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  Pref ace   

 This book is the outcome of ICMI Study 22:  Task design in mathematics education . 
The proposal was presented to the International Commission on Mathematics 
Instruction (ICMI) in 2011 and accepted. Co-convenors and an International 
Programme Committee (IPC) were appointed from across the world and met in 
Oxford early in 2012. Following this, a discussion document and call for papers 
were prepared for the study conference to be held in July 2013. It was decided to 
organize the study under fi ve themes, each theme having shared responsibility 
among two or three of the IPC members. Introductory text and orienting questions 
for each theme were prepared by the IPC members. 

 The conference was announced for July 2013 in Oxford and a call for papers 
issued in May 2012. There was a robust response, and we are grateful to Ellie 
Darlington for the academic administration. The size of the study conference was 
limited strictly to 80 attenders in order to ensure effective working groups, so papers 
were reviewed not only on the basis of quality but also to ensure an optimal cover-
age of relevant issues. The acceptance rate for papers was about 45 %. It was 
explained to authors that the fi nal book would not consist of a collection of their 
papers, but there would be online publication of the conference proceedings. IPC 
members would develop a book which synthesised the papers and discussions that 
took place within each theme. Authors of high-quality papers which could not be 
accepted because of overlap of contents were encouraged to seek publication else-
where. One author from each paper was invited to attend the conference. In addi-
tion, four plenary speakers were invited, each representing a particular approach to 
the principles, practice, and implementation of task design from across the world. 
Each of them has contributed a chapter to this book. Presentations were invited 
from the Shell Centre, the Freudenthal Institute, and the TDS/ATD approach to 
didactic engineering, and a panel presentation was given by attenders who use vari-
ation theory as a design tool. The majority of the conference time was spent in 
working groups organised and led by IPC members. Two cross-theme meetings 
provided an opportunity to explore contrasts and overlaps in content and approach. 
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 The IPC decided to structure the book as fi ve main chapters, one for each theme, 
to be co-authored by IPC members drawing on the papers accepted for the 
 conference, high-quality papers submitted or published elsewhere, relevant litera-
ture from the research fi eld, and discussions at the study conference itself. The 
contribution of co-authors of accepted papers and authors who were prevented from 
attending is also recognised in each chapter. Four more chapters were provided by 
the plenary speakers; there is no separate chapter about variation theory as it informs 
ideas in several chapters. Michèle Artigue and Ken Ruthven were invited to provide 
commentaries. 

 The fi ve theme chapters were reviewed internally by the IPC and also by the 
study co-convenors. Through this process, cross-referencing was developed as 
much as possible, and there was careful examination of any overlaps. Where differ-
ent chapters have treated similar ideas in different ways, we have tried as far as 
possible to clarify the differences and indicate cross-references. 

 We want to acknowledge the particular roles played by three members of the 
IPC: Claire Margolinas edited the online proceedings which can be found at   https://
hal.archives-ouvertes.fr/hal-00834054    ; Peter Sullivan reviewed all the theme chap-
ters in order to comment on overall coherence; and Denisse Thompson, also a mem-
ber of the IPC, undertook a considerable amount of technical editing. We are 
indebted to these colleagues for their support and practical wisdom. We are also 
grateful to Bill Barton who, as president of ICMI when the proposal was submitted, 
was encouraging and supportive, and to Lena Koch who manages the ICMI website. 
Finally, we wish to thank the task designers and researchers who have been bringing 
their work to publication more and more during the last two decades and those who 
supported and advised the original proposal. We are committed to the idea that task 
design is at the heart of effective teaching and learning of mathematics and are 
delighted to be part of the growth of research attention to this focus.  

  Oxford, United Kingdom     Anne     Watson      
Kanazawa, Ishikawa, Japan    Minoru     Ohtani     

Preface

https://hal.archives-ouvertes.fr/hal-00834054
https://hal.archives-ouvertes.fr/hal-00834054
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   Part I 
   Introduction        



    Chapter 1   
 Themes and Issues in Mathematics 
Education Concerning Task Design: 
Editorial Introduction 

             Anne     Watson      and     Minoru     Ohtani    

1.1             Rationale 

 This study was initiated to produce an up-to-date summary of relevant research 
about task design in mathematics education and to develop new insights and new 
areas of relevant knowledge and study. Attention to task design is important from 
several perspectives in mathematics education research and practice. From a cogni-
tive perspective, the detail and content of tasks have a signifi cant effect on learning; 
from a cultural perspective, tasks shape the learners’ experience of the subject and 
their understanding of the nature of mathematical activity; from a practical perspec-
tive, tasks are the bedrock of classroom life, the “things to do.” Recently, there has 
been growth of research and publication activity about the work of designers in 
mathematics education: some of it oriented around teams that work globally; some 
of it focusing on the affordances of digital technologies. There has also been a 
growth of research activity arising from international comparisons of classroom 
characteristics, including tasks and task adaptation, and from comparisons of text-
books. It is interesting that globalization in mathematics education research, prac-
tice, and policymaking has led us to focus more closely on the minutiae of tasks in 
mathematics teaching, as well as on the more predictable issues to do with culture, 
local policy, and technological advances. Task design is also a core issue in research 
about learning; whether this research takes place through clinical interviews or 
authentic classroom practice, the detail of the tasks and the way they are presented 
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is often reported sketchily, and without full justifi cation, yet tasks have a major 
infl uence on assumed fi ndings about capability. 

 The state of play before this study conference included the following strands of 
activity:

•    Effects of task design on learning and assessment (e.g. Anderson & Schunn, 
 2000 ; Runesson,  2005 )  

•   Improvement of communication between designers and researchers, with more 
exchange about research and principles and practice (e.g. Schoenfeld,  2009 ; 
International Society for Design and Development in Education (ISDDE)   http://
www.isdde.org/isdde/index.htm    )  

•   Inclusion of Topic Study Groups in task design as a regular feature of ICME 
conferences (Mexico, 2008   http://tsg.icme11.org/tsg/show/35    ; Korea, 2012; 
Germany, 2016)  

•   Publication of tasks, principles of design, and research on effects and implemen-
tation by long-standing design teams (e.g. Shell Centre, UK; Freudenthal 
Institute, the Netherlands; QUASAR, USA; Connected Mathematics, USA)  

•   Changes in task design at implementation stage (e.g. PME research forum; Tzur, 
Sullivan, & Zaslavsky,  2008 )  

•   The process of didactic engineering and the infl uence of tasks on teaching (e.g. 
Margolinas et al.,  2011 )  

•   International textbook comparisons that draw attention to differences in task 
design (e.g. Valverde, Bianchi, Wolfe, Schmidt, & Houang,  2002 )  

•   Tasks in teacher education (e.g. Tirosh & Wood,  2009 ; Zaslavsky & Sullivan, 
 2011 ;  Journal of Mathematics Teacher Education , volume 10 (4–6))    

 However, we recognize that these represent only what came to the attention of 
the International Programme Committee. Hence, they are restricted to what is avail-
able internationally and mainly in English and cannot refl ect the working practices 
of myriad groups of teachers and textbook writers worldwide.  

1.2     Structure of the Book 

 The chapters of the book are organized in four parts. The fi rst part consists of this 
introductory editorial. In the second part are fi ve chapters which refl ect the fi ve 
organizing themes of the ICMI study conference. The initial themes were identifi ed 
from a reading of existing research:

•    Theme A: Tools and representations  
•   Theme B: Accounting for student perspectives in task design  
•   Theme C: Design and use of text-based resources  
•   Theme D: Principles and frameworks for task design within and across design 

communities  
•   Theme E: Features of task design informing teachers’ decisions about goals and 

pedagogies    
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 Refl ective work by the International Programme Committee led to new titles and 
a new sequence for this book that represents more closely the scholarly work under-
taken at the conference and subsequently. 

 The third part of the book consists of chapters by four invited plenary speakers 
who provide examples of the design process relating to underlying principles and 
practices. These processes vary widely not only in the ways in which individuals 
describe their work but also in theoretical perspectives relevant to their working 
context. 

 The fi nal part of the book consists of two commentaries, one from Michèle 
Artigue and one from Ken Ruthven. We invited them to comment as senior scholars 
in mathematics education who have themselves been intimately involved in the pro-
cesses of task design and implementation.  

1.3     Editorial Overview of Chapters from the Thematic 
Groups of the Study 

1.3.1     Frameworks and Principles for Task Design 

 Chapter   2     is the longest in the book because it presents a way of thinking about the 
multiple frameworks and sets of principles that arise in the literature on task design. 
We are deeply grateful to the participants and authors who contributed and hope that 
future researchers, research students, and designers who wish to publish their prac-
tices in scholarly journals fi nd it useful to focus or structure their work according to 
the ideas in this chapter. It offers a signifi cant theoretical step forward in the fi eld; 
to a great extent, Chaps.   3    –  6     depend on Chap.   2     for their theoretical background. 

 Frameworks and principles for task design are identifi ed as addressing three 
theoretical  grain sizes , although a specifi c set of principles might incorporate differ-
ent sizes.  Grain size  descriptions are intended to be descriptive tools for thinking in 
a structured way about task design, rather than being prescriptive. The grain sizes 
identifi ed are  grand frames ,  intermediate frames , and  domain - specifi c frames . 
Grand frames present theories about learning in and out of educational settings at a 
general level. Intermediate frames present the complex interactions between task, 
teacher, teaching methods, educational environment, mathematical knowledge, and 
learning so that the purposes and implications for task design are always understood 
within the total structure of practice. Intermediate theories take time to develop, and 
applications of them can lead towards elaboration of the theory as well as develop-
ments in the practices of both teachers and designers. Communities can develop 
around both grand and intermediate theories in which there are shared language, 
shared materials and resources, and shared research studies and conferences. 
Presentation of work developed within intermediate theories to the outside world 
cannot always restate the complex background principles, so some background 
work has to be expected of readers and reviewers. An extra dimension of intermedi-
ate frames is that they are based in teaching as craft knowledge and arise from 
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teachers’ actions and interactions. Domain-specifi c frames focus on particular areas 
of mathematical knowledge or activity and may not be generalizable across 
mathematics. 

 A particularly useful contribution from this chapter is the passage on the history 
of task design in mathematics education. Very often in our fi eld, people only refer to 
recent research and recent experiences of practice. Where practice and research are 
based on a mature accumulated body of knowledge, this is not a problem. However, 
because much of our practice is infl uenced by policy, ideology, and (at the time of 
writing) the international testing regime, it is tempting to refer to those as the basis 
for critical academic work rather than our own past research. It can also be quite dif-
fi cult for researchers to access past work if it has been locked into the relationships 
between design, curriculum, and teaching and has not been specifi cally researched 
and reported. Globalization of the fi eld helps in this process to some extent: for 
example, some practices in Singapore can be traced back to work in the UK in the 
1970s, even though the infl uence is now in the opposite direction. This is an example 
of how worthwhile practices might disappear for some time in one part of the world 
but be alive and well in another part. More effortful attention to the history of ideas 
in task design would enable consolidation of the fi eld: there is no need to reconstruct 
from scratch; there is no need to ignore elements that have been important in the 
past. Often important ideas continue in practice but are not recognized by research-
ers, and current recognition by a researcher does not mean that an idea is “new.”  

1.3.2     The Relationship Between Task Design, Anticipated 
Pedagogies, and Student Learning 

 Chapters   3     and   4     between them address the relationships between tasks, teaching, and 
learning. Sometimes people refer to “gaps” between what is intended by the designer 
and enacted by the teacher or what is intended by the teacher and perceived by the 
learner. Such gaps can also be seen as “interactions” which are inevitable in the teach-
ing-learning process. These two chapters are like two sides of a coin, represented by 
the task as stated and presented to students. On the one side are the teacher’s deci-
sions about the nature of mathematics, the collection of students who are being 
taught, and many emanating practical considerations. On the other side, without the 
intimate feedback that is available in one-to-one clinical situations, the teacher has to 
have theoretical support to anticipate and understand students’ experiences. 

 Chapter   3     is very practical. The authors posed questions about the infl uence on 
teachers’ decision-making of task features and had available to them a wide range 
of reports about how teachers put given tasks, designed by external sources initially, 
into practice embedded in pedagogical variables. The authors use three tasks from 
the study conference as exemplars around which the discussions in the chapter are 
oriented, raising issues which can then be used to think about any task. They elaborate 
on how to analyse the thinking that went on in the design, decisions about suitability 
and applicability, and how these are infl uenced by teachers’ views of the nature of 
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mathematics, the prevailing school and classroom culture, and the relative emphases 
on mathematical content and broader epistemological goals a teacher may be pursu-
ing with the students. Each of the example tasks is presented as a complex situation, 
in which the dividing line between task design and implementation, and lesson 
design and implementation, is not easy to draw and may even be unnecessary. The 
teacher’s knowledge of mathematics pedagogy and ability to anticipate students’ 
responses is critical in all these decisions. The authors had originally intended to 
address related issues about educating teachers in the processes of using tasks, but 
these vary so widely between cultures and between teacher education programmes 
that we cannot do it justice in this volume and refer readers instead to the  Journal of 
Mathematics Teacher Education , in particular volume 10 (4–6). 

 Finally, there is discussion about how to present a task to students initially so that 
they are motivated, have access to the task and can get started, and also understand 
what the teacher would like them to be thinking about. These fi nal ideas lead natu-
rally on to Chap.   4    , in which learners’ perceptions are considered from a different 
point of view, including the notion of  interest - dense  tasks for sustaining both effort 
and learning. Questions that arise from Chap.   3     also arise from other chapters, so we 
shall incorporate them in our fi nal remarks below.  

1.3.3     Accounting for Student Perspectives in Task Design 

 Chapter   4     constructs a theoretical view of the interactions between students, teach-
ers, and tasks in the classroom; it is not possible to infer how the learners “see” a 
task merely from their actions and their written or verbal products. Merely doing 
what the teacher hopes and expects is evidence for a certain form of compliance, but 
might not constitute evidence of learning or evidence of understanding the purpose 
of the task or even evidence of having the same perception of the task as that of the 
teacher. The question the authors of this chapter wanted to address is how learners 
answer this question: “what is this task asking me to do?” The authors became 
aware of a general dearth of research in this area, and yet knowledge of how learners 
perceive a task is crucial to planning effective lessons as well as to designing effec-
tive tasks.  Perception  therefore has to be imagined, and in some cultures the exper-
tise of the teacher is seen in terms of the accuracy of that process of imagination. We 
welcome the authors’ decision to stay fi rmly with what can be  known  about the 
learners’ perspective and not be deviated into what might be  assumed . 

 The chapter fi rstly refl ects on the literature about word problems, which draws 
attention to differences in students’ perceptions of the purpose of the task and, 
maybe, designers’ intentions, although this is sometimes achieved through inferen-
tial reasoning from students’ productions. These kinds of differences can arise in 
any mathematics teaching situation, not only with word problems. So, the authors 
offer the construct of  didactical situation  as a structure within which to consider 
the  didactical contract  and  milieu  (terms related to theories discussed in Chaps.   2     
and   8    ) of the learner and, hence, how they might be viewing the nature and purpose 
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of a mathematical task. This chapter includes a rare example of phenomeno-
graphic research identifying students’ perceptions of a statistical task and what this 
reveals about their understanding of the purpose of the task and of statistics as a 
fi eld of study. 

 The second part of the chapter proposes ways in which various educators, teach-
ers, and researchers have sought to reduce any gaps between the teacher’s intentions 
and the learner’s perceptions. In doing so, the authors present the importance of the 
quality of teachers’ expectations of students, the importance of refl ective redesign, 
the idea of  emergent task design , and considerations of openness. Some of these 
ideas arise also from other perspectives. For example, teachers’ expectations are a 
component of the discussions in Chap.   3     and also a central aspect of teachers’ pro-
fessional learning described in Chap.   9    . Refl ective redesign is routinely undertaken 
with others in Japanese Lesson Study and is also a component of a well-wrought 
design process for teams and individuals. A degree of openness to allow and also 
encourage student agency is a key aspect of many problem-solving task design ini-
tiatives in which learners’ contributions are valued and discussed, and to add to this 
we would draw attention to the idea of listening  to  learners (Davis,  1996 ) rather than 
listening  for  particular solutions. Indeed, in some cultures, generating several meth-
ods for approaching a question is a key feature of a lesson. Whereas in Western lit-
erature some students’ responses might be described as  misconceptions , in other 
traditions these are  alternative ways of seeing  and are valuable for the learning of 
both teachers and students. A welcome development of this is given in the chapter, 
which offers emergent task design as a process arising from ideas of learners, in the 
course of a lesson, which are made into tasks by teachers in the moment. 

 Another way to look at the issues in both Chaps.   3     and   4     would be to consider the 
work of teaching in Valsiner’s terms of aligning the zone of free movement (ZFM) 
(i.e. what is possible in the situation), the zone of promoted action (ZPA) (i.e. how 
the teacher directs learners towards particular actions), and the zone of proximal 
development (ZPD) (i.e. the learning a child can be expected to achieve in that edu-
cational situation). Ideally, according to Valsiner, the ZPA matches the ZPD for 
optimal learning (Valsiner,  1997 , p. 198). However, teachers rarely know accurately 
the ZPD of all their students in school situations, so teachers need to engineer a bal-
ance between defi ning the boundaries of the ZFM through task and situation design 
and providing loose enough boundaries for the ZPA to allow optimal overlap with 
their students’ relevant ZPD.  

1.3.4     Design Issues Related to Text-Based Tasks 

 This theme group set out originally to focus on the design of tasks in textual format, 
textbooks more generally, downloadable materials, and other forms of text-based 
communication designed to generate mathematical learning. The group was aware 
of differences in the order, development, representation, and presentation of content 
between textbook series and also between countries and cultures. The group hoped 
to consider how to analyse the content of individual questions or sequences of 
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questions. Another way to look at tasks would be to view them as the shapers of the 
curriculum rather than merely presenting a given curriculum and hence consider the 
differences between author and teacher intentions. The questions originally posed 
for the study conference concentrated on issues of text design and use. 

 In practice, few papers were submitted to the theme group that addressed these 
questions. Instead, the theme received many papers about designed tasks or collec-
tions of tasks that were based on clearly enunciated principles and showed how 
these worked out in practice, generally addressing overarching aspects of students’ 
mathematical learning, such as proof, interdisciplinary perspectives, reasoning, 
problem-solving, and values. Some papers were on specifi c examples of textbook 
issues: involvement of teachers as digital authors and the need for ancillary materi-
als such as assessment tasks. A small number addressed specifi c details: why this 
diagram, why these numbers, why this questioning sequence, and so on. Meanwhile, 
the ICMT  International Conference on Mathematics Textbook Research and 
Development 2014  signalled an increase in international comparison, cooperation, 
and knowledge exchange about mathematics textbooks, their design, development, 
use, and analysis—a fi eld of study focusing on textbooks in particular. The expecta-
tions for this conference freed the working group to focus on issues raised by the 
conference papers and others that could not be addressed at the level of textbook 
production and use. 

 The chapter offers a triangular, mutually interactive relationship between the 
nature and structure of the task, the intended mathematical activity, and the peda-
gogic purpose. It refers throughout to tasks that are free-standing or situated within 
 learning management systems , meaning published textbooks, task banks, pro-
grammed systems, and so on. The triangular relationship is relevant for free- standing 
tasks, home-made task banks, and textbooks, whether digitally delivered or paper 
based; and tasks created during lessons. Discussions led to the formation of a focus 
on the learners’ perspective when presented with a task, as in Chap.   4    , and how the 
task infl uences their subsequent mathematical activity, their learning, and their view 
of mathematics. This perspective is never constructed in isolation from their whole 
mathematics educational experience, which could include textbook design and use, 
but is also infl uenced strongly by pedagogy and presentation. One section of the 
chapter proposes a detailed consideration of visual appearance and layout as infl u-
ences on learning. 

 This chapter focuses on tasks without dynamic or interactive content, while the 
following chapter addresses tool use, which includes the full range of digital tools.  

1.3.5     Designing Mathematics Tasks: The Role of Tools 

 This theme concerns designing teaching-learning tasks that involve the use of tools 
in the mathematics classroom and consequently how, under such design, tools can 
represent mathematical knowledge. This aspect of task design research is currently 
“coming of age” through combinations of various and widely available digital tools 
and a Vygotskian understanding of relationships, through semiotic mediation, 
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between artefact and learning. The issue for designers is how to relate the tool- 
specifi c discourse representation to mathematical knowledge. There has been an 
international conference relating to digital technologies since 2004, the  International 
Conference for Technology in Mathematics Education , journals, and several special 
issues of mathematics education journals. For our study, the submitted papers were 
mainly concerned with practical and theoretical issues of task design in dynamic 
digital environments, but usefully included papers on physical tool use, thus allow-
ing theories developed in digital environments to be expanded for nondigital tools. 

 The chapter starts by outlining the practical considerations of tool use in the math-
ematics classroom and then moves to consider relevant theoretical perspectives that 
connect instruments and didactics. It then presents various ways in which contribu-
tors to the study conference had enacted these connections and introduces the idea of 
 discrepancy potential of tool , which is the space between the feedback a learner 
might experience from using the tool and the mathematics concept, combined with 
the need for the tool user to make decisions. In this space, unanticipated disturbances 
might take place, but also the teacher can intervene to introduce disturbances. 

 The chapter closes with a synthesis of the issues that any task design heuristics 
need to address: complementarity of feedback and mediation, relationships between 
pragmatic and epistemic considerations, symbiosis of mathematics and pedagogy, 
multiplicity of tools, and the discrepancy potential previously described. The design 
of the task—what the learner is supposed to do with the tool—needs to take account 
of, bridge, and coordinate these aspects of the activity. The fi nal remark is about the 
importance of the teacher’s perception of the nature of mathematics, particularly as 
tool-based tasks can challenge the nature of mathematical activity, and hence the 
nature of mathematical knowledge and competence.   

1.4     Overview of the Plenary Chapters 

 Chapters   7    –  10     are written by the invited plenary speakers at the study conference. 
These speakers were selected to represent well-formed examples of task design in 
practice. Michal Yerushalmy opens this section with an example of  domain - specifi c  
design (as defi ned in Chap.   2    ) in which she describes the theory and design of a 
digital resource that focuses on various features of functions for secondary students. 
One interesting feature of this resource, and the reason she was chosen to give a 
plenary, is that she embraces the facility of digital technology to provide fl exible 
sequencing of tasks. In order to use the resource, the teacher (or even student) has 
to make her own decisions about what to do and when. This is not, therefore, a digi-
tal learning management system but rather a digital task world, and she describes 
the structuring of such a world in terms that can be useful for other designers. 

 Chapter   8     presents two examples to illustrate the manifestation in practice of 
the  intermediate frame  of didactics founded by Brousseau. The description of this 
as intermediate arises from Chap.   2    , that is, theories which provide methods of 
application across mathematics. Berta Barquero and Marianna Bosch illustrate 
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how the theory of didactic situations has been used at a primary level to establish 
the measurement of quantities, and then they demonstrate the more complex world 
of didactic engineering in an anthropological development of the original theory. 
There are also  domain - specifi c  principles in their descriptions and also craft knowl-
edge, and a disturbing account of how the product of careful longitudinal design 
research can be subverted by practitioners who do not share the theoretical 
commitment. 

 In Chap.   9    , Toshiakira Fujii describes an aspect of Japanese Lesson Study,  kyo-
zaikenkyu , that can be overlooked in some Western adaptations of the process. The 
disciplined process of Japanese Lesson Study can be seen as an example of a craft- 
based frame, as described in Chap.   2    , and this is becoming widely recognized out-
side Japan. Typically, each lesson is oriented around one task, which may be one 
calculation (he gives “12-7” as an example) or may be a conceptual problem (e.g. 
classifying triangles). The selection and design of one task and how to use it is the 
focus of teachers’ regular professional development activity, and this creates a deep 
repertoire of “good” tasks that are also refl ected in the contents of the authorized 
textbooks and a pedagogic repertoire for teachers. This approach, where task design 
is the central focus for teachers’ planning and development, runs counter to the 
comments of Wittmann ( 1995 ) who argued for task design to be in the hands of 
specialist designers, and it poses challenges for teacher knowledge and training and 
also for the value of externally designed tasks. Each lesson study report uses 
domain-specifi c frames alongside, or even as a basis for, generic considerations. 

 The fi nal plenary chapter also presents a contradiction, this time to the whole 
book in some respects. Jan de Lange is an experienced designer whose work at the 
Freudenthal Institute has been infl uential throughout the world, particularly in the 
Netherlands, South Africa, and the US reform process. His description of the design 
process is down-to-earth and practical, setting high standards for the use of intuition 
and insight as starting points, with a focus on students’ learning. He claims, and 
illustrates, an approach he calls  slow design  that arises from knowledge of mathemat-
ics, the environment, teaching, classrooms, and children. While he describes the 
actions necessary for a designer to take in order to test and improve the design (e.g. 
not relying on the designer’s own teaching), he also challenges the academization of 
the design process. For him, the nature and direction of research about task design is 
in danger of moving the emphasis away from direct experience of children and math-
ematics in classrooms and towards theorization. A series of online articles,  A Designer 
Speaks  published by ISDDE (  http://www.isdde.org/isdde/index.htm    ), is worthy of 
mention here, giving alternative insights into designers’ working practices.  

1.5     Final Comments and Recent Developments 

 As conveners of this study, and editors of this volume, we have been excited by the 
breadth and diversity of contributions and impressed by the immense work that has 
gone into the resultant chapters. We are both actively involved in schools and 
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teacher education as well as in mathematics education research, and our multiple 
perspectives have helped us consider the different roles of theory in relation to task 
design. While preparing this volume, Minoru has been involved in several lesson 
studies and has also been a school principal, while Anne has been teaching mathe-
matics in the UK year 7 and leading teacher workshops. Our main concern in lead-
ing this study has been to accelerate the growth of attention to task design given by 
researchers in their work and their written artefacts. We note that several papers that 
contributed to the conference have now been expanded and developed and pub-
lished elsewhere and have included these where possible in the relevant reference 
lists. A volume about task design with digital technologies follows the study (Leung 
& Baccaglini-Frank:  Digital technologies in designing mathematics education 
tasks: Potential and pitfalls  forthcoming from Springer) as does a special issue of 
the  Journal of Mathematics Teacher Education  edited by Keith Jones and Birgit 
Pepin. A research forum took place in 2014 on the relationships between task and 
students (Clarke, Strømskag, Johnsen, Bikner-Ahsbahs, & Gardner,  2014 ). 

 Research reports rarely give suffi cient detail about tasks for them to be used by 
someone else in the same way and hence build on knowledge by extending the 
domain of application. Few studies justify task choice or identify what features of a 
task are essential and what features are irrelevant to the study. In some intervention/
treatment comparison studies to investigate cognitive development, the intervention 
tasks are often vague, as if the reader can infer what the learning environment was 
like from a few brief indications. Alan Schoenfeld commented similarly some time 
ago (Schoenfeld,  1980 ). As an example of how the task can be  invisible  to research-
ers, we could look at the commentaries about a well-known and widely accessible 
video of a mathematics lesson for the TIMSS study (  http://www.timssvideo.
com/67    ). In the commentaries reported on the website, it is only the teacher who 
mentions connections between the task design, its presentation, and students’ par-
ticipation; the researcher talks only generally about the social and structural features 
of the lesson. Yet the task is central to the success of the lesson in terms of lesson 
structure and learning and has been included in every offi cial Japanese textbook for 
at least 40 years, and the diagram that goes with it is one the students are already 
familiar with. These features of the task are, we believe, crucial to understanding the 
lesson and the students’ mathematical responses, but are hardly mentioned. 

 To some extent, task design issues are addressed in the literature using design 
research in which the result of the research is a designed product to fulfi l a desired 
role. Task design also emerges in the growing fi eld of international comparison 
(Shimizu, Kaur, Huang, & Clarke,  2010 ). Although there have been two recent 
edited collections of the use of tasks in mathematics teacher education as previously 
mentioned, we comment that, perhaps strangely, as yet no comparable international 
“go-to” collections for thinking about task design for mathematics classrooms have 
been published, although there have been research foci at ICME and PME in the last 
decade. We hope this volume will go some way towards fi lling that gap. 

 Meanwhile, teams of designers who are now well established have been produc-
ing and publishing tasks consistently for decades. Tasks initially invented and dis-
seminated by Alan Bell ( 1993 ), Hans Freudenthal ( 1973 ), and Guy Brousseau ( 1997 ) 
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and their colleagues are widely and effectively used throughout the world. The work 
of designing, trialling, and publishing often took priority over reporting the design 
research processes in an internationally accessible way, or researching their own 
practice, and the degree to which they expected teachers to understand their back-
ground theoretical justifi cations varied. Teachers all over the world might be familiar 
with the task of graphing the heights achieved by fi lling bottles of various shapes, 
or the task of estimating the size of the giant given the dimensions of the handprint, or 
the task of enlarging the drawing of a rectilinear animal. Teachers use these tasks 
not because they are committed to the precise background theory that led to their 
invention nor because their use has been researched and theorized in some other 
classroom or country. Rather, teachers use these tasks because they match the prac-
tices involved in local coordination of curriculum demands, classroom practices, 
intended mathematical outcomes, and anticipated participation of particular indi-
viduals and groups of students, using a craft-based frame as described in Chap.   2    . 

 So we ask ourselves to what extent this book provides a go-to place for thinking 
about task design in mathematics classrooms. Because of our regular school-based 
experience, we both have the view that theory in task design should be clear and 
give meaning to phenomena in classrooms while also having practical meaning for 
teachers and designers. In Chap.   2    , the distinction is drawn between theories as 
resource and theories as product:  theory for  and  theory of . The intermediate level 
frames, as categorized in Chap.   2    , combine theoretical structures that are well 
founded in theories of learning and classrooms with the practical, local theorizing 
that teachers do on a day-to-day basis. The technical terms used in academic writing 
might be seen as an obstacle (e.g. milieu; didactic contract in Chap.   4    ), but the 
underlying ideas would be familiar to many teachers. By contrast, the notion of 
instrumental genesis (see Chap.   6    ) is more abstract and less likely to relate to teach-
ers’ day-to-day thinking, although they would see evidence of a  utilisation scheme  
in practice. Nevertheless, the concept of instrumental genesis has much to offer 
designers of both tasks and mathematics software, as well as in research. These 
thoughts are conjectural, but based on our own recent experience of teaching and 
talking with teachers in English and Japanese cultures of practice. 

 Returning to Schoenfeld’s paper, which is entitled “On useful research reports,” 
we would therefore ask “useful for whom?” We agree with the closing remarks 
made in Chap.   2     that there is a need for detailed research reports that are not 
 unhelpfully limited in length and can fully report studies of design and use of tasks 
as well as pedagogy. We agree that details of tasks and the likely effects of task 
design features, as well as pedagogy, should be included more frequently in research 
about classrooms and learning. We point also to a need for researchers to distinguish 
between theories  of  their observations and theories  for  designers and teachers and to 
consider drawing on teachers’ and learners’ situated perspectives when theorizing 
in either case. In these respects, Chaps.   3    –  6     can all provide starting points. As for 
theories of task design, evaluations of effectiveness are always going to take place 
in natural contexts consisting of specifi c classrooms, teachers, constraints, and 
cultures, so it is inevitably the case that empirical studies will not be extensively 
generalizable, but can be illuminative and give rise to conjectures. 

1 Themes and Issues: Editorial Introduction

http://dx.doi.org/10.1007/978-3-319-09629-2_2
http://dx.doi.org/10.1007/978-3-319-09629-2_2
http://dx.doi.org/10.1007/978-3-319-09629-2_2
http://dx.doi.org/10.1007/978-3-319-09629-2_4
http://dx.doi.org/10.1007/978-3-319-09629-2_6
http://dx.doi.org/10.1007/978-3-319-09629-2_2
http://dx.doi.org/10.1007/978-3-319-09629-2_3
http://dx.doi.org/10.1007/978-3-319-09629-2_6


14

 Finally, we pose some areas for further research that arose from the study, 
sometimes from several theme groups:

•    How learners/teachers make sense of, and understand the purpose of, different 
kinds of tasks  

•   How different design principles refl ect or generate different perceptions of math-
ematical concepts  

•   How different combinations of tasks and pedagogy infl uence learners’ percep-
tions and mathematical activity  

•   How visual features of task presentation affect activity  
•   The design and implementation of task sequences  
•   The professional learning of prospective and practising teachers about task 

design, sequencing, and adaptation  
•   The role of task design in promoting equity and other values  
•   Task design and individual learner differences  
•   The effectiveness of forms of collaboration and communication between task 

designers, classroom teachers, educators, and policymakers.        
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The natural sciences are concerned with how things are.
Design, on the other hand, is concerned with how things might be.

(Herbert. A. Simon, 1969)

2.1  �Introduction

The opening citation, drawn from The Sciences of the Artificial by H.A. Simon (1969), 
on design being concerned with “how things might be,” evokes the idea that the field 
of mathematics education has been involved in design ever since its beginnings—going 
back to the time of Euclid and perhaps even Pythagoras, for whom the term mathema 
meant subject of instruction. However, as Wittmann (1995) remarked, in a paper titled 
Mathematics Education as a Design Science, the design of teaching units was never a 
focus of the educational research community until the mid-1970s. Artigue (2009), too, 
has argued that “didactical design has always played an important role in the field of 
mathematics education, but it has not always been a major theme of theoretical interest 
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in the community” (p. 7). According to Cobb, Confrey, diSessa, Lehrer, and Schauble 
(2003), design experiments are conducted to develop theories, not merely to tune 
empirically what works: “a design theory explains why designs work and suggests how 
they may be adapted to new circumstances” (p. 9). This movement in design within 
mathematics education from thoughtful tinkering, growing out of intuition and class-
room development, to theoretically based research has not only been interlaced with 
the emergence of an international research community in mathematics education but 
also been accompanied by additional influences from the discipline of mathematics 
and, of no less importance, the work of psychologists (Kilpatrick, 1992).

The objective of this chapter is to give an overview of the current state of the art 
related to frameworks and principles for task design so as to provide a better under-
standing of the design process and the various interfaces between teaching, research-
ing, and designing. In so doing, it aims at developing new insights and identifying 
areas related to task design that are in need of further study. The chapter consists of 
three main sections. The first main section (Sect. 2.2) begins with a historical overview 
of the emergence of the mathematics education research community, followed by 
developments within psychology at large that came to bear on design research in math-
ematics education. This is followed by a discussion of the ways in which mathematics 
education researchers took up some of these developments and adapted them to fit with 
a focus on mathematical content, thereby producing their own design frames. After this 
historical overview, the section offers a conceptualization of current frameworks for 
task design in mathematics education and describes the characteristics of the design 
principles/tools/heuristics offered by these frames. The second main section (Sect. 2.3) 
presents a set of cases that illustrate the relations between frameworks for task design 
and the nature of the tasks that are designed within a given framework. Because theo-
retical frameworks and principles do not account for all aspects of the process of task 
design, the third main section (Sect. 2.4) addresses additional factors that influence 
task design and the diversity of design approaches across various professional com-
munities in mathematics education. The chapter concludes with a discussion of the 
progress made in the area of task design within mathematics education over the past 
several decades and includes some overall recommendations with respect to frame-
works and principles for task design and for future design-related research.

2.2  �Emergence and Development of Frameworks 
and Principles for Task Design

2.2.1  �Brief History of the Emergence of Design-Related  
Work from the 1960s to the 1990s

When Wittmann (1995) remarked that the design of mathematical teaching units 
was never a focus of research until the mid-1970s, he was referring indirectly to the 
fact that it was only at that time that mathematics education research coalesced as a 
separate field of study. From the early 1900s, psychologists in various countries had 

C. Kieran et al.



21

been conducting empirical research on how mathematics is learned, while mathe-
maticians and mathematics educators were more interested in focusing on the math-
ematical content to be taught and learned (Kilpatrick, 1992). Nevertheless, the 
post-Sputnik wave of mathematics education reform in the late 1950s and 1960s 
introduced many new task types using research methods and insights from prior 
psychological research. However, there was no community as such that could be 
called a mathematics education research community. That changed in the late 1960s 
and 1970s. In 1969, the first International Congress on Mathematical Education 
(ICME) took place in Lyon. A round table at that congress set the stage for the for-
mation in 1976 of what was to quickly become the largest association of mathemat-
ics education researchers in the world, the International Group for the Psychology 
of Mathematics Education (PME). The emergence of this community was accom-
panied by the creation of several research journals, including Educational Studies in 
Mathematics in 1968, Zentralblatt für Didaktik der Mathematik in 1969, and 
Journal for Research in Mathematics Education in 1970. In several countries, 
research institutes were formed, such as the Shell Centres for Mathematical 
Education at Chelsea College and at the University of Nottingham in 1968, the 
Instituts de Recherche pour l’Enseignement des Mathématiques in France in 1969, 
the Netherlands Institute for the Development of Mathematical Education (IOWO) 
at Utrecht University in 1971, and the Institut für Didaktik der Mathematik in 
Bielefeld in 1973. With its annual meetings, its journals, and the fertilization made 
possible by cross-national collaborations, an international community of mathemat-
ics education researchers had taken shape. The late 1960s and 1970s thus signaled 
a huge surge and interest in research in mathematics education.

2.2.1.1  �Influences from Psychology at Large

This surge in research in mathematics education had to rely almost exclusively in its 
early days on psychology as a source of theory (Johnson, 1980). Piaget’s (1971) 
cognitively oriented, genetic epistemology is but one example of the psychological 
frames adopted by the emerging mathematics education research community in its 
studies on the learning of mathematics. However, other forces were beginning to be 
felt during these years—forces related to design that were being conceptualized and 
developed by psychologists with an interest in education.

In 1965, Robert Gagné published The Conditions of Learning. Based on models 
from behaviorist psychology, Gagné’s (1965) nine conditions of learning were 
viewed as principles for instructional design—instructional design being defined in 
Wikipedia as the “practice of creating instructional experiences which make the 
acquisition of knowledge and skill more efficient, effective, and appealing.” Gagné 
classified cognitive learning into the three areas of verbal information, cognitive 
strategies, and intellectual skills but tended to emphasize the learning and automat-
ing of procedures.

In parallel with the instructional design approach being developed by Gagné and 
others, a new field was emerging, that of cognitive science, often referred to as the 
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information processing movement. As Anderson (1995/2000) remarked in his book, 
Learning and Memory, “at the height of the behaviourist era, around 1950, learning 
was perceived as the key issue in psychology; … [but] learning was pushed some-
what from center stage by the cognitive movement in the 1960s” (p. vii). Advances 
in design considerations were stimulated by the theorizing of the cognitive scientist 
and Nobel laureate, H.A. Simon (1969), in The Sciences of the Artificial. He advo-
cated the notion that the design process involved generating alternatives and then 
testing these alternatives against a range of requirements and constraints. Some of 
H.A. Simon’s design ideas were taken up by the educational psychologist Robert 
Glaser (1976) in his Components of a Psychology of Instruction: Toward a Science 
of Design.

Glaser distinguished, in line with Bruner, between the descriptive nature of theo-
ries of learning and what he referred to as the prescriptive nature of theories of 
instruction. In integrating design considerations into instructional research, he argued:

Regardless of the descriptive theory with which one works, four components of a prescrip-
tive theory for the design of instructional environments appear to be essential: (a) analysis 
of the competence, the state of knowledge and skill, to be achieved; (b) description of the 
initial state with which learning begins; (c) conditions that can be implemented to bring 
about change from the initial state of the learner to the state described as the competence; 
and (d) assessment procedures for determining the immediate and long-range outcomes of 
the conditions that are put into effect to implement change from the initial state of compe-
tence to further development. (Glaser, 1976, p. 8)

Glaser emphasized that the structure of the subject-matter discipline may not be 
the most useful for facilitating the learning of less expert individuals. While reiter-
ating H.A. Simon’s notion that the design process involves the generation of alter-
natives, he did not designate specific principles on which the “generation of 
alternatives” might be based. Presumably, these would be related to various theo-
ries of learning, especially as design was considered to involve the application of a 
descriptive theory of learning to the generation of a prescriptive theory of instruc-
tion—but, according to Glaser, not necessarily foregrounding subject-matter con-
siderations. Thus, mathematics education researchers would need to develop 
during the years to come their own scientific approaches to designing environ-
ments for the learning of mathematics and to generating frameworks for task 
design in particular.

2.2.1.2  �Early Design Initiatives of the Mathematics Education  
Research Community

During the 1970s, the focus within the mathematics education research community 
was squarely on the learning of mathematics and the development of models of that 
learning. For example, the paper that Hans Freudenthal presented at PME3, held in 
Warwick, UK, in 1979 (one of the 24 research reports presented at PME that year) 
dealt with the development of reflective thinking (Freudenthal, 1979); Alan 
Bishop’s, with visual abilities and mathematics learning (Bishop, 1979); and 
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Richard Skemp’s, with goals of learning and qualities of understanding (Skemp, 
1979). Nevertheless, two of the 1979 PME papers did touch upon issues related to 
tasks: one by Claude Janvier and the other by Alan Bell.

Janvier argued that, with the discovery learning movement, emphasis had been 
put on the “notion of appropriate learning environments and on the idea of rich situ-
ations likely to bring about discoveries or to encapsulate rich abstract ideas” (1979, 
p. 135). In his paper, he made use of one of the tasks (the racing car graph) devised 
for his doctoral research at the University of Nottingham in order to study various 
issues involved with the use of situations. At the conclusion of his paper, he remarked 
that his results were in line with Freudenthal’s phenomenological approach, which 
promoted the use of large-scale situations involving weeks of work and stressing the 
child’s point of view more than that of mathematical structures. In an earlier work, 
Weeding and Sowing, Freudenthal (1978) had introduced the approach of didactical 
phenomenology, which begins with a thorough mathematical analysis of the topic 
from which are generated hypothesized learning levels—an approach that he 
referred to as “developmental research” (see Gravemeijer & Cobb, 2006, 2013) and 
which was further elaborated by Streefland (1990) and Gravemeijer (1998). 
Freudenthal’s (1979) PME3 text, which reflected his ongoing work, sowed the seeds 
for a mathematical-psychological approach to task design—an approach that was to 
develop during the late 1980s and 1990s into the instructional theory specific to 
mathematics education known as Realistic Mathematics Education.

The PME3 paper presented by Alan Bell focused on the learning that develops 
from different teaching approaches with various curriculum units that had been 
designed for the South Nottinghamshire project. The teaching methods that were 
explored included “embodiment, guided discovery approaches, and cognitive con-
flict” (Bell, 1979, p. 5). In Bell’s research, design considerations were thus seen 
more through the lens of particular teaching methods than as approaches to the 
design of tasks per se.

In summary, the work of Hans Freudenthal at IOWO, of Alan Bell at Nottingham, 
and their colleagues during the 1970s reflected the beginnings of the new commu-
nity of mathematics education researchers’ efforts to grapple with the interaction 
between curriculum materials and the quality of mathematical teaching and learn-
ing—a dimension on which curriculum development efforts over the previous sev-
eral decades had yielded little information. This embryonic work in task design was 
characterized mainly by reflection on the nature of mathematics, with aspects drawn 
from the psychologically based learning theories of the day and supported by per-
sonal pedagogical experience, coupled with informal observations of children’s, 
students’, or teachers’ activity. The main aim seemed a combination of desiring to 
know more about the nature of learning mathematics and/or improving the teaching 
of mathematics rather than casting light on the nature of the tasks that might support 
such teaching or learning.

The 1980s within the mathematics education research community brought some 
integration of aspects of the design theories of H.A. Simon and others. In his 1984 
ESM paper (a modified version of his opening address at the 14th annual meeting of 
German mathematics educators in 1981), titled Teaching units as the integrating 
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core of mathematics education, Erich Wittmann (1984) argued for tasks displaying 
the following characteristics: the objectives, the materials, the mathematical prob-
lems arising from the context of the unit, and the mostly mathematical, sometimes 
psychological, background of the unit. He suggested that a teaching unit is not an 
elaborated plan for a series of lessons but rather it is an idea for a teaching approach 
that leaves open various ways of realizing the unit. Wittmann viewed the philosophy 
behind the teaching units as being embedded in Herbert Simon’s Sciences of the 
Artificial: teaching units, according to Wittmann, are simply artificial objects con-
structed by mathematics educators—objects to be investigated within different edu-
cational ecologies.

During the years 1985–1988, one of the PME working groups focused on the 
extent to which its activities had established principles for the design of teaching.  
In 1988, a collection of papers from this working group was put together by the 
Shell Centre under the title The Design of Teaching: Papers from a PME Working 
Group and subsequently published in a special issue of Educational Studies in 
Mathematics in 1993. In his editorial for the special issue, Alan Bell wrote:

Experimental work on the development of understanding in particular mathematical topics 
is relatively easy to conduct … but studies of the general properties of different teaching 
methods and materials are more difficult to set up. … Types of research on teaching which 
have been found productive, albeit in different ways, are the following: (1) basic psycho-
logical studies of aspects of learning …; (2) developmental activities in which teaching 
materials are designed on the basis of theory and practical experience and are then taken 
through several cycles of trial and improvement, …; and (3) comparative studies in which 
the same topic is taught to parallel classes by different methods. Examples of each of these 
types appear in this issue. But the design of teaching is a creative activity, and readers may 
hope to gain from these articles not only knowledge of some empirically established prin-
ciples, but also tested ideas for their practical implementation. (Bell, 1993a, pp. 1–2, italics 
added)

Note in the quote the integration of “teaching methods” and “materials”, that is, 
principles of teaching practice that are in harmony with principles that have been 
incorporated into the design of the teaching materials—an integration of two types 
of principles that will be seen to continue to be important in task design within the 
community over the decades to come. In his introductory article, “Principles for the 
Design of Teaching,” Bell specified the following set of design principles:

First one chooses a situation which embodies, in some contexts, the concepts and relations 
of the conceptual field in which it is desired to work. Within this situation, tasks are pro-
posed to the learners which bring into play the concepts and relations. It is necessary that 
the learner shall know when the task is correctly performed; hence some form of feedback 
is required. When errors occur, arising from some misconception, it is appropriate to expose 
the cognitive conflict and to help the learner to achieve a resolution. This is one type of 
intervention which a teacher may make to assist the learning process. (Bell, 1993b, p. 9, 
italics in the original)

The underlying psychological learning principles supporting this theory of teach-
ing design were said by Bell to include connectedness, structural transfer across 
contexts, feedback, reflection and review, and intensity.
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The late 1970s and 1980s also witnessed Soviet-style teaching experiments, both 
in individual settings as well as in classrooms (e.g., Kalmykova, 1966; Menchinskaya, 
1969), experiments that explored alternate teaching-with-task designs so as to 
investigate more deeply the learning of various mathematical concepts. The origin 
of these teaching experiments dated back to the 1920s with the individualized 
instructional experiments of Vygotsky, who believed that the development of men-
tal abilities was essentially dependent upon instruction.

Another important development during the decade of the 1980s with respect to 
design was the emergence within France of didactical engineering (DE), an exact-
ing theory-based approach to conducting research that had didactical design at its 
heart (Artigue, 1992). Despite its success as a design-based research practice, cer-
tain problems were encountered, according to Artigue (2009), when the rigorous 
designs were implemented in everyday classroom practice throughout its first 
decade. It was observed that the original designs went through a certain mutation in 
practice, leading her to note that “the relationships between theory and practice as 
regards didactical design are not under theoretical control” (Artigue, 2009, p. 12). 
This awareness pointed to one of the inherent limitations in theorizing about task 
design in isolation from considerations regarding instructional practice.

2.2.1.3  �The 1990s and Early 2000s: Development of Research  
Specifically Referred to as Design Experiments

The term design experiment came into prominence in 1992 with the psychologist 
Ann Brown’s (1992) paper on design experiments (see also Collins, 1992). Brown 
emphasized that design experiments aim at increasing the relevance of earlier cog-
nitive science laboratory studies to the real activity of classrooms and that this 
research is designed to inform practice, as well as benefit from the experience of 
practitioners. This attention to classrooms, teaching, and teaching practice was a 
reflection of the movement from cognitive to sociocultural perspectives on learn-
ing—a movement that had emerged when Vygotsky’s works started to become bet-
ter known in the West toward the end of the 1980s and one that had already begun 
to take hold within the mathematics education research community.

Brown’s paper signaled a kind of tipping point with respect to interest in design 
in the mathematics education research community (Lesh, 2002). Several factors had 
fallen into place, including the maturing of the community over a 20-year period 
and an evolving desire to be able to study within one’s research not just learning or 
not just teaching. Design experiments aimed at taking into account the entire learn-
ing picture. As Cobb et al. (2003) pointed out:

Design experiments ideally result in greater understanding of a learning ecology. … 
Elements of a learning ecology typically include the tasks or problems that students are 
asked to solve, the kinds of discourse that are encouraged, the norms of participation that 
are established, the tools and related material means provided, and the practical means by 
which classroom teachers can orchestrate relations among these elements. (p. 9)
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Within this conception of design experiments, the task or task sequence is 
considered but one of a larger set of design considerations involving the entire 
learning ecology—task or task sequence (which could take an entire lesson or more) 
being characterized in the ICMI Study-22 Discussion Document as “anything that a 
teacher uses to demonstrate mathematics, to pursue interactively with students, or to 
ask students to do something … also anything that students decide to do for them-
selves in a particular situation” (Watson et al., 2013, p. 12).

Another central feature of design experiments is, according to Cobb et al. (2003), 
the role played by theory, as well as the nature of this theory:

General philosophical orientations to educational matters—such as constructivism—are 
important to educational practice, but they often fail to provide detailed guidance in orga-
nizing instruction. The critical question that must be asked is whether the theory informs 
prospective design and, if so, in precisely what way? Rather than grand theories of learning 
that may be difficult to project into particular circumstances, design experiments tend to 
emphasize an intermediate theoretical scope. (pp. 10–11)

Cobb et  al.’s argument that theories of intermediate scope do a better job of 
informing prospective design leads naturally to the question of the nature of such 
theories and the ways in which they can inform prospective design. A broad 
approach to answering this question suggests that it might be helpful to first draw 
upon an example from outside the field to see what kinds of theories educational 
designers who specialize in the work of design integrate into their work.

2.2.1.4  �An Example of Design Work by Educational Technologists

Jeroen van Merriënboer and his colleagues (van Merriënboer, Clark, & de Croock, 
2002) are leading educational technologists who have developed a design model 
that consists of the following four components of instructional design for complex 
learning: (1) classes of learning tasks that are ordered and that promote schema 
construction, along with rule-oriented tasks for routine aspects, (2) supportive 
bridging information to link with prior knowledge, (3) just-in-time prerequisite 
information, and (4) part-task practice. The elaboration of these components is sup-
ported explicitly by major theoretical foundations in cognitive psychology, accom-
panied by a mix of different instructional approaches suitable for the different 
components of the design model. For example, in discussing the ordering of tasks 
with respect to their complexity, van Merriënboer et al. (2002) refer to cognitive 
load theory (Sweller, van Merriënboer, & Paas, 1998); in describing the amount 
and nature of learner support required, they refer to the framework of human 
problem-solving provided by Newell and Simon (1972); in noting the important 
role of cognitive feedback, they refer to the cognitive apprenticeship model (Collins, 
Brown, & Newman, 1989); and for just-in-time information that is best characterized 
as “how-to instruction or rule-based instruction”, they cite Fisk and Gallini (1989). 
As an example of the kinds of instructional support useful in helping learners 
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identify relevant relationships, van Merriënboer et  al. distinguish between the 
inquiry method (e.g., “ask the learners to present a well-known, familiar example 
or counterexample for a particular idea”) and the expository method (e.g., the 
instructor “presents a well-known, familiar example or counterexample for a par-
ticular idea”) and note that “inquiry approaches are time-consuming, but because 
they directly build on learners’ prior knowledge they are very appropriate for inter-
connecting new information and already existing cognitive schemata” (p. 48).

Van Merriënboer et  al. state that their model was not developed for teaching 
conceptual knowledge or procedural skills per se nor is it very useful for designing 
very short learning programs that only take an instructional time of hours or a few 
days—it was generated with the aim of developing solutions to complex problems 
and has its roots in vocational education. Nevertheless, we consider it useful for 
illustrating how this team of professional task designers relies on a variety of theo-
ries of intermediate scope to underpin their design, as well as for pointing out how 
their suggested teaching approaches vary according to the nature of the given com-
ponent of the instructional design.

2.2.1.5  �From Early 2000 Onward

Theorizing related to design in mathematics education research, and in educational 
research more broadly, continued to evolve during the 2000s (Kelly, Lesh, & Baek, 
2008). In addition, the term task design came to be more clearly present. For exam-
ple, at the 2005 PME conference, a research forum was dedicated to task design, 
having as its stated theme, “The significance of task design in mathematics educa-
tion” (Ainley & Pratt, 2005). One of the presenting teams, Gravemeijer, van Galen, 
and Keijzer (2005), pointed out that, “in Realistic Mathematics Education, instruc-
tional design concerns series of tasks, embedded in a local instruction theory; this 
local instruction theory enables the teacher to adapt the task to the abilities and 
interests of the students, while maintaining the original end goals” (pp. 1–108)—a 
local instructional theory being described by Gravemeijer et al. as the rationale for 
the instructional sequence, a rationale that evolves over several design experiments 
that involve testing and revising the sequence. Gravemeijer et al.’s statement sug-
gests another view of theory as one that not only informs prospective design but is 
also a product of instructional design—an issue to which we will return immedi-
ately below. These ideas continued to be explored at ICME-11 in 2008 where the 
scientific program, for the first time, included a Topic Study Group (TSG) on task 
design: “Research and development in task design and analysis”. The excitement 
generated regarding this research area was such that a similar TSG was put on the 
program for ICME-12 in 2012, as well as for ICME-13 in 2016. This interest was 
further illustrated by the holding of the 2013 ICMI Study-22 Conference on the 
same theme, a conference whose scientific work and discussions are the subject of 
this very volume.
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2.2.1.6  �Two Key Issues

In bringing to a close this first subsection devoted to a historical overview of the 
emergence of research related to design activity, we emphasize two central issues in 
need of clarification regarding the place of task design within design research. 
These issues underpin and run through much of the discussion that follows in the 
next subsection on frameworks and principles. In a recent article on design tools in 
didactical research, Ruthven, Laborde, Leach, and Tiberghien (2009) elaborated on 
the distinction between design as intention and design as implementation (Collins, 
Joseph, & Bielaczyc, 2004). Design as implementation focuses attention on the 
process by which a designed sequence is integrated into the classroom environment 
and subsequently is progressively refined, whereas design as intention addresses 
specifically the initial formulation of the design. While many studies address both, 
the distinction can be useful for understanding certain nuanced differences between 
one study and another. Ruthven et al. state that design as intention emphasizes the 
“original design and the clarity and coherence of the intentions it expresses” 
(p. 329). Design as intention makes use, in general, of theoretical frames that are 
well developed so as to provide this clarity and coherence. Although Ruthven et al. 
add that “the availability of design tools capable of identifying and addressing spe-
cific aspects of the situation under design can support both the initial formulation of 
a design and its subsequent refinement in the light of implementation” (p. 329), their 
examples cast light in particular on the design as intention orientation. In so doing, 
they illustrate clearly the role that theoretical tools play in the initial design.

In contrast to the front-end importance given to theory-based design tools by 
Ruthven et al. (2009), Gravemeijer and Cobb (2006) put the focus more toward the 
development of theory and its role as a product of the design research. In their design 
experiment studies, the initial theoretical base for the study and its accompanying 
instructional plan undergo successive refinements by means of the implementation 
process. The description of the entire process constitutes the development of the 
theory. Because of the centrality of the implementation process in the development 
of the resulting theory, such studies are characterized as design as implementation 
studies—even if their theoretical starting points could also qualify them as design as 
intention studies. For example, Gravemeijer and Cobb (2006) point out that

from a design perspective, the goal of the preliminary phase of design research experiments 
is to formulate a local instruction theory that can be elaborated and refined while conduct-
ing the intended design experiment; … this local instruction theory encompasses both pro-
visional instructional activities, and a conjectured learning process that anticipates how 
students’ thinking and understanding might evolve when the instructional activities are 
employed in the classroom. (p. 48)

They emphasize that the “products of design experiments typically include 
sequences of activities and associated resources for supporting a particular form 
of learning, together with a domain-specific, instructional theory that underpins 
the instructional sequences and constitutes its rationale; a domain-specific, 
instructional theory consists of a substantiated learning process that culminates 
with the achievement of significant learning goals as well as the demonstrated 
means of supporting that learning process” (Cobb & Gravemeijer, 2008, p. 77). 
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More precisely, Cobb et al. (2003) insist that “design experiments are conducted 
to develop theories” (p. 9).

Put another way, theories are both a resource and a product. As a resource, they 
provide theoretical tools and principles to support the design of a teaching sequence 
(e.g., Ruthven et al., 2009) and, as a product of design research, theories inform us 
about both the processes of learning and the means that have been shown to support 
that learning (Cobb et al., 2003).

A second issue related to the role and nature of theory in design is the signifi-
cance given to task design itself within the design process. When theory and its 
design tools are viewed as a front-end resource in the design process, the way in 
which task design is informed by these theory-based tools moves to center stage 
(e.g., Ruthven et al., 2009). By way of contrast, when theory development is viewed 
as the aim of design experiments, task design tends to be less central: “One of the 
primary aims of this type of research is not to develop the instructional sequence as 
such, but to support the constitution of an empirically grounded local instruction 
theory that underpins that instructional sequence” (Gravemeijer & Cobb, 2006, 
p. 77, emphasis added). This is not to say, in the latter case, that task design is unim-
portant (it clearly is) but rather the design of the teaching/instructional sequence is 
only one of several all-encompassing considerations within the whole interactive 
learning ecology. In practice, most design experiments combine both orientations: 
the design is based on a conceptual framework and upon theoretical propositions, 
while the successive iterations of implementation and retrospective analysis con-
tribute to further theory building that is central to the research. In fact, both orienta-
tions will be seen to be present in most of the design studies exemplified below.

These two issues, that is, (1) design as intention and design as implementation 
and (2) the status given to the initial design of the set of tasks, point to central dif-
ferences in the way in which the roles of theory and task design are considered 
within the design process in the mathematics education research community. In the 
presentation that follows—one that focuses on current frameworks and principles 
for task design—we shall attempt to interweave these distinctions into our discussion 
of the nature of the frames adopted, adapted, and developed within the activity of 
design. By so doing, we hope to be able to contribute to clarifying some of the ways 
in which theory and task design are related.

2.2.2  �A Conceptualization of Current Theoretical Frameworks 
and Principles for Task Design in Mathematics 
Education Research

2.2.2.1  �Introduction

Our historical look at the early research efforts related to task design revealed a mix 
of task and instructional considerations. However, the extent to which instructional 
aspects are factored into task design is but one of the ways in which design frame-
works can vary. Frameworks can also differ according to the degree to which the 
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learning environments are student centered, knowledge centered, or assessment 
centered (Bransford, Brown, & Cocking, 1999), as well as the manner in which they 
draw upon cognitive, sociological, sociocultural, discursive, or other theories. In 
addition, frameworks are distinguishable according to the extent to which they can 
be related to various task genres, that is, whether the tasks are geared toward (1) the 
development of mathematical knowledge (such as concepts, procedures, representa-
tions; see, e.g., Swan, 2008), (2) the development of the processes of mathematical 
reasoning (such as conjecturing, generalizing, proving, as well as fostering creativ-
ity, argumentation, and critical thinking; see, e.g., Leikin, 2013; Lin, Yang, Lee, 
Tabach, & Stylianides, 2012; Martinez & Castro Superfine, 2012), (3) the develop-
ment of modeling and problem-solving activity (e.g., Lesh, Hoover, Hole, Kelly, & 
Post, 2000; Ponte, Mata-Pereira, Henriques, & Quaresma, 2013; Schoenfeld, 1985), 
(4) the assessment of mathematical knowledge, processes, and problem-solving 
(e.g., Swan & Burkhardt, 2012), (5) the context of mathematical team competitions 
(e.g., Goddijn, 2008), and so on. As well, some frameworks may be more suited to 
the design of specific tasks, others to the design of lesson flow (e.g., Corey, Peterson, 
Lewis, & Bukarau, 2010), and still others to the design of sequences involving the 
integration of particular artifacts (e.g., Kieran & Drijvers, 2006). Because several 
considerations enter into an overall design—considerations that include the specific 
genre of the task, its instructional support, the classroom milieu, the tools being 
used, and so on—each part of the design might call for different theoretical under-
pinnings. Thus, the resulting design can involve a networking of various theoretical 
frames and principles (Prediger, Bikner-Ahsbahs, & Arzarello, 2008) or a bricolage 
(Gravemeijer, 1994) or a bridging (Koedinger, 2002). Furthermore, the nature of the 
principles or heuristics associated with various frames and the way in which these 
heuristics are construed—according to whether they are viewed as illuminating, 
inspiring, guiding, systematizing, or even constraining—all have a part to play (see 
Sect. 2.4 for discussion of other factors, such as the artistic and value-related aspects 
of task design). A more holistic way of thinking about frames is to view them as 
being of different levels (e.g., Goldenberg, 2008) or types, for example, grand 
frames, intermediate-level frames, domain-specific frames (i.e., frames related to 
the learning of specific mathematical concepts and reasoning processes), and frames 
related to particular features of the learning environment (e.g., frames for tool 
use)—all of them together constituting any one theoretical base for the design of a 
given study (Gravemeijer & Cobb, 2006). This manner of conceptualizing design 
frames according to the levels of grand, intermediate, and domain specific (note that 
tool-related frames are treated in Chap. 6) will now be used as a backdrop for exam-
ining the nature of current theoretical frameworks and principles for task design in 
mathematics education research.

2.2.2.2  �Grand Theoretical Frames and Their Affordances

Mathematics education research has tended in large measure to adopt such grand 
theoretical perspectives as the cognitive-psychological, the constructivist, and the 
socioconstructivist. However, as pointed out by Lerman, Xu, and Tsatsaroni (2002), 
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these are but three of the vast array of theoretical fields, in addition to those from 
educational psychology and/or mathematics that have backgrounded mathematics 
education research. In line with Cobb (2007), who has argued that such grand theo-
ries need to be adapted and interpreted in order to serve the needs of design research, 
our discussion of them will be brief and limited to a few selective aspects.

A cognitive-psychological theoretical perspective has dominated research on the 
learning of mathematics ever since the days of Piaget—at least up until the late 
1980s and early 1990s when Vygotsky’s work came to be better known among 
Western mathematics educators (Bartolini Bussi, 1991). Tightly linked with the 
cognitive-psychological perspective is the constructivist frame (von Glasersfeld, 
1987) that stemmed mainly from Piaget’s genetic epistemology (Steffe & Kieren, 
1994). Learning came to be widely interpreted as a constructive process, a process 
in which students actively construct mathematical knowledge. While constructiv-
ism has always been with us, perhaps under another guise, its growing acceptance 
as an educational tenet during the 1980s (Cobb & Steffe, 1983) helped to oust the 
view of mathematical teaching as the transmission of the teacher’s knowledge and 
mathematical learning as the reception of that knowledge. However, constructivist, 
cognitively oriented research soon became hard pressed to reconcile the notion that 
all learning is individually constructed with the evidence of commonalities found 
across individuals. Constructivists had to admit the social dimensions of learning, 
thereby paving the way for integrating the Soviet work of Vygotsky and Leont’ev. 
The view of learning as situated with respect to social and cultural practices, and 
thus a socioconstructivist frame of reference, soon became widely accepted 
(Lerman, 1996). This frame directly allowed for a focus on the role of teaching and 
of classroom interactions in the learning process.

Within the tradition of cognitive psychology, two types of theories have been 
developed by mathematics education researchers (Cobb, 2007). One concerns 
theories of learning across mathematics in general (e.g., Pirie & Kieren’s, 1994, 
recursive theory of mathematical understanding; Sfard’s, 1991, theory of reifica-
tion); the other concerns theories of the development of students’ learning in specific 
mathematical areas (e.g., Filloy & Rojano’s, 1989, theory of algebraic reasoning; 
Clements & Battista’s, 1992, theory of geometric reasoning). As will be seen below, 
these theories that have been inspired by and are situated within the grander theories 
are key components of design in mathematics education research, even if, as Cobb 
(2007) insists, they are not instructional and require adaptation or combination with 
other theories, in order to serve the needs of instructional design. Cobb’s point of 
view was also emphasized earlier by Bransford et al. (1999) in their volume How 
People Learn: “Learning theory provides no simple recipe for designing effective 
learning environments, but it constrains the design of effective ones” (p. xvi).

2.2.2.3  �Intermediate-Level Frames

Intermediate-level frames have a more specialized focus than the grand theories of 
socioconstructivism and the like, yet intermediate-level frames still tend to be situ-
ated within the perspective of one or the other of these grand frames. Even if their 
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focus is more specialized, intermediate-level frames have the property that they can 
be applied across a wide variety of mathematical areas. In brief, intermediate-level 
frames are located between the grand theories and the more local, domain-specific 
frames that address particular mathematical concepts, procedures, or processes. 
A multitude of intermediate-level frames have been developed that are being applied 
in adaptive ways to design research in mathematics education. They include, for 
example, Realistic Mathematics Education theory (Treffers, 1987), the Theory of 
Didactical Situations (Brousseau, 1997), the Anthropological Theory of Didactics 
(ATD) (Chevallard, 1999), Lesson Study (Lewis, 2002), Cultural-Semiotics theory 
(Radford, 2003), Commognitive Theory (Sfard, 2008), and so on (see Sect. 2.3 for 
an elaboration of the ways in which some of the of various intermediate-level frames 
have been adopted and adapted for use in research on task design).

In general, intermediate-level frames can be characterized by explicit principles/
heuristics/tools that can be applied to the design of tasks and task sequences. 
Because these frames tend to be highly developed, they are often used in design-as-
intention approaches. In addition, intermediate-level frames can also be character-
ized according to whether their roots are primarily theoretical or whether they are 
based to a large extent on deep craft knowledge. The two examples of intermediate-
level frames and their accompanying principles for task design that we offer imme-
diately below reflect these two roots. The first is the Theory of Didactical Situations 
and the second is that of Lesson Study. For both types, we examine the framework 
and associated principles that support the process of task design.

An Example of a Theory-Based Intermediate-Level Frame: Theory 
of Didactical Situations

The Theory of Didactical Situations (TDS) is generally associated with Guy Brousseau 
(1997); however, its development over the years has been contributed to by the 
French mathematical didactique community at large. A central characteristic of 
TDS research is its framing within a deep a priori analysis of the underlying math-
ematics of the topic to be learned, integrating the epistemology of the discipline, 
and supported by cognitive hypotheses related to the learning of the given topic. 
TDS is said to be an intermediate theory in that it draws upon the grand theory of 
Piaget’s work in cognitive development. According to Ruthven et al. (2009), one of 
the central design tools provided by TDS is the adidactical situation, which medi-
ates the development of students’ mathematical knowledge through independent 
problem-solving. The term adidactical within TDS refers specifically to that part of 
the activity “between the moment the student accepts the problem as if it were her 
own and the moment when she produces her answer, [a time when] the teacher 
refrains from interfering and suggesting the knowledge that she wants to see appear” 
(Brousseau, 1997, p. 30).

A situation includes both the task and the environment that is designed to provide 
for the adidactical activity of the student. According to the TDS frame, the adidacti-
cal situation tool furnishes guidelines as to: “the problem to be posed, the conditions 
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under which it is to be solved, and the expected progression toward a strategy that 
is both valid and efficient; this includes the process of ‘devolution’ intended to lead 
students to directly experience the mathematical problem as such and the creation 
of a (material and social) ‘milieu’ that provides students with feedback conducive to 
the evolution of their strategies” (Ruthven et al., 2009, p. 331). During the early 
years of the development of the TDS, it was found that the frame needed some 
modification so as to take into account the necessary role played by the teacher in 
fostering the later institutionalization of the student’s mathematical knowledge 
acquired during the adidactical phase—the term institutionalization referring spe-
cifically to the process whereby the teacher gives a certain status to the ideas devel-
oped by students by framing and situating them within the concepts and terminology 
of the broader cultural body of scientific knowledge (see also Chaps. 3 and 5).

Identifying a suitable set of problem situations that can support the development 
of new mathematical knowledge is absolutely central to the design of a TDS teach-
ing sequence. The adidactical situation must be one for which students have a start-
ing approach but one that turns out to be unsatisfactory. Students must be able to 
obtain feedback from the milieu that both lets them know that their approach is 
inappropriate and also provides the means to move forward. The “enlargement of a 
shape puzzle” (see Ruthven et al., 2009, pp. 332–334) is a fine example of the design 
of an adidactical situation. When students (who are working in small groups) are 
asked to make a larger puzzle of the same shape but with the edge whose length is 
4 cm being enlarged to 7 cm, it is expected that they would use additive reasoning. 
But the feedback provided by the attempt to put the enlarged puzzle pieces together 
lets the students know that their way of solving the enlargement problem is incorrect. 
Eventually, “intellectual” feedback is provided by the teacher in order to help the 
students to arrive collectively at a multiplicative model.

In addition to the adidactical situation tool, TDS-based design is also informed 
by a second design heuristic, that of the didactical variables tool. This supplemen-
tary design tool allows for choices regarding particular aspects of the main task and 
how it is to be carried out (e.g., shape and dimensions of the pieces, the ratio of the 
enlargement, the various pieces of the puzzle being constructed by different stu-
dents), aspects that are subject to modification as a result of successive cycles of the 
teaching sequence. Although certain modifications are made to those aspects of the 
task that are found to improve the learning potential of the situation (i.e., that stu-
dents are more likely to learn what is intended), the initial design of the task is 
absolutely central to the TDS-framed design-as-intention process.

An Example of a Craft-Based Intermediate-Level Frame: Lesson Study

Lesson Study is typically associated with Japanese education where its roots can be 
traced back to the early 1900s (Fernandez & Yoshida, 2004). However, variants of 
Lesson Study have been developed in China (Huang & Bao, 2006; Yang & Ricks, 
2013), as well as in other countries (Hart, Alston, & Murata, 2011). For example, in 
the Chinese version, according to Ding, Jones, and Pepin (2013), the role of the 
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expert in the development and refinement of a lesson plan is of critical importance. 
This role consists of contributions that are said to go beyond that of deep craft 
knowledge—contributions that Ding, Jones, Pepin, and Sikko (2014) describe as 
consisting of a complex combination of considerable knowledge of mathematical 
didactics and general theories of learning and of students, as well as the “accumu-
lated wisdom of practice.” Thus, the distinction we are proposing between craft-
based and theory-based intermediate-level frames may be rather blurry for certain 
versions of Lesson Study. Even within Japan, various types of Lesson Study exist: 
at the school level, at the local and prefectural level, and at the national level. 
Nevertheless, in that the majority of Lesson Studies in Japan occur at the school 
level and that school-based Lesson Study in Japan tends to be considered around the 
world as prototypical of Lesson Study practice, it is this latter version of Lesson 
Study that is the focus here.

Lesson Study is a culturally situated, collaborative, approach to design—one 
where teachers with their deep, craft-based knowledge are central to the process and 
which at the same time constitutes a form of professional development (Krainer, 
2011; Ohtani, 2011). Fundamental to Japanese teachers’ ability to design and imple-
ment high-quality mathematics lessons that are centered on high-quality mathemat-
ical tasks is a detailed, widely shared conception of what constitutes effective 
mathematics pedagogy (Jacobs & Morita, 2002). Thus, Lesson Study, with its cul-
tural and collaborative foundations, could be said to be situated within the grand 
theory of socioculturalism.

Lesson Study consists of the following phases: (1) collaboratively planning a 
research lesson, (2) seeing the research lesson in action, (3) discussing the research 
lesson, (4) revising the lesson (optional), (5) teaching the new version of the lesson, 
and (6) sharing reflections on the new version of the lesson. Phases 4–6 are some-
times replaced with a single phase of “consolidating and reporting”. In any case, it 
is the research lesson—its planning, its implementation, and its evaluation, but 
especially its planning—that is the focus here. As will be seen, Lesson Study is a 
frame devoted as much to design as intention as it is to design as implementation.

A typical lesson plan proposal contains the following seven items (Lewis, 2002):

	1.	 Name of the unit
	2.	 Unit objectives
	3.	 Research theme
	4.	 Current characteristics of students
	5.	 Learning plan for the unit, which includes the sequence of lessons in the unit and 

the tasks for each lesson
	6.	 Plan for the research lesson, which includes:

•	 Aims of the lesson,
•	 Teacher activities
•	 Anticipated student thinking and activities
•	 Points to notice and evaluate
•	 Materials
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•	 Strategies
•	 Major points to be evaluated
•	 Copies of lesson materials (e.g., blackboard plan, student handouts, visual 

aids)

	7.	 Background information and data collection forms for observers (e.g., a seat-
ing chart).

While the unfolding of the research lesson and its evaluation takes only 1 day, its 
planning can occupy anywhere from 1 to 2 months. As can be seen from Lewis’s 
(2002) list of seven items, the plan of the lesson includes not only the detailed 
design of the task itself, which constitutes the essence of the research lesson, but 
also the links with other tasks in the larger unit. Central to this planning is the pro-
cess of kyozaikenkyu. Kyozaikenkyu means literally “instructional materials research” 
and constitutes a first principle for task design. The study of instructional materials 
goes beyond the textbook series being used in the classroom. As pointed out by 
Fujii (2013), kyozaikenkyu involves examining teaching materials and tasks from a 
mathematical point of view (mathematical content analysis), an educational point of 
view (considering broader values such as “skills for living”), as well as from the 
students’ point of view (readiness, what students know, anticipated students’ think-
ing and misconceptions, etc.). It includes studying other textbook series treating the 
same topic, thinking about the manipulatives being used, and analyzing what the 
curriculum standards and research have to say about the topic and its teaching and 
learning. If the decision is ultimately made to modify an existing textbook task, that 
decision is made with great care because the teachers know that the textbook task 
was designed with considerable thoughtfulness. Tasks that will lead to multiple 
strategies are crucial to the task design process of Lesson Study (for details, see the 
Lesson Study case that is illustrated in Sect. 2.3)—strategies that will ultimately 
comprise the basis for the classroom discussion phase of the research lesson.

Consequently, a second design principle concerns the actual form that the 
research lesson takes. Referred to as structured problem-solving by Stigler and 
Hiebert (1999), the research lesson involves a single task and the following four 
specific phases: (1) teacher presenting the problem (donyu, 5–10 min), (2) students 
working at solving the problem without the teacher’s help (jiriki-kaiketsu, 
10–20  min), (3) comparing and discussing solution approaches (neriage, 
10–20 min), and (4) summing up by the teacher (matome, 5 min). During students’ 
independent working, the teacher walks between the desks (kikan-junshi) and 
silently assesses students’ work; she is in the process of making a provisional plan 
as to which student contribution should be presented first in order to make clear the 
progress and elaboration from simple idea to sophisticated one: this is the core of 
neriage, a phase during which students’ shared ideas are analyzed, compared, and 
contrasted. During the fourth phase of the research lesson (matome), the teacher 
will usually comment as to the more efficient of the discussed strategies, as well as 
the task’s and the lesson’s mathematical and educational values. As an aside, it is 
noted that Japanese teachers use these specific didactical terms to discuss their 
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teaching and that such didactical terms not only mediate the activity of the various 
participants involved in Lesson Study but also lead to the co-construction of deep 
craft knowledge.

After the research lesson has been observed by other teachers, school adminis-
trators, and sometimes by an outside expert, it is then discussed and evaluated in 
relation to its overall goals. This process of lesson evaluation, and in particular task 
evaluation, is considered a third design principle. The post-lesson discussion 
focuses to a large extent on the effects of the initial task design with respect to stu-
dent thinking and learning. The teacher’s thought-out key questioning receives 
much attention. Another of the main aspects discussed is whether the anticipated 
student solutions were in fact evoked by the task and its accompanying manipula-
tive materials or whether improvements in specific parts of the task design are 
warranted.

Of the three design principles that are the core of the research lesson of Lesson 
Study, kyozaikenkyu is the most all encompassing. However, it is one that is often 
underrepresented or even overlooked in Lesson Study practice in other countries 
(Doig, Groves, & Fujii, 2011). Kyozaikenkyu is, in fact, central to Japanese teach-
ers’ everyday practice. As such, it is a key component of the Japanese Lesson Study 
example of craft-based frames for task design.

2.2.2.4  �Domain-Specific Frames

In contrast to intermediate-level frames whose characterizations do not specify any 
particular mathematical reasoning process or any particular mathematical content 
area, domain-specific frames for the design of tasks or task sequences do specify 
particular reasoning processes (e.g., conjecturing, arguing, proving) or particular 
content (e.g., geometry, integer numbers, numerical concepts, algebraic techniques). 
Task design research involving domain-specific frames typically draws upon past 
research findings in a given area, in addition to being situated within more general, 
intermediate-level, and grand-level frameworks. As such, domain-specific frames 
for task design research tend to be more eclectic than their intermediate-level coun-
terparts. As an aside, note that Realistic Mathematics Education theory has at times 
been referred to by its adherents as a domain-specific instructional theory in that it 
is an instructional theory for the domain of mathematics education; however, in this 
chapter we reserve the term domain specific for frames dealing with specific math-
ematical content areas or reasoning processes. Some researchers use the term “local 
theories” or “local frames” for what we are referring to as domain-specific frames. 
In general, domain-specific frames are associated with design as implementation in 
that the main aim of the research is the further development of the domain-specific 
frame by means of the implementation process. However, this is not a hard distinc-
tion. As will be seen, for some examples of design research studies that make use of 
and develop domain-specific frames, the approach is as much design as intention as 
it is design as implementation.
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A Domain-Specific Frame for Fostering Mathematical Argumentation  
Within Geometric Problem-Solving

In a recent article, Prusak, Hershkowitz, and Schwarz (2013) reported on a yearlong, 
design research-based course with third graders in mathematical problem-solving 
that aimed at instilling inquiry learning and argumentative norms. The researchers 
investigated if, and in which ways, principled design is effective in promoting a 
problem-solving culture, mathematical reasoning, and conceptual learning. Their 
design was situated in a multifaceted framework that drew upon principles from the 
intermediate-level, educational theory of Cognitive Apprenticeship, as described in 
Schoenfeld (1994), and from domain-specific research in geometric reasoning 
(Hershkowitz, 1990) and argumentation (Arzarello & Sabena, 2011; Duval, 2006), 
as well as from multiple studies with a sociocultural orientation. The Prusak et al. 
study was, in fact, one that articulated explicitly two design components: one for the 
task and one for the learning environment.

The task that Prusak et al. (2013) discuss in their paper is the sharing a cake task:

Yael, Nadav, and their friends Itai and Michele came home from school very, very hungry. 
On the kitchen table was a nice square piece of cake, leftover from their birthday. They 
wanted to be fair and divide the square into four equal pieces so that everyone would get a 
fourth (1/4) of the leftover cake. Suggest different ways in which the children can cut up 
and divide the square piece of cake. For each suggestion, explain why this would give each 
child exactly a fourth of the leftover cake. (p. 6)

Accompanying the text on the task worksheet was a set of nine square grids upon 
which the students, who worked first individually and then in groups, could draw their 
suggested cuttings of the cake and several blank lines per grid where they were to 
explain their thinking. Prusak et al. state that the design of this task, as well as that of 
the others used within their yearlong study, relied on the following five principles:

•	 Encourage the production of multiple solutions (Levav-Waynberg & Leikin, 
2009).

•	 Create collaborative situations (Arcavi, Kessel, Meira, & Smith, 1998).
•	 Engage in socio-cognitive conflicts (Limón, 2001).
•	 Provide tools for checking hypotheses (Hadas, Hershkowitz, & Schwarz, 2001).
•	 Invite students to reflect on solutions (Pólya, 1945/1957).

Setting up a problem-solving culture in the classroom was an integral part of the 
Prusak et al. design study. More specifically, they brought into play Schoenfeld’s 
(1994) use of the Cognitive Apprenticeship model by which he scaffolded students’ 
problem-solving in a classroom culture that emphasized communication, reflective 
mathematical practice, and reasoning rather than results. In line with Schoenfeld, 
the following instructional-practice principles constituted a second overall design 
frame for the Prusak et al. study:

•	 Emphasize processes rather than solely results.
•	 Use a variety of social settings (individual, small group, and whole class).
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•	 Develop a critical attitude toward mathematical arguments using prompts like, 
“Does it convince me?”

•	 Encourage students to listen and try to persuade each other and, thus, to develop 
ideas together.

•	 Have students learn to report on what they do, first verbally, then in written form, 
explaining their solutions to their teammates or to the entire class.

The authors argue that the findings of their study provided evidence that

the meticulous design as well as the problem-solving culture triggered a general process 
according to which students capitalised on problem-solving heuristics and engaged in mul-
timodal argumentation, subsequently reaching deep understanding of a geometrical prop-
erty (the fact that non-congruent shapes may have equal areas). … The activity we described 
encourages the production of multiple solutions, which is an explicit instruction in the task. 
Also, students were arranged in small groups, and were asked to collaborate. Collaboration 
led students to compare solutions. Since they were asked to justify their solutions, these 
justifications naturally created socio-cognitive conflicts. The nine grids in the task provide 
a tool for checking hypotheses. (pp. 16–17)

The authors concluded their paper with a theoretical model for learning early 
geometry through multimodal argumentation in a problem-solving context—a 
model that includes the description of the learning process and the demonstrated 
means of supporting that learning process. They emphasize that the designed task 
served as a principle-based research tool, one that was central to the elaboration of 
their domain-specific model.

The Prusak et al. study presents an example of the use of well-defined, even if 
quite general, principles as a front-end resource for the design of the tasks. A sec-
ond set of principles provided the frame for the design of the learning culture in 
which the tasks would unfold. Both sets of principles make their study one that 
could be described as design as intention. The empirical evidence that the initial 
design was effective in eliciting the aimed-for learning of specific geometrical 
notions through argumentation within a problem-solving setting led to the theoreti-
cal elaboration of a domain-specific model. In this sense, the study could be said to 
be also an example of design as implementation. Additionally, and of pivotal impor-
tance for design in mathematics education research, the design of the task activities 
was supported by the accompanying design of an instructional environment involv-
ing specific teaching practices that would nurture a collaborative problem-solving 
culture. This emphasizes the crucial interactive relation between the design of a task 
or task sequence and the design of the instructional culture in which the task is to be 
integrated—an emphasis that is also seen in design research involving intermediate-
level frames.

A Domain-Specific Frame for Proof Problems with Diagrams

The frame used by Komatsu and Tsujiyama (2013) in their design research, which 
centered on eighth grade proof and proving, was inspired by the notion of deductive 
guessing—a notion formulated by Lakatos (1976) as a heuristic rule for coping 
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with counterexamples. In deductive guessing, after one proves conjectures and then 
faces their counterexamples or non-examples, one invents deductively more gen-
eral conjectures that hold true even for these examples. Because deductive guessing 
is a mathematical notion, some adaptation with respect to pedagogical perspectives 
was necessary so as to use deductive guessing as a frame for task design. Its adapta-
tion yielded the proof problems with diagrams frame—a proof problem with dia-
grams being a problem in which a statement is described with reference to particular 
diagrams with symbols (one diagram in most cases) and solvers are required to 
prove the statement and then to deal with related diagrams involving counterex-
amples and non-examples. The frame was also informed by the earlier research of 
Shimizu (1981) who had argued that, after students solve proof problems with dia-
grams, it is important for them to further inquire “of what (mathematical) relations 
the given diagram is a representative special case” (p. 36) by utilizing the already 
obtained proof.

As is the case with much of the current task design research in the field, Komatsu 
and Tsujiyama (2013) point out that, because “it is unrealistic to expect that only 
posing the designed problems will facilitate students’ activities and mathematical 
learning, task design involves not only selection or development of problems but 
also teachers’ instructional guidance related to the problems” (p. 472). In line with 
(a) deductive guessing in Lakatos’s work, (b) the nature of proof problems with 
diagrams, and (c) the instructional guidance to be provided by the teacher, the 
researchers derived the following three task design principles:

•	 Educators and teachers should select or develop certain kinds of proof problems 
with diagrams where students can find counterexamples or non-examples and 
engage in deductive guessing through changing the attached diagrams.

•	 Teachers should encourage their students to change the attached diagrams while 
keeping the conditions of the statements, so that they find counterexamples or 
non-examples of the statements.

•	 After students face the counterexamples or non-examples, teachers should plan 
their instructional guidance by which students can utilize their proofs of initial 
problems to invent more general statements that hold true for these examples.

Komatsu and Tsujiyama illustrate their principles for task design by means of a 
problem involving parallelograms, drawn from Okamoto, Koseki, Morisugi, and 
Sasaki et  al. (2012) (see also Komatsu, Tsujiyama, Sakamaki, & Koike, 2014). 
Their principle-based description of the design of the parallelogram task, accompa-
nied by suggestions related to specific instructional guidance (see Komatsu & 
Tsujiyama, 2013, pp. 476–477), provides a detailed plan for the teaching of proof 
problems with diagrams, one that will eventually be subjected to further classroom 
implementation and possible revisions. Thus, the domain-specific frame crafted by 
Komatsu and Tsujiyama yielded, at this stage of their research, a primarily design-
as-intention tool—a tool for task design that integrated earlier research on proof 
problems with diagrams, a novel theoretical frame based on Lakatosian deductive 
guessing, and a cultural tradition involving the role of the teacher.

2  Frameworks and Principles for Task Design



40

A Domain-Specific Frame for the Learning of Integer Concepts and Operations

The design research of Stephan and Akyuz (2013) involved creating and imple-
menting a hypothetical learning trajectory (HLT) and associated sequence of 
instructional tasks for teaching integers in a middle-grade classroom over a 5-week 
period. Grounded in the researchers’ deep knowledge of past research on the learn-
ing of integers and integer operations, the design of their instructional sequence was 
underpinned by the following three heuristics of the intermediate-level frame of 
Realistic Mathematics Education (RME):

•	 Guided reinvention—“To start developing an instructional sequence, the designer 
first engages in a thought experiment to envision a learning route the class might 
invent with guidance of a teacher” (p. 510).

•	 Sequences experientially real for students—“Instructional tasks draw on realistic 
situations as a semantic grounding for students’ mathematizations” (p. 510).

•	 Emergent models—“Instructional activities should encourage students to transi-
tion from reasoning with models of their informal mathematical activity to mod-
eling their formal mathematical activity, also called emergent modeling 
(Gravemeijer & Stephan, 2002)” (p. 510).

The anticipated learning path (HLT) led to the generation of a six-phase instruc-
tional sequence involving various mathematical tools, which was then implemented 
in the classroom. The authors used a version of social constructivism, called the 
emergent perspective (Cobb & Yackel, 1996), to situate their interpretation of class-
room events. In the emergent perspective, learning is considered both an individual, 
psychological process and a social process. Thus, two frames were used by Stephan 
and Akyuz to analyze their classroom data: (a) a framework for interpreting the 
evolving classroom learning environment, that is, the emergent perspective, and  
(b) a framework for interpreting student mathematical reasoning and learning of 
integer concepts, that is, a frame based on the instructional theory for Realistic 
Mathematics Education. After implementation and analysis of the collective learn-
ing of the class, the authors considered various possible revisions to the instruc-
tional sequence. The details of the design of the instructional sequence, its 
implementation, classroom analysis, suggested revisions, and reflective theoretical 
discussion can be found in Stephan and Akyuz (2012).

The description of the entire process, which constitutes an empirically sustained, 
domain-specific theoretical model for the teaching of integers and integer opera-
tions, is a classic example of design as implementation. In the spirit of Cobb and 
Gravemeijer (2008), Stephan and Akyuz generated a domain-specific, instructional 
theory that embodied the classroom-based, activity-oriented process of learning a 
specific mathematical content and which included a very detailed description of the 
representational tools, classroom interactions, and teacher interventions that sus-
tained this learning. The elaboration of their domain-specific theoretical frame was 
supported explicitly in its design, implementation, and analysis by the two frames 
of Realistic Mathematics Education and the emergent perspective and implicitly by 
its reliance upon prior research and previous domain-specific design work on the 
learning of integers.
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In describing their research, Stephan and Akyuz stress students’ engagement 
with tasks: “In RME, … tasks are defined as problematic situations that are experi-
entially real for students” (Stephan & Akyuz, 2013, p. 509), a perspective based on 
Freudenthal’s assertion that “people need to see mathematics not as a closed system, 
but rather as an activity, the process of mathematizing reality and if possible even 
that of mathematizing mathematics” (Stephan & Akyuz, 2012, p. 432). This empha-
sis on the way in which students engage with tasks, and the way in which teachers 
actually facilitate that activity, is central to design as implementation. It also helps 
to shed an explanatory light on Gravemeijer and Cobb’s (2006) earlier statement 
that one of the primary aims of design research is not to develop an instructional 
sequence as such. More precisely, the description of the entire design process 
(including initial design, implementation, and revision) is intended to foster an 
understanding of why and how the final sequence is supposed to promote learning. 
The whole description supports others in implementing the sequence in other con-
texts and as such constitutes its theoretical role: that of a local instructional theory 
for a specific mathematical domain.

2.2.2.5  In Drawing This Section to a Close

A main objective of this section of the chapter has been to examine the nature and 
roles of frameworks and principles in the design process and, at the same time, to 
draw out the relative centrality given to the design of the task or task sequence itself. 
Building upon the pioneering work of scholars during the early years of the growth 
of the mathematics education research community and its evolution through to 
design experiments and beyond, a double lens was used to explore the nature of cur-
rent theoretical frameworks and principles for task design: (1) an analysis according 
to levels of frames that focused particular attention upon both intermediate and 
domain-specific frames and (2) a consideration of the constructs of design as inten-
tion and design as implementation within the design process. The lenses that were 
used, accompanied by a sampling of examples drawn from the international body of 
research literature related to design in mathematics education, helped to clarify 
some of the ways in which theory and task design are related. Among the relation-
ships that emerged from the analysis of frames and their roles in design in general 
and task design in particular, one was particularly salient: it was the design consid-
eration related to instructional support that was common to all the examples and 
central to each.

The examples all included attention to instructional support, some in the form of 
quite explicit principles. For instance, in the Prusak et al. (2013) example, a separate 
list of specific principles related to the design of the instructional environment was 
provided—principles that delineated a clear set of indices related to the way in which 
the instructional environment and the designed task were to mutually support each 
other. This example offers a viable model for further productive work in design in 
mathematics education and for its reporting. In fact, the way in which instructional 
principles were incorporated into the design of the studies exemplified so far in this 
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chapter leads to suggesting that it might be more appropriate, terminology-wise, to 
refer to this field as task design for instruction. This more precise terminology could 
thereby give weight to the notion that the initial formulation of the design and its 
description include principles related to the design of the instruction and instruc-
tional environment, as well as to the design of the task. This terminology would also 
capture the spirit of the early research efforts in this area by Freudenthal, Bell, 
Wittman, and others. But even more importantly, integrating the terms task design 
and for instruction would allow us to emphasize that which would appear to be fun-
damental to design in mathematics education, a fundamental that was well expressed 
by Komatsu and Tsujiyama (2013, p. 472), namely: “It is unrealistic to expect that 
only posing the designed problems will facilitate students’ activities and mathemati-
cal learning; task design involves not only selection or development of problems but 
also teachers’ instructional guidance related to the problems.”

2.3  �Case Studies Illustrating the Relation Between 
Frameworks and Task Design

2.3.1  �Introduction

The cases within this section illustrate the variety in types of frameworks for task 
design and the variety in relationships among the frameworks, design principles, 
and the actual design process. The heart of the discussion of each of the prototypical 
cases is guided by two questions:

	(a)	 What do tasks look like when designed within a given theoretical frame or 
according to given design principles?

	(b)	 Why do they look the way they do?

Using these questions as a lens, this section goes into some detail with respect to 
each example and thus extends the discussion that was initiated in the previous sec-
tion. Seven cases are herein presented, most of them drawing upon aspects of grand 
theories and illustrating the use of intermediate-level theories. The cases are based on 
the contributions of the participants of Theme Group D (Frameworks and Principles 
for Task Design) of the ICMI Study-22 Conference (Margolinas, 2013). They are not 
intended to represent a sample of all possible design principles and frameworks that 
are currently used or investigated all over the world. The cases reflect the different 
levels of frames discussed in the previous section and illustrate how these frame-
works can be applied across a variety of mathematical domains, as well as offer 
design approaches related to particular mathematical understandings. They also 
include cases that exemplify principles from design frames based on deep craft 
knowledge and from design related to various task genres, such as concept develop-
ment and assessment. In sum, the seven cases being discussed, often too briefly to do 
justice to the richness of the underlying theory and the design, are intended to pro-
vide insight into the current state of the art of task design in mathematics education.
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2.3.2  �Cases

2.3.2.1  Case 1: Anthropological Theory of Didactics

Within the ATD, mathematics is conceived as a human activity, institutionally 
situated, and modeled in terms of practices that go beyond learning “concepts” or 
“processes.” This results in the need for a renewed paradigm of learning mathe-
matics in school (Chevallard, 2012). The paradigm thus changes from visiting 
mathematical concepts and skills to questioning the world (motivated, functional 
encounters). This elaboration of the ATD has its roots in Chevallard’s earlier ATD 
work of the 1990s, as well as in his collaborative research with Brousseau on the 
notions of didactic engineering, the didactic transposition, and the Theory of 
Didactical Situations.

The following example focuses on the application of an intermediate-level frame 
to the design of a mathematical activity involving young children. It illustrates 
design principles that are related to the previously mentioned paradigm shift. These 
principles were not extracted from this particular case but result from a collection of 
ATD study and research paths that have been designed in the last 10 years (e.g., 
Barquero & Bosch, 2015).

The aim of the task was to embed the emergence and use of numbers and addi-
tion in the study of a system that is real and that gives rise to a meaningful mathe-
matical activity for (preschool) students (García & Ruiz-Higueras, 2013). The 
initial question for the students was if we’ve got a box with silkworms, how many 
leaves do we need to feed them?

Firstly, students would collect leaves by themselves. But after a few days, they 
would ask the gardener to collect the leaves for them, using a written message. That 
would provoke the need of being aware of quantities, as well as using codes to 
express them. Next, the biological system would start to evolve: silkworms turn into 
cocoons, then moths arise, and finally, they die. Students would have to control a 
heterogeneous collection made of silkworms, cocoons, and moths. As change hap-
pened, they would need techniques to record the evolution of the system. The teacher 
would prepare different tables to record and control the evolution of the system. She 
would introduce this tool so that students could take control of the evolution of the 
system under their own responsibility. This would widen students’ activity, particu-
larly toward addition, time control, and recording. At the end, when all the moths 
would have died, the system would disappear. However, students would have lots of 
information (models) about its evolution. Through the interpretation of these mod-
els, pupils would carry out the final task: reconstructing the system and its evolution. 
Figure 2.1 illustrates the unfolding of part of the task activity in class.

Designing tasks for a renewed paradigm of learning mathematics, from visiting 
mathematical works to questioning the world, is operationalized within the ATD by 
design principles for creating research paths for students (Table 2.1). The whole 
task, called a study and research path (SRP), is linked within the ATD to an episte-
mological conception of mathematics as a human activity and modeled in terms of 
practices.
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Table 2.1  Design principles for a study and research path in ATD

Design principle Illustrated by the case

Develop an epistemological reference 
model for the mathematical activity the  
task is aiming at. Investigate how the 
mathematical objects of study are related, 
how they are articulated and used in 
specific (out-of-school) practices, and  
how these can be transposed into the 
educational system.

Numbers (as mathematical objects) and codes to 
express them (numerals) emerge in 
communicative situations where the aim is not 
just to measure a discrete set but to communicate 
about it so that another person can understand 
the evolution of the system without having 
access to it (neither visually nor manipulatively).

Look for generating questions beyond 
school mathematics that are crucial and 
alive for the students, connected with 
society and its problems (questioning the 
world).

“When we’ve got a box of silkworms, how many 
leaves do we need to feed them?”

Generate questions that do not lead the 
study process to a dead end but that give 
rise to new questions that could expand it.

How to communicate the number of leaves 
needed?
How to keep track of the number of silkworms, 
cocoons, and moths?

Create a collaborative and shared study 
process with shared responsibilities and 
shared norms for justification.

The teacher introduced tools so that students 
could take control of the evolution of the system 
under their own responsibility.

Support the search for answers by 
stimulating the study of (extra) 
mathematical works or consulting other 
communities.

Students were stimulated to ask parents about 
the time needed for the cocoon phase.

Fig. 2.1  Children taking care of silkworms (García & Ruiz-Higueras, 2013)

Context: Taking care of our silkworms
Characteristics of this rich context:

• Dynamic system (evolving over time)
• Many different quantities to be measured
• Communicative tasks can be naturally

      formulated (representing quantities with
      numbers & numerals)

• Increasing complexity

For tasks like these, designers need to leave the school, step out of traditional 
school mathematics, and question the meaning of the objects they want students to 
work with (their origin, evolution, and purpose in current society). This leads to a 
reference model for the design of a study path and will inform possible overarching 
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generative questions. Piloting is an essential phase in the design process for check-
ing conjectured teaching and learning processes and for improving the ecological 
and economic robustness of the task.

2.3.2.2  Case 2: Variation Theory

Variation Theory (VT) focuses task designers on what varies and what remains 
invariant in a series of tasks in order to enable learners to experience and grasp the 
intended object of learning (Runesson, 2005). The learners’ experiences depend on 
the critical features of the object to which their awareness is directed. Consequently, 
designing task sequences requires an analysis of possible variations so that learners 
“might observe regularities and differences, develop expectations, make compari-
sons, have surprises, test, adapt and confirm their conjectures within the exercise” 
(Watson & Mason, 2006, p. 109). Analyses of variation space, patterns in learners’ 
experiences, and how these patterns are compatible with the intended object of 
learning are key elements in the intermediate-level frame of VT.

Three successive versions of a task for teachers illustrate how VT guided a cyclic 
process of task design, analysis, and redesign. The learning objective of the task was 
to facilitate the teachers’ awareness of mathematics as a connected field of study by 
directing their attention to structural similarities and differences among the basic con-
cepts of analytical geometry and loci of points (Koichu, Zaslavsky, & Dolev, 2013).

The first version of the task consisted of 24 representations of loci of points that 
had to be sorted by the teachers by creating groups of similar loci (see Fig. 2.2). 
It was created so that three types of controlled variation would be maximized:

•	 The first type of variation was related to the mathematical objects described in the 
cards for sorting (e.g., a straight line, circles, parabolas, ellipses, hyperbolas).

•	 The second type of variation was related to the type of representation (symbolic, 
graphical, and verbal).

•	 The third type of variation was related to the type of experience needed to handle 
the task (prior knowledge, information provided with the task).

During the trial of this first version of the task, it was found that a lot of time was 
devoted to technical work and to classifying the items by surface features. To reduce 
the amount of time and the attraction of surface features, the second version con-
sisted of 18 items. The items that were approached in all the groups only algebra-
ically were excluded (items 8–10, 15, and 19–21). In spite of a smaller intended 
variation space, it appeared that the enacted variation space became richer and the 
teachers more engaged. However, the presence of the well-familiar graphical and 
symbolic representations in the task postponed, and likely hindered, the learning 
experiences offered by the verbal items. For this reason, pictorial representations 
were eliminated and the third version of the task contained only 11 verbal items 
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[i.e., items 1, 3, 5–7, 11, 12, 16–18, and a new item 25: “Locus of points such that 
the distance from them to point (−3, 0) is 6.”].

The intention of the third version of the task was to suppress the affordance of 
using sorting criteria based upon surface features, in favor of criteria related to the 
identification of structural similarities and differences. The experiences showed that 
the two main enacted subcategories of the by-keywords criterion in the third version 
of the task (i.e., by main operation and by main generating elements) were remark-
ably close to one of the intended types of variation of the task.

Fig. 2.2  The first version of the sorting task (Koichu et  al., 2013, edu.technion.ac.il/docs/
KoichuZaslavskyDolevThemeA_Supplementary_material.pdf)

C. Kieran et al.
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This example illustrates the process of task design guided by the interplay 
between analyzing and providing variation space and observing patterns in learn-
ers’ experiences. Design principles drawn from this example in connection with VT 
orient the designer to what varies and what remains invariant in a series of tasks 
(Table 2.2).

This case, which exemplifies the use of the VT frame in task design, shows that 
design decisions can easily hinder or support affordances of a task with respect to 
the intended object of learning. The challenge for task design is to anticipate and 
organize learners’ experiences so that they serve as reference points to more mean-
ingful decisions.

2.3.2.3  Case 3: Conceptual Change Theory

A particular issue for task design is the teaching of concepts that are known to be 
difficult for students because prior knowledge is in conflict with what is to be 
learned. Conceptual Change Theory (CCT) is an intermediate-level frame that 
allows researchers to specifically investigate this issue. The case, which is drawn 
from research into students’ learning of nonnatural numbers (Van Dooren, 
Vamvakoussi, & Verschaffel, 2013), illustrates design principles that are derived 

Table 2.2  Design principles underlying a VT example

Design principle Illustrated by the case

Identify and analyze the object  
of learning and its critical features 
that constitute a variation space 
(Marton, Runesson, & Tsui, 
2004).

The object of learning for the teachers is to facilitate their 
awareness of structural similarities and differences among 
the basic mathematical concepts of analytical geometry.  
A critical feature is to classify conics by names of loci of 
points, because this requires an understanding of structural 
similarities and differences. The variation space consisted 
of the mathematical objects, their various representations, 
and the types of prior experience needed to handle the task.

Create task(s) so as to have the 
learners discern critical aspects of 
the intended learning object and 
aim for coinciding the intended 
and enacted variation space.

Map the types of variation in the sorting task and connect 
them to the intended object of learning. The teacher-
awareness facet of the study prompted a first version of the 
task where the space of variation was maximized.

Focus on the central role of the 
main intended activity (be careful 
with including mathematically 
challenging items and affording 
complementary mathematical 
techniques).

The central activity was discovering structural similarities 
and differences among the basic concepts of analytical 
geometry, but this was obscured by technical 
manipulations evoked by the first version of the task.

Carefully analyze whether the 
variation space of a task can be 
improved toward the intended 
object of learning.

The final version had a reduced variation space that was 
more engaging and resulted in richer learners’ 
experiences. This version succeeded in suppressing sorting 
criteria by surface features, in favor of criteria related to 
the identification of structural similarities and differences.
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from CCT, as well as from existing domain-specific research related to the learning 
of rational number.

Many difficulties that students have with nonnatural numbers are rooted in prior 
knowledge about whole (natural) numbers. The conceptual change perspective 
provides an explanatory framework for these difficulties as it analyzes them in 
terms of students’ initial, intuitive theories that shape their predictions and explana-
tions in a coherent way (Vosniadou, Vamvakoussi, & Skopeliti, 2008). This results 
in the following starting point for task design: How to deal with an incompatibility 
between students’ initial theories and intended mathematical development that 
unavoidably will occur? The initial theories students rely on when encountering the 
ideas of nonnatural numbers are related to their understanding of whole numbers. 
Consequently, students see numbers as being discrete, used for counting, and 
grounded in additive reasoning (Ni & Zhou, 2005; Vamvakoussi & Vosniadou, 
2012). These initial theories easily lead to typical misconceptions like longer deci-
mals are larger, for example, 2.12 > 2.2; a fraction gets bigger when one of its parts 
is larger, for example, 2/5 < 2/7; and the density misconception that between two 
non-equal numbers, there is a finite number of other numbers. Furthermore, stu-
dents are often unaware of the background assumptions of their reasoning.

The sequence of tasks in this example takes these background assumptions into 
account and supports overcoming the incompatibility between the discreteness of 
whole numbers and the density of nonnatural numbers (see Table 2.3). The tasks 
were accompanied by the introduction of a tool-like representation that fostered 

Table 2.3  A sequence of tasks supporting conceptual change

Task Goal

1.	 What do you know about the number line? Describe it as well as 
you can. Read and comment upon the answers of your fellow 
students.

Express prior 
knowledge about the 
number line.

2.	 We often use the term “the set of all numbers”. Suppose someone 
tries to understand what we mean by that. Could you draw a 
picture to help him/her understand?

Construct a 
representation for all 
numbers.

3.	 Imagine the number line as a rubber band that can be stretched. 
Position 0 and 1 on the band and place numbers between them 
until it looks like you have used all the available points. If you 
stretch the rubber band, then you will find out there are more 
points, corresponding to more numbers. This procedure can be 
repeated infinitely many times—your imaginary rubber band 
never breaks!

Construct the 
imaginary rubber band 
as a representation for 
all numbers.

4.	 We have been talking about two different representations of 
numbers: A “formal” one, which we usually use at school, and a 
second one, which was proposed in our discussion and you seem 
to find adequate. Could you find a solid reason why we should 
prefer one over the other?

Compare two different 
representations.

5.	 Imagine that you can become as small as a point of the number 
line. Then you could see other points up close. Suppose that you 
are on the point that stands for the number 2.3. Can you define 
what point is the one closest to you? Describe in words or by 
drawing a picture.

Reason about density 
with the number line.

C. Kieran et al.



49

reasoning with numbers in a geometrical analogy: an imaginary rubber band 
(Vamvakoussi & Vosniadou, 2012).

The sequence of tasks in this example illustrates how initial, usually largely 
unconscious assumptions can be elicited and made explicit. It also shows how 
cross-domain mapping between continuous magnitudes (points on the rubber band) 
and the set of numbers can be fostered (see Table 2.3). Design principles drawn 
from this conceptual change example are listed in Table 2.4.

CCT is primarily a cognitively oriented theory and therefore does not encompass 
all aspects related to instructional design. The design principles emerging in this 
case are intended as instructional tools to change, to move forward, students’ cogni-
tions. As such, this theory offers added value for task design when dealing with 
difficult concepts. The sequence of tasks in this example was designed on the basis 
of specific theoretical principles, was empirically tested, and appeared useful for 
teachers as well as for students. The resulting design principles have a wide field of 
application in that instructional design has to cope with similar prevailing miscon-
ceptions in many domains of mathematics and beyond.

2.3.2.4  Case 4: Conceptual Learning Through Reflective Abstraction

This case (M. Simon, 2013) is derived from a one-on-one teaching experiment (M. 
Simon et al., 2010) with a prospective primary school teacher, Erin. The teaching 
experiment focused on developing a common-denominator algorithm for the divi-
sion of fractions with conceptual understanding. Conceptual learning in this case is 
understood as the process of developing new and more powerful abstractions 
through activity. The approach draws task design principles from the grand-level 
frame of Piaget’s construct of reflective abstraction.

Table 2.4  Design principles for a Conceptual Change example

Design principle Illustrated by the case

Take students’ prior knowledge and potential 
initial understandings into consideration 
(explore existing literature).

Build on students’ prior knowledge of 
differences and similarities between natural 
and nonnatural numbers by explicitly 
addressing the number line (tasks 1 and 2).

Facilitate students’ awareness of their 
background assumptions by creating 
opportunities for them to externalize their  
ideas, to compare them with peers’ ideas,  
and to reflect on them.

Let students compare and discuss 
representations for all numbers (task 2).

Use models and external representations,  
know their power and their limitations.

The rubber band was introduced to prevent 
the number line from continuing to be 
interpreted as a ruler with a finite number 
of points (task 3, also task 4).

Foster analogical reasoning that supports 
conceptual restructuring.

The rubber band is a bridging analogy that 
fosters students’ comparison between a 
continuous geometrical object and the real 
number line (task 5).
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The researcher engaged Erin in a sequence of tasks, probed her thinking, and 
allowed Erin to develop her understanding without input from the researcher. The task 
sequence began with division-of-fraction word problems whose dividend and divi-

sors had common denominators. Erin was asked to solve them by drawing a diagram. 

She was able to solve the first task without difficulty (“I have 7
8

 of a gallon of ice 

cream and I want to give each of my friends a 1
8

-gallon portion. To how many friends 

can I give ice cream?”). The task sequence progressed to word problems in which the 
dividend and the divisor still had common denominators, but the divisor did not 

divide the dividend equally, and then to similar tasks presented using only number 

expressions (e.g., 8
5

 ÷ 3
5

 =). Erin still drew rectangles for solving the problem. For 8
5

 

÷ 3
5

, she first drew two whole rectangles divided into fifths. Next, she shaded 2
5

 of 

one rectangle leaving 8
5

 unshaded. She circled each 3
5

, counted 2 groups, and was 

able to deduce that the remainder 2
5

 is 2
3

 of 3
5

, thereby finding the solution 2 2
3

.

Next, Erin was asked to solve a more complex fraction division task 23
25

 ÷ 7
25

 
(see Fig. 2.3).

Erin made clear that she did not know the answer and the researcher encouraged 
her to talk through a diagram solution without actually drawing. Erin described the 
diagram process she would use and the result she would get. Erin easily solved the 

next task, 7
167

 ÷ 2
167

, using the same approach, that is, narration of a diagram solu-

tion. However, when that task was followed by the task, 7
103

 ÷ 2
103

, Erin gave the 

answer immediately. She realized that the change in the fractional units would not 
affect the quotient. Further, she was able to explain the invariance of the quotient 
across a range of denominators by creating a general diagram. Erin had made an 

Fig. 2.3  A task sequence for learning to solve division problems with common denominators 
(M. Simon, 2013, p. 508)
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abstraction as a result of this task sequence. She perceived a commonality in her 
activity involving these mental diagram solutions.

In this example, two design principles fostering Conceptual Learning by 
Reflective Abstraction can be recognized (see Table 2.5).

When Erin was faced with a second task with the same pair of numerators and 
different common denominators, she realized that she was about to enact the same 
activity as in the previous task. At that moment, she also realized why the size of the 
common denominators did not change the quotient. This was an example of Erin’s 
reflection on her (mental) activity. That is, she perceived the commonality in her 
activity in the two cases that led to an abstraction. These tasks helped her to fore-
ground key quantitative relationships and to create a need to invoke a new concept 
and mental operations that are critical to the concept being developed.

This is an example of task design for concept development that does not depend 
on students making a leap through problem-solving. Rather, the task sequence 
affords them the opportunity to build an abstraction from already available activity. 
In this case, the abstraction was built from the activity of creating informal diagram 
solutions for solving simple sharing tasks. The approach illustrated by this example 
can serve to inform ongoing and future research work on the crafting of domain-
specific frames for task design related to the process of mathematical abstraction.

2.3.2.5  Case 5: Realistic Mathematics Education

Realistic Mathematics Education (RME) is an intermediate-level frame that has been 
developed in the Netherlands (see Van den Heuvel-Panhuizen & Drijvers, 2013). 
RME is rooted in the work of Freudenthal (1973, 1991) who argued for teaching 
mathematics that is relevant for students and instigated research in how students can 
be offered opportunities for guided reinvention of mathematics. This example illus-
trates design principles drawn from RME by presenting one task from a longitudinal 
sequence on the topic of percentage (Van den Heuvel-Panhuizen, 2003).

Table 2.5  Design principles for Conceptual Learning by Reflective Abstraction

Design principle Illustrated by the case

Identify a potential activity that is 
already available to the learner and that 
can be the basis for the intended 
abstraction (the identified learning goal).

The student’s informal diagram solutions supported 
anticipations toward a common-denominator 
algorithm for the division of fractions. This 
learning goal affected the identification of the 
solution strategy and the strategy affected the 
specific goal toward which the design was oriented.

Design tasks to elicit the available 
activity and to promote reflective 
abstraction (a learned anticipation 
supported by a shift from activities with 
external representations to mental runs).

The task sequence starts with word problems and 
context-free tasks to elicit and reinforce the 
diagram-drawing strategy. Once the student is using 
the intended strategy, the task sequence provokes 
the anticipated abstraction. For this purpose, larger 
numbers for the denominators and invited mental 
runs of diagram drawings were used.
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The learning of percentage is embedded within the domain of rational numbers 
and is strongly intertwined with learning fractions, decimals, and ratios. The example 
is taken from a sequence that starts with a qualitative informal introduction to 
percentages before it proceeds toward quantitative formal procedures. The underly-
ing notion is that you first need to know what the procedures are about before you can 
perform and practice them. The introduction attempts to evoke the use of so-many-
out-of-so-many reasoning in everyday situations. The design question from the RME 
perspective is How to evoke and build on informal and outside-school knowledge of 
students when aiming at having them make sense of percentage?

The introductory exploratory activities of the sequence are designed to make 
students aware of the daily life use of percentages, to evoke tentative representa-
tions, and to prepare for model building. The activities are cast in problem situations 
that “beg to be organized” by means of the mathematics under study (Freudenthal, 
1983, p. 32). Some of these initial tasks are based on a school theater scenario. The 
students are asked to indicate for different performances how busy the theater will 
be. They can do this by coloring in the part that is occupied and then writing down 
the related percentage (see Fig. 2.4).

Fig. 2.4  Percentage of occupied seats in a school theater (adapted from Van den Heuvel-
Panhuizen, 2003, p. 19)
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This task is an example of an exploratory activity to support students in build-
ing models (i.e., the bar model) based upon their prior ideas and experiences. 
For the students, the coloring of theater halls is intended to lead to a way to express 
so-many-out-of-so-many situations. Furthermore, it is expected that students will 
spontaneously use fractions to “explain” the percentage of fullness. With a system 
of tasks, including more closed practicing tasks, students are guided to reinvent the 
mathematics of percentages.

This example illustrates core principles of RME that were articulated originally 
by Treffers (1987) but were reformulated over the years (see Table 2.6).

In recent years, new aspects, like mathematics in vocational education, in special 
education, and in linguistically diverse classrooms, have also been approached from 
an RME perspective. These projects enrich RME and enhance the robustness of the 
research that accompanies its further development.

Table 2.6  Design principles for an RME example

Design principle Illustrated by the case

Identify the fundamental concept, potential 
starting points, and models that support the 
learning of mathematics through a 
phenomenological didactical analysis, thought 
experiments, discussions with teachers, and 
working with students.

Starting points for the design of the sequence 
are the relative character in percentages (so 
many out of so many), the use of contexts 
like comparing the occupation of a school 
theater for various performances, and the bar 
model that supports the shift from intuitions 
to mathematical reasoning.

Model-eliciting activities are at the heart  
of an instructional sequence. They are cast in 
contexts that are familiar for students and 
provide relevant and challenging elements  
that need to be organized or schematized 
mathematically so as to have the potential to 
evoke their (informal) knowledge.

The theater context offers (limited) 
opportunities to be mathematically creative, 
to learn to solve problems for which the 
students do not have a standard solution 
procedure yet, and, at the same time, to learn 
about percentage.

A task sequence guides students from informal 
to formal mathematical reasoning. Models 
play a key role by shifting from a “model of”  
a particular situation to a “model for” 
mathematical reasoning (Streefland, 1993).

The drawings in the theater are expected to 
first become a “bar model of” so-many-out-
of-so-many situations and later turn into a 
“model for” mathematical reasoning about 
percentages and fractions.

Take into account the design of skill 
development and connections with related 
mathematical topics to develop strong 
structures and procedures.

The notion of percentage is being taught in 
close connection with fractions, decimals, 
and ratios. A qualitative understanding 
precedes the development of quantitative 
skills.

Design whole-class and peer-to-peer 
interaction.

Whole-class discussion of students’ answers, 
their drawings, and estimated percentages is 
essential for the progress of the teaching 
process (not included in the example task).
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Fig. 2.5  The counting trees task (adapted from MARS, 2012)

2.3.2.6  �Case 6: Formative Assessment for Developing  
Problem-Solving Strategies

This case is drawn from the work at the Shell Centre at Nottingham University (UK) 
(i.e., Burkhardt & Swan, 2013; Mathematics Assessment Project1). The case illus-
trates how formative assessment can support the development of problem-solving 
strategies in mathematics. The power of formative assessment for enhancing learn-
ing in mathematics classrooms is well known (Black, Harrison, Lee, Marshall, & 
Wiliam, 2003; Black & Wiliam, 1998).

Formative assessment includes “all those activities undertaken by teachers, and 
by their students in assessing themselves, which provide information to be used as 
feedback to modify the teaching and learning activities in which they are engaged; 
such assessment becomes ‘formative assessment’ when the evidence is actually 
used to adapt the teaching work to meet the needs” (Black & Wiliam, 1998, p. 140). 
Herein lies the real challenge: For assessment to be formative, the teacher must 
develop expertise in becoming aware of and adapting to the learning needs of stu-
dents, both in planning lessons and in the moment-by-moment of the classroom.

These problem-solving lessons are not about developing understanding of new 
mathematical concepts but rather about students developing and comparing alterna-
tive approaches to nonroutine tasks. The structure of a typical lesson is illustrated 
with the Counting Trees task (Fig. 2.5). This task is intended to assess how well 
students are able to select an appropriate sampling method and use it, together with 
mathematical concepts such as area and proportion, to solve an unfamiliar problem.

In a preliminary lesson, students are invited to tackle the problem individually. 
They are told not to worry if they don’t find an answer, that there are many ways to 

1 http://map.mathshell.org
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tackle the problem, and that there may be more than one correct answer. The task is 
used to expose students’ different intuitive approaches to the problem. Students’ 
responses are collected by the teacher and analyzed before the actual lesson. This 
gives the teacher time to plan well-considered responses to students.

The lesson itself begins with the teacher returning students’ attempts along with 
questions (not explanations) that are intended to move their thinking forward. This 
role shift for students encourages them to reflect on their own strategy and to con-
sider alternative methods. Instead of using the work of fellow students, the teacher 
introduces sample student work from materials provided. These samples are care-
fully chosen to highlight different approaches and common mistakes. Each piece of 
work is annotated with questions to focus students’ attention. Figure 2.6 shows two 
examples of this work. The first (from Laura) contains some common mistakes that 
students make (ignoring gaps, assuming that there are an equal number of old and 
new trees), while the second (from Amber) introduces students to a sampling 
method they may not have considered. Introducing work from outside the classroom 
is helpful in that (1) students are able to critique it freely without fear of other stu-
dents being hurt by criticism and (2) handwritten “student” work carries less status 
than printed or teacher-produced work and it is thus easier for students to challenge, 
extend, and adapt.

Fig. 2.6  Sample student work with commentary for discussion (MARS, 2012© 2007–2012 
Mathematics Assessment Resource Service, University of Nottingham reuse under Creative 
Commons License)
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After critiquing the work, students are offered the opportunity to refine their 
own approaches. This process of successive refinement in which methods are tried, 
critiqued, and adapted has been found to be extremely profitable for developing 
problem-solving strategies. The lesson concludes with a whole-class discussion 
that is intended to draw out some comparisons of the approaches used and the 
power of sampling.

Principles for task design underlying this example (Table 2.7) relate to both the 
design of the actual task and the supporting materials, including the student work 
and the lesson plan.

This example illustrates how a series of lesson activities (tackling the problem 
alone and then in groups, evaluating sample work, refining solutions, and whole-
class discussion) may be designed to foster reflective, metacognitive behavior in 
which students step back from their own approaches and compare them with alter-
natives. The carefully designed nature of these lessons allows teachers to respond to 
student learning needs more sensitively and in a planned manner. The principles that 
are described for this example offer vital theoretical tools for designing formative 
assessment that can enhance the development of students’ approaches to nonroutine 
problem-solving in mathematics.

2.3.2.7  Case 7: Japanese Lesson Study

This case is drawn from a videotaped Lesson Study (Tejima, 1987) at an elementary 
school affiliated to the University of Tsukuba, the oldest normal experimental 
school in Japan. The case illustrates principles related to task design within Lesson 
Study, a “craft-based” intermediate-level frame, and shows how these principles 

Table 2.7  Design principles for Formative Assessment for Problem-Solving

Design principle Illustrated by the case

Tasks for formative assessment of problem-solving 
strategies need to be unfamiliar for students but at the 
same time offer opportunities to start the solving 
process in order to elicit students’ different intuitive 
approaches.

The counting trees task is unfamiliar to 
students, but students can start 
reasoning using mathematical concepts 
related to area and proportion.

Follow-up activities are intended to support reflection 
on intuitions and to help all students to move their 
thinking forward.

The well-chosen sample work handed 
over to students encourages them to 
reflect on possible mistakes (Laura’s 
work) and to consider more 
sophisticated methods (Amber’s work).

Formative assessment includes offering students 
opportunities to revise and improve their initial 
responses (e.g., based upon individual feedback or 
feedback through sample work).

After evaluating and discussing sample 
work in small groups, the students get 
the opportunity to revise their initial 
responses to the Counting Trees task.

A sequence of formative assessment activities asks 
for an explicit reflection and conclusion on the 
content as well as on the problem-solving strategies.

The example lesson finishes with a 
whole-class discussion of students’ 
revised responses so as to draw out 
lessons learned from the approaches 
used and about the power of sampling.
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encompass the various phases related to task design. These phases include an analysis 
of existing practices and instructional materials, a consideration of alternatives for 
reaching a new goal or for solving an educational problem, the actual task design, 
the teaching of the lesson, and the evaluation of the lesson and, in particular, the task 
(see also Sect. 2.2.2.3). As will be seen from this case, the task that is the basis for 
a Lesson Study can originate with a textbook task that is adapted for the research 
lesson.

This case focuses on how an expert mathematics teacher organized his research 
lesson. The task design challenge for this teacher was to support second-grade stu-
dents in developing their understanding of addition and subtraction for ordinal num-
bers. So far, these children have learned to add and subtract in many contexts dealing 
with cardinal numbers. The first task in a textbook that uses a situation with ordinal 
numbers deals with a row of children (see Fig. 2.7).

The textbook task illustrated in Fig. 2.7 was originally preceded by the question: 
There are twelve children standing in line. Hiroshi is the fifth from the front. How 
many children are standing after Hiroshi? From a mathematical point of view, this 
question is easier than the task shown in Fig. 2.7. However, the teacher (Mr. Tejima) 
thought it important to start immediately with Fig. 2.7 task so as to challenge the 
children, to induce their naïve ideas (e.g., adding the numbers in the text), and to cre-
ate opportunities for learning. The teacher also decided not to use the box representa-
tion of the textbook (i.e., the row of cubes with the double arches overlapping at the 
Hiroshi cube, in the bottom-right corner of Fig. 2.7). He wanted the students to think 
about this critical aspect of the problem for themselves.

Fig. 2.7  A textbook task (adapted from Sawada & Sakai, 2013)
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Next, the teacher taught the lesson with the adapted task. He started by presenting 
the situation: Children are standing in a line. Hiroshi is 9th from the front and 6th 
from the back. Then the teacher asked the students to formulate a mathematical 
question for this situation. Next, the teacher took the question of the number of 
children in the row (the question emerged in the class) and asked all students to 
solve it. He assessed the students’ answers as he circulated around the class, observ-
ing them working on the problem, and made a provisional plan for the following 
classroom discussion. The teacher intentionally picked up the dominant and wrong 
idea of 9 + 6 = 15. He asked volunteers to explain their answer. One student explained 
the reason why 9 plus 6 equals 15. Then the teacher asked for an explanation from 
a student who thought the answer should be 16. The student illustrated his explana-
tion on the blackboard (see Fig. 2.8).

In reaction to this idea, the proponents of 14 displayed their ideas in different 
representations with progressive sophistication (see Fig. 2.9).

Basically, the order in which the teacher nominated students to expose their 
reasoning was based on his provisional plan for the classroom discussion. In the 
course of this discussion, a student who usually struggled with mathematics said 
loudly: “I got it, I got it.” He came to the blackboard by himself and explained the 
reason why the answer should be 14 (see Fig. 2.10): “Assume the answer is 15, there 
must be two Hiroshis and it is impossible.”

This case illustrates how the alternate design generated by the teacher for the 
research lesson helped the students to come to understand the problem and to use a 
row representation for solving addition and subtraction tasks with ordinal numbers. 
The case also illustrates various design principles related to Japanese Lesson Study 
(Table 2.8).

Fig. 2.8  An intuitive (wrong) 
strategy and the emergence of 
a representation

Fig. 2.9  Several strategies resulting in 14 with variations on a row representation

Fig. 2.10  Explaining that 15 is wrong
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The reorganization of the task sequence actually challenged the students and 
created opportunities for learning. The teacher’s assessment of the students’ indi-
vidual naïve ideas allowed him to make a provisional plan for a whole-class discus-
sion of possible strategies for tackling the task. His order of nominating students to 
expose and discuss their ideas supported all students in developing an understand-
ing of the structure of the task situation and the emerging solution procedure.

2.3.3  �Discussion

The cases in this section illustrate a variety of design principles and frameworks for 
task design in relation to specific starting points or learning aims. Each case shows 
how task design can start from learners with particular characteristics and needs or 
from (new) knowledge, skills, attitudes, and competences that are aimed at. The 
application of the principles to a particular content area or mathematical topic ren-
ders specific the rather general principles and frameworks for task design. The 
resulting implementation of the starting frame is domain specific, and the design 
process tells the story of converting the general to the particular. As already remarked 
in the introduction of this section, it must be said that the cases are discussed too 
briefly to do justice to the richness of the underlying theory, to the whole design and 
design process, and to the context in which the task was designed and used. However, 
the cases reflect aspects of the current state of the art in task design and offer pos-
sibilities for reflecting on the two starting questions of this section:

	(a)	 What do tasks look like when designed within a given theoretical frame or 
according to given design principles?

	(b)	 Why do they look the way they do?

Table 2.8  Design principles related to Japanese Lesson Study

Design principle Illustrated by the case

An examination of existing practices  
and instructional materials. The 
identification of an issue worth studying 
and the design of an alternative task and 
a structured lesson plan (kyozaikenkyu).

An analysis of the textbook task and a 
consideration of possible alternatives. Rearrange 
the task to evoke multiple solutions and to support 
the students in developing correct conceptions of 
ordinal situations.

Teaching the lesson. Evoke students’ 
naïve ideas and create opportunities for 
learning. Guide the students to critically 
analyze, compare, and contrast emerging 
ideas (neriage).

The teacher presents the task. After seeing how the 
students are solving the problem, he makes a 
provisional plan for them to share their work, 
starting with the more common, erroneous 
approach. Students present their reasoning at the 
blackboard and are encouraged to compare and 
discuss their ideas.

Lesson evaluation. The lesson was videotaped and afterwards discussed 
with colleagues. During the discussion, the task and 
the effects of the initial task design were evaluated.
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The cases describe a design challenge and how a framework for task design 
guides the design process and results in specific task characteristics. As such, these 
cases illuminate what is asked for with the first question. The second question is 
used to reflect on task characteristics and similarities and differences among the 
various cases. In some cases, the domain-specific implementation of a general 
framework is explicitly enriched by prior domain-specific findings. For example, 
the task design in the Conceptual Change case (case 3) is informed by previous 
research on students’ conceptions of rational numbers.

All cases have in common a view of mathematics learning as being driven by 
doing mathematics. Especially, the ATD and RME cases (cases 1 and 5) emphasize 
the importance of interpreting mathematics as a human activity. Learning mathe-
matics involves starting with students’ current understandings and aiming at extend-
ing (e.g., by using rich realistic contextual problems in ATD and RME) their 
mathematical knowledge and skills in connection with their common sense under-
standing of everyday phenomena (e.g., questioning the world in ATD).

The size of the design problem being addressed is different in the presented 
cases. Some cases offer principles to solve a local problem in an existing task 
sequence. For example, the VT case (case 2) is oriented toward improving the antic-
ipation and organization of learners’ experiences in an existing task setting. The 
Japanese Lesson Study case (case 7) focuses on improving an existing textbook 
task. Still other cases describe the design of tasks as part of a task sequence that 
covers an entire topic. For instance, the ATD describes a task as part of a design for 
cardinal numbers (case 1) and the RME case describes one task in a task sequence 
on percentages (case 5).

With respect to characteristics of the resulting tasks, we can distinguish between 
the context of the task and the learning opportunities offered by the task. Two cases 
describe explicitly characteristics of the context for the task. The ATD case (case 1) 
stresses the importance of looking for a context that offers generating questions that 
go beyond school mathematics (e.g., how to take care of silkworms?). The context 
of the task in the RME case (case 5) has a slightly different focus. It stresses the 
notion that contexts should “beg to be organized” from a mathematical perspective 
and thus evoke solution strategies that have the potential to be mathematized (from 
“model of” a situation to “model for” mathematical reasoning). The case dealing 
with Formative Assessment for Problem-Solving (case 6) asks for unfamiliar con-
texts, contexts that do not immediately refer to well-known solution procedures but 
that also provide opportunities to start solving the problem and require processes 
like planning, representing, and collaborating.

All cases have similarities with respect to the learning opportunities offered by 
the task. They all stress the importance of tasks that create opportunities to build 
upon students’ current understandings. For instance, the Conceptual Change exam-
ple (case 3) and the Conceptual Learning example (case 4) both take students’ cur-
rent ways of reasoning into account. The Conceptual Change case takes an inevitable 
misconception as starting point, while the latter case starts from a potential activity 
that is already available for abstraction. In addition, most cases reflect the principle 
that tasks offer opportunities to share initial ideas and strategies. For instance, in the 
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Formative Assessment example (case 6), students are offered sample work done by 
other students; in the Lesson Study example (case 7), students are asked to share 
their ideas at the blackboard in an order that the teacher thinks will be most condu-
cive to supporting all students in developing the intended understandings.

The cases show differences in the balance between learning opportunities aiming 
at mathematical content or aiming at more general regulative or motivational learn-
ing aims. For instance, the silkworm context in the ATD case (case 1) seems to be 
rather sophisticated in comparison with the mathematics involved, whereas the VT 
case (case 2) and the RME case (case 5) are explicitly oriented toward a specific 
mathematical object of learning. Design theories that focus on how an object  
of learning can be handled are important for helping teachers in their classrooms.  
In this respect, Variation Theory provides an effective instrument for design studies 
that also aim at promoting teachers’ professional development (Cheng & Lo, 2013).

In several cases, tasks were designed so as to foster the development of represen-
tations and models that support the learning of mathematical concepts and skills, for 
instance, the rubber band for a number line in case 3, the diagram for reasoning with 
fractions in case 4, and the row representation for reasoning with ordinal numbers 
in case 7. This feature of tasks is further utilized in task sequences that foster the 
constitution of mathematics by exploiting didactical models that emerge from the 
activity of students, as in the development of the percentages concept in case 5.

Another aspect that arises when considering all cases is the degree of “chal-
lenge” offered to the students. Not all tasks have to be very challenging, but to foster 
students’ learning, we need to provide them at some point with tasks that have (for 
them) some degree of challenge. This notion of challenge is not explicitly discussed 
in the cases presented in this section. It shows up in a somewhat incidental way in 
the discussion of VT (case 2) and of Japanese Lesson Study (case 7). Perhaps it is 
evident that tasks for students need to be challenging, but what “challenge” means 
for diverse classrooms with students having mixed abilities is not trivial at all. How 
to address this aspect in task design is an issue for future development related to 
design frameworks.

A theoretically important aspect that we can draw from the cases in this section 
is that the distinction between task design and lesson design is indeed blurred.  
In fact, the boundaries between them have been found to be extremely fluid. Almost 
all the cases presented in this section illustrated principles for task design that 
extended considerably beyond that of a task narrowly conceived as a question or 
sequence of questions proposed by a teacher or alternatively by a student. The task 
or task sequence, while treated as the main focus, was clearly conceived of within 
an orchestrated classroom activity—one where principles related to the actual class-
room processes and instructional support that would make it possible to experience 
the potential of the task(s) were explicitly included as part of the task design. Design 
as intention was inherent to these cases, even if some of them could also be charac-
terized by design as implementation. The current state of the art of task design  
in mathematics education would appear to suggest that designing a task or task 
sequence in isolation from consideration of the design of the instructional culture in 
which the task is to be integrated may be of quite limited value—somewhat analo-
gous to expecting a bird to fly with just one wing.
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Finally, in the process of moving from frameworks and principles to their actual 
application in the design of tasks, a great many decisions need to be made by the 
designer. How tasks look is largely determined by the hand of the artist! Nevertheless, 
these cases have shed some light upon the relation between these rather general 
starting points and the resulting tasks with their aimed-at learning processes.

2.4  �Frameworks and Principles Do Not Tell  
the Whole Story in Task Design

2.4.1  �Introduction

The two previous sections have examined the design process, and task design in 
particular, from the perspective of the frameworks and principles that have under-
pinned much of the design-oriented research in mathematics education. The par-
ticular perspective that was used was that of grand, intermediate, and domain-specific 
levels of frames—a perspective that aimed at elaborating the ways in which frames 
and task design are related. However, such frameworks and principles do not tell the 
whole story of task design. Some of the scholars and reflective practitioners who 
engage in task design see it as being a much more eclectic activity than has been 
suggested thus far. In addition, several factors have not yet been accounted for in the 
design process, such as its artistic and value-laden aspects. With the aim of provid-
ing a more balanced picture of the state of the art, this section of the chapter 
addresses task design from a variety of other perspectives, including the tension 
between design as science and design as art and the lens of “basic” versus “applied” 
research. Elaborating on these various perspectives opens up the idea of the value of 
collaborative work across different groups and leads to a discussion of some of the 
recent collaborative efforts in task design across professional communities.

2.4.2  �Additional Factors Related to Task Design

2.4.2.1  The Tension Between Design as Science and Design as Art

In the educational design community at large, there is a tension between centripetal 
and centrifugal forces. Centripetal forces urge stasis and system and desire consis-
tency. Centrifugal forces urge change and feed the need for diversity (Clark & 
Holquist, 1986). The yin and yang of such forces are at work in the world of the 
educational design community. Schein (1972) characterized science and practice as 
“convergent” and “divergent”, respectively, and remarked that there is a gap between 
the two. Schoenfeld (2009) saw a similar gap between the theoretical aims of edu-
cational research and the practical aims of designers and consequently recom-
mended the unpacking of designers’ productive practices and a sharpening of the 
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notion of professional vision—an elaboration that would be of value not only to the 
design community itself but also to educational design researchers. In addition, he 
pointed to the mutual benefits to be derived from the collaboration of the educa-
tional researcher and the designer-practitioner.

In contrast to proponents for delineating the explicit and rational frameworks and 
principles for task design, some colleagues insist that educational design research 
cannot help to sharpen the notion of professional vision. According to de Lange 
(2012), educational design research hardly offers usable knowledge for designers 
and practical suggestions for design nor does it offer a theoretical underpinning for 
educational design at the microlevel. De Lange (2013; also Chap. 10) argues that 
this limitation of theory is due to the artistic aspects of task creation. He underlines 
his reasoning by quoting Hilton (1976):

Since mathematics [analogous to educational design theory/science] incorporates a system-
atic body of knowledge and involves cumulative reasoning and understanding, it is to that 
extent a science. And since applied mathematics (analogous to the actual practice of design-
ers) involves choices which must be made on the basis of experience, intuition, and even 
inspiration, it partakes the quality of art. (p. 95, emphasis added)

It thus comes as no surprise that some educational designers prefer the powers 
that inhere in centrifugal forces: design activity in flux, simultaneity, diversity, and 
heterogeneity. Moreover, according to Schunn (2008), the educational design com-
munity has no communal mechanisms for codifying craft knowledge. Codifying 
design thinking is said to threaten its central value of flexibility (Collopy, 2009). 
Schön (1983) explicitly challenged the positivist doctrine underlying much of the 
design science movement and offered instead a constructivist paradigm. He criti-
cized H.A. Simon’s view of a science of design for being based on approaches to 
solving well-formed problems, whereas professional practice throughout design 
and technology and elsewhere has to face and deal with “messy, problematic situa-
tions”. As pointed out by Cross (2001), Schön proposed instead to search for “an 
epistemology of practice implicit in the artistic, intuitive processes which some 
practitioners do bring to situations of uncertainty, instability, uniqueness, and value 
conflict” and which he characterized as “reflective practice” (p. 54).

Based on his personal reflection, including experiences with the HEWET project 
(1981–1985), which involved designing a quite new Dutch secondary mathematics 
course (Wiskunde A—Mathematics A) for humanity and social majors, de Lange 
(2013) describes what he refers to as a “slow design process.” A slow design process 
involves several cyclic stages with rich partnership among researchers, designers, 
teachers, and students. It includes: selecting the subject, duration, and level; design-
ing a mental sketch of flow while using intuitions; choosing a context for mathema-
tization with the help of inspirations gained from random search; refining the design 
for a classroom experiment; discussing with experienced teachers; observing class-
room activities and checking students’ reactions while walking around; taking dis-
crepancies between “intended” and “achieved” seriously; and concentrating on 
essential conceptual development. According to de Lange, slow design is possible 
under the following conditions: freedom of choice of what to design, freedom in 
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time, freedom of thought, and freedom to explore with certain restrictions according 
to contextual and theoretical conditions.

To illustrate the slow design process, de Lange (1979) has described an example 
related to the topic of “Exponentials and Logarithms” for humanity and social 
majors, the design of which was guided by the philosophy of Realistic Mathematics 
Education. He progressively designed a task situation that functions as a model for 
a mathematical concept (de Lange, 1987). In this situation, “propagation of water 
plants” is chosen as the introductory task situation and the concept of logarithm is 
defined by growth factor and time: log310 is defined as the time needed to get 10 
times the spread of water plants when the growth factor per month is 3 (i.e., a bit 
more than 2 months). With this situation and language in mind, students can inter-
pret basic logarithmic relations such as log log3 310 1 30+ =  as follows: with this 
1 extra month, you get 3 times more than 10, which equals 30. Experimental text-
books were developed to elaborate, try out, and optimize this approach (de Lange & 
Kindt, 1984); eventually, the approach entered Dutch curriculum descriptions and 
was adopted by commercial textbooks (e.g., Boer et al., 2004, p. 30).

De Lange (2013) argues that such a design and implementation process asks for 
slow design. It illustrates the need for extensive design processes that can do justice 
to both scientific and artistic aspects of task design. The tension between design as 
science and design as art is not easily solved, if it can be solved at all, and empha-
sizes a reconsideration of the time allocated for task design in educational research 
and in curriculum innovation projects.

2.4.2.2  Values in Task Design

Frameworks and principles for task design will vary relative to philosophies of 
mathematics education. Different philosophies of mathematics education mediate 
different values with respect to task design. Ernest (1991) distinguishes four sets of 
issues related to one’s philosophy of mathematics education: the philosophy of 
mathematics, the nature of learning, the aims of education, and the nature of teach-
ing. In this regard, Burkhardt (2014) points out that different groups of people have 
different priorities with respect to curricular aims or goals in mathematics: “basic 
skills people”, “mathematical literacy people”, “technology people”, and “investi-
gation people”. Likewise, Treffers (1987) distinguished four trends in instructional 
approaches to mathematics in terms of “horizontal” and “vertical” mathematiza-
tion: mechanistic, empiricist, structuralist, and realistic, with each instructional 
approach drawing upon different psychological backgrounds—Gagné’s cumulative 
learning for the mechanistic, Piaget’s constructivism for the empiricist, Bruner’s 
modes of representation for the structuralist, and Gestalt psychology for the 
realistic.

The role of values in task design is illuminated by contrasting the approaches 
described in two recent studies that were presented at the ICMI Study-22 Conference 
on Task Design: Concept-development task design by Koichu et  al. (2013) and 
Competence-based task design by Aizikovitsh-Udi, Clarke, and Kuntze (2013). 
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In the first study, based on Variation Theory, the task designer values delineating a 
variation space for the intended object of learning by eliminating or excluding 
hindering experience factors. This is done to direct the learner’s attention to certain 
aspects that constitute the defining characteristic of the concept. In the second study, 
the competence-based task design proposes the idea of a “hybrid task” that stimu-
lates different forms of thinking through a single task: the discipline-specific think-
ing of statistics and more generic forms of higher-order thinking, such as critical 
thinking. A hybrid task is characterized as having a structure that can offer to the 
learner superfluous and sometimes contradictory information. These two examples 
serve to illustrate that the frames and principles used in task design are intimately 
related to aims of mathematics education, which can in turn prioritize either the 
acquisition of conceptual and procedural knowledge or competence in dealing criti-
cally with information. A somewhat different perspective on the role of values in 
task design is exemplified by the explicit integration of “educating for values” into 
the teaching of mathematics. For instance, Movshovitz-Hadar and Edri (2013) con-
ducted a multifaceted study to investigate the possibilities of combining social and 
personal values like equity, tolerance, social justice, rationality, and achievement 
and reaching one’s intellectual potential—all within a designed approach to learn-
ing mathematics (see Chap. 5 for an elaborated example).

2.4.3  �Diversity of Design Approaches Through the Lens 
of Basic Versus Applied Research

2.4.3.1  A Two-Dimensional Scheme for Classifying Research

In describing diverse approaches to task design, a useful perspective is offered by 
Schoenfeld’s (1999) text on the synergy between theory and applications. Here he 
discusses the productive dialectical relationship between pure and applied work in 
education and makes use of Stokes’s (1997) two-dimensional scheme of research  
in science and technology (see Fig. 2.11). Despite its formulation for the field of 
science, its applicability to the area of task design in mathematics education makes 
it of interest, especially with respect to situating the purely artistic position on task 
design as well as informing a potential bridging between the design-as-science and 
design-as-art tensions that were previously discussed.

In the two-dimensional representation, Niels Bohr and Thomas Edison are 
located as paradigmatic figures of pure basic and pure applied research. Louis 
Pasteur is located differently, as the paradigmatic figure of “use-inspired basic 
research”: he not only engaged in germ theory for solely basic biological interests 
but was also motivated by problems of spoilage of drinks and curing diseases.

By its nature, educational research generally and educational design research 
especially aim at conducting “use-inspired basic research.” According to McKenney 
and Reeves (2012): “Educational design research describes a family of approaches 
that strive toward the dual goal of developing theoretical understanding that can be of 
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use to others while also designing and implementing interventions to address prob-
lems in practice” (p. 17). However, in the development of educational research, it may 
be difficult for any work to contribute simultaneously to both theory and practice: 
“Sometimes the state of theory is such that it may best be nurtured, temporarily, aside 
from significant considerations of use; sometimes the need to solve practical prob-
lems seems so urgent that theoretical considerations may be given secondary status” 
(Schoenfeld, 1999, p. 9). In his seminal work on problem-solving, Schoenfeld (1985) 
describes the dialectical relationship of give and take between theory and practice. 
Purely theoretical research in a laboratory setting can suggest some substantial ideas 
for designing practical courses in problem-solving and vice versa; actually teaching a 
course can raise theoretical issues to be pursued in an experimental setting. In order 
to have a relatively comprehensive “use-inspired basic research”, it is necessary to 
move between such carefully designed laboratory settings and those settings that rep-
resent daily teaching practice.

2.4.3.2  �Design Frames in the Light of Distinctions Between Basic 
and Applied Research

The principles and frameworks for task design that were described in earlier sec-
tions of this chapter in terms of levels of, or rootedness in, theory could alternatively 
be characterized according to their situatedness with respect to basic and applied 
research. In this spirit, we explore the use of the Stokes two-dimensional scheme as 
a lens for reflecting upon some of the various task design frames that were presented 
in Sect. 2.3 but in an alternative, albeit complementary, light.

Adherents of Variation Theory (VT) can be associated with the “basic research” 
cell of Stokes’s two-dimensional scheme. A paradigmatic example is the research 
aimed at identifying the critical features of designated objects of learning and at 

Fig. 2.11  Stokes’s (1997, p. 73) quadratic scheme for categorizing science research (Copyright 
1997 by the Brookings Institution)
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ensuring that the designed task situations impart these critical features (Koichu, 
2013). As pointed out by Cheng and Lo (2013), designers “must first identify a 
worthwhile object of learning and the critical features that the students must discern 
in order to see the object of learning in the intended way; they would then design 
patterns of variation (what to vary and what to keep invariant) to help the students 
to discern the critical features/aspects” (p. 10). Clinical observations in a laboratory 
setting are often used for identifying the affordances of task variations (see the VT 
case in Sect.  2.3). Such studies illustrate the complex relationships among the 
intended, enacted, and lived objects of learning and the need for clinical research 
settings to investigate these relationships. Task design for Conceptual Change (Van 
Dooren et  al., 2013) and Conceptual Learning through Reflective Abstraction 
(M. Simon, 2013) are also associated with “basic research.” These two frames rely 
on laboratory and clinical settings for studying the kind of experiences a task affords 
and the extent to which those experiences are beneficial for conceptual change and 
salient abstraction, respectively.

The Japanese Lesson Study (LS) approach to task design, which is based on 
deep craft knowledge and expertise, can be located in the “pure applied research” 
cell. It does not aim at developing substantial theoretical understanding. Rather, LS 
aims at teachers’ professional development through kyozaikenkyu (Fujii, 2013): 
building up insights into children’s learning trajectories, decision-making compe-
tency with respect to carrying out tactical interventions during classroom interac-
tions, organizing provocative discourse, establishing a productive classroom 
microculture, and so forth. The setting of LS in daily teaching practice mediates the 
activity of the various participants involved in LS and leads to the co-construction 
of deep craft knowledge.

Research frames such as the ATD and Realistic Mathematics Education (RME) 
can be viewed as paradigmatic examples of the “use-inspired basic research”. Both 
paradigms can contribute simultaneously to theory and practice—the contributions 
to theory occurring especially during the early period of development of these 
intermediate-level research frames, as well as during their later application phases 
when the intermediate-level frame is particularized to the learning of domain-
specific concepts and processes. ATD-based task sequences, or study research 
paths, are developed and implemented across many years of schooling from pre-
primary to university. Many of the ATD-based tasks are characterized as open-
ended mathematical modeling activities that address social issues. Likewise, RME 
has served in the development of different types of curriculum projects at all school 
levels varying from kindergarten (e.g., van Nes & Doorman, 2011) to upper sec-
ondary education (e.g., Doorman & Gravemeijer, 2009). As well, rich RME-based, 
problem-solving, assessment tasks (A-lympiade and Math B-day) are elaborated 
and implemented annually by teachers in their daily practice (Goddijn, 2008; 
Goris, 2006).

As a means of fostering further development of design principles that might 
contribute simultaneously to theory and practice, as well as exploring whether in 
fact some of the more theory-oriented and more practice-oriented frames for task 
design are in fact amenable to joint articulation, some researchers (e.g., Artigue, 

2  Frameworks and Principles for Task Design



68

Cerulli, Haspekian, & Maracci, 2009; Artigue & Mariotti, 2014; Kieran, Krainer,  
& Shaughnessy, 2013) have already begun to study the ways in which different groups, 
cultures, and communities work together productively on advancing such issues.  
As has been suggested by the examples in the previous paragraphs, basic laboratory 
research in VT, Conceptual Change, and Concept Learning can reveal some sub-
stantial ideas of potential interest to designers with a practical research orientation. 
Conversely, difficulties and dilemmas that have emerged in actual Lesson Studies 
raise salient theoretical issues that could be pursued in less complex clinical set-
tings. Immediately below, we address collaborative work across professional com-
munities, work that has begun to grapple with the theoretical-practical interface of 
design activity.

2.4.4  �Design Activity Across Professional Communities

2.4.4.1  �The Stakeholder Approach as a Foundation for Thinking  
About Collaborative Design Activity

In order to realize collaboration across the research and teaching communities (as 
well as collaboration involving the educational researcher and the educational 
designer-practitioner), a wise strategy is to establish a transparent context between 
researchers and practitioners, not forgetting that some practitioners are researchers 
themselves. A provisional theoretical perspective would be Krainer’s (2011) notion 
of the stakeholder approach, which avoids privileging theory over practice in the 
design process. According to Krainer, the term stakeholder approach is intended to 
capture the idea that teachers are key stakeholders in the design research enterprise, 
not mere users of research. It is teachers who are in a position to achieve one of the 
main purposes of that enterprise, which is the improvement of students’ learning of 
mathematics. Developing a stakeholder approach is central to establishing the kind 
of collaboration between these two communities that will facilitate mathematical 
learning with rich task design. Krainer asserts that researchers should highlight 
teachers’ reflective and creative practice and offer viable opportunities that encour-
age them to get interested in being involved in such research. The stakeholder 
approach asks of task design not what but where it is. With this approach, task 
design is situated in the interaction between practitioners and researchers.

2.4.4.2  Task Design Involving Practitioners and Researchers

In Sects. 2.2 and 2.3, our attention was fixed on the nature of the frameworks and 
principles used in the activity of task design research, without focusing on the nature 
of collaborative work in this area. We now take a closer look at this aspect and dis-
cuss some recent design efforts involving cross-community collaboration. A few of 
the research papers presented at the ICMI Study-22 Conference on Task Design 
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reflected a rethinking of the boundaries between theory and practice and the relative 
roles of researchers and practitioners (e.g., Ding et al., 2013; Morselli, 2013; Ponte 
et al., 2013; Stephan & Akyuz, 2013). Ding and her colleagues report on the process 
of design and implementation of tasks within a team consisting of academic 
researchers, teachers, and a teacher educator who was also an expert teacher, in a 
school-based teacher professional development program in Shanghai, China. In 
their report (Ding et al., 2013), they highlight, in particular, the role played by the 
expert teacher, who contributed to the development of a “hypothetical learning 
structure” for a particular topic (decimal value) and to creating tasks within a web-
like structure of knowledge constructions.

Morselli (2013) describes a collaborative project aiming at designing, experi-
menting, and refining task sequences for a smooth and meaningful approach to 
proof in lower secondary school in Genoa, Italy. The project was supported by an 
initiative of the Italian Ministry of Education aimed at fostering and stimulating 
young students’ interest in studying science. Within this context, collaborative work 
between university researchers and school teachers was set up. Teams were created 
for each school level and these teams met regularly in order to share theoretical 
references on argumentation and to discuss theoretical tools and their didactical and 
methodological potential. Productive cycles of task design, experimentation, analy-
sis, refinement, and modification emerged.

Ponte et al. (2013) address the design of exploratory tasks that were developed 
and implemented in collaboration between researchers and a group of teachers in 
Lisbon, Portugal. A new mathematics curriculum for basic education required 
teachers to develop and use exploratory tasks designed to support students’ mathe-
matical reasoning and the growth of their problem-solving abilities. With such an 
institutional context, developmental work on task design was conducted by using a 
combination of research expertise and classroom teaching expertise. The team 
started with an overall plan for a teaching unit, which included the formulation of 
the learning objectives, assumed previous knowledge of students, time available, 
and organization of a schedule. Tasks were later selected to fit the overall planning 
of the teaching unit, followed by a dialectical movement of adjustments at the mac-
rolevel of the unit and at the specific level of the tasks. Usually, the first idea for an 
exploratory task was provided by a classroom teacher, and the subsequent refine-
ment was carried out in interaction with the other teachers and researchers.

Stephan and Akyuz (2013) describe a design study involving a collaborative 
community in one middle school, consisting of two mathematics teachers, a special 
education teacher, a researcher, and a graduate student. After the researcher intro-
duced the main idea of the hypothetical learning trajectory (HLT), the members of 
the collaborative group worked together to create a six-phase instructional 
sequence, based on RME heuristics, for the learning of integers and integer opera-
tions (see also Sect.  2.2.2.4). The community met on several occasions before 
instruction began and then almost daily throughout the implementation. The piv-
otal contributions of various members of the group included anticipating support-
ive mathematical imagery, creating challenging formative assessment, using their 
mathematical knowledge to alter the instructional sequence, and working and 
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revising already created tasks or the sequence of the instruction. This collaborative 
research showed that, “during the implementation of the instruction, the practitioners 
began to discuss more theoretical issues while the researchers began to think more 
about teaching practices” (Stephan & Akyuz, 2013, p. 515).

In introducing this discussion on cross-community design activity, we were 
reminded of Krainer’s (2011) elaboration of the stakeholder approach and the 
related query that it is “not what task design is, but where it is situated” that needs 
to be considered. The design projects that have just been exemplified and which 
integrated the cross-professional communities of practitioners, researchers, and, in 
some cases, teacher educators allow us to respond more fully to this query. 
Sections 2.2 and 2.3 situated task design in the nexus between principles and frame-
works and their application to particular content areas or mathematical topics. The 
above collaborative projects have succeeded in showing that task design is also situ-
ated both in the interactions among its cross-community participants and in the 
interface between theory and practice.

2.4.5  �Toward the Resolving of Perceived Tensions

By examining a variety of alternative perspectives, this section of the chapter has 
touched upon a range of additional factors affecting task design and its diversity—
factors that might suggest a certain inherent tension between opposing forces—but 
at the same time has offered avenues for resolving the perceived tensions. These 
alternative perspectives have allowed us to see that the structured frameworks and 
principles that characterize much of the design research in the mathematics educa-
tion research community do not capture the eclectic nature of design activity as 
engaged in by some of its scholars. For example, some of the proponents of design 
as art espouse a quite different set of starting points from the proponents of design 
as science. At the heart of this tension, as we have noted, is Schön’s (1983) criticism 
of H.A. Simon’s view of a science of design as being based on approaches to solving 
well-formed problems, whereas professional design practice has to deal with 
“messy” problems. With positivist approaches to design practice being found to be 
of limited utility during the 1980s (Lincoln & Guba, 1985), design had to be recon-
sidered as a process in which uncertainty must be grappled with. Artigue (2009) 
reminded us of this when she remarked that theory-based intervention programs 
have faced difficulty because of the many design factors that are not under theoreti-
cal control.

As was seen, one of the ways of approaching this dilemma is to consider the 
practitioner as a full actor in the design process. The stakeholder approach (Krainer, 
2011) embodies this perspective but also acknowledges that there are significant 
differences in the guiding principles specific to different communities. Stokes’s 
(1997) two-dimensional scheme enabled us to situate various orientations in design 
research, including design activity that is motivated as much by artistic as by 
theoretical concerns. As was also seen in this section, frameworks and principles 
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constitute a communal practice of task design, with innovation and use of specific 
frameworks and principles for task design being a reflexive activity. By means of 
interaction among diverse cultures and communities, frameworks and principles are 
progressively developed in the light of task implementation. Therefore, the interac-
tions between diverse communities and the concomitant grappling with diverse 
design principles would seem crucial to moving forward in the area of design. 
However, such interactions may not be straightforward or easy to orchestrate.  
As pointed out by Artigue and Mariotti (2014) in their discussion of the networking 
efforts engaged in by researchers from different cultures in the ReMath project: 
“[When] the possibilities of networking are examined in terms of potential for guid-
ing design, … the activity is much more demanding … [but can be] especially 
insightful; … such advances are especially important considering that design in 
mathematics education lies at the interface between theory and practice” (pp. 350–351). 
Although collaboration involving the diverse actors engaged in the enterprise of 
task design in mathematics education may be challenging, the process can yield not 
only an enhancement of the quality of the designed tasks and task sequences but 
also a narrowing of the perceived divide between design as artful practice and 
design as theory building. Recall Stephan and Akyuz’s (2013) earlier remark: “It is 
interesting to note that during the implementation of the instruction, the practitio-
ners began to discuss more theoretical issues while the researchers began to think 
more about teaching practices” (p. 515).

2.5  �Concluding Discussion: Progress Thus Far  
and Progress Still Needed

The objective of this chapter was to give an overview of the current state of the art 
related to frameworks and principles for task design so as to provide a better under-
standing of the design process and the various interfaces between teaching, research-
ing, and designing. The chapter started with a description of the history of task 
design in mathematics education. The 1970s reflected the beginnings of the new 
community of mathematics education researchers’ efforts to grapple with the inter-
action between curriculum materials and the quality of mathematical teaching and 
learning. We noted, for example, that Alan Bell was one of the first colleagues who 
explicitly referred to the importance of design principles for the transition from a 
situation that embodies the concepts and relations of the conceptual field to the 
design of tasks that bring into play these concepts and relations.

What progress have we—as a community—made over the past four decades? 
This chapter has described in which directions we have made some progress in 
understanding and articulating aspects related to task design. These aspects have 
included aims, levels, communities, and values that influence and are influenced by 
frameworks and principles for task design in educational practice and in educational 
research. Topics that were addressed related to levels of frameworks for task design, 
the distinction between theories as resource for and as product of design research, 
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the tension between design as science and design as art, and the relations among the 
professional communities that develop and use specific frameworks for task design. 
So what have we learned about this field, about the topics, and about ourselves, as a 
result of coming together at the ICMI Study-22 Conference and developing this 
chapter on frameworks and principles?

One aspect that became more clear concerns the nature and levels of the frames 
that guide the process of task design. Using the lens of grand, intermediate, and 
domain-specific levels allowed us to see that our frames tend to be either holistic or 
multidimensional in nature. That is, the inspiration for our designs can come pri-
marily from one quite global, intermediate-level framework (e.g., TDS, ATD, VT) 
or from a constellation of theories of different levels and different types (e.g., the 
various examples of domain-specific frames for the learning of particular concepts 
or processes). We saw that drawing from a combination of theoretical foundations 
can present advantages that may not be available when we rely on just one overall 
frame and its design tools—advantages such as being able to delineate not only a 
broad set of principles for the design of tasks or task sequences but also a related set 
of principles for the design of the instructional culture in which the task is to be 
integrated. In fact, a significant number of the task design studies presented within 
the conference theme group on principles and frameworks relied upon principles for 
task design that extended considerably beyond that of a task narrowly conceived. 
While the task or task sequence was seen as being central, it was clearly viewed as 
taking place within an orchestrated classroom activity—one where principles 
related to the actual classroom processes and instructional support that would make 
it possible to experience the potential of the task were explicitly included as part of 
the task design. Thus, the distinction between task design and lesson design was 
found, indeed, to be quite blurred.

Another aspect that has emerged is that theories are both a resource for and a 
product of the design process. As a resource, they provide theoretical tools and prin-
ciples to support the design of a teaching sequence. As a product of design research, 
theories inform us about both the processes of learning and the means that have 
proven to be effective for supporting that learning. Related to this dual role of theory 
is the distinction between design as intention and design as implementation—design 
as intention addressing specifically the initial formulation of the design and design 
as implementation focusing attention on the process by which a designed sequence 
is integrated into the classroom environment, subsequently refined, and then theo-
rized about. This distinction highlights the relative nature of the significance given 
to the design of the task sequence or task itself within the design process.

Although the major part of this chapter has been devoted to the theoretical frames 
that underlie task design, not all design is based on theory. The Lesson Study frame 
is a classic example of craft-based task design based on teaching practice, one where 
teachers with their deep, experiential knowledge are central to the process. 
Fundamental to teachers’ ability to design, implement, and study high-quality math-
ematics lessons is a detailed, widely shared conception of what constitutes effective 
mathematics pedagogy and professional development. The planning of the research 
lesson, which is the main component of Lesson Study, includes not only the task and 

C. Kieran et al.



73

its materials but also anticipated student thinking, the teacher’s planned questioning 
and intervention activities, and the points to be noticed and evaluated.

At the same time, we have become aware that the grain size for describing 
principles for task design is an area for further reflection and development. While 
the cases presented in this chapter took account of principles related to grand, inter-
mediate, and domain-specific levels of theories, as well as instructional and tool-
related principles, the work of the educational designer Kali (2008) suggests the 
feasibility of considering, and possibly integrating, a much finer grain size of levels 
of principles into our design work. We are reminded of the critical question that, 
according to Cobb et al. (2003), must be asked of our frames, that is, whether their 
principles inform prospective design and, if so, in precisely what way. As seen in 
Sect. 2.3, current work in task design indicates that there is a great deal of variation 
in the nature of the principles and heuristics being adopted for task design, with only 
a few points of convergence across the broad set of principles informing task design. 
Many of the principles tend to be phrased in rather general terms that are subject to 
broad interpretation and thus cannot be said to inform prospective design in highly 
specific ways. Clearly, further theoretical work on grain size of principles for task 
design is needed. For example, in applying general task design principles to the 
learning of particular mathematical content areas or reasoning processes, being 
more explicit with respect to the way in which past research in that area is being 
woven into the design of the task or task sequence would surely be useful.

Tasks play a crucial role in forwarding the process of improving the educational 
system. While, for instance, in the mathematics education community, competen-
cies like creativity, critical thinking, and problem-solving are highly valued, tasks 
presented by high-stakes examinations tend to address basic skills. Such examina-
tion tasks largely determine the types of tasks that are used in classrooms. Curriculum 
innovation can be moved forward with illustrative alternative tasks and explicit 
attention to the underlying principles and frameworks used to design them, without 
losing consideration of skill development, fluency, and flexibility. A vital compo-
nent often missing in curriculum innovation documents is the vivid exemplification 
that is necessary to show exactly what tasks might look like and how they relate to 
improving teaching and learning.

In addition, current changes in educational systems and trends in mathematics 
education ask for a reconsideration of design principles. Trends in education that are 
related to task design are, for instance, beginning to show an increasing focus on 
interdisciplinarity and authentic practices. Trying to better connect mathematics 
education to other subjects like physics, biology, and economics requires a recon-
sideration of the role of contexts and bridging concepts. A serious consideration of 
the use of authentic practices and the world of work in mathematics education calls 
for tasks with a purpose and utility, shifting from solving a school mathematics 
problem to asking for a product as a final result. New task characteristics emerge 
and others might become less relevant in the near future.

From this Study conference and its follow-up exchanges and research for the 
preparation of this chapter, we have also learned that knowledge about design grows 
in the community as design principles are explicitly described, discussed, and 
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refined. Although the papers presented within the Principles and Frameworks theme 
group of this conference all specified the frames and principles underlying their 
designs and illustrated how these were being implemented in the resulting tasks, 
such is not common in the majority of papers presented at mathematics education 
research conferences (Sierpinska, 2003). Despite the recent growth spurt of design 
studies within mathematics education, the specificity of the principles that inform 
task design in a precise way remains both underdeveloped and, even when some-
what developed, underreported. A possible obstacle that stands in the way of speci-
ficity can be traced to length constraints on published papers and the extended 
amount of space that the provision of specific details requires. Were it not for web-
sites such as Educational Designer (http://www.educationaldesigner.org), there are 
few avenues for presenting the explicit and detailed thinking that lies behind the 
final versions of designed tasks. Nevertheless, it seems reasonable to expect that 
mathematics education researchers could be more explicit in their published 
research papers about the principles that underlie the tasks they design for their 
research studies. Clearly, more work remains to be done in encouraging such prac-
tice. This chapter provides a starting point for future efforts that aim at a further and 
deeper investigation of task design, its frameworks, and its principles, so that design 
might become a mature element in mathematics education research and practice.
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3.1            Introduction 

 This chapter seeks to synthesize research and scholarship about the relationship 
between the design of classroom tasks, the pedagogies associated with the effective 
implementation of tasks, and the learning of mathematics. We use the term  class-
room tasks  similarly to Watson and Sullivan ( 2008 ) who describe tasks as the ques-
tions, situations, and instructions that might be used when teaching students. Tasks 
prompt activity which offers students opportunities to encounter mathematical con-
cepts, ideas, and strategies. The role of the teacher is to select, modify, design, 
redesign, sequence, implement, and evaluate the tasks. 

 The intended task and the enacted task may differ considerably. Even though, as 
argued by Hiebert and Wearne ( 1997 ), “what students learn is largely defi ned by the 
tasks they are given” (p. 395), Christiansen and Walther ( 1986 ) note that “even 
when students work on assigned tasks supported by carefully established educa-
tional contexts and by corresponding teacher-actions, learning as intended does not 
follow automatically from their activity on the tasks” (p. 262). Christiansen and 
Walther differentiate between the task as set and the activity that follows, including 
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students’ interpretations of the purpose of the task, ways of working, teacher inter-
ventions, how language and symbols are used, and what are seen as valuable math-
ematical actions. The relationship between task and activity can develop in a variety 
of ways: in some cultures it is the norm for teachers to take a given task and develop 
it into a whole lesson plan with challenging goals, whereas Stein, Grover, and 
Henningsen ( 1996 ) observe that teachers and students can also act together to 
reduce a classroom task to a mere sequence of actions. 

 This chapter fi rst addresses factors that infl uence the task design process and 
accompanying pedagogical considerations. It then presents three tasks chosen to 
provide context for various discussions within the chapter, along with a consider-
ation of the age range of students at which tasks are appropriate. Subsequent sec-
tions describe:

    1.    The  interactions among aspects of task design : design elements of tasks, the 
nature of the mathematics that is the focus of the tasks, and the task design 
processes   

   2.     Pedagogies : the nature of the authority and autonomy of the teacher in creating 
and implementing tasks and problematic aspects of converting tasks from one 
culture to another   

   3.     Student learning : consideration of students’ responses in anticipating the 
pedagogies     

 A crosscutting theme is that tensions occur in making decisions on culture, mathe-
matics, language, context, and pedagogy. Designers and teachers make decisions 
among competing options at both the design and implementation stages. In many 
cases, the decisions on whether, for example, to foster challenge or success, to focus 
on abstract mathematical ideas or their applications, on whether to exemplify the 
dominant culture or to introduce perspectives of marginalized groups, may be sec-
ondary to the teacher’s awareness of those decisions and his/her capacity to interact 
with the students to explore all aspects of the task potential.  

3.2     Factors Infl uencing Task Design and Pedagogies 

 Of course, tasks do not exist separately from the pedagogies associated with their 
use nor are the pedagogies independent of the task. Knowledge for teaching math-
ematics and anticipatory pedagogical decision-making are two key and comple-
mentary elements that are central issues in task design. Jaworski ( 2014 ), for 
example, in elaborating an inquiry stance by teachers in her projects, described a 
difference between didactics and pedagogy as often used in Europe. She described 
didactics as being about “the transformation of the subject (mathematics) into activ-
ity and tasks through which learners can gain access to the mathematics, engage 
with mathematics, and come to know mathematical concepts” (p. 2). She described 
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pedagogy as about “creating the learning environment through which learners’ 
engagement with mathematics can take place effectively” (p. 2). Clearly the process 
of connecting task design with pedagogy involves consideration of both aspects. 
These are elaborated further in the following sections. 

3.2.1     Knowledge for Teaching Mathematics that 
Informs Task Design 

 In describing teacher knowledge, we present the categorization proposed by Hill, 
Ball, and Schilling ( 2008 ) who described two aspects of knowledge associated with 
converting tasks for the use in one’s classroom: subject matter knowledge and peda-
gogical content knowledge. Included within the former are common content knowl-
edge, specialized content knowledge, and knowledge at the mathematical horizon. 
Included within the latter are knowledge of content and teaching, knowledge of 
content and students, and knowledge of curriculum. 

 Perhaps the most critical for task design is  specialized content knowledge  or “the 
knowledge that allows teachers to engage in particularly  teaching  tasks, including 
how to accurately represent mathematical ideas, provide mathematical explanations 
for common rules and procedures, and examine and understand unusual solution 
methods to problems” (Hill et al.,  2008 , p. 378). Also important is what Hill et al. 
( 2008 ) described as  knowledge of content and teaching , including an understanding 
of how to sequence particular content for instruction, and how to evaluate instruc-
tional advantages and disadvantages of particular representations and of the knowl-
edge required to make “instructional decisions about which student contributions to 
pursue and which to ignore or save for a later time” (p. 401). 

 These perspectives on teacher knowledge also inform decisions on the placement 
and contribution of tasks to sequences of learning. Decisions on sequences of learn-
ing can be informed by what Simon ( 1995 ) described as a  hypothetical learning 
trajectory  (see also Chap.   2    ) that:

  provides the teacher with a rationale for choosing a particular instructional design; thus, I 
(as a teacher) make my design decisions based on my best guess of how learning might 
proceed. This can be seen in the thinking and planning that preceded my instructional inter-
ventions … as well as the spontaneous decisions that I make in response to students’ think-
ing. (pp. 135–136) 

   Simon noted that such a trajectory is made up of three components: the learning 
goal; the activities to be undertaken; and a hypothetical cognitive process, “a pre-
diction of how the students’ thinking and understanding will evolve in the context 
of the learning activities” (p. 136). These predictions are not related to sequences 
of explanations but for students to engage in a succession of problem-like tasks, 
based on recognition that learning is a product of activity that is “individual and 
personal, and … based on previously constructed knowledge” (Ernest,  1994 , p. 2). 
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In planning and teaching, the role of the teacher is to identify potential and perceived 
blockages, prompts, supports, challenges, and pathways. In other words, learning 
occurs as a product of students working on tasks purposefully selected or designed 
by the teacher and contributing to ongoing interaction with the teacher and their 
peers on their strategies and products.  

3.2.2     Anticipatory Pedagogical Decision-Making 

 Based on their knowledge of mathematics and pedagogy, teachers make decisions 
in anticipation of how students will respond to tasks. Gueudet and Trouche 
( 2011 ), for example, in elaborating the complex factors informing task imple-
mentation, noted the potential gap between the availability of resources, in this 
case the tasks, and the ways that teachers anticipate the tasks for use in class-
rooms, which we consider as the pedagogy. They described  documentational gen-
esis  as the two-way processes by which tasks are not only interpreted by teachers 
but also infl uence the decisions that teachers make (see also Chap.   6    ). Gueudet 
and Trouche ( 2011 ) described the use of task as a combination of the task as 
designed and a  scheme of utilization  which “integrates practice (how to use 
selected resources for teaching a given subject) and knowledge on mathematics, 
on mathematics teaching, on students, and on technology” (p. 401), i.e., integrat-
ing didactics and pedagogy. 

 We interpret  scheme of utilization  to be similar to the task elements described by 
Sullivan et al. ( 2014 ) who suggested that, when designers communicate with teach-
ers about the intentions and potential of tasks, this can include indications of the 
mathematical purpose, ways that tasks can be differentiated, and suggestions of 
actions that can follow the task to implement the learning. In particular, Sullivan and 
colleagues proposed a scheme of utilization for the type of task and lesson they 
were describing to include: one or more challenging task(s); one or more additional 
task(s) that help to consolidate the learning from the earlier ones; preliminary expe-
riences that are prerequisite but which do not detract from the challenge of the tasks; 
and supplementary tasks that offer the potential for differentiating the experience 
through the use of enabling prompts and extending prompts (see Sullivan, Mousley, 
& Jorgensen,  2009 ). The term  scheme of utilization  emphasizes that advice on antic-
ipated pedagogical actions is not intended as a script but as a prompt to teachers’ 
own decision-making. Another example of a pedagogical scheme is the  fi ve prac-
tices  of Smith and Stein ( 2011 ) for orchestrating productive mathematics discus-
sions: anticipating, monitoring, selecting, sequencing, and connecting. These fi ve 
practices are useful in providing a framework for facilitating rich discussions that 
mathematics teachers may want to see in their classrooms. These schemes suggest 
a somewhat overlapping boundary between the design and implementation of tasks, 
lessons, and sequences.   
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3.3     Some Tasks Presented to Inform Subsequent Discussions 

 Three tasks are presented in this section to help exemplify and support the discus-
sions throughout the chapter. The fi rst task is an example of the type of task com-
monly used as part of the Japanese Lesson Study process (see Fernandez & Yoshida, 
 2004 ; also Chaps.   2     and   9     in this volume). The second task was described by 
Bartolini Bussi, Sun, and Ramploud ( 2013 ) who reported on its use, initially devel-
oped in a Chinese textbook, in Italy. The third task was described by Peled ( 2008 ) 
and subsequently adapted for use as part of a task implementation project (see 
Sawatzki & Sullivan,  2015 ). 

 There are other types of tasks that could have been chosen, such as mathematical 
investigations intended to be undertaken independently from the teacher, games that 
illustrate particular mathematical concepts, and matching of different representa-
tions of concepts. The particular three tasks we have chosen are intended to be nei-
ther exemplary nor representative, but are provided to allow illustration of issues 
raised in discussions among contributors to this chapter. 

3.3.1     The L-Shaped Area: A Lesson from Japan 

 This  L-Shaped Area  lesson is representative of tasks used as the basis of lessons in 
Japanese Lesson Study. The intent is to introduce the notion that the number of 
squares in a rectangular array can be calculated by multiplying the number of rows 
by the number of columns. 

 It can be assumed that teachers might establish a context for the area concepts, 
such as tatami mats, which are traditional rice-straw mats, 90 cm by 180 cm, used 
commonly as fl oor covering and sometimes used to describe fl oor size (area) of 
rooms or large buildings. One approach is to present students with a worksheet on 
which there are two copies of the diagram in Fig.  3.1 .

  Fig. 3.1    The diagrams used in the L-Shaped Area lesson       
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   The two copies of the diagram on the worksheet communicate to students that, 
even if they fi nd one solution by counting, a further strategy is expected. Some of 
the possible solutions include that there are four different ways in which the shape 
can be rearranged to form a rectangle and the possibility of forming the encompass-
ing rectangle and subtracting the unused portion. 

 A key phase of such a lesson is the orchestration of selected students’ reporting 
on their strategies, noting that the teacher would have anticipated the types of 
 solutions that students might offer. This would be part of the scheme of utilization 
of such a task and connects directly to the Smith and Stein ( 2011 ) fi ve practices. 

 There are some interesting characteristics of this lesson: the obvious focus on 
student-generated strategies; the purposeful choice of students to present and 
explain their solutions, ensuring that a range of strategies are presented and dis-
cussed; and the affordance of a diversity of strategies and representations, allowing 
students to experience important mathematical ideas.  

3.3.2     A Set of Worded Questions 

 The  Worded Questions  task was described by Bartolini Bussi et al. ( 2013 ) who 
reported on a cross-cultural collaborative project exploring task design and use in 
both China and Italy (described in more detail below). The set of questions devel-
oped in a Chinese textbook are presented in translated form in Fig.  3.2 .

   The main task is the requested explanation at the top of Fig.  3.2  which may be 
deduced from consideration of the nine accompanying situations. Note the similari-
ties and differences in the form of the sets of questions and that the numbers are 
beyond the usual arithmetic range for children in the fi rst years of school in some 
textbooks. The authors used the task with children aged 8–9, but the task could be 
presented to older children even in the current format. The framework of questions 
was similar to that developed as part of the Cognitively Guided Instruction (CGI) 
project (Carpenter, Fennema, Peterson, Chiang, & Loef,  1989 ). The CGI framework 
was developed after a project involving researchers and teachers and adhered to two 
main tenets: that instruction should focus on problem-solving and that teachers 
should encourage the use of multiple strategies, listen to student reasoning, and 
build on what students know. What is different, however, is that, in this case, the 
collection of problems is given simultaneously and not sequentially. Thus, 
 completion of the task requires a holistic or whole-problem view and attention to 
similarities and differences among the individual tasks. 

 The set of questions was described by Bartolini Bussi et al. ( 2013 ) as follows:

  This is a system of nine problems concerning addition and subtraction, where the organiza-
tion in rows refers to … combine, change, compare categorization and the organization in 
columns refers to the same arithmetic operation (either addition or subtraction, …). In each 
row there is a problem (in the shaded cell) and two variations. 

 The task is very complex and requires the students not only to solve each problem but 
also to explain why the nine problems have been arranged in this way. Each problem is 
associated with a graphic scheme that models on one or two lines the relationship between 
quantities. (p. 553) 

P. Sullivan et al.



89

   The intention is that the small variations across each row, and also the variations 
along the columns, allow students to focus on the key elements of the initial problem 
and the ways that the small variations change the problem and its representation. 
The nine worded questions construct a three-by-three table and appear as one 
problem. 

 From the perspective of variation theory (defi ned in Chap.   2     and elaborated in 
Chap.   5    ), the context of the nine worded questions remains invariant, namely, two 
groups of ducks in a river, and so is the representation of the part-part-whole rela-
tion. In the application of variation theory to task design, mathematics tasks should 
be designed so that the key idea is varied, allowing learners to experience the effect 
of the variation in the examples. The known and unknown quantities are varied in 
each question. The learner’s awareness is directed to the pattern of the questions 
issued in the table. The mathematical aspects, including establishing the relation-
ship between addition and subtraction and also differentiating between forms of 
subtraction (such as take away and difference), is the focus of the task. Refl ection 
on the individual variations is a more important aspect of this task than the out-
comes. Decisions about the use of such a task are a product of teacher knowledge, 
the scheme of utilization, and the anticipated, hypothetical, learning trajectory.  

First solve the nine problems below. Then explain why they have been arranged in rows and columns in 
this way, finding relationships.
(1) In the river there are 45 

white ducks and 30 black 
ducks. All together how 
many ducks are there?

(2) In the river there are 
white ducks and black 
ducks. All together there 
are 75 ducks. 45 are 
white ducks. How many 
black ducks are there?

(3) In the river there are white 
ducks and black ducks. All 
together there are 75 ducks. 
30 are black ducks. How 
many white ducks are there?

(1) In the river there is a group 
of ducks. 30 ducks swim 
away. 45 ducks are still 
there. How many ducks are 
in the group (at the 
beginning)?

(2) In the river there are 75 
ducks. Some ducks swim 
away. There are still 45 
ducks. How many ducks 
have swum away? 

(3) In the river there are 75 
ducks. 30 ducks swim away. 
How many ducks are still 
there?                        

(1) In the river there are 30 
black ducks. White ducks 
are 15 more than black 
ducks (black ducks are 15 
less than white ducks). How 
many white ducks are there? 

(2) In the river there are 30 
black ducks and 45 white 
ducks. How many white 
ducks more than black
ducks (How many black 
ducks less than white 
ducks)?

(3) In the river there are 45 white 
ducks. Black ducks are 15 
less than white ducks (white 
ducks are 15 more than black 
ducks). How many black 
ducks are there?

  Fig. 3.2    The nine worded questions (Bartolini Bussi, Canalini & Ferri,  2011 )       
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3.3.3     Shopping for Shoes 

 The following task based on two related questions is adapted from Peled ( 2008 ) and 
is referred to in the following text as the  Shopping task . The fi rst question is posed 
as follows:

  Jenny and Carly go shopping for shoes. Jenny chooses one pair for $110 and another for 
$100. Carly chooses a pair that costs $160. When they go to pay, the assistant says that there 
is a sale on and they get 3 pairs of shoes for the price of 2 pairs (the free one is the 
cheapest). 

 Give two options for how much Jenny and Carly should each pay. Explain which of 
these options is fairer. 

   The second question is posed similarly except that Carly’s shoes cost $60 in that 
question. 

 Although this task (meaning the two questions together) might seem at fi rst 
glance to contain little mathematics, the range of arguable solutions is interesting. 
For example, students have responded to the fi rst question by suggesting that Carly 
pay $90 (one third of the total revised overall price), or $110 (sharing the $100 
overall savings equally), or $126.67 (reducing the price by one third of the $100 
overall savings), or $135 (sharing the overall revised cost equally). The task can be 
used with upper primary students but is also suitable for junior secondary students 
if solutions based on proportional reasoning are prompted ($116.76—Carly’s frac-
tion of the total value of the 3 pairs of shoes multiplied by the actual total cost). The 
task for students is not so much to determine one possible answer, but to fi nd a way 
to resolve the differences between these alternatives. Further, not all of these strate-
gies are applicable to the second task. Some of those solution strategies result in 
Carly being asked to pay more than her shoes cost. 

 The tasks raise issues about what constitutes “fairness” (note the parallel with the 
origins of probability theory) and the ways that social considerations, such as 
 friendship, are integral aspects of the solution. In addition, the task makes it clear to 
students that they can explain and/or defend a particular answer. It emphasizes argu-
mentation and justifi cation, and because of the degree of ambiguity, it allows con-
sideration of social/cultural mediation in mathematics. Of course, the context is 
culturally laden, and teachers may choose to adapt the task to a situation and cost 
familiar to and relevant for the students. Again, the use of the task is dependent on 
the way that the teacher interprets the mathematical potential and the ways the 
teachers interpret the intended scheme of utilization.  

3.3.4     Determining the Age Range of Students for Which 
These Tasks Are Appropriately Posed 

 The potential and appropriateness of these three tasks depend on the prior experi-
ences of the students, pedagogic purpose, and teacher and student expectations. The 
age range at which these three tasks are best suited also depends on the number 
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combinations used and whether the tasks are posed near the start or end of a relevant 
sequence of tasks. The L-Shaped Area task has been used with students around age 
9, the Worded Questions was used with students of ages 8–9, and the Shopping task 
is intended for students around age 11 but could be used with older students to moti-
vate the idea of proportional reasoning. 

 In all cases the tasks are somewhat generic and can be adapted for different levels 
by minor adjustments of particular task aspects. The appropriateness of the age 
ranges at which the tasks are posed is also a feature of the expectations for the stu-
dents. Jaworski, Goodchild, Eriksen, and Daland ( 2011 ), for example, describe a 
task that was simply posed but readily adapted for the use by students anywhere 
between year 1 and 12. In other words, the grade level for tasks is dependent on a 
range of contextual factors and is not inherent in the task as designed.   

3.4     Design Elements of Tasks 

 One of the recurring themes in the discussions at the ICMI Study Conference that 
generated this book was that, while the mathematics exemplifi ed by the task is cen-
tral, there are many other important considerations in designing tasks, especially 
when designers wish to anticipate and encourage particular pedagogical choices. 
Our discussion on task design elements is presented in two parts: fi rst, fi ve task 
design dilemmas are presented to indicate the range of design considerations; and 
second, we present six suitability criteria that are intended to facilitate analysis of 
tasks as well as research on and evaluation of those tasks. 

3.4.1     Five Dilemmas 

 Recognition of inherent tensions is central to the decisions that arise in task design 
and the associated pedagogies. In delineating decisions on elements of tasks, 
Barbosa and de Oliveira ( 2013 ) focused on various dilemmas associated with 
designing tasks for groups of learners. They used the dilemmas not only as design 
considerations but also as ways of evaluating the adequacy of tasks that were 
designed by teachers in the research project on which they were reporting. There 
were fi ve dilemmas (or confl icts) identifi ed. In the  Australian Concise Oxford 
Dictionary , a dilemma is described as a “situation in which a choice has to be made 
between two … alternatives”. These alternatives represent the extremes of the ten-
sions faced by task designers. 

3.4.1.1     Context as a Dilemma 

 The fi rst dilemma to which Barbosa and de Oliveira ( 2013 ) refer arises in the math-
ematical  context  of tasks, which they describe as ranging from pure mathematics to 
semi-reality to reality. This dilemma (or more accurately continuum in this case) is, 
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on the one hand, the extent to which tasks are set in a realistic context to maximize 
engagement of students and, on the other hand, whether the context detracts from 
the potential of the task to achieve the intended learning. In each of the three tasks 
previously described, the contexts—the mats representing area as covering, the 
combinations of ducks on the pond, and the shopping discounts—do not necessarily 
detract from the mathematics to be learned and in fact help make the potential gen-
eralizability of the solutions more accessible. The shoes context has the additional 
element of raising the social decision-making that is required as well as the discus-
sions about what constitutes “fairness”. 

 It is relevant to note that the use of contexts is far from unambiguous. For example, 
in a review of the testing system in the United Kingdom, Cooper and Dunne ( 1998 ) 
found that contextualizing mathematics items created particular diffi culties for low 
socioeconomic status (SES) students, so much so that they performed signifi cantly 
poorer than their middle-class peers, while performance on decontextualized tasks 
was equivalent. Likewise, Lubienski ( 2000 ), in studying the implementation of a 
curriculum program based on open-ended contextualized problems, found that 
pupils who preferred the contextualized trial materials and considered them easier 
all had high SES backgrounds, while most pupils who preferred closed, context-free 
tasks had low SES. This is a complex issue, and it is not clear whether diminished 
performance was due to contextualization per se or due to other factors like the 
particular contexts being unfamiliar and alienating for students in low SES com-
munities, or diffi culties in separating contextual knowledge from intended “pure” 
mathematical actions. In other words, the incorporation of contexts does not neces-
sarily ensure tasks are accessible to all students. 

 Extending the dilemma on the context of tasks, there is a difference between 
contexts which can be easily seen to be peripheral and those which are central to the 
mathematics. For example, the L-Shaped Area task and Worded Questions task can 
easily be transformed into pure mathematical tasks, or different contexts can be 
used. In contrast, the context of the Shopping task cannot be minimized, or the task 
will lose meaning. It is also possible for the context to limit the potential of students 
to generalize solutions.  

3.4.1.2     Language as a Dilemma 

 The second dilemma is about the  language  of the task and the intended solution. On 
one hand, mathematical precision is part of the desired learning; on the other hand, 
clarity for the students is needed to support the learning. The language demand of 
the L-Shaped Area task is mainly connected to the representation of the potential 
solutions and so is mathematical. For the Worded Questions, the subtle variations in 
language exemplify the distinctions between the forms of the question. The lan-
guage used in the Shopping task may not be clear, and so the task may even need to 
be modeled or role-played by the teacher, and mathematical and social language is 
required to explain the “fair” solution. Of course, what constitutes fairness can be 
context dependent. In each case, it is not the language of the task itself, but the way 
the language is used and interpreted.  
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3.4.1.3     Structure as a Dilemma 

 Barbosa and de Oliveira ( 2013 ) described a third dilemma as  structure , which refers 
to the degree of openness in tasks. This can be considered as much a function of the 
task outcome as it is the structure. In this dilemma, the consideration is that specifi c 
questions can be posed which, on one hand, scaffold student engagement with a task 
in a more prescribed way and, on the other hand, allow students greater opportunity 
to make strategic decisions on pathways and destinations for themselves. Barbosa 
and de Oliveira ( 2013 ) describe this continuum as ranging from more closed to 
more open. Of course, what constitutes openness is the subject of some debate. For 
example, Hashimoto and Becker ( 1999 ) described three categories of problems: 
those that use a variety of approaches (that have been described as open-middled—
see also Wiliam,  1998 ); those in which the formulation is open (described as open- 
started, which is close to problem posing); and those that have a range of solutions 
(open-ended). The L-Shaped Area task is open-middled in that the focus is on 
student- devised strategies, and the Shopping task is open-ended in that there is a 
range of feasible solutions. Although the individual Worded Questions are closed, 
with just one correct answer, there is openness in the choice of representation and 
also in the identifi cation of commonalities and differences across the questions in 
the rows and columns. When presented as a set of problems, the focus for the stu-
dents is not only in fi nding the respective answers, but also in identifying, under-
standing, explaining, and justifying the commonalities and differences.  

3.4.1.4     Distribution as a Dilemma 

 The fourth dilemma, described as  distribution , refers to selecting content to be 
focused on in the tasks. This is a function of the cognitive demand of the tasks, 
described by Smith and Stein ( 2011 ) as a hierarchy of classroom tasks that develop 
from  memorization  to  procedures without connections  to  procedures with connec-
tions  to  doing mathematics  tasks. Using this nomenclature, in the L-Shaped Area 
task, the individual students would be  doing mathematics  when creating their solu-
tions and in considering the solutions of others. When students were answering the 
individual Worded Questions, they would be performing  procedures with connec-
tions , and when identifying commonalities and differences between the questions, 
they would be  doing mathematics . It would be possible to respond to the Shopping 
task at the level of  procedures without   connections ; the extent to which the students 
engaged in  procedures with connections  or  doing mathematics  would depend on the 
actions of the teacher.  

3.4.1.5     Levels of Interactions as a Dilemma 

 The fi fth dilemma refers to the  levels of interactions  of the participants, meaning 
between the teachers and the students. This can be interpreted to mean that the task 
does not exist by itself, but its implementation is infl uenced by the nature of the 
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intended or anticipated interactions between the teacher and students when they are 
engaged with the task. This is partly connected to the hypothetical learning trajec-
tory (Simon,  1995 ) that the teacher has anticipated. 

 In working on the L-Shaped Area task, the expectation is that students engage 
with the task fi rst and then discuss the various solutions in small groups, with the 
teacher and as a class. Similarly, for the Worded Questions, the students would work 
on the questions, in both the Chinese and Italian contexts, with the teacher leading 
a critical review of the similarities and differences between and within the rows and 
the columns. In the Shopping task, the students would formulate their own responses 
with the essential aspect being the discussion and defense of the various viable 
solutions. 

 Designers and teachers confront each of these fi ve dilemmas and make appropri-
ate choices, for each and every task, and teachers may take decisions that were not 
intended or anticipated by the designer.   

3.4.2     Task Suitability Criteria 

 The dilemmas of task design provide a framework that can be used for analysis of 
suitability of tasks. Giménez, Font, and Vanegas ( 2013 ) provide a suitable frame-
work for analysis of tasks generally. 

 Giménez et al. ( 2013 ) describe  epistemic  suitability as “the extent to which the 
mathematics taught is ‘good mathematics’” (p. 581). Decisions on the mathematics 
are based on both the local and institutional curriculum and prior experiences of the 
students. Each of the three tasks previously described addresses important mathe-
matical concepts, although the specifi c concepts are to some extent dependent on the 
level at which the tasks are used. This connects directly to the mathematics content 
knowledge of the teacher, who needs to perceive what mathematics is possible. 

 Giménez et al. ( 2013 ) explain that  cognitive  suitability “refl ects the degree to 
which the teaching objectives and what is actually taught are consistent with the 
students’ developmental potential, as well as the closeness of the match between 
what is eventually learnt and the original targets” (p. 581). Of course, in our illustra-
tive tasks, the cognitive suitability is mainly a function of the sequencing of these 
tasks among others and cannot be accurately prescribed out of context, without 
knowing the objectives of the lesson(s) and what was taught previously. Yet each of 
the tasks offers a variety of starting points for students. The L-Shaped Area task can 
be solved by counting methods as well as by more mathematically sophisticated 
approaches. Students might work on various representations of just one of the Worded 
Questions, while others might engage in the tasks of comparing and contrasting the 
questions. The Shopping task is mathematically simple at the level at which it is 
appropriate, yet contrasting various solutions and arguing which is fair is sophisti-
cated. In other words, all three tasks are adaptable to a level of cognitive demand for 
which the teacher decides she/he can support the engagement of learners. 
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  Interactional  suitability “relates to the extent to which the forms of interaction 
enable students to identify and resolve confl icts of meaning, and promote indepen-
dent learning” (p. 581). This is similar to what Barbosa and de Oliveira ( 2013 ) 
described as levels of interaction and can refer to interactions between teacher and 
students, between the students, and for the student and the task. For the L-Shaped 
Area task, the nature of the interactions depends on discussions facilitated by the 
teacher that, for example, compare the solutions. For the Worded Questions, the 
interactions occur when the teacher encourages the students to contrast the various 
question forms. The interactional suitability depends on teachers’ anticipation of 
what students could become aware of. For students around age 8 years, the interac-
tion may stop at fi nding the relationship of addition and subtraction among three 
quantities (two of them are known and one is unknown). For older students, the 
interaction may be directed at distinguishing the two different patterns for the sub-
traction operation. In the second and third columns, one pattern of subtraction is to 
fi gure out a partial quantity when the sum and the other partial quantity are known. 
But the other pattern of subtraction is to compare the difference between a bigger 
quantity and a smaller quantity. For the Shopping task, the interactions depend on 
the extent to which the teacher allows and facilitates the consideration of alterna-
tives by the students and prompts discussions about fairness. In other words, each of 
the tasks has its own scheme of utilization. 

  Mediational  suitability refers to the “availability and adequacy of the material 
and temporal resources required by the teaching/learning process” (p. 581). The key 
feature of the L-Shaped Area task is the presentation to students of a worksheet that 
requires two methods of solution. This is intended to prompt students to offer two 
different solutions, especially when this has become a normal expectation of both 
the teacher and the students. The cognitive demand of this task is evidenced by the 
level and type of engagement. The juxtaposition of the various Worded Questions 
prompts the students to engage with the questions both one by one (in the Italian 
implementation) and overall (as in the Chinese model). The context of the Shopping 
task may require role playing the situation so the nature of the task (not the solution) 
becomes clear. 

  Affective  suitability refl ects the students’ degree of involvement (interest, motiva-
tion, etc.) in the task. As Middleton ( 1995 ) argued, a key task characteristic that 
infl uences affective responses is the degree of control, which is better described as 
the opportunity for student decision-making, meaning the choices that the students 
can make. Middleton ( 1995 ) also suggested that interest and arousal are important 
determinants of student motivation. In the L-Shaped Area task, the choice is the 
mode of solution, while the interest in the task is motivated by the use of a familiar 
context. Although there is limited choice in the individual Worded Questions, stu-
dents make decisions on ways they interpret the similarities and differences between 
the questions; in the Shopping task, the choices are the decisions on what is “fair” 
and imagining themselves in a related situation. 

 Giménez et al. ( 2013 ) considered  ecological  suitability as “the degree of compat-
ibility between the study process and the school’s educational policies, the curricular 
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guidelines and the characteristics of the social context, etc.” (p. 581). The L-Shaped 
Area task and the Worded Questions attempt to address multiple solutions to a 
problem at different cognitive levels often explicit in the mathematics curriculum. 
The link between the Shopping task and a conventional mathematics curriculum is, 
however, more tenuous and requires intervention by the teacher for this to become 
explicit. Often, the aims of mathematics curricula are diffi cult to discern. In Chap.   5    , 
the complexity of such curricula is described in more detail, with an attempt to cat-
egorize the different purposes afforded by text-based tasks. 

 Overall, this section summarizes two frameworks that describe the elements of, 
and design considerations for, tasks. They illustrate not only that task design is 
multidimensional, but also that there are tensions to be considered at each phase of 
design. The tensions are present for task designers and teacher adaptation, whether 
they are designing tasks for themselves or for others. The next section focuses on 
consideration of the mathematical content of tasks.   

3.5     The Nature of the Mathematics that is the Focus 
of the Tasks 

 Perhaps the most critical element of task design is the potential for the task to 
prompt the learning of the intended mathematical concepts. But there are different 
perspectives of mathematics that can be considered. On one hand, Ernest ( 2010 ) 
described the goals of a  practical  perspective of mathematics as students learning 
the mathematics adequate for general employment and functioning in society, draw-
ing on the mathematics used by various professional and industry groups. Ernest 
included in this perspective the types of calculations one does as part of everyday 
living, including best-buy comparisons, time management, budgeting, planning 
home maintenance projects, choosing routes to travel, interpreting data in the news-
papers, and so on. 

 On the other hand, Ernest described a  specialized  perspective as that mathemati-
cal understanding which forms the basis of university studies in science, technol-
ogy, and engineering. He argued that this includes an ability to pose and solve 
problems, appreciate the contributions of mathematics to culture, the nature of rea-
soning, and intuitive appreciation of mathematical ideas such as “pattern, symme-
try, structure, proof, paradox, recursion, randomness, chaos, and infi nity” (Ernest, 
 2010 , p. 24). 

 Both perspectives are directly connected to the teachers’ mathematical knowl-
edge for teaching and clearly inform task design. In taking a specialized perspec-
tive, the following subsection elaborates considerations for tasks that prioritize 
explicit mathematical goals. In taking a practical perspective, the subsequent sub-
section explores issues associated with tasks that focus on mathematical literacy, 
described here as numeracy. As with other design elements, these two can be in 
tension, in that a focus on one can detract from the goals associated with the other. 
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3.5.1     Tasks that Address Specialized Mathematical Goals 

 Connected to the teacher knowledge that informs task design and implementation 
are two aspects: the conceptual ideas represented by a specialized perspective and 
the mathematical processes in which the students might be expected to engage. 

 From this perspective, it is assumed that teachers will be explicit about the nature 
of the expected mathematical goals for the students, not only as part of their plan-
ning but also in their ongoing interactions with students. There is, however, an 
inherent tension here between articulating a mathematical goal to students and hav-
ing students discover or investigate a mathematical concept or idea in a lesson. In 
the latter case, the articulation of the goal needs to be rather general, so as to not 
reveal the concept to be discovered or investigated. Further, Smith and Stein ( 2011 ) 
argue that articulating the mathematical goals (at the design phase, especially if the 
design is done other than by the class teacher) can support furthering teacher knowl-
edge of the specialized mathematics. 

 In the case of the L-Shaped Area task, the mathematical goals include the array 
model of multiplication, conservation of area, and seeing other ways of calculating 
area other than counting squares one by one. Experience with the task also lays a 
foundation for study of later concepts such as area conservation (that is useful in the 
process of calculating the area of parallelograms), breaking a composite shape into 
parts (that can inform the calculation of the area of trapezoids), and subtracting 
areas (that may be used in calculating the area of paths around shapes). The task 
would be entirely different if the area formula,  A = l × w , was made explicit to stu-
dents as the goal of the task. 

 In the Worded Questions, the mathematical concepts include the relationship 
between addition, subtraction, and their representation and the different forms of 
subtraction (e.g., take away, difference), with generality in recognizing reciprocal 
relationships between addition and subtraction. Such aspects commonly are empha-
sized in curriculum statements. In Australia, for example, the content of relevant 
aspects of the curriculum is presented through statements such as:

  Represent and solve simple addition and subtraction problems using a range of strategies 
including counting on, partitioning and rearranging parts. 

   The Shopping task does not focus on specifi c mathematical concepts, unless it is 
posed in the context of proportionality, in which case the extent to which the propor-
tional allocation of the costs represents fairness in the different tasks can be the 
focus of discussion. 

 The specialized perspective, as described by Ernest, also addresses the process 
goals associated with the tasks. Examples of such process goals for students are:

•    Making connections between intuitive knowledge and formal mathematical prin-
ciples/conventions/ideas  

•   Developing mathematical modeling and problem-solving skills  
•   Developing algebraic thinking/the ability to express generality  
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•   Learning that jumping with the fi rst idea that comes to mind is not always a good 
strategy  

•   Learning the value of examining multiple solutions to a problem and building 
connections between those solutions    

 These process aspects are implied in the L-Shaped Area task by the invitation to 
students to provide two solution methods. In Worded Questions, the potential for 
generality is in recognizing reciprocal relationships as well as in the interaction 
between the question forms. In the Shopping task, the mathematical processes 
include the justifi cations of a “fair” solution, comparing solution options, and the 
applicability of the same solution method to both of the questions. 

 Such process goals are evident in four strands of mathematical profi ciency 
described by Kilpatrick, Swafford, and Findell ( 2001 ). The fi rst strand,  conceptual 
understanding , includes the comprehension of mathematical concepts, operations, 
and relations. The second strand,  procedural fl uency , refers to carrying out proce-
dures fl exibly, accurately, effi ciently, and appropriately and, in addition to these 
procedures, having factual knowledge and concepts that come to mind readily. The 
third strand,  strategic competence , includes the ability to formulate, represent, and 
solve mathematical problems. The fourth strand,  adaptive reasoning , includes the 
capacity for logical thought, refl ection, explanation, and justifi cation.  

3.5.2     Designing Tasks that Address a Practical Perspective 

 Taking a different stance, Goos, Geiger, and Dole ( 2010 ) use a model of mathemat-
ics focusing on real-life contexts, application of mathematical knowledge, use of 
representational, physical, and digital tools and that emphasizes cultivation of posi-
tive dispositions toward mathematics. Their model, shown in Fig.  3.3 , illustrates the 
considerations associated with tasks.

   This model connects various aspects informing task design. Goos, Geiger, and 
Dole ( 2013 ) used the term  mathematical knowledge  to include not only fl uency with 
accessing concepts and skills, but also problem-solving strategies and the ability to 
make sensible estimations. Such knowledge is accessed in solving the L-Shaped 
Area task and the Worded Questions. On one level, the mathematical demand of the 
Shopping task is limited, although it is noted that in junior secondary levels it can 
be anticipated that some students might propose a solution based on proportionality 
which would represent that mathematical knowledge. 

 Goos et al. also proposed  positive dispositions , “a willingness and confi dence to 
engage with tasks and apply their mathematical knowledge fl exibly and adaptively” 
(p. 591), as part of their model (note that this is also the fi fth profi ciency from 
Kilpatrick et al.,  2001 ). One of the elements of disposition is related to the opportu-
nities for students to make decisions on the nature of the solution and the pathway 
to the solution. This relates to the notions of control and student decision-making. 
The L-Shaped Area task and the Shopping task both allow such opportunities. 
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Worded Questions has this element when the students are seeking to describe 
similarities and differences between the questions. 

 Another element that can foster a positive disposition is if the task has what is 
described as a “low fl oor, but high ceiling”. Recognizing that it is not clear whether 
it is the task that fosters the positive disposition or the disposition that facilitates the 
engagement with the task, all three of the tasks have the potential to foster improved 
disposition. The “fl oor” (which in this case refers to the level at which students 
might initially engage with the task) in the L-Shaped Area task is represented by a 
solution in which the square units are counted individually, in the individual Worded 
Questions by making a physical model of the ducks or a number line segment, and 
in the Shopping task by fi nding a single possible cost breakdown. The “ceiling” in 
the L-Shaped Area task is represented by any of the solutions expressed in general 
form and also perhaps by the articulation of a general solution strategy; in Worded 
Questions by explaining the similarities and differences between the rows and col-
umns, respectively; and in the Shopping task by contrasting the solutions for the 
two forms and considering which approaches can apply to both problems and 
which do not. 

 A third element presented by Goos et al. ( 2013 ) is the tools, which they elaborate 
as follows:

  In school and workplace contexts, tools may be representational (symbol systems, graphs, 
maps, diagrams, drawings, tables), physical (models, measuring instruments), and digital 
(computers, software, calculators, internet). (p. 591) 

   None of the three tasks require the use of digital technology to assist in formulat-
ing solutions, although calculators may be useful for students who might otherwise 
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not be able to engage with the tasks. In the L-Shaped Area task, the two diagrams 
provide a tool with which to represent the solutions and could be presented as 
manipulable screen objects. In Worded Questions, one tool could be a number line 
that is used to represent the actions in solving the task. In the Shopping task, a tool 
could be the ways that students choose to represent their solutions. 

 The Goos et al. ( 2013 ) model also includes the context, which can range from 
“personal, citizenship-related, work-related” on one hand to contexts related to the 
curriculum. In other words, the purpose of posing a particular task might be to expli-
cate ways that the world is mathematized or the purpose might be to address aspects 
of the intended curriculum. The L-Shaped Area task and Worded Questions are situ-
ated at the “curriculum” end of this range, whereas the Shopping task is more at the 
“personal” end. 

 A further aspect is a critical orientation to numeracy which Goos et al. describe 
as appropriate and inappropriate uses of mathematical thinking. A critical orienta-
tion is most evident in the Shopping task. Given that arguable solutions range from 
$90 to $135 (ignoring the solution in which the discount is not shared) in the fi rst 
situation, the considerations that might inform choices about what the shoppers 
might pay come to the fore. Indeed, not only explaining the respective solutions but 
also listening to the explanations of others is connected to developing such a critical 
orientation. This might include consideration of friendships and the perspective on 
fairness. 

 Although it could be argued that tasks designed for supporting the learning of 
mathematics are more likely to achieve their goal if the mathematics is both impor-
tant and explicit, this section illustrates that there is tension in resolving the balance 
between purely mathematical goals and those which are more social or personal or 
related to illustrating the usefulness of mathematics in making everyday decisions.   

3.6     Task Design Processes 

 Chapter   2     presents an overview of frameworks and principles for task design, ana-
lyzing them on different frame levels: grand, intermediate, and domain-specifi c 
frames. Clear throughout this discussion is the inextricable relationship between the 
design of the task and that of the learning environment. These two must be consid-
ered simultaneously. 

 Ron, Zaslavsky, and Zodik ( 2013 ) described a three-stage, backward-design pro-
cess that includes:

•    Stating goal(s) and connecting the task to the goal(s)  
•   Designing a generic task that addresses these goals; and then (when applicable)  
•   Carefully choosing the specifi c examples to “plug in” the generic task (p. 641)    

 One critical aspect of this design process is to provide well-thought-out starting 
points for teachers. Another aspect is to explore the role of tasks in fostering 
 awareness of the role of tools, in this case meaning the mathematical routines or 
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procedures that can be enlisted in the solution of problems. They argued, “From a 
design perspective, with respect to tools, we would like teachers to be able to 
design tasks that foster discussion of the merits and limitation of existing as well 
as new tools” (p. 642). They continued:

  This constitutes a challenge for teachers and teacher-educators, because on the one hand, 
we often want to point to the limitation of existing tools for a particular purpose, while we 
need to maintain the usefulness and merits of the existing tools for other purposes (other-
wise students will believe that much of what they learn will need to be abandoned in the 
future). … Thus, the progression from existing tools/concepts to new tools/concepts should 
lead to an extended mathematical ‘toolbox’. (p. 642) 

   In their perspective, the focus of the task design was to emphasize to students 
that they were acquiring new tools for future use, such as maybe learning a formula 
for area of a rectangle in the L-Shaped Area task or number line use in Worded 
Questions. An associated perspective was outlined by Chu ( 2013 ) who described a 
process of task design with two components: the task design itself and consideration 
of a particular context in which students were learning mathematics in a second 
language (English). The process he outlined started with specifi c academic and lin-
guistic goals, selection of inputs to tasks, specifying the conditions constraining 
those inputs, clarifying procedures needed, and predicting outcomes as both prod-
ucts (artifacts produced) and processes (ways of engaging). He argued that:

  This framework shapes activities built around mathematical practices to scaffold student 
engagement in interactive tasks that foster their emerging autonomy. … Results suggest 
trajectories for teachers’ shifting understanding of conceptual, academic, and linguistic 
goals as they appropriate a pedagogy of promise that fully develops the potential of all 
(English language learners). (p. 559) 

   As Chu explained, one aspect is the design of tasks, and another aspect is the 
design of the instruction that draws upon and connects those tasks. Chu articulated 
fi ve principles that guide the design of instructional experiences for students: aca-
demic rigor, high challenge/high support, quality interactions, language focus, and 
well-constructed curriculum. 

 Knott, Olson, Adams, and Ely ( 2013 ) describe a process that focuses on adapting 
suggestions from texts to inform instruction. They suggested that this process, 
which they refer to as  turning a lesson upside down , involves both components—
design of the task and consideration of the learning environment:

•    Selecting a lesson from a text and identifying the key mathematical understanding 
or idea  

•   Writing the mathematical idea as a generalization  
•   Deciding whether the key understandings entail justifi cation  
•   Finding or designing a task or sequence of tasks that promotes exploration of the 

key idea  
•   Writing questions for students that can prompt them to generalize the key idea    

 It is important to consider further the process of converting textbook examples to 
classroom tasks. Particularly in the United States, teachers often take text resources and 
the associated teachers’ guides as the curriculum and plan their teaching from there. 
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For example, Remillard, Herbel-Eisenmann, and Lloyd ( 2009 ) described planning 
processes as “transforming curriculum ideals, captured in the form of mathematical 
tasks, lesson plans, and pedagogical recommendations into real classroom events” 
(p. 1). Stein et al. ( 1996 ) described the initial phase of such planning as the teacher 
taking the mathematical task as presented in instructional materials, before the 
transformation process. 

 Peled and Suzan ( 2013 ) describe a different process of task design. They focus 
on what they described as “simple” tasks, meaning tasks that are parsimoniously 
posed in order to support a shift toward a model of teaching based on  problem- solving 
approaches. They argued that such tasks are preferable to complex modeling tasks 
because of the resistance of teachers to using such tasks initially. Peled and Suzan 
( 2013 ) suggested that their tasks serve a double purpose: both to create learning 
opportunities and to serve as a model for future task creation by teachers. In offering 
examples of their simple tasks, they wrote:

  One of the tasks involved cutting greeting cards … and the second involved pouring beer 
from a container into cans. The main and relevant difference between the problems involves 
the rigidity of the cardboard versus the “fl exibility” of liquid. This feature results in differ-
ent types of “remainders”, as the rigid material does not allow remaining scraps to be put 
together (unlike a situation such as cutting cookies with “fl exible” dough). This difference 
leads to fi tting very different mathematical models. (p. 633) 

   In other words, the process of task design can focus on affective, practical, and/
or mathematical aspects, and these foci can be specifi c or implied. Further, the focus 
might be on tools and sequences, and this design process infl uences both the task 
itself and the learning experiences constructed around the task, including the learn-
ing of teachers. 

3.6.1     The Role of the Authority and Autonomy of the Teacher 
in Designing and Implementing Tasks 

 A further infl uence on the design and implementation of tasks in classrooms is the 
role of the teacher either in adapting a task developed by others (as previously indi-
cated) or in designing the task in the fi rst place. Although there is substantial evi-
dence that the implementation of tasks by teachers can subvert the aims of the task’s 
designer, such as by reducing or increasing the demand of the tasks on the students 
(see, e.g., Desforges & Cockburn,  1987 ; Prestage & Perks,  2007 ; Stein et al.,  1996 ; 
Tzur,  2008 ), it seems also that involving teachers in consideration of design issues 
can affect the potential of the tasks. This aspect of task design and implementation 
is further elaborated on in Chaps.   2    ,   5    , and   6    . Here we note two aspects connected 
directly with task design. 

 Askew and Canty ( 2013 ) collaborated on a task design and teacher learning proj-
ect. They introduced teachers to broad principles underpinning the tasks and argued 
that the tasks were:

  …appropriated in ways that may not have matched with the intentions of the designer, but 
rather than this being an obstacle it led to rich discussions around the nature of teaching 
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and learning. … Rather than trying to construct tasks that are ‘teacher-proof’ or at least 
supported by materials that explicate in detail the intended style of implementation, that 
working with the fuzziness of appropriation can be a strength. (p. 531) 

   Kullberg, Runesson, and Mårtensson ( 2013 ,  2014 ) describe a project in which 
teacher adaptations of a task enhanced student learning. Rather than seeking to limit 
teacher adaptations, they fostered and celebrated them. In their learning study 
approach, Kullberg et al. ( 2013 ) focused on the principles of variation (for more on 
Variation Theory, see Chap.   2    ) to structure a lesson focused on division by a number 
between 0 and 1. In their analysis they concluded:

  The case study is an example of a design project where teachers’ refl ection on their teaching 
and the learners’ responses can lead to a refi nement of the task design …, but also to a 
greater accuracy and clarity about what to point out and make discernible to the learners. 
(p. 617) 

   Each of these examples recognizes the central role of the teacher and the teach-
er’s knowledge and learning in the (re)design of tasks and their implementation. 
Rather than fearing that teacher adaptations may limit the potential of the task, as is 
assumed by some designers, involving teachers as far as possible in the intentions of 
the designer can enhance the implementation of the task. 

 Authorship is considered further in Chap.   5    . Here we have not said much about 
teachers creating tasks for their own use, but in Chap.   4     the notion of emergent task 
design in response to what takes place in lessons is an important related idea.  

3.6.2     Problematic Aspects of Converting Tasks from One 
Culture to Another 

 An issue about anticipated pedagogical intentions is the adaptation of a task designed 
for one culture for the use in a different culture. Culture here is taken in both its 
broad interpretation as being associated with a different geographic location and 
language and at times in its narrower interpretation to mean the prevalent cultural 
context of the subject (mathematics) and of the classroom, including the social and 
sociomathematical norms in place. This section addresses the former of these, while 
the latter issues are considered in the subsequent section. 

 There are a number of key connections between task formulation and culture. 
These include: the cultural specifi city of task context, the relationship between cul-
tural considerations and the types of solution prompted, the precision of the avail-
able language and its relationship to mathematics concepts, and the compatibility 
between the cultural background of the teacher and the students, national traditions, 
and classroom constraints. 

 It is not a simple task to take curriculum from one language and culture to use in 
another. If it were merely a matter of translation rather than transformation, one 
could seamlessly appropriate curricular materials. But much of the cultural context, 
especially in mathematics, is implicit, nestled within the sequencing of tasks and 
activities, the choice of context, and the social and mathematical norms of the specifi c 
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classroom and of the broader society. Further, both across and within cultures, 
socioeconomic differences can infl uence the contexts that are meaningful to students. 
The culturally and contextually dependent relationships among different mathe-
matical concepts are complex. In short, the successful implementation of  specifi c 
curriculum and/or tasks depends to a large extent on the teacher as a cultural inter-
preter. It is the teacher’s role to understand and interpret the task as it is contextual-
ized in one culture and re-present it as a culturally relevant and appropriate task in 
her own context. The mathematical goals of a set of tasks or a piece of curriculum 
may be quite different across cultures. 

 To illustrate this point, the L-Shaped Area lesson described earlier used Japanese 
tatami mats to introduce area as covering; these are not square. In a Western context, 
the teacher may choose to reinterpret the task to involve carpet or tile squares or 
some other contextually relevant material. Alternatively, the teacher might use the 
tatami mats with part of the intention being to include that international dimension 
in the student experience. The Shopping task, as posed, is specifi c to higher-income 
groups, but the notion of “two-for-one” discounts are common, and so it can be 
expected that teachers adapt contexts to suit their students while preserving the 
essential elements of the tasks. 

 In the study that generated the Worded Questions example, Bartolini Bussi et al. 
( 2013 ) compared and contrasted the cultural contexts of a piece of mathematics cur-
riculum and described the differences in approach, context, sequencing, and under-
standing between Chinese and Italian teaching cultures. They conducted a study in 
which Italian teachers reinterpreted the mathematics inherent in the task from the 
Chinese curricular approach to make it culturally accessible for teaching in Italy. 
Bartolini Bussi et al. ( 2013 ) described how they used a complex task from a Chinese 
textbook that emphasized the connectedness and complementarity of addition and 
subtraction and transformed it into several separate tasks, some involving addition 
and some subtraction. In the Italian curriculum, as in many western societies, the 
mathematical concepts of addition and subtraction are sometimes taught as separate 
mathematical concepts, each with its own set of rules. In contrast, in the Chinese 
tradition those operations are seen as inextricably intertwined representations of the 
additive relationship, as yin and yang and warp and weft, with understanding devel-
oping only by considering the whole fabric. Bartolini Bussi et al. ( 2013 ) illustrated 
a fundamental principle of the Chinese curriculum: “one problem, multiple 
changes”, which emphasizes varying conditions and conclusions. This stands in 
stark contrast to the western approach of sequencing learning from one concept to a 
single subsequent concept, with limited emphasis on connections. Bartolini Bussi 
et al. ( 2013 ) described how practicing teachers in their project “re-designed it to 
tailor it to the Italian tradition and to their individual teaching styles and systems of 
beliefs” (p. 554). They reported:

  Three main changes were introduced: (1) the single task has been transformed into a set of 
several tasks; (2) classroom work was organized according to a sequence inspired by the 
theoretical framework of semiotic mediation after a Vygotskian approach …; (a) individual 
or small group solution of each row of problems followed by the invention of three prob-
lems similar to the given ones, to foster the awareness of the problem structure; (b) collec-
tive discussion of the fi ndings, with teacher’s orchestration. (p. 554) 
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   In other words, rather than presenting the entire set of questions simultaneously, 
they were presented sequentially, with the variations emerging progressively. These 
changes are indicative of the expected ways of teaching in the respective countries. 
This was also evident in the decisions about representations in the Italian context:

  Moreover the solving graphic schemes (at the beginning) were removed and introduced 
later, after thorough exploration and solution of the problems, as students were not familiar 
with such schemes. In this way the use of a graphic scheme was acknowledged by students 
as meaningful and not perceived as an automatic answer to a given task. (p. 554) 

   In the Chinese classes, the number line was proposed as a prompt to an alternate 
representation of a solution. In the Italian classes, the line was removed to avoid it 
predetermining the solution path chosen by the students. 

 It is important to note that it is the particular features of the task, deemed impor-
tant and emphasized by the teacher, that are culturally dependent. In one culture, the 
emphasis might be on  solving the task and getting an answer . In another culture, the 
emphasis might be on the  process or processes by which the task is solved , and in 
yet another context, it may be  the connections and patterns that are observed over 
a set of problems  that are emphasized .  The classroom work then would focus on the 
processes by which different solutions were obtained, and much less emphasis 
would be placed on the answer itself. 

 Interestingly, the notion of perspectives on teaching and learning and task design 
being connected to particular cultures and languages is not restricted to the transfer 
of tasks across national boundaries. For example, in designing tasks for Australian 
Indigenous students, not only can the familiarity of the context be considered but 
also mathematical strengths of the students. Indigenous Australian students have 
well-developed conceptions of location that can be used in the teaching of more 
formal geometrical concepts. Further, where the composition of classrooms includes 
a mix of ethnic, racial, language, and socioeconomic student backgrounds, the dif-
ferences between the experience and orientation of the respective groups are impor-
tant design and pedagogical considerations.  

3.6.3     Classroom Culture and Anticipated Pedagogies 

 Student practices and expectations in the classroom depend on the establishment of 
social and sociomathematical norms. The prevailing classroom culture can have a 
signifi cant impact on anticipated pedagogies. If, for example, a teacher intends that 
students replicate routines that have been explicitly demonstrated, then a teacher- 
directed lesson structure supported by classrooms in which students attend to accu-
racy and detail is important. If, on the other hand, teachers seek to transfer some 
responsibility for learning to the students, then different processes and ways of com-
municating are needed. This is in part a function of the classroom culture and pro-
cesses that are established over time. 

 In an important meta-analysis of 49 research studies on classroom culture 
between 1991 and 2011, Rollard ( 2012 ) described three signifi cant and relevant 
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fi ndings that inform the connections between task design and pedagogies. Firstly, 
the meta-analysis found that the middle years of schooling (ages 9–14 years) are 
critical for connecting classroom goal structures and the formation of student atti-
tudes because it is in these years that parents and teachers become more interested 
in assessment of success, and there is more overt competition between students. 
Students in these years may be more reluctant to engage with tasks that they have 
not been shown how to do and sometimes avoid the perception of trying hard to 
avoid censure from other students (see Sullivan, Tobias, & McDonough,  2006 ). 
Particularly at these levels, establishing a positive classroom culture is a prerequi-
site to effective use of some types of tasks. 

 Secondly, Rollard ( 2012 ) concluded that classrooms that promote mastery, 
meaning those that focus on the learning of the content rather than competitive 
performance, are more likely to foster positive student attitudes to learning. This is 
similar to the fi ndings of Dweck ( 2000 ) who explained that students who seek mas-
tery of content are more willing to make learning decisions for themselves and are 
less dependent on the affi rmation of others. Such students tend to develop a growth 
mindset approach to learning, believing that hard work pays off. Rollard ( 2012 ) 
suggested that teachers can actively promote a mastery orientation in the students, 
in part by paying attention to the type of tasks that are posed and by emphasizing 
the process rather than the answer in the classroom. Dweck suggests that an empha-
sis be placed on hard work rather than on intelligence (we describe her ideas more 
fully below). Thirdly, Rollard concluded from the meta-analysis that classrooms in 
which teachers actively support the learning of all students promote high achieve-
ment and effort. 

 It is interesting to consider the similarities and differences in Rollard’s conclu-
sions and other models of classroom culture. For example, Cobb and McClain 
( 1999 ) argued that students should have opportunities for “personally experienced 
mathematical problems … (which) would constitute opportunities for them to 
learn” (p. 12). They also described the importance of classroom social norms, such 
as “explaining and justifying solutions, attempting to make sense of explanations 
given by others … and questioning alternatives when a confl ict of interpretations 
had become apparent” (p. 10). For Rollard and also Cobb and McClain, classroom 
culture is not created by establishing rules in advance but through the structure of 
lessons, the types of tasks that are posed, the ongoing interactions between teachers 
and students during lessons, and the relationship of the students with the teacher. 

 In another study, Brown and Coles ( 2013 ) explored specifi c ways in which teach-
ers took into account their established classroom cultures when designing tasks, so 
as to effectively establish or reinforce a desired classroom culture. Teachers consid-
ered the student age group, the classroom culture, their prior knowledge and skills, 
and the place of the task in the larger curriculum. In turn, the design of the task 
impacted the classroom culture, the students’ knowledge and skills, and often the 
larger curriculum. 

 Brown and Coles used the term  relentless consistency  to describe the desired 
teaching orientation needed for supporting student learning. For example, if the 
desire is to create a classroom environment where children are comfortable  struggling 
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with complex, open-ended problems, then time must be spent in establishing this 
comfort level. Once children are used to this, their expectation that they work in this 
way persists. Rather than seeking to design tasks that can be implemented as written, 
teachers make choices that require them to be “relentlessly consistent” about not 
telling students what to do. This is best achieved by designing and/or using a very 
familiar task, freeing up the teacher to attend to the consistency of what she values 
in the students’ work. 

 Of course, classroom culture is also a characteristic of context and the commu-
nity culture. Examples of relevant factors include the size of the class groups, the 
fl exibility of the furniture, whether the language of instruction is the fi rst language 
of the students, the classroom resources, and the processes of selecting students for 
the class. There are also factors related to the overall national cultural context. For 
example, there are Japanese technical terms that describe the purpose and enact-
ment of various aspects of lessons (see Chap.   2    ). Such terminology would no doubt 
assist teachers in establishing classroom ways of working. 

 Elaborating on this notion of classroom culture, Brown and Coles ( 2013 ) 
described part of the teachers’ role as being to create classrooms in which persis-
tence, consideration of alternatives, and justifi cation of reasoning are the norm. 
Brown and Coles ( 2013 ) also argued that establishing such a classroom culture and 
routines takes time to foster.

  … in designing and implementing tasks, teachers have, as a base for decision-making, the 
classroom cultures they have already established with their students. These cultures are 
developed over time from the fi rst lessons with a new group. (p. 623) 

   Similarly, Chu ( 2013 ) addressed pedagogical features of the specialized learning 
environment for learners of English on which he focused:

  … an architecture of three moments assists teachers in deconstructing broad goals into con-
nected intermediate objectives that fl ow together smoothly. (p. 561) 

   These three “moments” are specifi c phases of a lesson: preparing the learners, 
interacting with the concept, and extending understanding. 

 A further perspective on classroom culture is described by GEMAD ( 2013 ). 
Their approach includes an expectation that students will:

  develop their own cognitive strategies, manage different representations of the mathemati-
cal concepts, choose the best solution strategies, argue about their decisions and communi-
cate fl uently their thinking processes. (p. 570) 

   GEMAD described the teacher’s role in fostering this classroom culture to 
include making learning goals explicit, prompting groups of students to create their 
own solutions and to present these solutions to the class, and focusing on “argumen-
tation and justifi cation” (p. 572). An interesting aspect of the classroom culture that 
the GEMAD project was seeking is their explicit intention that students be grouped 
heterogeneously. 

 Effective implementation of the L-Shaped Area task is a product of a classroom 
culture which had been established earlier using the Japanese Lesson Study process. 
Although the Worded Questions task might be representative of a conventional 
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approach to teaching, the task of synthesizing across the tasks requires students to 
take a meta-view of the set of tasks and to explicitly look for and make connections 
among different but related procedures—a higher level of cognitive demand. This 
way of working is not established overnight. Similarly, the requirement in the 
Shopping task for students to consider the options suggested by others and to articu-
late their own preferences is a product of the classroom norms that have been already 
established. 

 If the designer of the task is not the classroom teacher, there is a need to antici-
pate what the culture of the classroom might bear, at least to suggest what kind of 
classroom culture and instructional approach might appropriately support the 
implementation of the designed task or task sequence. Taking the reverse perspec-
tive, the teacher can hypothesize the classroom approaches that might best support 
the implementation of a task. Indeed this emphasizes that tasks cannot be “teacher- 
proofed” and teachers must make active decisions on the implementation of tasks. 
In any case, there is always interaction between the task itself and its classroom 
realization.   

3.7     Considering the Students’ Responses in Anticipating 
the Pedagogies 

 Common to the three illustrative tasks are expectations that students will create 
mathematical knowledge by engaging with the task with thoughtful support from 
the teacher. The starting point is generally a task that is appropriately challenging 
for those who will engage with it and with the potential to be supportive of various 
mathematical product and process goals and to positively infl uence affective dimen-
sions of student engagement with the task. 

 Although many aspects of pedagogy have been addressed in earlier sections, the 
following seeks to describe some initiating aspects of pedagogy that have not so far 
been considered. There are three issues: the motivation of the students, the introduc-
tion of a task, and differentiating the task to ensure it is accessible to all students. 

3.7.1     Student Motivation 

 The fi rst issue associated and discussed in this section is motivation; goals might 
include:

•    Students enjoy the mathematics they are learning.  
•   Students see the usefulness of the mathematics to them.  
•   Students be able to interpret the world mathematically.  
•   Students see the connection between mathematics learning and their future study 

and career options.  
•   Students know that they can learn mathematics if they persist.    
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 Recognizing that all of these are important, and also acknowledging that different 
readers will have different preferences, it is arguable that the most critical goal is 
that students come to know that they can learn mathematics. If they do learn, then 
there is the potential that such learning becomes a lifelong endeavor and not merely 
a pathway to some possibly unrelated goal. Whether any of these goals are achieved 
depends on the implementation of the task and the response of the students. Dweck 
( 2000 ) argues that fi nding ways to support students is as much connected to their 
orientation to learning as it is to cognitive approaches. She categorizes students’ 
orientation to learning in terms of whether they hold either  mastery  goals or  perfor-
mance  goals. 

 Students with mastery goals, according to Dweck, seek to “master” the content 
and self-evaluate in terms of whether they feel they can transfer their knowledge to 
other situations. They remain focused on mastery especially when challenged. Such 
students do not see failure as a negative refl ection on themselves, and they connect 
effort with success. In contrast, students with performance goals are interested 
merely in whether their answers are correct. Such students want to learn but are more 
comfortable on tasks with which they are familiar. They give up quickly when chal-
lenged; they evaluate their achievements based on positive feedback from a teacher. 

 Another motivational factor is the mathematical intention behind the task. For 
example, the task designer might intend that students will learn particular mathemati-
cal concepts, they might apply the mathematics to a social situation, or the goal might 
be simply to elicit positive motivation of the students by increasing their interest in the 
result. All three of the illustrative tasks incorporate a mix of such factors. The 
L-Shaped Area task offers students experience with concepts which have the poten-
tial for future use rather than immediate benefi ts for learning. Similarly, delayed use-
fulness can claimed for the Worded Questions task. The Shopping task has a potential 
immediate utility and only if the teacher is able to elicit an effective discussion about 
processes of determining fairness would the longer-term utility become evident.  

3.7.2     Introducing the Task to the Students 

 A second issue is considering ways of introducing tasks to students. On one hand, 
teachers want students to be able to interpret the task demands. On the other hand, 
it is assumed that teachers will not give so much direction to students that it becomes 
impossible for them to create their own mathematics through working on the task. 

 Several studies fi nd teachers who somehow reduce the challenge of tasks. Stein 
et al. ( 1996 ), in a classroom-based study of task implementation, noted a tendency 
for teachers to reduce the potential demand of tasks. Tzur ( 2008 ) argued that teach-
ers modify tasks when planning if they anticipate that students might not engage 
with the tasks without assistance. Charalambous ( 2008 ) argued that the mathe-
matical knowledge of teachers is a factor in determining whether they reduce the 
mathematical demand of tasks based on their expectations for the students. Another 
factor that places pressure on teachers is the reluctance of some students to take risks 
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in their learning. Desforges and Cockburn ( 1987 ), for example, reported a detailed 
study of primary classrooms in the United Kingdom and found that students and 
teachers conspired to reduce the level of risk for the students. Desforges and 
Cockburn argued that teachers can sometimes avoid the challenge of dealing with 
students who have given up by reducing the demand of the task rather than refl ecting 
on what might be causing them to give up. Teachers who increase the challenge of 
tasks have not been so systematically studied, but strategies for doing so have been 
reported by Knott et al. ( 2013 ) (see above), Lee, and Lee and Park ( 2013 ) (see 
Chap.   5    ), Prestage and Perks ( 2007 ). 

 Of course, many of the decisions on how to introduce tasks are made during the 
process of the introduction itself. For example, teachers explore what prerequisite 
language is known by the students and what they understand about the context in 
which the task is being posed. Again involving teachers more closely in the inten-
tions of the task designer, or the design process itself, may help to inform the task 
introduction process.  

3.7.3     Access to Tasks by All Students 

 A third pedagogical anticipation is that if a task is appropriately challenging for 
most students, it can be anticipated that some will fi nd it too diffi cult and may not 
engage with the task or rely too heavily on prompts from the teacher. The metaphor 
of Vygotsky’s ( 1978 ) Zone of Proximal Development defi nes the work of the class 
as going beyond tasks that students can solve independently, so that the students are 
working on challenges for which they need support. It seems that one approach is 
for teachers to plan variations to the original task that are more accessible for those 
students experiencing diffi culty or to plan tasks with multiple entry points, provid-
ing access for all students. 

 This notion of planned task variations is a consistent theme in advice to teachers. 
For example, a working group of teachers identifi ed 34 different strategies they used 
when intervening while students are working (Association of Teachers of 
Mathematics (ATM),  1988 ). The strategies were then grouped under headings that 
describe the major decisions teachers have to make about interventions, such as 
whether or not to intervene, why intervention is advisable, how to initiate an inter-
vention, whether to withdraw or proceed with the intervention, how to end an 
 intervention, and so on. The level of detail was fi ne-grained; for example, there were 
14 specifi c intervention suggestions about supporting students experiencing diffi -
culty, about half of which relate to task differentiation. Although it makes no sense 
to assume that a teacher can adopt all such strategies successfully, articulating 
teachers’ practices in this way does make them available for others to use. 

 Christiansen and Walther ( 1986 ), in describing the nature of student engagement 
in their learning, argued that:

  Through various means, actions are envisaged, discussed and developed in a co-opera-
tion between the teacher and the students. One of the many aims of the teacher is here to 
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differentiate according to the different needs for support but to ensure that all learners 
recognise that these processes of actions are created deliberately and with specifi c pur-
poses. (p. 261) 

   It is assumed that such approaches involve teachers inviting students who experi-
ence diffi culty to work on tasks that are similar to the ones undertaken by other class 
members, but differentiated in some way to increase the accessibility of the task 
without reducing conceptual content. The design of these alternate tasks can be 
undertaken by the original designer or by the teacher, either in anticipation or inter-
actively during the lesson. 

 It is perhaps in consideration and anticipation of students’ responses to tasks that 
the teacher’s role becomes critical. As described in this section, the teacher consid-
ers the motivation of the students, the level of prerequisite knowledge to engage 
with the task, the prevailing classroom mathematical culture, and the extent to 
which the task can be differentiated to allow all students to engage effectively.   

3.8     Summary and Conclusion 

 This chapter described factors infl uencing task design and features of task design 
that inform and are informed by teachers’ decisions about mathematical goals and 
anticipated pedagogies. By analyzing three typical tasks as examples, attention was 
paid to fi ve dilemmas (context, language, structure, distribution, levels of interac-
tion) and six tensions (epistemic, cognitive, interactional, mediational, affective, 
ecological). Designers and teachers need to consider these multiple dimensions to 
address different aspects of the task and pedagogic design, based on their anticipa-
tion of classroom implementation and students’ learning. 

 The process of task design could focus on either or both the specialized and 
practical aspects of mathematics, formal and natural language, and this focus can be 
specifi c or implied. We recognized and described the central role of the teacher in 
design/redesign of tasks and their implementation. 

 Teachers and designers might be aware of the cultural assumptions of a task in 
their (re)design process. Especially in the implementation in the classroom, stu-
dents’ understanding and activities are infl uenced by social and sociomathemati-
cal norms, and it is necessary to consider what the culture of the classroom might 
bear and at least suggest what kind of classroom culture and instructional approach 
might appropriately support the implementation of the designed task or task 
sequence. 

 Designers may seek to either limit the decision-making of teachers or augment 
it, either as part of the design process or by direct collaboration. Teachers in turn 
anticipate the pedagogies through the creation of compatible classroom cultures and 
consideration of hypothetical learning trajectories. Both designers and teachers may 
consider affective issues of task design, including the motivational responses of 
students and the need to maximize the engagement of all students.     
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4.1  �Introduction

Mathematical tasks or sequences of tasks are, we may assume, designed to embody 
mathematical knowledge in ways that are accessible to students and to improve 
students’ mathematical thinking. However, if we look beyond the intentions of those 
who design and select tasks and focus on the impact of students’ perceptions of 
tasks on their mathematical learning, some important questions are raised. One of 
the aims of this chapter is to gain insights into students’ perspectives about the 
meanings and purposes of mathematical tasks and to better understand how appro-
priate task design might help to minimize the gap between teacher intentions and 
student mathematical activity.

The title of the chapter is deliberately ambiguous; we attempt both to explore 
accounts of how students understand the meaning and purpose of the mathematical 
activity they undertake and to discuss how task design might take account of what we 
know about these perspectives. In Sect. 4.2 we explore research that indicates ways 
in which the perceptions of students may differ from the intentions of teachers and 
task designers and attempt to articulate more clearly the nature of those differences. 
Such research raises both theoretical and methodological challenges concerning how 
an observer can appreciate the student’s point of view. In Sect. 4.3 we explore ways 
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in which task design that takes account of students’ responses might reduce the 
discrepancies between the intentions of designers and/or teachers and students’ 
perceptions of their activity and achievements. Finally, in Sect. 4.4 we raise some 
questions for further research.

4.2  �Articulating the Gap Between Teachers’ Intentions 
and Students’ Perceptions and Responses

4.2.1  �Students’ Responses to Word Problems

One area in which research has focused on learners’ perspectives is the common 
practice of setting mathematical tasks within “everyday” contexts. The use of con-
textualized word problems has a long history and indeed is so deeply embedded in 
school mathematics that such problems have become stereotypical of the experience 
of learning, and perhaps more significantly being assessed in, mathematics. Contexts 
are often used by teachers or designers in order to make learning easier by giving 
meaning to mathematical ideas and showing their usefulness. However, there is an 
ambiguity in the use of word problems, as they are also traditionally used in assess-
ment, which suggests they are seen as more challenging than straightforward calcu-
lations; the lack of attention sometimes paid to the realism of the contexts chosen 
suggests that meaning and usefulness are lower priorities than the mathematical 
content (Ainley, 2012). In this section we try to understand the difficulties that arise 
when students are dealing with word problems; in Sect. 4.2.2 we return to the ques-
tion of “meaning”.

Research about learners’ perceptions of the use of contexts in mathematical 
tasks has suggested that these can differ considerably from the intentions of 
those who designed them (Cooper & Dunne, 2000). Although designers may 
choose contexts to offer real-world models to think with or to illustrate the use-
fulness of mathematical concepts in real life, pedagogic practice may lead stu-
dents to adopt “tricks” to bypass the contextual elements (e.g., Gerofsky, 1996; 
Verschaffel, Greer, & Torbeyns, 2006) or fail to appreciate the extent to which 
everyday knowledge is intended to be utilized in the mathematical task (Cooper 
& Dunne, 2000). Thus, despite the intentions of task designers, the use of con-
texts can serve to distract attention from the mathematics ideas. Tasks or task 
sequences which draw on real-world contexts, but which do not reflect the pur-
poses for which mathematics is used in the real world, may be perceived by 
students as evidence of the gap between school mathematics and relevance to 
their everyday lives.

Although the peculiar conventions of word problems as a genre have been 
explored (Gerofsky, 1996) and the relative cognitive challenges posed by different 
styles and formats of problems extensively researched (e.g., Csikos, Szitànyi, & 
Kelemen, 2012; Patkin & Gazit, 2011), the pedagogic value of such problems is 
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rarely questioned (Ainley, 2012). Much of the research in this field has demonstrated 
a considerable gap between the intentions of the teacher (or the task designer) and 
the activity of pupils. Many studies (e.g., Hershkovitz & Nesher, 1999; Verschaffel, 
2002) have revealed that the strategies used by pupils (and sometimes encouraged 
by teachers) to answer word problems successfully involve ignoring the context in 
which the problem has been set. They involve identifying key features of the prob-
lem, particularly the numbers and words such as altogether which signal the opera-
tion, and moving as quickly as possible to a numerical calculation; the story context 
of the problem is seen as a distraction. Gerofsky (1996) paraphrases this approach 
as follows:

I am to ignore … any story elements of this problem, use the math we have just learned to 
transform … [it]… into correct arithmetic or algebraic form, solve the problem to find one 
correct answer…. (p. 39)

This problem-solving strategy, using a “translation” of key words into arithmetic 
operations (Hegarty, Mayer, & Monk, 1995) can be highly effective in terms of 
obtaining correct answers and achieving good test scores, even though it may bypass 
the intentions of the teacher by failing to give consideration to either the mathemati-
cal structure of the problem or the context.

It is unsurprising that pupils “perceive school word problems as artificial, routine-
based tasks which are unrelated to the real world” (Verschaffel et al., 2006, p. 60), 
particularly given the lack of attention given to realistic content by some writers of 
word problems (Gerofsky, 1996). Pupils’ recognition of this lack of realism is dem-
onstrated vividly in studies which have engaged pupils in creating their own prob-
lems, where the examples include inappropriate uses of decimals (for specifying 
numbers of sweets) or ownership of unrealistic numbers of items, such as household 
irons (Pimm, 1987).

Verschaffel (2002) argues that this tendency to disregard everyday knowledge 
arises from pupils’ experience of the culture and practice of mathematics class-
rooms. A more nuanced view is presented in a wide ranging study by Cooper and 
Dunne (2000) which provides evidence of a difficulty some children, and particu-
larly those from lower socioeconomic groups, have in understanding the implicit 
rules of the mathematics classroom. They report observations of pupils who 
approached solving word problems by drawing on aspects of their everyday knowl-
edge in ways which were not intended by the teacher or task designer. For example, 
when given a problem designed to be solved using simultaneous equations, set in 
the context of buying drinks and popcorn at the cinema, some pupils used the actual 
price that they have recently paid for a canned drink rather than using information 
given in the problem to work it out.

It appears that the use of problems which contextualize mathematics in “real-
world” situations may serve to extend rather than to reduce the gap between 
teachers’ intentions and students’ responses. We now introduce two concepts which 
offer a model of the classroom context with the potential to shed light on the reasons 
for this gap.
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4.2.2  �The Student’s Situation

In this section, we turn to the question of the “meaning” which can be constructed 
by the students in the situations that they encounter at school. We thus discuss the 
conditions in which it might be useful to use a material or “real” context. When the 
teacher is planning a task or managing this task during a lesson, he/she has some 
specific objectives; he/she knows more or less in advance what the goals are. In 
contrast, students try to adjust to what they perceive as the teacher’s objectives.

In order to better understand what the point of view of the students is, two con-
cepts seem useful within the framework of the Theory of Didactical Situations in 
mathematics (Brousseau, 1997; Brousseau, Brousseau, & Warfield, 2014). Didactic 
contract points to the implicit interpretations that have been shared between stu-
dents and teachers about a specific type of task or knowledge (see Chap. 2). Milieu 
refers to what the student is actually dealing with: concrete objects and elementary 
mathematical objects. The student’s situation, and hence their understanding of the 
task, is based on these two aspects (see Barquero & Bosch, 2015).

One may think that all this is quite straightforward; the teacher sets the contract 
and the student’s milieu, and thus he/she makes his/her intention clear for the stu-
dents. But it is not so simple! The didactic contract is mostly implicit and its features 
are never really fully decided by a teacher. Pupils become aware of some recurrent 
aspects relative to mathematical tasks, and these regular features evolve into some 
kind of implicit rules. The situation described by Cooper and Dunne in relation to 
contextualized problems might be seen as an example. The implicit contract adopted 
by the teacher or the task designer is that the real-world context provides a frame 
within which the mathematical problem is given meaning. It is not important that 
this context is genuinely realistic in its details (such as the actual prices of items) 
because it is the mathematics that is really important. Many pupils will derive from 
this the rule described by Gerofsky (1996) (see Sect. 4.2.1), and indeed this may be 
reinforced by aspects of pedagogy. However, others may not recognize the implicit 
didactic contract and focus attention on the context rather than the mathematics.

Often teachers are not aware of these “rules”, particularly when they are not 
mathematically correct. For instance, pupils may think that all equations always 
have a unique solution, because all the equations they have solved previously did 
have only one solution (e.g., ax + b = 0; a ≠ 0). Thus, the didactic contract is at the 
core of implicit understandings between pupils and teachers and also plays a part in 
some gaps of understanding between teachers and pupils.

Other important differences in points of view may be generated by the milieu of 
the task itself. The teacher, when he/she plans a task, has her teaching goal in view, 
whereas the student has only the milieu and the contract in order to understand what 
the task really is about. One important point is that the milieu is never only material, 
even when pupils work with objects. For instance, in infant school a teacher may 
show a picture with three identical toy bears and ask: “how many bears are in the 
picture?” and a pupil may say “mine is different”. This seems not to be relevant for 
the task, because for the teacher, the bears are not interesting in themselves and only 
their quantity is interesting. But for this pupil, bears are the important things and the 

J. Ainley and C. Margolinas

http://dx.doi.org/10.1007/978-3-319-09629-2_2


119

quantity is not relevant since they are all the same! This kind of gap may originate 
from the fact that “how many” was only related to the contract “when the teacher 
says how many you have to count and say the last number”. How many does not 
trigger any feedback from the situation; only the teacher and some of the more 
advanced pupils know if the answer is correct or not. There is no reason inherent in 
the task for wanting to know how many bears there are. In contrast, if the question 
was “put in a basket the exact quantity of caps needed to give one cap to each bear”, 
counting the bears now has a purpose. The interest of the pupil may be on the bears, 
but even if she is distracted by the context, she might realize that in order to give the 
exact quantity of caps and make the distribution of the caps she has to do something, 
to develop a strategy. One of these strategies is to count the bears and count the caps 
until the last number pronounced is the same in both. In this case, the activity of 
counting is not only a response to the contract but prompted by the existence of 
feedback from the milieu. Thus, the design of the task itself creates the possibility 
for students and teachers to have the same interpretation of the task.

We can now turn back to the question of “meaning”, using the example of the 
bears. Often teachers use contexts which are emotionally important for young pupils 
because they want to trigger their interest, and sometimes this is wrongly under-
stood as the way to give “meaning”. As we mentioned in Sect. 4.2.1, this may lead 
to serious misunderstanding. But material objects are necessary in order to build 
tasks which allow students to try their own procedures. Brousseau (1997) describes 
the milieu as the non-intentional part of the situation; objects have no intention, but 
they have properties which may give feedback if the situation is built to permit this 
feedback. That is how we analyze the difference between “how many bears?” and 
“put the exact quantity of caps in order to give one cap to each bear”. In the first situ-
ation, if the pupil does not know how to count or gives the wrong number, the 
teacher has to tell her that this is not the right number (or asks other pupils to do so). 
To give an explanation, the teacher has to count the bears, that is, to do the action in 
place of the child herself. In the second situation, if the pupil has put the wrong 
number of caps in her basket, she will realize that this is so when she is allowed to 
try the caps on. This feedback is given by the milieu, it cannot be confused with a 
moral judgment, as right or wrong are sometimes considered. The role of the teacher 
is thus completely different: he/she can interact with the student in order to prompt 
her to try another solution or to explain what she thinks might be the problem. The 
student can play the same “game” again and learn from this replay.

We now use the notions of contract and milieu to shed light on the development 
of our main questions.

4.2.3  �When Student’s Milieu and Teacher’s Planned  
Milieu Are Not the Same: An Example

Different interpretations of the classroom situation by students have been discussed 
in Sect. 4.2.1 in the context of word problems, where a “real-world” interpretation 
of the problem by some students may lead to different views of what is required in 
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the same task. In this section, we develop an example of the same phenomenon of 
misunderstanding which does not originate from a word problem. This analysis 
(Comiti, Grenier, & Margolinas, 1995) has triggered a lot of French research about 
similar phenomena.

The question “is −1 the square of a number?” was part of a set of ten preliminary 
questions during the first lesson of a module on square roots for 15-year-old stu-
dents. The (very experienced and competent) teacher expected no major difficulty 
for the students in answering this question.

The path of reasoning by the students, which was anticipated by the teacher, was:

•	 Try some possible candidates: +1, −1 calculate the square and obtain +1.
•	 Connect this fact to the known rule: minus by minus is plus.
•	 Answer: it is not possible, there is no number of which the square is −1.

Thus, the teacher was quite surprised when Michael told her that he had a 
solution, which was “the negative square”. Because she didn’t understand fully 
what Michael had in mind, she asked him to go to the blackboard. Michael wrote 
thus:

	
-( ) =-1 1

2

	

She was even more surprised when a lot of students declared that they agreed with 
Michael. In her expected view of the whole lesson, unexpected phenomena had 
occurred and the planned progression did not go smoothly.

Our analysis, which was based on the structure of the milieu (Brousseau, 1986, 
1990; Margolinas & Steinbring, 1994), offers a way to understand Michael’s situa-
tion. Like every student, Michael was introduced to whole numbers in close rela-
tionship to their written form; “2” and “two” were in this sense the same thing, 
which means that “2” was not distinguished as a particular notation for the concept 
“two”. This is certainly normal for small integers, when you want children to flu-
ently link * *, “two stars,” and 2. When decimal and rational numbers were intro-
duced, Michael might have been told that 2, 2.0, and 4/2 represent the same number, 
but he might have understood that 2 was the result (the “true” result) of 2.0 and 4/2. 
What we want to stress is that Michael might not have had the occasion to differenti-
ate the number and its written signs.

If we keep that in mind, we might understand Michael’s answer. We can infer his 
possible reasoning as follows:

•	 Write the possible well-formed expressions using the signs: “−”, “1”, “2”, and the 
brackets “()”; you can obtain (−1)2, −(1)2, and −12 (but not, e.g., (−)12 which is 
not well formed)

•	 Calculate the result and see if some expressions are equal to −1. You find two 
expressions: −(1)2 and −12 which are the same if you consider that the brackets 
in the case of (1) are not useful

•	 Tell the teacher your answer
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The objects of Michael’s reasoning are not numbers but signs. The milieu 
Michael interacts with is totally different from the milieu which was anticipated by 
the teacher. Furthermore, this milieu is more familiar to other students who agree 
with him.

During the following part of the lesson, the students resisted the teacher’s tenta-
tive attempts to reestablish the lesson on the basis she needed. For instance, one of 
the following questions was “is it possible for two different numbers to have the 
same square?”; 4 and −4 are proposed but some students considered these numbers 
as opposites but not different. If you refer to notation and not numbers, this is not so 
strange, for instance, “lion” and “Lion” are the same words, even if their writing is 
slightly different, which will be taken into account in certain circumstances (e.g., if 
the word “lion” is at the beginning of a sentence).

Furthermore, at the end of the lesson, the teacher asked the students to write the 
following sentences:

•	 a2 is the square of a.
•	 a2 is the square of –a.

The students contradicted the teacher and asked for some brackets to be added in 
the last sentence:

•	 a2 is the square of (−a).

We interpret the students’ response as follows: if you consider “the square” as 
“the sign 2” and apply this rule in writing, the teacher’s second statement should be 
−a2 is the square of −a, and since they know that a2 is not equal to –a2, the students 
want the teacher to add the brackets, giving (−a)2 as the square, which they believe 
is equal to a2.

This case shows that it is difficult to define “a task”. In fact, if the teacher had 
phrased her question differently, for instance, if the question had been “is it possible 
to multiply a number by itself and obtain the result −1?” the absence of any refer-
ence to the written signs for a square number might not have triggered the same 
misunderstanding. For the teacher, both questions are the same mathematical ques-
tion because she considers numbers as theoretical objects, but for Michael and other 
students, these questions are not the same.

This case was the first description of a phenomenon which has been named as a 
situation’s bifurcation (Margolinas, 2005) and investigated by different French and 
francophone researchers (e.g., Bloch, 1999; Clivaz, 2012). In this case study, we 
show that prior knowledge (and not only a lack of prior knowledge), when it is not 
what the teacher is expecting, can lead to a deep epistemological misunderstanding 
between student and teacher. But another phenomenon is interesting here, which is 
related to teacher’s knowledge. In fact the task, which was considered very straight-
forward for the teacher, is ambiguous if you take into account students’ knowledge 
about numbers. In this sense the task is ambiguous, but this could have been a won-
derful occasion for the teacher to explain to the students what a square is (multipli-
cation of a number by itself) and to open a mathematical discussion about writing 
and numbers. In a sense, this task might be considered as an example of a missed 
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learning opportunity (Bikner-Ahsbahs & Janßen, 2013, pp. 156–157) and a missed 
emergent task. The conditions described for a successful emergent task are that:

The teacher must:

•	 Have mathematical knowledge that extends the content of the lesson.
•	 Show interest in the students’ learning processes.
•	 Be open for unusual ways on the part of the students. She must be willing to 

abstain from the planned course (Bikner-Ahsbahs & Janßen, 2013, p. 160).

In our observation of the “square of minus one” case, the teacher really showed 
interest in the students’ learning processes and was open to deviate from the planned 
course (in fact the first part of the lesson took much longer than she had expected, 
and she accepted that), but she did not know that students of this level might confuse 
number and written signs. Thus, what she lacked was not exactly “mathematical 
knowledge” but “mathematical knowledge for teaching” (Ball, Hill, & Bass, 2005; 
Ball, Thames, & Phelps, 2008).

We link this with our previous discussions, because word problems might appear 
as a particular case of a more general phenomenon, which takes into account stu-
dents’ previous knowledge about the situation. When everyday knowledge is 
engaged, as it may be in the case of word problems, the risk of different interpreta-
tions of the problem is certainly higher, which might explain why this kind of phe-
nomenon has been documented more frequently in “real-life”-based problems. Thus, 
the student’s perspective changes the very definition of task.

4.2.4  �Influence of the Didactical Contract  
on the Definition of Task

What we call a task has different possible definitions (see Chap. 2). Speaking solely 
about a task is a reduction of what the actual involvement of student and teacher 
implies, which is dealing with a situation which comprises a milieu and a contract. 
The situation which has been set up according to a particular design is constantly 
changing during class interaction: “the actions of teacher and student are mutually 
informing during the performance of a task” (Clarke & Mesiti, 2013, p. 173).

We have seen earlier that the way pupils interpret the milieu of the task can 
engage some pupils in a totally unexpected situation. If we now consider the 
contract, an exercise which seems to be a very straightforward task might instead 
develop into a completely open task depending on the contract. Clarke and Mesiti 
(ibid., p.  178) offer an example from their observation in a Japanese school, in 
which “the seemingly simple pair of simultaneous equations 5x + 2y = 9 and 
5x + 3y = 1 engaged the class for a 50-min lesson” (ibid., p. 178). Discussing the 
lesson, the teacher emphasized prompting students’ reflections on “what solving 
equations is all about” (ibid., p. 178) and not only on the actual result. Clarke and 
Mesiti argue for a focus on “well-taught” mathematics rather than “good tasks”, 
taking into account the way students may involve themselves in mathematical tasks 
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and the way mathematical tasks are employed in order to maximize students’ voice 
and agency (ibid, p. 181).

Moreover, tasks cannot be dissociated from the ways of working. As Coles and 
Brown (2013) claim: “In any task, as well as learning some mathematics, students 
are learning about what learning mathematics is like in this classroom; for us, the 
choice to use any task cannot be dissociated from a choice about ways of working” 
(p. 184).

The didactical contract being mostly implicit, it is not mainly shaped by what the 
teacher says explicitly but by what the teacher regularly encourages in the class-
room. The implicit nature of the didactical contract implies that explanations from 
the teacher are not sufficient to generate a change of contract.

For instance, Johnson (2013) designed a sequence of four tasks for 7th grade 
pre-algebra students by adapting the well-known bottle problem developed by Swan 
(Swan, 1985). “Given the context of a bottle filling with liquid being dispensed into 
the bottle at a constant rate and a picture of a bottle, the bottle problem requires 
students to sketch a graph of the changing height of the liquid as a function of the 
changing volume” (Johnson, 2013, p. 212). To adapt this basic task, Johnson first 
reversed the activity by providing a graph and asking students to sketch the appro-
priate bottle and later by providing a computer environment which linked dynamic 
sketches of filling shapes to graphs as in Fig. 4.1.

The dynamic sketches were intended to foster students’ consideration of relation-
ships between covarying quantities. “The task sequence is designed to support stu-
dents’ progression in using nonnumerical quantitative reasoning to coordinate 
covarying quantities” (ibid., p. 213).

However, the importance of calculation during a mathematics lesson, acquired 
during previous schooling, might have been too strong for some students:

The responses of two students, Navarro and Myra (who participated in different interview 
pairs), provide insight into the kind of difficulty students might have. When Navarro and 
Myra were presented with the filling triangle task, both of them attempted to determine 

Fig. 4.1  Different sketches used by Johnson (Johnson, 2013, p. 213). (a) Filling rectangle sketch. 
(b) Filling triangle sketch
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amounts of area. Even after prompting to not worry about making calculations, Navarro’s 
persistence in trying to calculate amounts of area made it seem as if he depended on calcu-
lating amounts of areas to make such predictions. Unlike Navarro, after my prompt to not 
worry about how to calculate the area, Myra smiled and exclaimed “Oh, I get you now!” 
When I asked her to explain, she said “the area is getting bigger, but how much it increases 
is getting smaller.” By no longer attempting to determine amounts of area, Myra was able 
to describe variation in how the area was increasing. (ibid., pp. 217–218)

The prompting to not worry about calculation proved sufficient to trigger another 
kind of reasoning from Myra, but was not sufficient to trigger the same response 
from Navarro.

More generally, given that the epistemological choices which have been made 
throughout the mathematics curriculum are generally built on deductive theory, it 
may be difficult, not only for students but also for teachers, to interpret a way of 
dealing with mathematics based on the modeling aspect of mathematics (Job & 
Schneider, 2013). This is particularly problematic when it is not possible for stu-
dents to understand the deductive aspects of some mathematical knowledge at the 
beginning of their studies, which is the case in particular for calculus in high 
school.

These reflections lead to the consideration of extreme complexity in what a task 
is when we consider how the student might understand the task within a didactical 
contract. It also challenges researchers’ analysis when their observations are too 
rapid; if they are not aware of the prevalent contract in the class, they might not 
understand fully the task-student-teacher interactions.

4.2.5  �Student’s Perception of the Meaning and Purpose 
of the Task

The way in which a student perceives the meaning and purpose of a task will have 
an impact on the aspects of the task he/she focuses on and the activity he/she under-
takes in response to it. As has already been discussed in previous sections, the stu-
dent’s perception of the purpose of the task may be rather different from that of the 
teacher or the task designer. In the example in Sect. 4.2.2, although the teacher had 
designed a task about counting, the child saw the purpose of the task as talking 
about bears. We also see differences in the ways in which the meaning of a task may 
be interpreted by students and by teachers. Cooper and Dunne (2000) report stu-
dents misinterpreting the role of everyday context within tasks, and thus failing to 
see the purpose as being about mathematical content. Further, given the same task, 
in the same classroom, within the same didactical contract, students may have dif-
ferent interpretations of the meaning of the task depending on their previous knowl-
edge and experience, as illustrated in the case study in Sect. 4.2.3, and what they 
think is important for them when attending a mathematics course.

Accessing students’ perceptions poses considerable methodological challenges. 
Gardner (2013, p. 194) uses a phenomenological approach to categorizing students’ 
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written responses, which she argues communicate their perceptions of the task’s 
purpose. This approach is based on the determination of different possible concep-
tions about the chosen subject, in this case statistics (Table 4.1):

Data were collected from one section of a graduate course in data analysis and probability 
for preservice and inservice teachers. The task in Fig. 4.2 is an item from the course mid-
semester examination. The item assessed the student’s performance level on analyzing and 
reporting summarized data. (Gardner, 2013, p. 196)

Table 4.1  Outcome space for conceptions of statistics (Gardner, 2013, pp. 194–195)

Conception 1: Statistics as facts or algorithms

Definition Statistics is a class in which one states terms, evaluates expressions and 
formulas, solves equations, and makes and describes graphs

Approach Write and study examples or facts the teacher presents, memorize 
formulas and procedures, manipulate a calculator, solve problems the way 
they are done in class

Capabilities Do well on a statistics test, remember formulas and facts after a long 
period of time

Conception 2: Concepts about and procedures for handling data

Definition Statistics is the study of contextualized techniques for collecting, 
representing, and analyzing data

Approach Write or state a contextual interpretation of graphs and numerical 
summaries, execute procedures with and without technology, relate 
personal experience and knowledge to statistical concepts, determine the 
appropriate statistical method for a given scenario

Capabilities Explain or teach statistics to another person, read and understand statistics 
in media, use technology, know when it is appropriate to use a particular 
procedure or method

Conception 3: Summarize, estimate, infer, and predict

Definition Statistics is the study of processes used to estimate population attributes 
and to generalize or predict trends

Approach Use multiple approaches; utilize technology to differentiate or discover 
trends; recognize when data need to be collected; explain assumptions, 
procedures, and results to others; assess the reliability of results; provide 
support for conclusions drawn or estimates made

Capabilities Write or present a detailed analysis of an inference, estimate, or 
prediction that includes an assessment of assumptions, interpret statistical 
output from software, appreciate the practicality of statistics

Conception 4: Adapting, restructuring, changing viewpoint

Definition Statistics is a way to acquire knowledge about a population and illuminate 
trends to improve the quality of life, inform decisions, and change one’s 
outlook of the world. It also comes with the responsibility to use and 
monitor ethical practices

Approach Adapt to the variable nature of statistics, question the ethical treatment of 
subjects in studies involving humans or animals, employ the highest 
ethical standards and design principles, disseminate results of studies to 
illuminate attributes and inform decisions

Capabilities Devise a plan of action to change policies or perceptions based on reliable 
study results, redefine one’s understanding of statistics as new processes 
are learned, formulate theories, restructure one’s view of the world
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Gardner interprets the responses of three students as communicating their 
interpretation of the purpose of the task.

For one student, Anna, the purpose of the task might be described as “to deter-
mine whether she can recall facts about statistical summaries” (Gardner, 2013, 
p. 195). For another student, Byron, it might be described as “a means for him to 
communicate his understanding of concepts about data” (Gardner, 2013, p. 196). 
For a third one, Charles, the purpose was “a means for him to demonstrate his abil-
ity to summarize data and support the conclusion drawn” (Gardner, 2013, p. 197). 
Thus, in response to the same task, students not only answer differently but may be 
engaging in quite different kinds of activity.

4.3  �Taking Account of Student Perspectives: How Task 
Design Might Reduce the Gap

In this section, we turn to the second interpretation of our chapter title and consider 
approaches to task design which might take account of the issues discussed in the 
previous section, concerning the gap which may arise between teachers’ (and task 
designers’) intentions and the responses of students. A theme which threads through 
this section is the challenge in moving beyond the idea that successful completion 
of a task is the end point and a valid proxy for mathematical learning. A number of the 

Fig. 4.2  Assessment task on descriptive statistics (Gardner, 2013, p. 196. Copyright Gardner 2007)
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studies we refer to draw on the work of Brousseau (1997) who described a pattern 
of interactions in which pupils draw on indications from the teacher’s behavior, and 
other aspects of the situation, to find out what is required to complete a given task, and 
the teacher accepts this as evidence of learning. For example, Strømskag Måsøval 
(2013, 2015) describes a teacher posing easier and easier questions to students who 
were struggling to understand the requirements of a task, leading to completely dif-
ferent knowledge. This has been called the Topaze Effect by Brousseau (Brousseau, 
1982) and funneling by Bauersfeld (1995) and reported widely (e.g., Mason, 2002). 
In the process of funneling questions toward simple answers, it is not always clear 
whether it is the teacher’s desire for an answer or the students’ lack of response that 
leads the process. Some authors (e.g., Wood, 1998) contrast this with focusing 
which is a deliberate interactive act by the teacher.

4.3.1  �Students’ Expectations

As we discussed in Sect. 4.2, a gap may occur between the intentions of the teacher 
and the perceptions of the students when the milieu can be interpreted in several 
ways and/or the didactic contract is disturbed, that is, when students have expecta-
tions which are not aligned to the teacher’s expectations or intentions. In Sect. 4.2.3, 
we discussed an example in which students’ previous learning led them to over-
generalize in a way that the teacher had not anticipated. Deciding when it is, or is not, 
appropriate to generalize a mathematical idea can be challenging for students, and 
this may be a source of disconnection between teachers’ and students’ 
expectations.

Rote learning and algorithmic reasoning are very common at the core of the 
didactic contract, leading students to expect that this is the response that will be 
required. This poses a challenge for teachers who want to focus on developing cre-
ative reasoning.

Lithner et al. (2013) report a study concerned with introducing creative mathe-
matical reasoning (see also Jonsson, Norqvist, Liljekvist, & Lithner, 2014). Despite 
carefully designed tasks, the students’ expectation was that an algorithm would be 
provided. They also describe a typical response to the frustrations expressed by 
students in this situation in which “the teacher lets the teaching act collapse” (ibid., 
p. 225), taking back the responsibility for the students’ work by simplifying aspects 
of the task.

A similar phenomenon is reported by Calleja (2013), in an action research study 
which also aimed to move students toward more open problem solving. Calleja 
describes an interview with a student who frequently asked for help. The student com-
mented that Calleja (as her teacher) responded in ways that made it easier for her to 
complete the tasks. Calleja reflects that he “evidently avoided the student’s frustration 
and speeded up the task completion” (ibid., p. 169), but at the expense of the deeper 
understanding, the tasks had been designed to support. Similar responses are reported 
in other studies which address student perspectives in relation to task design.
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In selecting or designing tasks, it can be challenging for teachers to take account 
of students’ expectations which differ from their own, and have the potential to 
present real obstacles to learning. Strømskag Måsøval (2013, p. 235) describes a 
rather confused conversation between a teacher and a group of students about a 
particular diagram in a numerical investigation designed by the teacher.

(a) If this shape were part of a sequence of shapes, 
what would the next one look like?

(b) What kinds of figurate numbers do you find in the 
bright and the dark areas and in the shape as a whole?

(c) Express what the shape tells you about these 
numbers in terms of a mathematical statement.

Paul [is] insecure about what the teacher asks for; he wonders whether it is only the 
first element or it is the sequence of elements they are supposed to consider:

	598.	 Paul: If we are supposed to see the connection, it is only this very shape we shall 
look at now? [Draws a curve with his pencil around the element given in the task.] 
It is not the next shapes we have made [points at the succeeding elements drawn 
in his notebook when he says “next”]?

	599.	 Teacher: You may well look at it as it stands there [Pause 1–3 s] uh [Pause 1–3 s] 
[indecipherable]

	600.	 Paul: Not further, ok.

The teacher’s response in turn 599 I interpret as confirming that it is satisfac-
tory that the students look at the element given in the task (a 5 × 5 square) as a 
basis for finding answers to Tasks 4b and 4c. It is plausible that the teacher takes 
this stance as a consequence of seeing the 5 × 5 square as a generic example. […]

These general properties are however not addressed in the classroom situa-
tion. The teacher does not express to the students that he uses the 5 × 5 square in 
the sense of a generic example, nor does he use the term “generic”. What I inter-
pret as the teacher’s implicit utilization of a generic example contributes to 
vagueness in the discourse: The stance taken by the teacher about the sufficiency 
of looking at one element of the shape pattern (genericity of the 5 × 5 square) is 
consistent with the formulation [of the following tasks], a correspondence which 
may be expected since the task is designed by the same teacher. Application of 
singular number in the noun “the shape” indicates that the shape presented in the 
task is seen as generic:

What kinds of figurate numbers do you find in the bright and the dark areas, and in the 
shape as a whole? [Task 4b, emphasis added] Express what the shape tells you about 
these numbers in terms of a mathematical statement. [Task 4c, emphasis added]

(Strømskag Måsøval (2013, p. 235)

The teacher’s intention, which was interpreted by Strømskag Måsøval as to offer 
a single diagram as a generic example, was not apparent to the students. This leads 

J. Ainley and C. Margolinas



129

to the students being unaware of the teacher’s aim for the task. Mason and Pimm 
(1984) describe this process as an inherent implicit feature of a didactical situation; 
if the teacher offers an example, the learner is supposed to appreciate the general, 
and if the teacher offers a generality, the learner is supposed to be able to apply it to 
examples. Strømskag Måsøval exemplifies this phenomenon, suggesting that the 
teacher’s focus on the mathematical content of the task, and his familiarity with the 
subject matter, led him to pay insufficient attention to the wording of the task, which 
also required students to “express what the shape tells you about these numbers in 
terms of a mathematical statement” (Strømskag Måsøval, 2013, p. 233), without any 
clear explanation about what “mathematical statement” may mean. Acknowledging 
the difficulties which may be presented when students’ expectations lead them to 
look for algorithmic solutions rather than engaging in more open problem solving, 
a number of studies have developed task design approaches in deliberate contrast to 
traditional formats. Savard, Polotskaia, Frieman, and Gervais (2013) set out design 
principles for tasks which aim to promote holistic reasoning about mathematical 
structures. In particular, they state that “The task should not contain any explicit and 
immediate questions that could be answered by finding one particular number […] 
However the task should include an intriguing element” (ibid., p. 272).

The example they present, designed for young children, shares many of the features 
of a traditional word problem, consisting of simple statements about the numbers of 
marbles three boys say that they own. However, the statements offered are incompat-
ible, and the challenge of the task is to provide an argument for which statement is 
incorrect:

This is an example of a text proposed to students.
Peter, Gabriel and Daniel are playing marbles. Peter says, “I have 5 marbles.” Gabriel 

says, “I have 8 marbles.” Daniel says, “Peter has 4 marbles less than Gabriel.”
We introduce this text as a strange situation or as a situation where one of the persons 

made a mistake. Students are invited to explain why the text is unrealistic and how it can be 
corrected considering different quantities involved. (ibid., p. 273)

This situation is thus not one in which the students have to act in order to get the 
right feedback from the milieu, but a validation situation (Brousseau, 1997; 
Brousseau et al., 2014) where the students exchange arguments which can be tested 
through the milieu (in this case through the manipulation of marbles). Reviewing 
the outcomes of the study, Savard et al. (2013) comment on the progress made by 
the children in solving problems which required holistic analysis and also on the 
challenges for teachers in resisting the pressure to revert to more traditional formats 
with a single “answer”.

One response to the problem of mismatch between students’ expectations and the 
teacher’s intentions may be for the teacher to state more explicitly the kinds of 
behaviors that are expected in response to the task. But there is a tension here: if the 
teacher’s aim is for students to develop creative, flexible, and independent mathemat-
ical thinking, specifying particular desirable behaviors may be counterproductive.

Coles and Brown (2013) capture this tension by saying that “the more the desired 
behaviors in students are specified, the less these behaviours are likely to emanate 
from the students’ own awareness” (p. 184). Drawing on theoretical perspectives 
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from enactivism and the development of mathematical thinking, Coles and Brown 
describe and exemplify design principles which underpin an approach to helping 
students develop patterns of thinking over an extended period:

These shapes [See Fig. 4.3] are ‘two contrasting examples’ […]. With this image on the 
board, the teacher asks students, ‘what is the same and what is different’ […]. (ibid., p.187)

Coles and Brown’s description encompasses both the reflective task design, 
which teachers and task designers undertake in planning for teaching, and emergent 
design which takes place “in the moment” in the classroom, in response to the 
activity of students. Research addressing student perspectives in task design focuses 
on both of these forms of design, which we discuss in the next two sections.

4.3.2  �Reflective Task Design

In this section, we discuss research studies focusing on ways to take account of 
student perspectives in task design which takes place in a reflective space away from 
the classroom (see also Chap. 9). In these studies, the design may be led by research-
ers, task designers, teacher educators, or teachers and often by a team combining 
individuals with different or dual roles (e.g., Coles & Brown, 2013; Lin & Tsai, 
2013; Radonich & Yoon, 2013). Many of these studies draw explicitly or implicitly 
on the methodology of design-based research (Design-Based Research Collaborative, 
2003), in which each iteration of task design is based on conjectures drawn from the 
analysis of student responses (Calleja, 2013; Lithner et al., 2013).

The development of hypothetical learning trajectories (Simon, 1995) or thought 
experiments in which the designer anticipates student learning is an important tool 
in such design (see Chap. 2 of this volume). Calleja (2013) and Palhares, Vieira, and 
Gimenez (2013) report on studies in which a priori analysis of the mathematical 
knowledge is involved, and students’ likely responses are used to develop sequences 
of tasks. Palhares et al., however, conclude that “[c]ognitive analysis seems not to 

Fig. 4.3  Two contrasting examples (Coles & Brown, 2013, p. 187)
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be enough to decide about ordering [of tasks]” (p. 247), in this case of tasks designed 
to promote algebraic thinking in young students. They found that students who 
started with a set of sequential tasks seemed to be more capable of establishing 
distant generalization than a group who started with structural tasks, and to retain 
their performance more. Therefore, they highlight the need for further cycles of design 
development in the light of the children’s responses in order to improve the 
design of task sequences rather than single tasks.

A common theme in studies about reflective task design is the use of aspects of 
design to direct students’ attention to certain mathematical features, particularly in 
situations in which previous research has indicated students’ tendencies to respond 
in other, less productive, ways. A simple change in a mathematical question can 
make a big difference in the cognitive demand for the students. For instance, 
Sullivan and Lilburn (2004) argue that you can transform a straightforward and 
closed question, like “731–256 = ?”, into what they consider a good question: 
“Arrange the digits so that the difference is between 100 and 200” (ibid., p. 4). Thus, 
the transformed task is now less about the procedure of subtraction and more about 
estimation. There are (at least) 6 possible answers without moving digits from one 
number to the other in the initial question. The revised question emphasizes the 
point that a small change in the question can prompt quite different thinking from 
the students.

Another example is given by Johnson (2013) who describes the principles she 
used in the design of a sequence of covariation tasks. In previous studies (Johnson, 
2012a, 2012b), she had found that students tended to focus on change in variables 
as though they were independent, and so she included the use of an animation with 
prompt questions such as “what changes and what stays the same?” and the require-
ment for students to predict characteristics of graphs and other representations in 
order to focus their attention on relationships rather than the results of calculations 
(Johnson, 2013, p. 214). In Chap. 3 of this volume, further ways in which teachers 
can adapt cognitive demand are described, particularly focusing on moving learners 
toward appreciating generalities rather than following procedures (Knott, Olson, 
Adams, & Ely, 2013).

The use of a nonstandard version of a familiar task is also at the center of Lin and 
Tsai’s (2013) study which aimed to develop conjecturing by primary school students:

The task designed by the teacher was to ask students to make a conjecture and verify 
whether it is true. The statement is that “In any two figures, if the area of one figure is bigger 
than the other, then the perimeter of the figure is greater than the other, too. Do you agree? 
Why? Show your work on the grid paper.” The task for conjecturing is initiated from a false 
statement. (ibid., p. 252)

Here, the use of a false conjecture about the relationship between the area and 
perimeter of a pair of figures was used to focus students’ attention on the ways in 
which conjectures can be explored and tested rather than on the calculation of spe-
cific values.

Coles and Brown (2013) highlight the importance of focusing students’ attention 
on making distinctions and include the use of two contrasting examples, with prompt 
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questions similar to those used by Johnson, and the introduction of appropriate 
mathematical language and notation to record the distinctions identified by stu-
dents, within their list of task design principles. The starting point for one of the 
examples they offer, also concerning area and perimeter, is shown earlier in Fig. 4.3. 
Pupils are asked to consider what is the same and what is different about the rect-
angles. When attention is focused on the area of the rectangles, pupils notice that in 
one rectangle the values of the area and the perimeter are the same. This is desig-
nated as an equable shape, providing pupils with a new distinction with which to 
work in their exploration. The rationale for this approach is not based specifically 
on evidence of difficulties arising in the study of area and perimeter but rather on the 
enactivist approach which equates learning with the ability to act differently based 
on changing perceptions of distinctions in a particular sphere of action (Maturana & 
Varela, 1987). Coles and Brown offer the metaphor of a wine taster to illustrate this 
view. As the wine taster’s palate develops to make finer distinctions, he/she is able 
to act differently on the basis of this perception.

Potential negative consequences of the unintentional direction of students’ atten-
tion are identified by Calleja (2013) in his discussion of one iteration of a task 
sequence, designed on the basis of hypothetical learning trajectories. He notes that 
the activity of some students appears to have been influenced by the title assigned to 
a task (Investigate Pythagoras’ Theorem), which may have focused their attention 
on a limited range of mathematical content. This leads him to speculate that a more 
open title (Investigate Right-Angled Triangles) may encourage a more open 
approach, and, incidentally, avoid discouraging those who are as yet unfamiliar with 
Pythagoras.

A somewhat different perspective on the direction of students’ attention through 
task design is at the heart of a design framework developed by Ainley and Pratt 
(Ainley, 2008; Ainley, Pratt, & Hansen, 2006) which also relies on detailed analysis 
of mathematical content to develop learning trajectories. This analysis focuses on 
the utility of mathematical ideas, that is, how and why the ideas are useful. They 
argue that understanding utility is a key component of mathematical thinking which 
is often overlooked. For example, teaching about measures of average may include 
both the procedures needed to calculate the mean and median and conceptual explo-
ration of the nature of the measures, but fail to address how and why such measures 
can be used in solving problems. In order to create opportunities to experience the 
utility of mathematical ideas, and to focus students’ attention on the power of using 
them, Ainley and Pratt design tasks which have a clear and immediate purpose for 
students within the context of the lesson. This might be designing a product, such as 
an efficient paper spinner or a computer-based model to generate data, or solving an 
engaging problem, in which the mathematical idea (i.e., the teacher’s intended con-
tent for the task) is used in a meaningful way. This design framework offers a way 
in which the teacher’s intentions (including a focus on the utility of the mathemati-
cal content) can be aligned with the students’ activity, which is driven by the pur-
poseful nature of the task, even though the two elements of purpose and utility 
remain quite distinct.
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4.3.3  �Emergent Task Design

An area of research which is complementary to the studies of reflective task design 
discussed in the previous section concerns the ways in which teachers develop tasks 
during the flow of classroom activity, in response to the actions of students. Bikner-
Ahsbahs and Janßen (2013) use the term emergent tasks to refer specifically to situ-
ations in which “the teacher conceives the mathematical potential of a learning 
opportunity and translates it into a task” (p. 154) in such a way that students’ inter-
est is maintained. To understand how to build on students’ questions in order to 
create emergent tasks in the moment is challenging for teachers, and in this section 
we discuss studies which both explore emergent task design and consider how 
teachers’ skills can be developed.

Bikner-Ahsbahs and Janßen (2013) build on previous research into the creation 
of interest-dense situations in mathematics lessons, that is, situations in which 
learners are deeply engaged with mathematical questions, developing successively 
deeper meanings and coming to see the importance of a mathematical object 
(Bikner-Ahsbahs, 2003). They explore how teachers exploit such situations by 
aligning emergent tasks to what they perceived as the students’ epistemic needs. 
The challenge for the teacher is, therefore, to understand a mathematical problem 
students have encountered within the interest-dense situation and to translate it into 
a task for the class:

Previous to the scene presented here the students had worked on the question how to divide 
a round licorice stick evenly among three persons. […]

	149.	 Rahel: yes Mister Kramer once more a stupid question, how does one GET the central 
point how did they GET that because that is so small.

	150.	 S: that is just
	151.	 T: that’s another problem right. that’s a practical problem (..) oh no, how does one even 

find the central point in such a small circle right’ (.) exactly. those are questions’
	152.	 Anji: a very small compass right’
	153.	 T: yes one can find out with the compass, only when one is just drawing the circle’ one 

has the central point. but when one has the circle already right’
	154.	 Rahel: yes
	155.	 L: that’s exactly what geometry works with.
	156.	 Rahel: I know that
	157.	 L: there are possibilities to find out a-n-d you can puzzle at home maybe someone 

finds a possibility’

[…] the teacher probably notices already that the missing central point poses an addi-
tional problem and wants to postpone it to an exercise. But the students insist on an immedi-
ate clarification by asking “but how” (can we exercise that). Rahel reacts by naming the 
difficulty in dividing the circle without knowing the central point (149). She grasps the 
epistemic gap and thus sees the mathematical structure. Now the teacher summarizes the 
two problems: How does one even find the central point in such a small circle? Commenting 
“those are questions” he documents wonder about the deep involvement of the students that 
he tries to take up. (ibid., p.158)

From observations and analysis of occasions on which teachers are, or are not, 
able to identify suitable situations and develop emergent tasks, Bikner-Ahsbahs 
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and Janßen identify the three requirements for the teacher to meet this challenge 
successfully (previous noted in Sect. 4.2.3): sufficient mathematical knowledge 
to extend the content of the lesson, a genuine interest in students’ learning, and a 
willingness to deviate from the planned lesson to follow unexpected directions in 
students’ activity.

Emergent task design can build flexibly and effectively on student responses to 
support their engagement with mathematical thinking, but makes considerable 
demands on the teacher’s ability to act “in the moment”. It is, of course, not clearly 
separated from the more reflective design discussed in the previous section, but 
involves adaptation and adjustment of an initial task during the progress of a lesson. 
This performance of a task (Clarke & Mesiti, 2013) is shaped by interactions 
between the teacher and students but guided by the teacher’s intentions. Presenting 
evidence from three lessons which form part of a wider international study, Clarke 
and Mesiti draw attention to the extended time and attention given to relatively 
straightforward mathematical tasks by teachers in Japan and China who construct 
their lessons around opportunities for students to discuss and report their reasoning. 
Clarke and Mesiti do not address the question of how teachers develop these skills, 
but this issue is made explicit by Coles and Brown (2013) in their discussion of the 
development of generic design principles within a school. These principles are used 
in reflective task design undertaken collaboratively among colleagues and, thus, 
come to inform the more spontaneous actions in the classroom: “Creating opportu-
nities for students to make distinctions within mathematics can also become a habit 
for teachers and a normal way of both planning activity and informing decisions in 
the classroom” (Coles & Brown, 2013, pp. 191–192). Coles and Brown illustrate 
this through analysis of an example of emergent design in a lesson about area and 
perimeter (see Sect. 4.3.1).

In addition to the challenge for teachers, there is a potential threat to the coher-
ence of the curriculum itself within emergent tasks. This difficulty might lead to 
very different didactical contracts in the class during the completion of these tasks. 
One contract includes covering curriculum; the knowledge to be learned is therefore 
determined in advance or at least has to be compatible with the curriculum and the 
coherent epistemological foundation of the knowledge. However, the mathematical 
content of emergent tasks, which follow the students’ responses and offer an oppor-
tunity for students to engage in rich mathematical activity, may be less predictable.

4.3.4  �Open Tasks: Voice and Agency

Underpinning much of the research we have discussed in this chapter is the recogni-
tion not just of the importance of accounting for student perspectives in task design, 
in order to reduce the gap between the intentions of teachers and the activity of stu-
dents, but also of the significant role of student agency and voice in the development 
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of mathematical thinking. In this respect, our approach contrasts strongly with some 
other perspectives on learning in which the student is positioned as a rather passive 
recipient of information that is then processed into mathematical meaning. For 
example, cognitive load theory (e.g., Sweller, 1994) characterizes tasks according to 
the number of variables that learners have to manipulate in order to be successful 
and analyzes those that are essential for completion and those that are extraneous. 
The implication for design could be that only essential variables should be given, to 
simplify the load. This idea has to undergo considerable expansion to include the 
development of mathematical thinking, and students’ capabilities in mathematizing 
situations, so that load has to include variables that, while not being essential in a 
mathematical sense, are germane to the situation.

Within the Theory of Didactical Situations, which positions the student as 
actively mathematizing, agency has been modeled through the concept of adidacti-
cal situations. This concept derives from the idea that in ordinary life, in non-didac-
tical situations (e.g., trying to float in the water in a swimming pool), we acquire 
some implicit knowledge in the interaction with the milieu. This kind of knowledge 
is directly useful (you float or not) and meaningful in the situation. The idea of 
Brousseau was to study a sort of image of these non-didactical situations, which he 
named adidactical, designed to allow the acquisition of predetermined knowledge. 
Thanks to this design, the student is offered the possibility of trying her own proce-
dure in order to succeed in dealing with the adidactical situation and to encounter 
the determined knowledge in a situation that becomes meaningful for the student. 
Therefore, Brousseau’s idea is clearly inserted within a contract where the knowl-
edge to be learned is entirely determined in advance and where the a priori analysis, 
which includes the careful study of the hypothetical learning trajectory, is the basis 
of the design. The epistemological aspects of this kind of design are crucial; the 
study of the knowledge and the situation in which this knowledge is useful is at the 
core of anticipating learning through adidactical situations.

Design approaches that aim to encourage student agency may vary considerably. 
Clarke and Mesiti (2013) describe lessons which start from relatively closed tasks 
but which are developed and extended around students’ responses. The develop-
ment of reasoning and argument may be stimulated by presenting students with 
situations which contain faulty mathematical statements or conjectures (Lin & Tsai, 
2013, Savard et al., 2013). The design principles described by Coles and Brown 
(2013) start from offering a closed task, which is then developed through inviting 
students to focus on distinctions. Bikner-Ahsbahs and Janßen (2013) base their 
account of an example of an emergent task on the (apparently simple) initial task of 
dividing a strip of paper into three equal pieces—an open-ended task intended to 
initiate discussion about fractions. Other studies have focused on the use of more 
open, contextualized tasks in order to encourage and value students’ independent 
creative activity.

In a design-based research study, Calleja (2013) developed a design framework 
which included structured, semi-structured, and unstructured (open) tasks in order to 
support students to move from the experience of traditional teaching to progressively 
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become familiar with “the social experiences of mathematical inquiry, discussion 
and communication” (p. 166). This framework acknowledges both the importance of 
student agency and the challenge that this may present to their expectations.

Radonich and Yoon (2013) utilize a design framework based on model-eliciting 
activities (Lesh, Hoover, & Kelly, 1993), in which real-world problems are pre-
sented to students as a stimulus for mathematical modeling. The work of Lesh and 
his colleagues has generated many examples of this kind of work, as has the Realistic 
Mathematics Education tradition (see de Lange, 2015). The example offered by 
Radonich and Yoon is particularly interesting:

The problem begins with a comic that tells how the Renaissance artist, Giotto, gained the 
pope’s attention by drawing a perfect freehand circle […]. After reading the comic, students 
are asked to draw their own freehand circles and choose the best among them. Next, they 
watch a short YouTube video of a mathematics teacher who professes to be the world’s 
freehand circle drawing champion and appears to draw a perfect freehand circle.

[…] Students then meet the problem statement, which introduces them to a client, 
Bonnie, who is holding a circle drawing competition at the local Pancake House. The stu-
dents are asked to work in teams of three to develop a method for ranking circle attempts 
from most circular to the least circular, which Bonnie can use to judge the circle drawing 
attempts on the night of the competition. Students are asked to test their method on some 
examples of circle attempts […], but their method must also work for any circle attempt that 
could be drawn on the night of the competition. The student teams write their final method 
in the form of a letter to Bonnie. (ibid., p. 261)

Although clearly located in the mathematical topic of circle properties, the open-
ness of the task allows for students to develop and justify a wide range of models, 
which may draw on different theorems, challenging the expectation that there will 
be a single correct approach. The main focus of the project that Radonich and Yoon 
report is, however, not the initial performance of the task, but how the teacher might 
effectively build on the wide range of activity students have engaged in to ensure 
some curriculum coherence. Their approach involves presenting back to the class an 
example of the work from a group of students carefully chosen to present a good, 
but incomplete, model. The challenge for the class is then to test and improve this 
model, allowing the teacher to focus on reinforcing particular mathematical content. 
The use of students’ work in this context is a deliberate challenge to students’ 
expectations that teacher-presented ideas are better than their own, but Radonich 
and Yoon acknowledge the potential sensitivities in doing this, emphasizing that 
“effort will be required to create a culture where discussing student work is a natural 
and safe part of the teaching and learning process” (p. 266).

4.4  �Conclusion: Some Topics for Future Research

In this chapter, we have attempted to both account for the gap which can open up 
between the intentions of teachers and task designers and the experiences of stu-
dents tackling mathematical tasks and to reflect research which attempts to 
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minimize this gap through innovative task design. What is revealed is a complex 
picture, which we believe is relatively under-researched. Although some evidence is 
presented within this chapter, there is relatively little research which addresses 
directly the ways in which students perceive the meaning and purpose of tasks. 
Most studies that do address this issue do so by inferring students’ perceptions from 
their actions. There is a need for further research which uses alternative methods to 
understand student perspectives more fully, particularly in the context of innovative 
task design. We suggest that the areas for further research in aspects of task design 
identified elsewhere in this volume might also be enhanced by a parallel study of 
student perspectives.

In our chapter, we have highlighted the importance of the context (in particular 
the contract) in the different impacts that similar tasks might have on students. 
Word problems have been thoroughly investigated because these kinds of tasks, 
which are often linked to “real-world” contexts, are more susceptible to alternative 
interpretations from the students. This has contributed to deep interrogations of the 
validity of such kinds of tasks. However, the intention of any tasks which include 
some “real” setting might be wrongly understood, and even tasks which are only 
mathematical tasks are not immune to misunderstanding. It seems thus very 
important to collect more data and to develop analysis which is focused on the effect 
of the contract on the variability of student’s understanding of the tasks (see Sarrazy, 
2002 for an example of such a study). This topic might be very interesting to develop 
in intercultural research, because the kinds of contracts that develop in different 
countries might be different and thus reveal the nature of the contract itself.

Research in mathematics education has often been developed without any spe-
cial interest in the differential effect of the tasks on students: who is benefiting from 
a certain kind of task and who is not? Qualitative methodology has been reported in 
our chapter, which helps us to understand that students might interpret tasks very 
differently. However, it would be useful if this question were to be addressed in 
quantitative methodology-based research. The statistical analysis needed to com-
pare the progress of different students has to be specific and some has already been 
developed in some publications (e.g., Sarrazy & Chopin, 2010).

More generally, particularly helpful might be research that addresses the ques-
tion: are some tasks more robust than others? The robustness of tasks might be 
intended as resistant to changes from the teacher but also understandable and useful 
for all the students.

Of course, the student’s perspective, which is the purpose of this chapter, cannot 
be detached from the teacher’s ability to develop and implement “good tasks” or 
“good teaching”. We suggest that emergent tasks (Bikner-Ahsbahs & Janßen, 2013) 
might be developed into a general concept. In fact, interest-dense tasks might 
emerge from a lot of tasks; it is not yet clear if this is mostly due to the intrinsic 
quality of the initial task or due to efficient mathematical knowledge for teaching or 
both. The ability of teachers to observe students’ procedures and to develop the task 
accordingly might need special attention.

4  Accounting for Student Perspectives in Task Design
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5.1            Introduction 

 In this chapter, we focus on design issues related to written tasks and prompts for 
mathematical action and the sequencing and norms of collections of tasks, such as 
textbooks, that shape the expected action. We take a  task  to be the written presenta-
tion of a planned mathematical experience for a learner, which could be one action 
or a sequence of actions that form an overall experience. Thus, a task could consist 
of anything from a single problem, or a textbook exercise, to a complex interdisci-
plinary exploration. The design process for such tasks is not necessarily long or 
cyclic, but we are interested in particular issues that might or should be considered 
when designing tasks to be presented in text. 

 A  text -based task is intended to create mathematical action through prepared and 
published inert written and visual images, in worksheets, textbooks, screen images, 
video, assessment instruments, digital interactive textbooks, and other digital 
 technologies. We emphasize that text-based tasks are any such inert, static tasks 
with which learners interact and do not refer just to tasks in textbooks. In collections 
of text-based materials, such as textbooks, tasks do not exist on their own, but as 
components of the whole collection. Hence, in this chapter we also consider how the 
overall principles and aims of a collection (e.g., a textbook, a set of worksheets) can 
be embodied in different kinds of tasks. When we talk about prepared, published 
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collections of tasks, we focus solely on the school-level curriculum and learners in 
educational environments. We also consider freestanding tasks that might be used 
by learners of any age and in varied phases of learning as relevant. Chapters   3     and   4     
look at how teachers and learners, respectively, work with tasks, including digital 
tasks. Further insights into dynamic digital technologies are found in Chap.   6    . 

 Throughout this chapter, we highlight design principles and research perspec-
tives that are salient whether the tasks are freestanding or part of textbook collec-
tions. Although the design of text-based tasks and the design of textbooks share 
many common features, we believe that text-based task design is worthy of study in 
its own right, separate from but related to design and research on textbooks. 

5.1.1     Research on  Text-Based Tasks  Within Textbooks 

 Some work on task design has delineated how different interpretations of curricu-
lum aims and standards infl uence the design of collections of tasks embodied in 
textbooks. For instance, in the USA a number of large-scale curriculum projects 
were developed in the 1990s in response to the publication of the  Curriculum and 
Evaluation Standards  by their National Council of Teachers of Mathematics 
( 1989 ). As Hirsch ( 2007 ) indicated, this Standards document provided a “basic 
design framework” that infl uenced authors regarding the nature and scope of con-
tent, integration of technology, embedded assessments, professional development 
for teachers, and active engagement of learners through explorations within coop-
erative groups. Thus, a design issue facing the curriculum developers was to pro-
vide text- based tasks or materials that embodied both intention and implementation 
(see Chap.   2    ). Other research on textbooks has focused on how the principles of 
design of the textbook tasks might have infl uenced teachers’ enactment of those 
tasks and how such enactment infl uenced learner achievement (see Chap.   3    ; also 
see multiple perspectives on enactment in Remillard, Herbel-Eisenmann, and 
Lloyd,  2009 ). Still others have focused on design principles through comparisons 
of the tasks within textbooks, sometimes from a neutral stance of simply highlight-
ing differences (e.g., Pepin and Haggarty,  2001 ) and other times from a more criti-
cal stance that highlights differences in tasks and their affordances for student 
learning (Huntley and Terrell,  2014 ). A summary of textbook research presented by 
Fan, Zhu, and Miao ( 2013 ) points to the shortage of research about the design pro-
cess itself and a shortage of research into relationships between textbooks, teach-
ing, and learning. 

 Our focus is on text-based tasks, and there is a growing body of research that 
approaches textbook analysis through the opportunities afforded by task content. 
In these approaches, it is presumed that some affordances are desirable according 
to some theoretical frame or curriculum aims, and research generally reveals the 
presence or lack of a particular feature. For example, research into some text-
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books has shown a lack of explanations (Dole and Shield,  2008 ; Stacey and 
Vincent,  2009 ), of higher-order thinking (Nicely,  1985 ; Nicely, Fiber, and 
Bobango,  1986 ), of worked- out examples (Mayer, Sims, and Tajika,  1995 ), of 
opportunities for reasoning (Stylianides,  2009 ,  2014 ; Thompson, Senk, and 
Johnson,  2012 ), of problem variation (Stigler, Fuson, Ham, and Kim,  1986 ), of 
word problems (Xin,  2008 ), of conceptual connections (Sun,  2011 ), or of concep-
tual robustness (Harel,  2009 ). 

 Detailed examination of such textbook analysis research is beyond the scope of 
our chapter as we are interested in individual and sequential task design and how 
design embodies curriculum principles and theories of learning, either implicitly or 
explicitly. However, the assumptions behind many of these studies are that (a) the 
textbook defi nes the learners’ mathematical experience because of the prevalence of 
textbooks in schools around the world and (b) textbooks could or should provide all 
these experiences. With both of these assumptions, learners’ experiences with the 
tasks are intertwined with the associated teaching and how the teacher enacts the 
tasks as part of instruction (see Thompson and Usiskin ( 2014 ) for more insights on 
the enactment of curriculum). Thus, while we consider presence or lack of particu-
lar textual features, we cannot claim that presence ensures experience or absence 
implies teaching defi cits. Rather, we consider design features that underlie the 
development of tasks, generally irrespective of the implementation of those tasks by 
either teachers or learners. In other words, we examine the relationship between 
authors’ intentions for the task and the affordances and opportunities that the task 
provides; that is, we are interested in the bridge between curriculum intention and 
pedagogic implementation that can be provided through static text. This requires 
imagination and anticipation about learners’ and teachers’ engagement with tasks. 
Our approach is to draw on existing research where possible and also to take a 
scholarly perspective to task design issues by drawing on professional experience 
and published tasks. Many of the tasks presented in this chapter were shared and 
discussed by participants during the conference for ICMI Study 22 on which this 
book is based.  

5.1.2     Shape of the Chapter 

 We consider three interrelated aspects of the design issues of text-based tasks: (1) 
nature and structure of such tasks, (2) pedagogic/didactic purpose of their design 
(i.e., intentions), and (3) intended/implemented mathematical activity as embedded 
in them (i.e., affordances and opportunities for learning). Although the chapter con-
siders these headings, the relationships between the task designer, a teacher, a task, 
the mathematics within the task, and the learner are important at every stage. In 
particular, the relationship between task and teaching is like two sides of a coin 
because both contribute to the context of the learners’ mathematical activity. 
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 The three interrelated perspectives can be seen as a triangular structure with 
nodes (Fig.  5.1 ). Each node can be considered by zooming out and thinking about 
the overall educational context and how this affects task design and also by zooming 
in to the imagined interaction between one learner and the task.

   Throughout the chapter, we present and compare examples of tasks to illustrate 
variation within each node and how principles of design play out within each node.   

5.2     Nature and Structure of Tasks 

 We consider design principles related to three aspects of the nature and structure of 
tasks: (1) the types of text materials in which tasks are found, (2) the authorship, 
authority, or voice of the task, and (3) the mathematical content of the task. Within 
each of these aspects, particular issues related to design are evident. 

5.2.1     Different Kinds of Text Materials 

 We start by making distinctions among different kinds of text-based materials. 
 Learning management systems  are those in which learning is presumed to be man-
aged either by sequencing (such as in a traditional textbook series) or by a planned 
interplay between formative assessment and instructional tasks of various kinds. In 
some online curriculum packages (e.g.,  I Can Learn  in the USA), the learner is 
essentially in his/her own private classroom using a software system that provides 
tasks and then gives mechanistic feedback to both the learner and the teacher about 
the learner’s interaction with the task. Based on that feedback, the learner might 
move forward to new tasks on new concepts or might engage in tasks designed to 
offer remediation. The overall topic sequence is thus managed by a (sometimes 
virtual) teacher and/or possibly learners themselves. 

  Fig. 5.1    Task design intention triangle       
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 In textbooks, the sequence is fi xed according to a designed narrative suggested 
by the authors, with tasks potentially designed to build on each other and with care-
ful consideration to necessary prerequisites. Teachers often choose to modify the 
textbook sequence based on perceived needs of their learners or mandated curricu-
lum goals and must consider what assumed knowledge their students may not pos-
sess in a revised sequence and adjust tasks accordingly. In an online system, 
sequence might be varied according to learners’ responses but a designed narrative 
controls those variations. In  task banks , collections of varied tasks are published for 
which the teacher (or even the learner) is the effective learning manager and makes 
decisions about who does what and in what order; the individual tasks themselves 
may not be linked by a narrative (e.g., Yerushalmy ( 2015 , Chap.   7    , this volume); 
SMILE, n.d.).  Freestanding  tasks are those that do not form part of a curriculum 
package but are supplementary or fulfi ll a special purpose. For example, the NRich 
website provides extension tasks accessible by students, teachers, and parents that 
are intended as curriculum supplements (nrich.maths.org); the COMPASS (Common 
Problem Solving Strategies as Links Between Mathematics and Science) ( 2013 ) 
project (Maaβ, Garcia, Mousoulides, and Wake,  2013 ) provides interdisciplinary 
tasks within a European setting that can be used within mathematics and science 
classrooms. Freestanding tasks are typically designed to be self-contained, without 
relying on completion of previous tasks; if prerequisite knowledge is needed, then 
that information would need to be provided to a potential task user. 

 Task collections might exist in printed form as banks or books for learners with 
or without teacher guidance, in multimedia form such as paper and digital and/or 
physical materials for learners with or without teacher guidance, or in the form of 
guidance for teachers with materials for tasks, but no text for learners (e.g., Numicon 
at: global.oup.com/education/content/primary/series/numicon/). We do not con-
sider the latter type in detail here as there are no given text-based tasks for learners 
unless the teacher constructs one, but our remarks about construction and use of 
text-based tasks apply also to teacher-made text-based tasks. 

 There are general observations about task design that apply across these multiple 
kinds of text. However, we also acknowledge that tasks designed to be included in 
mandated curricula material or those adopted by a governing body (e.g., school, 
district, ministry of education) may be designed under content and pedagogy con-
straints that do not exist for designers of supplementary materials or for teachers 
who design tasks for use with their own learners (Gueudet, Pepin, and Trouche, 
 2013 ). For instance, in tasks within mandated curricula, there may be a focus on 
problems addressing particular processes (e.g., reasoning, graphical representa-
tions) or particular solution approaches (e.g., written explanations); tasks may be 
designed to be facilitated by a teacher, with appropriate teacher guidance provided 
for implementation of the task. In contrast, in collections of tasks for supplementary 
use, there may be more of a focus on inquiry or exploratory approaches or multiple 
solution pathways. Similarly, a task designed for a specifi c purpose, such as intro-
ducing learners to engineering as a career choice, would adhere to different princi-
ples than a teacher-designed task to help a class learn a particular mathematical 
idea. The fi rst requires a zoomed-out view of the design intention triangle, perhaps 
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focusing on the value of engineering or the types of problems engineers solve, while 
the second will be a zoomed-in view at the classroom level, perhaps focusing on 
skills and understandings learners need for an assessment or to provide evidence of 
meeting an established curricular goal.  

5.2.2     Authorship, Authority, and Voice 

 As designers plan and develop tasks, several issues come into play: (1) how will 
designers interact with each other and with the ultimate users of their tasks, namely, 
teachers and learners; (2) how will they position authority for evaluating the correct-
ness or completeness of a task, namely, within the task or within the user of the task; 
and (3) what voice is used, namely, whether the task is addressed to a teacher or to 
a learner. We consider each of these issues in turn. 

5.2.2.1     Authorship 

 Task designers work together in various formats to author mathematical text-based 
tasks:

•    Substantial teams working with a long development process that includes fi eld 
trials to obtain teacher input. Large-scale curriculum development projects, such 
as the School Mathematics Project in the UK, the many Standards-based curricu-
lum projects in the 1990s in the USA, or the Chinese government teams develop-
ing national curriculum texts, have used this format. Also this format is used for 
many projects with more specifi c aims, such as numeracy recovery. The Canada- 
based project JumpMaths includes information about the effects of experience 
on its genesis (  https://jumpmath.org/cms/    ).  

•   Author teams working on short time frames using design principles imposed by 
publishers or authorities. For example, offi cial textbook production in China in 
1960 took place within a 1-year cycle; there were serious learning problems 
within the textbooks that had to be changed (Li, Zhang, and Ma,  2009 ). 
Anecdotally, we know of one US state which requested a new offi cial textbook 
in 6 months.  

•   Project teams working within particular agreed principles for pedagogical and 
epistemological coherence. For instance, in the COMPASS project, a large team 
works across multiple European countries to develop interdisciplinary tasks, 
with specifi c principles, such as a project-centered approach, an inquiry-oriented 
pedagogy, and an integration of information technology (Maaβ et al.,  2013 ).  

•   Individuals or teams developing innovative or idiosyncratic materials with a spe-
cifi c focus or for use under specifi c conditions. For instance, Staats and Johnson 
( 2013 ) created specifi c interdisciplinary tasks for use in college algebra and 
Movshovitz-Hadar and Edri ( 2013 ) developed social justice tasks to focus on 
values education in Israeli classrooms.  
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•   Teams of teachers producing editable materials or task banks in a dynamic process. 
For instance, a group of lower secondary teachers in France are working together 
to produce a text easily adapted by all ( Sesamath  as described in Gueudet et al., 
 2013 ); a group of Israeli teachers are designing tasks using  Wikitext  (Even and 
Olsher,  2012 ).  

•   Individual teachers or small local teams disseminating their ideas. The prolifera-
tion of Internet resources has made it possible for teachers to post lessons and 
tasks for use by teachers anywhere in the world, at no cost or for a nominal fee 
(e.g.,   http://www.teachmathematics.net/    ;   http://www.teacherspayteachers.com/    ).    

 A team which has come together because of an underlying shared belief and 
agreed-upon design principles, such as a team designing tasks that use a particular 
software (e.g., Geogebra, Cabri) or have a particular curriculum aim (e.g., Realistic 
Mathematics Education in the Netherlands), is presumed to have epistemological 
and conceptual coherence in their work. In contrast, a Wiki-type team might pro-
duce materials with variable principles (e.g., the French team for  Sesamath ). Even 
when materials have initially been developed by teams with specifi c design princi-
ples, the move from the design stage to more widespread use and adoption through 
commercial publication can create constraints or pressures that force adaptations or 
modifi cations in tasks to satisfy publishing needs. 

 An example of innovative text-based task development was the Resources for 
Learning and Development Unit ( RLDU, n.d.)  in which teams of about 10 teachers 
worked together to design tasks which they trialed and adapted. The fi nal tasks were 
published in a format that implied certain pedagogic principles, namely, that tasks 
would be presented in a learner-friendly format and that learners would engage with 
mathematics through exploration and inquiry without being told exactly what to do 
or how to do it. Authorship for the text of the task rested with the teacher team, but 
authority for the mathematics rested in the explorations of the students (Llinares, 
Krainer, and Brown,  2014 ). Further information can be obtained from Laurinda 
Brown who coordinated and edited the resources (laurinda.brown@bristol.ac.uk). 

 Consider the RLDU task in Fig.  5.2 . Although there is a sequence of questions to 
facilitate engagement with the task, there are no numbers or measures within the 
task. Thus, as written, there is not enough information for learners to answer the 
questions; rather there is the comment, “Bring a bicycle into the classroom!” This 
comment suggests the task designer wanted teachers to use a physical bicycle to 
facilitate inquiry; learners were expected to use the bicycle to explore mathematics 
and possibly to consider differences in answers to the questions for bicycles of 
 different sizes. The questions should be relatively easy for learners to understand, 
but the mathematics is only accessible through exploration.

5.2.2.2        Authority for Mathematics 

 As task developers design a task or a collection of tasks to be included in a textbook, 
the manner in which the task is written can determine where authority lies for evalu-
ating the mathematics that is the product of the task. In considering textbook 
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authority, Herbel-Eisenmann ( 2009 ) cites research indicating that textbooks often 
derive their authority from the structure of the text itself as well as the pedagogy that 
results or the political and cultural context. Authority for mathematics is ultimately 
within mathematics itself at the school level: most results can be checked by working 
backward or using different tools or searching for implications or contradictions, so 
long as learners are working within the usual conventions. However, mathematical 
authority is often ceded to the textbook authors who provide an answer book or the 
teacher who checks answers. Rarely do text-based tasks support the development of 
the self-checking learner, using mathematics to verify solutions. Developing self-
checking learners could be accomplished by including regular explicit self-checking 
strategies or implicit strategies in which a later action modifi es an earlier action or 
tasks that embed immediate feedback or tasks with a solution obtained from multi-
ple approaches. These are possible using digital resources that show implications of 
incorrect reasoning and interactive software that allows for adjustment and self-
correction as an integral activity. Some curriculum materials have attempted to build 

  Fig. 5.2    An RLDU (Resources for Learning and Development Unit) worksheet (n.d.)       
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in features to facilitate this self-monitoring. For instance, curriculum materials for 
secondary learners developed by the University of Chicago School Mathematics 
Project have Quiz Yourself questions at different points within a lesson for learners 
to stop and check their comprehension, with answers to these short tasks at the end 
of the lesson. Throughout recent decades, various teams have developed pro-
grammed learning suites, either in hard copy or digitally, which provide multiple 
pathways, triggered according to diagnostic evaluation of learners’ success so far. 
Responsibility for diagnosing common errors might be with the designers (Anderson 
and Schunn,  2000 ) but could be valuable for the learners themselves. For example, 
the German textbook series  Mathewerkstatt  contains tasks that enable learners to 
self-check their work and diagnose potential errors, ensuring that learners do not 
proceed too far without feedback relative to their mathematical progress (Hußmann, 
Leuders, Prediger, and Barzel,  2011a ). In some of Swan’s tasks, learners diagnose 
errors in the work of other anonymous learners.  

5.2.2.3     Voice of a Task 

 In designing tasks, developers must consider how to address the ultimate user of the 
task and what messages are conveyed through different usages of language. When 
analyzing  voice  of text-based tasks, differences might be found between text which 
is directed at the teacher or at learners in the classroom or at learners who are 
assumed to be studying on their own. Zooming in to the learner’s perspective, the 
main voice used in tasks is imperative. Learners are told what to do:  look at ,  write , 
 solve ,  measure ,  fi nd out , and so on. Instructions may be supplemented with ques-
tions, some of which trigger action or application (such as  how many  …?) and oth-
ers which trigger refl ection, conjecture, and generalization (such as  what do you 
think would happen if …?). There is evidence from a study of 400 learners that those 
who are used to imperative texts will scan the text looking for  what to do  (Shuard 
and Rothery,  1984 , p. 114). When examining textbooks, we have found that the 
imperative tone dominates; when the teacher then refers to the textbook during 
instruction, such as “what does the textbook say?”, the authority of the textbook as 
a means to resolve issues or questions is reinforced (Herbel-Eisenmann,  2009 ). 

 In some texts, there is no direct instruction for tasks but an assumption that some 
action will be carried out, triggered by a format to be completed or some objects to 
be contemplated. Such tasks may be used for young children who may be unable to 
read, but also be used with older students to encourage inquiry and exploration. The 
implied instruction may be to  complete  or  fi ll in the gaps . In all texts, we might ask 
whether the learner is positioned as a compliant learner or as a co-creator of knowl-
edge. Typical worksheets or workbook pages for very young learners provide a 
printed writing frame in which the learner merely fi lls in answers or uses color, 
arrows, and so on to indicate connections or classifi cations. In these cases, dialogue 
with a teacher shapes whether the experience is merely compliant or seen as the 
creation of meaning. Another way to frame this issue is to identify whether the 
overall mathematical narrative is delivered by the text or is created by the learner. 
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 For example, consider the  worksheet  from the RLDU in Fig.  5.3 . There are no 
questions or instructions provided for the task. However, learners who have previ-
ously worked with tasks from this resource know they are to create their own ques-
tions and explorations from the fi gure. Thus, the task positions the learner as creator 
of the narrative, possibly working with others and in dialogue with the teacher.

   Another example of how voice can shift authority is demonstrated by Wagner 
( 2012 ) who analyzes two of his own tasks using Rotman’s ( 1988 ) distinction 
between imperatives that require learners to write ( scribble ) and those that require 
them to think. The fi rst of his tasks is traditionally imperative; the fi rst two parts tell 
the learner what to do and the fi nal part invites some thinking. 

 This polygon is drawn on 1 cm dot paper.

    1.    Find its area by dividing it into a rectangle and two triangles.   
   2.    Find its area by dividing it into two triangles.   
   3.    Show another way you can divide the polygon into two triangles.     

 The second task uses the fi rst person, as if a real person is talking and sharing a 
solution but in a problem-solving sequence used to fi nd the area of an unnamed 
shape as if it is the only method. So, authorship of the second task is more overt than 
in the fi rst task but still focuses mainly on  scribbling  with a little attention to think-
ing and no room for another learner’s own ideas.

•    I knew it was a trapezoid because the arrow marks showed that it had exactly 
two parallel sides.  

•   I identifi ed the bases and the height. I noticed that the 6.8 cm side length was 
extra information that I didn’t need.  

•   I used the formula. (Wagner cites from Small, Connelly, Hamilton, Sterenberg, 
and Wagner,  2008 , pp. 144–145.)    

 In an example from Korea, a solution uses the phrases “Let’s think” and “Let’s 
fi nd” to suggest that the learner work alongside an unknown person (Lee, Lee, and 
Park,  2013 ). Thus, the voice invites the learner to be a co-creator of the mathemati-
cal solution.   

  Fig. 5.3    Worksheet from 
RLDU (n.d.)       
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5.2.3     Nature of Mathematics 

 The examples in Figs.  5.2  and  5.3  strongly imply that mathematics provides tools 
for posing questions and understanding phenomena and also that mathematics can 
emerge from enquiry. By contrast, the teacher-designed sequence task in Fig.  5.4  
implies that mathematics consists of symbolic objects that are acted on according to 
some rules and that mathematical activity consists of mental reasoning (in this case 
calculation) and writing and then seeking and expressing patterns. Task design 
infl uences the nature of mathematical activity and therefore the learners’ perception 
of what it means to do mathematics. If the task in Fig.  5.4  is left at the stage of  fi lling 
in the blanks  with no refl ection on connections between the fi ve sequences, some 
opportunities to learn will have been missed as learners may simply think of math-
ematics as doing computations. However, if learners look for similarities and pat-
terns among the sequences, then they are able to develop understanding of the 
structure and regularity within numbers.

   Comparison of text-based tasks from different educational cultures can be of 
value in highlighting deeper implications about the nature of mathematics as pre-
sented in the task and text. Although ontology is important, in the context of this 
chapter we cannot separate this from epistemology and, hence, the intended or 
assumed nature of mathematical activity. For example, in the Resources for Learning 
and Development Unit (RLDU), an overall intention was to develop a style of math-
ematics that focused on mathematization, posing mathematical questions, collabo-
ration, and problem-solving; zooming in, the learner was encouraged to experiment, 
make conjectures, and search for or create mathematical procedures to carry out 
their enquiries. The mathematical activity that can be imagined being initiated by 
these tasks would involve practical materials, physical activity, discussion, applica-
tion of techniques, and defi nitions. In addition, the nature of the tasks naturally 
lends itself to learners working collaboratively in small groups. Thus, pedagogy is 
not only implied but also structured by the materials, as in the note to bring a bicy-
cle to class. 

 To explore how different views of the nature of mathematics play out in task col-
lections, we look at three examples of comparative studies. The fi rst example shows 
that different perspectives on the nature of mathematics can be related to the notion 
of authority previously discussed. Gueudet et al. ( 2013 ) compared features of two 
different French textbooks. Differences between them can be considered to create, 

a. 7, ..., 25, 34, ..., 52, 61, ...,

b. ..., 1.6, 2.5, 3.4, ..., 5.2, ..., 7.0,

c. 1.7, 2.6, ..., ..., 5.3, ..., 7.1, ...,

d. ..., 0.16, ..., 0.34, 0.43, 0.52, 0.61, ...,

e. -7, 2, 11, 20, 29, ..., ..., ...,

  Fig. 5.4    Collection of 
sequences to be completed       
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rather than to refl ect, differences in school mathematics cultures. One textbook, 
 Helice  (Chesné, Le Yaouanq, Coulange, and Grapin,  2009 ), was of a traditional type 
written by four experts; the other,  Sesamath  (Sesamath,  2009 ), was developed col-
laboratively by a group of 57 teachers using digital open-access tools. As a result of 
the manner in which the books and their related tasks are created,  Helice  has more 
overall consistency in its presentation of mathematics and mathematical activity and 
more coherence of conceptual development.  Sesamath , while possibly empowering 
teachers, offers a fragmented and atomistic approach to concepts. For instance, 
 Sesamath  presents a counting or enumeration approach to fi nding area; in contrast, 
 Helice  presents a conceptual approach to understanding area as a conserved prop-
erty of 2-d shapes by having students decompose and recompose shapes. In addition, 
 Helice  offers problems with a variety of solutions but  Sesamath  offers one expert 
solution. Learners therefore experience mathematics either as a connected whole 
with several possibilities for action or a fragmented collection of limited actions. 

 In the second example, the focus of tasks might inculcate different ways of 
reasoning. Chang, Lin, and Reiss ( 2013 ) compared a Taiwanese and a German 
textbook series according to principles of continuity, accessibility, and contextual-
ization and the ways that content was structured. They took different approaches to 
proof and, more importantly for our purposes, the tasks that followed the proof. 
Figure  5.5  illustrates the Taiwanese visual-algebraic approach which was followed 
by several visual-algebraic tasks that used the theorem; the German approach was 
deductive and followed by tasks with a focus on area.

   There is a subtle but important difference when we zoom in to the learner’s 
perspective. In the Taiwanese approach, learners extract the relationships from a 
diagram directly but must have prior knowledge of how to determine the area of a 
triangle and the area of a square; in the German approach, learners apply a priori 
formal knowledge to a diagram using knowledge of similar triangles embedded 

Taiwanese Example German Example

therefore

a
b c
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A b
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  Fig. 5.5    Comparison of Taiwanese and German typical approaches to Pythagoras’ theorem 
(Adapted from Chang et al.,  2013 , p. 308)       
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within the large right triangle. Although the study offered these as examples of 
differences in overall mathematics pedagogy, this contrast highlights how differ-
ences in task design can engender different learner experiences of geometric 
reasoning through different kinds of mental activity. 

 The third comparison we offer contrasts the treatment of the additive relations 
between small whole numbers for young children in the Chinese textbook and a 
Portuguese textbook (Sun, Neto, and Ordóñez,  2013 ). Analysis of control and varia-
tion in the tasks for this concept shows signifi cant differences in opportunities to 
learn. In the Chinese textbook (Fig.  5.6 ), the focus on each page is representing a 
part-part-whole relation visually, physically, and in alternative equivalent symbolic 
forms. Thus, the Chinese textbook presents mathematics as a variety of formal rep-
resentations of some actions, and this implies that mathematical activity consists of 
carrying out physical actions, forming mental images and expressing them in numer-
ical instantiations.

   In the Portuguese textbook, which we cannot show here, the focus was on active 
methods (such as “doubling plus 1”) applied to several sums. If we look at one 

  Fig. 5.6    Page from Chinese 
textbook (Mathematics 
Textbook Developer Group 
for Elementary School,  2005 , 
p.68)       
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page as a text-based task, in the Chinese approach the object of learning and the 
underlying concept is the additive relation, with connections made between addi-
tion and subtraction and reasoning with tens and ones. In the Portuguese textbook, 
the object of learning appeared to be a different procedure applied to different 
problems on every page. 

 To understand what can be learned from one task, it is useful to consider the 
immediate sequence. In the Chinese textbook, the subsequent tasks also focus on 
additive relations, while in the Portuguese textbook a variety of methods which can 
be used in different cases are presented, leaving the teacher to make the connec-
tions. Sun also shows this difference applies to some US textbooks (Sun,  2011 ). 

 These three comparative examples suggest three issues related to task design in 
terms of how learners may view what it means to do mathematics:

•    Is the learner encouraged to explore and compare different solution methods, or 
must the learner apply one given method?  

•   Is the learner expected to apply a priori knowledge or to apply mathematical 
reasoning (such as expressing relationships) to access new ideas?  

•   Do the choice and sequence of examples prioritize conceptual understanding 
(such as through relating actions to symbols or comparing representations) or 
prioritize methods for reaching a solution?     

5.2.4     Summary 

 In this section, we have discussed the nature of text-based tasks, the view of math-
ematics they imply through their structure and expectations, and the authority they 
assume based on the nature of their authorship or the voice they employ. We have 
not intended to imply that any particular set of design principles in these aspects is 
inherently better than any other. Text-based tasks are prepared and static. A major 
question to be considered is: “How can tasks shape an experience of mathematics 
that is dynamic and dialogic and sees the learner as a sensemaking creator of con-
nections, insights, and solutions?” Some of the tasks already presented could pro-
vide the opportunity for such dynamic dialogue, but only if the associated pedagogy 
supports this. In the next section, we consider the pedagogic issues in task design.   

5.3     Pedagogic/Didactic Purpose of Text-Based Tasks 

 The pedagogic intent of a task also infl uences how that task might be designed by 
its developers. In this section, we consider how cultural differences in purpose infl u-
ence design, how learners are made aware of purpose, how developers ensure a 
coherent purpose within a collection of tasks, and how new knowledge is integrated 
with existing knowledge. 
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5.3.1     Cultural Differences in Purpose 

 Throughout this chapter, we assume the aims of mathematics education are 
multifaceted, so that learners become knowledgeable about concepts, competent 
with procedures, and capable and willing to select, adapt, and use mathematics in a 
variety of familiar and unfamiliar contexts and problems. An overarching question 
is whether and how text-based tasks can contribute to all these aims. The relative 
importance of these aims is to some extent cultural, and there is some evidence of 
cultural differences in how aims are translated into text-based tasks and used to 
promote learning. 

 In several countries, lessons typically have three levels: the fi rst level is basic 
facts and formula; the second level is to make connections between these; and the 
third level is for learners to apply some higher-level thinking to problems. The third 
level of classroom mathematical activity is hardest to achieve and depends on pro-
gression embedded within task sequences. One example of a three-level task lesson 
from Taiwan follows:

    1.    Have a triangle with three angles and put the angles together to form a straight 
line with 180°.   

   2.    Show that the exterior angle sum is 360°.   
   3.    Then use the exterior angle sum to prove the sum of the interior angles (National 

Academy for Educational Research (Taiwan),  2009 ).     

 The fi rst-level task is informal and involves constructing a demonstration of the 
interior angle sum; the second-level task requires some reasoning about angles, 
applying previous knowledge that there are 360° in a full rotation; the third task 
requires a different kind of reasoning, involving formal proof. It is the responsibility 
of the teacher to make the links between the three levels so that it does not have the 
appearance of circular reasoning. In cultures where the emphasis is on effi cient 
actions of teachers and learners, it is hard to introduce the messier aspects of 
problem- solving in which solutions may not be arrived at through the optimal use 
of time, effort, and method. In the given example, there is a further diffi culty, 
namely, that the practical, spatial reasoning expected for the fi rst two tasks gives 
way to formal proof for the third task, a shift which is recognized as a major learn-
ing obstacle and pedagogical challenge (e.g., Bell,  1976 ). 

 In the texts available in our discussions at the ICMI Study Conference, we identi-
fi ed different emphases on mathematical behavior. Learners were expected to develop 
effi ciency (e.g., Dindyal et al.,  2013 ), abstraction (e.g., Chang et al.,  2013 ), and 
applications (e.g., Maaβ et al.,  2013 ) or investigate social problems (e.g., Movshovitz-
Hadar and Edri,  2013 ) in various cultures. There are variations within cultures as 
well. No text can do any of this on its own; in most cases, the effects of the texts are 
mediated by the actions of the teacher. Ensuring that teachers understand the peda-
gogic purpose of a task is another design issue that has cultural variations. 

 In some systems (e.g., China, see Ma ( 1999 )), the teacher guide is understood to 
be the authority for pedagogic knowledge and the national curriculum includes very 
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detailed information about curriculum and pedagogic purpose and design. That is, 
the guide provides information to teachers about the  curriculum vision  so that teach-
ers understand the overall goals and how materials fi t together; such understanding is 
important in building  curriculum trust  so that any adaptations made by the teachers 
are consistent with the overall pedagogical and epistemological vision of the materi-
als (Drake and Sherin,  2009 ). 

 In other systems, teacher guides exist but might be ignored or used in different 
ways, particularly if the pedagogic purpose for tasks or their sequence is not clearly 
laid out in the guide. For example, it might be assumed, incorrectly, that merely 
using a textbook in its given order assures coverage of the curriculum and coherence 
with the designers’ intent (Thompson and Senk,  2010 ). Another reason teachers 
might ignore teacher guides is when they expect to interpret and structure the cur-
riculum for themselves, using textbooks as one of several resources and determining 
their own pedagogic purpose for tasks for use with their students. 

 Differences in pedagogic purpose also play out in how various cultures design 
tasks to address learner diversity. In Japan, one task might be offered to an entire 
class with the emphasis on collaboration, recognizing that different learners will 
learn from this process in different ways. In the UK, it has been common to have 
different but parallel textbook series aimed at learners whose level of attainment 
differs, so that those with lower prior attainment have textbooks in which the con-
ceptual and cognitive material is less challenging. In Sweden, the law requires equal 
access for all, so it is seen to be against the law to differentiate between learners by 
placing them in different curriculum tracks. As we write, there is debate about the 
interpretation of these laws (Lundberg, personal communication, 6 January 2014), 
but at present it means that there is no differentiation of textbooks, except for those 
with varied communication abilities. 

 One implication of non-differentiated materials is that tasks need to be designed 
to enable learners with previously low attainment to gain higher-level understand-
ings and also for those with high understanding to extend their knowledge. This 
means that mathematics cannot be presented as a linear accumulation of ideas with 
assumptions about prior learning, but instead task design needs to develop concept 
images and dispositions that will be sustainable across a range of mathematical 
activity and enable learning at several levels. That is, tasks need to be designed so 
there are multiple entry points, with options for extensions and adaptations. 

 To illustrate what we mean by zooming in to learners’ experience, consider the 
following task:

•     Find 9 + 7 = ___  ?  ___.     

 As written, this is a fairly closed task and students generally know the fact or they 
have to work it out. Now consider the following adaptation:

•     Write as many number sentences as you can for 16.     

 This version of the task addresses a similar ultimate goal but has many points of 
entry. Some learners may start by writing 15 + 1 = 16, 14 + 2 = 16, and so on. 
Depending on judgments of learners’ potential and their past achievements, the 
teacher can ask students to use more than two addends, more than one operation, etc. 
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The point is that all learners in a classroom could experience success with the task, 
some with simple number sentences and others with more complex ones. In the 
process, students are investigating number relationships and completing many 
more computations than would have occurred from the original task. When elemen-
tary learners have been given such a task, it is not uncommon to have pairs of learn-
ers write upward of 20 number sentences in a relatively short time span. If pairs of 
learners check the work of other pairs, learners have opportunities to consider other 
potential ways to combine numbers in appropriate number sentences. 

 Similar adaptations of closed tasks might occur in many contexts. Rather than 
consider a task with a single answer and one way to obtain that answer, teachers 
might adapt tasks to encourage multiple answers or multiple pathways to an answer. 
The intent of such tasks is to provide access to diverse learners, and many teacher 
guides provide information about the pedagogic purpose of such adaptations 
through examples of adapting tasks for students who need remediation or extension. 
Such features of text-based tasks, especially the expectations of organization of 
work, are most likely to be identifi ed through textbook comparison studies in which 
assumptions and expectations about ways of working can become more clear (e.g., 
Pepin and Haggarty,  2001 ; Stylianides,  2009 ,  2014 ).  

5.3.2     How Purpose Is Presented to Learners 

 In the task at the end of the previous section, all learners are investigating number 
relationships with differing levels of diffi culty. We now zoom in again to examine 
more possible purposes of tasks and how these might be expressed to learners. 

 In their classic study of children reading mathematics, Shuard and Rothery 
( 1984 ) present fi ve main purposes for mathematical texts:

    1.    Teach concepts, principles, skills, and problem-solving strategies.   
   2.    Give practice in the use of concepts, principles, skills, and problem-solving strategies.   
   3.    Provide revision of 1 and 2 above.   
   4.    Test the acquisition of concepts, principles, skills, and problem-solving 

 strategies.   
   5.    Develop mathematical language, for instance, by broadening the pupils’ mathe-

matical vocabulary and their skill in the presentation of mathematics in a written 
form (pp. 5–6).    

  Shuard and Rothery’s fi ve purposes apply to texts in their entirety. Applying 
these fi ve purposes to individual tasks would imply that such tasks might address 
individual purposes, such as the various desirable goals and outcomes presented in 
Chap.   2    . A more helpful approach would be to use these purposes as parameters for 
task sequence intentions, so a task might incorporate some revision content, some 
new concept content, some relevant language, and so on, and a task sequence might 
present all these purposes in a developmental order. To some extent these purposes 
would be teacher and learner specifi c, or even topic specifi c, so that tasks that sup-
port learning to resolve right-angled triangles would look very different to tasks that 
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support learning to prove properties of triangles. Another approach is that of the 
MATH taxonomy derived by Smith et al. ( 1996 ) from examination questions but 
which could be applied to opportunities afforded by individual text-based tasks for 
learning. Their categories are outlined in Table  5.1 .

   A more detailed categorization designed to analyze assessment tasks is that of 
Thompson, Hunsader, and Zorin ( 2013 ). In Table  5.2 , we give a summarized form 
to show the range of foci that can be present in a task.

   Although these categorizations apply to assessment tasks, they can also be 
related to the purpose of learning tasks. For example, if some assessment tasks 
focus on translation between representations, this kind of mathematical action needs 
to be met throughout lessons and also needs to be accompanied with a coherent 
theory that connects translation with some desirable learning outcomes. While 
using any of these categorizations to ensure that a learning management system 

   Table 5.1    MATH taxonomy categories (From Smith et al.,  1996 )   

 Group A  Factual knowledge (A1) 
 Comprehension (A2) 
 Routine use of procedures (A3) 

 Group B  Information transfer (B1) 
 Applications in new situations (B2) 

 Group C  Justifying and interpreting (C1) 
 Implications, conjectures, and comparisons (C2) 
 Evaluation (C3) 

   Table 5.2    Categorizations to analyze assessment tasks for mathematical processes (From 
Thompson et al.,  2013 )   

  Reasoning and Proof  
 The item directs students to provide or show a justifi cation or argument for  why they gave that 
response  
  Opportunity for Mathematical Communication  
 The item directs students to communicate  what they are thinking  through symbols, graphics/
pictures, or words 
  Connections  
 The item is set in a real-world context outside of mathematics 
 The item is  not  set in a real-world context, but explicitly interconnects two or more 
mathematical concepts (e.g., multiplication and repeated addition, perimeter and area) 
  Representation: Role of Graphics  
 A graphic is given and must be interpreted to answer the question 
 The item directs students to make a graphic or add to an existing graphic 
  Representation: Translation of Representational Forms  
 Students are expected to record a translation from a verbal representation to a symbolic 
representation or vice versa 
 Students are expected to record a translation from a symbolic representation to a graphical 
(graphs, tables, or pictures) representation or vice versa 
 Students are expected to record a translation from a verbal representation to a graphical 
representation or vice versa 
 Students are expected to record a translation from one graphical representation to another 
graphical representation 
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addresses the associated desirable learning outcomes, it is not the case that merely 
setting a task that requires a particular mathematical approach ensures learning. The 
three-part task sequence given previously about triangles gives no help to learners 
who cannot see how to proceed. By contrast, the text-based tasks in Burn’s approach 
(e.g.,  A Pathway into Number Theory , 1982) promote guided learning by anticipa-
tory dialogue. Burn’s opening four questions are (p.18):

    1.    Look at table 1.1 [below]. If the same pattern was extended downwards, would 
it eventually incorporate any positive integer {1, 2, 3, …,  n ,  n  + 1, …} that we 
might care to name?   

   2.    What is the relation between each number in table 1.1 and the number below it?   
   3.    Give a succinct description of the full set of numbers in the column below 0.   
   4.    If you choose two numbers from the column below 0 and add them together, 

where in the table must their sum lie?    

 0  1  2  3 
 4  5  6  7 
 8  9  10  11 
 12  13  14  15 
 etc. 

   Burn’s “answers” for these tasks are unusual as they often set up new ideas for 
learners and encourage dialogue with the text. As an answer to question 1, he gives 
formal defi nitions and notations for natural numbers, integers, rational numbers, 
real numbers, and complex numbers. For question 2, he writes  four less and four 
more  and for question 3,  three multiples of 4 . Question 4 he answers with 
 4n + 4 m = 4 ( n + m ) .  So the fi rst answer situates what is meant by  integers  in the 
context of different classes of number. The second and third confi rm the learner’s 
reasoning. The fourth indicates that it is time to shift to symbolic representations 
and shows how such representations can be a tool to express reasoning. In this fash-
ion, Burns leads the reader through a number theory course in which the learner’s 
activity initiates the closest thing to a dialogue that one can get from a static text. 
Note also the fact that only two of these  questions  are imperatives; even then, the 
fi rst instructs the learner to  look  before posing a question. In terms of the previous 
categorizations of Thompson et al., Burns’ questions provide opportunities for stu-
dents to communicate, make connections, and interpret a graphic. 

 It would be possible to dismiss Burns’ approach as a teaching style relevant only 
for adult learners or those who are studying mathematics through choice. However, 
The School Mathematics Project (SMP) in England experimented widely with dia-
logic teaching for 11-/12-year-old learners of average attainment from the early 1960s. 
We do not have good measures of readability that take into account the need to inter-
pret mathematical ideas and multilingual classrooms, but it is likely that learners with 
restricted literacy would fi nd a text-based dialogic approach hard to understand and 
successive versions of SMP materials reduced the reading requirements and hence the 
dialogic opportunities signifi cantly (there were multiple editions, now all out of print). 
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 Anticipation of learners’ responses is a key idea in designing tasks to promote 
mathematical dialogues with the text, and published examples are often trialed 
before publication. Burns anticipates responses in his tasks previously described 
( 1982 ). A Portuguese textbook (Gregório, Valente, and Calafate,  2010 ) provides 
examples of a new method intended to be used in that page, but the fi rst example 
(1 + 2 = 1 + 1 + 1 = 3) is ambiguous and could be taken by learners to mean individual 
counting, rather than an instance of  n +  ( n + 1 )  = n + n +  1. Here, anticipation has not 
led authors to imagine alternative interpretations. Some texts have specifi c exam-
ples in which there is a thinking frame to help learners think about a solution. Then 
an actual solution is written in a different font to model the type of response that the 
learner would be expected to provide; such a method is another way to engage in 
dialogue between a learner and a static text. 

 The task in Fig.  5.7  was given to a class of 11-year-olds with diverse prior knowl-
edge. The task shaped the mathematical activity in such a way that the teacher was 
able to identify particular problems of understanding. It also provided a structure 
within which learners could work together to show each other how to measure accu-
rately, how to use the algebraic information, how to express a fraction of 100 as a 
percentage, and so on. Because the class had been enculturated into making conjec-
tures, connections within rows were identifi ed by learners. However, if this had not 
happened, the teacher could have used a digital version of the table, bringing appro-
priate columns adjacent to each other so that conjectures could be made. While all 
learners were working on connections between decimal fractions, vulgar fractions, 
and percentages, new learning varied from learner to learner depending on what 
they already knew and could do.

Equal 
pieces 
(n)

Fraction 
of a 
metre: 

Measurement 
in cm

Percentage 
of a metre

Decimal 
fraction 
of a 
metre

Calculate
1 ÷ n

2
4
8

5
10

3
6

You have been given some meter strips of paper and a meter stick and a table to
enter your findings. Fold the strip into 2 equal lengths; measure the length of one
piece in centimeters and write the measurement in the table. Fill in any other cells
that you can in the same row of the table. Look at the column heading to decide
what to write. Now fold strips into other numbers of equal lengths and continue to
complete the table.

  Fig. 5.7    An example of a task to format new knowledge       

A. Watson and D.R. Thompson



163

   The task in Fig.  5.7  demonstrates a particular strength of text-based tasks, 
namely, that they offer formats that bring particular features together so that com-
parisons and connections can be made to show relationships, equivalence, and so 
on. The provision of tables, grids, sequences, columns, and so on to organize math-
ematical data can draw attention to connections between different representations or 
different instances. Comparisons and connections could be engineered to ensure 
that a critical feature of a concept is foregrounded and that data are structured so that 
patterns and relations can be sought and conjectures made. Formatting the outcomes 
of activities is one way that text-based prepared tasks can provide scaffolding for 
new insights and relational ways of thinking. Texts developed by the University of 
Chicago School Mathematics Project contain guided examples, with blanks to help 
students get started on a solution. The well-known use of ratio tables in RME 
(Corcoran and Moffett,  2011 ; Van den Heuvel-Panhuizen,  2003 ) and bars in 
Singapore (Hoven and Garelick,  2007 ) shows how consistent use of images in text- 
based tasks can scaffold understanding. 

 One issue, however, in all these task examples is that the purpose for the task is 
not always made clear to students. Particularly when tasks have engaged students in 
inquiry and discovery, there is a need to bring closure or summary to ensure that 
students take from their engagement with the task the expected learning objectives. 
So, opportunities to summarize learning are an essential feature of task design and 
associated pedagogy.  

5.3.3     Coherent Purpose in Collections of Tasks 

 The role of the teacher with regard to text-based tasks is to mediate between the text 
and the learner. If that role is passive, the teacher is neither augmenting nor limiting 
what is offered by the text, whether compliant or dialogic. Of course, there is no 
guarantee that a learner will use a static text interactively, even if there are interac-
tive prompts such as those in Fig.  5.2 . By contrast, teachers who assume responsi-
bility to provide conceptual and pedagogic coherence through their teaching 
inevitably mediate tasks through the construction of classroom cultures in which 
tasks direct and shape existing forms of mathematical activity. Between these two 
extremes, published collections of tasks can themselves provide conceptual and 
pedagogic coherence through the consistent application of design principles. Firstly, 
we look at a coherent approach to epistemology and pedagogy. 

 Herbart ( 1904a ,  1904b ) suggested that teachers should raise learners’ interest 
before formal teaching. His approach contrasts with classical texts in which a formal 
defi nition is provided fi rst. In Herbart’s model, the learner’s fi rst task is to think 
imaginatively about the phenomenon; in the classical model, the learner’s fi rst task 
is to decode the defi nition and possibly imagine some examples of it. The role of 
 direct apprehension , i.e., being provided with a situation or image that embodies a 
concept, is more than merely motivational; it suggests that mathematics is a process 
of abstraction of structures, properties, and relationships from specifi c contexts, 
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whereas the defi nitional approach suggests that mathematics consists of instantia-
tions and use of abstract ideas. An example of direct apprehension is the use of a 
domino rally to introduce proof by induction. Love and Pimm ( 1996 , p. 375) note 
that starting with an exploratory task involving inquiry also has implications for 
authority because the work starts with learners’ activity or with the learner’s mental 
model, whereas starting with a defi nition implies an external authority. They con-
trast texts which consist of exposition of given ideas with texts which develop mean-
ing through learners’ construction. 

 As Hart says (personal communication, 24 July 2013), “A good defi nition encap-
sulates a core idea … But, in terms of learning and task design, they seem to be 
more effective if they come after instruction, not before. After wrestling with an 
idea, fi guring it out, seeing how it naturally comes up when trying to solve interest-
ing problems, then you say, well, let’s call this idea ___, and then defi ne it.” Applying 
this perspective to task design, he provides carefully structured sequences of exam-
ples that, on refl ection, can be treated as data for conjecture and conceptualization 
of a new idea (Fig.  5.8 ). As Hart notes, the sequence of numbers used is critical as 
part of the design process. Numbers that are special cases and do not assist in devel-
oping a generalization are not appropriate as examples in the development of the 
concepts.  

 To establish in learners the habit of automatic refl ection on collections of exam-
ples, this kind of task would need to be used regularly (see also Watson and Mason, 
 2006 ). It is more usual, however, for a sequence of procedural questions to be treated 
by learners and teachers as a sequence of isolated cases. When cases are used to 
encourage looking for patterns, the specifi c instances must be chosen with care to 
ensure they lead to the desired generalization and do not generate a misconception. 
For example, consider attempts at conceptual understanding of division using the 
examples in Fig.  5.9 .

   Note how the task embeds practice of division and encourages a comparison 
between division and subtraction that may connect them via a  repeated subtraction  
procedure. As with some other tasks in this chapter, practice is not only associated 
with fl uent use of procedures but also with insights into relationships. There is a 
potential problem, however. In the two cases, the divisor and the quotient have the 
same value. So, learners may correctly write 16 ÷ 4 = 4 and 25 ÷ 5 = 5, respectively, 

2a. Find a number in Z10 that you can add to 6 to get 0 mod 10.  Such a number 
is the additive inverse of 6 in Z10.

2b. Find a number in Z10 that you can add to 2 to get 0 mod 10.  Such a number 
is the additive inverse of 2 in Z10.

2c. What is the additive inverse of 3 in Z10? Explain.
2d. What is the additive inverse of 3 in Z8? Explain why this answer is different than 

the answer yougot for the additive inverse of 3 in Part c.

  Fig. 5.8    Task sequence to scaffold conceptualization of a new idea leading to a defi nition (Hart, 
 2013 , p.340)       
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for the two examples but reverse the meanings of the divisor and the quotient. 
Modifying the example to be 20–5 = 15, 15–5 = 10, 10–5 = 5, and 5–5 = 0 avoids the 
potential confusion because the appropriate division sentence is 20 ÷ 5 = 4, and the 
divisor and quotient cannot be switched. 

 In the previous two tasks, there is an imperative approach to what needs to be 
done, but not how to do it. In the Chinese textbook and  Helice  series mentioned 
earlier in this chapter, an important feature is multiple approaches to each mathe-
matical situation. In a German textbook described by Barzel, Leuders, Prediger, and 
Huβmann ( 2013 ), a consistent set of characters regularly display preferred 
approaches to solving problems throughout the series, for example, “Till likes to try 
numbers and to begin a table. Pia likes to explore patterns and to describe a situation 
algebraically”. This embeds the idea that there are alternative approaches to prob-
lems that might be valid. 

 Zooming out to the overall context, another way in which published task collec-
tions can establish cultures of mathematical activity is through the inclusion of 
assessment tasks whose design aligns with the curriculum and pedagogic aims 
(Thompson et al.,  2013 ). In the cases just considered, method is less important—so 
long as it is correct—than refl ection on the outcomes. If both the formative and 
summative assessment tasks provide the same coherence and consistency as the 
intended curriculum, then even if the teacher and learners approach mathematics 
with a test-focused lens, broad aims might be achieved. Such consistency can be 
achieved through aligning curriculum, pedagogy, and assessment so that the 
expected forms of reasoning, the expected communication methods, the connec-
tions between and within topics, the representations used, and the connections 
between them are evident. Consistency also requires that similar things are priori-
tized and foregrounded in assessment tasks as in the curriculum, not only in concep-
tual and procedural aspects but also in the nature of mathematical activity. 

 For example, consider the development of an assessment task as in Fig.  5.10  
showing how apparently similar tasks can make different demands on learners, 
emphasizing fi rst counting and representation, second the action of sharing and a 
representation, and third the action of sharing and producing two related representa-
tions. In the fi nal version, the connection between pictorial and symbolic represen-
tation has to be explicit, thus providing insight into conceptual understanding by 
having to change register, as described by Duval ( 2006 ). This task involves more 
than simple translation, because in each representation some process has to take 
place, and the processes are different. In words, some imaginary modeling needs to 

16 – 4 = 12
12 – 4 = 8
8 – 4 = 4
4 – 4 = 0

25 – 5 = 20
20 – 5 = 15
15 – 5 = 10
10 – 5 = 5
5 – 5 = 0

Rewrite each set of subtractions 
as a division.

  Fig. 5.9    Attempts to connect 
conceptual and procedural 
views on division (Adapted 
from Zorin, Hunsader, and 
Thompson,  2013 )       

 

5 Design Issues Related to Text-Based Tasks



166

be done; in the arrays of sweets, some methods of enumeration have to take place. 
The varied forms of the assessment can align with the nature of the tasks incorpo-
rated as part of instruction.    Mathematics is presented as being about expressing 
relations between quantities in alternative representations. In addition, mathe-
matical activity consists of following instructions to draw these different represen-
tations, with the implication that comparison will take place to support cognition. 
These versions show how assessment tasks within a learning management system 
can express overall aims of the system and also give learners direct insight in the 
associated values of that system. Appropriate assessment tasks are essential to 
ensure that collections of tasks have a coherent purpose overall, both instructionally 
and in evaluative aspects. 

 Of course, high-stakes assessment tasks structure purpose and pedagogy to some 
extent, but a recurrent problem is how such tasks can recognize and even measure 
the development of mathematical behavior. Dindyal et al. ( 2013 ) have attempted to 
make problem-solving activity assessable by using a practical worksheet, similar to 
worksheets or data recording sheets used in laboratories. By providing a format in 
which learners can record the stages and processes of problem-solving (see 
Fig.  5.11 ), teachers not only enculturate learners into the habits of exploratory group 
work but also are able to monitor competence and progress in relevant behavior. 
This is another situation where textual formats can scaffold mathematical enquiry 
and insights.

   Collections of tasks need to have a consistent approach to the conceptual devel-
opment of the content. We have already compared how different ideas about learn-
ing addition can be enacted throughout a text, presenting either the additive 
relationship or addition techniques. We also gave an example in Fig.  5.5  of how 
geometric reasoning can be differently enacted. In the respective textbook series as 
a whole, these differences are sustained; the one based on similarity assumes 

Adaptation 1. Five friends have 20 pieces of candy to share 
equally. How many pieces of candy will each friend get? Write a 
number sentence to show how many pieces of candy each friend 
will get.

Adaptation 2. Five friends have 20 pieces of candy to share 
equally. How many pieces of candy will each friend get? Write a 
number sentence to show how many pieces of candy each friend 
will get. Use the picture to explain your thinking about the 
problem. 

Adaptation 3. Five friends have 20 pieces of candy to share 
equally. Draw a picture to show how many pieces of candy each 
friend will get. Write a number sentence to represent your 
picture.

  Fig. 5.10    Three adaptations to a basic division task to engage learners in different mathematical 
processes (From Thompson et al.,  2013 , p. 406)       
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that this idea has been understood earlier and the relevant notation already adopted. 
In the use of mathematical notation, there is little room for variation throughout a 
task collection as notation tends to be standardized, but in the use of images, devel-
opment of mental images, inner language, and promoted action, there is more room 
for variety, sometimes based on cultural expectations. 

 At times, clashes of images need to be anticipated in collections of tasks within 
a textbook or between textbooks in a series. For instance, diffi culty can occur when 
learners have depended on a balance model for solving linear equations but are then 
introduced to a “fi nd roots” approach for quadratics, thus fragmenting their knowl-
edge of solving equations. A similar problem for younger students is having an 
array understanding of multiplication and then trying to use multiplication for scal-
ing quantities. Text can introduce particular images, but these have to be used in a 
coherent manner.  

5.3.4     Embedding New Knowledge with Existing Knowledge 

 So far we have discussed tasks for learners to introduce them to new ideas, problems 
and procedures, and assessment tasks that might follow and convey a particular 
view of what is valued in mathematics. An intermediate range of tasks can be 
designed to connect new to existing knowledge, help learners recognize the value of 
that knowledge, and make it available for future use. Such tasks are particularly 
important when the main teaching/learning mode is exploratory and divergent 
because the tasks help relate the exploration to conventional knowledge. There are 
various ways to address this range of tasks, as described in more detail in Chap.   2    : 
in Realistic Mathematics Education,  vertical mathematization  describes the neces-
sary process of transforming methods used for individual problems into tools for 
future use (Treffers,  1987 ); Brousseau refers to  institutionalization  as a process of 
legitimizing the work done in conventional mathematical terms ( 1997 ). In Japan a 
process of  neriage  (kneading) takes place to bring students’ into a coherent whole 
(Takahashi,  2011 ). In these approaches, the teaching is vital. In the KOSIMA project 
(Hußmann, Leuders, Prediger, and Barzel,  2011b ), this exploratory process has 

Devise a plan
Write down the key concepts that might be involved in solving the equation.

  Fig. 5.11    Outline of part of the practical worksheet with student’s response (From Dindyal et al., 
 2013 , p. 319)       
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been a specifi c focus for research in determining how to coordinate the individual 
efforts of learners with the intended conventional knowledge and how to support 
this through the text. Note that all these approaches suggest that the teacher’s intel-
lectual input needs to relate to students’ activity. 

 Barzel et al. ( 2013 ) offer three components of knowledge organization necessary 
for learners to incorporate their experience of exploratory tasks into a repertoire of 
conventional knowledge:  systematization  (structuring results and connecting them 
to other knowledge),  regularization  (transforming into the conventional repertoire), 
and  preserving  (writing in an accessible form). These processes do more than  insti-
tutionalization  by also focusing on personal conceptual development and recording. 
Tasks can align divergent experiences toward shared understanding of concepts and 
procedures by embedding technical language and conventional symbolism, relating 
defi nitions to recognition, and providing individuals with opportunities to express in 
words and symbols. 

 A good teacher can provide knowledge organization experiences by orchestrat-
ing students’ ideas as seen in the task designed by teacher Jim Noble (personal com-
munication, 8 April 2014) when he found that some of his students were confused 
by information in a textbook that ratios could be expressed as fractions, e.g., 1:2 
could be expressed as 1/2. He created a formatted task to help them compare mean-
ings of ratios and fractions (Fig.  5.12 ). Note that his use of fractions differs from 
that in the textbook they were using.

   Published tasks can also provide these refl ective perspectives. KOSIMA includes 
many strategies for knowledge organization as specifi c tasks, for example, after 
studying parallel and perpendicular pairs of lines, students are offered several state-
ments from which to choose  the best  descriptions of parallelism and perpendicular-
ity (Barzel et al.,  2013 ).  

Ratios and Fractions!
Consider this statement: The ratio of boys to girls in a class is 1 : 2. 

3
1 of the class are boys,

3
2 are 

girls. The table below is based on statements like these. Can you arrange the given numbers into 
the right place to make similar statements correct? You must use all the numbers and once only. 
For example, for the statement I have just made the given numbers would be: 1, 1, 2, 2, 3, 3.

Numbers Ratio of boys to girls Fraction of class 
that are boys

Fraction of the class 
that are girls

3, 3, 5, 5, 8, 8
3, 3, 4, 4, 7, 7
4, 4, 5, 5, 9, 9
1, 2, 3, 4, 4, 6
1, 2, 3, 3, 3, 6

  Fig. 5.12    Formatted task to help students connect ratios and fractions (From Jim Noble, personal 
communication)       

 

A. Watson and D.R. Thompson



169

5.3.5     Summary 

 In this section, we have talked mainly about the purposes a designer might have for 
tasks to address learning or assessment and have given examples of how these pur-
poses are turned into design parameters for collections and sequences of tasks. In 
the next section, we focus more systematically on desirable forms of mathematical 
activity and whether these can be shaped by text-based tasks.   

5.4     Intended/Implemented Mathematical Activity 

 The fi nal node in the task design intention triangle relates to the mathematical activ-
ity of the task. Design issues related to mathematical activity relate to principles 
about learning and mathematical aims of particular tasks. We discuss both of these 
issues in turn. 

5.4.1     Principles About Learning 

 We cannot talk about connections between tasks and learning without some theories 
about how pedagogy shapes mathematical learning and hence design frameworks as 
described in Chap.   2    . Here, we add to the arguments in Chap.   2     by providing exam-
ples of these principles in action in individual test-based tasks and what they might 
look like on a page or screen. 

 The idea behind a cognitive confl ict approach is that learners are presented with 
situations that confl ict with ideas they already have, so that their ideas have to be 
modifi ed to incorporate new experiences. Tasks have to bring these confl icts to 
learners’ attention by leading them to become stuck if they continue with the old 
idea. Learning in this theoretical frame means to adapt, alter, or extend a previous 
notion, so tasks have to present opportunities to use previous notions and then fi nd 
contradictions or puzzles that need to be resolved. Many other examples of tasks 
evincing the resolution of cognitive confl icts created through paradoxes that can be 
integrated in school curriculum can be found in Movshovitz-Hadar and Webb 
( 2013 ) and also in Swan ( 2006 ). 

 As an example of how cognitive confl ict can be used to extend learning, Barabash 
(personal communication, March 2014) points to potential confl icts between learn-
ers’ early conceptions of the tangent concept that do not hold in more advanced 
settings. In the Israeli curriculum, the concept of  tangent  is introduced in geometry 
as a tangent to a circle and then in precalculus as a tangent to a parabola. For both 
the circle and the parabola, the tangent is intuitively understood or actually defi ned 
as “if a line has common points with a curve, then it  either  intersects it (in two 
points!)  or  is tangent to it.” However, this result is only true provided the curve is 
seen as convex and smooth; developing the concept of tangency on this basis is not 
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always valid as illustrated in Fig.  5.13a, b  when the curve has power higher than 2. 
Thus, the means for introducing tangent in early instances and with the given defi ni-
tion are in confl ict with later, more advanced perspectives on the concept. The task 
is to redefi ne tangency given these two juxtaposed examples. In presentational 
terms, the graphs can be compared side by side to identify what is the same and 
what is different.

   In Variation Theory (VT), the idea is that learners will notice what is varying 
against an invariant background (Marton,  2014 ). Mathematics tasks should be 
designed so that the desired key idea (known as the  critical aspect  in the theory) is 
varied and learners can see this and the effects of such variation in successive exam-
ples. A full application of VT requires the initial identifi cation of a critical aspect to 
be learned, and it is this that will then be varied. Such identifi cation takes place 
through a phenomenographic analysis of learners’ work in a particular context, so it 
could be argued that no static text can fully use VT. Nevertheless, the theory does 
draw attention to the importance of organizing variation in learners’ experience, the 
 space of learning . Dynamic digital environments are very useful for this type of 
variation as variations of a parameter of an object and variation in a representation 
of the object can be seen at the same time or soon after each other. For instance, 
imagine learners using a graphing tool to graph  y  =  x ,  y  = 2 x ,  y  = 3 x ,  y  = − x ,  y  = −2 x , 
and so on. Learners should quickly be able to determine that all lines of the form 
 y  =  mx  go through the origin and that the value of  m  determines the slant and steep-
ness of the line. In static environments, near-simultaneous or adjacent presentation 
can have a similar effect. The presentation of the sequence of examples needs to 
make clear what features of a concept are varying in order to show relationships 
between different aspects of the mathematical idea. The learner is to recognize and 
generalize the relationship between variables. 

 ATD (Anthropological Theory of Didactics) and RME are both ways to engineer 
a need for a formal mathematical idea. Fujii gave an example of such a task ( 2015 , 

  Fig. 5.13    Illustrations in which the concept of tangent confl icts with formal defi nition as a line 
that intersects a  curve  at only one point (diagrams from Barabash, personal communication). ( a ) 
The tangent at one point intersects the  curve  at another point. ( b ) The tangent intersects the  curve  
at the infl ection point       
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Chap.   9    , this volume) in which learners were given various distance-time relationships 
and asked to identify which relationship represented the  fastest . It is impossible to 
give a typical example of an RME task in text, because the nature of the resources 
varies widely. One type of task is to present a picture, such as a stack of oranges, and 
invite questions to be posed and generalizations made about piles of oranges of vari-
ous heights and widths (Dickinson and Hough,  2012 ). Another type is to offer a 
realistic problem and a format for the fi ndings of the problem-solving process, such 
as a bar diagram, which can then become a model for future reasoning (Van den 
Heuvel-Panhuizen,  2003 ). 

 In all these theoretical frameworks, the main pedagogic purpose is to learn new 
mathematical concepts and methods. In the fi rst two (cognitive confl ict and varia-
tion theory), this is generally achieved by working on given examples and then 
comparing and refl ecting on the outcomes. In the second two (RME and ATD), 
learners have often to be exploratory and exert some mental effort to suggest solu-
tion paths. Most of the tasks presented so far can be viewed as examples of one or 
more of these approaches, but Fig.  5.3  offers nothing but the opportunity to mathe-
matize a situation. The teacher could use this fi gure to develop the need for the idea 
of proportionality or as a context for applying proportional reasoning. By contrast, 
Fig.  5.4  is a relatively closed task that can be treated merely as practice in complet-
ing linear sequences, but a teacher could then encourage refl ection and comparison of 
outcomes to develop algebraic understanding of linearity, possibly using learners’ 
conjectures to do so. 

 Tasks on their own are unlikely to address all the complex aims of the mathemat-
ics curriculum, particularly those that are about developing mathematical behavior, 
and the authors’ intentions depend on associated pedagogy. Note that the author 
might be the teacher (as in Jim Noble’s task in Fig.  5.12 ) and may have produced 
the text-based task to support complex pedagogic aims. The extent to which the 
teacher understands and supports the pedagogic aims of the text infl uences the man-
ner in which adaptations are conducted in order to maintain those aims—the issue 
of curriculum vision and trust (Drake and Sherin,  2009 ) discussed previously.  

5.4.2     Aims Enacted Through Individual Tasks 

 In earlier sections, we have sometimes described the mathematical activity prompted 
by a task. We now systematize this from the perspective of desirable mathematical 
activity. In Chap.   2    , there is a call for more focus on the grain size of frameworks as 
research in task design would benefi t from further clarity about different levels of 
activity. Because the purpose of tasks is to promote mathematical action, we look at 
grain size from the point of view of actions:

  Grain Sizes of Mathematical Actions 

   i.    Basic actions   
   ii.    Transformative actions   
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   iii.    Concept-building actions   
   iv.    Problem-solving, proving, and applying   
   v.    Interdisciplinary activity    

  Compliant and passive learners expect to undertake basic actions of type (i) and 
can begin to get stuck with transformative actions of type (ii). A common pedagogic 
approach to overcoming these diffi culties is to routinize type (ii) actions by provid-
ing rules for transformation, such as  change the side, change the sign  as a routine 
when solving linear equations, or  FOIL  (fi rst, outside, inside, last) as a routine for 
multiplying two binomials. Type (iii) actions have been available to learners in 
many of the task examples presented so far, sometimes explicitly and sometimes 
implicitly. Where these are implicit, explicit pedagogy and the development of 
appropriate cultures of classroom mathematical work can ensure they take place. 
Actions of type (iv) are expected in most national curricula and statements of edu-
cational aims, but an overreliance on routinizing type (i) and type (ii) actions and a 
lack of explicit focus on type (iii) actions can make type (iv) actions, and hence type 
(v) actions, hard to achieve. We also note that some would say the outcomes of type 
(iv) activity are essential components of concept building, and we would agree. 
However, here we are focusing on how a designer needs to imagine what the learner 
is actually going to DO in response to the task, rather than only imagining what 
MIGHT be possible with supportive teaching. 

 It is helpful to think in terms of desirable mathematical behavior that needs to be 
promoted by tasks. Cuoco, Goldenberg, and Mark ( 1996 ) describe  habits of mind , 
or what several people call the  verbs of mathematics , as starting points for tasks (i), 
(i), and (iii). Similarly, Schoenfeld ( 1985 ) and Mason, Burton, and Stacey ( 2010 ) 
provide ways to think about tasks of types (iv) and (v). For this chapter, our main 
goal is to indicate behavior which can be triggered by text-based tasks, how this can 
happen, and what remains the domain of pedagogy, particularly the creation of cer-
tain classroom cultures. 

 In Table  5.3 , we elaborate on actions at different grain sizes but do not claim that 
these are mutually exclusive or that the table is complete.

   This approach to thinking about what learners need to do omits some aspects of 
mathematical experience, such as:

•    The need to talk, write, and listen to mathematics  
•   Reasoning for different purposes, e.g., to conjecture, persuade, and prove  
•   The need to use mathematical feedback, such as self-correcting, monitoring 

overall sense, understanding comments from others, and appreciating a need for 
consistency  

•   Seeing mathematics as part of citizenship—information for understanding the 
world  

•   Relating mathematical work to other human values    

 We see these aspects as pertaining to all grain sizes of mathematical actions. 
None of these can be embedded in learners’ experience solely by indicating them in 
text or including an opportunity in a task; there has to be the associated pedagogy to 
ensure they happen. For example, Simon’s design of a questioning sequence used 
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to move Erin toward understanding the traditional fraction division method depends 
on being responsive to her (described in Chap.   2    ). He tries to identify, through 
observing patterns in talk, when she has developed a new schema, so the next question 
he poses must provide refl ection on this new schema toward abstraction. In this way, 
Simon structures a task that sounds like type (i) but has the effect of moving through 
to type (iii) as she extends the domain of application and then generalizes her ad hoc 
and visual reasoning into an algorithm. Although it would be possible to write the 
questions as a sequence in text, it would not be possible to hold them until the right 
pedagogic moment arises for them to be effective in changing understanding. Human 
dialogue is necessary, even though the outcome will be a calculation procedure.  

5.4.3     Complex Aims Enacted Through Large-Grain-Size Tasks 

 It is possible to shape experiences related to more complex activity through provid-
ing tasks in textual form. Movshovitz-Hadar and Edri ( 2013 ) developed an approach 
to help teachers bring values into the mathematics classroom (Fig.  5.14 ).

   By reverse engineering the outcomes of the project (as is also applied to educa-
tional tasks by Amit and Movshovitz-Hadar,  2011 , p. 176), the authors present 
four issues related to design that make this approach manageable for teachers and 
learners:

    1.    Tasks are based in the mathematics curriculum and designed to last one class or 
homework session.   

   2.    They include a clearly phrased introduction followed by two kinds of short ques-
tions: (i) mathematical exploration or thinking and (ii) dialogue to clarify values 
using mathematical and other perspectives.   

   3.    Editing to avoid obstacles.   
   4.    Advice about the social mode of working: group, individual, discussion, and so on.    

    Table 5.3    Actions for different grain sizes of mathematical work   

 Grain size  General focus  Examples of specifi c actions 

 i  Basic actions  Calculating, doing procedures, stating facts 
 ii  Transformative  Organizing, rearranging, systematizing, visualizing, 

representing 
 iii  Concept building  Sorting, comparing, classifying, generalizing, 

structuring, varying, extending, restricting, defi ning, 
specializing, relating to familiar and intuitive ideas 

 iv  Problem-solving, 
proving, 
applying 

 Conjecturing, assuming, symbolizing, modeling, 
predicting, explaining, verifying, justifying, refuting, 
testing special cases 

 v  Interdisciplinary 
activity 

 Incorporating other epistemologies, identifying variables 
and structures, recognizing similarities, comparing 
familiar and unfamiliar knowledge 
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  Consideration of values-focused tasks raises the question of the starting points 
for task design and for presentation of the task in text. Is priority given to the context 
and the mathematical perspectives that emerge from it? Or is priority given to a 
mathematical idea and the context is then built around it? Design might have prob-
lem orientation, concept orientation, or context orientation (Nikitina,  2006 ). For 
example, within variation theory the critical aspects of the mathematical concept 
have priority; however, when interdisciplinary work is an explicit aim, priority 
might be given to context. In the COMPASS project, Maaβ et al. ( 2013 ) report on 
their development of design issues for interdisciplinary tasks. This was an interna-
tional project, so thought had to be given to different prevailing pedagogic attitudes 
and ICT use in the participating countries. The aim was to produce digital and 
paper-based resources for dissemination beyond the development process, and these 
had to communicate clearly the key mathematical and scientifi c ideas so that teach-
ers and learners could see how these emerged from their work. Each task had to 
make reference to the appropriate national curriculum to encourage teachers to use 
it. The most appropriate pedagogy for interdisciplinary tasks of this type would 
have been extended exploratory project-type work, but the designers also provided 
more structured versions to support teachers who were not confi dent enough to 
undertake long tasks. Task designers gave considerable thought to how complex 
materials could be made teacher friendly and easy to use. Further issues, many of 
which emerged during the design research process with teachers, included:

•    The need for an overview of the lesson sequence, with tasks and subtasks.  
•   Tasks presented so they could be used directly in lessons without 

transformation.  
•   Questions needed for guiding learners.  
•   Clear links between subtasks and the big contextual questions.  
•   Possible solutions.  
•   Information about adapting tasks for different learners.  
•   Different materials (e.g., task sheets, solutions, background information) had to 

be easily distinguished at fi rst glance.    

In 2007, minorities (Arabs, Druze, and Circassians) were one fifth of the population in Israel. 
Despite this, only 6.2% of all civil service employees in this year were minorities. Over the 
years, the Israel government has made decisions (in 2004, 2006, and 2007) to promote suitable 
representation of minorities in the civil service, setting 10% as a target for the percentage of 
employment of minorities in the civil service.
1. What do you think about the goal that was set by the government? 
2. The Ministry of Housing and Construction had 741 employees in 2007. Had the target set by 

the government been achieved, how many members of minorities would have worked in the 
Ministry of Housing and Construction?

3. Twelve employees in the Ministry of Housing and Construction were minorities in 2007. 
What percentage of all employees in the ministry were minorities?

4. What do you have to say about the two results you obtained?

  Fig. 5.14    Values task for Israeli classrooms (From Movshovitz-Hadar and Edri,  2013 , p. 382)       
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 One such project is about water shortage. The subtask materials are too complex to 
give in full here. The guiding questions and two of the subtasks are shown in Fig.  5.15 .

   The issues of design for COMPASS are useful guidelines for the production of 
any multimedia curriculum package. They address key questions in interdisciplin-
ary work about the balance between context for mathematical learning and the use 
of mathematics to support learning in other disciplines. 

 Staats and Johnson ( 2013 ) tackled the problem of algebraic competence at col-
lege level through a novel interdisciplinary approach. They adopted the typical 
social science pedagogic method and provided tasks coauthored by a mathematics 
teacher, a disciplinary specialist, and a creative writer. The creative writer prepares 
an engaging presentation of a scenario. This is followed by explicit learning goals 
for both disciplines for class discussion, with scaffolding questions and a short sup-
portive bibliography. We do not have room here to present a full narrative but will 
summarize the content of one module (for more details see   z.umn.edu/icmi22    ). The 
core of the module is a short story titled  Indebted,  in which a young man wrestles 
with the question of how to pay for his college education. The young man visits his 
grandfather, who suffers from Alzheimer’s disease. The grandfather hoped to con-
tribute to his grandson’s education but instead had to use his savings for his own 
care. The young man considers mathematical scenarios associated with indebted-
ness, such as rapidly rising college tuition and the per capita value of the national 
debt. Finally, he signs his college loan papers. The learner recognizes the social and 
emotional dimensions of the problem as well as the mathematical issues. 

 So far in this section, we have talked about tasks that address the largest of our 
grain sizes but include aspects of smaller grain size, mainly type (i) and type (ii) 
with other types to obtain models for prediction purposes. This is not a surprise as 
most of the research in task design addresses complex aspects of mathematical 
work. However, there is much to be understood about the design of tasks that scaf-
fold basic, transformative, or concept-building activity. Each of the actions in 
Table  5.3  could be triggered by an imperative, such as  put in order ;  classify 
according to … ;  give three contrasting examples of … ; and  prove that … . As the 
professional development procedures of lesson study and learning study have shown, 

  Fig. 5.15    Examples from cross-curriculum task in COMPASS (2013 ©  2010–2011 COMPASS 
project reuse under Creative Commons Licence)       
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the actual examples used and their availability to learners make a difference in 
opportunities to learn. We give some insight here, and there are others throughout 
this chapter. 

 The example comes from Barabash and Guberman ( 2013 ). In writing textbook 
tasks about shapes, they had to choose between (a) allocating a lesson to each solid 
in turn and then asking for comparison or (b) looking at all relevant solids together 
and fi nding their common and special properties. They chose (b), an approach 
which brings type (i), (ii), and (iii) actions together, rather than (a) which climbs up 
from (i) to (iii). The authors embedded the approach in a problem situation in which 
an intruder has left traces of certain solids in the form of stains made from static 
contact or traces left by rolling solids (see Fig.  5.16 ), thus working with type (iv) 
actions. Their overall aim is to develop  mathematical insight , which is akin to the 
organization of knowledge described by Barzel et al. ( 2013 ). Their approach is 
shaped at the start of the work by the expectation that mathematics is going to pro-
vide the analytical tools to identify the solids. Students explore with the solids, 
make conjectures, and then refi ne their conjectures.

   Note that we have addressed all grain sizes from the zoomed-in view of learners’ 
experience, rather than from a zoomed-out view of curriculum aims. How learners 
can be “ramped” from simpler tasks to more complex tasks, where their previous 
experience has not prepared them for complexity, is a related problem. One useful 
approach is to use a gradient of “novice”, “apprentice”, and “expert” tasks (MARS, 
 2014 ). These descriptions were developed for designing assessment tasks but could 
be used equally well for the development of complex mathematical habits of mind.   

5.5     Visual Features of Text-Based Tasks 

 Text-based tasks are planned, prepared, and presented to learners visually; they are 
not the tasks that arise within teacher-learner dynamics. Most of our discussion is 
about the work that goes into planning and preparation, but the experience for the 
learner is fi rstly visual. For this reason, research about learners’ experiences with 
text-based tasks needs to take into account many of the same perceptual impacts as 

  Fig. 5.16    Marks left by  solids  from static contact with a surface or by rolling; the task is to deter-
mine which solid could have left the given mark (Barabash and Guberman,  2013 , p. 297)       
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might be considered by graphic designers. However, we found little research which 
related perceptual impact to mathematical cognition. In the graphic design literature, 
we read that the learners’ attention can be directed in sequence to particular features, 
as in statistical representations, but making mathematical sense of those features and 
coordinating with other features are not widely discussed across mathematics. In a 
few textbook comparisons, researchers draw attention to the use of color, pictures, 
text boxes, and so on and whether these are used for cognitively specifi c purposes 
or whether they are merely to make a page appear attractive to young learners. 
Thompson et al. ( 2013 ) classify the use of graphics as was previously shown, but we 
repeat a shortened form here: no graphic; graphic does not illustrate inherent math-
ematics; graphic explicitly illustrates inherent mathematics; graphic has to be inter-
preted to answer a question; and make a graphic. 

 When we talk of visual features as part of a task, we are not interested in the use 
of color, pictures, or position merely for visual attraction but at how those features 
contribute to learners’ mathematical activity by enabling coordination of the eye 
and brain. In the static environments that are our focus in this chapter, we are also 
interested in how pictures and diagrams can suggest action. For example, in Fig.  5.6  
the pictures suggest both collation and separation using place value. In Fig.  5.10 , the 
sweets suggest systematic enumeration. 

 In Fig.  5.6 , the pictures have a deliberate cognitive purpose in that they illustrate 
actions which can contribute to an understanding of the symbolic representations 
that follow immediately. In Chap.   2    , Fig.   2.7     demonstrates a similar set of pictures 
and diagrams. Symbolic statements are placed next to each other when they relate 
to each other in particular structural ways or follow each other in a deliberately 
varied fashion. Without the need for mediation through speech, a learner who deci-
phers the page from top to bottom and left to right has the information they need to 
complete the suggested statements. In Fig.  5.4 , the layout confi rms for the learner 
that they need to fi ll in some blank spaces, and when this is done there are some 
relationships to be found. In other words, the layout encourages comparison, con-
jecture, and generalization between sequences rather than merely completing them 
separately. However, visual similarity does not always imply mathematical equiva-
lence and learners have to sort out when it does and when it does not. 

 Learners have to make a distinction between pictures and diagrams. For exam-
ple, Curcio ( 1987 ), among others, describes learners being over-infl uenced by the 
shape of graphs when matching them to situations that might be generating the rel-
evant data and points to confusion between words such as higher, faster, and lower 
and the shape of associated graphs. In several studies, learners are seen to react 
visually to diagrams that need to be interpreted symbolically (Dörfl er  2005 ; Radford, 
 2008 ). In geometrical reasoning, a diagram has to be understood not as an accurate 
case but as a representation of a system of relations and properties. Moreover, both 
diagrams and pictures can introduce simplifi cations or elaborations which could 
mislead novice learners. For example, a vertex could look as if it is a right angle 
when it is supposed to be general; a learner might assume that the base of a triangle 
has to be parallel to the page edge. Love and Pimm ( 1996 , p. 380) point out that 
dynamic digital technology will help learners to understand that a single example is 
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an instance of a class of fi gures and that a specifi c example can be manipulated to 
address these potential misconceptions. Puphaiboon, Woodcock, and Scrivener 
assume a dynamic environment, saying “The graphic representation must portray 
the relationship between the graphical parts in time and space to reinforce cause and 
effect relationships” ( 2005 , p. 3). Static images have to embed this dynamic rela-
tionship and be understood as instances of a variable class so that they direct the 
learner toward the salient features of the class. 

 Tufte shows a variety of ways in which quantitative and dynamic data can be 
represented through static diagrams, such as through labeling, encoding, relating 
data to familiar scales, etc. ( 1997 , p. 13). He claims that good design enables atten-
tion without clutter so that “clear and precise seeing becomes as one with clear and 
precise thinking” (p. 53). Shuard and Rothery ( 1984 , p. 61) draw attention to the use 
of arrows in text to indicate some movement and action, the static equivalent of 
mouse clicks and dragging; the use of arrows is a convention that learners know 
from outside the classroom but that might have a special meaning and use inside 
mathematics. Diagrams make a difference to learning; so long as the diagram and 
its associated text are near each other so the eye can move back and forth, relative 
position does not matter (Shuard and Rothery,  1984 , p. 53). Some recent research 
using eye tracking to determine if experts and novices  read  tabular data differently 
has shown no differences, but each participant in the study seemed to have a per-
sonal pattern of engagement with such data (Crisp, Inglis, Mason, and Watson, 
 2011 ). More work is needed in this area to fi nd out how learners acquire and coor-
dinate information from a mathematical text. 

 The use of color for specifi c mathematical purposes became established in 
nineteenth- century geometry teaching, for example, Byrne’s edition of Euclid 
( 1847 ) color to draw attention to different objects and quantities whose relations 
could then be understood spatially. Fig.  5.17  gives a sense of the use of color to 
compare objects.

   Color is widely used in the teaching of algebra to draw attention to like terms or 
to provide spatial patterns to be generalized (e.g., showing ( x  +  y ) 2  =  x  2  + 2 xy  +  y  2  
with appropriate shading), as a way to draw attention to area as the space inside a 
closed 2-d shape and so on. Indeed color is used for a mixture of mathematical and 

That is, red angle added to the yellow angle added to
the blue angel, equal twice the yellow angle, equal two
right angles.

Or in words, the red angle added to the blue angle, equal
the yellow angle.

.==++1. 2

.=+2.

  Fig. 5.17    Use of  color  to relate objects (Byrne,  1847 , p. x)       
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attentional reasons to support the distinctions learners make when understanding a 
mathematical idea, but it is also used purely for visual variety. We wonder how 
learners learn when to use color cognitively and when it has no mathematical pur-
pose. The use of specifi c color words disadvantages color-blind learners (up to 
10 % of boys and 0.5 % of girls can be color blind). In Fig.  5.17 , the words  red , 
 yellow , and  blue  will confuse a signifi cant number of people, so although different 
shades may be perceived, it is better to refer to them in some other way, as is done 
in Japan (Ohtani, personal communication, 22 May 2014). The key idea is how the 
text draws learners’ attention to examples and how they relate to each other. As well 
as the use of emphasis through color and layout, the control of variability and the 
near- simultaneous presentation of variation are key factors in the kind of atten-
tion that is necessary for type (ii) and (iii) activities. Tasks in Figs.  5.5  and  5.9 , 
among others, demonstrate the use of juxtaposition to elicit conjecturing and 
generalization. 

 Thinking about the page as a whole, Kress and Van Leeuwen ( 1996 ) use the 
metaphor of an art gallery or museum (see Yerushalmy  2015 , Chap.   7    , this volume) 
to think about where to position items to direct the learner in a logical or develop-
mental order while making ancillary information and elaborations available through 
hyperlinks. Although diffi cult to replicate on the printed page, such links could eas-
ily be provided in digital text. Cognitive load theory, which is concerned with fi nd-
ing the optimal number of ideas that can be handled to understand a concept while 
not oversimplifying it, also has a role to play in the preparation of a page. The 
learner should be able to follow a pathway through the text that allows access to 
core ideas, possibly through various representations and instances, without becom-
ing too distracted by irrelevant details; in essence, the learner needs to distinguish 
the core idea from other material and cannot learn to do that if it is always presented 
in isolation (Love and Pimm,  1996 ). In cognitive load theory, researchers are con-
cerned with whether the content is intrinsically necessary for the object of learning 
or germane to it or extraneous (e.g., Paas, Renkl, and Sweller,  2003 ). We would 
argue that the grain size of the pedagogic intentions determines whether these loads 
are desirable or not. For type (i) activity, only intrinsic content is necessary; for the 
other types of activity, mixtures of intrinsic and germane and even extraneous con-
tent are desirable. In variation theory, it is suggested that background variables (i.e., 
those that are not the critical aspect for learning) should be kept invariant but need 
to be present to enable variation in the critical aspect to be observed in the fore-
ground. An alternative is to have variation of many features but invariance of a key 
feature. Examples could be a collection of contextual problems that all have the 
same underlying structure when the structure is the intended object of learning or a 
collection of quadratics that all have the same roots when roots are the intended 
object of learning. 

 An associated factor is whether collections of exercise questions in grid form are 
done horizontally or vertically and whether it matters. The example from an old 
algebra text in Fig.  5.18  shows that it does matter whether the learner follows rows 
or columns. The authors of the exercise seem to be aware of the value of organizing 
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variation in examples, and the numbering order encourages comparisons, so that the 
role of the numerator can be refl ected upon.

   In Fig.  5.19 , the authors appear to be aware of the importance of variation, but 
the layout and order provide several variations between successive questions, so that 
little refl ective awareness is available. If the fi rst two questions had been: a + b and 
a–b; −b + a and  b + a , there would have been something to notice and justify which 
could have supported conceptual learning. A type (i) task could have become a type 
(i), (ii), (iii), and even (iv) task in this way.

   The amount of writing may be an issue for some learners. Shuard and Rothery 
( 1984 ) studied 400 learners’ reactions to versions of a task with more or less writing 
required and found that reactions varied (p. 130). Learners’ reactions may be due to 
past experience, causing Shuard and Rothery to conclude that people need help to 
learn how to read mathematical text. Reactions to an exposition presented in comic 
strip style also varied inconclusively, but there is now a range of popular resources 
of this style on the internet. 

 The use of background effects such as grids, frames, fi lls, and so on can enhance 
attention and avoid the  fl atness  of appearance of the page (Cuoco,  2001 ), in which 
every part of the text appears to have a similar status. However, care has to be taken 
that such effects do not mislead readers. For example, presenting rectilinear shapes 
on squared grids can mislead learners into counting boundary squares to fi nd the 
perimeter. 

 In addition, the choice of font, or variation of fonts, and length of lines of print 
can infl uence learners’ attention and reading capability. Such features can even 
infl uence the ways in which teachers and their learners engage with the text, an 
interesting example of this being the use of handwriting in the RLDU materials 
(e.g., Fig.   5.2  ) establishing a sense of mathematics as a human and exploratory 
endeavor. However, in Shuard and Rothery’s study of 400 learners aged 11–12 
using handwritten text, some found this font friendly and helpful, but others found 

1. × 5 4. × 3

2. × 5 5. × 3

3. × 5 6. × 3

  Fig. 5.18    From  Elementary 
Algebra , Part 1 (Godfrey and 
Siddons,  1915 , p. 43, 
Cambridge University Press)       

Find the sum of:
1. a + b and a - b 2. 2x - a and 3x + a
3. -x + a and x + a 4. 2x + a and 3x + a
5. a - 3b and a + 2b 6. 2a - b and 3a - b

  Fig. 5.19    From W. Baker and A. Bourne ( 1937 , p. 19)       
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“funny writing” harder to read ( 1984 ). Literacy in the language of instruction is an 
omnipresent issue as are broader issues about language and mathematics. 

 In the discussion so far, we have recognized the diffi culties designers have in 
enacting their intentions through their design. In every case, we have focused not on 
what WILL be learned but the opportunities made available to learn by each task. 
We now turn to how designers need to anticipate teachers’ use of tasks (see also 
Chap.   3    ).  

5.6     Teachers’ Use of Tasks 

 Design and use are like two sides of a coin and both are infl uenced by the educa-
tional system, assessment system, culture, and other contextual features. The job of 
design is to communicate to teachers and learners through text the mathematical 
intentions; the teacher’s role includes modifi cation to enable learners to connect to 
the core ideas and learning goals (Love and Pimm,  1996 ; Rezat,  2006 ; Tzur, 
Zaslavsky, and Sullivan,  2008 ). Assuming that the designer is not the teacher, we 
ask whether the design assumes that teachers can use the task as written, or whether 
teachers will need to adapt the task for their context. The latter assumes that teach-
ers have the motivation, time, and knowledge to make adaptations, whereas the 
former masks the fact that teachers are likely to make adaptations anyway, deliber-
ately or not. Teachers are integral actors in the whole process of design when they 
use published tasks in their classrooms, with the tools, cultural expectations, and 
norms of classroom life. An important aspect of professional learning is to become 
critical users of an externally designed task. There has always been debate about 
this. Wittmann ( 1995 ) wanted to preserve task design as a specialist process under-
taken by those who have time and experience to develop tasks that are to some 
extent  teacher proof . Stein, Grover, and Henningsen ( 1996 ) point out that there will 
always be adaptation of tasks in use, at least because of classroom dynamics and at 
most because of teachers who alter the goals and demands of tasks. These issues are 
explored further in Chap.   3     of this volume. 

 Prestage and Perks ( 2007 ) offer a collection of task-adapting tools, with which 
busy teachers can develop complex tasks from textbook resources: change a given, 
add a mathematical constraint, change representations, and so on. Whereas design-
ers have more time, experience, and access to research than busy teachers, teachers 
have more local knowledge but need design adaptation tools of this kind. Swan 
( 2006 ) also provides design heuristics that could be used by teachers to create and 
adapt tasks:

•    Is a statement always, sometimes, or never true?  
•   Interpret, match, and classify different representations of similar objects.  
•   Diagnose and correct examples of common mistakes.  
•   Resolve cognitive confl icts.  
•   Create new problems by reversing given problems or varying givens.    
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 The fi nal type can be extended by turning givens into variables, a technique also 
suggested by Prestage and Perks ( ibid. ). In an elementary example, given that 8 = 3 + 5, 
tasks could be created to fi nd  x  where  x  = 3 + 5; 8 =  x  + 5; 8 = 3 +  x  or  x  and  y  where 
 x  =  y  + 5; 8 =  x  +  y  and so on. This sequence shifts learners from a number fact to deal-
ing with an unknown, to dealing with variables and, fi nally,  z  =  x  +  y  could be an 
exploration of structure. Watson and Mason ( 1998 ) collected generic task design heu-
ristics by providing a range of actions that can be applied to mathematical objects: 
classifying, ordering, defi ning, constructing, varying, reversing, exemplifying, and so 
on. Using these, teacher task design can be a repertoire of in-the-moment strategies 
rather than a time-consuming process. 

 Lee et al. ( 2013 ) observed how teachers modifi ed tasks and noticed they would 
typically change the givens or the context or the demands of the question. One 
example they shared is as follows: a rectangle of paper is folded in half and then cut 
along the diagonal of the new shape; the textbook asks for the name of the resulting 
shape and where equal angles might be found. One teacher made the task more open 
ended by asking students to fi nd the properties of the resulting shape. In their 
research, the mathematical knowledge of the teachers played an important part in 
their decisions to improve text-based tasks. In contrast, Lundberg and Kilhamn 
( 2013 ) show how problems inherent in a published task derailed a teacher who 
relied on the textbook to prepare learners to solve some ratio problems. The prob-
lem involved mixing lemon squash using juice, water, and sugar and asked for mea-
sures in liters. They report widespread confusion about whether the sugar contributes 
any volume to the drink, confusing everyday knowledge and mathematical assump-
tions. They also report that teachers resorted to ad hoc additive methods rather than 
setting up a multiplicative equation as the authors expected. 

 In several papers referred to in this chapter, teachers have been involved through-
out the design process (e.g., Hußmann et al.,  2011a ; Movshovitz-Hadar and Edri, 
 2013 ). In many countries, teachers are involved in collaborations that produce banks 
of tasks, shared among teachers (e.g., Sesamath, Wikitext, SMILE). There is a 
growing use of digital sharing which enables individual teachers to adapt the text, 
the examples, and the language for their own learners. This massive growth of 
resources places an increasing burden on teachers who design or selectively choose 
tasks rather than rely on the authority of an unknown author from the web. It is safe 
to assume that the reason for proliferation of such resources is teachers’ dissatisfac-
tion with commercially published materials and inability to fi nd published tasks 
which address precisely their teaching goals. There is also software which supports 
teachers’ creation of worksheets, sometimes from banks of individual questions, 
and video resources. This could be seen as rejection of the authority of textbook 
authors, publishing houses, or outside designers. 

 Designers, by contrast, are often concerned with how to make their intentions 
explicit to teachers and what support to provide to enable tasks to be used as 
intended. It is likely there needs to be a professional development component in the 
textual presentation of the task, and teachers need time to prepare themselves to use 
a task fully. Even though there is a need for research about whether, how, and why 
teachers pursue the explicit intentions of task designers, such research will always 
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be contextualized within the normal pedagogic practices of the research sites. So, 
such research might be seen as local, specifi c evaluation. 

 Other designers might want tasks to provide something that can be used directly 
by learners without teacher mediation. When these are published as collections, 
such as in the textbook or as a package of worksheets, there may be consistent, 
strong messages about how to study. For example, readers might be asked to predict 
answers or refl ect on key ideas that arise in a task. In a package of tasks that is devel-
oped over time with classroom trialing, the question of how, whether, and why 
learners take up these messages would be a key aspect of evaluation. 

 One particular aspect of teacher adaptation that may be of general concern is 
when tasks are adapted so that learners of different capabilities can work with them. 
Such adaptations can simplify or extend the learning goals or simplify access or 
both. Designers might indicate ways in which tasks can be adapted that maintain the 
core learning afforded by the task. 

 Moving from the use of individual tasks to the sequencing of tasks, again much 
depends on the prevailing culture. For example in the UK, the roles of good math-
ematics teachers are to provide the curriculum and cognitive mathematical coher-
ence and to adapt text not only to engage learners but also to help them organize 
their knowledge (in the sense offered by Barzel et al.,  2013 ). Ancillary materials and 
teacher guides might be available but are not necessarily used consistently. The use 
of teacher guides and textbooks in some cultures is seen as central to professional 
practice; for example, the  kyozaikenkyu  phase of Japanese lesson study uses these, 
while Chinese teachers claim to learn most from the teacher guides (Fan,  2013 ), and 
 concept study  is a growing practice in Canada (Davis,  2008 ). Some schemes pro-
vide no learner textbook but offer teacher-friendly guides and resources such as 
photocopiable masters, apps, and online resources. Teachers who engage in these 
schemes have to engage with the guidance, possibly collaboratively, and develop 
their own teaching from the scheme. By contrast, there are schemes which provide 
detailed lesson scripts or videos to copy. There is, therefore, a spectrum of practice 
and expectations, ranging from using the task sequence provided so as to adhere to 
the implied theories and goals of learning and development behind such sequenc-
ing, to teachers developing their own sequencing and populating it with tasks from 
a variety of sources and media. The relations between tasks and teaching are plural-
istic and situated.  

5.7     Conclusion: What Text-Based Tasks Can and Cannot Do 

 To introduce this section, we present a thought experiment as an extension to an 
example given earlier from Taiwan about plausible pedagogic approaches to the 
interior angle sum of any triangle, assuming that learners understand what angles are.

•    Teachers could state the property and then give learners various triangles with 
two angle measures so that learners use the property to fi nd the measure of the 
third angle.  

5 Design Issues Related to Text-Based Tasks



184

•   Teachers could have learners draw various triangles, measure all the angles, and 
then put the sum of the measures of the angles at the front of the room, presum-
ably having most sums close to 180°.  

•   Teachers could construct a triangle using geometric software, have learners mea-
sure the angles, place the measures in a table, and then drag one vertex of the 
triangle and record the angle measures as they update, again fi nding that all sums 
are 180°.  

•   Teachers could have learners draw various triangles, tear the triangles into three 
pieces without tearing through the angles, and then place the angles adjacent to 
each other to demonstrate that the three angles form a straight line.  

•   Learners could be told that angles round a point add up to 360°, given a tessella-
tion of the plane by congruent triangles, and asked to use logical reasoning to 
deduce the angle sum of any triangle.    

 The underlying mathematics concept is the same in all fi ve tasks, but the nature 
of the mathematical activity embedded within each instantiation infl uences the 
degree to which learners develop sensemaking, reasoning, and a justifi cation that 
such a relationship is true for all possible triangles. The version of the task used by 
the teacher depends to some extent on a curricular and pedagogical vision of learn-
ing. It is possible to imagine all of these presented as written text to learners, espe-
cially the prepared triangles in the fi rst suggestion. However, could learners follow 
the instructions (especially in the fourth version), and, if so, would they come to the 
conclusion that the angle sum is 180° without a further lesson phase of regulariza-
tion, systematization, and verbalization as described by Barzel et al. ( 2013 )? In this 
thought experiment, nothing needs to be prepared on paper apart from a bank of 
examples in version 1 or the materials for version 5. 

 So why do we need text-based tasks at all? Most teachers cannot initiate all 
mathematical activity from their own creativity and resources, due to a range of 
workplace limitations. As we have shown, tasks can offer engagement in mathemat-
ical processes and opportunities to demonstrate, practice, and apply knowledge. 
They can offer suggestions for action, in an order, with some intentions for learn-
ing, with a range of visual and verbal stimuli in planned positional relation to each 
other (possibly using hypertext). Text-based tasks can offer models of structuring 
questions and prompts at all grain sizes of mathematical activity, planned sequences 
of tasks, conceptual focus and development, representations, pedagogic assump-
tions, and triggers to organize knowledge and can also provide simultaneous or 
sequential representational variety, possibly using hyperlinks. At the level of com-
plex tasks, text can provide realistic resources which would be hard for individual 
teachers to fi nd or construct and can bring together documentary resources for 
enquiry tasks. Text-based tasks can introduce teachers and learners to new ways of 
engaging in mathematics even if these are not taken up. We have also shown that 
text can provide formats which structure mathematical information and make com-
parisons and connections available for learners and teachers. Text can offer visual 
repetition of useful images and layouts. Text can also provide frames and methods 
of self-evaluation. 
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 Many of these features can be provided digitally, but it is important to note that 
text can offer learning management systems in which tasks are presented in an order 
based on mathematical and educational principles; static text can offer immutable 
structure, data, images, and layouts; static text can be used in a variety of on-screen 
and off-screen modes of working. Static text cannot provide direct haptic experience 
of mathematical change nor instant feedback from all possible learners’ actions nor 
models of continuous variability in mathematical and other phenomena. Furthermore, 
text cannot provide the important phases of learning that take place through interac-
tion and mathematical refl ections on what has been done by a particular set of learn-
ers. In other words, to echo what was said earlier in Chap.   2    , tasks are only one 
element of a complex interactive learning ecology. 

5.7.1     A Potential Research Agenda 

 The design principles described throughout this chapter and illustrated with varied 
examples from a range of international sources suggest areas where future research 
might be conducted. Research into textbook design and use is being undertaken 
widely and addresses concerns about the relationships between curriculum authori-
ties, publishers, author teams, teachers, pedagogy, and learners from many perspec-
tives and has led to international conferences (International Conference on 
Mathematics Textbook Research 2014) and several publications (e.g., Thompson 
and Usiskin,  2014 ). 

 Where individual tasks are concerned, teachers’ use (Chap.   3    ) and learners’ per-
spectives (Chap.   4    ) make critical contributions to the act of design. In thinking 
about the actual words, diagrams, and appearance of text-based tasks, we can ask: 
 how do differences in authority and voice in text-based tasks infl uence learning  and 
 how do visual aspects of text-based tasks infl uence attention and learning ? There is 
little robust research about how these aspects of text-based tasks infl uence learning. 
More attention to these, such as is undertaken in Learning Study, might help answer 
the question:  what different conceptual experiences arise from different task treat-
ments of the same concept ? Working on such comparisons will generate more 
knowledge about the relationships between task and learning. 

 We can also ask:  what are the relationships between grain size of tasks, types of 
mathematical activity, and learners’ mathematical development ? We are not con-
vinced that these are always fully matched in practice. In structuring this chapter, 
we offered a triangular, interdependent relationship between the nature and struc-
ture of a task, its purpose, and the resulting mathematical activity for consideration. 
This structure has given a way to think about design and selection of tasks that 
places the task at the heart of the connection between teaching and learning. 

 The questions above should all be seen in the context of more general research 
about design principles, implementation, teacher knowledge, learners’ perspectives, 
and digital affordances as described in other chapters.      
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6.1            Introduction 

 A mark of human intelligence is our ability to create and use tools to extend our 
abilities to achieve tasks that are otherwise only unimaginable and to create and use 
representations to afford interpretation and communication in the objective and per-
sonal worlds. 

 There are different perspectives to interpret tools and representations. Tools can be 
regarded as mediators between the phenomenological world and the conceptual 
world, or, according to Radford, “artefacts do much more than mediate: they are a 
constitutive part of thinking and sensing” ( 2013 , p. 8). Hence, our interaction with 
tools, artifacts, and culture material should be considered as more than auxiliary ele-
ments. Tools infl uence cognition, and for the purpose of this chapter, they impact on 
mathematical knowledge. Development of mathematical ideas and concepts has been 
closely associated with development of technology that, according to Abramovich 
( 2001 ), can be interpreted as cultural tools in contemporary  educational practices. 
Mathematics teaching that involves tools, among them technology and representations, 
enables teachers to guide students to (re)invent and visit mathematics.

  Children should repeat the learning process of mankind, not as it factually took place but 
rather as it would have done if people in the past had known a bit more of what we know 
now. (Freudenthal,  1991 , p. 48) 
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   This chapter concerns designing teaching and learning tool-based tasks in school 
mathematics. Tools are broadly interpreted as physical or virtual artifacts that have 
potential to enhance mathematical understanding. A  tool-based task  is seen as a 
teacher/researcher design aiming to be a thing to do or act on in order for students 
to activate an interactive tool-based environment where teacher, students, and 
resources mutually enrich each other in producing mathematical experiences. In 
this connection, this type of task design rests heavily on a complex relationship 
between tool mediation, teaching and learning, and mathematical knowledge 
(Fig.  6.1 ).

   Different epistemological approaches to mathematical learning will have differ-
ent implications on designing tool-based tasks. For instance, using Sfard’s ( 2008 ) 
two metaphors for learning, a  participationist  orientation would favor design with 
potential for students to participate in the construction of mathematical knowl-
edge/experiences, whereby a more  acquisitionist  orientation would favor design 
that explores and discovers established mathematical knowledge. Tools can act as 
a mediator for mathematical discourse; hence, it is important to have views on 
mathematical discourse in tool-based task design. Two such views are (1) by 
observing student’s discourse, a teacher may fi nd what is missing from the math-
ematical discourse legitimated by the mathematics community and (2) mathemat-
ics is a discourse, so learning mathematics is participating in discourse (Sfard, 
 2008 ). These two orientations on the nature of mathematical discourse are relevant 
considerations for task design because both consider mathematics to be discursive: 
in (1), students acquire knowledge by learning a specifi c mathematics language/
content; in (2), because mathematics is a discourse, learning mathematics is par-
ticipating in this discourse, and learning is conceived as changing participation 
(Rogoff,  1998 ). 

 The choice of tool for pedagogical purpose can be considered as a function of 
how mathematical knowledge is perceived epistemologically by the teacher. The 
same tool can be used in two task designs that are at opposite epistemological 
poles. For example, using compasses and ruler may be seen in different ways: for 
students to construct their own geometrical models in order to explain a certain 
mathematical phenomenon that they experienced or for students to follow a teacher-
given construction procedure to check the validity of a given theorem. An exemplar 
illustration of the former can be found in the work of DiSessa, Hammer, and Sherin 

Tool Mediation

Learning

Teaching

Mathematics

  Fig. 6.1    A relational  triangle  
highlighting the 
interrelationships among 
different components in a 
tool-based pedagogical 
environment       
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( 1991 ) where a cooperative activity of a sixth-grade class focused on inventing 
adequate static representations of motion (graphing) using a computational 
medium, such as Boxer (the Berkeley Boxer Project), was described. The fi ndings 
indicated students possessed strong meta-representational competence. Tools have 
potential to empower students to hurdle over didactical and epistemological obsta-
cles (Brousseau,  1998 ). A tool-based task design could harvest this power to 
shorten any  distance  between students’ prior mathematical experiences and the 
intended mathematical knowledge to be learned. Rabardel’s ( 1995 ) theory of 
 instrumental genesis  was an explication of how usage of a tool can be turned into a 
cognitive instrumentation process for knowledge acquisition or construction. This 
approach sees artifacts as psychological tools in a utilization process. It focuses on 
how a learner develops a scheme of usage for a particular tool while she/he is using 
it to solve a problem. Pedagogically, this scheme can be attached to the tool to make 
it into an instrument for teaching and learning. A Vygotskian approach would see 
artifacts as psychological tools in the context of social and cultural interaction 
developed through the zone of proximal development and internalization processes 
(Vygotsky,  1978 ,  1981 ). A concrete tool can be transformed into a mind tool 
through a carefully designed pedagogical environment. In particular, internaliza-
tion is a socio- semiotic process. 

 With these constructs as backdrop, Bartolini Bussi and Mariotti ( 2008 ) proposed 
the notion of a  tool of semiotic mediation  for the mathematics classroom, taking on 
multiple pedagogical functions. On one hand, personal meanings are related to the 
use of the tool while students accomplish a task; on the other hand, mathematical 
meanings are related to the tool and its use. This dual relationship constitutes the 
semiotic potential of a tool. An artifact is regarded as a tool of semiotic mediation if 
the teacher, intentionally using it, mediates mathematical content through designed 
didactical intervention. Thus, teachers and students play critical roles in the process 
of tool mediation. In fact, the teacher, the students, and tools are parts of the media-
tion process (c.f. Fig.  6.1 ). Thus, the semiotic potential of tools can be a principle 
consideration in tool-based task design. 

 TELMA (see Bottino & Kynigos,  2009 ) and ReMath projects (see Artigue & 
Mariotti,  2014 ) are tool-based task design examples, and we shall describe their 
work in more detail later. The Technology Enhanced Learning in Mathematics 
(TELMA) project focused on representation systems and learning contexts. The 
ReMath Project was a follow-up which produced an academic description of cross- 
case studies of classroom activity emerging from the implementation of pedagogi-
cal plans using digital media. 

 Other important tool-based task design considerations are how a piece of math-
ematics can be embodied in a tool and how feedback in tool usage can be used peda-
gogically. These considerations relate to actual tool manipulation skills and 
practices; these evolve into amplifi ed learner abilities to discern critical features in 
a mathematical situation and fi nally foster the development of mathematical dis-
courses that may or may not be tool dependent. 
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 Confrey et al. proposed that

  we need engaging environments, in which the mathematics is actually needed for students 
to achieve goals that they fi nd compelling, and made visible to students and expressed in a 
language with which they can connect. ( 2010 , p. 20) 

   In order to accomplish these concerns, they presented four major thematic 
approaches for software design:  modeling ,  project-based instruction ,  learning pro-
gression , and  microworlds  (as proposed by Seymour Papert). They present two 
design examples, Graphs ‘n Glyphs animation and Lunar Land Game, that fol-
lowed those recommendations. Knowing the rationale behind the design of a tool 
is an important consideration for tool-based task design as these rationales may 
form pedagogical bases to harvest the mathematical potential of the tool. A power-
ful illustration of these connections is presented by Yerushalmy ( 2015 , Chap.   7    , this 
volume). 

 This introduction sets a stage to delve into a comprehensive exploration of the 
questions and matters raised. This chapter will present theories, issues, and cases 
concerning the use of tools in mathematics task design presented and discussed in 
the ICMI Study 22 Conference Tools and Representation Theme Group (Margolinas, 
 2013 ) and other state-of-the-art research. In doing so, we indicate and exemplify 
heuristics or principles (theoretical or pragmatic) for tool-based task design that are 
conducive to teaching and learning of mathematics. 

 In this chapter, we discuss the epistemological, mathematical, representational, 
and pedagogical considerations of tool-based task design. We then present various 
theoretical frames and heuristics and give examples of tasks throughout.  

6.2     Considerations in Designing Tasks that Make 
Use of Tools 

6.2.1     Epistemological and Mathematical Considerations 

 Epistemological and mathematical considerations play central roles in task design. 
Different epistemological approaches to mathematical knowledge have different 
implications on task design. Sfard’s participationist epistemological orientation 
would favor a tool-based design with the potential for students to participate in the 
construction of shared mathematical experiences or discourses, whereby the acqui-
sitionist epistemological orientation would use tools to explore and consequently 
construct personal mathematical knowledge (c.f. Sfard,  2008 ). The same tool can be 
used in task designs with different epistemological stances. Thus, tool-based design 
should couple with how a piece of mathematics content can be learned under a pre-
ferred epistemological disposition. 

 A challenge to tool-based task design is to determine the possible range of epis-
temological orientation and the type of mathematical knowledge that a tool can 
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afford and to choose them appropriately for pedagogical situations. Dynamic digital 
tools, like dynamic geometry software, can be used in task design to cover a large 
epistemic spectrum from drawing precise robust geometrical fi gures to exploration 
of new geometric theorems and development of argumentation discourse. Non- 
digital tools, such as a set of transparent grid papers with different grid sizes, can be 
used to design tasks for learning the concept of area, arithmetic operation, etc. 
depending on how the teacher who designs the tasks understands how the mathe-
matics involved can be manifested and taught using grid systems. Epistemological 
and mathematical considerations should be closely linked with the tool’s potential 
to represent or manifest mathematical knowledge. Ironically, tools themselves have 
different degrees of epistemological obstacle through the constraints and limitations 
of their use, but these that can be used to create cognitive confl ict to stimulate the 
learning process (see Chap.   2     for discussion about cognitive confl ict). When think-
ing of obstacles to learning, there are two possibilities: one is a teaching gap in 
classroom practices, and the other is a distance between learner’s prior mathemati-
cal knowledge and the intended mathematical knowledge to be learned. Brousseau 
( 1998 ) called these, respectively, a  didactical obstacle  and an  epistemological 
obstacle . Epistemological obstacles are those knowledge gaps which students need 
to overcome by construction of new knowledge (Joubert,  2013 ). Using the notion of 
epistemological obstacle as a design consideration for a tool-based mathematics 
classroom should enhance the knowledge construction process because tools can be 
used as a concrete bridge between students’ prior mathematical experiences/knowl-
edge and the intended mathematical knowledge to be learned. For example, the use 
of a dynamic graphing tool could help students hurdle over the hidden relationships 
among the  a ,  b , and  c  parameters in a quadratic equation. A visualization tool can 
be powerful to overcome many epistemological obstacles in mathematics learning. 
There is a strong connection between the ways in which students will talk about 
their mathematical activity and the tools they are using.  

6.2.2     Tool-Representational Considerations 

 Acquiring or constructing mathematical knowledge can be described in terms of 
creation of representations. The question of the way a chosen tool represents math-
ematical knowledge is at the heart of tool-based task design. School mathematics is 
basically symbolic in nature, which is a linguistic type of representation. There are 
at least two tool-representational considerations that are of design interest for a 
mathematical topic. The fi rst one is how far away from the expected symbolic rep-
resentation is in the tool’s potential to represent the mathematical concept? 
Consideration of this distance could become the main concern in the task design 
approach. This is of particular interest in the use of simple and basic tools that leave 
ample room for a teacher-designer to exercise his/her pedagogy. 

 A second consideration is more philosophical and open-ended in nature. Is the 
tool “capable enough” of representing the targeted mathematical knowledge parallel 
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to the corresponding symbolic representation, and if so, in what sense? That is, can 
a tool embed or represent a particular mathematical concept? In this case, the task 
design is not just to shorten an epistemological distance, but to propose a possible 
alternative tool-based representation that is compatible with conventional symbolic 
representation. This second consideration becomes more relevant when emerging 
powerful ICT pedagogical environments are extending human cognitive abilities 
and becoming more in alignment with human intellect. For example, blind students 
can learn geometry through a digital sensory tool via haptic representation of shape. 
In the work of Healy, Fernandes, and Bolite-Frant ( 2013 ), a special tool was designed 
and implemented with appropriate tasks for blind students to learn about functions 
(Fig.  6.2 ). The tool was a digitally controlled board made up of a rectangular matrix 
of pins, each of which represented a point on the plane. When a particular point is 
requested or a graph of a given function plotted, the relevant pins are raised up 
(sequentially as the value of the independent variable increases in the case of the 
graph of a function), allowing the student to feel, to sense, the image as it is pro-
duced (Fig.  6.2 ). For blind students, this tool-dependent “sensory feeling of the 
pins” may become their understanding of the concept of function. The tool infl u-
ences the way the concept is initially understood.

6.2.3        Pedagogical Considerations 

 Tool-based task design must be supported by a suitable pedagogical environment. 
Different types of tools afford different mathematical task activities and discourses 
and have constraints that can be capitalized in constructive ways. Designers and 
teachers need to take into account possible epistemic interactions among different 

  Fig. 6.2    Digitally controlled board made up of a  rectangular matrix of pins , each of which represents 
a point on the plane (Healy et al.,  2013 , p. 67)       
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types of tools and resources in a pedagogical situation. In Bruner’s theory of 
instruction on the cognitive development of children (Bruner,  1966 ), three modes 
of representation were proposed:  enactive representation  (action based),  iconic 
representation  (image based), and  symbolic representation  (language based). These 
three instructional modes and the possible cognitive sequences connecting them can 
serve as a model to guide the design of tool-based tasks that involve different types 
of tools and classroom resources. With action-based tools, students gain mathemat-
ics experiences like number sense or spatial sense through physical sensory means 
(e.g., Dienes’ blocks). Image-based tools lead students to interpret mathematics 
through visual (dynamic or static) reasoning (e.g., graphics calculator), and 
linguistic- based tools are conducive to development of mathematical discourse 
(e.g., commands in CAS tools). Different combinations of Bruner’s instructional 
modes can serve as pedagogical guidelines for tool-based task design. Recent devel-
opment in ICT environments, like GeoGebra, combined these three modes into one 
single dynamic multi-representational tool. The enactive and iconic modes connect 
through the relationship between the mouse, or other driving apparatus, and what 
appears on the screen. The language used might refer to moving an on-screen object, 
rather than moving the mouse. Recent developments with touchpad technology con-
nect actions, imagery, and language even more closely to each other and to the 
intended mathematical structure (Sinclair,  2013 ; Sinclair & Pimm,  2014 ). This 
opens up a rich pedagogical space for task design to explore. 

 Familiarity with a tool and how to use it effectively to teach and learn are impor-
tant pedagogical considerations for tool-based task design. Rabardel’s ( 1995 ) tool- 
ergonomic theory of  instrumental genesis  focuses on how a learner turns the tool 
into an instrument by developing a  utilization scheme  that can be mentally attached 
to the tool and frames how it is used. Furthermore, a tool can progressively be 
instrumentalized for specifi c uses by loading it with different potentials through a 
range of tasks (c.f. Artigue,  2002 ). Through well-designed utilization tasks, a con-
crete tool can be internalized to become a psychological tool. A tool can be placed 
at the center of a pedagogical situation as a means to create a  didactical situation  
(Brousseau,  1998 ) or  didactical intervention  (Bartolini Bussi & Mariotti,  2008 ); it 
need not be an adjunct to the didactical event, but can motivate and shape the event 
itself. Task design should consider the mediation potentials of the tool used in terms 
of bridging any gaps between the phenomenal world and the conceptual world, the 
teacher’s and students’ perceptions of mathematical knowledge, and other peda-
gogic gaps. Morgan, Mariotti, and Maffei ( 2009 ) discuss epistemological and social 
distances between representations in computational environments:

  Distance between representations in different media may be epistemological, affecting the 
nature of the mathematical concepts available to students, or may be social, affecting peda-
gogic relationships in the classroom and the ease with which the technology may be adopted 
in particular classroom …. (p. 241) 

   This distance concept can be extended to any tool-based environment and should 
be an important pedagogical consideration for task design.  
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6.2.4      Discursive Considerations 

 Sfard’s ( 2008 ) commognitive view sees mathematics discourse as a type of 
communication with special features: keywords, visual mediators, routines, and 
endorsed narratives. Tool usage can be a means to facilitate the development of 
these features through task design. Leung ( 2011 ) proposed a nested sequence of 
three epistemic modes in tool-based task design consideration to foster the expan-
sion of a learner’s cognitive space: skills and practices, critical discernment, and 
situation discourse. Practicing to use a tool to accomplish a task involves formation 
of appropriate tool-based vocabularies in the development of utilization routines. 
The tool then becomes a mediator for discernment of critical features of the math-
ematical ideas being sought in the task. Afterward, a tool-based narrative can be 
constructed to explain the mathematics. This progressive task design epistemic 
sequence can be seen as a tool-based mathematical discourse development in the 
commognitive sense. This echoes Radford’s idea of a tool as a “constitutive part of 
thinking and sensing”. An overarching question to address is  how to design tool- 
based tasks that can bring about (situated) discourses for mathematical knowledge 
mediated by tools in the mathematics classroom, and furthermore, how do these 
discourses relate to mathematics knowledge ?   

6.3      Theoretical Frames for Designing Tool-Based Tasks 

6.3.1     Didactical Theories 

 How can using a tool open up a space of learning where a learner makes epistemic 
strategies or choices from feedback while using the tool, and what is the role of 
interaction in this usage? In the Theory of Didactical Situations (Brousseau,  1998 ), 
knowledge “is a property of a system constituted by a subject and a ‘milieu’ in 
interaction” (Mackrell, Maschietto, & Soury-Lavergne,  2013 , p. 80). Balacheff and 
Sutherland ( 1994 ) described  milieu  as “the specifi c part of the environment of the 
learner which is accessible and relevant to his or her actions” (p. 140). Interaction 
can be understood as “a ‘dialogue’ between the student and the feedback from the 
milieu” (Joubert,  2013 , p. 72).  Milieu  can be considered as a space of learning con-
stituted by didactical variables. A  didactical variable  is a pedagogical parameter 
that opens a dimension in which students engage in epistemic interaction and which 
takes on different values depending on student responses to feedback. Thus, the 
usage of tools in a pedagogical situation can be designed within a milieu in such a 
way as to create different didactical parameters that are conducive to learning math-
ematics. In particular, tool-based tasks can be designed to create adidactical situa-
tions in which students need to construct mathematical knowledge themselves to 
resolve problems posted by the task. 

 In Chevallard’s Anthropological Theory of the Didactic (described more fully in 
Chap.   2    ), mathematics is seen as a product of human activities into which he intro-
duced the notion of an  ostensive  (Chevallard,  1994 ). An ostensive is “any object 
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which can be handled concretely by the body, the voice, the vision” (Wozniak, 
 2013 , p. 142). Non-ostensives are “objects” which can only be evoked through the 
handling of associated ostensives. This implies that mathematical conceptualiza-
tions are consequences of acting on and doing using artifacts or tools. Thus, didac-
tically, techniques of using a tool create a dialectic between skills and 
understanding. Artigue ( 2002 ) called these two faces of tool techniques  pragmatic  
values and  epistemic  values:

  A technique is a manner of solving a task and, as soon as one goes beyond the body of 
routine tasks for a given institution, each technique is a complex assembly of reasoning and 
routine work. I would like to stress that techniques are most often perceived and evaluated 
in terms of pragmatic value, that is to say, by focusing on their productive potential (effi -
ciency, cost, fi eld of validity). But they have also an epistemic value, as they contribute to 
the understanding of the objects they involve, and thus techniques are a source of questions 
about mathematical knowledge. (p. 248) 

   These two values are framed in terms of praxeology: praxis for pragmatic value 
and logos for epistemic value. “The praxis component contains techniques to 
achieve a kind of tasks. The logos component includes the theoretical discourses… 
that describe, explain, justify or develop the techniques used…” (Wozniak,  2013 , 
p. 143). Therefore, a tool can be designed as a didactic variable in a task that forms 
part of a learner’s space of learning; this variable takes evolving pragmatics and 
epistemic values which have the potential to transform a learner’s mathematical 
experiences from experimental to theoretical. 

 Because tools are potent with pragmatic and epistemic values, designing a tool- 
based task needs to pay attention to the interplay between techniques and discern-
ment of mathematical concepts and to those features of the tool that have epistemic 
value (Thomas & Lin,  2013 ). Kieran et al. ( 2006 ) reported a study on the dialectical 
relation between theoretical thinking and technique, as they co-emerge in a com-
bined computer algebra system (CAS) and paper-and-pencil environment. In their 
study, the anthropological view was seen as a Task-Technique-Theory triad. A 
three-part task activity sequence (seeing a pattern, refi ning a generalization, and 
proving) was designed based on a CAS and paper-and-pencil environment for stu-
dents to explore the factoring of  x   n  —1. The conclusion was that CAS techniques, 
together with paper-and-pencil techniques, were found to be signifi cant in the 
 deepening of students’ theoretical thinking. Making sense of the CAS outputs and 
coordinating these with both theoretical notions and paper-and-pencil techniques 
were fundamental processes in the students’ theoretical and paper-and-pencil prog-
ress. This fi nding supports the existence of a complex pedagogical relationship 
between the pragmatic and epistemic values of tool use.  

6.3.2     Instrumentation Approach to Tool Use 

 Verillon and Rabardel’s ( 1995 ) seminal paper on instrumental approaches to relate 
cognition and artifacts opened up a vast research arena in the context of using 
technology in the mathematics classroom (see, e.g., Gueudet & Trouche,  2009 ; 
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Trouche,  2004 ,  2005 ). An instrument is a psychological tool resulting from 
instrumental genesis through a learner using the tool to accomplish tool-based 
tasks. Instrumental genesis is a combination of two processes. Instrumentation is 
the techno-centric process by which the tool “prints its mark on the subject, i.e., 
allows him/her to develop an activity within some boundaries” (Trouche,  2004 , 
p. 290). That is, the user is mastered by the tool rather than the other way round. 
Instrumentalization is the process through which a user develops his/her own ideas 
of what the tool is designed for and how it should be used. The psychological com-
ponent of the instrument is the utilization scheme developed by the user (see exam-
ples involving TI-92 ™  in Trouche,  2004 ; Artigue,  2002 ). It is usually not easy to 
distinguish between instrumentation and instrumentalization due to the complexity 
of the user-tool interactions. To further the idea of instrumental genesis, instru-
mental orchestration and documentational genesis have been proposed to describe 
how a tool or a system of tools can be integrated into classroom tasks or purposeful 
mathematical activities (see, e.g., Gueudet & Trouche,  2009 ; Trouche,  2004 , 
 2005 ). Gueudet and Trouche ( 2009 ) extended the idea of tool (artifact) to 
“resources” which are tools (artifacts) with the potential to promote semiotic 
mediation in the process of learning. Geiger and Redmond ( 2013 ) explained:

  Resources include entities such as computer applications, student worksheets or discus-
sions with a colleague. A resource is appropriated and reshaped by a teacher, in a way that 
refl ects their professional experience in relation to the use of resources, to form a schema of 
utilisation—a process parallel to the creation of a schema of instrumented action within 
instrumental genesis. The combination of the resource and the schema of utilisation is 
called a document. (p. 121) 

   Instrumental theories concern the development of a utilization scheme, syner-
getic interactions among tools, and systematic collation of tool usages in a multiple- 
tool environment.  

6.3.3     Cultural Semiotic Frame 

 Based on a Vygotskian perspective on signs and psychological tools (Vygotsky, 
 1978 ), the question of how far tool usage in a pedagogical situation carries mathe-
matical meaning is studied using a tool of semiotic mediation framework proposed 
by Bartolini Bussi and Mariotti ( 2008 ). The framework concerns the relationship 
between accomplishing a task through the use of an artifact (tool) and learning. 
It considers the crucial role of human mediation under semiotic and educational 
perspectives in the teaching and learning process through the artifact. Students pro-
duce personal signs while using a tool, and the production and transformation of 
these signs link to their construction of mathematical knowledge. The link between 
a tool, a task, and mathematical knowledge is called the  semiotic potential  of the 
tool in the task context (Arzarello, Bartolini-Bussi, Leung, Mariotti, & Stevenson, 
 2012 , p. 107; Bartolini Bussi & Mariotti,  2008 , p. 754). Figure  6.3  is a diagrammatic 
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summary of the semiotic mediation framework, highlighting the interrelationships 
among the different components of mediation.

   Teachers play an important mediator role creating the circumstances in which the 
mediation process occurs through task design and didactic intervention. Didactic 
intervention takes the form of didactic cycle “where different categories of activities 
take place, each of them contributing differently but complementarily to develop the 
complex process of semiotic mediation” (Mariotti,  2012 , p. 29). 

 Healy, Fernandes, and Bolite-Frant ( 2013 ) reported a Brazilian study on how 
researchers, high school teachers, and deaf/blind students worked together to 
develop suitable tools to teach and learn matrices. The teacher, who was fl uent in 
Libras (the Brazilian sign language), suggested “that a lack of specifi c signs for the 
vocabulary associated with matrices served as a complicating factor in teaching the 
topic” ( ibid ., p. 65). Thus, a mediating sign was needed for meaningful feedback to 
occur. They developed the tool MATRIZMAT, which were boxes that can be joined 
together by magnets representing rows and columns of matrices. The set for deaf 
students had numbers put inside the boxes (Fig.  6.4a ), while the set for blind stu-
dents had lids with Braille numbers on them (Fig.  6.4b ).

   MATRIZMAT became a sensory sign tool (thus “vocabulary” for the deaf and 
the blind students) that teachers and students used to develop their mathematical 
language. For the deaf students, new hand gestures were developed to talk about 
matrices; for the blind students, new spatial positions were explored to experience 
the meaning of matrices. Thus, feedback generated from a collective (teachers and 
students) designed tool can be used to develop meaningful classroom mathematical 
discourse. The semiotic mediation framework gives us a cultural semiotic frame 
with which to structure tool-based activities that favor production of different cate-
gories of signs as mediators for mathematical knowledge.  

Teacher Designed
Tasks 

Student produced 
Tool-based Discourse

Curriculum 
Mathematics

Mathematics 
Knowledge

Students

Culture

Tool
Teacher Teacher

  Fig. 6.3    A schematic of the semiotic mediation framework       
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6.3.4     Activity Theory 

 Another way to look at the relationship between tool use and the pedagogic environment 
is to look at the interrelationships offered by Engeström ( 1987 ) in his structural 
representation of activity theory. The activity system is seen as an interacting net-
work composed of subject, mediating artifacts or tools, object, division of labor, 
community, and rules. Figure  6.5  depicts the main components of Engeström’s 
activity system depicted as a mediational triangle.

   A tool and its interaction with other components in the activity system play a 
major role; the arrows in the mediational triangle in Fig.  6.5  serve as guides to design 
tool-based tasks. For example, the subject is a class of students, the object of activity 
is to solve an algebraic problem, the tool (mediating artifact) is a CAS, the rules are 

  Fig. 6.4    MATRIZMAT in two forms for ( a ) deaf students with written numerals and ( b ) blind 
students with numbers in Braille (Healy, Fernandes & Bolite-Frant,  2013 ; p. 65)       

Subject

Rules Division of Labour
Community

Object (Outcome)

Mediation Tool

  Fig. 6.5    A version of Engeström’s activity system (e.g.,  1987 )       
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how to use the CAS’s functionalities, the community is the teacher and students, 
and the division of labor is organized by pedagogical approaches and arrangements. 
In this scenario, task design then focuses on how the CAS can create a process of 
learning comprising of possible connecting activity routes that would lead to possi-
ble outcomes.  

6.3.5     TELMA and ReMath 

 Attempts have been made by European mathematics education communities to try 
to connect different theoretical frames previously mentioned in the context of teach-
ing and learning mathematics using digital tools. From these research projects, 
important guidelines and concerns have been established relevant to tool-based task 
design. 

 TELMA (Technology Enhanced Learning in Mathematics) was a joint collabo-
ration project consisting of six European research teams engaged in cross- 
experimentation in classrooms using ICT as a tool aiming to develop a common 
language to analyze the intertwined infl uence played by different contextual charac-
teristics and theoretical frames (Bottino & Kynigos,  2009 ). Instead of looking for a 
unifi ed compromising theory, the TELMA team developed an operational method-
ology to connect the theoretical frames used by the different teams to study the 
design and use of ICT tools in the mathematics classroom. In this methodology, the 
notion of  didactical functionality  (Cerulli, Pedemonte, & Robotti,  2007 ) provided a 
common perspective on the use of interactive learning environments in mathematics 
education, and the Concern Methodology Tool (Artigue, Cerulli, Haspekian, & 
Maracci,  2009 ) was used to express key concerns for the didactical functionalities. 
Three key elements in the defi nition of didactical functionalities of an ICT tool are 
(1) tool features/characteristics, (2) educational goals, and (3) modalities of employ-
ing the tool in a teaching/learning process. To each element, the Concern 
Methodology Tool associated a list of concerns: to (1) concerns regarding the ergo-
nomic of the tool, semiotic representation, interaction between student and mathe-
matical knowledge, etc.; to (2) epistemological concerns focusing on specifi c 
mathematical contents or specifi c mathematical practices, cognitive concerns focus-
ing on specifi c cognitive processes, specifi c cognitive diffi culties, etc.; to (3) con-
cerns regarding the functions given to the tool, instrumental issues, instrumental 
genesis, etc. ( ibid ., pp. 221–222). These three functionalities and most of the con-
cerns are relevant tool-based task design considerations that could go beyond the 
use of the ICT tool. Another key idea developed by the TELMA team was the 
notion of  distance  (Morgan et al.,  2009 ), in particular, epistemological distance and 
didactic distance are signifi cant to tool-based task design.  Epistemological distance  
refers to distance between different representations (tools) focusing on the differ-
ence between the affordances for meaning offered by the representations (tools). 
 Didactic distance  refers to the nature of and quantity of feedback by the tool asking 
questions like:  What forms of feedback are provided? How are solutions validated 
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and by whom, e.g., by the tool itself, by a teacher, and by peer- or self-validation?  
( ibid ., p. 251). Tool feedback is a key issue in tool-based task design which will be 
explored further in the later part of this chapter. 

 The European Research and Development project ReMath (Representing 
Mathematics with Digital Media) was a continuation of TELMA to “experientially 
develop and apply strategies for integrating theoretical frameworks and constructs-
in- use to enhance knowledge in the uses of digital media for mathematics educa-
tion” (Kynigos & Lagrange,  2014 ) based on the work in TELMA. An agreed 
assumption on a shared idea of (mathematical) representation was the Minimal 
Theoretical Framework used as a skeleton of implicitly shared theories concerning 
representation:

    1.    No direct access to mathematical objects is possible; rather, mathematical mean-
ings are represented through language, formal mathematical notations, and 
informal idiosyncratic representations.   

   2.    Representations play a fundamental role in the “generation” of mathematical 
meanings, and this role is assumed to be crucial in the teaching/learning of 
mathematics.   

   3.    Digital artifacts can provide representations of mathematical objects with a clear 
potential of generating mathematical meanings (Artigue & Mariotti,  2014 , p. 338).    

  These highlight further the critical role that tools play in learning mathematics 
and hence the importance of developing tool-based task design.  

6.3.6     Other Theories Relevant to Tool-Based Task Design 

 Mathematics tasks involving the use of tools can be compared with experiments 
using scientifi c instruments or construction with tools in the spirit of exploration 
and invention. The basic tenet of the teaching and learning theory, Realistic 
Mathematics Education (RME) (Freudenthal,  1973 ), is described in detail in 
Chap.   2    . 

 One manifestation of RME is the Freudenthal Institute’s Digital Mathematics 
Environment (DME), an ICT tool in the form of Java applets designed by teachers, 
textbook authors, or educators for adapting existing online modules or for designing 
new ones. It consists of systems to manage and distribute mathematical content and 
to monitor student progress. Figure  6.6  depicts the DME Authoring Tool interface 
(Drijvers et al.,  2013 , p. 55).

   Drijvers et al. ( 2013 ) illustrated with DME examples how this Authoring Tool 
with its multiple pedagogical functions supports the three Realistic Mathematics 
Education (RME) principles that inform task design: guided reinvention, didactical 
phenomenology, and emergent modeling ( ibid ., p. 54). These principles point to 
opening up variant situations and opportunities for students to explore and to 
investigate and creation of micro-digital worlds (mathematical or not) that are 
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real to students. They also point to the evolution of a model developed through dif-
ferent phases of activity by

  an increasing repertoire of representations and techniques in the digital environment, or by 
increasing options to dynamically use these representations, connect them, and switch 
between them. (Drijvers et al.,  2013 , p. 5) 

   When different tools possessing different epistemic values are chosen to put 
together into a task design, these tools afford different possibilities for learners in 
ways of “providing them with different types of experiences and activities, as well as 
different ways to represent ideas and concepts” (Whiteley & Mamolo,  2013 , p. 130). 

  Fig. 6.6    The digital mathematics environment authoring tool (Drijvers, Boon, Doorman, Bokhove, 
& Tacoma,  2013 , p. 55)       
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These different ways open up a space for conceptual blending (Fauconnier & 
Turner,  2002 ):

  Conceptual blending (Fauconnier & Turner,  1998 ,  2002 ) is a theory which describes how 
new inferences can arise when two representations and associated ways of reasoning (or 
‘input spaces’) are brought together in a ‘blended concept’. The ‘blend’ can be thought of 
as a mapping which combines certain features of the two input spaces and projects them 
onto a third (newly formed) mental space. (Whiteley & Mamolo,  2013 , p. 133) 

   For example, complex numbers can be seen as a blended concept initiated from 
two input spaces: real numbers and points in planar geometric space. In this sense, 
many mathematical concepts are blended concepts. Designing teaching and learn-
ing mathematics tasks using multiple tools raises an interesting question asking to 
what extent a mathematical concept can be regarded as a blended concept inferred 
from mental spaces generated by the tools. If multiple tool usage has the potential 
to infer a blended concept in a mathematical activity, then a design consideration is 
whether or not to design this inference into the task. 

 Using different tools can create a multi-representational pedagogical environ-
ment which provides teacher and student with opportunities to express generality. 
Clark-Wilson and Timotheus ( 2013 ) studied how the multiple representational tech-
nological environment (MRT) provided by the TI-Nspire ™  can be used to explore 
mathematical variance and invariance in classroom task design and concluded that

  Evidence from the study suggests that the process of designing tasks that utilise the MRT to 
privilege explorations of variance and invariance is a highly complex process which requires 
teachers to carefully consider how variance and invariance might manifest itself within any 
given mathematical topic. The relevance and importance of the initial example space, and 
how this might be productively expanded to support learners towards the desired generali-
sation is a crucial aspect of activity design. (p. 51) 

   An epistemological approach to mathematics is to experience mathematical 
knowledge through discernment of invariant under variation (see also the descrip-
tion of Variation Theory in Chap.   2    ). Task design in a tool-based environment opens 
up pedagogical spaces for exploration of variation and invariant. Leung and Lee 
( 2013 ) designed a task-based dynamic geometry tool providing a platform to 
explore variation in students’ geometrical perception. Collecting student responses 
from dynamic geometry drag-based tasks, the platform generated task perceptual 
landscapes which were used to form and explore students’ collective example 
spaces (see Sect.  6.4.4 ) and personal example spaces. Variation in the drag-based 
task design produces different example spaces and hence results in variation in stu-
dents’ geometrical perception. Arzarello, Bairral, Danie, and Yasuyuki ( 2013 ) initi-
ated task designs using touch screen multi-fi gure dragging in the Geometric 
Constructer (GC) software to study students’ perceptions on geometrical concept 
formation (Fig.  6.7 ). This new type of dynamic geometry tool will become a new 
niche to study using variation in task design. Students drag and manipulate dynamic 
fi gures with more than one fi nger on a touch screen.

   Special tools can be designed to enhance other abilities in the case of students 
with a physical disability like blindness (Healy et al.,  2013 ). This tool substitution 
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theory may produce different forms of activity and interaction that could generate 
different types of mathematical insight and reasoning. “We need to pay attention 
to—and when necessary create—a multitude of (substitute) semiotic systems to 
mediate mathematics learning” (Healy et al.,  2013 , p. 64). Research in tool-based 
design for inclusion should provide interesting perspectives in mathematics 
epistemology.   

6.4     Further Design Considerations and Heuristics 

6.4.1     Dialectic Between Pragmatic and Epistemic Values 

 A gap exists between how to use a tool and how the tool usage leads to mathematics 
concept development. This gap can be widened if tools are used without meaningful 
design in the teaching and learning process, especially when skills are involved in 
using the tools. Without careful consideration on how a skill can be transformed 
into a cognitive tool to shape a mathematical concept, the use of tools may result in 
epistemological and didactical obstacles for students, depriving them from reaching 
the desired or intended mathematical knowledge. The feedback produced by the 
tool could have negative impact that goes in a direction opposite to the teacher’s 
intention. Thus, tool-based task design must take into account the pragmatic/
empirical- mathematical/systematic gap (Noss, Healy, & Hoyles,  1997 ) that exists in 
pedagogical usage of a tool. Joubert ( 2013 ) discussed this area of concern in the 
context of a milieu supported by the computer:

  When computers are used, very often the task students are given requires them to construct 
an artifact on the screen, such as, for example, a graph or a geometric transformation and 
they begin by working in the pragmatic/empirical fi eld. It seems that frequently the task 
does not require movement between this and mathematical/systematic fi elds and mathemat-
ical learning is limited. (Joubert,  2013 , p. 75) 

  Fig. 6.7    Geometric constructor: a multi-fi gure dragging touch screen dynamic geometry environ-
ment (Arzarello et al.,  2013 , p. 62)       
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   One perspective to discuss the shortening of the gap is to pay attention to the 
interaction between the pragmatic and epistemic values of a tool to develop dialectic 
between mathematical practices and mathematical discourses— praxeology :

  The teacher must consider the techniques he wants to make alive in the classroom to per-
form a specifi c task; he must consider the technological discourses he want the pupils to 
develop for describing, explaining, justifying and developing the techniques used. 
(Wozniak,  2013 , p. 148) 

   As the pragmatic value of a tool increases via formation of utilization schemes, 
its epistemic value may also increase:

  The instrumental genesis (Rabardel,  1995 ) does not facilitate only the use, and thus the 
instrumentality, of an ostensive. It develops also its semiotic value: an increase of the prag-
matic value allows also an increase of the semiotic value. (Wozniak,  2013 , p. 148) 

   Robotti ( 2013 ) discussed visuospatial tasks for linear equations using the 
dynamic algebra artifact AlNuSet to make it possible for students to interpret alge-
bra by a kind of drag-to-fi t strategy. For example, Fig.  6.8  depicts snapshots from 
AlNuSet exploring the meaning of  x  + 2 = 2 x  + 3. The expressions  x  + 2 and 2 x  + 3 
are positions on an “algebra line” that depends on the position (value) of  x  (left 
fi gure). Drag  x  along the algebra line; when it reaches −1,  x  + 2 and 2 x  + 3 automati-
cally line up with each other vertically at 1, which has the same value for the two 
expressions when  x  = −1 (right fi gure). This is a dynamic visualization of equality 
of two linear expressions (Robotti,  2013 , p. 104).

   In this example, the task was designed to bridge the mathematical conceptual 
notion “equality” and a discursive notion “drag until they line up”. This discursive 
notion depends on drag-based visual spatial feedback and forms a dialectal language 

  Fig. 6.8    An AlNuSet task exploring the meaning of  x  + 2 = 2 x  + 3 (Robotti,  2013 , p. 104)       
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in which the pragmatic value of the dragging technique can be transformed into a 
mathematical concept. The discourse depends on the designing skills of the teacher 
who is using the software. The AlNuSet also has a Manipulator Component to allow 
students to solve equations using different symbolic approaches ( ibid ). Combining 
the algebra line and the manipulator, teachers can design tasks to make a connection 
between student-produced situated algebra discourse, resulting from the pragmatic 
value of the tool and the conventional algebraic concepts. 

 There are further design considerations arising from the dialectic between prag-
matic and epistemic values:

•    Design cognitive aspects into didactical situations to appropriate the instrumental 
genesis process.  

•   Design tool-based activities to explore optimally the epistemic value of 
techniques.  

•   Distinguish between, and connect, non-ostensive and ostensive aspects of think-
ing and doing.     

6.4.2     Mediation and Feedback 

 There is another kind of gap that exists in the mathematics classroom, especially in 
tasks that promote student discourse. Student-produced discourse often differs from 
what is expected in the mathematics curriculum. One reason may lie in the disparity 
between mathematical concepts defi ned by teachers and mathematics experienced 
by students in the classroom (see Chap.   4    ). Students usually don’t use teacher- 
defi ned mathematical concepts in learning activities, but rather use their own taken-
for- granted mathematical ideas and discourses in these activities. For example, a 
teacher defi nes the notion “perpendicularity” in the classroom while students use a 
corner of a book to talk about it. To shorten this “discourse gap”, a well-designed 
tool with associated tasks may help, such as a 2-D representation of a 3-D fi gure in 
which the corner of a book does not indicate perpendicularity. Tools can become a 
mediator between different mathematical discourses. 

 Different types of feedback from tool use can play a major mediation role. In the 
dynamic geometry environment Cabri Elem, teachers can design their own milieu 
in which dynamic objects are regarded as didactical variables. Figure  6.9  depicts a 
snapshot of the opening page in a teacher-designed Cabri Elem activity book 
(Mackrell et al.,  2013 ). The dots are counters that can be dragged into the different 
regions of the target scoreboard. When a counter is dragged into the outermost 
region, the Score will show 1, into the next region will show 10, and into the central 
region will show 100. Thus, the Score shows the numbers formed by the student. 
Students can form different 3-digit numbers by dragging counters into the score-
board in different ways to try to score the preset target number 955. This particular 
predesigned activity page starts the process of instrumental genesis by dragging 
counters.
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   The visibility of the score, the movability of a counter, the number of counters, 
and the target number are all didactical variables that teachers can control. 
Subsequent activity pages can be designed with different control of the didactical 
variables in which

  an evolution in student strategies may be provoked through changes in the value of the vari-
ous didactical variables. The ability to choose the way in which pages are linked also 
enables the provision of optional help in tool use, differentiated tasks, notes for teachers, 
etc. (Mackrell et al.,  2013 , p. 83) 

   This Cabri Elem activity book enables strategic feedback and an interplay 
between evaluative and direct manipulation feedback ( ibid .). This evolution can be 
seen as a kind of  feedback trajectory  that mediates between students’ tool-based 
discourse and (curriculum) mathematics. 

 Dragging in a dynamic geometry environment (DGE) affords another important 
mediation feedback. It is known as soft construction. A soft construction in dynamic 
geometry is a construction

  in which one of the chosen properties is purposely constructed by eye, allowing the locus of 
permissible fi gures to be built up in an empirical manner under the control of the student. 
(Healy,  2000 , p. 107) 

    Constructed by eye  means drag a base point of a DGE fi gure to position(s) that 
would satisfy a certain condition or property. In the context of task design, Or ( 2013 ) 
used soft construction as a tool to design a GeoGebra task exploring the circumcir-
cle of a triangle using the drag-to-fi t strategy. Figure  6.10  depicts snapshots of a soft 
dragging sequence [(a) to (f)] starting with a predesigned confi guration [(a)].

  Fig. 6.9    Title page and a task page from the “Target” activity book (Mackrell et al.,  2013 , p. 83)       
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   When the point on the circle is dragged to one of the vertices of triangle  ABC , 
say,  A , a dotted radius is shown [(b)]. Soft dragging the center of the circle to posi-
tions where the circle passes through another vertex, say,  B , another radius is shown 
and the trace of these positions of the center is marked automatically, resulting in a 
visual trace [(c)]. At this stage of the task, the teacher can discuss with students the 
insights gained by what they see on the screen while dragging the center around. 
Students then continue the discourse by performing the same dragging strategy to 
the other pairs of vertices [(d) to (f)] and eventually reach the fi nal intended learning 
outcome [(f)]. The drag-to-fi t strategy and the Trace functionality in DGE can be 
regarded as a kind of recursive feedback that instigates a mediation loop between 
visualization and reasoning. This soft construction task in DGE is an example of 
task design making use of this type of feedback. 

 A specifi c feedback trajectory can be designed into a task sequence. Bokhove 
( 2013 ) used a model with elements of  crises ,  feedback , and  fading  to design a 
sequence of online near-similar tasks to foster procedural fl uency and conceptual 
understanding in solving algebraic equations. Crisis was intentionally designed into 
the task sequence at the point where students were beginning to get acquainted with 
some routine problem-solving strategies. The crisis took the form of modifi ed prob-
lems that were similar to what students were familiar with, but may need different 
problem-solving strategies. Feedback in terms of hints and suggestions was given 
by the online system to the students in a fading manner as the problem sequence 
progresses. This model anticipates that students’ cognitive load will go through a 
piecewise decreasing trend in real time with a sharp discontinuous jump at the crisis 

  Fig. 6.10    ( a–f ) Snapshots in a soft dragging exploration sequence of a predesigned DGE task 
exploring  circumcircle  of  triangle  (Or,  2013 , p. 94)       
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moment (Fig.  6.11 ). A lowering of cognitive load may imply internalization leading 
to conceptual development; thus, an online designed feedback trajectory like this 
one can mediate between a designed discourse and the targeted object of learning, 
in this case, solving algebraic equations.

   The previously discussed cases illustrated different types of tool-dependent feed-
back that serve to mediate between different aspects in mathematics teaching and 
learning. Feedback can be regarded as designed or unanticipated didactical inter-
vention. Thus, a tool with designed feedback (actual or potential) can be regarded as 
a tool of semiotic mediation when used by the teacher to mediate a mathematical 
content. When teachers design feedback in a tool-based task, they need to anticipate 
the affordances and constraints of the task as a frame for mathematical activity, 
types of interaction with the tools, ease of use, uncertainty, available choices, didac-
tic variables, and multi-representation. In terms of mathematics content, feedback 
acts at the boundary between mathematical and pedagogical fi delity in the sense 
that the tool-learner interaction creates a bridge between pedagogical design and 
mathematical meaning. This fi delity boundary can be seen as  discrepancy potential , 
which will be the discussed in the next section.  

6.4.3     Discrepancy Potential 

 In this section, the idea of “distance” that has been manifested throughout this chap-
ter continues with the introduction of the idea  discrepancy potential . The discrep-
ancy potential of a tool is a pedagogical space generated by (i) feedback due to the 
nature of the tool or design of the task that possibly deviates from the intended 
mathematical concept or (ii) uncertainty created due to the nature of the tool or 
design of the task that requires the tool users to make decisions. For a tool used to 
teach and learn mathematics, there is an instrumental distance between what the 
tool can represent and the intended mathematics to be taught. Within that distance, 

  Fig. 6.11    A crisis and fading 
feedback model (Bokhove, 
 2013 , p. 18)       
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a teacher has the space to introduce disturbances and perturbations, but these might 
also occur unintentionally. 

 To illustrate (i), Chan and Leung ( 2013 ) reported a study on using a transparency 
toolkit to teach rotational symmetry in a Primary Five classroom. Students were 
asked to arrange a rotational symmetric fi gure using plastic-shaped pieces 
(Fig.  6.12a ). An overhead transparency sheet was placed on top of the fi gure with a 
pushpin to pivot it at the center of rotation. Students traced an outline of the fi gure 
on the pinned transparency sheet and rotated the transparency sheet to see if the 
fi gure satisfi ed being rotationally symmetrical by paying attention to the overlap-
ping (see Fig.  6.12b ).

   This was a crude tool and not very accurate. However, because of its crudeness, 
a pedagogical space was opened for teacher-student discourse that led to develop-
ment of the mathematical concept. For the episode depicted in Fig.  6.12 , the teacher 
asked students why the overlapping was not exact under the rotation and how to 
modify the fi gure to correct this discrepancy. This discussion led to students discov-
ering that for rotational symmetry, the gap angles in the fi gure must be the same; the 
more number of times of overlapping in one rotation, the smaller the gap angles 
become. Afterward, the teacher led the class to explore the angle of rotation for rota-
tion symmetry (Fig.  6.12c ). This episode was an unexpected disturbance due to a 
student-produced fi gure using the transparency toolkit. The teacher made use of this 
opportunity to develop a mathematical concept that was not intended in the lesson 
plan. Thus, a task “which provides an opportunity to make use of the discrepancy 
embedded in the tool may initiate meaningful mathematics discussion which could 
lead to deeper conceptual understanding” (Chan & Leung,  2013 , p. 41). The notion 
of discrepancy potential does not have an inherent good/bad value. 

 To illustrate (ii), uncertainty can be intentionally designed into the task to create 
cognitive confl ict that could bring about discernment:

  the potential  to evoke uncertainty and doubt , which are widely recognized as powerful 
diagnostic tools as well as vehicles for creating situations in which the need to prove arises 
intrinsically … the uncertainty evoked by the tasks trigger students’ discussion and attempts 
to convince each other through argumentation, which would allow for various aspects of 
their understanding to be revealed. (Buchbinder & Zaslavsky,  2013 , p. 28) 

   The potential for using discrepancy to foster meaningful mathematical activities 
can be considered to be a design heuristic. DGE soft construction was discussed in 

  Fig. 6.12    A transparency toolkit used to teach rotational symmetry (Chan & Leung,  2013 )       
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the last section with respect to mediation and feedback. The epistemic potential of 
soft construction lies in asking learners during a dragging exploration:  What needs 
to be in order to get what you want ? It creates a discrepancy potential within which 
learners can develop and discern mathematical ideas. In particular, relaxing condi-
tions is a heuristic in DGE task design that can probe into different ways to generate 
conjectures and construct proofs. Arzarello, Olivero, Paola, and Robutti ( 2002 ) 
identifi ed seven dragging modalities (wandering, guided, bound, dummy locus, 
line, linked, drag test) while trying to analyze conjecture-making episodes by stu-
dents working on a geometrical problem. The following are two different DGE soft 
construction task design approaches exploring the cyclic quadrilateral making use 
of dragging modalities.

  Design One 

   1.    Construct a general quadrilateral  ABCD .   
   2.    Measure two opposite interior angles, say, ∠ ABC  and ∠ CDA .   
   3.    Calculate ∠ ABC  + ∠ CDA .   
   4.    Turn the Trace function on for point  C .   
   5.    Drag point  C  continuously to keep ∠ ABC  + ∠ CDA  as close to 180° as possible.   
   6.    Observe the shape of the path that point  C  traces out.   
   7.    Make a conjecture on the shape of the path.   
   8.    Explain why the conjecture is true.    

  Design Two 

   1.    Construct a general quadrilateral  ABCD .   
   2.    Construct a circle that passes through  A ,  B , and  C .   
   3.    Construct a circle that passes through  D ,  B , and  C .   
   4.    Measure two opposite interior angles, say, ∠ ABC  and ∠ CDA .   
   5.    Calculate ∠ ABC  + ∠ CDA .   
   6.    Drag the quadrilateral to keep ∠ ABC  + ∠ CDA  as close to 180° as possible, 

and observe what happens to the two circles  or  drag the quadrilateral to make 
the two circles overlap and observe what happens to ∠ ABC  + ∠ CDA .   

   7.    Make a conjecture and explain why the conjecture is true.    

  In Design One, tracing the point to satisfy the required condition is not obvious. 
In fact, the trace can be wriggling and hard to discern. However, this discrepancy 
demands that the learner refi nes his/her dragging strategies and heighten his/her 
critical discernment, consequently turning the DGE dragging tool into a mental 
cognitive tool. Thus, the DGE Trace function can be used (intentionally) to create 
disturbances that the learner needs to resolve (Fig.  6.13 ).

   In Design Two, an uncertainty is designed in Step 6 where the learner can choose 
to take one of the two dimensions of variation (the varying values of ∠ ABC  + ∠ CDA  
and the “overlappedness” of two circles) as the drag-to-fi t target. This intentional 
designed uncertainty creates a situation where the learner needs to interpret drag-
ging feedback with logical inference sequences and, hence, develops geometrical 
reasoning (Fig.  6.14 ).
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   Possible DGE conjectures resulting from these two tasks are:

  Design One 

  For a quadrilateral to satisfy the condition “a pair of interior opposite angles adds up 
to 180°”, the vertices of the quadrilateral should lie on a circular path.   

  Design Two 

  Given a quadrilateral  ABCD , its vertices lie on the same circle  if and only if  a pair 
of interior opposite angles adds up to 180°.    

 The idea of discrepancy potential in tool-based task design highlights the impor-
tance of paying attention to how the nature or design of a tool can bring about math-
ematical learning. Different tools can be used to design tasks that foster the teaching 
and learning of the same mathematical topic in different ways. Their different dis-
crepancy potentials could interact in meaningful ways to bring about rich mathe-
matical experiences for students, as suggested by the overlapping shaded areas in 
Fig.  6.15 . This leads to the issue of multi-representations, which is the discussion in 
the next section.

6.4.4         Conceptual Blending and Multiplicity 

 Historically, mathematical ideas have been developed through tools and cultural arti-
facts. Thus, in retrospect, a mathematical concept should be able to be represented 
by different tools and artifacts. Furthermore, new and developing technologies play 
revolutionary roles in representing mathematical concepts and even creating new 
ones. Multiplicity is a key idea in instrumental orchestration and documentation. 

m∠ABC + m∠CDA = 179.76°

m∠CDA = 129.57°

m∠ABC = 50.19°

A

B

C

D
  Fig. 6.13    Design One       

m∠ABC + m∠CDA = 197.34°

m∠CDA = 93.05°

m∠ABC = 104.29° A

B
C

D
  Fig. 6.14    Design Two       
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Often, abstract generalizations come about when critical aspects from multiple 
mathematical representations and discourses fuse and blend together. Therefore, in 
a multi-tool pedagogical environment, interactions among the discrepancy potentials 
of different tools, as discussed in the previous section, and the bridging and switch-
ing between tools and representations are key task design considerations. 

 Whiteley and Mamolo ( 2013 ) used a framework of conceptual blending (Turner 
& Gilles Fauconnier,  2002 ) to design a multi-tool task that deals with a box optimi-
zation problem. The multi-tool environment consisted of concrete models and 
interactive 2-D representations of 3-D boxes and function graphs in Geometer’s 
Sketchpad (GSP) (Fig.  6.16 ).

   It was found that teachers and students had multiple ways of reasoning about the 
task and created different conceptual blends for these representations. Nevertheless, 
the selected problem encouraged all participants to anticipate that there was an opti-
mal shape and guess a candidate shape (always incorrectly). Even simple activities 
could indicate that better reasoning tools were needed to resolve the confl ict and 

A Targeted
Mathematics

Topic

Tool 2

Tool 1

Tool 3

Tool 4

  Fig. 6.15    The  shaded regions  are the tool discrepancy potentials for different tools       

  Fig. 6.16    A multi-tool environment consisting of concrete models and interactive 2-D representa-
tions of 3-D  boxes  and function graphs in Geometer’s Sketchpad (GSP) (Whiteley & Mamolo, 
 2013 , pp. 137–138)       
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fi nd the optimum. For teachers, the task was about allowing an opportunity to 
unpack the basic processes of calculus and optimization and to realize a novel spa-
tial sense in optimizing geometrical problems. For students, the task afforded them 
with accessible tools to solve a problem in different ways, which supported or laid 
a foundation for a symbolic/algebraic approach (Whiteley & Mamolo,  2013 , 
p. 134). Using a conceptual blending framework to analyze the multi-tool environ-
ment and the activity emerging from the task gives information about the discrep-
ancy potentials of the individual tools and also the conceptual development of the 
students ( ibid ., p. 136). The concrete model became a thinking tool and the GSP 
applet invited rapid (or fl uent) switching among multiple ways of reasoning which 
were supported by the multiple representations. Task design should consider the 
mental processes involved in rapid (fl uent) switching back and forth between repre-
sentations and students’ alternative ways of reasoning. With the lens of conceptual 
blending, individual student diffi culties can be tracked to gaps in how particular 
representations are manipulated to support reasoning. With practice, learners can 
apply the reasoning elicited by one tool within the context of a second tool, for 
example, taking the focus on “sign of the change” in the model to the slope of a 
secant in the graph. 

 Addressing the issue of students’ multiple feedback responses to a tool, Leung 
and Lee ( 2013 ) designed predesigned dragging tasks in a DGE-based platform that 
was able to record multiple student responses in a collective fashion. The platform 
was capable of generating a collective image map of student geometrical percep-
tions for a predesigned dragging task. This map, called a  task perceptual landscape , 
is visually interpreted as students’ qualitatively different ways of perceiving a geo-
metrical phenomenon under the drag mode, ways which are quantifi ed and catego-
rized in a collective way (see, e.g., Fig.  6.17 ). The scatterplot on the left consists of 
students’ responses superimposed on the dynamic task template. The task perceptual 

  Fig. 6.17    Dynamic task template (Leung & Lee,  2013 )       
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landscape is a  collective example space  of students’ perceptions of a task. This 
collective student example space can be used to design teaching and learning tasks 
to explore students’ perceptions on geometrical understanding. In this case, multi-
plicity is seen in terms of amalgamation of multiple student responses in a dynamic 
interactive tool environment. This task-based dynamic geometry platform opened 
up the idea of an  instrumental documentation environment  that should have poten-
tial pedagogical implications which can be explored.

   Kaput ( 1986 ) postulated that a multiple representational environment supported 
by technology might enhance high-level engagement with mathematics. In this con-
nection, Clark-Wilson and Timotheus ( 2013 ) studied the design rubric of a multi- 
representational technological environment (MRT) supported by the TI-Nspire. 
In particular, the study focused on how MRT helped to explore mathematical invari-
ance and variance. A key task design consideration was how to switch and fl ow 
different representations (e.g., graphical, tabular, and linguistic) so their interactions 
would bring about mathematical generalization and how the situated discourses that 
developed under these representations communicate with each other with respect to 
the generalization. The fi ndings gave rise to seven questions that are relevant to task 
design in a multi-tool environment (Clark-Wilson & Timotheus,  2013 , p. 51). They 
take seriously the assertion that “a lesson without the opportunity for learners to 
express a generality is not, in fact, a mathematics lesson” (Mason, Graham, & 
Johnston-Wilder,  2005 , p. 297). In that sense, these questions apply equally well to 
all tool-based task design contexts:

    1.    What is the generalizable property within the mathematics topic under 
investigation?   

   2.    How might this property manifest itself within the multi-representational tech-
nological environment—and which of these manifestations is at an accessible 
level for the students concerned?   

   3.    What forms of interaction with the MRT will reveal the desired manifestation?   
   4.    What labeling and referencing notations will support the articulation and com-

munication of the generalization that is being sought?   
   5.    What might the “fl ow” of mathematical representations (with and without tech-

nology) look like as a means to illuminate and make sense of the generalization?   
   6.    What forms of interaction between the students and teacher will support the 

generalization to be more widely communicated?   
   7.    How might the original example space be expanded to incorporate broader- 

related generalizations?    

6.5        Synthesis 

 For some theories, tools and representations act as extensions to our sensory/mental 
cognition to experience and perceive mathematics. Tools may start as external arti-
facts, but they have the potential to turn into internal cognitive tools or cognitive 
extensions. For embodied theory, in which there is no external/internal dichotomy 

A. Leung and J. Bolite-Frant



219

and cognition is dependent on the activity, tools are regarded as part of cognition. 
In either case, whether tools are conducive or disruptive in the process of teaching 
and learning depends on how they are designed to be used in pedagogical situations. 
As discussed in the previous sections, choices of tool and design of tool usage open 
up pedagogical spaces where the pragmatic and epistemic dialectic is at play and 
where students and teachers are invited to develop mathematical discourses. 
Figure  6.18  displays some pedagogical issues surrounding the tool-based pragmatic 
and epistemic dialectic that task design needs to pay attention to.

   To focus further on tool-based task design, considerations, and heuristics, there 
are at least four broad areas of concerns:

    1.    Use implicit, explicit, and strategic feedback from the tool-based environment to 
create crises and/or fading that are conducive to student learning.   

   2.    Design pragmatic/instrumental and epistemic/semiotic activities that consider 
the boundary of mathematical and pedagogical fi delity, tactile and meaningful 
interactions with the tools, and substitution or enhancement of sensory abilities.   

   3.    Make use of the affordances and constraints created by the tool. For example, unin-
tentional disturbances caused by the tool quality, different design given by relaxing 
conditions/functionalities, (epistemological) obstacles created by the tool, etc.   

   4.    Fluent switching between representations/tools.     

 These heuristics should not be seen as separate and distinct design consider-
ations; rather they are various foci of attention in the design process, and they inform 
and reinforce each other. A few key heuristics discussed in this chapter are further 
highlighted in the following. 

6.5.1     Strategic Feedback and Mediation 

 Feedback is a key to promote skill and understanding in any type of tool usage. 
Types of feedback can be regarded as didactical variables that entail possibly different 
pragmatic and/or epistemic values conducive to mathematical concept development. 

Choices of Tool
Open-endedness 
Connectivity
Accessibility
Freedom to choose
Immersion in the technology
Possibility of student as a designer
Constraining or respecting diversity

Visible crises
Formative assessment
Didactic phenomena
Task sequence design
Variation of didactic variables
Perturbation and disturbance
Feedbacks: Controlled, uncontrolled,
fading, student-generated, teacher-designed

  Fig. 6.18    Issues around pragmatic and epistemic dialectic       
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Thus, designing appropriate strategic feedback into tool-based tasks should be a 
major design attention. Feedback always has potential to open up a space for unan-
ticipated actions and/or discourse (especially coming from didactical and episte-
mological obstacles) with potential pragmatic and/or epistemic values. Task design 
should be fl exible enough to allow development of this contingent pedagogical 
space. Tool usages can be developed as semiotic signs that can mediate mathemati-
cal knowledge. Whether this process is natural, designed, or a combination of both 
depends on the choice of tool, the mathematical content, and the choice of peda-
gogical approach. Feedback and mediation are complementary processes leading 
internalization and/or transformation of knowledge.  

6.5.2     The Instrumental/Pragmatic-Semiotic/Epistemic 
Continuum 

 Evolution of a tool’s instrumented action scheme (Trouche,  2004 ) transforms the 
instrumental/pragmatic-semiotic/epistemic dialectic. The instrumental genesis and 
tool of semiotic mediation frameworks (Sect.  6.3 ) both deal with this transformation 
from physical tool to psychological tool. Task design needs to sequence tool-based 
activities to progress through the  epistemological continuum  where mathematical 
skills/techniques are gradually transformed into abstract concepts and understand-
ing. Tools can be assigned or designed to play different epistemic roles at different 
points of the continuum. For example, tools can enable: action, formulation, and 
validation (Brousseau,  1998 ). Action involves familiarity with the tool and how to 
implement a procedure to use the tool. Formulation concerns a task situation when 
tool feedback produces diffi cult unfamiliar problems for students to tackle that need 
to be resolved mathematically. It is in this mode that a tool begins to turn into a 
psychological tool for discernment of critical mathematical ideas. Validation dialec-
tics involve explaining, justifying, theorizing, and proving. This echoes with many 
aspects in Leung’s nested epistemic modes task design framework mentioned in 
Sect.  6.2.4 .  

6.5.3     Boundary Between Mathematical and Pedagogical 
Fidelity 

 Task design can situate a tool at the boundary between mathematics and pedagogy. 
This is in the sense that a tool can be designed to embody a pedagogical dimension 
of mathematical knowledge. Thus, the mathematical and pedagogical usage of a tool 
becomes a task design issue. A pedagogical dimension may be, for example, a 
didactical situation that is relevant to students’ mathematical experiences but may 
not immediately access to the rigorous mathematics dimension, or vice versa. Task 
design should be sensitive to this boundary and aim to create a symbiosis between 
mathematics and pedagogy.  
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6.5.4     Discrepancy Potential 

 Tools arouse uncertainty and doubt because feedback from tool usage may deviate 
from the intended mathematical concept to be learned or may create cognitive con-
fl icts for students. This opens up a potential pedagogical space where teacher and 
students have opportunities to use such discrepancies to develop mathematics dis-
course that could lead to formation of mathematical concepts. Task design can 
intentionally make use of a tool’s discrepancy potential to create uncertainties and 
cognitive confl icts which are conducive to student learning.  

6.5.5     Multiplicity 

 Different tools extend or amplify different abilities. A multi-tool teaching and 
learning environment provides learners a milieu where they can interact with dif-
ferent tools and representations. In such a pedagogical situation, task design 
should pay attention to design connection, switching, and transition between tools 
and representations to bring about contrasting experiences for learners which may 
lead to critical discernment of invariant mathematical concepts. Mathematical 
activities are mostly concerned with discerning invariants in variation or seeing 
how invariants appear in variation. Thus, designing variation tasks in a multi-tool 
environment should enrich the mathematics knowledge acquisition/construction 
process. 

 As said, the above heuristics are not separate considerations for tool-based task 
design. They are all closely related to each other and are critical aspects in the 
whole design process. At present, no overarching or unifi ed theory for tool-based 
task design exists. The TELMA and ReMath projects experimented with a cross- 
experimentation and cross-case analysis methodology aiming to create a dialogue 
platform where different theoretical frameworks were used for task design in an 
ICT environment; some of these frameworks are discussed in this chapter (Kynigos 
& Lagrange,  2014 ). Their fi ndings should serve as a solid reference for tool-based 
task design. A direction for tool-based task design research is to see how far the 
fi ndings from these two projects extend to non-ICT tools. The discussion in this 
chapter is a preamble to this course of research. Technology is developing at an 
exponential rate, and the nature of reality is becoming less easy to defi ne. 
Integrating advanced technological tools into the mathematics classroom chal-
lenges the nature of mathematical knowledge and, in particular, the question of 
what represents mathematics. In this direction, tool-based task design principles 
and heuristics evolve with emerging technology. Therefore, teachers who design 
tasks should be aware of his/her disposition toward the nature of mathematics as 
this will infl uence how the designed tool and its use will be seen to represent 
mathematics.      
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    Chapter 7   
 E-Textbooks for Mathematical Guided 
Inquiry: Design of Tasks and Task Sequences 

             Michal     Yerushalmy    

7.1             Textbook Culture: Traditions and Challenges 

 A textbook is a message from the professional community to students about  what  
they should learn. It also represents the ideas of the author about  how  the content 
should be taught and learned. It plays a central role in school pedagogy and class-
room norms, and its authoritative image has been the dominant aspect of the com-
mon classroom culture, often identifi ed as  textbook culture . Love and Pimm’s 
( 1996 ) “text on texts” is an important resource for understanding the features that 
textbooks are usually assumed to have: textbooks are closed in the sense that both 
text and images have been created in the past; they include problems for exercising 
but not aimed at questioning the content; they are linear and follow the “linear tex-
tual fl ow of reading” (p. 381), and usually they consist of cycles of expositions, 
examples, and exercises. 

 Traditional textbook culture assumes that teachers make sure their students learn 
the content of the book, usually in the specifi ed order, because the book acts as a 
model for standards and for the way standards are assessed. The textbook is sup-
posed to provide guidance and present opportunities for students to learn, making 
the objectives and ideas of the curriculum more readily apparent. For teachers, it 
also provides guidance in bringing their teaching in line with the expectations of the 
external authority, which may be the school, the syllabus, or some central assess-
ment. In this function, the textbook serves as syllabus and timekeeper, and its author 
is considered to be the authorized entity charged with delivering content and peda-
gogy. Note the direct etymological link between  author  and  authority  (further 
described by Young,  2007 ), underscoring the authoritarian position of the textbook 
as written by a recognized expert author or group of authors. As an  author(iz)ed 
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object , the textbook is considered to be a solid personal resource for the learner. 
Learning with a textbook in this manner is often referred to as  learning by the book , 
that is, a passive type of learning.  Teaching by the book  refers to teaching that treats 
the textbook as an authority that should be fully accepted. Both are known compo-
nents of textbook culture ,  which varies only slightly across different contexts world-
wide. Herbel-Eisenmann’s analysis of the sources of textbook authority ( 2009 ) 
distinguishes between the textbook as an objective representation of knowledge, 
where the authority is an intrinsic property of the text, and the participatory relations 
between textbook and teaching. Teachers use various practices to confer authority 
onto the text and simultaneously onto themselves. 

 Developments across nations attempt to change the mathematics teaching stan-
dards and to shift the teacher’s authority toward  guided inquiry  teaching. Although 
mathematics classrooms have increasingly adopted various formats of constructiv-
ism, reviews of post-reform math textbooks do not fi nd that the practice of using 
textbooks has changed. Post-reform studies that examined the teachers’ adoption of 
new curricula found that, although teachers attempt to reform their pedagogy to 
emphasize guided inquiry, the student-teacher-book relations have not changed and 
the textbook remains a central formal authoritative resource for the teacher and the 
learner. Learning mathematics with understanding has become a shared objective, 
but teachers seldom have opportunity and time to develop mathematical tasks, 
 textbooks, or teaching sequences in which richness of tasks and learning for 
 understanding are emphasized (Pepin,  2012 ). Analyzing newly developed text-
books, Nathan, Long, and Alitalia ( 2007 ) found that many new books have remained 
similar to the traditional ones. 

 Reyes, Reyes, Tarr, and Chavez ( 2006 ) studied for 3 years how newly developed 
textbooks supported by the National Science Foundation in the USA affected math 
teaching and learning in a US middle school. According to the authors, half the 
teachers declared that “My math book is my bible,” and the other half were infl u-
enced more by the state-determined curriculum and assessment materials. The 
teachers covered 60–70 % of lessons of the specially designed-to-reform textbook, 
just as they did when using non-reform textbooks. McNaught ( 2009 ) presented 
similar fi ndings in a study of the Core-Plus curriculum project (used as an example 
of an integrated content textbook), showing that around 60 % of the content of the 
textbook was taught, but not necessarily from the textbook, and about one third of 
the teaching was based on other supplementary materials. 

 Studying Swedish teachers as they guided students solving tasks from the text-
book, Johansson ( 2007 ) showed that perception of the textbook as a resource of 
ultimate correctness has affected the teachers’ decision not to question a textbook 
solution. In sum, (a) the textbook remains the single printed and bound object that 
acts as authoritative pedagogic guideline for what should be learned and for how it 
should be taught and assessed; (b) new textbooks that attempt to adopt a somewhat 
less authoritative tone create a didactic challenge and are not likely to be fully 
adopted by experienced teachers; and generally speaking, (c) although the textbook 
is assumed to provide devices for actively involving the students in examples and 
exercises, the studies focus on engagements with textbooks that are reserved mostly 
for the teachers. 
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 The studies on interactions with textbooks present a somewhat more complex 
picture of the relations between mathematics, the text, teachers, and students than 
traditionally assumed. Teaching does not depend on a single textbook: approxi-
mately 30 % is accomplished using other resources, mainly previous textbooks that 
the teachers feel are more likely to achieve their goals. Moreover, different nations 
have different cultures, traditions, and expectations from teaching, all refl ected in 
the textbook. The comparison between Norwegian and French textbooks by Pepin, 
Gueudet, and Trouche ( 2013 ) is illustrative. Despite the authority of textbooks, an 
increasing number of studies report on teachers looking for new models and views 
on teaching aimed at understanding the use of textbooks. Remillard ( 2012 ) exam-
ined how teachers are positioning themselves with the textbook and found that 
standard- based resources present a challenge to many teachers and require orienta-
tion, and that many teachers use them in ways not intended by the designers. Rezat 
( 2012 ) analyzed six phases describing how teachers mediate textbook use. Patterns 
that Rezat identifi ed in students’ uses of textbooks are strongly related to the choice 
of order of expositions, order of pages, and of tasks used by the teacher. It suggests 
that the power of indirect teacher mediation of the textbook is underestimated. 

 Technology has been an important resource in several textbooks attempting 
reform. But such technological resources as the Open Education Resources, which 
accompany the newer books, are reported to be considered enrichment, while the 
textbook remains the core external authority. Textbook publishers are addressing a 
wide range of expected changes in the affordances of the digital object, including 
the material aspects of weight and cost, the quality and attractiveness of the mate-
rial, the richness of the modes of presentation, and the opportunities for personaliza-
tion. As textbooks rapidly change from print to digital formats, it is assumed that the 
ways in which they will be used will also change. Publishers allow teachers to per-
sonalize digital textbooks for their courses, emphasizing fl exibility and inexpensive 
dynamic changes. Schoolteachers can personalize the textbook by selecting from 
existing chapters and content and even individualizing the book for the student. 

 Korea, considered to be one of the leading countries in math and science achieve-
ment, became one of the foremost innovators in the area of e-textbooks, especially 
in school math and sciences. Korea holds an integrative view in which textbooks 
remain the central learning resource, surrounded by other types of facilitating media. 
Paper textbooks are being digitized, integrating live resources such as hyperlinks, 
multimedia, dictionaries, references, and other data sources into a learning manage-
ment system connecting students, assessment, etc. Other educational systems are 
adopting a similar view of the new textbook (Taizan, Bhang, Kurokami, & Kwon, 
 2012 ). The Israeli education system requires that each textbook appear in at least 
one of three formats: a digitized textbook, a digitized textbook that is enriched with 
external links and multimodal materials, or a textbook that is especially designed to 
work in a digital environment and includes online tools for authoring, learning, and 
management. An assumption of the integrative view is that the digital textbook can 
also function as printed text and assume the traditional format of the textbook. Thus, 
the change of the  object  prompted changes in the publishing process (editions, price, 
attractiveness) and in the ways of integrating digital add- ons with the instructional 
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materials. The different formats of multimodal interactive textbooks in mathematics 
have yet to be thoroughly studied. 

 The previous literature review addresses the studies of printed textbooks, but the 
fi ndings regarding mediation and patterns of use by students and teachers point to 
challenges that should be considered when using non-sequential and multimodal 
interactive texts. An important issue is that of authority; Gueudet and Trouche 
( 2012 ) argued that the notion of author and authorship is often less transparent in 
online sources than in printed material, as does Usiskin ( 2013 ) when discussing the 
disappearance of transparency in e-Textbooks. Another is that of order or sequence. 
It is commonly believed that digital books enable changes of sequence and fl exibil-
ity, but at the same time such fl exibility may cause lack of clarity. In this situation, 
the main challenge is to rethink the sets of concepts and images used to guide us in 
thinking about the structure of traditional printed textbooks and to consider the con-
sequences of interactivity, multimodality, and personalization on the design and 
structure of use—primarily the teacher.  

7.2     The Design of an Interactive Unit 

 Yerushalmy, Katriel, and Shternberg ( 2002 ) designed an interactive digital text-
book characterized by the extensive roles assigned to visual semiotic means to 
interactivity between the reader and the visual mathematical objects and processes, 
and by a conceptual order of digital pages that could be rearranged to serve a vari-
ety of instructional paths (for more details, see Yerushalmy,  2013 ). The design of 
the  VisualMath  textbook is situated in the larger view fi eld of mathematical guided 
inquiry and school algebra, taking the function (on real number fi eld) to be its 
mathematical and pedagogical root. We have long been seeking less formal control 
structures that attempt to respond to or to signal subjective schemes and views that 
teachers and students bring to their engagement with the text. Two fundamental 
principles directed the design:

•    A unit, a pedagogical structure for a collection of algebra tasks, should be 
regarded as a gallery in an interactive museum. The design principles and views 
of the units were borrowed from a museum setting and were consistent with the 
distinction Kress and van Leeuwen ( 1996 ) made to describe linear and nonlinear 
texts. They described nonlinear texts as an “exhibition in a large room which 
visitors can traverse any way they like… It will not be random that a particular 
major sculpture is placed in the center of the room, or that a particular major 
painting has been hung on the wall opposite the entrance, to be noticed fi rst by 
all visitors entering the room” (p. 223). Just as a curated exhibit, a unit should 
present opportunities for readers to focus on a concept through multi-sensual 
experience, making the objectives of the collection apparent. Each unit attempts to 
be a coherent collection of tasks, which, although they can be used in any fl exible 
order according to the decision of the teacher or reader, is constructed to deliver 
the mathematical lesson by (a) offering a balanced collection of multimodal 
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mathematical activities that include inquiry tasks, problems, and exercises (in 
general, all the tasks require non-routine thinking and reasoning by interacting 
and experiencing the mathematics) and (b) addressing various modes of learning 
and teaching, as described by Chazan and Schnepp ( 2002 ) and Lobato, Clarke, 
and Ellis ( 2005 ). Although the tasks are written for the student, it is assumed that 
each task can be used in different modes, including independent study by stu-
dents, group collaboration, and teacher-conducted whole-class discussion dem-
onstrating a process of inquiry that supports systematizing and institutionalizing 
experimental results: (c) a design that meets the institutional demands, including 
tasks that support transforming inductive results into consolidated mathematics 
(Barzel, Leuders, Predinger, & Hußmann,  2013  categorize textbook tasks along 
these terms). Each unit addresses three types of tasks (Kieran,  2004 ):  transfor-
mational activities  that are mostly rule-based manipulations,  generational activi-
ties  focused on representing and interpreting situations from outside or within 
the mathematics, and  integrative activities  that require the use of manipulations 
and generational actions but also go beyond these, to meta- processes such as 
generalizations, predictions, etc.  

•   Although the organization of each unit resembles a traditional set of textbook 
tasks—expositions, exercises, and problems—the principle that guided the 
design of tasks and characterization of activities is rooted in the interactivity of 
tools and diagrams. Each type of interactive element has its semiotic and peda-
gogical meaning. Tools are artifacts designed to carry a specifi c element of math-
ematics: function-based algebra. An interactive diagram (ID) is a relatively small 
and simple software application (applet) built around a  pre-constructed example  
that serves as a basis for change. Both tools and diagrams were designed to sup-
port conjecturing and argumentation by providing various degrees of control to 
the user. Interactive elements are designed to support the systematic generation 
of examples in linked multiple representations, to accommodate various entry 
points, and to provide nonjudgmental mirror feedback that should be interpreted 
subjectively. Indeed, the challenge in constructing a task around an ID is to 
design opportunities for action (Yerushalmy,  2005 ).    

 This section outlines and exemplifi es the design rationale and structure of a unit 
by analyzing the design of expositions, tools, problems, exercises, and essay tasks 
included in the  Transformations of Linear Functions  unit (  http://visualmath.haifa.
ac.il/en/linear_functions/transformation_of_graphs    ) (in Yerushalmy et al.,  2002 ; 
Yerushalmy, Shternberg, & Katriel,  2014 ). 

7.2.1     Interactive Exposition 

 Freisen’s ( 2013 ) analysis of the structures that characterize the advent of modern 
textbooks describes the expository nature of textbooks as the main obstacle to con-
sidering newer modes of textbooks along the history as an environment supporting 
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the personal construction of knowledge. Following Kuhn ( 1962 ), Freisen questioned 
the role of the exposition in traditional textbooks and the attempt to present the 
universal truths and to expect students to later recite them back to the teacher. In more 
recent textbooks, the terminology of the  scripted  exposition has changed to knowl-
edge that is  prompted  by the textbook. Our assumption was that learners need to 
construct their own examples and to construct the concept image and defi nition by 
creating their own example space. The widespread use of examples in mathematics 
textbooks serves as a means of communication and mediation between learners 
and ideas. If examples are well selected, the variations between examples are the 
means by which students can distinguish between essential and redundant features 
(Bills et al.,  2006 ; Goldenberg & Mason,  2008 ; Watson & Shipman,  2008 ). Our 
challenge was to design expositions that can be worked on and personalized by 
providing interactive illustrations to be controlled by the reader. Its design was cen-
tered on the  illustrating diagram  (see Fig.  7.1 ). 

  Fig. 7.1    Description of the role of illustrating interactive diagram (  http://visualmath.haifa.ac.il/    )       
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The exposition was designed to start the example generation, usually by offering 
a single graphic representation and relatively simple actions, such as viewing an 
animated example or dragging an interactive shape. The reader was expected to use 
these to create examples that represent new ideas with known means of control 
individually, in cooperative groups or in whole-class discussions.

7.2.2        Toolbox and Unit Tools 

 Tools are artifacts designed to carry specifi c elements of mathematics. Artifacts 
become purposeful tools in response to subjective needs and personal actions. The 
assumption in the design of the  VisualMath  e-textbook was that tools such as the 
microscope, the calculator, or any software become a way of thinking and knowing 
and have an epistemological role as they change the traditional assumptions of what 
we mean by knowing mathematics. A toolbox of ten tools for doing mathematics is 
part of the e-textbook. The unit tools (or activity tools) are special cases of the tools 
in the Toolbox, designed to explore specifi c concepts mainly by limiting the gener-
ated types of example spaces through supporting a smaller range of actions. 
Although they make exploration and inquiry possible, they are designed to call for 
action in a specifi c manner that supports the construction of the principal idea of the 
unit. Toolbox and unit tools are part of the learning environment, and they are 
always available (see Fig.  7.2 ).

  Fig. 7.2    Descriptions of toolbox and unit tools (  http://visualmath.haifa.ac.il/    )       
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7.2.3        Tasks or Problems and Exercises 

 In the pedagogical endeavor for which the  VisualMath  book is designed, each activ-
ity was intended to grant opportunities for students to explore in order to formulate 
ideas. The traditional order of direct teaching of procedures followed by drilling, 
practice, and word problems (applications of the taught algorithms) was not a rele-
vant consideration. The objectives of the tasks were to use explorations out of which 
conjectures grow, are discussed, are explained, and are informally and formally 
proved or rejected. The tasks require making sense of problems and, as the new core 
standards state, require the students to “persevere in solving them,” spending longer 
on analyzing givens, constraints, relationships, and goals. Although problem solv-
ing can always be helped by use of appropriate tools, it should be carried out strate-
gically, constructing viable arguments and critiquing the reasoning of others. The 
problems are designed to provide an opportunity to obtain peculiar, confl icting, or 
unexpected examples. The primary means of designing problems are interactive 
diagrams (IDs). Especially useful are the  guiding diagrams  (GIDs), designed to be 
the principal delivery channel of the message of the activity. Similar to the narrator’s 
voice in Goldenberg ( 1999 ), GIDs are designed to call for action in a specifi c man-
ner that supports the construction of the principal ideas of the task. 

Fig. 7.2 (continued)
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 As in many algebra books, exercises call for writing an expression, equation, or 
inequality. In function-based algebra, the expressions are functions and thus represent 
a procedure. Rather than asking to simplify or to solve, most exercises ask for equiva-
lent expressions and encourage more than a single correct answer, or they require 
the construction of a function or of an equation that meets the specifi ed conditions. 
The design assumption regarding exercises was that they are performed after stu-
dents have adopted a correct (if not complete) concept image and concept defi nition 
and have practiced with understanding the principal processes related to the con-
cept. The primary means used to design exercises are  elaborating diagrams , which 
include a wide range of representations and controls within the representations. 
Elaborating diagrams leave it up to the learner to solve the task by offering a variety 
of general-purpose tools. The exercise can be solved without the support of the 
interactive diagram, using known procedures mentally as a paper exercise. 
Alternatively, the answer can be reached by trials with multiple representation 
refl ecting feedback. Students can use openly available input, watch the feedback, 
compare the linked results, and gradually improve their guesses. See examples in 
Figs.  7.3  and  7.4 .

  Fig. 7.3    Guiding diagrams and elaborating diagrams (  http://visualmath.haifa.ac.il/    )       
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Fig. 7.3 (continued)
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  Fig. 7.4    An example of students working on an exercise (adapted from Naftaliev & Yerushalmy, 
 2011 )       
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7.2.4         Write an Essay Task 

 Returning to the museum image, the role of the main  integrative task  of writing an 
 essay  is analogous to choosing the piece of art to be positioned in the center of the 
gallery. It is placed in such a way as to be visible and considered by all, but it is not 
necessary to stop by this exhibit for a long time on a fi rst visit. Most units offer a 
math concept essay. The essay should guide students’ exploration or summarize and 
demonstrate ideas that students already explored with tools, talked about in groups, 
and tried in other tasks of the unit. The essay can also be regarded by the teacher and 
students as suggestions for directions to follow (see Fig.  7.5 ). The suggested direc-
tions are the gallery “centerpiece” or the main goals that the unit wants to bring to 
the fore using its tools, problems, and exercises. In this sense, the suggested outline 
for the exploration tasks is also a suggestion for the teacher or for any reader inter-
ested in what would constitute “knowing the concept” upon completing the unit.

  Fig. 7.5    Example of an essay integrative task (  http://visualmath.haifa.ac.il/    )       

   Writing an essay task can serve as a signifi cant tool in supporting the organiza-
tion of knowledge in a constructivist classroom because it asks to structure diver-
gent results and consolidate the mathematics learned, to generalize results to other 
settings, and to be skillful. It creates opportunities for students to raise questions 
that cut across objects, operations, and the terms of the subject. In this sense, essay 
tasks are considered “expert problems.” Expert work consists of solving problems 
when they arise, searching for the foundations of the task, learning necessary defi ni-
tions, searching for examples, looking for similar problems, performing meta-level 
heuristics, and instrumenting artifacts to serve as mathematical and psychological 
tools. Expert problems in a textbook “are rich tasks, each presented in a form it 
might arise in mathematics, science or daily life. They require effective use of prob-
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lem solving strategies, as well as concepts and skills. Performance on these tasks 
indicates how well a person will be able to do and use the mathematics beyond the 
mathematics classroom” (Burkhardt & Swan,  2013 , p. 440). Standing as the central 
exhibit of the gallery, the essay can be visited and revisited in various scenarios of 
exploration: an evolving essay that the student is responsible to complete in the 
course of the learning period or an individual project that can be developed and 
expanded to connect with other units (e.g., the exact same essay task appears in the 
transformations unit of the quadratic function section of the textbook).  

7.2.5     Restructuring a Unit Along the Space 
of Interactive Elements 

 Our initial attempt in constructing a balanced unit was to support readers, mainly 
teachers, by keeping the structure of the unit based on more or less traditional com-
ponents. At the same time, the interactive tools and diagrams became the main 
consideration of the design and of the pedagogical implementation. The exercise 
room of the transformation gallery was designed to support practice with meaning, 
but the simple and open design of the exercises as elaborating IDs caused teachers 
to often use it as expositions in guided class discussions or as an exploration activ-
ity. The unit tools that initially were designed to support specifi c tasks were used as 
a learning environment, replacing expositions. And the essay tasks, which were 
initially designed to support an open-ended project for students or groups to pursue 
on their own, were assigned as reviews upon completion of the unit, and teachers 
often used it as a map to guide them in teaching the unit. These pedagogical deci-
sions made it clear that specifying the functions of the gallery rooms along the lines 
of the structure of textbook units as traditionally described needs to be rethought. 
We suggest, therefore, changing our perspective and considering designing the 
interactive units from the vantage point of the semiotics of interactive elements. 

 We used this semiotic framework to examine the aspects of interactive tasks from 
the point of view of presentational, orientational, and organizational functions. The 
 organizational function  refers to the connection between all the components of the 
task: verbal text, representations, tools, examples, etc. To describe the process of 
design with IDs, it is useful to look at three types of organization: illustrating, elabo-
rating, and guiding. These types were most apparent in the description of the com-
ponents of the unit in this section. The example that initially appears in the ID 
determines the nature of its  presentational function . Three types of examples are 
widely used in IDs: specifi c, random, and generic. Specifi c examples that present 
the exact data of the activity of which they are part provide a dynamic illustration of 
the text without altering the information. In random examples, a specifi c example is 
generated within given constraints, presenting different information at various times 
and for different users. To serve as a generic example, the diagram must be struc-
tured to be representative; it must present a situation that could be part of the given 
task, but its focus is not on the specifi c data of the activity. The tone in which the 
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text addresses the learner is subject to design decisions having to do with the  orien-
tational function . The “sketchiness” or “rigorousness” of the diagrams is an impor-
tant aspect of reader orientation. An example that appears in a diagram can have an 
accurate appearance and speak in a strict, distant tone, or it can include a more 
subtle description and adopt a non-authoritative tone. IDs can function both as 
sketches and as accurate diagrams. 

 The elements of this framework were valuable in explaining student learning 
with various interactive diagrams in different contexts of algebra tasks (Naftaliev & 
Yerushalmy,  2013 ). They were also valuable in guiding our design of new instruc-
tional resources, and it remains to be explored whether this framework is valuable 
and productive as a guide for instruction.   

7.3     Sequencing in Non-sequential Textbooks 

 Brown ( 2009 ) compares teaching to a jazz player’s use of the notes and argues that 
rather than designing curriculum materials as one-size-fi ts-all documents, designers 
should support different modes of use according to their pedagogical design capac-
ity (p. 31). I support this call and suggest that transparent design of the mathemati-
cal idea and in the mapping of the objects and of actions of the mathematical subject 
matter can be a helpful tool for teachers who design or modify curricular documents 
and resources. For a collection of semi-ordered materials and multimodal digital 
“pages,” which to a certain extent stand on their own, to be considered a textbook, 
the deep structure of the concepts and the interrelations between them must be sim-
ple and visible. Two principles guided the design of the  VisualMath  e-textbook. Our 
fi rst decision was to organize the content along a single view of the algebra, focus-
ing on the algebra of functions:  VisualMath  was designed to use functions as the 
foundation for mastering algebraic skills with understanding by all students. This is 
not the common structure of mathematics textbooks that usually represent a pro-
gression along various themes and views of the algebra (Rezat & Straser,  2013 ). 
The second decision was to organize the materials along a relatively small number 
of mathematical objects and operations that can mathematically and pedagogically 
support a variety of progressions and sequences. These two principal design consid-
erations are described in detail in Yerushalmy ( 2013 ). 

 We therefore prepared two lists. One consisted of the mathematical objects 
involved. In its current form, the  VisualMath  e-textbook accommodates the linear 
and the quadratic “museum exhibits,” each one appearing as a row on the map: a 
mathematical object. An additional row represents “any” or generic examples of 
functions. The other list consisted of operations on the objects and with them. The 
six operations included do not form an exhaustive list. Rather, they are what 
Schwartz had called the “interesting middle” (Schwartz,  1995 ): operations that rep-
resent important mathematical concepts and are appropriate and useful to learn as 
part of function-based school algebra. The operations are represent (a function), 
modify (reforming the view or structure without changing the function), transform 
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(using operations to transform a function into families of functions), analyze the 
function and its change, operate with two functions (synthesizing new functions out 
of two different or identical functions), and compare two functions. The two lists are 
distinct and were therefore placed in an orthogonal organization in a 2D matrix 
map, where each cell represents the opportunities for learning resulting from the 
corresponding operation and object. Each operation with an object can take place in 
symbolic, graphic, or numeric representations (Fig.  7.6 ).

  Fig. 7.6    An organizational map for the  VisualMath  e-textbook (  http://visualmath.haifa.ac.il/    )       

  Fig. 7.7    The function analysis sequence based on three units: Rate of Change, Quadratic Growth, 
and Motion (  http://visualmath.haifa.ac.il/    )       

   The next example illustrates design intentions aimed at supporting sequencing 
decisions. Assuming that students are already familiar with the three representations 
of functions, three conceptual “guided tours” are suggested for teaching the qua-
dratic unit: the  analyzing tour , the  solving tour , and the  algebraic structure  (modify-
ing and operating)  tour . Although the three are complementary, each of the sequences 
by itself may respond to necessary foundational knowledge of quadratics. 

 Teachers can plan the course of the  analyzing tour  based on the concept of constant 
or nonconstant rate of change. This can be achieved by emphasizing the  Analyze  col-
umn in the map, which is elaborated in three units of the book (marked in Fig.  7.7 ): 
Rate of Change unit in the Linear part, Quadratic Growth unit, and Motion at Changing 
Speed unit, where motion is modeled by changing speed and constant acceleration.
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   An alternative focus places  equations and inequalities  in the center. Students 
have already learned to solve linear equations and probably view them as compari-
sons of linear functions. They have also experienced the idea of comparison of two 
functions representing equation or inequality and equivalent comparisons as the 
conceptual view of the process of solving equation or inequality in function-based 
algebra. Therefore, another challenging sequence aims at teaching along the two 
rightmost columns in Fig.  7.6 :  Operate with 2  and  Compare  (comprising of 3 units: 
 Addition and Subtraction of Linear Functions ,  Comparisons and Operations , and 
 Solving Equations  units). This sequence, marked in Fig.  7.8 , is based on knowledge 
in the Modify column, but the focus is on the algebraic object of equation and on the 
concept of equivalence. Many tasks in various other units require solving and can be 
used to enrich the sequence.

  Fig. 7.8    The solving sequence based on three units:  Addition and Subtraction of Linear Functions , 
 Comparisons and Operations , and  Solving Equations  (  http://visualmath.haifa.ac.il/    )       

   A third choice of a focus for delving into the algebra of quadratic functions is the 
 algebraic structure  tour, based on the Operate with 2 and the Modify/Transform 
columns in Fig.  7.6 . The scenario could begin with the investigation of  Products of 
Linear Functions  unit or with the  Graphic Design  modeling unit that uses the area 
model to explore the product of functions. The binary product of two linear 
 expressions is one of three different structural forms (product, polynomial, and ver-
tex) appearing in the  Equivalent Quadratic Expression  unit, and the manipulations 
required to arrive from one to the other are an important part of understanding qua-
dratic expressions. Therefore, this sequence, which is based on fi ve units that are 
marked in Fig.  7.9 , emphasizes manipulations.
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7.4        Summary: Concept-Driven Navigation in the Space 
of Interactive Tasks 

 We started with a brief review of the traditional roles and images of order and 
authority of textbooks. We analyzed the diffi culties that arise when teachers try to 
respond to student needs and ways of understanding based on an approach accord-
ing to which the textbook remains an important resource that determines what 
should be taught and how. We then proceeded to describe common notions concern-
ing the interactivity of digital textbooks and questioned what the Web and other 
resources appended to the digitized versions of textbooks can provide to support 
guided inquiry in the mathematics classroom. Finally, we discussed several design 
principles of interactive digital textbooks and reviewed examples of central design 
decisions refl ected in the  VisualMath  algebra textbook. The three principles included 
in the discussion were (a) designing interactive diagrams that provide students with 
ways to explore within curricular boundaries, (b) suggesting a visual semiotic 
framework for typifying the conceptual components and terms inherent to the 
design of interactions within technology-based textbooks, and (c) organizing the 
textbook into units that respond to the principal objects and operations of the math-
ematics to be learned and sequenced to achieve personalization. I tried to address 
the diffi culties expressed by many teachers who are deeply committed to changing 
the way in which mathematics is being taught today but are frustrated in their efforts 
by the authority of textbooks that dictate their teaching agenda. I argue that the 
organization of the e-textbook should make it possible for teachers to sequence the 
curricular material in a way that serves the needs of the classroom and of the stu-
dents. I therefore suggest that, in the era of digital textbooks, it is necessary that 
such organizational/design principles should be part of teachers’ knowledge.     

  Fig. 7.9    The algebraic structure and manipulation sequence based on fi ve units:  Equivalent 
Expressions ,  Products of Linear ,  Adding Functions to Polynomials ,  Equivalent Quadratics , and 
 Graphic Designs  (  http://visualmath.haifa.ac.il/    )       
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Chapter 8
Didactic Engineering as a Research 
Methodology: From Fundamental Situations 
to Study and Research Paths

Berta Barquero and Marianna Bosch

8.1  �Didactic Engineering as a Research Methodology

The notion of didactic engineering (DE) has been at the core of the project of a 
science of didactics founded by Guy Brousseau in the 1970s along with the theory 
of didactic situations (TDS). In a recent paper presenting the origin of DE, Brousseau 
(2013) explains its necessity and locates it in the interface between research and 
teaching:

Didactic engineering was a necessary and ‘concrete’ domain between a poorly invested 
activity, teaching mathematics, and an absent science, Didactics. The latter was supposed 
to, on the one hand, newly define both of them and, on the other hand, find its contingency 
in their confrontation and complementarity. ‘Do not content yourself only with evidence’, 
‘systematically reproduce’, ‘analyze in order to save experiences’, ‘only accept exogenous 
concepts under their testing in didactic engineering’—those have been the guiding princi-
ples [of Didactics]. (Brousseau, 2013, p. 4, our translation)

In the entry didactic engineering of the new Encyclopaedia in Mathematics 
Education, Michèle Artigue tries to clarify this intermediate role between the reality 
of classrooms and the science of didactics:

The idea of didactical engineering (DE) […] contributed to firmly establish the place of 
design in mathematics education research. Foundational texts regarding DE such as 
(Chevallard, 1982) make clear that the ambition of didactic research of understanding 
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and improving the functioning of didactic systems where the teaching and learning of 
mathematics takes place cannot be achieved without considering these systems in their 
concrete functioning, paying the necessary attention to the different constraints and forces 
acting on them. Controlled realizations in classrooms should thus be given a prominent role 
in research methodologies for identifying, producing and re-producing didactic phenom-
ena, for testing didactic constructions. (Artigue, 2014, p. 159)

It is important to keep in mind that, in the theory of didactic situations (TDS), 
didactic engineering was part of a collective project, led by Brousseau, to build an 
empirical science of didactic phenomena where the issue of the empirical validation 
of results was to be carefully taken into account. This is how he remembers those 
beginnings, in the same text quoted above:

My contribution was to design, project and start creating a proper science, which has to be 
responsible for the original theoretical concepts needed by engineering and for submitting 
them to the exigencies of any mature science, enriched by its scientific peer to peer relation-
ships with other educational approaches. (ibid., p. 4, our translation)

In this context and as Artigue (2008, p. 4) explains, didactic design was called to 
fulfill two different needs: to take into account the complexity of classrooms, at a 
time when research mainly relied on laboratory experiments and questionnaires; 
and to articulate the relationships between research and teaching innovation. She 
also highlights five main characteristics of DE as a theory-based intervention: the 
central role given to the notion of situation in both the modeling of mathematical 
knowledge and the organization of its teaching; the crucial attention paid to the 
epistemology of knowledge and the need to rebuild any mathematical content as the 
answer to an issue raised within a social situation; the importance given to the char-
acteristics of the empirical milieu of the situation and of the students’ interaction 
with this milieu; the three different functionalities assigned to mathematical knowl-
edge, action—formulation—validation; and the vision of the teacher’s role as the 
organizer of the relationships between the adidactic1 and the didactic dimensions of 
situations (devolution, institutionalization).

As we shall see, DE appears as a research methodology to be closely related to 
the TDS, although it exceeds this initial framework:

As a research methodology, DE emerged with this ambition, relying on the conceptual tools 
provided by the Theory of Didactical Situations (TDS), and conversely contributing to its 
consolidation and evolution (Brousseau, 1997). It quickly became a well-defined and privi-
leged methodology in the French didactic community, accompanying the development of 
research from elementary school up to university level […] (Artigue, 1990, 1992). From the 
nineties, DE migrated outside its original habitat, being extended to the design of teacher 
preparation, and professional development sessions, used by didacticians from other disci-
plines […] and also by researchers in mathematics education in different countries. 
(Artigue, 2014, pp. 159–160)

What are then the main characteristics of DE that are preserved in the evolution 
of TDS and the approaches sharing its main epistemological principles, such as the 

1 In an adidactic situation, students interact with a milieu only considering the logic of the problem 
approached, without taking into account the teachers’ didactic intentions.
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Anthropological Theory of the Didactic (ATD) we are considering here? We are 
answering this question using the four-phase structure of DE as a research meth-
odology proposed by Michèle Artigue (2008). It will help us distinguish the theo-
retical assumptions underlying all DE works and emphasize its internal role in 
didactics research as a phenomenotechnique, that is, as a tool to produce didactic 
phenomena.

At the starting point of a DE process, we are locating a concrete content or issue 
to be taught and learned and usually a didactic problem related to it. The first phase, 
called preliminary analysis, mainly includes an epistemological questioning of the 
mathematical content at stake and of the necessity to introduce it at school, and a 
study of the conditions and constraints offered by the institutions where the teaching 
and learning process is to take place. This is an essential first step where research 
hypotheses are formulated and the content to be taught and learned is questioned, 
usually considering different kinds of hypothetical didactic phenomena involved. 
It is also in this phase where previous research results can be reinvested.

The second phase concerns the design and a priori analysis. This phase corre-
sponds to the statement of how the content at stake is considered or modeled within 
didactics research. A mathematical and a didactic level may be distinguished here, 
to first “define” or “characterize” the content (mathematical analysis), and then to 
propose how to make it emerge from problematic questions within a sequence of 
concrete situations (didactic analysis). In the theoretical frames here considered, 
these analyses are carried out in terms of mathematical and didactic situations 
(TDS) or mathematical and didactic praxeologies (ATD).

The third phase includes the implementation of the previously designed didactic 
process, its observation, and data collection. At this experimental level, an “in vivo” 
analysis is usually developed, when interpreting in real time (or straight after) what 
is taking place in the classroom. Finally, the a posteriori analysis culminates the DE 
process. It is organized in terms of the contrast, validation, and development of the 
research hypotheses and design proposals of the previous phases, usually often 
leading to the formulation of new problems, related to both fundamental research 
and teaching development (Fig. 8.1).

It needs to be highlighted that, even if the a priori analysis precedes the in vivo 
and a posteriori analyses, there is always a constant interaction between the out-
comes of the different phases: results from the a posteriori analysis may not only 
suggest introducing changes in the design of the teaching process, but also develop-
ing the characterization of the content at stake (preliminary analysis). It may also 
contribute to the science of didactics with the results obtained and the open prob-
lems raised, leading to new theoretical or methodological developments. In this 
sense, DE is not a development practice where previously established research 
results are transformed into teaching proposals. It is a way to empirically contrast 
assumptions about the possibilities of the diffusion of mathematical knowledge and 
the phenomena hindering it. As Brousseau said:

My ambition has been to turn didactic engineering not into a socio-professional cover, but 
a scientific activity based on a coherent and ‘proper’ body of scientific knowledge. (2013, 
p. 6, our translation)
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DE is one among many other empirical methods elaborated and used by didactic 
research. We will not refer to it for instance when what is investigated is not directly 
a teaching and learning process but results from evidence coming from other sources 
gathered through naturalistic observation of institutions and their outcomes (includ-
ing classes, historical documentation, etc.) or through direct intervention via inter-
views, questionnaires, etc.

8.2  �Didactic Engineering Within the Theory  
of Didactic Situations

After this brief introduction to the notion of DE, we are presenting two examples of 
research based on DE processes, one from the TDS about the measure of quantities 
at primary school level, and another one from the ATD and the teaching of modeling 
processes at university level. In spite of the initial difference between both investi-
gations, strong commonalities are being stressed, relying on what we propose to 
conceive as the mainstream of DE in Didactics.

8.2.1  �An Example: Measuring Quantities at Primary School

We are using the case of the measurement of quantities at primary school to illus-
trate the four phases of the DE methodology within the TDS and, especially, their 
interactions. This example corresponds to a crucial issue in elementary mathematics 

Fig. 8.1  Phases of the DE research methodology within TDS
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education and has been the object of many investigations in the TDS that have not 
been widely disseminated in the international community. We will describe it in a 
brief and necessarily simplified way. More details can be found in Bessot and 
Eberhard (1983), Brousseau and Brousseau (1987, 1991–1992), Brousseau (2002), 
Douady and Perrin-Glorian (1989), Perrin-Glorian (2002, 2012), and Sierra (2006).

8.2.1.1  �Preliminary Analysis

The starting point of the research is not the teacher’s problem, How to introduce the 
measurement of quantities in primary school? Rather, it is the insertion of this prob-
lem into a broader questioning including epistemological as well as social issues, 
such as: Why is it necessary to teach the measurement of quantities at primary 
school? What mathematical entities and practices are related to it? What social 
activities? How is it related to other mathematical notions, such as numbers, ratios, 
relationships, areas, volumes?

To answer these questions, one should take into account the processes of didactic 
transposition (Chevallard, 1982) and the analysis of the activities that have been, 
are, and could be taught at school, an analysis that usually leads to the identification 
of didactic phenomena. For instance, it can be shown (Brousseau, 1997; Chambris, 
2010; Perrin-Glorian, 2002, 2012) that, with the introduction of New Maths into the 
French curriculum in the 1970s, magnitudes and quantities disappeared from school 
mathematics, where they supported the construction of numbers. Only some basic 
practical measures and the metric system remained. Curricula have changed a lot 
since then, but the synthesis between quantities and sets to support the construction 
of numbers has still not been solved. Some indicators of this phenomenon are the 
fact that the choice of the unit of measure (gauge) is never raised, the blurry role 
played by units in modeling strategies and calculations, and the frequent situation 
that mathematical work is dominated by “abstract” numbers instead of “concrete” 
ones, that is, those directly representing physical quantities. Many years ago, Hans 
Freudenthal described this absence in the following terms:

To count people and eggs there are natural units. To measure quantities, one needs gauges; 
the result of the measuring procedure is a number, which measures the quantity. There is a 
variety of gauges, because there is a variety of magnitudes; length, area, volume, height, 
mass, work, current intensity, air pressure, and monetary value are notions that become 
magnitudes by measuring procedures. Sometimes it is not clear why some magnitudes need 
different gauges. […] A few of these gauges are learned in arithmetic instruction, and as far 
as he needs it, the physicist develops a rational measure system. In between a large domain 
is no man’s land. This is the fault of the mathematician. (1973, pp. 197–198)

During the same period, Hassler Whitney (1968) developed a mathematical the-
ory of physical quantities to justify calculations, not between numbers but between 
quantities (such as 6 m ÷ 2 s = 3 m/s or 5.25€/m × 0.8 m = 4.20€), thus trying to build 
a bridge between engineering or science practices and mathematical ones. However, 
his proposals remained in the “scholarly mathematics” and have not permeated the 
prevailing school mathematical culture where calculations are very often done with 
abstract numbers and where units appear (if at all) only at the end at the process.
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8.2.1.2  �A Priori Analysis: Design of Mathematical and Didactic 
Situations

In order to face the complex problem quickly outlined previously, research in didactics 
needs to elaborate its own vision about measure and quantities or, more precisely, a 
reference epistemological model (Bosch & Gascón, 2006). In the TDS, reference 
epistemological models are formulated in terms of fundamental situations defined 
as games of action, communication, and validation, in interaction with an experi-
mental milieu. The situation proposed by Brousseau (2002) defines the measure and 
quantities in terms of three intertwined universes and different situations between 
them. The first universe is the world of concrete measurable objects and their mate-
rial comparison (putting objects side by side, on the two plates of a weighing scale, 
into a liquid, etc.). The second one is the universe of quantities (lengths, weights, 
areas, volumes, prices, etc.) as equivalence classes of objects considering analogical 
measures, where objects do not need to be manipulated but can be compared through 
some intermediate measures (gauges). The third is the universe of units, numbers, 
and change of units, obtained after defining a single privileged gauge for each mag-
nitude (Fig. 8.2). We can thus obtain a general definition of measure in terms of 
triplets, including two universes and a situation to link them: something to measure 
(objects); a way to put objects into correspondence (adding specific conditions to 
get a measure application); and a positive numerical structure to express the mea-
sure (also with specific conditions depending on the number of units considered and 
other requirements). Usually, in school culture, only the first and third universes are 
considered, and only the third acquires a mathematical status.

To be operative, this definition needs to be specified in terms of sequences of 
games or adidactic situations passing through phases of action (solving a problem 
through empirical interaction with a milieu), communication (explaining the answer 
so that another person can follow and even reproduce the solution), and validation 
(justifying the solution without referring to the contingency of the milieu). 
Depending on the educational level and institution considered, the types of situa-
tions may obviously vary. Their design is part of both the delimitation of the refer-
ence epistemological model (mathematical situations) and their concrete realization 
under specific conditions (didactic situations).

Universe of 
objects

Universe of 
numbers

Universe of 
quantities

S(m)

S(g) S(m)

Fig. 8.2  Universes of 
measure (Brousseau, 2002)
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Let us take a short example from Brousseau and Brousseau (1987) which is part 
of a larger DE design: a situation for grade 4 of primary school where it is proposed 
to introduce the measure of “length” through the following situation of communica-
tion. The milieu is composed of similar strips of different lengths and colors, with rep-
etitions: short brown strips of the same length, medium red strips of different 
lengths, and long blue strips of different lengths. In this milieu, two strips can be 
compared by putting them side by side (action). The communication game, played 
by teams, consists in, given a blue strip, asking another team to bring as many 
smaller strips as necessary to build a new strip of the same size (Fig. 8.3). The aim 
of the activity is to raise the need for gauges to simplify the comparison of objects 
(common units for the messages) and, since there is no simple relationship between 
long and short strips, to move to the choice of a single unit and its fractions to sim-
plify the messages without decreasing the precision of the measure.

8.2.1.3  �Implementation, Observation, and Data Collection

In the first part of the sequence related to the strips communication game (where 
small brown strips are called “u”), it can be seen how the initial messages may fail 
and students learn how to make more precise messages to get a strip of the same 
size as theirs. The types of messages produced are “2 u plus 3 quarters of a u”, “5 
strips and fold the small u strip in 2”, “3 times u, half, half of the half, half of the 
half of the half”, “2 strips and another one with a small part missing”, etc. (Fig. 8.4). 

Fig. 8.3  Measuring situations: a priori analysis
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The width of the strips was also used, thus including a new gauge that was not 
forecasted in the a priori analysis: “5 brown strips plus the width of a brown strip 
and half the width” (Brousseau & Brousseau, 1987, pp. 3–6).

During the very first experimentation of the sequence, an interesting problem 
appeared that partially discredited the a priori analysis. Because the students were 
familiar with the ruler and with measuring lengths in cm, some of them did not 
feel the need to choose a small strip as a gauge and started writing their messages 
using cm: “2 brown strips, one small strip and not a whole one, 3 or 4 cm have to 
be eliminated”. It was then very difficult, and artificial, to move the students back 
to the single brown strip as unit, keeping cm aside.

Due to this unexpected event, after the first two sessions of working with lengths, 
it was decided to change lengths for weights, less familiar to the students, and avoid 
the use of metric units. Strips were replaced by small objects (pencil cases, small 
glasses, exercise books, etc.); different sizes of nails and small plates were intro-
duced as gauges, and the comparison was made with a two-plate scale. This shows 
how the experimentation and in vivo analysis can make the design and a priori anal-
ysis evolve. We can consider that the reference epistemological model was also 
enriched through the experimentation, showing new conditions for the construction 
of the process of measuring quantities, as for instance the difficulties for the second 
universe (quantities) to exist without being directly absorbed by the third one 
(numbers), and also the relationships between the set of scalars needed in this 
second universe and the number of generators (gauges) used (Sierra, 2006).

Fig. 8.4  Measuring situations: experimentation (students’ productions)
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8.2.1.4  �A Posteriori Analysis: Results, New Phenomena,  
New Research Questions

The situations about comparing lengths and weights are part of a long sequence of 
30 activities which form the DE work described in (Brousseau & Brousseau, 1987) 
to introduce the measuring of quantities in grade 4 of primary school. It contains the 
following activities:

•	 Measurement of lengths: communication game; studying the messages
•	 Measurement of weights: communication game; messages; work on the writings; 

comparing expressions; conversions; adding weights; comparing sums and total 
weight; transformation in basis 60

•	 Measurement of time: time and duration; calculation with numbers in basis 60
•	 Legal units of weight: presentation; conversions
•	 Finding the weight of an empty recipient: first part; second part (challenges)
•	 Measurement of lengths: adding lengths; decimal measures
•	 Writing decimal measures: length measures; decimal length and weight mea-

sures; comparison of decimal measures; order in decimal measures
•	 Operations with decimal measures: addition; multiplication by an integer; 

subtraction

In a later work, Brousseau and Brousseau (1991–1992) present some crucial 
issues derived from this research and describe some of the related phenomena.  
As we have seen before, there is, for instance, the fact that familiar milieus (such as 
lengths) are not always didactically productive, even if they may initially facilitate 
the devolution of a situation. A similar didactic phenomenon occurs with the teach-
ing of rational or negative numbers, when the fractional or directional measures that 
are used to introduce them become a didactic obstacle when defining their multipli-
cation or division.

There is also another example related to a very interesting experience with one 
of the reported activities, the weight of the receptacle. In spite of the errors of mea-
sure of the full and half-full receptacle, the students postulate and confirm an affine 
relationship between the volume of water and the total weight of the receptacle, 
which enables them to deduce the weight of the empty receptacle. It thus shows a 
complex relationship between the students’ reasoning in a validation situation and 
the empirical milieu used, because taking into account the errors of measure 
appears as a mathematical necessity. And it submerges students at the core of sci-
entific activity: “[Due to the measure errors], children became aware that when a 
theory or a method is made to forecast or obtain a result, the fact that its application 
happens once or twice is not enough for it to be accepted as true or valid. It has to 
‘work’ in all cases, something which can only be established through reasoning” 
(ibid., p. 80).
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8.2.2  �Didactic Engineering in the Science of Didactics

8.2.2.1  The COREM as a Didactron

Even if DE can be understood as a general research methodology closely related to 
the constitution of Didactics as a scientific domain, its existence cannot be separated 
from the COREM, Centre d’Observations et de Recherches pour l’Enseignement 
des Mathématiques. It was created in 1973 by Guy Brousseau as a research labora-
tory of the University of Bordeaux 1 and was integrated in the elementary school 
Jules Michelet in Talence (Bordeaux, France).2 Till its closure in 1999, the COREM 
functioned as what Brousseau amusingly called a didactic accelerator or didactron.

In the COREM, new teaching proposals based on the TDS were regularly expe-
rienced by researchers, in close cooperation with the teachers of the school, who 
participated in the design, a priori analysis, teaching, observation, and a posteriori 
analysis of the lessons. Furthermore, all didactic engineering components, from the 
conception of situations to their setting up, managing, and observation, were the 
concern of all the staff, teachers, and researchers (Brousseau, 2013, p. 7). In fact, 
Michelet School was (and still is) a normal public elementary French school with 4 
classes of preschool level and 10 classes of primary level (2 groups per grade), with 
pupils from the neighborhood and the same curricular and administrative require-
ments as any other French school. The teachers at the school were also normal ones, 
in the sense that no specific educational training was required, even if they were 
asked to participate in research activities. The peculiarity is that they worked in 
teams of 3 teachers per 2 classes, devoting one third of their time to the COREM, 
where they attended seminars and meetings with researchers, made observations, 
and had teaching preparation sessions with the other teachers of the team. According 
to Greslard and Salin, “The complexity of the [COREM] functioning is due to the 
fact that the creators of the project wanted to avoid the educational vocation of the 
school being altered by the investigations, and that these could later be carried out 
in the best possible methodological conditions” (1999, p. 30, our translation). It also 
supposed a detailed regulation of the interactions between researchers, teachers, and 
the classes observed.

Usually, in the development of a didactic engineering process, researchers pre-
sented a teaching proposal partially including the a priori analysis (goals expected, 
problems addressed, strategies forecast) to the team of teachers. Then they jointly 
elaborated the details of the sequence of lessons up to the preparation of a didac-
tic card (fiche didactique) for each lesson. Researchers prepared the observation 
and decided on the kind of data to be gathered. During the lessons, observers had 
to try to be as invisible as possible, and teachers were supposed to forget that they 
were observed, taking their own decisions about the teaching of the lessons. 
Immediately after each lesson, a short meeting took place for the teacher, research-
ers, and other possible observers to share impressions, starting with the teacher’s 

2 A detailed presentation can be found at http://faculty.washington.edu/warfield/guy-brousseau.
com/index.html and http://guy-brousseau.com/le-corem/
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report of the experience. The observation of “ordinary lessons” which had not been 
organized through a didactic engineering process also took place at the COREM on 
a regular basis, although with a less structured procedure.

Throughout the existence of the COREM, all materials related to the teaching of 
mathematics were gathered, including class preparation activities (both the normal 
ones and those specially designed for research), students’ productions, video record-
ing of the lessons, reports from teachers and researchers after the lessons, annual 
planning of the courses, research seminars, etc. There was also a classroom espe-
cially designed for observations, with an extra surrounding area for observers, a 
windowed cubicle for the observers in an outer room, and technicians doing video 
and audio registration. Since 2010, the COREM archives have been made available 
by the Centre of Resources in Didactics of Mathematics Guy Brousseau (CRDM-GB) 
of the Spanish university Jaume 1 of Castelló (Valencia) (http://www.imac.uji.es/
CRDM). Video recordings can also be accessed at visa.inrp.fr/visa. The list of 
didactic engineering realizations observed is very long, including teaching propos-
als about the main mathematical content from preschool to grade 5:

Reasoning and logic (preschool, grade 1): Designation, equality, lists, belonging to 
a list; Classing, sets, propositions, no-and-or, equivalence, equality; Comparisons, 
physical quantities ordering; number, length, mass, price, capacity; Order, <, >, 
next, previous; P(E); Implicit theorems, demonstration (race to 20); Theorems, 
proofs (bigger number)

Quantities and measure (preschool, grades 1, 4, 5): Natural quantities (cardinal, 
lengths, masses, prices); Capacities; Sums, products, extractions, partitions; 
Volumes, capacities; Rational and decimal quantities (commensuration, unit par-
tition); Events measure (statistics)

Discrete quantities and arithmetic: Operations on natural numbers (addition, 
multiplication, subtraction, division); Functions

Rational quantities, arithmetic, and algebra: Rational and decimal numbers, defi-
nition, writing, operations; Order (density); Linear applications, enlargements; 
Numerical dilations, ordering, composition; Structure of rational numbers

Space and geometry: Topology, figures; Fundamental situation of geometry; 
Congruencies; Dilations

Statistics and probability: Random walk; Confidence interval; Compose probabil-
ity (two successive events); Approximation to the Law of Large Numbers. 
(Brousseau, 2013, p. 12)

8.2.2.2  An Experimental Epistemology

In the research program set up by the TDS, the experimental work carried out by DE 
processes is crucial, as it represents a way to empirically test epistemological and 
didactic proposals formulated in terms of sequences of adidactic and didactic situa-
tions. In a sense, the TDS appeared as a reaction to the New Mathematics reform of 
the 1960s and 1970s that Brousseau considered as “a utopia totally ignoring all the 

8  Didactic Engineering as a Research Methodology

http://www.imac.uji.es/CRDM
http://www.imac.uji.es/CRDM


260

difficulties and laws of the dissemination of knowledge and practices in a society 
[…], which believed and died in the illusion of transparency of didactic facts” 
(2004, p. 23). This explains the importance given to the empirical contrast of teach-
ing proposals before their dissemination, as well as the necessity to base them on a 
consistent and explicit framework of theoretical assumptions. That was the very 
precise role of DE:

Didactic engineering became, de facto, a part of Didactics of mathematics where precise, 
observable and reproducible teaching devices, specific to different forms of knowledge of 
determined mathematical entities, were conceived and also empirically, experimentally and 
theoretically studied […] (Brousseau, 2013, p. 6, our translation)

In this context, the notion of situation does not only appear as a way to describe 
teaching activities, but was also first used as a model to conceive mathematical 
activities specific to each mathematical content to be taught. It contains the require-
ment to characterize each piece of mathematical knowledge by a set of conditions 
making it progressively appear as the answer to a given problematic question. The 
adidactic situations are thus a way to show the functionality of mathematical knowl-
edge in the institutional environment of the students who have to learn it.

This ambitious project requires a double rupture: researchers need to allow them-
selves to question mathematics as it is usually conceived and presented by mathe-
matics scholars and by school institutions, elaborating their own alternative 
reconstructions of mathematical knowledge and activities (the reference epistemo-
logical models). They also need to have the same attitude towards other disciplines 
(psychology, pedagogy, sociology, etc.) concerning the effects of their proposals on 
mathematical practices and knowledge. This is why it is important that the results 
obtained are empirically based, protecting researchers from adopting unfounded 
ideologies or implicit institutional viewpoints on both educational facts and math-
ematical knowledge.

8.3  �Didactic Engineering Within the Anthropological Theory 
of the Didactic

8.3.1  �From Situations to Study and Research Paths

The TDS conception of DE is located in what Chevallard (2012) calls the paradigm 
of questioning the world: mathematical contents, just like the content of any other 
subject matter, should not be taught as if their value and importance were taken for 
granted. On the contrary, they need to be constructed and appear for the students as 
true answers to real questions. The search for a fundamental situation to represent, 
model, and rebuild any given piece of knowledge is in fact a way for didactics 
research to assume its own responsibility in the search for the possible raisons 
d’être of mathematical contents within the students’ reach, and for the rationale of 
their teaching at school. For instance, the epistemological question, what is the 
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measure of quantities and how can it be constructed through a sequence of situa-
tions?, includes the primary question: what is the measure of quantities for, and why 
is it important to learn it?

The Anthropological Theory of the Didactic, as it has been developed by Yves 
Chevallard (1992, 2006, 2007, 2012), shares the TDS essential epistemological ques-
tioning, the search for a rationale for any piece of knowledge to be taught, and the 
central place given to problematic issues in learning and teaching processes. The 
modeling in terms of fundamental situations is replaced by two main theoretical tools: 
the notion of praxeology used to describe any kind of human activity (Chevallard, 
1999) and the Herbartian schema, named after the J. F. Herbart (1776–1841), into 
account the way praxeologies are built, taught, learned, or disseminated as the answer 
to a given problematic question (Chevallard, 2011).

If the starting point of the teaching and learning process is a given praxeology 
P a group of students X should learn under the supervision of a group of teachers 
Y, then the didactic process involving X, Y, and P can be described in terms of 
study and research activities structured in six didactic moments or dimensions 
closely linked to the structure of praxeologies (Barbé, Bosch, Espinoza, & Gascón, 
2005; Bosch & Gascón, 2010; Chevallard, 1999). However, this is not the only 
possible pattern to represent teaching and learning. A didactic process does not 
necessarily begin with the delimitation of a given piece of knowledge to be taught, 
but can also be motivated by the need to consider a problematic question Q0 a 
group of students X wants (or has) to answer with the help of a group of teachers 
Y. What then appears is a sequence of linked study and research activities called 
study and research paths (SRP), which can be formalized using the general 
“Herbartian schema” as follows:

	
S X Y Q A O Q A Ai j k k; ; 0( ) ®{ }é
ë

ù
û ®

à ©, , ,
	

The starting point of an SRP should be a “lively” question of genuine interest for the 
community of study, what we call a generating question referred to as Q0. The ques-
tion has to be taken seriously, not as a mere opportunity to cover some fixed a priori 
mathematical content. Elaborating answers to Q0 must become the main purpose of 
the study and an end in itself.

The study of Q0 evolves and opens many other derived questions Qk that appear 
as the starting point of new SRP or new branches of the initial one. One needs to 
constantly ask whether these derived questions are relevant in the sense of being 
capable of leading temporary answers Ak that can be helpful in elaborating a final 
answer A♥ for Q0. As a result, the study of Q0 and its derived questions Qk leads to 
successive temporary answers Ak tracing out the possible routes to be followed in 
the effective experimentation of the SRP. The work of producing A♥ can thus be 
described as a tree of questions Qk and temporary answers Ak related to each other 
through a modeling process.

The implementation of the SRP usually requires resorting to external preestab-
lished answers Ai

◊ to the derived questions Qk, as well as some other objects Oj used 
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to test the available answers, elaborate new ones, and formulate new questions. The 
preestablished answers Ai

◊ are accessible through different means of communica-
tion and diffusion called the media (in the sense of “mass media”). However, knowl-
edge provided by the media corresponds to constructions that have usually been 
elaborated to answer other questions than those specifically approached. Thus, it 
has to be “deconstructed” and “reconstructed” according to the new needs. This is 
the main role of the experimental milieu, M, containing empirical objects Oj as well 
as other old, well-established answers Ai

◊. Milieu M evolves throughout the study 
process and becomes one of the main guarantees of a successful outcome. It is usual 
that, during the SRP, emerges the need to make a given A◊ available to X because it 
is required or seems necessary to produce A♥, The specific branch of the SRP start-
ing in this case is called a study and research activity (SRA) focused on A◊. In this 
sense, SRP together with SRA provides a general modeling tool to describe any 
kind of teaching and learning process, from those based on the direct transmission 
of knowledge to those centered on inquiry activities.

This broadened conception of didactic processes can be used to describe almost 
any form of teaching and learning strategy, and it prevents researchers from assuming 
any kind of specific form of school organization as normal or natural. Furthermore, 
it encourages taking into account a broad set of conditions and constraints affecting 
the teaching and learning processes that far exceed the limits of the classroom.  
At the same time, the border between mathematics and didactics (in the sense of 
teaching and learning) is blurred: doing mathematics includes study, research, and 
supervision; learning mathematics includes collectively carrying out an activity of 
study and research; and teaching mathematics corresponds to leading or supervising 
a research and study activity.

It is in this context that DE experimentations are carried out in the setting of 
ATD, in very different conditions than those established by the COREM, although 
they maintain the main methodological gestures exposed at the beginning of the 
chapter.

8.3.2  �An Example: Teaching Modeling at University Level

The second case of DE we are presenting approaches the problem of teaching math-
ematical modeling at university level. This case illustrates some of the tools used in 
the framework of the ATD going through the four phases of a DE methodology 
process (see Fig.  8.5). More details about this particular case can be found in 
(Barquero, 2009; Barquero, Bosch, & Gascón, 2008). Some other research about 
the design and integration of SRP at different school levels, and even in teachers’ 
professional development, has been established in the same framework and follow-
ing similar methodologies (García, Gascón, Ruiz-Higueras, & Bosch, 2006; Hansen 
& Winslow, 2010; Rodríguez, Bosch, & Gascón, 2008; Ruiz-Munzón, Matheron, 
Bosch, & Gascón, 2012; Winsløw, Matheron, & Mercier, 2013).
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8.3.2.1  Preliminary Analysis

The starting point of the research here considered is the integration of mathematical 
modeling in first-year university courses of Mathematics for Natural Sciences. 
When analyzing what kind of mathematics is taught at this level, one could think 
that natural sciences university degrees would offer favorable institutional conditions 
to teach mathematics as a modeling tool, as mathematical models are becoming 
more and more essential to the understanding, use, and development of scientific 
disciplines. However, this seems far away from reality: despite the fact that mathe-
matical models appear in the syllabi of almost all the courses, teaching mathemati-
cal models often comes at the end of the process, if there is time left for it. The 
dominant ideology is that modeling represents a mere application of some preestab-
lished knowledge, leaving little room for the process of proposing, constructing, 
validating, and questioning mathematical models. We define as applicationism this 
spontaneous epistemology, which appears to be dominant in many university insti-
tutions (Winsløw et al., 2013).

According to the ATD and to the epistemological principles considered, if we 
start from the principle that intra-mathematical modeling is part of mathematical 
modeling, then many mathematical activities can be reformulated as modeling 
activities. It is considered that, in a modeling process, both the initial system con-
sidered and the models used have a praxeological structure. Mathematical model-
ing activity then appears as a process of (re)construction and articulation of 
mathematical praxeologies which become progressively broader and more complex, 
the main aim of which is to provide answers to problematic questions.

Thus, mathematical modeling cannot only be considered as an aspect or modal-
ity of mathematical activity but has to be placed at the core of it. This integration 

Fig. 8.5  Phases of the DE research methodology within the ATD
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constitutes an essential aspect of our research problem, which opens the issue of the 
design of teaching proposals where mathematical modeling adopts an explicit and 
crucial role, emerging from initial problematic questions and able to link mathemat-
ical content that now appears as tools or models to provide answers to questions. 
Our working hypothesis is to suggest an SRP as one of the appropriate teaching 
proposals to move toward the (new) paradigm of questioning the world proclaimed 
by Chevallard, and which explicitly situates mathematical modeling problems at the 
heart of teaching and learning processes.

Several investigations from different theoretical perspectives have shown that 
mathematical modeling activities can exist at school under appropriate conditions, 
at all levels and in almost all curricular content. However, besides the good progress 
and encouraging results in research for the integration of modeling, many research-
ers have pointed out the existence of strong limitations hindering the large-scale 
dissemination of mathematical modeling practices in the classroom. For instance, 
Burkhardt makes the following harsh statement:

[W]e know how to teach modelling, have shown how to develop the support necessary to 
enable typical teachers to handle it, and it is happening in many classrooms around the 
world. The bad news? ‘Many’ is compared with one; the proportion of classrooms where 
modelling happens is close to zero. (2008, p. 2091)

The research problem that has to be addressed is thus the study of the conditions 
that make the teaching of mathematical modeling possible at school, as well as the 
constraints that hinder its development as a normalized activity. Of course this prob-
lem depends on how mathematical modeling is conceived by both the research com-
munity (epistemological model) and the institutions where it is to be disseminated 
(the usual school and scholar epistemology, which takes here the form of applica-
tions). In ATD, it is referred to as the problem of the ecology of mathematical mod-
eling in current educational environments. It can be specified with central questions 
about: what kinds of limitations and constraints exist in our current educational 
systems that prevent mathematical modeling from being widely incorporated in 
daily classroom activities? What kind of conditions could help a large-scale integra-
tion of mathematical modeling at school?

According to our previous analysis, the problem of the ecology of mathematical 
modeling becomes the problem of the ecology of SRPs and of their capacity to 
ensure the development of modeling activities. In the following section, we outline 
our partial answer to this enormous problem, focusing on the mathematical and 
didactic design of a particular SRP at university level with respect to the question of 
how to predict population dynamics.

8.3.2.2  A Priori Analysis: Mathematical and Didactic Design

Our generating question Q0 that leads to the a priori mathematical and didactic design 
of the SRP, given the size of a population over previous periods of time, focuses on 
the following questions: How can we predict the long-term behavior of its size? 
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What sort of assumptions about the population, its growth, and its surroundings 
should be made? How can one create forecasts and test them? In all its implementa-
tions, Q0 was introduced using different populations: first a pheasant population, then 
a fish population, and finally, a yeast population that was cultivated either in indepen-
dent containers or mixed.

To provide answers to Q0 and to the sequence of the derived questions that fol-
lowed it, the construction of different mathematical models was required. Depending 
on whether time was considered as a discrete or continuous magnitude and if popu-
lation generations were considered independent (xt only depends on xt–1) or mixed (xt 
depends on d > 1 past generations xt–1, xt–2, …, xt–d), a four-branch structure of the 
SRP can be delimited, giving rise to its a priori mathematical design (Fig. 8.6).

Looking into the derived questions opens a sequence of modeling activities that 
cover most of the content of a first-year course of mathematics for natural science 
students at university level: sequences and its convergence, one-variable calculus, 
linear algebra, and ordinary differential equations and their systems. This first 
mathematical design step is followed by the didactic a priori design of the SRP. 
It has inherited the structure defined in the mathematical a priori design and now 
includes questions about the mesogenesis (evolution of the experimental milieus), 
chronogenesis (evolution of the new questions and the knowledge introduced 
through the media), and topogenesis (sharing of responsibilities between teacher 
and students).

Fig. 8.6  General structure of the SRP branches derived from the study of Q0 (Barquero, 2009)
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Many important decisions are taken at this point to support the necessary change 
of students’ and teachers’ common strategies rooted in a dominant university teaching 
culture. For instance, students were constantly asked to assume new responsibilities 
so as to formulate new questions and approach them, to provide their own tempo-
rary answers to the successive derived questions, to plan the collective work, etc. 
In turn, the teacher has a new role to play as the supervisor of the inquiry, avoiding 
the temptation of imposing possible answers, inviting the groups of students to defend 
the successive answers they provide, to help decide on the questions to pursue, etc. 
Moreover, students should be able to introduce any external work or piece of knowl-
edge they find appropriate in the milieu. The whole class will have the task to create 
the appropriate milieu for an internal validation of all those preestablished answers. 
All those new conditions in the implementation of the SRP required new teaching 
strategies and new devices: enabling the students to plan the work, elaborate new 
answers, compare data and models, write reports with temporary answers, validate 
final answers, defend them, etc.

8.3.2.3  Implementation and In Vivo Analysis

We tested the use of the SRP for five academic years (from 2005/06 to 2009/10) with 
first-year students of technical engineering degrees at the Autonomous University 
of Barcelona (Spain), who were attending a 1-year Mathematical Foundations of 
Engineering course. A special educational activity, called the “mathematical model-
ing workshop,” was introduced in the general organization of the course; it was 
optional for students. The workshop ran in parallel with the lecture and problem 
practice sessions scheduled in the usual course. In the successive implementation 
of the SRP, a 2-h weekly session of the workshop took place as follows: students 
worked in teams of 2 or 3 members and had to develop their own study and propose 
their own “temporary” answers to the intermediate questions of Q0.

Throughout the modeling workshop and its successive implementation year after 
year, the necessity arose to introduce several teaching and learning devices that 
were nonexistent in our usual university teaching settings. They had to evolve 
throughout the course and become accepted by the students. On the one hand, at the 
beginning of each workshop session, the teams were asked to deliver a report sum-
marizing the work carried out in the previous sessions with respect to assumptions 
considered, main problematic questions dealt with, mathematical models used, 
“temporary” answers obtained, and new questions opened. In each session, one 
team was in charge of explaining and defending their report. A discussion followed 
to state the main progress and to agree on how to continue the study process. 
Moreover, there was the “secretary of the week”, the person in charge of summariz-
ing the work done and the main points of debate during the session. The secretary 
of the week and the team of the week played a crucial role in the workshop and all 
their reports were included in the diary of the workshop. At the end of the SRP, each 
individual student had to write a final report of the entire study: evolution of the main 
questions studied, work in and with different mathematical models, relationship 
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between them, and so on. On the other hand, students were asked to search for any 
external information about the mathematical models they were building, and the 
answers they were providing in the media. Their findings were also explained in 
the workshop sessions and they discussed how these external mathematical objects 
could be useful (or not) and how they could be validated and used in relation to the 
questions they were dealing with.

Thanks to the several variations in the successive implementations of the SRP 
and to its in vivo analysis, several aspects could be improved every year. The a priori 
mathematical and didactic design of the SRP was gradually enriched, that is, after 
each implementation we had a more detailed description of the derived questions 
and temporary answers that were likely to appear in each of the SRP branches. 
Moreover, we obtained more details and got more control of the use and functional-
ity of the different learning and teaching devices that were included throughout the 
workshop, especially those aspects related to the new conditions of mesogenesis, 
chronogenesis, and topogenesis:

•	 What responsibilities did students find more difficult to assume?
•	 What teaching strategies can help achieve the transfer of passing on more respon-

sibilities to students?
•	 Do the weekly reports help students to formulate their own assumptions and to 

pose new questions?
•	 Does the debate generated at the beginning of each session help students to orga-

nize their own work?
•	 Does the workshop diary encourage the students and the teacher to have a broader 

perspective of the whole modeling process?

8.3.2.4  A Posteriori Analysis and Ecology

When considering the SRP as a whole, we verified from its first implementation that 
the sequence of derived questions arising from the generating question Q0 led the 
students and the teacher to consider most of the main content of the entire mathe-
matics course (sequences and their convergence, one-variable functions, derivative, 
ordinary differential equations, matrices, etc.). However, during the workshop, this 
content appeared in a structure that was completely different from the usual organi-
zation proposed in the main course. Instead of the classical “logic of mathematical 
concepts”, the workshop was more guided by the “looking for answers to problem-
atic questions” and “types of models” that progressively appeared. During its five 
courses of implementation, because the instructors were the same year after year, 
the first author of the paper and a lecturer who is an expert in applied mathematics, 
we found it easier to make SRP compatible with the standard formats of teaching 
(lectures and problem practice sessions). In the end, all these traditional devices 
were subordinated to the study of questions opened during the workshop. For 
instance, when questions appeared that needed some theoretical developments, such 
as “what was the relation between the relative rate of growth and the derivative or 
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how to calculate the n-power of a matrix”, we suspended the workshop sessions and 
spent several lectures and practice sessions on a study and research activity centered 
on the diagonalization of matrices before carrying on with the workshop.

However, it was not easy to preserve and transfer all these good conditions to 
the new teacher who came to replace us. Although he had all the material and 
descriptions from the previous SRP and all our assistance, the year after we left the 
course, the new implementation of the SRP only took 2 weeks. When we asked the 
teacher why it had taken such a short time, he told us that he only needed three 
sessions to show the students how to solve the questions and explain all the math-
ematical models they had to apply… In the end, the traditional ways, focused only 
on direct transmission and application, seem to have prevailed (Barquero, Bosch, 
& Gascón, 2013).

Other important constraints that could be identified were mainly related to the 
difficulties for keeping in mind the generating question of the SRP, given the fact 
that students were not used to pursuing a question for such a long period of time. 
SRP requires a strong modification of the usual didactic contract that currently 
exists at universities, where the teacher provides long lists of different small prob-
lems which the students have to solve. On the contrary, some other responsibilities 
that are usually assigned exclusively to the teacher were easily assumed by the 
students: searching information about models, discussing different ways of looking 
for an answer, comparing experimental data and reality, writing and defending 
reports with partial or final answers, etc. Others, however, were more difficult to 
share: choosing the relevant mathematical tools, criticizing the scope of the models 
constructed, posing new questions to continue with the study, planning the work to 
do, etc.

Last but not least, another strong constraint appeared in all the SRP implementa-
tions: the necessity of an ad hoc mathematical discourse available to describe the 
process that had just taken place. The work carried out in the workshop led to a need 
for new words, concepts, and discourses to talk about what was going on and to 
formalize it theoretically. The teacher and the students could no longer base their 
work on previously selected material, such as the one provided by textbooks or by 
previous lectures. In each case, they had to elaborate their own narrative of the pro-
cess followed, a collective and original mathematical text indispensable to describe 
the dynamics of the work done and to provide material for the writing of the final 
answer A♥. This lack of mathematical discourses to express, describe, and formalize 
the dynamics of mathematical activity brings to light the necessity to develop new 
mathematical and didactic infrastructures to support self-sufficient modeling 
activities.

Following Hans Freudenthal’s observation in the case of the mathematical work 
with quantities, we came across other “no man’s lands” which appear to be crucial 
for mathematical modeling to live in our school institutions. The problem is not 
only “the fault of the mathematician”; it seems to affect the entire educational cul-
ture and the conceivable ways of making it evolve.
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8.4  �Open Questions

As was said in the introduction, this chapter focuses on the notion of DE as it was 
introduced in the TDS to empirically organize the study of didactic phenomena and 
new teaching proposals, and its later developments in the ATD with the problem of 
the ecology of teaching and learning processes. We have left aside other concep-
tions of DE which are more or less related to them (Margolinas et al., 2011), their 
contrast with other task-design works, and more general reflections about the role of 
design and theories in mathematics education (Burkhardt & Schoenfeld, 2003; 
Design-Based Research Collaborative, 2003; Godino et al., 2013).

In order to encourage the debate and nourish future comparative studies on this 
issue, we conclude by briefly addressing three main issues that, in our opinion, can-
not be left aside in the research work of contrasting and trying to articulate different 
approaches. First of all, we have seen that, in the research program established by 
the TDS and developed by the ATD, the transition to the paradigm of questioning 
the world becomes crucial: mathematical content, as well as any other subject mat-
ter, needs to appear as true answers to real questions rather than mere monuments to 
visit (Chevallard, 2012). The necessity to move away from monumentalism is not 
new, but it has not always been considered in the same manner, especially when 
researchers’ epistemological assumptions require a certain distance from assump-
tions which prevail in teaching and research institutions.

The TDS and the ATD locate the problem of the ecology of design realizations at 
the heart of DE research, didactics appearing as the scientific study of the conditions 
for mathematical knowledge (praxeologies) to disseminate in human institutions. 
Furthermore, the ATD proposes a considerable enlargement of the unit of analysis 
for research corresponding to the different levels of the scale of didactic codetermi-
nation (Chevallard, 2002). In the case of mathematical modeling, some approaches 
(Burkhardt, 2008; Kaiser & Maaβ, 2007; Lesh & Doerr, 2003; among others) have 
also highlighted the problem of the large-scale dissemination of new teaching pro-
posals. However, this issue is still far from becoming central in the main stream of 
research in mathematics education. We need more insight about how other 
approaches have experienced and proposed to deal with this ecological problem.

It seems clear that the ecological problem needs to engage different partnerships 
of the educational community: researchers, designers, policy makers, teacher asso-
ciations, mathematicians, editors, etc. In some approaches, the role of research is 
clearly distinguished from the teachers’ role, even if they are in broad agreement on 
their tight cooperation. The problem of the roles assigned in mathematics education 
to the different partners of the education process appears as an unavoidable issue 
related to the problem of the ecology, especially at a moment when all efforts should 
be put together, while responsibilities are of course typically different among the 
partners and institutions involved.
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    Chapter 9   
 The Critical Role of Task Design 
in Lesson Study  

             Toshiakira     Fujii    

9.1            Introduction 

 Lesson Study, the Japanese approach to improving classroom teaching, came to 
the attention of educators outside of Japan primarily through the publication of  The 
Teaching Gap  (Stigler & Hiebert,  1999 ). Though most of the book focuses on fi nd-
ings from the 1995 TIMSS Video Study, Chap.   7     of the book, based on work by 
Makoto Yoshida (Fernandez & Yoshida,  2004 ; Yoshida,  1999 ), describes Lesson 
Study in detail. Since then, many mathematics teachers and teacher educators have 
been involved in Lesson Study, and many books and research papers have been writ-
ten on various aspects of Lesson Study and the typical structure of Japanese 
problem- solving mathematics lessons. 

 It is becoming clear that there are aspects of Lesson Study that are implicitly 
understood by Japanese teachers that have not transferred easily to other countries. 
For Lesson Study to be successful, these aspects should be made explicit. This chapter 
tries to clarify an embedded key aspect of Lesson Study: task design. In particular, 
the chapter discusses how a task for a lesson is designed and evaluated in the context 
of Lesson Study.  

 The author would like to thank Thomas McDougal for reading and editing numerous revisions and 
for his invaluable comments on this chapter 
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9.2     Japanese Lesson Study 

 The history of Lesson Study in Japan spans more than a century. For Japanese 
educators, Lesson Study is like air, felt everywhere because it is implemented in 
everyday school activities, and so natural that it can be diffi cult to identify the criti-
cal and important features of it. 

 Catherine Lewis (2011) characterized the Lesson Study cycle as follows (see 
also Fig.  9.1 ):

     1.     Study curriculum and formulate goals : Consider long-term goals for student 
learning and development. Study curriculum and standards; identify topic of 
interest   

   2.     Plan : Select or revise research lesson. Write instruction plan that includes long- 
term goals, anticipated student thinking, data collection, model of learning tra-
jectory, and rationale for the chosen approach   

   3.     Conduct the research lesson : One team member teaches the lesson; others 
observe and collect data   

   4.     Refl ect : In a formal lesson colloquium, share data from the lesson to illuminate 
student learning, discrepancies in content, lesson, and unit design, and broader 
issues in teaching-learning. Document the cycle to consolidate and carry forward 
learning as well as new questions into the next cycle of lesson study (Lewis & 
Hurd,  2011 , p. 2)    

  Lesson Study in Japan takes place at three different levels: the individual school 
level, the district or regional level, and the national level. The Lesson Study cycle is 
basically the same at each level and usually spans 1 year. At the school level, the 
typical Lesson Study cycle begins at the end of one academic school year—i.e., in 
February or March—when the faculty decides upon a research theme for the next 
school year which starts in April. Several research lessons are scheduled from, say, 
May to November. Each research lesson and its post-lesson discussion occupy only 
1 day, but the teachers refl ect on what they learned at the research lessons and usu-
ally write a booklet or long summary report by the end of the school year. 

 Although the Lesson Study cycle is the same at all levels, the purposes are differ-
ent, and these different purposes impact the task design. National-level Lesson 

1. Study curriculum
and formulate goals

2. Plan lessons

3. Undertake
research lesson

4. Reflect
with others

  Fig. 9.1    The Lesson Study cycle (adapted from Lewis & Hurd,  2011 , p. 2)       
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Study is usually research oriented: an academic or veteran teacher may take primary 
responsibility for the Lesson Study and teach the research lesson. It emphasizes the 
use of materials or tasks never seen before, and the goal is usually to demonstrate 
that the materials or task has a good mathematical and educational value. The goal 
of school-based Lesson Study, in contrast, is usually to accomplish the school theme 
or mission. School-based teams usually use familiar tasks from a textbook, perhaps 
with slight revision. 

 In any case, Japanese teachers involved in Lesson Study spend at least a few 
months, but sometimes more than half a year, designing a task and planning a les-
son. The long-term period of planning a lesson crystallizes into a detailed lesson 
proposal or lesson plan. The lesson proposal includes the task for the lesson and the 
reason why it is used, described in detail. Therefore, we can analyze the framework 
of a lesson proposal to gain insights into the nature of task design in Lesson Study 
in Japan. We do that in the next section. Then, in the following section, we discuss 
the common policy of focusing a research lesson on a single task. 

9.2.1     The Detailed Lesson Proposal 

 One of the characteristics of Japanese research lessons is that they are based on a 
 gakushushido-an. Gakushushido-an  is usually translated as “lesson plan.” Because 
“plan” misleadingly implies a fi xed script, however, the term “proposal” is better. 

 Japanese teachers spend a lot of energy and time crafting a lesson proposal. The 
contents of the typical lesson proposal give clues about the task design process. 
Although the details vary from school to school, and even from teacher to teacher, 
Lewis ( 2002 ) notes that a typical proposal for a research lesson in Japan consists of 
the following:

    1.    Name of the unit   
   2.    Unit objectives   
   3.    Research theme   
   4.    Current characteristics of students   
   5.    Learning plan for the unit, which includes the sequence of lessons in the unit and 

the tasks for each lesson   
   6.    Plan for the research lesson, which includes:

•    Aims of the lesson  
•   Teacher activities  
•   Anticipated student thinking and activities  
•   Points to notice and evaluate  
•   Materials  
•   Strategies  
•   Major points to be evaluated  
•   Copies of lesson materials (e.g., blackboard plan, student handouts, visual aids)      

   7.    Background information and data collection forms for observers (e.g., a seating 
chart).    
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  The explicit inclusion in the proposal of the tasks for each lesson in the unit 
indicates how important the tasks are believed to be, and that the authors of the 
proposal think carefully about their sequence within the unit. Their role or function 
in the unit or even their position in the whole curriculum are studied by teachers and 
clearly stated in the lesson proposal. In other words, the lesson proposal shows that 
task design involves the explicit linking among tasks within the unit and across units 
in Lesson Study. Connections among tasks are revealed also when a research lesson 
is implemented; Shimizu ( 2010 ) showed evidence that tasks are connected to each 
other within the teaching unit through the teacher’s explicit efforts to link students’ 
ideas and experiences. 

 To link tasks within the unit and across related units in previous and later grades, 
teachers need to understand the scope and sequence of the curriculum. This requires 
a reasonably precise curriculum. Teachers also have to consider the learning trajec-
tory of students, considering the mathematical and educational value of each task 
not only for the current lesson but also for the future. The learning trajectory is a 
critical consideration in constructing the detailed lesson proposal and, therefore, is 
critical in task design.  

9.2.2     Structured Problem Solving 

 Almost every research lesson in mathematics follows a certain form, referred to by 
Stigler and Hiebert ( 1999 ) as  structured problem solving . A structured problem- 
solving lesson focuses on a single task and contains four phases:

    1.    Presenting the problem for the day (5–10 min)   
   2.    Problem solving by the students (10–20 min)   
   3.    Comparing and discussing ( neriage ) (10–20 min)   
   4.    Summing up by the teacher ( matome ) (5 min)    

  This type of lesson imposes certain demands on the task design. In Japan, “pre-
senting the problem” means helping students understand the context of the task and 
what it will mean to solve the task, but it specifi cally excludes any exposition by the 
teacher about how to solve the task. Instead, students are expected to work indepen-
dently on the task for 10–20 min, during which time at least some students should 
solve it. The third phase,  neriage , assumes that students will arrive at different solu-
tion methods, which are then compared and discussed for the purpose of helping all 
students learn new mathematics and ways of thinking. Thus, the task should be 
understandable by the students with minimal teacher intervention; it should be solv-
able by at least some students (but not too quickly), and it should lend itself to 
multiple strategies. 

 In the fourth phase,  matome,  the teacher may say something about which strat-
egy may be the most sophisticated and why, but it should go beyond that to include 
comments by the teacher concerning the mathematical and educational values of the 
task and lesson (Fujii,  2008 ).  
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9.2.3     Designing the Task as Part of  Kyozaikenkyu  

 The activities or factors involved in creating a research lesson proposal can be 
categorized based on whether they relate primarily to (1) the curriculum, (2) the 
students, (3) mathematics, or (4) tasks. Ultimately, however, the lesson requires a 
task, and so all activities eventually focus on investigating appropriate tasks 
 consistent with the aim of the lesson. Watanabe, Takahashi, and Yoshida ( 2008 ) 
iden tifi ed four core steps involved in constructing an instruction plan for a lesson: 
(1) understand the scope and sequence; (2) understand children’s mathematics; 
(3) understand mathematics; and (4) explore possible problems, activities, and 
manipulatives (Fig.  9.2 ). Japanese teachers routinely do this as part of preparing a 
detailed lesson proposal; the process is called  kyozaikenkyu .

9.2.3.1       The Meaning of  Kyozaikenkyu  

  Kyozaikenkyu  literally means the study of, or research on, teaching materials. For 
Japanese educators, designing the task is the essential activity of  kyozaikenkyu . The 
word  kyozaikenkyu  and the activity to which it refers may be unfamiliar to non- 
Japanese, but it is a common educational term used in academic journals in Japan. 
In fact, the  Journal of the Japanese Society of Mathematics Education  has a section 
devoted to  kyozaikenkyu.  

  Fig. 9.2     Kyozaikenkyu  process (adapted from Watanabe et al.,  2008 , p. 140)       
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  Kyozaikenkyu  involves examining teaching materials and tasks from mathematical 
and educational points of view as well as from the students’ point of view. Moreover, 
Japanese teachers also investigate ways to encourage students to solve a task by 
themselves. Although  kyozaikenkyu  is recognized as a critical part of Lesson Study 
by Japanese educators, teachers outside Japan often neglect it:

  Japanese educators place a strong emphasis on task selection, [but] this effort is largely 
ignored by non-Japanese adapters of Lesson Study, possibly because the effort involved 
may be almost invisible, in the way that 90 % of an iceberg is invisible, with all of our atten-
tion going to its visible tip. (Doig, Groves, & Fujii,  2011 , p. 182) 

9.2.3.2        Task Design Principles for Structured Problem-Solving Lessons 

 Japanese educators distinguish between “teaching how to solve the task” and “teach-
ing mathematics through solving the task”. This is why most structured problem- 
solving lessons focus on a single task. If chosen well, a single task allows for the 
important new mathematical ideas to emerge in the discussion, and additional tasks 
are unnecessary. 

 But the ultimate aim of a structured problem-solving lesson is not just to promote 
students’ mathematical understanding or skill; the aim is also to deepen and widen 
their wisdom and thinking as human beings. This might sound strange or unrealis-
tic, but consider the following problem:

  Squares are made using matchsticks as shown in the picture. When the number of squares 
is eight, how many matchsticks are there?

     

      This problem lends itself to many solution strategies, including these:

    (a)    Consider a  C -shape (3 match sticks) as a unit 8 times, and add the fi nal side: 3 
* 8 + 1   

   (b)    Consider a  C -shape as a unit 7 times, and fi nish with a full square: 3 * 7 + 4   
   (c)    Draw the entire fi gure and count matchsticks one by one.     

 A comparison and discussion of these strategies might help students see the merits 
of strategy (a) relative to (b), because that solution (based on counting 8  C -shapes) 
is more directly related to a condition given in the problem (8 squares). If the condi-
tion is changed to 100 squares, adapting the solution is very simple. Meanwhile, 
strategy (c), though mathematically primitive, is nonetheless quite powerful: you 
are certain to arrive at the answer. So this problem makes it possible for students to 
gain at least two general bits of wisdom: (1) one should think about the conditions 
of a problem and look for a solution in terms of those conditions; and (2) even if you 
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cannot come up with a “clever” solution, you may still be able to solve a problem 
through hard work. Thus, we have the following principles for an ideal task:

•    It is appropriate and mathematically valuable in terms of the aims of the lesson  
•   It interests the students  
•   It is at the appropriate level of diffi culty  
•   It can be solved in several ways  
•   It can apply to other mathematical problems or real-life problems  
•   It has a potential to elicit valuable basic wisdom       

9.3     Designing Tasks Using  Kyozaikenkyu  in Lesson Study 

 Doig et al. ( 2011 ) illustrate four types of tasks typically used in Lesson Study: tasks 
that either

    1.    Directly address a concept   
   2.    Develop mathematical processes   
   3.    Are chosen based on a rigorous examination of scope and sequence   
   4.    Address a common misconception    

  In this section, we focus on an example of designing a task based on a rigorous 
examination of scope and sequence, using  kyozaikenkyu  in Lesson Study in Japan. 

9.3.1     The Topic: Subtraction with Regrouping 

 Japanese fi rst-grade textbooks contain a unit concerning subtraction of one digit 
numbers from two digit numbers (less than 20) using regrouping. There are a total 
of 36 such possible subtractions: 18–9, 17–9, 17–8, 16–9, 16–8, 16–7, …, 11–3, and 
11–2. This is regarded as an important area of content, and which of these 36 sub-
tractions should be the fi rst for children to learn is hotly contested. 

9.3.1.1     Teachers Know There Are Reasons for the Numbers Used 

 Chapter   7     of  The Teaching Gap  follows a teacher team as they engage in Lesson 
Study focusing on this specifi c unit. Upon examining different textbooks, the teach-
ers realize that almost all textbooks start with 13–9 or 12–9, and after reading the 
teacher’s manuals, they understand why. 

 This activity, that is, investigating and studying textbooks and teachers’ manuals, 
is a typical early step in the design task for teachers engaged in Lesson Study. 
Teachers may decide to use a task that is in one of the textbooks, or they may not. 
But they know that the specifi c choice of numbers infl uences students’ solutions and 
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that there are reasons for the numbers in the textbooks. Therefore, the decision to 
deviate from the textbooks, or not, is made carefully. 

 In the textbooks, the reason why 13–9 is the fi rst subtraction problem with 
regrouping is that the subtrahend, 9, is close to 10. It is easy for the student to sepa-
rate 13 into 10 and 3, subtract 9 from 10, and then add the difference to 3: 
13–9 = (10 + 3)–9 = (10–9) + 3. This strategy is referred to as the  subtraction–addi-
tion strategy  (see Fig.  9.3a ). Consistent with this sequence of tasks for subtraction, 
the addition part of the textbook uses 9 + 4 as the fi rst task.

   In contrast, with the subtraction 12–3, because 2 and 3 are close to each other, it 
is easy to break 3 down to 2 and 1 and subtract them sequentially: 12–3 = 12–
(2 + 1) = (12–2)–1. This strategy is called the  subtraction–subtraction strategy  (see 
Fig.  9.3b ). 

 With a subtraction like 14–8, the two strategies,  subtraction–addition  and  sub-
traction–subtraction , tend to be used by students with approximately equal likeli-
hood. Therefore, teachers who wish to promote argumentation in their classes 
sometimes use a problem like 14–8 as the fi rst task for children, while textbook 
companies adopt a more conservative stance based on their desire to make it easy 
for teachers to anticipate student responses and to be sure that there will be enough 
children who use the subtraction–addition strategy. 

 The teachers in  The Teaching Gap  decided not to use 12–9 from the textbooks 
because “it’s not very interesting”. One teacher suggested 15–8 or 15–7, and then a 
teacher suggested 11–6: “Because kids can conceptualize in their heads about up to 
the number 6 at this age, I thought we should go with numbers like 11–6”. Another 
teacher proposed 12–7, because “one of her students, who was a low achiever, hap-
pened to have seven family members. Everyone agreed that this was a good idea” 
(p. 118). So, the teachers decided to use 12–7, which seemed likely to provoke the 
subtraction–addition and subtraction–subtraction strategies equally, allowing for a 
discussion that would compare the relative merits of these two methods. 

 Such careful scrutiny of the sequencing of tasks is unusual by Western norms. 
“Western observers are often astonished… by the order of presentation being the 
subject of so much study and debate. However, Japanese Lesson Study is frequently 
used to investigate sequences of tasks that are different from those traditionally 
used” (Doig et al.,  2011 , p. 194).   
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  Fig. 9.3    The  subtraction–addition strategy  ( a ) and the  subtraction–subtraction strategy  ( b )       
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9.3.2     Why Teachers Begin  Kyozaikenkyu  with Textbooks 

  Kyozaikenkyu  with textbooks is a typical activity of Japanese teachers in Lesson 
Study. Japan has a National Course of Study, and textbooks must be authorized by 
the Ministry of Education, Culture, Sports, Science and Technology. So, all text-
books treat the same topics in each grade. But the six publishing companies that 
publish mathematics textbooks each have their own philosophy. Therefore, it is 
natural for teachers to compare each textbook’s treatment of the same content. 
Investigating the textbooks often includes study of the teacher’s manuals, which 
include not only suggestions about how to teach the content but also the reason for 
teaching the content and the reason behind the textbook’s approach.  

9.3.3     Exploring Possible Manipulatives 

 In the case of the Lesson Study on subtraction, the teachers implemented two 
research lessons focused on the subtraction problem 12–7. In the fi rst lesson, chil-
dren seemed to struggle with decomposing 12 into 10 and 2. Therefore at the second 
lesson, teachers modifi ed the manipulative from a single piece of tape representing 
12 to two pieces: a longer tape representing 10 and a shorter piece representing 2, 
and scissors were available for cutting the tape representing 10. The teachers spent 
a lot of time coming up with the new manipulatives. This is a good example of  kyo-
zaikenkyu  in terms of exploring possible and appropriate manipulatives. And, it is a 
good example of how task design in Lesson Study includes consideration of the 
materials and manipulatives that should be provided to students. 

 In the case presented here, one can see that, both in terms of choosing specifi c 
numbers to use and in terms of choosing suitable manipulatives to provide, good 
task design must involve considerations of likely student thinking and strategies, 
which is why anticipating student responses to a task is a standard part of Lesson 
Study.  

9.3.4     Evaluating the Task in Action 

 In Lesson Study, the quality or functionality of the task is evaluated through the 
research lesson and the post-lesson discussion. At the research lesson, observers 
collect evidence from students’ activities of whether the task worked well or not in 
terms of aims of the lesson. During the post-lesson discussion, teachers talk about 
the effect of the task on students’ learning in accordance with the aims of the lesson 
by citing concrete evidence from the research lesson. 

 Because the role of the task and anticipated solutions are described in the lesson 
proposal, observers will typically watch to see if the anticipated solutions emerge or not. 
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The proposal for the subtraction lesson identifi ed four approaches that students 
might use to subtract 7 from 12:

    1.    Counting–subtraction, i.e., starting with a group of 12 objects, or a group of 2 
and 10 objects, and eliminating 7 objects while counting one by one   

   2.    Supplement–addition, i.e., counting on from 7 to 12 while keeping track of the 
number of counts (“8, 9, 10, 11, 12”)   

   3.    Subtraction–addition (Fig.  9.3a )   
   4.    Subtraction–subtraction (Fig.  9.3b )     

 At the research lesson, four children presented their methods at the blackboard to 
the whole class. The four solutions included two that were anticipated: counting–
subtraction and subtraction–subtraction. The supplement–addition method and the 
subtraction–addition method were not presented, but two unanticipated methods 
were presented. One was to subtract 2 from 12 to 7, and then subtract 5 from 10. 
This method could be expressed (not for fi rst-graders) as 12–7 = (12–2)–(7–2) = 
10–5 = 5. Only one child used this strategy in the class, although the whole class 
eventually seemed to understand it. The other was to partition the number 12 as 5, 
5, and 2. Then, as the student explained, “because seven is fi ve and two, I moved the 
fi ve and two of the number twelve.” Only one child used this strategy although 
“many of the students said that her solution was good” (Fernandez & Yoshida, 
 2004 , p. 165). 

 Taking a high-level view of the discussion that followed the research lesson, the 
school faculty raised 23 points of discussion. Ten of them, or about half, concerned 
the task:

•    Two concerned the specifi c numbers used in the task, such as “12–8 or 13–7 
would be better”  

•   Four concerned the manipulatives, such as “if all 12 tiles had been lined up in 
one straight line, students might have cut the 10-strip into 7 and 3 to use subtrac-
tion–addition strategy” (p. 176)  

•   The other four were (1) the way the problem was presented and how to present 
word problems in general, (2) the reason why only one child—who was not 
asked to present his solution—used the subtraction–addition strategy, (3) how 
the handout and manipulatives had been improved, and 4) why the supplement–
addition method was unlikely to emerge in the lesson    

 These 10 points of discussion provide examples of how a task is evaluated in 
Lesson Study. 

 Taking a closer look at the post-lesson discussion, the teacher who implemented 
the research lesson with the problem 12–7 confessed that she was very disappointed 
because she could not get a variety of student solutions on the board; in particular, 
she had hoped to see the subtraction–addition method presented (Fernandez & 
Yoshida,  2004 , p. 171). These comments at the post-lesson discussion show that a 
task cannot be evaluated solely on its mathematical merits, but should be judged 
based on its actual effects on student thinking and learning. This is characteristic of 
task design and task evaluation in the context of Lesson Study in Japan. 

T. Fujii



283

 The faculty did not discuss the unexpected solution method that used the subtraction 
rule (i.e., 12–7 = (12–2)–(7–2)). This was reasonable, because the focus of the lesson 
was on using regrouping. But the rule is interesting: another useful variant is 
(12 + 3)–(7 + 3) = 15–10 = 5. The task 12–7 created an opportunity to learn the rule, 
and the teachers could have discussed the possibility of including the subtraction 
rule in the elementary school curriculum.   

9.4     Discussion 

 The case study from  The Teaching Gap  points to two important features of task 
design in Lesson Study. First, task design involves anticipating students’ solutions. 
Second, the task is evaluated in the post-lesson discussion based on concrete evi-
dence collected during the lesson. 

9.4.1     Task Design in Lesson Study Always Involves 
Anticipating Students’ Solutions 

 For the subtraction lesson, the teachers seriously considered which numbers to use, 
because they know that the choice of numbers will affect which strategies the stu-
dents will use when solving the task. Furthermore, the teachers recognized that each 
strategy has both mathematical and educational values. 

 Such close attention to the specifi c numbers does not mean that teachers are 
sticking to a concrete level of thinking and encouraging students to think about 
things concretely. On the contrary, teachers consider the general aspect of the num-
ber—its  quasi-variable  aspects. A  quasi-variable  is a number deliberately used in a 
general way so that it serves as a representative of many numbers, just as a variable 
would (Fujii & Stephens,  2001 ,  2008 ). Numbers are often chosen, then, based on 
their quasi-variable power, or how well they demonstrate a general truth. 

 For instance, the tasks 13–9 and 12–9 are likely to lead to the subtraction–addi-
tion strategy; thus they are not mere calculation problems, but lead to a particular 
general procedure for subtracting with regrouping in the base-ten system. 
Appreciating the base-ten system and place value notation system and its benefi t for 
calculation is more important than getting an answer and gaining skill at calculating 
13–9. To get such appreciation, however, students need to see alternative strategies, 
such as the subtraction–subtraction strategy or counting down, neither of which 
depends on the base-ten notation system. Therefore, a structured problem-solving 
lesson includes a  neriage  phase for students to compare or experience friends’ 
methods and discuss similarities and differences among strategies in a whole class 
setting. Thus, when designing the task, there needs to be consideration of whether 
the task will elicit the alternative approaches needed for an effective  neriage .  
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9.4.2     Task Design in Lesson Study Goes with Task Evaluation 

 The second feature of task design in the context of Lesson Study is that task evaluation 
is an inherent part of the process, wrapped into the evaluation of the lesson. The task is 
not judged based on some abstract determination about whether it is good or not for 
teaching a certain skill or concept, but based on concrete evidence from the lesson 
about how the students responded to it. 

 That evaluation often goes beyond the specifi c content of the lesson. For exam-
ple, at the subtraction lesson, teachers discussed whether the task was appropriate or 
not and whether the manipulatives functioned well or not. But they also discussed 
more general issues. In fact, in 13 out of the 23 points of discussion, teachers dis-
cussed how to develop guidelines for fostering students’ presentation skills. This 
was a concern not just for fi rst-graders but all students. Sample comments included: 
“The skill like speaking in public and explaining what they think in a logical manner 
are the important things”; and “These skills are needed to do well beyond the sub-
ject of math” (Fernandez & Yoshida,  2004 , p. 181). These show that the teachers 
evaluate a lesson and task in terms of a broader educational aim. 

 The fi nal commentator also addressed broader educational values. He said that in 
order for students to pit solution strategies against each other, they must be given the 
opportunity to evaluate them based on their own attempts to solve the problem. He 
pointed out that there were no comments from students such as “Teacher, I found 
that this method is more convenient,” or “This method is much faster,” because each 
student had experienced only one way to solve the problem (p. 186). He gave spe-
cifi c examples from the lesson in proposing improvements to the lesson. But he 
seemed to be suggesting that this activity could make students think about class-
room values, such as the importance of listening carefully to friends’ opinions, of 
expressing ideas clearly to friends, of moving beyond “wrong or correct answers”, 
of not underestimating friends’ ideas, etc. Here is a good example from Lesson 
Study in Japan of how structured problem-solving can be a context in which to nur-
ture students as human beings. 

 The fi nal commentator explicitly addressed broad educational values in the very 
beginning of his comments. “He urged teachers to think carefully about what were 
the most important ‘skills for living’ that students should be learning from their 
mathematics instruction” (p. 182). Using as an example the formula for fi nding the 
area of a trapezoid, he said that “teachers should help students realize that moving 
from complicated to more simple forms is a convenient and a clever thing to do” 
(p. 183). This is an example of how Japanese Lesson Study concerns educational 
values. 

 This notion is related to the structured problem-solving type of lesson. A common 
misconception about such lessons is that solving the task is the main point. Such 
misconception leads to a focus on goals such as “students can do X” or  “students 
understand X.” But a structured problem-solving lesson is not just about fi nding the 
solution to a problem. It is well and good that students can do X, but X should 
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contain some value, and what that value is needs to be considered. To identify the 
educational values, the fi nal commentator urged the teachers to do  kyozaikenkyu . 

 Thus, we see that the fl at model of  kyozaikenkyu  from Watanabe et al. ( 2008 ) 
needs to be extended to a three-dimensional model as shown in Fig.  9.4 . In this revi-
sion of the model, the four goals of  kyozaikenkyu  collectively serve a larger goal, 
which is to develop tasks and lessons that bring broad educational values to life in 
the classroom.

   It is hard to actually implement an ideal lesson with a rich task and a discussion 
that addresses broad educational values. Accomplishing this is, therefore, a lifelong 
goal of teachers. Lesson Study, an ongoing activity of Japanese teachers, both helps 
them develop such lessons and provides a testing ground for teachers.  

9.4.3     Conclusion 

 Task design is the essential activity of  kyozaikenkyu , which for Japanese educators 
is a critical part of Lesson Study. There are two sides to task design: anticipating 
students’ solutions when writing the lesson proposal and evaluating the task during 
the post-lesson discussion in light of the actual students’ responses in the research 
lesson. 

 We hope that by making the task design activity more visible, we can help teach-
ers understand the  kyozaikenkyu  process more profoundly. Designing tasks as part 
of  kyozaikenkyu  will strengthen teachers’ content knowledge, improve instruction, 
and deepen their understanding of Lesson Study itself.      

Understand Scope
& Sequence

Educational Values

Understand
Mathematics

Understand
Children’s

Mathematics

Explore Possible
Problems, Activities

& Manipulatives

  Fig. 9.4    A pyramid model of  kyozaikenkyu , showing how the process aims to serve broad educational 
values       
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    Chapter 10   
 There Is, Probably, No Need for This 
Presentation 

             Jan     de     Lange    

10.1             Introduction 

 In the spring of 2013,  TIME  magazine published an article about the  Millennial  
youth. The author, a well-known columnist Joel Stein, observed that the millennials 
are a generation mostly of teens and 20-somethings known for constantly holding 
up cameras, taking pictures of themselves, and posting them online. They are “nar-
cissistic, overconfi dent, entitled, and lazy”. Then comes a deep sigh: “Now, imagine 
being used to that technology your whole life… and having to sit through Algebra” 
(Stein,  2013 ). 

 Indeed, if they have to sit through algebra, is there any way that designers can 
connect the millennials with the learning of mathematics? Was all that we, the 
designers, did in the recent past without any merit? The reader will understand the 
title I chose for this presentation, especially if we accept Chris Schunn’s observa-
tion: “The educational design community has no communal mechanisms for codify-
ing craft knowledge” (Schunn,  2008 ). So, not only does the designer have a problem 
in dealing with the present youth, but we, as designers, do not even have tools and 
knowledge to describe our craft knowledge. You think that is bad news? Wait a 
second: we have no communal mechanisms for codifying craft knowledge, but that 
has an advantage if we take Collopy seriously (which I do): “Codifying design 
thinking threatens its central value of fl exibility” (Collopy,  2009 ). 

        J.   de   Lange      (*) 
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10.1.1     Educational Design: Is There a (Need for a) System? 

 So, indeed the title of this chapter needs to be taken seriously; is there a  need  for a 
system in educational design? By my accepting the invitation to write this chapter, 
you might conclude (correctly) that I think there is indeed some need. Assuming 
there is research evidence to suggest we are experienced and proven designers, how 
do we help young and promising designers to become better, based on information 
that might contribute in the future to some kind of a system or framework? 

 Looking through the literature, we can fi nd some defi nitions of educational 
design. One of the more helpful defi nitions is:

  Design 

 –   To create and execute according to plan  
 –   To conceive and plan out in the mind  
 –   Is very ego involving (own mark)  
 –   To make drawing or sketch: process of design (Merriam Webster,  2008 )    

 To  create  and  execute  according to plan seems like a trivial remark, but, refl ect-
ing on my past experiences, it is easy to interpret this as a warning: creative pro-
cesses often tend to go on indefi nitely; there is always room for improvement. It 
might even be true that  especially  in educational design, this is a problem, because 
if you see design as a recursive process that has to be validated by classroom experi-
ences or by research, sometimes one needs some courage to decide that the plan has 
fi nally been executed. 

 The second point feels more in line with what one would expect. Thought experi-
ments, dreams, and wandering thoughts, all play out in the mind before you ever 
start the actual design. The start of the concrete design seems the sublimation of the 
thought and mind process, and indeed, it feels as if you really are executing a plan, 
for a while at least. 

 One would like to deny that design is or has to be “ego involving” as suggested 
in the defi nition. But indeed there is no need to deny this. A designer is always try-
ing to create something beautiful, and it would be nice if people recognize it as 
something that has your mark all over the place. There are some examples around 
of innovative or challenging educational design that can easily be attributed to a 
particular creator. 

 During the process, there are several phases for which drawing and sketching or, 
more generally,  visualization  is essential. Imagination can enable design for longi-
tudinal development over time, for identifi cation of different levels of competen-
cies, for visualizing concepts differently than just by words, and many more aspects. 

 So, yes it is possible to refl ect on your own practices using defi nitions, but many 
aspects are missing from this short list, and maybe such a general list is not at all 
helpful to future designers. It is therefore no wonder that Schunn poses the question: 
“Is there a system to the madness of design?” (Schunn,  2008 ). We must also admit 
that it is hard to refl ect on your own system (if there is one), because often people 
may imagine they have direct access to their mental processes, but they do not 
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(Anderson, Lebiere, & Lovett,  1998 ). So, if possible at all, the description of your 
own mental processes is very diffi cult, and combining this with the reality as 
observed by Schoenfeld: “Educational designers have few incentives to codify their 
refl ections and present them publicly” (Schoenfeld,  2009 ). We see that, indeed, 
writing about the design process might be an almost impossible task, given these 
observations. But the challenge is even bigger than merely being descriptive of 
method. As Schön observes:

  [Design takes place in] the swampy lowlands, problems are messy. The irony … is that the 
problems of the high ground [theory] tend to be relatively unimportant to individuals or 
society at large, … while in the swamp lie the problems of greatest human concern. The 
practitioner is confronted with a choice. Shall he remain on the high ground where he can 
solve relatively unimportant problems … or shall he descend to the swamp of important 
problems where he cannot be rigorous in any way he knows how to describe? ( 1995 , p. 27) 

   Given all these observations, one needs to be careful when writing anything on 
the design process, and hence the reader needs to take the following ideas not too 
seriously. I cannot access the mental processes I follow, and there may be no system 
to my madness. I have to make diffi cult choices between the high and low ground, 
and the whole context of talking about task design in the abstract is confusing, but 
I’ll try anyway.   

10.2     Personal Refl ections on the Design Process 

10.2.1     Slow Design 

10.2.1.1     Slow Design: The Principles 

 It is tempting to start with a design process that seems to have disappeared: a pro-
cess based on developmental research that takes high quality and evidence of effec-
tiveness as guiding principles. It takes a lot of effort and time and needs serious 
planning and execution, goals, an understanding when these goals have been 
reached, assessments, and more. Therefore, it is generally considered too expensive 
in time, money, and human effort. 

 Wouldn’t it be interesting to compare the costs of a really innovative and 
evidence- based “programme” against the costs of a “programme” constructed under 
high pressure with marginal evidence that it appears to serve the purpose and goals 
but that will sell very well because of smart and professional marketing? The costs 
of a market-based process might in the end be much higher in terms of the fi nal 
product: ineffective in enabling real improvement, not meeting any educational 
design “standard”, and creating a need for “even better” materials. A  leading prin-
ciple  in  slow  design is that we use integrated partnerships: a researcher/designer 
partnership and a researcher/designer with teacher/student partnership. To speak a 
different language, we take design from the high ground into the mess of the swamp, 
and we try to be of relevance for all levels. 
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 Next, we have to describe a plan. What I say about planning is a description of a 
process that is the result of a wandering brain and many years of experience. Of 
course, it is just a sketch and should not be taken too seriously, but can act as a guide 
through the mess of educational design. The designer needs to be involved in every 
aspect of process.  

10.2.1.2     Slow Design: The Process 

•     Select your subject of choice (especially as a junior designer), its duration, and 
level. As a designer, it helps a lot if you have an affection with the subject or 
concept you are supposed to design material for. It will not only help you gain 
confi dence, but will offer you opportunities to leave the often-travelled road; you 
will be able to make your own mark, and chances are high that you might really 
“invent” something unusual. Try to keep it a shorter “unit”; it is easier to make a 
coherent and convergent product with a tight focus.  

•   Design a (mental) sketch of fl ow and educational/didactical vision. As I will 
illustrate elsewhere, the fl ow of the unit must be sketched. It will give an order, 
or structure, to the design. Of course, in order to be able to do this one needs a 
didactical view and educational vision. It makes quite a difference if your phi-
losophy is “show and tell” and lots of practice, or if you start with an exploration, 
in the vein of this memorandum from the American Mathematical Monthly 
(AMM): “To know mathematics means to be able to do mathematics… and what 
may be the most important activity, to recognize a mathematical concept in, or to 
extract it from, a given concrete situation” (Ahlfors et al.,  1962 , p. 8). The 
informed reader will not be surprised that a designer sees many more possibili-
ties in the latter approach; the starting point of the design process in this case is 
the whole world and the degrees of freedom are high, although the actual design 
process will be very challenging.  

•   Use intuition. This may be a trivial remark or maybe not. Intuition is a very 
underestimated aspect of design, in general, and educational design, in particu-
lar. Intuition can suggest where to start if you have a clear understanding of the 
concept. Intuition can suggest how to get from that starting point to the concept 
in a challenging and motivating way. Intuition will help identify connections to 
other fi elds and concepts. We will return to intuition somewhat later.  

•   Choice of concept: if we take the recommendation of the AMM seriously, it is 
clear that if you want to extract a mathematical concept from a given concrete situ-
ation, the situation has to offer the opportunity for  conceptual mathematization —
giving meaning to the mathematical concept (de Lange,  1987 ).  

•   Choice of context: if the context is used to apply learned concepts, we need a 
high degree of authenticity—no artifi cial, camoufl age, or fake contexts (de 
Lange,  1987 ).  

•   Look for inspiration in a “random” search library using associative thinking. 
 Googling  is a well-established practice for designers of all sorts. My experiences 
are such that I fi rst look for “Images” which can stimulate associative thinking, 
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an approach that has led to many new and surprising discoveries. In the not too 
distant past, this activity took place in a physical library. Browsing there in a 
random part of the scientifi c library, maybe just looking at the titles of the books, 
can be extremely rewarding. A designer often needs only one page. Sometimes, 
you get much more from books; I recently re-found in a dark corner the book 
 Scale Effects in Animal Locomotion  (Pedley,  1977 ), a gem for mathematical 
designers of all ages.  

•   Refi ne your initial design. Look for continuity, for balance, and also leave your 
“own mark”. Check also if you have used visualization, where appropriate. Is the 
text straightforward? Are there any “gender” problems?    

 This is the end of the fi rst phase of my design process. Now it is time to leave 
your comfort zone and meet the real world. The main problem now is to not be too 
defensive; take all comments from colleagues and others seriously, and avoid taking 
a fi nal position until you have heard everything, but the design decisions are yours.  

10.2.1.3     Meet the Real World 

•     Seek a “real” discussion with experts of all kinds, even “real” mathematicians, 
and have your design ripped apart—a very desirable but uncommon stage in the 
process. To become a successful designer, the real world starts with the critical 
remarks of your colleagues. In many institutions, these discussions are often 
very “friendly”, because your intention is to remain coffee-mates with those col-
leagues. The challenge, therefore, is to fi nd a real and honest discussion, based 
on mutual respect. These exchanges can be harsh at times. Freudenthal was well 
known for his direct remarks: at one meeting in the 1970s, he concluded, after 
2 hours of “friendly” interaction: “From a didactical point of view this is all rub-
bish!” A good designer loves discussions like this, although one needs some 
strength of character and self-esteem, if possible.  

•   Write a new version that is about ready for classroom experiments. Given the 
sharp exchanges before you reach this stage, this revision is not always easy to 
carry out. If you have too much respect for senior members, you might follow the 
wrong track. If you think you are right anyway, you are not learning anything.    

 As we all know, there are many real worlds all with their own rules and culture. 
The interaction with experts of course is not the “real” real world. The ultimate 
experts are in, and in front of, the classroom. We meet the teachers in the next phase:

•    Discuss the design with experienced teachers; change your design if you think it 
would be a real improvement. Teachers should be ready to try out the design; 
prepare them on critical points in the design.  

•   Revise, and have a teacher teach using your design. NEVER teach it yourself. 
One of the serious errors designers may make is to teach the design themselves. 
Of course, there is at least a fair chance that the lesson will go smoothly; the 
teacher (designer) is really teaching the intended curriculum. Every now and 
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then you can do this if you are mainly looking for what is possible and do not 
have students of your own, but this does not count as a real try-out. As a designer, 
you are designing for other teachers, not for yourself.  

•   Observe authentic classroom activities, without the use of video; you will observe 
much more, in more detail, and with the possibility of interventions on the spot. 
You get feedback on the micro level. You walk around and check students’ reac-
tions and understanding. Look at their notes, and when seeing mistakes, ask 
questions in order to get a feel for the reason for the mistake. Try to understand 
why they do what they do.  

•   Make notes for revision; take discrepancies between “intended”, “implemented”, 
and “achieved” learning seriously. You do not design by just making a lesson, a 
module, or a curriculum. When you do that, you have an “image” of how it has 
to play out in the classroom, and, more often than not, it will play out quite dif-
ferently in the real classroom.  

•   Concentrate in the fi rst place on essential conceptual development, not on details. 
This is sometimes hard to do; your attitude is probably to “help” the students 
whenever they make a mistake. The focus should be on the conceptual develop-
ment: do you see the intended “learning trajectory” materialize in the practice? 
Or does the teacher miss the longer developmental lines?    

 It will be no surprise that the next steps are:

•    Start the cycle again in a different classroom, if necessary after redesign. Try it out 
in a different school with visits and observations by designer and other experts.  

•   And do not forget the importance of designing assessments, both formative and 
summative, and indicate the opportunities for excellent feedback (Black & 
Wiliam,  1998 ).     

10.2.1.4     An Example of Slow Design 

 Logarithms are often considered a diffi cult subject for students to learn. In the phi-
losophy of Realistic Mathematics Education, contexts should be used in order to 
develop mathematical concepts. This process is called  conceptual mathematization . 
The context in this example is the “growth” of water plants that spread over the 
surface; a graph is essential to answer the questions posed (Fig.  10.1 ).

   A student’s answer on the fi rst question is: “after about 4.3 weeks”, reading the 
graph. The next question is about the time needed to grow 40 m 2  of plants. This 
seems a bit challenging as the value 40 is  not  in the graph. In answering this question, 
it is essential to understand that one can fi nd the answer  without  using the graph: the 
fact that in 1 week the total area is  doubled , in relation to the previous answer, yields: 
“it takes one more week to grow to 40 m 2 . Thus, 4.3 + 1 = 5.3 weeks”. Following simi-
lar reasoning gives that it takes 3.3 weeks to grow 10 m 2 . It was striking to observe 
in the trials that many teachers were hindered by their “context isolated” readily 
available knowledge of logarithms. To many students, this “doubling in 1 week” was 
obvious. The design process took this difference of perception into account, and we 
introduce the idea of logarithms using a defi nition arising from the context (Fig.  10.2 ).
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  Fig. 10.1    Growth of water plants (de Lange,  1978a , p.71)       

  Fig. 10.2    Contextual defi nition (using the notation common in the Netherlands) (de Lange, 
 1978a , p.71)       

 

 

10 There Is, Probably, No Need for This Presentation



294

   A typical answer to the fi rst question in Fig.  10.2  would be: “ 2 log 16 (or log 2  
16) = 4 because it takes 4 (days) to grow to 16 m 2 , with growth factor 2 (starting with 
1 m 2  at  t  = 0)”. The more analytical students already make the formalization to 
“because 2 4  = 16”. 

 The last trio of questions in Fig.  10.2  is in preparation of the main property of 
logarithms. The explanation for  2 log 3 + 1 =  2 log 6 (or log 2  3 + 1 = log 2  6) is: “It takes 
1 day to double the amount 3 to 6”—a beautiful and very conceptual insight that 
many students achieve.  

10.2.1.5     Conditions for Slow Design 

 Slow design is possible only under these conditions:

•    Some freedom of choice of what to design.  
•   Lots of freedom in time.  
•   Freedom of thought (no pressure from publishers, standards, etc.).  
•   Freedom to explore.  
•   There is restriction arising from your design philosophy; in my personal case, 

this is Realistic Mathematics Education (RME).  
•   Balance restrictions with freedom; in my case, it is a free interpretation of RME.      

10.2.2     Fast Design 

 In the highly commercialized educational design community, a different set of rules 
applies. In the fi rst place, we see a higher degree of separation: the designer designs, 
the researcher (if any) does the classroom observation, the technology part is out-
sourced to specialists, the teacher gets some preparation or a guidebook and then 
teaches, and the student does what the teacher asks. The main problems of this kind of 
process are obvious: a lack of communication between all the different components of 
the design, the designed coherence and convergence are under pressure, the designer 
is unaware of what happens with his/her design further on in the design cycle, and the 
risk is high that he/she does not feel any responsibility for the end product. In this 
mode of design, the design is not a process but a product. At the very least, opportuni-
ties for the designer to learn from feedback are missing. A typical situation is that a 
designer may have to deal with some national standards. Most curriculum standards 
have “mathematical practices” of one kind or another written in them, but the descrip-
tion usually leaves a lot to be desired from a designer’s point of view, such as assump-
tions that a phrase like “problem-solving” has one agreed meaning. 

 Fast design needs products fast and is very market-driven. Therefore, the 
appearance of the design can outweigh the quality of content. Many books use full 
colour illustrations that have hardly any connection with the mathematics. Fast 
design makes it hard for an educational designer to have a high degree of satisfac-
tion about the more “creative” and “out of the box” aspects of designing—the craft 
and art of design.   
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10.3     Design as Art 

 Design can be seen as art. Peter Hilton made an interesting observation about the 
relation between mathematics and applied mathematics. The essence is that math-
ematics is a science and applied mathematics is an art. His argument can be used, in 
my opinion, for the educational design in mathematics education. Hilton states: 
“Experience, intuition, inspiration makes it art” (Hilton,  1976 ). I use his words: 
“Educational design theory incorporates a systemic of knowledge and involves 
cumulative reasoning and understanding, it is to that extent a science. And since 
design and construction involves choices which must be made on the basis of expe-
rience, intuition, and even inspiration, it partakes the quality of art” (de Lange, 
 2012 , inspired by Peter Hilton,  1976 , p. 85). 

 It seems almost trivial to say that experience plays a major role in design and 
inspiration as well. We will not pay any more detailed attention to these two aspects. 
But the third component, and together with inspiration, the most important variable 
making design in education an art, is  intuition . One can almost “feel” that many 
professional educational designers stay away, at a safe distance, from a discussion 
about the role of intuition. It is not easy to make it look more scientifi c, which is seen 
as a conditio sine qua non to write a refereed article; without a refereed article, the 
view of the designer is not seen to be relevant in the world of research. But one can 
fi nd some interesting remarks about the role of intuition in educational design. And 
as the kernel of this presentation is a  refl ection on my own practices , my refl ection 
was indeed helped by thinking about the role of intuition a bit more than casually. 

10.3.1     The Role of Intuition 

 Rapid cognition is the sort of snap decision-making performed without thinking 
about how one is thinking. It takes place faster and often more accurately than the 
logical part of the brain can manage. Intuition is “rapid cognition” (as beautifully 
described in the book  Blink , by Malcolm Gladwell,  2005 ). The secret is knowing 
which information to discard and which to keep. The brain is able to perform that 
work unconsciously. It can hardly come as a surprise that experience has something 
to do with intuition. According to Duggan ( 2007 ), brain science tells us there are 
three kinds of intuition:  ordinary ,  expert , and  strategic . In my own words,  ordinary  
intuition is just a feeling, a gut instinct.  Expert  intuition is snap judgements, when 
you instantly recognize something familiar, the way a tennis pro knows where the 
ball will go from the arc and speed of the opponent’s racket. The third kind,  strate-
gic intuition , is not a vague feeling, like ordinary intuition. Strategic intuition is a 
clear thought. And it’s not fast, like expert intuition. It’s slow. That fl ash of insight 
you had last night might solve a problem that’s been on your mind for a month. And 
it doesn’t happen in familiar situations, like a tennis match. Strategic intuition works 
in new situations. That’s when you need it most. 
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 Another way to make a clear distinction between the three kinds of intuition is that 
in ordinary intuition, it is just feeling, not thinking. In expert intuition, you use past 
experiences to make instant decisions, and past experiences make you an expert in this 
kind of intuition. Strategic intuition can be characterized by thinking, not feeling, 
informed by experience, leading to a deep insight that connects seemingly unrelated 
knowledge to create new insight and “gestalts” in unfamiliar, new, situations. 

 Strategic intuition is, in my opinion, a crucial factor in the art of educational 
design in mathematics and science. The problem seems to be that for obtaining 
strategic intuition, the crucial factor is time, especially refl ective time. Refl ective 
time is clearly available in slow design, both in the short-term and in the longer run. 
If we try to fi nd lessons for young future designers from experienced designers who 
are the same age as the Rolling Stones, the problem is the same as for these rock and 
rollers: they can be seen as a thing of the past that refuses to fade away, or you can 
see their vitality and drive as an example for the future. The questions for designers 
therefore are: “how can you retain your drive, use fl uid intelligence, keep on track 
with new media, use refl ection in different time frames, try to beat your previous 
‘original’ ideas (inspiration), and realize the roles of intuition?” Educational design 
is indeed art.   

10.4     Design Examples 

10.4.1     Central  Concept  Design 

 As the title suggests, a central mathematical concept or subject is the guiding prin-
ciple in my design approach. In this example, a whole unit is designed as a sequence 
of tasks around the right triangle. It begins quite informally: “When you are stand-
ing on the rim of the Grand Canyon can you see the Colorado River or not, and 
explain why?” The concept of vision lines is not only explored, but also more or less 
formalized. Vision lines are also at the heart of the concepts of blind angle or blind 
area and the shadows. 

 Ladders have critical angles or steepness. So, the shift from the Canyon towards 
the new context of ladders is very natural, especially if combined with more on 
shadows. The right triangle, the object that connects all the different contexts, comes 
in handy again as the glide ratio, which is in a more formal sense the tangent. 
Figure  10.3  shows different contexts for the same concept.

10.4.2        Central Context Design 

 One design format that can be quite appealing is to choose, for use over a period of 
time, the same context with a variety of mathematical concepts that fi t more or less 
authentically. It sometimes is a matter of “intuition” how far you can go in this 

J. de Lange



297

respect. It is also possible to go too far. In the late 1970s, a request reached me from 
a teacher asking if I could “do something” about the problem of trigonometric ratios 
somewhere in the upper middle school region. She certainly knew how to challenge 
a designer, as this designer was a pilot as well. So in a relatively short time, a unit for 
a couple of weeks was designed about fl ying through trigonometry (see Fig.  10.4 ). 
Later in this chapter, you can see a very fi rst draft of a unit, originally written with 
pencil and piloted in this format (Fig.  10.7 ). Within the fl ying context, the glide ratio 
was the central concept. The trial was declared a success, and a somewhat better 
format was used in the continuation of the process.

   But the teacher was not satisfi ed; we could do better and treat another mathe-
matical concept within this context. So a new design had vectors as an additional 
core concept—a subject that is easy to understand for young children, but often 

  Fig. 10.3    Different contexts; same concept (Feijs et al.,  2006 , p. 45. Copyright Encyclopedia 
Britannica 2006)       
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neglected in curricula. Eventually, we ended up with three lesson series about vectors 
(Fig.  10.5 ), triangles in the navigation context, and the defi nitions of trigonometric 
ratios.

   Another example is the context of archaeology. In a Middle School Project (a 
collaboration between the Freudenthal Institute and The University of Wisconsin, 
funded by the US National Science Foundation), a unit was designed around this 
very intriguing context. The title of the unit is  Digging Numbers . It started with the 
Mayan number system, but it dug much deeper. Classifi cation and seriation of 
objects found in excavations are the main concepts that are treated with a high 
degree of authenticity. Two examples give the reader an impression of the task 
(Fig.  10.6 ).

  Fig. 10.4    Flying as a context for trigonometry (de Lange,  1978b , p. 20)       
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10.4.3        Design over Time 

 It is quite helpful if the designer can reinvent himself or herself continuously. Even 
if a design proves to be quite successful, the challenge still exists to continue the 
development. Flying, for example, in the widest sense is indeed an excellent subject 
because you can easily go beyond the (sail)planes: fl ying squirrels and birds interest 
a whole group of different audiences and broaden the view of the students on the 
real world (Fig.  10.7 ). Does a sailplane soar better than an albatross?

  Fig. 10.5    Flying as a context for vectors (de Lange,  1978b , p. 55)       
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  Fig. 10.7    Excerpts from the design process (de Lange originals)       

  Fig. 10.6    Archaeology as context (de Lange et al.,  2003 , pp. 50, 84. Copyright Encyclopedia 
Britannica 2003)       
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   But the concepts involved in fl ying can also be broadened, sometimes in surprising 
ways. The sine can be introduced in the fl ying context as a ratio in a triangle as 
indicated before (via glide ratio). But the graph of the sine function can also be 
introduced using the movement of a propeller tip as the sequence of illustrations in 
Fig.  10.8  shows.

10.4.4        Experimental  Free  Design 

 Sometimes a designer can be the happiest person in the world. The conditions for 
this mental stage are quite simple. The task was to design “something” for children 
in the age range from 6 to 12 that had to be challenging (of course), real world (of 
course), with some mathematics (of course) and science in it (de Lange,  2013 ). The 
context I used was simple: the weather. Children have seen weather maps, and the 
design goal was: ask them to prepare for the weather given a realistic weather map. 

 Weather maps are actually maps with contour lines. So as an exploration topic, 
students constructed an imaginary hike in a mountainous area: following hikes on 
a map can be made very realistic for students if you have video, graphics, and 

  Fig. 10.8    Developments of the fl ying context (de Lange,  1978b ,  1980 ,  1984 ; de Lange & Kindt, 
 1984 )       
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maps with and without contour lines. Next, we did the well-known problem that is 
illustrated in Fig.  10.9 .

   The students are given a lot of numbers on a grid and invited to draw the fi tting 
contour lines. You can really get an interesting discussion if one of the students 
draws intersecting contour lines. A next step is to look at real weather maps. Just 
like a ball will follow the steepest path down a hill, the air will move in a direction 
perpendicular to the contour lines. The steeper the “hill”, the faster the air will 
move. The red little arrows on the map tell the story convincingly (Fig.  10.10 ).

  Fig. 10.9    Contour lines (de 
Lange,  2013 )       

  Fig. 10.10    Weather map (de 
Lange,  2013 )       
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   The word  gradient  might be used here. Finally, the wind does not move in a 
direction perpendicular to the isobars (contour lines) but almost parallel to them. 
This is caused by the Coriolis effect (due to the rotation of the Earth). To understand 
this is quite a challenge for young children, until we used maple syrup on a slowly 
rotating globe (see Fig.  10.11 ). All of a sudden, the highlight of a whole series of 
lessons was reached with a plastic globe and maple syrup (I won’t mention all the 
efforts in the kitchen to fi nd which fl uid substance gave the most convincing result; 
designing can be quite exhausting).

    Free design  can be extremely rewarding because it is a form of discovery 
learning; you can go to complex connections among topics that are only distantly 
connected to national standards, and you can show that well-designed problems 
can be solved by 6-year-olds or 12-year-olds. Of course, the answers and reason-
ing might differ quite a bit, but the results can be spectacular and the designer 
learns a lot.   

  Fig. 10.11    Coriolis effect (de Lange,  2013 )       
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10.5     Restrictions, Conditions, and Challenges 

 Educational design has many restrictions, conditions, and challenges. Lynn Steen 
made a point in 2007 that summarizes the main challenge: “There are many ways to 
organize curricula. The challenge, now rarely met, is to avoid those that distort 
mathematics and turn off students” (Steen,  2007 , p. 93). Over the years, this prob-
lem has not yet been solved, and the present customer, I remind you, is the millen-
nial described at the start of this chapter. It often seems that publishers are aiming 
more at selling their products to school districts and, hopefully, teachers. So the 
designer has to design for the student, while taking teachers and school boards into 
account. 

 I also remind you of Schön’s view that the greatest problems lie in the swamp. 
Some may fi nd great satisfaction in discriminating between educational design 
research and research-based educational design (McKenney & Reeves,  2012 ), but 
this is something from the “high ground”. It does not help the educational designer 
who makes a living in the swamp while trying at the same time to use knowledge 
from the high ground  and  refl ect on the experiences in the swamp, in order to give 
such theory more relevance. 

 In the 1980s, a brand new programme was developed in the Netherlands, 
 Mathematics A . The process at the time took the traditional road: a national 
 commission wrote a report exposing and explaining the philosophy of the 
 programme. Next, the designers were asked to implement the vision into student 
materials. The fi rst thing the designers did was construct a schema of possible mod-
ules. But, “Surprisingly, the commission had not mentioned the problems of 
achievement testing in their report” (de Lange,  1987 , p. 164). So this task became a 
challenge for the designers. This task was indeed very challenging, and the struggle 
and results were published in de Lange ( 1987 ). In short, assessments are important 
and should be part of the design from the beginning, whether they are high stakes or 
monitoring, summative or formative, and portfolios or computer delivered. 

 More mundane restrictions and challenges are: externally imposed timelines that 
are always too short; the funding is never enough; the emphasis is on the fi nal prod-
uct rather than the dynamic design process or the students’ learning. This problem 
has become even more serious because of the multidimensional design space we are 
living in; parallel processes seem to be inevitable: designer 1 designs the scope and 
sequence based on standards that have multiple interpretations; designer 2, at the 
same time, is designing animations; designer 3 does the assessments; designer 4 
does the high stakes testing; designer 5 writes a script for video support; designer 6 
… this system then requires another designer who coordinates and informs the 
whole system. Parallel design can be coherent if carried out by a well-managed 
team who shares interpretations and ideals, but often leaves the individual designer 
lost in the multidimensional space. Published curricula and standards are seldom as 
coherent and rigorous as their authors think. 

 Designers need to think of the children and students and of the beauty of math-
ematics as a discipline. Children and students are individuals, with a huge variety of 
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capabilities, talents, and needs; in short, they are not standardized. The remarkable 
appearance and international growth of national standards suggest that individual 
learners have almost disappeared from the educational palette.  

10.6     Task Design and Curricula Design 

 Task design is clearly an aspect of curricula design; one way of thinking about 
enacting a curriculum is as a series of clearly connected tasks. But even such a 
seemingly simple sentence has great consequences for design. 

 A curriculum can be seen as the planned interaction of pupils with instructional 
content, materials, resources, and processes, and that outlines the skills, perfor-
mances, attitudes, and values pupils are expected to learn from schooling. The main 
problem is that there are many ways to start designing a curriculum; more often than 
not, the designer has to start with a framework that is not an optimal starting point 
from a design point of view. It may be a list of topics or concepts, or a list of assess-
ment targets, or an exposition of a preferred way of teaching. In an ideal world, 
designers would already be involved in the initial phase of designing the curriculum 
as a whole, so they can infl uence the writing of the “standards” or “goals”. This is 
important because curricula are not always written with either students in mind (e.g. 
as preferred hypothetical learning trajectories) or with an explicit view of what con-
stitutes mathematics (e.g. integrating and connecting algebra and geometry, dealing 
with the imaginary 2D world and the realistic 3D world). 

10.6.1     Left Out in the Cold 

 Most descriptions lack clarity on a variety of variables, for example, how important 
a “standard” or “goal” or “competency” is; the relative weight of, or how much time 
should be spent on, a subject; and how are topics connected, both horizontally or 
vertically through time or across experience. General guidance, such as “solve 
problems involving ratio”, may be defendable if the designer was able to see the 
construction process in the curriculum. But more usually, the designer is left out in 
the cold. Without detailed interpretation, publishers can use the slogans “we meet 
the standards” with only superfi cial justifi cation. 

 Designers have to make important choices. Should a unit of work start in the real 
world and develop mathematical concepts from there? Or should we use a more 
traditional model: fi rst the math concepts and practice and then some applications? 
Or should we use both models, depending on the concept? And who makes this 
decision, the publishers, designers, curriculum writers, or teachers?   
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10.7     Summary 

 I shall summarize my chapter in terms of hints for young designers in mathematics 
education:

    1.    Ask yourself if you have a teaching background: did you teach to the book or 
did you “design” the lesson? If you fi t the latter description, your chances of 
becoming a good designer are better.   

   2.    Choose your fi rst subject carefully: choose an obscure concept, e.g.  functions of 
two variables  for 16-year-olds. Arrange an experience that sheds new light on 
this subject, e.g. a trip to the Grand Canyon. Field experiences are almost indis-
pensible. After visiting the Grand Canyon several times, the idea to use the 
horizontally structured layers of rock for introducing contour lines was almost 
inevitable (See Fig.  10.12 ).

       3.    If 2 was successful, choose as your next subject your least favourite topic at 
school, e.g. logarithms (See Fig.  10.13 ). Each chamber of the shell of a nautilus 
is an approximate copy of the next one, scaled by a constant factor. This gives 
rise to an approximation to a logarithmic spiral. Start to love understanding the 
concept; if you achieve this, you might design something useful.

  Fig. 10.12    Contours in the 
Grand Canyon (de Lange, 
 1977 , p.8)       
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       4.    Insist on slow design whenever you can. Use the argument that you are doing 
developmental design research, including the latest results of cognitive science 
and developmental brain research (or some such story).   

   5.    Use your design intuition as much as possible—design is also art. But do not 
mention it too much, until you’re very old.   

   6.    Keep teaching in a classroom yourself for two reasons:

    (a)    To give you a feel for what is possible   
   (b)    To keep your feet in reality (the swamp)       

   7.    Do not think primarily about writing for refereed journals; think of the students 
in the classrooms.   

   8.    Accept curriculum constraints if you have to, but try to fi nd and use the degrees 
of freedom.   

   9.    Take initiatives for free design; it can be very rewarding, especially for the 
students.   

   10.    Try to refl ect on your practices; it may be very helpful for everyone in the 
process. I failed in that respect. This is actually my fi rst refl ection ever.   

   11.    And refl ect on the title of this paper; is it true that  there is, probably, no need 
for this presentation?          
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   Part IV 
   Commentaries        



    Chapter 11   
 Taking Design to Task: A Critical 
Appreciation 

             Kenneth     Ruthven    

11.1             The Evolution of Task 

 While task design has long been a central concern of mathematics education, it is 
only recently that an organized community has emerged in which task design has 
been linked with design research. Together, the editorial introduction to this book 
(Chap.   1    ) and Chap.   2     provide a useful historical sketch of the ground-laying for 
such activity, the emergence of several energetic groups, and the development of 
this international community, leading to the preparation of this book. 

 Using  Educational Studies in Mathematics  as a convenient historical section pro-
vides a simple means of tracing the penetration of talk about  tasks  into the main-
stream of mathematics education research. One fi nds that  task —used in the sense of 
a stipulation for some unit of mathematical activity—has been present since the 
inception of the fi eld in the late 1960s (c.f. the use of  discovery task  in Scandura, 
Barksdale, Durnin, & McGee,  1969 ). More specialized terms followed, such as  task 
sequence  in the mid-1970s (c.f. Scandura,  1975 ) and  task-based interview  in the 
mid-1980s (c.f. Presmeg,  1986 ), but the term  task design  itself did not surface until 
the late 1990s (c.f. the title of one of the references in Noss, Healy, & Hoyles, 
 1997 ). 1  By comparison—as the traces revealed by this trail suggest— task design  
was already established in the psychological literature in the 1960s in relation to the 
design of diagnostic and other assessment tasks (c.f. its use in connection with mul-
tiple choice test items in Tversky,  1964 ). 

1   The next use of “task design” in  Educational Studies in Mathematics  occurred in 2001, and over 
20 articles employed the term during the subsequent decade. By comparison, the earliest use of 
“task design” in the  Journal for Research in Mathematics Education  occurred in 1983, with only 
one further use before 2000. 

        K.   Ruthven      (*) 
  University of Cambridge ,   184 Hills Road ,  Cambridge   CB2 8PQ ,  UK   
 e-mail: kr18@cam.ac.uk  

311© The Author(s) 2021
A. Watson, M. Ohtani (eds.), Task Design In Mathematics Education,
New ICMI Study Series, https://doi.org/10.1007/978-3-319-09629-2_11

This chapter has been made open access under a CC BY-NC-ND 4.0 license. For details on rights
and licenses please read the Correction https://doi.org/10.1007/978-3-319-09629-2_13 

http://dx.doi.org/10.1007/978-3-319-09629-2_1
http://dx.doi.org/10.1007/978-3-319-09629-2_2
mailto:kr18@cam.ac.uk


312

 The emergence of  task design  within the fi eld of mathematics education has seen 
a reshaping of the originally psychological framing to accommodate a long- standing 
tradition of mathematical popularization. This tradition seeks to fi nd relatively self- 
contained and accessible “activities” which are exemplary of some topic within 
mathematics and/or form of mathematical activity. For example, introducing an 
early paper on “geometrical activities for the upper elementary school”, Engel 
wrote:

  In this paper I shall present a selection of activities which I have used in grades 5 to 7 for 
the past 16 years… At this level I prefer topics which are not treated later, but which are still 
interesting, important and challenging… These examples will show that, even at an early 
age, one can reach rather deep results in a short time and starting from scratch. (Engel, 
 1971 , p. 353) 

   Although it makes passing reference to pedagogical considerations, Engel’s 
paper analyses the tasks which it presents in primarily mathematical terms, doubtless 
refl ecting the way in which the author’s craft knowledge (developed through his 
considerable practical experience of working with these tasks) was framed (c.f. 
Ruthven,  2011 , p. 92). 

 Equally, though, a contemporary paper by Egsgard on “some ideas in geometry 
that can be taught from K-6” illustrates a more explicitly theorized and psychologi-
cally infl uenced approach to pedagogical design. This approach appeals, in particu-
lar, to Piaget’s model of developmental stages and Dienes’ typology of intrinsic 
motivation to guide the pedagogical model of  directed discovery  which frames the 
discussion of the student “activities” or “assignments” presented in the paper:

  In using [the directed discovery] technique opportunities and activities are provided so that 
a child can make his own discoveries. Careful planning of the sequence and pace of activi-
ties is essential to ensure that the child understands and learns the concepts. As children are 
led to discover a concept, discussion with the teacher, the class or another individual must 
be allowed. The primary role of the teacher is to question, to guide, to stimulate and to 
assess the progress made so that time is used wisely. (Egsgard,  1970 , pp. 481–482) 

   Egsgard’s paper also recognizes a need to locate tasks within a larger curricular 
framework: it concludes with a diagram which suggests how, over the years of ele-
mentary education, and in preparation for secondary education, such activities could 
underpin a systematic development of key concepts along interconnected lines of 
development of geometrical thinking. 

 This example illustrates how, from the very inception of the research fi eld of 
mathematics education, task design has often formed part of a larger enterprise of 
 curriculum development , a term which has fi gured consistently in  Educational 
Studies in Mathematics  since its start. Exploring potential contrasts in the connota-
tions of task design and curriculum development calls attention to a spectrum of 
scale in which the micro-level of task can be differentiated from the macro-level of 
curriculum, with perhaps an intervening meso-level corresponding to the unit or 
module. Although design can refer to either process or product, development more 
typically refers to process: nevertheless, as an iterative conception of design research 
has become infl uential, “design” has become more strongly associated with this 
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cyclic process of “development”, as the marriage of  design as intention  and  design 
as implementation  discussed in Chap.   2     makes clear. 

 Over the last half-century, the fi eld of mathematics education has undoubtedly 
become more ambitious in its aspirations to coordinate the design of teaching with 
the formulation of theory through a development process more closely guided by 
research-based techniques. The clinical interview and its evolution into the teaching 
experiment have been particularly infl uential as paradigms of method for design 
research in mathematics education. However, herein lies one plausible reason why 
attention has shifted over this period from the design of larger-scale curriculum 
towards smaller-scale task: within the amounts of time and levels of resourcing 
normally available to designers, the complexity and cost of a research-based 
approach to the development process renders it feasible only on a limited scale. 
Certainly, my own experience of conducting design research at the meso-level 
within such constraints is that this called for very careful focusing of the research 
with an eye to the core feature of the design and the associated line of theory devel-
opment, leaving more peripheral aspects of the design—but ones potentially crucial 
to its success—to be handled more informally (Ruthven & Hofmann,  2013 ).  

11.2     A Scheme for Design 

 The core of Chap.   2     surveys a range of intermediate frameworks that have been 
employed in task design. Each intermediate framework represents some working 
synthesis of grand theory and/or craft knowledge for the specifi c purpose of design-
ing instructional tasks and sequences. In particular, the chapter presents each frame-
work in a manner which articulates its central principles for design and relates these 
to an illustrative case of design. As the chapter notes, only some aspects of a design 
can be attributed to the guiding framework; art is involved as well as science. 
Equally, the types of learning goal on which such intermediate frameworks focus 
and the educational values which they express are not uniform. 

 Nevertheless, Chap.   2     does identify some common underlying assumptions 
across the intermediate frameworks presented: notably, that learning mathematics 
takes place through doing mathematics; that the mathematical task posed must take 
account of students’ current understandings; and that learning depends on develop-
ment of representations and models. It may be valuable, then, to push a little further 
by developing an organizing scheme for the analysis of intermediate frameworks 
and their design principles. As the chapter makes clear, these frameworks generally 
relate not just to the task itself, but to its staging (in the sense of mise-en-scène) in 
the classroom. Any framework for task design, then, comprises one or more of the 
following elements. 
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11.2.1     A Template for Phasing Task Activity 

 For example, within Japanese Lesson Study, the template for lesson activity on a prob-
lem-solving task consists of phases of teacher introduction ( donyu ), student investiga-
tion ( jiriki-kaiketsu ), class comparison ( neriage ), and teacher summing-up ( matome ). 
Likewise, within the Theory of Didactical Situations, the template for staging an 
adidactical situation calls for an opening teacher-led “didactical” phase of  devolu-
tion , followed by “adidactical” phases of  action ,  formulation , and  validation , con-
cluding with a further teacher-led “didactical” phase of  institutionalization . 
Similarly, within Formative Assessment for Developing Problem-Solving Strategies, 
an initial phase of intuitive student work on a problem is followed by teacher analy-
sis of strategies before the next lesson; that lesson then starts with a phase of student 
evaluation of teacher-provided samples of student work which have been chosen 
and annotated so as to provoke refl ection on earlier strategies, leading to a phase of 
student modifi cation or refi nement of their own earlier strategy, and concluding 
with a phase of whole-class comparison of the revised strategies and refl ection on 
them.  

11.2.2     Criteria for Devising a Productive Task 

 As already noted, the frameworks surveyed generally stipulate that a task should 
pose some kind of problem to be solved; a problem which admits a range of solu-
tions; solutions typically differing in their level of mathematical sophistication, 
including a level which ensures that students will be in a position to propose some 
kind of initial solution. Beyond this, there are some differences in the types of crite-
ria specifi ed within different frameworks. One type of criterion concerns the realism 
and potency of the task to students; for example, its origin in some out-of-school 
practice, which is “crucial and alive” for students, and which can be transposed into the 
educational system as exemplary of target mathematical concepts (Anthropological 
Theory of the Didactic); or its relation to a “realistic” problem situation that affords 
students opportunities to attach meaning to the mathematical constructs it serves to 
develop (Realistic Mathematics Education). Another type of criterion concerns the 
potential of the task to foster productive conceptual reorganization, for example, by 
eliciting misconceptions from students (Conceptual Change Theory); by affording 
students a starting approach which turns out to be unsatisfactory (Theory of 
Didactical Situations); or by triggering responses which highlight common mistakes 
(Formative Assessment for Developing Problem-Solving Strategies). By contrast, 
Conceptual Learning through Refl ective Abstraction represents an approach to con-
cept development which seeks to afford students the opportunity to build an abstrac-
tion from already available activity, rather than through triggering cognitive confl ict 
and reconstruction.  
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11.2.3    Organization of the Task Environment 

 One aspect of such organization concerns the instrumentation which mediates a 
task. For example, in the Proof Problems with Diagrams framework, the diagram 
provided with a proof problem plays a crucial role in scaffolding students’ search 
for counterexamples or non-examples, and in supporting their deductive guessing. 
The choice of particular representational tools plays a similar mediating function 
within Realistic Mathematics Education, supporting the raising of students’ level of 
conceptualization through emergent modelling. Likewise, within Conceptual 
Change Theory, external representations and bridging analogies fulfi l this mediat-
ing function. Another important aspect of the organization of task environment is 
the form of social interaction. For example, within many of the intermediate frame-
works, dialogic group or class discussion is intended to support refl ection on task 
strategies and reformulation of them. Such discussion, in turn, calls for the creation 
of particular interactional norms, as noted in the account of the Cognitive 
Apprenticeship for Productive Problem-Solving framework. Within the Theory of 
Didactical Situations, the organization of the task environment is conceived in 
terms of “the creation of a (material and social) milieu that provides students with 
feedback conducive to the evolution of their strategies”. A more unusual variant—
on the boundary between instrumentation and interaction—is the provision of anno-
tated work samples (Formative Assessment for Developing Problem-Solving 
Strategies).  

11.2.4     Management of Crucial Task Variables 

 This is a prominent aspect of the Variation Theory framework in which analysis of 
the variation space associated with a task or task type leads to the identifi cation of 
crucial (structural rather than superfi cial) dimensions, and to the development of a 
task sequence intended to be optimally effi cient in creating an enacted variation 
space. A similar process of analysis of variation to create a well-tempered sequence 
of tasks is apparent in the Conceptual Learning through Refl ective Abstraction 
framework where:

  The task sequence starts with word problems and context-free tasks to elicit and reinforce 
the diagram drawing strategy. Once the student is using the intended strategy, the task 
sequence provokes the anticipated abstraction. For this purpose, larger numbers for the 
denominators and invited mental runs of diagram drawings were used. 

   Likewise, design within the Theory of Didactical Situations framework depends 
on the identifi cation and judicious tuning of key didactical variables which infl u-
ence the particular character of a task, the approaches available to it, and the path-
ways through which these unfold. 

 Thus, the “design” that emerges from a development process of this type is much 
more than the “task” alone—in the sense of the manifest form of the task presented 
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to students. This design encompasses, fi rst, any template for phasing task activity 
and any organization of the task environment; then the rationale for judging the task 
productive, for phasing activity on the task, for organizing the task environment, and 
for managing task variables. As the examples presented in Chap.   2     show, few if any 
intermediate frameworks explicitly address all these aspects of task design. 
However, these aspects must fi gure—even if only implicitly—in the design process. 
Thus, although intermediate frameworks and design principles serve to articulate the 
 science  behind a design, they are often silent on the  art  or  craft  that also contributed 
to it, and which may indeed have shaped crucial assumptions about the manner in 
which it should be staged.   

11.3     Design Continues in Use 

 Hence, because a design is much more than the overt task, and because a design 
presumes more than the intermediate framework and design principles make 
explicit, the dissemination of task designs is far from straightforward. Recent 
research on patterns of use in mathematics education of textbooks (Remillard,  2005 ) 
and dynamic software (Ruthven, Hennessy, & Deaney,  2008 ) has shown the degree 
of  interpretative fl exibility  that such tools afford, resulting in their being employed 
by teachers and students in ways very different from those envisaged by their devel-
opers. In effect, the process of design continues in use, as users appropriate the tool 
to address their particular purposes and adapt it to their specifi c context. 

 Accordingly, Chap.   3     focuses on the role of the teacher in (re)designing and 
implementing tasks. Some contributions note that—subject to teachers appreciating 
the rationale of its design—their adaptation of a task may enhance the result of its 
implementation. Exercising such a role thoughtfully calls, of course, for the teacher 
to (re)address—with a specifi c context in mind—issues that exercised the original 
developer. Thus, the fi ve dilemmas and six criteria presented in Chap.   3     can be 
related to the scheme of design elements that has already been introduced as a 
means of organizing the concerns of the various intermediate frameworks and illus-
trative designs presented in Chap.   2    . The dilemmas of context, language, structure 
and distribution all relate to devising a productive task, as do the criteria of epis-
temic, cognitive, affective and ecological suitability. Likewise, the dilemma of 
interaction and the criteria of interactional and mediational suitability relate primar-
ily to organizing the task environment. The agendas provided by these dilemmas 
and criteria usefully enlarge on those components of the organizing scheme of 
design elements. 

 Equally, the examples presented in Chap.   3     emphasize how the interpretation 
and redesign of tasks by teachers are shaped by their pedagogical orientations and 
so by the value and instrumental rationalities informing these. At the same time, the 
aspiration of many researchers, developers and teacher educators involved in task 
design appears to be to effect particular changes in such orientations and rationali-
ties: they intend tasks—and whatever support materials accompany them—to be 
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“educative” for teachers (Davis & Krajcik,  2005 ). However, as any reader of this 
book will quickly appreciate, it can be hard to keep track of the differing rationales 
and expectations associated with a multiplicity of tasks of differing provenance, 
let alone to integrate them. Indeed, when every design team appears to proceed 
from its own distinctive position, and to operate closer to the micro-level of task 
rather than to the macro-level of curriculum, it is the teacher who is left to integrate 
the results. This challenge is all the greater if we accept the argument that teachers 
should display “relentless consistency” of approach in order to establish ways of 
working mathematically with students. This argument raises questions about 
achieving a sound balance and a clear relationship between—on the one hand—the 
often highly specifi ed design of tasks and—on the other hand—more generic ways 
of working. This is one of the central challenges confronting a “re-sourcing” move-
ment in mathematics education which advocates that schools and teachers devise 
their own local schemes of work through assembling, adapting and structuring 
materials from a variety of sources (Ruthven,  2015 ). 

 Of course, one answer to such questions is to restrict oneself—as designer and/
or teacher—to a particular intermediate framework which provides—for example—
an explicit and consistent phasing of task activity and organization of task environ-
ment into which students can be inducted. For example, my own experience of 
conducting “redesign” research to develop curricular modules—capable of imple-
mentation at scale within known systemic constraints—points to the importance of 
a substantial introductory module in which the task sequence specifi cally aims to 
induct teachers and students into generic ways of working (and the rationale behind 
them) that are then reinforced systematically in subsequent topic modules: in this 
case, norms and practices of “dialogic teaching” (Ruthven & Hofmann,  2013 ). 
Likewise, achieving this kind of balance appears to be a characteristic of Japanese 
Lesson Study, which—as Chap.   9     reports—keeps one eye on developing tasks and 
lessons “that bring broad educational values to life in the classroom” while the other 
eye attends to the mathematical topic of immediate concern. 

 For the teacher, then, as for the designer, one approach is to fi lter any task through 
the lens of the generic ways of working mathematically that one seeks to develop. 
This appears to be what is taking place in the example—described in Chap.   3    —in 
which teachers work together to “turn a lesson upside down” in order to ensure that 
it will prompt certain ways of working: in this case, concerned with generalizing 
and justifying. There is clearly an argument, then, for placing greater emphasis on 
developing systems of generic heuristics to guide the staging of tasks. For example, 
Chap.   3     refers to a repertoire of strategies developed to guide teacher interventions 
while students are working on a mathematical task: these address issues such as 
whether or not to intervene; how to initiate an intervention; whether to withdraw or 
proceed with the intervention; and how to intervene to support students experienc-
ing diffi culty.  
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11.4     Scope for User Agency 

 Chapter   3     concludes that the role of the teacher in adapting tasks to context and in 
managing their unfolding in the classroom is unavoidable. Translating any task—
however tightly specifi ed—into classroom activity calls for a degree of interpretation 
and elaboration on the part of the teacher and this already grants them some scope for 
agency. Moreover, the teacher will seek to integrate any task into some larger sys-
tem of classroom practice, and may judge it necessary to adapt the task in doing so. 
And fi nally, as Chap.   4     notes, lines of thought and action that emerge during 
classroom activity may encourage the teacher to further modify or extend tasks or to 
create new ones. There can be little doubt, then, about the scope for agency that 
resides with the teacher. 

 But the processes through which users interpret and redefi ne tasks are not con-
fi ned to teachers. Just as between the original designer and the teacher user, many 
of the assumptions and expectations underpinning the design of a task—and its 
implementation—remain implicit, so too between the teacher proposer of a task 
and the student actor in response. This leads Chap.   4     to argue for the importance 
of accounting for student perspectives in task design, in order to understand how 
to reduce the gap between the intentions of teachers and the activity of students. 
In particular, the chapter clearly illustrates how the mathematical socialization of 
designers and teachers may render alternative student interpretations of a task 
unimaginable and incomprehensible to them: this “expert blind-spot” (Nathan, 
Koedinger, & Alibai,  2001 ) all too easily leads to a “bifurcated situation”. 

 In searching for ways of avoiding or retrieving such situations of mismatch 
between teacher and student interpretations of a task, Chap.   4     examines a number of 
options. First, it argues that one apparent option—for the teacher to state more 
explicitly their expectation of the type of approach or response to the task—may be 
counterproductive where the aim is for students to develop creative, fl exible and 
independent mathematical thinking. That is indeed plausible, but one might also ask 
whether many of the tasks presented in this book truly have—or actually realize—
such an aim; often it appears that the designer already has a particular path of “cre-
ativity”, “fl exibility” or “independence” fi rmly in mind. Indeed, the chapter itself 
points out how intermediate frameworks tend to assume (as do classroom norms) 
that the knowledge to be learned through tackling a task and the anticipated learning 
trajectories through which that knowledge will be constructed have been determined 
in advance. That leaves only the option of manipulating one or more of the critical 
didactical variables for the task in order to manoeuvre student interpretations into 
closer alignment with those of the teacher and/or designer. 

 However, Chap.   4     explores one further option in some depth, refl ecting approaches 
to task design which emphasize the signifi cant role of student agency and voice in 
the development of mathematical thinking. One such approach seeks to bring out 
the utility of mathematical ideas through tasks which give students some clear and 
immediate purpose within the context of the lesson (in the sense of a purpose dis-
tinct from learning target mathematical ideas) but which also require  students to 
form and/or use those target mathematical ideas in a meaningful way. The criterion 
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for a successful design is that it achieves a strong coordination between, on the one 
hand, the interpretations that students form of the purposeful task and its aim, and 
so their approaches and responses to it, and, on the other hand, the specifi c teaching 
intentions for mathematical development that underlie the design of the task. This 
Design for Purpose and Utility framework appears to share the perspective of those 
intermediate frameworks—reviewed in Chap.   2    —which emphasize the need for stu-
dents to experience tasks as realistic and authentic, through resonances of the task 
itself with students’ interests and/or a managed process of devolution in which the 
task is made the students’ own.  

11.5     An Apparatus for Design 

 It goes without saying that this book makes reference to many resources that—as 
presented more fully in their original sources—can be treated as tools for design: in 
particular, each of the intermediate frameworks and its design principles, but equally 
each task case with its potential to serve as a generic example. Nevertheless, con-
fronted with such a diversity of intermediate frameworks, design principles, and 
exemplary cases, one is likely to feel a need to identify some larger order within 
which these can be mapped and potentially used in a more coordinated way: the 
organizing scheme that I set out in an earlier section represents the very simple 
device which I formulated in a fi rst attempt to do just this. 

 I see the development of modular “design tools” as probably the most potent 
way to populate such an organizing scheme. This notion of a design tool was briefl y 
referred to in Chap.   2    . Its defi nition in the source paper (Ruthven, Laborde, Leach, 
& Tiberghien,  2009 ) is largely ostensive, through presenting and comparing exam-
ples of such tools. Nevertheless, the paper positions the design tool as one compo-
nent in a system moving from the level of  grand theory  through  intermediate 
framework  to  design tool , so that the latter is distinguished by its proximity to the 
design process and its sharpness of focus within that process. Equally, the paper 
characterizes a design tool in terms of its capacity to identify and address some 
specifi c aspect of task design in order to support both the initial formulation of a 
design and its subsequent refi nement in the light of implementation. For example, 
the design tool of Communicative Approach identifi es and addresses the specifi c 
issue of fi nding a suitable combination of authoritative or dialogic and interactive 
or noninteractive discourse in each phase of the staging of a task while the design 
tool of Modelling Relations identifi es and addresses the specifi c issue of managing, 
over the course of a task sequence, the compound relations between everyday and 
disciplinary languages and between observational/ostensive and theoretical/non- 
ostensive worlds. 

 Moreover, bearing in mind the way in which design continues in use, such tools 
might also prove more accessible to users than intermediate frameworks and more 
effective in guiding their implementation and adaptation of tasks, by virtue of their 
sharp focus on a particular aspect of task design and/or staging. Here, I fi nd myself 
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in sympathy with the position taken in the editorial introduction to this book to the 
effect that theory in task design should be clear and give meaning to phenomena in 
classrooms, while also having practical meaning for teachers and designers. 

 In my view, then, the chapters that I have discussed—and this book as a whole—
provide a valuable staging post for the continuing development of task design as an 
area of systematic enquiry in mathematics education. By bringing together, sum-
marizing and comparing such a rich collection of conceptual frameworks and exem-
plary cases, my hope is that this book will motivate ongoing analysis and further 
synthesis, as well as stimulating the development of more comprehensive organiz-
ing schemes to guide the process of task design.     
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    Chapter 12   
 Some Refl ections on ICMI Study 22 

             Michèle     Artigue    

12.1             Introduction 

 An ICMI Study is launched when a substantial amount of research has been carried 
out at an international level and there are substantial realizations in diverse social 
and cultural educational contexts on the study theme. It is thought timely to build a 
state of the art from these achievements for the benefi t of the mathematics education 
community at large, the community that the ICMI proposes to gather and serve. 
Most often, the reason for the study is also that some scientifi c, technological, or 
societal moves make the theme of prominent interest at the time. It seems thus 
important to make clear what has been achieved or missed so far and what lessons 
can be drawn from the past to think about the future, to identify the challenges to be 
faced, and to refl ect on how these might be taken up. 

 The ICMI Study on Task Design, which ends now with the publication of a new 
volume in the NISS Springer series devoted to ICMI Studies, occurred within this 
overall schema. The design of tasks, their transformation, and the use of tasks 
designed by others are the daily jobs of a teacher. Students meet, practice, and learn 
mathematics through tasks prescribed for them or through tasks that they contribute 
to defi ning jointly with their teachers. Tasks accompany every moment of the study 
process, from the fi rst meeting with questions or mathematical objects to the sum-
mative assessments taken to establish that the expected curricular aims have been 
achieved. Beyond that, when stakeholders want to act on the teaching and learning 
of mathematics and when they want to make teaching and learning practices evolve, 
tasks are used systematically as a privileged lever. 

 Tasks are nothing new; mathematics education research has always been inter-
ested in tasks. Researchers have built theoretical frameworks to guide their design, 
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have used tasks to study students’ conceptions and their evolution, have questioned 
the management of tasks by teachers and its effects on students’ learning, have ana-
lyzed the tasks proposed in textbooks and other educational resources to identify 
what these resources allow students to learn or not, and have shown how technologi-
cal advances open the fi eld of possible tasks and the means for their realization, with 
the resulting potential for teaching and learning. 

 However, despite this  density  of tasks in the educational landscape, it is only 
more recently that communities have formed around the issue of task design, mak-
ing it the focus object of their research studies. Other evolutions contribute to mak-
ing this study timely:

•    The technological evolution, which not only affects the range of possible tasks 
and the means for their realization but also substantially changes their ecology 
and their dissemination processes and blurs the distinction between designers 
and users  

•   The evolution toward a more collaborative vision of the relationships between 
teachers, teacher educators, and researchers  

•   The knowledge patiently accumulated about teacher professional development 
and teachers’ practices, how these are formed and may evolve, and about the 
documentary work of teachers    

 All these evolutions contribute to partially renew the ways task design issues are 
perceived, expressed, and worked out. It is also clear that new needs arise related to 
the current epistemological vision of mathematics as a living and expanding science 
nourished by its multiple interactions with an increasing number of fi elds, a science 
having a signifi cant impact on our societies, whose teaching and learning must con-
tribute to active, refl ective, and critical citizenship. This evolution is refl ected, for 
instance, in the growing attention paid to mathematical modeling, to the develop-
ment of overarching competencies and attitudes beyond mere mathematical skills, 
and in the mathematics curricula. These developments make it necessary to look at 
existing tasks differently, but also to create new ones able to support the new expec-
tations, and to organize their sequencing, taking into account new perspectives and 
criteria. I had all these issues in mind when I started reading the chapters of this 
volume.  

12.2     A Subjective Reading 

 Before entering into comments, focusing on Chaps.   2    ,   5    , and   6     as suggested by the 
editors, I would like to make explicit some elements of my culture and experience 
which necessarily infl uence my reading of the volume. 

 Professionally, I grew up in a didactic culture whose main theoretical reference 
was the Theory of Didactical Situations (TDS) to which many references are made 
in the volume. From my fi rst steps in didactics, the notion of “situation” became, 
thus for me, the fundamental notion, and the idea of task was inserted into it. In this 
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emergent didactic culture, the limitations of laboratory research and the need to take 
into account methodologically the complexity of the functioning of didactic systems 
were well perceived. Moreover, in coherence with the basic principles of TDS to 
take into account this complexity, priority was given to the development of method-
ologies making it possible to control didactic systems, to construct, produce, and 
reproduce didactical phenomena, in line with the vision of science as  phenomeno-
technique  developed by Bachelard (my work in this area is described in Chap.   8    ). 

 This explains why design perspectives have been central in the development of 
this didactic culture, leading to a specifi c concept, that of didactical engineering 
(cf. Chap.   8     and Artigue,  2015 ). For several decades, didactical engineering has 
systematically supported not only the production of results about the learning and 
teaching of specifi c mathematical domains but also major theoretical advances in 
the fi eld. Conversely, the concept has progressively evolved in the light of these 
advances. It has also been enriched by the combined use in engineering work of the 
TDS with other theoretical frameworks. For instance, very early in engineering work, 
this theory was combined with the tool-object dialectics due to Douady ( 1986 ) or the 
theory of conceptual fi elds due to Vergnaud ( 1991 ). The potential offered by combi-
nations with semiotic approaches, such as Duval’s theory of representation (Duval, 
 1995 ) or the theory of semiotic mediation (Bartolini Bussi & Mariotti,  2008 ), was 
then explored. More recently, renewed visions have been proposed in terms of paths 
of study and research within the frame of the Anthropological Theory of Didactics 
(ATD) (cf. Chaps.   2     and   8    ) or in terms of second-generation didactical engineering to 
strengthen the research-development dialectic. The proceedings of the 2009 Summer 
School of Didactics of Mathematics provide an insightful vision of the historical 
development of this concept and of its current use (Margolinas et al.,  2011 ). 

 Without doubt, a long-term interest in technological issues also infl uenced my 
reading of the volume and especially the sensitivity to instrumental issues that I 
began to develop in the mid-1990s when I was working on the integration of CAS 
technology into secondary mathematics education with French colleagues, which 
led to the emergence of the so-called Instrumental Approach (Artigue,  2002 ). 
During the last decade, in fact, my research on digital technologies mainly took 
place in the frame of European projects, especially the TELMA (Artigue,  2009 ) and 
ReMath projects (Artigue & Mariotti,  2014 ) mentioned in Chap.   6    . An essential 
aim of these projects was the capitalization of research results, which a priori relates 
to the aims of an ICMI Study. As is the case in an ICMI Study, we faced the diversity 
of theoretical approaches, of educational contexts, and of didactic cultures, which 
makes capitalization so challenging. This experience increased my awareness of the 
incompleteness of the idea of task sensu stricto. It also showed me that, if it is gener-
ally possible and even fruitful to combine a diversity of theoretical approaches to 
analyze a given corpus, which was also evidenced by the networking activity we 
carried out in the Bremen group (Bikner-Ahsbahs & Prediger,  2014 ), design work 
obeys another logic and does not accommodate theoretical eclecticism so easily. 
In these projects, we created specifi c organizations—later on identifi ed as networking 
praxeologies (Artigue, Bosch, & Gascón,  2011 )—to support the building of larger 
coherences and to favor the capitalization of knowledge. We also exploited the 
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potential of such organizations for studying the design of digital artifacts and of 
situations of use of these, trying to elucidate the exact role, operational or meta-
phorical, played in design by the theoretical concepts referred to by the designers 
themselves. For a given digital artifact, we systematically compared situations of 
use designed, on the one hand, by the team in charge of the artifact design and, on 
the other hand, by another team from another country that we called an “alien” 
team. This research work allowed us to understand at what point design escapes 
theoretical control, even when this control seems very strong. This research also 
showed us at what point a task designed in one culture is transformed when exploited 
in another culture, in which it is acceptable, and how far the comparison of its 
adaptations and implementations in different contexts and cultures can be enriching 
and insightful. 

 The last point is that, in recent years, I have also been involved in several of 
the European projects 1  which have been founded by the European Commission for 
supporting inquiry-based education in sciences, technology, and mathematics, after 
the publication of the Rocard report (Rocard et al.,  2007 ). The design of tasks likely 
to support such pedagogy in classrooms or the adaptation of existing tasks has been 
and still is an essential dimension of these projects. It has been the source of many 
issues, for instance:

•    Regarding the viability of tasks designed in one country but used in other 
contexts  

•   Also, more fundamentally, the ways the different partners involved in these proj-
ects conceptualize the idea of inquiry-based learning and education and how 
these conceptualizations relate to theoretical approaches that have developed in 
mathematics education over several decades without using this terminology 
(Artigue & Blomhøj,  2013 )  

•   And also regarding the ways the design of tasks and sequences of tasks can 
jointly address both the development of specifi c mathematical knowledge and 
inquiry competences    

 These projects involve an important number of partners and countries. Diversity 
is the rule, despite the affi nities leading different teams to build a joint proposal. 
A coherent and shared vision is not easy to build, and these shared visions differ in 
part from one project to another one. Participation in these projects made me aware 
of the predominance of isolated tasks that are not part of a substantial progression 
and sequence within the resources produced by these projects. There is no doubt 
that isolated tasks are more easily accepted and implemented by teachers and more 
easily transferred from one context to another one; however, their acceptance most 
often results just in the adding of some exotic episodes to a classroom life that 
remains fundamentally unchanged. Finally, these projects showed me the strength 
of the didactic obstacle created by any existing gap between the learning principles 

1   These projects are Fibonacci ( www.fi bonacci-project.eu ), Primas ( www.primas-project.eu ), 
Mascil ( www.mascil-project.eu ), and Assist-Me ( www.assistme.ku.dk ). 
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expressed in the institutional discourse and any forms of evaluation which, obeying 
another logic, contradict these principles. 

 All these experiences have shaped my expectations regarding this ICMI Study 
and my reading of the volume that results from it, while making me especially 
aware of the ambition and diffi culty of the task undertaken in it. In the next sections, 
I have organized my commentary around Chaps.   2    ,   5    , and   6    , as suggested to me by 
the editors. I will mention other chapters occasionally because they offer additional 
contributions to the questions addressed in these three chapters regarding the frame-
works and principles piloting task design, the potential and limitations of text-based 
tasks, and the infl uence of tools on task design.  

12.3     Frameworks and Principles for Task Design 

 The design of tasks, with the extended meaning given to this idea in the Study, is an 
essential ingredient of the educational work. It should be, thus, not surprising to 
observe that many approaches developed in mathematics education have taken into 
account task design in a more or less central way. Chapter   2    , devoted to the frame-
works and principles guiding task design, starts by reviewing the history of task 
design in mathematics education from the 1970s, taking as a fi lter research work 
carried out in the International Group on the Psychology of Mathematics Education 
(PME) created in 1976 or reported at its annual conferences. Even if the coauthors 
cannot enter into the details of this complex history, they make clear that this is 
really the case. The chapter opens by a quotation from Simon and reminds us that, 
very early, some researchers (Erich Wittmann is especially mentioned) established 
connections between mathematics education and the fi eld of design sciences itself 
in an emerging state at the time. This historical review also shows that, within the 
important didactical traditions that began to develop in the 1970s during a period of 
intense refl ection on mathematics education and curricular reforms, the vision of 
frameworks and principles for guiding task design went beyond the strict design of 
tasks. The fi rst PME working group devoted to these issues labeled them  Principles 
for the design of teaching ; these addressed not only the design of tasks but also the 
way these should be used in teaching. These principles were built on epistemologi-
cal bases regarding both mathematics as a science and mathematical learning, with 
an important infl uence of Piagetian epistemology for the latter. Regarding didactical 
engineering, I would add the importance of a systemic vision supported by the theo-
retical constructs of TDS. 

 There is no doubt that the relationship of the fi eld of mathematics education with 
design sciences has evolved since that time, as also made clear by Chap.   2    , and that the 
epistemologies of reference for the fi eld of mathematics education have substantially 
evolved; however, we cannot forget that task design in mathematics education is the 
product of this history and shaped by it. This is attested by the vitality and persistent 
infl uence of design traditions, such as those of the Shell Centre at the University of 
Nottingham, the Freudenthal Institute and Realistic Mathematics Education (RME), 
or didactical engineering and TDS, all well visible in this volume. 
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 A shared need in mathematics education, here the need of designing tasks and 
associated scenarios, generally results in an increasing variety of approaches. Task 
design does not escape this situation; this has certainly been a real challenge for the 
coauthors of Chap.   2     to provide the reader access to a diverse and dynamic land-
scape and to make sense of it and its evolution. Chapter   2     attests to the efforts made 
by the coauthors in taking up this challenge, through the diversity of approaches 
considered, the many examples used, and the many distinctions, categories, and 
structuring tools introduced. 

 The questions mainly addressed are the following: What are the frameworks and 
principles used, but also where do they come from, and how far do they determine 
task design and how? These questions are indeed crucial and, as could be antici-
pated, the answers provided are many, many more certainly than could be the case 
in the 1980s. Beyond some convergences pointed out by the coauthors, for instance, 
the importance attached to problem solving, divergence is more the rule. 

 The diversity of answers results from a diversity of factors: the nature of theoreti-
cal frameworks underpinning the design when the design is explicitly based on such 
frameworks, the extension given to the concept of task design, the genre of tasks 
that are envisaged and the scope of the design projects, the professional groups 
involved in the design and their respective roles, and so forth. To organize this diver-
sity, different distinctions are introduced. Regarding theoretical frameworks, the 
fi rst distinction is in terms of levels. Three levels for theories are introduced: grand 
frames, intermediate-level frames, and domain-specifi c frames. This distinction is 
certainly pertinent, but it does not fully solve the problem. At the same level, one 
can fi nd objects of very different nature, and, as acknowledged by the coauthors 
themselves, task design often relies on combinations of frames situated at the same 
level in this classifi cation (e.g., fruitful combinations between TDS and the theory 
of semiotic mediation) or at different levels. For instance, an intermediate-level 
frame provides a global frame to the task design, and it is complemented by frames 
more specifi c to such-and-such mathematical domain or to such-and-such dimen-
sion of the design project. 

 We could expect strong and operational relationships between frames and prin-
ciples. The examples quoted tend to show that this is not necessarily the case. The 
image is perhaps biased by the limited place necessarily allocated to the description 
of each single case; however, in many cases, the principles listed gave me the 
impression that they were moderately dependent on the frames and also articulated 
in such general terms that they were not constraining the design very much. In con-
trast, what these examples make clear is that design principles go beyond the design 
of tasks to be proposed to students. As was already the case in the 1980s, they 
underpin equally, if not more, the design of scenarios for embedding these tasks. 
This confi rms the vision of tasks as objects one cannot make sense of independently 
of their insertion in a scenario of implementation, a scenario which is itself depen-
dent on the context envisaged for its implementation and not just of learning per-
spectives. I am fully in line with such a vision. 

 Another interesting distinction introduced is the distinction made between  design 
as intention  and  design as implementation  in reference to the work of Collins, Joseph, 
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and Bielaczyc ( 2004 ). It is particularly used to point out the various relationships to 
theory that may be involved in design projects, according to the fact that the theory 
can primarily be seen either as a resource for design (when its function is to guide) 
or as a product of design (such as when the design produces learning trajectories for 
specifi c mathematical fi elds, which are considered as local theories). Once again, the 
examples used for illustration make clear that the distinction captured is relevant; 
however, it would be abusive to equate design as intention and theory as a resource 
or design as implementation and theory as a product. The relationships are, in fact, 
much more complex and dialectical. The examples analyzed in that section, that is, 
design associated to RME or to ATD, are good illustrations of these dialectical rela-
tionships. My personal experience of didactical engineering supported by TDS, in 
combination with other frames such as the theory of semiotic mediation or the instru-
mental approach, is additional evidence for me. I would like to add that, beyond the 
examples mentioned in this section of the chapter for which the theoretical outcomes 
of task design are mainly expressed in terms of learning trajectories, task design can 
also be engaged in the production and reproduction of didactical phenomena attached 
to the functioning of didactical systems, such as phenomena resulting from the para-
doxes of the didactical contract, as mentioned in Chaps.   2     and   8    . 

 As I have already pointed out, frames and principles are most often expressed in 
very general terms leading one to think that, whatever their infl uences on task design, 
they are far from solving all decision-making choices that any design engages. This 
is clearly visible in the many examples used. Frames and principles leave a large 
space of maneuver for designers, whether researchers, professional designers, or 
teachers, and many questions arise from that. How is this space apprehended or 
operated and with what consequences on task design? In Chap.   2    , this question is 
related to the distinction made between two visions of design,  design as a science  
and  design as art or craft , two visions put in tension and even opposed, as is the case 
in Chap.   10     authored by Jan de Lange. I have to confess that I found this chapter 
perturbing; I am not sure, even after reading it carefully, that I have fully understood 
the subtlety of the message that the author wants to convey. Perhaps the reason is 
that I had the impression that it was addressing the concerns of a design world of 
professional designers to which specifi c demands are made, who are working under 
the pressure of various constraints, including hard time constraints, and also who 
fully embrace the idea that they are developing products for large-scale dissemina-
tion which will escape their direct infl uence. My design experience is that of a 
researcher, a university teacher, and a teacher educator whose practice has always 
been more modest and also a collaborative practice, particularly within structures 
such as the French Research Institutes in Mathematics Teaching (IREM) in which, 
since their creation in the late 1960s and early 1970s, teachers, teacher educators, 
mathematicians, and didacticians work together, coordinating the diversity of their 
respective expertise. This practice never negated the fact that, in task design, theo-
retical control has limitations, that the decisions to be taken go far beyond what is 
accessible to scientifi c rationality, and that experience, artisanal tricks, and habits 
shape choices as importantly as theories (from the outset, this was integrated in 
the idea of didactical engineering). However, I have also learned what theoretical 
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constructions offer to design, in terms both of global vision and operational tools. 
I also quickly understood that task design relies on specifi c forms of creativity, 
which are not equally shared. I have always been impressed by my colleagues, 
teachers, and researchers, who have this form of creativity, and at times I envy them. 
However, I do not agree with a dichotomist vision that opposes design as science 
with design as art or as craft. Neither do I agree with the opposition made by de 
Lange between pure and applied mathematics for supporting his argumentation, 
using the following quotation by Hilton: “Since mathematics (analogous to educa-
tional design theory/science) incorporates a systematic body of knowledge and 
involves cumulative reasoning and understanding, it is to that extent a science. And 
since applied mathematics (analogous to the actual practice of designers) involves 
 choices which must be made on the basis of experience, intuition, and even inspira-
tion, it partakes the quality of art ” (p. 95, emphasis added). 

 These concerns do not prevent me from fi nding this provocative contribution 
very useful. It made me realize that in this study globally, and even in Chap.   5     
devoted to text-based resources which more directly concerns design processes 
for tasks proposed in textbooks and other educational resources, the voice of profes-
sional designers is not strongly present. The voice of teachers who daily design and 
adapt tasks is mostly heard indirectly through studies regarding their practices. This 
probably affects the vision that is proposed to the reader of the relationships between 
design as science and design as art or of the role of frames and principles. 

 Understanding the subtle alchemy at stake between invention, craftsmanship, 
theory, and principles in task design is not easy. As is well stressed in the study, 
publications leave a few traces of this alchemy and we must engage in a real archae-
ology of design processes for accessing it. This study has the merit of making the 
point clear. Beyond that, it provides the reader with various entry points to approach 
this diffi culty and illustrates their potential with insightful examples. Moreover, in 
some cases, particularly in the chapters associated with plenary lectures, the study 
allows us to go more deeply into the design process and to access the rationale for 
the decisions taken along it. From this perspective, I found Chap.   9     devoted to les-
son studies enlightening even if it focuses on one specifi c dimension of this complex 
process of design. Despite the fact that the reader can perceive a shared sensitivity 
to mathematics and its epistemology, the contrast is evident with the view of design 
inspired by TDS or ATD, described in Chap.   8    . I hope that this chapter will help 
many readers to better understand these forms of design which have emerged in my 
own culture, what unifi es them and also what differentiates them. My familiarity 
with these forms of design does not make me the best person for anticipating if this 
may really happen.  

12.4     Task Design Through Text-Based Tasks 

 Chapter   5     is dedicated to text-based tasks, those that we have always found in text-
books but that are today available in an increasing variety of media due to techno-
logical advances. They are defi ned in this chapter as “the written presentation of a 
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planned mathematical experience for a learner, which could be one action or a 
sequence of actions that form an overall experience.” 

 As explained by the coeditors of the Study in Chap.   1    , their initial intention was 
to focus on task design in textbooks and other forms of text-based communication 
designed to generate mathematical meaning; to compare organizations and contents 
according to series, countries, and cultures; and to study existing means for analyz-
ing isolated tasks or sequences of tasks and the relationships between tasks and 
curricula (tasks being seen on the one hand as tools for implementing curricula and 
on the other hand as vectors infl uencing them). 

 Indeed, the contributions received on this theme had little connection with the 
questions initially set up in the Discussion Document for the Study, and the prepara-
tory work for this chapter was reorganized around the accepted contributions. One 
can see here a sign of the diffi culty in this ICMI study, as in others, to attract the 
contribution of people and institutions more at the periphery of the community or 
even beyond the sole community of researchers in mathematics education. 

 As in the other chapters produced by the working groups and fed by a variety of 
contributions, in this chapter, we perceive the effort made by the authors to organize 
the variety of objects and questions. What is proposed is to structure the study 
around three poles: the nature and structure of tasks, the teaching/learning goal of 
their design, and the intended/implemented activity embedded in them. Each pole 
of the triangular structure is associated with a specifi c substructure. For each pole, 
it is also proposed either to enlarge the perspective or in contrast to reduce it, “by 
zooming out and thinking about the overall educational context and how this affects 
task design, and also by zooming in to the imagined interaction between one learner 
and the task.” 

 This structure provides a rather complex but a priori interesting framework. In 
fact, from the description of the fi rst pole, one perceives the diversity of objects to 
be considered, from textual materials in which learning trajectories are incorporated 
(as is the case for textbooks but also for online resources offering more or less fl ex-
ible learning trajectories and different forms of piloting, including by the learners 
themselves) to banks of tasks where teachers and even students can freely do their 
“shopping”. It is also made clear how technological evolution contributes to this 
diversity, beyond the sole quantitative explosion of resources and changing condi-
tions to access them. The same occurs in this fi rst pole, when categories of possible 
authors are listed or when the nature of the mathematics that these tasks make it 
possible to meet is discussed. 

 Beyond this diversity arises the question of the educational aims of tasks and of 
how these aims are actually made visible both to teachers and students or could be 
made better visible in the specifi c format of text-based tasks. As the authors point 
out, these objectives are multiple a priori if we accept that “the aims of mathematics 
education are multifaceted, so that learners become knowledgeable about concepts, 
competent with procedures, capable and willing to select, adapt and use mathemat-
ics in a variety of familiar and unfamiliar contexts and problems.” Various examples 
are given which show the cultural variability in this area. Categorizations are also 
offered, such as that of Thompson, Hunsader, and Zorin, which for assessment tasks 
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distinguishes between the following foci: reasoning and proof, opportunities for 
mathematical communication, connections, representation: the role of graphics, and 
representation: translation of representational forms. These seem to me very gen-
eral, indicating at the best genres of tasks, and, reading their description, it is not 
clear whether more specifi c criteria of analysis are associated with them. 

 Various important questions are raised and discussed throughout the chapter with 
the use of examples, such as those regarding the possibility in the context of text- 
based tasks:

•    Of initiating a dialogical relationship with the learner via the content and form of 
tasks  

•   Of creating tasks allowing differentiated student work or supporting pattern 
recognition and processes of abstraction, or allowing connections between 
representations  

•   Of helping the transition from the knowledge that can potentially emerge from 
the resolution of open tasks toward conventional forms of knowledge  

•   Of supporting particular learning approaches such as those underpinning the 
theory of variations    

 The many examples used show that, despite its limitations, the context of text- 
based tasks is not without potential in all these areas but also that actualizing this 
potential usually requires substantial changes in the text of these tasks and in their 
traditional uses. 

 Due to my personal interests, I read this chapter looking specifi cally at its affor-
dances regarding issues such as the design of task sequences weaving the progres-
sive development of specifi c mathematical knowledge and of global competences, 
for instance, inquiry or modeling competences, combining mathematical learning 
and the development of critical citizenship, or supporting multidisciplinary or co- 
disciplinary work. On all these points, some insightful contributions are presented 
and discussed in the chapter, such as that of Movshovitz-Hadar and Edri whose 
objective is to propose tasks embedded in the curriculum and serving the cause of 
citizenship or that by Maaβ and her colleagues on the European project COMPASS 
whose objective was to create educational resources that support interdisciplinarity 
in sciences, maths, and technology. These contributions clearly show the efforts 
undertaken by researchers to make this genre of tasks acceptable and usable in 
normal school contexts. As pointed out in relation to the COMPASS project, this 
genre of task is a priori more appropriate to exploratory work and long-term proj-
ects; however, to extend their accessibility and use, the project partners had also to 
design “more structured versions to support teachers who were not confi dent 
enough to undertake long tasks.” It is added that “task designers gave considerable 
thought to how complex materials could be made teacher friendly and easy to use.” 
We fi nd here the expression of ecological concerns and constraints also visible in 
the valuable contributions of authors whose design activity, in terms of study and 
research paths, is inspired by the ATD and its paradigm of questioning the world 
(see Chaps.   2     and   8    ). 
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 However, I must admit that I remained a little hungry because these issues are 
only marginally worked in the chapter, probably due to lack of substantial contribu-
tions. This suggests that much more research and development work is still needed 
on them.  

12.5     Task Design, Tools, and Technology 

 The use of tools to support mathematical learning is nothing new. There is no doubt 
that technological advances and also, from a more general perspective, the increas-
ing attention paid by research to the semiotic dimension of mathematical activity 
have refocused interest on tool issues and brought new conceptual means to 
approach them. The existence of a specifi c working group in this Study on the 
design of tools and the content of Chap.   6     coauthored by its members well refl ect 
this move. A tool-based task is defi ned in it as “a teacher/researcher design aiming 
to be a thing to do or act on in order for students to activate an interactive tool-based 
environment where teacher, students and resources mutually enrich each other in 
producing mathematical experiences.” As the reader is reminded in the chapter 
introduction, the prevailing view today is that “our interaction with tools, artefacts 
and culture material should be considered as more than auxiliary elements” and 
even, more and more, that artifacts are “a constitutive part of thinking and sensing”. 
These convergences, however, do not prevent the existence of epistemological dif-
ferences between tool-based task designers infl uencing not only the choice of tools 
or their design, when such design is also part of the process, but also how a particu-
lar tool is used. Diversity is once again the rule. 

 The chapter is structured into three main sections—considerations in designing 
tasks that make use of tools, theoretical frames for designing tool-based tasks, and 
further design considerations and heuristics—a structure which necessarily involves 
some overlapping content. The important ideas of semiotic mediation and instru-
mentation are therefore addressed in several sections, with some variation of per-
spective. Reading this chapter, I was particularly interested in the implications of 
these ideas in terms of heuristics and principles for task design, and in the examples 
selected to illustrate these implications. I was also, of course, interested in the dis-
course developed about the changes resulting from technological evolution because, 
as could be expected, technology is very present in this chapter. The potential infl u-
ence of a vision of tools as instruments for semiotic mediation on task design is, for 
instance, well illustrated. In the various references made to task design inspired by 
the theory of semiotic mediation, the emphasis put in such design on the transition 
from personal signs developed by students in their interaction with the artifact to 
cultural mathematical signs detached from the use of the artifact is well stressed, 
together with the crucial role played by the teacher in this transition. I would like to 
add that the cross-case studies of the use of the same artifact, here the Casyopée 
software (  https://casyopee.math.univ-paris-diderot.fr    ), carried out in the ReMath 
project cited in this chapter, enabled us to thoroughly study the similarities and 
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differences between designs based on different theoretical approaches. For instance, 
the cross-case study involving two designs using the same mathematical problem, 
one based on TDS and the instrumental approach and the other based on the theory 
of semiotic mediation, allowed us to better understand the design implications of 
subtle differences in the semiotic visions of the two approaches (Maracci, Cazes, 
Vandebrouck, & Mariotti,  2013 ). 

 The reference to Rabardel’s conceptualization and to didactic research inspired 
by it serves as the frame for instrumental considerations. At different times in the 
chapter, emphasis is placed on the tensions or gaps between potential and actual 
uses of tools, empirical/pragmatic or epistemic. As rightly stressed, if such tension 
is not taken into account in the design of tasks, students’ activity can remain situated 
at the empirical/pragmatic level. This tension is, of course, not unique to the use of 
technological tools, but these have especially highlighted it. As I have written in 
other texts, one can observe a “natural” tendency in task design involving techno-
logical tools, due to their characteristics and affordances, to favor the pragmatic 
potential over the epistemic potential. This trend creates, in fact, a didactic obstacle. 
In the chapter, several examples show that this obstacle can be overcome through 
careful design choices; for example, the contribution by Robotti provides an excel-
lent case. 

 Two other concepts discussed in this chapter seem to me very relevant with 
regard to tool-based task design, those of instrumental distance and discrepancy 
potential of a tool, which is defi ned as “a pedagogical space generated by (1) feed-
back due to the nature of the tool or design of the task that possibly deviates from 
the intended mathematical concept or (2) uncertainty created due to the nature of the 
tool or design of the task that requires the tool users to make decisions.” We perceive 
their potential well through the discourse developed and the examples discussed. 
Regarding instrumental distance, I would like to add that the research work we have 
carried out with Haspekian on the teaching and learning of elementary algebra with 
various digital artifacts (spreadsheet, CAS) shows that it is important to include also 
in this instrumental distance an institutional dimension, in order to better under-
stand its possible effects (Haspekian & Artigue,  2007 ). Another concept, very pres-
ent throughout the chapter, is that of feedback. The piloting of feedbacks, the 
anticipation of possible effects, the organized play on their evolution through a 
sequence of tasks, and the cognitive exploitation of qualitative jumps in these, 
which is related with the notion of informational jump in TDS, all these are essential 
in task design. Again, technological advances open new ways as is well shown in the 
examples given on the Cabri Elem textbook or the analysis of dragging feedback in 
dynamic geometry environments. 

 The question of tool-based task design, especially in technological environ-
ments, cannot be seriously approached without working on the potential offered by 
the multiplicity of available representations, of means of action on these representa-
tions, and of interaction between them. This is probably one affordance of digital 
technologies that has been most systematically studied, and it was at the heart of the 
ReMath project already mentioned. It is present in this chapter, but not central, par-
ticularly through the ideas of conceptual blending and multiplicity and also when 
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alternative representations are developed for addressing specifi c students’ needs as 
is the case with the original systems of representations designed by Healy and her 
colleagues for blind or deaf students. 

 As we can see, as was the case for Chaps.   2     and   5    , this chapter provides a diver-
sity of perspectives with which to approach tool-based task design, introducing and 
highlighting some key and overarching concepts transcending any particular 
approach and using them for presenting and discussing a great variety of design 
realizations. Task design being understood in this study in very broad terms, I was, 
however, expecting a bit more regarding the potential offered today by digital tech-
nologies for the design and implementation of didactic scenarios and the reality of 
its current use. 

 This question is actually thoroughly discussed in the next, very interesting 
chapter where Michal Yerushalmy presents and analyzes the design of an e-textbook 
in the fi eld of functions. More generally, she clearly shows how, increasingly, the 
structured and rigid didactical organization which has traditionally been imposed 
on textbooks is challenged by the digital culture, leading to complex objects com-
bining a variety of tools and media, allowing fl exible use and customization by the 
user, either teacher or student. In such a schema, the distinction between author/
designer and user fades, as also stressed by Gueudet and Trouche for instance, 
making unavoidable a vision of task design as a process going on in use, as concep-
tualized in the documentary approach (Gueudet, Pepin, & Trouche,  2013 ). This 
raises, however, the diffi cult question of how to ensure the epistemological and 
educational relevance of the increased diversity of designs based on the same matrix 
that results from a fl exible and user-controlled situation, an issue that seems widely 
open at the moment.  

12.6     Conclusion 

 Like many ICMI studies, this study is very rich. It addresses a multiplicity of issues, 
regarding a notion of task design conceptualized broadly, through a diversity of 
voices. To help make sense of this diversity, multiple frames, organizing principles, 
concepts, and categories are introduced throughout the different chapters and used 
to situate, compare, and analyze a large number of research projects and realizations 
corresponding to different scales, practices, and contexts of task design. This study 
also covers the diversity of genres of tasks that one may have to design for the teach-
ing and learning of mathematics. The history of task design in mathematics educa-
tion is traced back to the early 1970s, and most recent developments are also 
discussed. Students’ and teachers’ perspectives are similarly considered. 

 All this means that the study provides a good picture of the real state of knowledge 
in this area of task design, helps understand evolutions and their rationale, identifi es 
research and development needs, and delineates perspectives for future work. As 
in other ICMI studies, for example, the ICMI Study 17 on digital technologies in 
which I was involved some years ago, reading the different chapters, we also perceive 
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that while contexts and expectations are moving, while digital technologies profoundly 
impact the work of designers and their relationships with users, while new issues 
arise, still many task design issues, ordinary and basic, have not found satisfactory 
answers. 

 I started the reading of this volume with many questions in mind. Ending it, I 
have a more comprehensive vision of the state of the art, new conceptual tools at my 
disposal for organizing task design work, for comparing, analyzing, evaluating, etc. 
I also understand that issues worrying me are shared and worked on by many 
researchers all over the world. For instance, I worry about appropriate levels for the 
description of tasks and task sequences that allow teachers to express their creativity 
and to adapt tasks to their particular context while preserving their essence and 
learning potential, in other words the complex relationships between task authors 
and users. I am concerned about the profound changes resulting from technological 
evolution in that respect and how task design can support the coherent development 
of knowledge, skills,  inquiry competences and attitudes, and how to align the 
design of assessment tasks with educational values and so on. Promising construc-
tions and realizations are presented and discussed, but it would be an exaggeration 
to say that the study fully answers these issues. It shows that these issues, as is 
generally the case in mathematics education, are addressed in a diversity of ways 
according to contexts and educational cultures; it offers valuable knowledge and 
develops tools to connect them. This certainly refl ects what was accessible in the 
Study within the current state of international knowledge on task design and paves 
the way toward future research and development.     
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