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Preface to the second volume ofModel Order
Reduction

This second volume of the Model Order Reduction handbook project mostly focuses
on snapshot-based methods for parameterized partial differential equations. This ap-
proach has seen tremendous development in the past two decades, especially in the
broad domain of computational mechanics. However, the main ideas were already
known long before; see, e. g., the seminal work by J. L. Lumley, “The structure of in-
homogeneous turbulent flows,” in Atmospheric Turbulence and Radio Wave Propaga-
tion, 1967, for proper orthogonal decomposition (POD), and the one by A. K. Noor and
J. N. Peters, Reduced basis technique for nonlinear analysis of structures, AIAA Journal,
Vol. 4, 1980, for the reduced basis method.

The most popular mathematical strategy behind snapshot-based methods relies
on Galerkin projection on finite-dimensional subspaces generated by snapshot so-
lutions corresponding to a special choice of parameters. Because of that, it is often
termed as a projection-based intrusive approach. A suitable offline-online splitting of
the computational steps, as well as the use of hyperreduction techniques to be used
for the nonlinear (or nonaffine) terms and nonlinear residuals, is key to efficiency.

The first chapter, by G. Rozza et al., introduces all the preliminary notions and
basic ideas to start delving into the topic of snapshot-based model order reduction.
All the notions will be recast into a deeper perspective in the following chapters.

The second chapter, byGrässle et al., provides an introduction to PODwith a focus
on (nonlinear) parametric partial differential equations (PDEs) and (nonlinear) time-
dependent PDEs, and PDE-constrained optimization with POD surrogate models as
application. Several numerical examples are provided to support the theoretical find-
ings.

A second scenario in the methodological development is provided in the third
chapter, by Chinesta and Ladevèze, on proper generalized decomposition, a research
line significantly grown in the last couple of decades also thanks to real-world applica-
tions. Basic concepts used here rely on the separation of variables (time, space, design
parameters) and tensorization.

The fourth chapter, by Maday and Patera, focuses on the reduced basis method,
including a posteriori error estimation, as well as a primal-dual approach. Several
combinations of these approaches have been proposed in the last few years to face
problems of increasing complexity.

When facing nonaffine and nonlinear problems, the development of efficient re-
duction strategies is of paramount importance. These strategies can require either
global or local (pointwise) subspace constructions. This issue is thoroughly covered in
the fifth chapter, by Farhat et al., where several front-end computational problems in
the field of nonlinear structural dynamics, scattering elastoacousticwave propagation
problems, and a parametric PDE-ODE wildfire model problem are presented.

Open Access. © 2021 Peter Benner et al., published by De Gruyter. This work is licensed under the
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

https://doi.org/10.1515/9783110671490-201



VI | Preface to the second volume ofModel Order Reduction

In the sixth chapter, by Buhr et al., localized model order reduction is presented.
With this approach, the model order reduction solution is constructed via a suitable
coupling of local solutions whose support lies within a subdomain of the global com-
putational domain. Applications are provided for multiscale, linear elasticity, and
fluid-flow problems.

Last but not least, the final chapter, by Brunton and Kutz, addresses a snapshot-
based nonintrusive data-driven method. In particular, dynamic mode decomposition
and its Koopman generalization are used to discover low-rank spatio-temporal pat-
terns of activity, and to provide approximations in terms of linear dynamical systems,
which are amenable to simple analysis techniques. These methods can be used in a
nonintrusive, equation-freemanner for improved computational performanceof para-
metric PDE systems.

Several chapters contain instructive descriptions of algorithms that can serve as
templates for implementing the discussed approaches in problem-specific environ-
ments.

Peter Benner, Stefano Grivet-Talocia, Alfio Quarteroni, Gianluigi Rozza,
Wil Schilders, Luìs Miguel Silveira

Magdeburg, Germany
Torino, Milano, Trieste, Italy
Eindhoven, The Netherlands
Lisbon, Portugal

June 2020
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Gianluigi Rozza, Martin Hess, Giovanni Stabile, Marco Tezzele, and
Francesco Ballarin
1 Basic ideas and tools for projection-based
model reduction of parametric partial
differential equations

Abstract: We provide first the functional analysis background required for reduced-
order modeling and present the underlying concepts of reduced basis model reduc-
tion. The projection-based model reduction framework under affinity assumptions,
offline-online decomposition, and error estimation are introduced. Several tools for
geometry parameterizations such as free form deformation, radial basis function in-
terpolation, and inversedistanceweighting interpolationare explained. The empirical
interpolation method is introduced as a general tool to deal with nonaffine parameter
dependency and nonlinear problems. The discrete and matrix versions of the empir-
ical interpolation are considered as well. Active subspace properties are discussed to
reduce high-dimensional parameter spaces as a preprocessing step. Several examples
illustrate the methodologies.

Keywords: reducedbasismethod, radial basis function interpolation, shapemorphing
techniques, empirical interpolation method, active subspaces

MSC 2010: 65D99, 65J05, 65M15

Introduction

Parametric model order reduction (MOR) techniques have been developed in recent
decades to deal with increasingly complex computational tasks. The ability to com-
pute how quantities of interest change with respect to parameter variations provides
insight and understanding, which is vital in all areas of science and engineering.
Model reduction thus allows to deal with optimization or inverse problems of a whole
new scale. Each chapter of the handbook gives an in-depth view of a MOR method,
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a particular application area, and analytical, numerical, or technical aspects of soft-
ware frameworks for model reduction.

There exist a large number of MOR techniques used in many areas of science and
engineering to improve computational performances and contain costs in a repeti-
tive computational environment, such as many-query and real-time computing [93].
We assume a given parameterized partial differential equation (PDE) as starting point
of the model reduction procedure. Typical parameters of interest are material coeffi-
cients, corresponding to physical qualities of the media which constitute the domain
where the PDE is solved. Also a variable geometry can be of special interest in a task to
find the optimal device configuration. Physical states such as the temperature might
be considered an input parameter. It is a task of themathematicalmodeling to identify
the parameters of interest and how they enter the PDE. Once a parameterized model
is identified, the MOR techniques described in this and the following chapters can be
used either in a “black-box” fashion (nonintrusive way) or by intrusive means, which
will be explained in detail, whenever this is necessary.

The particular numerical method to solve a PDE is most often not relevant to the
model reduction procedure. We will therefore assume there is a numerical method
available, which solves the problem to any required accuracy, and move seamlessly
from the continuous form to the discretized form.

This chapter covers briefly the functional analysis framework relevant to many,
but not all, MOR methods. Presented is the starting point of PDE-oriented MOR tech-
niques, such as the POD method found in Chapter 2 of this volume, the PGD method
found in Chapter 3 of this volume, the reduced basismethod found in Chapter 4 of this
volume, the hyperreduction technique found in Chapter 5 of this volume, the localized
reduced-ordermodeling (ROM) found in Chapter 6 of this volume, and the data-driven
methods found in Chapter 7 of this volume.

In particular, Section 1.1 provides what is needed for the projection-based ROM.
Starting from the setting of the classical Lax–Milgram theorem for elliptic PDEs in Sec-
tions 1.1.1 and 1.1.2, a numerical discretization is introduced in Section 1.1.2.1. Due to
brevity of representation, many concepts of functional analysis and theory of PDEs
are only touched upon. Many references to the literature for further reading are given.

Projection-based ROM is presented in Section 1.1.3, with the following topics cov-
ered in detail: proper orthogonal decomposition (POD) in Section 1.1.3.1, the greedy
algorithm in Section 1.1.3.2, the projection framework in Section 1.1.3.3, affine param-
eter dependency in Section 1.1.3.4, the offline-online decomposition in Section 1.1.3.6,
and basic error estimation in Section 1.1.4.

Section 1.2 introduces efficient techniques for geometric parameterizations, aris-
ing from a reference domain approach, such as free form deformation (FFD) in Sec-
tion 1.2.1, radial basis function (RBF) interpolation in Section 1.2.2, and inverse dis-
tance weighting (IDW) in Section 1.2.3.

Awidely usedmethod to generate an approximate affineparameter dependency is
the empirical interpolation method (EIM). The original EIM is presented in Section 1.3
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as well as the discrete EIM in Section 1.3.3 and further options in Section 1.3.4. Several
numerical examples show the use of the EIM in Section 1.3.5.

Section 1.4 introduces active subspaces as a preprocessing step to reduce the pa-
rameter space dimension. Corresponding examples are provided in Section 1.4.3 and
also nonlinear dimensionality reduction is briefly discussed in Section 1.4.5.

A brief conclusion and an outlook of the handbook are given in Section 1.5.

1.1 Basic notions and tools

We briefly cover a few main results of linear functional analysis and the analysis of
PDEs. This material serves as a reminder of the underlying concepts of model reduc-
tionbut cannot replace a textbookon these subjects. For amore thoroughbackground,
we refer to the literature on functional analysis [30, 110], PDEs [1, 47, 82, 88], and nu-
merical methods [2, 6, 29, 52, 80, 105].

1.1.1 Parameterized partial differential equations

Let Ω ⊂ ℝd denote a spatial domain in d = 1, 2, or 3 dimensions with boundary 𝜕Ω.
A Dirichlet boundary ΓD ⊂ 𝜕Ω is given, where essential boundary conditions on the
field of interest are prescribed. Introduce a Hilbert space V(Ω) equipped with inner
product (⋅, ⋅)V and induced norm ‖ ⋅ ‖V . A Hilbert space V(Ω) is a function space, i. e., a
function u ∈ V(Ω) is seen as a point in the vector space V , as is common in functional
analysis. Each u ∈ V(Ω) defines a mapping x ∈ Ω → u(x) ∈ ℝ or x ∈ Ω → u(x) ∈ ℂ,
depending on whether a real or complex Hilbert space is considered. In many appli-
cations, V is a subset of the Sobolev space H1(Ω) as V(Ω) = {v ∈ H1(Ω): v|ΓD = 0}.
Vector-valued Hilbert spaces can be constructed using the Cartesian product of V(Ω).
Given a parameter domain 𝒫 ⊂ ℝp, a particular parameter point is denoted by the
p-tuple μ = (μ1, μ2, . . . , μp). The set of all linear and continuous forms on V defines the
dual space V ; let L ∈ ℒ(V ,V ) denote a linear differential operator.

A field variable u ∈ V : Ω→ ℝ is defined implicitly as the solution to a parameter-
ized linear PDE through the operator L : V × 𝒫 → V  with L(⋅;μ) ∈ ℒ(V ,V ) and load
vector fL(μ) ∈ V  for each fixed μ, as

L(u;μ) = fL(μ). (1.1)

As in the case of function spaces, operators between function spaces form vector
spaces themselves, such as L(⋅;μ) ∈ ℒ(V ,V ), with ℒ(V ,V ) being the space of opera-
tors mapping from the vector space V to V .

Typical examples of scalar-valued linear PDEs are the Poisson equation, the heat
equation, and thewave equation, while typical examples of vector-valued linear PDEs
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are the Maxwell equations and the Stokes equations. The nonlinear case will be ad-
dressed in various chapters as well: Examples of nonlinear PDEs include the Navier–
Stokes system and the equations describing nonlinear elasticity.

1.1.2 Parameterized variational formulation

The variational form or weak form of a parameterized linear PDE in the continuous
setting is given as

a(u(μ), v;μ) = f (v;μ) ∀v ∈ V , (1.2)

with bilinear form a : V × V × 𝒫 → ℝ and linear form f : V × 𝒫 → ℝ. In many
application scenarios, a particular output of interest is sought, givenby the linear form
l : V × 𝒫 → ℝ as

s(μ) = l(u(μ);μ). (1.3)

In the case that a(⋅, ⋅;μ) is symmetric and l = f , the problem is called compliant.
For each μ ∈ 𝒫 assume coercivity and continuity of the bilinear form a(⋅, ⋅;μ), i. e.,

a(w,w;μ) ≥ α(μ)‖w‖2V , (1.4)
a(w, v;μ) ≤ γ(μ)‖w‖V ‖v‖V , (1.5)

and continuity of the linear form f (⋅;μ),

f (w;μ) ≤ δ(μ)‖w‖V , (1.6)

with parameter-independent bounds, which satisfy 0 < α ≤ α(μ), γ(μ) ≤ γ < ∞, and
δ(μ) ≤ δ <∞. To do actual computations, the bilinear form is discretized into a linear
equation. The coercivity property means that the matrix discretizing the bilinear form
will be positive definite.

For fixed parameter the well-posedness of (1.2) is then established by the Lax–
Milgram theorem.

Theorem 1.1 (Lax–Milgram theorem). Let a : V × V → ℝ be a continuous and coercive
bilinear form over a Hilbert space V and f ∈ V  a continuous linear form. Then the
variational problem

a(u, v) = f (v) ∀v ∈ V (1.7)

has a unique solution u ∈ V and we have

‖u‖V ≤
1
α
‖f ‖V , (1.8)

with the coercivity constant α > 0 of the bilinear form.
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Thus, in the parametric setting, the μ-dependence also carries over to the coerciv-
ity constant as α = α(μ).

The function space in which the field variable resides is called the ansatz space,
while the second function space is called the test space, i. e., where a test function v
resides. If the test space is distinct from the ansatz space, then the bilinear form is
defined over a : V × W × 𝒫 → ℝ for V and W Hilbert spaces. With f ∈ W  and for
fixed μ, the well-posedness is then established through the Banach–Nečas–Babuška
theorem.

Theorem 1.2 (Banach–Nečas–Babuška theorem). Let V and W denote Hilbert spaces,
let a : V × W → ℝ be a continuous bilinear form, and f ∈ W . Then the variational
problem

a(u, v) = f (v) ∀v ∈ W (1.9)

has a unique solution if and only if
(i) the inf-sup condition holds, i. e.,

∃β > 0 , s. t., β ≤ inf
v∈V\{0}

sup
w∈W\{0}

a(v,w)
‖v‖V ‖w‖W

,

(ii) ∀w ∈ W :

{a(v,w) = 0 ∀v ∈ V} ⇒ w = 0.

1.1.2.1 Discretized parameterized variational formulation

The method of weighted residuals is used to cast (1.1) into a discrete variational
formulation. Given the linear PDE L(u;μ) = fL(μ), consider a discrete, i. e., finite-
dimensional, approximation uh ∈ Vh ⊂ V to u as

uh(μ) =
Nh

∑
i=1

u(i)h φ
i. (1.10)

The dimension of Vh is Nh and the set of ansatz functions φi(x) : Ω → ℝ belong
to V . The u(i)h are scalar coefficients such that the vector uh = (u

(1)
h , . . . , u

(Nh)
h )

T ∈ ℝNh is
the coordinate representation of uh in the basis {φi} ofVh. A conforming discretization
is considered, i. e., Vh ⊂ V holds.

Plugging (1.10) into (1.1) yields the discrete residual R(uh(μ)) = L(uh(μ);μ) −
fL(μ) ∈ V . To compute the scalar coefficients u(i)h , Galerkin orthogonality is invoked,
as

0 = (φj,R)(V ,V ), j = 1 . . .Nh, (1.11)

where (⋅, ⋅)(V ,V ) is the duality pairing between V and V .
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In short, Galerkin orthogonality means that the test space is orthogonal to the
residual. In Ritz–Galerkinmethods, the residual is tested against the same set of func-
tions as the ansatz functions. If test space and trial space are different, one speaks of
a Petrov–Galerkin method. Numerous discretization methods can be understood in
terms of the method of weighted residuals. They are distinguished by the particular
choice of trial and test space.

The well-posedness of the discrete setting follows the presentation of the contin-
uous setting, by casting the equations and properties over Vh instead of V .

The weak form in the discrete setting is given as

a(uh(μ), vh;μ) = f (vh;μ) ∀vh ∈ Vh, (1.12)

with bilinear form a : Vh × Vh × 𝒫 → ℝ and linear form f : Vh × 𝒫 → ℝ. The discrete
bilinear form is then derived from (1.11) through the integration-by-parts formula and
Green’s theorem.

Correspondingly, the discrete coercivity constant αh(μ) and the discrete continuity
constant γh(μ) are defined as

αh(μ) = min
wh∈Vh

a(wh,wh;μ)
‖wh‖2Vh

, (1.13)

γh(μ) = max
wh∈Vh

max
vh∈Vh

a(wh, vh;μ)
‖wh‖Vh
‖vh‖Vh

. (1.14)

The well-posedness of (1.2) is then analogously established by the Lax–Milgram
theorem and the Banach–Nečas–Babuška theorem. Cea’s lemma is a fundamental re-
sult about the approximation quality that can be achieved.

Lemma 1.3 (Cea’s lemma). Let a : V × V → ℝ be a continuous and coercive bilinear
form over a Hilbert space V and f ∈ V  a continuous linear form. Given a conforming
finite-dimensional subspace Vh ⊂ V, the continuity constant γ, and coercivity constant
α of a(⋅, ⋅), for the solution uh to

a(uh, vh) = f (vh) ∀vh ∈ Vh, (1.15)

we have

‖u − uh‖V ≤
γ
α

inf
vh∈Vh
‖u − vh‖V . (1.16)

The stiffnessmatrix𝔸h ∈ ℝNh×Nh assembles the bilinear form entrywise as (𝔸h)ij =
a(φj,φi). The load vector fh ∈ ℝNh is assembled entrywise as (fh)i = f (φi) and the
solution vector is denoted uh with coefficients u(j)h .

Then solving (1.12) amounts to solving the linear system

𝔸huh = fh. (1.17)
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Themost commondiscretizationmethod is the finite elementmethod [13], besides
the finite difference [97], discontinuous Galerkin [4], finite volume [48], and spectral
element methods [19].

1.1.3 Model reduction basic concepts

A wide variety of ROM methods exist today, thanks to large research efforts in the
last decades. Reduced basis MOR is a projection-based MOR method and also shares
many features with other MOR methods, so that the topics mentioned here will occur
throughout the handbook. Two common algorithms for the generation of a projection
space, POD and the greedy algorithm, are presented first.

1.1.3.1 Proper orthogonal decomposition

Assume a sampled set of high-fidelity solutions {uh(μi), i = 1, . . . ,Nmax}, i. e., solutions
to (1.12) or (1.17), respectively. The discrete solution vectors are stored columnwise in a
snapshot matrix 𝕊 ∈ ℝNh×Nmax . POD compresses the data stored in 𝕊 by computing an
orthogonal matrix𝕍, which is a best approximation in the least-squares sense to 𝕊. In
particular, the POD solution of size N is the solution to

min
𝕍∈ℝNh×N𝕊 −𝕍𝕍T𝕊F , (1.18)

subject to𝕍T𝕍 = 𝕀N×N , (1.19)

with ‖ ⋅ ‖F being the Frobenius norm and 𝕀N×N being the identity matrix.
There exists a solution to (1.18)–(1.19) according to the Eckardt–Young–Mirsky the-

orem [43], which can be computed with singular value decomposition (SVD) as

𝕊 = 𝕌Σℤ, (1.20)

with orthogonal matrix 𝕌 ∈ ℝNh×Nh , rectangular diagonal matrix Σ ∈ ℝNh×Nmax , and
orthogonal matrix ℤ ∈ ℝNmax×Nmax . The solution 𝕍 is composed of the first N col-
umn vectors of 𝕌. They are also called the POD modes. The diagonal entries {σi, i =
1, . . . ,min(Nh,Nmax)} of Σ are nonnegative and are called singular values. We have

min
𝕍∈ℝNh×N𝕊 −𝕍𝕍T𝕊F =

min(Nh ,Nmax)

∑
i=N+1

σi. (1.21)

Thus, the neglected singular values give an indication of the approximate trunca-
tion error. In practise, a high tolerance threshold like 99% or 99.99% is chosen and
N is determined so that the sum of the first N singular values reaches this percentage
of the sum of all singular values. In many applications, an exponential singular value
decay can be observed, which allows to reach the tolerance with a few POD modes.
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1.1.3.2 Greedy algorithm

The greedy algorithm also computes an orthogonal matrix 𝕍 ∈ ℝNh×N to serve as a
projection operator, just as in the POD case. The greedy algorithm is an iterative pro-
cedure, which enriches the snapshot space according to where an error indicator or
error estimator Δ attains its maximum. Starting from a field solution at a given initial
parameter value, the parameter location is sought, whose field solution is worst ap-
proximated with the initial solution. This solution is then computed and appended to
the projection matrix to obtain a two-dimensional projection space. The greedy typi-
cally searches for new snapshot solutions within a discrete surrogate P of the parame-
ter space𝒫. The process is repeateduntil a given tolerance on the error estimator is ful-
filled. The error estimator is residual-based and estimates the error betweena reduced-
order solve for a projection space 𝕍 and the high-fidelity solution (Section 1.1.4). The
greedy algorithm is stated in pseudo-code in Algorithm 1.1.

Algorithm 1.1: The greedy algorithm.
Input: discrete surrogate P of parameter space 𝒫, approximation tolerance tol,
initial parameter μ1

Output: projection matrix𝕍
N = 1
𝕍1 =

uh(μ1)
‖uh(μ1)‖

whilemaxμ∈P Δ(μ) > tol do
N = N + 1
μN = argmax

μ∈P
Δ(μ)

solve (1.17) at μN for uh(μN )
orthonormalize uh(μN ) with respect to𝕍N−1 to obtain ζN
append ζN to𝕍N−1 to obtain𝕍N

end while
set𝕍 = 𝕍N

1.1.3.3 Reduced-order system

Starting from the discrete high-fidelity formulation (1.12), another Galerkin projection
is invoked to arrive at the reduced-order formulation. Assume a projection space VN
is then determined through either a POD or the greedy sampling, with 𝕍 ∈ ℝNh×N

denoting a discrete basis of VN . Thus VN ⊂ Vh and dimVN = N .
The reduced-order variational formulation is to determine uN (μ) ∈ VN , such that

a(uN (μ), vN ;μ) = f (vN ;μ) ∀vN ∈ VN . (1.22)
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Equation (1.17) is then projected onto the reduced-order space as

𝕍T𝔸h𝕍uN = 𝕍
T fh. (1.23)

The reduced systemmatrix𝔸N = 𝕍T𝔸h𝕍 is then a densematrix of small sizeN×N
as depicted in (1.24):

[𝔸N ] =
[[

[

𝕍]]

]

T

[[

[

a(φ1,φ1) . . . . . .
. . . . . . . . .
. . . . . . a(φNh ,φNh )

]]

]

[[

[

𝕍]]

]

. (1.24)

The high-order solution is then approximated as

uh ≈ 𝕍uN . (1.25)

1.1.3.4 Affine parameter dependency

Many MOR algorithms rely on an affine parameter dependency, because the affine
parameter dependency provides the computational efficiency of the model reduc-
tion. Thus, it is a significant advancement from the 2000s [85] over the first use of
ROMs [3, 76].

An affine parameter dependency means that the bilinear form can be expanded
as

a(⋅, ⋅;μ) =
Qa

∑
i=1

Θi
a(μ)ai(⋅, ⋅), (1.26)

and affine expansions hold as

f (⋅;μ) =
Qf

∑
i=1

Θi
f (μ)fi(⋅), (1.27)

l(⋅;μ) =
Ql

∑
i=1

Θi
l(μ)li(⋅), (1.28)

with scalar-valued functions Θi
a : 𝒫 → ℝ,Θ

i
f : 𝒫 → ℝ, and Θ

i
l : 𝒫 → ℝ.

Correspondingly the linear system (1.17) can be expanded as

(
Qa

∑
i=1

Θi
a(μ)𝔸i)uh =

Qf

∑
i=1

Θi
f (μ)fi, (1.29)

as well as the reduced-order form (1.23)

𝕍T(
Qa

∑
i=1

Θi
a(μ)𝔸i)𝕍uN = 𝕍

T
Qf

∑
i=1

Θi
f (μ)fi, (1.30)
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(
Qa

∑
i=1

Θi
a(μ)𝕍

T𝔸i𝕍)uN =
Qf

∑
i=1

Θi
f (μ)𝕍

T fi. (1.31)

MOR relies on an affine parameter dependency, such that all computations de-
pending on the high-order model size can be moved into a parameter-independent
offline phase, while having a fast input-output evaluation online. If the problem is
not affine, an affine representation can be approximated using a technique such as
the EIM (Section 1.3).

1.1.3.5 Affine shape parameterizations: an example

Consider heat conduction in a square domain Ω(x, y) = [0, 1]2. On the left side x = 0,
inhomogeneous Neumann conditions, i. e., a nonzero heat flux, are imposed and on
the right side x = 1, homogeneous Dirichlet conditions, i. e., zero temperature, are
imposed.On the topandbottomsides, homogeneousNeumannconditions, i. e., a zero
heat flux, are imposed. Consider two different media with different conductivities σ1
and σ2 occupying the subdomains Ω1(μ) = [0, μ] × [0, 1] and Ω2(μ) = [μ, 1] × [0, 1], for
μ ∈ 𝒫 = (0, 1), as shown in Figure 1.1. For the sake of clarity, in the rest of this section
we identify the one-dimensional parameter vector μwith its (only) component μ, thus
dropping the bold notation from the symbol.

Figure 1.1: The computational domain is subdivided into
two domains Ω = Ω1 ∪ Ω2, depending on the parameter μ.
Shown here for μ = 0.5.

Choosing μ = 0.5 as the reference configuration, there exist affine transformations
from the reference domain to the actual domain. We have

T1 : Ω1(μ)→ Ω1(μ) : (x, y) → (2μx, y), (1.32)
T2 : Ω2(μ)→ Ω2(μ) : (x, y) → ((2 − 2μ)x, y) + (2μ − 1,0). (1.33)

In general, an affine transformation of a subdomain can be expressed as

Tk : Ωk(μ)→ Ωk(μ) : x → Gk(μ)x + Dk(μ), (1.34)

with x ∈ ℝd, Gk ∈ ℝ
d×d and Dk ∈ ℝ

d in d = 2, 3 spatial dimensions.
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Thus, the bilinear form

a(u, v; μ) = ∫
Ω1(μ)

σ1∇u ⋅ ∇vdx + ∫
Ω2(μ)

σ2∇u ⋅ ∇v dx (1.35)

can be mapped to the reference domain with the inverse affine transformation

T−1k : Ωk(μ)→ Ωk(μ) : x → G−1k (μ)x − G
−1
k (μ)Dk(μ), (1.36)

and integration by substitution as

a(u, v; μ) = ∫
Ω1(μ)

σ1(∇uG
−1
1 (μ)) ⋅ (G

−T
1 (μ)∇v)det(G1(μ)) dx (1.37)

+ ∫
Ω2(μ)

σ2(∇uG
−1
2 (μ)) ⋅ (G

−T
2 (μ)∇v)det(G2(μ)) dx, (1.38)

which establishes the affine parameter dependency (1.26) by computing Θi
a(μ) from

the coefficients of G1 and G2 [85, 84, 28]. That is,

∫
Ω1(μ)

σ1(∇uG
−1
1 (μ)) ⋅ (G

−T
1 (μ)∇v)det(G1(μ)) dx (1.39)

= ∫
Ω1(μ)

σ1((2μ)
−1𝜕xu, 𝜕yu) ⋅ ((2μ)

−1𝜕xv, 𝜕yv)2μ dx (1.40)

= (2μ)−1 ∫
Ω1(μ)

σ1(𝜕xu)(𝜕xv) dx + 2μ ∫
Ω1(μ)

σ1(𝜕yu)(𝜕yv) dx, (1.41)

and

∫
Ω2(μ)

σ2(∇uG
−1
2 (μ)) ⋅ (G

−T
2 (μ)∇v)det(G2(μ)) dx (1.42)

= ∫
Ω2(μ)

σ2((2 − 2μ)
−1𝜕xu, 𝜕yu) ⋅ ((2 − 2μ)

−1𝜕xv, 𝜕yv)(2 − 2μ) dx (1.43)

= (2 − 2μ)−1 ∫
Ω2(μ)

σ2(𝜕xu)(𝜕xv) dx + (2 − 2μ) ∫
Ω2(μ)

σ2(𝜕yu)(𝜕yv) dx, (1.44)

which establishes the affine form (1.26) with Qa = 4, and

Θ1
a(μ) = (2μ)

−1, (1.45)

Θ2
a(μ) = 2μ, (1.46)

Θ3
a(μ) = (2 − 2μ)

−1, (1.47)
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Θ4
a(μ) = 2 − 2μ, (1.48)

and

a1(⋅, ⋅) = ∫
Ω1(μ)

σ1(𝜕xu)(𝜕xv) dx, (1.49)

a2(⋅, ⋅) = ∫
Ω1(μ)

σ1(𝜕yu)(𝜕yv) dx, (1.50)

a3(⋅, ⋅) = ∫
Ω2(μ)

σ2(𝜕xu)(𝜕xv) dx, (1.51)

a4(⋅, ⋅) = ∫
Ω2(μ)

σ2(𝜕yu)(𝜕yv) dx. (1.52)

The second and fourth terms can be further simplified to a term depending on
2μ and a μ-independent term, but in this case it still leaves Qa = 4 terms. In some
cases the number of affine terms can be automatically reduced further using symbolic
computations.

1.1.3.6 Offline-online decomposition

The offline-online decomposition enables the computational speedup of the ROM
approach in many-query scenarios. It is also known as the offline-online paradigm,
which assumes that a computation-intensive offline phase can be performed on a
supercomputer, which generates all quantities depending on the large discretization
size Nh. Once completed, a reduced-order solve, i. e., an online solve for a new pa-
rameter of interest, can be performed with computational cost independent of the
large discretization size Nh. The online phase can thus be performed even on mobile
and embedded devices (Figure 1.2). If a supercomputer is not available, this can be
relaxed, however. There exist heuristic algorithms to make also the offline phase fea-
sible on a common workstation, such that a typical scenario would be that the offline
phase runs overnight and a reduced model is available the next morning.

Figure 1.2: Offline-online paradigm. The complex high-fidelity simulations are carried out in high
performance clusters (HPCs) for given preselected parameters. The solution snapshots can be stored
and the ROM trained. Then in the offline phase the ROM provides approximated solutions at new
untried parameters in real-time on simple portable devices.
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Noting that the terms𝕍T𝔸i𝕍 and𝕍T fi in (1.31) are parameter-independent, they can
be precomputed, prior to any ROM parameter sweep. This will store small-sized dense
matrices of dimension N × N . Once a reduced-order solution uN is desired for a given
parameter μ, the sum given in (1.31) is formed and solved for uN . Since this is the same
as solving (1.23), the reduced-order approximation is then available as uh ≈ 𝕍uN ;
see (1.25).

1.1.4 Error bounds

In this section we develop effective and reliable a posteriori error estimators for the
field variable or an output of interest. The use of such error bounds drives the con-
struction of the reduced basis during the offline stage, thanks to the so-called greedy
algorithm. Moreover, during the online stage, such bounds provide a certified accu-
racy of the proposed ROM.

Following [85], we introduce residual-based a posteriori error estimation for the
elliptic case. From (1.12) and (1.22) it follows that the error e(μ) = uh(μ)−uN (μ) satisfies

a(e(μ), vh;μ) = r(vh;μ) ∀vh ∈ Vh, (1.53)

where the residual r(⋅;μ) ∈ V h is defined as

r(vh;μ) = f (vh;μ) − a(uN (μ), vh;μ) ∀vh ∈ Vh. (1.54)

The following theorem further characterizes the relation between error and resid-
ual:

Theorem 1.4. Under compliance assumptions, the following inequalities hold:

e(μ)
μ = ‖uh(μ) − uN (μ)‖μ ≤ Δen(μ) =

‖r(⋅;μ)‖V h
√αh(μ)

, (1.55)

0 ≤ sh(μ) − sN (μ) ≤ Δs(μ) =
‖r(⋅;μ)‖2V h
αh(μ)

, (1.56)

where ‖v‖2μ = a(v, v;μ) defines an equivalent norm to ‖v‖Vh
.

Proof. The norm ‖ ⋅‖μ defines an equivalent norm thanks to symmetry, continuity, and
coercivity of a(⋅, ⋅;μ).

Since e(μ) ∈ Vh, from (1.53) with vh = e(μ) it follows that

e(μ)

2
μ = a(e(μ), e(μ);μ) = r(e(μ);μ) ≤

r(⋅;μ)
V he(μ)Vh

,

the last inequality being due to the definition of the norm in V h. Furthermore, due to
coercivity, we have

e(μ)

2
μ = a(e(μ), e(μ);μ) ≥ α(μ)

e(μ)

2
Vh
.
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Combining these two results yields (1.55).
Furthermore, since l = f are linear forms,

sh(μ) − sN (μ) = l(e(μ);μ) = f (e(μ);μ) = a(uh(μ), e(μ);μ). (1.57)

From (1.53) with vh := vN ∈ VN and (1.22) it follows that

a(e(μ), vN ;μ) = r(vN (μ);μ) = 0.

This holds in particular for vN = uN (μ). Moreover, due to symmetry,

a(uN (μ), e(μ);μ) = 0

as well. Thus, a(uh(μ), e(μ);μ) = a(e(μ), e(μ);μ) in (1.57), and we conclude that

sh(μ) − sN (μ) =
e(μ)

2
μ. (1.58)

The upper bound in (1.56) is then a consequence of (1.55), while the lower bound triv-
ially holds as the right-hand side of (1.58) is a nonnegative quantity.

Offline-online decomposition is usually solicited for the a posteriori error bounds
introduced by the previous theorem, for the sake of a fast computation of the right-
hand side of (1.55)–(1.56). This requires the efficient evaluation of both the numerator
(dual norm of the residual) and the denominator (parameterized coercivity constant).
The Riesz representation theorem is employed to define the unique ̂r(μ) ∈ Vh such that

( ̂r(μ), vh)Vh
= r(vh;μ), ∀vh ∈ Vh. (1.59)

Under affine separability assumptions (1.26)–(1.28), we have

r(vh;μ) =
Qf

∑
i=1

Θi
f (μ)fi(vh) −

N
∑
n=1

uNn
Qa

∑
i=1

Θi
a(μ)ai(ζ

n, vh), ∀vh ∈ Vh,

so that an affine expansion with Qf + NQa terms is obtained for r(⋅;μ). Riesz represen-
tation is then invoked for

r1(vh;μ) = f1(vh), . . . , rQf
(vh;μ) = fQf

(vh),

rQf+1(vh;μ) = a1(ζ
1, vh), . . . , rQf+Qa

(vh;μ) = aQa
(ζ 1, vh),

. . .

rQf+(N−1)Qa+1(vh;μ) = a1(ζ
N , vh), . . . , rQf+NQa

(vh;μ) = aQa
(ζ N , vh)

during the offline stage, storing the corresponding solutions to (1.59).
As concerns the evaluation of the denominator of (1.55)–(1.56), exact evaluation

of α(μ) is seldom employed. Instead, an offline-online decomposable lower bound is
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sought. Early proposals on the topic are available in [107, 78, 106, 85, 18]. In 2007,
the successive constraint method (SCM) was devised in [57] based on successive linear
programming approximations, and subsequently extended in [26, 27, 103, 111]. Alter-
native methodologies based on interpolation techniques have also appeared in recent
years in [54, 71, 59].

A posteriori error estimation can be derived formore general problems aswell (in-
cludingnoncoercive linear, nonlinear, or time-dependent problems), through applica-
tion of the Brezzi–Rappaz–Raviart theory. We refer to [106, 41, 109, 70, 81] for a few
representative cases. To this end, extensions of SCM are discussed in [27, 55, 58, 25].

1.2 Geometrical parameterization for shapes and
domains

In this section we discuss problems characterized by a geometrical parameterization.
In particular, a reference domain approach is discussed, relying on a map that de-
forms the reference domain into the parameterized one. Indeed, while affine shape
parameterization (see Section 1.1.3.5 for an example, and [85] for more details) natu-
rally abides by the offline-online separability assumption, it often results in very lim-
ited deformation of the reference domain, or strong assumptions on the underlying
shape.

Let Ω ⊂ ℝd, d = 2, 3, be the reference domain. Letℳ be a parametric shape mor-
phing function, that is,

ℳ(x;μ) : ℝd → ℝd, (1.60)

which maps the reference domain Ω into the deformed domain Ω(μ) as Ω(μ) =
ℳ(Ω;μ), where μ ∈ 𝒫 represents the vector of the geometrical parameters. This
map will change accordingly to the chosen shape morphing technique. The case of
Section 1.1.3.5 is representative of an affine mapℳ(⋅;μ). Instead, in the following we
address more general (not necessarily affine) techniques such as FFD, RBF interpola-
tion, and IDW interpolation.

Fromapractical point of view,we recommend thePythonpackage calledPyGeM–
PythonGeometricalMorphing [79],which allows an easy integrationwith themajority
of industrial CAD files and the most common mesh files.

1.2.1 Free form deformation

Free form deformation (FFD) is a widely used parameterization and morphing tech-
nique both in academia and in industry.
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For the original formulation see [94]. More recent works use FFD coupled with
reduced basis methods for shape optimization and design of systems modeled by el-
liptic PDEs (see [63], [86], and [96]), in naval engineering for the optimization of the
bulbous bow shape of cruise ships (in [37]), in the context of sailing boats in [65], and
in automotive engineering in [91].

FFD can be used for both global and local deformations and it is completely in-
dependent of the geometry to morph. It acts through the displacement of a lattice of
points, called FFD control points, constructed around the domain of interest. In par-
ticular it consists in three different steps, as depicted in Figure 1.3. First the physical
domainΩ ismapped to Ω̂, the reference one, through the affinemapψ. Then the lattice
of control points is constructed, and the displacements of these points by the map T̂
is what we call geometrical parameters μ. The deformation is propagated to the entire
embedded body usually by using Bernstein polynomials. Finally through the inverse
mapψ−1 we return back to the parametric physical space Ω(μ).

Figure 1.3: Scheme of the three maps
composing the FFD mapℳ. In par-
ticular ψmaps the physical space to
the reference one, then ̂T deforms
the entire geometry according to the
displacements of the lattice control
points, and finally ψ−1 maps back the
reference domain to the physical one.

So, recalling equation (1.60), we have the explicit map ℳ for the FFD, that is, the
composition of the three maps presented, i. e.,

ℳ(x,μ) = (ψ−1 ∘ T̂ ∘ψ)(x,μ) = (1.61)

= ψ−1(
L
∑
l=0

M
∑
m=0

N
∑
n=0

blmn(ψ(x))P
0
lmn(μlmn)) ∀x ∈ Ω, (1.62)

where blmn are Bernstein polynomials of degree l,m, n in each direction, respectively,
and P0

lmn(μlmn) = Plmn + μlmn, with Plmn representing the coordinates of the control
point identified by the three indices l, m, n in the lattice of FFD control points. In an
offline-online fashion, for a givenx, terms {blmn(ψ(x))}l,m,n canbeprecomputedduring
the offline stage, resulting in an inexpensive linear combination of x-dependent pre-
computed quantities and μ-dependent control points locations {P0

lmn(μlmn)}l,m,n. The
application ofψ−1 does not hinder such offline-online approach asψ is affine.
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We can notice that the deformation does not depend on the topology of the ob-
ject to be morphed, so this technique is very versatile and nonintrusive, especially for
complex geometries or in industrial contexts (see, e. g., [90, 87]).

In the casewhere thedeformationhas to satisfy some constraints, like for example
continuity constraints, it is possible to increase the number of control points. Often it
is the case where at the interface between the undeformed portion of the geometry
and the morphed area the continuity has to be prescribed for physical reasons.

As an example, in Figure 1.4wepresent anFFDof a bulbous bow,where anSTLfile
of a complete hull is morphed continuously by the displacement of only some control
points.

Figure 1.4: Bulbous bow deformation using FFD. In green are shown the FFD control points defining
the morphing.

1.2.2 Radial basis function interpolation

Radial basis functions (RBFs) represent a powerful tool for nonlinear multivariate ap-
proximation, interpolation between nonconformingmeshes ([40]), and shape param-
eterization due to their approximation properties [15].

An RBF is any smooth real-valued function φ̃ : ℝd → ℝ such that φ : ℝ+ → ℝ
exists and φ̃(x) = φ(‖x‖), where ‖ ⋅ ‖ indicates the Euclidean norm in ℝd. The most
widespread RBFs are the following:
– Gaussian splines ([15]) defined as

φ(‖x‖) = e−‖x‖
2/R;

– thin plate splines ([42]) defined as

φ(‖x‖) = ( ‖x‖
R
)
2
ln( ‖x‖

R
);
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– Beckert and Wendland C2-basis ([11]) defined as

φ(‖x‖) = (1 − ‖x‖
R
)
4

+
(4 ‖x‖

R
+ 1);

– multiquadratic biharmonic splines ([92]) defined as

φ(‖x‖) = √‖x‖2 + R2;

– inverted multiquadratic biharmonic splines ([15]) defined as

φ(‖x‖) = 1
√‖x‖2 + R2

;

where R > 0 is a given radius and the subscript + indicates the positive part.
Following [75, 72], given 𝒩C control points situated on the surface of the body to

morph, we can generate a deformation by moving some of these points and impos-
ing the new surface which interpolates them. The displacements of the control points
represent the geometrical parameters μ.

We can now define the mapℳ in equation (1.60) for the RBF interpolation tech-
nique, that is,

ℳ(x;μ) = q(x;μ) +
𝒩C

∑
i=1

γi(μ) φ(‖x − xCi‖), (1.63)

where q(x;μ) is a polynomial term, generally of degree 1, γi(μ) is the weight associated
to the basis function φi, {xCi }

𝒩C
i=1 are control points selected by the user (denoted by

spherical green markers in Figure 1.5), and x ∈ Ω. We underline that in the three-
dimensional case (1.63) has d×𝒩C +d+d2 unknowns, which are d×𝒩C for γi and d+d2

for the polynomial term q(x;μ) = c(μ)+Q(μ)x. To this endwe impose the interpolatory
constraint

ℳ(xCi ;μ) = yCi (μ) ∀i ∈ {1, . . . ,𝒩C}, (1.64)

where yCi are the deformed control points obtained applying the displacement μ to
xCi , in particular

xC = [xC1 , . . . , xC𝒩C
] ∈ ℝ𝒩C×d, (1.65)

yC(μ) = [yC1 (μ), . . . , yC𝒩C
(μ)] ∈ ℝ𝒩C×d. (1.66)

For the remaining d + d2 unknowns, due to the presence of the polynomial term, we
complete the systemwith additional constraints that represent the conservation of the
total force and momentum [15, 75] as follows:

𝒩C

∑
i=1

γi(μ) = 0, (1.67)
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Figure 1.5: Two different views of the same deformed carotid artery model using the RBF interpola-
tion technique. The green dots indicate the RBF control points that define the morphing. The black
small points highlight the original undeformed geometry. The occlusion of the two branches is
achieved through a displacement along the normal direction with respect to the carotid surface of
the control points after the bifurcation.

𝒩C

∑
i=1

γi(μ)[xCi ]1 = 0, . . .
𝒩C

∑
i=1

γi(μ)[xCi ]d = 0, (1.68)

where the notation [x]d denotes the d-th component of the vector x.
Following an offline-online strategy, for a given x, evaluation of φ(‖x − xCi‖), i =

1, . . . ,𝒩C, canbeprecomputed in the offline stage. Further online effort is only required
for (i) givenμ, solve a d×𝒩C+d+d2 linear system, and (ii) givenμ and x, perform linear
combinations and the matrix vector product in (1.63) employing either precomputed
quantities or coefficients from (i).

1.2.3 Inverse distance weighting interpolation

The Inverse distance weighting (IDW) interpolationmethod has been proposed in [95]
to deal with interpolation of scattered data. We follow [108, 49, 9] for its presentation
and the application of IDW to shape parameterization.

As in the previous section, let {xCk }
𝒩c
k=1 ⊂ ℝ

d be a set of control points. The IDW
interpolant ΠIDW(f ) of a scalar function f : ℝd → ℝ is defined as

ΠIDW(f )(x) =
𝒩c

∑
k=1

wk(x) f (xCk ), x ∈ Ω, (1.69)
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where the weight functions wk : Ω→ ℝ, for k = 1, . . . ,𝒩c are given by

wk(x) =

{{{{{
{{{{{
{

‖x−xCk ‖
−s

∑𝒩c
j=1 ‖x−xCj ‖−s if x ̸= xCk ,

1 if x = xCk ,
0 otherwise,

(1.70)

where s is a positive integer, modeling the assumption that the influence of the k-th
control point xCk on x diminishes with rate −s as the distance between x and xCk in-
creases. IDW interpolation trivially extends to vector functions f : ℝd → ℝd by ap-
plication to each component f1, . . . , fd, where the weight functions wk : Ω → ℝ do not
depend on the specific component.

In the case of IDW shape parameterization, for any given μ, the deformed position
of the control points {xCk }

𝒩c
k=1 is supposed to be known, and equal to yCk (μ) := f (xCk )

for k = 1, . . . ,𝒩c. We remark that the analytic expression of f is not known, but only
its action through {xCk }

𝒩c
k=1. This is indeed the minimum requirement to properly de-

fine (1.69). The deformation map is therefore

ℳ(x;μ) =
𝒩c

∑
k=1

wk(x) yCk (μ) ∀x ∈ Ω.

In an offline-online separation effort, efficient deformation can be obtained by noting
that the μ-dependent part is decoupled from the x-dependent weight function wk(x).
Thus, for any x, weight terms can be precomputed once and for all and stored. The on-
line cost of the evaluation ofℳ(x;μ) thus requires an inexpensive linear combination
of x-dependent precomputed quantities and μ-dependent control point locations. We
remark that, in contrast, the RBF approach (even though still based on interpolation)
required a further solution of linear system of size d ×𝒩C + d + d2.

Application in the context of fluid–structure interaction problems between awing
(structure) and surrounding air (fluid) is shown in Figure 1.6. The IDW deformation of

Figure 1.6: Deformation of the fluid mesh of a fluid–structure interaction problem by IDW.
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the fluidmesh resulting from a vertical displacement of the tip of the wing is depicted;
the structural mesh is omitted from the picture. We refer to [9] for more details.

1.3 Beyond affinity assumptions: parametric
interpolation

We describe here several options to deal with cases when an exact affine decompo-
sition of the discretized differential operators, right-hand sides, or outputs of interest
does not exist. The section begins with a brief overview concerning the description
of general nonaffine problems in Section 1.3.1 and later we describe the so-called EIM
family of algorithms. This methodology becomes particularly useful to obtain an effi-
cient offline-online splitting also in cases with nonlinearities and nonaffine parame-
terization. We provide a full description of the different alternatives, starting from its
standard continuous version (EIM), and presenting also its discrete (DEIM) and ma-
trix (M-DEIM) variants. Themethodologies are tested for both nonaffine andnonlinear
problems. In Section 1.3.2 we explain in detail the basics of the EIM. In Section 1.3.3
we introduce the discrete variant of the EIM at both matrix and vector level and we
mention further options to obtain an approximate affine expansion. In Section 1.3.5
we present two examples using the EIM (Section 1.3.5.1) and the M-DEIM algorithm to
deal with both nonaffinity and nonlinearity (Section 1.3.5.2).

1.3.1 Nonaffine problems

As already discussed in Section 1.1.3.4, the existence of an affine decomposition of
the linear and bilinear forms of the considered problem is crucial in order to obtain a
computationally efficient framework (see (1.26)–(1.28)).

This assumption fails to be true in several situations. Such situations occur for
example in case of problems with nonaffine parametric dependency, in cases with
nonlinear differential operators, and in cases dealing with the nonaffine geometrical
parameterizations introduced in Section 1.2.

In fact, in these situations, the differential operators, the right-hand sides, or the
outputs of interest cannot be directly written using an exact affine decomposition and
we have therefore to rely on an approximate affine decomposition. The EIM is one of
the key instruments to recover an approximate affine decomposition.

The EIM is a general tool for the approximation of parameterized or nonlinear
functions by a sum of affine terms. In the following expression we report an example
for a generic parameterized function f :

f (x;μ) ≈
Q
∑
q=1

cq(μ)hq(x). (1.71)
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The EIM has been firstly proposed in [10] to deal with nonaffine problems in the con-
text of reduced basis methods and later applied to ROM in [53]. In [69] it has been
extended to a general context, and a slightly different variant of EIM, DEIM, has been
firstly proposed in [22, 23]. For more details on the a posteriori error analysis the inter-
ested reader may see [53, 44, 24] while for an extension to hp-adaptive EIM we refer to
[45]. A generalization of the EIM family of algorithms has been proposed in [68, 24, 67]
while a nonintrusive EIM technique is presented in [21] and an extension with special
focus on high-dimensional parameter spaces is given in [56].

1.3.2 The empirical interpolation method

The EIM is a general method to approximate a parameterized function f (x;μ) : Ω ×
𝒫EIM → ℝ by a linear combination ofQ precomputed basis functions in the casewhere
each function fμ := (⋅;μ) belongs to some Banach space 𝒳Ω. In what follows μ ∈ 𝒫EIM
is the parameter vector and 𝒫EIM is the parameter space. The EIM approximation is
based on an interpolation operator IQ that interpolates the given function fμ in a set
of interpolation points {xi}Qi=1 ∈ Ω. The interpolant function is constructed as a linear
combination of hierarchically chosen basis functions {hi}Qi=1 ∈ 𝕍EIM, where𝕍EIM is an
approximation of the function space 𝒰 that contains f , i. e.,𝕍EIM ⊆ 𝒰 . On the contrary
to other interpolationmethods, that usuallyworkwith generic andmultipurposebasis
functions such as polynomial functions, the EIM works with problem-specific basis
functions with global support and selected hierarchically. The interpolant function
can be then expressed by

IQ[fμ](x) =
Q
∑
q=1

cq(μ)hq(x), x ∈ Ω, μ ∈ 𝒫EIM, (1.72)

where cq are parameter-dependent coefficients. Once the basis functions hq(x) are set,
the problem of finding the coefficients cq(μ) is solved imposing the interpolation con-
dition, i. e.,

IQ[fμ](xq) =
Q
∑
q=1

cq(μ)hq(xq) = fμ(xq), q = 1, . . . ,Q. (1.73)

The above problem can be recast in matrix form as Tcμ = f μ with

(T)ij = hj(xi), (cμ)j = cj(μ), (f (μ))j = f (xi;μ), i, j = 1, . . . ,Q. (1.74)

This problem can be easily solved given the fact that the basis functions hq(x) and
the interpolation points xq are known and that the matrix T is invertible.

The selection of the basis functions {hq}Qq=1 and of the interpolation points {xq}
Q
q=1,

which are defined by a linear combination of selected function realizations {fμi }
Q
i=1,
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is done following a greedy approach similar to the one presented in Section 1.1.3.2
(Algorithm 1.2). The procedure provides also a set of sample points {μq}

Q
q=1 that are

required for the construction of the basis functions.
Since the basis functions are defined as linear combinations of the function re-

alizations inside the parameter space, in order to approximate the function f with a
relatively small number of basis functions hq, the manifold

ℳEIM = {f (x;μ) | μ ∈ 𝒫EIM} (1.75)

must have a small Kolmogorov N-width [61].
Once a proper norm on Ω has been defined, where we consider Lp(Ω)-norms for

1 ≤ p ≤∞, the procedure starts with the selection of the first parameter sample, which
is computed as

μ1 = arg sup
μ∈𝒫EIM

fμ(x)
Lp(Ω),

while the first interpolation point is computed as

x1 = arg sup
x∈Ω

fμ1 (x)
.

The first basis function and the interpolation operator at this stage are then defined
as

h1(x) =
fμ1 (x)
fμ1 (x1)
, I1[fμ](x) = f (x1;μ)h1(x).

At the subsequent steps, the next basis function is selected as the one that is theworse
approximated by the current interpolation operator and using a similar concept the
interpolation point, often referred as magic point, is the one where the interpolation
error is maximized. In mathematical terms, at the step k, the sample point is selected
as the one that maximizes the error between the function f and the interpolation op-
erator computed at the previous step Ik−1[f ]:

μk = arg sup
μ∈𝒫EIM

fμ(x) − Ik−1[fμ](x)
Lp(Ω).

Once the sample point has been determined, the interpolation point is selected, in a
similar fashion, as the point inside the domain that maximizes the error between the
function f and the interpolation operator:

xk = arg sup
x∈Ω

fμk (x) − Ik−1[fμk ](x)
.

The next basis function is defined similarly to the first one with

hk(x) =
fμk (x) − Ik−1[fμk ](x)

fμk (xk) − Ik−1[fμk ](xk ; )
.
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Algorithm 1.2: The EIM algorithm – continuous version.
Input: set of parameterized functions fμ : Ω→ ℝ, tolerance tol and maximum
number of basis functions Nmax, p order of the chosen p-norm.

Output: basis functions {h1, . . . , hQ}, interpolation points {x1, . . . , xQ};
k = 1; ε = tol + 1;
while k < Nmax and ε > tol do
Pick the sample point:
μk = arg sup

μ∈𝒫EIM

‖fμ(x) − Ik−1[fμ](x)‖Lp(Ω);

Compute the corresponding interpolation point:
xk = arg sup

x∈Ω
|fμk (x) − Ik−1[fμk ](x)|;

Define the next basis function:
hk(x) =

fμk (x)−Ik−1[fμk ](x)
fμk (xk)−Ik−1[fμk ](xk ;) ;

Compute the error level:
ε = ‖εp‖L∞ with εp(μ) = ‖fμ(x) − Ik−1[fμ](x)‖Lp(Ω);
k = k + 1;

end while

The procedure is repeated until a certain tolerance tol is reached or a maximum num-
ber of terms Nmax are computed (Algorithm 1.2). We remark that by construction the
basis functions {h1, . . . , hQ} and the functions {fμ1 , . . . , fμQ } span the same space𝕍EIM:

𝕍EIM = span{h1, . . . , hQ} = span{fμ1 , . . . , fμQ }.

However, the former are preferred for the following reasons (for more details and for
the mathematical proofs we refer to [10]):
– they are linearly independent,
– hi(xi) = 1 for 1 ≤ i ≤ Q and hi(xj) = 0 for 1 ≤ i ≤ j ≤ Q,
– they make the interpolation matrix T of equation (1.74) to be lower triangular and

with diagonal elements equal to unity and therefore the matrix is invertible.

The third point implies that the interpolation problem is well-posed.

1.3.2.1 Error analysis

Dealing with interpolation procedures, the error analysis usually involves a Lebesgue
constant. In particular, in the case one is using the L∞(Ω)-norm the error analysis in-
volves the computation of the Lebesgue constant Λq = supx∈Ω∑

q
i=1 |Li(x)| being Li ∈

𝕍EIM a Lagrange function that satisfies Li(xj) = δij. It can be proved that the interpola-
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tion error is bounded by the following expression [10]:

fμ − Iq[fμ]
L∞(Ω) ≤ (1 + Λq) inf

vq∈𝕍EIM
‖fμ − vq‖L∞(Ω). (1.76)

An upper bound for the Lebesgue constant, which in practice has been demonstrated
to be very conservative [10], can be computed as

Λq ≤ 2
q − 1.

Formore details concerning the estimates of the interpolation errorwe refer to [10, 69].

1.3.2.2 Practical implementation of the algorithm

Practically, finding themaximumof Algorithm 1.2 is usually not feasible and therefore
the continuous version must be transformed into a computable one.

This is done selecting a finite-dimensional set of training points in the parameter
space {μi}

N
i=1 ∈ 𝒫

train
EIM ⊂ 𝒫EIM and in the physical domain {xi}Mi=1 ∈ Ωh ⊂ Ω. For this

reason we introduce the vector f : Ωh × 𝒫
train
EIM → ℝ

M which consists of a discrete
representation of the function f :

(f μ)i = fμ(xi), i = 1, . . . ,M. (1.77)

We also define the matrix HQ ∈ ℝ
M×Q, which is defined by the discrete basis func-

tions HQ = [h1, . . . ,hQ] and the interpolation index vector iQ = (i1, . . . , iQ). The discrete
interpolation operator of order Q for the vector function f is then defined by

IQ[f μ] = HQaf μ , (1.78)

where the coefficients af μ are defined such that Taf μ = f μ, where

Tkq = (HQ)ikq, k, q = 1, . . . ,Q. (1.79)

The implementation of the algorithm is similar to the continuous version and is re-
ported in Algorithm 1.3. In the algorithmwe use the notation F :,j to denote the j-th col-
umn of the matrix F, where F ∈ ℝM×N is a matrix containing vector representations of
the function f :

(F)ij = f (xi;μj). (1.80)

Once the basis and the interpolation indices are defined, during the online stage it is
required to make a pointwise evaluation of the f function in the points defined by the
interpolation indices.
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Algorithm 1.3: The EIM algorithm – practical implementation.
Input: set of parameter samples {μi}

M
i=1 ∈ 𝒫

train
EIM ⊂ 𝒫EIM, set of discrete points

{xi}Ni=1 ∈ Ω
train, tolerance tol, maximum number of basis functions Nmax, p order of

the chosen p-norm.
Output: basis function matrixHQ = {h1, . . . ,hQ}, interpolation index vector
iQ = {i1, . . . , iQ};
Assemble the matrix:
(F)ij = f (xi;μj), i = 1, . . . ,M, j = 1, . . . ,N;
k = 1, ε = tol + 1;
while k < Nmax and ε > tol do
Pick the sample index:
jk = argmax

j=1,...,M
‖F :,j − Ik−1[F :,j]‖Lp ;

and compute the interpolation point index:
ik = argmax

i=1,...,N
|F i,jk − (Ik−1[F :,jk ])i|;

define the next approximation column:
hk =

F :,jk−Ik−1[F :,jk ]
F ik ,jk−(Ik−1[F :,jk ])ik

define the error level:
ε = max

j=1,...,M
‖F :,j − Ik−1[F :,j]‖Lp

k = k + 1
end while

1.3.3 The discrete empirical interpolation method

Acomputable version of EIM is the so-calledDEIM, introduced in [23].Weprovide here
an example as a special case of EIM where appropriate basis functions are already
available [69]. In our example here DEIM basis functions are computed relying on a
PODprocedurewhich is performed on a set of discrete snapshots of the parameterized
function {f i}Mi=1. Each snapshot f i is already considered in discrete form in a prescribed
set of points {xi}

Nh
i=1. The procedure, which is described in detail in Algorithm 1.4, can

be summarized into the following steps:
1. Construct the DEIM basis functions using a POD procedure on a set of previously

computed snapshots:

HM = [h1, . . . ,hM] = POD(f (μ1, . . . ,μM)). (1.81)

2. Given a prescribed tolerance tol, determine the indices iQ and truncate the dimen-
sion of the POD space using an iterative greedy approach (Algorithm 1.4).
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Algorithm 1.4: The DEIM procedure.
Input: snapshots matrix S = [f (μ1), . . . , f (μM)], tolerance tol.
Output: DEIM basis functionsHQ = [h1, . . . ,hQ], interpolation indices
iQ = [i1, . . . , iQ].
compute the DEIM modesHM = [h1, . . . ,hM] = POD(S)
ε = tol + 1, k = 1
i1 = argmax

j=1,Nh

|(h1)j|

HQ = [h1], iQ = [i1], P = [ei1 ]
while ε > tol do
k = k + 1
Solve (PTHQ)c = PThk
r = hk −HQc
ik = argmax

j=1,Nh

|(r)j|

HQ = [HQ,hk], P = [P, eik ], iQ = [iQ, ik]
end while

In Algorithm 1.4, with the term eik , we identify a vector of dimensionNh where the only
nonnull element is equal to 1 and is located at the index ik:

(eik )j = 1 for j = ik , (eik )j = 0 for j ̸= ik .

During the online stage, when a new value of the parameter μ needs to be tested, it
is required to compute the function f (μ) only in the location identified by the indices
iQ. Therefore, the nonlinear function needs to be evaluated only in a relatively small
number of points which is usually much smaller with respect to the total number of
degrees of freedom used to discretize the domain.

1.3.4 Further options

Apart from the EIM and theDEIM algorithm, further options are available.Wemention
here thematrix version of the DEIM algorithm (M-DEIM) [14], which extends the DEIM
also to the case of parameterized or nonlinear matrices, the generalized EIM (GEIM)
[68], and the gappy POD [16, 20].

The M-DEIM is used to perform MOR on discretized differential operators charac-
terized by nonlinearity or nonaffinity with respect to the parameter vector μ. The al-
gorithm is similar to the one in Algorithm 1.4 with the only difference that a vectorized
version of the matrices is used to describe snapshots and PODmodes. In Section 1.3.5
we will provide an example dealing with both issues.
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The gappy POD generalizes the interpolation condition to the case where the
number of basis functions is smaller than the number of interpolation indices, i. e.,
card(HQ) < card(iQ). In this case the interpolation condition is substituted by a least-
squares regression.

The GEIM replaces the EIM requirement of a pointwise interpolation condition by
the following statement:

σj(IQ(f (μ))) = σj(f (μ)), j = 1, . . . ,Q, (1.82)

where σj are a set of “well-chosen” linear functionals. For more details and for conver-
gence analysis of the present method we refer to [67].

1.3.5 Some examples

In the previous sections we have presented the EIM family of algorithms and we have
illustrated how it is possible to recover an approximate affine expansion of the dis-
cretized differential operators. In this section we show in more detail two examples
on the practical application of the EIM and the M-DEIM algorithm.

1.3.5.1 A heat transfer problem with a parameterized nonaffine dependency forcing
term

In this example we illustrate the application of the computable version of the EIM
on a steady-state heat conduction problem in a two-dimensional square domain Ω =
[−1, 1]2 with a parameterized forcing term g(μ) and homogeneous Dirichlet boundary
conditions on the boundary 𝜕Ω. The problem is described by the following equation:

{
−αtΔθ = g(μ), in Ω,
θ = 0, on 𝜕Ω,

(1.83)

where θ is the temperature field, αt is the thermal conductivity coefficient, and g(μ) is
the parameterized forcing term which is described by the following expression:

g(x;μ) = e−2(x1−μ1)
2−2(x2−μ2)2 , (1.84)

where μ1 and μ2 are the first and second components of the parameter vector and x1
and x2 are the horizontal and vertical coordinates, respectively. Let V be a Hilbert
space. The weak formulation of the problem can be written as follows: Find θ ∈ V
such that

a(θ(μ), v;μ) = f (v;μ), ∀v ∈ V , (1.85)
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where the parameterized bilinear and linear forms are expressed by

a(θ, v;μ) = ∫
Ω

∇θ ⋅ ∇vdx, f (v;μ) = ∫
Ω

g(x;μ)vdx. (1.86)

In the above expressions, the bilinear form a(⋅, ⋅;μ) : V ×V → ℝ is trivially affinewhile
for the linear form f (⋅;μ) : V → ℝ we have to rely on an approximate affine expan-
sion using the EIM. The problem is discretized using triangular linear finite elements
according to the mesh reported on the left side of Figure 1.9.

In the present case it is not possible to write an exact affine decomposition of the
linear form f ; we rely therefore on the computable version of the EIM of Algorithm 1.3
in order to recover an approximate affine expansion.

The function g(x;μ) is parameterized with the parameter vector μ = (μ1, μ2) ∈
𝒫EIM = [−1, 1]2, which describes the position of the center of the Gaussian function.
The conductivity coefficient αt is fixed constant and equal to 1. The testing set for the
implementation of the algorithm {μi}i=Ntrain

∈ 𝒫train is defined using Ntrain = 100 and
a uniform probability distribution. The set of points {xi}

Nh
i=1 ∈ Ω that is used for the

identification of the magic points is chosen to be coincident with the nodes of the fi-
nite element grid reported in Figure 1.7. In Figure 1.8 we report the first four EIM basis
functions for the nonlinear function g and the location of the magic points identified
by the EIM algorithm. In Figure 1.9 we report the convergence analysis of the EIM al-
gorithm for the nonlinear function g changing the number of EIM basis functions (left
plot) and the convergence analysis of the ROM changing the number of reduced basis
functions (right plot).

Figure 1.7: Discretized domain into which the parameterized problem is solved (left image), together
with an example of the value assumed by the temperature field for one particular sample point in-
side the parameter space (right image).
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Figure 1.8: Plot of the first four modes identified by the EIM algorithm (first row and left image in
the second row) and the location of the first 35 indices iQ. The magic points are identified by the red
elements in the right picture on the second row.

Figure 1.9: Convergence analysis of the numerical example. In the left plot we can see the average
value of the L2 relative error between the exact function g and its EIM approximation. On the right
plot we report the average value of the L2 relative error between the FOM temperature field and the
ROM temperature field. The plot is for different numbers of basis functions used to approximate
the temperature field and keeping constant the number of basis functions used to approximate the
forcing term (N = 11).
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1.3.5.2 An example in the context of reduced-order models with nonlinearity and
nonaffine parametric dependency

In this second illustrative example we show the application of the DEIM algorithm to
the stationary parameterized Navier–Stokes equations. In the present case we have
both nonlinearity and nonaffinity with respect to the input parameters. Both nonlin-
earity and nonaffinity have been tackled using the matrix version of the DEIM. The
computational domain is given by the unit square Ω = [0, 1]2 and the physical prob-
lem is described by the well-known Navier–Stokes equations:

{{{{{{
{{{{{{
{

div(u ⊗ u) − div(2ν(μ)∇su) = −∇p, in Ω,
divu = 0, in Ω,
u(x) = (1,0), on ΓTOP,
u(x) = 0, on Γ0.

(1.87)

The physical problem is the classical benchmark of the lid-driven cavity problemwith
a parameterized diffusivity constant ν(μ). In this case the impossibility of recovering
an affine decomposition of the differential operators is given by the convective term,
which is by nature a nonlinear term, and by the parameterized diffusion term. The
diffusivity constant ν(μ) has in fact been parameterized by the following nonlinear
function:

ν(x;μ) = e
2(−2(x1−μ1−0.5)2−2(x2−μ2−0.5)2)

100
+ 0.01, (1.88)

which is a Gaussian function and the position of whose center has been parameter-
ized using the parameter vector μ = (μ1, μ2). For the particular case, the discretized
algebraic version of the continuous formulation can be rewritten as

(
C(u) + A(μ) BT

B 0
)(

u
p
) = (

f
0
) . (1.89)

The matrix A(μ) represents the discretized diffusion operator, the matrix C(u) repre-
sents the discretized nonlinear convective operator, while the term B represents the
divergence operator. The term A(μ) is characterized by a nonaffine parametric depen-
dencywhile the termC(u) is characterizedbynonlinearitywith respect to the solution.
The velocity and pressure fields are approximated as

u(μ) ≈
Nu

∑
q=1

cuq(μ)h
u
q, p(μ) ≈

Np

∑
q=1

cpq(μ)h
p
q , (1.90)

and, in order to achieve an efficient offline-online splitting, the discretized operators
are approximated by the matrix version of the DEIM algorithm and expressed as

A(μ) ≈
NA

∑
q=1

cAq (μ)h
A
q , C(u) ≈

NC

∑
q=1

cCq (cu)h
C
q . (1.91)
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The problem is discretized using the finite volume method and a staggered Carte-
sian grid made of 20 × 20 cell-centered finite volume elements. The DEIM algorithm
has been implemented using 100 samples chosen randomly inside the training space
𝒫 train
EIM ∈ [−0.5,0.5]

2. The magic points necessary for the implementation of the DEIM
algorithm are chosen to be coincident with the cell centers of the discretized problem.
The basis functions hAq and h

A
C are obtained using the DEIM algorithm applied on the

vectorized version of the discretized differential operator snapshots computed during
the training stage SA = [vec(A1), . . . , vec(AM)] and SC = [vec(C1), . . . , vec(CM)]. The
snapshot matrices SA and SC contain in fact the discretized differential operators in
vector form obtained for the different samples of the training set.

In Figure 1.10we report the comparison of the full-ordermodel fields and the ROM
ones; the comparison is depicted for a parameter sample not used to train the ROM.

Figure 1.10: Comparison between the FOM velocity (a) and pressure (c) fields and the ROM velocity
(b) and pressure (d) fields. The plots are reported for one selected sample value inside the testing
set. The ROM solutions have been computed using 14 basis functions for the velocity space, 10 for
the pressure space, 10 DEIM basis functions for the convective matrix C, and 10 DEIM basis functions
for the diffusion matrix B.



1 Basic ideas and tools for MOR of parametric PDEs | 33

Figure 1.11: Eigenvalue decay of the POD procedure during the DEIM algorithm (left plot). The con-
vergence analysis with respect to the number of DEIM basis functions (right plot), which is com-
puted using the average value over the testing set of the L2 relative error, has been performed keep-
ing constant the number of basis functions used to approximate the velocity and pressure fields
(Nu = 14,Np = 10) and changing the number of DEIM basis functions used to approximate the con-
vective and diffusion terms (NC = NA).

On the right side of Figure 1.11 we report the convergence analysis for the numerical
example. The plots are performed testing the ROMon 100 additional sample values se-
lected randomly inside the parameter space𝒫 test

EIM ∈ [−0.5,0.5]
2. In the plots is reported

the average value over the testing space of the L2 relative error.

1.4 Advanced tools: reduction in parameter spaces

Often the use of the aforementioned geometrical morphing techniques in Section 1.2
does not tell us how many control points, i. e., geometrical parameters, are enough
to conduct a proper analysis. This leads to self-imposing too few parameters in order
to avoid the curse of dimensionality and dealing with intractable problems. To over-
come this issue there exist techniques for parameter space dimensionality reduction,
both linear and nonlinear. In particular we present here the active subspaces property
for linear dimensionality reduction, while in the last section we show an overview of
possible nonlinear methods.

These methods are intended as general tools, not restricted to parameterized
PDEs. Moreover, the nature of the parameter space can be very diverse, including
both geometrical and physical parameters. They are data-driven tools working with
couples of input/output data, and they can be used to enhance otherMOR techniques.

1.4.1 Active subspaces property and its applications

In this and the following sections we present the active subspaces (AS) property pro-
posed by Trent Russi [89] and developed by Paul Constantine [31]. In brief, active sub-
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spaces are defined as the leading eigenspaces of the second moment matrix of the
function’s gradient and constitute a global sensitivity index.

We present how to exploit AS to reduce the parameter space dimensionality, and
use it as a powerful preprocessing tool. Moreover, we show how to combine it with
a model reduction methodology and present its application to a cardiovascular prob-
lem. In particular, after identifying a lower-dimensional parameter subspace, we sam-
ple it to apply further MOR methods. This results in improved computational effi-
ciency.

The main characteristic of AS is the fact that it uses information of both the out-
put function of interest and the input parameter space in order to reduce its dimen-
sionality. The active subspaces have been successfully employed inmany engineering
fields. We cite, among others, applications in magnetohydrodynamics power genera-
tion modeling in [50], in naval engineering for the computation of the total drag resis-
tance with both geometrical and physical parameters in [101, 38], and in constrained
shape optimization [66] using the concept of shared active subspaces in [100]. There
are also applications to turbomachinery in [7], to uncertainty quantification in the nu-
merical simulation of a scramjet in [34], and to the acceleration ofMarkov chainMonte
Carlo in [35]. Extension of active subspace discovery for time-dependent processes
and application to a lithium ion battery model can be found in [32]. A multifidelity
approach to reduce the cost of performing dimension reduction through the compu-
tation of the active subspace matrix is presented in [62]. In [46] the authors exploit AS
for Bayesian optimization, while the coupling with ROMs can be found in [39] for a
nonintrusive data-driven approach, and the coupling with POD-Galerkin methods for
biomedical engineering will be presented in Section 1.4.4 following [99].

1.4.2 Active subspaces definition

Given a parametric scalar function f (μ) : ℝp → ℝ, where p is the number of pa-
rameters representing the output of interest, and given a probability density function
ρ : ℝp → ℝ+ that represents uncertainty in the model inputs, active subspaces are
low-dimensional subspaces of the input space where f varies the most on average. It
is a property of the pair (f , ρ) [31]. In order to uncover AS we exploit the gradients of
the function with respect to the input parameters, so it can be viewed as a derivative-
based sensitivity analysis that unveils low-dimensional parameterization of f using
some linear combinations of the original parameters. Roughly speaking, after a rescal-
ing of the input parameter space to the hypercube [−1, 1]p, we rotate it until the lower-
rank approximation of the output of interest is discovered, which means a preferred
direction in the input space is identified. Then we can project all the data onto the or-
thogonal space of this preferred direction and we can construct a surrogate model on
this low-dimensional space.
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Let us add some hypotheses to f in order to properly construct the matrix we will
use to find the active subspaces: Let f be continuous and differentiable with square-
integrable partial derivatives in the support of ρ. We define the so-called uncentered
covariancematrixC of the gradients of f as thematrix whose elements are the average
products of partial derivatives of the map f , that is,

C = 𝔼 [∇μf ∇μf
T] = ∫(∇μf )(∇μf )

Tρ dμ, (1.92)

where 𝔼 is the expected value and ∇μf = ∇f (μ) = [
𝜕f
𝜕μ1
, . . . , 𝜕f𝜕μp ]

T is the column vector
of partial derivatives of f . This matrix is symmetric so it has a real eigenvalue decom-
position:

C =WΛWT , (1.93)

where W ∈ ℝp×p is the orthogonal matrix of eigenvectors and Λ is the diagonal ma-
trix of nonnegative eigenvalues arranged in descending order. The eigenpairs of the
uncentered covariance matrix define the active subspaces of the pair (f , ρ). Moreover,
Lemma 2.1 in [33] states that the eigenpairs are functionals of f (μ) and we have

λi = w
T
i Cwi = ∫(∇μf

Twi)
2ρ dμ, (1.94)

whichmeans that the i-th eigenvalue is the average squared directional derivative of f
along the eigenvector wi. Alternatively we can say that the eigenvalues represent the
magnitude of the variance of ∇μf along their eigenvectors orientations. So small val-
ues of the eigenvalues correspond to small perturbation of f along the corresponding
eigenvectors. It also follows that large gaps between eigenvalues indicate directions
where f changes themost on average. Since we consider the lower-dimensional space
of dimensionM < pwhere the target function has exactly this property, we define the
active subspace of dimension M as the span of the first M eigenvectors (they corre-
spond to the most energetic eigenvalues before a gap). Let us partition Λ andW as

Λ = [Λ1
Λ2
] , W = [W1 W2], (1.95)

whereΛ1 = diag(λ1, . . . , λM) andW1 contains the firstM eigenvectors.We can useW1 to
project the original parameters to the active subspace obtaining the reduced param-
eters, that is, the input space is geometrically transformed and aligned with W1, in
order to retain only the directions where the function variability is high. We call the
active variable μM the range ofWT

1 and the inactive variable η the range ofW
T
2 :

μM =W
T
1 μ ∈ ℝ

M , η =WT
2 μ ∈ ℝ

p−M . (1.96)

We can thus express any point in the parameter space μ ∈ ℝp in terms of μM and η as

μ =WWTμ =W1W
T
1 μ +W2W

T
2 μ =W1μM +W2η. (1.97)
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The lower-dimensional approximation, or surrogate quantity of interest, g :
ℝM → ℝ of the target function f is a function of only the active variable μM as

f (μ) ≈ g(WT
1 μ) = g(μM). (1.98)

Such g is called ridge function [77] and, as we can infer from this section, it is constant
along the span ofW2.

From a practical point of view, equation (1.92) is estimated through the Monte
Carlo method. We draw Ntrain independent samples μ(i) according to the measure ρ
and we approximate

C ≈ Ĉ = 1
Ntrain

Ntrain

∑
i=1
∇μfi ∇μf

T
i = ŴΛ̂ŴT , (1.99)

where ∇μfi = ∇μf (μ(i)). In [31] the authors provide a heuristic formula for the number
of samples Ntrain needed to properly estimate the first k eigenvalues, that is,

Ntrain = α k ln(p), (1.100)

where α usually is between 2 and 10. Moreover, they prove that for sufficiently large
Ntrain the error ε committed in the approximation of the active subspace of dimension
n is bounded from above by

ε = dist(rank(W1), rank(Ŵ1)) ≤
4λ1δ

λn − λn+1
, (1.101)

where δ is a positive scalar bounded from above by λn−λn+1
5λ1

. Here we can clearly see
how the gap between two eigenvalues is important in order to properly approximate f
exploiting AS.

1.4.3 Some examples

In this section we present two simple examples with the computation of the active
subspaces using analytical gradients. To highlight the possibility that the presence of
an active subspace is not always guaranteed we also show an example in this direc-
tion.We choose for both the cases a three-dimensional input parameter spacewithout
loss of generality. In order to identify the low-dimensional structure of the function of
interest we use the sufficient summary plots, developed in [36]. In our cases, they are
scatter plots of f (μ) against the active variable μM .

The presence of an active subspace is not always guaranteed. For example, not
every target function that has a radial symmetry has a lower-dimensional representa-
tion in terms of active variables. This is due to the fact that there is no rotation of the
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input parameter space that aligns it along a preferred direction since all of them are
equally important.

Let us consider for example the function f (μ) = 1
2μ

Tμ representing an n-dimen-
sional elliptic paraboloid, where the parameter μ is a column vector in [−1, 1]3. In this
casewe have the exact derivatives, in fact,∇μf = μ, andwe do not have to approximate
them. If we draw 1,000 samples andwe apply the procedure to find an active subspace
andwe plot the sufficient summary plot in one dimension, as in Figure 1.12, we clearly
seehow it is unable tofind theactive variable alongwhich f varies themost onaverage.
In fact there is not a significant gap between the eigenvalues, since we have C = 1

3 Id.
Moreover the projection of the data onto the inactive subspace suggests the presence
of an n-dimensional elliptic paraboloid.

Figure 1.12: Example of an output function with a radial symmetry. On the left the exact eigenvalues
of the uncentered covariance matrix are shown. On the right the sufficient summary plot in one di-
mension (f (μ) against μM = W

T
1 μ) shows how the projection of the data along the inactive directions

does not unveil a lower-dimensional structure for f .

Let us consider now another quadratic function in three variables. We define the out-
put of interest f as

f (μ) = 1
2
μTAμ, (1.102)

where μ ∈ [−1, 1]3 and A is symmetric positive definite with a major gap between the
first and the second eigenvalue. With this formwe can compute the exact gradients as
∇μf (μ) = Aμ and, taking ρ as a uniform density function, compute C as

C = A(∫μμTρ dμ)AT =
1
3
A2. (1.103)
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So the squared eigenvalues of A are the eigenvalues of C. Since, by definition, A has a
significant gap between the first and second eigenvalues, we can easily find an active
subspace of dimension one.

In Figure 1.13 we show the sufficient summary plot of f with respect to its active
variable. A clear univariate behavior is present, as expected, so we can easily con-
struct g, for instance taking a quadratic one-dimensional function. We can also see
the associated eigenvalues of the uncentered covariance matrix.

Figure 1.13: Example of a quadratic function with an active subspace of dimension one. On the left
the exact eigenvalues of the uncentered covariance matrix are shown. On the right the sufficient
summary plot in one dimension (f (μ) against μM = W

T
1 μ) shows how the projection of the data along

the inactive directions unveils a univariate structure for f .

1.4.4 Active subspaces as preprocessing tool to enhance model
reduction

The presence of an active subspace for an output of interest, derived from the solution
of a parametric PDE, can be exploited for further MOR. Thus, in this context, AS can
be seen as a powerful preprocessing technique to both reduce the parameter space
dimensionality and boost the performance of other model order reduction methods.

In [99] the active subspace for a relative pressure drop in a stenosed carotid artery
is used as a reduced sampling space to improve the reconstruction of the output man-
ifold. We used as parameters the displacement of a selection of RBF control points
to simulate the occlusion of the carotid artery after the bifurcation. For a review of
the RBF interpolation technique, see Section 1.2.2. In Figure 1.5 two different views of
the same carotid are shown and the control points are highlighted with green dots.
The target function was a relative pressure drop between the two branches computed
solving a stationary Navier–Stokes problem.
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After the identification of the active subspace we exploit it by sampling the orig-
inal full parameter space along the active subspace. These sampled parameters were
used, in the offline phase, to construct the snapshots matrix for the training of an
ROM. This leads to better approximation properties for a given number of snapshots
with respect to usual sampling techniques. Thenatural construction of the uncentered
covariance matrix, which uses information from both the inputs and the outputs, is
the reason of such improvements.

The same idea has been coupled also with nonintrusive MOR techniques, such as
POD with interpolation (PODI), in [102], while for the reconstruction of modal coeffi-
cients using PODI with AS for low computational budgets we suggest [39].

1.4.5 About nonlinear dimensionality reduction

There are plenty of other techniques that reduce the dimensionality of a given data
set. They do not exploit simultaneously the structure of the output function and the
input parameter space like AS, they just express the data vectors we want to reduce in
a reduced space embedded in the original one. For a comprehensive overview, see [64]
and [104]. The main assumption is that the data set at hand has an intrinsic dimen-
sionality, which is lower than that of the full space where they belong. This means
that the data are lying on or near a manifold with dimensionality d embedded in a
greater space of dimension D. If we approximate this manifold with a linear subspace
we use a linear dimensionality reduction technique; otherwise assuming the data lie
on a curved manifold we can achieve better results using a nonlinear method. Un-
fortunately in general neither the characteristics of the manifold, nor the intrinsic di-
mensionality are known, so the dimensionality reduction problem is ill-posed. There
are several algorithms to detect the intrinsic dimensionality of a data set; we suggest
the review in [17]. Among all we cite two of the most popular techniques, i. e., locally
linear embedding (LLE), presented in [83], and Isomap [98]. Extensions for the two
methods can be found in [12].

LLE seeks to preserve local properties of the high-dimensional data in the em-
bedded space, and it is able to detect nonconvex manifolds. In particular it preserves
local reconstruction weights of the neighborhood graph, that is, LLE fits a hyperplane
through each data point and its nearest neighbors. Some applications can be found
in [51] for biomedical engineering, or in [60] for computational mechanics.

Isomap instead seeks to preserve geodesic (or curvilinear) distances between the
high-dimensional data points and the lower-dimensional embedded ones. Its topo-
logical stability has been investigated in [8], while it has been used for micromotility
reconstruction in [5].

Other approaches include for example a manifold walking algorithm that has
been proposed in [73] and in [74].
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1.5 Conclusion and outlook

This introductory chapter provided the means to understand projection-based MOR
methods in Section 1.1. Various techniques allowing the parameterization of compli-
cated geometries were provided in Section 1.2. Since many geometries of interest in-
troduce nonlinearities or nonaffine parameter dependency, an intermediate step such
as the EIM is often applied. The basics were presented in Section 1.3 and will be used
further in the chapter on hyperreduction (Chapter 5) of this volume. The reduction in
parameter space becomes necessary if high-dimensional parameter spaces are con-
sidered. Active subspaces (Section 1.4) provide a mean to tackle the curse of dimen-
sionality.

Each chapter of the handbook gives in-depth technical details upon a particular
topic of interest. This includes common MOR methods, several application areas of
interest, and a survey of current software frameworks for model reduction. Whenever
a method does not rely only on the PDE-based functional analysis setting introduced
in this chapter, corresponding requirements will be mentioned within each technical
chapter.
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2 Model order reduction by proper orthogonal
decomposition

Abstract: We provide an introduction to proper orthogonal decomposition (POD)
model order reduction with focus on (nonlinear) parametric partial differential equa-
tions (PDEs) and (nonlinear) time-dependent PDEs, and PDE-constrained optimiza-
tion with POD surrogate models as application. We cover the relation of POD and
singular value decomposition, POD from the infinite-dimensional perspective, re-
duction of nonlinearities, certification with a priori and a posteriori error estimates,
spatial and temporal adaptivity, input dependency of the POD surrogate model, POD
basis update strategies in optimal control with surrogate models, and sketch related
algorithmic frameworks. The perspective of the method is demonstrated with several
numerical examples.
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parametric PDEs, evolutionary PDEs, certification with error analysis
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2.1 Introduction
Proper orthogonal decomposition (POD) is a method which comprises the essential
information contained in data sets. Data sets may have their origin in various sources,
like, e. g., (uncertain)measurements of geophysical processes, numerical simulations
of (parameter-dependent) complex physical problems, or (dynamical) imaging. In or-
der to illustrate the POD idea of information extraction, let {y1, . . . , yn} ⊂ ℝm denote a
vector cloud (which here serves as our data set), where we suppose at least one of the
vectors yj is nonzero. Let us collect the vectors yj in the data matrix

Y = [y1 | . . . | yn] ∈ ℝ
m×n.

Then we have r = rankY ∈ {1, . . . ,min(m, n)}. Our aim now is to find a vector ψ̄ ∈ ℝm

with length one which carries as much information of this vector cloud as possible.
Of course, we here have to specify what information in this context means. For this

Note: We note that parts of this work have been done while the authors Michael Hinze and Carmen
Gräßle were affiliated with the University of Hamburg.

Carmen Gräßle, Germany
Michael Hinze, University of Koblenz-Landau, Universitätsstr. 1, 56070 Koblenz, Germany
Stefan Volkwein, University of Konstanz, Mathematics and Statistics, Universitätsstrasse 10, 78457
Konstanz, Germany

Open Access. © 2021 Carmen Gräßle et al., published by De Gruyter. This work is licensed under the
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

https://doi.org/10.1515/9783110671490-002



48 | C. Gräßle et al.

purpose we equipℝm with some inner product ⟨⋅ , ⋅⟩ and induced norm ‖ ⋅ ‖. We define
the information content of vector y with respect to some unit vector ψ by the quantity
|⟨y,ψ⟩|. Then we determine the special vector ψ̄ ∈ ℝm by solving the maximization
problem

ψ̄ ∈ argmax{
n
∑
j=1

⟨yj,ψ⟩

2
|ψ ∈ ℝm with ‖ψ‖ = 1}. (2.1)

Note that the solution to the maximization problem in (2.1) is not unique. If ψ̄ is a
vector, where the maximum is attained, then −ψ̄ is an optimal solution, too. Let us
label the vector ψ̄ by ψ1. We now iterate this procedure; suppose that for 2 ≤ ℓ ≤ r
we have already computed such ℓ− 1 orthonormal vectors {ψi}

ℓ−1
i=1 and then seek a unit

vector ψℓ ∈ ℝm which is perpendicular to the (ℓ − 1)-dimensional subspace

V
ℓ−1 = span{ψ1, . . . ,ψℓ−1} ⊂ ℝ

m,

and which carries as much information of our vector cloud as possible, i. e., satisfies

ψℓ = argmax{
n
∑
j=1

⟨yj,ψ⟩

2
|ψ ∈ ℝm with ‖ψ‖ = 1 and ψ ⊥ Vℓ−1}.

It is now straightforward to see that the vectors {ψi}
r
i=1 are given by

W 1/2ψi = ψ̃i, 1 ≤ i ≤ r, (2.2)

where the ψ̃i’s solve the eigenvalue problem (cf. [42, 53])

Ȳ Ȳ⊤ψ̃i = λiψ̃i, i = 1, . . . , r and λ1 ≥ ⋅ ⋅ ⋅ ≥ λr > 0,

where Ȳ = W 1/2Y ∈ ℝm×n with the symmetric, positive definite (weighting) matrix

W = ((⟨ei, ej⟩))1≤i,j≤m. (2.3)

In (2.3) the vector ei denotes the i-th unit vector in ℝm. The modes {ψi}
ℓ
i=1 obtained

in this way are called POD modes or principal components of our data cloud. If now
m ≫ n ≥ r, it is advantageous to consider the eigenvalue problem

Ȳ⊤Ȳϕi = λiϕi, i = 1, . . . , r and λ1 ≥ ⋅ ⋅ ⋅ ≥ λr > 0,

which admits the same eigenvalues λi as before. The modes ψi and ϕi, i = 1, . . . , r, are
related by singular value decomposition (SVD):

ψi =
1
σi
Ȳϕi, i = 1, . . . , r,
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and σi = √λi > 0 is the i-th singular value of the weighted data matrix Ȳ . Note that in
contrast to (2.2) the square root matrixW 1/2 is not required.

It is now clear that a vector cloud also could be replaced by a function cloud
{y(μj) | j = 1, . . . , n} ⊂ X in some Hilbert space (X, ⟨⋅ , ⋅⟩X), where {μj}

n
j=1 are parameters

which may refer to, e. g., time instances of a dynamic process, or stochastic variables,
and the concept of information extraction by the above maximization problems di-
rectly carries over to this situation. As shown in the next section, we can even extend
this concept to general Hilbert spaces. This will be formalized in Section 2.2.1. From
the considerations above it also becomes clear that POD is closely related to SVD. This
is outlined in Section 2.2.2. The POD method for abstract nonlinear evolution prob-
lems is explained in Section 2.2.3. The Hilbert space perspective also allows us to treat
spatially discrete evolution equations, which include adaptive concepts for the spa-
tial discretization. This is outlined in Section 2.2.4. The POD-Galerkin procedure is ex-
plained in Section 2.3, including a discussion of the treatment of nonlinearities. The
certification of the PODmethod with a priori and a posteriori error bounds is outlined
in Section 2.4. The PODapproachheavily relies on the choice of the snapshots. Related
approaches are discussed in Section 2.5. In Section 2.6 we briefly address the scope
of the POD method in the context of optimal control of partial differential equations
(PDEs). Finally, in Section 2.7 we sketch further important research trends related to
POD. Our analytical exposition is supported by several numerical experiments which
give an impression of the power of the approach.

POD is one of the most successfully used model reduction techniques for non-
linear dynamical systems; see, e. g., [23, 42, 53, 75, 90] and the references therein. It
is applied in a variety of fields, including fluid dynamics, coherent structures [4, 9],
and inverse problems [13]. Moreover, in [11] POD is successfully applied to compute
reduced-order controllers. The relationship between POD and balancing was consid-
ered in [61, 82, 100]. An error analysis for nonlinear dynamical systems in finite di-
mensions was carried out in [78] and a missing point estimation in models described
by POD was studied in [10].

2.2 POD
In this section we introduce a discrete variant of the POD method, where we follow
partially [42, Section 1.2.1]. For a continuous variant of the POD method and its rela-
tionship to the discrete onewe refer the reader to [58] and [42, Sections 1.2.2 and 1.2.3].

2.2.1 The POD method

Suppose that K, n1, . . . , nK are fixed natural numbers. Let the so-called snapshot en-
sembles {ykj }

nk
j=1 ⊂ X be given for 1 ≤ k ≤ K, where X is a separable real Hilbert space.
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For POD in complex Hilbert spaces we refer the reader to [96]. We set n = n1 + ⋅ ⋅ ⋅ + nK .
To avoid a trivial case we suppose that at least one of the ykj ’s is nonzero. Then we
introduce the finite-dimensional, linear snapshot space

V = span {ykj | 1 ≤ j ≤ nk and 1 ≤ k ≤ K} ⊂ X (2.4)

with finite dimension d ≤ n. We distinguish two cases:
1) The separableHilbert spaceX has finite dimensionm: ThenX is isomorphic toℝm;

see, e. g., [81, p. 47]. We define the finite index set 𝕀 = {1, . . . ,m}. Clearly, we have
1 ≤ r ≤ min(n,m). Especially in the case of X = ℝm, the snapshots ykj = (y

k
ij)1≤i≤m

are vectors in ℝm for k = 1, . . . ,K.
2) X is infinite-dimensional: Since X is separable, each orthonormal basis of X has

countably many elements. In this case X is isomorphic to the set ℓ2 of sequences
{xi}i∈ℕ of complex numbers which satisfy ∑∞i=1 |xi|

2 < ∞; see [81, p. 47], for in-
stance. The index set 𝕀 is now the countable but infinite setℕ.

The POD method consists in choosing a complete orthonormal basis {ψi}i∈𝕀 in X such
that for every ℓ ∈ {1, . . . , r} the information content of the given snapshots ykj is maxi-
mized in the following sense:

max
ℓ

∑
i=1

K
∑
k=1

nk
∑
j=1

αkj
⟨y

k
j ,ψi⟩X

2

s. t. {ψi}
ℓ
i=1 ⊂ X and ⟨ψi,ψj⟩X = δij, 1 ≤ i, j ≤ ℓ

}}}
}}}
}

(Pℓ)

with positive weighting parameters αkj , j = 1, . . . , nk and k = 1, . . . ,K. Here, the symbol
δij denotes the Kronecker symbol satisfying δii = 1 and δij = 0 for i ̸= j.

An optimal solution {Ψi}
ℓ
i=1 to (P

ℓ) is called a POD basis of rank ℓ. It is proved in
[42, Theorem 1.8] that for every ℓ ∈ {1, . . . , r} a solution {Ψi}

ℓ
i=1 to (P

ℓ) is characterized
by the eigenvalue problem

ℛΨi = λiΨi for 1 ≤ i ≤ ℓ, (2.5)

where λ1 ≥ ⋅ ⋅ ⋅ ≥ λr > 0 denote the largest eigenvalues of the linear, bounded, nonneg-
ative, and self-adjoint operatorℛ : X → X given as

ℛΨ =
K
∑
k=1

nk
∑
j=1

αkj ⟨Ψ, y
k
j ⟩X y

k
j for Ψ ∈ X. (2.6)

Moreover, the operatorℛ can be presented in the form

ℛ = 𝒴𝒴∗ (2.7)

with the mapping

𝒴 : ℝn → X, 𝒴(Φ) =
K
∑
k=1

nk
∑
j=1
√αkj ϕ

k
j y

k
j for Φ = (ϕ1

1, . . . ,ϕ
K
nK ) ∈ ℝ

n,
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where 𝒴∗ : X → ℝn denotes the Hilbert space adjoint of 𝒴, whose action is given by

𝒴∗(Ψ) = (⟨Ψ,√α11y
1
1⟩X , . . . , ⟨Ψ,√αKnKy

K
nK⟩X)
⊤ for Ψ ∈ X.

The operator 𝒦 : ℝn → ℝn, 𝒦 := 𝒴∗𝒴 then admits the same nonzero eigenvalues
λ1 ≥ ⋅ ⋅ ⋅ ≥ λr > 0 with corresponding eigenvectors Φ1, . . . ,Φr, and its action is given by

𝒦Φ =
K
∑
k=1

nk
∑
j=1
(√α11αkj ϕ

k
j ⟨y

k
j , y

1
1⟩X , . . . ,√α

K
nKα

k
j ϕ

k
j ⟨y

k
j , y

K
nK⟩X)
⊤ (2.8)

with the vector Φ = (ϕ1
1, . . . ,ϕ

K
nK ) ∈ ℝ

n. For the eigensystems of ℛ and 𝒦 we have the
relation

Φi =
1
√λi

𝒴∗Ψi and Ψi =
1
√λi

𝒴Φi, for i = 1, . . . , r. (2.9)

Furthermore, we obtain

ℓ

∑
i=1

K
∑
k=1

nk
∑
j=1

αkj
⟨y

k
j ,Ψi⟩X

2
=
ℓ

∑
i=1

λi,

and for the POD projection error we get

K
∑
k=1

nk
∑
j=1

αkj

ykj −
ℓ

∑
i=1

K
∑
k=1

nk
∑
j=1
⟨ykj ,Ψi⟩X Ψi



2

X
=

r
∑
i=ℓ+1

λi. (2.10)

Thus, the decay rate of the positive eigenvalues {λi}ri=1 plays an essential role for a
successful application of the POD method. In general, one has to utilize a complete
orthonormal basis {Ψi}i∈𝕀 ⊂ X to represent elements in the snapshot space V by their
Fourier sum. This leads to a high-dimensional or even infinite-dimensional approx-
imation scheme. Nevertheless, if the term ∑ri=ℓ+1 λi is sufficiently small for a not too
large ℓ, elements in the subspace V can be approximated by a linear combination of
the few basis elements {Ψi}

ℓ
i=1. This offers the chance to reduce the number of terms in

the Fourier series using the POD basis of rank ℓ, as shown in the following examples.
For this reason it is useful to define information content of the basis {Ψi}

ℓ
i=1 inV by the

quantity

ℰ(ℓ) =
∑ℓi=1 λi
∑ri=1 λi
∈ [0, 1]. (2.11)

It can, e. g., be utilized to determine a basis of length ℓ ∈ {1, . . . , r} containing ≈ 99%
of the information contained in V by requiring ℰ(ℓ) ≈ 99%. Now it is shown in [42,
Section 1.2.1] that

r
∑
i=1

λi =
K
∑
k=1

nk
∑
j=1

αkj
y

k
j

2
X
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holds true. This implies

ℰ(ℓ) =
∑ℓi=1 λi

∑Kk=1∑
nk
j=1 α

k
j ‖y

k
j ‖

2
X

∈ [0, 1],

so that thequantityℰ(ℓ) canbe computedwithout knowing the eigenvalues λℓ+1, . . . , λr.

2.2.2 SVD and POD

To investigate the relationship between SVD and POD, let us discuss the PODmethod
for the specific case X = ℝm. Then we define the matrices

Dk =(

αk1 0
. . .

0 αknk

) ∈ ℝnk×nk for 1 ≤ k ≤ K,

D =(
D1 0

. . .
0 DK

) ∈ ℝn×n,

Yk = [yk1 | . . . | y
k
nk ] ∈ ℝ

m×nk for 1 ≤ k ≤ K,

Y = [Y 1 | . . . |YK] ∈ ℝm×n, Ȳ = W 1/2YD1/2 ∈ ℝm×n,

where we have introduced the weighting matrixW ∈ ℝm×m in (2.3).

Remark 2.1. Let us mention that Ȳ = Y holds true provided all αkj are equal to one
(i. e., D is the identity matrix) and the inner product in X is given by the Euclidean
inner product (i. e.,W is the identity matrix).

Now (2.5) is equivalent to them ×m eigenvalue problem

Ȳ Ȳ⊤Ψ̄i = λiΨ̄i for 1 ≤ i ≤ ℓ (2.12)

with Ψi = W−1/2Ψ̄i and the n × n eigenvalue problem

Ȳ⊤ȲΦ̄i = λiΦ̄i for 1 ≤ i ≤ ℓ (2.13)

with Ψi = YD1/2Φ̄i/√λi. Ifm ≪ n holds, we solve (2.12). However, we have to solve the
linear systemW 1/2Ψi = Ψ̄i for any i = 1, . . . , ℓ in order to get the PODbasis {Ψi}

ℓ
i=1. Thus,

if n ≤ m holds, we will compute the solution {Φ̄i}
ℓ
i=1 to (2.13) and get the POD basis by

the formula Ψi = YD1/2Φ̄i/√λi. In that case we also have Ȳ⊤Ȳ = Y⊤WY so that we
do not have to compute the square root matrixW 1/2. On the other hand, the diagonal
matrix D1/2 can be computed easily. The relationship between (2.12) and (2.13) is given
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by SVD: There exist real numbers σ1 ≥ ⋅ ⋅ ⋅ ≥ σr > 0 and orthogonalmatricesΨ ∈ ℝm×m,
Φ ∈ ℝn×n with column vectors {Ψ̄i}

m
i=1, {Φ̄i}

n
i=1, respectively, such that

Ψ⊤ȲΦ = ( Σr 0
0 0
) =: Σ ∈ ℝm×n, (2.14)

where Σr = diag (σ1, . . . , σr) ∈ ℝr×r and the zeros in (2.14) denote matrices of appropri-
ate dimensions. Moreover, the vectors {Ψ̄i}

r
i=1 and {Φ̄i}

r
i=1 are eigenvectors of Ȳ Ȳ

⊤ and
Ȳ⊤Ȳ , respectively, with eigenvalues λi = (σi)2 > 0 for i = 1, . . . , r. The vectors {Ψ̄i}

m
i=r+1

and {Φ̄i}
n
i=r+1 (if r < m respectively r < n) are eigenvectors of Ȳ Ȳ⊤ and Ȳ⊤Ȳ with eigen-

value 0.We summarize the computation of the PODbasis in the pseudo-code function
[Ψ, Λ]= POD(Y ,W , D, ℓ, flag).

function [Ψ, Λ]= POD(Y ,W , D, ℓ, flag)
Require: Snapshots matrix Y = [Y 1, . . . ,YK] with rank r, weighting matrices W , D,

number ℓ of POD functions, and flag for the solver;
1: if flag = 0 then
2: Set Ȳ = W 1/2YD1/2;
3: Compute singular value decomposition [Ψ,Σ,Φ] = svd (Ȳ);
4: Define Ψ̄i as the i-th column of Ψ and σi = Σii for 1 ≤ i ≤ ℓ;
5: Set Ψi = W−1/2Ψ̄i and λi = σ2i for i = 1, . . . , ℓ;
6: else if flag = 1 then
7: Compute eigenvalue decomposition [Ψ,Λ] = eig (Ȳ Ȳ⊤);
8: Define Ψ̄i as the i-th column of Ψ and λi = Λii for 1 ≤ i ≤ ℓ;
9: Set Ψi = W−1/2Ψ̄i for i = 1, . . . , ℓ;
10: else if flag = 2 then
11: Compute eigenvalue decomposition [Φ,Λ] = eig (Ȳ⊤Ȳ);
12: Define ϕ̄i as the i-th column ofΦ and λi = Λii for 1 ≤ i ≤ ℓ;
13: Set Ψi = YD1/2ϕ̄i/√λi for i = 1, . . . , ℓ;
14: end if
15: return Ψ = [Ψ1 | . . . |Ψℓ] andΛ = [λ1 | . . . | λℓ];

2.2.3 The POD method for nonlinear evolution problems

In this subsection we explain the POD method for abstract nonlinear evolution prob-
lems.We focus on the numerical realization. For detailed theoretical investigationswe
refer the reader to [42, 50, 51, 57, 58], for instance.
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2.2.3.1 Nonlinear evolution problems

Let us formulate the nonlinear evolution problem. For that purpose we suppose the
following hypotheses.

Assumption 2.1. Suppose that T > 0 holds, where [0,T] is the considered finite time
horizon.
1) V and H are real, separable Hilbert spaces and suppose that V is dense in H with

compact embedding. By ⟨⋅ , ⋅⟩H and ⟨⋅ , ⋅⟩V we denote the inner products in H and V,
respectively.We identify H with its dual (Hilbert) spaceH by the Riesz isomorphism
so that we have the Gelfand triple

V → H ≃ H → V ,

where each embedding is continuous and dense. The last embedding is understood
as follows: For every element h ∈ H andv ∈ V,wealso have v ∈ H by the embedding
V → H, so we can define ⟨h, v⟩V  ,V = ⟨h, v⟩H ,H .

2) For almost all t ∈ [0,T]we define a time-dependent bilinear form a(t; ⋅ , ⋅) : V ×V →
ℝ satisfying
a(t;φ,ϕ)

 ≤ γ ‖φ‖V ‖ϕ‖V for all φ,ϕ ∈ V , t ∈ [0,T] a. e., (2.15a)

a(t;φ,φ) ≥ γ1 ‖φ‖
2
V − γ2 ‖φ‖

2
H for all φ ∈ V , t ∈ [0,T] a. e., (2.15b)

for time-independent constants γ, γ2 ≥ 0, γ1 > 0 andwhere “a. e.” stands for “almost
everywhere”.

3) Assume that y∘ ∈ V, f ∈ L2(0,T ;H) holds. Here we refer to [27, pp. 469-472] for
vector-valued function spaces.

Recall the function space

W(0,T) = {φ ∈ L2(0,T ;V) |φt ∈ L
2(0,T ;V )},

which is a Hilbert space endowed with the standard inner product; cf. [27, pp. 472–
479]. Furthermore, we have

d
dt
⟨φ(t),ϕ⟩H = ⟨φt(t),ϕ⟩V  ,V for φ ∈ W(0,T), ϕ ∈ V

in the sense of distributions in [0,T]. Here, ⟨⋅ , ⋅⟩V  ,V stands for the dual pairing be-
tween V and its dual V .

Now the evolution problem is given as follows: Find the state y ∈ W(0,T) ∩
C([0,T];V) such that

d
dt
⟨y(t),φ⟩H + a(t; y(t),φ) + ⟨𝒩 (y(t)),φ⟩V  ,V = ⟨f (t),φ⟩H

∀φ ∈ V , t ∈ (0,T] a. e.,
⟨y(0),φ⟩H = ⟨y∘,φ⟩H ∀φ ∈ H .

(2.16)
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Throughout we assume that (2.16) admits a unique solution y ∈ W(0,T) ∩
C([0,T];V). Of course, this requires some properties for the nonlinear mapping 𝒩
which we will not specify here.

Example 2.1 (Semi-linear heat equation). Let Ω ⊂ ℝd, d ∈ {2, 3}, be a bounded open
domain with Lipschitz-continuous boundary 𝜕Ω and let T > 0 be a fixed end time.
We set Q := (0,T) × Ω and Σ := (0,T) × 𝜕Ω and c ≥ 0. For a given forcing term f ∈
L2(Q) and initial condition y∘ ∈ L2(Ω), we consider the semi-linear heat equation with
homogeneous Dirichlet boundary condition:

yt(t, x) − Δy(t, x) + cy
3(t, x) = f (t, x) in Q,
y(t, x) = 0 on Σ,
y(0, x) = y∘(x) in Ω.

}}}
}}}
}

(2.17)

The existence of a unique solution to (2.17) is proved in [83], for example. We can
write (2.17) as an abstract evolution problem of type (2.16) by deriving a variational
formulation for (2.17) with V = H1

0(Ω) as the space of test functions H = L
2(Ω) and

integrating over the space Ω. The bilinear form a : V × V → ℝ is introduced by

a(φ,ϕ) = ∫
Ω

∇φ ⋅ ∇ϕdx for φ,ϕ ∈ V

and the operator 𝒩 : V → V  is defined as 𝒩 (φ) = cφ3 for φ ∈ V . For c ≡ 0, the heat
equation (2.17) is linear.

Example 2.2 (Cahn–Hilliard equations). Let Ω, T, Q and Σ be defined as in Exam-
ple 2.1. The Cahn–Hilliard systemwas proposed in [21] as amodel for phase separation
in binary alloys. Introducing the chemical potential w, the Cahn–Hilliard equations
can be formulated in the common setting as a coupled system for the phase field c
and the chemical potential w:

ct(t, x) + y ⋅ ∇c(t, x) = mΔw(t, x) in Q,

w(t, x) = −σεΔc(t, x) + σ
ε
W (c(t, x)) in Q,

∇c(t, x) ⋅ νΩ = ∇w(t, x) ⋅ νΩ = 0 on Σ,
c(0, x) = c∘(x) in Ω.

}}}}}}}
}}}}}}}
}

(2.18)

By νΩ we denote the outward normal on 𝜕Ω, m ≥ 0 is a constant mobility, σ > 0
denotes the surface tension, and 0 < ε ≪ 1 represents the interface parameter. Note
that the convective term y ⋅ ∇c describes the transport with (constant) velocity y. The
transport term represents the coupling to the Navier–Stokes equations in the context
of multiphase flow; see, e. g., [52] and [2]. The phase field function c describes the
phase of a binary material with components A and B and takes the values c ≡ −1 in
the pure A-phase and c ≡ +1 in the pure B-phase. The interfacial region is described
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by c ∈ (−1, 1) and admits a thickness of order 𝒪(ε); see, e. g., Figure 2.5, left column,
where the binary phases are colored in blue andgreen, respectively, and the interfacial
region is depicted in white. The function W(c) represents the free energy and is of
double well-type. A typical choice forW is the polynomial free energy function

Wp(c) = (1 − c2)2/4 (2.19)

with two minima at c = ±1, which describe the energetically favorable states. It is
infinitely often differentiable. Another choice forW is the C1 relaxed double obstacle
free energy

W rel
s (c) =

1
2
(1 − c2) + s

2
(max(c − 1,0)2 +min(c + 1,0)2), (2.20)

with relaxation parameter s ≫ 0, which is introduced in [43] as the Moreau–Yosida
relaxation of the double obstacle free energy

W∞(c) = {
1
2 (1 − c

2), if c ∈ [−1, 1],
+∞, otherwise.

The energies Wp(c) and W rel
s (c) later will be used to compare the performance of

POD on systems with smooth and less smooth nonlinearities. For more details on the
choices forW we refer to [1] and [19], for example. Concerning existence, uniqueness,
and regularity of a solution to (2.18), we refer to [19]. In order to derive a variational
form of type (2.16), we rewrite (2.18) as a single fourth-order parabolic equation for c
by

ct(t, x) + y ⋅ ∇c(t, x) = mΔ(−σεΔc(t, x) +
σ
ε
W (c(t, x))) in Q,

0 = ∇c(t, x) ⋅ νΩ = ∇(−σεΔc(t, x) +
σ
ε
W (c(t, x))) ⋅ νΩ on Σ,

c(0, x) = c∘(x) in Ω.

}}}}}}}
}}}}}}}
}

(2.21)

We choose V = {v ∈ H1(Ω) : 1
|Ω| ∫Ω v = 0} equipped with the inner product (u, v)V :=

∫Ω ∇u∇v, so that the dual space ofV is given byV  = {f ∈ (H1(Ω)) : ⟨f , 1⟩ = 0} such that
V → H = V  and ⟨., .⟩ denotes the duality pairing. We note that (V , (., .)V ) is a Hilbert
space. We define the V -inner product for f , g ∈ V  as (f , g)V  := ∫Ω ∇(−Δ)−1f ⋅ ∇(−Δ)−1g
where (−Δ)−1 denotes the inverse of the negative Laplacianwith zeroNeumannbound-
ary data. Note that (f , g)V  = (f , (−Δ)−1g)L2(Ω) = ((−Δ)−1f , g)L2(Ω). We introduce the bi-
linear form a : V × V → ℝ by

a(u, v) = σε(∇u, ∇v)L2(Ω) +
1
m
(y ⋅ ∇u, v)V 
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and define the nonlinear operator 𝒩 by 𝒩 (c) = σ
εW
(c). The evolution problem can

be written in the form
1
m
(ct(t), v)V  + a(c(t), v) + ⟨𝒩 (c(t)), v⟩ = 0 ∀v ∈ V and a. a. t ∈ (0,T].1 (2.22)

We note that this fits our abstract setting formulated in (2.16) with the Gelfand triple
V → H ≡ V  → V .

2.2.3.2 Temporal discretization and the POD method

Let 0 = t1 < ⋅ ⋅ ⋅ < tnt = T be a given time gridwith step sizes Δtj = tj−tj−1 for j = 2, . . . , nt .
Suppose that for any j ∈ {1, . . . , nt} the element yj ∈ V ⊂ H is an approximation of y(tj)
computedbyapplying a temporal integrationmethod (e. g., the implicit Eulermethod)
to (2.16). Then we consider the snapshot ensemble

V = span {yj | 1 ≤ j ≤ n} ⊂ V ⊂ H

with n = nt and r = dimV ≤ n. In the context of (Pℓ) we choose K = 1 and n = n1 = nt .
Moreover,X canbe eitherV orH. For theweightingparameterswe take the trapezoidal
weights

α1 =
Δt1
2
, αj =

Δtj + Δtj−1
2

for j = 2, . . . , nt − 1, αnt =
Δtnt
2
. (2.23)

Of course, other quadratureweights are also possible. Now, instead of (Pℓ)we consider
the maximization problem

max
ℓ

∑
i=1

n
∑
j=1

αj
⟨yj,Ψi⟩X


2

s. t. {Ψi}
ℓ
i=1 ⊂ X and ⟨Ψi,Ψj⟩X = δij, 1 ≤ i, j ≤ ℓ

}}}
}}}
}

(2.24)

with either X = V or X = H.

Remark 2.2. In [42, Sections 1.2.2 and 1.3.2] a continuous variant of the POD method
is considered. In that case the trapezoidal approximation in (2.24) is replaced by inte-
grals over the time interval [0,T]. More precisely, we consider

max
ℓ

∑
i=1

T

∫
0

⟨y(t),Ψi⟩X

2 dt

s. t. {Ψi}
ℓ
i=1 ⊂ X and ⟨Ψi,Ψj⟩X = δij, 1 ≤ i, j ≤ ℓ

}}}}
}}}}
}

(2.25)

1 We acknowledge a hint of Harald Garcke who pointed this form of the weak formulation of (2.21) to
us.
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with either X = V or X = H. For the relationship between solutions to (2.24) and (2.25)
we refer to [58] and [42, Section 1.2.3].

To compute the POD basis {Ψi}
ℓ
i=1 of rank ℓwe have to evaluate the inner products

⟨yj,Ψi⟩X , where either X = V or X = H holds. In typical applications the space X is
usually infinite-dimensional. Therefore, a discretization of X is required in order to
get a POD method that can be realized on a computer. This is the topic of the next
subsection.

2.2.3.3 Galerkin discretization

We discretize the state equation by applying any spatial approximation scheme. Let
us consider here a Galerkin scheme for (2.16). For this reason we are given linearly
independent elements φ1, . . . ,φm ∈ V and define them-dimensional subspace

Vh = span {φ1, . . . ,φm} ⊂ V

endowed with the V topology. Then a Galerkin scheme for (2.16) is given as follows:
Find yh ∈ W(0,T) ∩ C([0,T];Vh) satisfying

d
dt
⟨yh(t),φh⟩H + a(t; y

h(t),φh) + ⟨𝒩 (yh(t)),φ⟩V  ,V
= ⟨f (t),φh⟩H ∀φ

h ∈ Vh, t ∈ (0,T] a. e.,

⟨yh(0),φh⟩H = ⟨y∘,φ
h⟩H ∀φ

h ∈ Vh.

(2.26)

Inserting the representation yh(t) = ∑mi=1 y
h
i (t)φi ∈ Vh, t ∈ [0,T], in (2.26) and choosing

φh = φi for i = 1, . . . ,m we derive the followingm-dimensional initial value problem:

Mhẏh(t) + Ah(t)yh(t) + Nh(yh(t)) = Fh(t) for t ∈ (0,T],

Mhyh(0) = yh∘ ,
(2.27)

where we have used the matrices and vectors

Mh = ((⟨φj,φi⟩H))1≤i,j≤m, yh(t) = (yhi )1≤i≤m for t ∈ [0,T] a. e.,

Ah(t) = ((a(t;φj,φi)))1≤i,j≤m, yh∘ = (⟨y∘,φi⟩H)1≤i≤m,

Nh(v) = (⟨𝒩(∑mj=1vjφj),φi⟩
V  ,V)1≤i≤m for v = (vj)1≤j≤m,

Fh(t) = (⟨f (t),φi⟩H)1≤i≤m for t ∈ [0,T].

In the pseudo-code function [Y]= StateSol(yh∘ ) we present a solution method
for (2.27) using the implicit Euler method.

In the next subsection we discuss how a POD basis {Ψj}
ℓ
j=1 of rank ℓ ≤ r can be

computed from numerical approximations for the solution yh to (2.27).
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function [Y]= StateSol(yh∘ )

Require: Initial condition yh∘ ;
1: Compute yh1 ∈ ℝ

m solving Mhyh1 = y
h
∘ ;

2: for j = 2 to nt do
3: Set Ah

j = A
h(tj) ∈ ℝm×m and Fhj = F

h(tj) ∈ ℝm;
4: Solve (e. g., by applying Newton’s method) for yhj ∈ ℝ

m

(Mh + ΔtjA
h
j )y

h
j + ΔtjN

h(yhj ) = M
hyhj−1 + ΔtjF

h
j ;

5: end for
6: return matrix Y = [yh1 | . . . | y

h
nt ] ∈ ℝ

m×nt ;

2.2.3.4 POD method for the fully discretized nonlinear evolution problem

Recall that we have introduced the temporal grid {tj}
nt
j=1 ⊂ [0,T] and set n = nt . Let

yh1 , . . . , y
h
n ∈ Vh be numerical approximations to the solution yh(t) to (2.27) at time

instances t = tj, j = 1 . . . , nt . Then, a coefficient matrix Y ∈ ℝm×n is defined by the
elements Yij given by

yhj =
m
∑
i=1

Yijφi ∈ V
h for 1 ≤ j ≤ n.

The j-th column of Y (denoted by yj = Y⋅,j) contains the Galerkin coefficients of the
snapshot yhj ∈ V

h. We set r = rankY ≤ min(m, n) and

V
h = span {yhj | 1 ≤ j ≤ n} ⊂ V

h.

Due to Vh ⊂ Vh we have Ψj ∈ Vh for 1 ≤ j ≤ ℓ. Therefore, there exists a coefficient
matrix Ψ ∈ ℝm×ℓ that is defined by the elements Ψij satisfying

Ψj =
m
∑
i=1

Ψijφi ∈ V
h for 1 ≤ j ≤ ℓ,

where the j-th column Ψ⋅,j of the matrix Ψ consists of the Galerkin coefficients of the
element Ψj. Note that

⟨vh,wh⟩H = (v
h)
⊤Mhwh, ⟨vh,wh⟩H = (v

h)
⊤Shwh

hold for vh = ∑mi=1 v
h
i φi, wh = ∑mi=1w

h
i φi ∈ Vh and for the symmetric, positive definite

stiffness matrix

Sh = ((⟨φj,φi⟩V ))1≤i,j≤m.
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Then, we have for X = H

⟨yhj ,Ψi⟩X = y
⊤
j M

hΨ⋅,i = Y
⊤
⋅,jM

hΨ⋅,i for 1 ≤ j ≤ n, 1 ≤ i ≤ ℓ,

and for X = V

⟨yhj ,Ψi⟩X = y
⊤
j S

hΨ⋅,i = Y
⊤
⋅,jS

hΨ⋅,i for 1 ≤ j ≤ n, 1 ≤ i ≤ ℓ.

Thus,we canapply the approachpresented inSection 2.2.2 choosingW = Mh forX = H
andW = Sh forX = V . Moreover, we setK = 1, n1 = nt = n, and α1j = αj defined in (2.23).
Now a POD basis of rank ℓ for (2.27) can be computed by the pseudo-code function
[Y ,Ψ]= PODState(yh∘ ,W , D, ℓ, flag ).

function [Y , Ψ]= PODState(yh∘ ,W , D, ℓ, flag )

Require: Initial condition yh∘ , weighting matricesW , D, number ℓ of POD functions,
and flag for the solver;

1: Call [Y]= StateSol(yh∘ );
2: Call [Ψ,Λ]= POD(Y ,W , D, ℓ, flag);
3: return Y = [yh1 | . . . | y

h
nt ] and Ψ = [Ψ1 | . . . |Ψℓ];

In the next subsection we will discuss in detail how the POD method has to be
applied in that case ifwehave– insteadofVh –different spacesVhj for each j = 1, . . . , n.

2.2.4 The POD method with snapshots generated by spatially
adaptive finite element methods

In practical applications it often is desirable to provide POD models for time-de-
pendent PDE systems, whose numerical treatment requires adaptive numerical tech-
niques in space and/or time. Snapshots generated by those methods are not directly
amenable to the POD procedure described in Section 2.2.3.4, since the application of
spatial adaptivity means that the snapshots at each time instance may have different
lengths due to their different spatial resolutions. In fact, there is not one single dis-
crete Galerkin spaceVh for all snapshots generated by the fully discrete evolution, but
at every time instance tj the adaptive procedure generates a discrete Galerkin space
Vhj ⊂ X, so that in this case yhj ≡ y

hj
j ∈ V

hj . For this reason, no snapshot matrix Y can
be formed with columns containing the basis coefficient vectors of the snapshots.

To obtain also a POD basis in this situation we inspect the operator𝒦 of (2.8) and
observe that its action can be computed if the inner products ⟨ykj , y

l
i⟩X can be evaluated

for all 1 ≤ i ≤ nl, 1 ≤ j ≤ nk and 1 ≤ k, l ≤ K.
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Let us next demonstrate how to compute a POD basis for snapshots residing in
arbitrary finite element (FE) spaces. To begin with we drop the superindex h and set
Vj := Vhj . For each time instant j = 1, . . . , n of our time-discrete PDE system the snap-
shots {yj}nj=1 are taken from different finite element spaces Vj ⊆ X (j = 1, . . . , n), where X
denotes a common (real) Hilbert space. Let Vj = span {φ

j
1, . . . ,φ

j
mj
}. Then we have the

expansions

yj =
mj

∑
i=1

yijφ
j
i for j = 1, . . . , n (2.28)

with coefficient vectors

yj = (y
i
j) ∈ ℝ

mj for j = 1, . . . , n

containing the finite element coefficients. The inner product of the associated func-
tions can thus be computed as

⟨yi, yj⟩X =
mi

∑
k=1

mj

∑
l=1

yki y
l
j ⟨φ

i
k ,φ

j
l⟩X for i, j = 1, . . . , n,

so that the evaluation of the action𝒦Φonly relies on the evaluation of the inner prod-
ucts ⟨φi

k ,φ
j
l⟩X (1 ≤ i, j ≤ n, 1 ≤ k ≤ mi, 1 ≤ l ≤ mj). In other words, once we are

able to compute those inner products we are in the position to set up the eigensystem
{(λi,Φi)}

r
i=1 of 𝒦 from (2.8). The POD modes {Ψi}

r
i=1 can then be computed according

to (2.9) by

Ψi =
1
√λi

𝒴Φi for i = 1, . . . , r.

Details on this procedure can be found in [62, 39].
To illustrate how this procedure canbe implementedwe summarize Examples 6.1–

6.3 from [39], which deal with nested and nonnested meshes. All coding was done in
C++ with FEniCS [8, 66] for the solution of the differential equations and ALBERTA
[87] for dealing with hierarchical meshes. The numerical tests were run on a compute
server with 512 GB RAM.

Run 2.1 ([39, Example 6.1]). We consider Example 2.1 with homogeneous Dirichlet
boundary condition and vanishing nonlinearity, i. e., we set c ≡ 0 so that the equa-
tion becomes linear. The spatial domain is chosen as Ω = (0, 1) × (0, 1) ⊂ ℝ2, the
time interval is [0,T] = [0, 1.57]. Furthermore, we choose X = L2(Ω). For the temporal
discretization we introduce the uniform time grid by

tj = (j − 1)Δt for j = 1, . . . , nt = 1571
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with Δt = 0.001. For the spatial discretization we use h-adapted piecewise linear, con-
tinuous finite elements on hierarchical and nested meshes. Snapshots of the analyti-
cal solution at three different time points are shown in Figure 2.1. Details on the con-
struction of the analytical solution and the corresponding right-hand side f are given
in [39, Example 6.1].

Figure 2.1: Run 2.1. Surface plot (top) and view from above (bottom) of the analytical solution of (2.17)
at t = t1 (left), t = T /2 (middle), and t = T (right).

Due to the steep gradients in the neighborhoods of the minimum and the maximum,
the use of an adaptive finite element discretization is justified. The resulting compu-
tational meshes as well as the corresponding finest mesh (reference mesh at the end
of the simulation which is the union of all adaptive meshes generated during the sim-
ulation) are shown in Figure 2.2.

Figure 2.2: Run 2.1. Adaptive finite element meshes at t = t1 (left), t = T /2 (middle left), and t = T
(middle right), and finest mesh (right).

The number of nodes of the adaptive meshes varies between 3,637 and 7,071 points.
The finest mesh has 18,628 degrees of freedom. A uniform mesh with grid size of or-
der of the diameter of the smallest triangles in the adaptive grids (hmin = 0.0047)
would have 93,025 degrees of freedom. This clearly reveals the benefit of using adap-
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tive meshes for snapshot generation, which is also well reflected in the comparison
of the computational times needed for the snapshot generation on the adaptive mesh
taking 944 seconds compared to 8,808 seconds on the uniformmesh (see Table 2.4 for
the speedup factors obtained by spatial adaptation). In Figure 2.3, the resulting nor-
malized eigenspectrumof the correlationmatrix K is shown for snapshots obtained by
uniform spatial discretization (“uniform FE mesh”), for snapshots obtained by inter-
polation on the finest mesh (“adaptive FE mesh”), and for snapshots without interpo-
lation (“infPOD”), where K is associated to the operator 𝒦 from (2.8); see also (2.30).

Figure 2.3: Run 2.1. Comparison of the normalized eigenvalues using an adaptive and a uniform spa-
tial mesh, respectively. Left: all eigenvalues; middle: first 200 largest eigenvalues; right: first 200
largest eigenvalues with different error tolerances for the adaptivity (1.5 times bigger and smaller
error tolerances, respectively).

We observe that the eigenvalues for both adaptive approaches coincide. This numer-
ically validates what we expect from theory: The information content which is con-
tained in the matrix 𝒦 when we explicitly compute the entries without interpolation
is the sameas the information content containedwithin the eigenvalueproblemwhich
is formulated when using the finest mesh. No information is added or lost. Moreover,
we recognize that about the first 28 eigenvalues computed corresponding to the adap-
tive simulation coincide with the simulation on a uniform mesh. From index 29 on,
the methods deliver different results: For the uniform discretizations, the normalized
eigenvalues fall below machine precision at around index 100 and stagnate. On the
contrary, the normalized eigenvalues for both adaptive approaches flatten in the order
around 10−10. If the error tolerance for the spatial discretization error is chosen larger
(or smaller), the stagnation of the eigenvalues in the adaptive method takes place at a
higher (or lower) order (Figure 2.3, right). Concerning dynamical systems, the magni-
tude of the eigenvalue corresponds to the characteristic properties of the underlying
dynamical system: the larger the eigenvalue, themore information is contained in the
corresponding eigenfunction. Since all adaptive meshes are contained in the uniform
mesh, the difference in the amplitude of the eigenvalues is due to the interpolation
errors during refinement and coarsening. This is the price we have to pay for faster
snapshot generation using adaptive methods. A further aspect gained from the decay
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behavior of the eigenvalues in the adaptive case is the following: The adaptive ap-
proach filters out the noise in the systemwhich is related to the modes corresponding
to the singular values that are not matched by the eigenvalues of the adaptive ap-
proach. This in the language of frequencies means that the overtones in the systems
which get lost in the adaptive computations live in the space which is neglected by
the PODmethod based on adaptive finite element snapshots. From this point of view,
adaptivity can be interpreted as a smoother.

The first, second, and fifth POD modes of Run 2.1 obtained by the adaptive ap-
proach are depicted in Figure 2.4. We observe the classical appearance of the basis
functions. The initial condition is reflected by the first POD basis function. The next
basis functions admit a number of minima andmaxima corresponding to the index in
the basis: Ψ2 has two minima and two maxima, etc. This behavior is similar to the in-
creasing oscillations in higher frequencies in trigonometric approximations. The POD
basis functions corresponding to the uniform spatial discretization have a similar ap-
pearance.

Figure 2.4: Run 2.1. Surface plot (top) and view from above (bottom) of the POD basis functions Ψ1
(left), Ψ2 (middle), and Ψ5 (right).

Run 2.2 ([39, Example 6.2]). (Cahn–Hilliard system). We consider Example 2.2 in the
form (2.18) with Ω = (0, 1.5) × (0,0.75), T = 0.025, constant mobilitym ≡ 0.00002, and
constant surface tension σ ≡ 24.5. The interface parameter ε is set to ε = 0.02, with
resulting interface thickness π ⋅ ε ≈ 0.0628. We use the relaxed double obstacle free
energyW rel

s from (2.20) with s = 104. As initial condition, we choose a circle with ra-
dius r = 0.25 and center (0.375,0.375). The initial condition is transported horizontally
with constant velocity v = (30,0)T . We set

tj = (j − 1)Δt for j = 1, . . . , nt = 1001,
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so that Δt = 2.5 ⋅ 10−5. The numerical computations are performed with the semi-
implicit Euler scheme. For this purpose let cj−1 ∈ V and cj ∈ V denote the time-
discrete solution at tj−1 and tj, respectively. Based on the variational formulation (2.22)
we tackle the time discrete version of (2.18) in the following form: Given cj−1, find cj,
wj solving

1
Δt
⟨cj − cj−1,φ1⟩L2 + ⟨v ⋅ ∇c

j−1,φ1⟩L2 +m ⟨∇w
j, ∇φ1⟩L2 = 0,

−⟨wj,φ2⟩L2 + σε ⟨∇c
j, ∇φ2⟩L2 +

σ
ε
⟨W +(c

j) +W −(c
j−1),φ2⟩L2 = 0

}}
}}
}

(2.29)

for all φ1,φ2 ∈ V and j = 2, . . . , nt with c1 = c∘. According to (2.22), here it is V =
{v ∈ H1(Ω), 1|Ω| ∫Ω vdx = 0}. Note that the free energy functionW is split into a convex
partW+ and a concave partW−, such thatW = W+ +W− andW + is treated implicitly,
whereasW − is treated explicitly with respect to time. This leads to an unconditionally
energy-stable timemarching scheme; compare [33]. The system (2.29) is discretized in
space using piecewise linear and continuous finite elements. The resulting nonlinear
equation systems are solved using a semi-smooth Newton method.

Figure 2.5 shows the phase field (left) and the chemical potential (right) for the fi-
nite element simulation using adaptivemeshes. The initial condition c∘ is transported
horizontally with constant velocity.

Figure 2.5: Run 2.2. Phase field c (left) and chemical potential w (right) computed on adaptive finite
element meshes at t = t1 (top), t = T /2 (middle), and t = T (bottom).

The adaptive finite elementmeshes and the finest meshwhich is generated during the
adaptive finite element simulation are shown in Figure 2.6. The number of degrees of
freedom in the adaptivemeshes varies between 6,113 and 8,795. The finest mesh (over-
lay of all adaptive meshes) has 54,108 degrees of freedom, whereas a uniform mesh
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Figure 2.6: Run 2.2. Adaptive finite element meshes at t = t1 (top left), t = T /2 (top right), and t = T
(bottom left) together with the finest mesh (bottom right).

with discretization fineness as small as the smallest triangle in the adaptive meshes
has 88,450 degrees of freedom.

Figure 2.7 shows the first, second, and fifth POD modes for the phase field c and
the chemical potentialw. Analogously to Run 2.1, we observe a periodicity in the POD
basis functions corresponding to their basis index numbers.

Figure 2.7: Run 2.2. First, second, and fifth POD modes for c (left) and w (right).
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In the present example we only compare the POD procedure for two kinds of snap-
shot discretizations, namely, the adaptive approach with using a finest mesh and the
uniform mesh approach, where the grid size is chosen to be of the same size as the
smallest triangle in the adaptive meshes. We choose X = L2(Ω) and compute a sepa-
rate POD basis for each of the variables c and w.

In Figure 2.8, a comparison is visualized concerning the normalized eigenspec-
trum for the phase field c and the chemical potential w using uniform and adaptive
finite element discretization.Wenote for thephasefield c that about thefirst 180 eigen-
values computed corresponding to the adaptive simulation coincidewith the eigenval-
ues of the simulation on the finest mesh. Then, the eigenvalues corresponding to the
uniform simulation decay faster. Similar observations apply for the chemical poten-
tial w.

Figure 2.8: Run 2.2. Comparison of the normalized eigenvalues for the phase field c (left) and the
chemical potential w (right) using an adaptive and a uniform spatial mesh, respectively.

Weuse the criterion (2.11) to determine the basis length ℓwhich is required to represent
a prescribed information content with the respective POD space. We will choose the
POD basis length ℓc for the phase field c and the number of POD modes ℓw for the
chemical potential, such that

ℓmin = argmin {ℰ(ℓ) : ℰ(ℓ) > 1 − p}, with ℓ = ℓc and ℓw , respectively,

for a given value p representing the loss of information. Alternatively, the POD basis
length could be chosen in alignment with the POD projection error (2.10) with the ex-
pected spatial and/or temporal discretization error; compare, e. g., [39, Theorem 5.1].
Let us also refer, e. g., to the recent paper [12], where different adaptive POD basis ex-
tension techniques are discussed. Table 2.1 summarizes how to choose ℓc and ℓw in
order to capture a desired amount of information. Moreover, it tabulates the POD pro-
jection error (2.10) depending on the POD basis length, where λci and λwi denote the
eigenvalues for the phase field c and the chemical potential w, respectively. The re-
sults in Table 2.1 agree with our expectations: the smaller the loss of information p is,
the more POD modes are needed and the smaller is the POD projection error.
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Table 2.1: Run 2.2. Number of needed POD bases in order to achieve a loss of information below
the tolerance p using adaptive finite element meshes (columns 2–5) and uniform finite element
discretization (columns 6–9) and POD projection error.

p ℓadc ∑i>ℓ λci ℓadw ∑i>ℓ λwi ℓunic ∑i>ℓ λci ℓuniw ∑i>ℓ λwi
10−1 3 2.0 ⋅ 10−3 4 156.9 ⋅ 100 3 2.0 ⋅ 10−3 4 157.6 ⋅ 100

10−2 10 2.1 ⋅ 10−4 13 15.8 ⋅ 100 10 2.1 ⋅ 10−4 13 15.6 ⋅ 100

10−3 19 2.5 ⋅ 10−5 26 1.8 ⋅ 100 19 2.5 ⋅ 10−5 25 1.8 ⋅ 100

10−4 29 2.0 ⋅ 10−6 211 1.8 ⋅ 10−1 28 2.6 ⋅ 10−6 160 1.9 ⋅ 10−1

10−5 37 2.5 ⋅ 10−7 644 1.1 ⋅ 10−2 37 2.4 ⋅ 10−7 419 2.5 ⋅ 10−2

Run 2.3 ([39, Example 6.3]). (Linear heat equation revisited). We again consider Ex-
ample 2.1 with c ≡ 0. The purpose of this example is to confirm that our POD ap-
proach also is applicable in the case of nonnested meshes like it appears in the case
of r-adaptivity, for example. We set up the matrix K for snapshots generated on se-
quences of nonnested spatial discretizations. This requires the integration over cut
elements; see [39]. We choose Ω = (0, 1) × (0, 1) ⊂ ℝ2, [0,T] = [0, 1], and we apply a
uniform temporal discretization with time step size Δt = 0.01. The analytical solution
in the present example is given by

y(t, x) = sin(πx0) ⋅ sin(πx1) ⋅ cos(2πtx0),

with x = (x0, x1), source term f := yt − Δy, and the initial condition g := y(0, ⋅). The
initial condition is discretized using piecewise linear and continuous finite elements
on a uniform spatial mesh, which is shown in Figure 2.9 (left). Then, at each time step,
the mesh is disturbed by relocating each mesh node according to the assignment

x0 ← x0 + θ ⋅ x0 ⋅ (x0 − 1) ⋅ (Δt/10),
x1 ← x1 + θ ⋅ 0.5 ⋅ x1 ⋅ (x1 − 1) ⋅ (Δt/10),

where θ ∈ ℝ+ is sufficiently small such that all coordinates of the interior nodes ful-
fill 0 < x0 < 1 and 0 < x1 < 1. After relocating the mesh nodes, the heat equation
is solved on this mesh for the next time instance. We use Lagrange interpolation to
transfer the finite element solution of the previous time step onto the new mesh. The
disturbed meshes at t = 0.5 and t = 1.0 and an overlap of two meshes are shown in
Figure 2.9. To compute thematrix K from (2.30) we have to evaluate the corresponding
inner products of the snapshots, where we need to integrate over cut elements.

We compute the eigenvalue decomposition of the matrix representation K of the
operator𝒦 (cf. (2.30)) for different values of θ and compare the results with a uniform
mesh (i. e., θ = 0) in Figure 2.10.Wenote that the eigenvalues of the disturbedmeshare
converging to the eigenvalues of the uniform mesh for θ → 0. As expected, the eigen-
value spectrum depends only weakly on the underlyingmesh given that themesh size
is sufficiently small. Concerning the computational complexity of PODwithnonnested
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Figure 2.9: Run 2.3. Uniform mesh (left), disturbed meshes at t = 0.5 and t = 1.0 (middle left, middle
right), and overlap of the mesh at t = 0 with the mesh at t = 1.0 (right). Here, we use θ = 10.

Figure 2.10: Run 2.3: Decay of eigenvalues of matrix K with different meshes.

meshes let us note that solving the heat equation takes 2.1 seconds on the disturbed
meshes and 1.8 seconds on the uniformmesh. The computational time needed to com-
pute each entry of thematrix K is 0.022 seconds and computing the eigenvalue decom-
position for K takes 0.0056 seconds. Note that the cut element integration problem for
eachmatrix entry takes a fraction of the time required to solve the finite element prob-
lem.

2.3 The POD-Galerkin procedure

Once the POD basis is generated it can be used to set up a POD-Galerkin approxima-
tion of the original dynamical system. This is discussed in the present section. In this
context we recall that the space spanned by the POD basis is used with a Galerkin
method to approximate the original system for, e. g., other inputs and/or parameters
than thoseused to generate the snapshots for constructing thePODbasis. A typical ap-
plication is given by the PDE-constrained optimization, where the PDE system during
the optimization is substituted by POD-Galerkin surrogates; see Section 2.6 for more
details.
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2.3.1 The POD-Galerkin procedure

Suppose that for given snapshots yhj ∈ V
hj ⊂ X, 1 ≤ j ≤ n, we have computed the

symmetric matrix

K = ((√αi√αj ⟨y
h
i , y

h
j ⟩X))1≤i,j≤n with rankK = r ≤ n (2.30)

associated to the operator 𝒦 from (2.8) together with its eigensystem. Its ℓ ∈ {1, . . . , r}
largest eigenvalues are {λi}ℓi=1 with corresponding eigenvectors {Φi}

ℓ
i=1 ⊂ ℝ

n. The POD
basis {Ψi}

ℓ
i=1 is then given by (2.9), i. e.,

Ψi =
1
√λi

𝒴Φi for i = 1, . . . , ℓ.

This POD basis is utilized in order to compute a reduced-order model for (2.16)
along the lines of Section 2.2.3.3, where the space Vh is replaced by the space Vℓ =
span {Ψ1, . . . ,Ψℓ} ⊂ V . More precisely, we make the POD-Galerkin ansatz

yℓ(t) =
ℓ

∑
i=1

ηi(t)Ψi =
ℓ

∑
i=1

ηi(t)
1
√λi

𝒴Φi for all t ∈ [0,T], (2.31)

as an approximation for y(t), with the Fourier coefficients

ηi(t) = ⟨y
ℓ(t),Ψi⟩X = ⟨y

ℓ(t), 1
√λi

𝒴Φi⟩
X

for 1 ≤ i ≤ ℓ.

Inserting yℓ into (2.16) and choosing Vℓ ⊂ V as the test space leads to the system

d
dt
⟨yℓ(t),Ψ⟩H + a(y

ℓ(t),Ψ) + ⟨𝒩 (yℓ(t)),Ψ⟩V  ,V = ⟨f (t),Ψ⟩V  ,V ,
⟨yℓ(0),Ψ⟩H = ⟨y∘,Ψ⟩H

}
}
}

(2.32)

for all Ψ ∈ Vℓ and for almost all t ∈ (0,T]. The system (2.32) is called POD reduced-
order model (POD-ROM). Using the ansatz (2.31), we can write (2.32) as an ℓ-dimen-
sional ordinary differential equation system for the POD mode coefficients η(t) =
(ηi(t))1≤i≤ℓ, t ∈ (0,T] as follows:

ℓ

∑
j=1

η̇j(t) ⟨Ψi,Ψj⟩H +
ℓ

∑
j=1

ηj(t) a(Ψj,Ψi) = ⟨f (t) −𝒩 (y
ℓ(t)),Ψi⟩V  ,V ,

ℓ

∑
j=1

ηj(0) ⟨Ψi,Ψj⟩H = ⟨y∘,Ψi⟩H

}}}}}}
}}}}}}
}

(2.33)

for i = 1, . . . , ℓ. Note that ⟨Ψi,Ψj⟩H = δij if we choose X = H in the context of Sec-
tion 2.2.3. In a next step we rewrite this system using the relation between Ψi and Φi
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given in (2.9). This leads to

ℓ

∑
j=1

η̇j(t)
⟨𝒴Φi ,𝒴Φj⟩H
√λiλj

+
ℓ

∑
j=1

ηj(t)
a(𝒴Φj ,𝒴Φi)

√λiλj
=
⟨f (t)−𝒩 (yℓ(t)),𝒴Φi⟩V ,V

√λi

for t ∈ (0,T],
ℓ

∑
j=1

ηj(0)
⟨𝒴Φi ,𝒴Φj⟩H
√λiλj

= ⟨y∘ ,𝒴Φi⟩H
√λi

}}}}}}}}}
}}}}}}}}}
}

(2.34)

for i = 1, . . . , ℓ. In order to write (2.34) in a compact matrix-vector form, let us introduce
the diagonal matrix

Λ := diag( 1
√λ1
, . . . ,

1
√λℓ
) ∈ ℝℓ×ℓ.

From the first ℓ eigenvectors {Φi}
ℓ
i=1 of K we build the matrix

Φ = [Φ1 | . . . |Φℓ] ∈ ℝ
n×ℓ.

Then, the system (2.34) can be written as the system

(ΛΦ⊤KΦΛ)η̇(t) + (ΛAℓΛ)η(t) +ΛNℓ(η(t)) = ΛFℓ(t) for t ∈ (0,T],
ΛΦ⊤KΦΛη(0) = Λη∘

} (2.35)

for the vector-valued mapping η = (η1, . . . , ηℓ)⊤ : [0,T] → ℝℓ, for the nonlinearity
Nℓ = (Nℓi (⋅))1≤i≤ℓ : ℝ

ℓ → ℝℓ with

Nℓi (v) =⟨𝒩(∑
ℓ
j=1vjΨj),φi⟩

V  ,V =⟨𝒩(∑
ℓ
j=1vj𝒴Φj/√λj),φi⟩

V  ,V ,
and for the stiffness matrix Aℓ = ((Aℓij)) ∈ ℝ

ℓ×ℓ given as

Aℓij = a(𝒴Φj,𝒴Φi) for 1 ≤ i, j ≤ ℓ.

Note that the right-hand side Fℓ(t) = (Fℓi (t))1≤i≤ℓ and the initial condition η∘ = (η∘i)1≤i≤ℓ
are given by

Fℓi (t) = ⟨f (t),𝒴Φi⟩V  ,V = ⟨𝒴∗f (t),Φi⟩ℝn , t ∈ [0,T] a. e.,

and

η∘i = ⟨y∘,𝒴Φi⟩H = ⟨𝒴
∗y∘,Φi⟩ℝn ,

for i = 1, . . . , ℓ, respectively. Their calculation can be done explicitly for any arbitrary
finite element discretization. For a given function w ∈ V (for example w = f (t) or
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w = y∘) with finite element discretization w = ∑mw
i=1 wiχi, nodal basis {χi}

mw
i=1 ⊂ V , and

appropriate mode coefficients {wi}
mw
i=1 we can compute

(𝒴∗w)j = ⟨w, yj⟩X =⟨
mw

∑
i=1

wiχi,
mj

∑
k=1

yjkφ
j
k⟩

X
=

mw

∑
i=1

mj

∑
k=1

wiy
j
k ⟨χi,φ

j
k⟩X

for j = 1, . . . , n, where yhj = ∑
mj
k=1 y

j
kφ

j
k ∈ V

hj denotes the j-th snapshot. Again, for any
i = 1, . . . ,mw and k = 1, . . . ,mj, the computation of the inner product ⟨χi,φ

j
k⟩X can be

done explicitly.
Obviously, for linear evolution equations the POD-ROM (2.35) can be set up and

solved using snapshots with arbitrary finite element discretizations. The computation
of the nonlinear component Nℓ(η(t)) needs particular attention. In Section 2.3.3 we
discuss the options to treat the nonlinearity.

2.3.2 Time-discrete reduced-order model

In order to solve the reduced-order system (2.32) numerically, we apply the implicit
Euler method for time discretization and use for simplicity the same temporal grid
{tj}nj=1 as for the snapshots. It is also possible to use a different time grid; cf. [58]. The
time-discrete reduced-order model reads

⟨yℓj − y
ℓ
j−1,Ψ⟩H
Δtj

+ a(yℓj ,Ψ) + ⟨𝒩 (y
ℓ
j ),Ψ⟩V  ,V =

tj

∫
tj−1
⟨f (τ),Ψ⟩V  ,V

Δtj
dτ,

⟨yℓ1 ,Ψ⟩H = ⟨y∘,Ψ⟩H

}}}}}
}}}}}
}

(2.36)

for all Ψ ∈ Vℓ and j = 2, . . . , n. Equivalently the following system holds for the coeffi-
cient vector η(t) ∈ ℝℓ (cf. (2.35)):

(ΛΦ⊤KΦΛ)(
ηj − ηj−1

Δtj
) + (ΛAℓΛ)ηj +ΛNℓ(ηj) = ΛFℓj , j = 2, . . . , n,

ΛΦ⊤KΦΛη1 = Λη∘

}}
}}
}

(2.37)

with the inhomogeneity Fℓj = (F
ℓ
ji)1≤i≤ℓ, j = 2, . . . , n, given as

Fℓji =
tj

∫
tj−1
⟨f (τ),𝒴Φi⟩V  ,V

Δtj
dτ =

tj

∫
tj−1
⟨𝒴∗f (τ),Φi⟩ℝn

Δtj
dτ.
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2.3.3 Discussion of the computation of the nonlinear term

Let us now consider the computation of the nonlinear term ΛNℓ(ηj) ∈ ℝℓ of the POD-
ROM (2.35). We have

(ΛNℓ(ηj))k = ⟨𝒩 (y
ℓ(t)),Ψk⟩V  ,V =⟨𝒩(∑ℓi=1 ηi(t)Ψi),Ψk⟩

V  ,V
for k = 1, . . . , ℓ. It is well known that the evaluation of nonlinearities in the reduced-
order modeling context is computationally expensive. To make this clear, let us as-
sume we are given a uniform finite element discretization withm degrees of freedom.
Then, in the fully discrete setting, the nonlinear term has the form

Ψ⊤WNh(Ψη(t)) ∈ ℝℓ, t ∈ [0,T] a. e.,

where Ψ = [Ψ1 | . . . |Ψℓ] ∈ ℝm×ℓ is the matrix in which the POD modes are stored
columnwise andW ∈ ℝm×m is a weighting matrix related to the utilized inner product
(cf. (2.3)). Hence, the treatment of the nonlinearity requires the expansion of Ψη(t) ∈
ℝm in the full space for t ∈ [0,T] a. e. Then the nonlinearity can be evaluated and
finally the result is projected back to the POD space. Obviously, this means that the
reduced-order model is not fully independent of the high-order dimension m and ef-
ficient simulation cannot be guaranteed. Therefore, it is convenient to seek for hyper-
reduction, i. e., for a treatment of the nonlinearity, where the model evaluation cost
is related to the low dimension ℓ. Common choices are empirical interpolation meth-
ods like, e. g., the empirical interpolation method (EIM) [14], the discrete EIM (DEIM)
[24], and the QR decomposition-based DEIM [31]. Another option is dynamicmode de-
composition for nonlinear model order reduction; see, e. g., [7]. Furthermore, in [98]
nonlinear model reduction is realized by replacing the nonlinear term by its inter-
polation in the finite element space. Alternative approaches for the treatment of the
nonlinearity are missing point estimation [10] and best points interpolation [70].

Most of these methods need a common reference mesh for the computations. To
overcome this restrictionwe propose different paths which allow formore general dis-
crete settings like r-adaptivity, discussed in Run 2.3.

One option is to use EIM [14]. Alternatively, we can linearize and project the non-
linearity onto the POD space. For this approach, let us consider the linear reduced-
order system for a fixed given state ȳ, which takes the form

d
dt
⟨yℓ(t),Ψ⟩H + a(y

ℓ(t),Ψ) + ⟨𝒩 (ȳ(t)),Ψ⟩V  ,V = ⟨f (t),Ψ⟩V  ,V ,
⟨yℓ(0),Ψ⟩H = ⟨y∘,Ψ⟩H

}
}
}

(2.38)

for all Ψ ∈ Vℓ and for almost all t ∈ (0,T]. The linear evolution problem (2.38) can be
set up and solved explicitly without spatial interpolation. In the numerical examples
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in Section 2.6, we take the finite element solution as given state in each time step, i. e.,
ȳ(tj) = yj for j = 2, . . . , n.

Furthermore, the linearization of the reduced-order model (2.32) can be consid-
ered:

d
dt
⟨yℓ(t),Ψ⟩H + a(y

ℓ(t),Ψ) + ⟨𝒩 (ȳ(t))yℓ(t),Ψ⟩V  ,V
= ⟨f (t) −𝒩 (ȳ(t)) +𝒩 (ȳ(t)))ȳ(t),Ψ⟩V  ,V ,

⟨yℓ(0),Ψ⟩H = ⟨y∘,Ψ⟩H

}}}}}
}}}}}
}

(2.39)

for all Ψ ∈ Vℓ and for almost all t ∈ (0,T], where𝒩  denotes the Fréchet derivative of
the nonlinear operator 𝒩 . This linearized problem is of interest, e. g., in the context
of optimal control, where it occurs in each iteration level within sequential quadratic
programming (SQP) methods; see [49], for example. Choosing the finite element solu-
tion as given state in each time instance and using (2.9) leads to

⟨𝒩 (yj),Ψi⟩V  ,V = 1
√λi

n
∑
k=1
√αk(Φi)k ⟨𝒩 (yj), yk⟩V  ,V ,

⟨𝒩 (yj)y
ℓ(tj),Ψi⟩V  ,V =⟨𝒩 (yj)( ℓ∑

k=1
ηk(tj)Ψk),Ψi⟩

V  ,V
=
ℓ

∑
k=1

ηk(tj)
1
√λkλi

n
∑
ν=1

n
∑
μ=1
√αναμ(Φk)ν(Φi)μ ⟨𝒩

(yj)yν , yμ⟩V  ,V ,
⟨𝒩 (yj)yj,Ψi⟩V  ,V = 1

√λi

n
∑
k=1
√αk(Φi)k ⟨𝒩

(yj)yj, yk⟩V  ,V
for j = 2, . . . , n and i = 1, . . . , ℓ. Finally, we approximate the nonlinearity ΛNℓ(ηj) ∈ ℝℓ

in (2.37) by

(ΛNℓ(ηj))i ≈ ⟨𝒩 (yj) +𝒩
(yj)(y

ℓ(tj) − yj),Ψi⟩V  ,V
for j = 2, . . . , n and i = 1, . . . , ℓ, which can be written as

ΛNℓ(ηj) ≈ ΛΦ⊤Nj +ΛΦ⊤NjyΦΛηj −ΛΦ⊤Njy ,

where

Nj =(

⟨𝒩 (yj),√α1y1⟩V  ,V
...

⟨𝒩 (yj),√αnyn⟩V  ,V
) ∈ ℝn, Njy =(

⟨𝒩 (yj)yj,√α1y1⟩V  ,V
...

⟨𝒩 (yj)yj,√αnyn⟩V  ,V
) ∈ ℝn,

and with ỹj = √αjyj, j = 1, . . . , n,

Njy =(

⟨𝒩 (yj)ỹ1, ỹ1⟩V  ,V . . . ⟨𝒩 (yj)ỹn, ỹ1⟩V  ,V
...

...
⟨𝒩 (yj)ỹ1, ỹ1⟩V  ,V . . . ⟨𝒩 (yj)ỹn, ỹn⟩V  ,V

) ∈ ℝn×n.
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For weakly nonlinear systems this approximationmay be sufficient, depending on the
problem and its goal. A great advantage of linearizing the semi-linear partial differen-
tial equation is that only linear equations need to be solved, which leads to a further
speedup; see Table 2.6. However, if a more precise approximation is desired or nec-
essary, we can think of approximations including higher-order terms, like quadratic
approximation, see, e. g., [25] and [84], or Taylor expansions, see, e. g., [73, 74] and [35].
Nevertheless, the efficiency of higher-order approximations is limited due to growing
memory and computational costs.

2.3.4 Expressing the POD solution in the full spatial domain

Having determined the solution η(t) to (2.35), we can set up the reduced solution yℓ(t)
in a continuous framework:

yℓ(t) =
ℓ

∑
i=1

ηi(t)(
1
√λi

n
∑
j=1
√αj(Φi)jyj). (2.40)

Now, let us turn to the fully discrete formulation of (2.40). For a time-discrete setting,
we introduce for simplicity the same temporal grid {tj}nj=1 as for the snapshots. The
snapshots (2.28) admit the expansion

yj =
mj

∑
i=1

yijφ
j
i for j = 1, . . . , n.

Let {Qj
r}
lj
r=1 denote an arbitrary set of grid points for the reduced system at time level tj.

The fully discrete POD solution can be computed by evaluation:

yℓ(tj,Q
j
r) =
ℓ

∑
i=1

ηi(tj)(
1
√λi

n
∑
ν=1
√αν(Φi)ν(

mν

∑
k=1

yνkφ
ν
k(Q

j
r))) (2.41)

for r = 1, . . . , lj and j = 1, . . . , n. This allows us to use any grid for expressing the POD
solution in the full spatial domain. For example, we can use the same nodes at time
level j for the POD simulation as we have used for the snapshots, i. e., for j = 1, . . . , n
we have lj = mj and Qj

r = P
j
k for all r, k = 1, . . . ,mj. Another option can be to choose

{Qj
r}
lj
r=1 =

n
⋃
j=1

mj

⋃
k=1
{Pjk} for j = 1, . . . , n,

i. e., the common finest grid. Obviously, a special and probably the easiest case con-
cerning the implementation is to choose snapshots which are expressed with respect
to the same finite element basis functions and utilize the common finest grid for the
simulation of the reduced-order system, which is proposed by [94]. After expressing
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the adaptively sampled snapshots with respect to a common finite element space, the
subsequent steps coincide with the common approach of taking snapshots which are
generated without adaptivity. Then, expression (2.41) simplifies to

yℓ(tj,Pr) =
ℓ

∑
i=1

ηi(tj)(
1
√λi

n
∑
ν=1
√αν(Φi)νyν) for j = 1, . . . , n, (2.42)

where {Pr}mr=1 are the nodes of the common finite element space.

Run 2.4 ([39, Example 6.1]). Let us revisit Run 2.1 and consider its POD-Galerkin so-
lutions. The POD solutions for ℓ = 10 and ℓ = 50 POD basis functions using spatial
adaptive snapshots which are interpolated onto the finest mesh are shown in Fig-
ure 2.11. As expected, the more POD basis functions we use (until stagnation of the
corresponding eigenvalues), the fewer oscillations appear in the POD solution and the
better the approximation is. Table 2.2 compares the approximation quality in the rel-

Figure 2.11: Run 2.4. Surface plot of the POD solution using ℓ = 10 (top) and ℓ = 50 (bottom) POD
basis functions at t = t1 (left), t = T /2 (middle), and t = T (right).

ative L2(0,T ; L2(Ω))-norm of the POD solution using adaptively generated snapshots
which are interpolated onto the finest mesh with snapshots of uniform spatial dis-
cretization depending on different POD basis lengths. Then, for ℓ = 20 we obtain a
relative L2(0,T ; L2(Ω))-error between the POD solution and the finite element solution
of size εadFE = 3.08 ⋅ 10

−2 and a relative L2(0,T ; L2(Ω))-error between the POD solution
and the true solution of size εadtrue = 2.17 ⋅ 10

−2.
We note that εuniFE decays down to 10−8 (ℓ = 100) and then stagnates if using a uni-

formmesh. This behavior is clear, since themorePODbasis elementswe include (up to
stagnation of the corresponding eigenvalues), the better an approximation is the POD
solution for the finite element solution. On the other hand, both εunitrue and ε

ad
true start to

stagnate after ℓ = 30 in Table 2.2, columns 4 and 5. This is due to the fact that at this
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Table 2.2: Run 2.4. Relative L2(0, T ; L2(Ω))-error between the POD solution and the finite element
solution (columns 2 and 3) and the true solution (columns 4 and 5), respectively, using adaptive
finite element snapshots which are interpolated onto the finest mesh and using a uniform mesh.ℓ εadFE εuniFE εadtrue εunitrue

1 1.30 ⋅ 100 1.30 ⋅ 100 1.28 ⋅ 100 1.30 ⋅ 100

3 7.49 ⋅ 10−1 7.58 ⋅ 10−1 7.46 ⋅ 10−1 7.60 ⋅ 10−1

5 4.39 ⋅ 10−1 4.45 ⋅ 10−1 4.39 ⋅ 10−1 4.46 ⋅ 10−1

10 1.37 ⋅ 10−1 1.37 ⋅ 10−1 1.36 ⋅ 10−1 1.38 ⋅ 10−1

20 3.08 ⋅ 10−2 1.56 ⋅ 10−2 2.17 ⋅ 10−2 1.60 ⋅ 10−2

30 2.59 ⋅ 10−2 2.04 ⋅ 10−3 1.49 ⋅ 10−2 3.00 ⋅ 10−3

50 2.63 ⋅ 10−2 5.67 ⋅ 10−5 1.41 ⋅ 10−2 2.07 ⋅ 10−3

100 2.61 ⋅ 10−2 6.48 ⋅ 10−8 1.40 ⋅ 10−2 2.06 ⋅ 10−3

150 2.61 ⋅ 10−2 8.13 ⋅ 10−7 1.39 ⋅ 10−2 2.07 ⋅ 10−3

Table 2.3: Run 2.4. Relative L2(0, T ;H1(Ω))-error between the POD solution and the finite element
solution (columns 2 and 3) and the true solution (columns 4 and 5), respectively, using adaptive
finite element snapshots which are interpolated onto the finest mesh and using a uniform mesh.ℓ εadFE εuniFE εadtrue εunitrue

1 1.46 ⋅ 100 1.46 ⋅ 100 1.46 ⋅ 100 1.47 ⋅ 100

3 1.21 ⋅ 100 1.22 ⋅ 100 1.22 ⋅ 100 1.22 ⋅ 100

5 9.39 ⋅ 10−1 9.45 ⋅ 10−1 9.47 ⋅ 10−1 9.51 ⋅ 10−1

10 4.22 ⋅ 10−1 4.25 ⋅ 10−1 4.33 ⋅ 10−1 4.31 ⋅ 10−1

20 7.76 ⋅ 10−2 7.27 ⋅ 10−2 1.02 ⋅ 10−1 8.19 ⋅ 10−2

30 2.92 ⋅ 10−2 1.22 ⋅ 10−2 7.26 ⋅ 10−2 3.52 ⋅ 10−2

50 2.61 ⋅ 10−2 4.74 ⋅ 10−4 7.05 ⋅ 10−2 3.27 ⋅ 10−2

100 2.79 ⋅ 10−2 4.78 ⋅ 10−7 6.94 ⋅ 10−2 3.27 ⋅ 10−2

150 2.93 ⋅ 10−2 2.84 ⋅ 10−7 6.87 ⋅ 10−2 3.27 ⋅ 10−2

point the spatial (and temporal) discretization error dominates themodal error. This is
in accordance with the decay of the eigenvalues shown in Figure 2.3 and is accounted
for, e. g., in the error estimation presented in [39, Theorem 5.1]. Similar observations
hold true for the relative L2(0,T ;H1(Ω))-error listed in Table 2.3with the difference that
the L2(0,T ;H1(Ω))-error is larger than the respective L2(0,T ; L2(Ω))-error.

The computational times for the full and the low-order simulation using uniform
finite element discretizations and adaptive finite element snapshots, which are inter-
polated onto the finest mesh, respectively, are listed in Table 2.4.

Once the POD basis is computed in the offline phase, the POD simulation corre-
sponding to adaptive snapshots is 13,485 times faster than the finite element simu-
lation using adaptive finite element meshes. This speedup factor is important when
one considers, e. g., optimal control problems with time-dependent PDEs, where the
POD-ROM can be used as surrogate model in repeated solution of the underlying PDE
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Table 2.4: Run 2.4. CPU times for FE and POD simulation using uniform finite element meshes and
adaptive finite element snapshots which are interpolated onto the finest mesh, respectively, and
using ℓ = 50 POD modes.

Adaptive FE mesh Uniform FE mesh Speedup factor

FE simulation 944 sec 8,808 sec 9.3
POD offline computations 264 sec 1,300 sec 4.9
POD simulation 0.07 sec 0.07 sec –
Speedup factor 13,485 125,828 –

model. In the POD offline phase, the most expensive task is to express the snapshots
with respect to the common finite element space, which takes 226 seconds. Since
K (2.30) is symmetric, it suffices to calculate the entries on and above the diagonal,
which are∑nk=1 k = (n

2 +n)/2 entries. Thus, the computation of each entry in the corre-
lation matrix K using a common finite element space takes around 0.00018 seconds.
We note that in the approach explained in Sections 2.2.4 and 2.3, the computation of
the matrix K is expensive. For each entry the calculation time is around 0.03 seconds,
which leads to a computation time of around 36,997 seconds formatrix K. The same ef-
fort is needed to build Aℓ = a(𝒴Φj,𝒴Φi). In this case, the offline phase takes therefore
around 88,271 seconds. For this reason, the approach to interpolate the adaptively
generated snapshots onto the finest mesh is computationally more favorable. But
since the computation of K can be parallelized, the offline computation time can be
reduced provided that the appropriate hardware is available.

Run 2.5 (Cahn–Hilliard equations). Now let us revisit Run 2.2, where in the following
we run the numerical simulations for different combinations of numbers for ℓc and
ℓw of Table 2.1. The approximation quality of the POD solution using adaptive meshes
is compared to the use of a uniform mesh in Table 2.5. As expected, Table 2.5 shows
that the error between the POD surrogate solution and the high-fidelity solution gets
smaller for an increasing number of utilized POD basis functions. Moreover, a larger
number of POD modes is needed for the chemical potential w than for the phase field
c in order to get an error in the same order, which is in accordance with the fact that
the decay of the eigenvalues for w is slower than for c, as seen in Figure 2.8.

We now discuss the treatment of the nonlinearity and also investigate the in-
fluence of nonsmoothness of the model equations to the POD procedure. Using
the convex-concave splitting for W , we obtain for the Moreau–Yosida relaxed dou-
ble obstacle free energy the concave part W rel

− (c) =
1
2 (1 − c

2) and the convex part
W rel
+ (c) =

s
2 (max(c − 1,0)2 +min(c + 1,0)2). This means that the first derivative of the

concave part is linear with respect to the phase field variable c. The challenging part
is the convex termwith nonsmooth first derivative. For a comparison, we consider the
smooth polynomial free energy with concave partWp

−(c) =
1
4 (1 − 2c

2) and convex part
Wp
+(c) =

1
4c

4.
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Table 2.5: Run 2.5. Relative L2(0, T ; L2(Ω))-error between the POD solution and the finite element
solution using adaptive meshes (columns 3 and 4) and using a uniform mesh (columns 5 and 6),
respectively.ℓc ℓw c : εadFE w : εadFE c : εuniFE w : εuniFE

3 4 8.44 ⋅ 10−3 3.00 ⋅ 100 8.44 ⋅ 10−3 3.75 ⋅ 100

10 13 3.30 ⋅ 10−3 3.77 ⋅ 10−1 3.30 ⋅ 10−3 4.32 ⋅ 10−1

19 26 1.57 ⋅ 10−3 2.12 ⋅ 10−1 1.57 ⋅ 10−3 2.39 ⋅ 10−1

29 26 7.34 ⋅ 10−4 1.09 ⋅ 10−1 7.32 ⋅ 10−4 1.16 ⋅ 10−1

37 26 3.57 ⋅ 10−4 4.82 ⋅ 10−2 3.55 ⋅ 10−4 5.04 ⋅ 10−2

50 50 1.88 ⋅ 10−4 2.17 ⋅ 10−2 1.86 ⋅ 10−4 2.33 ⋅ 10−2

65 26 9.74 ⋅ 10−5 1.11 ⋅ 10−2 9.56 ⋅ 10−5 1.15 ⋅ 10−2

100 100 3.37 ⋅ 10−5 3.56 ⋅ 10−3 3.22 ⋅ 10−5 3.42 ⋅ 10−3

Figure 2.12: Run 2.5. Comparison of the normalized eigenvalues for c (left) and the first derivative of
the convex partW + of the free energy (right) using polynomial and relaxed double obstacle energy,
respectively.

Figure 2.12 shows the decay of the normalized eigenspectrum for the phase field c (left)
and the first derivative of the convex partW +(c) (right) for the polynomial and the re-
laxed double obstacle free energy. Obviously, in the nonsmooth casemore PODmodes
are needed for a good approximation than in the smooth case. This behavior is similar
to the decay of the Fourier coefficients in the context of trigonometric approximation,
where the decay of the Fourier coefficients depends on the smoothness of the approx-
imated object.

Table 2.6 summarizes computational times for different finite element runs aswell
as reduced-order simulations using the polynomial and the relaxed double obsta-
cle free energy, respectively. In addition, the approximation quality is compared. The
computational times are rounded averages from various test runs. It turns out that
the finite element simulation (row 1) using the smooth potential is around two times
faster than using the nonsmooth potential. This is due to the fact that in the smooth
case, two to threeNewton steps are needed for convergence in each time step, whereas
in the nonsmooth case six to eight iterations are needed in the semi-smooth Newton
method.
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Table 2.6: Run 2.5. Computational times, speedup factors, and approximation quality for different
POD basis lengths and using different free energy potentials.

Wp W rel
s

FE 1,644 s 3,129 sℓc = 3 ℓc = 19 ℓc = 3 ℓc = 19ℓw = 4 ℓw = 26 ℓw = 4 ℓw = 26
POD offline 355 s 355 s 350 s 349 s
DEIM offline 8 s 8 s 9 s 10 s
ROM 183 s 191 s 2,616 s 3,388 s
ROM-DEIM 0.05 s 0.1 s 0.04 s no conv.
ROM-proj 0.008 s 0.03 s 0.01 s 0.03 s
speedup FE-ROM 8.9 8.6 1.1 none
speedup FE-ROM-DEIM 32,880 16,440 78,225 –
speedup FE-ROM-proj 205,500 54,800 312,900 104,300
rel L2(Q) error ROM 5.46 ⋅ 10−3 3.23 ⋅ 10−4 8.44 ⋅ 10−3 1.57 ⋅ 10−3

rel L2(Q) error ROM-DEIM 1.46 ⋅ 10−2 3.83 ⋅ 10−4 8.84 ⋅ 10−3 –
rel L2(Q) error ROM-proj 4.70 ⋅ 10−2 4.18 ⋅ 10−2 8.72 ⋅ 10−3 9.80 ⋅ 10−3

Using the smoothpolynomial free energy, the reduced-order simulation is eight tonine
times faster than the finite element simulation, whereas using the relaxed double ob-
stacle free energy it only delivers a very small speedup. The inclusion of DEIM (we
use ℓdeim = ℓc) in the reduced-order model leads to immense speedup factors for both
free energy functions (row 8). This is due to the fact that the evaluation of the non-
linearity in the reduced-order model is still dependent on the full spatial dimension
and hyperreduction methods are necessary for useful speedup factors. Note that the
speedup factors are of particular interest in the context of optimal control problems.
At the same time, the relative L2(0,T ; L2(Ω))-error between the finite element solution
and the ROM-DEIM solution is close to the quality of the reduced-ordermodel solution
(rows 10 and 11).

However, in the case of the nonsmooth free energy function using ℓc = 19 POD
modes for the phase field and ℓw = 26 POD modes for the chemical potential, the
inclusion of DEIM has the effect that the semi-smooth Newton method does not con-
verge. For this reason, we treat the nonlinearity by applying the technique explained
in Section 2.3.1, i. e., we project the finite element snapshots forW +(c) (which are inter-
polated onto the finest mesh) onto the POD space. Since this leads to linear systems,
the computational times are very small (row 6). The error between the finite element
solution and the reduced-order solution using projection of the nonlinearity is of the
magnitude 10−2/10−3. Depending on themotivation, this approximation qualitymight
be sufficient. Nevertheless, we note that for large numbers of POD modes, using the
projection of the nonlinearity onto the POD space leads to a large increase of the error.
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To summarize, a POD-ROM construction approach is proposed which can be set
up and solved for snapshots originating from arbitrary finite element (and also other)
spaces. The method is applicable for h-, p-, and r-adaptive finite elements. It is mo-
tivated from an infinite-dimensional perspective. Using the method of snapshots we
are able to set up the correlation matrix K from (2.30) by evaluating the inner prod-
ucts of snapshots which live in different finite element spaces. For nonnestedmeshes,
this requires the detection of cell collision and integration over cut finite elements. A
numerical strategy how to implement this practically is elaborated and numerically
tested. Using the eigenvalues and eigenvectors of this correlation matrix, we are able
to set up and solve a POD surrogate model that does not need the expression of the
snapshots with respect to the basis of a common finite element space or the interpola-
tion onto a common reference mesh. Moreover, an error bound for the error between
the true solution and the solution to the POD-ROM using spatially adapted snapshots
is available in [39, Theorem 5.1]. The numerical tests show that the POD projection er-
ror decreases if the number of utilized POD basis functions is increased. However, the
error between the POD solution and the true solution stagnates when the spatial dis-
cretization error dominates. Moreover, the numerics show that using the correlation
matrix calculated explicitly without interpolation in order to build a POD-ROM gives
the same results as the approach where the snapshots are interpolated onto the finest
mesh. From a computational point of view, sufficient hardware should be available
in order to compute the correlation matrix in parallel and make the offline computa-
tional time competitive. For semi-linear evolutionproblems, thenonlinearity is treated
by linearization. This is of interest in view of optimal control problems, in which a
linearized state equation has to be solved in each SQP iteration level. An appropri-
ate treatment of the nonlinearity in our applications gains significant speedup of the
reduced-order model with respect to computational time when compared to the full
simulations. This makes POD-ROM with adaptive finite elements an ideal approach
for the construction of surrogate models in, e. g., optimal control with nonlinear PDE
systems, as they arise, e. g., in the context of multiphase flow control problems.

2.4 Certification with a priori and a posteriori error
estimates

As we have seen in Section 2.3, POD provides a method for deriving low-order mod-
els of dynamical systems. It can be thought of as a Galerkin approximation in the
spatial variable, built from functions corresponding to the solution of the physical
system at prespecified time instances. After carrying out SVD, the leading ℓ gener-
alized eigenfunctions are chosen as the POD basis {Ψj}

ℓ
j=1 of rank ℓ. As soon as one

uses POD, questions concerning the quality of the approximation properties, conver-
gence, and rate of convergence become relevant. Let us refer, e. g., to the literature
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[22, 42, 56, 58, 57, 85, 88, 89, 80] for a priori error analyses of POD-Galerkin approxi-
mations. It turns out that the error depends on the decay of the sum ∑i>ℓ λi, the error
Δtβ (with an appropriate β ≥ 1) due to the used time integration method, the used
Galerkin spaces {Vhj }nj=1, and the choice X = H or X = V . In particular, best approx-
imation properties hold provided the time differences ẏh(tj) (or the finite difference
discretizations) are included in the snapshot ensembles; cf. [56, 58, 89].

Let us recall numerical test examples from [42, Section 1.5]. The programs arewrit-
ten in Matlab using the Partial Differential Equation Toolbox for the computa-
tion of the piecewise linear finite element discretization. For the temporal integration
the implicit Euler method is applied based on the equidistant time grid tj = (j − 1)Δt,
j = 1, . . . , n, and Δt = T/(n − 1).

Run 2.6 (POD for the heat equation; cf. [42, Run 1]). We choose the final time T = 3,
the spatial domain Ω = (0, 2) ⊂ ℝ, the Hilbert spacesH = L2(Ω),V = H1

0(Ω), the source
term f (t, x) = t3 − x2 for (t, x) ∈ Q = (0,T) × Ω, and the discontinuous initial value
y∘(x) = χ(0.5,1.0)−χ(1,1.5) for x ∈ Ω,where, e. g., χ(0.5,1) denotes the characteristic function
on the subdomain (0.5, 1) ⊂ Ω, χ(0.5,1)(x) = 1 for x ∈ (0.5, 1) and χ(0.5,1)(x) = 0 otherwise.
We consider a discretization of the linear heat equation (compare (2.17) with c ≡ 0)

yt(t, x) − Δy(t, x) = f (t, x) for (t, x) ∈ Q,
y(t, x) = 0 for (t, x) ∈ Σ = (0,T) × 𝜕Ω,
y(0, x) = y∘(x) for x ∈ Ω.

(2.43)

To obtain an accurate approximation of the exact solution we choose n = 4,000 so
that Δt ≈ 7.5 ⋅ 10−4 holds. For the finite element discretization we choose m = 500
spatial grid points and the equidistant mesh size h = 2/(m + 1) ≈ 4 ⋅ 10−3. Thus, the
finite element error –measured in theH-norm– is of the order 10−4. In the left graphic
of Figure 2.13, the finite element solution yh to the state equation (2.43) is visualized.
To compute a POD basis {Ψi}

ℓ
i=1 of rank ℓ we utilize the multiple discrete snapshots

y1j = y
h(tj) for 1 ≤ j ≤ nt as well y21 = 0 and y

2
j = (y

h(tj) − yh(tj−1))/Δt, j = 2, . . . , nt, i. e.,
we include the temporal difference quotients in the snapshot ensemble and K = 2,
n1 = n2 = nt . We choose X = H and utilize the (stable) SVD to determine the POD basis
of rank ℓ; compare Section 2.2.2. We address this issue in a more detail in Run 2.9.
Since the snapshots are finite element functions, the PODbasis elements are also finite
element functions. In the right plot of Figure 2.13, the projection and reduced-order
error given by

PROJ Error(ℓ) = (
nt
∑
j=1

αj

yh(tj) −

ℓ

∑
i=1
⟨yh(tj),ψi⟩H ψi



2

H
)

1/2

,

ROM Error(ℓ) = (
nt
∑
j=1

αj
y

h(tj) − y
ℓ(tj)

2
H)

1/2
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Figure 2.13: Run 2.6 (cf. [42, Figure 1.1]). The FE solution yh (left) and the residuals corresponding to
the POD basis rank ℓ (right).

are plotted for different POD basis ranks ℓ. The chosen trapezoidal weights αj have
been introduced in (2.23).We observe that both errors decay rapidly and coincide until
the accuracy 10−12, which is already significantly smaller than the finite element dis-
cretization error. These numerical results reflect the a priori error estimates presented
in [42, Theorem 1.29].

Run 2.7 (POD for a convection dominated heat equation; cf. [42, Run 2]). Nowwecon-
sider amore challenging example. We study a convection-reaction-diffusion equation
with a source term which is close to being singular: Let T, Ω, y∘, H, and V be given as
in Run 2.6. The parabolic problem reads as follows:

yt(t, x) − cyxx(t, x) + βyx(t, x) + ay(t, x) = f (t, x) for (t, x) ∈ Q,
y(t, x) = 0 for (t, x) ∈ Σ,
y(0, x) = y∘(x) for x ∈ Ω.

We choose the diffusivity c = 0.025, the velocity β = 1.0 that determines the speed in
which the initial profile y∘ is shifted to the boundary, and the reaction rate a = −0.001.
Finally, f (t, x) = ℙ( 11−t ) cos(πx) for (t, x) ∈ Q, where (ℙz)(t) = min(+l,max(−l, z(t)))
restricts the image of z on a bounded interval. In this situation, the state solution y
develops a jump at t = 1 for l → ∞; see the left plot of Figure 2.14. The right plot
of Figure 2.14 demonstrates that in this case, the decay of the reconstruction residu-
als and the decay of the errors are much slower than in the right plot of Figure 2.13.
The manifold dynamics of the state solution require an inconveniently large number
of POD basis elements. Since the supports of these ansatz functions in general cover
the whole domain Ω, the corresponding systemmatrices of the reducedmodel are not
sparse. This is different for the matrices arising in the finite element Galerkin frame-
work. Model order reduction is not effective for this example if a good accuracy of the
solution function yℓ is required. Strategies to improve the accuracy and robustness of
the POD-ROM in those situations are discussed in, e. g., [18, 99]
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Figure 2.14: Run 2.7 (cf. [42, Figure 1.2]). The FE solution yh (left) and the residuals corresponding to
the POD basis rank ℓ (right).

Run 2.8 (True and exact approximation error; cf. [42, Run 3]). We consider the setting
introduced in Run 2.6 again. The exact solution to (2.43) does not possess a represen-
tation by elementary functions. Hence, the presented reconstruction and reduction
errors actually are the residuals with respect to a high-order finite element solution yh.
To compute an approximation y of the exact solution yex we apply a Crank–Nicolson
method (with Rannacher smoothing [77]) ensuring ‖y − yex‖L2(0,T ;H) = 𝒪(Δt2 + h2) ≈
10−5. In the context of model reduction, such a state is sometimes called the “true”
solution. To compute the finite element state yh we apply the Euler method. In the left
plot of Figure 2.15 we compare the true solution yex with the associated POD approxi-
mation for different values nt ∈ {64, 128, 256, . . . , 8192} of the time integration and for
the spatial mesh size h = 4 ⋅ 10−3. For the normwe apply a discrete L2(0,T ;H)-norm as
in Run 2.6. Let usmention that we compute for every nt a corresponding finite element
solution yh. We observe that the residuals ignore the errors arising by the application

Figure 2.15: Run 2.8 (cf. [42, Figure 1.3]). The reduced-order model errors with respect to the true
solution (left) and the exact one (right).
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of time and space discretization schemes for the full-ordermodel. The errors decay be-
low the discretization error 10−5. If these discretization errors are taken into account,
the residuals stagnate at the level of the full-order model accuracy instead of decay-
ing to zero; cf. the right plot of Figure 2.15. Due to the implicit Euler method we have
‖yh − yex‖L2(0,T ;H) = 𝒪(Δt + h2) with the mesh size h = 4 ⋅ 10−3. In particular, from
nt ∈ {64, 128, 256, . . . , 8192} it follows that Δt > 3 ⋅ 10−4 > h2 = 1.6 ⋅ 10−5. Therefore, the
spatial error is dominated by the time error for all values of nt . We can observe that
the exact residuals do not decay below a limit of the order Δt. One can observe that for
fixed POD basis rank ℓ, the residuals with respect to the true solution increase if the
high-order accuracy is improved by enlarging nt, since the reduced-order model has
to approximate a more complex system in this case, where the residuals with respect
to the exact solution decrease due to the lower limit of stagnation Δt = 3/(nt − 1).

Run 2.9 (Different strategies for a POD basis computation; cf. [42, Run 4]). As ex-
plained in Section 2.2.2, let Y ∈ ℝm×n denote the matrix of snapshots with rank r, let
W ∈ ℝm×m be the (sparse) spatialweightingmatrix consisting of the elements ⟨φj,φi⟩X
(introduced in Section 2.2.3.3), and let D ∈ ℝn×n be the diagonal matrix containing the
nonnegative weighting parameters αkj . As explained in Section 2.2.2, the POD basis
{Ψi}
ℓ
i=1 of rank ℓ ≤ r can be determined by providing an eigenvalue decomposition of

the matrix Ȳ Ȳ⊤ = W 1/2YDY⊤W 1/2 ∈ ℝm×m, one of Ȳ⊤Ȳ = D1/2Y⊤WYD1/2 ∈ ℝn×n, or an
SVD of Ȳ = W 1/2YD1/2 ∈ ℝm×n. Since n ≫ m in Runs 2.6–2.8, the first variant is the
cheapest one fromacomputational point of view. In case ofmultiple spacedimensions
or if a second-order time integration scheme such as some Crank–Nicolson technique
is applied, the situation is converse. On the other hand, an SVD is more accurate
and stable than an eigenvalue decomposition if the POD elements corresponding to
eigenvalues/singular values which are close to zero are taken into account: Since
λi = σ2i holds for all eigenvalues λi and singular values σi, the singular values are able
to decay to machine precision, where the eigenvalues stagnate significantly above.
This is illustrated in the left graphic of Figure 2.16. Indeed, for ℓ > 20 the EIG-ROM
system matrices become singular due to the numerical errors in the eigenfunctions
and the reduced-order system is ill-posed in this case, while the SVD-ROM model
remains stable. In the right plot of Figure 2.16 POD elements are constructed with
respect to different scalar products and the resulting reduced-order model errors are
compared: ‖ ⋅ ‖H -residuals for X = H (denoted by POD(H)), ‖ ⋅ ‖V -residuals for X = V
(denoted by POD(V)), and ‖ ⋅ ‖V -residuals for X = H (denoted by POD(H,V)), which
also works quite well, the consideration of time derivatives in the snapshot sample
(denoted by POD(H,dt)), which allows to apply the a priori error estimate given in
[42, Theorem 1.29-2)], and the corresponding sums of singular values (denoted by
SV(H,dt)) corresponding to the unused eigenfunctions in the latter case which indeed
nearly coincide with the reduced-order model errors.
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Figure 2.16: Run 2.9 (cf. [42, Figure 1.4]). Singular values σi using the SVD (SVD Vals) or the eigen-
value decomposition (EIG Vals) and the associated reduced-order model errors (SVD Error and EIG
Error, respectively) (left); reduced-order model errors for different choices for X , the error norm, and
the snapshot ensembles (right).

Note that in many applications, the quality of the reduced-order model does not
vary significantly if the weights matrix W refers to the space X = H or X = V and if
time derivatives of the used snapshots are taken into account or not. Especially, the
reduced-order model residual decays with the same order as the sum over the remain-
ing singular values, independent of the chosen geometrical framework.

2.5 Optimal snapshot location for computing POD
basis functions

The constructionof reduced-ordermodels for nonlinear dynamical systemsusingPOD
is based on the information carried of the so-called snapshots. These provide the spa-
tial distribution of the nonlinear system at discrete time instances. Thus, we are inter-
ested in optimizing the choice of these time instances in such a manner that the error
between the POD solution and the trajectory of the dynamical system is minimized.
This approach was suggested in [59] and was extended in [64] to parameterized ellip-
tic problems. Let us briefly mention some related issues of interest. In [26, 32] the sit-
uation of missing snapshot data is investigated and gappy POD is introduced for their
reconstruction. An important alternative to POD model reduction is given by reduced
basis approximations; we refer to [72] and references given there. In [37] a reduced
model is constructed for a parameter-dependent family of large-scale problems by an
iterative procedure that adds new basis variables on the basis of a greedy algorithm.
In the PhD thesis [20] a model reduction is sought of a class for a family of models
corresponding to different operating stages.
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Suppose that we are given the nt snapshots {y(tj)}
nt
j=1 ⊂ V ⊂ X. The goal is to de-

termine additional k snapshots at time instances τ = (τ1, . . . , τk) with 0 ≤ τj ≤ T,
j = 1, . . . , k. In [59] we propose to determine τ = (τ1, . . . , τk) by solving the optimization
problem

min
0≤τ1 ,...,τk≤T

T

∫
0

y(t) − y
ℓ(t)

2
V dt, (2.44)

where y and yℓ are the solutions to (2.16) and its POD-Galerkin approximation, respec-
tively. Clearly, the definition of the operatorℛ given in (2.6) has to be modified as fol-
lows:

ℛτΨ =
nt
∑
j=1

ατj ⟨y(tj),Ψ⟩X y(tj) +
k
∑
j=1

ατnt+j ⟨y(τj),Ψ⟩X y(τj)

with appropriately modified (trapezoidal) weights ατj , j = 1, . . . , k + nt . Consequently,
(2.44) becomes an optimization problem subject to the equality constraints

ℛτΨi = λiΨi, i = 1, . . . , ℓ.

Note that no precautions are made in (2.44) to avoid multiple appearance of a snap-
shot. In fact, thiswould simply imply that a specific snapshot location should be given
a higher weight than others. While the presented approach shows how to choose op-
timal snapshots in evolution equations, a similar strategy is applicable in the context
of parameter-dependent systems.

It turns out in our numerical tests carried out in [59] that the proposed criterion is
sensitive with respect to the choice of the time instances. Moreover, the tests demon-
strate the feasibility of themethod in determining optimal snapshot locations for con-
crete diffusion equations.

Run 2.10 (cf. [59, Run 1]). For T = 1 let Q = (0,T) × Ω and Ω = (0, 1) × (0, 1) ⊂ ℝ2. For
the finite element triangulation we choose a uniform grid with mesh size h = 1/40,
i. e., we have 900 degrees of freedom for the spatial discretization. Then, we consider

yt(t, x) − cΔy(t, x) + β ⋅ ∇y(t, x) + y(t, x) = f (x) for (t, x) ∈ Q,

c 𝜕y
𝜕x
(t, x) + q(x)y(t, x) = g(x) for (t, x) ∈ Σ,

y(0, x) = y∘(x) for x ∈ Ω,

where c = 0.1, β = (0.1,−10)⊤ ∈ ℝ2,

f (x) = { 4 for all x = (x1, x2) with (x1 − 0.25)2 + (x2 − 0.65)2 ≤ 0.05,
0 otherwise,
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Figure 2.17: Run 2.10 (cf. [59, Figures 3 and 4]). Initial condition y∘ (left plot) and FE solution yh for
t = 0.3 (middle) and t = T (right plot).

and y∘(x) = sin(πx1) cos(πx2) for x = (x1, x2) ∈ Ω (Figure 2.17, left plot). Furthermore,
we have

q(x) =
{{{{
{{{{
{

1 for x = (x1, 1) with 0 < x1 < 1,
x2 for x = (1, x2) with 0 < x2 < 1,
−2 for x = (x1,0) with 0 < x1 < 1,
0 for x = (0, x2) with 0 < x2 < 1,

g(x) =
{{
{{
{

1 for x = (x1, 1) with 0 < x1 < 1,
0 for x = (1, x2) with 0 < x2 < 1, for x = (0, x2) with 0 < x2 < 1,
−1 for x = (x1,0) with 0 < x1 < 1.

We utilize piecewise linear finite element functions. The finite element solutions yh =
yh(t, x) for t = 0.15 and t = T are shown in Figure 2.17. Next we take snapshots on the
fixed uniform time grid tj = (j − 1)Δt, 1 ≤ j ≤ nt, with nt = 10 and Δt = T/nt = 0.1.
The goal is to determine four additional time instances ̄t = ( ̄t1, . . . , ̄t4) ∈ [0,T] based on
a finite element approximation for (2.44). Since the behavior of the solution exhibits
more change during the initial time interval [0,0.3] than later on, we initialize our
quasi-Newton method by the starting value τ0 = (0.05,0.15,0.25,0.35) ∈ [0,T]. The
number of POD ansatz functions is fixed to be ℓ = 3. The corresponding value of the
reduced-order model error is approximately 0.1093. The optimal solution is given as
τ̄ = (0.0092,0.0076,0.1336,0.2882) ∈ [0,T],while the associated reduced-ordermodel
error is approximately 0.0165,which is a reduction of about 85%. In Figure 2.18we can
see that the shapes of the three POD bases change significantly from the initial time
instances τ0 ∈ ℝ4 to the optimal ones τ̄ ∈ ℝ4.

2.6 Optimal control with POD surrogate models

Reduced-ordermodels are used in PDE-constrained optimization in variousways; see,
e. g., [50, 86] for a survey. In optimal control problems it is sometimes necessary to
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Figure 2.18: Run 2.10 (cf. [59, Figures 5 and 7]). POD basis Ψ1, Ψ2, Ψ3 for the initial additional time
instances τ0 ∈ ℝ4 (upper three plots) and for the optimal additional time instances ̄τ ∈ ℝ4 (lower
three plots).

compute a feedback control law instead of a fixed optimal control. In the implementa-
tion of these feedback laws models of reduced-order can play an important and very
useful role; see [11, 40, 60, 65, 68, 79]. Another useful application is the use in opti-
mization problems, where a PDE solver is part of the function evaluation. Obviously,
thinking of a gradient evaluation or even a step size rule in the optimization algorithm,
an expensive function evaluation leads to an enormous amount of computing time.
Here, the reduced-order model can replace the system given by a PDE in the objective
function. It is quite common that a PDE can be replaced by a five- or ten-dimensional
system of ordinary differential equations. This results computationally in a very fast
method for optimization compared to the effort for the computation of a single solu-
tion of a PDE. There is a large amount of literature in engineering applications in this
regard; we mention only the papers [67, 71]. Recent applications can also be found in
finance using the reduced models generated with the reduced basis method [76] and
the POD model [85, 88] in the context of calibration for models in option pricing.

We refer to the survey article [42], where a linear quadratic optimal control prob-
lem in an abstract setting is considered. Error estimates for the POD-Galerkin approx-
imations of the optimal control are proved. This is achieved by combining techniques
from [28, 29, 44] and [56, 58]. For nonlinear problemswe refer the reader to [50, 75, 86].
However, unless the snapshots are generatinga sufficiently rich state spaceor are com-
puted from the exact (unknown) optimal controls, it is not clear a priori how far the
optimal solution of the PODproblem is from the exact one. On the other hand, the POD
method is a universal tool that is applicable also to problems with time-dependent
coefficients or to nonlinear equations. Moreover, by generating snapshots from the
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real (large) model, a space is constructed that inhibits the main and relevant physical
properties of the state system. This, and its ease of use, makes POD very competitive
in practical use, despite a certain heuristic flavor. In this context results for a POD a
posteriori analysis are important; see, e. g., [93] and [41, 54, 55, 91, 92, 95, 97]. Using
a fairly standard perturbation method it is deduced how far the suboptimal control,
computed on the basis of the POD model, is from the (unknown) exact one. This idea
turned out to be very efficient in our examples. It is able to compensate for the lack of
a priori analysis for POD methods. Let us also refer to the papers [30, 36, 69], where
a posteriori error bounds are computed for linear quadratic optimal control problems
approximated by the reduced basis method.

Data- and/or simulation-based POD models depend on the data (e. g., initial val-
ues, right-hand sides, boundary conditions, observations, etc.) which are used to gen-
erate the snapshots. If thosemodels are used as surrogates in, e. g., optimization prob-
lemswith PDE constraints, the algorithmical framework has to account for this fact by
providing mechanisms for accordingly updating the surrogate model during the solu-
tion process. Strategies proposed in this context for optimal flow control can be found
in, e. g., [3, 4, 9, 34, 17]. One of the most mature methods developed in this context is
trust-region POD, proposed in [9], which since then has successfully been applied in
many applications. We also refer to the work [38], where strategies for updating the
POD bases are compared.

The quality of the surrogatemodel highly depends on its information basis, which
for snapshot-based methods is given by the snapshot set; compare Section 2.5. The
location of snapshots and also the choice of the initial control in surrogate-based op-
timal control are discussed in [5]. There, techniques from time-adaptive schemes for
optimality systems of parabolic optimal control problems are adjusted to compute op-
timal time locations for snapshots generation in POD surrogatemodeling for parabolic
optimal control problems.

Concepts for the construction and use of POD surrogate modeling in robust op-
timal control of electrical machines are presented in [63, 6]. Those problems are gov-
erned by nonlinear partial differential equations with uncertain parameters, so that
robustness can be achieved by considering a worst case formulation. The resulting
optimization problem then is of bilevel structure and POD-ROMs in combination with
a posteriori error estimators are used to speed up the numerical computations.

2.7 Miscellaneous

PODmodel order reduction (POD-MOR) can also be applied to provide surrogatemod-
els for high-fidelity components in networks. The general perspective is discussed in,
e. g., [48]. Related research formodel order reduction of electrical networks is reported
in, e. g., [16, 46, 47]. The basic idea here consists in a decoupling of MOR approaches
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for the network and high-fidelity components which in general are modeled by PDE
systems. For the latter, simulation-based POD-MOR techniques are used to construct
surrogate models which then are stamped back into the (reduced) electrical network.
Details and performance tests are reported, e. g., in [45, 47]. A short lecture series with
related topics is presented under Hinze-Pilsen.2 Further contributions to this topic can
be found in [15].

Recent trends in data-driven and nonlinear MOR methods are discussed within a
YouTube lecture series under Carlberg-YouTube.3
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3 Proper generalized decomposition
Abstract:The so-called “reduced”models have always been very popular andoften es-
sential in engineering to analyze the behavior of structures and materials, especially
in dynamics. They highlight the relevant information and lead, moreover, to less ex-
pensive andmore robust calculations. In addition to conventional reductionmethods,
a generation of reduction strategies is now being developed, such as proper general-
ized decomposition (PGD), which is the subject of this chapter. The primary feature of
these strategies is to be very general and to offer enormous potential for solving prob-
lems beyond the reach of industrial computing codes. It is typically the case when
trying to take into account the uncertainties or the variations of parameters or non-
linear problems with very large number of degrees of freedom, in the presence of sev-
eral scales or interactions between several physics. These methods, along with the
notions of “offline” and “online” calculations, also open the way to new approaches
where simulation and analysis can be carried out almost in real-time. What distin-
guishes PGD from proper orthogonal decomposition (POD) and reduced basis is the
calculation procedure that does not differentiate between the different variables pa-
rameters/time/space. In other terms, we can say that we minimize or make stationary
a residual defined over the parameters-time-space domain. PGDwith time/space sep-
aration and the classical greedy computation technique were introduced in the 1980s
as part of the LATIN solver [66, 67] for solving nonlinear time-dependent problems
with the terminology “time/space radial approximation.” The corpus of literature de-
voted to thismethod is vast [68, 77] but remained in the formof time/space separations
formany years. Amore general separated representationwasmore recently employed
in [5, 6] for approximating the solution of multidimensional partial differential equa-
tions. In [93], such separated representations are also considered for solving stochastic
equations. PGD is the common name coined in 2010 by the authors of this chapter for
these techniques because it can be viewed as an extension of the classical POD. To-
day,manyworksuse anddevelop thePGD in extremely variedfields. In this chapterwe
revisit the fundamentals, variants, and applications of PGD, covering different kinds
of separated representations of the involved unknown fields as well as different con-
structors able to address a variety of linear and nonlinear models, elliptic, parabolic,
and hyperbolic.
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In this chapter we use different notations to be consistent with the referred publica-
tions. In any case, notation will be appropriately defined before being used to avoid any
possible confusion.
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plane-out-of-plane separated representations
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3.1 PGD: fundamentals
3.1.1 Principles
The proper generalized decomposition (PGD) method belongs together with reduced
basis and proper orthogonal decomposition (POD) methods to the last generation of
reduced-order model (ROM) computational methods characterized by a very large
scope of applications. They are all based on the same concepts. The first and main
idea in these methods is that the shape functions are not a priori given as usual. They
are computed simultaneously with the solution itself thanks to an iterative proce-
dure. For a problem defined over a parameter-time-space domain, the solution is then
written as

sm(μ, t,X) =
m
∑
i=1

aiΨi(μ, t,X) over Σμ × [0,T] × Ω, (3.1)

where Ψi are the normalized shape functions.
The second idea is to introduce a variable separation hypothesis or something

equivalent:

Ψi(μ, t,X) = γi(μ)λi(t)Λi(X), (3.2)

where the scalar time functions λi, the scalar parameter functions γi, and the space
functions Λi are arbitrary. That is a deflection from other approximation methods for
which shape functions are a priori given or partially given. Very often, a low-rank
canonical format approximation is used.

PGD is characterized by a global residual defined over the parameter-time-space
domain which should be minimized. Let R be this residual, given as

R(s) = ∫
Σμ

T

∫
0

∫
Ω

dμ1 . . . dμndtdΩ r(s) (3.3)

with

r ≥ 0; r = 0 over Σμ × [0,T] × Ω ⇐⇒ s = sexact. (3.4)
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The problem to solve is then

minR(
m
∑
i=1

γ1i (μ1) . . . γ
n
i (μn)λi(t)Λi(X)), (3.5)

which is twice nonlinear. From amechanical point of view, it could be nonlinear. Fur-
thermore, the computation of a PGD approximation is always a nonlinear problem.
To solve this minimization problem, the common technique is a “greedy” one. Such a
technique has been introduced for PGD at the end of the 1980s [68]. It is an iterative
technique in which, at iteration m + 1, the correction Δs = sm+1 − sm minimizes the
residual:

Δs = γ1(μ1) . . . γ
n(μn)λ(t)Λ(X); min

γ1 ,...,γn ,λ,Γ
R(sm + Δs). (3.6)

The residual isminimized alternatively over the scalar parameter functions, the scalar
time function, and the space function. Practically, few iteration loops are performed to
get the new PGDmode. It has also been numerically observed that better performance
could be obtained by updating the time and parameter functions of the previous PGD
modes before computing a new PGD mode by minimizing the global residual.

The classical PGD format has a tensorial equivalent: the canonical polyadic (CAN-
DECOMP/PARAFAC, CP) format. The greedy procedure used in the PGDmethod is very
close to tensorial tools such as the greedy CP alternating least-squares (ALS) algorithm
[61], one major difference being the norm used: This algorithm minimizes the Frobe-
nius norm of the error, while any norm, such as an energetic one, can be used in the
PGD procedure. Other classical tensor formats can be used. The Tucker format, com-
puted from an initial full tensor through higher-order singular value decomposition
(SVD), is a compressed representationwhich gives a tensorial equivalent of thematrix
concept of SVD. More recent structured representations have been developed such as
tensor train or the hierarchical Tucker format. The former is a generic and simple for-
mat which can have a better compression ratio than the CP decomposition. The latter
is the more general structured format and includes all the previously presented ones.
Its use can be delicate as the potentially complex structure must be chosen before any
computation. These two formats have both been adapted to the resolution of mechan-
ical partial differential equations in [99].

Remark. The simplest case is the situation where one computes the PGD of a given
function defined over the time-space domain. It was proved in this case that conver-
gence properties could be obtained and that the time functions are the eigenfunctions
of a certain eigenvalue problem [68]. For the L2-norm and the discretized problem, the
so-called PGD corresponds exactly to the classical SVD. It follows that PGDmodes can
be seen as “eigenmodes” and that the PGD can be seen as an extension of the SVD to
partial differential equations.
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3.1.2 Different types of separated representations

Most of the existing model reduction techniques proceed by extracting a suitable re-
duced basis and then projecting on it the problem solution. Thus, the reduced ba-
sis construction precedes its use in the solution procedure, and one must be careful
on the suitability of a particular reduced basis when employed for representing the
solution of a particular problem. This issue disappears if the approximation basis is
constructed at the same time as the problem is solved. Thus, each problem has its as-
sociated basis in which its solution is expressed. One could consider few terms in its
approximation, leading to a reduced representation, or all the terms needed for ap-
proximating the solution up to a certain accuracy level.

When calculating the transient solution of a generic problem u(x, t) we usually
consider a given basis of space functions Ni(x), i = 1, . . . ,Nn, the so-called shape func-
tions within the finite element framework, and approximate the problem solution as

u(x, t) ≈
Nn

∑
i=1

ai(t)Ni(x), (3.7)

which implies a space-time separated representation where the time-dependent co-
efficients ai(t) are unknown at each time (when proceeding incrementally) and the
space functions Ni(x) are given “a priori,” e. g., by means of a polynomial basis.

POD and reduced basis methodologies consider a reduced basis ϕi(x) for approx-
imating the solution instead of using the generic functions Ni(x). The former are ex-
pected to be more suitable for approximating the problem at hand. Thus, it results
that

u(x, t) ≈
R
∑
i=1

bi(t)ϕi(x), (3.8)

where in general R ≪ Nn. Again (3.8) represents a space-time separated representa-
tion where the time-dependent coefficient must be calculated at each time during the
incremental solution procedure.

Inspired by these results one could consider the general space-time separated rep-
resentation

u(x, t) ≈
N
∑
i=1

Xi(x)Ti(t), (3.9)

where now neither the time-dependent functions Ti(t) nor the space functions Xi(x)
are “a priori” known. Both will be computed on-the-fly when solving the problem.

As soon as one postulates that the solution of a transient problem can be ex-
pressed in the separated form (3.9) whose approximation functions Xi(x) and Ti(t)will
be determined during the problem solution, one could make a step forward and as-
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sume that the solution of a multidimensional problem u(x1, . . . , xd) could be found in
the separated form

u(x1, x2, . . . , xd) ≈
N
∑
i=1

X1
i (x1)X

2
i (x1) . . .X

d
i (xd). (3.10)

Consider a problem defined in a high-dimensional space of dimension d for the
unknown field u(x1, . . . , xd). Here, the coordinates xi denote any usual coordinate
(scalar or vectorial) related to space, time, and/or any conformational coordinate.

We seek a solution for u(x1, . . . , xd) ∈ Ω1 × ⋅ ⋅ ⋅ × Ωd. PGD yields an approximate
solution in the separated form

u(x1, . . . , xd) ≈
N
∑
i=1

X1
i (x1) ⋅ ⋅ ⋅X

d
i (xd) =

N
∑
i=1

d
∏
j=1

Xj
i (xj). (3.11)

If Nn nodes are used to discretize each coordinate, the total number of PGD un-
knowns isN ⋅Nn ⋅d instead of the (Nn)

d degrees of freedom involved in standardmesh-
based discretizations. Thus, the high-dimensional solution is computed by solving a
number of low-dimensional problems alleviating the so-called curse of dimensional-
ity involved in high-dimensional models.

Separated representationswithin the PGD frameworkwere applied for solving the
multidimensional Fokker–Planck equation describing complex fluids within the ki-
netic theory framework in [5, 6]. The solution procedure was extended to nonlinear
kinetic theory descriptions of more complex molecular models in [86]. In [81] authors
consideredmultibead-springmodels but used a spectral approximation for represent-
ing all the functions involved in the finite sums decomposition. A deeper analysis of
nonlinear and transientmodelswas considered in [8]. Complex fluidmodelswere cou-
pled with complex flows in [105] and [87] opening very encouraging perspectives and
pointing out the necessity of defining efficient stabilizations. A first tentative of con-
vective stabilization was proposed in [56]. Finally, in [34] PGD was applied for solving
the stochastic equation within the Brownian configuration field framework.

Multidimensionalmodels encountered in the finer descriptions ofmatter (ranging
from quantum chemistry to statistical mechanics descriptions) were revisited in [7].
The multidimensional chemical master equation was solved in [13] and the Langer
equation governing phase transitions was solved in [79].

The solution of a parametric problem u(x, t, μ1, . . . , μP) (widely considered in the
present chapter) can be expressed as

u(x, t, μ1, . . . , μP) ≈
N
∑
i=1

Xi(x)Ti(t)
P
∏
k=1

Mk
i (μk), (3.12)

where parameters are considered as model extra-coordinates.
Many times the spatial domain Ω, assumed three-dimensional, can be fully or

partially separated, and consequently it can be expressed as Ω = Ωx × Ωy × Ωz or
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Ω = Ωxy × Ωz, respectively. The first decomposition is related to hexahedral domains
whereas the second one is related to plates, beams, or extruded domains.We consider
both scenarios.
– The spatial domain Ω is partially separable. In this case the separated represen-

tation reads

u(x, z, t) ≈
N
∑
i=1

Xi(x)Zi(z)Ti(t), (3.13)

where x = (x, y) ∈ Ωxy, z ∈ Ωz and t ∈ Ωt . Thus, iteration p of the alternated
directions strategy at a given enrichment step n consists of:
1. solving in Ωxy a two-dimensional boundary value problem (BVP) to obtain

function Xp
n ,

2. solving in Ωz a one-dimensional BVP to obtain function Zpn ,
3. solving in Ωt a one-dimensional initial value problem (IVP) to obtain func-

tion Tpn .
The complexity of the PGD simulation scaleswith the two-dimensionalmeshused
to solve the BVPs in Ωxy, regardless of the mesh and the time step used in the
solution of the BVP and the IVPs defined in Ωz and Ωt for calculating functions
Zi(z) and Ti(t).

– The spatial domain Ω is fully separable. In this case the separated representation
reads

u(x, y, z, t) =
N
∑
i=1

Xi(x)Yi(y)Zi(z)Ti(t). (3.14)

Iteration p of the alternated directions strategy at a given enrichment step n con-
sists of:
1. solving in Ωx a one-dimensional BVP to obtain function Xp

n ,
2. solving in Ωy a one-dimensional BVP to obtain function Yp

n ,
3. solving in Ωz a one-dimensional BVP to obtain function Zpn ,
4. solving in Ωt a one-dimensional IVP to obtain function Tpn .
The cost savings provided by PGD are potentially phenomenal when the spatial
domain is fully separable. Indeed, the complexity of the PGD simulation now
scales with the one-dimensional meshes used to solve the BVPs in Ωx, Ωy, and
Ωz, regardless of the time step used in the solution of the decoupled IVPs in Ωt .

Even when the domain is not fully separable, a fully separated representation could
be considered by using appropriate geometrical mappings or by immersing the non-
separable domain into a fully separable one. The interested reader can refer to [54]
and [51].

In-plane-out-of-plane separated representations are particularly useful for ad-
dressing the solution of problems defined in plates [21], shells [22], or extruded do-
mains [82]. A parametric three-dimensional elastic solution of beams involved in
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frame structureswas proposed in [23]. The same approachwas extensively considered
in structural plate and shell models in [48, 114–118, 107]. Space separated represen-
tations where enriched with discontinuous functions for representing cracks in [53],
delamination in [84], and thermal contact resistances in [38]. Domain decomposition
within the separated space representation was accomplished in [88] and localized
behaviors were addressed by using superposition techniques in [12].

The in-plane-out-of-plane decomposition was then extended to many other
physics: Thermal models were considered in [38]; squeeze flows of Newtonian and
non-Newtonian fluids in laminates in [52]; flows in stratified porous media in [35],
nonlinear viscoplastic flows in plate domains in [26], and electromagnetic problems
in [112]. A full space decompositionwas also efficiently applied for solving the Navier–
Stokes equations in the lid-driven cavity problem in [44–46].

3.1.3 Illustrating the simplest separated representation
constructor

In order to illustrate the simplest procedure for constructing the separated represen-
tation we consider the one-dimensional heat transfer equation involving the temper-
ature field u(x, t),

𝜕u
𝜕t
− k 𝜕

2u
𝜕x2
= f , (3.15)

defined in the space-time domain Ω = Ωx × Ωt = (0, L) × (0, τ]. The diffusivity k and
source term f are assumed constant. We specify homogeneous initial and boundary
conditions, i. e., u(x, t = 0) = u(x = 0, t) = u(x = L, t) = 0. More details and more
complex scenarios can be found in [36].

The weighted residual form of (3.15) reads

∫
Ωx×Ωt

u∗(𝜕u
𝜕t
− k 𝜕

2u
𝜕x2
− f) dx dt = 0, (3.16)

for all suitable test functions u∗.
Our objective is to obtain a PGD approximate solution in the separated form

u(x, t) ≈
N
∑
i=1

Xi(x)Ti(t). (3.17)

We do so by computing each term of the expansion at each step of an enrichment
process, until a suitable stopping criterion is met.

Thus, at enrichment step n, the n − 1 first terms of the PGD approximation (3.17)
are known:

un−1(x, t) =
n−1
∑
i=1

Xi(x)Ti(t). (3.18)
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Wenowwish to compute the next termXn(x)Tn(t) to get the enriched PGD solution

un(x, t) = un−1(x, t) + Xn(x)Tn(t) =
n−1
∑
i=1

Xi(x)Ti(t) + Xn(x)Tn(t). (3.19)

One must thus solve a nonlinear problem for the unknown functions Xn(x) and
Tn(t) by means of a suitable iterative scheme. The simplest strategy consists of an al-
ternated direction fixed point algorithm, which at iteration p reads

un,p(x, t) = un−1(x, t) + Xp
n (x)T

p
n (t). (3.20)

Starting from an arbitrary initial guess T0n (t), the alternating direction strategy
computes Xp

n (x) from Tp−1n (t), and then Tpn (t) from Xp
n (x). These nonlinear iterations

proceed until reaching a fixed point within a user-specified tolerance ϵ, i. e.,

X
p
n (x) ⋅ Y

p
n (y) − X

p−1
n (x) ⋅ Y

p−1
n (y)
 < ϵ, (3.21)

where ‖ ⋅ ‖ is a suitable norm. The enrichment step n thus ends with the assignments
Xn(x)← Xp

n (x) and Tn(t)← Tpn (t).
The enrichment process itself stops when an appropriate measure of error ℰ(n)

becomes small enough, i. e., ℰ(n) < ϵ̃.
For additional details the interested reader can refer to [38], where the problems

related to the calculationof functionsXp
n andT

p
n weredefined, aswell asmore complex

scenarios involving two-dimensional and high-dimensional problems.

3.1.4 Convergence properties

The convergence of the greedy technique is demonstrated for elliptic linear operators
in classical separation cases (space/space, parameters/space) [10, 27, 62, 80]. How-
ever, the estimates of the convergence rate remain crude in the sense that they do not
reflect what is observed in practice. For eigenvalue problems, convergence properties
were given in [28]. For nonlinear problems, there are few results. However, the con-
vergence of PGD is shown for convex problems in the sense that the set of PGD-like
solutions is dense in the admissible space [63].

3.1.5 Verification

3.1.5.1 A posteriori error estimators and adaptive computational approaches

As any numericalmethod, PGD is associatedwith error sourceswhich need to be effec-
tively assessed and controlled, using a posteriori error estimation, in order to certify
the accuracyof the results and thenpermit the transfer and intensiveuse of PGD-ROMs
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in industrial activities for robust optimization and design. This is a main challenge in
simulation-based engineering as identified in the report of the NSF Simulation-Based
Engineering Science panel [100]. Moreover, one can resort to adaptive methods based
on a posteriori error estimation for the construction of the reducedmodels in the hope
of reducing the computational cost for a given accuracy.

Verification of PGD-ROMs has only been addressed in few works this last decade,
in contrast to the vast literature dedicated to the control of the reduced basis method.
Afirst attemptwas considered in [9] using residual-based techniques for goal-oriented
error estimation. In thiswork,mainly devoted to adaptivity, only the error coming from
the truncation of the PGD modal representation was controlled and the error bounds
were not guaranteed (the adjoint solution being approximated with a finer PGD de-
composition). In [2], the approach of [9] was extended to the nonlinear context by
using a linearized version of the problem to define the adjoint problem, before using
a weighted residuals method with a higher number of PGDmodes to represent the ad-
joint solution and catch the PGD truncation error. Even though this approach is cheap,
it still cannot deliver guaranteed error bounds inwhich all error sources are taken into
account.

In order to provide a general framework to obtain guaranteed, accurate, and fully
computable bounds to effectively control the quality of PGD approximations, a robust
a posteriori verification technique based on the constitutive relation error (CRE) con-
cept [70, 31, 76] has been introduced in [73, 30, 74, 33, 113]. Thiswas done in the context
of parameterized linear elliptic or parabolic problems, the bounds being related to the
global error (in the energy norm) or to specific quantities of interest (goal-oriented er-
ror estimation) using adjoint-based techniques [102, 104, 17, 75]. The error estimates
involve all error sources including discretization error and truncation error in the PGD
modal representation. They are based on the construction of perfectly equilibrated
fields. The key technical point is to construct a finite element-equilibrated stress or
flux vector from finite element equilibration properties of the computed PGD modes;
after one uses similar tools as those used in the classical finite element analysis con-
text. This is the mandatory procedure to recover strict bounds on discretization error
which can be applied to other ROMs. A variant was also proposed in [85], even though
equilibrated fieldswere here obtained using a dual PGD computational approach. Fur-
thermore, the work in [33, 113] enables to split error sources by means of specific er-
ror indicators, which helps driving greedy adaptive algorithms to drive computations
and optimize CPU time andmemory space for a prescribed error tolerance; this comes
down to defining a suitable PGD approximation in terms of the required number of
terms in the modal representation of the solution, but also in terms of the discretiza-
tion meshes used to compute modes. Consequently, the verification procedure based
on CRE certifies the quality of the PGD approximation (globally or on specific outputs
of interest) over the whole set of possible model parameters, and enables to adapt the
PGD solution towards the specific goals of the computer simulation. The method was
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illustrated in [33] with several numerical experiments on two-dimensional and three-
dimensional mechanical problems; one of them is given at the end of this section.
Let us note that advection problems were not considered in the previously mentioned
works, even though these could be extended to such nonsymmetric problems with
minor changes using ingredients given in [103, 60]. Extension to nonlinear problems
could also be performed using [72] to get guaranteed bounds. Nevertheless, some CRE
error indicators which are not guaranteed bounds are easy to compute from [68].

Eventually, wemention some other works in which PGDmodel reduction and ver-
ificationmethods are conjointly addressed. In [122], the effect of the separated approx-
imation of input data in the accuracy of the resulting PGD solution was studied, from
empirical and numerical considerations. In [31, 4], PGDwas used to compute the CRE-
based error estimate itself. In these latterworks, the construction of equilibrated fields
was facilitated using a PGD representation of the solution at the element level in the
finite element mesh, parameterizing material properties and element shape. In ad-
dition to making the implementation of CRE into commercial finite element software
easier, it was shown that the use of PGD enabled to optimize the verification procedure
and to get both accurate and reasonably expensive upper bounds on the discretization
error.

3.1.5.2 Error-driven PGD computation

Error analysis and computation can lead to efficient and robust PGD computation
methods. In [65], the objective was to derive a reduced-order formulation such that
the accuracy in given quantities of interest is increased when compared to a standard
PGDmethod. Contrary to traditional goal-oriented methods that usually compute the
solutionof anadjoint problem following the calculationof theprimal solution for error
estimation and adaptation, it was proposed in this work to solve the adjoint problem
first, based on a reduced approach, in order to extract estimates of the quantities of
interest and use this information to constrain the reduced primal problem. This ap-
proach shares similarities with the work described in [20], where the authors define
specific norms with additional weighting terms taking into account the error in the
quantity of interest. The main idea in [20] is to minimize a norm weighted by a func-
tional involving the adjoint solution, via a penalization approach, in order to obtain a
goal-oriented PGD using the so-called ideal minimal residual approach.

Eventually, a new and promising PGD computational method based on the min-
imization of the CRE measure was proposed and analyzed in [3, 32]. In addition to
enhancing the computation of PGD modes, it provides an improved, immediate, and
robust reduction error estimation. This technique has been extended to solidmechan-
ics nonlinear time-dependent problems [77].
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3.1.5.3 Illustration

We present here a three-dimensional numerical experiment taken from [33], which
illustrates the error estimation method and adaptive strategy. One considers a three-
dimensional elasticity problem with three parameters for which the first PGD modes
are computed; the associated errors as well as specific error indicators related to the
discretization and the number of PGD modes are also given.

The domain is a cube of size 1m × 1m × 1m with three spherical inclusions for
which Young’s moduli Ei ∈ [1, 10] (1 ≤ i ≤ 3) are parameters, so that the order m
PGD representation reads um(x,E1,E2,E3). The three inclusions have the same radius
r = 0.1m, and their centers are respectively located at points c1 = (0.2,0.2,0.2), c2 =
(0.6,0.3,0.5), and c3 = (0.4,0.7,0.8) (Figure 3.1). The cube is clamped along the plane
located at x = 0 and subjected to a unit traction force Fd = +x applied on the plane
located at x = 1. The initial finite element mesh contains 17,731 4-node tetrahedral
elements and 3,622 nodes (10,866 degrees of freedom).

Figure 3.1: Three-dimensional elasticity problem: space domain with three inclusions and associated
finite element mesh.

The first three PGD modes of the PGD approximate solution uhm are given in Figure 3.2
for space functionsψm(x) and in Figure 3.3 for parameter functions γ1,m(E1), γ2,m(E2),
and γ3,m(E3). Note that the first space function ψ1(x) corresponds to a global mode,
whereas the second and third space functionsψ2(x) andψ3(x) are localmodesmostly
concentrated around the first and second inclusions, respectively.

The evolutions of the CRE-based error estimate ECRE and associated error indica-
tors ηPGD and ηdis with respect to the numberm of PGDmodes are shown in Figure 3.4
for m = 1, . . . , 6 and for the maximal values obtained with triplets (E1,E2,E3). This is
represented along the adaptive strategy, and vertical evolutions indicate mesh refine-
ments (which are performed each time the indicator associated with the discretiza-
tion error is larger than the one associated with the PGD truncation error). Let us note
that the error estimate converges quite fast toward the indicator associated to the dis-
cretization error (for a fixed mesh), while both error indicators decrease toward zero
along the adaptive procedure. The computation cost associated with the error estima-
tor and error indicators is of the same order as for the PGD computation.
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Figure 3.2:Magnitude of space functionsψm(x) obtained for orderm = 1, . . . , 3 (from top to bottom).

Figure 3.3: Parameter functions γ1,m(E1), γ2,m(E2), and γ3,m(E3) (from left to right) obtained for order
m = 1, . . . , 3 (from top to bottom).
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Figure 3.4: Evolutions of the error estimate E2CRE
and associated error indicators η2PGD and η

2
dis with

respect to the numberm of PGD modes.

3.1.6 Limits

PGD limits coincide with the limits of the variable separation hypothesis. Generally
speaking, such limits could be reached by problems with moving loads. A thorough
analysis was performed for a specific model problem in [3]; it follows that the quasi-
stationary solution is not time-space separable with few modes. However, adding in
the basis this particular solution (which is generally easy to compute), an accurate
approximation canbeobtainedwith fewPGDmodes. Transient dynamics also belongs
to this class of problems where the time-space variable separationmay not work well,
in particular when high-frequency phenomena occur. That is clear, as considering a
wave implies that the driven quantities are a combination of time and space variables.
However, working over the frequency-space domain still enables to derive efficient
PGD approximations [16].

3.2 PGD for nonlinear time-dependent problems

3.2.1 State of the art

Large time increment (LATIN)-PGD is a robust and effective tool for the construction of
PGD in nonlinear solid mechanics, in the process of implementation in the industrial
simulation codes; elsewhere, the approach it underlies should be extended to other
parts of physics. The article [77] and the book [68] describe the state of the art. Until
recent years, LATIN-PGD had no competitor except [110, 111], where POD is used in
conjunction with a “hyperreduction” technique. Currently, many works using PGD or
POD have appeared in the frame of the classical homogenization method for periodic
media (in particular finite element square), among them [108, 121, 64, 59].
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3.2.2 The LATIN-PGD computation method

The LATIN-PGD computation method has been derived to build ROMs in nonlinear
solid mechanics but could be extended to other parts of physics.

3.2.2.1 Presentation of the problem

To present the method, with the assumption of small perturbations, let us consider
the quasi-static and isothermal evolution of a structure defined over the time-space
domain [0,T] × Ω. This structure is subjected to prescribed body forces f d, traction
forces Fd over a part 𝜕2Ω of the boundary, and displacements ud over the complemen-
tary part 𝜕1Ω (Figure 3.5).

Figure 3.5: The reference problem.

The state of the structure is defined by the set of fields s = (ε̇p, Ẋ,σ,Y) (where the dot
notation ◻̇ denotes the time derivative), in which:
– εp refers to the inelastic part of the strainfield εwhich corresponds to thedisplace-

ment field u, uncoupled into an elastic part εe and an inelastic part εp = ε − εe;
X refers to the remaining internal variables;

– σ refers to the Cauchy stress field and Y to the set of variables conjugate of X
(Y and X have the same dimension); X could be hardening variables, damage
variables, chemical variables, etc.

All these quantities are defined over the time-space domain [0,T]×Ω and assumed to
be sufficiently regular. For the sake of simplicity, the displacement u alone is assumed
to have a nonzero initial value, denoted u0. Introducing the notations for the primal
fields

ep = [
εp
−X
] , e = [ε

0
] and ee = [

εe
X
] so that ep = e − ee (3.22)

and for the dual fields

f = [σ
Y
] , (3.23)
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the mechanical dissipation rate for the entire structure Ω is

∫
Ω

(ε̇p : σ − Ẋ ⋅ Y)dΩ = ∫
Ω

(ėp ∘ f)dΩ, (3.24)

where ⋅ denotes the contraction adapted to the tensorial nature of X and Y . Notation ∘
denotes the contraction operator for generalized quantities. Let us now introduce the
following fundamental bilinear “dissipation” form:

⟨s, s⟩ = ∫
[0,T]×Ω

(1 − t
T
)(ėp ∘ f

 + ėp ∘ f)dΩdt, (3.25)

along with E and F, the spaces of the fields ėp and fwhich are compatible with (3.25).
These spaces enable us to define S = E × F, the space in which the state s = (ėp, f) of
the structure is being sought.

Following [67, 68], a normal formulation with internal state variables is used to
represent the behavior of the material. If ρ denotes the mass density of the material,
from the free energy ρΨ(εe,X) with the usual uncoupling assumptions, the state law
yields

σ = ρ 𝜕ψ
𝜕εe
= Kεe and Y = ρ𝜕ψ

𝜕X
= ΛX, (3.26)

where Hooke’s tensor K and the constant, symmetric, and positive definite tensor Λ
are material characteristics.

The state evolution laws can be written

ėp = B(f) with ep|t=0 = 0, (3.27)

where B is a positive operator which is also for most viscoplastic models maximal
monotone. Let us introduce now the space 𝒰 [0,T]ad of admissible displacement fields
u defined over [0,T] × Ω and 𝒰 [0,T]ad,0 the associated vectorial space. The compatibility
equation can be written as follows:

Find u ∈ 𝒰 [0,T]ad such that ∀u⋆ ∈ 𝒰 [0,T]ad,0

∫
[0,T]×Ω

Tr[ε(u)Kε(u⋆)]dΩdt = ∫
[0,T]×Ω

Tr[εpKε(u
⋆)]dΩdt

+ ∫
[0,T]×Ω

f d ⋅ u
⋆dΩdt + ∫

[0,T]×𝜕2Ω

Fd ⋅ u
⋆dSdt. (3.28)

It follows that the stress σ = K(ε(u) − εp) can be written

σ = Ωεp + rd, (3.29)
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where Ω is a linear given operator and rd is a prestress depending on the data. Intro-
ducing the generalized stress, the admissibility conditions can be written as

f = Qep + rd (3.30)

with

Q = [Ω 0
0 Λ
] and rd = [

rd
0
] , (3.31)

where Q is a linear symmetric positive operator. Finally, the problem to solve is

Find s = (ėp, f) ∈ S
[0,T] such that

f = Qep + rd and ėp = B(f) with ep|t=0 = 0.
(3.32)

Consequently, one has to solve a first-order differential equation with an initial
condition. The operators Q and B as well as the right-hand side member rd could de-
pend on the parameter μ belonging to the parameter set Σμ.

3.2.2.2 The solver LATIN for ROM computation

Let us consider ROM computations based in time and space separation. A natural and
general idea is to transform the reference problem into a succession of linear global
problemsover [0,T]×Ωwhich coulddependonparameters.Using reducedbasis, POD,
or PGD, an ROM can be built over [0,T] × Ω for each linear problem. The final ROM
is then obtained gathering all the previous ROMs. The LATIN method is an iterative
strategy which differs from classical incremental or step-by-step techniques in that,
at each iteration, it produces an approximation of the full structural response over
the whole loading history being considered (see Figure 3.6). In other words, the name
LATIN was not chosen very well because the method is essentially nonincremental.

Figure 3.6: The LATIN method and classical step-by-step methods.
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The LATINmethod, which operates over the time-space domain [0,T]×Ω, is very con-
venient for solving the reformulation (3.32) of the reference problem. Its first principle
consists in separating the difficulties. Thus, the equations are divided into:
– a set of linear equations which can be global in the space variables: the equilib-

rium and compatibility equations and the state equations;
– a set of equations which are local in the space variables but can be nonlinear: the

state evolution laws.

Local stage at iteration n + 1 (see Figure 3.7)
Find ŝn+1/2 = ( ̂ėp,n+1/2, ̂fn+1/2) ∈ S[0,T] such that

̂ėp,n+1/2 = B( ̂fn+1/2) with êp,n+1/2 = 0 at t = 0,
̂ėp,n+1/2 − ėp,n +H

+( ̂fn+1/2 − fn) = 0.
(3.33)

The search directionH+ is a parameter. Practically, one takes a linear positive op-
erator which is local in both time and space variables. It follows that the problem to
solve is local in the space variable and then can be split into small independent prob-
lems associated to Gauss points. This local stage is very suitable for parallel comput-
ing.

Figure 3.7: The geometric representation associated to the
reformulation of the reference problem.

Figure 3.8: Iteration n + 1 of the LATIN method over
[0, T ] × Ω.

Linear stage at iteration n + 1 (see Figure 3.8)
Find sn+1 = (ėp,n+1, fn+1) ∈ S[0,T] such that

fn+1 = Qep,n+1 + rd,

ėp,n+1 − ̂ėp,n+1/2 −H
−(fn+1 − ̂fn+1/2) = 0 with ep,n+1 = 0 at t = 0.

(3.34)

The search direction H− is a parameter. This is a linear positive operator which is
local in both time and space variables. It is associated to the material operator B. One
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has to solve a first-order linear differential equationwith an initial condition, the oper-
atorQ being nonexplicit. In practice,H− is chosen close to the tangent to themanifold
Γ at the point ŝn+1/2 = ( ̂ėp,n+1/2, ̂fn+1/2). For H+, one takes 0 or H−. The convergence of
the iterative process has been proved in the case of nonsoftening materials and con-
tacts without friction [68]. Precisely, the iterative process converges if:
– the material operator B is maximal monotone;
– the material operator Λ is positive definite;
– the search directions H− and H+ are positive definite and equal H− = H−.

The distance between two successive approximations gives a good and easily com-
putable error indicator. Let us also note that one often uses an additional relaxation
with a coefficient equal to 0.8.

Let us introduce corrections:

Δėp = ėp,n+1 − ėp,n,
Δf = fn+1 − fn,

(3.35)

where sn+1 = (ėp,n, fn) has been computed at iteration n. The problem to solve over
[0,T] × Ω at iteration n + 1 is then:

Find Δs = (Δėp,Δf) ∈ S
[0,T] such that

Δf = QΔėp
Δėp −H

−Δf = Rd with Δep = 0 at t = 0.
(3.36)

Problem (3.36) is interpreted as a linear constitutive relation, the operator H− be-
ing local in both time and space variables and positive definite as the Hooke tensor.
Consequently, one introduces the associated CRE which defines the global residual to
minimize

r(Δs, t) = 1
2
∫
Ω

[Δėp −H
−Δf − Rd](H

−)−1[Δėp −H
−Δf − Rd]dΩ (3.37)

and

R(Δs) = ∫
[0,T]

(1 − t
T
)r(Δs, t)dt (3.38)

with Δs = (Δėp,Δf) ∈ S[0,T]. The problem (3.36) becomes

Find Δs ∈ S[0,T] miminizing

Δs ∈ S[0,T] → R(s) ∈ ℝ
with the constrains Δf = QΔėp and Δep = 0 at t = 0.

(3.39)
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The time residual r(Δs, t) can be used to build ROMs with the reduced basis
method. One only prescribes that

Δep =
m
∑
i=1

λi(t)gi(x) (3.40)

with λi(0) = 0 (initial condition), gi ∈ L2(Ω), and λi(t) ∈ L2[0,T]. It follows, using
admissibility conditions, that

Δf =
m
∑
i=1

λi(t)Qgi(x), (3.41)

where Qgi(x) are computed solving several elasticity problems.

3.2.2.3 Minimization technique

Let us start with

sn = (ė
0
p, f

0) +
m
∑
i=1
(λ̇iE

i
p, λiF

i). (3.42)

The iteration n + 1 has two steps.

Step 1: Updating of the PGD time functions – This POD phase relies on the space
PGD modes (Eip,F

i) for which the computation cost is relatively high. New time func-
tions, still noted λi, are computedminimizing the residualRwith the constraint λi(0) =
0. One gets a small system of differential equations over the time interval with con-
ditions at both ends. The problem can be also solved globally over the time interval
[0,T].

Step 2:Additionof anewPGDmode–One computes following a “greedy” algorithm

sn+1 = sn + (λ̇Ep, λF) (3.43)

with λ(0) = 0. The additional PGD mode is obtained through the minimization of the
residual R, alternatively on the time function λ and on the space function Ep. The ini-
tialization of this iterative process is done taking as the first time function guess the
root square of the time residual r(0, t). The minimization with respect to the space
variables leads to the resolution of a time-independent spatial problem defined over
Ω; that is, a classical finite element problem. Theminimizationwith respect to the time
variable leads to a scalar differential equation over [0,T]with conditions at both ends
whose resolution is quite inexpensive; the easier way is to solve the global time prob-
lem coming from the residual minimization. The iterative process is stopped after few
iterations, practically two or three. Let us also note that this second step is canceled if
the residual R(0) is relatively small.
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3.2.3 Illustration

The previous strategy has been applied in numerous cases. To illustrate the perfor-
mances, we consider the engineering example presented in [90] and developed in
collaboration with SAFRAN. This is a relatively small case with 151,600 degrees of
freedom and 60 time steps. The geometry is freely inspired from a blade of the Vul-
cain engine (Figure 3.9) and the material behavior is the Marquis–Chaboche elastic-
viscoplastic law (with kinematic hardening and Norton power law). The problem is
not only strongly nonlinear and time-dependent. Two material parameters (power γ
and yield stress R0), as well as the loading amplitude, are not very well known. The
range of variation of each parameter was discretized into 10 arbitrarily values, leading
to 1,000 different nonlinear time-dependent problems.

Figure 3.9: Geometry, boundary conditions, and mesh of the blade test case.

For nonlinear time-dependent problems involving especially viscoplasticity and dam-
age, LATIN-PGD has been easily extended to take into account material or loading pa-
rameterswhich are seen as extra-coordinates. Reducedmodels are built on the param-
eters/time/space separation [119, 120]. For few parameters, it could be advantageous
to describe point-by-point the parameter space using the remarkable property of the
LATIN method: The initialization of the iterative process can be any function defined
over [0,T] × Σμ [90].

The computations have been carried out on an Intel bi-Xeon processor (total of 12
cores) at 2.8 GHz with 12 GB of RAM. Figure 3.10 gives the virtual chart related to the
maximum value of the Von Mises stress. The computational time is about 25 days (es-
timated time) to complete the 1,000 resolutions with ABAQUS and less than 17 hours
with the LATIN-PGD method, leading to a gain of more than 35.

In this example, material parameters (R0, γ) were assumed to be stochastic,
whereas the loading amplitude was assumed to be defined by its interval of varia-
tion. The use of the previous virtual chart allows to deal with uncertainties in an
inexpensive manner. For example, one can build the interval of variation of the max-



3 Proper generalized decomposition | 117

Figure 3.10: Virtual chart giving the maximum
Von Mises stress as a function of the parame-
ters.

Figure 3.11: Interval of variation of the maximum
value of the Von Mises stress with stochastic
bounds.

imum value of the Von Mises stress with stochastic bounds, like the result presented
in Figure 3.11.

3.2.4 Additional reduction or interpolation

Let us note that LATIN-PGD needs to compute numerous integrals as

I = ∫
[0,T]

∫
Ω

f (t,M)H(t,M)g(t,M)dΩdt, (3.44)

whereH changes along the iterations, as it can be time-dependent and also nonlinear
in terms of the computed solution; f and g are not necessarily represented in the PGD
framework. It follows that the computation requires to loop on all the time steps and
all the space Gauss points and consequently its cost could be high. For ROM computa-
tionswhere such integral computations are performedonline, this problem is a crucial
one. This is not the case for LATIN-PGD, where all these calculations are done offline;
however, it is always interesting to reduce the computation cost. Several additional re-
duction or interpolation methods have been proposed to overcome this difficulty and
are described in this book, including the empirical interpolation method (EIM), the
discrete EIM (DEIM), hyperreduction, etc. Here, we introduce another recent method,
named “reference point method” (RPM) [39, Chapter 3], [29].
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Let us divide the time interval I = [0,T]being studied intom subintervals {Ii}i=1,...,m
of lengths {Δti}i=1,...,m as shown in Figure 3.12. Introducing the centers {ti}i=1,...,m of these
subintervals, called “reference times,” one has Ii = [ti − Δti/2, ti + Δti/2]. In the space
domain, let us also introducem points {Mj}j=1,...,m and partition Ω into {Ωj}j=1,...,m , as
shown in Figure 3.12. These points are called “reference points” and the measures of
the subdomains are denoted {ωj}i=j,...,m .

Figure 3.12: The reference times over
[0, T ] and the reference points over Ω.

Let us consider that one needs 20 modes to describe the solution. One can take dou-
ble space reference points, i. e., 40, and for the reference times the minimum between
40 and the number of time degrees of freedom. The choice of the reference times and
reference points is unrelated to the classical discretizations of the time interval and
space domain. Refined time and space discretizations should still be used for the cal-
culation of the various quantities. Here, our purpose is to describe a field f over the
time-space domain [0,T] × Ω through

âji(t) = {
f (t,Mj) if t ∈ Ii,
0 otherwise

and b̂ji(M) = {
f (ti,M) ifM ∈ Ωj,
0 otherwise,

(3.45)

with i = 1, . . . ,m and j = 1, . . . ,m. The sets {(âji, b̂
j
i)}

j=1,...,m
i=1,...,m are the generalized com-

ponents of f . One should note that these quantities verify the following compatibility
conditions: for i = 1, . . . ,m and j = 1, . . . ,m,

âji(ti) = b̂
j
i(Mj). (3.46)

It could happen that the quantity f is not well represented over the time-space do-
main. Then, one adds if necessary a PGD description of the residual. The extension to
parameter-dependent functions is easy. The great interest of such generalized compo-
nents is that operations (addition, multiplication, derivation) are greatly facilitated.
Then, themain question is: How can one build or rebuild a field from its components?
We choose to define function f from its components using only one product per time-
space subdomain Ii × Ωj:

f (t,M) : aji(t)b
j
i(M) ∀(t,M) ∈ Ii × Ωj. (3.47)
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The following very simple formula follows from [29]:

f (t,M) : ai(t)bi(M) =
∑m


k=1 ωkâki (t)â
k
i (ti)

∑m


k=1 ωkâki (ti)â
k
i (ti)

b̂ji(M), (3.48)

where the quantities â, f , and its approximation are equal for the time-space points
(ti,Mj) of the time-space domain. In [29], one will find a performance analysis as well
as comparisons with the EIM.

3.2.5 Extensions

LATIN-PGD has been developed for most structural mechanics problems [68] and ro-
bust ROM computational methods are available for several important issues:
– Cyclic viscoplasticity and fatigue for engineering structures [40, 41, 19].

APGDwith two time scaleshasbeen introducedanddeveloped for cyclic loadings.
The applications deal with small displacement problems involving (visco)plastic
and damageable materials.

– Large displacement problems with instabilities [68, 15, 24, 25]. PGD has been
extended to large displacement problems for which the classical time/space sep-
aration hypothesis does not work or does not work well. The key was a new
“material” reformulation of the structure problem; applications deal with large
(visco)plastic deformation problems and elastic buckling problems.

– Concurrent multiscale and multiphysics problems for nonlinear time-de-
pendent problems [89, 69, 71, 92, 47]. Nonlinear time-dependent problems are
considered under the small displacement hypothesis. The key here is a mixed do-
main decomposition method with two scales over the time-space domain. Classi-
cal PGD is used to solve at each iteration the micro-problems. A further path in
[43] is to build a PGD-ROM for the computation of the micro-problems over the
complete time interval. For multiphysics problems, the idea consists in introduc-
ing an abstract interface between physics which plays the same role as the usual
interface material.

For all these issues, the LATIN-PGD version described in this chapter should be a
paradigm.

3.3 Parametric solutions
This section illustrates how parameters of different natures become coordinates. The
problems considered are quite simplistic but the same rationale is considered for solv-
ingmore complex problems reported at the end of the section.We consider three types
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of parameters: (i) parameters related to the model; (ii) parameters related to initial
and boundary conditions; and (iii) geometrical parameters defining the space-time
domain in which the model is defined.

3.3.1 Model parameters as extra-coordinates

We consider the parametric heat transfer equation

𝜕u
𝜕t
− kΔu − f = 0, (3.49)

with homogeneous initial and boundary conditions. Here (x, t, k) ∈ Ωx × Ωt × Ωk . The
scalar conductivity k is here viewed as a new coordinate (called extra-coordinate) de-
fined in the interval Ωk . Thus, instead of solving the thermal model for different dis-
crete values of the conductivity parameter, we wish to solve only once a more general
problem. For that purpose we consider the weighted residual form related to equa-
tion (3.49):

∫
Ω×Ωt×Ωk

u∗(𝜕u
𝜕t
− kΔu − f)dx dt dk = 0. (3.50)

The PGD solution is sought in the form

u(x, t, k) ≈
N
∑
i=1

Xi(x)Ti(t)Ki(k), (3.51)

constructed using rank-one updates and the alternate directions fixed point algorithm
for addressing the nonlinearity, as discussed in the previous section.

3.3.2 Boundary conditions as extra-coordinates

For the sake of simplicity we first consider the steady-state heat equation

∇ ⋅ (K ⋅ ∇u(x)) + f (x) = 0, (3.52)

with x ∈ Ω ⊂ ℝ3, subjected to the boundary conditions

{
u(x ∈ Γd) = ug ,
(−K ⋅ ∇u)|x∈Γn ⋅ n = qg ⋅ n = qg ,

(3.53)

with K being the conductivity tensor and n the outwards unit vector defined in the
domain boundary Γn, with 𝜕Ω ≡ Γ = Γd ∪ Γn and Γd ∩ Γn = 0.

In what follows we consider the simplest scenario that consists of constant Neu-
mann and Dirichlet boundary conditions. More complex and general situations were
addressed in [37],wherenonconstant boundary and initial conditionswere addressed.
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3.3.2.1 Neumann boundary condition as extra-coordinate

First, imagine that we are interested in the model solution for values of the heat flux
qg ∈ ℐq = [q−g , q

+
g ]. We could consider the given heat flux as an extra-coordinate and

then solve only once the resulting four-dimensional heat equation for calculating the
general parametric solution u(x, qg). For this purpose the solution is sought in the sep-
arated form

u(x, qg) ≈
N
∑
i=1

Xi(x) ⋅𝒬i(qg). (3.54)

In order to enforce the prescribed Dirichlet boundary condition u(x ∈ Γd) = ug ,
the simplest procedure consists of choosing the first functional coupleX1(x) ⋅𝒬1(qg) in
order to ensure that u1(x ∈ Γd, qg) = X1(x ∈ Γd)⋅𝒬1(qg) = ug . Thus, the remaining terms
of the finite sum Xi(x), i > 1, will be subjected to homogeneous essential boundary
conditions, i. e., Xi(x ∈ Γd) = 0.

In order to use the approximation (3.54) we start by considering the weak form
related to equation (3.52), which reads as follows: Find u(x) regular enough, verifying
u(x ∈ Γd) = ug , such that

∫
Ω

∇u∗ ⋅ (K ⋅ ∇u) dx = ∫
Γn

u∗ (K ⋅ ∇u) ⋅ n dx + ∫
Ω

u∗ f (x) dx (3.55)

is verified ∀u∗, with u∗(x ∈ Γd) = 0.
By introducing the Neumann condition (3.53) into (3.55) we obtain

∫
Ω

∇u∗ ⋅ (K ⋅ ∇u) dx = −∫
Γn

u∗ qg dx + ∫
Ω

u∗ f (x) dx, (3.56)

which allows constructing the separated form (3.54) using the rank-one updates and
the alternate directions fixed point algorithm for addressing the nonlinearity.

3.3.2.2 Dirichlet boundary condition as extra-coordinate

Now we consider the solution of model (3.52) for any value of ug in (3.53) in a certain
interval ℐu = [u−g , u

+
g ]. For this purpose we consider the function φ(x) continuous in Ω

such that Δφ ∈ L2(Ω) and φ(x ∈ Γd) = 1. Thus, we can define the change of variable
[54]. We have

u(x) = v(x) + ug φ(x), (3.57)

which allows rewriting equations (3.52) and (3.53) as

∇ ⋅ (K ⋅ ∇v(x)) + ug (K ⋅ ∇φ(x)) + f (x) = 0, (3.58)
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which proceeding from its weak form allows again constructing the separated repre-
sentation of the solution

v(x, ug) ≈
N
∑
i=1

Xi(x)𝒰i(ug). (3.59)

3.3.3 Parametric domains

For the sake of clarity and without loss of generality we address in this section the
transient one-dimensional heat equation

𝜕u
𝜕t
= k 𝜕

2u
𝜕x2
+ f , (3.60)

with t ∈ Ωt = (0,Θ], x ∈ Ωx = (0, L), constant conductivity k and source term f , and
homogeneous initial and boundary conditions, i. e., u(x = 0, t) = u(x = L, t) = u(x, t =
0) = 0.

The associated space-time weak form reads

∫
Ωx×Ωt

u∗ 𝜕u
𝜕t

dx dt = − ∫
Ωx×Ωt

k 𝜕u
∗

𝜕x
𝜕u
𝜕x

dx dt + ∫
Ωx×Ωt

u∗ f dx dt. (3.61)

If we are interested in computing the solution u(x, t) in many domains of length
L ∈ ΩL = [L−, L+] and for many time intervals of length Θ ∈ ΩΘ = [Θ−,Θ+], more than
solving themodel formanypossible choices, it is preferable to compute theparametric
solution by considering L and Θ as extra-coordinates. However, equation (3.61) does
not involve an explicit dependence on the extra-coordinates L and Θ, both defining
the domain of integration. In order to make this dependence explicit, we consider the
coordinate transformation

{
t = τ Θ, τ ∈ ℐ = [0, 1],
x = λ L, λ ∈ ℐ = [0, 1].

(3.62)

In this case the weak form (3.61) reads

∫
ℐ×ℐ

u∗ 𝜕u
𝜕τ

L dλ dτ = − ∫
ℐ×ℐ

k 𝜕u
∗

𝜕λ
𝜕u
𝜕λ

Θ
L
dλ dτ + ∫

ℐ×ℐ

u∗fLΘ dλ dτ, (3.63)

which allows calculating the parametric solution u(τ, λ, L,Θ) by considering the sep-
arated representation

u(λ, τ, L,Θ) ≈
N
∑
i=1

Xi(λ)Ti(τ)ℒi(L)𝒯i(Θ). (3.64)
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3.3.4 Related works

This kind of parametric modeling was widely addressed in a panoply of applications,
where material parameters [106, 11, 78, 21, 1, 18], initial conditions [55, 57], boundary
conditions [49, 50, 91, 58], and parameters defining the geometry [98, 14, 122] were
considered as extra-coordinates within the PGD framework. All these parametric so-
lutions were successfully employed for performing real-time simulations (e. g., surgi-
cal simulation involving haptic devices addressing contact, cutting, etc.), material ho-
mogenization, real-time process optimization, inverse analysis, and simulation-based
control. Theywere also employed in dynamic data-driven application systems. In [119]
authors adopted the just referred space-time-parameter separated representation for
constructing parametric solutions. Other applications of optimization and dynamic
data-driven application systems are found in [42, 83, 109].

For the treatment of the nonlinearities involved in theworks just referred, the sep-
arated representation constructors were combined with numerous nonlinear solvers
ranging from the most standard ones (fixed point, Newton, etc.) to less standard ap-
proaches based on LATIN, the asymptotic numerical method (e. g., [91, 82], among
many others), or the DEIM [37].

In the context of stochastic modeling, PGD was introduced in [93] for the uncer-
tainty quantification and propagation. The interpretation of the separated representa-
tion constructor as a generalized eigenproblemallowed todefinededicatedalgorithms
inspired from solution techniques for classical eigenproblems [94]. In this context de-
terministic and stochastic contributions were separated, making PGD a promising al-
ternative to traditionalmethods for uncertainty propagation, as discussed in [95]. PGD
was also extended to stochastic nonlinear problems in [96]. More recently, the PGD
was successfully applied to the solution of high-dimensional stochastic parametric
problems, with the introduction of suitable hierarchical tensor representations and
associated algorithms [97].

In engineering problems, the classical separated variable representation is used
for up to around 20 parameters. To go further, a parameter-multiscale PGD has been
devised to overcome this major limitation of the classical ROM computational tech-
niques [101]. It is based on Saint-Venant’s principle, which highlights two different
levels of parametric influence.

3.4 Space separated representations

Plates and shells are very common in nature and thus they inspired engineers to use
both of them from the very beginning of structural mechanics. Nowadays, plate and
shell parts are massively present in most engineering applications.
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This type of structural elements involves homogeneous and heterogeneous mate-
rials, isotropic and anisotropic, linear and nonlinear. The appropriate design of such
parts consists not only in the structural analysis of the parts for accommodating the
design loads, but also in the analysis of the associated manufacturing processes be-
cause many properties of the final parts depend on the formation process itself (e. g.,
flow-induced microstructures). Thus, fine analyses concern both the structural parts
and their associated formation processes.

In general the whole design requires the solution of some mathematical models
governing the evolution of the quantities of interest. These models consist of a set of
partial differential equations combininggeneral balance equations (mass, energy, and
momentum) and some specific constitutive equations depending on the considered
physics, the last involving differentmaterial parameters. These complex equations (in
general nonlinear and strongly coupled) must be solved in the domain of interest.

When addressing plate or shell geometries the domains in which the mathemat-
ical models must be solved become degenerated because one of its characteristic di-
mensions (the thickness in the present case) is much lower than the other characteris-
tic dimensions. Wewill understand the consequences of such degeneracy later. When
analytical solutions are neither available nor possible because of the geometrical or
behavioral complexities, the solutionmust be calculated by invoking any of the avail-
able numerical techniques (finite elements, finite differences, finite volumes,methods
of particles, etc.).

In the numerical framework the solution is only obtained in a discrete number
of points, usually called nodes, distributed in the domain. From the solution at those
points, it can be interpolated at any other point in the domain. In general, regular
nodal distributions are preferred because they offer better accuracies. In the case of
degenerated plate or shell domains one could expect that if the solution evolves signif-
icantly in the thickness direction, a large enoughnumber of nodesmust be distributed
along the thickness direction to ensure the accurate representation of the field evolu-
tion in that direction. In that case, a regular nodal distribution in the whole domain
will imply the use of an extremely large number of nodes, with the consequent impact
on the numerical solution efficiency.

When simple behaviors and domains were considered, plate and shell theories
were developed in the structural mechanics framework allowing, through the intro-
duction of some hypotheses, reducing the three-dimensional complexity to a two-
dimensional one related to the problem now formulated by considering the in-plane
coordinates.

In the case of fluid flows this dimensionality reduction is known as lubrication
theory and it allows efficient solutions of fluid flows taking place in plate or shell ge-
ometries for many type of fluids, linear (Newtonian) and nonlinear. The interest of
this type of flows is not only due to the fact that it is involved in the manufacturing
processes of plate and shell parts, but also due to the fact that many tests for charac-
terizing material behaviors involve it.
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However, as soon as richer physics are included in themodels and the considered
geometries differ from those ensuring the validity of the different reduction hypothe-
ses, simplified simulations are compromised and they fail in their predictions.

In these circumstances the reduction from the three-dimensional model to a two-
dimensional simplified one is not obvious, and three-dimensional simulations appear
many times as the only valid route for addressing suchmodels, which despite the fact
that they are defined in degenerated geometries (plates or shells), they seem to re-
quire a fully three-dimensional solution. However, in order to integrate such a calcu-
lation (fully three-dimensional and implying an impressive number of degrees of free-
dom) in usual design procedures, a new efficient (fast and accurate) solution proce-
dure is needed. The in-plane-out-of-plane separated representations represent a valu-
able route able to compute the different unknown three-dimensional fields without
the necessity of introducing any hypothesis. The most outstanding advantage is that
three-dimensional solutions can be obtainedwith a computational cost characteristic
of standard two-dimensional solutions, as previously described. In what follows we
formulate different physics within such a separated representation framework.

3.4.1 Heat transfer in laminates

In this section we illustrate the construction of the PGD of a generic model defined in
a plate domain Ξ = Ω × ℐ with Ω ⊂ ℝ2 and ℐ = [0,H] ⊂ ℝ. For the sake of simplicity
we consider the model related to the steady-state heat conduction equation

∇ ⋅ (K ⋅ ∇u) = 0, (3.65)

in a plate geometry that contains P plies in the plate thickness. Each ply is charac-
terized by its conductivity tensor Ki(x, y) which is assumed constant through the ply
thickness. Moreover, without any loss of generality, we assume the same thickness h
for the different plies constituting the laminate. Thus, we can define a characteristic
function representing the position of each ply i = 1, . . . ,P:

χi(z) = {
1 zi ⩽ z ⩽ zi+1,
0 otherwise,

(3.66)

where zi = (i − 1)h defines the location of the i-th ply in the laminate thickness. Now,
the laminate conductivity can be given in the following separated form:

K(x, y, z) =
i=P
∑
i=1

Ki(x) ⋅ χi(z), (3.67)

where x denotes the in-plane coordinates, i. e., x = (x, y) ∈ Ω.
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The weak form of equation (3.65), with appropriate boundary conditions, reads

∫
Ξ

∇u∗ ⋅ (K ⋅ ∇u) dΞ = 0, (3.68)

with the test function u∗ defined in an appropriate functional space. The solution
u(x, y, z) is then searched under the separated form:

u(x, z) ≈
j=N
∑
j=1

Xj(x)Zj(z). (3.69)

3.4.2 Three-dimensional Resin Transfer Moulding

We now summarize the application of PGD to themodeling of resin transfer moulding
processes. We consider the flow within a porous medium in a plate domain Ξ = Ω × ℐ
with Ω ⊂ ℝ2 and ℐ = [0,H] ⊂ ℝ. The governing equation is obtained by combining
Darcy’s law, which relates the fluid velocity to the pressure gradient,

v = −K ⋅ ∇p, (3.70)

and the incompressibility constraint,

∇ ⋅ v = 0. (3.71)

Introduction of equation (3.70) into equation (3.71) yields a single equation for the
pressure field:

∇ ⋅ (K ⋅ ∇p) = 0. (3.72)

The mould contains a laminate preform composed of P different anisotropic plies
of thicknessh, each one characterizedby apermeability tensorKi(x, y) that is assumed
constant through the ply thickness. We define a characteristic function

χi(z) = {
1 zi ⩽ z ⩽ zi+1,
0 otherwise,

(3.73)

where zi = (i − 1)h is the location of the i-th ply in the plate thickness. The laminate
permeability is thus given in separated form as follows:

K(x, y, z) =
P
∑
i=1

Ki(x) ⋅ χi(z), (3.74)

where x denotes the in-plane coordinates, i. e., x = (x, y) ∈ Ω.
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The weak form of equation (3.72) reads

∫
Ξ

∇p∗ ⋅ (K ⋅ ∇p) dΞ = 0, (3.75)

for all test functions p∗ selected in an appropriate functional space. Dirichlet bound-
ary conditions are imposed for the pressure at the inlet and outlet of the flow domain
p(x ∈ ΓD) = pg(x), while zero flux (i. e., no flow) ∇p ⋅ n = 0 is imposed elsewhere (n
being the unit outwards vector defined on the domain boundary) as a weak boundary
condition. We seek an approximate solution p(x, y, z) in the PGD form

p(x, z) ≈
N
∑
j=1

Xj(x) ⋅ Zj(z), (3.76)

which is constructed by using the standard procedure previously discussed.

3.4.3 The elastic problem defined in plate domains

We proposed in [21] and original in-plane-out-of-plane decomposition of the three-
dimensional elastic solution in a plate geometry. The elastic problemwas defined in a
plate domain Ξ = Ω × ℐ with (x, y) ∈ Ω, Ω ⊂ ℝ2 and z ∈ ℐ, ℐ = [0,H] ⊂ ℝ, H being the
plate thickness. The separated representation of the displacement field u = (u1, u2, u3)
reads

u(x, y, z) =(
u1(x, y, z)
u2(x, y, z)
u3(x, y, z)

) ≈
N
∑
i=1
(

Pi1(x, y) ⋅ T
i
1(z)

Pi2(x, y) ⋅ T
i
2(z)

Pi3(x, y) ⋅ T
i
3(z)
), (3.77)

where Pik, k = 1, 2, 3, are functions of the in-plane coordinates (x, y), whereas T
i
k, k =

1, 2, 3, are functions involving the thickness coordinate z. In [21] we compared the first
modes of such separated representations with the kinematic hypotheses usually con-
sidered in plate theories.

Expression (3.77) can be written in a more compact form by using the Hadamard
(component-to-component) product:

u(x, y, z) ≈
N
∑
i=1

Pi(x, y) ∘ Ti(z), (3.78)

where vectors Pi and Ti contain functions Pik and T
i
k respectively.

Let us consider a linear elasticity problem on a plate domain Ξ = Ω × ℐ. The weak
form using the so-called Voigt notation reads

∫
Ξ

ϵ(u∗)T ⋅ K ⋅ ϵ(u) dx = ∫
Ξ

u∗ ⋅ fd dx + ∫
ΓN

u∗ ⋅ Fd dx, ∀u
∗, (3.79)
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whereK is the generalized 6×6Hooke tensor, fd represents the volumetric body forces,
andFd represents the traction applied on the boundary ΓN . The separation of variables
introduced in equation (3.77) yields a separated representation for the derivatives of
the displacement components ui, i = 1, 2, 3, and from it the separated representation
of the strain tensor ϵ:

ϵ(u(x, y, z)) ≈
N
∑
k=1

(((((((

(

𝜕Pk1
𝜕x ⋅ T

k
1

𝜕Pk2
𝜕y ⋅ T

k
2

Pk3 ⋅
𝜕Tk

3
𝜕z

𝜕Pk1
𝜕y ⋅ T

k
1 +
𝜕Pk2
𝜕x ⋅ T

k
2

𝜕Pk3
𝜕x ⋅ T

k
3 + P

k
1 ⋅
𝜕Tk

1
𝜕z

𝜕Pk3
𝜕y ⋅ T

k
3 + P

k
2 ⋅
𝜕Tk

2
𝜕z

)))))))

)

, (3.80)

which introduced into the weak form allows computing the separated form (3.78).

3.4.4 Three-dimensional elastic problem in a shell domain

In this section we consider a shell domain ΩS, assumed with constant thickness and
described from a reference surface X. In what follows, that reference surface will be
identified to the shell middle surface parameterized by the coordinates ξ , η, that is,
X(ξ , η), where

X(ξ , η) =(
X1(ξ , η)
X2(ξ , η)
X3(ξ , η)

) . (3.81)

With n being the unit vector normal to the middle surface, the shell domain ΩS

can be parameterized from

x(ξ , η, ζ ) = X(ξ , η) + ζ ⋅ n. (3.82)

The geometrical transformation (ξ , η, ζ ) → (x1, x2, x3), at its inverse, can be easily
obtained and expressed into a separated form.

The weak form of the elastic problem defined in the shell domain ΩS using again
the Voigt notation reads

∫
ΩS

ϵ(u∗)T ⋅ K ⋅ ϵ(u) dx = ∫
ΩS

u∗ ⋅ fd dx + ∫
ΓSN

u∗ ⋅ Fd dx. (3.83)

Nowwe are considering the coordinate transformation introduced in the previous
section mapping x ∈ ΩS into (ξ , η, ζ ) ∈ Ξ = Ω × ℐ, with (ξ , η) ∈ Ω ⊂ ℝ2 and ζ ∈ ℐ ⊂ ℝ.

The geometric transformation requires to transform the differential operator as
well as the different volume and surface elements, fromwhich the standard procedure
applies for computing the separated form of all the kinematics and static variables.
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3.4.5 Squeeze flow in composite laminates

The in-plane-out-of-plane separated representation allows the solution of full three-
dimensional flow models defined in plate geometries with a computational com-
plexity characteristic of two-dimensional simulations. In the present case the three-
dimensional velocity field reads

v(x, z) ≈
N
∑
i=1

Pi(x) ∘ Ti(z). (3.84)

The Stokes flow model is defined in Ξ = Ω × ℐ, Ω ⊂ ℝ2 and ℐ ⊂ ℝ, and for an
incompressible fluid, in the absence of inertia and mass terms it reduces to

{{
{{
{

∇ ⋅ σ = 0,
σ = −pI + 2ηD,
∇ ⋅ v = 0,

(3.85)

where σ is the Cauchy stress tensor, I is the unit tensor, η is the fluid viscosity, p is the
pressure (Lagrange multiplier associated with the incompressibility constraint), and
the rate of strain tensor D is defined as

D = ∇v + (∇v)
T

2
. (3.86)

When considering a laminate composed of P layers in which each layer involves a
linear and isotropic viscous fluid of viscosity ηi, the extended Stokes flow problem in
its weak form involves the dependence of the viscosity along the thickness direction.

If H is the total laminate thickness, and assuming for the sake of simplicity and
without loss of generality that all plies have the same thickness h, it results that h = H

P .
Now, from the characteristic function of each ply χi(z), i = 1, . . . ,P,

χi(z) = {
1 if (i − 1)h ⩽ z < ih,
0 elsewehere,

(3.87)

the viscosity reads

η(x, z) =
P
∑
i=1

ηi ⋅ χi(z), (3.88)

where it is assumed, againwithout loss of generality, that the viscosity does not evolve
in the plane, i. e., ηi(x) = ηi.

The Stokes model can be easily extended to power law fluids where the extra-
stress tensor reads

T = 2KDn−1
eq D, (3.89)

withDeq being the equivalent strain rate, aswell as tomore complex constitutivemod-
els as the ones involved in composite manufacturing processes.



130 | F. Chinesta and P. Ladevèze

3.4.6 Electromagnetic models in composite laminates

Conventional processing methods for producing polymer composite parts usually
involve the application of heat to the material by convection or conductive heating
through elements, which depend on surface heat transfer. Microwave (MW) technol-
ogy relies on volumetric heating, that means thermal energy is transferred through
electromagnetic fields to materials that can absorb it at specific frequencies. Volumet-
ric heating enables better process temperature control and less overall energy use,
which can result in shorter processing cycles. Furthermore, comparable mechanical
properties are shown between parts made with the MW technology and parts made
with a traditional curing system. These virtues of the MW technology have attracted
interest in developing the method and adopting it for the production of thermoset as
well as thermoplastic composite materials.

The double-curl formulation is derived from the Maxwell equations in the fre-
quency space, which in the absence of current density in the laminate reads

∇ × (
1
μ
∇ × E) − ω2ϵE = 0, in Ω ⊂ ℝ3 (3.90)

with the complex permittivity ϵ given by

ϵ = ϵr − i
σ
ω
, (3.91)

and where μ, ϵr, and σ represent the usual magnetic permeability, the electric permit-
tivity, and the conductivity, respectively.

The previous equation is complemented with adequate boundary conditions.
Without loss of generality we are assuming in what follows Dirichlet boundary condi-
tions in the whole domain boundary 𝜕Ω,

n × E = Etg , in 𝜕Ω, (3.92)

wheren refers to the unit outwards vector defined on the domain boundary. In the pre-
vious expressions Etg is the prescribed electric field (assumed known) on the domain
boundary, tangent to the boundary as equation (3.92) expresses.

The weighted residual weak form is obtained by multiplying (3.90) by the test
function E∗ (in fact by its conjugate, E∗, to define properly scalar products being the
complex-valued electric field, i. e., E = Er + iEi), and then introducing a stabilization
to enforce the Gauss law,

∫
Ω

1
μ
(∇ × E) ⋅ (∇ × E∗) dx − ω2 ∫

Ω

ϵE ⋅ E∗ dx

+ ∫
Ω

τ
ϵϵμ
(∇ ⋅ (ϵE)) (∇ ⋅ (ϵE∗)) dx
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− ∫
Ω

τ
ϵϵμ
(∇ ⋅ (ϵE)) (∇ ⋅ (ϵE∗)) dx − ∫

𝜕Ω

τ
ϵϵμ
(∇ ⋅ (ϵE) (n ⋅ (ϵE∗))) dx = 0, (3.93)

where τ is the regularization coefficient.
To ensure a high enough resolution of the electric field along the component thick-

ness to represent the multilayered structure, we consider an in-plane-out-of-plane
separated representation

E(x, y, z) ≈
N
∑
i=1

Pi(x, y) ∘ Ti(z),

where “∘” refers to the Hadamard product, and use the standard rank-one update con-
structor.

3.5 Conclusions

This chapter revisited the state of the art and the recent developments in theuseof PGD
for addressing engineering problems. In particular it addressed the pioneering works
considering space-time separated representations,whichwere then extended for solv-
ing multidimensional models encountered in kinetic theory descriptions of complex
fluids, quantum chemistry, etc. They were also considered for describing and solving
stochastic models and any kind of parameterized partial differential equations whose
solutions result in a sort of virtual chart or computational vademecum. These para-
metric solutions have been successfully employed with multiple purposes: simula-
tion, optimization, inverse analysis, uncertainty propagation, and control, all of them
under the stringent constraint of real-time feedbacks. Finally separated representa-
tions were extended for separating space and efficiently addressing the solution of
problems in degenerated domains, as for example problems defined in plates, shells,
laminates, etc.
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4 Reduced basis methods
Abstract: In this chapterwe describe the reduced basis (RB)method for parameterized
partial differential equations (PDEs). We first describe the motivation for RB methods
in the many-query and real-time contexts and the associated offline-online computa-
tional paradigm. We next introduce the framework for parameterized PDEs and the
associated theoretical rationale for reduction. We then turn to projection techniques:
formulation, a priori and a posteriori error estimation, and offline-online computa-
tional strategies. We next discuss techniques for identification of optimal approxi-
mation spaces, in particular the weak greedy approach. We emphasize linear elliptic
PDEs, but we also consider nonlinear elliptic PDEs as well as linear parabolic PDEs.

Keywords: weak greedy sampling, empirical interpolation method, Galerkin projec-
tion, a posteriori error estimation, offline-online procedure
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4.1 Motivation
Parameterized partial differential equations (PDEs) are important in many scien-
tific and engineering applications. The parameters typically characterize the spatial
domain, the boundary conditions and initial conditions and sources, and the coeffi-
cients associated with the underlying constitutive relations. In general the solution
of our (say, elliptic) PDE shall be a parameterized field: For given parameter value
μ ≡ (μ1, . . . , μp) ∈ 𝒫, u(μ) ∈ V ; here 𝒫 ∈ ℝp is a compact parameter domain, and V is
the appropriate function space associated with our PDE. In what follows, we assume
that V is a Hilbert space. In the forward context we prescribe μ to deduce u(μ); in the
inverse context, such as parameter estimation, classification, and optimization, we
deduce μ from functionals applied to u(μ).

We introduce theparametricmanifoldℳ ≡ {u(μ) | μ ∈ 𝒫}. Thepremise for param-
eterizedmodel order reduction is well established [28, 1]: For the approximation of the
solution u(μ) for many μ ∈ 𝒫, we need not necessarily consider a finite element (FE)
approximation spaceVh ⊂ V which canwell represent any function inV ; we need only
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consider a reduced basis (RB) approximation space VN ⊂ Vh which can well represent
any function in ℳ ⊂ V in the sense that dist(ℳ,VN ) is small. We may thus antici-
pate that the dimension of VN , N, will be much smaller than the dimension of Vh, Nh,
with attendant reductions in computational cost: A query to the RB approximation,
μ ∈ 𝒫 → uN (μ) ∈ VN , will be much less expensive than a query to the FE approxi-
mation, μ ∈ 𝒫 → uh(μ) ∈ Vh. In actual fact, not all manifolds are “reducible,” where
reducible here is defined as a sufficiently rapid decrease of the Kolmogorov N-width
[30, 23]; we shall provide some a priori and a posteriori tests to confirm the latter. Fur-
thermore, given a reducible manifold, the identification of a good RB space VN – such
that dist(ℳ,VN ) also decreases rapidly withN – requires considerable computational
effort, and in particular many appeals to the FE approximation.

Parameterized model order reduction thus proceeds in two stages: in the offline
stage, given our parameter domain 𝒫 and parameterized PDE, we construct a se-
quence of parameter-independent spaces {VN }N=1,...,Nmax

; in the online stage, for given
N, we query the RB approximation,μ ∈ 𝒫 → uN (μ) ∈ VN . This offline-online paradigm
is computationally relevant if (i) the offline effort to constructVN can be justified either
by a real-time or many-query context, and (ii) the online effort to evaluate μ → uN (μ)
is indeed much less than the online effort to evaluate μ → uh(μ). We elaborate on (i)
and (ii).
(i) In the real-time context, we simply choose to “write off” the offline effort given

the stated premium on rapid response in the online (deployed) stage. In the
many-query context, we explicitly amortize the offline effort over many online RB
queries.

(ii) Wewill typically require not onlyNmax ≪ Nh but also special structural properties
of the parameterized PDE and associated solution procedures: This special struc-
ture is often realized through an empirical interpolation method (EIM) [5] which
introduces additional “variational-crime” errors; we shall denote the resulting FE
and RB approximations by ũh(μ) ∈ Vh and ũN (μ) ∈ VN , respectively.

Note from an applications perspective we proceed not from model order reduction to
context, but from context to model order reduction: A real-time or many-query appli-
cation justifies an offline-online computational strategy which in turn can be realized
through (among other strategies) model order reduction.

We briefly discuss the choice of the parameter dimensionality, p, and parameter
domain, 𝒫. We may consider as a first proposal all parameters of possible interest, p0
large, and a parameter domain 𝒫0 which contains all values of μ0 for which our PDE
is well-posed (in the sense to be described below). However, in the context of model
order reduction, the offline and online computational cost will depend on the number
of parameters and also the extent and “shape” of the parameter domain, andhencewe
must typically accept p < p0 and hence 𝒫 ⊂ 𝒫0: the parameterization and parameter
domain must be chosen to anticipate the parameter values of ultimate interest in the
online applications to be considered.
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We provide a roadmap of the chapter. In general, we emphasize general (second-
order) linear elliptic PDEs, butwe also consider a nonlinear elliptic PDE aswell as gen-
eral linear parabolic PDEs; extension to nonlinear parabolic PDEs is then immediate.
In Section 4.2 we formulate our parameterized PDEs and summarize the associated
theoretical foundation for dimension reduction: conditions, or at least guidelines, un-
der which a manifold is reducible. In Section 4.3 we develop the projection method,
in fact simple Galerkin projection, by which we determine ũN (μ) ∈ VN ; we also pro-
vide a priori error estimates and a posteriori error estimators, and we describe the
associated offline-online computational procedures. In Section 4.4 we describe meth-
ods for construction of the RB approximation space, VN , with emphasis on the weak
greedy procedure: The weak greedy procedure efficiently identifies a parameter sam-
ple SNmax

≡ {μj}j=1,...,Nmax
(from a rich train set ΞRB ⊂ 𝒫) to form hierarchical RB spaces

VN ≡ span{ũh(μj)}j=1,...,N , 1 ≤ N ≤ Nmax, which well represent the parametric manifold
ℳ; the weak greedy procedure, and in particular the rate of decrease of dist(ℳ,VN )
with N, is a constructive test of reducibility.

The prerequisite for this chapter is experience in the formulation, elementary the-
ory, and implementation of FE methods for PDEs, as well as some exposure to associ-
ated functional analysis. The intended audience is graduate students and profession-
als who wish to consider RB methods in their research or design efforts. The chapter
emphasizes (i) the conditions and hypotheses under which RB methods may prove
fruitful, (ii) the fundamental ingredients and procedures which must be incorporated
in any RB formulation, and (iii) the underlying error analysis, a priori and a posteriori,
which informs successful RB practice.We focus on the “inputs” – related to the partic-
ular PDE, parameter domain, and context – which must be provided by the prospec-
tive user, and on methods which can be generally and easily implemented given a
standard FE foundation.

Finally, for readers who seek further details, a broader range of alternative tech-
niques, more general classes of problems, and deeper coverage of both theory and
implementation, we recommend two recent researchmonographs on RBmethods [21,
32]. We hope our chapter here can serve as a portal to further study.

4.2 Parameterized PDEs
In Section 4.2.1 and Section 4.2.2 we consider linear elliptic PDEs. In Section 4.2.3 we
consider parabolic PDEs as well as nonlinear elliptic PDEs.
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4.2.1 Weak form

4.2.1.1 Formulation

We introduce a spatial domain Ω ⊂ ℝd with boundary 𝜕Ω; we denote a point in Ω
as x ≡ (x1, . . . , xd). We then define the space V as V ≡ {v ∈ H1(Ω) | v|ΓD = 0} for ΓD
a nonempty portion of the boundary 𝜕Ω; we denote the inner product and induced
norm associated to V as (⋅, ⋅)V and ‖ ⋅ ‖V , respectively. Unless otherwise noted, we shall
take for our inner product

(w, v)V ≡ ∫
Ω

∇w ⋅ ∇v + cL2 w v, (4.1)

for cL2 a nonnegative real number. We further introduce the dual space to V , V , of
linear functionals continuous with respect to ‖ ⋅ ‖V ; we equip V  with the usual dual
norm,

‖g‖V  = sup
v∈V

|g(v)|
‖v‖V
, ∀g ∈ V . (4.2)

We also define the Riesz representation of any g in V ,ℛg ∈ V , by

(ℛg, v)V = g(v), ∀v ∈ V . (4.3)

Finally, we recall that

‖g‖V  = ‖ℛg‖V , ∀g ∈ V
, (4.4)

which follows directly from (4.2), (4.3), and the Cauchy–Schwarz inequality.
We now introduce the parameterized linear forms μ ∈ 𝒫 → f (⋅;μ) and μ ∈ 𝒫 →

ℓ(⋅;μ). In fact, for simplicity of exposition, we shall assume that

f (v;μ) = ∫
Ω

fΩ(⋅;μ) v + ∫
ΓN ,RfΓN ,R (⋅;μ) v, ℓ(v;μ) = ∫Ω ℓΩ(⋅;μ) v + ∫ΓN ,RℓΓN ,R (⋅;μ) v, (4.5)

where fΩ(μ) ∈ L2(Ω), ℓΩ(μ) ∈ L2(Ω), fΓN ,R (μ) ∈ L2(ΓN ,R), and ℓΓN ,R (μ) ∈ L2(ΓN ,R). Here
ΓN ,R ≡ 𝜕Ω \ Γ̄D is the portion of the boundary on which non-Dirichlet (Neumann or
Robin) boundary conditions are applied. It follows from our assumptions that f (⋅;μ)
and ℓ(⋅;μ) are continuous for all μ ∈ 𝒫.

We further introduce the parameterized bilinear form μ ∈ 𝒫 → a(⋅, ⋅;μ) : V × V →
ℝ. In general, amay take the form

a(w, v;μ) =
d
∑
i,j=0
∫
Ω

ϒij(⋅;μ)
𝜕w
𝜕xi
𝜕v
𝜕xj
, (4.6)
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for ϒij ∈ L∞(𝒫 ; L∞(Ω)) and (for convenience) 𝜕./𝜕x0 ≡ Id (the identity operator); note
that a can also include a contribution such as ∫ΓN ,Rϒ(⋅;μ)wvwith ϒ ∈ L∞(𝒫 ; L∞(ΓN ,R)).
We shall need several constants to characterize our bilinear form a: For any μ ∈ 𝒫,
the coercivity constant, α(μ), continuity constant, γ(μ), and inf-sup constant, β(μ),
are given respectively by

α(μ) ≡ inf
w∈V

|a(w,w;μ)|
(w,w)V

, γ(μ) ≡ sup
w∈V

sup
v∈V

|a(w, v;μ)|
‖w‖V ‖v‖V

, β(μ) ≡ inf
w∈V

sup
v∈V

|a(w, v;μ)|
‖w‖V ‖v‖V

;

(4.7)

we denote by α = minμ∈𝒫 α(μ), γ = maxμ∈𝒫 γ(μ), and β = minμ∈𝒫 β(μ) the correspond-
ing worst case quantities over the entire parameter domain. For economy of presenta-
tion we define

cs(μ) ≡ {
α(μ) for the coercive case,
β(μ) for the noncoercive case;

(4.8)

we may also write cs(μ) = max(α(μ), β(μ)), however for computational purposes we
prefer the more explicit definition (4.8). We can then state our hypotheses on a: in the
coercive case, α is positive and γ is finite, and in the noncoercive case, β is positive and
γ is finite; more succinctly, we require cs positive and γ finite.

We now define the weak form of our parameterized PDE: Given μ ∈ 𝒫, find a (or
the) field u(μ) ∈ V such that

a(u(μ), v;μ) = f (v;μ), ∀v ∈ V , (4.9)

and evaluate the scalar output s(μ) ∈ ℝ as s(μ) = ℓ(u(μ);μ).1 (We implicitly assume
that all inhomogeneous essential boundary conditions uD(μ) ∈ H1/2(ΓD) are lifted and
hence implicitly incorporated in f (⋅;μ).) It follows from our hypotheses on a and f and
the Lions–Lax–Milgram–Babuška theorem that (4.9) admits a unique solution for all
μ ∈ 𝒫; furthermore, from our hypothesis on ℓ, s(μ) is finite for all μ ∈ 𝒫. (In fact,
for the noncoercive case, we require a third condition on a, typically satisfied in our
context.)

We provide a simple illustration, which we denote Example 1.0. We consider a
connected open domain Ω ⊂ ℝd=3 and further assume that Ω is decomposed as the
union of two nonoverlapping open subdomains, Ω(1) and Ω(2): Ω = Ω(1) ∪ Ω(2) and
Ω(1) ∩ Ω(2) = 0. We set p = 3 and introduce parameter μ ≡ (μ1, μ2, μ3) ∈ 𝒫 ⊂ {ν ∈ ℝ3 |
ν1 > 0, ν2 ≥ 0}. We then define

a(w, v;μ) = ∫
Ω(1) μ1∇w ⋅ ∇v + ∫Ω(2) ∇w ⋅ ∇v + ∫Ω μ2wv, ∀w, v ∈ V

2, (4.10)

1 Wemay associate to our output functional a dual problem and corresponding adjoint; the latter can
serve (for example) in the development of improved RB output approximation and error estimation
[25]. In the interest of space, we consider only simpler primal-only approximation.
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as well as

f (v; μ) = ∫
Ω

(1 + μ3x1)v and ℓ(v; μ) = ∫
ΓN ,R v. (4.11)

We can readily demonstrate that a is continuous and coercive, and furthermore sym-
metric, and that f and ℓ are continuous. (We can also include a convection term: For
a divergence-free convection velocity which is furthermore outward on ΓN ,R, the bilin-
ear form a remains continuous and coercive but will no longer be symmetric.) In the
case in which Ω is polyhedral we would expect u(μ) ∈ H1+σregularity for σregularity > 0; the
latter would limit the convergence rate of the FE approximation, but need not limit the
convergence rate of the RB approximation.

We comment briefly on the treatment of parameter-dependent geometry. In our
exposition we shall consider only the case in which Ω is independent of μ. In actual
practice, wemay treat problems in parameter-dependent geometry, μ ∈ 𝒫 → Ωorig(μ).
In that case we introduce Vorig(μ) = H1(Ωorig(μ)) and bilinear and linear form μ ∈ 𝒫 →
aorig(⋅, ⋅;μ) : Vorig(μ)×Vorig(μ)→ ℝ and μ ∈ 𝒫 → forig(⋅;μ) : Vorig(μ)→ ℝ, respectively;
we then seek uorig(μ) ∈ Vorig(μ) solution ofaorig(uorig(μ), v;μ) = forig(v;μ),∀v ∈ Vorig(μ).
RB methods will rely on some similarity of solutions on the parametric manifold: We
thus map Ωorig to a parameter-independent reference domain Ω, μ ∈ 𝒫 → 𝒯 (⋅;μ) :
Ω→ Ωorig(μ); a variety of RB-relevant mapping procedures are described in Chapter 1
of this volume (Volume II) of this handbook.We therebyarrive at the statement (4.9) for
u(μ) = uorig(⋅;μ) ∘ 𝒯 (⋅;μ), which is then the point of departure for the RB formulation.
Note for the case of parameter-dependent geometry the functions ϒij(⋅;μ),0 ≤ i, j ≤ d,
of (4.6) will include the usual transformation terms associated with the Jacobian of
the mapping function 𝒯 (⋅;μ).

4.2.1.2 FE approximation

In general, ũN (μ) approximates u(μ), but typically we must construct the RB approxi-
mation through a computable intermediary or “surrogate”; in the context of this chap-
ter, and quite often in practice, the latter takes the formof an underlying finite element
(FE) approximation. Towards that end, we introduce a conforming FE space Vh ⊂ V
of dimension Nh. We shall choose Vh such that, for any μ ∈ 𝒫 (say), ‖u(μ) − uh(μ)‖V ≤
tolV /2, where tolV is the prescribed error tolerance; we will then subsequently require
‖uh(μ) − ũN (μ)‖V ≤ tolV /2 to ensure ‖u(μ) − ũN (μ)‖V ≤ tolV .

We shall require for purposes of our subsequent RB approximation thatVh is inde-
pendent of μ. Aswe shall see, the RB online cost is largely independent ofNh, however
the offline cost will indeed depend on Nh, and hence we may be conservative but not
profligate in the design of the FE approximation space. We might construct Vh as fol-
lows: Consider a representative sequence of parameter values ΞFE ≡ {μiFE ∈ 𝒫}i=1,...,KFE ;
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initialize the FE approximation for parameter value μiFE,V
i
h, asV

i−1
h (and forV 1

h choose
an initial uniform coarse mesh) and adaptively refine to the desired error tolerance
tolV /2; set Vh = V

KFE
h . We further introduce the dual space to Vh, V h, of linear func-

tionals continuous with respect to ‖ ⋅ ‖V for all functions in Vh; we equip V h with dual
norm

‖gh‖V h = supv∈Vh

|gh(v)|
‖v‖Vh

. (4.12)

We may then define the Riesz representation of any gh in V h,ℛhgh ∈ Vh, by

(ℛhgh, v)V = gh(v), ∀v ∈ Vh, (4.13)

in terms of which we can evaluate the dual norm from

‖gh‖V h = ‖ℛhgh‖V . (4.14)

We note that (4.13) is a finite-dimensional problem.
We now define the (continuous) Galerkin-FE approximation: Given μ ∈ 𝒫, find

uh(μ) ∈ Vh such that

a(uh(μ), v;μ) = f (v;μ), ∀v ∈ Vh, (4.15)

and evaluate the scalar output sh(μ) ∈ ℝ as sh(μ) = ℓ(uh(μ);μ). We denote the FE
version of the constants in (4.7) – with V replaced by Vh – by subscript h: for all
μ ∈ 𝒫, α(μ) ≤ αh(μ) ≤ γh(μ) ≤ γ(μ); however, in general βh(μ) ̸> β(μ), and thus
in the noncoercive case we include the additional hypothesis (on Vh) βh(μ) > 0, in
order to ensure well-posedness of the FE approximation. We may then also define
the corresponding worst case constants (over 𝒫) as αh, γh, and βh. Finally, we intro-
duce csh(μ) ≡ max(αh(μ), βh(μ)) and corresponding worst case (minimum over 𝒫) con-
stant csh.

We next represent Vh by a nodal basis {φj}Nh
j=1 associated to nodes {xnodej ∈

ℝd}j=1,...,Nh
; given any function vh ∈ Vh, we shall denote by vh ∈ ℝNh the correspond-

ing vector of (nodal) basis coefficients. The FE discrete equations now directly follow
from (4.15) and our basis for Vh: Given μ ∈ 𝒫, find uh(μ) ∈ ℝNh such that

𝔸h(μ)uh(μ) = fh(μ), (4.16)

and evaluate the scalar output sh(μ) ∈ ℝ as sh(μ) = ℓTh(μ)uh(μ) (for
T the transpose

operator). Here𝔸h(μ) ∈ ℝNh×Nh , fh(μ) ∈ ℝNh , and ℓh(μ) ∈ ℝNh are given by

(𝔸h(μ))ij = a(φ
j,φi;μ), (fh(μ))i = f (φ

i;μ), (ℓh(μ))i = ℓ(φ
i;μ), 1 ≤ i, j ≤ Nh;

(4.17)
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note that𝔸h and fh are the FE stiffness and load vector, respectively.
For future reference we also introduce the parameter-independent inner-product

matrix𝕏h ∈ ℝNh×Nh ,

(𝕏h)ij = (φ
j,φi)V , 1 ≤ i, j ≤ Nh. (4.18)

We note that for any wh ∈ Vh, vh ∈ Vh, (wh, vh)V = wT
h𝕏hvh. Furthermore, it follows

from (4.13) that for any gh ∈ V h the FE basis coefficients of the Riesz representation
ℛhgh are given by 𝕏−1h gh for (gh)i = gh(φi), 1 ≤ i ≤ Nh. It follows from (4.14) that the
dual norm ‖gh‖V h may be evaluated as

(gTh𝕏
−1
h gh)

1/2
; (4.19)

note that we require only the action of𝕏−1h , whichmight be effected (in the direct con-
text) through Cholesky decomposition and subsequent forward/back substitution.

In actual practice the FE matrices and vectors are formed by numerical quadra-
ture: The integral of (4.6) is replaced by a corresponding sum with quadrature points
and weights

xquad,Ωj ∈ Ω, ρquad,Ωj ∈ ℝ+, j = 1, . . . ,Nquad,Ω
h , (4.20)

and the integrals of (4.5) are replaced by corresponding sums with quadrature points
and weights

xquad,ΓN ,Rj ∈ ΓN ,R, ρquad,ΓN ,Rj ∈ ℝ+, j = 1, . . . ,Nquad,ΓN ,R
h ; (4.21)

for simplicity of exposition, we shall presume that the error induced by quadrature is
negligible relative to tolV . The latter is plausible if h is sufficiently small and further-
more ϒi,j,0 ≤ i, j ≤ d, fΩ, fΓN ,R , ℓΩ, and ℓΓN ,R are sufficiently smooth. Note that in practice
the FE quadrature is effected as a sum of elemental quadratures.

4.2.1.3 Affine parameter dependence

Affine dependence of the forms {a, f , ℓ} on the parameter μ greatly reduces the com-
putational complexity of the online stage of the RB method. We note that parameter-
ized model order reduction can proceed without (appeal to) affine parameter depen-
dence – but less effectively than if we can and do take advantage of affine parameter
dependence. We thus wish either to confirm affine parameter dependence or alterna-
tively, and more generally, to impose affine parameter dependence though approxi-
mate forms {ã, ̃f , ̃ℓ} ≈ {a, f , ℓ}; we pursue here the latter, which includes the former as
a special case.



4 Reduced basis methods | 147

In particular, we introduce ã, ̃f , and ̃ℓ which can be expressed, for all μ ∈ 𝒫, as

ã(w, v;μ) =
Qa

∑
q=1

Θq
a(μ)a

q(w, v), ̃f (v;μ) =
Qf

∑
q=1

Θq
f (μ)f

q(v), ̃ℓ(v;μ) =
Qℓ
∑
q=1

Θq
ℓ (μ)ℓ

q(v),

(4.22)

where Θq
a : 𝒫 → ℝ, 1 ≤ q ≤ Qa, Θ

q
f : 𝒫 → ℝ, 1 ≤ q ≤ Qf , and Θ

q
ℓ : 𝒫 → ℝ, 1 ≤ q ≤ Qℓ,

are suitably smooth functions, aq : V×V → ℝ, 1 ≤ q ≤ Qa, are parameter-independent
continuous bilinear forms, and f q : V → ℝ, 1 ≤ q ≤ Qf , ℓq : V → ℝ, 1 ≤ q ≤ Qℓ, are
parameter-independent continuous linear forms; we assume the forms are linearly
independent.

Given μ ∈ 𝒫, we now seek ũ(μ) such that

ã(ũ(μ), v;μ) = ̃f (v;μ), ∀v ∈ V , (4.23)

and evaluate the scalar output ̃s(μ) ∈ ℝ as ̃s(μ) = ̃ℓ(ũ(μ);μ). We also define the corre-
sponding FE approximation: Find ũh(μ) ∈ Vh such that

ã(ũh(μ), v;μ) = ̃f (v;μ), ∀v ∈ Vh, (4.24)

and evaluate the scalar output ̃sh(μ) ∈ ℝ as ̃sh(μ) = ̃ℓ(ũh(μ);μ). We denote the FE
stability and continuity constants (hence over Vh) associated to ã by α̃h(μ), γ̃h(μ), and
β̃h(μ) for any μ ∈ 𝒫; we may then also define the corresponding worst case constants
(over 𝒫) as α̃h, γ̃h, and β̃h. Finally, we introduce c̃sh(μ) ≡ max(α̃h(μ), β̃h(μ)) and the
corresponding worst case (minimum over 𝒫) constant c̃sh. We shall shortly provide a
perturbation result for c̃sh.

The discrete FE equations now read

�̃�h(μ)ũh(μ) = ̃f h(μ) (4.25)

and ̃sh(μ) = ℓ̃
T
h(μ)ũh(μ), where �̃�h(μ) ∈ ℝ

Nh×Nh , ̃f h(μ) ∈ ℝNh , and ℓ̃h(μ) ∈ ℝNh are given
by

(�̃�h(μ))ij = ã(φ
j,φi;μ), ( ̃f h(μ))i = ̃f (φ

i; μ), (ℓ̃h(μ))i = ̃ℓ(φ
i;μ), 1 ≤ i, j ≤ Nh.

(4.26)

We further note from (4.22) and (4.26) that

�̃�h(μ) =
Qa

∑
q=1

Θq
a(μ)𝔸

q
h,
̃f h(μ) =

Qf

∑
q=1

Θq
f (μ)f

q
h, ℓ̃h(μ) =

Qℓ
∑
q=1

Θq
ℓ (μ)ℓ

q
h, (4.27)

for parameter-independent 𝔸qh ∈ ℝ
Nh×Nh , 1 ≤ q ≤ Qa, f

q
h ∈ ℝ

Nh , 1 ≤ q ≤ Qf , and
ℓqh ∈ ℝ

Nh , 1 ≤ q ≤ Qℓ; for example, (𝔸qh)ij = a
q(φj,φi), 1 ≤ i, j ≤ Nh, 1 ≤ q ≤ Qa.
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We must now seek affine approximations (4.22) such that {ã, ̃f , ̃ℓ} is sufficiently
close to {a, f , ℓ}, and hence ũ and ũh are sufficiently close to u and uh, respectively.
Towards that end, we first introduce (a restricted form of) the EIM [5]. We are given
integer NEIM ≥ 1 (in practice, large) and a function g : 𝒫 → ℝNEIM ; we further define
a train parameter sample of size KEIM, ΞEIM ≡ {μi ∈ 𝒫}i=1,...,KEIM (⊂ 𝒫), and generate
the associated snapshot set GEIM ≡ {g(μ)}μ∈ΞEIM . Lastly, we prescribe norm ‖ ⋅ ‖EIM and
associated error tolerance tolEIM.
– In the offline stage, we execute Algorithm 4.1 (presented in detail below) to obtain

interpolation indices {i∗m ∈ {1, . . . ,NEIM}}m=1,...,M , associated interpolation vectors
{ξm ∈ ℝNEIM }m=1,...,M , and a nonsingular lower triangular interpolationmatrixBM ∈
ℝM×M .

– In the online stage, given μ ∈ 𝒫, we approximate g(μ) as

g̃(μ) =
M
∑
m=1

bm(μ) ξ
m, (4.28)

where b(μ) ∈ ℝM is the solution of BMb(μ) = g∗(μ) for g∗(μ) ∈ ℝM given by
(g∗(μ))m = (g(μ))i∗m , 1 ≤ m ≤ M. For succinctness in the description of Algo-
rithm 4.1 we define ℐM : ℝ

NEIM → ℝNEIM such that (4.28) reads g̃(μ) = ℐMg(μ)
forM ≥ 1; forM = 0 we set ℐM ≡ 0.

Algorithm4.1: Empirical interpolationmethod (EIM): The EIM algorithm is of the
“greedy” variety (also invoked in the identification of VN , as discussed in Sec-
tion 4.4.1): on line 4 we choose for the next parameter value the point in ΞEIM for
which the current EIM approximation is worst; within the EIM context, this strat-
egy in conjunction with line 5 also ensures a stable interpolation procedure. We
assume that the set GEIM is not embedded in a small finite-dimensional space.

Data: NEIM,ΞEIM, g : 𝒫 → ℝNEIM (in fact,GEIM suffices), ‖ ⋅ ‖EIM, tolEIM
Result:M, {i∗m ∈ {1, . . . ,NEIM}}1≤m≤M , {ξ

m ∈ ℝNEIM }1≤m≤M , BM ∈ ℝM×M

1 SetM = 0 and err =∞;
2 while err > tolEIM do
3 SetM ← M + 1;
4 Find μ∗ = arg supμ∈ΞEIM ‖g(μ) − ℐM−1g(μ)‖EIM;
5 Find i∗M = arg supi∈{1,...,NEIM} |(g(μ

∗) − ℐM−1g(μ∗))i|;
6 Define ξM = (g(μ∗) − ℐM−1g(μ∗)) / (g(μ∗) − ℐM−1g(μ∗))i∗M ;
7 Update (BM)jk = (ξ

k)i∗j , 1 ≤ j, k ≤ M;
8 Set err = ‖g(μ∗) − ℐM−1g(μ∗)‖EIM;
9 end
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By construction, for any μ ∈ ΞEIM, ‖g(μ) − g̃(μ)‖EIM ≤ tolEIM. However, the EIM ap-
proximation may (and must, in practice) be applied to values of μ ∈ 𝒫 which do not
appear in the train parameter sample ΞEIM.2 We note that in infinite precision we ob-
tainM ≤ dim(span{GEIM}).

We now apply the EIM to develop approximate affine forms for our PDE. We con-
sider the coefficient function ϒ00 of (the numerical quadrature version of) (4.6). We
set NEIM ≡ N

quad,Ω
h (or Nquad,ΓN ,R

h for fΓN ,R , ℓΓN ,R ), identify (g(μ))i ≡ ϒ00(xquad,Ωi ,μ), 1 ≤ i ≤
Nquad,Ω
h , and choose ‖ ⋅‖EIM ≡ ‖ ⋅‖ℓ∞ . We then apply Algorithm 4.1 to obtainM, the inter-

polation indices {i∗m}1≤m≤M , interpolation vectors {ξ
m}1≤m≤M , and interpolation matrix

BM associated to the ϒ00 contribution to the affine sum for the bilinear form ã. (Each
of the other coefficient functions ϒij,0 ≤ i, j ≤ d, and (i, j) ̸= (0,0), fΩ, and ℓΩ is treated
[separately] in the same fashion, as well as fΓN ,R and ℓΓN ,R .) Note that the correspond-
ing Θ⋅a(μ) correspond to the b⋅(μ) of (4.28) and are thus defined implicitly in terms of
interpolation indices, vectors, and matrices; the corresponding a⋅(w, v) are given by

Nquad,Ω
h

∑
k=1
(ξ ⋅)k φ

j(xquad,Ωk )φi(xquad,Ωk ) ρquad,Ωk (4.29)

for quadrature weights and points defined by (4.20).
Assuming that each of the coefficient functions resides on a low-dimensional

parametric manifold, we may anticipate that we can obtain a corresponding EIM ap-
proximation with relatively few terms, M small. For any given 𝒟 ⊂ 𝒫, we define the
error induced by the EIM approximation in our bilinear and linear forms as ϵ𝒟EIM,

ϵ𝒟EIM ≡ sup
μ∈𝒟

max( sup
w∈V ,v∈V

|a(w, v;μ) − ã(w, v;μ)|
‖w‖V ‖v‖V

, sup
v∈V

|f (v;μ) − ̃f (v;μ)|
‖v‖V

,

sup
v∈V

|ℓ(v;μ) − ̃ℓ(v;μ)|
‖v‖V

). (4.30)

For a of the form (4.6) application of the Cauchy–Schwarz inequality yields ϵΞEIMEIM as a
function of tolEIM; for example, in the absence of off-diagonal terms in (4.6), ϵΞEIMEIM =
max(1/cL2 , 1) tolEIM. We can further argue that, for ΞEIM sufficiently rich, ϵ𝒫EIM ≈ ϵ

ΞEIM
EIM ;

an adaptive procedure has been proposed in [27] to support this argument. Finally, it
can readily be demonstrated that

c̃sh = c
s
h − ϵ

𝒫
EIM, (4.31)

2 In a similar fashion, in the most general EIM formulation, g(μ) corresponds to the evaluation of
a function g : Ω × 𝒫 → ℝ at a set of (here, quadrature) points in Ω; however, the resulting EIM
approximation can then be applied for any x ∈ Ω.
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and also γ̃h ≤ γh + ϵ𝒫EIM; it follows that our EIM-perturbed FE problem is well-posed for
ϵ𝒫EIM sufficiently small.

There is an alternative EIM approach to the development of the affine forms: the
operator EIM (OEIM) [15]. In this case we would apply the EIM method directly (for
NEIM = Nh) to f h(μ), ℓh(μ) and (for NEIM = N2

h) to Ah ∈ ℝ
N2
h ; the latter is the single-

index (vector) form of the stiffness matrix𝔸h, which is then repacked in double-index
form once the OEIM is complete. The OEIM has the important advantage of nonintru-
siveness: the affine approximationmay be deduced solely from the FE stiffness matrix
and load vector without any knowledge of the associated formation processes, thus
permitting a general interface between FE code and the RB code. It is important to
choose a norm ‖ ⋅ ‖EIM for the OEIM procedure to permit ultimate error control of the
RB approximation in ‖ ⋅ ‖V . For f h and ℓh we may choose ‖δg‖EIM = (δgT𝕏−1h δg)1/2,
which can be reasonably rapidly estimated. For Ah, the relevant norm can be evalu-
ated as the square root of the maximum eigenvalue λδAh

max associated to the generalized
SPDeigenproblemδAT

h𝕏
−1
h δAh χδAh = λδAh𝕏h χδAh , hence somewhat cumbersome. For

these norm choices we directly obtain ϵΞEIMEIM = tolEIM. In summary, the OEIM offers a
very easily implemented procedure for the construction of affine approximations.

We briefly revisit Example 1.0, described by equations (4.9)–(4.11). We first note
from inspection that we can directly choose {ã, ̃f , ̃ℓ} = {a, f , ℓ} to obtain an affine rep-
resentation with Qa = 3, Qf = 2, Qℓ = 1. For our particular example ϒ00, ϒ11, ϒ22, and
ϒ33 are nonzero, and hence the EIM procedure described – which treats each term in
the expansion (4.6) separately – would yield Qa = 7; a concatenated EIM – in which
we treat all the ϒij,0 ≤ i, j ≤ d, within a single EIM – would recover Qa = 3. The OEIM
procedure, which treats the entire form, would directly recover Qa = 3, Qf = 2, Qℓ = 1.
It is often the case for problems in which the geometry does not depend on the param-
eter that {a, f , ℓ} admits an exact affine representation, ϵ𝒫EIM = 0, with relatively few
terms. However, in the presence of parameter-dependent geometry, and in particular
nonaffine geometry transformations, {a, f , ℓ} will not admit an exact affine represen-
tation.

4.2.2 Justification for reduction

The fundamental hypothesis made on the parametric manifold ℳ ≡ {u(μ) | μ ∈ 𝒫}
introduced in the first section is its “reducibility” in the sense that there supposedly
exist(s) some (series of) finite-dimensional space(s) VN that approximate well ℳ in
the sense that, denoting by dist(ℳ,VN ) the deviation ofℳ from VN , i. e.,

dist(ℳ,VN ) = sup
u(μ)

inf
vN∈VN
‖u(μ) − vN‖V ,

dist(ℳ,VN ) is decreasing fastwithN increasing. The questionwewant to raise here is:
Why should it be so? And also, what is that (series of) finite-dimensional space(s) VN?
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This hypothesis is formally stated by going one step further in the definition of the
deviation, i. e., introducing the quantity

dN (ℳ,V) = inf
VN , dimVN=N

dist(ℳ,VN ), (4.32)

which is known as the KolmogorovN-width [30, 23] and represents the ability ofℳ to
be approximated by some optimally chosen vectorial space of dimension N .

As has already been remarked above, the “optimal” choiceVN depends onℳ, and
the optimal choice forℳ will not be valid for another set of functions.

This notion is the right one, indeed, when, e. g., dN (ℳ,V) goes to 0, like ρN with
0 < ρ < 1 or even like cN−p with p large enough (say, p ≥ 6), then we are in a good
shape, expecting that, for any μ ∈ 𝒫, very few (well-chosen) degrees of freedom (the
coefficient in some appropriate basis of VN ) will be sufficient to approximate well any
u(μ).

We know that in some cases, e. g., a linear structure of the PDE, by superposition it
is possible to check thatℳ is finite-dimensional. Of course this is neither the generic
case nor the case we are interested in. Then typically, regularity of the solutions with
respect to the spatial variablemay lead to propose, for every μ, a high-order (say, poly-
nomial or spectral) approximation that converges rapidly, even exponentially (when
the degree of the polynomial increases) and thus, XN can be chosen as the set of poly-
nomials of degree ≤ cN1/d. This will not be the optimal space but the optimal choice is
better than the polynomial choice and thus the best polynomial fit provides an upper
bound for the Kolmogorov N-width. However, the fact that polynomials approximate
well any regular function, regardless of the property of the whole setℳ, i. e., its struc-
ture, shape, coherence, makes it understandable that this “generic” choice cannot be
the optimal one forℳ, and that it may be much, much better.

As noted in [12], if the mapping μ ∈ 𝒫 → u(μ) is linear continuous, then the Kol-
mogorovN-width ofℳ is upper bounded by a constant times theKolmogorovN-width
of𝒫. The generalization of this statement that is proposed in [12] is that if the previous
mapping is holomorphic (meaning that u(μ) has a Fréchet derivative at any parameter
μ belonging to a compact set K ⊂ 𝒫), then, for any s > 1 and t < s − 1,

sup
n≥1

nsdn(K,𝒫) <∞ ⇒ sup
n≥1

ntdn(u(K),V) <∞, (4.33)

where u(K) = {u(μ),μ ∈ K}. The loss of 1 (with respect to the linear case) may be
not optimal but this result provides extra reasons for dN (ℳ,V) to be small when u(μ)
is the solution to some parameter-dependent PDE. Indeed, it is well known that, by
differentiating the PDE,∇μu(μ) is the solution to a similar PDE as u(μ), and thus under
a reasonable hypothesis, this set satisfies the holomorphic assumption.

In order to explain faster rates of convergence, the first analysis we knowof is [26],
where exponential convergence was proven for a simple one-dimensional parameter
space elliptic PDE. More recently a general extension was performed in [3], where, by
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using, in a constructive way, low-rank tensor approximations for families of elliptic
diffusion PDEs parameterized by the diffusion coefficients, the authors have been able
to derive exponential convergence rates in a much more general framework.

A typical case where the Kolmogorov N-width is not small (at least in a straight-
forward manner) is when the problem is convection-dominated. Indeed, the set of so-
lutions to a simple pure linear convection problem, when the velocity is among the
parameters, is the initial solution, properly translated: If it is not regular, then the set
of all solutions is of very large KolmogorovN-width. There are ways to circumvent this
(see, e. g., [10, 7]) but it is out of the scope of this contribution. Another case where, a
priori, the Kolmogorov N-width is not small (but it is simple to fix) is for elliptic prob-
lemswhere the right-hand side contains pointwise singularities, the position of which
may vary and is one parameter of the problem. The “trace” of these singularities of the
right-hand side can be clearly “seen” on the solution u(μ) itself and this may lead also
to a large Kolmogorov N-width. A simple postprocessing of the solution’s manifold
through a change of variable that maps the singularities’ positions to a fixed refer-
ence position allows to better compare the solutions and check that indeed, when the
singularities are sort of “aligned,” the set of all (postprocessed) solutions is of small
Kolmogorov N-width.

4.2.3 Extensions

4.2.3.1 Generalization of linear elliptic problems

The extension of our parameterized PDE formulation to vector fields is very simple. In
particular, and if we assume that Dirichlet conditions at any point on the boundary
are always applied to all components of the vector, we need only redefine Vd → V .
Thus linear elasticity readily falls into the framework considered in this chapter. It is
interesting to emphasize here that the manifold of all vector fields (solutions to the
problem of interest when the parameter varies) can be considered as a whole, which
leads us to approximate a vector solution as a linear combination of vector (reduced)
basis functions with scalar coefficients, thereby further decreasing the complexity of
the online procedure. Note that we shall not consider here saddle problems: These
mixed formulations – such as the incompressible Stokes equations or the equations of
linear elasticity for Poisson ratio approaching 1/2 – require special RB treatment [34].

The extension of our parameterized PDE formulation to complex fields – “com-
plexification” for short – is also relatively simple. Wemust changeℝ toℂ, interpret | ⋅ |
as complex modulus, consider spaces V of complex-valued functions, conjugate the
argument of all linear (now anti-linear) forms and the second argument of all inner
products and bilinear (now sesquilinear) forms, and in our discrete representations
replace transpose T with Hermitian H. We provide a simple illustration, the Helmholtz
problem of acoustics, which we shall denote Example 2.0.
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We consider Ω ⊂ ℝd=3. We set p = 2 and introduce parameter μ ≡ (μ1, μ2) ∈ 𝒫 ⊂
{ν ∈ ℝ2 | ν1 ≥ 0, ν2 ≥ 0}. We then define

a(w, v;μ) = ∫
Ω

(1 + i μ2)∇w ⋅ ∇v̄ − μ1w v̄, ∀w, v ∈ V2, (4.34)

as well as suitable f (⋅;μ) and ℓ(⋅;μ). Here i2 = −1 and v̄ denotes the complex conju-
gate of v. For μ2 > 0 (positive dissipation), a is coercive. For μ2 = 0 (no dissipation), a
is inf-sup stable unless μ1 is an eigenvalue λ of the associated “resonance” problem:
Find (χ ∈ V , λresonance ∈ ℝ) such that ∫Ω ∇χ ⋅ ∇v = λresonance ∫Ω χv, ∀v ∈ V , where here
V is our standard real space. In some applications, such as the elastodynamics exten-
sion of (4.34), the actual dissipation can be substantial; in other applications, such as
acoustics, μ2 must often be interpreted as a numerical regularization parameter.

4.2.3.2 Evolution problems: parabolic PDEs

We shall consider here only parabolic PDEs. In fact, RB methods can also readily be
applied to hyperbolic PDEs, for example the second-order wave equation, however
in the absence of adequate dissipation the treatment of rough initial conditions and
limited regularity remains an outstanding issue as indicated above. We shall assume
for our parabolic PDEs that our bilinear form a is coercive; the noncoercive case is
more difficult in particular as regards effective a posteriori error estimation [36].

We introduce the time variable t and temporal domain (0,T], and the space L2(Ω)
and associated inner product (⋅, ⋅)0 and induced norm ‖ ⋅ ‖0. We further define inner
product μ ∈ 𝒫 → m(⋅, ⋅;μ) : V × V → ℝ which induces norm m1/2(⋅, ⋅;μ) equivalent
to ‖ ⋅ ‖0. We now state the weak form of our parabolic PDE: Given μ ∈ 𝒫, we look for
u(μ) ∈ C0((0,T]; L2(Ω)) ∩ L2((0,T];V) such that, for any time t,

m(𝜕u(t;μ)
𝜕t
, v;μ) + a(u(t;μ), v;μ) = τ(t)f (v;μ), ∀v ∈ V , (4.35)

where τ ∈ L2((0,T]) and f (⋅;μ) ∈ L2(Ω). We take for initial condition u(t = 0;μ) =
u0 ∈ L2(Ω); in actual practice, we may also permit parameter-dependent initial condi-
tions. Note that we shall not explicitly present the treatment of the linear functional
output, as (in the absence of an adjoint) the latter differs little between the elliptic and
parabolic cases.

We inherit the underlying FE approximation from the elliptic problem of Sec-
tion 4.2.1.2. We further assume thatm admits an (EIM-approximate) affine expansion,

m̃(w, v;μ) =
Qm

∑
q=1

Θq
m(μ)m

q(w, v), (4.36)
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for Θq
m : 𝒫 → ℝ and parameter-independent mq : V × V → ℝ, 1 ≤ 1 ≤ Qm. We may

then further define our FE mass matrix, �̃�h(μ) ∈ ℝNh×Nh ,

(�̃�h(μ))kn = m̃(φ
n,φk ;μ), 1 ≤ k, n ≤ Nh, (4.37)

which we may form as

�̃�h(μ) =
Qm

∑
q=1

Θq
m(μ)𝕄

q
h, (4.38)

for 𝕄q
h = m

q(φn,φk), 1 ≤ k, n ≤ Nh, 1 ≤ q ≤ Qm. We also introduce a “truth” finite
difference discretization in time: we choose Δt = T/J and define tj = j Δt, 0 ≤ j ≤ J.

We can now state the FE approximation: Given μ ∈ 𝒫, we look for ũjh,Δt(μ)(≈
u(tj, .;μ)) ∈ Vh, j = 1, . . . , J, such that

m̃(
ũjh,Δt(μ) − ũ

j−1
h,Δt(μ)

Δt
, v;μ) + ã(ũjh,Δt(μ), v;μ) = τ(t

j) ̃f (v;μ), ∀v ∈ Vh; (4.39)

we impose the initial condition ũj=0h,Δt(μ) = u0. We can then state the discrete equations
to be solved at each time tj:

(�̃�h(μ) +
1
Δt
�̃�h(μ)) ũ

j
h,Δt(μ) =

1
Δt
�̃�h(μ)u

j−1
h,Δt(μ) + τ(t

j) ̃f h(μ). (4.40)

Although we consider here Euler backward temporal treatment, the methodology
readily extends to higher-order temporal discretizations.

4.2.3.3 A nonlinear elliptic problem

Although our presentation of linear elliptic PDEs and also linear parabolic PDEs is
rather general, the scope of this article does not permit similar treatment of nonlin-
ear problems. We thus focus on a particular nonlinear elliptic PDE with rather simple
structure and underlying theory. In the linear part of this chapter our goal is to provide
a complete picture of the state of the art, albeit with a balance between performance
and simplicity, and indeed an emphasis on the latter. In this nonlinear thread our goal
is less ambitious: We highlight the new difficulty introduced by nonlinearity and the
corresponding new ingredient – hyperreduction – developed to address this difficulty.
The hyperreduction treatment presented, as well as other hyperreduction approaches
[35, 17, 40], is broadly applicable. However, the a posteriori error estimator takes ad-
vantage of our particular simple nonlinearity, and our offline computational proce-
dure is rather inefficient.
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We consider a particular nonlinear elliptic PDE with monotonic nondecreasing
nonlinearity: Given μ ∈ 𝒫 ⊂ {ν ∈ ℝ | ν ≥ 0} ⊂ ℝp≡1, find u(μ) ∈ V such that

∫
Ω

∇u(μ) ⋅ ∇v + ∫
Ω

η(u(μ)) v = μ∫
Ω

v, ∀v ∈ V . (4.41)

We require that η ∈ C1(ℝ) and furthermore η(z2) − η(z1) ≥ 0 for z2 > z1. Two exam-
ples are the classical smooth test problem given by η(z) = z3 and the more relevant
(and nonpolynomial) drag law η(z) = |z|z. It can be shown that (4.41) admits a unique
solution. (Note for this nonlinear problem we prefer explicit rather than abstract rep-
resentation of the weak form.)

We may then directly introduce the corresponding FE approximation: Given μ ∈
𝒫, find uh(μ) ∈ Vh such that

∫
Ω

∇uh(μ) ⋅ ∇v + ∫
Ω

η(uh(μ)) v = μ∫
Ω

v, ∀v ∈ Vh. (4.42)

In actual practice, the integrals in (4.42) should be interpreted as quadrature sums,
hence

Nquad,Ω
∑
j=1

ρquad,Ωj ∇uh(x
quad,Ω
j ;μ) ⋅ ∇v(xquad,Ωj )

+
Nquad,Ω
∑
j=1

ρquad,Ωj η(uh(x
quad,Ω
j ;μ)) v(xquad,Ωj )

= μ
Nquad,Ω
∑
j=1

ρquad,Ωj v(xquad,Ωj ), ∀v ∈ Vh. (4.43)

For future reference and for purposes of consistency with previous notation we define
for this nonlinear problem α = α(μ) = 1 and αh = αh(μ) = 1.

We now prepare an affine version of our nonlinear problem. Towards that end
we apply the EIM approach, in particular Algorithm 4.1, to g given by (g(μ))i =
η(uh(x

quad,Ω
i ;μ)), 1 ≤ i ≤ Nquad,Ω; we specify NNL

EIM, Ξ
NL
EIM, ‖ ⋅ ‖

NL
EIM ≡ ‖ ⋅ ‖ℓ∞ , and tolNLEIM,

and denote by ℐM : Vh → Vh the resulting interpolation operator as characterized by
M, {i∗m}m=1,...,M , {ξ

i}i=1,...,M , and BM . (We provide an NL superscript to the inputs, but
context suffices to indicate the NL for the outputs.) We note that each evaluation of
g(μ) for μ ∈ ΞNLEIM is now expensive – solution of the FE approximation to our problem
– and not simply evaluation of a coefficient function; more efficient alternatives are
proposed in the literature [13]. Then, given μ ∈ 𝒫, we look for ũh(μ) ∈ Vh such that
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Nquad,Ω
∑
j=1

ρquad,Ωj ∇ũh(x
quad,Ω
j ;μ) ⋅ ∇v(xquad,Ωj )

+
M
∑

m,m=1(B−1M )mm η(ũh(x
quad,Ω
i∗
m ,μ)) [

Nquad,Ω
∑
j=1
(ξm)j v(x

quad,Ω
j ) ρquad,Ωj ]

= μ
Nquad,Ω
∑
j=1

ρquad,Ωj v(xquad,Ωj ), ∀v ∈ Vh. (4.44)

Under the assumption of exact quadrature we may write (4.44) as

∫
Ω

∇ũh(μ) ⋅ ∇v + ∫
Ω

ℐM[η((ũh)(μ))] v = μ∫
Ω

v, ∀v ∈ Vh, (4.45)

where ℐM is the EIM interpolant operator.We emphasize that ℐM is developed through
Algorithm4.1 forη(uh(x

quad,Ω
i=1,...,Nquad,Ω ;μ)), but thenapplied in (4.45) toη(ũh(xquad,Ωi=1,...,Nquad,Ω ;μ)).

We say that (4.44) is “affine” in the sense that η(ũh(⋅;μ)) no longer appears in the
quadrature sum associated with the nonlinear term. The computational importance
of this simplification will become clear when we consider RB projection.

4.3 Projection

4.3.1 Elliptic problems

4.3.1.1 Galerkin projection

We consider here the real case, but note that our “complexification” transformation
may be directly applied. We are given a hierarchical set of RB spaces {VN }N=1,...,Nmax

.
In fact, this section is applicable to any RB spaces, but for purposes of concrete-
ness we sketch here the particular space we shall propose in Section 4.4.1. We first
introduce parameter sample SNmax

≡ {μj ∈ 𝒫}j=1,...,Nmax
, the optimal choice of which

shall be discussed in Section 4.4.1. The space VN , for any given N, is then defined as
span{ũh(μj), j = 1, . . . ,N}. Note that, since μj, 1 ≤ j ≤ Nmax, are independent of N, our
RB spaces are nested: V1 ⊂ V2 ⊂ ⋅ ⋅ ⋅ ⊂ VNmax

.
We now define the RB-Galerkin approximation for some given N ∈ {1, . . . ,Nmax}:

Given μ ∈ 𝒫, find ũN (μ) ∈ VN such that

ã(ũN (μ), v;μ) = ̃f (v;μ), ∀v ∈ VN , (4.46)

and evaluate the scalar output ̃sN (μ) ∈ ℝ as ̃sN (μ) = ̃ℓ(ũN (μ);μ). We recall also that
we shall denote by uN (μ) the RB approximation in the absence of EIM errors; the lat-
ter corresponds to an effectively exact affine expansion such that ϵ𝒫EIM = 0 and thus
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{ã, ̃f , ̃ℓ} = {a, f , ℓ}. We denote the RB stability and continuity constants (hence overVN )
associated to ã by α̃N (μ), γ̃N (μ), and β̃N (μ) for any μ ∈ 𝒫; we may then also define
the corresponding worst case constants (over 𝒫) as α̃N , γ̃N , and β̃N . We also introduce
c̃sN (μ) ≡ max(α̃N (μ), β̃N (μ)) and corresponding worst case (minimum over 𝒫) constant
c̃sN . It is readily demonstrated that α̃N ≥ α̃h, however in general β̃N ̸≥ β̃h. In the nonco-
ercive case we must therefore incorporate β̃N > 0 as an additional hypothesis. Alter-
natively, wemay consider a minimum-residual projection [25], which ensures a stable
RB approximation, indeed β̃N ≥ β̃h; however, Galerkin projection – the simplest and
least expensive – is typically quite effective in practice.

We also introduce a basis for VN , {ζ nh }n=1,...,N , 1 ≤ N ≤ Nmax. We shall choose, for
purposes of stability, an orthonormal basis: (ζ nh , ζ

m
h )V = δmn, 1 ≤ m, n ≤ N, for δmn

the Kronecker delta symbol. Given any function vN ∈ VN , we denote by vN ∈ ℝN the
corresponding vector of basis coefficients. The discrete RB equations then read

�̃�N (μ)ũN (μ) = ̃f N (μ) (4.47)

and

̃sN (μ) = ℓ̃
T
N (μ)ũN (μ), (4.48)

where �̃�N (μ) ∈ ℝN×N , ̃f N (μ) ∈ ℝN , and ℓ̃N (μ) ∈ ℝN are given by

(�̃�N (μ))mn = ã(ζ
n
h , ζ

m
h ;μ), ( ̃f N (μ))m = ̃f (ζ

m
h ;μ), (ℓ̃N (μ))m = ̃ℓ(ζ

m
h ;μ), 1≤m, n≤N .

(4.49)

We further note from (4.22) and (4.49) that

�̃�N (μ) =
Qa

∑
q=1

Θq
a(μ)𝔸

q
N ,
̃f N (μ) =

Qf

∑
q=1

Θq
f (μ)f

q
N , ℓ̃N (μ) =

Qℓ
∑
q=1

Θq
ℓ (μ)ℓ

q
N , (4.50)

for parameter-independent𝔸qN ∈ ℝ
N×N , 1 ≤ q ≤ Qa, f

q
N ∈ ℝ

N , 1 ≤ q ≤ Qf , and ℓ
q
N ∈ ℝ

N ,
1 ≤ q ≤ Qℓ; for example, (𝔸qN )mn = a

q(ζmh , ζ
n
h ), 1 ≤ m, n ≤ N , 1 ≤ q ≤ Qa.

In actual practice we may express our RB matrices and vectors in a nonintrusive
fashion which invokes only standard operators and operations readily available in
the FE context. To begin, we introduce, for 1 ≤ N ≤ Nmax, the RB “basis matrix”𝕍N ∈
ℝNh×N , (𝕍N )jn = (ζ

n
h)j, 1 ≤ j ≤ Nh, 1 ≤ n ≤ N . It then follows from (4.49) that

�̃�N (μ) = 𝕍
T
N�̃�h(μ)𝕍N , ̃f N (μ) = 𝕍

T
N
̃f h(μ), ℓ̃N (μ) = 𝕍

T
Nℓh(μ). (4.51)

In the same fashion, from (4.50) (or directly (4.27)), we may write

𝔸qN = 𝕍
T
N𝔸

q
h𝕍N , 1 ≤ q ≤ Qa, f qN = 𝕍

T
N f

q
h, 1 ≤ q ≤ Qf , ℓ

q
N = 𝕍

T
Nℓ

q
h, 1 ≤ q ≤ Qℓ.

(4.52)

We recall that the FE matrices for our nodal basis are sparse, and hence the operation
count to form (say) 𝔸1N , for 𝔸

1
h already formed and represented in sparse format, is

𝒪(N2Nh) floating point operations (FLOPs). We discuss operation counts further in
the context of the offline-online decomposition.
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4.3.1.2 A priori error estimation

It is a simple application of Céa’s lemma and Strang’s first lemma to demonstrate [18]
that, for any μ ∈ 𝒫,

‖uh(μ) − ũN (μ)‖V ≤ (1 +
γ̃N
c̃sN
) inf
wN∈VN

uh(μ) − wN
V⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

best-approximation error

+
ϵ𝒫EIM
c̃sN
(1 + ‖f (⋅;μ)‖V 

csh
). (4.53)

(We can then readily develop an associated error bound for sh − ̃sN ; we defer discus-
sion of the latter to the a posteriori context.) Note in the error estimate (4.53) that uh(μ)
is the “true” FE approximation on which we build the RB approximation and with re-
spect to whichwe estimate the RB accuracy, and ũN (μ) is the actual RB approximation
including EIM approximation of the bilinear and linear forms; hence the bound (4.53)
reflects both RB and EIM contributions to the error. In Section 4.4.1 we shall develop
estimates for the decay of the best-approximation error with N relative to the corre-
sponding Kolmogorov N-width associated with our parametric manifold.

Finally, we note that in the coercive case the RB discrete equations are provably
well-conditioned under the assumption that ϵ𝒫EIM < α; the essential ingredient is or-
thonormalization of the RB basis functions with respect to the V inner product. In
particular, it is readily demonstrated that, in the coercive case, the condition number
of 𝔸N (μ) (measured in the usual ℓ2-norm) is bounded by (γ + ϵ𝒫EIM)/(α − ϵ

𝒫
EIM) for all

μ ∈ 𝒫 and independent of N .

4.3.1.3 A posteriori error estimation

4.3.1.3.1 Dual norm of residual
A posteriori error estimators shall serve to control the error in the RB approximation:
in the offline stage to (inexpensively) identify good spaces VN ; in the online stage to
verify any particular query μ → ũN (μ), ̃sN (μ). In principle we would wish to control
in both the offline stage and the online stage the total error ‖u(μ) − ũN (μ)‖V , and in
certain particular (but important) cases this is indeed possible [39]. More generally,
we write ‖u(μ) − ũN (μ)‖V ≤ ‖u(μ) − uh(μ)‖V + ‖uh(μ) − ũN (μ)‖V : In the offline stage
we control both ‖u − uh(μ)‖V (as described in Section 4.2.1.2) and ‖uh(μ) − ũN (μ)‖V
over respective (finite-cardinality) train subsets of the parameter domain 𝒫, ΞFE and
ΞEIM, ΞRB; in the online stage, for any μ ∈ 𝒫, we control – and in particular verify
– only ‖uh(μ) − ũN (μ)‖V . We justify the online emphasis on only the FE-RB error: the
operation count for the online stage shall not depend explicitly on Nh, and thus we
may choose the FE approximation space somewhat conservatively; the latter would
then accommodate the difference between the offline parameter train set ΞFE and the
full (online) parameter domain 𝒫. In the remainder of this section we consider only
‖uh(μ) − ũN (μ)‖V (and, briefly, |sh(μ) − ̃sN (μ)|).
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To begin, we consider the case in which ϵ𝒫EIM = 0 and hence ũN (μ) = uN (μ); for
the purposes of this analysis, we explicitly remove the ̃⋅. We introduce the error e(μ) ≡
uh(μ) − uN (μ) as well as the residual μ → rh(⋅;μ) ∈ V  given by

rh(v;μ) ≡ f (v;μ) − a(uN (μ), v;μ), ∀v ∈ Vh. (4.54)

It is then standard to derive the error–residual relationship,

a(e(μ), v;μ) = rh(v;μ), ∀v ∈ Vh. (4.55)

For future reference we also introduce the Riesz representation of the residual,

Rh(μ) ≡ ℛhrh(⋅,μ), (4.56)

forℛh given by (4.13); we recall from (4.14) that ‖rh(μ)‖V h = ‖Rh(μ)‖V .
We now define our a posteriori error estimator, μ ∈ 𝒫 → ΔN (μ) ∈ ℝ0+:

ΔN (μ) ≡
‖Rh(μ)‖V
cs,apph (μ)

, (4.57)

where cs,apph (μ) is a (nonnegative) approximation to csh(μ). It is then a simple matter to
demonstrate [33] that

csh(μ)
cs,apph (μ)

≤
ΔN (μ)
‖e(μ)‖V

≤
γh(μ)

cs,apph (μ)
. (4.58)

We observe from the left inequality that, if 0 < cs,apph (μ) ≤ c
s
h(μ), then ‖e(μ)‖V ≤ ΔN (μ):

Our error estimator is an error bound. We conclude from the right inequality that the
error bound may overestimate the true error but by a factor which is bounded inde-
pendent of N .

We note that we did not in fact use any special properties of uN (μ) in our deriva-
tion of (4.58), and in particular we did not take advantage of the Galerkin projection.
Hence, for the residual defined as (4.54) –with unperturbed f and a – our bound (4.58)
in fact remains valid also for ũN (μ), and indeed for any function in Vh. However, we
shall see that for (ϵ𝒫EIM ̸= 0and thus certainly)anonaffinewe cannot compute ‖Rh(μ)‖V
efficiently within the offline-online decomposition; more precisely, the operation
count for evaluation of ‖Rh(μ)‖V directly as (rh(μ)𝕏−1h rh(μ))1/2 will not be indepen-
dent of Nh.3 Furthermore, our “aggregate” error estimator (4.57) does not permit us
to deduce, and hence control, the individual contributions of the RB approximation
and EIM affine representation to the error ‖uh(μ) − ũN (μ)‖V . We next present an a

3 We note, however, that at least for problems in two space dimensions (d = 2), this direct evalua-
tion though not ideal is nevertheless feasible, in particular since the parameter-independent sparse
optimally ordered𝕏h can be Cholesky-factorized once.
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posteriori error estimator for ϵ𝒫EIM ̸= 0 which addresses these two issues. We reinstate
the ̃⋅ notation.

We first define ẽ(μ) ≡ uh(μ) − ũN (μ); we next introduce the perturbed residual
μ → ̃rh(⋅;μ) ∈ V  given by

̃rh(v;μ) ≡ ̃f (v;μ) − ã(ũN (μ), v;μ) (4.59)

and the associated Riesz representation R̃h(μ) = ℛh ̃rh(⋅,μ). Our revised a posteriori
error estimator is then given by

Δ̃N (μ) ≡
‖R̃h(μ)‖V + ϵ𝒫EIM(1 + ‖ũN (μ)‖V )

c̃s,apph (μ) − ϵ
𝒫
EIM

, (4.60)

where c̃s,apph (μ) is a (nonnegative) approximation to c̃sh(μ). It can be shown that, if
ϵ𝒫EIM < c̃

s,app
h (μ) ≤ c̃

s
h(μ), then ‖ẽ(μ)‖V ≤ Δ̃N (μ). We emphasize that the bound Δ̃N (μ)

reflects – and thus can serve to efficiently control – both the RB and the EIM contri-
butions to the error. Finally, we highlight the two constants which must be evaluated
in (4.60): c̃s,apph (μ), to be discussed shortly, and ϵ𝒫EIM, as introduced in (4.30). As re-
gards the latter, we recall that we have direct control only over ϵΞEIMEIM , and we must
then assume that ΞEIM is sufficiently rich to represent 𝒫.

We also develop a simple a posteriori error estimator for our output:

|sh(μ) − ̃sN (μ)| ≤ (
 ̃ℓ(⋅,μ)
V h + ϵ𝒫EIM)Δ̃N (μ) + ϵ𝒫EIM‖ũN (μ)‖V . (4.61)

Note for ϵ𝒫EIM = 0, symmetric coercive problems, and compliant outputs – ℓ(⋅;μ) =
f (⋅;μ) – the bound (4.61) is demonstrably pessimistic; the latter is remedied by adjoint
techniques [31], [33], which also provide for better approximation of noncompliant
outputs.

4.3.1.3.2 Approximate stability constant
We recall that we wish to apply the error bound in the online stage. We shall show
in the next section that the dual norm of the residual, which appears in the numer-
ators of (4.57) and (4.60), in fact admits a very efficient offline-online procedure. It
remains to develop a formulation for c̃s,apph (μ) which also admits an efficient offline-
online procedure and furthermore either rigorously, or plausibly, satisfies 0 < c0 ≤
c̃s,apph (μ) ≤ c̃

s
h(μ), ∀μ ∈ 𝒫. There are a variety of approaches [33]. In some cases, we

can explicitly deduce c̃s,apph (μ) in terms of the PDE coefficients: In Example 1.0, de-
scribed by equations (4.9)–(4.11), for cL2 = 0 in our inner product (4.1), wemay choose
c̃s,apph (μ) = min(1, μ1) ≤ α(μ). However, for geometry variation, in particular in the vec-
tor case, inspection no longer suffices; and for the noncoercive case the situation is
even more difficult. Although there are approaches which can treat the general case
rigorously, such as the successive constraint method [22], these techniques are unfor-
tunately quite complicated and often prohibitively expensive in the offline stage.
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The simplest approach might be to take c̃s,apph (μ) = (say) c̃sN (μ)/2 [25]. If indeed
c̃sN (μ) converges to c̃sh(μ) as N increases, then this simple recipe provides, at least
asymptotically, a lower bound. However, the RB spaces VN are not designed to well
approximate the stability constant [39]. We thus present the obvious extension: a co-
lateral RB approximation for the eigenproblem associated with the stability constant.
Since even an order-unity error in the stability constant will yield a good error esti-
mator and indeed a bound, even a modest RB approximation should perform very
well. This approach also serves several secondary purposes relevant to this handbook:
a brief summary of RB treatment of (albeit somewhat nonstandard) eigenproblems
[24]; further reinforcement of RB concepts.

To begin, we recall the definition of the supremizer operators T̃h(μ) (respectively,
T̃N (μ)): For any w ∈ Vh, μ ∈ 𝒫 → T̃h(μ) ∈ ℒ(Vh,Vh) such that, for any w ∈ Vh,
(T̃h(μ)w, v)V = ã(w, v;μ), ∀v ∈ Vh (respectively, for any w ∈ VN , μ ∈ 𝒫 → T̃N (μ) ∈
ℒ(VN ,VN ) such that, for anyw ∈ VN , (T̃N (μ)w, v)V = ã(w, v;μ), ∀v ∈ VN ). Hereℒ(W ,W)
denotes the space of continuous mappings from W to W . We now introduce the fol-
lowing generalized symmetric eigenproblems: For the coercive case, find μ ∈ 𝒫 →
(Ψh(μ), λh(μ)) ∈ Vh × ℝ+ such that

1
2
(ã(Ψh(μ), v;μ) + ã(v,Ψh(μ);μ)) = λh(μ)(Ψh(μ), v)V , ∀v ∈ Vh; (4.62)

and for the noncoercive case, find μ ∈ 𝒫 → (Φh(μ), σ2h(μ)) ∈ Vh × ℝ+ such that

(T̃h(μ)Φh(μ), T̃h(μ)v)V = σ
2
h(μ)(Φh(μ), v)V , ∀v ∈ Vh; (4.63)

we enumerate the modes in order of increasing magnitude of the eigenvalue. Note
that the inner product constant cL2 in (4.1) should be chosen large enough to ensure
adequate separation of the lowest eigenvalues.4

It is readily demonstrated that

α̃h(μ) = (λh(μ))1 =
ã((Ψh(μ))1, (Ψh(μ))1;μ)
((Ψh(μ))1, (Ψh(μ))1)V

(4.64)

and

β̃h(μ) = (σh(μ))1 = √
(T̃h(μ)(Φh(μ))1, T̃h(μ)(Φh(μ))1)V
((Φh(μ))1, (Φh(μ))1)V

. (4.65)

We thus observe that a good approximation for the eigenfunction will yield a good ap-
proximation for the respective eigenvalue. We can now proceed to RB approximation.

4 We suggest a value cL2 = maxμ∈𝒫 max(‖ϒ00(⋅;μ)‖L∞(Ω),maxi∈{1,2,3} ‖ϒii(⋅;μ)‖L∞(Ω)/l2), where l is a
characteristic minimum length scale associated with Ω.



162 | Y.Maday and A. T. Patera

In particular, we can envision that, just as uh resides on a low-dimensional para-
metric manifold, so do (Ψh)1 and (Φh)1. We may thus construct corresponding RB
spaces and bases, respectively: For the coercive case, VΨ

N and 𝕍ΨN for 1 ≤ N ≤ NΨ
max;

for the inf-sup stable case, VΦ
N and 𝕍ΦN for 1 ≤ N ≤ NΦ

max. The manifolds may not
be smooth for eigenproblems; however, we can accommodate mode crossing through
proper choice of a sufficiently rich RB space and in particular through incorporation
of the first few eigenfunctions. We note that our interest here is in the eigenvalue, not
the eigenfunction, and in particular the latter serves only to develop a good approxi-
mation for the former.

The Galerkin weak statements of the RB approximations directly follow: For the
coercive case, find μ ∈ 𝒫 → (ΨN (μ), λN (μ)) ∈ VΨ

N × ℝ+ such that

1
2
(ã(ΨN (μ), v;μ) + ã(v,ΨN (μ);μ)) = λN (μ)(ΨN (μ), v)V , ∀v ∈ V

Ψ
N , (4.66)

and set c̃s,apph (μ) = (λN (μ))1; for the noncoercive case, we must consider μ ∈ 𝒫 →
(ΦN (μ), σ2N (μ)) ∈ V

Φ
N × ℝ+ such that

(T̃h(μ)ΦN (μ), T̃h(μ)v)V = σ
2
N (μ)(ΦN (μ), v)V , ∀v ∈ V

Φ
N , (4.67)

and set c̃s,apph (μ) = (σN (μ))1. Note in (4.67) we retain T̃h(μ), and do not substitute T̃N (μ).
In practice, we might even deflate (λN (μ))1 and (σN (μ))1 by some factor, say, 1/2, to
ensure that our estimates approach the true respective stability constants from below.

We also provide here the associated discrete equations: (ΨN (μ) ∈ ℝN , λN (μ) ∈ ℝ+)
satisfies

(𝕍ΨT
N

1
2
(�̃�h(μ) + �̃�

T
h(μ))𝕍

Ψ
N)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝔼ΨN (μ)

ΨN (μ) = λN (μ)(𝕍
ΨT
N 𝕏h𝕍

Ψ
N )ΨN (μ); (4.68)

similarly, (ΦN (μ) ∈ ℝN , σ2N (μ) ∈ ℝ+) satisfies

(𝕍ΦT
N (�̃�

T
h(μ)𝕏

−1
h �̃�h(μ))𝕍

Φ
N )⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝔼ΦN (μ)

ΦN (μ) = σ
2
N (μ)(𝕍

ΦT
N 𝕏h𝕍

Φ
N )ΦN (μ). (4.69)

The RBmatrices associated with these eigenproblems admit an affine decomposition:
For (4.68), 𝔼ΨN (μ) can be expressed as

𝔼ΨN (μ) =
Qa

∑
q=1

Θq
a(μ)(𝕍

ΨT
N

1
2
(𝔸qh +𝔸

q T
h )𝕍

Ψ
N), (4.70)

which is the usual single-sum affine expansion; for (4.69), 𝔼ΦN (μ) can be expressed as

𝔼ΦN (μ) =
Qa

∑
q=1

Qa

∑
q=1Θq

a(μ)Θ
q
a (μ)(𝕍

ΦT
N (𝔸

q T
h 𝕏
−1
h 𝔸

q
h )𝕍

Φ
N ), (4.71)

which is now a double-sum affine expansion.



4 Reduced basis methods | 163

4.3.1.4 Offline-online computational procedures

We describe here the offline-online computational procedure. In the offline stage we
prepare a parameter-independent data set. In the online (or deployed) stage we per-
formRB queries:μ → (ũN (μ), ̃sN (μ)). In general, the offline stage (respectively, a single
online RB query) is very expensive (respectively, very inexpensive) relative to a single
FE query μ → ũh(μ). As described in Section 4.1, the RB method, and in particular the
offline expense, can be justified in the real-time context or the many-query context.

In Section 4.4.1 we shall describe the procedure by which we identify our RB
spaces. The latter is performed as part of the offline procedure. In the current section
we presume that the RB spaces are given in the form of the RB basis matrix VNmax

.
We consider here the offline-online procedure for subsequent (i) formation and so-
lution of the RB discrete equations to obtain ũN (μ) and ̃sN (μ), and (ii) evaluation of
the dual norm of the residual, ‖R̃h(μ)‖V , as required by our a posteriori error indica-
tor (4.60). More generally, the former is an example of a single-sum affine expansion,
whereas the latter is an example of double-sum affine expansion. Other examples of
single-sum and double-sum expansions include evaluation of (λN (μ))1 and (σN (μ))1,
respectively, as required for the stability-constant approximation; the latter thus fol-
low offline-online strategies very similar to those described below for the RB linear
system.

4.3.1.4.1 RB linear system: formation and solution
In the offline stage, we form 𝔸qNmax

, 1 ≤ q ≤ Qa, f
q
Nmax
, 1 ≤ q ≤ Qf , and ℓ

q
Nmax
, 1 ≤ q ≤

Qℓ of (4.52); the operation count, taking into account FE sparsity, is 𝒪(QaN2
maxNh) +

𝒪(QfNmaxNh) +𝒪(QℓNmaxNh). It is important to note that we form these matrices and
vectors for the largest space, VNmax

; as the RB spaces are hierarchical, we can then
readily obtain the matrices (respectively, vectors) for any other RB space, VN , by sim-
ply extracting the N × N first entries (respectively, N first entries). In the online stage,
for any given N and μ ∈ 𝒫, we first form �̃�N (μ), ̃f N (μ), and ℓ̃N (μ) from (4.50) in
𝒪(QaN2) + 𝒪(QfN) + 𝒪(QℓN) FLOPs; we then solve (4.47) for uN (μ) in 𝒪(N3) FLOPs
– in general, AN (μ) shall be a dense matrix; finally, we evaluate sN (μ) from (4.48) in
𝒪(N) FLOPs. Note that if we wish to visualize the full field, then an additional𝒪(NNh)
FLOPs are required to evaluate the FE basis coefficients of the RB approximation as
𝕍NuN (μ); the online operation count is independent of Nh except for this (elective)
full field reconstruction. Note however that, if the visualization of each RB function is
stored and prepared offline as a frame on a GPU, only the linear combination of these
frames is required and we are back to an𝒪(N) complexity.
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4.3.1.4.2 Residual dual norm evaluation
To begin, we form the FE representation of ̃rh(⋅;μ), ̃rh(φj;μ), 1 ≤ j ≤ Nh:

̃rh(μ) = ̃f h(μ) − �̃�h(μ)𝕍NuN (μ). (4.72)

It is then readily demonstrated from R̃h(μ) = ℛh ̃rh(⋅;μ) and (4.14) that the dual norm
of the residual, hence ‖R̃h(μ)‖V , is given by

‖R̃h(μ)‖V = ( ̃f h(μ) − �̃�h(μ)𝕍NuN (μ))
T
𝕏−1h ( ̃f N (μ) − �̃�h(μ)𝕍NuN (μ)). (4.73)

We now introduce ΘN ∈ ℝ
Qf+QaN as

ΘN (μ) ≡ (Θ
1
f (μ), . . . ,Θ

Qf
f (μ),Θ

1
a(μ)(uN (μ))1, . . . ,Θ

1
a(μ)(uN (μ))N ,

. . . ,ΘQa
a (μ)(uN (μ))1, . . . ,Θ

Qa
a (μ)(uN (μ))N)

T
, (4.74)

and also LN ∈ ℝNh×(Qf+QaN) as

LN ≡ ( f
1
h⏟⏟⏟⏟⏟⏟⏟

Nh×1
| . . . | f Qf

h | −�̃�
1
h𝕍N⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Nh×N
| . . . | − �̃�Qa

h 𝕍N); (4.75)

note LN is expressed in block column form with | as block delimiters. We now com-
bine (4.73), the affine representations of the FE operators, (4.27), (4.74), and (4.75) to
obtain

‖R̃h(μ)‖V = (Θ
T
N (μ) L

T
N 𝕏
−1
h LN⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

WN

ΘN (μ))
1/2
; (4.76)

note thatWN ∈ ℝ
(Qf+QaN)×(Qf+QaN). We can now describe the offline-online decompo-

sition.
In the offline stage we formWNmax

. In the (say) direct-solution context, we would
performa sparse Cholesky of (optimally ordered)𝕏h once.Wewould thenperformQf +
QaNmax forward/back substitutions to find LNmax

≡ 𝕏−1h LNmax
; we would then complete

the formation ofWNmax
by matrix multiplication, LTNmax

LNmax
, at cost𝒪((Qf + QaN)2Nh)

FLOPs. Note thatWNmax
is parameter-independent. In the online stage, given μ ∈ 𝒫 and

our associated RB approximation uN (μ), we first extract submatrixWN fromWNmax
and

evaluate ΘN (μ). We then perform the sum (4.76), (ΘT
N (μ)WNΘN (μ))1/2. The operation

count is𝒪((Qf +QaN)2) FLOPs, which we note is independent of Nh.5 We observe that

5 We can now readily define minimum-residual projection: Find ũ∗N (μ) and hence Θ
∗(μ) which min-

imizes ‖R̃h(μ)‖V . It follows from our offline-online discussion that minimum-residual projection will
be more expensive than Galerkin projection but only as regards formation of the RB linear system and
in particular for larger Qf , Qa.
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the operation count scales quadratically with both Qf , Qa and also N, which empha-
sizes the important role of a posteriori error estimation to control both the RB but also
the EIM costs.

Finally,wenote one shortcomingof the offline-online approach. Let us denotema-
chine precision by ϵprec. The construction (4.76) computes a small number, ‖R̃h(μ)‖V ,
as the square root of the cancellation of (many) large summands. To illustrate the dif-
ficulty, consider ϵprec = 1×10−16, assume ‖R̃h(μ)‖V = 1×10−10, and furthermore say (for
simplicity) thatΘT

N (μ)WNΘN (μ) is the sum of just two terms, respectively 1 + 1
2 × 10

−20

and −1 + 1
2 × 10

−20. Clearly upon truncation in finite precision we obtain for the sum
(respectively, the square root of the sum) not 10−20 (respectively, 10−10) but rather 0.
This finite-precision effect can in principle compromise numerical convergence tests
for sufficiently high accuracy, and remedies are proposed in the literature [11, 4]. How-
ever, for engineering calculations, the limitation is not significant: It will very rarely,
if ever, be the case that the data for an engineering problem are known to sufficient
digits to warrant a numerical error as small as 1 × 10−8.

4.3.2 Extensions

4.3.2.1 Evolution problems: parabolic PDEs

4.3.2.1.1 Galerkin projection
As for elliptic PDEs, we are given a hierarchical set of RB spaces {VN }N=1,...,Nmax

. We are
further provided, for 1 ≤ N ≤ Nmax, with an associated basis {ζ nh }n=1,...,N , and corre-
sponding basis matrix 𝕍N ∈ ℝNh×N , (𝕍N )kn = (ζ

n
h)k, 1 ≤ k ≤ Nh, 1 ≤ n ≤ N . The

method bywhichwe shall developVNmax
for the parabolic case [20], related to but also

different from the method with which we identify VNmax
for the elliptic case, shall be

summarized in Section 4.4.3.1. We note here only that the construction shall ensure
that u0 (our initial condition) resides in VN .

We can now state the Galerkin projection [19, 20]: Given N ∈ {1, . . . ,Nmax} and
μ ∈ 𝒫, we look for ũjN ,Δt(μ)(≈ uh(t

j;μ)) ∈ VN , j = 1, . . . , J, such that

m̃(
ũjN ,Δt(μ) − ũ

j−1
N ,Δt(μ)

Δt
, v;μ) + ã(ũjN ,Δt(μ), v;μ) = τ(t

j) ̃f (v;μ), ∀v ∈ VN ; (4.77)

we impose the initial condition ũj=0N ,Δt(μ) = u0 (∈ VN , by construction). We note that
in (4.77) there is no reduction in the temporal dimension: the RB projection (4.77) re-
tains the “true” finite difference discretization of the FE projection (4.39); the RB ac-
celeration is effected solely through the dimension reduction in the spatial dimension.

To develop the discrete equations we require the RBmass matrix, �̃�N (μ) ∈ ℝN×N ,

(�̃�N (μ))kn = m̃(ζ
n
h , ζ

k
h ;μ), 1 ≤ k, n ≤ N , (4.78)
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which we may form as

�̃�N (μ) =
Qm

∑
q=1

Θq
m(μ)𝕄

q
N , (4.79)

for𝕄q
N = m

q(ζ nh , ζ
k
h ), 1 ≤ k, n ≤ N , 1 ≤ q ≤ Qm. We may directly formulate our RB mass

matrix and constituents in terms of the corresponding FE quantities and our basis
matrix:

�̃�N (μ) = 𝕍
T
N �̃�h(μ)𝕍N , 𝕄

q
N = 𝕍

T
N𝕄

q
h𝕍N , 1 ≤ q ≤ Qm. (4.80)

We can then state the discrete equations to be solved at each time tj:

(�̃�N (μ) +
1
Δt
�̃�N (μ))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

ℍ̃N (μ)

ũjN ,Δt(μ) =
1
Δt
�̃�N (μ)u

j−1
N ,Δt(μ) + τ(t

j) ̃f N (μ). (4.81)

Note that, in general for RB methods, we prefer implicit temporal discretizations,
since inversion of the small RB discrete operators is relatively inexpensive (and
furthermore the RB mass matrix is not close to diagonal in particular given our
V -orthonormalization of the basis) and implicit methods allow larger time steps.

4.3.2.1.2 Error estimation
We directly consider the more practically important case of a posteriori error estima-
tion. We shall provide here an estimator for the case in which ϵ𝒫EIM = 0 and hence we
shall suppress the ̃⋅ for the purposes of this analysis; extension to ϵ𝒫EIM ̸= 0 is not diffi-
cult. We first introduce the error ej(μ) ≡ ujh,Δt − u

j
N ,Δt(μ), 1 ≤ j ≤ J. We next define, for

1 ≤ j ≤ J, the residual μ → rjh,Δt(⋅;μ) ∈ V
,

rjh,Δt(v;μ) ≡ τ(t
j) ̃f (v;μ) −m(

ujN ,Δt(μ) − u
j−1
N ,Δt(μ)

Δt
, v;μ) − a(ujN ,Δt(μ), v;μ), ∀v ∈ Vh,

(4.82)

and associated Riesz representation, Rjh,Δt(μ) ≡ ℛhr
j
h,Δt(⋅;μ). We then define, for 1 ≤ j ≤

J, our error estimator ΔjN ,Δt(μ):

ΔjN ,Δt(μ) ≡ (
Δt

cs,apph (μ)

j
∑
j=1
R

j
h,Δt

2
V)

1/2

, (4.83)

where cs,apph (μ) is an approximation to αh(μ), for example as developed in Sec-
tion 4.3.1.3. It can then be shown [19] that, if cs,apph (μ) ≤ αh(μ), then

(m(ej(μ), ej(μ);μ) + cs,apph (μ)
j
∑
j=1
e

j (μ)2V)
1/2

≤ ΔjN ,Δt(μ), j = 1, . . . , J. (4.84)
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We note that, consistent with the continuous problem formulation, we control both
the (discrete-time) C0((0,T]; L2(Ω)) error and the L2((0,T];V)-error.

4.3.2.1.3 Offline-online computational procedures
As for the elliptic case, we presume here that the RB basis matrix, VNmax

, is provided;
we discuss the associated procedure, part of the offline stage, in Section 4.4.3.1.

We first consider the formation and solution of the RB linear system. In the offline
stage, we form 𝔸qNmax

, 1 ≤ q ≤ Qa,𝕄
q
Nmax
, 1 ≤ q ≤ Qm, f

q
Nmax
, 1 ≤ q ≤ Qf , and ℓ

q
Nmax
, 1 ≤

q ≤ Qℓ of (4.52) and (4.80); the operation count, taking into account FE sparsity, is
𝒪((Qa+Qm)N2

maxNh)+𝒪(QfNmaxNh)+𝒪(QℓNmaxNh). In the online stage, for any givenN
and μ ∈ 𝒫, we first form �̃�N (μ), �̃�N (μ), ℍ̃N (μ), ̃f N (μ), and ℓ̃N (μ) from (4.50) and (4.79)
in𝒪((Qa +Qm)N2) +𝒪(QfN) +𝒪(QℓN) FLOPs; we next perform the LU decomposition
of ℍ̃N (μ), once, at cost𝒪(N3); we then solve (4.81) as J forward/back substitutions at
cost 𝒪(JN2); finally, we evaluate sN (μ) in 𝒪(N) FLOPs. Note that we take advantage
here of the linear time-invariant nature of our operator: For J not too small, we expect
the online cost of the J parabolic updates to scale as 𝒪(JN2) FLOPs, hence roughly
independent of Q⋅ and only quadratically with N .

We next turn to the evaluation of the error bound, and in particular the contribu-
tion of the dual norm of the residual.We now introduceΘj

N ,Δt ∈ ℝ
Qf+QmN+QaN , 1 ≤ j ≤ J,

as

Θj
N ,Δt(μ) ≡ (Θ

1
f (μ), . . . ,Θ

Qf
f (μ),

Θ1
m(μ)
(ujN ,Δt(μ))1 − (u

j−1
N ,Δt(μ))1

Δt
, . . . ,Θ1

m(μ)
(ujN ,Δt(μ))N − (u

j−1
N ,Δt(μ))N

Δt
, . . . ,

ΘQm
m (μ)
(ujN ,Δt(μ))1 − (u

j−1
N ,Δt(μ))1

Δt
, . . . ,ΘQm

m (μ)
(ujN ,Δt(μ))N − (u

j−1
N ,Δt(μ))N

Δt
,

Θ1
a(μ)(u

j
N ,Δt(μ))1, . . . ,Θ

1
a(μ)(u

j
N ,Δt(μ))N , . . . ,

ΘQa
a (μ)(u

j
N ,Δt(μ))1, . . . ,Θ

Qa
a (μ)(u

j
N ,Δt(μ))N)

T
, (4.85)

and also LN ,Δt ∈ ℝNh×(Qf+(Qm+Qa)N) as

LN ,Δt ≡ (f
1
h | . . . | f

Qf
h | −𝕄

1
h𝕍N | . . . | −𝕄

Qm
h 𝕍N | − �̃�

1
h𝕍N | . . . | − �̃�

Qa
h 𝕍N); (4.86)

note LN ,Δt is expressed in block column form with | as block delimiters. We now com-
bine (4.73), the affine representations of the FE operators, (4.27), (4.85), and (4.86) to
obtain

‖R̃jh,Δt(μ)‖V = ((Θ
j
N ,Δt)

T
(μ) LTN ,Δt 𝕏

−1
h LN ,Δt⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

WN ,Δt Θj
N ,Δt(μ))

1/2
; (4.87)
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note thatWN ,Δt ∈ ℝ
(Qf+(Qm+Qa)N)×(Qf+(Qm+Qa)N).

In the offline stagewe formWNmax ,Δt . In the (say) direct-solution context, wewould
performa sparse Cholesky of (optimally ordered)𝕏h once.Wewould thenperformQf +
(Qm+Qa)Nmax forward/back substitutions to find LNmax ,Δt ≡ 𝕏

−1
h LNmax ,Δt; wewould then

complete the formation of WNmax ,Δt by multiplication, LTNmax ,ΔtL

Nmax ,Δt, at cost 𝒪((Qf +

(Qm + Qa)N)2Nh) FLOPs. Note that WNmax ,Δt is parameter-independent. In the online
stage, given μ ∈ 𝒫 and our associated RB approximation ujN ,Δt(μ), 1 ≤ j ≤ J, we first
extract submatrixWN ,Δt fromWNmax ,Δt and evaluateΘ

j
N ,Δt(μ), 1 ≤ j ≤ J.We thenperform

the sum (4.87), ((Θj
N ,Δt(μ))

TWN ,Δt Θ
j
N ,Δt(μ))

1/2, 1 ≤ j ≤ J; the operation count (for given
j) is𝒪((Qf + (Qm + Qa)N)2) FLOPs, which we note again is independent of Nh.

4.3.2.2 A nonlinear elliptic problem

4.3.2.2.1 Galerkin projection
As for linear elliptic problems, we are given a hierarchical set of RB spaces {VN ⊂
Vh}N=1,...,Nmax

and associated basis {ζ ih}i=1,...,Nmax
. We may then define our RB-Galerkin

approximation for (4.41): Given N ∈ {1, . . . ,Nmax} and μ ∈ 𝒫, find ũN (μ) ∈ VN such that

Nquad,Ω
∑
j=1

ρquad,Ωj ∇ũN(x
quad,Ω
j ;μ) ⋅ ∇v(xquad,Ωj )

+
M
∑

m,m=1(B−1M )mm η(ũN(x
quad,Ω
i∗
m ,μ))[

Nquad,Ω
∑
j=1
(ξm)j v(x

quad,Ω
j ) ρquad,Ωj ]

= μ
Nquad,Ω
∑
j=1

ρquad,Ωj v(xquad,Ωj ), ∀v ∈ VN , (4.88)

where the EIM interpolation system is defined in Section 4.2.3.3 (recall (4.44)).Wemay
further introduce the Newton update equation associated with (4.88): For given cur-
rent iterate ũkN (μ) ∈ VN , find δũN (μ) ∈ VN such that

Nquad,Ω
∑
j=1

ρquad,Ωj ∇δũN(x
quad,Ω
j ;μ) ⋅ ∇v(xquad,Ωj )

+
M
∑

m,m=1(B−1M )mm η̇(ũkN(x
quad,Ω
i∗
m ,μ)) δũkN(xquad,Ωi∗

m ;μ)[
Nquad,Ω
∑
j=1
(ξm)j v(x

quad,Ω
j ) ρquad,Ωj ]

= ̃rkh(v;μ), ∀v ∈ VN . (4.89)

Note η̇ is the derivative of η (we reserve prime for dummy indices): For example, for
η(z) = z3, η̇(z) = 3z2, and for η(z) = |z|z, η̇(z) = 2|z|; in general, η̇ > 0 from our
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assumption of monotonic nondecreasing η. The right-hand side of (4.89), residual μ ∈
𝒫 → ̃rkh(⋅;μ) ∈ V


h, is defined as

̃rkh(v;μ) ≡ μ
Nquad,Ω
∑
j=1

ρquad,Ωj v(xquad,Ωj )

−
Nquad,Ω
∑
j=1

ρquad,Ωj ∇ũkN(x
quad,Ω
j ;μ) ⋅ ∇v(xquad,Ωj )

−
M
∑

m,m=1(B−1M )mm η(ũkN(x
quad,Ω
i∗
m ,μ))[

Nquad,Ω
∑
j=1
(ξm)j v(x

quad,Ω
j ) ρquad,Ωj ], ∀v ∈ VN .

(4.90)

The left-hand side of (4.89) is the Gâteaux derivative of our RB nonlinear operator.
We now proceed to the discrete equations. We first introduce parameter-inde-

pendent matrices and vectors 𝔹N ∈ ℝN×N , ℂN ∈ ℝM×N , and f
1
N ∈ ℝ

N given by

(𝔹N )nn ≡ N
quad,Ω
∑
j=1

ρquad,Ωj ∇ζ n


h (x
quad,Ω
j ) ⋅ ∇ζ nh (x

quad,Ω
j ), 1 ≤ n, n ≤ N , (4.91)

(ℂN )mn ≡ M
∑
m=1
(B−1M )mm N

quad,Ω
∑
j=1
(ξm)j ζ

n
h (x

quad,Ω
j ) ρquad,Ωj , 1 ≤ m ≤ M, 1 ≤ n ≤ N , (4.92)

(f 1N)n ≡
Nquad,Ω
∑
j=1

ρquad,Ωj ζ nh (x
quad,Ω
j ), (4.93)

respectively. Note that 𝔹N , ℂN , and f
1
N are all parameter-independent.

Our Newton update may then be expressed as

N
∑
n=1(𝕁kN (μ))nn(δukN (μ))n = μ(f 1N)n −

N
∑
n=1(𝔹N )nn(ukN (μ))n
−

M
∑
m=1 ηkN m (μ) (ℂN )mn, 1 ≤ n ≤ N , (4.94)

where the Jacobian matrix 𝕁kN (μ) ∈ ℝ
N×N is given by

(𝕁kN (μ))nn ≡ (𝔹N )nn + M
∑
m=1 η̇kN m (μ)(ℂN )mn ζ nh (xquad,Ωi∗

m ), 1 ≤ n, n ≤ N . (4.95)

Here ηkN m , η̇kN m , 1 ≤ m ≤ M, are given by

ηkN m (μ) = η( N
∑
n=1
(ũkN (μ))n ζ

n
h (x

quad,Ω
i∗
m )), 1 ≤ m ≤ M, (4.96)



170 | Y.Maday and A. T. Patera

η̇kN m (μ) = η̇( N
∑
n=1
(ũkN (μ))nζ

n
h (x

quad,Ω
i∗
m )), 1 ≤ m ≤ M. (4.97)

We note that for η(z) = z3 it can be shown that 𝕁kN (μ) of (4.95) is symmetric positive-
definite for ϵNLEIM sufficiently small.

4.3.2.2.2 Error estimation
We directly consider the more practically important case of a posteriori error estima-
tion. We shall continue to assume (effectively) exact quadrature. By way of prelimi-
naries, we define the Laplacian bilinear form b : V × V → ℝ,

b(w, v) = ∫
Ω

∇w ⋅ ∇v, ∀w, v ∈ V2. (4.98)

We then define (for consistency with earlier parts of the chapter)

c̃sh(μ) ≡ infv∈Vh

|b(v, v)|
‖v‖V
; (4.99)

in the current context, c̃sh(μ) is a coercivity constant which is in fact parameter-
independent.

We now define our error as ẽk(μ) ≡ uh(μ) − ũkN (μ). We further introduce the Riesz
representation of our residual, R̃kh = ℛh ̃rkh(⋅;μ) for ̃r

k
h(⋅;μ) defined in (4.90). We may

then define our a posteriori error estimator,

Δ̃kN (μ) =
‖R̃kh(μ)‖V + c

−1/2
L2 |Ω|

1/2 tolNLEIM
c̃s,apph (μ)

. (4.100)

Here cL2 is the weight of the L
2(Ω)-contribution to our norm ‖ ⋅ ‖V , |Ω| is the mea-

sure of our domain inℝd, and c̃s,apph (μ) is an approximation to the coercivity constant
c̃sh(μ), (4.99), as developed in Section 4.3.1.3. We can then show that, for any μ ∈ ΞNLEIM,
and c̃s,apph (μ) ≤ c̃

s
h(μ),

‖ẽk(μ)‖V ≤ Δ̃
k
N (μ); (4.101)

we can plausibly extend our result to any μ ∈ 𝒫, perhaps with a safety factor, depend-
ing on the richness of ΞNLEIM. The a posteriori error bound (4.100), (4.101), identifies
three contributions to the error: the (incomplete) convergence of the Newton iteration,
as reflected in superscript k; the RB approximation error, as reflected in the dual norm
of the residual; and the perturbation of our problem to affine form, as reflected in the
EIM tolerance parameter. We emphasize that, within this nonlinear iterative context,
the error bound can serve not only to assess and control RB and EIM errors but also as
an iterative termination criterion.
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We briefly derive this result in particular to emphasize the simplification afforded
by our monotonic nondecreasing nonlinearity and conversely the challenges associ-
ated with more difficult nonlinearities. We first note that (under our assumption of
exact quadrature) our residual may be expressed as

̃rkh(v;μ) ≡ μ∫
Ω

v − b(ũkN (μ), v) − ∫
Ω

ℐM[η(ũ
k
N (⋅;μ))]v, ∀v ∈ Vh. (4.102)

We also note that uh(μ) satisfies

b(uh(μ), v) + ∫
Ω

η(uh(μ))v = μ∫
Ω

v, ∀v ∈ Vh. (4.103)

It thus follows that

b(uh(μ) − ũ
k
N (μ), v) + ∫

Ω

[η(uh(μ)) − η(ũ
k
N (μ))]v

= ̃rkh(v;μ) + ∫
Ω

[ℐM[η(ũ
k
N (⋅;μ))] − η(ũ

k
N (μ))]v, ∀v ∈ Vh. (4.104)

We now choose v = uh(μ)− ũkN (μ) and note from our assumption of monotonic nonde-
creasing η that

∫
Ω

[η(uh(μ)) − η(ũ
k
N (μ))][uh(μ) − ũ

k
N (μ)] > 0. (4.105)

We then consider the interpolation error term and invoke the Cauchy–Schwarz in-
equality and our definition of the norm ‖ ⋅ ‖V ; the result directly follows.We emphasize
that without the property (4.105) we would need to estimate the inf-sup constant as-
sociated with the Jacobian and then consider a contraction argument per the Brezzi–
Rappaz–Raviart theory [37] – hence much more difficult to realize in practice if we
wish to quantitatively evaluate the necessary constants.

4.3.2.2.3 Offline-online computational procedures
As for the linear case, we presume here that the RB space and basis are provided.

We first consider the formation and solution of the RB nonlinear system. In the
offline stage, we perform the EIM for the nonlinear term and subsequently form𝔹Nmax

,
ℂNmax

, and f 1Nmax
. Then at eachNewton iteration, we first form ηkN and η̇

k
N at cost𝒪(MN)

FLOPs. We next form the Jacobian at cost 𝒪(MN2) and the residual at cost 𝒪(MN).
Finally, we invert the Jacobian at cost O(N3) FLOPs.

We next consider the a posteriori error estimator and in particular the dual norm
of the residual. In fact, oncewe evaluate (ηkN m(μ))m=1,...,M , the residual of our nonlinear
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elliptic problem is computationally analogous to the residual of a linear elliptic prob-
lem, with the (ηkN m(μ))m=1,...,M playing a very similar role to (uN (μ))n=1,...,N . The online
operation count for the dual norm of the residual is then 𝒪((N + M)2), hence quite
inexpensive; of course, if the weak form included other parameters, hence p > 1, the
operation count would increase commensurately.

We close this section by emphasizing the importance of hyperreduction. We first
consider nonpolynomial nonlinearity, for exampleη(z) = |z|z: In the absence of hyper-
reduction, the online cost would depend onNh, both for formation of the Jacobian and
for evaluation of the dual norm of the residual. We next consider polynomial nonlin-
earities, hence η(z) = zs for s an odd integer (in order to honor our monotonic nonde-
creasing assumption): In the absence of hyperreduction, the online cost for formation
of the residual is 𝒪(Ns+1) and the online cost for evaluation of the dual norm of the
residual is 𝒪(N2s), and thus potentially prohibitive even for s = 3. We illustrate the
difficulty for a polynomial nonlinearity η(z) = z3. In this case the nonlinear contribu-
tion to the residual is given by

N
∑
n=1

N
∑
n=1

N
∑
n=1(ũN (μ))n(ũN (μ))n(ũN (μ))n ∫Ω ζ nh ζ

n
h ζ n


h ζ n


h

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
form offline⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

evaluate online

, (4.106)

where ζ n


h plays the role of test function.

4.4 Approximation spaces

4.4.1 Elliptic problems: weak greedy method

Perhaps the most simple – and the most popular – approach to the identification of
reduced-order approximation spaces is the proper orthogonal decomposition (POD).6

It consists in building a matrix with entries (ũh(μ), ũh(μ))V , μ, and μ belonging to
some subset ΞPOD of 𝒫 with cardinal KPOD (large enough since ΞPOD is supposed to
scan well 𝒫), and considering the eigenvectors associated to the largest values of its
largest eigenvalues. The interest of this approach is two-fold:
– it is very simple to implement and does not rely on further mathematical ingredi-

ents as is required in other methods (such as error estimators for the weak greedy
approach that will be explained next);

6 The POD can also be interpreted in terms of singular value decomposition, principal component
analysis, or even Karhunen–Loève transform.
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– it provides some hope that an RB exists (when the eigenvalues’ decay is fast
enough), but also, on the contrary, a proof that the Kolmogorov N-width is (in
some bad situations) large since dN (ℳ,V) is always larger than∑j>N σ

2
j .

However, in the parametric RB context, the POD has several drawbacks:
– formation of the covariancematrix requiresmany (KPOD) queries to the FE approx-

imation, μ → ũh(μ); identification of the POD modes requires solution of a dense
KPOD × KPOD eigenproblem;

– the norm in which the approximation is optimal is L2(𝒫 ;V), which is not ideal for
pointwise (in parameter) queries, μ → ũN (μ).

Alternatives, widely used in the RB context, are the greedy and (because more
amenable for implementation) the weak greedy approach: The optimality norm
L∞(𝒫 ;V) is more appropriate, consistent with the Kolmogorov N-width definition;
only Nmax FE queries are required to identify the RB spaces {VN }N=1,...,Nmax

; the result-
ing approximation space nevertheless reflects information from Ktrial ≫ Nmax points
on the parametric manifold. The POD is discussed in depth in several other chapters
in this handbook; we focus here on the greedy-type methods.

We first present the algorithm: Let Ξtrial be a given subset of 𝒫 with cardinal Ktrial
(large enough since Ξtrial is supposed to scan well 𝒫).

Algorithm 4.2: Greedy method: We assume that the set {ũh(μ)}μ∈Ξtrial is not em-
bedded in a small finite-dimensional space.

Data: Ξtrial, ũh : 𝒫 → Vh, ‖ ⋅ ‖Greedy, tolGreedy
Result:M, {μm ∈ Ξtrial}1≤m≤M , {ζ

i ∈ Vh}1≤i≤M , VM ⊂ V ,dimVM = M
1 SetM = 0, V0 = 0, and err =∞;
2 while err > tolGreedy do
3 SetM ← M + 1;
4 Find μM = arg supμ∈Ξtrial ‖ũh(μ) − ΠM−1ũh(μ)‖Greedy (where ΠM−1 denotes a

projection approach – like an orthogonal projection in V or a Galerkin
projection – onto VM−1 according to ‖ ⋅ ‖Greedy );

5 Define ζM = (ũh(μM) − ΠM−1ũh(μM)) /‖(ũh(μM) − ΠM−1ũh(μM))‖Greedy;
6 Update VM = Span{ζ

i, i = 1, . . . ,M} ;
7 Set err = ‖ũh(μM) − ΠM−1ũh(μM)‖Greedy;
8 end

The pure greedymethod is associated to the choice Ξtrial = 𝒫 and ‖ ⋅ ‖Greedy = ‖ ⋅ ‖V , the
projection operator being the V -orthogonal projection. It is a theoretical algorithm as
the computation of μ∗ on line 4 above is quite impossible to determine as it requires in
particular the knowledge of every ũh(μ), for any μ ∈ Ξtrial. Alternatively a weak greedy
approach can be implemented where the exact V -norm is replaced by a surrogate,
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an example being given by the a posteriori error estimate for Galerkin-RB approxima-
tions, as the ones that have been presented in Section 3 (see [38] for the first actual
use of this weak greedy approach). From (4.58), we can thus interpret the weak ver-
sion with respect to the pure greedy method by replacing line 4 above by

Select a μm such that ‖ũh(μm) − ΠM−1ũh(μm)‖V ≥ γ sup
μ∈𝒫
‖ũh(μ) − ΠM−1ũh(μ)‖V (4.107)

with some given γ, such that 0 < γ < 1 (in this context, the denomination “weak
greedy” was first introduced in [8]). Another element that enters in the weak greedy
is the choice Ξtrial ⊂ ̸= 𝒫 that should be large enough and well chosen so that (4.107)
remains true.

4.4.2 Optimality of the weak greedy method

In this subsectionwe state recent results about the performance of theweak greedy al-
gorithmcompared to theKolmogorovN-width optimal choice given by dN (ℳ,V). First
of all, we define σN (ℳ,V): a comparable quantity with respect to dN (ℳ,V) which is
associated to the series of spaces {Vn}n≥0 defined in the greedy algorithm

σn(ℳ,V) = dist(ℳ,Vn) = supμ
inf
vn∈Vn
‖ũh(μ) − vn‖V (4.108)

that characterizes the approximation space resulting from theweak greedy algorithm.
Of course, if (σn(ℳ,V))n≥0 decays at a rate comparable to (dn(ℳ,V))n≥0, this

means that the greedy selection provides essentially the best possible accuracy at-
tainable by n-dimensional subspaces. The first comparison between (σn(ℳ,V))n≥0
and (dn(ℳ,V))n≥0 was given in [9]: σn(ℳ,V) ≤ Cn2ndn(ℳ,V) which, of course, is
only useful if dn(ℳ,V) decays to zero faster than n−12−n. A more conservative esti-
mate results from the series of papers from [8] and [14]. We present here their proof in
the Hilbertian context.

For any choice Ξtrial with cardinal Ktrial > 0 large enough, let us consider the set
XKtrial of all vectors ũh(μ), μ ∈ Ξtrial. It is included inℳ and thus we derive obviously

∀m > 0, dm(XKtrial ,V) ≤ dm(ℳ,V). (4.109)

This means that there exist m vectors b1, b2, . . . , bm, generating a finite-dimensional
spaceℋm such that

max
μ∈Ξtrial

min
cm∈ℋm
‖ũh(μ) − cm‖V ≤ dm(ℳ,V). (4.110)

By taking theprojectionof these vectorsb1, b2, . . . , bm in Span(XKtrial ),we candetermine
m orthonormal vectors in Span(XKtrial ), which we denote by b̃1, b̃2, . . . , b̃m that generate
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a finite-dimensional space ℋ̃m ⊂ Span(XKtrial ) of dimensionm7 such that

max
μ∈Ξtrial

min
c̃m∈ℋ̃m

‖ũh(μ) − c̃m‖V ≤ dm(ℳ,V). (4.111)

Let us now introduce the scalar products an,j = (ũh(μn), ζ
j)V , 1 ≤ j, n ≤ Ktrial

where ζ . are defined on line 5 of Algorithm 4.2). We easily get an,j = 0 for j > n and
ũh(μn) = ∑

n
j=0 an,jζj. The matrix A with entries an,j is lower triangular and incorpo-

rates all the information about the weak greedy algorithm on ℳ. In addition, what-
ever the definition of the space V , this matrix leads us to an analysis in ℓ2(ℕ) (even
ℓ2({1, 2, . . . ,Ktrial}) ) more simple than the analysis in V . From the very definition of the
greedy selection, we get the two following properties:
P1: The diagonal elements of A satisfy γσn(ℳ,V) ≤ |an,n| ≤ σn(ℳ,V).
P2: For everym ≥ n, one has ∑

m
j=n a

2
m,j ≤ σn(ℳ,V)

2.

For any K and m, 1 ≤ m < K, and any M ≥ 0, let us consider the K × K matrix G =
(gi,j) extracted from A by considering the rows and columns of A with indices from
{M + 1, . . . ,M + K}. Each row γi of G is the coordinate of the projection of ũh(μM+i)
in the vector space spanned by ζM+1, ζM+2, . . . , ζM+K . Similarly as what we have done
on the projection of ũh(μM+i) in the vector space spanned by ζM+1, ζM+2, . . . , ζM+K , we
project each vector b̃1, b̃2, . . . , b̃m in the vector space spanned by ζM+1, ζM+2, . . . , ζM+K
and further normalize them. The associated vectors are denoted as b̂i, 1 ≤ i ≤ m and
span a finite-dimensional space ℋ̂m that satisfies, from (4.111),

max
i

min
ĉm∈ℋ̂m

‖γi − ĉm‖ℓ2 ≤ dm(ℳ,V). (4.112)

Now we note that the ℓ2-norm of each γi is, from property P2 above,

‖γi‖ℓ2 ≤ σM(ℳ,V).

The projection of each of these vectors on the vectorial space spanned by b̂i, 1 ≤ i ≤ m,
belongs to a ball (in dimension m) of radius ≤ σM(ℳ,V): ℬ(0, σM(ℳ,V)), due to the
m-width property (4.112), each of the vectors γi thus belong to a “cylinder” with basis
ℬ(0, σM(ℳ,V)) andheight≤ dm(ℳ,V) (in dimensionK−m). The volumeof the convex
set spanned by these vectors γi (that is equal to the determinant of G) is thus upper
bounded by 𝒱m = Vol(ℬ(0, σM(ℳ,V))) × dm(ℳ,V)K−m. Recalling that the matrix G is
lower diagonal, we thus get from P1

detG = ΠK+M
n=M+1|an,n| ≤ 𝒱m ≤ CσM(ℳ,V))

m × dm(ℳ,V)
K−m, (4.113)

7 Note that if the projection of ℋm in Span(XKtrial ) is of dimension < m, we choose any vector b̃ in
Span(XKtrial ) to complement the family {b̃i}1≤i≤m.



176 | Y.Maday and A. T. Patera

where C is here a universal constant bounding the volume of the unit-ball, whatever
the dimension (we can take for instance C = 6).

We thus get (a slightly improved version of) Theorem 3.2 in [14].

Theorem. For the weak greedy algorithm with constant γ in a Hilbert space V and for
any compact set ℳ, we have the following inequalities between σn = σn(ℳ,V) and
dn = dn(ℳ,V) for any M ≥ 0, 1 ≤ m < K:

ΠK
i=1σM+i ≤ 6γ

−KσmMd
K−m
m . (4.114)

Then, as of consequence of various choices of the valuesM,K, andm, we get the
following corollary.

Corollary. For the weak greedy algorithm with constant γ in V, we have the following:
– For any n ≥ 1, we have

σn(ℳ,V) ≤ 6
1
n γ−1 min

1≤m≤n
d

n−m
n

m (ℳ,V).

In particular σ2n(ℳ,V) ≤ √2γ−1√dn(ℳ,V), n ≥ 1.
– If dn(ℳ,V) ≤ C0n−α, then σn(ℳ,V) ≤ C1n−α with C1 = 25α+1γ−2C0.
– If dn(ℳ,V) ≤ C0e−c0n

α
, then σn(ℳ,V) ≤ √2C0γ−1e−c1n

α
, where c1 = 2−1−2αc0.

For the first item, we take M = 0, K = n, and any 1 ≤ m < n in the previous
theorem, and use the monotonicity of σ and the fact that σ0 ≤ 1. For the proof of the
two other items we refer to [14].

As a final obvious remark we want to point out that dm(ℳ,V) depends onℳ and
thus on𝒫. This suggests a localization greedy procedure so as to lower the effect of the
large size of 𝒫; we refer to [16, 2, 29] for various approaches to exploit this argument.

4.4.3 Extensions

4.4.3.1 Evolution problems: parabolic PDEs

The greedymethod for elliptic problemshas been extended to the parabolic case in the
POD greedy method first proposed in [20]. On line 4 of Algorithm 4.2 we still identify
μm as the “worst-approximated” parameter value, but now the error bound is typically
evaluated at the final time, T. The update on line 5 is then given as some number of
POD modes associated with the projection error.

4.4.3.2 A nonlinear elliptic problem

For our particular nonlinear problem and associated error estimator the weak greedy
Algorithm 4.2 requires little modification. More generally, apart from difficulties asso-
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ciated with error estimation, the weak greedy does extend relatively easily to the non-
linear case. However, as already noted, the EIM preparation of the nonlinear problem
can be expensive, and for this reasonmore advanced techniques –which combine the
EIM and RB greedy algorithms – are an active area of research (e. g., [13, 6]).
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Abstract: For many applications, the projected quantities arising from projection-
based model order reduction (PMOR) must be repeatedly recomputed due to, for
example, nonlinearities or parameter dependence. Such repetitive computations con-
stitute a performance bottleneck. Specifically, they limit the ability of a projection-
based reduced-order model (PROM) to deliver the coveted speedup factor. This chap-
ter reviews several state-of-the-art approaches for mitigating this issue and organizes
them into two categories. Methods in the first category divide the computation of
projections, whenever possible, into two parts: one that is responsible for the afore-
mentioned bottleneck but can be precomputed offline; and another part that must be
repeatedly performed online but whose computational complexity scales only with
the dimension of the PROM.Methods in the second category are knownas hyperreduc-
tion methods: They achieve the desired computational efficiency by approximating
either the quantity to be projected, or the result of the projection. The significance of
hyperreduction for PMOR is highlighted using four numerical applications that are
representative of academic and real-world problems.
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5.1 Introduction

There are two main purposes for performing model order reduction:
– Obtaining a low-dimensional model withminimum storage requirements in order

to enable online computing in general and embedded computing in particular –
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that is, computing inside a complete device that may include hardware and me-
chanical parts.

– Obtaining a low-dimensional model with minimum processing time requirements
in order to enable numerical predictions in real-time, or at least near real-time. For
time-independent predictions, real-time is defined here as the shortest possible
wall-clock time. For numerical predictions in the time interval [t0, T], where t0 ≥ 0
denotes an initial time and T > t0 denotes a final time, real-time is defined here as
in T − t0 units of time: For example, simulating 1 second of flow around an aircraft
in 1 second wall-clock time. Furthermore, this definition of real-time is expanded
throughout the remainder of this chapter to include near real-time, in order to
avoid repeating after each occurrence of the words “in real-time” the alternative
words “or near real-time.”

While both objectives stated above are typically desirable, the second objective im-
plies in practice the first one. Unfortunately, the reciprocal is not true, as explained
below.

For this purpose, the focus is set in this chapter on the parametric, time-depen-
dent, semi-discrete, Nh-dimensional, full-order computational model (FOM)

{
𝕄Nh
(μ)u̇Nh
(t; μ) + fNh

(uNh
(t; μ); μ) = gNh

(t; μ),
uNh
(0; μ) = u0Nh

(μ),
(5.1)

where:
– t denotes time, and the dot denotes a time derivative.
– μ ∈ 𝒫 ⊂ ℝp denotes aparameter vector of dimensionp, and𝒫 denotes thebounded

parameter space of interest. It can be physical in the sense that it can pertain, for
example, to initial conditions, boundary conditions, problem geometry, and/or
material properties. It can also be nonphysical, for example, if μ is a realiza-
tion parameter or a hyperparameter vector associated with a stochastic process
[36, 23].

– 𝕄Nh
(μ) ∈ ℝNh×Nh is the parametric,massmatrix of this parametric FOM. For sim-

plicity, but without any loss of generality,𝕄Nh
is assumed here to be a symmetric

positive definite (SPD) matrix.
– uNh

(t; μ) ∈ ℝNh is the parametric, time-dependent, semi-discrete solution vector
modeling the state of the system represented by this FOM. It is also often referred
to as the vector of degrees of freedom (DOFs).

– u0Nh
(μ) ∈ ℝNh is an initial condition for uNh

(t; μ).
– fNh
(uNh
(t; μ); μ) ∈ ℝNh is a parametric, nonlinear function referred to here and

throughout the remainder of this chapter as the nonlinear, internal force vector,
and its Jacobian

𝕂Nh
(uNh
(t; μ); μ) =

𝜕fNh

𝜕uNh

(uNh
(t; μ); μ) ∈ ℝNh×Nh (5.2)
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represents the parametric, tangent stiffness of this FOM. In the linear case,

fNh
(uNh
(t; μ); μ) = 𝕂Nh

(μ)uN (t; μ), (5.3)

where 𝕂Nh
(μ) is a parametric but otherwise constant matrix representing simply

the stiffness of the parametric FOM (5.1).
– gNh

(t; μ) ∈ ℝNh is a parametric, time-dependent vector referred to here and
throughout the remainder of this chapter as the external force vector.

Let

uNh
(t; μ) ≈ 𝕍un(t; μ) ∀t ∈ [t

0, T], 𝕍 ∈ ℝNh×n, un ∈ ℝ
n, n ≪ Nh. (5.4)

In the above subspace approximation,𝕍 is referred to as the right reduced-order basis
(ROB): It is typically orthonormalized with respect to some inner product for condi-
tioning reasons. The vector un is referred to as the vector of reduced or generalized
coordinates.

Let𝕎 ∈ ℝNh×n denote the left ROB associated with 𝕍 and orthogonal to it – that
is,

𝕎T𝕍 = 𝕀n, (5.5)

where the superscriptT designates the transpose of the quantity towhich it is applied,
and 𝕀Nh

∈ ℝNh×Nh denotes the identity matrix of size Nh.
The projection-based, Petrov–Galerkin (𝕎, 𝕍), reduced-order model (PROM) as-

sociated with the FOM (5.1) and the subspace approximation (5.4) can be written as

{
𝕄n(μ)u̇n(t; μ) + fn(un(t; μ); μ) = gn(t; μ),

un(0; μ) = u0n(μ),
(5.6)

where:
– The reduced matrix

𝕄n(μ) =𝕎
T𝕄Nh
(μ)𝕍 ∈ ℝn×n (5.7)

is the parametric, mass matrix of the above parametric PROM of dimension n ≪
Nh; therefore, it is the reducedmass matrix.

– The reduced vector

fn(un(t; μ); μ) =𝕎
T fNh
(𝕍un(t; μ); μ) ∈ ℝ

n (5.8)

is the parametric, reduced, nonlinear, internal force vector. From the definition of
the tangent stiffness given in (5.2) and that of the subspace approximation (5.4),
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it follows that the reduced Jacobian matrix 𝕂n(un(t; μ); μ) =
𝜕fn
𝜕un
(un(t; μ); μ) is

related to the full-order Jacobian matrix𝕂Nh
(𝕍un(t; μ); μ) by

𝕂n =
𝜕fn
𝜕un
=𝕎T 𝜕fNh

𝜕un
=𝕎T 𝜕fNh

𝜕uNh

𝜕uNh

𝜕un
=𝕎T𝕂Nh

𝕍 ∈ ℝn×n. (5.9)

Hence, the reduced Jacobianmatrix𝕂n(un(t; μ); μ) represents the parametric, re-
duced tangent stiffness of the parametric PROM (5.6). In the linear case where (5.3)
holds, 𝕂n(μ) is parametric but otherwise constant – because in this case 𝕂Nh

in
(5.9) is parametric but otherwise constant – and represents simply the parametric
stiffness of this PROM.

– The reduced vector

gn(t; μ) =𝕎
TgNh
(t; μ) ∈ ℝn (5.10)

is the parametric, time-dependent, reduced, external force vector.
– u0n(μ) = 𝕎

Tu0Nh
(μ) ∈ ℝn is the initial condition for un(t; μ) associated with the

initial condition for uNh
(t; μ): Its expression results from the subspace approxi-

mation (5.4) and the orthogonality condition (5.5).

The counterpart of thePROM(5.6) basedonaGalerkinprojection is obtainedby setting
𝕎 = 𝕍.

5.1.1 Computational bottlenecks

First, consider specifically the linear instance of the FOM (5.1) – that is, the case where
fNh
(uNh
(t; μ); μ) = 𝕂Nh

(μ)uNh
(t; μ) – which can be written as

{
𝕄Nh
(μ)u̇Nh
(t; μ) +𝕂Nh

(μ)uNh
(t; μ) = gNh

(t; μ),
uNh
(0; μ) = u0Nh

(μ).
(5.11)

From (5.3) and (5.7)–(5.10), it follows that the PROM (5.6) can be written in this
case as

{{
{{
{

(𝕎T𝕄Nh
(μ)𝕍)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝕄n(μ)

u̇n(t; μ) + (𝕎
T𝕂Nh
(μ)𝕍)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝕂n(μ)

un(t; μ) =𝕎
TgNh
(t; μ)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

gn(t;μ)

,

un(0; μ) =𝕎Tu0Nh
(μ).

(5.12)

The real-time performance of the processing of the above parametric, linear PROM
hinges on the real-time evaluation of the reduced matrices𝕄n(μ) and 𝕂n(μ), and re-
duced vectors gn(t; μ) and un(0; μ). However, the computational complexity of the
evaluation of each of these reduced matrices and reduced vectors, which must be re-
peated every time μ is varied, scales as 𝒪 (Nh

2n) and 𝒪 (Nhn), respectively. In other
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words, this computational complexity scales with integer powers of the size Nh of the
FOM. For large values of Nh, this prohibits the evaluation in real-time of the reduced
quantities, even when the dimension n of the linear PROM (5.12) is very small.

Nonlinearity aggravates the computational complexity issue raised above for
parametric, linear PROMs in the following sense. Even in the nonparametric case,
achieving a low dimension n ≪ Nh for a nonlinear PROM such as (5.6), while meeting
accuracy requirements, does not suffice to enable real-time numerical predictions.
To highlight this aggravation, which of course persists in the case of the parametric,
nonlinear PROM (5.6), consider next the nonparametric instance of the nonlinear FOM
(5.1). Because in this case𝕄 is independent of μ, it is more convenient to construct
the left ROB𝕎 such that it satisfies

𝕎T𝕄Nh
𝕍 = 𝕀n (5.13)

instead of the orthogonality condition stated in (5.5). Indeed, from (5.7), (5.13), and
(5.8), it follows that the expression of the nonlinear PROM (5.6) simplifies in this case
to

{{
{{
{

𝕀nu̇n(t) +𝕎
T fNh
(𝕍un(t))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

fn(un(t))

=𝕎TgNh
(t)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

gn(t)

,

un(0) =𝕎Tu0Nh
.

(5.14)

There are two main approaches for processing the above nonparametric, nonlinear
PROM – namely, the explicit approach and the implicit approach:
– Processing the PROM (5.14) using an explicit time integration scheme requires

the evaluation at each time step of the reduced, nonlinear, force balance vector
𝕎T (fNh
(𝕍un(t))−gNh

(t)). Again, the computational complexity of this evaluation,
which must be performed at least once at each time step of the time integration
process, scales as𝒪 (Nhn). Therefore, it scaleswith the size of the FOM. Evenwhen
the dimension n is very small, this prohibits the processing of the PROM (5.14) in
real-time (for example, see [21] for wall-clock timings associated with realistic en-
gineering computations).

– On the other hand, processing the PROM (5.14) by an implicit time integration
scheme gives rise at each time step to a system of nonlinear algebraic equations.
Solving this system of equations by the Newton method or a variant requires re-
constructing at each Newton iteration, within each time step, the reduced tan-
gent stiffness matrix 𝕂n(un(t)) = 𝕎T𝕂Nh

(𝕍un(t))𝕍 (see (5.9) ) in addition to the
reduced, nonlinear, internal force vector. The computational complexity of each
reconstruction of𝕂n(un(t)) scales as𝒪 (Nh

2n). Again, this prohibits in general the
processing of the nonparametric, nonlinear PROM (5.14) in real-time.

The computational issue highlighted above also hinders the real-time performance of
time-independent PROMs in almost the same way. Indeed, for steady-state (or static)
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problems, the parametric, linear PROM (5.12) simplifies to

(𝕎T𝕂Nh
(μ)𝕍)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝕂n(μ)

un(μ) =𝕎
TgNh
(μ)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

gn(μ)

(5.15)

and the nonlinear PROM (5.6) simplifies to

𝕎T fNh
(𝕍un(μ); μ)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

fn(un(μ);μ)

=𝕎TgNh
(μ)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

gn(μ)

. (5.16)

In the case of the parametric, linear, static PROM (5.15), the solution for each different
parameter vector μ⋆ sampled in 𝒫 of the corresponding reduced problem (5.15), in or-
der to determine un(μ⋆), gives rise to the same computational bottleneck associated
with rebuilding the reduced matrix𝕎T𝕂Nh

(μ⋆)𝕍 in 𝒪 (Nh
2n) operations. In the case

of the counterpart nonlinear PROM (5.16), the same computational bottleneck arises
at each iteration of Newton’s method – or a variant of this method – applied to the so-
lution of the underlying nonlinear problem, during the update of the tangent stiffness
matrix𝕂n(un), whether the nonlinear PROM (5.16) is parametric or not.

5.1.2 Solution approaches

Two major approaches have been developed so far for addressing the computational
bottlenecks associated with the repeated reconstructions of a PROM highlighted
above. Both of them share the offline-online paradigm that underlies most if not
all PROM computations. Both approaches can also be described, broadly speaking,
as divide-and-conquer approaches.

The first approach divides the computation of the reduced quantities, whenever
possible, into two parts: one part that is responsible for the aforementioned compu-
tational bottlenecks and can be precomputed offline; and another part whose com-
putational complexity scales with integer powers of the small size n of the PROM and
therefore can be processed online and in real-time. This approach is both feasible and
exact for at least twodifferent classes of problems: the class of parametric, linear FOMs
(5.11) admitting an efficient parameter-affine representation; and the class of nonlin-
ear FOMs with a low-order polynomial dependence of the internal force vector on the
solution (see (5.22)) and a time-independent external force vector.

By contrast, the second major approach for achieving the same objective can be
characterized as an inexact approach, where an additional layer of approximations is
introduced into the PROM construction process in order to enable the evaluation of all
reduced quantities in real-time. This approach includes the computational paradigm
known today as hyperreduction.
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5.1.3 Chapter organization

Throughout this chapter, the parametric FOM of interest is assumed to be reducible.
Therefore, the objective is set to squeezing the most performance out of the corre-
sponding PROM. To this end, this chapter focuses on presenting the state of the art
of both major approaches outlined above for mitigating if not eliminating the compu-
tational bottlenecks highlighted in Section 5.1.1. It is organized as follows.

Section 5.2 reviews the notions of global and local ROBs, and their associated
global and local PROMs. Section 5.3 presents the first approach for addressing the
computational bottlenecks associated with the repeated reconstructions of a PROM
highlighted above. Section 5.4 reviews the second approach, and more specifically,
twomethodologies that belong to it. The first one targets parametric, linear PROMs. It
is based on the concept of a database of pointwise linear PROMs, and that of interpo-
lation on matrix manifolds. The second methodology is known as hyperreduction. It
is equally applicable to parametric and nonparametric, linear and nonlinear PROMs.
Section 5.5 illustrates two of the most successful hyperreduction methods with both
academic and real-world, parametric and nonparametric, linear and nonlinear appli-
cations. Section 5.6 summarizes and concludes this chapter.

5.2 Global and pointwise ROBs for parametric
PROMs

Because of the sheer number of computations (or simulations) they imply, parametric
numerical predictions are a major source of motivations for projection-based model
order reduction (PMOR). However, they simultaneously constitute a source of compli-
cations for the construction of a PROM that is robust with respect to variations in the
parameter vector μ. A popular approach for addressing this issue is to construct a sin-
gle right ROB 𝕍 for which the approximation (5.4) is accurate in the entire parameter
space of interest 𝒫 – that is,

uNh
(t; μ) ≈ 𝕍un(t; μ) ∀t ∈ [t

0, T], ∀μ ∈ 𝒫 ; 𝕍 ∈ ℝNh×n, un ∈ ℝ
n, n ≪ Nh. (5.17)

In this case, the right ROB𝕍 is typically called a global right ROB. It is constructed by:
sampling many points in 𝒫 using any sampling procedure, but preferably a greedy
procedure; generating one or multiple solution snapshots at each of these points; and
compressing them if needed or desired to construct𝕍. Note that for a Petrov–Galerkin-
PROM, the construction of a global right ROB 𝕍 calls for the additional construction
of a corresponding global left ROB𝕎.

While it is particularly effective in the nonlinear setting, the global ROB approach
is equally valid in the linear one. In this sense, it is a comprehensive approach. How-
ever, if 𝒫 is high-dimensional and/or the solution of the parametric FOM is highly
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sensitive with respect to variations in μ – in which case the solution manifold of the
governing FOM equations has a large Kolmogorov n-width – the global ROB approach
may be inefficient or simply unfeasible. Indeed, the dimension n of 𝕍 (and, if appli-
cable,𝕎) required so that the subspace approximation (5.17) delivers the desired ac-
curacy may be too large in this case to enable a PROM to achieve its “compactness”
(minimum storage requirement) and performance objectives. In this case, an alter-
native approach for addressing the parameter dependence of a PROM based on the
concept of pointwise ROBs may be considered. In this other approach, a set of param-
eter vectors μi is properly sampled in the parameter space𝒫 – for example, using also
a greedy procedure – and a pointwise right ROB 𝕍i = 𝕍(μi) (and if applicable, a left
ROB𝕎i =𝕎(μi)) is constructed at each sampled parameter point μi ∈ 𝒫. Section 5.4.1
presents an efficient computational strategy for exploiting this concept of pointwise
ROBs in the linear setting.

Because the concept of a global ROB is feasible in both linear and nonlinear set-
tings, but that of pointwise ROBs – which so far has been supported by interpola-
tion at queried but unsampled parameter points – has been exploited to date only in
the linear setting, the following assumption is made throughout the remainder of this
chapter: Whenever the context is set to that of a parametric PROM, a right ROB𝕍 (and
if applicable, the corresponding left ROB𝕎) is assumed to be a global ROB, unless
otherwise specified (as in Section 5.4.1).

5.3 Exact precomputation-based methodologies
The solution approach for eliminating the computational bottlenecks associated with
the repeated reconstructions of a PROM characterized in Section 5.1.2 as an exact ap-
proach is overviewed here in two different representative contexts: that defined by a
special class of parametric, linear FOMs; and that defined by a special class of para-
metric or nonparametric but nonlinear FOMs. In both contexts, this approach consists
in reorganizing the exact computation of the reduced matrices, tangent matrices, and
vectors, as applicable, in two parts: a first part that is responsible for the aforemen-
tioned bottlenecks and can be precomputed offline; and a second part whose com-
putational complexity is independent of Nh, and whose real-time evaluation is feasi-
ble.

5.3.1 Linear FOMs and efficient parameter-affine representation

Consider again the linear instance (5.11) of the parametric FOM (5.1). Note that what-
ever is the dependence of𝕄Nh

,𝕂Nh
, and gNh

on the parameter vector μ ∈ 𝒫, these two
matrices and vector can always be expressed as follows:
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𝕄Nh
(μ) =𝕄0Nh

+
i𝕄
∑
i=1

mi(μ)𝕄iNh
,

𝕂Nh
(μ) = 𝕂0Nh +

i𝕂
∑
i=1

ki(μ)𝕂iNh , (5.18)

gNh
(t; μ) = g0Nh (t) +

ig
∑
i=1

gi(μ)giNh (t),

where𝕄iNh
∈ ℝNh×Nh , i = 0, . . . , i𝕄;𝕂iNh ∈ ℝ

Nh×Nh , i = 0, . . . , i𝕂; giNh ∈ ℝ
Nh , i = 0, . . . , ig;

each of the scalar functionsmi(μ), ki(μ), and gi(μ) describes the dependence of𝕄iNh
,

𝕂iNh , and giNh on μ, respectively; and i𝕄 ≤ Nh
2, i𝕂 ≤ Nh

2, and ig ≤ Nh.
In the context of the two-sided Petrov–Galerkin projection of the parametric, lin-

ear FOM (5.11), the parameter-affine representation (5.18) of the otherwise arbitrary
dependence of this linear FOM on μ is parameter-preserving, in the sense that it eases
the reduction of the FOM (5.11) to a PROM that has the following similar form:

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{

𝕄n(μ)u̇n(t; μ) +𝕂n(μ)un(t; μ) = gn(t; μ),
un(0; μ) = u0n(μ),

where

𝕄n(μ) = 𝕎
T𝕄0Nh
𝕍⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

precomputable
∈ℝn×n

+
i𝕄
∑
i=1

mi(μ) 𝕎
T𝕄iNh
𝕍⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

precomputable
∈ℝn×n

,

𝕂n(μ) = 𝕎
T𝕂0Nh𝕍⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

precomputable
∈ℝn×n

+
i𝕂
∑
i=1

ki(μ) 𝕎
T𝕂iN𝕍⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

precomputable
∈ℝn×n

,

gn(t; μ) = 𝕎
Tg0Nh (t)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

precomputable
∈ℝn

+
ig
∑
i=1

gi(μ) 𝕎
TgiNh (t)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

precomputable
∈ℝn

,

u0n(μ) =𝕎
Tu0Nh
(μ).

(5.19)

From (5.19), it follows that all building blocks of the reduced quantities𝕄n, 𝕂n,
and gn(t) – that is, {𝕎T𝕄i𝕍}

i𝕄
i=0, {𝕎

T𝕂i𝕍}
i𝕂
i=0, and {𝕎

Tgi(t)}
ig
i=0 – can be precomputed

offline; for any queried parameter point μ⋆ ∈ 𝒫, the reduced matrices 𝕄n(μ⋆) and
𝕂n(μ⋆) can be computed in 𝒪 (i𝕄n2) and 𝒪 (i𝕂n2) operations, respectively; and for
any queried parameter point μ⋆ ∈ 𝒫, the reduced vector gn(t; μ⋆) can be computed in
𝒪 (ign) operations.

Hence, the reduced quantities𝕄n(μ⋆), 𝕂n(μ⋆), and gn(t; μ⋆) – and therefore the
parametric, linear PROM (𝕄n(μ⋆),𝕂n(μ⋆), gn(t; μ⋆)) – can be computed in real-time
only if

i𝕄 ≪ N2
h , i𝕂 ≪ N2

h , and ig ≪ Nh, (5.20)
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in which case the linear FOM (5.11) is said to admit an efficient parameter-affine rep-
resentation. In other words, the representation (5.18) and the conditions (5.20) define
the class of parametric, linear FOMswhose associated Petrov–Galerkin (𝕎,𝕌)PROMs
can be processed online and in real-time using the exact method for treating the pa-
rameter dependency highlighted in (5.19).

Remark 5.1. Given a linear problem with a complex parameter dependency, the con-
ditions (5.20) may or may not hold, depending on the level of fidelity of the modeling
of this dependency. For example, consider the case of the finite element (FE)modeling
of a geometrically complex and highly heterogeneous mechanical structure. If the ge-
ometric andmaterial properties of such a structure are homogenized, or at least piece-
wise homogenized, the conditions (5.20) will hold. On the other hand, if these prop-
erties are represented in the computational model with the highest possible level of
fidelity and such a representation leads to an FEmodel where each element has differ-
ent values of the geometric and/ormaterial properties, conditions (5.20) will not hold.
In this case, the modeling of the parameter dependency could be simplified to the ex-
tent where the additional modeling errors induced by such a simplification are of the
sameor a lower order thananyothermodeling error – andparticularly, thePMORerror
– and the conditions (5.20) will be satisfied, in order to enable real-time processing.

5.3.2 Nonlinear FOMs with polynomial dependence on the
generalized coordinates

Consider next the parametric, nonlinear FOM (5.1) and its associated PROM (5.6). As
discussed in Section 5.1.1, the real-time processing of this parametric, nonlinear PROM
faces two computational bottlenecks: the reevaluation at each queried point μ⋆ ∈ 𝒫
of the reduced matrix𝕄n(μ⋆) = 𝕎T𝕄Nh

(μ⋆)𝕍, which requires 𝒪 (Nh
2n) operations;

and the evaluation at each explicit time step of the reduced, nonlinear, internal force
vector (5.8),whichnecessitates𝒪 (Nhn)operations, or at eachNewton iterationof each
implicit time step of the associated Jacobian (5.9), which requires𝒪 (Nh

2n) operations.
The first bottleneckwas addressed in Section 5.3.1, and an alternativemethodology for
evaluating in real-time the parametric, reduced mass matrix𝕄n(μ⋆) is presented in
Section 5.4.1. This alternative technique is particularly effective when the conditions
(5.20) are not satisfied.

Hence, attention is focused here on eliminating the second computational bottle-
neck recalled above. This bottleneck is more significant than the first one because it
arises even in the context of nonparametric problems, as long as they are nonlinear.

To this end, let

bn(un(t; μ); μ) = fn(un(t; μ); μ) − gn(t; μ)
=𝕎T fNh

(𝕍un(t; μ); μ)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
b1n (un(t;μ);μ)

−𝕎TgNh
(t; μ)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

b2n (t;μ)

(5.21)
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denote the reduced, nonlinear, time-dependent, force balance vector. The com-
putation of this nonlinear PROM quantity can be organized around the computa-
tion of its two terms: that associated with the reduced, nonlinear, internal force
vector b1n (un(t; μ); μ); and that associated with the reduced, external force vector
b2n (t; μ). The potential for the evaluation online and in real-time of each of these
two components of the reduced, nonlinear, force balance vector, and in the case of
b1n (un(t; μ); μ), that of its Jacobian with respect to un(t; μ), is discussed below.

5.3.2.1 Real-time computation of the reduced nonlinear internal force vector and its
Jacobian

For many, but not all, partial differential equation (PDE)-based applications, the non-
linearity in the FOM (5.1) is polynomial in uNh

of degree d ≥ 2. In this case, each i-th
entry of the nonlinear, internal force vector can be written, for example, as follows:

[fNh
(uNh
(t; μ); μ)]i = 𝔽i1 (μ)uNh

(t; μ)

+
⌈(d−1)/2⌉
∑
k=1
(uTNh
(t; μ)𝔾i2k (μ)uNh

(t; μ))k (5.22)

+
⌈(d−1)/2⌉
∑
k=1
(uTNh
(t; μ)𝔾i2k+1 (μ)uNh

(t; μ))k𝔽i2k+1 (μ)uNh
(t; μ),

where i = 1, . . . ,Nh; [♥]i designates here and throughout the remainder of this chapter
the entry in row i of the vector ♥; 𝔽i2k+1 (μ) ∈ ℝ

1×Nh , k = 0, . . . , ⌈(d − 1)/2⌉; 𝔾i2k (μ) ∈
ℝNh×Nh ; and𝔾i2k+1 (μ) ∈ ℝ

Nh×Nh , k = 1, . . . , ⌈(d − 1)/2⌉.
From the subspace approximation (5.17) and from (5.22), it follows that

[fNh
(𝕍un(t; μ); μ)]i = 𝔽i1 (μ)𝕍un(t; μ)

+
⌈(d−1)/2⌉
∑
k=1
(uTn (t; μ)𝕍

T𝔾i2k (μ)𝕍un(t; μ))
k (5.23)

+
⌈(d−1)/2⌉
∑
k=1
(uTn (t; μ)𝕍

T𝔾i2k+1 (μ)𝕍un(t; μ))
k𝔽i2k+1 (μ)𝕍un(t; μ)

is a polynomial function in un of the same degree d. Next, from (5.21) and (5.23), it
follows that

[b1n(un(t; μ); μ)]i = [𝕎
T fNh
(𝕍un(t; μ); μ)]i =

Nh

∑
j=1
[𝕎]ji𝔽j1 (μ)𝕍un(t; μ)

+
Nh

∑
j=1
[𝕎]ji
⌈(d−1)/2⌉
∑
k=1
(uTn (t; μ)𝕍

T𝔾j2k (μ)𝕍un(t; μ))
k
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+
Nh

∑
j=1
[𝕎]ji
⌈(d−1)/2⌉
∑
k=1
(uTn (t; μ)𝕍

T𝔾j2k+1 (μ)𝕍un(t; μ))
k𝔽j2k+1 (μ)𝕍un(t; μ),

where [♦]ij designates here and throughout the remainder of this chapter the entry
in row i and column j of the matrix ♦. The above expression for the i-th entry of the
reduced, nonlinear, internal force vector can be rewritten as

[b1n(un(t; μ); μ)]i = [𝕎
T fNh
(𝕍un(t; μ); μ)]i =

Nh

∑
j=1
[𝕎]ji𝔽j1 (μ)𝕍⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
precomputable
∈ℝ1×n

un(t; μ)

+
Nh

∑
j=1

⌈(d−1)/2⌉
∑
k=1
[𝕎]ji(u

T
n (t; μ)𝕍

T𝔾j2k (μ)𝕍⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
precomputable
∈ℝn×n

un(t; μ))
k

(5.24)

+
Nh

∑
j=1

⌈(d−1)/2⌉
∑
k=1
(uTn (t; μ)𝕍

T𝔾j2k+1 (μ)𝕍⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
precomputable
∈ℝn×n

un(t; μ))
k

[𝕎]ji𝔽j2k+1 (μ)𝕍⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
precomputable
∈ℝ1×n

un(t; μ).

This shows that each quantity arising in the evaluation of b1n (un(t; μ); μ)whose com-
putational complexity scales with an integer power of the large dimension Nh of the
FOM can be precomputed offline for each queried parameter point, and contributes to
the nonlinear PROM (5.6) a term that can be processed online, in a number of opera-
tions that scales with an integer power of its small dimension n ≪ Nh.

Expression (5.24) also shows that for a low-order polynomial nonlinearity in the
internal force vector – say, a quadratic nonlinearity (d = 2) – and a queried parameter
point μ⋆ ∈ 𝒫, b1n (un(t; μ

⋆); μ⋆) can be computed online and in real-time. However,
for polynomial nonlinearities of higher degrees (d > 2), the offline cost associated
with precomputing the various projections identified in (5.24) becomes prohibitively
expensive and the real-time evaluation of b1n (un(t; μ

⋆); μ⋆) becomes less likely.
Note that if the reduced, nonlinear, internal force vector b1n (un(t; μ); μ) is a poly-

nomial function ofun of degree d, the Jacobian ofb1n with respect toun – and therefore
the Jacobian of the reduced, nonlinear, force balance vector bn(un(t; μ); μ) (5.21) with
respect toun – is a polynomial function ofun of degree d−1. For this reason, all conclu-
sions stated above regarding the real-time evaluation of b1n (un(t; μ); μ) equally apply
to the real-time evaluation of the Jacobian of b1n (un(t; μ); μ) with respect to un – and
therefore the Jacobian of the reduced, nonlinear, force balance vector bn(un(t; μ); μ)
(5.21) with respect to un.

The practical significance of the offline-online methodology highlighted in (5.24)
for computing in real-time the reduced, nonlinear, internal force vector of a nonlinear
PROM is underscored by its availability in many software products, including Vega,
the physics-based computer graphics library for the simulation of the dynamics of
three-dimensional deformable objects [8].
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Remark 5.2. In general, the reduced, nonlinear, internal force vector exhibits a low-
order polynomial dependence on the vector of generalized coordinates un if the non-
linear, internal force vector exhibits a low-order polynomial dependence on the vec-
tor of DOFs uNh

. In practice, whether the latter holds true or not may depend on the
choice of DOFs. For example in computational fluid dynamics, the discretization of
the primitive form of the Navier–Stokes equations using primitive variables leads to
a quadratic dependence of the nonlinear, internal force vector on these variables. On
the other hand, the discretization of the conservative form of these equations using
conservative variables cannot lead to such a dependence.

Now, it is noteworthy to mention that if the external force vector is fixed in time,
b2n = b2n (μ) can be precomputed offline (see (5.21)). In this case, the low-order poly-
nomial dependence on the solution vector examplified in (5.22) – with d = 2 – de-
fines the class of nonlinear FOMs for which, given a queried parameter point μ⋆ ∈ 𝒫,
the computational bottlenecks associated with the evaluation of the reduced, nonlin-
ear, force balance vector (5.21) and/or its Jacobian can be eliminated using the exact,
precomputation-based methodology described in this section.

5.3.2.2 Real-time computation of the reduced time-dependent external force vector

If the external force vector is time-dependent, b2n = b2n (t; μ), and the real-time com-
putation of this reduced vector requires special attention.

To this effect, it is noted that in many, but not all, PDE-based applications, the
time-dependent, external force vector can be divided into spatial and temporal com-
ponents as follows:

gNh
(t; μ) = 𝔹(μ) am(t; μ), where 𝔹 ∈ ℝNh×m, am ∈ ℝ

m, m ≤ Nh, (5.25)

𝔹 is a Boolean matrix that specifies the nonzero entries of gNh
(t; μ), and am(t; μ) is

an amplitude vector that stores their time histories. In this case, the reduced, time-
dependent, external force vector can be computed as follows:

b2n (t; μ) = 𝕎
T𝔹(μ)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

precomputable
∈ℝn×m

am(t; μ).

Hence, if

gNh
(t; μ) = 𝔹(μ) am(t; μ), 𝔹 ∈ ℝ

Nh×m, am ∈ ℝ
m, andm ≪ Nh, (5.26)

where m ≪ Nh can be interpreted as m is of the order of n, b2n (t; μ) can be efficiently
computed online and in real-time by precomputing offline its time-independent part
𝕎T𝔹(μ).
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5.3.2.3 Real-time computation of the reduced nonlinear force balance vector and its
Jacobian

Consider again the low-order polynomial dependence on the solution vector exam-
plified in (5.22) – with d = 2 – and the spatial-temporal multiplicative decomposition
conditions (5.25) and (5.26). Collectively, these conditions define the class of nonlinear
FOMs for which, given a queried parameter point μ⋆ ∈ 𝒫, the computational bottle-
necks associated with the evaluation of the reduced, nonlinear, force balance vector
(5.21) and/or its Jacobian can be eliminated using the exact, precomputation-based
methodologies described in Sections 5.3.2.1 and 5.3.2.2.

5.3.2.4 Real-time treatment of a parametric dependence in the reduced nonlinear
force balance vector and its Jacobian

There are two main cases to anticipate here:
– Case 1: The interest is in a suite of nonlinear simulations, where the parameter

point μ ∈ 𝒫 is fixed within a simulation but varies across the simulations.
– Case 2: The interest is in a single nonlinear simulation, where either or both of the

following issues must be dealt with:
– Case 2a: μ is configuration-dependent and therefore may vary when the so-

lution vector uNh
(t; μ) – and hence, the vector of generalized coordinates

un(t; μ), the nonlinear, internal force vector fNh
(𝕍un(t; μ); μ), and the re-

duced, nonlinear, force balance vector bn(un(t; μ); μ) (5.21) – vary within
the simulation. This is the case when, for example, the FOM (5.1) is associ-
ated with a structural dynamics or solid mechanics problem, μ contains one
or several shape parameters, and the deformations are sufficiently large to
change the shape of the computational domain at each time step.

– Case 2b: μ is varied in time – for example, in the external force vector gNh
(t; μ)

and therefore in the reduced, external force vector gn(t; μ) and the reduced,
nonlinear, force balance vector bn(un(t; μ); μ) (5.21). This is the case when,
for example, the FOM (5.1) is associated again with a structural dynamics or
solidmechanics problem, μ contains one or several shape parameters, the de-
formations are sufficiently large to change the shape of the computational do-
main at each time step, and gNh

(t; μ) is a pressure-induced, time-dependent,
external force vector.

In Case 1, the exact, precomputation-based methodologies can be applied as de-
scribed in Sections 5.3.2.1 and 5.3.2.2. In Case 2a, the parameter dependency in the
reduced matrices [𝕎]ji𝔽j1 (μ)𝕍, [𝕎]ji𝔽j2k+1 (μ)𝕍, 𝕍

T𝔾j2k (μ)𝕍, and 𝕍
T𝔾j2k+1 (μ)𝕍 (see

(5.24)) must be efficiently treated: This can be done using the method of interpolation
on matrix manifolds described in Section 5.4.1. Similarly in Case 2b, the parameter
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dependency in the reduced, external force vector can be efficiently treated using the
interpolation method described in Section 5.4.1.

5.4 Approximate reconstruction methodologies

Within the inexact approach developed so far for eliminating the computational bot-
tlenecks associatedwith the repeated constructions of the reduced quantities defining
a PROM, two methodologies stand out from the rest. The first one specifically targets
parametric, linear PROMs. The secondmethodology is equally applicable to paramet-
ric and nonparametric, linear and nonlinear PROMs.

5.4.1 Database of linear PROMs and interpolation on matrix
manifolds

For a sufficiently large and/or high-dimensional bounded parameter space 𝒫, and/or
in the presence of large sensitivities of the parametric FOM with respect to μ, the di-
mensionnof the global right ROB𝕍 forwhich the subspace approximation (5.17) is suf-
ficiently accurate may be too large to enable a PMOR to be “compact” and/or perform
in real-time. Furthermore, if for a parametric, linear FOM the conditions (5.20) are not
satisfied, the reconstruction in real-timeof thePROM(5.19) at a queriedbut unsampled
point μ⋆ ∈ 𝒫 may not be feasible. For these reasons, an alternative methodology has
also been developed in the literature for eliminating the computational bottlenecks
associated with the efficient processing of parametric, linear PROMs.

Specifically, an alternative methodology was proposed in [1] for efficiently treat-
ing the dependence of a linear PROM on a parameter vector. It consists in: generating
offline a database of pointwise, linear PROMs; equipping it with a family of algorithms
for interpolation on matrix manifolds; and applying these algorithms online to build
in real-time aPROMat a queried but unsampledpointμof the parameter space𝒫. Sub-
sequently, this alternative methodology was fully developed in [3] and demonstrated
for realistic fluid, structure, and fluid–structure interaction problems. Recently, it was
refined in [5]. In the context of the parametric, linear PROM (5.12) – which can be de-
fined by the triplet (𝕄n(μ),𝕂n(μ), gn(t; μ)) – this methodology for treating the param-
eter dependency operates as follows:
1. Offline (divide)

– Apply an appropriate greedy procedure to sample nμ points μi in the parame-
ter space 𝒫.

– At each sampled point μi ∈ 𝒫, i = 1, . . . , nμ, apply any preferred technique
such as, for example, the proper orthogonal decomposition (POD) method of
snapshots [35] in the case of a linear Galerkin-PROM, or the balanced POD
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method in the case of a linear Petrov–Galerkin PROM [40], to construct

𝕄i
n =𝕄n(μi) =𝕎

T
i 𝕄

i
Nh
𝕍i =𝕎

T (μi)𝕄Nh
(μi)𝕍(μi),

𝕂in =𝕂n(μi) =𝕎
T
i 𝕂

i
Nh
𝕍i =𝕎

T (μi)𝕂Nh
(μi)𝕍(μi),

and

gin(t) = gn(t; μi) =𝕎
T
i g

i
Nh
(t) =𝕎T (μi)gNh

(t; μi).

(5.27)

Here, the notation𝕎i =𝕎(μi) (𝕍i = 𝕍(μi)) specifies that the left (right) ROB
is constructed at the point μi ∈ 𝒫 and that in this sense, it is a pointwise ROB.

– Store the set of precomputed reduced matrices {𝕄i
n}
nμ
i=1 in a database 𝒟𝕄

of pointwise, linear 𝕄n-PROMs, the set of precomputed reduced matrices
{𝕂in}

nμ
i=1 in a counterpart database 𝒟𝕂, and the set of precomputed reduced

vectors {gin(t)}
nμ
i=1 in a counterpart database𝒟g.

2. Online (conquer)
– For each queried but unsampled point μ⋆ ∈ 𝒫, construct𝕄⋆n = 𝕄n(μ⋆), 𝕂⋆n =
𝕂n(μ⋆), and g⋆n (t) = gn(t; μ

⋆) as follows:
– Identify a priori three matrix manifolds ℳ𝕄, ℳ𝕂, and ℳg on which 𝕄n,
𝕂n, and gn(t) lie, respectively, by identifying the most important algebraic
property characterizing each of these matrices as explained below (note that
by default, any p × q real-valued matrix belongs to the manifold ℝp×q).

– Interpolate in real-time the precomputed reducedmatrices𝕄i
n (5.27) onℳ𝕄,

the precomputed reduced matrices 𝕂in (5.27) on ℳ𝕂, and the precomputed
reduced vectors gin(t) (5.27) onℳg.

The first version of themethodologydescribed above for treating efficiently the param-
eter dependence of a linear PROM was developed in the context of linear/linearized
Galerkin-PROMs [2]. It focused on: precomputing a set of pointwise right ROBs {𝕍i}

nμ
i=1

of the same dimension Nh × n; storing these pointwise ROBs in a database 𝒟𝕍; and
for each queried but unsampled point μ⋆ ∈ 𝒫, interpolating the precomputed set
of pointwise right ROBs to construct 𝕍μ⋆ = 𝕍(μ⋆). The variant methodology out-
lined above and first proposed in [1, 3] interpolates directly the pointwise PROMs
{(𝕄i

n,𝕂
i
n, g

i
n(t))}

nμ
i=1 (5.27) – instead of their underlying ROBs {𝕍i,𝕎i}

nμ
i=1 – in order to

construct the pointwise PROM (𝕄⋆n ,𝕂
⋆
n , g
⋆
n (t)) at μ

⋆ ∈ 𝒫. Hence, this variant offers the
following added benefits:
1. It replaces the interpolation requirement that all precomputed pointwise ROBs𝕍i

have the same large and small dimensionsNh and n, respectively, by the relatively
lesser requirement that all PROMs {(𝕄i

n,𝕂
i
n, g

i
n(t))}

nμ
i=1 have the same dimension n.

Indeed, while the former requirement restricts the construction of the pointwise
FOMs {(𝕄i

Nh
,𝕂iNh
, giNh
(t))}nμi=1 to the samemesh or to topologically identicalmeshes

in order to guarantee the same large dimension Nh for each FOM (μi), the latter
requirement allows these FOMs to have different dimensions (Nh)i. Therefore, it
frees their construction on different meshes with different sizes [5].
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2. For each queried but unsampled point μ⋆ ∈ 𝒫, it eliminates the need to form
explicitly the matrix-matrix-matrix products𝕎T

⋆𝕄
⋆
Nh
𝕍⋆ and𝕎T

⋆𝕂
⋆
Nh
𝕍⋆ after the

right ROB𝕍⋆ has been computed in real-time by interpolation of the set of point-
wise, right ROBs {𝕍i}

nμ
i=1. This is a critical advantage over the first version [2] based

on the interpolation of ROBs, as the computational complexity of each of the
aforementioned triple matrix product grows as𝒪 (Nh

2n).

Each of the reduced matrices𝕄n and𝕂n and the reduced vector gn(t) can be charac-
terized by identifying a priori themost relevant manifold it belongs to. For example, if
𝕄Nh

is SPD and aGalerkin projection is chosen (𝕎 = 𝕍),𝕄n belongs to three different
manifolds: themanifold of n×n realmatrices,ℝn×n; themanifold of invertiblematrices
of size n, GL (n); and the manifold of SPDmatrices of size n, SPD (n). In this case, SPD
(n) is the most relevant manifold as any matrix that lies on it is real-valued, of size n,
andnonsingular. On the other hand,gn(t)belongs to themanifold ofn×1matrices. The
main objective of interpolation on a matrix manifold is to preserve such a character-
ization during the interpolation process, so that at the queried but unsampled point
μ⋆, the interpolated PROM (𝕄⋆n ,𝕂

⋆
n , g
⋆
n (t)) inherits this characterization. Otherwise,

the standard (coefficient-by-coefficient) interpolationmethod does not guarantee this
objective, except for the manifold ℝp×q – that is, for the case of gn(t; μ) (p = n, q = 1),
where the characterization gn(t; μ) ∈ ℝn is not particularly specific.

Let {𝔸in}
nμ
i=1 denote the set of matrices to be interpolated on a matrix manifoldℳ

on which they lie. For example:
1. 𝔸in =𝕄

i
n ⇒ℳ = SPD (n), GL (n), or simply ℝn×n.

2. 𝔸in = 𝕂
i
n ⇒ℳ = SPD (n), GL (n), or simply ℝn×n.

3. 𝔸in = g
i
n(t)⇒ℳ = ℝn×1.

Among these matrices, choose 𝔸jn as a reference point on ℳ. Let Gn denote an ele-
ment of the tangent space 𝒯𝔸jnℳ toℳ at𝔸jn, and let 𝔹n ∈ℳ denote a point onℳ in
a neighborhood of 𝔸jn. Whichever matrix manifoldℳ is chosen to support the inter-
polation to be performed and whichever reduced matrix 𝔸jn is chosen as a reference
point on this manifold, the set of matrices {𝔸in}

nμ
i=1 can be interpolated onℳ using the

method described in Algorithm 5.1 and graphically depicted in Figure 5.1.
Essentially, Algorithm 5.1 starts by “moving” the set of matrices 𝔸in, i = 1, . . . , nμ

but i ̸= j, to the tangent space to the matrix manifoldℳ at the chosen reference point
𝔸jn, 𝒯𝔸jnℳ, using the logarithmic mapping Log𝔸jn (𝔸

i
n). This leads to the set of matrices

Gi
n = Gn(μi), i = 1, . . . , nμ. Since 𝒯𝔸jnℳ is a linear vector space, Algorithm 5.1 applies

standard interpolation in this space to obtain the interpolated matrix G⋆n = Gn(μ⋆)
at the queried but unsampled point μ⋆ ∈ 𝒫. Next, it moves back G⋆n to ℳ using the
exponential mapping Exp𝔸jn (G

⋆
n ) to deliver the desired matrix𝔸⋆n = 𝔸n(μ

⋆).
Table 5.1 gives the expressions of the logarithmic and exponential mappings

for each of the example matrix manifolds mentioned above. As shown in [3], these
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Algorithm 5.1: Interpolation of {𝔸in}
nμ
i=1 on a matrix manifoldℳ.

Input: nμ matrices𝔸1n, . . . ,𝔸
nμ
n lying onℳ

Output: Interpolated matrix𝔸⋆n = 𝔸n(μ
⋆) at a queried but unsampled point μ⋆ ∈ 𝒫

1: Choose j ∈ 1, . . . , nμ {the interpolation process occurs in the linear vector space
𝒯𝔸jnℳ}

2: for i = 1, . . . , nμ do
3: Compute Gi

n = Log𝔸jn (𝔸
i
n)

4: end for
5: Interpolate independently each entry of the matrices Gi

n, i = 1, . . . , nμ in order to
obtain G⋆n = Gn(μ⋆)

6: Compute𝔸∗n = Exp𝔸jn (G
⋆
n )

Figure 5.1: Interpolation of a set of matrices {𝔸in}
nμ
i=1 on a matrix manifoldℳ.

Table 5.1: Logarithm and exponential mappings for some matrix manifoldsℳ.

ℳ ℝM×N GL (n) SPD (n)

Log𝔸n (𝔹n) 𝔹n −𝔸n log(𝔹n𝔸−1n ) log(𝔸−1/2n 𝔹n𝔸
−1/2
n )

Exp𝔸n (G) 𝔸n + G exp(G)𝔸n 𝔸1/2n exp(G)𝔸1/2n

mappings and the entire Algorithm 5.1 can be implemented in real-time. For high-
dimensional parameter spaces 𝒫, standard interpolation in 𝒯𝔸jnℳ is perhaps most
conveniently performed using radial basis functions [34].

Remark 5.3. Here, two comments are noteworthy. First, the systems of generalized
coordinates underlying the linear PROMs stored in a database must be coherent, in
order to enable the coherent interpolation of these PROMs. This requirement can be
enforced offline, using the simple postprocessing algorithm described in [3]. Second,
Algorithm 5.1 is not guaranteed in principle to preserve the numerical stability of the



5 Computational bottlenecks for PROMs: precomputation and hyperreduction | 199

interpolated PROMs. While this has never been observed to be an issue, the real-time
stabilization algorithm described in [4] can be applied to the interpolated PROM to
guarantee its numerical stability.

5.4.2 Hyperreduction

Finally, consider the most general case where any of the following conditions holds:
– The parametric, nonlinear FOM (5.1) is not characterized by a low-order polyno-

mial nonlinearity in the internal force vector fNh
(uNh
(t; μ); μ).

– The parameter-affine representation (5.18) of the linear instance (5.11) of this high-
dimensional computational model does not satisfy the conditions (5.20).

– The parameter vector μ characterizing the nonlinear FOM (5.1) or its linear in-
stance (5.11) may vary within a single simulation for any of the reasons explained
in Section 5.3.2.4, or any similar or related reason.

In this case, the exact, precomputation-based methodologies described in Sections
5.3.1 and 5.3.2 cannot be applied to eliminate the computational bottlenecks associ-
ated with the repeated reconstructions of the reduced matrices or tangent matrices,
and/or repeated evaluations of the reduced vectors that may arise during the process-
ing of parametric, linear PROMs, and parametric or nonparametric, nonlinear PROMs.
Furthermore, there does not seem to be a clear path that efficiently extends the inexact
approach based on a database of pointwise, linear PROMs described in Section 5.4.1 to
arbitrarily nonlinear problems. For all these reasons, another family of inexact meth-
ods has been developed for addressing in the most general case outlined above the
aforementioned computational bottlenecks. Here, these methods are collectively re-
ferred to as hyperreductionmethods – or the hyperreduction paradigm – even though
their common underlying idea had emerged well before the word “hyperreduction”
was coined in [33].

Hyperreduction methods mitigate or eliminate the computational bottlenecks as-
sociated with the repeated reconstructions of projection-based reduced-order opera-
tors by approximating these operators using a computational complexity that is inde-
pendent of the dimensionNh of the high-dimensional FOM. Hence, they trade some of
the accuracy achieved by a PROM for speed. They can be classified in two categories:
the approximate-then-project methods, which appeared first in the literature; and the
project-then-approximatemethods, which were developed more recently.

As suggested by their label, approximate-then-project hyperreduction methods
approximate first an operator of interest and then project the performed approxima-
tion on the left ROB𝕎 (Petrov–Galerkin-PROM) or 𝕍 (Galerkin-PROM). Their under-
lying common idea for avoiding a computational complexity that scales with the high
dimension Nh of the problem can be traced back to the gappy POD method [20]. This
idea, which was originally developed for image reconstruction, can be described as
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follows. First, the operator to be reduced – for example, in this case the nonlinear,
internal force vector fNh

(𝕍un(t; μ); μ) ∈ ℝNh – is approximated using a small num-
ber m ≪ Nh of empirically derived basis functions, where m is not necessarily re-
lated to the dimension n of the PROM to be hyperreduced. This can be written as
fNh
(𝕍un(t; μ); μ) ≈ ̂fNh

(𝕍un(t; μ); μ) = 𝕌fm(𝕍un(t; μ); μ), where𝕌 ∈ ℝNh×m stores in
its columns the empirically derived basis functions and fm(𝕍un(t; μ); μ) ∈ ℝm denotes
the vector of reduced or generalized coordinates of this approximation. This vector is
computed such as to minimize the error of this approximation at a small number of
computed rows of fNh

(𝕍un(t; μ); μ) – that is, if ℐ represents the set of computed rows
|ℐ| ≪ Nh, f optm (𝕍un(t; μ); μ) = argmin ‖fℐNh

(𝕍un(t; μ); μ) −𝕌ℐfm(𝕍un(t; μ); μ)‖2 =
(𝕌ℐ)†fℐNh

(𝕍un(t; μ); μ), where ♠
ℐ designates the restriction of the vector or matrix

♠ to its rows specified by the elements of ℐ; fℐNh
∈ ℝ|ℐ|; 𝕌ℐ ∈ ℝ|ℐ|×m; the super-

script † designates the Moore–Penrose pseudo-inverse; and therefore (𝕌ℐ)† ∈ ℝm×|ℐ|.
Note that if the number of empirical basis functionsm is equal to |ℐ|, the optimal ap-
proximation of fNh

(𝕍un(t; μ); μ) becomes ̂fNh
(𝕍un(t; μ); μ) = 𝕌f optm (𝕍un(t; μ); μ) =

𝕌(𝕌ℐ)−1fℐNh
(𝕍un(t; μ); μ).

Then, assuming the general case of a Petrov–Galerkin projection, the hyperre-
duced, nonlinear, internal force vector is computed as f̃n(𝕍un(t; μ); μ) =
𝕎T ̂fNh
(𝕍un(t; μ); μ) = 𝕎T𝕌(𝕌ℐ)†fℐNh

(𝕍un(t; μ); μ), where the tilde symbol applied
to an algebraic quantity designates here and throughout the remainder of this chapter
the hyperreduction of this quantity. The hyperreduced vector f̃n(𝕍un(t; μ); μ) is re-
constructed each time t and/or μ is varied by: precomputing offline the matrix-matrix
product ℚ = 𝕎T𝕌(𝕌ℐ)† ∈ ℝn×|ℐ|; and reconstructing online the approximation
f̃n(𝕍un(t; μ); μ) = ℚfℐNh

(𝕍un(t; μ); μ) in 𝒪 (n|ℐ|) operations, where n ≪ Nh and
|ℐ| ≪ Nh.

The empirical interpolation method (EIM) introduced in [9, 26] – that is, almost a
decade after the gappyPODmethod–andavariant of its discrete versionknownas the
discrete EIM (DEIM) [15], aswell asmanyother hyperreductionmethods, including the
missing point estimation approach [7], follow the same general idea, albeit for PDE-
based applications. For this reason, the EIM is, unlike gappy POD, grounded in the
continuum level. For elliptic problems, it enjoys some level of theoretical support. On
the other hand, DEIM is arguably the most popular approximate-then-project hyper-
reduction method to date, due perhaps to its black-box algebraic formulation. A ver-
sion of thismethod tailored to FE approximationswas recently described in [38] under
the name “unassembled discrete empirical interpolation method” (UDEIM). Another
noteworthy approximate-then-project hyperreduction method is the Gauss–Newton
with approximated tensors (GNAT) method introduced in [12]. GNAT is also related to
the gappy POD method. However, unlike EIM and DEIM, GNAT was conceived from
the beginning for the Petrov–Galerkin rather than the Galerkin framework of model
reduction. As such, it has a few distinctive features. More importantly, GNAT has been
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successfully applied to the real-time solution of large-scale, three-dimensional, tur-
bulent flow problems of industrial relevance [13].

On the other hand, project-then-approximate hyperreduction methods approxi-
mate directly the projection on the left ROB 𝕎 or 𝕍 of an operator such as
fNh
(𝕍un(t; μ); μ) ∈ ℝNh . They avoid a computational complexity that scales with

Nh by avoiding the construction in this case of fNh
, and the matrix-vector product

𝕎T fNh
(𝕍un(t; μ); μ) ∈ ℝn or 𝕍T fNh

(𝕍un(t; μ); μ) ∈ ℝn. Among this family of hyper-
reduction methods, the two most notable ones are the cubature-based approxima-
tion method developed in [6] for computer graphics applications, and the energy-
conserving sampling and weighting (ECSW) method developed in [22], characterized
in [24] for second-order dynamical systems, and parallelized in [14]. Essentially, such
methods proceed in two steps. First, they sample offline a given high-dimensional
mesh to construct a reduced mesh, and attribute to each sampled element a weight-
ing coefficient that they determine by solving a suitable optimization problem. Then,
they approximate online each projection-based reduced-order operator to be recon-
structed using a quadrature rule determined by the reduced mesh and its associated
weights. For second-order dynamical systems such as those arising in wave propaga-
tion, solid mechanics, and structural dynamics applications, ECSW is to date the only
known project-then-approximate hyperreduction method with a provable structure-
preserving property. For such problems, it specifically preserves the Lagrangian struc-
ture associated with Hamilton’s principle. As such, ECSW can preserve the numerical
stability properties of a discrete second-order dynamical system to which it is applied
to, unlike the EIM, the DEIM, and GNAT.

Hence, because they represent the state of the art of hyperreduction and have
demonstrated success at enabling, for practical applications, the wall-clock time re-
duction factors expected from PMOR, the remainder of this chapter focuses on the
description and discussion of: the EIM, the DEIM, and GNAT within the category of
approximate-then-project hyperreduction methods; and ECSWwithin the category of
project-then-approximate counterpart methods.

5.4.2.1 Approximate-then-project hyperreduction methods

First, the hyperreduction of μ-dependent vector quantities such as the external
force vector gNh

(t; μ) is considered, followed next by the hyperreduction of non-
linear, solution- and μ-dependent vector quantities such as the internal force vector
fNh
(𝕍un(t; μ); μ). In each case, the computation of the approximate function ĝNh

(t; μ)
(and ̂fNh

(𝕍un(t; μ); μ)) is discussed, and then the efficient computation of the final
result g̃n(t; μ) (and f̃n(𝕍un(t; μ); μ)) is described.
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5.4.2.1.1 Empirical interpolation method for μ-dependent functions
The EIM was introduced in [9, 26] for the approximation at the continuum level of a
family of parameter-dependent functions 𝒢 = {g(⋅; μ), μ ∈ 𝒫}⊂ C0(Ω), where in three
dimensions, Ω ⊂ ℝ3. Here and throughout this section, the time dependence of a func-
tion g ∈ 𝒢 is accounted for by enlarging the dimension of𝒫 by 1 and treating time as a
component of the parameter vector μ. Themethod is built on basis functions obtained
by sampling g at a suitably selected set of points in 𝒫, rather than on predefined ba-
sis functions as in polynomial interpolation. Its purpose is to find approximations to
elements of 𝒢 through an operator ℐxm that interpolates the function g(⋅; μ) at some
carefully selected points in Ω. Given a set of m basis functions {ρ1, . . . , ρm} that are
linear combinations ofm particular snapshots g(⋅; μ1EIM), . . . , g(⋅; μ

m
EIM), and a set ofm

interpolation points Tm = {t 1, . . . , tm} ⊂ Ω to be properly selected – also referred to
as magic points – the interpolant ℐxmg(⋅; μ) of g(⋅; μ), for μ ∈ 𝒫, admits a separable
expansion and therefore can be written as follows:

ℐxmg(x; μ) =
m
∑
j=1

γj(μ)ρj(x), x ∈ Ω. (5.28)

The μ-dependent coefficients γj(μ) are obtained by fulfilling the interpolation con-
straints

ℐxmg(t
i; μ) = g(t i; μ), i = 1, . . . ,m, (5.29)

which yields the linear system of equations

m
∑
j=1

γj(μ)ρj(t
i) = g(t i; μ), i = 1, . . . ,m. (5.30)

The matrix form of this system reads

𝔹mγ(μ) = gm(μ), ∀μ ∈ 𝒫 ,

where [𝔹m]ij = ρj(t i), [γ(μ)]j = γj(μ), and [gm(μ)]i = g(t i; μ), for i, j = 1, . . . ,m.
The construction of the basis functions ρi(x), i = 1, . . . ,m, yielding the approxima-

tion spaceXm = span{ρ1, . . . , ρm}, is governed by a greedy procedure [29] that addition-
ally yields the interpolation points Tm = {t 1, . . . , tm} and a sample set of parameters
Sm = {μ1EIM, . . . ,μ

m
EIM}, all of which are needed for generating the basis functions. The

greedy procedure is a two-step algorithm that can be described as follows:
– Initialization step. The first sample point is chosen as

μ1EIM = argmax
μ∈𝒫
g(⋅; μ)
L∞(Ω)

and therefore S1 = {μ1EIM}. The first generating function is defined as

ξ1(x) = g(x; μ
1
EIM).
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The first interpolation point is selected as

t 1 = argmax
x∈Ω
|ξ1(x)|

and therefore T1 = {t 1}. Hence, the first basis function is constructed as

ρ1(x) = ξ1(x)/ξ1(t
1)

and therefore X1 = span{ρ1}. Finally, the initial interpolation matrix is defined as

[𝔹m]11 = ρ1(t
1) = 1.

At this stage, the available information allows the definition of the interpolant
as the only function that is collinear with ρ1 and coincides with g at t 1 – that is,
ℐx1 g(x; μ) = g(t

1; μ)ρ1(x).
– Recursive step. At each j-th step, j = 1, . . . ,m − 1, given the nested set of interpola-

tion points Tj = {t 1, . . . , t j} and the set of basis functions {ρ1, . . . , ρj}, the (j + 1)-th
generating function is selected as the snapshot that is worst approximated by the
current interpolant – that is, the snapshot that maximizes the difference between
g and ℐxj g. This can be written as

μj+1EIM = argmax
μ∈𝒫
g(⋅; μ) − ℐ

x
j g(⋅; μ)
L∞(Ω), (5.31)

which yields the generating function

ξj+1(x) = g(x; μ
j+1
EIM)

and the set Sj+1 = Sj ∪ {μ
j+1
EIM}. The (j + 1)-th interpolation point is selected by first

solving the linear system

j
∑
l=1

ρl(t
i)γl = ξj+1(t

i), i = 1, . . . , j,

in order to characterize the interpolant ℐxj ξj+1 (5.28), then evaluating the residual

rj+1(x) = ξj+1(x) − ℐ
x
j ξj+1(x), (5.32)

and finally choosing the point in Ω where ξj+1 is worst approximated – that is,

t j+1 = argmax
x∈Ω
|rj+1(x)|. (5.33)

This point selection is followed by the update Tj+1 = Tj ∪ {t j+1}. Then, the new
basis function is constructed as

ρj+1(x) =
ξj+1(x) − ℐxj ξj+1(x)

ξj+1(t j+1) − ℐxj ξj+1(t j+1)
=

rj+1(x)
rj+1(t j+1)

and therefore Xj+1 = span{ρi}, i = 1, . . . , j + 1.
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The entire procedure described above is repeated until a given tolerance εEIM is
reached for the maximum norm of the residual (5.32), or until a given maximum
numbermmax of terms is calculated.

EIM yields a sequence of hierarchical spaces X1 ⊂ X2 ⊂ ⋅ ⋅ ⋅ ⊂ Xm and a set
{ρ1, . . . , ρm} of linearly independent basis functions. Moreover, the m interpolation
points where the approximation is required to match the function being interpolated
are iteratively determined in an adaptive fashion – that is, without having to recom-
pute all previously selected points.

An a priori error estimation, bounded in terms of the best approximation error,
holds for EIM. Precisely, it is first noted that for any givenm

ℐxmg(x; μ) =
m
∑
i=1

g(t i; μ)lmi (x), where lmi (x) =
m
∑
j=1

ρj(x)(𝔹
−1
m )ji,

and by definition, lmi (x
j) = δij, i, j = 1, . . . ,m. Then for any g ∈ 𝒢, the interpolation error

satisfies

g(⋅; μ) − ℐ
x
mg(⋅; μ)

L∞(Ω) ≤ (1 + Λm) infgm∈Xm

g(⋅; μ) − gm
L∞(Ω),

where

Λm = sup
x∈Ω

m
∑
i=1
|lmi (x)|

is the Lebesgue constant (see, e. g., [29]) and {lmi ∈ Xm} denotes a set of characteristic
Lagrangian functions (lmi (x

j) = δij, i, j = 1, . . . ,m). Here Λm depends on Xm and on the
magic points Tm, but is μ-independent. A pessimistic upper bound for the Lebesgue
constant is Λm ≤ 2m − 1. A posteriori estimates for the interpolation error can be found
in [9, 19], and a link between the convergence rate of the EIM approximation and the
Kolmogorov n-width of the manifold 𝒢 is discussed in [29].

In practice, finding the supremum in (5.31) and (5.33) is not computationally fea-
sible unless approximations of both Ω and𝒫 are considered. Two noteworthy approx-
imations are:
– A fine sample ΞEIMtrain ⊂ 𝒫 of cardinality |ΞEIMtrain| = ntrain to train EIM.
– A discrete approximation Ωh = {xk}

nk
k=1 of Ω of dimension nk . For example in an

FE context, the points xk can be the vertices of the computational mesh, or the
quadrature points of its elements. This approximation leads to Nh DOFs, where
Nh = Nh(nk) is the dimension of the FOM (5.1) and typically Nh ≥ nk .

In this setting, a computable, algebraic version of EIM can be provided after the fol-
lowing quantities are introduced:
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– A vector representation gNh
(μ) ∈ ℝNh of g(⋅; μ), with entries defined by

[gNh
(μ)]i = g(x

map(i); μ), i = 1, . . . ,Nh,

where map is the function that maps each DOF of the FOM (5.1) to the vertex of Ωh
to which it is attached. This representation is obtained by evaluating the function
g in Ωh, for any μ ∈ 𝒫.

– The matrix𝕌 ∈ ℝNh×m defined as

𝕌 = [ρ1 | . . . |ρm ] (5.34)

whose columns encode the discrete representation of the basis functions {ρ1, . . . ,
ρm}, i. e., [𝕌]ij = ρj(xmap(i)).

– A set of m interpolation indices ℐ = {i1, . . . , im} associated with nm ≤ m inter-
polation points {t 1, . . . , t nm } such that {t 1, . . . , t nm } = {xj1 , . . . ,xjnm }, where for k =
1, . . . , nm, jk is related to an interpolation index il ∈ ℐ via jk = map(il).

From (5.28), (5.30), and (5.34), it follows that the discrete representation of the inter-
polation operator ℐxm, denoted by ĝNh

(μ) ∈ ℝNh , is given by

ĝNh
(μ) = 𝕌gm(μ), (5.35)

where gm(μ) ∈ ℝm is the solution of the linear system

[ĝNh
(μ)]il =

m
∑
j=1
[gm(μ)]j[ρj]il = [gNh

(μ)]il , l = 1, . . . ,m. (5.36)

Denoting by gℐNh
(μ) ∈ ℝm the vector whose components are [gℐNh

(μ)]l = [gNh
(μ)]il for

l = 1, . . . ,m and noting that the m × m matrix 𝔹m is easily formed by restricting the
Nh × m matrix 𝕌 to the rows indexed in ℐ, i. e., 𝔹m = 𝕌ℐ , (5.29) can be written in
compact form as

𝕌ℐgm(μ) = g
ℐ
Nh
(μ). (5.37)

From (5.35) and (5.37), it follows that

ĝNh
(μ) = 𝕌(𝕌ℐ)−1gℐ

Nh
(μ) ∀μ ∈ 𝒫 , (5.38)

which completes the description of the algebraic version of the EIM. A correspond-
ing algorithm is given in Algorithm 5.2. Note that the solution of the dense linear sys-
tem (5.37) requires 𝒪(m2) operations, thanks to the lower triangular structure of𝕌ℐ .
Note also that at each iteration, Algorithm 5.2 involves the evaluation of gNh

(μ) for
μ ∈ ΞEIMtrain. Should this operation be expensive, one may form and store once for all the
(possibly dense) matrix

𝕊 = [ gNh
(μ1) | . . . | gNh

(μntrain) ] ∈ ℝNh×ntrain
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Algorithm 5.2: EIM (computable version): offline and online phases.
Offline phase
Input: ΞEIMtrain, Ωh,mmax, εEIM
Output:𝕌, ℐ
1: μ1 = arg max

μ∈ΞEIMtrain

‖gNh
(μ)‖∞

2: r1 = gNh
(μ1)

3: i1 = arg max
i=1,...,Nh
|[gNh
(μ1)]i|

4: ρ1 = gNh
(μ1)/[gNh

(μ1)]i1
5: 𝕌← [ρ1], ℐ ← {i1}, T ← {x

j1 }
6: for k = 2 tommax do
7: μk = arg max

μ∈ΞEIMtrain

‖gNh
(μ) −𝕌(𝕌ℐ)−1gℐ

Nh
(μ)‖∞

8: if ‖gNh
(μk) −𝕌(𝕌ℐ)−1gℐ

Nh
(μk)‖∞ < εEIM then

9: break
10: end if
11: rk = gNh

(μk) −𝕌(𝕌ℐ)−1gℐ
Nh
(μk)

12: ik = arg max
i=1,...,Nh
|[rk]i|

13: ρk = rk/[rk]ik
14: 𝕌← [𝕌 ρk] , ℐ ← ℐ ∪ {ik}, T ← T ∪ {xjk }
15: end for
Online phase
Input: μ⋆, Tnm ,𝕌

ℐ

Output: gm(μ⋆)
1: Form gℐ

Nh
(μ⋆) by evaluating g(⋅; μ⋆) at the interpolation points Tnm = {t

1, . . . , t nm }
2: Solve𝕌ℐgm(μ⋆) = gℐ

Nh
(μ⋆)

before entering thewhile loop. However, already formoderately large values ofNh and
ntrain, storing the matrix 𝕊 can be quite challenging.

After the approximation (5.38) has been computed, the final computation of
the hyperreduced quantity g̃n(μ) = 𝕎T ĝNh

(μ) (or g̃n(μ) = 𝕍T ĝNh
(μ) in the case

of a Galerkin projection) is performed as follows. In the offline phase, the matrix
ℚ = 𝕎T𝕌(𝕌ℐ)−1 ∈ ℝn×m is precomputed. Then, for each queried parameter point
μ⋆ encountered in the online phase, g̃n(μ⋆) = ℚgℐ

Nh
(μ⋆) is computed using a matrix-

vector product whose computational complexity is only𝒪(nm).

Remark 5.4. Note that if, forwhatever reason, a set of linearly independent basis func-
tions {ρ1, . . . , ρm}were given, then the procedure of finding the interpolation points (or
magic points) is well-defined. This remark underlies the idea exploited by DEIM, as al-



5 Computational bottlenecks for PROMs: precomputation and hyperreduction | 207

ready highlighted in [29] in a general setting.While the computable, algebraic version
of EIM given in Algorithm 5.2 was never published before – and certainly not before
the introduction of DEIM in [15] – it can be reasonably assumed that this algebraic ver-
sion or some variant of it (for example, see [10]) was used to compute the numerical
results reported in [26] and in subsequent papers [11, 25].

5.4.2.1.2 Discrete empirical interpolation method for μ-dependent functions
Introduced in [15], theDEIM canbe described as a variant of Algorithm5.2 inwhich the
construction of the basis𝕌 is not necessarily embedded in the greedy procedure used
for guiding the remainder of the computation of the approximation ĝNh

(μ). Specifi-
cally, DEIM approximates a function gNh

(μ) ∈ ℝNh similarly to EIM, by projection onto
a low-dimensional subspace spanned by a basis𝕌. This can be written as

gNh
(μ) ≈ ĝNh

(μ) = 𝕌gm(μ),

where𝕌 = [ρ1 | . . . |ρm ] ∈ ℝ
Nh×m, gm(μ) ∈ ℝm is the corresponding vector of general-

ized coordinates, and m ≪ Nh. DEIM also selects the interpolation points iteratively,
using the same greedy procedure as EIM. However, DEIM was introduced in [15] by
proposing to construct 𝕌 through the application of POD to a set of computed snap-
shots

𝕊 = [ gNh
(μ1DEIM) | . . . | gNh

(μnsDEIM) ], ns ≥ m.

Hence, the key descriptors of this method can be summarized as follows:
1. Construction of a set of snapshots obtained by sampling gNh

(μ) at values μiDEIM,
i = 1, . . . , ns, and application of POD to extract the basis

𝕌 = [ρ1 | . . . |ρm ] = POD([ gNh
(μ1DEIM) | . . . | gNh

(μnsDEIM) ], εPOD), (5.39)

where εPOD is the usual prescribed tolerance for basis truncation.
2. Iterative selection of the set of m indices ℐ ⊂ {1, . . . ,Nh}, where |ℐ| is therefore

equal to the dimensionm of the basis𝕌, using a greedy procedure and this basis.
This operation, which minimizes at each step the interpolation error measured in
the maximum norm over the set of aforementioned snapshots, is the same as the
selection of the magic points in EIM.

3. Computation of the vector of generalized coordinates gm(μ), given a new μ. This
computation is performed by imposing interpolation constraints at the m points
of ℐ corresponding to the selected indices of gNh

(μ). It requires the solution of the
following linear system:

𝕌ℐgm(μ) = g
ℐ
Nh
(μ), (5.40)

where, as previously, 𝕌ℐ ∈ ℝm×m and gℐNh
(μ) ∈ ℝm are the matrix and vector

formed by the rows of𝕌 and gNh
(μ) indexed in ℐ, respectively. As a result,

ĝNh
(μ) = 𝕌(𝕌ℐ)−1gℐ

Nh
. (5.41)
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Algorithm 5.3: DEIM: offline and online phases.
Offline phase
Input: 𝕊, εPOD
Output:𝕌, ℐ
1: [ρ1 | . . . |ρm ] = POD(𝕊, εPOD)
2: i1 = arg max

i=1,...,Nh
|[ρ1]i|

3: 𝕌← [ρ1] , ℐ ← {i1}
4: for k = 2 tom do
5: rk = ρk −𝕌(𝕌

ℐ)−1ρℐ
k

6: ik = arg max
i=1,...,Nh
|[rk]i|

7: 𝕌← [𝕌 ρk] , ℐ ← ℐ ∪ {ik}
8: end for
Online phase
Input: μ⋆, ℐ,𝕌ℐ

Output: gm(μ⋆)
1: Form gℐ

Nh
(μ⋆) by evaluating gNh

(μ⋆) at the interpolation indices ℐ
2: Solve𝕌ℐgm(μ⋆) = gℐ

Nh
(μ⋆)

The construction of the basis 𝕌 and the selection of the set of indices ℐ are summa-
rized in Algorithm 5.3. The well-posedness of the general, dense, linear system (5.40)
is amply discussed in [15] and related papers. The computational complexity of its
solution is O(m3).

The approximation error gNh
(μ) − ĝNh

(μ) can be bounded as

‖gNh
(μ) − ĝNh

(μ)‖2 ≤ ‖(𝕌
ℐ)−1‖2 ‖(𝕀 −𝕌𝕌

T)gNh
(μ)‖2, (5.42)

where

‖(𝕀 −𝕌𝕌T)gNh
(μ)‖2 ≈ σm+1 (5.43)

and σm+1 is the first discarded singular value of the matrix 𝕊 when applying the POD
procedure to construct𝕌 ∈ ℝNh×m. The result (5.43) holds for any μ ∈ 𝒫, provided that
a suitable sampling of the parameter space has been carried out to build the snapshot
matrix 𝕊. In that case, the predictive projection error (5.43) is comparable to the train-
ing projection error σm+1. The estimate (5.42) is built on the information related to the
first discarded term: It can be seen as a heuristicmeasure of the DEIM error. Further re-
sults about a posteriori error estimation for POD-DEIM reduced nonlinear dynamical
systems can be found in [41].

After the approximation (5.41) has been computed, the final computation of the
hyperreduced quantity g̃n(μ) = 𝕎T ĝNh

(μ) (or g̃n(μ) = 𝕍T ĝNh
(μ) in the case of a
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Galerkin projection) is performed as previously described for the case of the EIM
method, in𝒪(nm) computations only.

5.4.2.1.3 EIM and DEIM for solution- and μ-dependent functions
The computable, algebraic version of either the EIM or the DEIM can be equally used
to speed up the evaluation of the parametric, reduced, nonlinear, internal force vec-
tor fn(un(t; μ) defined in (5.8). Because of space limitations, however, only the case of
DEIM and the context of the Galerkin projection are considered here. As far as hyper-
reduction is concerned, similar conclusions can be drawn for the EIM and the more
general context of the Petrov–Galerkin projection.

The problem is to findm (t,μ)-independent basis functions ρj ∈ ℝ
Nh , j = 1, . . . ,m,

and a (t,μ)-dependent vector fm(𝕍un(t;μ);μ) ∈ ℝm, such that the nonlinear, internal
force vector can be approximated as

fNh
(𝕍un(t;μ);μ) ≈ ̂fNh

(𝕍un(t; μ); μ) = 𝕌f fm(𝕍un(t;μ);μ),

where𝕌f = [ρ1 | . . . | ρm] ∈ ℝ
Nh×m. This problem can be solved as follows.

In an offline stage, DEIM is applied to a set of snapshots

Sf = {fNh
(𝕍un(t

k ;μs);μs), s = 1, . . . , ns, k = 0, . . . ,Nt − 1} (5.44)

in order to build the basis 𝕌f and a set of m interpolation indices ℐf = {il}ml=1,
where |ℐf | = m is the number of empirical basis functions. For any new μ ∈ 𝒫,
fm(𝕍un(t;μ);μ) ∈ ℝm is then obtained during an online stage by solving, similarly
to (5.36), the following linear system of equations:

[ ̂fNh
(𝕍un(t;μ);μ)]il =

m
∑
j=1
[fm(𝕍un(t;μ);μ)]j[ρj]il = [fNh

(𝕍un(t;μ);μ)]il

for l = 1, . . . ,m – that is,

̂fNh
(𝕍un(t;μ);μ) = 𝕌f (𝕌

ℐ
f )
−1fℐNh
(𝕍un(t;μ);μ) ∀μ ∈ 𝒫 .

As before, 𝕌ℐf and fℐNh
(𝕍un(t;μ);μ) denote here the matrix and vector formed by the

ℐ rows of 𝕌f and fNh
(𝕍un(t;μ);μ), respectively. Then, the parametric, reduced, non-

linear, internal force vector fn(un(t; μ) = 𝕍T fNh
(𝕍un(t;μ);μ) can be approximated as

follows:

fn(un(t; μ);μ) ≈ f̃n(un(t; μ);μ) = 𝕍
T ̂fNh
(𝕍un(t;μ);μ)

= 𝕍T𝕌f (𝕌
ℐ
f )
−1

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
n×m

fℐNh
(𝕍un(t;μ);μ)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

m×1

.
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Note that fℐNh
(𝕍un(t;μ);μ) can be efficiently evaluated by employing on the reduced

mesh associated with the selected interpolation indices the same assembly rou-
tine used in the context of the full-order problem: This is further described in Sec-
tion 5.4.2.1.5.

A key fact is that the snapshots of the internal force vector highlighted in (5.44)
depend on the PROM-based approximation of the state variable. This implies that
in principle, a nonhyperreduced PROM must be first built to provide the snapshots
𝕍un(tk ;μs), s = 1, . . . , ns, k = 0, . . . ,Nt − 1, which is computationally inefficient. De-
pending on the applicationhowever, this issue canbe avoided and the following snap-
shots of the internal force vector can be precomputed instead:

S̃f = {fNh
(uNh
(tk ;μs);μs), s = 1, . . . , ns, k = 0, . . . ,Nt − 1}. (5.45)

Such snapshots can be evaluated while processing the FOM and computing solution
snapshots of the state variable in order to construct the PROM. If there exists a K > 0
independent of Nh such that

fNh
(uNh
(t;μ);μ) − fNh

(𝕍un(t;μ);μ)
 ≤ K
uNh
(t;μ) −𝕍un(t;μ)



for every t and μ, then the error due to using the snapshots (5.45) instead of their coun-
terparts (5.44) for performing the hyperreduction of the internal force vector can be
kept under control.

The DEIM can also be used to compute an approximation of the reduced Jacobian
matrix𝕂n(un(t; μ); μ) defined in (5.9). Indeed,

𝕂n(un(t; μ); μ) ≈ �̃�n(un(t; μ); μ)

=
𝜕f̃n
𝜕un
(un(t; μ); μ)

= 𝕍T�̂�Nh
𝕍

= 𝕍T𝕌f (𝕌
ℐ
f )
−1

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
n×m

𝕂ℐ
Nh
(𝕍un(t;μ);μ)𝕍

ℐ
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

m×n

,

where the μ-independent quantity 𝕍T𝕌f (𝕌ℐ
f )
−1 can be precomputed, and

𝕂ℐ
Nh
(𝕍un(t;μ);μ)𝕍ℐ ∈ ℝm×n can be assembled online.

5.4.2.1.4 Gauss–Newton with approximated tensors method
Whereas the EIM and DEIM were developed in the context of the Galerkin-PMOR,
GNAT was introduced in [12] in the Petrov–Galerkin context. Like the DEIM, it was
conceived to operate at the fully discrete level. However unlike the DEIM and the com-
putable version of the EIM, it was designed to operate on discrete PROMs of the form

𝕎TrNh
(𝕍un(t

k+1; μ); μ) = 0, (5.46)
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where tk+1 denotes the time instance at the (k + 1)-th computational time step;

rNh
(𝕍un(t

k+1; μ); μ) =𝕄n(μ)u̇n(t
k+1; μ) + fn(un(t

k+1; μ); μ) − gn(t
k+1; μ) (5.47)

is the residual associated with the discretization of the FOM (5.1); and the left ROB
𝕎 is chosen such that the solution of the projected nonlinear system of equations
(5.46) results in the minimization in the two-norm of the discrete, nonlinear residual
rNh
(𝕍un(t k+1; μ); μ) over the approximation subspace associated with the right ROB
𝕍. Namely, GNAT operates in the context of an iteration-dependent left ROB

𝕎 =
𝜕rNh

𝜕un
(𝕍un(t

k+1; μ); μ) =
𝜕rNh

𝜕uNh

(𝕍un(t
k+1; μ); μ)𝕍, (5.48)

where 𝕁Nh
(𝕍un(t k+1; μ); μ) =

𝜕rNh
𝜕uNh
(𝕍un(t k+1; μ); μ) is the Jacobian matrix of the

discrete, nonlinear residual rNh
(𝕍un(t k+1; μ); μ). In this case, solving the system

of equations (5.46) using Newton’s method is equivalent to solving the nonlinear,
least-squares minimization problem

un(t
k+1; μ) = argmin

x∈ℝn
‖rNh
(𝕍x; μ)‖2 (5.49)

using the Gauss–Newton method. For this reason, the projection method summa-
rized by (5.46) and (5.48) is commonly referred to in the literature as the least-squares
Petrov–Galerkin (LSPG) projection method [12].

For a self-adjoint FOM (5.1) characterized at the semi-discrete level by an SPD Ja-
cobianmatrix 𝕁Nh

(𝕍un(t k+1; μ); μ), the Galerkin-PMOR (𝕎 = 𝕍) approach can also be
shown to minimize the discrete, nonlinear residual (5.47), but in the 𝕁−1Nh

-norm. How-
ever, in the general case where the Jacobian matrix 𝕁Nh

(𝕍un(t k+1; μ); μ) is not SPD –
for example, when the FOM (5.1) results from the semi-discretization of the Navier–
Stokes equations – the Galerkin-PMOR approach lacks the optimality property of the
LSPG approach associated with the aforementioned minimization process.

The solution of the LSPG minimization problem (5.49) by the Gauss–Newton
method incurs the solution of a sequence of linear, least-squares problems of the form

min
x∈ℝn
𝕁Nh
(𝕍u(p)n ; μ)𝕍x + rNh

(𝕍u(p)n ; μ)
2, (5.50)

where p denotes the p-th iteration of the Gauss–Newton method. Thus, even though
the dimension of the search subspace associated with the solution of the problem
(5.50) is n ≪ Nh, the computational complexity of any processing of the LSPG-PROM
defined by (5.46) and (5.48) remains dependent on the dimension Nh of the origi-
nal FOM (5.1). To address this issue, GNAT approximates the columns of the high-
dimensional matrix-vector product 𝕁Nh

(𝕍u(p)n (t
k+1; μ); μ)𝕍 and the high-dimensional
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nonlinear residual rNh
(𝕍u(p)n (t

k+1; μ); μ) by projection onto the low-dimensional sub-
spaces spanned by two bases to be determined, 𝕌𝕁 ∈ ℝNh×m𝕁 and 𝕌r ∈ ℝNh×mr ,
respectively, wherem𝕁 ≪ Nh andmr ≪ Nh. This can be written as

𝕁Nh
(𝕍u(p)n (t

k+1; μ); μ)𝕍 ≈ (?𝕁Nh
𝕍)(𝕍u(p)n (t

k+1; μ); μ) = 𝕌𝕁𝕁(p)m𝕁 (μ),
rNh
(𝕍u(p)n (t

k+1; μ); μ) ≈ r̃Nh
(𝕍u(p)n (t

k+1; μ); μ) = 𝕌rr(p)mr
(μ),

(5.51)

where 𝕁(p)m𝕁 (μ) ∈ ℝ
m𝕁×m𝕁 and r(p)mr

(μ) ∈ ℝmr . Specifically, GNAT constructs each of the
bases 𝕌𝕁 and 𝕌r by computing snapshots of the matrix-vector products incurred by
𝕁Nh
(𝕍u(p)n (t

k+1; μ); μ)𝕍 and the nonlinear residual rNh
(𝕍u(p)n (t

k+1; μ); μ), respectively,
and compressing them using the POD method.

As in EIM andDEIM, GNAT computes the reduced coordinates associatedwith the
subspace approximations (5.51) byminimizing the interpolation error at a selected set
of interpolation indices ℐ determined by a greedy procedure. Specifically, GNAT uses
for this purpose a gappyPOD reconstruction technique [20, 13]where the interpolation
error is minimized at a selected set of indices ℐ in the least-squares sense. This yields

𝕁(p)m𝕁 (μ) = argmin
x∈ℝm𝕁×m𝕁

‖𝕁ℐNh
(𝕍u(p)n (t

k+1; μ); μ)𝕍 −𝕌ℐ
𝕁 x‖F

= (𝕌ℐ
𝕁 )
†𝕁ℐNh
(𝕍u(p)n (t

k+1; μ); μ)𝕍,

r(p)mr
(μ) = argmin

x∈ℝmr
‖rℐNh
(𝕍u(p)n (t

k+1; μ); μ) −𝕌ℐ
r x‖2

= (𝕌ℐ
r )
†rℐNh
(𝕍u(p)n (t

k+1; μ); μ),

(5.52)

where the superscript ℐ designates, as before, the restriction of an algebraic quan-
tity to its rows associated with the indices in ℐ, and the superscript † designates the
Moore–Penrose pseudo-inverse. Unlike in the EIM and DEIM, where |ℐ| is chosen to
be equal to the dimension m of the function to be approximated for the purpose of
hyperreduction, |ℐ| is governed in GNAT by the more general constraints |ℐ| ≥ mr and
|ℐ| ≥ m𝕁. These constraints suffice to make the interpolation problems well-posed.
However, it is noted here that: both EIM and DEIM can be modified, if desired, to use
a set of indices ℐ whose cardinality is larger than m; and the reconstruction in GNAT
can be constrained to the case where |ℐ| = mr = m𝕁, if this is deemed more practical.

Substituting the approximations defined by (5.51) and (5.52) into the linear, least-
squaresminimization problem (5.50) to be solved at eachp-thGauss–Newton iteration
and exploiting the orthogonality property 𝕌T𝕁𝕌𝕁 = 𝕀m𝕁 transforms this problem into
the hyperreduced, linear, least-squares minimization problem

min
x∈ℝn
(𝕌

ℐ
𝕁 )
†𝕁ℐNh
(𝕍u(p)n (t

k+1; μ); μ)𝕍x

+𝕌T𝕁𝕌r(𝕌
ℐ
r )
†rℐNh
(𝕍u(p)n (t

k+1; μ); μ)2, (5.53)

where the matrices ℚ𝕁 = (𝕌ℐ
𝕁 )
† ∈ ℝm𝕁×|ℐ| and ℚr = 𝕌T𝕁𝕌r(𝕌r)

† ∈ ℝm𝕁×|ℐ| can be pre-
computed offline. The offline-online decomposition achievable here is the direct result
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of the gappyPOD-based approximation followedby the projection onto the left ROB𝕎
of full-order quantities (in this case, 𝕁Nh

(𝕍u(p)n (t
k+1; μ);μ)𝕍 and rNh

(𝕍u(p)n (t
k+1;μ); μ)),

in the same fashion as was achieved for EIM and DEIM. Note that given m𝕁 ≥ n, the
problem (5.53) has a unique solution.

The above description of GNAT shows that the computational complexity of this
hyperreduction method is independent of the dimension Nh of the FOM (5.1). At each
p-th Gauss–Newton iteration, this complexity has twoparts. The first part, which is as-
sociatedwith the computation of thematrix-matrix productℚ𝕁𝕁ℐNh

(𝕍u(p)n (t
k+1; μ); μ)𝕍

and that of thematrix-vector productℚrrℐNh
(𝕍u(p)n (t

k+1; μ); μ), is𝒪((m𝕁n+m𝕁)|ℐ|). The
second part, which is associatedwith the solution of the linear, least-squares problem
(5.53) of dimensionm𝕁×n, has the computational complexity𝒪(m𝕁n2)whenperformed
by forming and solving directly the normal equations associated with (5.53), or using
instead a QR factorization-based approach.

5.4.2.1.5 Mesh sampling
The EIM, the DEIM, and GNAT have in common a procedure for constructing a set of
indices ℐ. Collectively, these indices constitute in general a sampling of the DOFs of
the FOM (5.1) that defines the vectors gℐ

Nh
(t; μ) and fℐNh

(𝕍un(t; μ); μ), or the vectors
rℐNh
(𝕍u(p)n (t

k+1; μ); μ) and Jacobian matrices 𝕁ℐNh
(𝕍u(p)n (t

k+1; μ); μ), and leads to effi-
cient hyperreduction. In most cases, the construction of these sampled vectors and
matrices does not require access neither to the complete mesh nor to the full-order so-
lution 𝕍un(t; μ). Instead, it requires access only to a small subset of the geometrical
entities (for example, the elements of an FE mesh) related to the indices ℐ, and to the
contributions of these entities to the aforementioned sampled vectors and matrices.
For this reason, the concept of a reduced mesh was introduced in [13] in order to ease
the implementation in practice of hyperreduction methods of the approximate-then-
project type. In this concept, the reduced mesh is defined as the subset of the original
mesh which contains only those geometrical entities that are essential to the correct
computation of the aforementioned sampled vectors andmatrices. Hence, depending
on the type of the spatial discretization (i. e., FE, cell-centered or vertex-based finite
volume [FV], or finite difference [FD]), the reducedmeshmay represent a larger mask-
ing of the full-order solution vector described by the larger set of indices ℐ+ (|ℐ+| ≥ |ℐ|).
Specifically, it is fully described by ℐ and the stencil of the semi-discretization under-
lying the FOM (5.1). As such, the reduced mesh describable by ℐ+ enables the reuse
of the same computational framework and corresponding software employed to con-
struct the FOM (5.1), not only to efficiently compute the sampled quantities gℐ

Nh
(t; μ)

and fℐNh
(𝕍un(t; μ); μ), or rℐNh

(𝕍u(p)n (t
k+1; μ); μ) and 𝕁ℐNh

(𝕍u(p)n (t
k+1; μ); μ), but also to

hyperreduce the PROM (5.6) and process the resulting hyperreduced PROM.
The concept of a reduced mesh described above is illustrated in Figure 5.2, for a

two-dimensional, first-order, vertex-based, FV semi-discretization based on triangu-
lar elements. The left part of this figure shows the computational mesh with the dual
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Figure 5.2: Illustration of the reduced mesh concept for a two-dimensional, first-order, vertex-based
FV semi-discretization: original mesh (left), basic and enlargened sets of indices (middle), and re-
duced mesh (right).

cells (or control volumes) delineated using dashed lines. The middle part of this fig-
ure highlights a sampled set of indices ℐ and the associated larger set of indices ℐ+.
The right part of Figure 5.2 shows the reduced mesh associated with ℐ+. (Note that for
an FE semi-discretization using the same mesh, the same set of indices ℐ leads to the
same reduced mesh.)

5.4.2.2 Project-then-approximate hyperreduction methods

Unlike their approximate-then-project counterparts, project-then-approximate hyper-
reduction methods approximate directly reduced quantities, such as the reduced,
nonlinear, internal force vector fn(un(t; μ); μ) = 𝕎T fNh

(𝕍un(t; μ); μ) or its Jacobian
𝕂n(un(t; μ); μ) = 𝕎T𝕂Nh

(𝕍un(t; μ); μ)𝕍 (5.9). Furthermore, unlike the EIM and the
DEIM, the method ECSW overviewed below hyperreduces μ-dependent functions
such as the reduced, external force vector gn(t; μ) and solution- and μ-dependent
functions such as fn(un(t; μ); μ) in the same manner. For this reason, the focus is set
here on the general case examplified by the reduced, nonlinear, force balance vec-
tor bn(un(t; μ); μ) = fn(un(t; μ); μ) − gn(t; μ) (5.21) and its Jacobian with respect to
un(t; μ),𝕂n(un(t; μ); μ).

5.4.2.2.1 Energy-conserving sampling and weighting method
The hyperreductionmethod ECSW can be derived and/or interpreted using two differ-
ent but related approaches. Both are combined below to describe this method in the
clearest possible manner, in the context of the FE, cell-centered or vertex-based FV, or
FD method.

Let ℰ = {e1, e2, . . . , ene } denote: the set of ne elements of a givenmesh if the context
is set to that of an FE or cell-centered FV semi-discretization over this mesh; the set of
dual cells if the context is set to that of a vertex-based FV semi-discretization; or the
set of nodes of the mesh if the context is set to that of an FD semi-discretization.
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In the case of an FE semi-discretization, the evaluation of bn(un(t; μ); μ) and the
construction of 𝕂n(un(t; μ); μ) are typically performed as described by the following
equations:

bn(un(t; μ); μ) = ∑
e∈ℰ
𝕎T𝕃Tebe(𝕃e𝕍un(t; μ); μ), (5.54)

𝕂n(un(t; μ); μ) = ∑
e∈ℰ
𝕎T𝕃Te𝕂e(𝕃e𝕍un(t; μ); μ)𝕃e𝕍, (5.55)

where 𝕃e is the de × Nh Boolean matrix that localizes a high-dimensional matrix de-
fined over the entiremesh to the DOFs associatedwith the entity (element or dual cell)
e; de denotes the number of DOFs associated with this entity; be(𝕃e𝕍un(t; μ); μ) ∈
ℝde denotes the contribution of this entity to the reduced vector bn(un(t; μ); μ); and
𝕂e(𝕃e𝕍un(t; μ); μ) ∈ ℝde×de denotes the contribution of this entity to the reducedma-
trix𝕂n(un(t; μ); μ).

In the case of an FV or FD semi-discretization, the evaluation and construction of
the above reduced quantities are performed similarly – that is,

bn(un(t; μ); μ) = ∑
e∈ℰ
𝕎T𝕃Tebe(𝕃e+𝕍un(t; μ); μ), (5.56)

𝕂n(un(t; μ); μ) = ∑
e∈ℰ
𝕎T𝕃Te𝕂e(𝕃e+𝕍un(t; μ); μ)𝕃e+𝕍, (5.57)

where be(𝕃e+𝕍un(t; μ); μ) and 𝕂e(𝕃e+𝕍un(t; μ); μ) denote, as before, the contribu-
tion of the entity e to the reduced vector bn(un(t; μ); μ) and its contribution to the re-
duced matrix 𝕂n(un(t; μ); μ), respectively. However, each of these two contributions
may depend in this case on the DOFs associated not only with the entity e, but also
with neighboring entities as dictated by the semi-discretization stencil. This is desig-
nated in (5.56) and (5.57) by the symbol + next to the subscript e of the Booleanmatrix
𝕃e+ of dimension (dene+) × n, where ne+ denotes the number of entities participating
in the evaluation of be(𝕃e+𝕍un(t; μ); μ) and 𝕂e(𝕃e+𝕍un(t; μ); μ), as required by the
stencil of the chosen spatial discretization.

To unify the notation adopted above for an FE, FV, or FD semi-discretization, no
distinction is made in the remainder of this section between 𝕃e and 𝕃e+. Instead, it is
assumed that if the spatial discretization is of the FV or FD type,𝕃e is to be understood
as 𝕃e+.

Consider the variational setting underlying the construction of the nonlinear,
force balance vector bNh

(𝕍un(t; μ); μ) = fNh
(𝕍un(t; μ); μ) − gNh

(t; μ) and tangent
stiffness matrix 𝕂Nh

(𝕍un(t; μ); μ). In this setting,𝕎 can be interpreted as a matrix
of test functions and each entry [bn]i(un(t; μ); μ) of the reduced vector bn(un(t; μ); μ)
(5.54) can be interpreted as the virtual work of bNh

(𝕍un(t; μ); μ) along the virtual
“displacement” [𝕎T ]i.

Now, let ℰ̃ = {ẽ1, ẽ2, . . . , ẽñe<<ne } ⊂ ℰ represent a reduced mesh obtained by sam-
pling the elements or dual cells of themesh represented by ℰ, as appropriate. The con-
servation on this mesh of each virtual work represented by each entry of the reduced
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vector bn(un(t; μ); μ) can be globally expressed as

∑
e∈ℰ
𝕎T𝕃Tebe(𝕃e𝕍un(t; μ); μ)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

bn(un(t;μ);μ)

= ∑
e∈ℰ̃⊂ℰ

ξe
⋆𝕎T𝕃Tebe(𝕃e𝕍un(t; μ); μ)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
b̃n(un(t;μ);μ)

, (5.58)

where the real-valued coefficients ξe
⋆ must be introduced so that the above equality

may be feasible.
Similarly, each entry [𝕂n]ij(un(t; μ); μ) of the reducedmatrix𝕂n(un(t; μ); μ) (5.55)

can be interpreted as the virtual work of the internal force vector 𝕂Nh
(𝕍un(t;μ);

μ)[𝕍T ]Tj along the virtual “displacement” [𝕎T ]i. The conservation on the reduced
mesh represented by ℰ̃ of this virtual work for i = 1, . . . , n and j = 1, . . . , n can be
globally expressed as

∑
e∈ℰ
𝕎T𝕃Te𝕂e(𝕃e𝕍un(t;μ); μ)𝕃e𝕍
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Kn(un(t;μ);μ)

= ∑
e∈ℰ̃⊂ℰ

ξe
⋆𝕎T𝕃Te𝕂e(𝕃e𝕍un(t;μ);μ)𝕃e𝕍

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
K̃n(un(t;μ);μ)

, (5.59)

where ℰ̃ and its associated set of real-valued coefficients {ξe
⋆}ẽñee=ẽ1

are in principle
the same as those that appear in (5.58), because 𝕂Nh

(𝕍un(t; μ); μ) is the Jacobian of
(fNh
(𝕍un(t)) − gNh

(t)). In practice, these coefficients must be determined numerically
such that both identities (5.58) and (5.59) hold approximately. For this reason, these
identities should be rewritten as

bn(un(t; μ); μ) ≈ b̃n(un(t; μ); μ) = ∑
e∈ℰ̃⊂E

ξe
⋆𝕎T𝕃Tebe(𝕃e𝕍un(t; μ); μ), (5.60)

Kn(un(t;μ);μ) ≈ K̃n(un(t;μ);μ) = ∑
e∈ℰ̃⊂E

ξe
⋆𝕎T𝕃Te𝕂e(𝕃e𝕍un(t;μ);μ)𝕃e𝕍. (5.61)

Expressions (5.60) and (5.61) suggest that each of the approximations b̃n(un(t; μ);
μ) and K̃n(un(t; μ); μ) can be interpreted as a generalized quadrature rule, where the
elements in ℰ̃ are the quadrature points of this rule and the real coefficients {ξe

⋆}ñee=1
are its weights.

If the high-dimensional matrix KNh
(𝕍un(t; μ); μ) is SPD and 𝕎 = 𝕍 (Galerkin

projection), or for someother reason thematrix product𝕎TKNh
(𝕍un(t; μ); μ)𝕍 is SPD,

then Kn(un(t; μ); μ) is also SPD. In this case, K̃n(un(t; μ); μ) should also be SPD, and
therefore each coefficient ξe

⋆ should be positive – that is, ξe
⋆ ∈ ℝ+.

5.4.2.2.2 Mesh sampling and weighting
ECSW determines simultaneously the reduced mesh represented by ℰ̃ = {ẽ1, ẽ2, . . . ,
ẽñe<<ne } ⊂ ℰ and its associated set of element weights {ξe

⋆}ẽñee=ẽ1
by training either ap-

proximation (5.60) or (5.61) – for example, the approximation (5.60) – using a set of
precomputed reduced, nonlinear, force balance snapshots of the form

bn(un(t
k ; μl); μl) =𝕎

TbNh
(𝕍un(t

k ; μl); μl) =𝕎
TbsNh
(𝕍usn), (5.62)
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for s = 1, . . . , ns, where t k denotes the k-th sampled time instance andμl the l-th param-
eter vector sampled in the parameter space 𝒫; the superscript s designates a solution
snapshot that is precomputed at some time instance t k ∈ [t0, T] and for some sampled
parameter point μl ∈ 𝒫, and is introduced to simplify the notation; and ns denotes the
total number of precomputed snapshots.

For both convenience and computational efficiency, no snapshot usn of the solu-
tion of theparametric, nonlinear PROM(5.6) is computed in order to evaluate (5.62). In-
stead, snapshotsusNh

of the solution of the parametric, nonlinear FOM (5.1) are first col-
lected as in any standard PMOR method (this approach for achieving computational
efficiency is identical to that adopted in the case of DEIM, where the snapshots (5.45)
are used instead of their counterparts (5.44)). Next, these high-dimensional solution
snapshots are converted on-the-fly into the form 𝕍usn using an orthogonal projection
operator onto the subspace spanned by the columns of𝕍. Such a projection operator
is denoted here by Π⊥𝕍.

Let ce(usNh
) = 𝕃Tebe(𝕃eu

s
Nh
) denote the contribution of the mesh entity e to

bNh
(usNh
). Given a collection of ns high-dimensional solution snapshots 𝒮 = {usNh

}nss=1,
consider

bn(Π
⊥
𝕍u

s
Nh
) = ∑

e∈ℰ
𝕎Tce(Π

⊥
𝕍u

s
Nh
), s = 1, . . . , ns.

The above expression can be written in matrix form as

ℂ1 = d,

where

ℂ =(

𝕎Tc1(Π⊥𝕍u
1
Nh
) . . . 𝕎Tcne (Π

⊥
𝕍u

1
Nh
)

...
. . .

...
𝕎Tc1(Π⊥𝕍u

ns
Nh
) . . . 𝕎Tcne (Π

⊥
𝕍u

ns
Nh
)

) ∈ ℝ(nns)×ne , (5.63)

d =(

bn(Π⊥𝕍u
1
Nh
)

...
bn(Π⊥𝕍u

ns
Nh
)

) ∈ ℝ(nns), (5.64)

and 1 is the vector whose entries are all equal to 1. It follows that the hyperreduced
ECSW approximation bn ≈ b̃n of the form given in (5.60) can be written in matrix form
as

ℂξ⋆ ≈ d, (5.65)

where ξ⋆ ∈ ℝne denotes the vector of element weights extended to the entire mesh
represented by ℰ . Therefore, this vector contains 0 in each of its rows associated with
a mesh entity e ∈ ℰ\ℰ̃ .
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For large-scale high-dimensional models, the practical number of precomputed
reduced, nonlinear, force balance snapshots ns and the desired dimension of the
PMOR n are such that nns < ne. Hence, for all practical purposes, the linear system of
equations (5.65) can be considered to be often underdetermined.

The result (5.65) suggests that the pair of minimal subset of sampled elements ℰ̃
representing the desired reduced mesh and associated vector of element weights ξ⋆

that delivers sufficiently accurate hyperreduced approximations of the forms given in
(5.60) and (5.61) is given by the solution of the following optimization problem:

{
ξ⋆ = argmin

ξ≥0
‖ξ ‖0 s. t. ‖ℂξ − d‖2 ≤ τ‖d‖2 if𝕎TKNh

𝕍 is SPD,

ξ⋆ = argmin ‖ξ ‖0 s. t. ‖ℂξ − d‖2 ≤ τ‖d‖2 otherwise,
(5.66)

where τ ∈ ℝ+ is a small, relative tolerance that can be used to control the accuracy of
the resulting hyperreduction. Unfortunately, both optimization problems described in
(5.66) are NP-hard. Therefore, the solution of either of these two problems is infeasible
for practical meshes.

Alternatively, inexact solutions to three different convex approximations of (5.66)
that promote sparsity in the solution can be considered [14]:
1. Approximation A1 below, which transforms problem (5.66) into a (nonnegative)

least-squares (NNLS) problem

{
ξ⋆ ≈ argmin

ξ≥0
1
2 ‖ℂξ − d‖

2
2 if𝕎TKNh

𝕍 is SPD,

ξ⋆ ≈ argmin 1
2 ‖ℂξ − d‖

2
2 otherwise.

(5.67)

2. Approximation A2, which is based on the l1-norm and transforms the original op-
timization problem into a (nonnegative) variant of the basis pursuit problem [16]

{
ξ⋆ ≈ argmin

ξ≥0
‖ξ ‖1 s. t. ℂξ = d if𝕎TKNh

𝕍 is SPD,

ξ⋆ ≈ argmin ‖ξ ‖1 s. t. ℂξ = d otherwise.
(5.68)

3. Approximation A3 below, which corresponds to transforming problem (5.66) into
a (nonnegative) regularized, least-squares problem

{
ξ⋆ ≈ argmin

ξ≥0
‖ℂξ − d‖22 + λ‖ξ ‖1 if𝕎TKNh

𝕍 is SPD,

ξ⋆ ≈ argmin ‖ℂξ − d‖22 + λ‖ξ ‖1 otherwise,
(5.69)

where λ is a positive penalty parameter.

In each of these three approximations, the inexactness of the solution specifically
refers to the fact that the optimal solution is not required to satisfy exactly the Karush–
Kuhn–Tucker conditions, but is considered to be acceptable if it satisfies instead the
following conditions:

{
‖ℂξ − d‖2 ≤ τ‖d‖2 and ξ ≥ 0 if𝕎TKN𝕍 is SPD,
‖ℂξ − d‖2 ≤ τ‖d‖2 otherwise.

(5.70)
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Each of the optimization problems (5.67), (5.68), and (5.69) can be solved using
a parallel, iterative, active set algorithm equipped with (5.70) as a stopping criterion.
Detailed descriptions of such algorithms can be found in [14], where it was shown that
the NNLS approach (5.67) (and its active set algorithm) is by far the fastest and most
computationally efficient approach for performing mesh sampling and weighting.

For completeness, Algorithm 5.4 summarizes the computation of the reduced
mesh represented by ℰ̃ and its associated set of element weights {ξe

⋆}ẽñee=ẽ1
.

Algorithm 5.4: ECSW: offline and online phases.
Offline phase
Input: 𝒮, τ
Output: ℰ̃, {ξe

⋆}ẽñee=ẽ1
1: Assemble ℂ from 𝒮 using (5.63)
2: d← ℂ1
3: Solve (5.67), (5.68), or (5.69) for ξ⋆

4: ℰ̃ ← indices(ξ⋆ > 0)
5: {ξe
⋆}ẽñee=ẽ1
← ξ⋆(ℰ̃)

Online phase
Input: μ⋆, un(t; μ⋆), ℰ̃, {ξe

⋆}ẽñee=ẽ1
Output: b̃n(un(t; μ⋆); μ⋆), K̃n(un(t; μ⋆); μ⋆)
1: Compute b̃n(un(t; μ⋆); μ⋆) using (5.60)
2: Compute K̃n(un(t; μ⋆); μ⋆) using (5.61)

Remark 5.5. If the semi-discretization is of the FV or FD type and, ∀e ∈ ℰ̃, the evalua-
tion of the quantities be(𝕃e+𝕍un(t; μ); μ) and𝕂e(𝕃e+𝕍un(t; μ); μ) requires the local-
ization matrices 𝕃e+ ∀e ∈ ℰ̃, the construction of the reduced mesh must be upgraded
as follows. After ℰ̃ has been computed as described above, it must be augmented with
the entities that define for each e ∈ ℰ̃ the Boolean matrix 𝕃e+ so that all hyperre-
duced computations can be performed completely on the upgraded reduced mesh.
This process is similar to that described in Section 5.4.2.1.5, where the sample index
set ℐ is augmented with the entities required to construct the sampled quantities at
these indices in order to form the final reduced mesh. This additional step is not re-
quired in the case of an FE semi-discretization, because in this case, the evaluations
of be(𝕃e𝕍un(t; μ); μ) and𝕂e(𝕃e𝕍un(t; μ); μ) are local to the element e.
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5.4.2.2.3 Structure-preserving property and significance
Let

N h = Nh/2,

uNh
(t; μ) = (

q̇Nh
 (t; μ)

qNh
 (t; μ)
) ,

fNh
(uNh
(t; μ); μ) = (

f intNh
 (qNh

 (t; μ); μ) + fdissNh
 (q̇Nh

 (t; μ); μ)
−q̇Nh

 (t; μ)
) , (5.71)

gNh
(t; μ) = (

f extcNh
(t; μ) + f extncNh

(t; μ)
0

) ,

𝕄Nh
(μ) = (
𝕄Nh

 (μ) 0
0 𝕀Nh


) ,

where:
– qNh

 (t; μ) denotes the parametric, displacement/rotation vector associated with
a parametric FOM resulting from the FE semi-discretization of a nonlinear, non-
conservative, second-order dynamical system such as, for example, a nonlinear,
nonconservative, structural dynamics system, and q̇Nh

 (t; μ) denotes the corre-
sponding velocity vector.

– f intNh
(qNh

 (t; μ); μ) denotes the parametric, nonlinear, true internal force vector as-
sociatedwith the aforementionedFE-based FOM, and theword “true” is usedhere
and throughout the remainder of this section to distinguish a newly defined en-
tity from its generic counterpart introduced at the beginning of this chapter. This
force vector usually derives from a parametric, nonlinear, internal potential en-
ergy 𝒱 int(qNh

 (t; μ); μ) – that is,

f intNh
(qNh

 (t; μ); μ) = − 𝜕𝒱
int

𝜕qNh


T

(qNh
 (t; μ); μ). (5.72)

– fdissNh
(qNh

 (t; μ); μ) denotes the parametric, nonlinear, dissipative force vector as-
sociated with the aforementioned FE-based FOM. Typically, this vector contains
dissipative forces that remain parallel and in opposite direction to the velocity
vector, depend on its modulus, and are associated with a parametric, nonlinear,
dissipation function𝒟(q̇Nh

 (t; μ); μ) that is a homogeneous function of orderm in
the velocity vector – that is,

q̇TNh
 (t; μ)
𝜕𝒟
𝜕q̇Nh


(q̇Nh

 (t; μ); μ) = m𝒟(q̇Nh
 (t; μ); μ).

For example,m = 1 corresponds to the case of dry friction,m = 2 to viscous damp-
ing, andm = 3 to aerodynamic drag. Hence, the parametric, nonlinear, dissipative
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force vector can be written as

fdissNh
 (q̇Nh

 (t; μ); μ) = − 𝜕𝒟
T

𝜕q̇Nh

(q̇Nh
(t; μ); μ). (5.73)

– f extcNh
(t; μ) denotes the parametric, conservative force vector deriving from a para-

metric, external potential 𝒱 ext(qNh
 (t; μ); μ) – that is,

f extcNh
(t; μ) = −𝜕𝒱

ext

𝜕qN 

T

(qNh
 (t; μ); μ)⇔ 𝒱 ext(qNh

 (t; μ); μ) = −qTNh
f extcNh
(t; μ).

(5.74)
– f extncNh

(t; μ) denotes the parametric, nonconservative force vector.

– 𝕄Nh
 (μ) denotes the parametric, true mass matrix of dimension Nh

 associated
with the aforementioned FOM.

In this context, the semi-discrete, parametric FOM (5.1) models a nonlinear, noncon-
servative, second-order dynamical system – for example, a nonlinear, nonconserva-
tive, structural dynamics system – whose governing FE equation

𝕄N h
(μ)q̈Nh

 + f intNh
(qNh

 (t; μ); μ) + fdissNh
 (q̇Nh

 (t; μ); μ) = f extcNh
(t; μ) + f extncNh

(t; μ) (5.75)

has been rewritten in first-order form. Note that the emphasis here on the case of a
nonconservative system is simply because it is more general than the particular case
of a conservative system.

Let

𝒱(qNh
 (t; μ); μ) = 𝒱 int(qNh

 (t; μ); μ) + 𝒱 ext(qNh
 (t; μ); μ) (5.76)

denote the parametric, nonlinear, total potential associatedwith the second-order dy-
namical system represented by (5.75), and let

𝒯 (q̇Nh
 (t; μ); μ) = 1

2
q̇TNh
 (t; μ)𝕄Nh

 (μ)q̇Nh
 (t; μ) (5.77)

denote its kinetic energy. For this second-order dynamical system, Hamilton’s princi-
ple can be written as

̇𝒯 (q̇Nh
 (t; μ); μ) + �̇�(qNh

 (t; μ); μ) = −m𝒟(q̇Nh
 (t; μ); μ) + q̇TN f

ext
ncNh
(t; μ), (5.78)

where 𝒯 is the kinetic energy defined in (5.77), 𝒱 is the total potential defined in (5.76),
(5.72), and (5.74), and 𝒟 is the dissipation function defined in (5.73). The associated
Lagrange equation of motion can be written as

−
d
dt
(
𝜕𝒯
𝜕q̇Nh


)(q̇Nh

 (t; μ); μ) − 𝜕𝒱
T

𝜕qNh

(qNh

 (t; μ); μ) − 𝜕𝒟
T

𝜕q̇Nh

(q̇Nh

 (t; μ); μ)

+ fextncNh
(t; μ) = 0. (5.79)
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In the special context definedby (5.71), the aboveFE-based equation is equivalent to its
counterpart given in (5.75). More importantly, equations (5.78) and (5.79) collectively
define a mathematical structure that is referred to here as the Lagrangian structure
associated with Hamilton’s principle. In [24], it was shown that ECSW preserves this
structure as in the context of (5.71), the kinetic energy𝒯 based on the subspace approx-
imation (5.17) (adjusted to the dimension n), and the hyperreduced total potential 𝒯
and dissipative function 𝒟 obtained by the application of the ECSW approximations
of the form given in (5.60) to 𝒯 and𝒟, respectively, satisfy

̇̃𝒯 (q̇n (t; μ); μ) +
̇̃𝒱(qn (t; μ); μ) = −m𝒟(q̇n (t; μ); μ) + q̇

T
nf

ext
ncn
(t; μ), (5.80)

which is similar to (5.78). In (5.80),n = n/2,qn is the vector of reduced (or generalized)
coordinates associated with qNh

 , and f extncn
(t; μ) is the reduced vector of nonconserva-

tive external forces.
Hence, for parametric, nonlinear, second-order dynamical systems, ECSW is a

structure-preserving hyperreduction method. A major consequence is that in the con-
text defined by (5.71), a preferred time integrator applied to the time discretization of
the parametric, nonlinear PROM (5.6) hyperreduced by ECSWwill exhibit the same, if
not better, numerical stability properties as those that it exhibits when applied to the
time discretization of the underlying FOM (5.1) – see [24] for the justification. Specifi-
cally, if the preferred time integrator is energy-conserving and unconditionally stable
when applied to the time discretization of (5.1), it is guaranteed to be uncondition-
ally stable when applied to the hyperreduction by ECSW of the parametric, nonlinear
PROM (5.6). The latter result follows directly from the preservation by ECSW of the
Lagrangian structure associated with Hamilton’s principle.

5.5 Applications
Here, the DEIM and ECSW are illustrated with both academic and real-world, para-
metric and nonparametric, linear and nonlinear applications for which hyperreduc-
tion is necessary for achieving computational efficiency. As stated before, these two
methods represent the state of the art of approximate-then-project and project-then-
approximate hyperreductionmethods, respectively. Throughout this section, a hyper-
reduced PROM is referred to as an HPROM, and all reported computations are per-
formed in double precision arithmetic.

5.5.1 Hyperreduction of a parametric Helmholtz-elasticity model

Here, the two-dimensional, parametric, acoustic scattering problem graphically de-
picted in Figure 5.3 is considered. This problem is characterized by: a two-dimensional
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Figure 5.3: Parametric, one-way coupled, acoustic scattering problem: Variable shape scatterer,
artificial boundary, computational domain and its discretization, and amplitude of a scattered wave.

obstacle B parameterized by the shape of its boundary 𝜕B; a computational domain
Ω delimited by the parametric boundary 𝜕B and a nonparametric artificial boundary
Γext = 𝜕Ω\𝜕B, where a local absorbing boundary condition is applied; and a pla-
nar incident wave parameterized by a variable direction (cos a sin a)T and a vari-
able wave number κ. It is modeled by an FE-based FOM that is a linear version of
the second-order FOM (5.75) where the solution qNh

 (t; μ) is sought after in the form
qNh
 (t; μ) = q amp

Nh
 (μ)e−Iωt, where the superscript amp designates the amplitude of a

vector, I denotes the pure imaginary number (I2 = −1), ω = κc is a specified cir-
cular frequency, and c is the speed of sound in the medium surrounding the obsta-
cle B; f intNh

 (qNh
 (t; μ)) = 𝕂Nh

 (μ)qNh
 (t; μ) = 𝕂Nh

 (μ)q amp
Nh
 (μ)e−Iωt; fdissNh

 (q̇Nh
 (t; μ); μ) =

𝕊Nh
 (μ)q̇Nh

 (t; μ) = −Iω𝕊Nh
 (μ)q amp

Nh
 (μ)e−Iωt;and f extncNh

(t; μ) = f amp
Nh
 (μ)e−Iωt . Hence, the

aforementioned acoustic scattering problem is represented here by a linear FOM of
the Helmholtz type

(𝕂Nh
 (μ) − ω2𝕄N h

(μ) − Iω𝕊Nh
 (μ))q amp

Nh
 (μ) = f amp

Nh
 (μ), (5.81)

where 𝕊Nh
 (μ) is a real-valued sparse matrix associated with the discretization of the

local absorbing boundary condition and therefore has nonzero entries on Γext only;
and f amp

Nh
 (μ) arises from the treatment of the displacement (Dirichlet) boundary condi-

tion on 𝜕B associated with the incident wave. This FOM is representative of simplified
versions of Helmholtz problems that arise in many applications pertaining to sonar
and radar design, medical imaging, and nondestructive testing.

Specifically, the shape of 𝜕B is parameterized as follows:

𝜕B(ζ ) = 𝜕B̃ + ΓB(ζ1, ζ2, ζ3, ζ4),
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where B̃ is a disk of center (0,0) and radius 1m – and therefore 𝜕B̃ is a circle of center
(0,0) and radius 1m – ΓB is the shape deformation function defined by the following
parameterized two-dimensional displacement vector [18]:

uΓB (ζ ) = (
ζ1 cos 2s + ζ3 cos 4s − (ζ1 + ζ3)

ζ2 sin s + ζ4 sin 3s
) ,

where s = tan−1( yx ) ∈ [0, 2π], x and y denote the coordinates of a generic point on the
circle 𝜕B̃, and ζ = (ζ1 ζ2 ζ3 ζ4)T ∈ 𝒫ζ ⊂ ℝ

4.
In all cases, the artificial boundary Γext is chosen to be the circle of center (0,0)

and radius 5m; hence, ∀ζ ∈ 𝒫ζ , 𝜕Ω\𝜕B = 𝜕Ω̃\𝜕B̃ = Γext, where Ω̃ denotes the refer-
ence computational domain defined by the annular disk of internal radius equal to
1m and external radius equal to 5m. This reference domain is discretized by a ref-
erence mesh M (0) with ne = 142,168 linear triangular elements. For each nonzero
value of the deformational vector uΓB (ζ ), this mesh is deformed using the structural
analogy method described in [37] in order to obtain the mesh M (ζ , η) that conforms
to the parametric boundary 𝜕B(ζ ) and nonparametric artificial boundary Γext. To this
end, two displacement DOFs uΩjx and u

Ω
jy in the x- and y-directions, respectively, are at-

tached to each node of M (0), in addition to the DOF qj governed by the FOM (5.81).
For each queried parameter point ζ ∈ 𝒫ζ , the following high-dimensional problem is
constructed and solved:

𝕂Nh
Ω (ζ , η)uNh

Ω (ζ , η) = fNh
Ω (ζ , η), (5.82)

where 𝕂Nh
Ω (ζ , η) is an FE stiffness matrix of dimension Nh

Ω associated with the
elasticity-based structural analogy method described in [37], η is a user-defined nu-
merical parameter of this method, uNh

Ω (ζ , η) is the vector of displacement DOFs of
M (0), and fNh

Ω (ζ , η) arises from the treatment of the displacement (Dirichlet) bound-
ary condition on 𝜕B associated with the deformation of this boundary. Then, M (ζ , η)
is constructed by updating the position of the nodes ofM (0) using the computed vec-
tor of displacement DOFs uNh

Ω (ζ , η). This approach ensures that ∀ζ ∈ 𝒫ζ , the mesh
topology of the reference mesh M (0) is preserved by M (ζ , η). Therefore, it simplifies
the PMOR of the FOM (5.82) whose operators depend on M (ζ , η). For ne = 142,168,
Nh

Ω = 141,256 and Nh
 = 71,324.

Let 𝒫(ζ ,η) ⊂ ℝ
5 denote the five-dimensional parameter space where a typi-

cal point μ(ζ ,η) is given by μ(ζ ,η) = (ζ1 ζ2 ζ3 ζ4 η)T , and let 𝒫 ⊂ ℝ7 denote
the seven-dimensional parameter space where a typical point μ is given by μ =
(ζ1 ζ2 ζ3 ζ4 η a κ)T , where it is recalled that a and κ parameterize the planar
incident wave direction and wave number. The considered ranges for the parameter
space 𝒫 are:
– ζ1 ∈ [−1/2, 1/2], ζ2 ∈ [−0.8, 1.2], ζ3 ∈ [−0.05,0.05], ζ4 ∈ [−0.05,0.05], and η ∈
[0, 1.4];
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– a ∈ [0,π/6] and κ ∈ [2, 4].

Then, for each queried parameter point μ ∈ 𝒫, the solution of the acoustic scattering
problem graphically depicted in Figure 5.3 consists in solving the one-way coupled
problem defined by the FOM (5.82) and the FOM (5.81), as follows:
– First, solve the problem (5.82) for μ(ζ ,η) ⊂ μ and transform M (0) into M (ζ , η)

using the computed uNh
Ω (μ(ζ ,η)).

– Next, construct the problem (5.81) for the queried parameter point μ and solve it
to obtain q amp

Nh
 (μ).

Because the parametric stiffness matrix 𝕂Nh
Ω (ζ , η) of the parametric FOM (5.82) de-

pends implicitly on μ(ζ ,η), – and therefore, 𝕂Nh
Ω (ζ , η) cannot be explicitly written as

an affine function ofμ(ζ ,η) – and because the parametric operator𝕂Nh
 (μ)−ω2𝕄N h

(μ)−
Iω𝕊Nh

 (μ) governing the parametric FOM (5.81) depends on the updatedmeshM (ζ , η)
and therefore depends implicitly on μ(ζ ,η) ⊂ μ, the hyperreduction of any PROMs con-
structed for the FOM (5.82) and/or the FOM (5.81) is necessary in order to achieve com-
putational efficiency.

The PMOR of the one-way coupled, acoustic scattering problem defined above is
performed in two steps as follows. First, a PROM for themeshmotion problem (5.82) is
constructed, followed by the construction of a PROM for theHelmholtz problem (5.81).
In both cases, the POD and Galerkin projection methods are used for this purpose.
Specifically, the LATIN hypercube sampling method is applied to sample 𝒫(ζ ,η) ⊂ ℝ

5

in 50 points, and 50 solution snapshots are computed at these points and compressed
using SVD. This leads to a PROM for the mesh motion problem of dimension nu = 10.
Then, the DEIM is applied to hyperreduce this PROM using seven POD basis vectors
for approximating the action of an instance of the left-hand side matrix𝕂Nh

Ω (ζ , η) on
a vector of dimension NΩ

h , and 21 POD basis vectors for representing a right-hand side
vector of the form fNh

Ω (ζ , η). A relative tolerance of 10−5 is used to truncate all com-
puted POD bases [32], which is reasonable given the decay of the normalized singular
values reported in Figure 5.4 for each computed snapshot matrix.

Next, 𝒫 ⊂ ℝ7 is similarly sampled at 250 points in order to compute 250 solu-
tion snapshots of the Helmholtz problem (5.81). To this end, the PROM constructed
for the mesh motion problem (5.82) is used for solving this problem at each sampled
point and updating accordingly the position of the nodes ofM (0). The 250 computed
solution snapshots of (5.81) are then compressed using SVD to obtain a global ROB
and associated Galerkin-PROM of dimension nq = 137. Then, this PROM is hyperre-
duced using DEIM, 206 POD basis vectors for approximating the action of an instance
of the left-hand side matrix (𝕂Nh

 (μ)−ω2𝕄N h
(μ)− Iω𝕊Nh

 (μ)) on a vector of dimension
N h, and 229 POD basis vectors for representing a right-hand side vector of the form
f amp
Nh
 (μ). In this case, a relative tolerance of 10−7 is used to truncate all computed POD

bases: This tolerance value is reasonable given the decay of the normalized singular
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Figure 5.4: Parametric, one-way coupled, acoustic scattering problem: Decay of the normalized sin-
gular values of the matrix of snapshots of the right-hand side vector of (5.82) (left), of the action of
the left-hand side matrix of (5.82) on a vector (middle), and of solutions of (5.82) (right).

Figure 5.5: Parametric, one-way coupled, acoustic scattering problem: Decay of the normalized sin-
gular values of the matrix of snapshots of the right-hand side vector of (5.81) (left), of the action of
the left-hand side matrix of (5.81) on a vector (middle), and of solutions of (5.81) (right).

values reported in Figure 5.5 for each computed snapshot matrix. Note that this decay
is significantly slower than in the case of themeshmotion problem, which indicates a
stronger dependence of the operators and solution of the Helmholtz problem (5.81) on
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Figure 5.6: Parametric, one-way coupled, acoustic scattering problem: DEIM-based reduced mesh.

their parameters. Figure 5.6 shows the reduced mesh obtained for this one-way cou-
pled Helmholtz problem using the DEIM. This mesh contains 1,391 elements, which
corresponds to 0.98% of the total number of elements ne of the original mesh. The el-
ements of this reduced mesh are located mainly around the scatterer (obstacle) – that
is, in the region of the computational domain where the sensitivity of the solution of
problem (5.81) to shape variations is higher.

Figures 5.7 and 5.8 display solutions of the meshmotion and Helmholtz problems
computed using theDEIM-basedHPROMs for several sampled points of the parameter
space𝒫 ⊂ ℝ7. Figure 5.7 also reports, for 100 parameter points sampled in𝒫(ζ ,η) ⊂ ℝ

5,
the convergence of the average global relative error of the HPROM-based solution of
themeshmotion problem–which is definedherewith respect to the FOM-based coun-
terpart solution,measured in the energy normover the entiremesh, and averaged over
the number of sampled parameter points – as a function of the dimension nu of the

Figure 5.7: Parametric, one-way coupled, acoustic scattering problem: Visualization of the magni-
tude of the mesh displacement for different parameter values (left); and variation of the relative
error of the mesh motion HPROM with the dimension nu of the associated PROM (right).
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Figure 5.8: Parametric, one-way coupled, acoustic scattering problem: Visualization of the scat-
tered wave amplitude for different parameter values (left); and variation of the relative error of the
Helmholtz HPROM with the dimension nq of the associated PROM (right).

PROM underlying the HPROM. Similarly, Figure 5.8 shows the convergence with nq
of the counterpart error associated with the solution of the Helmholtz problem. The
reader can observe that in the case of the Helmholtz problem, the convergence of the
aforementioned relative error is significantly slower than that of its counterpart for
the mesh motion problem and eventually flattens at roughly nq = 80. This behavior
is characteristic of the HPROM error which tends to be dominated by the error intro-
duced by hyperreduction, and which cannot always be decreased by increasing the
dimension of the underlying PROM.

Regarding wall-clock performance, the online solution of this one-way coupled,
acoustic scattering problem defined at a queried but unsampled parameter point μ ∈
𝒫 ⊂ ℝ7 can be computed in 0.43 s using the mesh motion and Helmholtz HPROMs on
a workstation with a dual-core Intel Core i5 processor running at 2.8 GHz and 16GB of
memory. On the same computing platform, the online solution of the same one-way
coupled problem using the FOMs (5.82) and (5.81) is 24 times slower.

5.5.2 Hyperreduction of a parametric PDE-ODE wildfire model

Next, a time-dependent, nonlinear, two-way coupled, PDE–ordinary differential
equation (ODE) system describing the evolution of a wildfire in a domain representing
the two-dimensional layer just above the ground surface is considered. This system
models a wildfire using balance equations for energy and fuel [39, 30]. In principle,
the PDE is the two-dimensional unsteady, advection-diffusion equation governing
temperature. However, for demonstrative purposes the advection term is neglected
here and therefore the PDE is the two-dimensional unsteady diffusion equation gov-
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erning the temperature distribution. TheODE governs the time-dependent fuel supply
mass fraction. Two-way coupling between the two equations is performed via non-
linear source terms (see [39, 30] for further details). For this problem, the parameters
of interest are: the thermal diffusivity, ψ, in m2/s; the rate of temperature rise at the
maximum burning rate, A, in K/s; the proportionality coefficient in the modified Ar-
rhenius law, B, in K; the scaled coefficient of heat transfer to the environment, C, in
K−1; and the relative fuel consumption rate, CS, in s−1. They define a parameter space
𝒫 ⊂ ℝ5 and are stored in a parameter vector μ ∈ 𝒫. The parametric solutions of this
problem propagate in three areas of localized combustion: a preheated area ahead
of the fire; a combustion zone; and a burning region behind the fire. Their efficient
computation using PROMs requires hyperreduction, because the coupling source
terms are nonlinear and their dependencies on the aforementioned parameters are
nonpolynomial.

The computational domain Ω ⊂ ℝ2 is chosen to be a square of side 1,000m. The
ranges of the individual dimensions of 𝒫 are set as follows: 0.15 ≤ ψ ≤ 1.5; 2 ≤ A ≤ 20;
60 ≤ B ≤ 600; 4.5 × 10−5 ≤ C ≤ 4.5 × 10−4; and 1.5 × 10−2 ≤ CS ≤ 1.5 × 10−1. Note
that for increasing values of A/CS, the temperature in the traveling combustion wave
increases; for increasing values of ψ, both the width and the speed of the combustion
wave increase; and a sustained combustion requires sufficiently small values of CS.

In order to model a fire located in a small circular region close to the center of Ω,
the temperature in this chosen computational domain is initialized as

T(x,0) = Tc e
−‖x‖2/χ2 + Ta, x ∈ Ω,

where Tc = 1,200 K, Ta = 300 K, and χ2 = 104m. In order to model the fuel depletion
of a fully developed fire, the fuel supply mass fraction is initialized as

S(x,0) = 1 − e−‖x‖
2/χ2S ,

where χ2S = 5×10
3m. For t > 0, the reaction heat spreads isotropically, heating the fuel

aheadof thewaveuntil the reaction in front of thewave can sustain itself, thus causing
the spread of combustion. At the rear, the reaction ceases due to fuel depletion, thus
causing the temperature to decrease due to cooling.

A two-dimensional FE model of this coupled PDE-ODE system is constructed us-
ing a triangulation of Ω with ne = 137,820 elements and nn = 69,313 nodes. At each
node, two DOFs are attached: one for the temperature, and one for the fuel supply
mass fraction, which results in a total number of N = 138,626 DOFs. Spatial approx-
imation is performed using piecewise linear finite elements. Temporal discretization
is performed using the first-order time-accurate backward Euler method, and all non-
linear terms are treated semi-implicitly. All numerical simulations reported below are
conducted in the time interval [0, 750] s using the fixed time step Δt = 5 s.

PMOR is achieved using the POD-based Galerkin projection method. For this pur-
pose, solution snapshots are computed using the parametric FOM described above
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at each time step, for 100 randomly sampled points in 𝒫. Next, these snapshots are
compressed to construct an ROB and then an associated PROM of dimension n = 12.
The DEIM is applied to hyperreduce the PROM by approximating only the nonlinear
terms, as all linear terms of the FOM depend affinely on the problem parameters and
therefore do not require hyperreduction. Specifically, a basis of dimension m = 11 is
constructed using snapshots of the nonlinear (coupling) source terms computed at
each time step, for 50 randomly sampled points in 𝒫, and a set of 11 interpolation
indices ℐ (|ℐ| = m = 11) is selected. The corresponding reduced mesh ℰ̃ has only 45 el-
ements – that is, 0.033%of the number of elements in the original FEmesh. Using the
resulting HPROM, the pointwise approximation of the ODE governing the fuel supply
mass fraction is advanced only at the DOFs corresponding to the interpolation indices
in ℐ, which further decreases the processing time for this application.

Figures 5.9 and 5.10 contrast the FOM-, PROM-, and HPROM-based predictions of
the temperature time histories and fuel supply mass fraction at four different spatial
locations, for two significantly different parameter configurations. They show that in
each case, the FOM, PROM, andHPROMdeliver essentially the same results, which in-
dicates that both PMOR- and hyperreduction-induced errors are minimal. These two
figures also reveal that the two different parameter configurations lead to very dif-
ferent physical results, which, given also the previous remark, illustrates the robust-
ness of the global PROM and that of the associated HPROMwith respect to parameter
changes. Figure 5.11 reports for both parameter configurations the temperature distri-
butions predicted at t = 60 s using the HPROM and the corresponding absolute errors

Figure 5.9: Parametric, two-way coupled, PDE-ODE wildfire problem: Temperature (left)
and fuel supply mass fraction (right) predicted at four different spatial locations for μ =
(1.07,91.19, 258.41, 10−4,0.0201)T .
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Figure 5.10: Parametric, two-way coupled, PDE-ODE wildfire problem: Temperature (left) and fuel
supply mass fraction (right) predicted at four different spatial locations for μ = (1.5, 50,65, 5.5 ×
10−5,0.15)T .

(measured with respect to the FOM-based temperature solutions). It leads to the same
conclusions as Figures 5.9 and 5.10.

Table 5.2 reports thewall-clock timings obtainedonaworkstationwith adual-core
Intel Core i5 processor running at 2.8 GHz and 16GB of memory, the speedup factors,
and the average global relative errors of the PROM- and HPROM-based simulations.
These errors are defined here with respect to the results of the FOM-based counter-
part simulations, measured in the energy norm over the entire mesh, and averaged
over 50 different parameter points randomly selected in 𝒫. The reported results show
that overall, the DEIM-based HPROMmaintains the level of accuracy of its underlying
PROM. As expected, the PROM does not accelerate the FOM-based simulation by any
meaningful factor, but the HPROM delivers a speedup factor of almost 30.

Table 5.2: Parametric, two-way coupled, PDE-ODE wildfire problem: Wall-clock timings on a single
core and speedup factors.

Wall-clock time (s) Speedup factor Relative error

FOM 88.4 1.0 –
PROM 48.5 1.82 3.16 × 10−7

HPROM 3.18 27.8 5.46 × 10−7
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Figure 5.11: Parametric, two-way coupled, PDE-ODE wildfire problem: Temperature distributions
at t = 60 s predicted using the HPROM (left) and corresponding relative errors (right), for μ =
(1.07,91.19, 258.41, 10−4,0.0201)T (top) and μ = (1.5, 50,65, 5.5 × 10−5,0.15)T (bottom).

5.5.3 Hyperreduction of nonlinear structural dynamics models

Two highly nonlinear structural dynamics problems are considered here. The first one
focuses on a fast spinning top: It has the merit of being easily reproducible by the
reader who is familiar with solid mechanics, and is explored to highlight the instabil-
ity of the DEIM for second-order dynamical systems. The second problem focuses on
an underbody blast event. Its associated FE model is representative of two families of
computational models: those whose practical exploitation calls for model reduction,
due to their CPU-intensive nature; and those that are difficult to reduce due to the pres-
ence of rotational DOFs. In both problems, the PROMs are constructed using the POD
method based on displacement/rotation snapshots. In the first problem, the PROM is
hyperreduced using both DEIM and ECSW. In the second problem, only ECSW is ap-
plied to hyperreduce the constructed PROM, due to its superior numerical stability
properties. Because DEIM and ECSW operate essentially in the same fashion whether
the PROM to be hyperreduced is parametric or nonparametric, both aforementioned
problems are considered here in their simpler, nonparametric context (for the para-
metric case, the reader is referred to [31]). In all cases, ECSW is configured with the
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convex approximation A1 (5.67). Furthermore, it is equipped with the NNLS algorithm
developed by Lawson and Hanson [28] for solving the NNLS problem associated with
this approximation because this algorithmhas demonstrated an excellent track record
of robustness and performance for hyperreduction [22, 24, 14].

Given a computed, time-dependent, PROM-based approximate solution qN h (t) ≈
𝕍qn (t), the corresponding global relative error in a direction ⬦ is defined here as

ℝ𝔼⬦ =
√∑t∈𝒫 (q⬦Nh

(t) −𝕍q⬦n (t))
T (q⬦Nh
(t) −𝕍q⬦n (t))

√∑t∈𝒫 q⬦Nh
(t)Tq⬦Nh

(t)
× 100%,

where the subscript⬦designates the displacement/rotation in the x-, y-, or z-direction
of the global coordinate frame; q⬦Nh

(t) is the vector of ⬦-displacement/rotation DOFs
at time t extracted from the solution obtained using the discrete FOM of interest;
𝕍q⬦n (t) is the vector of ⬦-displacement/rotation DOFs at time t extracted from the
solution obtained using the PROM or hyperreduced PROM whose performance is be-
ing assessed; and 𝒫 is the set of timestamps used in the evaluation of ℝ𝔼⬦ – that
is,

𝒫 = {t ∈ {t0, t0 + Δs, t0 + 2Δs, . . .} : t ≤ T},

where Δs denotes the sampling time interval chosen for the evaluation of the global
relative error.

All computations reported herein are performed in double-precision arithmetic
on a parallel Linux cluster where each computing node consists of two quad-core Intel
XeonE5345 processors running at 2.33 GHz inside aDell Poweredge 1950 andhas 16GB
of memory, and the interconnect is Cisco DDR InfiniBand.

5.5.3.1 Fast spinning top in a gravitational field

First, the hyperreduction of a geometrically nonlinear, FE-based PROM constructed
for a fast spinning top in the presence of a gravitational field is considered. This hy-
perreduction problem was previously discussed in [22], [24], and [14]. The shape of
the top is a cone with height H = 0.1m and radius R = 0.05m. The top is assumed
to be made of aluminum, which is modeled here using the Saint Venant–Kirchhoff
constitutive law. This hyperelastic material law can be expressed as a linear relation
between the second Piola–Kirchhoff stress tensor and the Green–Lagrange strain ten-
sor. Hence, the internal force vector is in this case a nonlinear function f intNh

(qNh
 (t))

of the displacement vector qNh
 (t) due to the nonlinear kinematics (geometric nonlin-

earities). The Young modulus of this material is E = 80 GPa, and its Poisson ratio is
ν = 0.33. Its density in the reference configuration is ρo = 2, 700 kg/m3.
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The top is simply supported at its apex. Initially, it is set into the position obtained
by a rigid body rotation of π

3 rad about the x-axis, and into the spinning motion about
its axis with the convected angular velocity Ωz = 300 rad/s. The gravitational accel-
eration, g = 9.81m/s2, generates an external body force that acts on the top in the
negative z-direction.

Figure 5.12: Spinning top: FE mesh and nodes 99 and 608 where
the time histories of the x- and z-displacements are observed,
respectively.

For this problem, an FE structural model is constructed using 4,461 10-noded tetrahe-
dral elements with three displacement DOFs per node – which results in an FOM of
dimension Nh = 13,317 DOFs. Figure 5.12 shows the constructed FE model. Time dis-
cretization is performed using the second-order accurate explicit central difference
method. For this explicit time integrator and the aforementioned FOM, the maximum
stability time step is Δt = 1× 10−7 s. Using this time step, the FOM-based simulation of
the first 1 second of top spinning consumes 21.8 hours of wall-clock time on 80 cores
of the Linux cluster. The time-dependent solution computed during this simulation is
sampled every Δs = 2×10−3 s for the purpose of constructing three different POD-based
PROMs of dimension n = 9, n = 10, and n = 15. The DEIM and ECSW are applied for
the hyperreduction of each of these PROMs as follows: ECSW is applied using values
of the relative training tolerance τ that produce reduced meshes containing less than
1% of the number of elements of the original FE mesh; and DEIM is applied with the
set of indices ℐ selected so that if oneDOF is sampled at a node, then all DOFs attached
to that node are also sampled – and therefore, |ℐ| ≥ m, where m is the dimension of
the ROB𝕌 (5.39).

All HPROM-based simulations of the dynamics of the spinning top are performed
using the same explicit central difference time integrator used for computing the FOM-
based time-dependent solution.However, because these simulations are not governed
by the same Courant–Friedrichs–Lewy restriction as their counterpart FOM-based
simulation, they can be performed – and therefore are performed – using a time step
that is 20 times larger than the maximum-stability time step of that reference simula-
tion. Furthermore, because all reducedmeshes generated by DEIM and ECSW contain
in this case less than 35 elements (for example, see Table 5.4 for the case of ECSW),
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all HPROM-based simulations of the dynamics of the spinning top are executed on a
single core of the Linux cluster.

It turns out that for this problem and chosen time integrator, all discrete HPROMs
obtained using theDEIM are numerically unstable, independently of the chosen value
for m; for example, see Figure 5.13, which reports the computed time histories of the
x-displacement at node 99 of the FEmesh. On the other hand, all counterpart discrete
HPROMs delivered by ECSW are found to be numerically stable, as anticipated by the
theory presented in Section 5.4.2.2.3. Figure 5.14 – which reports the computed time
histories of the x-displacement at node 99 and z-displacement at node 608 of the FE
mesh – and Table 5.3 show that all discrete HPROMs constructed using ECSW deliver

Figure 5.13: Fast spinning top: Numerical instabilities exhibited by the DEIM-based HPROMs.

Table 5.3: Fast spinning top: Global accuracy delivered by the ECSW-based HPROMs.

n ℝ𝔼x (%) ℝ𝔼y (%) ℝ𝔼z (%) ℝ𝔼velx (%) ℝ𝔼vely (%) ℝ𝔼velz (%)

9 0.012 0.0099 0.014 0.28 0.31 0.17
10 0.010 0.0083 0.012 0.24 0.26 0.16
15 0.0078 0.0064 0.0091 0.12 0.13 0.092
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Figure 5.14: Fast spinning top: Numerical stability and local accuracy delivered by the ECSW-based
HPROMs.

Table 5.4: Fast spinning top: Variations with the dimension n of the right ROB of the size of the re-
duced mesh generated by ECSW and the speedup factor delivered by the ECSW-based HPROM.

n Reduced mesh
(# of elements)

Speedup factor

9 12 9.25 × 103

10 15 7.66 × 103

15 34 3.21 × 103

excellent levels of local and global accuracy, respectively. Table 5.4 shows that they
also deliver impressive speedups: partly because the underlying reducedmeshes have
very small sizes; and partly because these ECSW-based, explicit, discrete HPROMs af-
ford a stability time step that is on average 20 times larger than the critical time step
for the underlying discrete FOM.

5.5.3.2 Structural response of a vehicle frame to underbody blast

Next, the hyperreduction using ECSW of a highly nonlinear, POD-based PROM of di-
mension n = 100, constructed for the analysis of the structural response of a generic
V-hull vehicle frame to a live fire blast test, is considered. The frame has a complex
structure (Figure 5.15(a)) that is made predominantly of steel, which is modeled here
as a nonlinear elastoplastic material. It is subjected to a gravity load, and to an ex-
ternal, configuration- and time-dependent pressure force due to the explosion of a
10 kg charge placed under its body, at the location shown in Figure 5.15(b). For this
purpose, a structural, nonlinear, FE model of the vehicle frame is constructed using
ne = 236,995 flexible shell and rigid beam elements with six DOFs per node (Fig-
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Figure 5.15: Underbody blast of a V-hull vehicle frame: (a) complex structure; (b) FE mesh, and loca-
tions of charge and a nodal probe; (c) snapshot of the structural response at t = 0.002 s; and (d)
ECSW-generated reduced mesh.

ure 5.15(b)). This FOM features large rotations, large strains, large angular velocities –
and therefore both geometrical and material nonlinearities – and a large dimension
equal to Nh = 1,399,056 DOFs. The blast pressure loading is modeled using the CON-
WEP software [27].

The vehicle is assumed to be initially at rest. For the sake of diversification, time
discretization is performed here using the implicit generalized-αmethod [17] with β =
0.444, γ = 0.833, αf = 0.333, αm = 0, and the constant time step Δt = 1 × 10−5 s. As for
the previous problem, ECSW is configured with the convex approximation A1 (5.67),
equipped with the NNLS algorithm [28] for solving the NNLS problem associated with
this approximation, and applied to the hyperreduction of the constructed nonlinear
PROM. Specifically, the relative training tolerance is set to τ = 0.01. In this case, the
NNLS algorithm delivers the reduced mesh ℰ̃ with 3,145 elements – that is, with about
1.32% of the number of elements of the original FE mesh – as shown in Figure 5.15(d).
Then, the structural response of the vehicle frame is computed three times in the time
interval [0, 10−2] s: using the discrete FOM of dimension Nh = 1,399,056, the discrete
PROM of dimension n = 100, and the ECSW-generated discrete HPROM. All three sim-
ulations are performed on a single core of the Linux cluster, using the same fixed time
step Δt = 1 × 10−5 s. For the PROM- and HPROM-based predictions, the relative global
errors are calculated using the same sampling time interval Δs = 1×10−5 s. A snapshot
of the structural response of the structural system computed using the discrete FOM
is shown in Figure 5.15(c).

Tables 5.5 and 5.6 report the wall-clock timings, speedup factors, and global rela-
tive errors of the PROM- and HPROM-based simulations. These results show that over-
all, the ECSW-based HPROM maintains the level of accuracy of its underlying PROM.
This level of accuracy is high for the predicted displacement and rotation fields, rea-
sonable for the computed velocity field, but low for the predicted angular velocity
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Table 5.5: Structural response of a vehicle frame to underbody blast: Wall-clock timings on a single
core and speedup factors.

Wall-clock time (s) Speedup factor

FOM 5.02 × 105 1.0
PROM 3.63 × 105 1.38
HPROM 3.57 × 103 141

Table 5.6: Structural response of a vehicle frame to underbody blast: Global relative errors.

PROM HPROM

ℝ𝔼x (%) 3.05 3.53
ℝ𝔼y (%) 2.46 2.72
ℝ𝔼z (%) 3.52 3.69
ℝ𝔼rotx (%) 1.53 1.87
ℝ𝔼rotx (%) 1.63 2.04
ℝ𝔼rotx (%) 2.40 2.95
ℝ𝔼velx (%) 12.05 13.62
ℝ𝔼vely (%) 7.21 8.38
ℝ𝔼velz (%) 4.81 5.70
ℝ𝔼velrotx (%) 23.03 24.89
ℝ𝔼velroty (%) 24.60 26.63
ℝ𝔼velrotz (%) 29.92 32.40

field. The latter can be improved by including velocity snapshots in the snapshot ma-
trix underlying the construction of the POD-based PROM. The reader can observe that
as expected, thediscretePROMdoesnot speedup the solution timeof thediscrete FOM
by anymeaningful factor. On the other hand, the HPROM reduces the solution time of
the FOM bymore that two orders of magnitude. While significant, this speedup factor
is smaller than that achievable in the context of explicit discretizations. The reason is
that like in the case of an implicit discrete FOM, the time step of an implicit discrete
PROMorHPROM is limited by accuracy and not by stability considerations, and there-
fore cannot exceed that of the underlying discrete FOM. In other words, the speedup
factor of 141 achieved in this case is purely due to model reduction and hyperreduc-
tion.

Figures 5.16 and 5.17 display the computed time histories of selected displace-
ment/rotation and velocity/angular velocity DOFs, respectively, computed at a probe
located at a node of the FEmesh in the vicinity of the explosive charge (Figure 5.15(b)).
The accuracy levels demonstrated in these two figures for the constructed PROM and
HPROMare consistent with the quantitative accuracy results summarized in Table 5.6.
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Figure 5.16: Structural response of a vehicle frame to underbody blast: Sample displacement and
rotation time histories computed at a probe.

Figure 5.17: Structural response of a vehicle frame to underbody blast: Sample velocity and angular
velocity time histories computed at a probe.

5.6 Summary and conclusions

For many linear and nonlinear problems, PMOR is not guaranteed to accelerate the
performance of Nh-dimensional FOMs, even when the resulting PROM has a dimen-
sion n ≪ Nh. For linear problems, this is the case for large-scale, parametric FOMs,
where the computational complexity of the projections of the linear operators and
source term defining the FOM – which must be repeated every time a parameter is
changed – scales as𝒪 (Nh

2n) and𝒪 (Nhn), respectively. Therefore, these repeated pro-
jections can rapidly become overwhelming. For nonlinear problems, this issue is even
more severe as it arises for both parametric and nonparametric problems.
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In this chapter, two divide-and-conquer approaches for addressing the computa-
tional bottlenecks outlined above have been reviewed.

The first approach is feasible and exact for: parametric, linear FOMs that admit
an efficient parameter-affine representation, where efficiency in this context has been
properly defined in this chapter; and parametric and nonparametric, nonlinear FOMs
characterized by a low-order polynomial dependency of the internal force vector on
the solution and a time-independent external force vector. This first approach consists
in dividing the computation of the reduced quantities, whenever possible, into two
parts: one part that is responsible for the computational bottlenecksmentioned above
and can be addressed by offline precomputations; and another part that is amenable
to real-time processing.

The second approach consists of a family of inexact approaches that introduce
into the construction of a PROM an additional layer of approximations that enable
the real-time evaluation of all of its reduced quantities. In this chapter, two method-
ologies belonging to this family of approaches have been discussed. The first one tar-
gets parametric, linear PROMs. It samples offline the parameter space of interest at
a carefully chosen set of parameter points, and constructs at each sampled point an
accurate linear PROM. Then, at each queried but unsampled parameter point, it con-
structs in real-time a linear PROM by interpolating on matrix manifolds the opera-
tors defining the precomputed PROMs. The second inexact methodology discussed
in this chapter is known as hyperreduction. It is more comprehensive than the first
one, as it is equally applicable to parametric and nonparametric, linear and nonlin-
ear PROMs. This methodology comes at least in two flavors: approximate-then-project
and project-then-approximate methods. At the time of writing this chapter, the DEIM
represents the state of the art of approximate-then-project methods, and ECSW repre-
sents that of project-then-approximatemethods. For second-order dynamical systems
such as those arising in wave propagation, solid mechanics, and structural dynamics
applications, ECSW is to date the only known hyperreduction method with provable
structure-preserving and unconditional stability properties. As such, it is superior to
DEIM for this important class of problems. For other dynamical systems, DEIM and
ECSW typically exhibit comparable performances in terms of accuracy and computa-
tional efficiency. For such systems, they have been shown in the literature, and are
shown in this chapter, to be capable of speeding up the execution time of FOMs by
factors that are problem-dependent, but typically range between one and three or-
ders of magnitude if not higher. These hyperreduction methods are robust, practical,
and amust for the reduction of: parametric, linear FOMs that do not admit an efficient
parameter-affine representation; parametric andnonparametric, nonlinear FOMs that
are not characterized by a low-order polynomial nonlinearity in the internal force vec-
tor; and parametric, linear or nonlinear FOMs where the parameter vector may vary
within a single simulation.
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6 Localized model reduction for
parameterized problems

Abstract: In this contributionwe present a survey of concepts in localizedmodel order
reduction methods for parameterized partial differential equations. The key concept
of localized model order reduction is to construct local reduced spaces that have only
support on part of the domain and compute a global approximation by a suitable cou-
pling of the local spaces. In detail, we show how optimal local approximation spaces
can be constructed and approximated by random sampling. An overview of possible
conforming and nonconforming couplings of the local spaces is provided and corre-
sponding localized a posteriori error estimates are derived. We introduce concepts of
local basis enrichment, which includes a discussion of adaptivity. Implementational
aspects of localizedmodel reductionmethods are addressed. Finally, we illustrate the
presented concepts for multiscale, linear elasticity, and fluid-flow problems, provid-
ing several numerical experiments.
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6.1 Introduction
Projection-based model order reduction has become a mature technique for simula-
tions of large classes of parameterized systems; for an introduction, we refer to the
text books and survey [14, 50, 97, 15] and to Chapters 1 to 4 of this volume ofModel or-
der reduction. However, especially for large-scale and multiscale problems the “stan-
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dard” model order reduction approach as described for instance in Chapter 1 of this
volume of Model order reduction exhibits several limitations: curse of parameter di-
mensionality in the sense that many parameters require prohibitively large reduced
spaces, no topological flexibility, and possibly high computational costs and storage
requirements in the offline stage for instance due to large computational domains. Lo-
calizedmodel order reductionmethods, which combine approaches frommodel order
reduction, multiscale methods, and/or domain decomposition techniques, overcome
or significantlymitigate those limitations. As a further advantage, they allow using re-
duced spaces of different dimensions in different parts of the computational domain
and accommodate (local) changes of the geometry and the partial differential equa-
tion (PDE) in the online stage. The key idea of localized model order reduction is to
construct local reduced spaces on (unions of) subdomains of the decomposed com-
putational domain and couple the local reduced spaces across interfaces either in a
conforming or in a nonconforming manner. In this chapter we investigate localized
model order reduction for linear coercive elliptic parameterized problems; inf-sup sta-
ble problems have for instance been considered in [60] and parabolic and nonlinear
problems will be briefly discussed at the end of this chapter.

We discuss both conforming and nonconforming localized approximations.
Prominent examples for a conforming localization for nonparametric PDEs are the
partition of unity method [11], the generalized finite element method (GFEM) [8, 7, 11,
10], and component mode synthesis (CMS) [59, 12, 17], [52, 64].

A combination of domain decomposition and reduced basis methods has first
been considered in the reduced basis element method (RBEM) [76, 77, 74], where the
local reduced basis approximations are coupled by Lagrangemultipliers in a noncon-
forming manner. The reduced basis hybrid method [62] extends the RBEM by addi-
tionally considering a coarse finite element (FE) discretization on the whole domain
to account for continuity of normal stresses in the context of Stokes equations. Alter-
natively, a nonconforming coupling canbe realized, say, bypenalization as in the local
reduced basis discontinuous Galerkin approach [66], the localized reduced basismul-
tiscale (LRBMS) method [5, 90, 87], the discontinuous Galerkin (DG) RBEM [6], or the
generalized multiscale discontinuous Galerkin method [29]. The static condensation
reduced basis element (scRBE) method [61, 60, 37, 103] combines intra-element re-
duced basis approximations similar to the RBEMwith coupling techniques from CMS,
resulting in a conformingapproximation.A similar approach is pursuedby theArbiLo-
Mod [20] that also allows for arbitrary (nonparametric) local changes of theunderlying
equations and/or the geometry.

In the context of the proper generalized decomposition method (Chapter 3 of this
volumeofModel order reduction) a domain decomposition strategyhas beenproposed
in [55], and in [94] hierarchical model reduction [112, 94, 92, 102] has been combined
with an iterative substructuring method.

Concerning the generation of local approximation spaces we focus on empirical
training (see for instance [37, 10, 103]), i. e., local reduced spaces generated from lo-
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cal solutions of the PDE, and adaptive basis enrichment. In detail, we present local
approximation spaces that are optimal in the sense of Kolmogorov and can be con-
structed by solving a local so-called transfer eigenvalue problem on the space of local
solutions of the PDE. Optimal local approximation spaces for subdomains have first
been proposed in [10] and for interfaces and parameterized PDEs in [103]. Wewill also
show how those optimal approximation spaces can be approximated by random sam-
pling [21]. A localizable a posteriori error estimator is crucial for an adaptive enrich-
ment of the local reduced spaces where the reduced approximation is not accurate
enough. Such an adaptive basis enrichment is one way to approach “optimal” com-
putational complexity within outer loop applications such as optimal control, inverse
problems, orMonte Carlomethods.With this respect,wewill also present a framework
for localized residual-based error control [20, 100] as well as localized a posteriori er-
ror estimation based on flux reconstruction [39, 90].

Naturally, the presented methods for localized model reduction share a lot of fea-
tures with domain decomposition techniques and multiscale methods. We particu-
larly refer to domain decomposition and preconditioning techniques with multiscale
coarse spaces such as [1, 45, 42] or the more recent contributions [106, 43, 47]. In
the context of the FETI-DP iterative substructuring method we refer to [82, 67]. For
multiscale problems there has been a tremendous development of suitable numeri-
cal methods in the last two decades, including the multiscale FE method (MsFEM)
[54, 35, 36, 49], the heterogeneous multiscale method [114, 115, 85, 2], the variational
multiscale method [56, 58, 72], or the more recent local orthogonal decomposition
[81, 48]. Model reduction can be used to accelerate the solution of localized problems
which occur in multiscale methods; see, e. g., [3, 4]. Similar to the methods presented
in this chapter the generalized MsFEM (GMsFEM) [34, 31, 30] relies on a Galerkin pro-
jection on local subspaces, but in contrast uses ideas frommultiscale methods to con-
struct the local bases. A connection betweenmultiscale methods and domain decom-
position has recently been investigated in [69–71].

This chapter is organized as follows. In Section 6.2 we introduce the problem set-
ting and basic notation for localized model order reduction of coercive variational
problems. Concepts for conforming and nonconforming coupling of approximation
spaces are presented in Section 6.3. Section 6.4 deals with the preparation of local
approximation spaces. Particularly, the construction of optimal local approximation
spaces and their approximation via randomsampling is presented and illustratedwith
numerical experiments for linear elasticity. In Section 6.5 we present two abstract
frameworks for localized a posteriori error estimation and give exemplifications for
conforming and nonconforming localized model reduction approaches. Localized a
posteriori error estimators are the key ingredient for basis enrichment strategies and
online adaptivity, which are presented in Section 6.6. Computational aspects are dis-
cussed in Section 6.7 and numerical experiments for multiscale problems and fluid
flow are presented in Section 6.8. We conclude by showing possible extensions to
parabolic and nonlinear problems in Section 6.9.
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6.2 Parameterized partial differential equations and
localization

Let Ω ⊂ ℝd, d = 1, 2, 3, be a large, bounded domain with Lipschitz boundary. Let us
further introduce a Hilbert space V such that [H1

0(Ω)]
z ⊂ V ⊂ [H1(Ω)]z, z = 1, . . . , d,

and denote by V  the dual space of V . Moreover, we introduce the compact set of ad-
missible parameters 𝒫 ⊂ ℝp, p ∈ ℕ. We consider the following variational problem.

Definition 6.1 (Parameterized coercive problem in variational form). For any parame-
ter μ ∈ 𝒫 find u(μ) ∈ V , such that

a(u(μ), v;μ) = f (v;μ) for all v ∈ V . (6.1)

Here, f (⋅;μ) ∈ V  and a(⋅, ⋅;μ) : V × V → ℝ denote parametric linear and bilinear
forms, the latter being continuous and coercive with respect to the norm ‖ ⋅ ‖V induced
by the inner product (⋅, ⋅)V : V × V → ℝ. That is, there exist constants 0 < α ≤ α(μ) ≤
γ(μ) ≤ γ, such that for any μ ∈ 𝒫,

a(v,w;μ) ≤ γ(μ) ‖v‖V ‖w‖V for all v,w ∈ V ,

a(v, v;μ) ≥ α(μ) ‖v‖2V for all v ∈ V .

Let us denote the energy norm of u for a parameter μ as ⦀u⦀μ := a(u, u;μ)1/2. Prob-
lem (6.1) thus admits a unique solution for all μ ∈ 𝒫 owing to the Lax–Milgram theo-
rem. Examples for (6.1) include ellipticmultiscale problems, incompressible fluidflow,
and linear elasticity, as detailed in the following.Wewill considerNeumannboundary
conditions on ΓN and Dirichlet boundary conditions on ΓD, where ΓN , ΓD are nonover-
lapping and ΓN ∪ ΓD = 𝜕Ω. To simplify notations, homogenous boundary conditions
on 𝜕Ω will be prescribed in most places.

Example 6.2 (Parametric elliptic multiscale problems). With V = H1
0(Ω), the pressure

equation in the context of two-phase flow in porous media (obtained through Darcy’s
law) reads as follows: Given a collection of sources and sinks q ∈ L2(Ω) and a para-
metric and possibly highly heterogeneous permeability field κ : 𝒫 → L∞(Ω)d×d, find
for each μ ∈ 𝒫 the global pressure u(μ) ∈ V , such that

−∇ ⋅ (κ(μ)∇u(μ)) = q in a weak sense in V . (6.2)

If the smallest eigenvalue of κ(μ) is bounded from below away from zero for all
μ ∈ 𝒫, we can consider this to be an example of Definition 6.1 by setting a(u, v;μ) :=
∫Ω(κ(μ)∇u) ⋅ ∇v dx and f (v;μ) := ∫Ω qv dx. In the context of instationary two-phase
flow, (6.2) needs to be solved in each time step for varying total mobilities (modeled
by the parametric nature of κ), while the permeability field κ typically resolves fine
geological structures and thus requires a very fine computational grid compared to
the size of Ω (see [90] and the references therein).
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Example 6.3 (Incompressible fluid flow). The Stokes and Navier–Stokes equations
represent a model of the flow motion for a viscous Newtonian incompressible fluid.
In the steady case it can be formulated as follows:

{{{{{{
{{{{{{
{

−νΔy + δ(y ⋅ ∇)y + ∇p = f in Ω,
∇ ⋅ y = 0 in Ω,

y = gD on ΓD,

−pn + ν 𝜕y
𝜕n
= gN on ΓN ,

(6.3)

where (y, p) are the velocity and the pressure fields defined on the computational do-
main Ω. The first equation expresses the linear momentum conservation and the sec-
ond one the mass conservation, which is also called the continuity equation. Here f
denotes a forcing term per unit mass, and gD and gN are the functions addressing the
Dirichlet and Neumann boundary conditions respectively on ΓD and ΓN . The parame-
ter ν = σ/ρdenotes the kinematic viscosity,with ρbeing the density andσ the viscosity
of the fluid. Navier–Stokes equations correspond to the case δ = 1; here we consider
only δ = 0, the convective term is neglected, obtaining the steady Stokes equations,
which provide a model in the case of slow motion of fluids with very high viscosity.

Wedenote the functional spaces for velocity andpressurefieldsbyX= (H1
0,ΓD (Ω))

d,
Q = L2(Ω), respectively, whereH1

0,ΓD (Ω) = {y ∈ H
1(Ω) : y|ΓD = 0}. Moreover, for simplic-

ity, we assume that gD = 0 (otherwise the lift function is required). The corresponding
weak form of the Stokes equations (6.3) reads as follows: Find (y, p) ∈ X ×Q such that

ν∫
Ω

∇y : ∇w dΩ − ∫
Ω

p∇ ⋅w dΩ = ∫
Ω

f ⋅w dΩ + ∫
ΓN

gN ⋅w dΓ, ∀w ∈ X,

∫
Ω

q∇ ⋅ y dΩ = 0, ∀ q ∈ Q.
(6.4)

In a parameterized setting, the input-parameter vector μ may characterize either the
geometrical configuration or physical properties, boundary data, and sources of the
problem.

Denoting by V the product space given by V = X × Q, defining by u(μ) =
(y(μ), p(μ)) ∈ V , and defining v = (w, q), the parameterized abstract formulation (6.4)
can be rewritten in the following form: Find u(μ) = (y(μ), p(μ)) ∈ V s. t.

a(u(μ), v;μ) = f (v;μ), ∀ v ∈ V , (6.5)

where

a(u, v;μ) = ν∫
Ω

∇y : ∇w dΩ − ∫
Ω

p∇ ⋅w dΩ − ∫
Ω

q∇ ⋅ y dΩ, (6.6)

f (v;μ) = ∫
Ω

f ⋅w dΩ + ∫
ΓN

gN ⋅w dΓ. (6.7)
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Example 6.4 (Linear elasticity). We assume thatΩ ⊂ ℝ3 represents an isotropic homo-
geneous material and we consider the following linear elastic boundary value prob-
lem: Find the displacement vector u(μ) and the Cauchy stress tensor σ(u(μ)) such that

−∇ ⋅ σ(u(μ)) = G(μ) in Ω,
σ(u(μ)) ⋅ n = 0 on ΓN , (6.8)

u(μ) = gD on ΓD,

where the body force G : 𝒫 → ℝ3 accounts for gravity. We can express for a linear
elastic material the Cauchy stress tensor as σ(u(μ)) = E(μ)C : ε(u(μ)), where C is
the fourth-order stiffness tensor, ε(u(μ)) = 0.5(∇u(μ) + (∇u(μ))T ) is the infinitesimal
strain tensor, and the colon operator : is defined as C : ε(u(μ)) = ∑3k,l=1 Cijklεkl(u(μ)).
Moreover,E : 𝒫 → L∞(Ω)denotesYoung’smodulus,which is assumed tobepiecewise
constant onΩ and satisfy E(μ) ≥ E0 > 0 for a constant E0 ∈ ℝ+. Therefore, the stiffness
tensor can be written as

Cijkl =
ν

(1 + ν)(1 − 2ν)
δijδkl +

1
2(1 + ν)
(δikδjl + δilδjk), 1 ≤ i, j, k, l ≤ 3,

where δij denotes the Kronecker delta; we choose Poisson’s ratio ν = 0.3. The corre-
sponding variational formulation of (6.8) then reads as follows: For any μ ∈ 𝒫 find
u(μ) ∈ V = {v ∈ [H1(Ω)]3 : v = 0 on ΓD} such that

a(u(μ), v;μ) = f (v;μ) ∀v ∈ V . (6.9)

Here, the bilinear and linear forms a(⋅, ⋅;μ) : [H1(Ω)]3 × [H1(Ω)]3 → ℝ and f (⋅;μ) :
[H1(Ω)]3 → ℝ are defined as

a(w, v;μ) := ∫
Ω

E(μ) 𝜕w
i

𝜕xj
Cijkl
𝜕vk

𝜕xl
and f (v;μ) := ∫

Ω

G(μ) ⋅ v − a(Ĝ(μ), v;μ),

where Ĝ(μ) ∈ [H1(Ω)]3 denotes a suitable lifting function of the possibly nonhomoge-
neous Dirichlet boundary conditions.

To obtain approximate solutions of (6.1) we presume we have an appropriate
grid-based numerical method at hand (the full-order model [FOM]), yielding a high-
(but finite-)dimensional approximation space Vh. We consider conforming continu-
ous Galerkin (CG) FEs, where Vh ⊂ V , and nonconforming discontinuous Galerkin or
finite volume (FV) schemes, where Vh ̸⊂ V (in which case we require broken Sobolev
spaces for our analysis, see Section 6.3.2.2). As a starting point for localized model re-
duction we require the FOM space to be decomposable into “local” spaces, which we
will make more precise shortly. While a localizing space decomposition could in gen-
eral stem from any clustering of the degrees of freedomofVh (see for instance [24]), we
are particularly interested in local approximation spaces which are associated with a
domain decomposition of the physical domain.
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Definition 6.5 (Nonoverlapping domain decomposition). We call a finite collection of
M ∈ ℕ open polygonal subdomains 𝒯H := {Ω1,Ω2, . . . ,ΩM} a nonoverlapping do-
main decomposition of the physical domain Ω, if ⋃Mm=1 Ωm = Ω and Ωm ∩ Ωm = 0
for 1 ≤ m,m ≤ M, m ̸= m. We collect in 𝒯 v

H , 𝒯
e
H , and 𝒯 γ

H the sets of all vertices,
edges, and facets (which we will denote interfaces from now on),1 respectively, asso-
ciated with the partition 𝒯H and defineH := maxMm=1 diamΩm. Moreover, we denote by
Γ := (⋃Mm=1 𝜕Ωm) \ 𝜕Ω the whole interface of the decomposition 𝒯H . Note that 𝒯 e

H = 0
for d = 2 and 𝒯 e

H = 𝒯
γ
H = 0 for d = 1. Each of the sets 𝒯H , 𝒯 v

H , 𝒯
e
H , and 𝒯 γ

H can be de-
composed into elements associated with the domain boundary and inner elements,
andwe collect the latter in ̊𝒯H , ̊𝒯 v

H , ̊𝒯
e
H , and

̊𝒯 γ
H , respectively. For instance, for each two

adjacent subdomains Ωm,Ωm ∈ 𝒯H , there exists a shared interface Γm,m ∈ ̊𝒯 γ
H , while

for all boundary subdomains Ωm ∈ ̊𝒯H there exists at least one boundary interface
Γm,𝜕Ω ∈ 𝒯

γ
H \
̊𝒯 γ
H .

We can thus think of the domain decomposition as a usual grid, but without the
requirements of 𝒯H to actually resolve any data functions of the PDE. Given such a
domain decomposition, we can abstractly define a localizing space decomposition.

Definition 6.6 (Localizing space decomposition). Let the FOM space Vh be a finite-
dimensional Hilbert space with inner product and induced norm ‖ ⋅ ‖2Vh

= (⋅, ⋅)Vh
. We

call the direct sumdecomposition ofVh into subdomain spaces, interface spaces, edge
spaces, and vertex spaces,

Vh =
M
⨁
m=1

Vm
h ⊕⨁

γ∈𝒯 γ
H

Vγ
h ⊕⨁

e∈𝒯 e
H

Ve
h ⊕⨁

v∈𝒯 v
H

Vv
h , (6.10)

a localizing space decomposition.

Note that such a decomposition is not unique and can always be found. Since the
reduced space shall inherit this localizing decomposition, its purpose will be three-
fold: (i) offline, it allows for an independent and localized generation of the local re-
duced approximation spaces (compare Section 6.4), (ii) it allows to define and alter the
physical domain Ω online, given that local approximation spaces for certain reference
subdomains have been prepared offline, and (iii) it allows to adapt a local approxima-
tion space online (by adding basis functions or changing the local grid), while only re-
quiring an update of local and neighboring prepared quantities (compare Section 6.6).
For actual examples of space decompositions we refer to Section 6.3.

Abstractly, we do not impose any further assumptions on the FOM as well as the
reduced-order model (ROM). However, given the (bi)linearity of a and f , the compu-
tational benefits of the localizing space decomposition are apparent (and are made

1 Note that to simplify notation we denote both the upper bound of the continuity constant and the
local interfaces with γ, expecting that the respective meaning will be clear from the context.
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more precise throughout the rest of this chapter). Since we allow for nonconforming
approximations, in general we need to consider discrete counterparts of a and f which
are only defined on the FOM space Vh and not necessarily on V , where we again refer
to the following sections for examples.

Definition 6.7 (Locally decomposed full order model (FOM)). Let Vh be locally decom-
posable as in (6.10), and let ah(⋅, ⋅;μ) : Vh × Vh → ℝ and fh(⋅;μ) ∈ V h denote discrete
variants of a and f , respectively, which are continuous and coercivewith respect to the
inner product of Vh. For each μ ∈ 𝒫, find uh(μ) ∈ Vh such that

ah(uh(μ), vh;μ) = fh(vh;μ) for all vh ∈ Vh. (6.11)

The idea of projection-based localized model order reduction is to consider a lo-
cal reduced approximation space for each element of the localizing space decomposi-
tion (6.10), in order to obtain a similarly decomposed reduced space VN ⊂ Vh:

VN =
M
⨁
m=1

Vm
N ⊕⨁

γ∈𝒯 γ
H

Vγ
N ⊕⨁

e∈𝒯 e
H

Ve
N ⊕⨁

v∈𝒯 v
H

Vv
N , (6.12)

with reduced subdomain spaces Vm
N ⊂ Vm

h , reduced interface spaces Vγ
N ⊂ Vγ

h , re-
duced edge spaces Ve

N ⊂ V
e
h , and reduced vertex spaces V

v
N ⊂ V

v
N . Similar to standard

projection-based model order reduction, we obtain the ROM simply by Galerkin pro-
jection of the locally decomposed FOM (6.11) onto this locally decomposed reduced
space.

Definition 6.8 (Locally decomposed reduced-order model (ROM)). Given a locally de-
composed reduced space as in (6.12), for each μ ∈ 𝒫, find uN (μ) ∈ VN such that

ah(uN (μ), vN ;μ) = fh(vN ;μ) for all vN ∈ VN . (6.13)

The main questions remain: (i) how to choose good local reduced approximation
spaces to guarantee accurate and at the same time efficient reduced-order approxima-
tions, (ii) how to benefit from the localization of VN , that is, how to obtain an offline-
online decomposed scheme and in particular how to couple these local reduced ap-
proximation spaces, and (iii) how to adaptively enrich these local reduced approxi-
mation spaces online, if required. These topics will be answered throughout the re-
mainder of this chapter, starting with examples of how to obtain localized FOMs from
standarddiscretization schemes andhow to couple the resulting local reduced spaces.

Therefore,we introduce local grids τh(Ωm) on each subdomainΩm ⊂ 𝒯H , wherewe
presume to resolve all data functions of the underlying PDE. As an analytical tool, we
also define the global fine grid by τh = ⋃Ωm∈𝒯H

τh(Ωm), which is usually not required in
practical computations. For simplicity, we require the local grids of two subdomains
Ωm,Ωm ∈ 𝒯H to match along the shared interface γm,m ∈ ̊𝒯 γ

H and denote by τγh(γm,m )
the corresponding set of all facets of τh which lie on γm,m . Finally, we require that Γ
does not cut any grid cells.
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6.3 Coupling local approximation spaces

6.3.1 Conforming approach

There are various ways to couple local reduced spaces such that we obtain a conform-
ing approximation, such as the partition of unitymethod [11] or the GFEM [8, 7, 11, 10].
However, in this section we focus on the decomposition into interface spaces and
intra-element spaces, where the coupling is performed via the coupling or interface
modes spanning the interface space.

6.3.1.1 The multidomain problem and the Steklov–Poincaré interface equation

First, we introduce local Hilbert spaces H1
0(Ωm) ⊂ Vm ⊂ H1(Ωm), m = 1, . . . ,M, which

are supposed to respect the boundary conditions on 𝜕Ω, the local spaces Vm
0 := {v ∈

Vm : v|𝜕Ωm\𝜕Ω = 0}, and the trace space Λ associated with Γ. Moreover, we introduce
local parameter-dependent bilinear and linear forms am(⋅, ⋅;μ) : Vm × Vm → ℝ and
fm(⋅;μ) ∈ Vm, μ ∈ 𝒫, m = 1, . . . ,M, and the inner product (⋅, ⋅)Vm : Vm × Vm → ℝ.
We may then state the variational form (6.1) equivalently as follows (see for instance
[98]): For any μ ∈ 𝒫 find um(μ) ∈ Vm,m = 1, . . . ,M such that

am(um(μ), v;μ) = fm(v;μ) ∀v ∈ Vm
0 , (6.14a)

um(μ) = um (μ) on Γm,m , (6.14b)
M
∑
m=1

am(um(μ), ℰmζ ;μ) =
M
∑
m=1

fm(ℰmζ ;μ) ∀ζ ∈ Λ, (6.14c)

where ℰm : Λ→ Vm,m = 1, . . . ,M, are linear and continuous extension operators.
The formulation (6.14) can then be used to derive an equation that solely acts on

functions on the interface but nevertheless uniquely defines the solution u(μ) of (6.1).
To that end, we introduce a parameter-dependent lifting operator ℰΓ→Ω(μ) : Λ →
V , where ℰΓ→Ω(μ)ζ is defined as the minimizer of infv(μ)∈V a(v(μ), v(μ);μ) subject to
v(μ)|Γ = ζ . Note that we then also have

am(ℰΓ→Ω(μ)ζ , v;μ) = 0 ∀v ∈ V
m
0 and ℰ(μ)Γ→Ωζ = ζ on Γ ∩ 𝜕Ωm. (6.15)

Then, we can rewrite the solution u(μ) as

u(μ) = ℰΓ→Ω(μ)(u(μ)|Γ) +
M
∑
m=1

ufm(μ), (6.16)

where ufm(μ) ∈ V
m
0 solves

am(u
f
m(μ), v;μ) = fm(v;μ) ∀v ∈ V

m
0 , m = 1, . . . ,M. (6.17)
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Inserting (6.16) into (6.14c) and choosing ℰm = ℰΓ→Ωm
(μ) yields the Steklov–Poincaré

interface equation: Find u(μ)|Γ ∈ Λ such that

M
∑
m=1

am(ℰΓ→Ωm
(μ)(u(μ)|Γ), ℰΓ→Ωm

(μ)ζ ;μ)

(6.18)

=
M
∑
m=1
[fm(ℰΓ→Ωm

(μ)ζ ;μ) − am(u
f
m(μ), ℰΓ→Ωm

(μ)ζ ;μ)] ∀ζ ∈ Λ.

Let us note that the Steklov–Poincaré interface equation and its discrete, algebraic
analogon, the Schur complement system, are at the base of iterative substructuring
methods (see [98, 110]), which have been combined with the reduced basis method
in [80].

Wemayfinally define a space associatedwith the interfaceVΓ asVΓ = {ℰΓ→Ω(μ)ζ ∈
V : ζ ∈ Λ} and obtain the decomposition V = (⨁M

m=1 V
m
0 ) ⊕ V

Γ. This decomposition is
a-orthogonal thanks to (6.15).

While the computation of the (harmonic) lifting operators is inherently local
(see (6.15)), the Steklov–Poincaré interface equation is posed on the whole interface
Γ. To localize the latter we decompose VΓ as we will describe next.

6.3.1.2 A conforming, localized reduced-order approximation

First, we determine basis functions associated with the vertices v ∈ 𝒯 v
H . One common

approach [52, 64, 20] is to require that a basis function ψv ∈ Vh ∩ [H1
0(⋃m

v⊂Ωm

Ωm)]
z, z =

1, . . . , d, associated with some vertex v of the coarse mesh 𝒯H satisfies for all Ωm, m =
1, . . . ,M,

(ψv ,w)Vm = 0 ∀w ∈ Vm
h;0 and ψv(xv) = 1, ψv(xv


) = 0, v ̸= v. (6.19)

Here,xv are the (global) coordinates of the vertex v andVm
h;0 := {v ∈ V

m
h : v = 0 on 𝜕Ωm\

ΓN }. To uniquely defineψv we need to prescribe the respective values on Γ.Wemay for
instance require ψv to be linear on the respective edges or bilinear on the respective
interfaces (see, e. g., [20]). For multiscale problems in two space dimensions with a
permeability κ(x1,x2; μ̄) it has been suggested in [54] to prescribe

ψv(x1,x
v
2) := (

x1

∫

xv1
ds

κ(s,xv2 ; μ̄)
)/(

xv1

∫

xv1
ds

κ(s,xv2 ; μ̄)
) (6.20)

on a horizontal edge [xv

1 ,x

v
1 ] × {x

v
2} in a uniform rectangular coarse grid 𝒯H .
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Next, we assume that we have given sets of discrete edge basis functions {χek}
Ne
h;0

k=1 ∈

Vh|e anddiscrete interfacebasis functions {χ
γ
k}
Nγ
h;0

k=1 ∈ Vh|γ definedon the respective edge
e ∈ 𝒯 e

H or interface γ ∈ 𝒯 γ
H . Here, we set N

e
h;0 := dim(Vh|e\𝜕e) and N

γ
h;0 := dim(Vh|γ\𝜕γ) as

we require that χek and χ
γ
k are zero on the boundary of the edge and interface, respec-

tively. Furthermore, we define Λe
Ne
h;0 := span{χe1 , . . . , χeNe

h;0 } and Λγ
Nγ := span{χγ1 , . . . , χ

γ
Nγ
h;0 }.

Similarly as for the vertices we may then define associated basis functions that
have support on the union of subdomains that share the respective edge or interface:
Find ψγ

k ∈ Vh ∩ [H
1
0(⋃m

γ⊂Ωm

Ωm)]
z, z = 1, . . . , d, γ ∈ 𝒯 γ

H , k = 1, . . . ,N
γ
h;0, such that

(ψγ
k ,w)Vm = 0 ∀w ∈ Vm

h;0 and ψγ
k |γ = χ

γ
k . (6.21)

Likewise, we find ψe
k ∈ Vh ∩ [H

1
0(⋃m

e⊂Ωm

Ωm)]
z, z = 1, . . . , d, e ∈ 𝒯 e

H , k = 1, . . . ,N
e
h;0, such

that

(ψe
k ,w)Vm = 0 ∀w ∈ Vm

h;0 and ψe
k |e = χ

e
k . (6.22)

Again, we need to provide the value of ψe
k on the interfaces sharing the edge e ∈ 𝒯

e
H in

order to uniquely defineψe
k . Similarly to above wemay require thatψe

k is linear on the
respective interfaces as suggested for instance in [20] or define a function which takes
into account also the coefficient function.

Note that if the interfaces aremutually disjoint, which is for instance the case if we
associate the subdomains Ωm,m = 1, . . . ,M, with the components of a structure, only
the basis functions ψγ

k, k = 1, . . . ,N
γ
h;0 (d = 3), or ψ

e
k, k = 1, . . . ,N

e
h;0 (d = 2), are needed.

Here, the values of the basis functions on the boundary of the interfaces or edges are
determined by the boundary conditions on 𝜕Ω (see for instance [61, 60, 37, 103]).

For Nγ ≪ Nγ
h;0 and Ne ≪ Ne

h;0 we may now define the reduced space associated
with Γ as follows:

VΓ
N :=⨁

v∈𝒯 v
H

span{ψv} ⊕⨁
e∈𝒯 e

H

span{ψe
1 , . . . ,ψ

e
Ne} ⊕⨁

γ∈𝒯 γ
H

span{ψγ
1 , . . . ,ψ

γ
Nγ }. (6.23)

Such reduced interface spaces are for instance employed in (adaptive) CMS [52, 64],
the scRBEmethod [61, 60, 37, 103] formutually disjoint interfaces, or in theArbiLoMod
[20]. Subspaces of VN

Γ are considered in certain multiscale methods. For example, in
the MsFEM of Hou and Wu [54], the reduced space is spanned by the basis functions
ψv, v ∈ 𝒯 v

H . For further relations between CMS, the MsFEM, and the GFEM we refer,
e. g., to [52].

Recall that the basis functions associated with the vertices, edges, and interfaces
have all been computed with respect to an inner product that does not depend on the
parameter (see (6.19), (6.21), and (6.22)). Therefore,wefinally assume thatwehavealso
given reduced spaces Vm

N ;0 := span{ζ
m
1 , . . . , ζ

m
Nm } ⊂ Vm

h;0,m = 1, . . . ,M, that will account
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for parameter variations. In detail, we obtain approximations ψ̃∗k (μ), ∗ = v, e, γ by
solving

find b̃∗k (μ) ∈ V
m
N ;0 : am(ψ

∗
k + b̃
∗
k (μ),w;μ) = 0 ∀w ∈ V

m
N ;0 (6.24)

and setting ψ̃∗k (μ) = ψ
∗
k + b̃
∗
k (μ), ∗ = v, e, f . Finally, we define b̃

m(μ) ∈ Vm
N ;0 as the

solution of

find b̃m(μ) ∈ Vm
N ;0 : am(b̃

m(μ),w;μ) = f (w,μ) ∀w ∈ Vm
N ;0. (6.25)

Note that both b̃∗k (μ), ∗ = v, e, γ and b̃
m(μ) can be interpreted as intra-element reduced

basis approximations; compare to Chapters 1 and 4 of this volume of Model order re-
duction. The corresponding reduced spaces Vm

N ;0, m = 1, . . . ,M, can for instance be
constructed from solutions b∗k (μ), b

m(μ) ∈ Vm
h;0, ∗ = v, e, f , of

am(ψ
∗
k + b
∗
k (μ),w;μ) = 0 ∀w ∈ V

m
h;0 (6.26)

and

am(b
m(μ),w;μ) = f (w,μ) ∀w ∈ Vm

h;0, (6.27)

respectively, via a standard greedy algorithm or a POD.2 Let us also remark that for
instance in the scRBE method for the approximation of each basis function ψ∗k , ∗ =
v, e, γ, a different reduced basis space is considered, to further reduce the size of prob-
lems (6.24), (6.25). Finally, we define the reduced spaces

VN =
M
⨁
m=1

Vm
N ;0 ⊕ V

Γ
N (6.28)

and

VΓ
N (μ) :=⨁

v∈𝒯 v
H

span{ψ̃v(μ)} ⊕⨁
e∈𝒯 e

H

span{ψ̃e
1 (μ), . . . , ψ̃

e
Ne (μ)}

(6.29)
⊕⨁
γ∈𝒯 γ

H

span{ψ̃γ
1 (μ), . . . , ψ̃

γ
Nγ (μ)}.

The global reduced approximation uN (μ) can then be computed by performing a
Galerkin projection onto the reduced space VΓ

N (μ) or a Petrov–Galerkin approxima-
tion using VΓ

N (μ) as a trial and VΓ
N as a test space (see, e. g., [38, 100]). Instead of

eliminating the volume degrees of freedom via (6.24), (6.25), uN (μ) can also directly
be determined by performing a Galerkin projection onto VN (see for instance [20]).

2 Note that in actual practice one would construct the reduced bases only on a certain number < M
of reference domains; see for instance [61].
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Similarly, for CMS and a fixed parameter a Galerkin projection onto VN may be per-
formed to compute the reduced solution; here, the reduced space Vm

N ;0 is constructed
from an eigenvalue problem and does not account for parameter variations (see, e. g.,
[52]). Finally, in the reduced basis-domain decomposition–FE (RDF) method [63] the
reduced space VN is chosen as a direct sum of ⨁M

m=1 V
m
N ;0 and standard FE spaces

defined on the interface or on a (small) area around the interface. Here, the intra-
element reduced spaces Vm

N ;0 are constructed via a greedy algorithm considering a
parameterized linear combination of standard Lagrange basis functions or Fourier
modes as boundary conditions. Then, a Galerkin projection on VN is performed to
compute uN (μ).

6.3.2 Nonconforming approach

With the term nonconforming approach we want to classify a set of alternative tech-
niques to solve the reduced problem on the global computational domain. A first ap-
proach consists in considering a global system of equations given by local parameter-
ized problems and additional equations ensuring the matching between the different
subdomains through the use of Lagrange multipliers. This approach has been used
for solving elliptic equations in [76, 77] and Stokes equations in [74, 62].

Another approach consists in coupling local FOM spaces by interior penalty (IP)
bilinear forms, inspired by discontinuous Galerkin FEM. Here, we refer to the discon-
tinuous Galerkin RBEM [27, 6, 93] and the local reduced basis discontinuous Galerkin
approach [66]. A discontinuous Galerkin approach with local POD modes has been
presented in [41]. In the context of multiscale problems (cf. Example 6.2), the gener-
alized multiscale discontinuous Galerkin method has been proposed in [29, 30] and
used for solving the heat problem with phase change in [107]. We will present the
LRBMS method in Section 6.3.2.2. LRBMS has been introduced in [5] and analyzed in
[89, 90] for elliptic and in [87] for parabolic problems.Applications to the simulation of
two-phase flow in porousmedia have been addressed in [65] and to battery simulation
with resolved electrodes in [86].

6.3.2.1 Nonconforming coupling based on Lagrange multipliers

We want to reformulate the problem (6.14), with the idea that exact coincidence of
the traces of the discrete functions (equation (6.14b)) is generally too stringent, and
may, in fact, lead to imposing um = 0 on the internal interfaces; thus, the gluing pro-
cess can be done in a dual way through Lagrange multipliers. We assume that local
basis functions are computed in each subdomainΩm,m = 1, . . . ,M, by solving local pa-
rameterized variational problems coming from the original problem (6.1) with proper
boundary conditions along the boundaries which correspond to internal ones in the
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original domain. The choice of the boundary conditions is strongly related to the prob-
lem aimed to be solved. Thus, local reduced spaces are defined via these local solu-
tions and denoted by Vm

N ,m = 1, . . . ,M. Possible ways to constructVm
N are presented in

Section 6.4. If two or more subdomains are characterized by the same type of param-
eter and the same type of boundary conditions, the same local reduced space can be
associated to those subdomains. For simplicity we consider different spaces for each
different subdomain.

We define the following operator:

ℒm,m(u(μ),ψ) = ∫
Γm,m
(u(μ)|Ωm

− u(μ)|Ωm )ψds = 0, ∀ψ ∈ Wm,m , (6.30)

where m,m ∈ {1, . . . ,M}, Γm,m is the interface between two adjacent subdomains de-
noted with the indices m and m, respectively, and Wm,m is the Lagrange multiplier
space defined on this interface. Typical choices for the latter are low-order polynomial
spaces [76, 62] or spaces constructed from snapshots (and their derivatives) [77].

A basis forWm,m can then for instance be provided by the characteristic Lagrange
polynomials ψq, q = 1, . . . ,Qm,m , associated with the Qm,m nodes of Γm,m .

If we suppose that Ω has M − 1 internal interfaces, Γm,m+1,m = 1, . . . ,M − 1, the
reduced global problem of this approach reads as follows: Find uN (μ) ∈ V 1

N × ⋅ ⋅ ⋅×V
M
N ,

λN ∈ Wm,m+1,m = 1, . . . ,M − 1, such that

{{{
{{{
{

a(uN (μ), vN ,μ) +
M−1
∑
i=1

ℒm,m+1(vN , λN ) = f (w,μ)∀vN ∈ V
1
N × ⋅ ⋅ ⋅ × V

M
N ,

ℒm,m+1(uN (μ),ψ) = 0 m = 1, . . . ,M − 1,∀ψ ∈ Wm,m+1.

(6.31)

6.3.2.2 Nonconforming coupling based on interior penalties

We demonstrate how to obtain a localized FOM by applying ideas from IP discontin-
uous Galerkin schemes with respect to the domain decomposition 𝒯H in the context
of the parametric multiscale Example 6.2. To define the localized FOM, we presume
we are given a discretization on the full global grid τh (which is not used in actual
computations), which we make precise by specifying the approximation space with
an associated inner product and discrete variants of a and f . As a common ground
for the analysis of conforming as well as nonconforming schemes, we introduce the
broken Sobolev space Hs(τh(ω)) := {v ∈ L2(ω) | v|t ∈ Hs(t) ∀t ∈ τh(ω)}, for a given
grid τh(ω) of some domain ω ⊆ Ω and s ≥ 1, and associated broken gradient operator
∇h : H1(τh(ω))→ L2(ω)d by (∇hv)|t := ∇(v|t) on all t ∈ τh for v ∈ H1(τh(ω)).

Example 6.9 (Continuous Galerkin (CG) FEM). The CG FEM scheme for the conforming
approximation of Example 6.2 with respect to the full global grid τh is given by the
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conforming approximation space of order k ≥ 1,

VCG
h (τh) := {v ∈ V

 v|t ∈ ℙk(t) ∀t ∈ τh} ⊂ V ⊂ H
1(τh),

whereℙk(ω) for anyω ⊂ Ωdenotes the space of all polynomials defined onω of degree
at most k ≥ 0; the bilinear form (⋅, ⋅)CG : H1(τh) × H1(τh) → ℝ, given by (u, v)CG :=
∫Ω ∇hu⋅∇hv dx, as the inner product onV

CG
h (τh) (wherewenote that its restriction toV ⊂

H1(τh) coincides with the V -inner product); and the discrete bilinear form aCGh (⋅, ⋅;μ) :
H1(τh) × H1(τh)→ ℝ and linear functional f CGh : H

1(τh)→ ℝ, given by

aCGh (u, v;μ) := ∫
Ω

(κ(μ)∇hu) ⋅ ∇hv dx and f CGh (v) := ∫
Ω

qv dx

(again noting that their respective restrictions to V coincide with a and f ).

The definition of the nonconforming scheme is more involved. We denote the set
of faces of τh by τγh and to each face σ ∈ τγh, we assign a unique normal nσ ∈ ℝd

pointing away from t+, where the face may be either an inner face σ ∈ τγh, given by the
intersection of two grid elements t+, t− ∈ τh, σ = t+ ∩ t−, or a boundary face σ ∈ τ

γ
h,

given by σ = t+ ∩ 𝜕Ω for some t+ ∈ τh. Since functions in the broken Sobolev space are
two-valued on grid faces, we introduce the mean ⟨⋅⟩ and jump [⋅] on a boundary face
by ⟨v⟩ := [v] := v|t+ and by ⟨v⟩ := 1

2 (v|t+ + v|t− ) and [v] := v|t+ − v|t− , respectively, on any
other face.

Considering the family of IP discontinuousGalerkin schemes,wepresent the sym-
metric variant for ease of notation, and refer to the symmetric weighted variant [40],
which is particularly well suited for multiscale problems with highly varying or high-
contrast coefficients.

Example 6.10 (IP discontinuous Galerkin FEM). The symmetric IP discontinuous Ga-
lerkin FEM scheme for the nonconforming approximation of Example 6.2 with respect
to the full global grid τh is given by the nonconforming approximation space of order
k ≥ 1,

VDG
h (τh) := {v ∈ L

2(Ω)  v|t ∈ ℙk(t) ∀t ∈ τh} ⊂ H
1(τh);

the bilinear form (⋅, ⋅)DG : H1(τh) × H1(τh)→ ℝ, given by

(u, v)DG := (u, v)CG + ∑
σ∈τγh

(u, v)pσ with (u, v)pσ := ∫
σ

h−1σ [u][v]ds,

as inner product on VDG
h (τh), where hσ is a positive number associated with each face

σ ∈ τγh, e. g., hσ := diam(σ) for d ≥ 2 and hσ := min{diam(t+),diam(t−)} for d = 1;
and the linear functional f DGh : H

1(τh) → ℝ given by f DGh (v) := f
CG
h (v) and the discrete

bilinear form aDGh (⋅, ⋅;μ) : H
2(τh) × H2(τh)→ ℝ, given by

aDGh (u, v;μ) := a
CG
h (u, v;μ) + ∑

σ∈τγh

aσ(u, v;μ)
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with the face bilinear form aσ for any σ ∈ τ
γ
h given by

aσ(v, u;μ) := a
c
σ(v, u;μ) + a

c
σ(u, v;μ) + (u, v)

p
σ wσ

with acσ(u, v;μ) := ∫σ −⟨(κ(μ)∇hv) ⋅nσ⟩[u]ds and a user-dependent penalty weightwσ >
0, such that aDGh is continuous and coercive with respect to the above inner product.

The main idea of an IP localized FOM is to consider the restriction of either of the
abovediscretization schemes to each subdomain of the domaindecomposition, and to
again couple those with IP techniques along the interfaces of the subdomain.We thus
choose ∗ ∈ {CG,DG} and obtain the localized FOM space in the sense of Definition 6.6
as a direct sum of subdomain spaces (with empty interface, edge, and vertex spaces)

Vh :=
M
⨁
m=1

Vm
h , with Vm

h := {v|Ωm

 v ∈ V
∗},

with associated inner product (⋅, ⋅)Vh
: Vh × Vh → ℝ given by

(u, v)Vh
:=

M
∑
m=1
(u|Ωm
, v|Ωm
)∗ + ∑

Γ∈ ̊𝒯 γ
H

∑
σ∈τγh(Γ

)(u, v)
p
σ .

We also define the linear functional fh : Vh → ℝ by fh := f ∗h and, in a similar manner
as above, the nonconforming bilinear form ah(⋅, ⋅;μ) : Vh × Vh → ℝ by

ah(u, v;μ) :=
M
∑
m=1

a∗h (u|Ωm
, v|Ωm
;μ) + ∑

Γ∈ ̊𝒯 γ
H

∑
σ∈τγh(Γ

) aσ(u, v;μ).
We have thus fully specified a localized FOM in the sense of Definition 6.7 and com-
ment on two special cases: for ∗ = CG and a trivial domain decomposition of a single
subdomain, 𝒯H = {Ω}, we obtain the above standard CG FEM, while for ∗ = DG the re-
sulting FOM coincides with the above standard symmetric IP discontinuous Galerkin
FEM.

To make the coupling more precise, we may rearrange the above terms to obtain
a localization of ah with respect to the domain decomposition in the sense of

ah(u, v;μ) =
M
∑
m=1

amh (u, v;μ) + ∑
Γ∈ ̊𝒯 γ

H

aΓ

h (u, v;μ),

with the subdomain and interface bilinear forms

amh (u, v;μ) : = a
∗
h (u|Ωm
, v|Ωm
;μ) + ∑

Γ∈ ̊𝒯 γ
H ∩Ωm

∑
σ∈τγh(Γ

) aσ(u|Ωm
, v|Ωm
;μ),
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aΓ

h (u, v;μ) : = ∑

σ∈τγh(Γ
){aσ(u|Ω+ , v|Ω− ;μ) + aσ(u|Ω− , v|Ω+ ;μ)},

respectively, for all 1 ≤ m ≤ M and all Γ ∈ ̊𝒯 γ
H , with the subdomains Ω+,Ω− ∈ 𝒯H

sharing the interface Γ.
Now given a local reduced space Vm

N ⊂ Vm
h for each subdomain we obtain the

locally decomposed broken reduced space in the sense of (6.12) by

VN =
M
⨁
m=1

Vm
N ⊂ Vh.

Using the above decomposition of ah into subdomain and interface contributions, we
can readily observe that the locally decomposed ROM can be offline-online decom-
posed by local computations, namely, by projection of the subdomain bilinear forms
amh (⋅, ⋅;μ) onto V

m
N × V

m
N and the interface bilinear forms aΓ


h (⋅, ⋅;μ) onto V

m
N × V

n
N , with

1 ≤ m, n ≤ M, such that Ω+ = Ωm and Ω− = Ωn, respectively.
We thus obtain a sparse matrix representation of the resulting reduced system,

with a sparsity pattern which coincides with the one from standard IP discontinuous
Galerkin schemes.

6.4 Preparation of local approximation spaces
Both couplings that yield a conforming and nonconforming approximation require ei-
ther reduced spaces Λγ

Nγ ⊂ Vh|γ for interfaces and/or edges Λe
Ne ⊂ Vh|e (Section 6.3.1) or

reduced spaces Vm
N (Section 6.3.2) or both. As the generation of edge basis functions

can be done analogously to the construction of interface basis functions we restrict
ourselves to the latter in order to simplify notation. To fix the setting we thus consider
the task of finding a suitable reduced space on either a subdomain Ωm ⊊ Ωout ⊂ Ω
with dist(Γout, 𝜕Ωm) ≥ ρ > 0, Γout := 𝜕Ωout \ 𝜕Ω or an interface Γm,m ⊂ 𝜕Ωm, where
dist(Γout, Γm,m ) ≥ ρ > 0. Possible geometric configurations of the oversampling do-
main Ωout are illustrated in Figure 6.1.

Figure 6.1: Illustration of possible decompositions of Ωout with
respect to Γm,m or Ωm.

Wewill first briefly discuss in Section 6.4.1 reduced spaces that are spanned by polyno-
mials or solutions of “standard” eigenvalue problems and are thus related to the spec-
tral elementmethodor hp-FEM. Subsequently, in Section 6.4.2wewill present reduced
spaces that are generated from local solutions of the PDE, are thus of empirical nature,
and are optimal in the sense of Kolmogorov.Wewill also showhow those optimal basis
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functions can be efficiently and accurately approximated by means of random sam-
pling.

6.4.1 Polynomial-based local approximation spaces

CMS as introduced in [59, 12] relies on free vibration modes or eigenmodes of local,
constrained eigenvalue problems [59, 12, 17, 52, 64, 51] for the approximation within
subdomains. To couple themodes at the interfaces a reduced interface space spanned
by eigenmodes is employed [59, 12, 17, 52, 64, 51].

A combination of domain decomposition and reduced basis methods has first
been considered in the RBEM [76]. Here, inspired by the mortar spectral element
method [16], the Lagrangemultiplier spaceWm,m as defined in Section 6.3.2 is chosen
as a low-order polynomial space. The reduced basis hybrid method [62] extends the
RBEM by additionally considering a coarse FE discretization on the whole domain to
account for continuity of normal stresses and also employs a low-order polynomial
Lagrange multiplier space on the interface. For the scRBE method a reduced inter-
face space spanned by the eigenvectors of a discrete generalized eigenvalue problem
based on the Laplacian has been suggested in [61, 60] and eigenmodes of a singular
Sturm–Liouville eigenproblem have been used in [37]. Finally, in the RDFmethod [63]
a standard FE space is considered on the interface or on a (small) area around the
interface.

6.4.2 Local approximation spaces based on empirical training

In this subsection we are concerned with local approximation spaces that are con-
structed from local solutions of the PDE; those approaches are often called empiri-
cal. Basis functions on the interfaces selected from local snapshots are for instance
suggested in [37], where an empirical pairwise training procedure for interface re-
duction within the scRBE context is developed, and within a heterogeneous domain
decomposition method in [83]. Local approximation spaces that are optimal in the
sense of Kolmogorov have been introduced for subdomains within the GFEM in [10]
for parameter-independent PDEs and for interfaces within static condensation pro-
cedures [103] for parameterized PDEs. While the authors of [103] introduce and ana-
lyze a spectral greedy algorithm to deal with parameter variations, [109] suggests us-
ing a POD making use of the hierarchical approximate POD [53]. Those optimal local
spaces both allow for a rigorous a priori theory and yield a rapidly (and often exponen-
tially) convergent approximation; in certain cases the superalgebraic convergence can
be proved [10]. Recently, in [109, 108] the results in [10, 9, 103] have been generalized
from linear differential operatorswhose associated bilinear form is coercive to elliptic,
inf-sup stable ones. In [21] it has been shown that those optimal local approximation
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spaces can be efficiently approximated by transferring methods from randomized nu-
merical linear algebra [46]; the local approximation spaces in [21] are constructed from
local solutions of the PDE with random boundary conditions. Local reduced spaces
generated from random snapshots have also been suggested in [20, 37] and methods
from randomized linear algebra have been exploited in the FETI-2λ domain decompo-
sition method in [113] and in [23] for the generalized multiscale FEM.

We will first present the optimal local approximation spaces as introduced in [10,
103] for a fixed parameter 𝒫 = {μ̄}, subsequently discuss their approximation via ran-
dom sampling, and conclude this subsection with the discussion of the general case
𝒫 ̸= {μ̄}. To simplify notation we will omit μ̄ as long as it is fixed.

6.4.2.1 Optimal local approximation spaces for𝒫 = {μ̄}

To enablemaximumflexibility regarding the shape of Ω on the user’s side, we assume
that we do not have any a priori knowledge of the shape of Ω when constructing the
ROM. We thus know that the global solution u satisfies the considered PDE locally on
Ωout but suppose that the trace of u on 𝜕Ωout is unknown to us. Therefore, we aim at
approximating all local solutions uloc of

aloc(uloc, v) = floc(v) ∀v ∈ Vloc, (6.32)

with arbitrary Dirichlet boundary conditions on Γout. Here, the Hilbert space Vloc is de-
fined such that [H1

0(Ωout)]
z ⊂ Vloc ⊂ [H1(Ωout)]

z, z = 1, . . . , d, respecting the boundary
conditions on 𝜕Ω, and aloc : [H1(Ωout)]

z × [H1(Ωout)]
z → ℝ, floc : Vloc → ℝ are local

bilinear and linear forms. We will first restrict ourselves to the case floc = 0, gD = 0,
and 𝜕Ωm ∩ ΓD = 0; the general case will be dealt with at the end of this subsection. We
may then define the space of all local solutions of the PDE as

ℋ := {w ∈ [H1(Ωout)]
z
: w solves (6.32),w = 0 on ΓD ∩ 𝜕Ωout}, z = 1, . . . , d. (6.33)

As suggested in [10, 103] we introduce a transfer operator 𝒯 : 𝒮 → ℛ for Hilbert
spaces 𝒮 andℛ, where 𝒮 = {w|Γout : w ∈ ℋ}. We define 𝒯 for interfaces or subdomains,
respectively, for w ∈ ℋ as

𝒯 (w|Γout ) = (w − PΩout
(w))|Γm,m or 𝒯 (w|Γout ) = (w − PΩm

(w))|Ωm
(6.34)

and set ℛ = {v|Γm,m : v = w − PΩout
(w),w ∈ ℋ} or ℛ = {(w − PΩm

w)|Ωm
: w ∈ ℋ}.

Here, PD, D ⊂ Ωout, denotes an orthogonal projection onto the kernel of the bilinear
form; for further details see [21, 103]. In the case of heat conduction we would for in-
stance subtract the mean value of the respective function on D. Note that subtracting
this projection is necessary to prove compactness of the transfer operator 𝒯 . The key
argument to show compactness of 𝒯 is Caccioppoli’s inequality, which estimates the
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energy norm of a function in ℋ on Ωm in terms of the L2-norm on Ωout of the respec-
tive function. Using the Hilbert–Schmidt theorem and Theorem 2.2 in [95, Chapter 4]
it can then be shown that certain eigenfunctions of 𝒯 ∗𝒯 span the optimal local ap-
proximation space, where 𝒯 ∗ : ℛ → 𝒮 denotes the adjoint operator of 𝒯 . As we aim
at approximating ℋ and thus a whole set of functions, the concept of optimality of
Kolmogorov [68] is used: A subspaceℛn ⊂ ℛ of dimension at most n for which holds

dn(𝒯 (𝒮);ℛ) = sup
ψ∈𝒮

inf
ζ∈ℛn

‖𝒯 ψ − ζ ‖ℛ
‖ψ‖𝒮

is called an optimal subspace for dn(𝒯 (𝒮);ℛ), where the Kolmogorov n-width
dn(𝒯 (𝒮);ℛ) is defined as

dn(𝒯 (𝒮);ℛ) := inf
ℛn⊂ℛ

dim(ℛn)=n

sup
ψ∈𝒮

inf
ζ∈ℛn

‖𝒯 ψ − ζ ‖ℛ
‖ψ‖𝒮

.

We summarize the findings about the optimal local approximation spaces in the
following theorem.

Theorem 6.11 (Optimal local approximation spaces [10, 103]). The optimal approxi-
mation space for dn(𝒯 (𝒮);ℛ) is given by

ℛn := span{χ
sp
1 , . . . , χ

sp
n }, where χspj = 𝒯 ϕj, j = 1, . . . , n, (6.35)

and λj are the largest n eigenvalues and ϕj the corresponding eigenfunctions that satisfy
the following transfer eigenvalue problem: Find (ϕj, λj) ∈ (𝒮 ,ℝ+) such that

(𝒯 ϕj, 𝒯 w)ℛ = λj(ϕj, w)𝒮 ∀w ∈ 𝒮 . (6.36)

Moreover, we have

dn(𝒯 (𝒮);ℛ) = sup
ξ∈𝒮

inf
ζ∈ℛn

‖𝒯 ξ − ζ ‖ℛ
‖ξ ‖𝒮

= √λn+1. (6.37)

Remark 6.12. We emphasize that the optimal spaceℛn is optimal in the sense of Kol-
mogorov for the approximation of the range of 𝒯 and not necessarily for the approxi-
mation of u(μ). Moreover, we remark that χspi are the left singular vectors and √λi the
singular values of 𝒯 .

Next, for floc ̸= 0 but still gD = 0 we solve the following problem: Find ufloc ∈ Vloc
such that aloc(u

f
loc, v) = floc(v) for all v ∈ Vloc and augment the space ℛn with either

ufloc|Ωm
or ufloc|Γm,m . To take nonhomogeneous Dirichlet boundary conditions into ac-

count one can proceed for instance with a standard lifting approach, adjusting floc
accordingly. Note that for homogeneous boundary conditions we proceed very simi-
larly to above, prescribing “arbitrary” boundary conditions on Γout and homogeneous
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boundary conditions on 𝜕Ω ∩ 𝜕Ωout. The optimal local approximation spaces for sub-
domains are then defined as

ℛ+n := span{χ
sp
1 , . . . , χ

sp
n , u

f
loc|Ωm
} ⊕ ker(am(⋅, v)) (6.38)

and similarly for interfaces as

ℛ+n := span{χ
sp
1 , . . . , χ

sp
n , u

f
loc|Γm,m } ⊕ ker(am(⋅, v))|Γm,m . (6.39)

Here, ker(am(⋅, v)) denotes the kernel of the mapping am(⋅, v) : [H1(Ωm)]
z → ℝ, z =

1, . . . , d, v ∈ Vm
0 , for the bilinear form am defined in Section 6.3.1. In the case 𝜕Ωm∩ΓD ̸=

0, all modifications in this subsection involving the kernel of the bilinear form are
waived.

The result in (6.37) can be exploited to derive an a priori error bound for the ap-
proximation error between the solutionu(μ̄)of (6.1) still for a fixed referenceparameter
μ̄ and the optimal static condensation approximation un(μ̄) as stated in the following
proposition.

Proposition 6.13 (A priori error bound [103]). Assume that the interfaces γ ∈ 𝒯 γ
H are

mutually disjoint, that all interfaces have the same geometry, and that each Ωm, m =
1, . . . ,M, has exactly two interfaces. Let u(μ̄) be the (exact) solution of (6.1) for a fixed
parameter μ̄. Moreover, let un+ (μ̄) be the static condensation approximation defined in
Section 6.3.1, where we employ the optimal interface spaceℛ+n for each γ ∈ 𝒯

γ
H and as-

sume that the error due to the intra-element reduced basis approximation is zero. Then,
we have the following a priori error bound:

⦀u(μ̄) − un+ (μ̄)⦀μ̄
⦀u(μ̄)⦀μ̄

≤ #γmax
γ∈𝒯 γ

H

(Cγ √λ
γ
n+1), (6.40)

where #γ denotes the number of interfaces in 𝒯 γ
H and λγn+1 is the (n + 1)-th eigenvalue

of (6.36) for the interface γ ∈ 𝒯 γ
H . The constant Cγ depends only on the subdomains that

share the interface γ and neither on Ω nor on u(μ̄).

To define reduced interface spaces Λγ
Nγ , γ ∈ 𝒯 γ

H , and reduced spaces Vm
N , m =

1, . . . ,M, we approximate (6.36) with FEs. To that end, we introduce a conforming FE
space Vh;loc ⊂ Vloc, the FE source space S := {v|Γout : v ∈ Vh} of dimension NS, and
the FE range space R := {(v − PΩout

(v))|Γm,m : v ∈ Vh} or R := {(v − PΩm
)|Ωm
: v ∈ Vh}

with dim(R) = NR. We may then define the discrete transfer operator T : S → R for
w ∈ ℋh = {w ∈ Vh|Ωout

: aloc(w,φ) = 0∀φ ∈ Vh;loc, w = 0 on ΓD ∩ 𝜕Ωout} as

T(w|Γout ) = (w − PΩout
(w))|Γm,m or T(w|Γout ) = (w − PΩm

(w))|Ωm
. (6.41)

In order to define a matrix form of the transfer operator we introduce degree of free-
dom mappings 𝔹S→Vh|Ωout

∈ ℝdim(Vh|Ωout )×NS and 𝔹Vh|Ωout→R
∈ ℝNR×dim(Vh|Ωout ) that map
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the degrees of freedom of S to the degrees of freedom ofVh|Ωout
and the degrees of free-

dom of Vh|Ωout
to the degrees of freedom of R, respectively. Moreover, we introduce the

stiffness matrix 𝔸loc obtained from the FE discretization of (6.32), where we assume
that in the rows associated with the Dirichlet degrees of freedom the nondiagonal en-
tries are zero and the diagonal entries equal one. By denoting by ζ the FE coefficients
of ζ ∈ S and by defining ℙD as the matrix of the orthogonal projection on the ker-
nel of the bilinear form on D ⊂ Ωout, we obtain the following matrix representation
𝕋 ∈ ℝNR×NS of the transfer operator for subdomains

𝕋 ζ = (1 − ℙΩm
)𝔹Vh|Ωout→R

𝔸−1𝔹S→Vh|Ωout
ζ (6.42)

and interfaces

𝕋 ζ = 𝔹Vh|Ωout→R
(1 − ℙΩout

)𝔸−1𝔹S→Vh|Ωout
ζ . (6.43)

Finally, we denote by𝕄S the inner product matrix of S and by𝕄R the inner product
matrix of R. Then, the FE approximation of the transfer eigenvalue problem reads as
follows: Find the eigenvectors ζ j ∈ ℝ

NS and the eigenvalues λj ∈ ℝ+0 such that

𝕋t𝕄R𝕋 ζ j = λj𝕄S ζ j. (6.44)

The coefficients of the FE approximation of the basis functions {χsph,1, . . . , χ
sp
h,n} of the

discrete optimal local approximation space

Rn := span{χ
sp
h,1, . . . , χ

sp
h,n} (6.45)

are then given by χsph,j = 𝕋 ζ j, j = 1, . . . , n. Adding the representation of the right-hand
side, the boundary conditions, and a basis of the kernel of the bilinear form yields the
optimal spaces Λγ

Nγ and Vm
N .

Note that in actual practice we would not assemble the matrix 𝕋. Instead one
may solve the PDE locally NS times prescribing the basis functions of S as Dirichlet
boundary conditions on Γout and subsequently assemble and solve the transfer eigen-
value problem. Alternatively, one may pass 𝕋 implicitly to the Lanczos method. For
instance, the implicitly restarted Lanczos method as implemented in ARPACK [73] re-
quires 𝒪(n) local solutions of the PDE in each iteration and applications of the ad-
joint T∗. In the next subsection we will show how methods from randomized linear
algebra [46, 32, 78, 79] can be used to compute an approximation of the optimal local
approximation spaces. However, beforehand, we conclude this subsection with some
numerical experiments on the transfer eigenvalues and thus via Proposition 6.13 on
the convergence behavior of the relative approximation error.

To this end, we present the simplified model for a ship stiffener from [103]: We
consider Ωout = Ω̄1 ∪ Ω̄2 and Γm,m = Γ1,2 = Ω̄1 ∩ Ω̄2, where Ω2 is depicted in Figure 6.2,
Ω1 is just a shifted version of Ω2, and the part of Γout in Ω2 is indicated in yellow in
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Figure 6.2:Mesh in the subdomain Ω2 for the ship stiffener. The part of Γout in Ω2 is indicated in
yellow and on the opposite we have the interface Γm,m . In the red shaded areas Young’s modulus
may be varied between 1 and 20 and in the gray areas we consider E(μ) ≡ 1.

Figure 6.2. We allow E(μ) to vary in the red areas of the subdomains between 1 and 20
and prescribe E(μ) ≡ 1 in the gray areas; we choose G(μ) = (0,0,0)T .

In detail, we consider Ω1 = (−0.7,0.7) × (−0.05,0.05) × (−0.6,0.6), Ω2 = (0.7, 2.1) ×
(−0.05,0.05) × (−0.6,0.6), and Γout = {−0.7} × (−0.05,0.05) × (−0.6,0.6) ∪ {2.1} ×
(−0.05,0.05) × (−0.6,0.6). We employ a conforming linear FE space associated with
the mesh depicted in Figure 6.2, resulting in N = 13,125 degrees of freedom per sub-
domain and an FE interface space of dimension NΓ = 375. Finally, we equip both S
and R with a lifting inner product based on the lifting operator ℰΓ→Ωm

(μ̄) defined in
Section 6.3.1.1; for further details we refer to [103].

We consider different values for Young’s modulus (ratios) Eri , i = 1, 2, in the red
areas of the subdomains and observe in Figure 6.3 for the ship stiffener application
an exponential convergence of order ≈ e−n of the eigenvalues λn(μ) and thus the static
condensation approximation. We emphasize that we observe in Figure 6.3 that the
eigenvalues associated with the stiffened plate (Er1 = E

r
2 = 20) decay fastest, while we

see the slowest decay for the nonstiffened plate (Er1 = E
r
2 = 1). This is consistent with

the expectation that stiffening the plate decreases the deflection of the plate, eliminat-
ing the higher eigenmodes. Moreover, an inspection of the optimal interfacemodes re-
vealsmany “classical”mode shapes such as bending or torsionalmodes of beams and
demonstrates again the physical significance of the optimal modes. Also for beams of
different shapes, including an I-beam with a crack and thus an irregular domain, an
exponential convergence of the transfer eigenvalues and the physical significance of
the transfer eigenmodes can be observed; for further details see [103].

Figure 6.3: Eigenvalues λn(μ) for
different Young modulus ratios Eri
in Ωi , i = 1, 2.
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6.4.2.2 Randomized training

In order to compute an efficient approximation Rrandn of Rn the adaptive randomized
range approximation algorithm, Algorithm 6.1, as suggested in [21] iteratively en-
hances the reduced space with applications of T to a random function until a certain
convergence criterion is satisfied.

Algorithm 6.1: Adaptive randomized range approximation.
Input : Operator T, target accuracy tol, number of test vectors nt, maximum

failure probability εalgofail
Output: space Rrandn with property P(‖T − PRrandn

T‖ ≤ tol) > (1 − εalgofail)
1 Initialize: B← 0,M ← {TD−1S r1, . . . , TD−1S rnt }
2 Compute error estimator factors:

3 εtestfail ← εalgofail/NT ; cest ← [√2λ
𝕄S
min erf

−1( nt√εtestfail)]−1

4 while (maxt∈M ‖t‖R) ⋅ cest > tol do
5 B← B ∪ (TD−1S r)
6 B← orthonormalize(B)
7 orthogonalize test vectors:M ← {t − Pspan{B}t | t ∈ M}

8 return Rrandn = span{B}

In detail, in each iteration on line 5 we draw a new random vector r ∈ ℝNS whose
entries are independent and identically distributed random variables with standard
normal distribution. Then, we employ the mapping D−1S : ℝ

NS → S to define a unique
FE function in S whose coefficients are the components of r. Subsequently, we apply
the transfer operator T to D−1S r, meaning that we solve the PDE locally on Ωout with
random boundary conditions and restrict the solution to Ωm or Γm,m ; the resulting
function is added to the set of basis functions B. Finally, the basis B is orthonormal-
ized. Note that the orthonormalization is numerically challenging, as the basis func-
tions are nearly linear dependent when span{B} is already a good approximation of
the range of T; in [21] using the numerically stable Gram–Schmidt with adaptive reit-
eration from [19] is suggested. The main loop of the algorithm is terminated when the
following a posteriori norm estimator is smaller than the desired tolerance tol.

Proposition 6.14 (A probabilistic a posteriori norm estimator [21]). Let ri, i = 1, . . . , nt ,
be nt randomnormal test vectors and λ𝕄S

min and λ
𝕄S
max the smallest and largest eigenvalues

of the matrix of the inner product in S. Then, the a posteriori norm estimator

Δ(nt , εtestfail) := cest(nt , εtestfail) max
i∈1,...,nt

(T − PRrandn
T) D−1S ri

R (6.46)



6 Localized model reduction for parameterized problems | 269

satisfies

P{‖T − PRrandn
T‖ ≤ Δ(nt , εtestfail)} ≥ (1 − εtestfail), (6.47)

where cest(nt , εtestfail) := 1/[(2λ
𝕄S
min)

1/2 erf−1( nt√εtestfail)]. Additionally, we have

P{ Δ(nt , εtestfail)
‖T − PRrandn

T‖
≤ ceff(nt , εtestfail)} ≥ 1 − εtestfail,

where the constant ceff(nt , εtestfail) is defined as

ceff(nt , εtestfail) := [Q
−1(

NT
2
,
εtestfail
nt
)
λ𝕄S
max

λ𝕄S
min

(erf−1( nt√εtestfail))
−2
]
1/2

and Q−1 is the inverse of the upper normalized incomplete gamma function.

The constant cest(nt , εtestfail) is calculated on line 3 using NT , which denotes the
rank of operator T. In practice NT is unknown and an upper bound for NT such as
min(NS ,NR) can be used instead. Note that the term (maxt∈M ‖t‖R) ⋅ cest(nt , εtestfail) is
the norm estimator (6.46). The test vectors are reused for all iterations.

To finally analyze the failure probability of Algorithm 6.1 we first note that afterNT
steps we have Rrandn = range(T) and thus ‖T − PRrandn

T‖ = 0, yielding the termination
of Algorithm 6.1. Using the fact that the a posteriori error estimator defined in (6.46) is
therefore executed at most NT times combined with the probability for one estimate
to fail in (6.47) and a union bound argument we infer that the failure probability for
the whole algorithm is εalgofail ≤ NT εtestfail.

Remarkably, the convergence behavior of the reduced space Rrandn is only slightly
worse than the rate √λn+1, which is achieved by the optimal local approximation
spaces defined in Theorem 6.11.

Proposition 6.15 (A priori error bound [21]). Let λ𝕄R
max and λ𝕄R

min denote the largest and
smallest eigenvalues of the inner product matrix 𝕄R and let Rrandn be the outcome of
Algorithm 6.1. Then, for n ≥ 4 we have

𝔼‖T − PRrandn
T‖ ≤ CR,S min

k+p=n
k≥2,p≥2

[(1 +√ k
p − 1
)√λk+1 +

e√n
p
(∑
j>k

λj)
1
2

], (6.48)

where CR,S = (λ
𝕄R
max/λ
𝕄R
min)

1/2(λ𝕄S
maxλ
𝕄S
min)

1/2.

It can be observed in numerical experiments that the a priori bound in Proposi-
tion 6.15 is sharp in terms of the predicted convergence behavior as we will show now
for a test case from [21]. Moreover, wewill investigate the performance of Algorithm 6.1
also for a test case from [21]. To that end, let Ω̂m = (−0.5,0.5)× (−0.25,0.25)× (−0.5,0.5)
and Ωm = (−0.5,0.5) × (−0.5,0.5) × (−0.5,0.5) be the subdomains on which we aim
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to construct a local approximation space, Ω̂out = (−2, 2) × (−0.25,0.25) × (−2, 2) and
Ωout = (−2, 2) × (−0.5,0.5) × (−2, 2) the corresponding oversampling domains, and
Γ̂out = {−2, 2} × (−0.25,0.25) × (−2, 2) ∪ (−2, 2) × (−0.25,0.25) × {−2, 2} and Γout = {−2, 2} ×
(−0.5,0.5) × (−2, 2) ∪ (−2, 2) × (−0.5,0.5) × {−2, 2} the respective outer boundaries. On
𝜕Ω̂out \ Γ̂out and 𝜕Ωout \Γout we prescribe homogeneous Neumann boundary conditions
and we suppose that Ω̂out and Ωout do not border the Dirichlet boundary of Ω. For the
FE discretization we use a regular mesh with hexahedral elements and a mesh size
h = 0.1 in each space direction and a corresponding conforming FE space with linear
FE resulting in dim(Vh|Ω̂out

) = 30,258, dim(R) = NR = 2,172, dim(S) = NS = 2,880 for
Ω̂out and Vh|Ωout

= 55,473, NR = 3,987, and NS = 5,280 for Ωout.3 We equip the source
space S with the L2-inner product and the range space R with the energy inner prod-
uct. Finally, for all results in this subsection we computed the statistics over 1,000
samples.

Analyzing the convergence behavior of𝔼(‖T−PRrandk+p T‖) on Ω̂out for a growing num-
ber of randomly generated basis functions k and a (fixed) oversampling parameter p =
2 in Figure 6.4a we see that until k ≈ 75 the a priori bound reproduces the convergence
behavior of 𝔼(‖T − PRrandk+p T‖) perfectly. We may thus conclude that the a priori bound
in (6.48) seems to be sharp regarding the convergence behavior of 𝔼(‖T − PRrandk+p T‖) in
the basis size k. We also observe that the a priori bound is rather pessimistic as it over-
estimates𝔼(‖T −PRrandk+p T‖) by a factor of more than 100; this is mainly due to the square
root of the conditions of the inner product matrices.

Regarding the performance of Algorithm 6.1 on Ωout we first observe in Figure 6.4b
that the actual error ‖T − PRrandn

T‖ lies below the target tolerance tol for all 1,000 sam-
ples for nt = 10, which holds also true for all other considered values of nt . Here, we
prescribe εalgofail = 10−10 and use 3,993 as an upper bound forNT .We see in Figure 6.4b
that increasing the number of test vectors nt from 5 to 10 or from 10 to 20 increases the
ratio between the median of the actual error ‖T − PRrandn

T‖ and the target accuracy tol
significantly – for the former by more than one magnitude – while an increase from
nt = 40 to nt = 80 has hardly any influence; similar results have been obtained in [21]
for heat conduction and a Helmholtz problem. This can be explained by the scaling
of the effectivity of the employed a posteriori error estimator, which is of the order of
1,000 for nt = 5 and of the order of 10 for nt ≥ 20. Regarding the choice of nt it seems
that for the present test case a value of about 20 is in the sweet spot. We thus infer
that for the present test case only very few local solutions in addition to the optimal
amount are required, demonstrating that Algorithm 6.1 performs nearly optimally in
terms of computational complexity for the current problem.

3 Note that although in theory we should subtract the orthogonal projection on the six rigid body
motions from the FE basis functions, in actual practice we avoid that by subtracting the orthogonal
projection from the harmonic extensions only.
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Figure 6.4: (a) Comparison of the convergence behavior of√λk+1,√kλk+1, 𝔼(‖T − PRk+pT ‖), the a
priori error bound (6.48), and the a priori error bound of (6.48) scaled with a constant such that its
value for k = 2 equals the one of 𝔼(‖T − PRrandk+p T ‖) (sc. a priori) for increasing k for and p = 2 for the
oversampling domain Ω̂out. (b) Median of the projection error ‖T − PRrandn

T ‖ for a decreasing target
accuracy tol for a varying number of test vectors nt and the minimal and maximal values for nt = 10
on Ωout.

6.4.2.3 The general setting𝒫 ≠ {μ̄}

The processes in Sections 6.4.2.1 and 6.4.2.2 yield for every μ ∈ 𝒫 the local approxi-
mation space R+n (μ) for this specific parameter μ ∈ 𝒫; R+n (μ) can also be generated by
some other process, where we require that

T(μ) − PRn(μ)T(μ)
 ≤

ε
2C1(𝒯H ,μ)

(6.49)

possibly only at high probability and that R+n (μ) is defined as the direct sum of Rn(μ),
the kernel of the bilinear form, and representations of nonhomogeneous Dirichlet
boundary conditions and the right-hand side. We abuse notation in this subsection
by omitting henceforth the remark that the estimate may only hold in a probabilistic
sense. The constant C1(𝒯H ,μ) has to be chosen in such a manner that if one uses the
parameter-dependent spaces R+n (μ) to define u

n(μ), we have

⦀u(μ) − un+ (μ)⦀μ
⦀u(μ)⦀μ

≤
ε
2
. (6.50)

The spectral greedy algorithm as introduced in [103]4 constructs one (quasi-
optimal) parameter-independent approximation space RN which approximates those

4 For a generalization to a setting where the discrete parameter set describes different geometries
such as a beam with or without a crack we refer to [101].
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parameter-dependent spaces R+n (μ) with a given accuracy on a finite-dimensional
training set Ξ ⊂ 𝒫. In the spectral greedy algorithm we exploit the fact that we expect
that the local spaces R+n (μ), and in particular the spectral modes that correspond to
the largest eigenvalues, are not affected too much by a variation in the parameter
thanks to the expected very rapid decay of the higher eigenfunctions in the interior
of Ωout.

The spectral greedy as described in Algorithm 6.2 then proceeds as follows. Af-
ter the initialization we compute for all μ ∈ Ξ the parameter-dependent spaces R+n (μ)
such that we have (6.49). Note that for a decomposition 𝒯H with mutually disjoint in-
terfaces (also called ports), where each Ωm, m = 1, . . . ,M, has exactly two interfaces
and all interfaces have the same geometry, we have the following a priori error bound
[103] for the error between u(μ) and the continuous port-reduced static condensation
approximation un+ (μ) corresponding to the parameter-dependent optimal interface
spaceℛ+n (μ):

⦀u(μ) − un+ (μ)⦀μ
⦀u(μ)⦀μ

≤ #γc1(μ)c2(μ)max
γ∈𝒯 γ

H

(Cγ,1(Ωγ ,μ)√λγ,n+1(μ)). (6.51)

Here, the constant Cγ,1(Ωγ ,μ) depends only on the subdomains that share γ and not on
Ωor on u(μ). Moreover, c1(μ) and c2(μ) are chosen such thatwehave c1(μ)⦀⋅⦀μ̄ ≤ ⦀⋅⦀μ ≤
c2(μ)⦀⋅⦀μ̄ for all μ ∈ 𝒫 and a fixed reference parameter μ̄ ∈ 𝒫. Choosing C1(𝒯H ,μ) =

Algorithm 6.2: Spectral greedy [103].
Input : train sample Ξ ⊂ 𝒫, tolerance ε
Output: set of chosen parameters ΞN , local approximation space RN

1 Initialize N ← dim(ker(am(⋅, v))),
ΞN ← 0,RN ← ker(am(⋅, v)) or RN ← ker(am(⋅, v))|Γm,m

2 foreach μ ∈ Ξ do
3 Compute R+n (μ) such that ‖T(μ) − PR+n (μ)T(μ)‖ ≤ ε

2C1(𝒯ℋ ,μ)
.

4 while true do
5 ifmaxμ∈Ξ E(S(R+n (μ)),RN ) ≤ ε/(ε + 2C2(𝒯H ,μ)c1(μ)c2(μ)) then
6 return

7 μ∗ ← argmaxμ∈Ξ E(S(R+n (μ)),RN )
8 ΞN+1 ← ΞN ∪ μ∗

9 κ ← arg supρ∈S(R+n (μ∗)) infζ∈RN ‖ρ − ζ ‖R
10 RN+1 ← RN + span{κ}
11 N ← N + 1

12 return ΞN , RN
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#γc1(μ)c2(μ) maxγ∈𝒯 γ
H
Cγ,1(Ωγ ,μ)and√λγ,n+1(μ) ≤ ε/2 yields a reduced spaceR+n (μ) that

satisfies the requirements stated in the beginning for every μ ∈ Ξ. Although precise
estimates for Cγ,1(Ωγ ,μ) can be obtained, setting Cγ,1(Ωγ ,μ) = 1 yields in general good
results as another value would just result in rescaling ε; for further details see [103].
After having collected all functions on Γm,m or Ωm that are essential to obtain a good
approximation for all local solutionsuloc(μ)of thePDEevaluatedonΓm,m orΩm,μ ∈ Ξ,
we must select a suitable basis from those functions. This is realized in an iterative
manner on lines 5–14.

In each iteration we first identify on line 7 the reduced space R+n (μ
∗) that maxi-

mizes the deviation

E(S(R+n (μ)),RN) := sup
ξ∈S(R+n (μ)) infζ∈RN

‖ξ − ζ ‖R, μ ∈ Ξ,

where possible choices of S(R+n (μ)) ⊂ R
+
n (μ)will be discussed below. Subsequently, we

determine on line 9 the function κ ∈ S(R+n (μ
∗)) that isworst approximated by the space

RN and enhance RN with the span of κ. The spectral greedy algorithm terminates if for
all μ ∈ Ξ we have

max
μ∈Ξ

E(S(R+n (μ)),RN) ≤ ε/(ε + 2C2(𝒯H ,μ)c1(μ)c2(μ)) (6.52)

for a constant C2(𝒯H ,μ), which can in general be chosen equal to one. We emphasize
that both C1(𝒯H ,μ) and C2(𝒯H ,μ) do in general only depend on the number of faces or
subspaces onwhich the respective reduced space RN is used and not on the precise de-
composition of Ω; see (6.51). A slight modification of the stopping criterion (6.52) and
a different scaling of ε in the threshold for the a priori error bound on line 3 allows to
prove that after termination of the spectral greedy for a decomposition 𝒯H with mutu-
ally disjoint interfaces, where each Ωm, m = 1, . . . ,M, has exactly two interfaces and
all interfaces have the same geometry, we have [103]

⦀u(μ) − uN (μ)⦀μ/⦀u(μ)⦀μ ≤ ε. (6.53)

Here, uN (μ) is the continuous port-reduced static condensation approximation corre-
sponding toℛN ,ℛN being the continuous outcome of the spectral greedy.

Choice of the subset S(R+n (μ))
First, we emphasize that in contrast to the standard greedy as introduced in [111]
we have an ordering of the basis functions in R+n (μ) in terms of their approximation
properties thanks to the transfer eigenvalue problem; the sorting of the basis func-
tions in terms of their approximation properties is implicitly saved in their norms as
‖χspj (μ)‖

2
R = λj(μ), j = 1, . . . , n. To obtain local approximation spaces RN that yield a

(very) good approximation uN (μ) already for moderate N it is therefore desirable that
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the spectral greedy algorithm selects the lower eigenmodes sooner rather than later
during the while loop. As suggested in [103] we thus propose to consider

S(R+n (μ)) := {ζ (μ) ∈ R
+
n (μ) :
ζ (μ)
R+n (μ) ≤ 1} (6.54)

with ζ (μ)
R+n (μ) := (

n+
∑
i=1
(ζ i(μ))

2
)

1/2

,

where ζ (μ) = ∑n+i=1 ζ i(μ)χi(μ), n+ := dim(R+n (μ)), and here and henceforth {χi(μ)}
n+
i=1

denotes the orthonormal basis of R+n (μ). Note that we are therefore considering a
weighted norm in R+n (μ). The deviation E(S(R+n (μ)),RN ) can then be computed by
solving the following eigenvalue problem: Find (ϱj(μ), σj(μ)) ∈ (ℝ

n+ ,ℝ+) such that
ℤ(μ)ϱj(μ) = σj(μ)ϱj(μ),

where ℤi,l(μ) := (χl(μ) −
N
∑
k=1
(χl(μ), χk)Rχk , χi(μ) −

N
∑
k=1
(χi(μ), χk)Rχk)

R

and χk denotes the orthonormal basis of RN . We thus obtain E(S(R+n (μ)),RN ) = √σ1(μ),
for all μ ∈ Ξ, and κ = ∑n+i=1 ϱ1(μ∗)χi(μ∗) at each iteration.

Note that were we to consider the norm ‖ ⋅ ‖R in (6.54) the sorting of the spectral
basis χi(μ) ofR+n (μ) in terms of approximation properties is neglected in the while loop
of Algorithm 6.2; for further explanations see [103].

Finally, we compare in Figure 6.5 the spectral modes generated by the spectral
greedy algorithm, Algorithm 6.2, numerically with other interfacemodes, demonstrat-
ing the superior convergence of the former. In detail, we compare the relative error of
the port-reduced static condensation approximation for interface spaces comprising
“Legendre polynomial”-type functions5 [37], empirical port modes constructed by a
pairwise training algorithm6 [37, 38], and the spectralmodes. To that end,we consider

Figure 6.5: ⦀uh(μ) − uN(μ)⦀μ/⦀u(μ)⦀μ for the
Legendre, empirical, and spectral interface
basis functions for the solid beam.

5 Note that each component of the displacement is the solution of a scalar singular Sturm–Liouville
eigenproblem.
6 Following the notation in [38] we have chosen Nsamples = 500 and γ = 3 in the pairwise training
algorithm.
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a domain Ω which consists of two identical solid beams, each of whom is associated
with a subdomain Ωi, i = 1, 2. Here, we choose Ω1 = (−0.5,0.5)× (−0.5,0.5)× (0, 5), Ω2 =
(−0.5,0.5)× (−0.5,0.5)× (5, 10), and Γout = Γ1 ∪Γ2, with Γ1 = (−0.5,0.5)× (−0.5,0.5)× {0}
and Γ2 = (−0.5,0.5)× (−0.5,0.5)× {10}. The underlying FE discretization has N = 3,348
degrees of freedom per subdomain and NΓ = 108 degrees of freedom per interface. We
require E(μ) to be uniformwithin each subdomain, the constant varying in [1, 10], and
choose for G(μ) ∈ ℝ3 the admissible set of parameters to be [−1, 1] × [−1, 1] × [−1, 1].
Finally, we equip both S and R again with a lifting inner product. Within the spectral
greedy we have considered 200 parameter values sampled from the uniform distribu-
tion over 𝒫 and ε = 1 ⋅ 10−6. On average the interface spaces R+n (μ) have a size of 13.65
and the resulting parameter-independent port space RN has a size of 56.

In the online stage we consider E(μ) ≡ 1 in both components, G = (0,0,0)T , and
prescribe gD,1 = (0,0,0)T at Γ1 and gD,2 = (1, 1, 1)T at Γ2. We observe that the Legendre
modes perform by far the worst, demonstrating that including information on the so-
lution manifold in the basis construction procedure can significantly improve the ap-
proximation behavior.We remark that the Legendremodeswill perform evenworse in
the case of less regular behavior on the interface, which further justifies the need for
problem-specific local approximation spaces in the sense ofmodel reduction. The em-
pirical modes and spectral modes exhibit a comparable convergence until N = 17, but
for N > 17 the relative error in the spectral approximation is one order of magnitude
smaller than that of the empirical port mode approximation. This can be explained by
the fact that thanks to its conception the pairwise training algorithm is able to iden-
tify and include the most significant modes, but (in contrast to the spectral greedy
algorithm) might have difficulties to detect subtle modes that affect the shape of the
function at the interface Γm,m only slightly. Note that the temporary stagnation of the
relative error for N = 7, . . . , 17 for the spectral modes is due to the fact that the spectral
greedy prepares the interface space for all possible boundary conditions and param-
eter configurations. Thus, for the boundary conditions considered here some spectral
modes, as, say, a mode related to a twisting (torsion) of the beam, are not needed for
the approximation.

6.5 A posteriori error estimation

6.5.1 Residual-based a posteriori error estimation

A global residual-based a posteriori error estimator for projection-basedmodel reduc-
tion is readily defined as

Δ(uN (μ)) :=
1

α(μ)
R(uN (μ);μ)

V h , (6.55)
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where R(uN (μ);μ) ∈ V h is the global residual given as ⟨R(uN (μ);μ),φh⟩ = fh(φh;μ) −
ah(uN (μ),φh;μ) for allφh ∈ Vh. This error estimator is known to be robust and efficient
(cf. [50, Proposition 4.4]), i. e., we have

uh(μ) − uN (μ)
V ≤ Δ(uN (μ)) ≤

γ(μ)
α(μ)
uh(μ) − uN (μ)

V . (6.56)

For localized model order reduction, however, we are merely interested in local-
ized a posteriori error estimation. To this end, we first present abstract localized lower
and upper bounds for the dual norm of a linear functional (see [20]).

Theorem 6.16 (Localized lower and upper bounds for functionals). Let Oi, 1 ≤ i ≤ M̃,
be a collection of linear subspaces of Vh, and let POi

: Vh → Oi ⊆ Vh be mappings
which satisfy ∑M̃i=1 POi

= idVh
. Moreover, assume that for J ∈ ℕ there exists a partition

⋃̇
J
j=1ϒj = {1, . . . , M̃} such that for arbitrary 1 ≤ j ≤ J and i1 ̸= i2 ∈ ϒj we have Oi1 ⊥ Oi2 .
Defining the stability constant of this partition modulo VN as

cN := sup
φ∈Vh\{0}

(∑M̃i=1 infφ̃∈VN∩Oi
‖POi
(φ) − φ̃‖2)

1
2

‖φ‖
, (6.57)

we have for any linear functional f ∈ V h with ⟨f ,φ⟩ = 0 ∀φ ∈ VN the estimate

1
√J
(

M̃
∑
i=1
‖f ‖2Oi)

1
2

≤ ‖f ‖V h ≤ cN ⋅ ( M̃
∑
i=1
‖f ‖2Oi)

1
2

. (6.58)

Here, ‖f ‖Oi denotes the norm of the restriction of f to Oi.

When grouping the spaces Oi so that in each group, all spaces are orthogonal to
each other, J is the number of groupsneeded.Note that subtracting the projection onto
VN in (6.57) allows subtracting, say, the mean value of a function or the orthogonal
projection onto the rigid body motions, if the respective functions are included in VN .
We may thus employ, say, Poincaré’s inequality or Korn’s inequality in subdomains
that do not lie at ΓD.

Applying both estimates to the residual R(uN (μ);μ) ∈ V h, we obtain from (6.55)
and Theorem 6.16 a robust and efficient, localized error estimate.

Corollary 6.17 (Localized residual-based a posteriori error estimate). Let the assump-
tions on the subspace collection Oi and the mappings Pi from Theorem 6.16 be satisfied.
Then, the error estimator Δloc(uN (μ)) defined as

Δloc(uN (μ)) :=
1

α(μ)
cN(

M̃
∑
i=1

R(uN (μ);μ)

2
Oi)

1
2

(6.59)

is robust and efficient, i. e.,

uh(μ) − uN (μ)
V ≤ Δloc(uN (μ)) ≤

γ(μ)√JcN
α(μ)
uh(μ) − uN (μ)

V . (6.60)
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Online-offline decomposition of this error estimator can be done by applying the
usual strategy for online-offline decomposition used with the standard reduced basis
error estimator (see, e. g., [50, Section 4.2.5] or a numerically more stable approach
[19, 25, 105]) to every dual norm in Δloc(uN (μ)).

The a posteriori error estimator for the ArbiLoMod derived in [20] and the a poste-
riori error estimator for the scRBEmethod as suggested in [100] both fit into the frame-
work above, as will be detailed below in Examples 6.18 and 6.19. In contrast, for in-
stance the error estimators proposed in [61, 60] for the scRBE method exploit matrix
perturbation analysis at the system level to bound the Euclidean norm of the error be-
tween the coefficients of the static condensation solution and the coefficients of the
static condensation solution using a reduced basis approximation in the interior. To
estimate the error caused by interface reduction in [37] a computationally tractable
nonconforming approximation to the exact error is employed. To take into account
the error due to the intra-element reduced basis approximations ideas from [61] are
used. It can also be noted that the error estimators in [61, 60, 37] are only valid under
certain assumptions on the accuracy of the reduced basis approximation. In [83] a lo-
calized a posteriori error estimator for interface reduction and intra-element reduced
basis approximation is presented for the coupled Stokes–Darcy system. The a poste-
riori error estimator for the CMS method derived in [64] employs the dual norms of
residuals and eigenvalues of the eigenproblems used for the construction of the (lo-
cal) basis functions. The error estimator in [64] is however only partially local as it
involves the residual for the port or interface space on the whole interface Γ. For lo-
calized a posteriori error estimation in the context of adaptive GMsFEM we refer to
[31, 30, 28, 29].

Example 6.18 (Localized a posteriori error estimate for ArbiLoMod [20]). Let us as-
sume Vh ⊂ V = H1

0(Ω) and choose Oi as subspaces of H1(Ωi), where ̃𝒯H := {Ω̃1, . . . , Ω̃M̃}
is an arbitrary overlapping decomposition of Ω, which may be chosen independently
from 𝒯H . Assume that there is a partition of unity pi ∈ H1,∞(Ω̃i) ∩ C(Ω̃i), ∑

M̃
i=1 pi = 1,

such that ‖pi‖∞ ≤ 1 and ‖∇pi‖∞ ≤ cpu diam(Ω̃i)
−1. The constant cpu will depend on

the size of the overlap of the subdomains Ω̃i with their neighbors in relation to their
diameters.

Moreover, we assume that there is a linear interpolation operator ℐ onto Vh such
that ℐ is the identity on Vh with ℐ(piVh) ⊆ Oi and ‖ℐ(pivh) − pivh‖V ≤ cI‖vh‖Ω̃i ,1 for all
vh ∈ Vh. We then can define mappings

POi
(vh) := ℐ(pi ⋅ vh),

which satisfy the assumptions of Theorem6.16. In caseVh comes fromanFEdiscretiza-
tion, a possible choice for ℐ is Lagrange interpolation.

Ifwenowensure that the partition of unitypi is included inVN , we can choose φ̃ in
the definition of cN as φ̃ := pi ⋅|Ω̃i|

−1 ∫Ω̃i
φ, which allows us to prove [20, Proposition 5.7]
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that cN can be bounded by

cN ≤ √4 + 2c2I + 4(cpucpc)2 ⋅√covlp.

In this estimate covlp := maxx∈Ω #{i ∈ ϒE | x ∈ Ωi} is the maximum number of estimator
domains Ω̃i overlapping in any point x of Ω, and cpc is a Poincaré inequality constant
associated with ̃𝒯H . In particular, this result shows that the efficiency of (6.59) is inde-
pendent of the number of subdomains in 𝒯H , provided that the partition of unity pi is
included in VN .

Example 6.19 (ScRBE method and interface reduction from [100]). We exemplify the
a posteriori error estimator from Corollary 6.17 for the scRBE method, which is
equally applicable when considering solely static condensation and no intra-element
reduced basis approximations.7 To simplify notations we define interface spaces
Vγ
h := span{ψγ

1 , . . . ,ψ
γ
Nγ
h
}, where Nγ

h = dim(Vh|γ); for the definition of ψγ
k we refer

to Section 6.3.1. Recall that we then have the following space decomposition of the
(global) FE space Vh:

Vh =
M
⨁
m=1

Vm
h;0 ⊕ (⨁

γ∈𝒯 γ
H

Vγ
h). (6.61)

We may thus uniquely rewrite every φ ∈ Vh as

φ =
M
∑
m=1

φm + ∑
γ∈𝒯 γ

H

φγ , (6.62)

where φm ∈ Vm
h;0 and φ

γ ∈ Vγ
h , extending φ

m and φγ by zero. This allows us to define
mappings PVm

h;0 : Vh → Vm
h;0, φ → φm and PVγ

h
: Vh → Vγ

h , φ → φγ, as required in
Theorem 6.16. Thanks to (6.21) we also obtain

Vm
h;0 ⊥ V

m
h;0, m ̸= m

 and Vm
h;0 ⊥ V

γ
h , m = 1, . . . ,Ω, γ ∈ 𝒯

γ
H .

It thus remains to verify that we can bound the constant cN with VN as defined
in (6.28). To that end, we first note that thanks to (6.21) we have the following stability
result [100, Proposition 4.1]:

‖φ‖2V =
M
∑
m=1

φ
m

2
V +

∑
γ∈𝒯 γ

H

φγ


2

V
. (6.63)

7 The error estimator in [100] is derived for mutually disjoint interfaces. However, we conjecture that
the estimator can be generalized to general decompositions of Ω.
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We thus obtain

cN ≤ sup
φ∈Vh\{0}

(∑Mm=1 ‖φm‖
2
V +∑γ∈𝒯 γ

H
infφ̃f ∈V

γ
N
‖φγ − φ̃γ‖2V )

1/2

‖φ‖V

(6.63)
≤ sup

φ∈Vh\{0}

(‖φ‖2V +∑γ∈𝒯 γ
H
infφ̃γ∈Vγ

N
‖φγ − φ̃γ‖2V )

1/2

‖φ‖V
,

where Vγ
N := span{ψ

γ
1 , . . . ,ψ

γ
Nγ }. To show ∑γ∈𝒯 γ

H
infφ̃γ∈Vγ

N
‖φγ − φ̃γ‖2V ≤ c‖φ‖V for a con-

stant c we choose φ̃γ such that (φγ − φ̃γ)|γ equals the trace of φminus the orthogonal
projection on the kernel of the bilinear form; for further details see [21, 103]. Then, we
can use [103, Lemma B.4] to conclude boundedness of cN and thus (6.60), the latter
corresponding to [100, Proposition 4.2 and Corollary 4.6].

Finally, we shortly discuss how to compute the dual norms of the residuals
in (6.58). The dual norms of the residuals of the intra-element reduced basis ap-
proximations can be computed by employing Riesz representations (see for instance
Chapters 1 and 4 of this volume of Model order reduction). The dual norms of the
residuals in the interface space can be computed bymeans of conservative fluxes [57],
which have been extended to interface reduction in [100]. In detail, we compute the
conservative flux Hm

N (μ) such that

∑
γ∈Ωm

(Hm
N (μ),ψ

γ)γ = fm(ψ
γ ;μ) − am(uN (μ),ψ

γ ;μ) ∀ψγ ∈⨁
γ∈Ωm

Vγ
h , (6.64)

where (⋅, ⋅)γ denotes a suitable inner product on the interface γ. Note that thanks to our
mutual disjoint interface assumption problem (6.64) decouples and we may compute
the conservative flux separately for each interface γ. Moreover, by orthonormalizing
the interface basis functions χγk defined in Section 6.3.1 with respect to the (⋅, ⋅)γ inner
product, the computation ofHm

N (μ) reduces to the assembling of the residual in (6.64).
The computational costs thus scale linearly in (Nγ

h −N
γ) andNγ. For further details we

refer to [100].

6.5.2 Local flux reconstruction-based error estimation

Following [90], we discuss local flux reconstruction-based a posteriori error esti-
mation of the full approximation error u(μ) − uN (μ) (that is, the discretization as
well as the model reduction error) in the context of nonconforming approximations
of elliptic multiscale problems such as Example 6.2. An extension to convection–
diffusion–reaction problems based on [39] is straightforward. This estimate was in-
troduced in the IP localized nonconforming setting of the LRBMS method (compare
Section 6.3.2.2).

Recalling the broken Sobolev space and broken gradient operator from Sec-
tion 6.3.2.2, the key idea of flux reconstruction-based error estimation is to observe
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that not only the approximate solution uN (μ) is nonconforming, but also the approxi-
mate diffusive flux −κ(μ)∇huN (μ), in the sense that it is not contained in Hdiv(Ω) (i. e.,
the space of functions in L2(Ω)d whose divergence exists in a weak sense and lies in
L2(Ω)).

We may then obtain computable estimates by comparing these quantities with
conforming reconstructions, as detailed further below.8 The respective reconstructed
diffusive flux is locally conservative and is related to the conservative flux reconstruc-
tion to compute the dual norm of the residuals in the interface space in Example 6.19.

To begin with, we specify the parameter-dependent (semi-)energy norm induced
by the bilinear form a for a parameter μ̄ ∈ 𝒫, ⦀⋅⦀μ̄ : H1(τh)→ ℝ, v → ⦀v⦀μ̄ := a(v, v; μ̄)

1
2

(by using the broken gradient in the definition of a) and note that we can compare
these semi-norms for two parameters bymeans of the affine decomposition of a (com-
pare (6.69)),

Θa(μ, μ̄)
1/2 ⦀v⦀μ̄ ≤ ⦀v⦀μ ≤ Θa(μ, μ̄)

1
2 ⦀v⦀μ̄,

with the equivalence constants given by Θa(μ, μ̄) := minQa
q=1 Θ

q
a(μ)Θ

q
a(μ̄)
−1 and

Θa(μ, μ̄) := maxQa
q=1 Θ

q
a(μ)Θ

q
a(μ̄)
−1, respectively. The first abstract result is the following

discretization-agnostic lemma, which leaves the choice of the reconstructions, v and
s, open. (We give estimates on the full Vh-norm at the end of this subsection.)

Lemma 6.20 (Abstract energy norm estimate (Lemma 4.1 in [90])). For μ ∈ 𝒫, let
u(μ) ∈ V denote the weak solution of (6.1) with the data functions κ and q as in Ex-
ample 6.2. Then for arbitrary vN ∈ H1(τh) and μ̄ ∈ 𝒫, we have

⦀u(μ) − vN⦀μ̄ ≤ Θa(μ, μ̄)
− 12 {Θa(μ, μ̄)

1
2 inf
v∈V
⦀u(μ) − v⦀μ̄

+ inf
s∈Hdiv
( sup

φ∈V
|φ|a;μ=1
{(q − ∇ ⋅ s,φ)L2(Ω) − (κ(μ)∇hvN + s, ∇φ)L2(Ω)})}

≤
Θa(μ, μ̄)
Θa(μ, μ̄)

1
2

2 ⦀u(μ) − vN⦀μ̄.

To obtain a fully computable localizable estimate we need to specify the conform-
ing reconstruction of the solution (v in the above lemma) and of the diffusive flux (s in
the above lemma). We define both reconstructions with respect to the global fine grid
τh and note that their respective computations can be localized with respect to the
domain decomposition to allow for offline-online decomposable localized estimates.

8 Note that the entire analysis holds for the FOM solution uh(μ) as well as the ROM solution uN (μ)
(compare [90]), but we restrict the exposition to the latter. In particular, the presented estimates can
thus also be used to steer grid adaptation of the FOM solution.
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We reconstruct the nonconforming solution uh(μ) ∈ Vh by means of its Oswald in-
terpolant IOS[uh(μ)] ∈ V . We define the corresponding Oswald interpolation operator
IOS : Vh → Vh ∩ V by specifying its values on each Lagrange node ν of τh: Given any
vh ∈ Vh, we set IOS[vh](ν) := vh|t(ν) for any Lagrange node lying inside a grid element
t ∈ τh,

IOS[vh](ν) := 0 for all boundary nodes and IOS[vh](ν) :=
1
|τνh|
∑
t∈τνh

vh|t(ν)

for all nodes which are shared by multiple grid elements, which we collect in τνh ⊂ τh.
The definition of the conforming reconstruction of the nonconforming diffusive

flux −κ(μ)∇huh(μ) ∈ L2(Ω)d is more involved. Given l ≥ 0, we define the l-th-order
Raviart–Thomas–Nédélec space of vector-valued functions by

RTNl
h(τh) := {s ∈ Hdiv(Ω)

 s|t ∈ [ℙl(t)]
d
+ xℙl(t) ∀t ∈ τh}

and note that the degrees of freedom of any sh ∈ RTNl
h(τh) are uniquely defined by

specifying the moments of order up to l − 1 of sh|t on all elements t ∈ τh and the mo-
ments of order up to l of sh|σ ⋅ nσ on all faces σ ∈ τ

γ
h (compare [18]). With these prelim-

inaries we define the diffusive flux reconstruction operator Rlh : 𝒫 → [Vh → RTNl
h(τh)],

given some vh ∈ Vh and some μ ∈ 𝒫 by specifying the degrees of freedom of Rlh[vh;μ] ∈
RTNl

h(τh), such that

(Rlh[vh;μ] ⋅ nσ , r)L2(σ) = a
c
σ(vh, r;μ) + (vh, r)

p
σ for all r ∈ ℙl(σ) (6.65)

on all σ ∈ τγh and

(Rlh[vh;μ], ∇r)L2(t) = −a
CG(Rlh[vh;μ]|t , r;μ) − ∑

σ∈τγh∩t
acσ(r, vh;μ) (6.66)

for all ∇r ∈ [ℙl−1(t)]d with r ∈ ℙl(t) on all t ∈ τh. Given a FOM space Vh of polyno-
mial order k ≥ 1, we choose a (k − 1)-th order reconstruction. With this definition,
the reconstructed diffusive flux of a given reduced solution uN (μ) fulfills the following
local conservation property, given that the constant function 1 is present in the local
reduced spaces Vm

N :

(∇ ⋅ Rk−1h [uN (μ);μ], 1)L2(Ωm)
= (q, 1)L2(Ωm), for all Ωm ∈ 𝒯H .

When inserting this diffusive flux reconstruction for s in Lemma 6.20, this local con-
servation property is key to obtaining the following estimate.

Theorem 6.21 (Locally computable energy norm a posteriori estimate). Let the do-
main decomposition 𝒯H from Definition 6.5 be such that the Poincaré inequality holds
on each subdomain Ωm ∈ 𝒯H with a constant CmP > 0,

φ − Π
m
0 φ

2
L2(Ωm)
≤ CmP h2m ‖∇φ‖

2
L2(Ωm)

for all φ ∈ H1(Ωm),



282 | A. Buhr et al.

where hm := diam(Ωm) andwhereΠm
0 φ denotes themean value of φ overΩm. Let further

u(μ) ∈ V be the weak solution of (6.2) and let uN (μ) ∈ VN be the IP localized ROM
solution, with 1 ∈ Vm

N for 1 ≤ m ≤ M. Then for arbitrary μ̄, μ̂ ∈ 𝒫, we have

⦀u(μ) − uN (μ)⦀μ̄ ≤ η(μ; μ̄; μ̂)

with the a posteriori error estimator η(μ; μ̄; μ̂) given by

η(μ; μ̄; μ̂) := Θa(μ, μ̄)
− 12 [Θa(μ, μ̄)

1
2( ∑

Ωm∈𝒯H

ηΩm
nc (μ; μ̄)

2)

1
2

+ ( ∑
Ωm∈𝒯H

(ηΩm
r (μ) + Θa(μ, μ̂)

−1 ηdf(μ; μ̂))
2
)

1
2

],

and the local nonconformity, residual, and diffusive flux indicators given by

ηΩm
nc (μ; μ̄) := |(vN (μ) − IOS[vN (μ))|Ωm

|a;μ̄,

ηΩm
r (μ) :=

CPΩm

κΩm

1
2
q − ∇ ⋅ R

k−1
h [uN (μ);μ]

L2(Ωm)
, and

ηdf(μ; μ̂)) :=
κ(μ̂)
−1(κ(μ)∇huN (μ) + R

k−1
h [uN (μ);μ])

L2(Ωm)
, (6.67)

respectively, where κΩm
denotes the minimum eigenvalue of κ over Ωm and 𝒫 .

We obtain an a posteriori error estimate with respect to the Vh-norm or a full en-
ergy norm, ⦀⋅⦀μ + (∑σ∈τγh (⋅, ⋅)

p
σ)

1
2 , by noting that (u(μ), u(μ))pσ = 0 for a weak solution

u(μ) of sufficient regularity.

6.6 Basis enrichment and online adaptivity
Model order reduction is usually employed either (i) in the context of real-time deci-
sion making and embedded devices or (ii) in the context of outer loop applications,
such as optimal control, inverse problems, or Monte Carlo methods. In (i), one is
usually interested in reduced spaces VN of very low dimension to obtain ROMs as
small as possible, at the possible expense of very involved offline computations.
Here, localized model order reduction may help to reduce the latter, but we can
usually not expect the resulting reduced space to be smaller than the one gener-
ated using traditional global model order reduction methods. In (ii), however, one
is interested in a black-box-like approximation scheme which is queried for a huge
amount of parameters, with a somehow “optimal” computational cost (including of-
fline as well as online cost). Here, one may keep high-dimensional data throughout
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the computational process (offline as well as online), and it is in this context that
localized model order reduction techniques may truly outperform other approaches.
In the context of PDE-constrained optimization this has been investigated, e. g., in
[91, 88, 116].

The localized a posteriori error estimation as discussed in Section 6.5 enables
adaptive enrichment of the local reduced approximation spaces, whenever the quality
of the reduced scheme is estimated to be insufficient – be it due to insufficient training
due to lacking computational resources or due to limited knowledge about the range
of possible parameters or due to other reasons altogether.

Let us thus assume that an initial (possibly empty) localized reduced approxima-
tion space VN is given, compare Section 6.4. The goal of an adaptive enrichment is
to enlarge the local solution spaces with additional modes that reflect nonlocal influ-
ences of the true solution such as channeling effects or singularities. Local adaptive
basis enrichment can be employed both offline for the whole parameter range and/or
online for a specific chosen parameter. Empirical training followed by offline enrich-
ment is, e. g., used in a greedy manner for the basis construction in ArbiLoMod (cf.
Example 6.18) in [20]. Adaptive enrichment for the GMsFEM is presented in [31, 30]
and online adaptive enrichment in [28, 29]. For the exposition in this section, we re-
strict ourselves to online enrichment as introduced in [90], i. e., for local enrichment
of the basis when a certain parameter is already chosen.

From a bird’s-eye perspective, we can think of an online adaptive reduced scheme
as a p-adaptive FE scheme with problem-adapted basis functions, where the local re-
duced bases are adapted during online enrichment.9 Thus, we can think of online en-
richment in the usual Solve→ Estimate→Mark→Refine (SEMR)manner, well known
in grid-adaptive discretization schemes. In the Estimate step we employ an a posteri-
ori error estimate η that is localizable with respect to the domain decomposition, i. e.,
η2 ≤ ∑Mm=1 η

2
m, with appropriate local indicators ηm. Examples are given in Section 6.5.

As such, most marking strategies from grid-adaptive schemes are applicable, and we
give examples in Section 6.8.1. In this context, refinement is locally done by enrich-
ing the local reduced spaces, that is, by adding additional basis functions to the local
reduced bases on selected subdomains. We thus presume we are given a parameter
μ ∈ 𝒫 and a reduced solution uN (μ) ∈ VN , the estimated error of which is above a
given tolerance.

As an example, we detail the online enrichment procedure used in the context
of the LRBMS (compare Section 6.3.2.2), using the a posteriori error estimation tech-
niques from Section 6.5.2. Inspired by domain decomposition as well as numerical
multiscale methods, we may then obtain a candidate for the next element of a local

9 We would also like to mention the h-adaptive model order reduction approach from [24], which
is based on a k-means clustering of the degrees of freedom, but we restrict the exposition here to
localization with respect to a domain decomposition.



284 | A. Buhr et al.

reduced basis by solving local corrector problems on a collection 𝒯H ⊆ 𝒯H of marked
subdomains with uN (μ) as boundary values. For each marked subdomain Ωm ∈ 𝒯H ,
we denote by Ω̃m := {Ωm ∈ 𝒯H | Ωm ∩ Ωm ̸= 0} an overlapping subdomain and by
V Ω̃m
h := {v|Ω̃m

| v ∈ Vh, v|𝜕Ω̃m
= 0} the associated restricted FOM space, encoding zero

Dirichlet boundary values. We are then looking for a local correctionφΩ̃m ∈ V Ω̃m
h , such

that

ah(φ
Ω̃m , vh;μ) = fh(vh;μ) − ah(uN (μ)|Ω̃m

, vh;μ) for all vh ∈ V
Ω̃m
h , (6.68)

where we understand all quantities to be implicitly extended to Ω by zero, if required,
and note that φΩ̃m can be computed involving only quantities associated with Ω̃m. Us-
ing this local correction on the overlapping subdomain, we obtain the next element
of the local reduced basis associated with Ωm by an orthonormalization of (φΩ̃m +
uN (μ))|Ωm

with respect to the existing basis on Vm
N .

Given a marking strategy and an orthonormalization procedure, we summarize
the adaptive online enrichment used in the context of the LRBMS in Algorithm 6.3.

Algorithm 6.3: Adaptive online enrichment in the context of the LRBMS.
Input : a marking strategy MARK, an orthonormalization procedure ONB, a

localizable offline-online decomposable a posteriori error estimate
η(μ)2 ≤ ∑Mm=1 ηm(μ)

2, local reduced basesΦm for 1 ≤ m ≤ M, μ ∈ 𝒫,
uN (μ), Δonline > 0

Output: Updated reduced solution
1 Φm(0) ← Φm, ∀1 ≤ m ≤ M
2 n← 0
3 while η(μ) > Δonline do
4 forall 1 ≤ m ≤ M do
5 compute local error indicator ηm(μ)

6 𝒯H ← MARK(𝒯H , {ηm(μ)}1≤m≤M)
7 forall Ωm ∈ 𝒯H do
8 Solve (6.68) for φΩ̃m Φm(n+1) ← ONB({Φm(n), (φΩ̃m + uN (μ))|Ωm

})

9 update all reduced quantities (system matrices, error estimates) with respect
to the newly added basis elements

10 solve (6.13) for the reduced solution uN (μ) using the updated quantities

11 return uN (μ)
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6.7 Computational complexity

In this section we discuss the computational efficiency of localized model order re-
duction schemes in comparison to standard, nonlocalized techniques. Imposing a lo-
calization constraint on the reduced space naturally yields suboptimal spaces in the
sense of KolmogorovN-width. However, this ismitigated by the sparse structure of the
resulting reduced systemmatrices. In particular, for problems with high-dimensional
parameter domains with localized influence of each parameter component on the so-
lution, we can expect localized ROMs to show comparable or even better online effi-
ciency in comparison to a standard ROM. In addition, localizedmodel order reduction
providesmore flexibility to balance computational and storage requirements between
the offline and online phases and has thus the potential to be optimized with respect
to the specific needs. This is particularly favorable for large-scale or multiscale prob-
lems, where global snapshot computations are extremely costly or even prohibitive.

In the offline (and enrichment) phase of the localized schemes, only relatively
low-dimensional local problems are solved instead of the computation of global
solution snapshots. In comparison to a global reduction approach with a parallel
solver for snapshot generation (e. g., a domain decomposition scheme), the prepara-
tion of the local reduced spaces via training (Section 6.4) can be performed almost
communication-free, allowing the application of these schemes on parallel compute
architecture without fast interconnect such as cloud environments. Via adaptive en-
richment of the approximation spaces – based on the solution of local correction
problems (Section 6.6) – smaller and more efficient ROMs can be obtained. In com-
parison to domain-decomposition methods, where similar correction problems are
solved, these correction problems are only solved in regions of the domain where the
approximation space is insufficient. Thus, for problems with a localized effect of the
parameterization, a significant reduction of the computational effort can be expected
in the reduced basis generation process.

In the context of component-based localized model order reduction (e. g., CMS,
scRBE, reduced basis hybrid method, RDF) large computational savings can be
achieved by the preparation of local approximation spaces (components) with re-
spect to arbitrary neighboring components (connected through so-called ports). In
addition to parametric changes of the governing equations or computational domain,
this allows the (nonparametric) recombination of components in arbitrary new con-
figurations without requiring additional offline computations.

6.7.1 Online efficiency

In viewofDefinition6.8,we can interpret the localizedmodel order reductionmethods
introduced in Section 6.3 as standard projection-based model reduction methods –
such as the reduced basis method – subject to the constraint that the reduced space
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VN admits a localizing decomposition of the form (6.12). As such, the usual offline-
online decompositionmethodology can be applied. To this end, let us assume that the
bilinear form a(⋅, ⋅;μ) and the source functional f (⋅;μ) admit affine decompositions

a(v,w;μ) =
Qa

∑
q=1

Θa
q(μ)a

q(v;w), f (w;μ) =
Qf

∑
q=1

Θf
q(μ)f

q(w), (6.69)

for all v,w ∈ V , μ ∈ 𝒫 with nonparametric bilinear forms aq : V × V → ℝ, functionals
f q ∈ V , and some parameter functionals Θa

q ,Θ
f
q : 𝒫 → ℝ. If the given problem is not of

the form (6.69),we can employ empirical interpolation [13] to compute anapproximate
affine decomposition.

We begin by computing the reduced approximation space VN using the methods
outlined in Section 6.4. After that, a reducedmodel is assembled by computingmatrix
representations𝔸q ∈ ℝN×N of aq and vector representations𝔽q ∈ ℝN of f q with respect
to a given basis φ1, . . . ,φN of VN , i. e.,

𝔸qij := a
q(vj,wi), 𝔽

q
i := f

q(wi). (6.70)

After this computationally demanding offline phase, the coordinate representation
𝕌N (μ) ∈ ℝN of the reduced solution uN (μ) of (6.13) is quickly obtained for arbitrary
new parameters μ by solving

Qa

∑
q=1

Θa
q(μ)𝔸

q ⋅𝕌N (μ) =
Qf

∑
q=1

Θf
q(μ)𝔽

q (6.71)

in the following online phase. The computational effort to determine uN (μ) is of order

𝒪(QaN
2 + QfN) +𝒪(N

3) (6.72)

for the assembly and solution of the dense equation system (6.71). In particular, we
have obtained full offline-online splitting, i. e., the effort to obtain𝕌N (μ) is indepen-
dent of dimVh. From𝕌N (μ) we can then either reconstruct uN (μ) by linear combina-
tion with the reduced basis or evaluate arbitrary linear functionals of uN (μ) by addi-
tionally computing vector representations of these functionals in the offline phase.

Reduced basis methods aim at constructing reduced spaces VN which are near-
optimal approximation spaces for the discrete solution manifold {uh(μ) |μ ∈ 𝒫} in the
sense of Kolmogorov, i. e., we should have

sup
μ∈𝒫

inf
v∈VN

uh(μ) − v
 ≈ dN := inf

W⊆Vh
dimW=N

sup
μ∈𝒫

inf
v∈W
uh(μ) − v

, (6.73)

wheredN is the KolmogorovN-width of the solutionmanifold. Localized reduced basis
methods aim at reducing the computational effort of the offline phase by replacing
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the computation of solution snapshots uh(μ) of the global discrete full-order model by
solutions of smaller localized problems associated with the domain 𝒯H (see below).
This comes at the expense of replacing the set of all N-dimensional subspaces of Vh
by the smaller set of all N-dimensional subspaces of Vh of the form (6.12), i. e., we aim
at constructing VN with

sup
μ∈𝒫

inf
v∈VN

uh(μ) − v
 ≈ d

loc
N := inf

W⊆Vh
dimW=N

W satisf. (6.12)

sup
μ∈𝒫

inf
v∈W
uh(μ) − v

. (6.74)

As dlocN > dN , localized reduced basis methods generally result in larger VN to sat-
isfy a given approximation error tolerance ε. Since we can represent any basis vector
of a global reduced basis approximation of (6.11) with respect to the localizing space
decomposition (6.10) as a sum ofMtot := M + #𝒯 γ

H + #𝒯
e
H + #𝒯

v
H local vectors, we have

the a priori bound dlocMtot ⋅N < dN . In other words, if we denote by N (Nglob) the number
of reduced basis vectors required for a localized (global) reduced basis approximation
for given ε and denoting by N loc the maximum dimension of the local reduced basis
spaces Vm

N , V
γ
N , V

e
N , V

v
N , we have

N ≤ N locMtot ≤ NglobMtot ≤ C𝒯H
MNglob, (6.75)

where the constant C𝒯H
only depends on the topology of the domain decomposition

𝒯H . Whether or not estimate (6.75) is sharp largely depends on the dependence of the
solution u(μ) on the parameterμ.When a change inμ equally affects the solution in all
subdomains Ωm, we expect that optimal local reduced basis spaces will be of similar
dimension N loc and that N loc ≈ Nglob. On the other hand, it may be the case that the
influence of μ on u(μ) is weak in many Ωm, in which case N ≪ N locMtot, or that each
of the p components of μ ∈ ℝp affects u(μ) on different subdomains, in which case
N locMtot ≪ NglobMtot. Thus, the actual loss in online efficiency due to localization will
strongly depend on the type of problem to be solved.

More importantly though, note that the localization of VN results in a change of
the structure of the reduced system matrices 𝔸q. While these matrices are dense for
global reduced basis approximations, localized reduced basis schemes yield 𝔸q with
a sparse block structure ofMtot ×Mtot blocks of maximum dimension N loc × N loc and
a maximum of Ccup blocks per row; Ccup depends on the specific localization method
and on the topology of 𝒯H . For instance, for nonconforming methods, Ccup − 1 is given
by the maximum number of interfaces of a given subdomain Ωm, whereas for the Ar-
biLoMod with a quadrilateral mesh Ccup = 25.

Thus, estimate (6.75) has to be interpreted in relation to the fact that the compu-
tational complexity for solving (6.71) can be vastly reduced in comparison to (6.72) by
exploiting the structure of 𝔸a. In particular, the costs for assembling (6.71) can be re-
duced to𝒪(C𝒯H

Ccup(N loc)2M). For the solution of (6.71) direct or block-preconditioned
iterative solvers can be used. For the latter, the computational effort can be expected to
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increase subquadratically in the number of subdomainsM. In the scRBE method, the
volume degrees of freedom associated with the spaces Vm

N are eliminated from (6.71)
using static condensation to improve computational efficiency.

6.7.2 Offline costs and parallelization

While the local reduced basis spaces Vm
N , V

γ
N , V

e
N , V

v
N can be initialized by decom-

posing global solution snapshots uh(μ) with respect to (6.10) [5], the core element of
localized reduced basismethods is the construction of local reduced basis spaces from
local problems associated with the subdomains Ωm, as described in Section 6.4. This
has various computational benefits:

First, we can expect a reduction of computational complexity as for most linear
solvers we expect a superlinear increase in computational complexity for an increas-
ing dimension of Vh, whereas the ratio of the dimensions of Vh and the local sub-
spaces in (6.10) remains constant of order 1/M (for the volume spaces Vm

h and smaller
for the spaces Vγ

h , V
e
h , V

v
h ) as h→ 0. Thus, solving𝒪(MN loc) training problems of size

dimVh/M is expected to be faster than solving N global problems. At the same time,
we expect N loc to decrease for H → h. Thus smaller subdomains Ωm will generally
lead to shorter offline times at the expense of less optimal spaces VN . In particular, for
the nonconforming schemes in Section 6.3.2.2 it is readily seen that for H = hwe have
VN = Vh and that (6.13) and (6.11) are equivalent.

Even more important than a potential reduction of complexity is the possibil-
ity to choose H small enough such that each local training problem can be solved
communication-free on a single compute node without the need for a high-perfor-
mance interconnect. Also the problem setup and the computation of the reduced sys-
tem (6.71) can be performed mostly communication-free: Instead of instantiating a
global fine-scale computemesh, each compute node can generate a local mesh from a
geometry definition and solve training problems for a given local reduced basis space
and all coupling spaces to obtain corresponding block-entries in 𝔸q, 𝔽q. Only the lo-
cal geometry and the resulting reduced-order quantities are communicated (see [20,
Section 8]). Thismakes localized reduced basismethods attractive for cloud-based en-
vironments,where large computational resources can be dynamicallymade available,
but communication speed is limited.

Depending on the problem structure, the use of online enrichment (Section 6.6)
can yield smaller, problem-adapted reduced spaces VN . Similar to the training of VN ,
online enrichment is based on the solution of small independent local problems that
can easily be parallelized. As typically only some fraction of the subspaces of VN un-
dergo enrichment, fewer computational resources need to be allocated during an on-
line enrichment phase. It has to be noted, however, that online enrichment leads to
a propagation of snapshot data through the computational domain as the value of
the current solution uN (μ) at the boundary of the enrichment problem domain enters
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the problem definition. Thus, to perform online enrichment, (boundary values of) re-
duced basis vectors have to be communicated between compute nodes and the entire
reduced basis has to be kept available.

6.8 Applications and numerical experiments

6.8.1 Multiscale problems

Wedemonstrate the IP localized reducedbasismethods fromSection6.3.2.2 in the con-
text of parametric multiscale problems, such as Example 6.2, with a focus on online
adaptivity as in Section 6.6 (using the a posteriori error estimate from Section 6.5.2),
rather than offline training. These experiments were first published in the context of
the online adaptive LRBMS in [90]. We consider a multiplicative splitting of the pa-
rameter dependency and themultiscale nature of the data functions, in the sense that
κ(μ) := λ(μ)κε, with a parametric total mobility λ : 𝒫 → L∞(Ω) and a highly hetero-
geneous permeability field κε ∈ L∞(Ω)d×d. To be more precise, we consider (6.2) on
Ω = [0, 5]× [0, 1]with f (x, y) = 2 ⋅103 if (x, y) ∈ [0.95, 1.10]× [0.30,0.45], f (x, y) = −1 ⋅103

if (x, y) ∈ [3.00, 3.15] × [0.75,0.90] or (x, y) ∈ [4.25, 4.40] × [0.25,0.40], and 0 every-
where else, λ(x, y;μ) = 1+ (1−μ)λc(x, y), homogeneous Dirichlet boundary values, and
a parameter space 𝒫 = [0.1, 1]. On each t ∈ τh, κε|t is the corresponding 0-th entry
of the permeability tensor used in the first model of the 10th SPE Comparative Solu-
tion Project (which is given by 100 × 20 constant tensors, see [104]) and λc models a
channel, as depicted in Figure 6.6, top left.

The right-hand side f models a strong source in the middle left of the domain and
two sinks in the top and right middle of the domain, as is visible in the structure of the
solutions (Figure 6.6, third row). The role of the parameter μ is to toggle the existence
of the channel λc. Thus λ(1)κε = κε while μ = 0.1 models the removal of a large con-
ductivity region near the center of the domain (see the second row in Figure 6.6). This
missing channel has a visible impact on the structure of the pressure distribution as
well as the reconstructed velocities, as we observe in the last two rows of Figure 6.6.
With a contrast of 106 in the diffusion tensor and an ε of about |Ω|/2,000, this setup is
a challenging heterogeneous multiscale problem.

We used several software packages for this numerical experiment and refer to [90]
for a full list and instructions on how to reproduce these results. We would like to
mention that all grid-related structures (such as data functions, operators, function-
als, products, norms) were implemented in a DUNE-based C++ discretization (which
is by now contained in the DUNE extension modules10 and the generic discretization

10 https://github.com/dune-community/dune-xt/
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Figure 6.6: Data functions and sample solutions of the experiment in Section 6.8.1. First row: Loca-
tion of the channel function λc (left) and plot of the force f (right) modeling one source (black: 2 ⋅ 103)
and two sinks (dark gray: −1 ⋅ 103, zero elsewhere). Second to fourth rows: Both plots in each row
share the same color map (middle) with different ranges per row, for parameters μ = 1 (left column)
and μ = 0.1 (right column). From top to bottom: Logarithmic plot of λ(μ)κε (dark: 1.41 ⋅ 10−3, light:
1.41 ⋅ 103), plot of the pressure uh(μ) (IP localized FOM solution of (6.2), dark: −3.92 ⋅ 10−1, light:
7.61 ⋅ 10−1, isolines at 10%, 20%, 45%, 75%, and 95%), and plot of the magnitude of the recon-
structed diffusive flux R0h [uh(μ);μ] (defined in (6.65) and (6.66), dark: 3.10 ⋅ 10

−6, light: 3.01 ⋅ 102).
Note the presence of high-conductivity channels in the permeability (second row left, light regions)
throughout large parts of the domain. The parameter dependency models a removal of one such
channel in the middle right of the domain (second row right), well visible in the reconstructed Darcy
velocity fields (bottom).

toolbox dune-gdt11), while we used pyMOR [84] for everything related to model reduc-
tion (such as Gram–Schmidt and greedy). We consider a domain decomposition of
|𝒯H | = 25 × 5 squares, each refined such that the full global grid would consist of
|τh| = 1,014,000 elements. For the IP localized FOM, following Section 6.3.2.2, we
choose on each subdomain Ωm ∈ 𝒯H the discontinuous Galerkin space (first order),
product, and bilinear form from Example 6.10. For error estimation, we employed the
flux reconstruction ansatz from Section 6.5.2 using a zero-order diffusive flux recon-
struction (compare Theorem 6.21).

The sole purpose of these experiments is to demonstrate the capabilities of local-
ized reduced basis methods regarding online enrichment. We thus initialize the local
reduced spacesVm

N on each subdomain a priori by orthonormalized Lagrangian shape
functions of order up to one, thus obtaining a reduced space with poor approximation
properties (comparable to a standard discontinuous Galerkin space with respect to
the domain decomposition). Since we employ the a posteriori error estimate η on the
full approximation error (including the discretization as well as the model reduction

11 https://github.com/dune-community/dune-gdt/
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error) from Theorem 6.21, and since we omit grid refinement in these experiments, the
estimated discretization error over all parameters of 1.66 is a lower bound for the over-
all approximation error, and we thus choose a tolerance of Δonline = 2 for the online
enrichment in Algorithm 6.3.

We compare two different strategies, corresponding to the two plots in Figure 6.7.
In both cases, we simulate an outer loop application in the online part by randomly
choosing ten parameters 𝒫online ⊂ 𝒫 which are subsequently processed. For each
parameter, the local reduced spaces are enriched according to Algorithm 6.3 and the
respective marking strategy, until the estimated error is below the specified toler-
ance. Note that the evaluation of the localizable a posteriori error estimate can be
fully offline-online decomposed and that after each enrichment only information
from a subdomain and its neighbors are required to locally update the offline-online
decomposed data.

Figure 6.7: Estimated error evolution during the adaptive online phase for the experiment in Sec-
tion 6.8.1 with |𝒯H | = 125, kH = 1, Δonline = 2 (dotted line), μ̄ = μ̂ = 0.1, for different online
and offline strategies: no global snapshot (greedy search disabled, Ngreedy = 0) during the offline
phase, uniform marking during the online phase (top) and two global snapshots (greedy search on
𝒫train = {0.1, 1}, Ngreedy = 2) and combined uniform marking while η(μ, μ̄, μ̂) > θuniΔonline with
θuni = 10, Dörfler marking with θdoerf = 0.85, and age-based marking with Nage = 4 (bottom left);
note the different scales. With each strategy the local reduced bases are enriched according to Algo-
rithm 6.3 while subsequently processing the online parameters μ0, . . . ,μ9 (bottom right).
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In the first experiment, we use a uniform marking strategy, which results in an un-
conditional enrichment on each subdomain (comparable to domain decomposition
methods). As we observe in Figure 6.7 (top), however, it takes 129 enrichment steps
to lower the estimated error below the desired tolerance for the first online param-
eter μ0. After this extensive enrichment it takes 12 steps for μ1 and none or one en-
richment step to reach the desired tolerance for the other online parameters. The re-
sulting coarse reduced space is of size 10,749 (with an average of 86 basis functions
per subdomain), which is clearly not optimal. Although each subdomain was marked
for enrichment, the sizes of the final local reduced bases differ since the local Gram–
Schmidt basis extension may reject updates (if the added basis function is locally not
linearly independent). As we observe in Figure 6.8 (left) this is indeed the case with
local basis sizes ranging between 24 and 148. Obviously, a straightforward domain de-
composition ansatz without suitable training is not feasible for this setup. This is not
surprising since the data functions exhibit strong multiscale features and nonlocal
high-conductivity channels connecting domain boundaries; see Figure 6.6.

Figure 6.8: Spatial distribution of the final sizes of the local reduced bases on each subdomain,
after the adaptive online phase for the experiment in Section 6.8.1 with Ω = [0, 5] × [0, 1], |𝒯H | =
25 × 5 for the two strategies shown in Figure 6.7: no global snapshot with uniform enrichment (left,
light: 24, dark: 148) and two global snapshots with adaptive enrichment (right, light: 9, dark: 20).
Note the pronounced structure (right) reflecting the spatial structure of the data functions (compare
Figure 6.6).

To remedy the situationwe allow for two global snapshots during the offline phase (for
parametersμ ∈ {0.1, 1}) anduse anadaptivemarking strategywhich combinesuniform
marking, Dörfler marking, and age-based marking (see the caption of Figure 6.7) in
the online phase. This strategy employs uniformmarking until a saturation condition
is reached, and afterwards uses a Dörfler marking combined with a marking based
on counting how often a subdomain has not been marked. With two global solution
snapshots incorporated in the basis the situation improves significantly, asweobserve
in Figure 6.7 (bottom left). In total we observe only two enrichment steps with uniform
marking (see the first two steps for μ0), which indicates that further offline training
would be beneficial. The number of elements marked ranges between 11 and 110 (over
all online parameters and all but the first two enrichment steps) with amean of 29 and
a median of 22. Of these marked elements only once have 87 out of 110 elements been
marked due to their age (see the last step for μ1). Overall we could reach a significantly
lower overall basis size than in the previous setup (1,375 vs. 10,749) and the sizes of
the final local bases range between only 9 and 20 (compared to 24 to 148 above). We
also observe in Figure 6.8 (right) that the spatial distribution of the basis sizes follows
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the spatial structure of the data functions (compare Figure 6.6), which nicely shows
the localization qualities of our error estimator.

6.8.2 Fluid dynamics

Flow simulations in pipelined channels have a growing interest in many biological
and industrial applications. The localized model order reduction approaches pre-
sented in this chapter are suitable for the study of internal flows in hierarchical
parameterized geometries. In particular, the nonconforming approach introduced in
Section 6.3.2 has applications in the analysis of blood flow in specific compartments
of the circulatory system that can be represented as a combination of few deformed
vessels from a reference one.

We want to solve the Stokes equation defined in (6.3), with δ = 0, in a computa-
tional domain Ω composed by two stenosed blocks Ωμ1 and Ωμ2 (Figure 6.9), by impos-
ing nonhomogeneous boundary conditions σinn = [0, 5]

T in the inlet surface (x1 = 10),
nonhomogeneous boundary conditions σinn = [0,−1]

T in the outlet surface (x1 = 0)
and homogeneous Dirichlet boundary conditions on the remaining boundaries of the
domain. Here, the Taylor–Hood FEM has been used to compute the basis functions,
ℙ2 elements for velocity and supremizer (cf. Chapter 8 of Volume 3 of Model order
reduction for a definition of supremizer functions), ℙ1 for pressure, respectively, and
consequently ℙ1(Γm,m ) for the Lagrange multipliers space. Figure 6.11 shows the dis-
tribution of the parameter values selected by the greedy algorithm, by applying the
offline stage of the reduced basis method to the single stenosis block. By taking into
account that the range [−5, 5] is not admitted,we can see that the higher concentration
of values is in the intervals [−10,−5] and [5, 10] in correspondence to larger deforma-
tion of the pipe.

Figure 6.9: Computational domain (μ1 = 7, μ2 = 10).

The geometry of a single stenosis is obtained by the deformation of a reference pipe
through a parameter that represents the contraction in the middle of the pipe. The
deformed domain Ωμ is mapped from the straight reference pipe Ω̂ of length L = 5
and radius r = 1 through the following coordinate transformation Tμ : Ω̂ → Ωμ such
as x = Tμ(x̂) and x1 = x̂1 +

x̂1
μ (cos(

2πx̂3
L ) − 1), x2 = x̂2 +

x̂2
μ (cos(

2πx̂3
L ) − 1), x3 = x̂3. The

range of the parameter μ is [−20,−5] ∪ [5, 20]; Figure 6.10 shows the reference pipe
and some representative deformations of the geometry. In order to compute the basis
functions, we consider a parameterized Stokes problem for each subdomain. For the
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Figure 6.10: Reference pipe and two deformed pipes (μ = −5, μ = 5): stenosis and aneurysm configu-
rations.

Figure 6.11: Distribution of the selected param-
eter values by the greedy algorithm used to
generate the basis functions in a single block.

first subdomain, we compute the reduced basis imposing zero Dirichlet condition on
the wall and Neumann boundary conditions given by imposing σn = σ ⋅ n = ν 𝜕u𝜕n −
pn to be σinn = [0, 5]

T on Γin and σoutn = 0 on the internal interface. For the second
subdomain, we compute the reduced basis imposing zero Dirichlet condition on the
wall and Neumann boundary conditions imposing σinn = 0 on the internal interface
and σoutn = [0,−1]

T on the outflow interface Γout.
Moreover, we enrich the local reduced basis spaces by a coarse FE solution of the

problem computed in the global domain. This strategy ensures not only the continuity
of the velocity, but also the one of the normal stress along the internal interface. For
this reason this method is called reduced basis hybrid method. Coarse and fine grids
have been chosen in order to deal with respectively 155 and 2,714 nodes in a single
block domain. Figure 6.12 shows a representative flow solution in Ω, found with the

Figure 6.12: Representative solutions of velocity using the reduced basis hybrid method (with N1 =
N2 = 19) (left) and using the FEM as a global solution (right), μ1 = 7, μ2 = 10.
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Figure 6.13: Representative solutions of pressure using the reduced basis hybrid method (with N1 =
N2 = 19) (left) and using the FEM as a global solution (right), μ1 = 7, μ2 = 10.

reduced basis hybridmethod, to be comparedwith the FE solution. The same compar-
ison, regarding the pressure solutions, is shown in Figure 6.13.

6.9 Further perspectives

6.9.1 Parabolic problems

Most of the techniques presented in this chapter so far can be extended or even di-
rectly applied to parabolic problems. For instance, local approximation spaces that
are optimal in the sense of Kolmogorov are proposed in [99] and the LRBMS method
for parabolic problems is presented in [87, 86]. To facilitate an adaptive construction
of the local reduced space or online adaptivity, a suitable, localized a posteriori error
estimator is key. Therefore, we present in this subsection an abstract framework for a
posteriori error estimation for approximations of scalar parabolic evolution equations,
based on elliptic reconstruction techniques. For further reading and the application
to localized model reduction we refer to [44, 87].

Definition 6.22 (Parameterized parabolic problem in variational form). Let a Gelfand
triple of suitable Hilbert spaces V ⊂ H = H ⊂ V , an end time Tend > 0, initial data
u0 ∈ V , and a right-hand side f ∈ H be given. For a parameter μ ∈ 𝒫 find u(⋅;μ) ∈
L2(0,Tend;V) with 𝜕tu(⋅;μ) ∈ L2(0,Tend;V ), such that u(0;μ) = u0 and

⟨𝜕tu(t;μ), q⟩ + a(u(t;μ), v;μ) = f (v;μ) for all v ∈ V . (6.76)

Depending on the error we want to quantify, the space V in (6.76) can be either an
analytical function space as in (6.1) or an already discretized function space Vh. We
drop the parameter dependency in this section to simplify the notation.

Definition 6.23 (Approximations of the parabolic problem). Let Ṽ ⊆ H be a finite-
dimensional approximation space for V , not necessarily contained in V . Potential
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candidates for Ṽ are conforming or nonconforming localized model reduction spaces
VN as discussed above, but also FE or FV spaces fit into this setting. Denote by (⋅, ⋅),
‖ ⋅ ‖ the H-inner product and the norm induced by it.

Let f ∈ H, and let ah : (V + Ṽ) × (V + Ṽ) → ℝ be a discrete bilinear form which
coincides with a on V × V and is thus continuous and coercive on V . Let further |||⋅|||
be a norm over V + Ṽ , which coincides with the square root of the symmetric part of
ah over V .

Our goal is to bound the error e(t) := u(t)− ũ(t) between the analytical (or discrete)
solution u ∈ L2(0,Tend;V), 𝜕tu ∈ L2(0,Tend;V ) of (6.76), where the duality pairing
⟨𝜕tu(t), v⟩ is induced by theH-scalar product via the Gelfand triple and the Ṽ -Galerkin
approximation ũ ∈ L2(0,Tend, Ṽ), 𝜕t ũ ∈ L2(0,Tend, Ṽ), solution of

(𝜕t ũ(t), ṽ) + ah(ũ(t), ṽ) = (f , ṽ) for all ṽ ∈ Ṽ . (6.77)

Definition 6.24 (Elliptic reconstruction). Denote by Π̃ the H-orthogonal projection
onto Ṽ . For ṽ ∈ Ṽ , define the elliptic reconstruction ℛell(ṽ) ∈ V of ṽ to be the unique
solution of the variational problem

ah(ℛell(ṽ), v) = (Ah(ṽ) − Π̃(f ) + f , v) for all v ∈ V , (6.78)

where Ah(ṽ) ∈ Ṽ is the H-inner product Riesz representative of the functional ah(ṽ, ⋅),
i. e., (Ah(ṽ), ṽ) = ah(ṽ, ṽ) for all ṽ ∈ Ṽ . Note that ℛell(ṽ) is well-defined, due to the
coercivity of ah on V .

From the definition it is clear that ṽ is the Ṽ -Galerkin approximation of the elliptic
reconstructionℛell(ṽ).

Let us assume that for each twehave a decomposition ũ(t) =: ũc(t)+ũd(t) (not nec-
essarily unique), where ũc(t) ∈ V , ũd(t) ∈ Ṽ are the conforming and nonconforming
parts of ũ(t). We consider the following error quantities:

ρ(t) := u(t) −ℛell(ũ(t)), ε(t) := ℛell(ũ(t)) − ũ(t),
ec(t) := u(t) − ũc(t), εc(t) := ℛell(ũ(t)) − ũ

c(t).

Theorem 6.25 (Abstract semi-discrete error estimate). Let C := (2γ2h + 1)
1/2, where γh

denotes the continuity constant of ah on V with respect to |||⋅|||. Then

‖e‖L2(0,Tend ;|||⋅|||) ≤
e

c(0) +√3
𝜕t ũ

dL2(0,Tend ;|||⋅|||V ,−1)
+ (C + 1) ⋅ ‖ε‖L2(0,Tend ;|||⋅|||) + C ⋅

ũ
dL2(0,Tend ;|||⋅|||).

Note that ε(t) denotes the approximation error of the coercive variational prob-
lem (6.78). Hence, this error contribution can be controlled by invoking any (local-
ized) a posteriori error estimate for coercive variational problem as, e. g., presented in
Section 6.5.

It is straightforward to modify the estimate in Theorem 6.25 for semi-discrete so-
lutions ũ(t) to take the time discretization error into account.
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Corollary 6.26. Let ũ ∈ L2(0,Tend, Ṽ), 𝜕t ũ ∈ L2(0,Tend, Ṽ) be an arbitrary discrete
approximation of u(t), not necessarily satisfying (6.77). Let ℛT [p̃](t) ∈ Ṽ denote the
Ṽ-Riesz representative with respect to the H-inner product of the time-stepping residual
of ũ(t), i. e.,

(ℛT [ũ](t), ṽ) = (𝜕t ũ(t), ṽ) + ah(ũ(t), ṽ) − (f , q̃) ∀ṽ ∈ ṽ.

Then, with C := (3γ2h + 2)
1/2, the following error estimate holds:

‖e‖L2(0,Tend ;|||⋅|||) ≤
e

c(0) + 2
𝜕t ũ

dL2(0,Tend ;|||⋅|||V ,−1)
+ (C + 1) ⋅ ‖ε‖L2(0,Tend ;|||⋅|||) + C ⋅

ũ
dL2(0,Tend ;|||⋅|||)

+ 2CbH ,V ⋅
ℛT [ũ]
L2(0,Tend ;H).

6.9.2 Nonaffine parameter dependence and nonlinear problems

A key ingredient towards model order reduction for nonlinear problems is the empiri-
cal interpolationmethod introduced in [13] and further developed in [33], [26, 75]. For a
general exposition we refer to Chapter 5 of this volume ofModel order reduction.

In the context of localized model order reduction, empirical interpolation has
been employed in, e. g., [22, 96, 86]. Based on the concept of empirical operator in-
terpolation from [33], localization strategies can be employed as follows. To present
the main ideas, let us assume the simple situation that

Vh =
M
⨁
m=1

Vm
h

and that we have a localized decomposition as follows:

ah(uh(μ), vh;μ) = ∑
M
m=1 a

m
h (u

m
h (μ), v

m
h ;μ),

with ah(uh(μ), ⋅;μ) ∈ (Vh). The strategy will then rely on an empirical operator in-
terpolation of the local volume operators amh (u

m
h (μ), ⋅;μ) ∈ (V

m
h )
 and will thus only

involve localized computations in the construction of the interpolation operator. As
an example, the interpolation of the local volume operator will be of the form

ℐmL [a
m
h (u

m
h (μ), ⋅;μ)] =

L
∑
l=1
S l

m(amh (u
m
h (μ), ⋅;μ)) q

m
l

for a local collateral basis {qml }
L
l=1 ⊂ (V

m
h )
 and corresponding interpolation function-

als {S l
m}Ll=1 ⊂ Σ

m
h
 from a suitable local dictionary Σmh

 ⊂ (Vm
h )
, the choice of which

is crucial to ensure the accuracy as well as an online-efficient evaluation of the inter-
polant. Note that because the isomorphism between Vm

h and is bi-dual, the local dic-
tionary of interpolation functionals Σmh

 can be identified with a dictionary of func-
tions Σmh ⊂ V

m
h , such that S l

m(amh (u
m
h (μ), ⋅;μ)) = a

m
h (u

m
h (μ), σ

m
l ;μ), where σ

m
l ∈ Σ

m
h
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corresponds to S l
m ∈ Σmh

. An online-efficient evaluation of the interpolated oper-
ator ℐmL [a

m
h (u

m
h (μ), ⋅;μ)] can be ensured by choosing the local dictionary Σ

m
h such that

the computational complexity of the evaluation amh (u
m
h (μ), σ

m;μ) for σm ∈ Σmh does not
depend on the dimension of Vm

h . The choice of Σ
m
h thus depends on the underlying

discretization: Possible choices in the context of FE schemes include the FE basis of
Vm
h . Other choices of Σ

m
h are conceivable and could improve the interpolation quality,

which is subject to further investigation.

6.10 Conclusion

In this chapter we have given an introduction to projection-based localized model
order reduction techniques for parameterized coercive problems. Starting from an
abstract localization framework, we have presented conforming and nonconforming
coupling schemes for the local reduced spaces within this unified framework. For the
generation of the local reduced spaces we have discussed a priori approaches based
on polynomial spaces at the domain interfaces, as well as empirical approaches based
on randomized localized training as an approximation of the optimal local reduced
spaces. Further, we have introduced rigorous localizable a posteriori error estimates
and discussed their use to steer an adaptive online enrichment of the approximation
spaces based on the solution of local correction problems. Finally, we have discussed
the online efficiency and parallelizability of the presented methods. We have given
application examples from the fields of multiscale problems, linear elasticity, and
fluid dynamics. Extensions to time-dependent or nonlinear problems are under active
research, and we have given a brief outlook towards localized model order reduction
for these problem classes in the final section of this chapter.
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7 Data-driven methods for reduced-order
modeling

Abstract: Data-driven mathematical methods are increasingly important for charac-
terizing complex systems across the physical, engineering, and biological sciences.
These methods aim to discover and exploit a relatively small subset of the full high-
dimensional state space where low-dimensional models can be used to describe the
evolution of the system. Emerging dimensionality reduction methods, such as the dy-
namic mode decomposition (DMD) and its Koopman generalization, have garnered at-
tention due to the fact that they can (i) discover low-rank spatio-temporal patterns of
activity, (ii) embed the dynamics in the subspace in an equation-free manner (i. e.,
the governing equations are unknown), unlike Galerkin projection onto proper or-
thogonal decomposition modes, and (iii) provide approximations in terms of linear
dynamical systems, which are amenable to simple analysis techniques. The selec-
tion of observables (features) for the DMD/Koopman architecture can yield accurate
low-dimensional embeddings for nonlinear partial differential equations (PDEs)while
limiting computational costs. Indeed, a good choice of observables, including time
delay embeddings, can often linearize the nonlinear manifold by making the spatio-
temporal dynamics weakly nonlinear. In addition to DMD/Koopman decompositions,
coarse-grained models for spatio-temporal systems can also be discovered using the
sparse identification of nonlinear dynamics (SINDy) algorithm which allows one to
construct reduced-order models in low-dimensional embeddings. These methods can
be used in a nonintrusive, equation-free manner for improved computational perfor-
mance on parametric PDE systems.

Keywords: reduced-order model, dynamic mode decomposition, Koopman theory,
nonlinear system identification, sparse regression, system identification
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7.1 Introduction
Data-driven modeling of complex systems is of increasing importance in modern
scientific applications given the unprecedented rise of data collection on multi-
scale, spatio-temporal systems. Enabled by emerging sensor technologies and high-
performance computing platforms, the large-scale monitoring and collection of data

Steven L. Brunton, Department of Mechanical Engineering, University of Washington, Seattle, WA
98195, USA
J. Nathan Kutz, Department of Applied Mathematics, University of Washington, Seattle, WA 98195,
USA

Open Access. © 2021 Steven L. Brunton and J. Nathan Kutz, published by De Gruyter. This work is
licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

https://doi.org/10.1515/9783110671490-007



308 | S.L. Brunton and J. N. Kutz

on such systems has shifted our modeling paradigm by exploiting data-driven, ma-
chine learning approaches. Specifically, instead of positing empirical or approxi-
mate spatio-temporalmodels, typically characterized by partial differential equations
(PDEs), the low-dimensional features extracted from time snapshots of the data canbe
directly used to construct reduced-ordermodels (ROMs) for a variety of important tasks
such as state-space reconstruction and diagnostics, as well as future state prediction
and forecasting [14]. In this chapter, we present a diverse set of data-driven methods
that can be used to construct ROMs directly from data. The methods presented can
be used with traditional ROM architectures where the governing PDEs are known, or
they can be used to discover unknown spatio-temporal dynamics directly from the
data. Most of the methods are nonintrusive, minimizing the need for prohibitively
expensive high-performance simulations. This also allows for accurate, low-fidelity
models, enabling inexpensive Monte Carlo simulations. We present four methods for
enabling data-driven ROMs: The dynamic mode decomposition (DMD) and the asso-
ciated Koopman decomposition [78], the sparse identification of nonlinear dynamics
(SINDy) algorithm [25], and the Hankel alternative view of Koopman (HAVOK) algo-
rithm [22]. Each method can be used to advantage in a variety of situations, including
when the governing PDE equations are known, only partially known, or unknown.

Consider a governing system of nonlinear PDEs of a single spatial variable x,
which can be modeled as [14]

ut = L(x)u + N(u, x, t), (7.1)

where L(x) is a linear operator andN(⋅) prescribes the nonlinear terms in the evolution
dynamics. Both L(x) and N(⋅)may be unknown, or only partially known. As an exam-
ple, the Burgers equation, ut = uxx + νuux, has L = 𝜕2/𝜕x2 and N(u) = νuux. Associated
with (7.1) are a set of initial and boundary conditions on a domain x ∈ 𝒟. Historically,
a number of analytic solution techniques have been devised to study (7.1) provided the
right-hand side is known. Typically the aim of such methods is to reduce the PDE (7.1)
to a set of ordinary differential equations (ODEs). The standard PDE methods of sep-
aration of variables and similarity solutions are constructed for this express purpose.
Once in the formof anODE, a broader variety of analyticmethods canbe applied along
with a qualitative theory in the case of nonlinear behavior [61]. This again highlights
the role that asymptotics can play in characterizing behavior.

For the general form of (7.1) where the right-hand side is known, separation of
variables can often be used to yield a computational algorithm capable of producing
low-rank approximations. Since the spatial solutions are not known a priori, it is typi-
cal to assume a set of basis modes which can be used for the low-rank approximation.
Indeed, such assumptions on basis modes underly the critical ideas of the method of
eigenfunction expansions. This yields a separation of variables solution ansatz of the
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form

u(x, t) = Ψ(x)a(t) =
r
∑
k=1

ψk(x)ak(t), (7.2)

whereΨ(x) ∈ ℂn×r forma set of r orthonormal basismodes andx ∈ ℝn×1 represents the
spatial discretization of x in the governing PDE. The modal basis Ψ is often obtained
via proper orthogonal decomposition (POD) [60, 14, 129]. This separation of variables
solution approximates the true solution, provided r is large enough. A fundamental
assumption of reduced-order modeling is that there exists a low-rank truncation, or
subspace, that accurately characterizes the evolution of the spatio-temporal system.
More broadly, such approximations are baseduponmodalmethods for buildingROMs
as discussed in Chapters 1 and 4 of Volume 1 ofModel order reduction [12].

The orthogonality properties of the basis functions ψk(x), which are the columns
of Ψ, enable us to make use of (7.2). Inserting the expansion (7.2) into the governing
equations gives [14]

da
dt
= ΨTLΨa +ΨTN(Ψa). (7.3)

Thegiven formofN(⋅)determines themode-coupling that occurs between the various r
modes. Indeed, the hallmark feature of nonlinearity is the production ofmodalmixing
from (7.3). Equation (7.3) is the canonical ROM identified as a Galerkin projection of the
dynamics onto PODmodes. It can be evaluated given full knowledge of the right-hand
side of the governing PDE.

Equation (7.3) details how a low-rank subspace can be used to construct a
Galerkin-POD-ROMmodel as a proxy, or surrogate, model for the high-fidelity model.
In this reduction, the linear operatorΨTLΨ can be computed once to produce an r × r
matrix modeling the effects of the linear portion of the dynamics. What is more prob-
lematic is the evaluationof thenonlinear contributionΨTN(Ψa) in (7.3). Indeed, oneof
the primary challenges in producing the low-rank dynamical system is efficiently pro-
jecting the nonlinearity of the governing PDEs on the POD basis. This fact was recog-
nized early on in the ROM community, and methods such as gappy POD [50, 142, 150]
were proposed to more efficiently enable this hyperreduction task. More recently, the
empirical interpolation method (EIM) [11], the discrete EIM (DEIM) [37], and the QR
decomposition-based Q-DEIM [46], have provided a computationally efficient method
for discretely (sparsely) sampling and evaluating the nonlinearity. These widely used
hyperreduction methods ensure that the computational complexity of ROMs scale
favorably with the rank of the approximation, even for complex nonlinearities.

Numerical schemes based on the Galerkin projection (7.3) are commonly used to
perform simulations of the full governing system (7.1). Convergence to the true solution
can be accomplished by judicious choice of both the modal basis elementsΨ and the
total number of modes r. Interestingly, the separation of variables strategy, which is
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rooted in linear PDEs, works for nonlinear and nonconstant coefficient PDEs, provided
enoughmodal basis functions are chosen in order to capture the nonlinear modemix-
ing that occurs in (7.3). A good choice of modal basis elements allows for a smaller set
of rmodes to be chosen to achieve a desired accuracy. The PODmethod is designed to
specifically address the data-driven selection of a set of basis modes that are tailored
to the particular dynamics, geometry, and parameters.

Unfortunately, the Galerkin-POD projection of the dynamics (7.3) is often unsta-
ble [34], requiring modification to stabilize the time-stepping scheme [4]. Moreover,
the evaluation in (7.3) of the nonlinear termΨTN(Ψa) renders the ROM scheme intru-
sive, i. e., to compute the nonlinear contribution in the low-rank subspace requires an
expensive sampling of the high-fidelitymodel in order to build the low-rank subspace.
Instead, one can directly approximate the nonlinearity via DMD which directly com-
putes this contribution via nonintrusivemethods [2]. Thus there is no recourse to high-
fidelity and expensive computations to construct an approximation to the nonlinear
contribution. If latent variables are present, i. e., important portions of the state-space
have not been measured, then the Hankel alternative view of Koopman (HAVOK) al-
gorithm, which helps to discover a proxy for the latent variable space, can be used
instead of DMD. Finally, if the right-hand side is unknown, then the SINDy algorithm
can be used to discover a low-rank, nonlinearmodel characterizing the evolution. The
diversity of mathematical techniques highlights the emerging use of regression and
machine learning strategies that can help model complex, spatio-temporal systems.

7.2 Data-driven reductions

Numerical linear algebra plays a central role in scientific computing [135, 77, 24].
Specifically, methods that have historically improved the efficiency of solving Ax = b
have always been of critical importance for tractable computations, especially at
scale, where scale is a relative term associated with the limits of computing in a given
era. From QR decomposition to lower-upper factorization [135], matrix decomposi-
tions have been the primary methods to enable improved computational efficiency.
But perhaps the most important factorization technique is the singular value decom-
position (SVD) [77], which plays a key role in data analysis and computation, including
applications in reduced-order modeling through POD and DMD.

7.2.1 Singular value decomposition

The success of the SVD algorithm is largely due to the fact that by construction, it
extracts the dominant, correlated features from any given data matrix. This often al-
lows one to approximate the matrix with a principled low-rank approximation which
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is guaranteed to be the best approximation in an ℓ2-sense. This mathematical archi-
tecture is so powerful and universal that it has been invented and used extensively in
a wide range of fields [77]. Specifically, it is alternatively known as principal compo-
nent analysis (PCA) in statistics (where to be precise, each column or row is scaled to
have mean zero and unit variance), POD in the fluid dynamics community, empirical
mode decomposition in atmospheric sciences, theHotelling transform, empirical eigen-
functions, orKarhunen-Loève decomposition. Thus, from seemingly complex data from
which a matrix is composed, a low-dimensional subspace can be computed on which
the majority of the data resides.

The SVD of a matrix X ∈ ℂn×m takes the form

X = UΣV∗ , (7.4)

in terms of the following three matrices:

U ∈ ℂn×n is unitary, (7.5a)
V ∈ ℂm×m is unitary, (7.5b)
Σ ∈ ℝn×m is diagonal. (7.5c)

Additionally, it is assumed that the diagonal entries of Σ are nonnegative and ordered
from largest to smallest so that σ1 ≥ σ2 ≥ ⋅ ⋅ ⋅ ≥ σp ≥ 0, where p = min(m, n). The SVD of
thematrixX thus shows that thematrix first applies a unitary transformation preserv-
ing the unit sphere via V∗. This is followed by a stretching operation that creates an
ellipse with principal semi-axes given by the matrix Σ. Finally, the generated hyperel-
lipse is rotated by the unitary transformationU. Thus the image of a unit sphere under
any n × m matrix is a hyperellipse. The following is the primary theorem concerning
SVD [135].

Theorem. Every matrix X ∈ ℂn×m has an SVD (7.4). Furthermore, the singular values
{σj} are uniquely determined, and if X is square and σj is distinct, the singular vectors
{uj} and {vj} are uniquely determined up to complex signs (complex scalar factors of
absolute value 1).

The above theorem guarantees the existence of the SVD, but in practice, it still
remains to be computed. This is a fairly straightforward process if one considers the
following matrix products:

X∗X = (UΣV∗)∗(UΣV∗) = VΣ2V∗ (7.6)

and

XX∗ = (UΣV∗)(UΣV∗)∗ = UΣ2U∗ . (7.7)
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Multiplying (7.6) and (7.7) on the right by V and U, respectively, gives the two self-
consistent eigenvalue problems

X∗XV = VΣ2, (7.8a)
XX∗U = UΣ2 . (7.8b)

Thus if the normalized eigenvectors are found for these two equations, then the or-
thonormal basis vectors are produced for U and V. Likewise, the square root of the
eigenvalues of these equations produces the singular values σj.

Theorem (Schmidt–Eckart–Young–Mirsky theorem [118, 47, 96]). For any N so that
0 ≤ N ≤ p = min{m, n}, we can define the partial sum

XN =
N
∑
j=1

σjujv
∗
j . (7.9)

And if N = min{m, n}, we define σN+1 = 0. Then

‖X − XN‖2 = σN+1 . (7.10)

Likewise, if using the Frobenius norm, then

‖X − XN‖F = √σ2N+1 + σ
2
N+2 + ⋅ ⋅ ⋅ + σ2p . (7.11)

The interpretation of this theorem is critical as it gives a geometrical perspective
for understanding the SVD. Geometrically, the SVD gives the best approximation of a
hyperellipsoid by a line segment, i. e., simply take the line segment to be the longest
axis, i. e., that associated with the singular value σ1. Continuing this idea, what is the
best approximationbya two-dimensional ellipse? Take the longest and second longest
axes, i. e., those associated with the singular values σ1 and σ2. After r steps, the total
energy inX is completely captured. Thus theSVDgives analgorithm for a least-squares
fit allowing us to project thematrix onto low-dimensional representations in a formal,
algorithmic way.

The SVDprovides aprincipledway tofinda low-rank subspace onwhich to project
the evolution dynamics of the PDE in (7.1). Specifically, the first r modes of a low-rank
projection form the POD basis in (7.2) desired for model reduction

Ψ = Ur . (7.12)

These basismodes are used to project the dynamics onto the dominant, low-rank sub-
space of activity as shown in (7.3). Of course, to use these POD modes, the dynamics
of the governing PDEmust be known in advance. Moreover, the Galerkin projection of
the dynamics onto PODmodes in (7.3) may be, depending on the underlying problem,
unstable, requiring modification to stabilize the time-stepping scheme. Such stability
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issues have been considered extensively by Carlberg and co-workers [34], Amsallem
and Farhat [4], and Kalashnikova et al. [67]. Regardless, POD reductions arising from
the SVD computation of the basis Ψ form the underpinnings of many ROMs [60, 14].
A significant advantage of the maturity of POD-based reductions is the ability to pro-
duce rigorous error bounds. Indeed, there is a rich literature on how to use the error
properties of POD/SVD to derive rigorous error bounds for simulation as well as opti-
mal control across a diverse set of applications [75, 76, 143, 110, 59, 136]. Such rigorous
bounds provide trust regions and certifiable models for many critical application ar-
eas. Details of POD-based ROMs can be found in Chapter 2 of the current volume on
Model order reduction [13].

Due to tremendous advances and innovations, modern large-scale simulations
and/or the data collection process can quickly produce volumes of data that tradi-
tional methods could not easily analyze and diagnose in real-time. This emerging
big data era requires diagnostic tools that can scale to meet the rapidly growing in-
formation acquired from new monitoring technologies which are producing increas-
ingly fine-scale spatial and temporal measurements. In such cases, one can exploit
new techniques that are capable of extracting the dominant global features of the
high-dimensional dynamics. Specifically, emerging randomized linear algebra algo-
rithms [55, 85, 48] are critically enabling for scalable big data applications, supple-
menting themethod of snapshots [122] for efficient computation of the SVD. Random-
ized algorithms exploit the fact that the data themselves have low-rank features. In-
deed, themethod scaleswith the intrinsic rank of the dynamics rather than the dimen-
sion of themeasurements/sensor space. This is in contrast to standard SVD/PCA/POD
reductions which do not scale well with the data size. One can think of the scalable
methods as being critically enabling for producing real-time analysis of emerging,
streaming big data sets. Moreover, the dominant features of the data can be used for
an efficient compression of the data for storage or reduced-order modeling applica-
tions [3]. Figure 7.1 outlines the basic algorithmic architecture which can be used for
producing scalable SVD decompositions.

7.2.2 Dynamic mode decomposition

An alternative to POD is the DMD reduction [117]. Unlike POD, the DMD algorithm not
only correlates spatial activity, but also enforces that various low-rank spatial modes
be correlated in time, essentially merging the favorable aspects of POD/PCA in space
and the Fourier transform in time. DMD is a matrix factorization method based upon
the SVD algorithm. However, in addition to performing a low-rank SVD approxima-
tion, it further performs an eigendecomposition on a best-fit linear operator that ad-
vances measurements forward in time in the computed subspaces in order to extract
critical temporal features. Thus the DMD method provides a spatio-temporal decom-
position of data into a set of dynamic modes that are derived from snapshots or mea-
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Figure 7.1: Illustration of the randomized matrix decomposition technique for scalable decomposi-
tions. The random sampling matrixΩ is used to produce a new matrix Y which can be decomposed
using a QR decomposition. This leads to the construction of the matrix B which is used for approxi-
mating the left and right singular vector. From Erichson et al. [48].

surements of a given system in time, arranged as column state-vectors. Themathemat-
ics underlying the extraction of dynamic information from time-resolved snapshots
is closely related to the idea of the Arnoldi algorithm, one of the workhorses of fast
computational solvers. The DMD algorithm was originally designed to collect data at
regularly spaced intervals of time. However, new innovations allow for both sparse
spatial [27, 54] and temporal [139] collection of data as well as irregularly spaced col-
lection times [6].

Like SVD, the DMD algorithm is based upon a regression. Thus there are a vari-
ety of algorithms that have been proposed in the literature for computing the DMD. A
highly intuitive understandingof theDMDarchitecturewasproposedbyTuet al. [138],
which provides the exact DMDmethod.

Definition: Exact dynamic mode decomposition (Tu et al. 2014 [138]). Suppose we
have a dynamical system (7.1) and two sets of measurement data

X = [[
[

u1 u2 ⋅ ⋅ ⋅ um−1
]]

]

, (7.13a)

X = [[
[

u1 u2 ⋅ ⋅ ⋅ um−1
]]

]

(7.13b)
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so that uk = F(uk), where F is the map corresponding to the evolution of (7.1) for
time Δt. Exact DMD computes the leading eigendecomposition of the best-fit linear
operator A relating the data u ≈ Au :

A = XX†. (7.14)

The DMDmodes, also called dynamicmodes, are the eigenvectors ofA, and eachDMD
mode corresponds to a particular eigenvalue of A.

The DMD framework takes an equation-free perspective where the original, non-
linear dynamics may be unknown. Thus measurements of the system alone are used
to approximate the dynamics and predict the future state. However, DMD can also be
used when governing equations are known [2]. This DMD-Galerkin procedure repre-
sents a potential hybrid between thePOD-Galerkin andDMDmethods. The integration
of DMD and POD can also be used for model reduction numerical schemes [146]. The
DMD procedure constructs a proxy, locally linear dynamical system approximation
to (7.1):

uk+1 ≈ Auk , (7.15)

whose well-known solution is

uk =
n
∑
j=1

ϕjλ
k
j bj = ΦΛkb , (7.16)

where ϕj and λj are the eigenvectors and eigenvalues of the matrix A, and the co-
efficients bj are the coordinates of the initial condition u0 in the eigenvector basis.
The eigenvalues λ of A determine the temporal dynamics of the system, at least in
an asymptotic sense and for normal operators, i. e., transient dynamics are not well
captured. It is often convenient to convert these eigenvalues to continuous time, ω =
log(λ)/Δt, so the real parts of the eigenvaluesω determine growth and decay of the so-
lution, and the imaginary parts determine oscillatory behaviors and their correspond-
ing frequencies. The eigenvalues and eigenvectors are critically enabling for produc-
ing interpretable diagnostic features of the dynamics. It is important to note that the
choice of the time step Δt is critical in the DMD algorithm. The time stepmust be small
enough to resolve the fastest time scales of relevance. A consequence of the linear
model produced by the DMD algorithm is its inability to model transient phenomena
over the snapshots sampled, aside from transient growthpotentially producedbynon-
normal modes where eigenvalues are identical or nearly so.

The DMD algorithm produces a low-rank eigendecomposition of the matrix A
that optimally fits the measured trajectory uk for k = 1, 2, . . . ,m snapshots in a least-
squares sense so that ‖uk+1 −Auk‖2 is minimized across all points for k = 1, 2, . . . ,m− 1.
The optimality of the approximation holds only over the sampling window where A
is constructed, and the approximate solution can be used to not only make future
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state predictions, but also to derive dynamic modes critical for diagnostics. Indeed,
in much of the literature where DMD is applied, it is primarily used as a diagnostic
tool. This is much like POD analysis, where the PODmodes are also primarily used for
diagnostic purposes. Thus the DMD algorithm can be thought of as a modification of
the SVD architecture which attempts to account for dynamic activity of the data. The
eigendecomposition of the low rank space found from SVD enforces a Fourier mode
time expansion which allows one to then make spatio-temporal correlations with the
sampled data. Recently, DMD has also been rigorously connected to the spectral POD
method [133].

Early variants of theDMD-computed eigenvalues thatwere biased by the presence
of sensor noise [58, 44]. Thiswas a direct result of the fact that the standard algorithms
treated the data in a pairwise sense and favored the forward direction in time. Dawson
et al. [44] and Hemati et al. [58] developed several methods for debiasing within the
standard DMD framework. These methods have the advantage that they can be com-
puted with essentially the same set of robust and fast tools as the standard DMD. As
an alternative, the optimized DMD advocated by [38] treats all of the snapshots of the
data at once. This avoidsmuchof the bias of the originalDMDbut requires the solution
of a potentially large nonlinear optimization problem. Askham and Kutz [6] recently
showed that the optimizedDMDalgorithm could be rendered numerically tractable by
leveraging the classical variable projectionmethod [53].Moreover, the optimizedDMD
method can be used to enforce all eigenvalues to have a real part less than or equal to
zero. This ensures stability of solutions for future times as there are no growingmodes.
For input-output systems, DMD has also been modified through a postprocessing al-
gorithm to generate a stable input-output model [15]. These methods show that DMD
architectures can be imbued with advantageous stability properties for ROMs.

The variable projection algorithm is based upon the observation that the desired
solutions of DMD are exponentials (7.16). Thus DMD is reformulated as an exponential
datafitting (specifically, for inversedifferential equations), anareaof research that has
been extensively developed and has many applications [52, 104]. The variable projec-
tionmethod leverages the special structure of the exponential data fitting problem, so
that many of the unknowns may be eliminated from the optimization. An additional
benefit of these tools is that the snapshots of data no longer need to be taken at regu-
lar intervals, i. e., the sample times do not need to be equispaced. The goal is then to
rewrite the data matrix of snapshots as

X⊺ ≈ Φ(α)B , (7.17)

whereΦ(α) ∈ ℂm×r with entries defined by Φ(α)i,j = exp(αjti).
The preceding leads us to the following definition of the optimized DMD in terms

of an exponential fitting problem. Suppose that α̂ and B̂ solve

minimize‖X⊺ −Φ(α)B‖F over α ∈ ℂk ,B ∈ ℂl×n . (7.18)
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The optimized DMD eigenvalues are then defined by λi = α̂i and the eigenmodes are
defined by

φi =
1

‖B̂⊺(:, i)‖2
B̂⊺(:, i) , (7.19)

where B̂⊺(:, i) is the i-th column of B̂⊺. Details of the algorithm and code for computing
the optimized DMD can be found in Askham and Kutz [6]. The improved and debiased
decomposition (7.16) of this optimal DMD strategy are readily apparent in numerous
examples. Moreover, a comparison of DMD variants shows how eachmethod handles
noise and takes on bias. Optimized DMD thus far outperforms all other variants at the
cost of a nonlinear optimization.

A remarkable feature of the DMD algorithm is its modularity for mathematical en-
hancements. Specifically, theDMDalgorithmcanbe engineered to exploit sparse sam-
pling [27, 54], it can be modified to handle inputs and actuation [106], it can be used
to more accurately approximate the Koopman operator when using judiciously cho-
sen functions of the state-space [80], and it can easily decompose data intomultiscale
temporal features in order to produce a multiresolution DMD [79]. Few mathematical
architectures are capable of seamlessly integrating such diverse modifications of the
dynamical system. But since the DMD provides an approximation of a linear system,
suchmodifications are easily constructed.Moreover, the DMDalgorithm, unlikemany
other machine learning algorithms, is not data-intensive in comparison to most deep
neural network architectures which require large labeled data sets. Thus a DMD ap-
proximation can always be achieved, especially as the first step in the algorithm is the
SVDwhich is guaranteed to exist for any datamatrix. However, for very large data sets,
DMD can leverage randomized methods [55, 85, 48] to produce a scalable randomized
DMD [49, 18].

DMD is closely related to the field of system identification, which identifies mod-
els from data, often for use with model-based controllers. Tu et al. [138] and Proctor
et al. [106] established connections between DMD and several classical system identi-
fication approaches, including the eigensystem realization algorithm [64] and singu-
lar spectrum analysis (SSA) [20] in climate time-series analysis. Nearly all methods of
system identification involve some form of regression of data onto dynamics, and the
main distinction between the various techniques is the degree towhich this regression
is constrained. For example, DMD generates best-fit linear models.

7.2.3 Koopman theory and observable selection

Much of the challenge associated with predicting, estimating, controlling, and reduc-
ing complex systems arises from the inherent nonlinearity in the governing equations.
Indeed, mathematical physics has a rich history in deriving coordinate transforma-
tions that simplify the dynamics and alleviate the challenge of nonlinearity. In 1931,
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Koopman developed an alternative perspective to classical dynamical systems theory,
showing that there is a linear, infinite-dimensional operator that acts on the Hilbert
space of possible measurement functions of the system, advancing these measure-
ments along the flow of the dynamics [71, 72]. Koopman’s operator-theoretic perspec-
tive trades nonlinear dynamics for linear but infinite-dimensional dynamics, and was
critical in Birkhoff’s proof of the ergodic theorem [17, 97].

Recently, Koopman operator theory has seen a resurgence of interest [93, 29, 94],
in largepart becauseof the increasingavailability ofmeasurementdata and improving
computational capabilities. In 2005, Mezic showed that Koopman theory may be used
to provide a modal decomposition of complex systems, providing direct relevance to
engineering systems [93]. Since then, it has been shown that the DMD algorithm from
fluid dynamics [117] actually approximates the Koopman operator [109], restricted to a
set of linear measurements of the system; a more detailed treatment for fluid systems
is given by Taira et al. [129].

The ability of Koopman analysis to transform nonlinear systems into a linear
framework has tremendous promise to make complex systems amenable to optimal
prediction, estimation, and controlwith simple techniques from linear systems theory.
In a short time, Koopman theory has been extended to nonlinear estimation [125, 126]
and control [106, 107], for example via model predictive control [73, 66], control in
eigenfunction coordinates [65], and switching control [103]. However, Koopman the-
ory appears to follow the principle of conservation of difficulty, in that finding the
right nonlinear measurements that enable a tractable linear representationmay be as
challenging as solving the original problem. In a sense, obtaining Koopman embed-
dings may be seen as an expensive offline computation that enables fast and efficient
online prediction, estimation, and control. In addition, the Koopman operator is
one of two main candidates for analyzing a dynamical system using operator-based
approaches, the other being the Perron–Frobenius operator. The Perron–Frobenius
operator evolves probability density functions along the flow of the dynamics, while
the Koopman operator evolves observable functions of the state. These two operators
are adjoint to each other in appropriately defined function spaces and it should there-
fore theoretically not matter which one is used to study the system’s behavior [70].

Before introducing themathematical formulationofKoopmanoperator theory,we
first consider the flowmap FΔt obtained by integrating the PDE in (7.1) for a short-time
Δt, given by

uk+1 = FΔt(uk). (7.20)

The Koopman operator 𝒦 is defined so that

𝒦tg = g ∘ Ft , (7.21)
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where ∘ is the composition operator. For a discrete-time system with time step Δt, this
becomes

𝒦Δtg(uk) = g(FΔt(uk)) = g(uk+1). (7.22)

In other words, the Koopman operator defines an infinite-dimensional linear dynam-
ical system that advances the observation of the state gk = g(uk) to the next time step:

g(uk+1) = 𝒦Δtg(uk). (7.23)

Note that this is true for any observable function g and for any state uk .
Much of the challenge of modern Koopman theory is obtaining a finite-dimen-

sional representation K of the infinite-dimensional operator 𝒦. In practice, this
amounts to discovering eigenfunctions of the Koopman operator, which are measure-
ment functions that behave linearly when evolved forward in time. A discrete-time
Koopman eigenfunction φ(u) corresponding to eigenvalue λ satisfies

φ(uk+1) = 𝒦Δtφ(uk) = λφ(uk). (7.24)

In continuous-time, a Koopman eigenfunction φ(u) satisfies

d
dt
φ(u) = 𝒦φ(u) = λφ(u). (7.25)

ObtainingKoopman eigenfunctions fromdata or fromanalytic expressions is a central
applied challenge in modern dynamical systems. Discovering these eigenfunctions
enables globally linear representations of strongly nonlinear systems. Applying the
chain rule to the time derivative of the Koopman eigenfunction φ(u) yields

d
dt
φ(u) = ∇φ(u) ⋅ u̇ = ∇φ(u) ⋅ f(u). (7.26)

Combined with (7.25), this results in a PDE for the eigenfunction φ(u):

∇φ(u) ⋅ f(u) = λφ(u). (7.27)

With this nonlinear PDE, it is possible to approximate the eigenfunctions, either by
solving for the Laurent series or with data via regression, both of which are explored
below. This formulation assumes that the dynamics are both continuous and differen-
tiable. The discrete-time dynamics in (7.20) aremore general, although inmany exam-
ples the continuous-time dynamics have a simpler representation than the discrete-
time map for long times. Koopman analysis has recently been extended to the con-
tinuous PDE formulation, rather than just the high-dimensional discretized ODE con-
text, for example, showing that the Cole–Hopf transform is a Koopman embedding for
Burgers’ equation [80].
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There are many approaches to obtain finite-dimensional approximations to the
Koopman operator. DMD is a representation based on linear observables [109], which
has been extended to nonlinear observables in the extended DMD (eDMD) [144] and
the variational approach of conformation dynamics [99, 100]. In all of these cases,
it is important that the measurements are chosen to form a Koopman-invariant sub-
space [23]; otherwise, the projection of the Koopman operator onto this subspace will
result in spurious eigenvalues and eigenfunctions.

In eDMD, an augmented state is constructed:

y = ΘT (u) =
[[[[[

[

θ1(u)
θ2(u)
...

θp(u)

]]]]]

]

. (7.28)

The projectionΘmay contain the original state u as well as nonlinear measurements,
so often p ≫ n. Next, two data matrices are constructed, as in DMD:

Y = [[
[

y1 y2 ⋅ ⋅ ⋅ ym
]]

]

, Y = [[
[

y2 y3 ⋅ ⋅ ⋅ ym+1
]]

]

. (7.29a)

Finally, a best-fit linear operator AY is constructed that maps Y into Y:

AY = argminAY

Y
 − AYY

2 = Y
Y†. (7.30)

This regression may be written in terms of the data matrices Θ(X) and Θ(X):

AY = argminAY

Θ
T(X) − AYΘ

T (X)2 = Θ
T(X)(ΘT (X))†. (7.31)

The resulting nonlinearmodel for uk is given by the proxy eDMD variable yk+1 = AYyk .
Because the augmented vector y may be significantly larger than the state u, kernel
methods are often employed to compute this regression [145]. In principle, the en-
riched library Θ provides a larger basis in which to approximate the Koopman op-
erator. It has been shown recently that in the limit of infinite snapshots, the eDMD
operator converges to the Koopman operator projected onto the subspace spanned by
Θ [144, 70, 74]. However, if Θ does not span a Koopman-invariant subspace, then the
projected operator may not have any resemblance to the original Koopman operator,
as all of the eigenvalues and eigenvectors may be different. In fact, it was shown that
the eDMD operator will have spurious eigenvalues and eigenvectors unless it is repre-
sented in terms of a Koopman-invariant subspace [23]. Therefore, it is essential to use
validation and cross-validation techniques to ensure that eDMD models are not over-
fit, as discussed below. For example, it was shown that eDMD cannot contain the orig-
inal state u as a measurement and represent a system that has multiple fixed points,
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periodic orbits, or other attractors, because these systems cannot be topologically con-
jugate to a finite-dimensional linear system [23]. Recently, researchers havebeen lever-
aging the representational power of deep neural networks to identify Koopman eigen-
functions and approximate Koopman operators [130, 149, 92, 141, 101, 83]. In the next
section, we will discuss an alternative approach to obtain a Koopman-invariant sub-
space based on time delay coordinates [22].

7.2.4 Time-delay embeddings for Koopman embeddings

Instead of advancing instantaneous linear or nonlinear measurements of the state of
a system directly, as in DMD, it may be possible to obtain intrinsic measurement co-
ordinates for Koopman based on time-delayed measurements of the system [127, 22,
5, 43, 68]. This perspective is data-driven, relying on the wealth of information from
previous measurements to inform the future. Unlike a linear or weakly nonlinear sys-
tem, where trajectories may get trapped at fixed points or on periodic orbits, chaotic
dynamics are particularlywell suited to this analysis: Trajectories evolve to densely fill
an attractor, somore data providemore information. The use of delay coordinatesmay
be especially important for systems with long-term memory effects, where the Koop-
man approach has recently been shown to provide a successful analysis tool [128].
Interestingly, a connection between the Koopman operator and the Takens embed-
ding was explored as early as in 2004 [95], where a stochastic Koopman operator is
defined and a statistical Takens theorem is proven. One version of time-delay embed-
dings, the HAVOK, has been used successfully to diagnose a diverse set of dynamical
systems [22]. More broadly, there are a number of analysis tools that can be applied to
the Hankel matrix for analysis of dynamics [68].

The time-delaymeasurement scheme is shownschematically inFigure 7.2, as illus-
trated on the Lorenz system for a single time-series measurement of the first variable,
x(t). If the conditions of the Takens embedding theorem are satisfied [131], it is possi-
ble to obtain a diffeomorphism between a delay-embedded attractor and the attractor
in the original coordinates. We then obtain eigentime-delay coordinates from a time
series of a single measurement x(t) by taking the SVD of the Hankel matrix H:

H =
[[[[[

[

x(t1) x(t2) ⋅ ⋅ ⋅ x(tmc
)

x(t2) x(t3) ⋅ ⋅ ⋅ x(tmc+1)
...

...
. . .

...
x(tmo
) x(tmo+1) ⋅ ⋅ ⋅ x(tm)

]]]]]

]

= ΨTDΣV
∗, (7.32)

where mc is the number of snapshots and mo is the total number of delays. The
columns of ΨTD and V from the SVD are arranged hierarchically by their ability to
model the columns and rows of H, respectively. Often, H may admit a low-rank ap-
proximation by the first r columns ofΨTD andV. Note that theHankelmatrix in (7.32) is
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Figure 7.2: Schematic of the Hankel alternative view of Koopman (HAVOK) algorithm [22], as illus-
trated on the Lorenz 63 system. A time series x(t) is stacked into a Hankel matrix H. The SVD of H
yields a hierarchy of eigentime series that produce a delay-embedded attractor. A best-fit linear re-
gression model is obtained on the delay coordinates v; the linear fit for the first r − 1 variables is
excellent, but the last coordinate vr is not well modeled as linear. Instead, vr is an input that forces
the first r − 1 variables. Rare forcing events correspond to lobe switching in the chaotic dynamics.
From Brunton and Kutz [24], modified from [22].

the basis of the eigensystem realization algorithm [64] in linear system identification
and SSA [20] in climate time-series analysis.

The low-rank approximation to (7.32) provides a data-drivenmeasurement system
that is approximately invariant to the Koopman operator for states on the attractor.
By definition, the dynamics map the attractor into itself, making it invariant to the
flow. In other words, the columns of U form a Koopman-invariant subspace. We may
rewrite (7.32) with the Koopman operator 𝒦 ≜ 𝒦Δt:

H =
[[[[[

[

x(t1) 𝒦x(t1) ⋅ ⋅ ⋅ 𝒦mc−1x(t1)
𝒦x(t1) 𝒦2x(t1) ⋅ ⋅ ⋅ 𝒦mcx(t1)

...
...

. . .
...

𝒦mo−1x(t1) 𝒦mox(t1) ⋅ ⋅ ⋅ 𝒦m−1x(t1)

]]]]]

]

. (7.33)

The columns of (7.32) are well approximated by the first r columns of ΨTD. The first r
columns of V provide a time series of the magnitude of each of the columns of ΨTDΣ
in the data. By plotting the first three columns of V, we obtain an embedded attractor
for the Lorenz system (Figure 7.2).

The connection between eigentime-delay coordinates from (7.32) and the Koop-
man operator motivates a linear regression model on the variables in V. Even with
an approximately Koopman-invariant measurement system, there remain challenges



7 Data-driven methods for reduced-order modeling | 323

to identifying a linear model for a chaotic system. A linear model, however detailed,
cannot capture multiple fixed points or the unpredictable behavior characteristic of
chaos with a positive Lyapunov exponent [23]. Instead of constructing a closed linear
model for the first r variables in V, we build a linear model on the first r − 1 variables
and recast the last variable, vr, as a forcing term:

d
dt
v(t) = Av(t) + Bvr(t), (7.34)

wherev = [v1 v2 ⋅ ⋅ ⋅ vr−1]
T is a vector of the first r − 1 eigentime-delay coordinates.

Other work has investigated the splitting of dynamics into deterministic linear and
chaotic stochastic dynamics [93].

In all of the examples explored in [22], the linear model on the first r − 1 terms is
accurate, while no linear model represents vr . Instead, vr is an input forcing to the lin-
ear dynamics in (7.34), which approximates the nonlinear dynamics. The statistics of
vr(t) are non-Gaussian, with long tails corresponding to rare-event forcing that drives
lobe switching in the Lorenz system; this is related to rare-event forcing distributions
observed and modeled by others [86, 113, 87].

7.3 Data-driven model discovery

For many modern complex systems of interest, such as in materials science, neuro-
science, epidemiology, climate science, and finance, there is a basic lack of physi-
cal laws and governing equations. Even when governing equations are available, for
example in fluid turbulence, protein folding, and combustion, the equations are so
complex that they are not readily amenable to analysis. With increasingly complex
systems, and the emergence of powerful computing architectures and big data, the
paradigm is shifting to data-driven methods to discover governing equations [19, 119,
25, 111].

7.3.1 SINDy: sparse identification of nonlinear dynamics

Discovering ROMs from data is a central challenge in modern computational physics.
Typically, the form of a candidate model is either constrained via prior knowledge of
the governing equations, as in Galerkin projection [98, 9, 34], or a handful of heuris-
tic models are tested and parameters are optimized to fit data. Alternatively, best-fit
linear models may be obtained using DMD. Simultaneously identifying the nonlinear
structure and parameters of a model from data is considerably more challenging, as
there are combinatorially many possible model structures.
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The SINDy algorithm [25] bypasses the intractable combinatorial search through
all possible model structures, leveraging the fact that many dynamical systems

d
dt
a = f(a) (7.35)

have dynamics f with only a few active terms in the space of possible right-hand
side functions; for example, the Lorenz equations (Figure 7.3) only have a few linear
and quadratic interaction terms per equation. Here, a ∈ ℝr is a low-dimensional
state, for example obtained via POD/SVD [25, 81], or constructed from physically re-
alizable measurements, such as lift, drag, and the derivative of lift for aerodynamic
systems [82].

Figure 7.3: Schematic of the sparse identification of nonlinear dynamics (SINDy) algorithm [25], as
illustrated on the Lorenz 63 system. From Brunton and Kutz [24], modified from [25].

We then seek to approximate f by a generalized linearmodel in a set of candidate basis
functions θk(a)

f(a) ≈
p
∑
k=1

θk(a)ξk = Θ(a)Ξ, (7.36)

with the fewest nonzero terms in Ξ. It is possible to solve for the relevant terms that
are active in the dynamics using sparse regression [132, 155, 57, 63] that penalizes the
number of terms in the dynamics and scales well to large problems.

First, time-series data are collected from (7.35) and formed into a data matrix:

A = [a(t1) a(t2) ⋅ ⋅ ⋅ a(tm)]
T
. (7.37)

A similar matrix of derivatives is formed:

Ȧ = [ȧ(t1) ȧ(t2) ⋅ ⋅ ⋅ ȧ(tm)]
T
. (7.38)
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In practice, this may be computed directly from the data inA using a numerical differ-
encing scheme, for instance. However, for noisy data, the total-variation regularized
derivative tends to provide numerically robust derivatives [36]. Alternatively, it is pos-
sible to formulate the SINDy algorithm for discrete-time systems ak+1 = F(ak), as in
the DMD algorithm, and avoid derivatives entirely.

A library of candidate nonlinear functionsΘ(A)may be constructed from the data
in A:

Θ(A) = [1 A A2 ⋅ ⋅ ⋅ Ad ⋅ ⋅ ⋅ sin(A) ⋅ ⋅ ⋅] . (7.39)

Here, the matrix Ad denotes a matrix with column vectors given by all possible time
series of d-th-degree polynomials in the state a. In general, this library of candidate
functions is only limited by one’s imagination, but polynomials, trigonometric func-
tions, and other well-known functions are a good starting point. ThematrixΘ tends to
be ill-conditioned as the library elements, such as polynomials, are often not orthogo-
nal. Indeed, they can often be nearly aligned over the time course where the library is
evaluated. Despite the high condition number, the sparse selection advocated below
is able to identify the correct dynamics provided the noise level is sufficiently small.

The dynamical system in (7.35) may now be represented in terms of the data ma-
trices in (7.38) and (7.39) as

Ȧ = Θ(A)Ξ. (7.40)

Each column ξ k in Ξ is a vector of coefficients determining the active terms in the
k-th row in (7.35). A parsimonious model will provide an accurate model fit in (7.40)
with as few terms as possible in Ξ. Such a model may be identified using a convex
ℓ1-regularized sparse regression:

ξ k = argminξ k ‖Ȧk − Θ(A)ξ

k‖2 + λ‖ξ


k‖1. (7.41)

Here, Ȧk is the k-th column of Ȧ and λ is a sparsity-promoting regularization weight,
typically chosen by simple hyperparameter tuning. Sparse regression, such as the
LASSO [132] or the sequential thresholded least-squares (STLS) algorithm used in
SINDy [25], improves the numerical robustness of this identification for noisy overde-
termined problems, in contrast to earlier methods [140] that used compressed sens-
ing [45, 30, 32, 31, 33, 10, 137]. We advocate STLS to select active terms; there are recent
guarantees on the convergence of this algorithm [152], and it has also been formalized
in a general sparse regression framework called SR3 [154].

The sparse vectors ξ k may be synthesized into a dynamical system:

ȧk = Θ(a)ξ k . (7.42)

Note that xk is the k-th element of a and Θ(a) is a row vector of symbolic functions of
a, as opposed to the data matrix Θ(A).
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The result of the SINDy regression is a parsimonious model that includes only
the most important terms required to explain the observed behavior. The sparse re-
gression procedure used to identify the most parsimonious nonlinear model is a con-
vex procedure. The alternative approach, which involves regression onto every possi-
ble sparse nonlinear structure, constitutes an intractable brute-force search through
the combinatorially many-candidate model forms. SINDy bypasses this combinato-
rial search with modern convex optimization and machine learning. It is interesting
to note that for discrete-time dynamics, ifΘ(A) consists only of linear terms, and if we
remove the sparsity promoting term by setting λ = 0, then this algorithm reduces to
DMD [117, 109, 138, 78]. If a least-squares regression is used, as in DMD, then even a
small amount of measurement error or numerical round-off will lead to every term in
the library being active in the dynamics, which is nonphysical. A major benefit of the
SINDy architecture is the ability to identify parsimoniousmodels that contain only the
required nonlinear terms, resulting in interpretable models that avoid overfitting.

7.3.1.1 Extensions and applications

Because SINDy is formulated in terms of linear regression in a nonlinear library, it
is highly extensible. The SINDy framework has been recently generalized by Loiseau
and Brunton [81] to incorporate known physical constraints and symmetries in the
equations by implementing a constrained sequentially thresholded least-squares op-
timization. In particular, energy-preserving constraints on the quadratic nonlineari-
ties in the Navier–Stokes equations were imposed to identify fluid systems [81], where
it is known that these constraints promote stability [86, 9, 34]. This work also showed
that polynomial libraries are particularly useful for building models of fluid flows in
terms of POD coefficients, yielding interpretable models that are related to classical
Galerkinprojection [25, 81]. Loiseau et al. [82] alsodemonstrated the ability of SINDy to
identify dynamical systems models of high-dimensional systems, such as fluid flows,
from a few physical sensor measurements, such as lift and dragmeasurements on the
cylinder. SINDy has also been applied to identify models in nonlinear optics [123] and
plasma physics [40]. For actuated systems, SINDy has been generalized to include in-
puts and control [26], and these models are highly effective for model predictive con-
trol [66]. It is also possible to extend the SINDy algorithm to identify dynamics with
rational function nonlinearities [88], with integral terms [116], and based on highly
corrupt and incomplete data [134]. SINDy was also recently extended to incorporate
information criteria for objectivemodel selection [89], and to identifymodelswith hid-
den variables using delay coordinates [22]. Finally, the SINDy framework was general-
ized to include partial derivatives, enabling the identification of PDEmodels [111, 115],
which will be explored below.

More generally, the use of sparsity-promoting methods in dynamics is quite
recent [140, 114, 102, 84, 28, 105, 8, 7, 21, 90, 91]. Other techniques for dynami-
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cal system discovery include methods to discover equations from time series [39],
equation-free modeling [69], empirical dynamic modeling [124, 148], modeling emer-
gent behavior [108], the nonlinear autoregressivemodel with exogenous inputs (NAR-
MAX) [51, 153, 16, 121], and automated inference of dynamics [120, 41, 42]. Broadly
speaking, these techniquesmay be classified as system identification, wheremethods
from statistics and machine learning are used to identify dynamical systems from
data. Nearly all methods of system identification involve some form of regression of
data onto dynamics, and the main distinction between the various techniques is the
degree to which this regression is constrained. For example, DMD generates best-fit
linear models. Recent nonlinear regression techniques have produced nonlinear dy-
namic models that preserve physical constraints, such as conservation of energy. Yao
and Bollt previously formulated the dynamical system identification problem as a
similar linear inverse problem [147], although sparsity-promoting regression was not
used, so the resulting models included all terms in Θ. In addition, SINDy is closely
related to NARMAX [16], which identifies the structure ofmodels from time-series data
through an orthogonal least-squares procedure.

7.3.2 Model discovery for PDEs

Amajor extension of the SINDymodeling framework generalized the library to include
partial derivatives, enabling the identification of PDEs [111, 115]. The resulting algo-
rithm, called the PDE functional identification of nonlinear dynamics (PDE-FIND),
shown in Figure 7.4, has been demonstrated to successfully identify several canoni-
cal PDEs from classical physics, purely from noisy data. These PDEs include Navier–
Stokes, Kuramoto–Sivashinsky, Schrödinger, reaction diffusion, Burgers, Korteweg–
de Vries (KdV), and the diffusion equation for Brownian motion [111].

PDE-FIND is similar to SINDy, in that it is based on sparse regression in a library
constructed frommeasurement data. PDE-FIND is outlined below for PDEs in a single
variable, although the theory is readily generalized to higher dimensional PDEs. The
spatial time-series data are arranged into a single column vector ϒ ∈ ℂmn, represent-
ing data collected overm time points and n spatial locations. Additional inputs, such
as a known potential for the Schrödinger equation, or themagnitude of complex data,
is arranged into a column vector Q ∈ ℂmn. Next, a library Θ(ϒ,Q) ∈ ℂmn×D of D can-
didate linear and nonlinear terms and partial derivatives for the PDE is constructed.
Derivatives are taken either using finite differences for clean data, or when noise is
added, with polynomial interpolation. The candidate linear and nonlinear terms and
partial derivatives are then combined into a matrix Θ(ϒ,Q) which takes the form

Θ(ϒ,Q)=[1 ϒ ϒ2 . . . Q . . . ϒx ϒϒx . . .] . (7.43)

Each column of Θ contains all of the values of a particular candidate function across
all of the mn space-time grid points on which data are collected. The time derivative
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Figure 7.4: Schematic of PDE-FIND [111], as illustrated on the fluid flow past a circular cylinder. From
Rudy et al. [111].

ϒt is also computed and reshaped into a column vector. As an example, a column of
Θ(ϒ,Q)may be qu2x.

The PDE evolution can be expressed in this library as follows:

ϒt = Θ(ϒ,Q)ξ . (7.44)

Each entry in ξ is a coefficient corresponding to a term in the PDE, and for canonical
PDEs, the vector ξ is sparse, meaning that only a few terms are active.

If the library Θ has a sufficiently rich column space that the dynamics are in its
span, then the PDE should be well represented by (7.44) with a sparse vector of coef-
ficients ξ . To identify the few active terms in the dynamics, a sparsity-promoting re-
gression is employed, as in SINDy. Importantly, the regression problem in (7.44) may
be poorly conditioned. Errors in computing the derivatives will be magnified by nu-
merical errors when inverting Θ. Thus a least-squares regression radically changes
the qualitative nature of the inferred dynamics.

In general, we seek the sparsest vector ξ that satisfies (7.44) with a small resid-
ual. Instead of an intractable combinatorial search through all possible sparse vec-
tor structures, a common technique is to relax the problem to a convex ℓ1-regularized
least-squares [132]; however, this tends to perform poorly with highly correlated data.
Instead, we use ridge regression with hard thresholding, which we call sequential
threshold ridge regression. For a given tolerance and threshold λ, this gives a sparse
approximation to ξ .

We iteratively refine the tolerance of Algorithm 1 to find the best predictor based
on the selection criteria,

̂ξ = argminξ
Θ(ϒ,Q)ξ − ϒt


2
2 + ϵκ(Θ(ϒ,Q))‖ξ ‖0, (7.45)
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where κ(Θ) is the condition number of thematrixΘ, providing stronger regularization
for ill-posed problems. Penalizing ‖ξ ‖0 discourages overfitting by selecting from the
optimal position in a Pareto front. While in general this problem is NP-hard we are
restricting it to solutions generated via the STRidge algorithm, which promotes hard
thresholding. Such hard thresholding has been recently shown to be a proxy for the
ℓ0-norm [154].

As in the SINDy algorithm, it is important to provide sufficiently rich training data
to disambiguate between several different models. For example, if only a single trav-
eling wave from the KdV equation is analyzed, the method incorrectly identifies the
standard linear advection equation, as this is the simplest equation that describes a
single travelingwave. However, if two travelingwaves of different amplitudes are ana-
lyzed, the KdV equation is correctly identified, as it describes the different amplitude-
dependent wave speeds [111].

The PDE-FIND algorithm can also be used to identify PDEs based on Lagrangian
measurements that follow the path of individual particles. For example, it is possible
to identify the diffusion equation describing Brownianmotion of a particle based on a
single long time-seriesmeasurement of the particle position. In this example, the time
series is broken up into several short sequences, and the evolution of the distribution
of these positions is used to identify the diffusion equation [111].

7.4 Data-driven ROMs

The methods detailed in the previous sections can be integrated with traditional
model reduction architectures. In what follows, we highlight how such methods can
be used in a data-driven way to construct ROM models in a nonintrusive, efficient
manner.

7.4.1 Application of DMD and Koopman to ROMmodels

DMDprovides an alternative approach to computing the projection of the nonlinearity
onto the rank-r POD subspace in (7.3). Specifically, instead of using POD modes and
gappy sampling for approximation of the nonlinear, low-rank contribution to the dy-
namics, DMD is used to directly compute a time evolution of thenonlinearityΨTN(Ψa)
from snapshot data. Like the DEIM interpolation procedure [37], the DMD algorithm
will proceed by constructing a snapshot matrix of the nonlinearity:

XNL =
[[

[

N1 N2 ⋅ ⋅ ⋅ Nm
]]

]

, (7.46)
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where the columns Nk = N(u(tk),x, tk) ∈ ℂn are evaluations of the nonlinearity at
time tk .

Following (7.16), a DMD of the matrix XNL gives a low-rank approximation of the
form

N(u(t),x, t) = ΦNL exp(ΩNLt)bNL . (7.47)

This low-rank approximation is achieved directly with further recourse to gappy in-
terpolation for projecting back the DMD modes. The approximation can be used to
modify (7.3) so as to achieve the following low-rank model:

da
dt
= ΨTLΨa +ΨTΦNL exp(ΩNLt)bNL. (7.48)

This integration of POD and DMD methods has been shown to provide performance
increases in comparison to POD alone [2]. Moreover, the technique can be integrated
with randomized linear algebra decomposition methods to achieve further enhance-
ments in computational speed and scalability. Alla and Kutz further show that the
POD-DMD integration competes well with POD with DEIM in terms of accuracy, while
significantly outperforming it in terms of computation time. The DMD algorithm itself
is faster than POD with DEIM and POD-DMD, but suffers from poor accuracy. One can
also envision using aDMD-DMD reductionwhereby a projection-based reductionwith
DMD-Galerkin is performed along with a hyperreduction with DMD. DMD-based ROM
models have also recently been successfully demonstrated in a number of technical
applications [1, 56]. A more detailed analysis of interpolation methods can be found
in Chapter 7 of Volume 1 ofModel order reduction [12].

7.4.2 Application of SINDy for ROMs

The SINDy algorithm can also be used to construct ROM architectures (7.2) from data
alone, i. e., no governing equations are known a priori. As an example, the flow past
a cylinder (Figure 7.5) provides a model with a rich history in fluid mechanics and
dynamical systems [98]. It has long been theorized that turbulence is the result of a
series of Hopf bifurcations that occur as the flow velocity increases [112], giving rise
to more rich and intricate structures in the fluid. After 15 years, the first Hopf bifur-
cation was discovered in a fluid system, in the transition from a steady laminar wake
to laminar periodic vortex shedding at Reynolds number 47 [62, 151]. This discovery
led to a long-standing debate about how a Hopf bifurcation, with cubic nonlinearity,
can be exhibited in a Navier–Stokes fluid with quadratic nonlinearities. After 15 more
years, this was resolved using a separation of time scales and a mean-field model by
Noack et al. [98]. It was shown that coupling between oscillatory modes and the base
flow gives rise to a slowmanifold, resulting in algebraic terms that approximate cubic
nonlinearities on slow time scales.
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Figure 7.5: The vortex shedding past a cylinder is a prototypical example in fluid dynamics, with rele-
vance to many applications, including drag reduction behind vehicles. Vortex shedding is the result
of a Hopf bifurcation. However, because the Navier–Stokes equations have quadratic nonlinearity, it
is necessary to employ a mean-field model with a separation of time scales, where a fast mean-field
deformation is slave to the slow vortex shedding dynamics. The parabolic slow manifold is shown
(left), with the unstable fixed point (C), mean flow (B), and vortex shedding (A). A POD basis and
shift mode are used to reduce the dimension of the problem (middle right). The identified dynamics
closely match the true trajectory in POD coordinates, and they capture the quadratic nonlinearity
and time scales associated with the mean-field model. From Brunton, Proctor and Kutz [25].

This example provides a compelling test case for the proposed ROM-SINDy algorithm,
since the underlying form of the dynamics took nearly three decades for experts in
the community to uncover. Because the state dimension is large, it is advantageous
to reduce the dimension of the system. POD provides a low-rank basis resulting in a
hierarchy of orthonormal modes that, when truncated, capture themost energy of the
original system for the given rank truncation. The first twomost energetic PODmodes
capture a significant portion of the energy, and steady-state vortex shedding is a limit
cycle in these coordinates. An additional mode, called the shift mode, is included to
capture the transient dynamics connecting the unstable steady state with themean of
the limit cycle [98].

In the dominant POD coordinate system (rank r = 3), the mean-field model ȧ =
f(a) for the cylinder dynamics is discovered by SINDy to be [25]:

ȧ1 = μa1 − ωa2 + Aa1a3, (7.49a)
ȧ2 = ωa1 + μa2 + Aa2a3, (7.49b)
ȧ3 = −λ(a3 − a

2
1 − a

2
2). (7.49c)

Note that the governing equations for a(t) in (7.49) are closely related to the slow-
manifold formulation of Noack et al. [98] formulated using the standardGalerkin-POD
projection. Specifically, it discovers the correct model ȧ = f(a) with quadratic non-
linearities and reproduces a parabolic slow manifold. The a3 variable corresponds to
the shift-mode of Noack et al. [98], and if λ is large, so that the a3-dynamics are fast,
then the mean flow rapidly corrects to be on the slow manifold a3 = a21 + a

2
2 given
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by the amplitude of vortex shedding. When substituting this algebraic relationship
into equations (7.49a) and (7.49b), we recover the Hopf normal form on the slowmani-
fold. Note that derivative measurements are not available, but are computed from the
state variables. When the training data do not include trajectories that originate from
the slow manifold, the algorithm incorrectly identifies cubic nonlinearities, and fails
to identify the slowmanifold. This model was subsequently improved by Loiseau and
Brunton [81] to incorporate energy-conserving constraints and to include higher-order
terms to model the effect of truncated POD modes.

7.4.3 Application of time-delay embeddings for ROMs

Time-delay embedding for building ROMs can be used in a completely data-driven ar-
chitecture where the governing equations are unknown, or for building a Koopman
operator for a known governing evolution equation [22]. Indeed, one can use time-
delay embedding with the SINDy architecture when short time-delay embeddings are
used, or for producing a direct Koopman approximationwhen long time-delay embed-
dings are used. Champion et al. [35] highlight the various architectures possible. The
short-time and long-time embedding possibilities are detailed here.

7.4.3.1 Short time-delay embedding

For a short time-delay embedding, the time-shifted data can provide a more accurate
assessment of the true rank of the underlying system. Such time-delay embeddingwas
used by Tu et al. [138] in order to ensure that the data were not rank-deficient. Indeed,
without time-shifting the data, the DMD approximation does not capture the correct
complex eigenvalue pairs associated with the periodic (Fourier) time dynamics.

Figure 7.6 shows the effects of the time-delay embedding as illustrated on the sim-
ple Van der Pol oscillator. In the top left panel of this figure, the singular values of H
given by (7.32) for a short time-delay embedding is shown. Specifically, the data were
delayed by five time steps. For this delay, the rank of the matrix H is dominated by
twomodes. The time dynamics of the first three modes are shown in the middle panel
of the figure, illustrating the strongly nonlinear Van der Pol oscillations. A reduced
model can then be constructed from the first two modes so that ΨTD spans a rank-
2 subspace. Importantly, the dominant nonlinear time-series data can then be used
with the SINDy architecture to discover the governing equations and build a dynami-
cal ROMmodel.
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Figure 7.6: Time-delay embedding of the Van der Pol oscillator with time steps of 0.01. (a) With a
short time-delay embedding of five time steps, the SVD produces a dominant low-rank (two-mode)
truncation whose time-dynamic modes are illustrated in (c). (b) With a long time-delay embedding
of several hundred time steps, the SVD produces a low-rank truncation of approximately a dozen
modes whose time dynamic modes are illustrated in (d). Note that the short time-delay modes are
strongly nonlinear oscillatory modes while the long time delay produces nearly perfect sinusoidal
modes. Details can be found in Champion, Brunton, and Kutz [35].

7.4.3.2 Long time-delay embedding

For long time-delay embeddings, the nonlinear dynamics can be made to be approxi-
mately linear, thus providing an approximation to the Koopman operator and a linear
ROM. The long time-delay embedding is especially useful in a data-driven architec-
ture where the governing equations are unknown. Moreover, the time-delay embed-
ding can significantly improve upon theDMDalgorithm for producing an approximate
dynamical system for forecasting.

Figure 7.6 shows the effects of the time-delay embedding as illustrated on the sim-
ple Van der Pol oscillator. In the top right panel of this figure, the singular values
of H for a long-time delay embedding are shown. Specifically, the data were delayed
by several hundred time steps which spanned more than a period of the nonlinear
oscillations. Unlike the short time-delay embedding, the rank increases from two to
about a dozen. The time dynamics of the first three of these dozenmodes (i. e., the first
three columns of the Vmatrix of (7.32)) are shown in the bottom panel. Note that the
time modes with the long delay are now approximately sinusoidal, thus being ideal
for a DMD/Koopman approximation. In this case, the SINDy architecture is unneces-
sary.
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7.5 Conclusion and outlook
ROMs continue to play a critically enabling role in emulation and simulation strate-
gies. Indeed, ROMs aremakingmany intractable computations tractable by providing
a surrogate model that can be computed at a fraction of the cost and with improved
memory constraints. For emergingmodels inmultiscale dynamical systems, suchas in
biology, atmospheric dynamics, and molecular dynamics simulations, ROMs provide
a scalable mathematical framework, where it is possible to obtain accurate statistical
estimates of the properties of the high-fidelity model from low-fidelity models.

Data-driven approaches to ROMs are also playing an increasingly important role
in developing scalable and nonintrusive emulators. Thus the governing equations,
which may be unknown or only partially known, can be approximated by a suite
of emerging mathematical methods. Table 7.1 highlights the various methods that
are available for producing data-driven ROMs. They are compared to the standard
Galerkin-POD architecture. Importantly, for each ROM architecture, two things must
be prescribed in the underlying separation of variable strategy (7.2): (i) the subspace
onwhich theROM is to be constructed, and (ii) themanner of extracting the dynamical
evolution in this subspace. Of course, such reductions do not guarantee the construc-
tion of a stable ROM model, as recently highlighted by Carlberg et al. [34]. Thus for
each ROM model strategy, care must be taken in order to produce a stable, low-rank
emulator. Indeed, both POD-Galerkin and POD-DMD algorithms, for instance, must
be modified in order to promote a stable time-stepping ROM.

If the governing evolution equations (7.1) are known, then a Galerkin-POD (or
Petrov–Galerkin-POD) provides a simple projectivemethod for producing a ROM. One
can also use the DMD algorithm in this architecture (POD-DMD) for more rapid eval-
uation of the nonlinear terms. For unknown governing equations where the full state

Table 7.1:Model reduction algorithms and their subspaces. Included is one example reference high-
lighting the method.

Data-driven ROM algorithms

ROMmodel u(x, t) = Ψ(x)a(t)
Galerkin-POD [14] ȧ = ΨT LΨa +ΨTN(Ψa)
DMD [78] u = Φ exp(Ωt)b
POD-DMD [2] ȧ = ΨT LΨa +ΨTΦNL exp(ΩNLt)bNL
POD-SINDy [25] ȧ = f(a) dynamics on subspaceΨ
HAVOK-SINDy [35] ȧ = f(a) dynamics on subspaceΨTD (short delay)
HAVOK-Koopman [22] ȧ = Ka dynamics on subspaceΨTD (long delay)
Basis elements (rank r)
POD modes X = [u1 u2 . . . um] = ΨΣV∗

DMD modes X = [u1 u2 . . . um] = Φ exp(Ωt)b
nonlinear DMD modes N = [N1 N2 . . . Nm] = ΦNL exp(ΩNLt)bNL
Time-delay Koopman modes H = ΨTDΣV∗
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space is sampled, DMD can be used to produce a low-rank, best-fit linear model for
the dynamics. An alternative to DMD is the POD-SINDy algorithm, which discovers
a low-rank, nonlinear dynamical system approximating the dynamics of the system.
Time-delay embeddings allow for some flexibility in building a ROM depending upon
the scenario. Time-delay embeddings also allow one to handle latent variables when
the full state measurements are unknown or unavailable. For a long time-delay em-
bedding with known or unknown governing equations, one can augment the DMD al-
gorithmby producing a time-delay coordinate systemwhich helpsmake the dynamics
linearly dominant (HAVOK-Koopman). A short time delay can be used to determine
the rank of the underlying dynamics and potentially build a SINDy model (HAVOK-
SINDy). Alternatively, a long time-delay embedding can discover the intrinsic rank
and linearize the dynamics in the time-delay coordinates. For more details on DMD,
its variants, and its broad applications, please see [78]. For a broader overview of data-
driven methods and machine learning applied to dynamics, please see [24].

The diversity of strategies is important in modern complex systems simulations
where often the equations are only partially known, but where rich measurement
data may be available. Thus data-driven strategies can bridge the gap between mea-
surement space and model space. Table 7.1 gives a summary of the various current
techniques. It is envisioned that refinement and innovations using the various strate-
gies will greatly aid in modeling the challenge problems in many fields where high-
dimensional, multiscale physics are prevalent. Figure 7.7 gives a summary of the
decision space necessary when considering an appropriate ROM. One can either em-

Figure 7.7: Low-order modeling of fluid flows begins with an appropriate coordinate system that
captures the few dominant flow mechanisms that are dynamically relevant. It is most common to
embed high-dimensional fluid data in a linear subspace, for example using POD (a). However, for
the flow past a cylinder, it is clear that the data live on a low-dimensional manifold in the embedding
space (b). Both approaches have been explored extensively, for example by Noack et al. [98] and
Loiseau et al. [82]. After an appropriate coordinate system is obtained, there are several choices for
model construction.
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bed in a linear space or in a nonlinear space (manifold), and then determine the
appropriate nonlinear dynamics. This can be done in a variety of ways depending on
wether the underlying governing equations are known, or if only measurement data
are available.
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