2

0.4

J n(
x)

J0(x)
J1(x)
J2(x)

0.6

0.8

1

–0.2

–0.4

Fig. 4.4: Graphs of the first three first-kind Bessel functions.
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Fig. 4.5: Graphs of the first three second-kind Bessel functions.

Definition 107. Hankel functions of the first and second kind are defined, respec-
tively, by

H1
α(x) = Jα(x) + iYα(x) and H2

α(x) = Jα(x) − iYα(x) ,
where Jα and Yα are the Bessel functions of the first and second kind, respectively.

Proposition 108. The following assertions are true.
(1) H1

α(x) = J−α(x)−e−iαπ Jα(x)
i sin(απ) .

(2) H2
α(x) = J−α(x)−eiαπ Jα(x)

−i sin(απ) .
(3) H1

−α(x) = eiαxH1
α(x).

(4) H2−α(x) = e−iαxH2
α(x).

Proof. (1) Recall that the second-kind Bessel function is

Yα(x) = cos(πv)Jv(x) − J−v(x)sin(πv) .
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Therefore,

H1
α(x) = Jα(x) + i cos(πv)Jv(x) − J−v(x)sin(πv)= Jα(x)[sin(πv) + i cos(πv)] − iJ−v(x)sin(πv)= Jα(x)[i sin(πv) − cos(πv)] + J−v(x)i sin(πv)= J−v(x) − Jα(x)[cos(πv) − i sin(πv)]i sin(πv)= J−α(x) − e−iαπJα(x)i sin(απ) .

(2) Similarly to (1), we have

H2
α(x) = Jα(x) − i cos(πv)Jv(x) − J−v(x)sin(πv)= Jα(x)[sin(πv) − i cos(πv)] + iJ−v(x)sin(πv)= Jα(x)[−i sin(πv) − cos(πv)] + J−v(x)i sin(πv)= J−v(x) − Jα(x)[cos(πv) + i sin(πv)]−i sin(πv)= J−α(x) − eiαπJα(x)−i sin(απ) .

(3) It follows from (1) that

H1
−α(x) = Jα(x) − eiαπJ−α(x)−i sin(απ)= −eiαπ e−iαπJα(x) − J−α(x)

i sin(απ)= eiαπ J−α(x) − e−iαπJα(x)
i sin(απ)= eiαπH1

α(x) .
(4) Similarly to (3), we have

H2
−α(x) = Jα(x) − e−iαπJ−α(x)i sin(απ)= e−iαπ eiαπJα(x) − J−α(x)

i sin(απ)= e−iαπ J−α(x) − eiαπJα(x)−i sin(απ)= e−iαπH2
α(x) .



92 | 4 Review of special functions

Proposition 109. The first-kind Hankel function H1
n, n ∈ ℤ can be expressed in the

integral form as

H1
n(x) = 1

iπ

1∫
0

e x
2 (t− 1t )

tn+1
dt . (4.21)

Proof. It follows from Proposition 97 and Definition 93 that

H1
n(z) = 1

iπ J
󸀠
n(t) .

On the other hand, from Theorem 105, equation (4.16), we have that

J󸀠n(x) = − 1
2π

2π∫
0

sin(x sin φ − nφ) sin φdφ .

Now, standard computations as in Theorem 105 yield that

1∫
0

e x
2 (t− 1t )

tn+1
dt = J󸀠n(x) .

Hence,

H1
n(z) = 1

iπ

1∫
0

e x
2 (t− 1t )

tn+1
dt .

Theorem 110. Hankel functions Hiα are differentiable and we have

d
dz H

i
α(z) = 1

2 (Hiα−1(z) − Hiα+1(z)) , i = 1, 2 ,
and

2α
z
Hiα(z) = Hiα−1(z) + Hiα+1(z), i = 1, 2 .

Proof. We have

H1
n(z) = 1

iπ
J󸀠n(t) = 1

2 [ 1iπ Jn−1(x) − 1
iπ
Jn+1(x)] .

Hence,

d
dz H

1
n(z) = 12 [ 1iπ J󸀠n−1(z) − 1

iπ J
󸀠
n+1(z)] = 12 [Hn−1(z) − Hn+1(z)] .
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Wenowprove the next part. To do this, we recall the explicit form of Bessel function Jv
from (4.15), which states that

Jv(x) = ( x2)v ∑k≥0 (−1)k
k!Γ(v + k + 1) ( x2)2k .

Now, for i = 1, we get
H1
α−1(z) + H1

α+1(z) = (J−α+1 − J−α−1) + e−iαπ(Jα−1 + Jα+1)−i sin απ .

Next, it suffices to evaluate the quantities in the numerator. We evaluate one quantity
and leave The others for readers. Using the above expression, we get

Jα−1 + Jα+1 = ( x2)α ∑k≥0 (−1)k
k!Γ(α + k) ( x2)2k−1

+ ( x2)α ∑k≥0 (−1)k
k!Γ(α + k + 2) ( x2)2k−1= α + 1Γ(α) ( x2)α−1 − 2αx Jα(x) .

Using the same techniques and next substituting into the equality above, we get the
desired result.

2.0

1.5

1.0

0.5

H a(
x)
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–1.0
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x
4 5 6

Fig. 4.6: Hankel function.
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4.2.9 Mathieu function

Mathieu functions were originally introduced as solutions of the Mathieu differential
equation

d2x
dt2
+ ω2(t)x = 0; or ω2(t) = ω2

0[1 − ξ0 cos(t)] . (4.22)

It is a special case of the general Hill equation given by

d2y
dt2
+ f 2(t)y = 0 ,

where f is a periodic function.
The Mathieu differential equation has in fact many variants. One variant may be

obtained by a scaling modification by setting y(t) = x(2t), which therefore satisfies
the equation

d2y
dt2
+ [a − 2q cos(2t)] y = 0 , (4.23)

where a and q are constant coefficients. By setting u = it in (4.23), we get the Mathieu
modified differential equation

d2y
du2
− [a − 2q cosh(2u)] y = 0 . (4.24)

By setting x = cos(t), we obtain a second Mathieu modified differential equation

(1 − t)2 d2y
dt2
− t dy
dt
+ (a + 2q(1 − 2t2))y = 0 .

As in the theory of the Schrödinger equation, we can guess stationary solutions of the
form

F(a, q, x) = eiμxP(a, q, x) , (4.25)

where μ is a complexnumber called theMathieu exponent and P is a periodic complex
valued function. The following graph is illustrated with a = 1, q = 1

5 , and μ = 1 +
0.0995i.

Definition 111. For fixed a, q we define
– The Mathieu cosine C(a, q, x) by

C(a, q, x) = F(a, q, x) + F(a, q, −x)2F(a, q, 0) .

– The Mathieu sine S(a, q, x) by
S(a, q, x) = F(a, q, x) − F(a, q, −x)2F󸀠(a, q, 0) .
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Fig. 4.7: Mathieu function: Real part and imaginary part, a = μ = 1 and q = 0.2.

Properties 112. The following assertions hold:
(1) C(a, q, 0) = 1 and S(a, q, 0) = 0.
(2) C󸀠(a, q, 0) = 0 and S󸀠(a, q, 0) = 1.
(3) C(a, q, −x) = C(a, q, x): The Mathieu cosine is an even function.
(4) S(a, q, −x) = −S(a, q, x): The Mathieu sine is an odd function.
(5) C(a, 0, x) = cos(√ax) and S(a, 0, x) = sin(√ax)

√a .

Proof. (1) We have

C(a, q, 0) = F(a, q, 0) + F(a, q, 0)
2F(a, q, 0)= 2F(a, q, 0)

2F(a, q, 0)= 1 .
Similarly, for the sine function, we have

S(a, q, 0) = F(a, q, 0) − F(a, q, 0)2F󸀠(a, q, 0)= 0
2F󸀠(a, q, 0)= 0 .
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(2) We have

C󸀠(a, q, 0) = F󸀠(a, q, 0) − F󸀠(a, q, 0)2F(a, q, 0)= 0
2F(a, q, 0)= 0 ,

and similarly,

S󸀠(a, q, 0) = F󸀠(a, q, 0) + F󸀠(a, q, 0)2F󸀠(a, q, 0)= 2F󸀠(a, q, 0)
2F󸀠(a, q, 0)= 1 .

(3) We have

C(a, q, −x) = F(a, q, −x) + F(a, q, x)2F(a, q, 0)= F(a, q, x) + F(a, q, −x)2F(a, q, 0)= C(a, q, x) .
Then, the Mathieu cosine is an even function.
(4) Similarly,

S(a, q, −x) = F(a, q, −x) − F(a, q, x)
2F󸀠(a, q, 0)= −F(a, q, x) − F(a, q, −x)2F󸀠(a, q, 0)= −S(a, q, x) .

Then, the Mathieu sine is an odd function.
(5) Follows from the fact that S(a, 0, .) and C(a, 0, .) are solutions of theMathieu equa-
tion

d2y
dx2
+ ay = 0

and the assertions (1) and (2).
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Remark 113.
– The general solution of theMathieu equation (for fixed a and q) is a linear com-

bination of the Mathieu cosine and sine.
– In general, the Mathieu cosine and sine are not periodic. However, for small

values of q we have

C(a, q, x) ∼ cos(√ax) and S(a, q, x) ∼ sin(√ax)√a .

The Mathieu cosine is illustrated graphically in Figure 4.8.

4.2.10 Airy function

The Airy function was introduced by the astronomer George Biddell Airy in optical
calculations. These are solutions of the second-order differential equation known as
the Airy differential equation

y󸀠󸀠 − xy = 0 . (4.26)

One idea to resolve such an equation is to use the well-known Fourier Transform,
which leads formally to a set of solutions called Airy functions based on the following

30252015
x

1050
0

0.5

1

–0.5

–1

Fig. 4.8: Mathieu cosine: C(0.3;0.1;x) (Grey).
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integral representation:

A(x) = 1
π

+∞∫
0

cos(ξx + ξ33 ) dξ ,
which is in fact a divergent integral. In fact, the integral is a semi-convergent integral.
Indeed, for 0 < a < L < +∞, an integration by parts yields that

L∫
a

cos(ξx + ξ33 ) dξ = 2 L∫
a

sin(ξx + ξ33 ) ξ(x + ξ2)2 dξ + [[sin (ξx +
ξ3
3 )

x + ξ2 ]]
L

a

.

As the integral ∫∞a sin(ξx + ξ3
3 ) ξ
(x+ξ2)2 dξ is absolutely convergent, the desired result

follows.

Definition 114. For η > 0, we define the Airy function Ai by means of the following
integral:

Ai(x) = 1
2π ∫
ℝ+iη

eiξxei
ξ3
3 dξ .

Furthermore, applying classical techniques of parameter-depending integrals, we can
prove that
(1) Ai is continuous on ℝ.
(2) limx→+∞ Ai(x) = 0.
Indeed, note that Ai(x)may be written in the form

Ai(x) = 1
2π ∫
ℝ
eix(ξ+iη)ei

(ξ+iη)3
3 dξ .

Next, as for η > 0, we get
Re(ix(ξ + iη) + i (ξ + iη)33 ) = −xη − ξ2η + η33 ,

the last integral is then absolutely convergent. Furthermore, it is uniformly convergent
on any compact set in ℝ. So, since the function x 󳨃→ eix(ξ+iη)ei

(ξ+iη)3
3 is continuous for

all η and ξ , the function Ai is then continuous on ℝ. In fact, we may prove that Ai is
C∞ and that for all k ∈ ℕ,

Ai(k)(x) = 1
2π ∫
ℝ
(i(ξ + iη))keix(ξ+iη)ei (ξ+iη)33 dξ .



4.2 Classical special functions | 99

We prove further that Ai is independent of the parameter η. Indeed,

dAi
dη = d

dη
1
2π ∫
ℝ
(eix(ξ+iη)ei (ξ+iη)33 ) dξ = 1

2π ∫
ℝ

d
dξ {eix(ξ+iη)ei (ξ+iη)33 } dξ = 0 ,

as the function
ξ 󳨃→ eix(ξ+iη)ei

(ξ+iη)3
3

is in the Schwartz class.

Properties 115. The following properties of the Airy function Ai hold:
(1) The function Ai satisfies the Airy differential equation (4.26).
(2) Ai(j.) is a solution of the Airy differential equation (4.26), whenever j3 = 1.
(3) The function Ai is an entire function of x.
(4) For all x ∈ ℝ, Ai(x) ∈ ℝ.
(5) Ai(0) = 1

3
2
3 Γ( 23 )

and A󸀠i (0) = −1
3 1
3 Γ( 13 )

.

Proof. (1) As noted above, the Airy function Ai is twice differentiable and

Ai󸀠󸀠(x) = 1
2π ∫
ℝ+iη
(iξ)2eixξ ei ξ33 dξ

= i
2π ∫
ℝ+iη

eixξ d
dξ (ei ξ33 ) dξ

= 1
2π ∫
ℝ+iη

ξeixξ ei
ξ3
3 dξ = xAi(x) .

(2) Let Ãi(x) = Ai(jx). We have

Ãi󸀠󸀠(x) = j2Ai󸀠󸀠(jx) = j2(jxAi(jx)) = j3xÃi(x) = xÃi(x) .
(3) The function fη defined by fη(x, ξ)) = eix(ξ+iη)ei (ξ+iη)33 is analytic as a function of x
for all ξ . Furthermore, for all R > 0 and |x| ≤ R, we have|fη(x, ξ)| ≤ e−Rηe−Rξ e−ηξ2 .
The last function is integrable according to ξ . So, Ai is analytic.
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(4) For x ∈ ℝwe have
Ai(x) = 1

2π ∫
ℝ
e−ix(ξ−iη)e−i

(ξ−iη)3
3 dξ

= 1
2π ∫
ℝ
eix(−ξ+iη)ei

(−ξ+iη)3
3 dξ .

= 1
2π ∫
ℝ
eix(ω+iη)ei

(ω+iη)3
3 dω .

= Ai(x) .
(5) As Ai is independent of η > 0, and Ai(0) is real, we can write

Ai(0) = 1
2π Re(∫

ℝ
ei

(ξ+i)3
3 dξ) .

Denote I as the last integral and J = 1
2 I. Simple computations yield that

I = 2 +∞∫
0

ei
(ξ+i)3

3 dξ ,

which means that

Ai(0) = 1
π Re(+∞∫

0

ei
(ξ+i)3

3 dξ) = 1
π Re(J) .

Next, for R > 0 large enough consider the points O(z0 = 0), A(zA = R), B = (zB =
Rei

π
6 ), C(zC = i + zB), and D = (zD = i) and the contours γR composed of the juxtapo-

sition of the segment [o, A], the arc (AB) and the segment BO in the positive sense,
and δR the parallelogram contour OBCDO countered also in the positive sense. So,
applying the residues theory on the function f(z) = ei (z+i)33 and the contour γR, we get

πAi(0) = Re ( lim
R→+∞

KR) ,
where KR is the integral given by

KR = ∫
[B,O]

f(z)dz = ∫
[C ,D]

ei
z3
3 dz .

Now, applying again the residues theory with the function g(z) = ei z33 on the parallel-
ogram contour OBCDO, we obtain

lim
R→+∞

KR = +∞∫
0

g (tei π6 ) ei π6 dt = ei π6 +∞∫
0

e−
t3
3 dt .
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Hence,

πAi(0) = √32 +∞∫
0

e−
t3
3 dt = √32 3−2/3

+∞∫
0

x−2/3e−xdx = Γ(13 )
2.31/6

,

which means that

Ai(0) = Γ(13 )
2π31/6

.

Analogous techniques may be applied to obtain Ai󸀠(0).
Now, we introduce the second-kind Airy function ([18]).

Definition 116. The second-kind Airy function is defined by

Bi(x) = eiπ/6Ai(jx) + e−iπ/6Ai(j2x) , (4.27)

where j = ei2π/3.
Proposition 117. The second-kindAiry function Bi is a solution of the Airy differential
equation (4.26) and satisfies

Bi(0) = 1
31

6 Γ (23) and B󸀠i (0) = 31
6

Γ (13) .
Furthermore, Bi is real on the real axis ℝ.
Proof. We have

Bi󸀠󸀠(x) = j2eiπ/6Ai󸀠󸀠(jx) + j4e−iπ/6Ai󸀠󸀠(j2x)= j2eiπ/6jxAi(jx) + j4e−iπ/6j2xAi(j2x)= x(eiπ/6Ai(jx) + e−iπ/6Ai(j2x))= xBi(x) .
Hence, Bi satisfies (4.26). Next,

Bi(0) = eiπ/6Ai(0) + e−iπ/6Ai(0) = √3Ai(0) = √3 Γ(13 )
2π31/6

.

Now, observing that
Γ (13) Γ (23) = 2π√3 ,
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Fig. 4.9: Airy function Ai and Bi.
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Fig. 4.10: The Airy function Bi and its approximation.

we get
Bi(0) = 1

31/6Γ (23) .
The same techniques yield Bi󸀠(0). Finally, for x ∈ ℝ, we have

Bi(x) = e−iπ/6Ai(jx) + eiπ/6Ai(j2x) = e−iπ/6Ai(j2x) + eiπ/6Ai(jx) = Bi(x) .
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Airy functions Ai and Bi are illustrated in Figure 4.9. Furthermore, Figure 4.10 illus-
trates the Airy function Bi and its approximation.

4.3 Hankel–Bessel transform

In this section, we focus on the most known transform associated with the special
functions developed previously. We will review the Hankel–Bessel transform of func-
tions. Readers are referred to [53] for more details. We denote the inner product in
L2(ℝ+ , dx) by ⟨f, g⟩ = ∞∫

0

f(x)g(x)dx
and the associated normby ‖.‖2. Similarly,we denote the inner product in L2(ℝ+ , ξdξ)
by ⟨f, g⟩ξ = ∞∫

0

f(ξ)g(ξ)ξdξ
and the associated norm by ‖.‖ξ,2.
Definition 118. Let f ∈ L2(ℝ+ , dx). The Bessel transform of f is defined by

B(f)(ξ) = +∞∫
0

f(x)√xJv(xξ)dx, ∀ξ > 0 ,
where Jv is the Bessel function of first kind and index v.

We immediately have the following characteristics:

Proposition 119.
(1) For all f ∈ L2(ℝ+ , dx), B(f) ∈ L2(ℝ+ , ξdξ).
(2) The Bessel transform B is invertible and its inverse is

B−1(g)(x) = +∞∫
0

g(ξ)√xJv(xξ)ξdξ, ∀g ∈ L2(ℝ+ , ξdξ) .



104 | 4 Review of special functions

Proof. (1) Let f and g be in L2(ℝ+ , dx). We have

⟨B(f),B(g)⟩ξ = +∞∫
0

B(f)(ξ)B(g)(ξ)ξdξ
= ∫
ℝ3+

√x√yf(x)g(y)Jv (xξ)Jv(yξ)ξdxdydξ
= ∫
ℝ2+

√x√yf(x)g(y)δ(x − y)
x

dxdy

= ∫
ℝ+

√x√xf(x)g(x)1
x
dx

= ⟨f, g⟩ .
So, taking g = f , we get ‖B(f)‖ξ,2 = ‖f‖2
which means thatB is an isometry.
(2) Denote B̃(f) the right-hand quantity. We will prove that B(B̃(f)) = f . Indeed,

B(B̃(f))(ξ) = +∞∫
0

B̃(f)(x)√xJv(xξ)dx
= +∞∫

0

+∞∫
0

f(η)√xJv(xη)η√xJv(xξ)dηdx
= +∞∫

0

f(η)η δ(η − ξ)η dη

= f(ξ) .
Definition 120. The Hankel transform, also called Fourier–Bessel transform of the
order v, is defined by

H(f)(ξ) = ∞∫
0

f(x)Jv(xξ)xdx; ∀f . (4.28)

Remark 121. Hankel transformH and Bessel one B are related via the equality

H(f)(ξ) = B(√.f)(ξ) .



5 Spheroidal-type wavelets

5.1 Introduction

Wavelet analysis was introduced in the early 1980s in the context of signal analysis
and exploration for petroleum to give a representation of signals anddetect their char-
acteristics. Several methods have been applied for the task; the most known is the
Fourier transform. Amajor drawback of this method is its limitation to stationary and
periodic signals. Furthermore, the description of signals is limited to the global be-
havior and cannot provide any detailed information. Also, in its numerical computer
processing, Fourier analysis often yields nonfast algorithms.

Progress has been made by introducing the windowed Fourier transform (WFT)
to address the problems of time-frequency localization. The WFT acts on signals by
computing the classical Fourier transform of the signal multiplied by a time-localized
function known as the window. However, the situation was not resolved, especially
with the emergence of new problems, such as irregular signals or high-frequency vari-
ations.

Themajor drawbackwith theWFT is the fact that the shape of the window is fixed
and may not be adapted to the fluctuations of nonstationary signals. Thus, the need
for an analysis taking into account nonlinear algorithms, nonstationary signals, as
well as nonperiodical and volatile ones has become a necessity for both theory and
application. Wavelet analysis was introduced, developed, and has proved its power
despite these obstacles. In this chapter, we review a special case of wavelet analy-
sis adapted especially to spheroidal wavelets. We recall the strong relationship with
orthogonal polynomials, homogenous polynomials, spherical harmonics, as well as
special functions, and develop some details and examples.

5.2 Wavelets on the real line

Wavelet analysis is primarily based on an effective representation for standard func-
tions on the real line and a robustness to the specification models. It also permits a
reduction in time computation algorithms compared to other methods. This is essen-
tially due to the simplicity of the analysis and the ease of generalization and efficiency
according to thedimension. It permits one to analyze functions fromdifferenthorizons
starting from one horizon, which is not possible with Fourier analysis, for example.
There, the number of coefficients to be computed is the standard point behind any
approximation. Finally, wavelet analysis permits one to relate time localization to fre-
quency.

Mathematically speaking, a wavelet or an analyzing wavelet on the real line is a
function ψ ∈ L2(ℝ), which satisfies some conditions, such as the admissibility condi-
DOI 10.1515/9783110481884-005
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tion, which somehow describes Fourier–Plancherel identity and which says that

∫
ℝ+
|ψ̂(ω)|2 dω|ω| = Cψ < ∞ . (5.1)

The function ψ has to also satisfy a number of vanishing moments, which is related
in wavelet theory to its regularity order. It states that

p = 0, . . . ,m − 1, ∫
ℝ
ψ(t)tpdt = 0 . (5.2)

Sometimes, we say that ψ is Cm on ℝ. The time-localization chart is a normalization
form that is resumed in the identity

+∞∫
−∞
|ψ(u)|2du = 1 . (5.3)

To analyze a signal by wavelets, one passes via the so-called wavelet transforms. A
wavelet transform is a representation of the signal bymeans of an integral form similar
to Fourier inwhich the Fourier sine and/or cosine is replaced by the analyzingwavelet
ψ. In Fourier transform, the complex exponential source function yields the copies eis.

index by the indices s ∈ ℝ, which somehow represent frequencies. This transform is
continuous in the sense that it is indexed by the whole line of indices s ∈ ℝ.

In wavelet theory, the situation is more unified. A continuous wavelet transform
(CWT) is also well known. First, a frequency, scale, or a dilation/compression param-
eter s > 0 and a second one related to time or position u ∈ ℝ have to be fixed. The
source function ψ, known as the analyzing wavelet, is next transformed to yield some
copies (replacing the eis.)

ψs,u(x) = 1√s ψ ( x − us ) . (5.4)

The CWT of a real valued function f defined on the real line at the position u and the
scale s is defined by

ds,u(f) = ∞∫
−∞

f(t)ψs,u(t)dt, ∀u, s . (5.5)

By varying the parameters s and u, we can completely cover the time-frequency plane.
This gives a full and redundant representation of the whole signal to be analyzed
(see [99]). This transform is called continuous because of the nature of the parame-
ters s and u that can operate at all levels and positions.

So, wavelets operate according to two parameters: the parameter uwhich permits
one to translate the graph of the source wavelet mother ψ and the parameter s which
permits one to compress or to dilate the graph of ψ. Computing or evaluating the co-
efficients du,s means analyzing the function f with wavelets.
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Properties 122. The wavelet transform ds,u(f) possesses some properties, such as
(1) the linearity, in the sense that

ds,u(αf + βg) = αds,u(f) + βds,u(g), ∀f, g ,
(2) the translation-invariance, in the sense that

ds,u(τtf) = ds,u−t(f), ∀f; and ∀u, s, t ,
and where (τtf)(x) = f(x − t) ,

(3) the dilation-invariance, in the sense that

ds,u(fa) = 1√a das,au(f), ∀f; and ∀u, s, a ,
and where for a > 0, (fa)(x) = f(ax) .

The proof of these properties is easy and readers can refer to [8] for a review.
It holds in wavelet theory, as in Fourier analysis theory, that the original function

f can be reproduced via its CWT by an L2-identity.

Theorem 123. For all f ∈ L2(ℝ), we have the L2-equality
f(x) = 1

Cψ
∫∫ ds,u(f)ψ ( x − us ) dsdus2 .

The proof of this result is based on the following lemma.

Lemma 124. Under the hypothesis of Theorem 123, we have

∫∫ ds,u(f)ds,u(g)dsdus = Cψ ∫ f(x)g(x)dx, ∀ f, g ∈ L2(ℝ) .
Proof. We have

ds,u(f) = 1s f ∗ ψs(u) = 1s ∫ f(x)ψ ( x − us ) dx = 1
2πF ( ̂f (y)ψ̂(sy)e−iuy) .
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Consequently, ∫
u

ds,u(f)ds,u(g)du = 1
2π ∫

y

f̂ (y)ĝ(y)|ψ̂(sy)|2dy .
By application of Fubini’s rule, we get∫

s>0
∫
u

ds,u(f)ds,u(g)dsdus = 1
2π ∫

s>0
∫
y

̂f (y)ĝ(y)|ψ̂(sy)|2 dsdys
= 1
2π
dψ ∫

y

̂f (y)ĝ(y)dy
= Cψ ∫

y

f(y)g(y)dy .
Proof of Theorem 123. By applying the Riesz rule, we get󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩F(x) − 1

Cψ
∫

1/A≤a≤A
∫
|b|≤B

Ca,b(F)ψ ( x − ba ) dadba2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩L2
= sup
‖G‖=1
(∫ F(x) − 1

Cψ
∫

1/A≤a≤A
∫
|b|≤B

Ca,b(F)ψ ( x − ba ) dadba2
) G(x)dx .

Next, using Fubini’s rule, we observe that the last line is equal to

= sup
‖G‖=1
(∫ F(x)G(x)dx − 1

Cψ
∫

1/A≤a≤A
∫
|b|≤B

Ca,b(F)Ca,b(G)dadba )
= sup
‖G‖=1

1
Cψ

∫
(a,b)∉[1/A,A]×[−B,B]

Ca,b(F)Ca,b(G)dadba ,

which by Cauchy–Schwartz inequality is bounded by

≤ 1
Cψ
[[[ ∫
(a,b)∉[1/A,A]×[−B,B]

|Ca,b(F)|2 dadba ]]]
1/2

[[[ sup‖G‖=1 ∫
(a,b)∉[1/A,A]×[−B,B]

|Ca,b(G)|2 dadba ]]]
1/2

.

Now, Lemma 124 shows that the last quantity goes to 0 as R tends to +∞.

On the real line, themostwell-knownexamples areHaar andSchauderwavelet,where
explicit computations are always possible. The Haar example is the simplest example
in the theory of wavelets. It is based on the wavelet mother expressed by

ψ(x) = χ[0,1/2[(x) − χ[1/2,1[(x) .
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The Schauder wavelet is based on the explicit wavelet mother

ψ(x) = 12 (1 − |2x|)χ[−1/2,1/2](x)− (1 − |2x − 1|)χ[0,1[(x)+ 12 (1 − |2x − 2|)χ[1/2,3/2](x) .
Readers can refer to [8, 75, 95, 99] for more details and examples of original wavelet
analysis on the real line and Euclidian spaces in general.

5.3 Chebyshev wavelets

Chebyshev wavelets stem from one mother wavelet ψm depending on a parameterm,
which represents the degree of Chebyshev polynomial of first kind associatedwith the
wavelet. The source Chebyshev wavelet mother ψm is defined by

ψm(t) = T̃m(t), 0 ≤ t < 1 and 0, else

where

T̃m(t) = √2π Tm(t), m = 0, 1, 2, . . . ,M − 1 . (5.6)

Here Tm(t) are the Chebyshev polynomials of the first kind of degree m, given by
Tm(t) = cos(m arccos t) .

Next, we perform the usual translation–dilation actions using parameters j ∈ ℕ for
the level and a parameter n = 1, 2, . . . , 2j−1 for the position. Thus, we obtain the
dilation–translation copies of ψm explicitly expressed by

ψmj,n(t) = {{{2
j
2 T̃m(2j t − 2n + 1), n−1

2j−1 ≤ t < n
2j−1

0, else .
(5.7)

The Chebyshev wavelets are orthonormal with respect to the weight function

ωj(t) = ωn,k(t) = ω(2j−1t − n + 1), n = 1, 2, . . . , 2k−1 and n − 1
2j−1
≤ t < n

2j−1
.

Denote next

L2ω([0, 1]) = {{{f,
1∫
0

|f(x)|2 ω(x)dx < ∞}}} ,

where ω(x) = 1
2√x(1−x) . A function f ∈ L2ω([0, 1]) can be approximated in a series form

as
f = ∞∑

n=1

∞∑
m=0

Cnmψmj,n ,
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where
Cmj,n = ⟨f, ψmj,n⟩ωj ,

in which ⟨., .⟩ωj is the inner product in L2ωj ([0, 1]).
5.4 Gegenbauer wavelets

Gegenbauer wavelets (GW) depend on four parameters: j, n,m, p. The parameter
j ∈ ℕ represents the level of resolution, n ∈ {1, 2, 3, . . . , 2j−1}, is related to the trans-
lation parameter, m = 0, 1, 2, . . . ,M − 1, M > 0 is the degree of the Gegenbauer
polynomial, and finally a real parameter p > − 12 . The mother Gegenbauer wavelet
is defined on [0, 1) by ψm,p(x) = Gpm(x), where Gpm is the well-known Gegenbauer
polynomial defined in Chapter 1. Next, the translation–dilation copies of ψm,p are
defined by

ψm,pj,n (x) = {{{{{
1
√Lpm

2
j
2Gpm(2jx − 2n + 1), 2n−2

2j ≤ t < 2n
2j ,

0, elsewhere .

Note here that the translation parameter takes only odd values.

Remark 125. For p = 1
2 , we get Legendre wavelets. For p = 0 and p = 1, we obtain

the Chebyshev wavelet of first and second kind, respectively.

To obtain themutual orthogonality of Gegenbauer wavelets ψm,pj,n , the weight function
associated with the Gegenbauer polynomials has to be dilated and translated as for
the Gegenbauer wavelets. Thus, we obtain a translation–dilation copy of the weight
ω as

ωj,n(x) = ω(2j x − 2n + 1) = (1 − (2jx − 2n + 1)2)p− 12 .
At a fixed level of resolution, we get

ωj,n(x) =
{{{{{{{{{{{{{{{{{{{{{

ωj,1(x), 0 ≤ x < 1
2j−1 ,

ωj,2(x), 1
2j−1 ≤ x < 2

2j−1 ,
ωj,3(x), 2

2j−1 ≤ x < 3
2j−1 ,

...
ωj,2j−1 (x), 2j−1−1

2j−1 ≤ x < 1 .
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According to such wavelets, a function f ∈ L2[0, 1) can be expressed in terms of the
GW as

f = ∞∑
j=1
∑
n∈ℤ

dm,pj,n ψ
m,p
j,n , (5.8)

where the coefficient dm,pj, are the so-called wavelet coefficients given by

dm,pj,n = ⟨f, ψm,pj,n ⟩ = 1∫
0

ωj,n(x)ψm,pj,n (x)f(x)dx .
For more details, refer to [124, 126, 135, 139].

5.5 Hermite wavelets

Hermite wavelets are based on the well-known Hermite polynomials. Recall that such
polynomials consist of a sequence of orthogonal polynomials with respect to the spe-
cial weight function ω(x) = e−x2 and are explicitly given by

Hm(x) = (−1)mex2 dmdxm (e−x2 ) .
The Hermite mother wavelet is given by

ψm(t) = {{{H̃m(2t), 0 ≤ t < 1 ,
0, else ,

(5.9)

where
H̃m = 1

2ml!√πHm .

The translation–dilation copies of ψm are next defined by

ψmk,n(t) = {{{2
k
2 H̃m(2k+1t − 2l + 1), l−1

2k ≤ t < n
2k

0, else .
(5.10)

Note that such wavelets depend essentially on the parameter m, which is the degree
of the m-Hermite polynomial Hm . Hermite wavelets are orthonormal with respect to
the weight function

ωl,k(t) = ω(2k−1t − l + 1), l = 0, 1, . . . , x, 2k, l − 1
2k
≤ t < n

2k
.

Some propeties of Hermite wavelets are given in [1].
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5.6 Laguerre wavelets

Laguerre wavelets are orthogonal wavelets defined in the interval (0, 1) and stem from
one source mother function

ψm(t) = L̃m(t)χ[0,1[(t) = 1
m!Lm(t)χ[0,1[(t) , (5.11)

where Lm is the Laguerre polynomial of degree m. A wavelet basis is next expressed
by

ψmk,n(t) = {{{2
k
2 L̃m(2kt − 2n + 1), n−1

2k−1 ≤ t < n
2k−1 ,

0, else .
(5.12)

For more details on these wavelets, see [79].

5.7 Bessel wavelets

There are several approaches to introduce Bessel wavelets [126, 127].
In the present section, we will present the most known approach. For 1 ≤ p < ∞

and μ > 0, denote
Lpσ(ℝ+) := {{{{{f such that ‖f‖p,σ = (

∞∫
0

|f(x)|pdσ(x)) 1
p < ∞}}}}} ,

where dσ(x) = x2μ

2μ−
1
2 Γ(μ+ 12 )

dx. Denote also

jμ(x) = 2μ− 12 Γ (μ + 12) x 1
2−μJμ− 12 (x) ,

where Jμ− 12 is the Bessel function of first kind and of order μ − 1
2 . Denote next,

D(x, y, z) = ∞∫
0

jμ(xt)jμ(yt)jμ(zt)dσ(t)
and the translation

τxf(y) = f̃ (x, y) = ∞∫
0

D(x, y, z)f(z)dσ(z), ∀0 < x, y < ∞ .

Next, for a two-variable function f , we define the dilation operator

Daf(x, y) = a−2μ−1f ( xa , ya) .



5.7 Bessel wavelets | 113

Definition 126. Let Ψ ∈ Lpσ(ℝ+). The Bessel wavelet copy Ψa,b is defined by
Ψa,b(x) = DaτbΨ(x) = a−2μ−1 ∞∫

0

D (ba , xa , z)Ψ(z)dσ(z); ∀a, b ≥ 0 .
The Bessel wavelet transform (BWT) of a function f ∈ Lqσ(ℝ+), at the scale a and the
position b is defined by

(BΨ f)(a, b) = a−2σ−1 ∞∫
0

∞∫
0

f(t)Ψ (z)D ( ba , ta , z) dσ(z)dσ(t) .
The following result shows one of the BWT of functions.

Theorem 127. Let f ∈ Lpσ(ℝ+), Ψ ∈ Lqσ(ℝ+) with 1 ≤ p, q < ∞ such that 1
p + 1

q = 1.
Then (Bψf) is continuous onℝ2+.
Proof. Let (a0, b0) be an arbitrary fixed point of ℝ2+. We have|(BΨ f)(a, b) − (BΨ f)(a0, b0)|

≤ a−2μ−1 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∞∫
0

∞∫
0

f(t)Ψ(z) [D (ba , ta , z) − D (b0a0 , ta , z)] dσ(z)dσ(t)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨≤ a−2μ−1 [[
∞∫
0

∞∫
0

|f(t)|p 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨D (ba , ta , z) − D (b0a0 , t
a0, z
)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 1p dσ(t)dσ(z)]]× [[

∞∫
0

∞∫
0

|ψ(z)|q 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨D (ba , ta , z) − D (b0a0 , t
a0, z
)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 1q dσ(t)dσ(z)]] .

Now, observe that 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨D (ba , ta , z) − D (b0a0 , t
a0, z
)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 2 .

Moreover, using the dominated convergence theorem and the continuity of D( ba , ta , z)
with respect to (a, b), we get

lim
(a,b)→(a0,b0)

|(BΨ f)(a, b) − (BΨ f)(a0, b0)| = 0 ,
which proves the continuity of the BWT onℝ2+.
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Definition 128. Let f, g ∈ Lpσ(ℝ+). We define the convolution product (usually
known as the Hankel convolution) by

(f♯g)(x) = ∞∫
0

τxf(y)g(y)dσ(y) .
The following result is a variant of Parseval/Plancherel rules for the case of BWT.

Theorem 129. Let Ψ ∈ L2σ(ℝ+) and f, g ∈ L2σ(ℝ+). Then
∞∫
0

∞∫
0

(BΨ f)(a, b)(BΨ g)(a, b)dσ(a)a2μ+1
dσ(b) = CΨ ⟨f, g⟩ ,

where

CΨ = ∞∫
0

t−2μ−1|Ψ̂(t)|2dt > 0 .
The proof follows similar techniques as for the case of real-line wavelets. Because of
its importance, we reproduce it in detail.

Proof. Recall that(BΨ f)(a, b) = ∫
ℝ+

f(t)Ψa,b(t)dσ(t)
= 1
a2σ+1

∫
ℝ2+

f(t)Ψ(z)D ( ba , ta , z) dσ(z)dσ(t) .
Now observe that

D (ba , ta , z) = ∫
ℝ+

j (ba u) j ( ta u) j(zu)dσ(u) .
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Hence, (BΨ f)(a, b) = 1
a2σ+1

∫
ℝ3+

f(t)Ψ(z)j ( ba u) j ( ta u) j(zu)dσ(u)dσ(z)dσ(t)
= 1
a2σ+1

∫
ℝ2+

f̂ (ua)Ψ(z)j ( ba u) j(zu)dσ(u)dσ(z)
= 1
a2σ+1

∫
ℝ+

f̂ (ua) Ψ̂(u)j (ba u) dσ(u)
= ∫
ℝ+

f̂ (η)Ψ̂(aη)j(bη)dσ(η)
= (f̂ (η)Ψ̂(aη))⋀ (b) .

As a result ∫
ℝ2+

(BΨ f)(a, b)(BΨ g)(a, b)dσ(a)a2μ+1
dσ(b)

= ∫
ℝ2+

f̂ (η)Ψ̂(aη)ĝ(η)Ψ̂(aη)dσ(η)dσ(a)
a2μ+1

= ∫
ℝ+

f̂ (η)ĝ(η)(∫
ℝ+

|Ψ̂(aη)|2 dσ(a)
a2μ+1

) dσ(η)
= CΨ ∫
ℝ+

f̂ (η)ĝ(η)dσ(η)
= CΨ ⟨f̂ , ĝ⟩= CΨ ⟨f, g⟩ .

5.8 Cauchy wavelets

Cauchy wavelets are one step in the direction of introducing spherical wavelets as
they aim to take into account the angular behavior of the analyzed signals. In the
one-dimensional case, Cauchy wavelets are defined via their Fourier transform

ψ̂m(ω) = {{{0, for ω < 0
ωme−ω , for ω ≥ 0 ,

withm > 0. In 1D, the positive half-line is a convex cone. Thus a natural generalization
to 2D will be a wavelet whose support in spatial frequency space is contained in a
convex cone with an apex at the origin. Let C ≡ C(α, β) be the convex cone determined
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by the unit vectors eα , eβ, where α < β, β − α < π and for all θ, eθ ≡ (cos θ, sin θ). The
axis of the cone is ξαβ = e α+β

2
. In other words,

C(α, β) = {k ∈ ℝ2, α ≤ arg(k ≤ β)}= {k ∈ ℝ2, k.ξαβ ≥ eα .ξαβ = eβ .> 0} .
The dual cone to C(α, β) is

C̃(α, β) = {k ∈ ℝ2, k.k󸀠 > 0, ∀k󸀠 ∈ C(α, β)} .
Note that C̃(α, β)may also be seen as

C̃(α, β) = C(α̂, β̂) ,
where α̂ = β − π

2 , β̂ = α + π2 and eα .eα̂ = eβ .eβ̂ = 0. Thus the axis of C̃ is ξαβ.
The two-dimensional Cauchy wavelet is defined via its Fourier transform

ψ̂C ,ηlm = {{{(k.eα̃)l(k.eβ̃)me−k.η, k ∈ C(α, β) ,
0, otherwise ,

(5.13)

where η ∈ C̃ and l,m ∈ ℕ∗. Note that such awavelet is also supported by C. It satisfies
the admissibility condition

cψC,ηlm ≡ (2π)2 ∫ d2k|k|2 |ψ̂C ,ηlm (k)|2 < ∞ . (5.14)

The following result obtained by Antoine et al. is proved in [12] and yields an explicit
form for the two-dimensional Cauchy wavelet.

Proposition 130. For even η ∈ C̃ and l,m ∈ ℕ∗. The 2D Cauchy wavelet ψC ,ηlm (x)with
support in C belongs to L2(ℝ2, dx) and is given by

ψC ,ηlm (x) = il+m+22π
l!m! [sin(β − α)]l+m+1[(x + iη).eα]l+1[(x + iη).eβ]m+l . (5.15)

Wecan,with analogous techniques, definemultidimensional Cauchywavelets. See [12]
and the references therein for more details.

5.9 Spherical wavelets

Spherical wavelets are adopted for understanding complicated functions defined or
supported by the sphere. The classical spherical wavelets are essentially done by con-
volving the function against rotated and dilated versions of one fixed function ψ. To
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introduce a specialwavelet analysis on the sphere related to zonalswefirst recall some
useful topics. Let F ∈ L2[−1, 1] and Ln be the Legendre polynomial of degree n. The
coefficients

F̂(n) = 2π⟨F, Ln⟩ = 2π 1∫
−1
F(x)Ln(x)dx, n ∈ ℕ

are called the Legendre coefficients or the Legendre transforms of F. It is proved in har-
monic Fourier analysis that F can be expressed in a series form

F = ∞∑
n=0

F̂(n)2n + 14π Ln (5.16)

called the Legendre series of F.

Definition 131. A family {ϕj}j∈ℕ ⊂ L2[−1, 1] is called a spherical scaling function
system if the following assertions hold.
(1) For all n, j ∈ ℕ, we have ϕ̂j(n) ≤ ϕ̂j+1(n). In other words, for all n ∈ ℕ the

sequence (ϕ̂j(n))j∈ℕ is increasing
(2) limj󳨀→∞ ϕ̂j(n) = 1 for all n ∈ ℕ
(3) ϕ̂j(n) ≥ 0 for all n, j ∈ ℕ,
where ϕ̂j(n) is the Legendre transform of ϕ̂j.

We will now investigate a way of constructing a scaling function [54].

Definition 132. A continuous function γ : ℝ+ 󳨃󳨀→ ℝ is said to be admissible if it
satisfies the admissibility condition

∞∑
n=0

2n + 1
4π ( sup

x∈[n,n+1]
|γ(x)|)2 < +∞ . (5.17)

In this case, γ is called an admissible generator of the function ψ : [−1, 1] → ℝ
given by

ψ = ∞∑
n=0

2n + 1
4π γ(n)Ln . (5.18)

We immediately obtain the following characteristics [162].
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Proposition 133. The following assertions are true:
(1) If γ is an admissible generator, then the generated function ψ ∈ L2[−1, 1].
(2) For all n ∈ ℕ, ψ̂(n) = γ(n).
Proof. (1) Since the Legendre polynomials form an orthogonal basis for L2[−1, 1]with⟨Ln , Ln⟩L2[−1,1] = 4π

2n+1 , the admissibility condition imposed on γ yields that

‖ψ‖2L2[−1,1] = ∞∑
n=0

2n + 1
4π (γ0(n))2 ≤ ∞∑n=0 2n + 14π ( sup

x∈[n,n+1]
|γ0(x)|)2 < +∞

(2) is an immediate result from (5.16).

We now investigate the idea to construct a whole family of admissible functions start-
ing from one source admissible function.

Definition 134. The dilation operator is defined for γ : [0,∞) → ℝ and a > 0 by
Daγ(x) = γ(ax) ∀x ∈ [0,∞) .

For a = 2−j, j ∈ ℤ we denote γj = Djγ = D2−j γ.
Definition 135. An admissible function φ : [0,∞) → ℝ is said to be a generator of
a scaling function if it is monotonously decreasing, continuous at 0 and satisfies
φ(0) = 1.
The system {ϕj}j∈ℕ ⊂ L2[−1, 1], defined by

ϕj = ∞∑
n=0

2n + 1
4π φj(n)Ln

is said to be the corresponding spherical scaling function associated with φ.

It holds sometimes that for all j, the sequence (ϕ̂j(n))n is stationary with zero sta-
tionary value. In this case, the system {ϕj}j∈ℕ ⊂ L2[−1, 1] is called bandlimited. It
holds that for bandlimited scaling functions, each ϕj is a 1D polynomial, and for all
F ∈ L2(S2), ϕj ∗ F is a polynomial on S2. The following theorem affirms that scal-
ing functions permit one to approximate L2 functions with polynomial approximates
(see [162]).

Now, we show that such scaling functions are suitable candidates to approximate
functions in L2 as it is needed in wavelet theory in general. Thus, they are suitable
sources to define multiresolution analysis and/or a wavelet analysis on the sphere.
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Theorem 136. Let {ϕj}j∈ℕ be a scaling function and F ∈ L2(S2). Then
lim
j→∞
‖F − ϕ(k)j ∗ F‖L2(S2) = 0

for all levels of iterations k ∈ ℕ.
Here, for a function Φ ∈ L2, we designate by Φ(k) the k-times self-convolution of Φ
with itself. The last approximation is called spherical approximate identity. The next
theorem shows the role of spherical scaling functions in the construction of multires-
olution analysis on the sphere.

Proof. First observe that

ϕ(k)j ∗ F = +∞∑
n=0

2n+1∑
j=1

Φ̂J(n)F̂(n, j)Yn,j .
Thus,

F − ϕ(k)j ∗ F = +∞∑
n=0

2n+1∑
j=1
(1 − Φ̂J(n))F̂(n, j)Yn,j ,

which by applying the Parseval identity yields that

‖Fϕ(k)j ∗ F‖22 = +∞∑
n=0

2n+1∑
j=1
(1 − Φ̂J(n))2(F̂(n, j))2 .

Now, observing that the last series is J-uniformly convergent and the fact that

lim
J→+∞
(1 − Φ̂J(n)) = 0

for all n, it results that
lim
j→∞
‖F − ϕ(k)j ∗ F‖L2(S2) = 0 .

Theorem 137. Let for j ∈ ℤ,
Vj = {ϕ(2)j ∗ F|F ∈ L2(S2)} ,

where {ϕj}j∈ℕ ⊂ L2[−1, 1] is a scaling function. Then, the sequence (Vj)j defines a
multiresolution analysis on the sphere. That is,
(1) Vj ⊂ Vj+1 ⊂ L2(S2), ∀j ∈ ℕ.
(2) ⋃∞j=0 Vj = L2(S2).
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For j ∈ ℤ, the spaces Vj represents the so-called scale or approximation space at the
level j.

Proof. (1) As Φ ∈ L2 and also F, the convolution Φ ∗ F is also L2.
Consider next, for J ∈ ℤ, the function

γJ(n) = ( Φ̂J(n)
Φ̂J+1(n))2 F̂(n, j) if ΦJ+1(n) ̸= 0

and 0 else, and define the function G by

G = +∞∑
n=0

2n+1∑
j=1

γj(n)Yn,j .
It is straightforward that G ∈ L2 and that Ĝ(n, j) = γj(n). Furthermore,

ϕ(2)J+1 ∗ G = +∞∑
n=0

2n+1∑
j=1

Φ̂J+1(n)Ĝ(n, j)Yn,j
= +∞∑
n=0

2n+1∑
j=1

Φ̂J(n)F̂(n, j)Yn,j
= ϕ(2)J ∗ F .

Hence, ϕ(2)J ∗ F = ϕ(2)J+1 ∗ G ∈ VJ+1. Consequently, VJ ⊂ VJ+1.
(2) The density property is an immediate consequence of the spherical approximate
identity proved in Theorem 136.

Based on this multiresolution analysis of L2(S2), we can introduce spherical wavelets.
Definition 138. Let Φ = {ϕj}j∈ℕ ⊂ L2[−1, 1] be a scaling function and let Ψ ={ψj}j∈ℕ∪{−1} and Ψ̃ = {ψ̃j}j∈ℕ∪{−1} be in L2[−1, 1] satisfying the so-called refinement
equation

ψ̂j(n) ∼̂ψj(n) = (ϕ̂j+1(n))2 − (ϕ̂j(n))2 ∀n, j ∈ [0, +∞) .
Then,
(a) Ψ and Ψ̃ are called, respectively, (spherical)primalwavelet and (spherical)dual

wavelet relative to Φ.
(b) The functions ψ0 and ψ̃0 are called the primal mother wavelet and the dual

mother wavelets, respectively.
Here, we set ψ−1 = ψ̃−1 = ϕ0.

The following result obtained byVolker in [162] shows the existence of primal anddual
wavelets.
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Theorem 139. Let φ0 be a generator of a scaling function and ψ0, ψ̃0 be admissible
function such that

ψ0ψ̃0(x) = (φ0 ( x2))2 − (φ0(x))2 ∀x ∈ ℝ+ .
Then, ψ0 and ψ̃0 are generators of primal and dual mother wavelets, respectively.

Proof. We will prove precisely that the dilated copies {ψj}j∈ℕ∪{−1}, {ψ̃j}j∈ℕ∪{−1} ⊂
L2[−1, 1] defined via their Legendre coefficients by dilating ψ0 and ψ̃0(x) as

ψ̂j(n) = ψj(n) = ψ0(2−jn), ∼̂

ψj(n) = ψ̃j(n) = ψ̃0(2−jn); ∀n, j ∈ ℕ .

and
ψ̂−1(n) = ∼̂

ψ−1(n) = φ0(n); ∀n ∈ ℕ
are a primal and dual wavelets, respectively. Indeed, considering these dilated copies
we obtain for all n, j ∈ ℕ,

ψ̂j(n) ∼̂ψj(n) = ψ0(2−jn)ψ̃0(2−jn)= (φ0(2−j−1n))2 − (φ0(2−jn))2= (ϕ̂j+1(n))2 − (ϕ̂j(n))2 .
A fundamental property of spherical wavelets is the scale-step property proved below,
which prepares us to introduce detail spaces.

Theorem 140. Let Ψ = {ψj}j∈ℕ∪{−1} and Ψ̃ = {ψ̃j}j∈ℕ∪{−1} be a primal and a dual
wavelet corresponding to the scaling function {ϕj}j∈ℕ ⊂ L2[−1, 1]. The following as-
sertions hold for all F ∈ L2(S2).
(i) ϕ(2)J2 ∗ F = ϕ(2)J1 ∗ F + ∑J2−1j=J1 ψ̃j ∗ ψj ∗ F, ∀J1 < J2 ∈ ℕ.
(ii) F = ϕ(2)J ∗ F + ∑∞j=J ψ̃j ∗ ψj ∗ F, ∀J ∈ ℕ.
Proof. (i) We will evaluate the last right-hand series term in the assertion. Using the
definition of primal and dual wavelets, we obtain

ψ̃j ∗ ψj ∗ F = +∞∑
n=0

2n+1∑
s=1

ψ̂j(n) ∼̂ψj(n)F̂(n, s)Yn,s
= +∞∑
n=0

2n+1∑
j=1
[(ϕ̂j+1(n))2 − (ϕ̂j(n))2] F̂(n, s)Yn,s

= ϕ(2)j+1 ∗ F − ϕ(2)j ∗ F .
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As a result,
J2−1∑
j=J1

ψ̃j ∗ ψj ∗ F = ϕ(2)J2 ∗ F − ϕ(2)J1 ∗ F .
(ii) is an immediate consequence of assertion (i).

Theorem 141. Denote for j ∈ ℤ,
Wj = {ψ̃j ∗ ψj ∗ F/F ∈ L2(S2)} .

Then, for all J ∈ ℤ,
VJ+1 = VJ +WJ .

Proof. The inclusion VJ ⊂ VJ−1 + WJ−1 is somehow easy and it is a consequence of
Theorem 140. We will prove the opposite inclusion. So, let F1 ∈ VJ and F2 ∈ WJ . We
seek a function F ∈ L2 for which we have

Φ(2)J+1 ∗ F = F1 + F2 .
Since F1 ∈ VJ and F2 ∈ WJ , there exist G1 and G2 in L2 such that

F1 = Φ(2)J ∗ G1 and F2 = Ψ̃J ∗ ΨJ ∗ G2 .
Now, consider the function γ defined by

γ(n, j) = ((Φ̂J(n))2 Ĝ1(n, j) + ((Φ̂J+1(n))2 − (Φ̂J (n))2)Ĝ2(n, j)
Φ̂J+1(n) )2 ,

whenever ΦJ+1(n) ̸= 0 and 0 else, and define the function F by
F = +∞∑

n=0

2n+1∑
j=1

γ(n, j)Yn,j .
It is straightforward that F ∈ L2 and that F̂(n, j) = γ(n, j). Furthermore,

Φ(2)J+1 ∗ F = +∞,∗∑
n=0

2n+1∑
j=1
(Φ̂J+1(n))2 F̂(n, j)Yn,j

= +∞∑
n=0

2n+1∑
j=1
(Φ̂J (n))2 Ĝ1(n, j)Yn,j

+ +∞∑
n=0

2n+1∑
j=1
((Φ̂J+1(n))2 − (Φ̂J(n))2)Ĝ2(n, j)Yn,j
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= +∞∑
n=0

2n+1∑
j=1
(Φ̂J(n))2 Ĝ1(n, j)Yn,j

+ +∞∑
n=0

2n+1∑
j=1

∼̂

ΨJ(n)Ψ̂J (n)Ĝ2(n, j)Yn,j
= ϕ(2)J ∗ G1 + Ψ̃J ∗ ΨJ ∗ G2= F1 + F2 .

Consequently, F1 + F2 ∈ VJ+1.
Definition 142. For j ∈ ℤ, the spaceWj is called the detail space at the level j and
the mapping (SWT)j : L2(S2) → L2(S2)

F 󳨃󳨀→ ψj ∗ F
is called the spherical wavelet transform at the scale j.

Based on this definition and the results above, any function F ∈ L2(S2) will be repre-
sented by means of an L2-convergent series

F = ∞∑
j=−1

ψ̃j ∗ (SWT)j (F) . (5.19)





6 Some applications

6.1 Introduction

This chapter presents some applications related to the previous theories developed.
The results presented are not new but consist of some developments in the direct ap-
plication of some types of wavelets related to orthogonal polynomials and spherical
calculus. We aimed to present especially some applications on differential equations
and their numerical treatment with wavelets, some integrodifferential equations, and
image processing and time-series processing related to spherical domains.

The developments stem from lectures and papers that are listed here and can be
consulted by readers for more details and for complete study of the problems pre-
sented [3, 4, 9, 24, 50, 87, 90–92, 94, 110, 137, 139, 158, 160, 167, 169].

Of course, these applications may not be the best ones for the topic but we tried
to reproduce the simplest ones so that they can be easily understood and redeveloped
by the interested reader and make him/her familiar with wavelet theory and its inter-
action with other fields. More complicated applications can be found in the literature
on wavelet theory, which is growing every day.

6.2 Wavelets for numerical solutions of PDEs

In this section,wepropose to redevelop numerical solutions of thewell-known Cheby-
shev and Hermite differential equations by applying the simplest Haar wavelets. The
aim is to show explicit calculus based on wavelets and their interaction with the first
chapter dealing with orthogonal polynomials. The Chebyshev differential equation is(1 − x2)y󸀠󸀠 − xy󸀠 + λ2y = 0 . (6.1)

The Hermite differential equation is

y󸀠󸀠 − 2xy󸀠 + 2λy = 0 . (6.2)

λ ∈ ℝ is a fixed parameter.
Recall that these equations already have exact polynomial solutions composed

of the known classes of Chebyshev and Hermite polynomials. We propose in this sec-
tion to reproduce some numerical studies based on Haarwavelets to compare wavelet
results with the exact ones.

In this section, we reproduce the method developed in [136]. The crucial idea to
develophere differs from classical ones in that instead of considering the development
of the unknown solution y into a wavelet series

y = ∑
i
yiψi ,

DOI 10.1515/9783110481884-006
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where ψi is a suitable wavelet basis, we consider the development of the higher order
derivative of y in the equation. So consider the Haar wavelet mother

ψ(x) = χ[0,1/2[(x) − χ[1/2,1[(x)
and its copies

ψj,k(x) = 2j/2(χ[k2−j ,(k+1/2)2−j[(x) − χ[(k+1/2)2−j ,(k+1)2−j[(x)) .
Consider a level J of resolution and denote M = 2J. For j = 0, 1, . . . , J denote mj = 2j
and for k = 0, 1, . . . ,mj −1, we consider the lexicographical index i = mj+k+1. Thus
the index i lies in the grid 2, 3, . . . , 2M = 2J+1. With this notation, the orthogonal set(ψj,k)j,k will be denoted by (ψi)i, i = 2, 3, . . . , 2M. For i = 1, we set as a convention
ψ1 ≡ χ[0,1[, whichmeans the Haar scaling function. So, the above series development
is the approximation of y (or its derivatives) at the level J.

Now, denote

Pi,1(t) = t∫
0

ψi(s)ds and Pi,l(t) = t∫
0

Pi,l−1(s)ds; l = 2, 3, . . .
We get, for example,

Pi,1(t) = √mj

{{{{{{{
t − k

mj
, t ∈ [ kmj

, k+0.5mj
[

k+1
mj
− t, t ∈ [ k+0.5mj

, k+1mj
[

0, elsewhere .

and

Pi,2(t) = √mj

{{{{{{{{{{{{{{{
0, t ∈ [0, k

mj
]

1
2 (t − k

mj
)2, t ∈ [ kmj

, k+0.5mj
]

1
4m2

j
− 1

2 (t − k+1mj
)2, t ∈ [ k+0.5mj

, k+1mj
]

1
4m2

j
, t ∈ [ k+1mj

, 1]
Now, write

y󸀠󸀠(t) = M∑
i=1
aiψi(t) .

Hence,

y󸀠(t) = M∑
i=1
aiPi,1(t) + C1

and

y(t) = M∑
i=1
aiPi,2(t) + C1t + C2 ,
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where C1 and C2 are constants related to the boundary (and/or initial) conditions.
Next, it remains to compute on the grid tl = l−0.5

mj
, l = 1, 2, . . . , 2mj, j = 0, 1, . . . , J to

obtain a matrix system with unknown ais.
In [136], the numerical solution of (6.1) with Λ = 5 and J = 3 has been provided

and compared with the exact solution

y(t) = t − 4t3 + 165 t5
and the initial conditions

y(0) = 0 and y󸀠(0) = 1 .
Table 6.1 is obtained.

Table 6.1: Exact and Haar wavelet numerical solutions of (6.1).

t/32 Numerical solution Exact solution

1 0.0309 0.0311
3 0.0898 0.0905
5 0.1375 0.1413
7 0.1750 0.1758
9 0.1749 0.1979

11 0.1782 0.1966
13 0.1628 0.1735
15 0.1306 0.1292
17 0.0381 0.0669
19 − 0.0110 − 0.0074
21 − 0.0518 − 0.0848
23 − 0.0837 − 0.1527
25 − 0.0577 − 0.1948
27 − 0.0471 − 0.1905
29 − 0.0083 − 0.1148
31 − 0.0472 0.0624

In terms of error estimates, this gives an L2-error‖yexact − yapprox‖ = 6.63 × 10−2 .
In terms of graphic illustration, we obtained Figure 6.1.

Now, the same techniques are applied to the Hermite equation (6.2) with λ = 3,
J = 3, to obtain the exact solution

y(x) = x − 2
3
x3

and the initial conditions

y(0) = 0 and y󸀠(0) = 1
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Fig. 6.1: Exact and Haar wavelet numerical solutions of (6.1).

Table 6.2: Exact and Haar wavelet numerical solutions of (6.2).

t/32 Numerical solution Exact solution

1 0.0312 0.0312
3 0.0931 0.0932
5 0.1530 0.1537
7 0.2111 0.2118
9 0.2618 0.2664

11 0.3127 0.3167
13 0.3585 0.3616
15 0.3993 0.4001
17 0.4068 0.4313
19 0.4362 0.4542
21 0.4594 0.4678
23 0.4768 0.4712
25 0.4875 0.4634
27 0.4928 0.4433
29 0.4925 0.4101
31 0.4867 0.3627

yielded Table 6.2.
In terms of error estimates, this gives an L2-error‖yexact − yapprox‖ = 4.05 × 10−2 .
In terms of graphic illustration, we obtained Figure 6.2.
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Fig. 6.2: Exact and Haar wavelet numerical solutions of (6.2).

6.3 Wavelets for integrodifferential equations

In this section, we present some methods based on wavelets to solve integrodifferen-
tial equations. We review one famous work developed in [87] where the authors ap-
plied some spherical types of wavelets to develop numerical solutions of the n-order
integrodifferential problem{{{{{{{{{

n∑
i=0
λiy(i)(x) − 2π∫

0

k(x, t)y(t)dt = g(x) ,
y(i)(0) = yi , i = 1, 2, . . . , n (6.3)

where k is an L2 smooth function and 2π-periodic according to the first variable, and y
and g are also L2 2π-periodic. y is of course the unknown function to be approximated.

The basic idea is to apply trigonometric Hermite interpolation to obtain a peri-
odic wavelet analysis. The authors in [87] noticed that one main difficulty in applying
wavelets for the representation of integral operators is that the quadrature leads to
potentially high cost with a sparse matrix. This was the starting point behind the ap-
plication of a special type of wavelet bases to simplify the computation expense.

Next, trigonometric or circular wavelets were introduced based on Dirichlet ker-
nels. For m ∈ ℕ, let

Dm(x) = 12 + m∑
k=1

cos(kx) and D̃m(x) = m∑
k=1

sin(kx) .
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Denote
xj,m = mπ2j , j ≥ 0, m = 0, 1, . . . , 2j+1 − 1

for the subdivision of the interval [0, 2π)with a dyadic grid. The scaling functions are
defined as follows:

Φ0
j,0(x) = 1

22j+1
2j+1−1∑
k=0

Dk(x) ,
Φ1
j,0(x) = 1

22j+1
(D̃2j+1−1(x) + 12 sin(2j+1x)) ,

and for s = 0; 1 and m = 0, 1, . . . ; 2j+1 − 1,
Φsj,m(x) = Φsj,0(x − xj,m) .

The approximation spaces Vj are defined as

Vj = span(Φ0
j,m ,Φ

1
j,m; m = 0, 1, . . . , 2j+1 − 1) .

The associated wavelet functions are defined as follows:

Ψ0
j,0(x) = 1

2j+1
cos(2j+1x) + 1

322j+1
2j+2−1∑
k=2j+1+1

(32j+1 − k) cos(kx) ,
Ψ1
j,0(x) = 1

22j+3
sin(2j+2x) + 1

322j+1
2j+2−1∑
k=2j+1+1

sin(kx)
and for s = 0; 1 and m = 0, 1, . . . ; 2j+1 − 1,

Ψsj,m(x) = Ψsj,0(x − xj,m) .
The approximation spaces Vj are defined as

Wj = span(Ψ0
j,m , Ψ

1
j,m; m = 0, 1, . . . , 2j+1 − 1) .

Next, the idea proceeds as usual to project the differential equation on an approxima-
tion space Vj in a given level j. So, the functions y(x), k(x, t), and g(x) are approxi-
mated using trigonometric scaling functions as{{{{{{{{{{{{{

y(x) ≈ Φ(x)α ,
k(x, t) ≈ Φ(x)KΦ(t) ,
and
g(x) ≈ Φ(x)β , (6.4)

where Φ(x) andΦ(t) are matrices depending on the scaling functions and the param-
eters of the integrodifferential equation (6.3), K and β are vectors obtained from the
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functions k(x, t) and g(x). Precisely, β is 2J+2×1 and K is 2J+2×2J+2. Finally, α is com-
posed of the coordinates of the projection vector of y(x) on the space Vj. Substituting
these approximations into the system (6.3) leads to a linear system of equations with
2J+2 unknowns and equations, which can be solved to find α and thus the unknown
function y(x).

The following result is proved in [87] and shows the convergence and its rate of
the approximation solution to the exact one. Under the hypothesis of problem (6.3),
we have ‖y − yJ‖2 ≤ C2−2(J+1)( n∑

i=0
λi J i + 2) .

6.4 Wavelets in image and signal processing

In this section, we explain somemethods to construct wavelets adapted to image pro-
cessing on the sphere. We aim to review the methods developed in [3] of constructing
wavelets on the sphere. A first example is related to Haar wavelets. We introduce the
so-called sphericalHaarwavelets (SHW). For a resolution j and a pixel k on the sphere,
we have one scaling function ϕj,k and three wavelet functions ψm,j,k; m = 1, 2, 3.
Next, the sphere is subdivided according to the number Nside of pixels, Nside = 2j−1,
which yields a number nj = 12×4j−1 of pixels for each surface μj. The scaling function
and the three wavelets are defined by

ϕj,k(x) = {{{1, if x ∈ Sj,k
0, otherwise

ψ1,j,k = ϕj+1,k0 + ϕj+1,k2 − ϕj+1,k1 − ϕj+1,k34μj+1

ψ2,j,k = ϕj+1,k0 + ϕj+1,k1 − ϕj+1,k2 − ϕj+1,k34μj+1

ψ3,j,k = ϕj+1,k0 + ϕj+1,k3 − ϕj+1,k1 − ϕj+1,k24μj+1

The kjs j = 0, 1, 2, 3 represent the four pixels at the resolutionor the level j+1obtained
from the pixel k of the resolution level j. The scaling (approximation) coefficients at
the level j and the position k are then evaluated using those of the j+1 level bymeans
of a filter relation as

aj,k = 14 3∑
m=0

aj+1,km . (6.5)
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The wavelet (detail) coefficients are also related by means of a similar filter,

d1,j,k = μj+1(aj+1,k0 + aj+1,k2 − aj+1,k1 − aj+1,k3)
d2,j,k = μj+1(aj+1,k0 + aj+1,k1 − aj+1,k2 − aj+1,k3)
d3,j,k = μj+1(aj+1,k0 + aj+1,k3 − aj+1,k1 − aj+1,k2)

It holds that such a transformation is orthogonal and leads to an exact reconstruction
of the function f analyzed. Let

f(xi) = nj0−1∑
l=0

λj0 ,lϕj0 ,j(xi) + j−1∑
j=j0

3∑
m=0

mj−1∑
l=0

γm,j,lψm,j,l(xi) . (6.6)

Themaindisadvantageof this typeof transform is the fact that it dependson the image
to be analyzed and thus is affected by rotations, for example.

To overcome this ambiguity, a transformation is introduced in [3] and dealt with
using axisymmetric stereographic wavelets obtained from the previous transform. To
guarantee a best transposition of plane functions on the sphere, it is possible to ap-
ply stereographic projection of radial wavelets. Indeed, consider the transformation
π−1 : x → ω = π−1x = (θ(r), ϕ), where θ(r) = 2 arctan( r2 ). A radial wavelet can be
transformed into a spherical wavelet via one rotation ω0 = (θ0, ϕ0) according to the
axis Oy and Oz, respectively.

Such transforms yieldwith a naturalway a convolution product on the sphere. Let
f(ω) be defined on the plane and ψ(θ) a radial wavelet. We can define the convolution
as

ϕ(θ) ∗ f(θ, ϕ) = ∫
S2

dΩψ∗(R−1ϱ ω)F(ω) . (6.7)

The constructed wavelets are next decomposed bymeans of spherical harmonics Yl,0.
Thus the convolution of a function f decomposed as

f(ω) = L∑
l=0,m<|l|

âlmYlm

with an axisymmetric filter is evaluated as

ϕ(θ) ∗ f(θ, ϕ) = ∞∑
l=0

l∑
m=−l

âlmφ̂l,0Yl,m(θ, ϕ) . (6.8)

Consider next the dilation operator[D(a)G(ω)] = λ 1
2 (a, θ)G(D−1a ω) , (6.9)

where λ 1
2 (a, θ) is a normalization factor defined by

λ
1
2 (a, θ) = a−1[1 + tan2( θ2 )]

1 + a−2 tan2( θ2 ) (6.10)
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The dilation operator satisfies

Da(θ, ϕϕ) = (θa(θ), ϕ) , (6.11)

where θa(θ) is defined on θ ∈ [0, π[→ θa ∈ [0, π[ by
tan( θa(θ)2 ) = a tan( θ2) . (6.12)

The south pole of the sphere is invariant. Note that the dilation operator is somehow
an extension of the classical dilation on the plane to the case of the sphere and it
associates with a similar sphere.

In [3], some examples are developed to illustrate the efficiency of the method. A
first example was based on the well-known Mexican hat wavelet. On the plane, the
radial version of the Mexican hat is defined by

ψ(r) = 1√2π (2 − ( rR )2) e− r2
2R2 (6.13)

where R is a scaling factor and r is the distance to the center of the wavelet.
Such a function is applied next to introduce a continuous transform adapted to

spherical images. Applying the inverse stereographic projection, an extension to a
spherical Mexican hat has been developed. Consider

ψs(δ) = 1√2πNR (1 + ( δ2)2)2 (2 − δR)2 e− δ2
2R2 (6.14)

where R is always a scaling factor and NR is a normalization one,

NR = (1 + R22 + R44 ) 1
2

(6.15)

and δ is the distance to the tangent point associated with the polar angle θ of the
inverse stereographic projection,

δ = 2 tan( θ2) . (6.16)

The resulting wavelet is a zonal function,which permits one to evaluate spherical har-
monics coefficients. It holds in fact that the radialMexicanhatmay induce a privileged
direction to yield a directional spherical wavelet. Let

ψmex(ω) = √2π N(σx , σy) (1 + tan2 ( θ2))[1 − 4 tan2 θ
2

σ2x + σ2y (σ2yσ2x cos2 ϕ

+σ2y
σ2x

cos2 ϕ)] e−2 tan2 tan( θ2 )(cos2 ϕ
σ2x
+sin2 ϕ

σ2y
)

(6.17)

Here, N(σx , σy) is a normalization constant,
N(σx , σy) = (σ2x + σ2y)[σxσy(3σ4x + 3σ4y + 2σxσy)] −12 (6.18)
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6.5 Wavelets for time-series processing

In [92], a well-adapted method to represent scattered spherical data by multiscale
spherical wavelets has been developed yielding efficient algorithms for decomposi-
tion and reconstruction. The proposed method is illustrated by numerical examples
employed to analyze and compress the surface air temperatures observed at a global
network of weather stations.

The method has been applied on scattered data obtained from climatology. The
earth is considered a sphere so that a meteorological variable T(η), representing
the surface air temperature, can be treated as a spherical function. The variable
η = (cosφ cos θ, cos φ sin θ, sinφ) denotes the unit vector that points to a location on
the earth from the center of the sphere, with φ and θ being the latitude and longitude
of the location. In practice, the function T(η) is of course observed at a finite number
of observing sites, denoted by Tj = T(ηj) on some grid j = 1, 2, . . . , J, which enables
one to see it as a time series. We explain briefly the idea developed in [92] yielding
a multiresolution analysis on the sphere. Let N1 = {ηj; j = 1, . . . , J} be the source
spacial grid to represent T(η), and N2 = {ηj; j = 1, . . . , K} with some K < J being a
smaller network obtained by removing the last J − K instants from N1. Consider next
a representation of the function T by means of a spherical harmonics basis

T1(η) = J∑
j=1
β1,jψ(η.ηj)

and similarly a representation

T2(η) = K∑
j=1
β2,jψ(η.ηj) .

This leads to approximation spaces

V1 = span{ψ(., ηj); ηj ∈ N1} and V2 = span{ψ(., ηj); ηj ∈ N2} .
As it is seen, T2 can be understood as the projection of T1 on V2. By denoting D1(η) =
T1(η) − T2(η) and the collection of D1(η) byW1, we observe that V1 = V2⨁W1. The
space W1 represents the details lost by using the smaller grid N2 instead of N1 for
the description of the time series T1(ηj). This means in other words that any function
T1(η) in V1 can be decomposed as

T1(η) = T2(η) + D1(η) , (6.19)

where T2(η) ∈ V2 and D1(η) ∈ W1, which explains the multiresolution analysis.
The decomposition (6.19) above canbe naturally generalized to a nested sequence

N1 ⊃ N2 ⊃ ⋅ ⋅ ⋅ ⊃ NL and the corresponding spaces of spherical functions V1 ⊃ V2 ⊃⋅ ⋅ ⋅ ⊃ VL satisfying
Vl+1 = Vl⨁Wl
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for all l, and consequently, T1(η)will be decomposed as

Tl(η) = Tl(η) + Dl−1(η) + ⋅ ⋅ ⋅ + D1(η) (6.20)

for l = 2, . . . , L.
This decomposition leads to an efficient recursive algorithm. Indeed, let gl(η) be

the vector formed by the spherical wavelets associated with Nl and let β = vec{βl,j}Nlj=1
be the vector or spherical wavelets coefficients of Tl(η). Then we have the following
relations, which explain a decomposition/reconstruction algorithm concept:

Tl+1(η) = βTl+1gl+1(η), Dl(η) = Tl(η) − Tl+1(η) = γTl wl(η) ,
where

βl = vec{αl+1, γl}, β+1 = αl+1 + Elγl , wl(η) = hl(η) − ETl gl+1(η) .
Here, the sequence hl(η) is defined by the relation gl(η) = {gl+1(η), hl(η)}.

In [92], an application of such theory was developed based on a real data set of
the average surface air temperatures observed during the period of December 1967 to
February 1968. A multiscale spherical wavelets decomposition transformed the time
series into multiscale components to discover local anomalies at different scales and
a compression of the data was applied based on a subset of wavelet coefficients.
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