
24th International Conference, FASE 2021
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2021
Luxembourg City, Luxembourg, March 27 – April 1, 2021
Proceedings

Fundamental Approaches
to Software EngineeringLN

CS
 1

26
49

AR
Co

SS
Esther Guerra
Mariëlle Stoelinga (Eds.)

Lecture Notes in Computer Science 12649

Founding Editors

Gerhard Goos, Germany
Juris Hartmanis, USA

Editorial Board Members

Elisa Bertino, USA
Wen Gao, China
Bernhard Steffen , Germany

Gerhard Woeginger , Germany
Moti Yung, USA

Advanced Research in Computing and Software Science
Subline of Lecture Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, TU Munich, Germany
Benjamin C. Pierce, University of Pennsylvania, USA
Bernhard Steffen , University of Dortmund, Germany
Deng Xiaotie, Peking University, Beijing, China
Jeannette M. Wing, Microsoft Research, Redmond, WA, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693
https://orcid.org/0000-0001-9619-1558

More information about this subseries at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Esther Guerra • Mariëlle Stoelinga (Eds.)

Fundamental Approaches
to Software Engineering
24th International Conference, FASE 2021
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2021
Luxembourg City, Luxembourg, March 27 – April 1, 2021
Proceedings

123

Editors
Esther Guerra
Universidad Autónoma de Madrid
Madrid, Spain

Mariëlle Stoelinga
University of Twente
Enschede, The Netherlands

Radboud University
Nijmegen, The Netherlands

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-71499-4 ISBN 978-3-030-71500-7 (eBook)
https://doi.org/10.1007/978-3-030-71500-7

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© The Editor(s) (if applicable) and The Author(s) 2021. This book is an open access publication.
Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes were made.
The images or other third party material in this book are included in the book’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-2818-2278
https://orcid.org/0000-0001-6793-8165
https://doi.org/10.1007/978-3-030-71500-7
http://creativecommons.org/licenses/by/4.0/

ETAPS Foreword

Welcome to the 24th ETAPS! ETAPS 2021 was originally planned to take place in
Luxembourg in its beautiful capital Luxembourg City. Because of the Covid-19 pan-
demic, this was changed to an online event.

ETAPS 2021 was the 24th instance of the European Joint Conferences on Theory
and Practice of Software. ETAPS is an annual federated conference established in
1998, and consists of four conferences: ESOP, FASE, FoSSaCS, and TACAS. Each
conference has its own Program Committee (PC) and its own Steering Committee
(SC). The conferences cover various aspects of software systems, ranging from theo-
retical computer science to foundations of programming languages, analysis tools, and
formal approaches to software engineering. Organising these conferences in a coherent,
highly synchronised conference programme enables researchers to participate in an
exciting event, having the possibility to meet many colleagues working in different
directions in the field, and to easily attend talks of different conferences. On the
weekend before the main conference, numerous satellite workshops take place that
attract many researchers from all over the globe.

ETAPS 2021 received 260 submissions in total, 115 of which were accepted,
yielding an overall acceptance rate of 44.2%. I thank all the authors for their interest in
ETAPS, all the reviewers for their reviewing efforts, the PC members for their con-
tributions, and in particular the PC (co-)chairs for their hard work in running this entire
intensive process. Last but not least, my congratulations to all authors of the accepted
papers!

ETAPS 2021 featured the unifying invited speakers Scott Smolka (Stony Brook
University) and Jane Hillston (University of Edinburgh) and the conference-specific
invited speakers Işil Dillig (University of Texas at Austin) for ESOP and Willem Visser
(Stellenbosch University) for FASE. Inivited tutorials were provided by Erika Ábrahám
(RWTH Aachen University) on analysis of hybrid systems and Madhusudan
Parthasararathy (University of Illinois at Urbana-Champaign) on combining machine
learning and formal methods.

ETAPS 2021 was originally supposed to take place in Luxembourg City, Luxem-
bourg organized by the SnT - Interdisciplinary Centre for Security, Reliability and
Trust, University of Luxembourg. University of Luxembourg was founded in 2003.
The university is one of the best and most international young universities with 6,700
students from 129 countries and 1,331 academics from all over the globe. The local
organisation team consisted of Peter Y.A. Ryan (general chair), Peter B. Roenne (or-
ganisation chair), Joaquin Garcia-Alfaro (workshop chair), Magali Martin (event
manager), David Mestel (publicity chair), and Alfredo Rial (local proceedings chair).

ETAPS 2021 was further supported by the following associations and societies:
ETAPS e.V., EATCS (European Association for Theoretical Computer Science),
EAPLS (European Association for Programming Languages and Systems), and EASST
(European Association of Software Science and Technology).

The ETAPS Steering Committee consists of an Executive Board, and representa-
tives of the individual ETAPS conferences, as well as representatives of EATCS,
EAPLS, and EASST. The Executive Board consists of Holger Hermanns (Saar-
brücken), Marieke Huisman (Twente, chair), Jan Kofron (Prague), Barbara König
(Duisburg), Gerald Lüttgen (Bamberg), Caterina Urban (INRIA), Tarmo Uustalu
(Reykjavik and Tallinn), and Lenore Zuck (Chicago).

Other members of the steering committee are: Patricia Bouyer (Paris), Einar Broch
Johnsen (Oslo), Dana Fisman (Be’er Sheva), Jan-Friso Groote (Eindhoven), Esther
Guerra (Madrid), Reiko Heckel (Leicester), Joost-Pieter Katoen (Aachen and Twente),
Stefan Kiefer (Oxford), Fabrice Kordon (Paris), Jan Křetínský (Munich), Kim G.
Larsen (Aalborg), Tiziana Margaria (Limerick), Andrew M. Pitts (Cambridge), Grigore
Roșu (Illinois), Peter Ryan (Luxembourg), Don Sannella (Edinburgh), Lutz Schröder
(Erlangen), Ilya Sergey (Singapore), Mariëlle Stoelinga (Twente), Gabriele Taentzer
(Marburg), Christine Tasson (Paris), Peter Thiemann (Freiburg), Jan Vitek (Prague),
Anton Wijs (Eindhoven), Manuel Wimmer (Linz), and Nobuko Yoshida (London).

I’d like to take this opportunity to thank all the authors, attendees, organizers of the
satellite workshops, and Springer-Verlag GmbH for their support. I hope you all
enjoyed ETAPS 2021.

Finally, a big thanks to Peter, Peter, Magali and their local organisation team for all
their enormous efforts to make ETAPS a fantastic online event. I hope there will be a
next opportunity to host ETAPS in Luxembourg.

Marieke Huisman
ETAPS SC Chair

ETAPS e.V. President

February 2021

vi ETAPS Foreword

Preface

This volume contains the papers presented at FASE 2021, the 24th International
Conference on Fundamental Approaches to Software Engineering. FASE 2021 was
organized as part of the annual European Joint Conferences on Theory and Practice of
Software (ETAPS 2021).

FASE is concerned with the foundations on which software engineering is built,
including topics like software engineering as an engineering discipline, requirements
engineering, software architectures, software quality, model-driven development,
software processes, software evolution, search-based software engineering, and the
specification, design, and implementation of particular classes of systems, such as
(self-)adaptive, collaborative, intelligent, embedded, distributed, mobile, pervasive,
cyber-physical, or service-oriented applications.

FASE 2021 received 51 submissions. The submissions came from the following
countries (in alphabetical order): Argentina, Australia, Austria, Belgium, Brazil,
Canada, China, France, Germany, Iceland, India, Ireland, Italy, Luxembourg, Mace-
donia, Malta, Netherlands, Norway, Russia, Singapore, South Korea, Spain, Sweden,
Taiwan, United Kingdom, and United States. FASE used a double-blind reviewing
process. Each submission was reviewed by three Program Committee members. After
an online discussion period, the Program Committee accepted 16 papers as part of the
conference program (31% acceptance rate).

FASE 2021 hosted the 3rd International Competition on Software Testing
(Test-Comp 2021). Test-Comp is an annual comparative evaluation of testing tools.
This edition contained 11 participating tools, from academia and industry. These
proceedings contain the competition report and three system descriptions of partici-
pating tools. The system-description papers were reviewed and selected by a separate
program committee: the Test-Comp jury. Each paper was assessed by at least three
reviewers. Two sessions in the FASE program were reserved for the presentation of the
results: the summary by the Test-Comp chair and the participating tools by the
developer teams in the first session, and the community meeting in the second session.

A lot of people contributed to the success of FASE 2021. We are grateful to the
Program Committee members and reviewers for their thorough reviews and con-
structive discussions. We thank the ETAPS 2021 organizers, in particular,
Peter Y. A. Ryan (General Chair), Joaquin Garcia-Alfaro (Workshops Chair), Peter
Roenne (Organization Chair), Magali Martin (Event Manager), David Mestel (Publicity
Chair) and Alfredo Rial (Local Proceedings Chair). We also thank Marieke Huisman
(Steering Committee Chair of ETAPS 2021) for managing the process, and Gabriele
Taenzter (Steering Committee Chair of FASE 2021) for her feedback and support. Last
but not least, we would like to thank the authors for their excellent work.

March 2021 Esther Guerra
Mariëlle Stoelinga

Organization

Steering Committee

Wil van der Aalst RWTH Aachen, Germany
Jordi Cabot ICREA - Universitat Oberta de Catalunya, Spain
Marsha Chechik University of Toronto, Canada
Reiner Hähnle Technische Universität Darmstadt, Germany
Reiko Heckel University of Leicester, UK
Tiziana Margaria University of Limerick, Ireland
Fernando Orejas Universitat Politècnica de Catalunya, Spain
Julia Rubin University of British Columbia, Canada
Alessandra Russo Imperial College London, UK
Andy Schürr Technische Universität Darmstadt, Germany
Perdita Stevens University of Edinburgh, UK
Gabriele Taentzer Philipps-Universität Marburg, Germany
Andrzej Wąsowski IT University of Copenhagen, Denmark
Heike Wehrheim Universtät Paderborn, Germany

FASE – Program Committee

João Paulo Almeida Universidade Federal do Espírito Santo, Brazil
Étienne André LORIA, Université de Lorraine, France
Uwe Aßmann Technische Universität Dresden, Germany
Artur Boronat University of Leicester, UK
Paolo Bottoni Sapienza University of Rome, Italy
Jordi Cabot ICREAUniversitat Oberta de Catalunya, Spain
Yu-Fang Chen Academia Sinica, Taiwan
Philippe Collet Université Côte d’Azur - CNRS/I3S, France
Francisco Durán University of Málaga, Spain
Marie-Christine Jakobs Technische Universität Darmstadt, Germany
Nils Jansen Radboud University Nijmegen, The Netherlands
Einar Broch Johnsen University of Oslo, Norway
Leen Lambers Hasso-Plattner-Institut, Universität Potsdam,

Germany
Yi Li Nanyang Technological University, Singapore
Stefan Mitsch Carnegie Mellon University, USA
Martin R. Neuhäußer Siemens AG, Germany
Ajitha Rajan University of Edinburgh, UK
Augusto Sampaio Federal University of Pernambuco, Brazil
Perdita Stevens University of Edinburgh, UK
Daniel Strüber Radboud University Nijmegen, The Netherlands
Gabriele Taentzer Philipps-Universität Marburg, Germany

Silvia Lizeth Tapia Tarifa University of Oslo, Norway
Daniel Varró McGill University, Canada
Heike Wehrheim University of Paderborn, Germany
Anton Wijs Eindhoven University of Technology,

The Netherlands
Manuel Wimmer Johannes Kepler University Linz, Austria
Tao Yue Simula Research Laboratory, Norway
Steffen Zschaler King’s College London, UK

Test-Comp – Program Committee and Jury

Dirk Beyer (Chair) LMU Munich, Germany
Gidon Ernst

(Representing CMA-ES
Fuzz)

LMU Munich, Germany

Marie-Christine Jakobs
(Representing CoVeriTest)

TU Darmstadt, Germany

Kaled Alshmrany
(Representing FuSeBMC)

U. of Manchester, UK

Sebastian Ruland
(Representing HybridTiger)

TU Darmstadt, Germany

Martin Nowack
(Representing KLEE)

Imperial College London, UK

Dongge Liu
(Representing Legion)

U. of Melbourne, Australia

Hoang M. Le
(Representing LibKluzzer)

U. of Bremen, Germany

Thomas Lemberger
(Representing PRTest)

LMU Munich, Germany

Marek Chalupa
(Representing Symbiotic)

Masaryk U., Czechia

Joxan Jaffar
(Representing TracerX)

National U. of Singapore, Singapore

Raveendra Kumar M.
(Representing VeriFuzz)

Tata Consultancy Service, India

Additional Reviewers

Antonino, Pedro
Babikian, Aren
Badings, Thom
Bubel, Richard
Búr, Márton
Cánovas Izquierdo, Javier Luis
Chang, Yun-Sheng

Clarisó, Robert
De Lara, Juan
Din, Crystal Chang
Du, Xiaoning
Gómez, Abel
Hajdu, Ákos
Haltermann, Jan

x Organization

Kamburjan, Eduard
König, Jürgen
Lehner, Daniel
Lienhardt, Michael
Lin, Tzu Chi
Martens, Jan
Mey, Johannes
Morgenstern, Martin
Mukelabai, Mukelabai
Oliveira, Marcel Vinícius Medeiros
Oruc, Orcun
Osama, Muhammad
Pun, Violet Ka I.

Richter, Cedric
Sharma, Arnab
Steffen, Martin
Stolz, Volker
Suilen, Marnix
Szárnyas, Gábor
Tang, Yun
Tsai, Wei-Lun
Veeraragavan, Narasimha Raghavan
Waga, Masaki
Weinreich, Rainer
Wu, Xiuheng
Zhu, Chenguang

Organization xi

Contents

FASE Contributions

On Benchmarking for Concurrent Runtime Verification 3
Luca Aceto, Duncan Paul Attard, Adrian Francalanza,
and Anna Ingólfsdóttir

Certified Abstract Cost Analysis . 24
Elvira Albert, Reiner Hähnle, Alicia Merayo, and Dominic Steinhöfel

Bootstrapping Automated Testing for RESTful Web Services 46
Yixiong Chen, Yang Yang, Zhanyao Lei, Mingyuan Xia,
and Zhengwei Qi

A Decision Tree Lifted Domain for Analyzing Program Families
with Numerical Features . 67

Aleksandar S. Dimovski, Sven Apel, and Axel Legay

Finding a Universal Execution Strategy for Model Transformation
Networks . 87

Joshua Gleitze, Heiko Klare, and Erik Burger

CoVEGI: Cooperative Verification via Externally Generated Invariants 108
Jan Haltermann and Heike Wehrheim

Engineering Secure Self-Adaptive Systems with Bayesian Games 130
Nianyu Li, Mingyue Zhang, Eunsuk Kang, and David Garlan

An Abstract Contract Theory for Programs with Procedures 152
Christian Lidström and Dilian Gurov

Paracosm: A Test Framework for Autonomous Driving Simulations 172
Rupak Majumdar, Aman Mathur, Marcus Pirron, Laura Stegner,
and Damien Zufferey

Compositional Analysis of Probabilistic Timed Graph
Transformation Systems . 196

Maria Maximova, Sven Schneider, and Holger Giese

Efficient Bounded Model Checking of Heap-Manipulating Programs using
Tight Field Bounds . 218

Pablo Ponzio, Ariel Godio, Nicolás Rosner, Marcelo Arroyo,
Nazareno Aguirre, and Marcelo F. Frias

Effects of Program Representation on Pointer Analyses —
An Empirical Study. 240

Jyoti Prakash, Abhishek Tiwari, and Christian Hammer

Keeping Pace with the History of Evolving Runtime Models 262
Lucas Sakizloglou, Matthias Barkowsky, and Holger Giese

SpecTest: Specification-Based Compiler Testing . 269
Richard Schumi and Jun Sun

PASTA: An Efficient Proactive Adaptation Approach Based
on Statistical Model Checking for Self-Adaptive Systems. 292

Yong-Jun Shin, Eunho Cho, and Doo-Hwan Bae

Understanding Local Robustness of Deep Neural Networks under Natural
Variations . 313

Ziyuan Zhong, Yuchi Tian, and Baishakhi Ray

Test-Comp Contributions

Status Report on Software Testing: Test-Comp 2021 341
Dirk Beyer

CoVeriTest with Adaptive Time Scheduling (Competition Contribution) 358
Marie-Christine Jakobs and Cedric Richter

FuSeBMC: A White-Box Fuzzer for Finding Security Vulnerabilities
in C Programs (Competition Contribution) . 363

Kaled M. Alshmrany, Rafael S. Menezes, Mikhail R. Gadelha,
and Lucas C. Cordeiro

Symbiotic 8: Parallel and Targeted Test Generation:
(Competition Contribution). 368

Marek Chalupa, Jakub Novák, and Jan Strejček

Author Index . 373

xiv Contents

FASE Contributions

On Benchmarking for
Concurrent Runtime Verification�

Luca Aceto2,3 ID , Duncan Paul Attard�,1,2 ID ,
Adrian Francalanza1 ID , and Anna Ingólfsdóttir2 ID

1 University of Malta, Msida, Malta {duncan.attard.01,afra1}@um.edu.mt
2 Reykjavík University, Reykjavík, Iceland {luca,duncanpa17,annai}@ru.is

3 Gran Sasso Science Institute, L’Aquila, Italy {luca.aceto}@gssi.it

Abstract. We present a synthetic benchmarking framework that tar-
gets the systematic evaluation of RV tools for message-based concurrent
systems. Our tool can emulate various load profiles via configuration.
It provides a multi-faceted view of measurements that is conducive to
a comprehensive assessment of the overhead induced by runtime moni-
toring. The tool is able to generate significant loads to reveal edge case
behaviour that may only emerge when the monitoring system is pushed
to its limit. We evaluate our framework in two ways. First, we conduct
sanity checks to assess the precision of the measurement mechanisms
used, the repeatability of the results obtained, and the veracity of the
behaviour emulated by our synthetic benchmark. We then showcase the
utility of the features offered by our tool in a two-part RV case study.

Keywords: Runtime verification · Synthetic benchmarking · Software
performance evaluation · Concurrent systems

1 Introduction

Large-scale software design has shifted from the classic monolithic architecture
to one where applications are structured in terms of independently-executing
asynchronous components [17]. This shift poses new challenges to the validation
of such systems. Runtime Verification (RV) [9,27] is a post-deployment technique
that is used to complement other methods such as testing [46] to assess the func-
tional (e.g. correctness) and non-functional (e.g. quality of service) aspects of
concurrent software. RV relies on instrumenting the system to be analysed with
monitors, which inevitably introduce runtime overhead that should be kept min-
imal [9]. While the worst-case complexity bounds for monitor-induced overheads
can be calculated via standard methods (see, e.g. [40,14,1,28]), benchmarking is,
by far, the preferred method for assessing these overheads [9,27]. One reason for
� Supported by the doctoral student grant (No: 207055-051) and the TheoFoMon

project (No: 163406-051) under the Icelandic Research Fund, the BehAPI project
funded by the EU H2020 RISE under the Marie Skłodowska-Curie action
(No: 778233), the ENDEAVOUR Scholarship Scheme (Group B, national funds),
and the MIUR project PRIN 2017FTXR7S IT MATTERS.

c© The Author(s) 2021
E. Guerra and M. Stoelinga (Eds.): FASE 2021, LNCS 12649, pp. 3–23, 2021.
https://doi.org/10.1007/978-3-030-71500-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71500-7_1&domain=pdf
https://www.orcid.org/0000-0002-2197-3018
https://www.orcid.org/0000-0002-2448-5394
https://www.orcid.org/0000-0003-3829-7391
https://www.orcid.org/0000-0001-8362-3075

4 L. Aceto et al.

this choice is that benchmarks tend to be more representative of the overhead
observed in practice [30,15]. Benchmarks also provide a common platform for
gauging workloads, making it possible to compare different RV tool implemen-
tations, or rerun experiments to reproduce and confirm existing results.

The utility of a benchmarking tool typically rests on two aspects: (i) the
coverage of scenarios of interest, and (ii) the quality of runtime metrics col-
lected by the benchmark harness. To represent scenarios of interest, benchmark-
ing tools generally employ suites of third-party off-the-shelf (OTS) programs
(e.g. [60,11,59]). OTS software is appealing because it is readily usable and in-
herently provides realistic scenarios. By and large, benchmarks rely on a range of
OTS programs to broaden the coverage of real-world scenarios (e.g. DaCapo [11]
uses 11 open-source libraries). Yet, using OTS programs as benchmarks poses
challenges. By design, these programs do not expose hooks that enable harnesses
to easily and accurately gather the runtime metrics of interest. When OTS soft-
ware is treated as a black box, benchmarks become harder to control, impacting
their ability to produce repeatable results. OTS software-based benchmarks are
also limited when inducing specific edge cases—this aspect is critical when as-
sessing the safety of software, such as runtime monitors, that are often assumed
to be dependable. Custom-built synthetic programs (e.g. [35]) are an alternative
way to perform benchmarking. These tend to be less popular due to the per-
ceived drawbacks associated with developing such programs from scratch, and
the lack of ‘real-world’ behaviour intrinsic to benchmarks based on OTS soft-
ware. However, synthetic benchmarks offer benefits that offset these drawbacks.
For example, specialised hooks can be built into the synthetic set-up to collect
a broad range of runtime metrics. Moreover, synthetic benchmarks can also be
parametrised to emulate variations on the same core benchmark behaviour; this
is usually harder to achieve via OTS programs that implement narrow use cases.

Established benchmarking tools such as SPECjvm2008 [60], DaCapo [11],
ScalaBench [59] and Savina [35]—developed for the JVM—feature extensively in
the RV literature, e.g. see [48,19,18,54,13,45]. Apart from [45], these works assess
the runtime overhead solely in terms of the execution slowdown, i.e., the differ-
ence in running time between the system fitted with and without monitors. Re-
cently, the International RV competition (CRV) [8] advocated for other metrics,
such as memory consumption, to give a more qualitative view of runtime over-
head. We hold that RV set-ups that target concurrency benefit from other facets
of runtime behaviour, such as the response time, that captures the overhead be-
tween communicating components. Tangibly, this metric reflects the perceived
reactiveness from an end-user standpoint (e.g. interactive apps) [50,61,58,21];
more generally, it describes the service degradation that must be accounted for
to ensure adequate quality of service [15,39]. Arguably, benchmarking tools like
the ones above (e.g. Savina) should provide even more. Often, RV set-ups for
concurrent systems need to scale in response to dynamic changes, and the capac-
ity for a benchmark to emulate high loads cannot be overstated. In actual fact,
these loads are known to assume characteristic profiles (e.g. spikes or uniform
rates), which are hard to administer with the benchmarks mentioned earlier.

On Benchmarking for Concurrent Runtime Verification 5

The state of the art in benchmarking for concurrent RV suffers from an-
other issue. Existing benchmarks—conceived for validating other tools—are re-
purposed for RV and often fail to cater for concurrent scenarios where RV is
realistically put to use. SPECjvm2008, DaCapo, and ScalaBench lack workloads
that leverage the JVM concurrency primitives [52]; meanwhile, [12] shows that
the Savina microbenchmarks are essentially sequential, and that the rest of the
programs in the suite are sufficiently simple to be regarded as microbenchmarks
too. The CRV suite mostly targets monolithic software with limited concurrency,
where the potential for scaling up to high loads is, therefore, severely curbed.

This paper presents a benchmarking framework for evaluating runtime mon-
itoring tools written for verification purposes. Our tool focusses on component
systems for asynchronous message-passing concurrency. It generates synthetic
system models following the master-slave architecture [61]. The master-slave ar-
chitecture is pervasive in distributed (e.g. DNS, IoT) and concurrent (e.g. web
servers, thread pools) systems [61,29], and lies at the core of the MapReduce
model [22] supported by Big Data frameworks such as Hadoop [63]. This justi-
fies our aim to build a benchmarking tool targeting this architecture. Concretely:

– We detail the design of a configurable benchmark that emulates various
master-slave models under commonly-observed load profiles, and gathers dif-
ferent metrics that give a multi-faceted view of runtime overhead, Sec. 2.

– We demonstrate that our synthetic benchmarks can be engineered to ap-
proximate the realistic behaviour of web server traffic with high degrees of
precision and repeatability, Sec. 3.1.

– We present a case study that (i) shows how the load profiles and parametris-
ability of our benchmarks can produce edge cases that can be measured
through our performance metrics to asses runtime monitoring tools in a
comprehensive manner, and (ii) confirms that the results from (i) coincide
with those obtained via a real-world use case using OTS software, Sec. 3.2.

2 Benchmark Design and Implementation

Our set-up can emulate a range of system models and subject them to various
load types. We consider master-slave architectures, where one central process,
called the master, creates and allocates tasks to slave processes [61]. Slaves
work concurrently on tasks, relaying the result to the master when ready; the
latter then combines these results to yield the final output. Our slaves are an
abstraction of sets of cooperating processes that can be treated as a single unit.

2.1 Approach

We target concurrent applications that execute on a single node. Nevertheless,
our design adheres to three criteria that facilitate its extension to a distributed
setting. Specifically, components: (i) share neither a common clock, (ii) nor
memory, and (iii) communicate via asynchronous messages. Our present set-up
assumes that communication is reliable and components do not fail.

6 L. Aceto et al.

Load generation. Load on the system is induced by the master when it creates
slave processes and allocates tasks. The total number of slaves in one run can be
set via the parameter n. Tasks are allocated to slave processes by the master,
and consist of one or more work requests that a slave receives, handles, and relays
back. A slave terminates its execution when all of its allocated work requests have
been processed and acknowledged by the master. The number of work requests
that can be batched in a task is controlled by the parameter w; the actual batch
size per slave is then drawn randomly from a normal distribution with mean
μ=w and standard deviation σ=μ×0.02. This induces a degree of variability in
the amount of work requests exchanged between master and slaves. The master
and slaves communicate asynchronously : an allocated work request is delivered
to a slave process’ incoming work queue where it is eventually handled. Work
responses issued by a slave are queued and processed similarly on the master.
Load configuration. We consider three load profiles (see fig. 3 for examples) that
determine how the creation of slaves is distributed along the load timeline t.
The timeline is modelled as a sequence of discrete logical time units representing
instants at which a new set of slaves is created by the master. Steady loads
replicate executions where a system operates under stable conditions. These are
modelled on a homogeneous Poisson distribution with rate λ, specifying the mean
number of slaves that are created at each time instant along the load timeline
with duration t=�n/λ�. Pulse loads emulate settings where a system experiences
gradually increasing load peaks. The Pulse load shape is parametrised by t and
the spread, s, that controls how slowly or sharply the system load increases as it
approaches its maximum peak, halfway along t. Pulses are modelled on a normal
distribution with μ=t/2 and σ=s. Burst loads capture scenarios where a system
is stressed due to load spikes; these are based on a log-normal distribution with
μ=ln(m2/

√
p2+m2) and σ=

√
ln(1+p2/m2), where m= t/2, and parameter p

is the pinch controlling the concentration of the initial load burst.
Wall-clock time. A load profile created for a logical timeline t is put into effect
by the master process when the system starts running. The master does not
create the slave processes that are set to execute in a particular time unit in one
go, since this naïve strategy risks saturating the system, deceivingly increasing
the load. In doing so, the system may become overloaded not because the mean
request rate is high, but because the created slaves overwhelm the master when
they send their requests all at once. We address this issue by introducing the
notion of concrete time that maps one discrete time unit in t to a real time period,
π. The parameter π is given in milliseconds (ms), and defaults to 1000ms.
Slave scheduling. The master process employs a scheduling scheme to distribute
the creation of slaves uniformly across the time period π. It makes use of three
queues: the Order queue, Ready queue, and Await queue, denoted by QO, QR,
and QA respectively. QO is initially populated with the load profile, step 1 in
fig. 1a. The load profile consists of an array with t elements—each corresponding
to a discrete time instant in t—where the value l of every element indicates the
number of slaves to be created at that instant. Slaves, S1,S2,...,Sn, are scheduled
and created in rounds, as follows. The master picks the first element from QO

On Benchmarking for Concurrent Runtime Verification 7

Legend: Selected for processing Slave created Slave terminated

QO 4 2 1 1

t=4 units

QRp1 p2 p3 p4

c c+π

queue empty QA

π ms

t

l

1 2 3 4

1

2

3

4

Load profile

+

M

l=4

1

2 3

(a) Master schedules the first batch of
four slaves for execution in QR

QO 2 1 1

QRp1 p2 p3 p4

QAS1 S2

Time unit 1; round 1

M

S1 S2

fork req. fork

4

5 6

7

8

(b) Slaves S1 and S2 created and added
to QA; a work request is sent to S1

QO 2 1 1

QRp3 p4

QAS1 S2 S3 S4

Time unit 1; round 2

M

S3 S4 S1 S2

fork req. fork

exit

9

10 11

12

13 14

(c) Slaves S3 and S4 created and added
to QA; slave S2 completes its execution

QO 2 1 1

QRp1 p2

QAS1 S3 S4 S5

Time unit 2; round 1

M

S5 S1 S3 S4

l=2

resp.fork reqs.

15 16

1718

19

20

(d) QR becomes empty; master schedules
the next batch of two slaves

Fig. 1: Master M scheduling slave processes Sj and allocating work requests

to compute the upcoming schedule, step 2 , that starts at the current time,
c, and finishes at c+π. A series of l time points, p1,p2,...,pl, in the schedule
period π are cumulatively calculated by drawing the next pi from a normal
distribution with μ=�π/l� and σ=μ×0.1. Each time point stipulates a moment
in wall-clock time when a new slave Sj is to be created; this set of time points
is monotonic, and constitutes the Ready queue, QR, step 3 . The master checks
QR, step 4 in fig. 1b, and creates the slaves whose time point pi is smaller
than or equal to the current wall-clock time4, steps 5 and 6 in fig. 1b. The
time point pi of a newly-created slave is removed from QO, and an entry for
the corresponding slave Sj is appended to the Await queue QA; this is shown
in step 7 for S1 and S2. Slaves in QA are now ready to receive work requests
from the master process, e.g. step 8 . QA is traversed by the master at this
stage so that work requests can be allocated to existing slaves. The master
continues processing queue QR in subsequent rounds, creating slaves, issuing
work requests, and updating QR and QA accordingly as shown in steps 9 – 13

4 We assume that the platform scheduling the master and slave processes is fair.

8 L. Aceto et al.

in fig. 1c. At any point, the master can receive responses, e.g. step 17 in fig. 1d;
these are buffered inside the masters’ incoming work queue and handled once
the scheduling and work allocation phases are complete. A fresh batch of slaves
from QO is scheduled by the master whenever QR becomes empty, step 15 , and
the described procedure is repeated. The master stops scheduling slaves when all
the entries in QO are processed. It then transitions to work-only mode, where it
continues allocating work requests and handling incoming responses from slaves.

Reactiveness and task allocation. Systems generally respond to load with dif-
fering rates, due to the computational complexity of the task at hand, IO, or
slowdown when the system itself becomes gradually loaded. We simulate these
phenomena using the parameters Pr(send) and Pr(recv). The master interleaves
the processing of work requests to allocate them uniformly among the various
slaves: Pr(send) and Pr(recv) bias this behaviour. Specifically, Pr(send) con-
trols the probability that a work request is sent by the master to a slave, whereas
Pr(recv) determines the probability that a work response received by the master
is processed. Sending and receiving is turn-based and modelled on a Bernoulli
trial. The master picks a slave Sj from QA and sends at least one work request
when X ≤ Pr(send), i.e., the Bernoulli trial succeeds; X is drawn from a uni-
form distribution on the interval [0,1]. Further requests to the same slave are
allocated following this scheme (steps 8 , 13 and 20 in fig. 1) and the entry for
Sj in QA is updated accordingly with the number of work requests remaining.
When X>Pr(send), i.e., the Bernoulli trial fails, the slave misses its turn, and
the next slave in QA is picked. The master also queries its incoming work queue
to determine whether a response can be processed. It dequeues one response
when X ≤ Pr(recv), and the attempt is repeated for the next response in the
queue until X > Pr(recv). The master signals slaves to terminate once it ac-
knowledges all of their work responses (e.g. step 14). Due to the load imbalance
that may occur when the master becomes overloaded with work responses re-
layed by slaves, dequeuing is repeated |QA| times. This encourages an even load
distribution in the system as the number of slaves fluctuates at runtime.

2.2 Realisability

The set-up detailed in sec. 2.1 is easily translatable to the actor model of compu-
tation [2]. In this model, the basic units of decomposition are actors: concurrent
entities that do not share mutable memory with other actors. Instead, they in-
teract via asynchronous messaging. Each actor owns an incoming message buffer
called the mailbox. Besides sending and receiving messages, an actor can also fork
other child actors. Actors are uniquely addressable via a dynamically-assigned
identifier, often referred to as the PID. Actor frameworks such as Erlang [16],
Akka [55] for Scala [51], and Thespian [53] for Python [44] implement actors as
lightweight processes to enable highly-scalable architectures that span multiple
machines. The terms actor and process are used interchangeably henceforth.

Implementation. We use Erlang to implement the set-up of sec. 2.1. Our im-
plementation maps the master and slave processes to actors, where slaves are

On Benchmarking for Concurrent Runtime Verification 9

forked by the master via the Erlang function spawn(); in Akka and Thespian
ActorContext.spawn() and Actor.createActor() can be respectively used to
the same effect. The work request queues for both master and slave processes co-
incide with actor mailboxes. We abstract the task computation and model work
requests as Erlang messages. Slaves emulate no delay, but respond instantly to
work requests once these have been processed; delay in the system can be in-
duced via parameters Pr(send) and Pr(recv). To maximise efficiency, the Order,
Ready and Await queues used by our scheduling scheme are maintained locally
within the master. The master process keeps track of other details, such as the
total number of work requests sent and received, to determine when the system
should stop executing. We extend the parameters in sec. 2.1 with a seed parame-
ter, r, to fix the Erlang pseudorandom number generator to output reproducible
number sequences.

2.3 Measurement Collection

To give a multi-faceted view of runtime overhead, we extend the approach in [8]
and, apart from the (i) mean execution duration, measured in seconds (s), we also
collect the (ii) mean scheduler utilisation, as a percentage of the total available
capacity, (iii) mean memory consumption, measured in GB, and, (iv) mean
response time (RT), measured in milliseconds (ms). Our definition of runtime
overhead encompasses all four metrics. Measurement taking largely depends on
the platform on which the benchmark executes, and one often leverages platform-
specific optimised functionality in order to attain high levels of efficiency. Our
implementation relies on the functionality provided by the Erlang ecosystem.
Sampling. We collect measurements centrally using a special process, called
the Collector, that samples the runtime to obtain periodic snapshots of the
execution environment (see fig. 2). Sampling is often necessary to induce low
overhead in the system, especially in scenarios where the system components
are sensitive to latency [32]. Our sampling frequency is set to 500ms: this figure
was determined empirically, whereby the measurements gathered are neither too
coarse, nor excessively fine-grained such that sampling affects the runtime. Every
sampling snapshot combines the four metrics mentioned above and formats them
as records that are written asynchronously to disk to minimise IO delays.
Performance metrics. Memory and scheduler readings are gathered via the Er-
lang Virtual Machine (EVM). We sample scheduler—rather than CPU utilisation
at the OS-level—since the EVM keeps scheduler threads momentarily spinning
to remain reactive; this would inflate the metric reading. The overall system re-
sponsiveness is captured by the mean RT metric. Our Collector exposes a hook
that the master uses to obtain unique timestamps, step 1 in fig. 2. These are em-
bedded in all work request messages the master issues to slaves. Each timestamp
enables the Collector to track the time taken for a message to travel from the
master to a slave and back, including the time it spends in the master’s mailbox
until dequeued, i.e., the round-trip in steps 2 – 5 . To efficiently compute the
RT, the Collector samples the total number of messages exchanged between the
master and slaves, and calculates the mean using Welford’s online algorithm [62].

10 L. Aceto et al.

M

S1

S2

Sn

Collector
.
.
.

csv
Metric
records

...

10% samplesTstart

round-trip=Tstart−Tfinish

〈•1
,re

q.〉

〈•2,req.〉

〈•2,resp.〉

〈•2,req.〉

〈•2,resp.〉

time in queue

recorded metrics

timestamped reference

1 2

3

4

5

Fig. 2: Collector tracking the round-trip time for work requests and responses

3 Evaluation

We evaluate our synthetic benchmarking tool developed as described in Sec. 2
in a number of ways. In sec. 3.1, we discuss sanity checks for its measurement
collection mechanisms, and assess the repeatability of the results obtained from
the synthetic system executions. Crucially, sec. 3.1 provides evidence that the
benchmarking tool is sufficiently expressive to cover a number of execution pro-
files that are shown to emulate realistic scenarios. Sec. 3.2 demonstrates the
utility of the features offered by our tool for the purposes of assessing RV tools.

Experiment set-up. We define an experiment to consist of ten benchmarks, each
performed by running the system set-up with incremental loads. Our experiments
were performed on an Intel Core i7 M620 64-bit machine with 8GB of memory,
running Ubuntu 18.04 LTS and Erlang/OTP 22.2.1.

3.1 Benchmark Expressiveness and Veracity

The parameters for the tool detailed in sec. 2.1 can be configured to model
a range of master-slave scenarios. However, not all of these configurations are
meaningful in practice. For example, setting Pr(send) = 0 does not enable the
master to allocate work requests to slaves; with Pr(send) = 1, this allocation is
enacted sequentially, defeating the purpose of a concurrent master-slave system.
In this section, we establish a set of parameter values that model experiment set-
ups whose behaviour approximates that of master-slave systems typically found
in practice. Our experiments are conducted with n=500k slaves and w=100 work
requests per slave. This generates ≈n×w×(work requests and responses)=100M
message exchanges between the master and slaves. We initially fix Pr(send) =
Pr(recv)=0.9, and choose a Steady (i.e., Poisson process) load profile since this
features in industry-strength load testing tools such as Tsung [49] and JMeter [3].
Fig. 3 shows the load applied at each benchmark run, e.g. on the tenth run, the
benchmark uses ≈ 5k slaves/s. The total loading time is set to t=100s.

Measurement precision. A series of trials were conducted to select the appro-
priate sampling window size for the RT. This step is crucial because it directly
affects the capability of the benchmark to scale in terms of its number of slave
processes and work requests. Our RT sampling of sec. 2.3 (see also fig. 2) was

On Benchmarking for Concurrent Runtime Verification 11

calibrated by taking various window sizes over numerous runs for different load
profiles of ≈ 1M slaves. The results were compared to the actual mean calcu-
lated on all work request and response messages exchanged between master and
slaves. Window sizes close to 10% yielded the best results (≈ ±1.4% discrep-
ancy from the actual RT). Smaller window sizes produced excessive discrepancy;
larger sizes induced noticeably higher system loads. We also cross-checked the
precision of our sampling method of the scheduler utilisation against readings
obtained via the Erlang Observer tool [16] to confirm that these coincide.

Experiment repeatability. Data variability affects the repeatability of experi-
ments. It also plays a role when determining the number of repeated readings, k,
required before the data measured is deemed sufficiently representative. Choos-
ing the lowest k is crucial when experiment runs are time consuming. The coef-
ficient of variation (CV)—i.e., the ratio of the standard deviation to the mean,
CV = σ

x̄ × 100—can be used to establish the value of k empirically, as follows.
Initially, the CVk for one batch of experiments for some number of repetitions k
is calculated. The result is then compared to the CVk′ for the next batch of repe-
titions k′=k+b, where b is the step size. When the difference between successive
CV metrics k′ and k is sufficiently small (for some percentage ε), the value of k
is chosen, otherwise the described procedure is repeated with k′. Crucially, this
condition must hold for all variables measured in the experiment before k can
be fixed. For the results presented next, the CV values were calculated manually.
The mechanism that determines the CV automatically is left for future work.

Data variability. The data variability between experiments can be reduced by
seeding the Erlang pseudorandom number generator (parameter r in sec. 2.2)
with a constant value. This, in turn, tends to require fewer repeated runs be-
fore the metrics of interest—scheduler utilisation, memory consumption, RT,
and execution duration—converge to an acceptable CV. We conduct experiment
sets with three, six and nine repetitions. For the majority of cases, the CV for
our metrics is lower when a fixed seed is used, by comparison to its unseeded
counterpart. In fact, very low CV values for the scheduler utilisation, memory
consumption, RT, and execution duration, 0.17%, 0.15%, 0.52% and 0.47% re-
spectively, were obtained with three repeated runs. We thus set the number of
repetitions to three for all experiment runs in the sequel. Note that fixing the
seed still permits the system to exhibit a modicum of variability that stems from
the inherent interleaved execution of components due to process scheduling.

Load profiles. Our tool is expressive enough to generate the load profiles intro-
duced in sec. 2.1 (see fig. 3), enabling us to gauge the behaviour of monitoring
set-ups under varying forms of loads. These loads make it possible to mock spe-
cific system scenarios that test different implementation aspects. For example, a
benchmark configured with load surges could uncover buffer overflows in a par-
ticular monitoring implementation that only arise under stress when the length
of the request queue exceeds some preset length.

System reactivity. The reactivity of the master-slave system correlates with the
idle time of each slave which, in turn, affects the capacity of the system to absorb

12 L. Aceto et al.

0 25 50 75 100

Timeline (s)

0

1

2

3

4

5

C
on

cu
rr

en
t

sl
av

es
(K

)/
s Steady

25 50 75 100

Timeline (s)

0

2

4

6

8

Pulse

25 50 75 100

Timeline (s)

0

5

10

15

Burst

Benchmark run number: 1 2 3 4 5 6 7 8 9 10

Fig. 3: Steady, Pulse and Burst load distributions of 500 k slaves for 100 s

overheads. Since this can skew the results obtained when assessing overheads, it is
imperative that the benchmarking tool provides methods to control this aspect.
The parameters Pr(send) and Pr(recv) regulate the speed with which the system
reacts to load. We study how these parameters affect the overall performance of
system models set up with Pr(send)=Pr(recv)∈{0.1,0.5,0.9}. The results are
shown in fig. 4, where each metric (e.g. memory consumption) is plotted against
the total number of slaves. At Pr(send)=Pr(recv)=0.1, the system has the lowest
RT out of the three configurations (bottom left), as indicated by the gentle linear
increase of the plot. One may expect the RT to be lower for the system models
configured with probability values of 0.5 and 0.9. However, we recall that with
Pr(send)=0.1, work requests are allocated infrequently by the master, so that
slaves are often idle, and can readily respond to (low numbers of) incoming work
requests. At the same time, this prolongs the execution duration, when compared
to that of the system set with Pr(send)=Pr(recv)∈{0.5,0.9} (bottom right).
This effect of slave idling can be gleaned from the relatively lower scheduler
utilisation as well (top left). Idling increases memory consumption (top right),
since slaves created by the master typically remain alive for extended periods.
By contrast, the plots set with Pr(send)=Pr(recv)∈{0.5,0.9} exhibit markedly
gentler gradients in the memory consumption and execution duration charts;
corresponding linear slopes can be observed in the RT chart. This indicates that
values between 0.5 and 0.9 yield system models that: (i) consume reasonable
amounts of memory, (ii) execute in respectable amounts of time, and (iii) main-
tain tolerable RT. Since master-slave architectures are typically employed in
settings where high throughput is demanded, choosing values smaller than 0.5
goes against this principle. In what follows, we opt for Pr(send)=Pr(recv)=0.9.

Emulation veracity. Our benchmarks can be configured to closely model real-
istic web server traffic where the request intervals observed at the server are
known to follow a Poisson process [31,43,37]. The probability distribution of
the RT of web application requests is generally right-skewed, and approximates
log-normal [31,20] or Erlang distributions [37]. We conduct three experiments
using Steady loads fixed with n=10k for Pr(send)=Pr(recv)∈ {0.1,0.5,0.9} to

On Benchmarking for Concurrent Runtime Verification 13

100 200 300 400 500
0

25

50

U
ti

li
sa

ti
on

(%
)

Scheduler

100 200 300 400 500

2.00

3.00

4.00

5.00

C
on

su
m

pt
io

n
(G

B
)

Memory

100 200 300 400 500

Total slaves (K)

0

500

1000

1500

2000

2500

T
im

e
(m

s)

Response

100 200 300 400 500

Total slaves (K)

1000

2000

3000

D
ur

at
io

n
(s

)

Execution

Pr(send)=Pr(recv)=0.1 Pr(send)=Pr(recv)=0.5 Pr(send)=Pr(recv)=0.9

Fig. 4: Performance benchmarks of system models for Pr(send) and Pr(recv)

establish whether the RT in our system set-ups resembles the aforementioned dis-
tributions. Our results, summarised in fig. 5, were obtained by estimating the pa-
rameters for a set of candidate probability distributions (e.g. normal, log-normal,
gamma, etc.) using maximum likelihood estimation [56] on the RT obtained from
each experiment. We then performed goodness-of-fit tests on these parametrised
distributions using the Kolmogorov-Smirnov test, selecting the most appropriate
RT fit for each of the three experiments. The fitted distributions in fig. 5 indi-
cate that the RT of our system models follows the findings reported in [31,20,37].
This makes a strong case in favour of our benchmarking tool striking a balance
between the realism of benchmarks based on OTS programs and the controlla-
bility offered by synthetic benchmarking. Lastly, we point out that fig. 5 matches
the observations made in fig. 4, which show an increase in the mean RT as the
system becomes more reactive. This is evident in the histogram peaks that grow
shorter as Pr(send)=Pr(recv) progresses from 0.1 to 0.9.

3.2 Case Study

We demonstrate how our benchmarking tool can be used to assess the runtime
overhead comprehensively via a concurrent RV case study. By controlling the
benchmark parameters and subjecting the system to specific workloads, we show
that our multi-faceted view of overhead reveals nuances in the observed runtime
behaviour, benefitting the interpretation of empirical results. We further assess
the veracity of these synthetic benchmarks against the overhead measured from
a use case that considers industry-strength OTS applications.

14 L. Aceto et al.

0 100 200

Mean response time (ms)

0.000

0.005

0.010

0.015

N
or

m
al

is
ed

de
ns

it
y

Pr(send)=Pr(recv)=0.1

Log-normal
Mean: 50.88
Mode: 13

0 100 200

Mean response time (ms)

0.000

0.005

0.010

0.015

Pr(send)=Pr(recv)=0.5

Log-normal
Mean: 55.43
Mode: 33

0 100 200 300 400

Mean response time (ms)

0.000

0.005

0.010

0.015

Pr(send)=Pr(recv)=0.9

Gamma
Mean: 77.32
Mode: 17

Fig. 5: Fitted probability distributions on RT for Steady loads for n=10k

The RV Tool We use a RV tool to objectively compare the conclusions de-
rived from our synthetic benchmarks against those obtained from the experiment
set up with the OTS applications. The tool under scrutiny targets concurrent
Erlang programs [4]. It synthesises automata-like monitors from sHML specifi-
cations [26] and inlines them into the system via code injection by manipulating
the program abstract syntax tree. Inline instrumentation underlies various other
state-of-the-art RV tools, such as JavaMOP [36], MarQ [54], Java-MaC [38] and
RiTHM [47]. sHML is a fragment of the Hennessy-Milner Logic with recur-
sion [41] that can express all regular safety properties [26]. The tool augments
it to handle pattern matching and data dependencies for three kinds of event
patterns, namely send and receive actions, denoted by ! and ? respectively, and
process crash, denoted by �. This suffices to specify properties of both the master
and slave processes, resulting in the set-up depicted in fig. 6a. For instance, the
recursive property ϕs describes an invariant of the master-slave communication
protocol (from the slave’s point of view), stating that ‘a slave processing integer
successor requests should not crash ’:

maxX.
(1︷ ︸︸ ︷
[\Slv �]ff ∧

2.1︷ ︸︸ ︷
[\Slv ?\Req]

(

3︷ ︸︸ ︷
3.1︷ ︸︸ ︷

[Slv �]ff∧
3.2︷ ︸︸ ︷

[Slv !(Req+1)]X
)

︸ ︷︷ ︸
2

)
(ϕs)

The key construct in sHML is the modal formula [p]ϕ, stating that whenever a
satisfying system exhibits an event e matching pattern p, its continuation then
satisfies ϕ. In property ϕs, the invariant—denoted by recursion binder maxX—
asserts that a slave Slv does not crash, specified by sub-formula 1 . It further
stipulates in sub-formula 2 that when a request-carrying payload, Req is re-
ceived, 2.1 , Slv cannot crash, 3.1 , and if the slave replies to Req with the pay-
load Req+1, the property recurses on variable X, 3.2 . Action patterns use two
types of value variables: binders, \x , that are pattern-matched to concrete values
learnt at runtime, and variable instances, x , that are bound by the respective
binders and instantiated to concrete data via pattern matching at runtime. This

On Benchmarking for Concurrent Runtime Verification 15

induces the usual notion of free and bound value variables; we assume closed
terms. For example, when checking property ϕs against the trace event pid?42,
the analysis unfolds the sub-formula guarded by maxX, matching the event with
the pattern \Slv ?\Req in 2.1 . Variables Slv and Req are substituted with pid

and 42 respectively in property ϕs, leaving the residual formula:

[pid�]ff∧ [pid!(42+1)]maxX.

(
[\Slv �]ff ∧
[\Slv ?\Req]

(
[Slv �]ff∧ [Slv !(Req+1)]X

)
)

The RV tool under scrutiny produces inlined monitor code that executes in the
same process space of system components (see fig. 6a), yielding the lowest pos-
sible amount of runtime overhead. This enables us to scale our benchmarks to
considerably high loads. Our experiments focus on correctness properties that
are parametric w.r.t. to system components [7,19,54,48]: with this approach,
monitors need not interact with one another and can reach verdicts indepen-
dently. Verdicts are communicated by monitors to a central entity that records
the expected number of verdicts in order to determine when the experiment can
be stopped. The set of properties used in our benchmarks translate to monitors
that loop continually to exert the maximum level of runtime overhead possible.

Fig. 6b shows the monitor synthesised from property ϕs, consisting of states
Q0, Q1, the rejection state �, and inconclusive state ? . The rejection state cor-
responds to a violation of the property, i.e., ff, whereas the inconclusive state
is reached when the analysed trace events do not contain enough information
to enable the monitor to transition to any other state. Both of these states are
sinks, modelling the irrevocability of verdicts [24,26]. The modality [\Slv ?\Req]
in property ϕs corresponds to the transition between Q0 and Q1 in fig. 6b. The
monitor follows this transition when it analyses the trace event pid1?d1 exhibited
by the slave with PID pid1 when it receives data payload d1 from the master;
as a side effect, the transition binds the variable Slv to pid1 and Req to d1 in

M M

S1 M S2 M . . . Sn M

(a) Inlined runtime monitors

Q0 Q1

?

�

〈pid1 ?d1,{Slv �→ pid1,Req �→ d1}〉

pid1 !d1 + 1

!

_�

?,

pid2 !d2 when pid2 �= pid1
or when d2 �= d1 + 1,

pid2 � when pid2 �= pid1

pid1�

?, _!_, _�

?, _!_, _�

(b) Synthesised monitor from property ϕs

Fig. 6: Synthesised monitors instrumented with master and slave processes

16 L. Aceto et al.

state Q1. From Q1, the monitor transitions to Q0 only when the event pid1 !d2
is analysed, where d2 = d1+1 and pid1 is the slave PID (previously) bound to
Slv . From Q0 and Q1, the rejection state � can be reached when a crash event
is analysed. In the case of Q0, the transition to � is followed for any crash event
_� (the wildcard _ denotes the anonymous variable). By contrast, the monitor
reaches � from Q1 only when the slave with PID pid1 crashes, otherwise it tran-
sitions to the inconclusive state ? . Other transitions from Q0 and Q1 leading to
? follow a similar reasoning. Interested readers are encouraged to consult [25,6,5]
for more information on the specification logic and monitor synthesis.

Synthetic Benchmarks We set the total number of slaves to n=20k for mod-
erate loads and n=500k for high loads; Pr(send)=Pr(recv) is fixed at 0.9 as in
sec. 3.1. These configurations generate ≈n×w×(work requests and responses)=
4M and 100M messages respectively to produce 8M and 200M analysable trace
events per run. The pseudorandom number generator is seeded with a constant
value and three experiment repetitions are performed for the Steady, Pulse and
Burst load profiles (see fig. 3). A loading time of t=100s is used. Our results are
summarised in figs. 7 and 8. Each chart in these figures plots the particular per-
formance metric (e.g. memory consumption) for the system without monitors,
i.e., the baseline, together with the overhead induced by the RV monitors.

Moderate loads. Fig. 7 shows the plots for the system set with n= 20k. These
loads are similar to those employed by the state-of-the-art frameworks to evalu-
ate component-based runtime monitoring, e.g. [57,7,10,23,48] (ours are slightly
higher). We remark that none of the benchmarks used in these works consider
different load profiles: they either model load on a Poisson process, or fail to
specify the kind of load used. In fig. 7, the execution duration chart (bottom
right) shows that, regardless of the load profile used, the running time of each
experiment is comparable to the baseline. With the moderate size of 20k slaves,
the execution duration on its own does not give a detailed enough view of run-
time overhead, despite the fact that our benchmarks provide a broad coverage in
terms of the Steady, Pulse and Burst load profiles. This trend is mirrored in the
scheduler utilisation plot (top left), where both baseline and monitored system
induce a constant load of ≈ 17.5%. On this account, we deem these results to
be inconclusive. By contrast, our three load profiles induce different overhead
for the RT (bottom left), and, to a lesser extent, the memory consumption plots
(top right). Specifically, when the system is subjected to a Burst load, it exhibits
a surge in the RT for the baseline and monitored system alike, at ≈ 16k slaves.
While this is not reflected in the consumption of memory, the Burst plots do
exhibit a larger—albeit linear—rate of increase in memory when compared to
their Steady and Pulse counterparts. The latter two plots once again show anal-
ogous trends, indicating that both Steady and Pulse loads exact similar memory
requirements and exhibit comparable responsiveness under the respectable load
of 20k slaves. Crucially, the data plots in fig. 7 do not enable us to confidently
extrapolate our results. The edge case in the RT chart for Burst plots raises the
question of whether the surge in the trend observed at ≈16k remains consistent

On Benchmarking for Concurrent Runtime Verification 17

2 5 7 10 12 15 17 20
0

25

50

U
ti

li
sa

ti
on

(%
)

Scheduler

2 5 7 10 12 15 17 20
1.584

1.586

1.588

1.590

1.592

1.594

C
on

su
m

pt
io

n
(G

B
)

Memory

2 5 7 10 12 15 17 20

Total slaves (k)

1.0

2.0

3.0

4.0

5.0

T
im

e
(m

s)

Response

2 5 7 10 12 15 17 20

Total slaves (k)

101.0

101.1

101.2

101.3

101.4

101.5

D
ur

at
io

n
(s

)

Execution

Steady baseline monitors Pulse baseline monitors Burst baseline monitors

Fig. 7: Mean runtime overhead for master and slave processes (20 k slaves)

when the number of slaves goes beyond 20k. Similarly, although for a different
reason, the execution duration plots do not allow us to distinguish between the
overhead induced by monitors for different loads on this small scale—this occurs
due to the perturbations introduced by the underlying OS (e.g. scheduling other
processes, IO, etc.) that affect the sensitive time keeping of benchmarks.

High loads. We increase the load to n= 500k slaves to determine whether our
benchmark set-up can adequately scale, and show how the monitored system per-
forms under stress. The RT chart in fig. 8 indicates that for Burst loads (bottom
left), the overhead induced by monitors grows linearly in the number of slaves.
This contradicts the results in fig. 7, confirming our supposition that moderate
loads may provide scant empirical evidence to extrapolate to general conclu-
sions. However, the memory consumption for Burst loads (top right) exhibits
similar trends to the ones in fig. 7. Subjecting the system to high loads renders
discernible the discrepancy between the RT and memory consumption gradients
for the Steady and Pulse plots that appeared to be similar under the moderate
loads of 20k slaves. Considering the execution duration chart (bottom right of
fig. 8) as the sole indicator of overhead could deceivingly suggest that runtime
monitoring induces virtually identical overhead for the distinct load profiles of
fig. 3. However, this erroneous observation is easily refuted by the memory con-
sumption and RT plots that show otherwise. This stresses the merit of gathering
multi-faceted metrics to assist in the interpretation of runtime overhead.

We extend the argument for multi-faceted views to the scheduler utilisation
metric in fig. 8 that reveals a subtle aspect of our concurrent set-up. Specifically,

18 L. Aceto et al.

100 200 300 400 500
0

25

50
U

ti
li
sa

ti
on

(%
)

Scheduler

100 200 300 400 500

1.60

1.80

2.00

2.20

2.40

2.60

C
on

su
m

pt
io

n
(G

B
)

Memory

100 200 300 400 500

Total slaves (k)

0

2000

4000

6000

8000

T
im

e
(m

s)

Response

100 200 300 400 500

Total slaves (k)

200

400

600

800

1000

1200

1400

D
ur

at
io

n
(s

)

Execution

Steady baseline monitors Pulse baseline monitors Burst baseline monitors

Fig. 8: Mean runtime overhead for master and slave processes (500 k slaves)

the charts show that while the execution duration, RT and memory consumption
plots grow in the number of slave processes, scheduler utilisation stabilises at ≈
22.7%. This is partly caused by the master-slave design that becomes susceptible
to bottlenecks when the master is overloaded with requests [61]. In addition,
the preemptive scheduling of the EVM [16] ensures that the master shares the
computational resources of the same machine with the rest of the slaves. We
conjecture that, in a distributed set-up where the master resides on a dedicated
node, the overall system throughput may be further pushed. Fig. 8 also attests
to the utility of having a benchmarking framework that scales considerably well
to increase the chances of detecting potential trends. For instance, the evidence
gathered earlier in fig. 7 could have misled one to assert that the RV tool under
scrutiny scales poorly under Burst loads of moderate and larger sizes.

An OTS Application Use Case We evaluate the overheads induced by the
RV tool under scrutiny using a third-party industry-strength web server called
Cowboy [33], and show that the conclusions we draw are in line with those re-
ported earlier for our synthetic benchmark results. Cowboy is written in Erlang
and built on top of Ranch [34]—a socket acceptor pool for TCP protocols that
can be used to develop custom network applications. Cowboy relies on Ranch
to manage its socket connections, but delegates HTTP client requests to pro-
tocol handlers that are forked dynamically by the web server to handle each
request independently. This architecture follows closely our master-slave set-up
of sec. 2.1 which abstracts details such as TCP connection management and

On Benchmarking for Concurrent Runtime Verification 19

2 5 7 10 12 15 17 20
0

25

50

75

100

U
ti

li
sa

ti
on

(%
)

Scheduler/CPU (Steady)

2 5 7 10 12 15 17 20

1.585

1.590

1.595

1.600

1.605

C
on

su
m

pt
io

n
(M

B
)

Memory (Steady)

2 5 7 10 12 15 17 20

Total slaves/request threads (k)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
(m

s)

Response (Steady)

2 5 7 10 12 15 17 20

Total slaves/request threads (k)

0

2000

4000

6000

D
ur

at
io

n
(s

)

Execution (Steady)

Synthetic benchmark baseline monitors Cowboy baseline monitors

Fig. 9: Mean overhead for synthetic and Cowboy benchmarks (20 k threads)

HTTP protocol parsing. We generate load on Cowboy using the popular stress
testing tool JMeter [3] to issue HTTP requests from a dedicated machine resid-
ing on the same network where Cowboy is hosted. The latter machine is the one
used in the experiments discussed earlier. To emulate the typical behaviour of
web clients (e.g. browsers) that fetch resources via multiple HTTP requests, our
Cowboy application serves files of various sizes that are randomly accessed by
JMeter during the benchmark. In our experiments, we monitored fragments of
the Cowboy and Ranch communication protocol used to handle client requests.

Moderate loads. Fig. 9 plots our results for Steady loads from fig. 7, together
with the ones obtained from the Cowboy benchmarks; JMeter did not enable
us to reproduce the Pulse and Burst load profiles. For our Cowboy benchmarks,
we fixed the total number of JMeter request threads to 20k over the span of
100s, where each thread issued 100 HTTP requests. This configuration coincides
with parameter settings used in the experiments of fig. 7. In fig. 9, the sched-
uler utilisation, memory consumption and RT charts (top, bottom left) show
a correspondence between the baseline plots of our synthetic benchmarks and
those taken with Cowboy and JMeter. This indicates that, for these metrics,
our synthetic system model exhibits analogous characteristics to the ones of the
OTS system, under the chosen load profile. The argument can be extended to
the monitored versions of these systems which follow identical trends. We point
out the similarity in the RT trends of our synthetic and Cowboy benchmarks,
despite the fact that the latter set of experiments were conducted over a local
network. This suggests that, for our single-machine configuration, the synthetic

20 L. Aceto et al.

master-slave benchmarks manage to adequately capture local network condi-
tions. The gaps separating the plots of the two experiment set-ups stem from the
implementation specifics of Cowboy and our synthetic model. This discrepancy
in measurements also depends on the method used to gather runtime metrics,
e.g. JMeter cannot sample the EVM directly, and measures CPU as opposed to
scheduler utilisation. The deviation in execution duration plots (bottom right)
arises for the same reason.
High loads. Our efforts to run tests with 500k request threads where stymied by
the scalability issues we experienced with Cowboy and JMeter on our set-up.

4 Conclusion

Concurrent RV necessitates benchmarking tools that can scale dynamically to
accommodate considerable load sizes, and are able to provide a multi-faceted view
of runtime overhead. This paper presents a benchmarking tool that fulfils these
requirements. We demonstrate its implementability in Erlang, arguing that the
design is easily instantiatable to other actor frameworks such as Akka and Thes-
pian. Our set-up emulates various system models through configurable parame-
ters, and scales to reveal behaviour that emerges only when software is pushed
to its limit. The benchmark harness gathers different performance metrics, offer-
ing a multi-faceted view of runtime overhead that, to wit, other state-of-the-art
tools do not currently offer. Our experiments demonstrate that these metrics
benefit the interpretation of empirical measurements: they increase visibility
that may spare one from drawing insufficiently general, or otherwise, erroneous
conclusions. We establish that—despite its synthetic nature—our master-slave
model faithfully approximates the mean response times observed in realistic web
server traffic. We also compare the results of our synthetic benchmarks against
those obtained from a real-world use case to confirm that our tool captures the
behaviour of this realistic set-up. It is worth noting that, while our empirical
measurements of secs. 3.1 and 3.2 depend on the implementation language, our
conclusions are transferrable to other frameworks, e.g. Akka and Play [42].
Related work. There are other less popular benchmarks targeting the JVM be-
sides those mentioned in sec. 1. Renaissance [52] employs workloads that leverage
the concurrency primitives of the JVM, focussing on the performance of com-
piler optimisations similar to DaCapo and ScalaBench. These benchmarks gather
metrics that measure software quality and complexity, as opposed to metrics that
gauge runtime overhead. The CRV suite [8] aims to standardise the evaluation
of RV tools, and mainly focusses on RV for monolithic programs. We are un-
aware of RV-centric benchmarks for concurrent systems such as ours. In [43], the
authors propose a queueing model to analyse web server traffic, and develop a
benchmarking tool to validate it. Their model coincides with our master-slave
set-up, and considers loads based on a Poisson process. A study of message-
passing communication on parallel computers conducted in [31] uses systems
loaded with different numbers of processes; this is similar to our approach. Im-
portantly, we were able to confirm the findings reported in [43] and [31] (sec. 3.1).

On Benchmarking for Concurrent Runtime Verification 21

References

1. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A., Kjartansson, S.Ö.: De-
terminizing Monitors for HML with Recursion. JLAMP 111, 100515 (2020)

2. Agha, G., Mason, I.A., Smith, S.F., Talcott, C.L.: A Foundation for Actor Com-
putation. JFP 7(1), 1–72 (1997)

3. Apache Software Foundtation: Jmeter (2020), https://jmeter.apache.org
4. Attard, D.P.: detectEr (2020), https://github.com/duncanatt/detecter-inline
5. Attard, D.P., Cassar, I., Francalanza, A., Aceto, L., Ingólfsdóttir, A.: Introduction

to Runtime Verification. In: Behavioural Types: from Theory to Tools, pp. 49–76.
Automation, Control and Robotics, River (2017)

6. Attard, D.P., Francalanza, A.: A Monitoring Tool for a Branching-Time Logic. In:
RV. LNCS, vol. 10012, pp. 473–481 (2016)

7. Attard, D.P., Francalanza, A.: Trace Partitioning and Local Monitoring for Asyn-
chronous Components. In: SEFM. LNCS, vol. 10469, pp. 219–235 (2017)

8. Bartocci, E., Falcone, Y., Bonakdarpour, B., Colombo, C., Decker, N., Havelund,
K., Joshi, Y., Klaedtke, F., Milewicz, R., Reger, G., Rosu, G., Signoles, J., Thoma,
D., Zalinescu, E., Zhang, Y.: First International Competition on Runtime Verifi-
cation: Rules, Benchmarks, Tools, and Final Results of CRV 2014. Int. J. Softw.
Tools Technol. Transf. 21(1), 31–70 (2019)

9. Bartocci, E., Falcone, Y., Francalanza, A., Reger, G.: Introduction to Runtime
Verification. In: Lectures on RV, LNCS, vol. 10457, pp. 1–33. Springer (2018)

10. Berkovich, S., Bonakdarpour, B., Fischmeister, S.: Runtime Verification with Min-
imal Intrusion through Parallelism. FMSD 46(3), 317–348 (2015)

11. Blackburn, S.M., Garner, R., Hoffmann, C., Khan, A.M., McKinley, K.S., Bentzur,
R., Diwan, A., Feinberg, D., Frampton, D., Guyer, S.Z., Hirzel, M., Hosking, A.L.,
Jump, M., Lee, H.B., Moss, J.E.B., Phansalkar, A., Stefanovic, D., VanDrunen, T.,
von Dincklage, D., Wiedermann, B.: The DaCapo Benchmarks: Java Benchmarking
Development and Analysis. In: OOPSLA. pp. 169–190 (2006)

12. Blessing, S., Fernandez-Reyes, K., Yang, A.M., Drossopoulou, S., Wrigstad,
T.: Run, Actor, Run: Towards Cross-Actor Language Benchmarking. In:
AGERE!@SPLASH. pp. 41–50 (2019)

13. Bodden, E., Hendren, L.J., Lam, P., Lhoták, O., Naeem, N.A.: Collaborative Run-
time Verification with Tracematches. J. Log. Comput. 20(3), 707–723 (2010)

14. Bonakdarpour, B., Finkbeiner, B.: The Complexity of Monitoring Hyperproperties.
In: CSF. pp. 162–174 (2018)

15. Buyya, R., Broberg, J., Goscinski, A.M.: Cloud Computing: Principles and
Paradigms. Wiley-Blackwell (2011)

16. Cesarini, F., Thompson, S.: Erlang Programming: A Concurrent Approach to Soft-
ware Development. O’Reilly Media (2009)

17. Chappell, D.: Enterprise Service Bus: Theory in Practice. O’Reilly Media (2004)
18. Chen, F., Rosu, G.: Mop: An Efficient and Generic Runtime Verification Frame-

work. In: OOPSLA. pp. 569–588 (2007)
19. Chen, F., Rosu, G.: Parametric Trace Slicing and Monitoring. In: TACAS. LNCS,

vol. 5505, pp. 246–261 (2009)
20. Ciemiewicz, D.M.: What Do You mean? - Revisiting Statistics for Web Response

Time Measurements. In: CMG. pp. 385–396 (2001)
21. Cornejo, O., Briola, D., Micucci, D., Mariani, L.: In the Field Monitoring of Inter-

active Application. In: ICSE-NIER. pp. 55–58 (2017)

https://jmeter.apache.org
https://github.com/duncanatt/detecter-inline

22 L. Aceto et al.

22. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clus-
ters. Commun. ACM 51(1), 107–113 (2008)

23. El-Hokayem, A., Falcone, Y.: Monitoring Decentralized Specifications. In: ISSTA.
pp. 125–135 (2017)

24. Francalanza, A.: A Theory of Monitors (Extended Abstract). In: FoSSaCS. LNCS,
vol. 9634, pp. 145–161 (2016)

25. Francalanza, A., Aceto, L., Achilleos, A., Attard, D.P., Cassar, I., Della Monica,
D., Ingólfsdóttir, A.: A Foundation for Runtime Monitoring. In: RV. LNCS, vol.
10548, pp. 8–29 (2017)

26. Francalanza, A., Aceto, L., Ingólfsdóttir, A.: Monitorability for the Hennessy-
Milner Logic with Recursion. FMSD 51(1), 87–116 (2017)

27. Francalanza, A., Pérez, J.A., Sánchez, C.: Runtime Verification for Decentralised
and Distributed Systems. In: Lectures on RV, LNCS, vol. 10457, pp. 176–210.
Springer (2018)

28. Francalanza, A., Xuereb, J.: On Implementing Symbolic Controllability. In: CO-
ORDINATION. LNCS, vol. 12134, pp. 350–369 (2020)

29. Ghosh, S.: Distributed Systems: An Algorithmic Approach. CRC (2014)
30. Gray, J.: The Benchmark Handbook for Database and Transaction Processing Sys-

tems. Morgan Kaufmann (1993)
31. Grove, D.A., Coddington, P.D.: Analytical Models of Probability Distributions

for MPI Point-to-Point Communication Times on Distributed Memory Parallel
Computers. In: ICA3PP. LNCS, vol. 3719, pp. 406–415 (2005)

32. Harman, M., O’Hearn, P.W.: From Start-ups to Scale-ups: Opportunities and Open
Problems for Static and Dynamic Program Analysis. In: SCAM. pp. 1–23 (2018)

33. Hoguin, L.: Cowboy (2020), https://ninenines.eu
34. Hoguin, L.: Ranch (2020), https://ninenines.eu
35. Imam, S.M., Sarkar, V.: Savina - An Actor Benchmark Suite: Enabling Empirical

Evaluation of Actor Libraries. In: AGERE!@SPLASH. pp. 67–80 (2014)
36. Jin, D., Meredith, P.O., Lee, C., Rosu, G.: JavaMOP: Efficient Parametric Runtime

Monitoring Framework. In: ICSE. pp. 1427–1430 (2012)
37. Kayser, B.: What is the expected distribution of website response times?

(2017, last accessed, 19th Jan 2021), https://blog.newrelic.com/engineering/
expected-distributions-website-response-times

38. Kim, M., Viswanathan, M., Kannan, S., Lee, I., Sokolsky, O.: Java-mac: A Run-
Time Assurance Approach for Java Programs. FMSD 24(2), 129–155 (2004)

39. Kshemkalyani, A.D.: Distributed Computing: Principles, Algorithms, and Systems.
Cambridge University Press (2011)

40. Kuhtz, L., Finkbeiner, B.: LTL Path Checking is Efficiently Parallelizable. In:
ICALP (2). LNCS, vol. 5556, pp. 235–246 (2009)

41. Larsen, K.G.: Proof Systems for Satisfiability in Hennessy-Milner Logic with Re-
cursion. TCS 72(2&3), 265–288 (1990)

42. Lightbend: Play framework (2020), https://www.playframework.com
43. Liu, Z., Niclausse, N., Jalpa-Villanueva, C.: Traffic Model and Performance Eval-

uation of Web Servers. Perform. Evaluation 46(2-3), 77–100 (2001)
44. Matthes, E.: Python Crash Course: A Hands-On, Project-Based Introduction to

Programming. No Starch Press (2019)
45. Meredith, P.O., Jin, D., Griffith, D., Chen, F., Rosu, G.: An Overview of the MOP

Runtime Verification Framework. STTT 14(3), 249–289 (2012)
46. Myers, G.J., Sandler, C., Badgett, T.: The Art of Software Testing. Wiley (2011)

https://ninenines.eu
https://ninenines.eu
https://blog.newrelic.com/engineering/expected-distributions-website-response-times
https://blog.newrelic.com/engineering/expected-distributions-website-response-times
https://www.playframework.com

On Benchmarking for Concurrent Runtime Verification 23

47. Navabpour, S., Joshi, Y., Wu, C.W.W., Berkovich, S., Medhat, R., Bonakdarpour,
B., Fischmeister, S.: RiTHM: A Tool for Enabling Time-Triggered Runtime Veri-
fication for C Programs. In: ESEC/SIGSOFT FSE. pp. 603–606. ACM (2013)

48. Neykova, R., Yoshida, N.: Let it Recover: Multiparty Protocol-Induced Recovery.
In: CC. pp. 98–108 (2017)

49. Niclausse, N.: Tsung (2017), http://tsung.erlang-projects.org
50. Nielsen, J.: Usability Engineering. Morgan Kaufmann (1993)
51. Odersky, M., Spoon, L., Venners, B.: Programming in Scala. Artima Inc. (2020)
52. Prokopec, A., Rosà, A., Leopoldseder, D., Duboscq, G., Tuma, P., Studener, M.,

Bulej, L., Zheng, Y., Villazón, A., Simon, D., Würthinger, T., Binder, W.: Renais-
sance: Benchmarking Suite for Parallel Applications on the JVM. In: PLDI. pp.
31–47 (2019)

53. Quick, K.: Thespian (2020), http://thespianpy.com
54. Reger, G., Cruz, H.C., Rydeheard, D.E.: MarQ: Monitoring at Runtime with QEA.

In: TACAS. LNCS, vol. 9035, pp. 596–610 (2015)
55. Roestenburg, R., Bakker, R., Williams, R.: Akka in Action. Manning (2015)
56. Rossi, R.J.: Mathematical Statistics: An Introduction to Likelihood Based Infer-

ence. Wiley (2018)
57. Scheffel, T., Schmitz, M.: Three-Valued Asynchronous Distributed Runtime Veri-

fication. In: MEMOCODE. pp. 52–61 (2014)
58. Seow, S.C.: Designing and Engineering Time: The Psychology of Time Perception

in Software. Addison-Wesley (2008)
59. Sewe, A., Mezini, M., Sarimbekov, A., Binder, W.: DaCapo con Scala: design and

analysis of a Scala benchmark suite for the JVM. In: OOPSLA. pp. 657–676 (2011)
60. SPEC: SPECjvm2008 (2008), https://www.spec.org/jvm2008
61. Tarkoma, S.: Overlay Networks: Toward Information Networking. Auerbach (2010)
62. Welford, B.P.: Note on a Method for Calculating Corrected Sums of Squares and

Products. Technometrics 4(3), 419–420 (1962)
63. White, T.: Hadoop: The Definitive Guide: Storage and Analysis at Internet Scale.

O’Reilly Media (2015)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/
4.0/), which permits use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes
were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

http://tsung.erlang-projects.org
http://thespianpy.com
https://www.spec.org/jvm2008
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Certified Abstract Cost Analysis

Elvira Albert1,2 , Reiner Hähnle3 , Alicia Merayo2(�), and Dominic
Steinhöfel3,4

1 Instituto de Tecnoloǵıa del Conocimiento, Madrid, Spain
2 Complutense University of Madrid, Madrid, Spain. (� amerayo@ucm.es)

3 Technische Universität Darmstadt, Darmstadt, Germany
4 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

Abstract. A program containing placeholders for unspecified statements
or expressions is called an abstract (or schematic) program. Placeholder
symbols occur naturally in program transformation rules, as used in
refactoring, compilation, optimization, or parallelization. We present a
generalization of automated cost analysis that can handle abstract pro-
grams and, hence, can analyze the impact on the cost of program trans-
formations. This kind of relational property requires provably precise
cost bounds which are not always produced by cost analysis. There-
fore, we certify by deductive verification that the inferred abstract cost
bounds are correct and sufficiently precise. It is the first approach solving
this problem. Both, abstract cost analysis and certification, are based on
quantitative abstract execution (QAE) which in turn is a variation of
abstract execution, a recently developed symbolic execution technique
for abstract programs. To realize QAE the new concept of a cost invari-
ant is introduced. QAE is implemented and runs fully automatically on
a benchmark set consisting of representative optimization rules.

1 Introduction

We present a generalization of automated cost analysis that can handle pro-
grams containing placeholders for unspecified statements. Consider the program
Q ≡ “i =0; while (i < t) {P; i ++;}”, where P is any statement not modifying
i or t. We call P an abstract statement ; a program like Q containing abstract
statements is called abstract program. The (exact or upper bound) cost of execut-
ing P is described by a function acP(x) depending on the variables x occurring
in P. We call this function the abstract cost of P. Assuming that executing any
statement has unit cost and that t ≥ 0, one can compute the (abstract) cost of
Q as 2+ t · (acP(x)+2) depending on acP and t. For any concrete instance of P,
we can derive its concrete cost as usual and then obtain the concrete cost of Q
simply by instantiating acP. In this paper, we define and implement an abstract
cost analysis to infer abstract cost bounds. Our implementation consists of an
automatic abstract cost analysis tool and an automatic certifier for the correct-
ness of inferred abstract bounds. Both steps are performed with an approach
called Quantitative Abstract Execution (QAE).

Fine, but what is this good for? Abstract programs occur in program trans-
formation rules used in compilation, optimization, parallelization, refactoring,

© The Author(s) 2021
E. Guerra and M. Stoelinga (Eds.): FASE 2021, LNCS 12649, pp. 24–45, 2021.
https://doi.org/10.1007/978-3-030-71500-7 2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71500-7_2&domain=pdf
http://orcid.org/0000-0003-0048-0705
http://orcid.org/0000-0001-8000-7613
http://orcid.org/0000-0003-4439-7129
https://doi.org/10.1007/978-3-030-71500-7_2

Certified Abstract Cost Analysis 25

etc.: Transformations are specified as rules over program schemata which are
nothing but abstract programs. If we can perform cost analysis of abstract pro-
grams, we can analyze the cost effect of program transformations. Our approach
is the first method to analyze the cost impact of program transformations.

Automated Cost Analysis. Cost analysis occupies an interesting middle ground
between termination checking and full functional verification in the static pro-
gram analysis portfolio. The main problem in functional verification is that one
has to come up with a functional specification of the intended behavior, as well
as with auxiliary specifications including loop invariants and contracts [21]. In
contrast, termination is a generic property and it is sufficient to come up with
a suitable term order or ranking function [6]. For many programs, termination
analysis is vastly easier to automate than verification.1

Computation cost is not a generic property, but it is usually schematic: One
fixes a class of cost functions (for example, polynomial) that can be handled.
A cost analysis then must come up with parameters (degree, coefficients) that
constitute a valid bound (lower, upper, exact) for all inputs of a given program
with respect to a cost model (# of instructions, allocated memory, etc.). If this
is performed bottom up with respect to a program’s call graph, it is possible to
infer a cost bound for the top-level function of a program. Such a cost expression
is often symbolic, because it depends on the program’s input parameters.

A central technique for inferring symbolic cost of a piece of code with high
precision is symbolic execution (SE) [9, 25]. The main difficulty is to render SE
of loops with symbolic bounds finite. This is achieved with loop invariants that
generalize the behavior of a loop body: an invariant is valid at the loop head after
arbitrarily many iterations. To infer sufficiently strong invariants automatically
is generally an unsolved problem in functional verification, but much easier in the
context of cost analysis, because invariants do not need to characterize functional
behavior: it suffices that they permit to infer schematic cost expressions.

Abstract Execution. To infer the cost of program transformation schemata re-
quires the capability of analyzing abstract programs. This is not possible with
standard SE, because abstract statements have no operational semantics. One
way to reason about abstract programs is to perform structural induction over
the syntactic definition of statements and expressions whenever an abstract sym-
bol is encountered. Structural induction is done in interactive theorem prov-
ing [7, 31] to verify, e.g., compilers. It is labor-intensive and not automatic. In-
stead, here we perform cost analysis of abstract programs via a recent generaliza-
tion of SE called abstract execution (AE) [37,38]. The idea of AE is, quite simply,
to symbolically execute a program containing abstract placeholder symbols for
expressions and statements, just as if it were a concrete program. It might seem

1 In theory, of course, proving termination is as difficult as functional verification.
It is hard to imagine, for example, to find a termination argument for the Collatz
function without a deep understanding of what it does. But automated termination
checking works very well for many programs in practice.

26 E. Albert et al.

counterintuitive that this is possible: after all, nothing is known about an ab-
stract symbol. But this is not quite true: one can equip an abstract symbol with
an abstract description of the behavior of its instances: a set of memory loca-
tions its behavior may depend on, commonly called footprint and a (possibly
different) set of memory locations it can change, commonly called frame [21].

Cost Invariants. In automated cost analysis, one infers cost bounds often from
loop invariants, ranking functions, and size relations computed during SE [3,11,
16, 40]. For abstract programs, we need a more general concept, namely a loop
invariant expressing a valid abstract cost bound at the beginning of any iteration
(e.g., 2 + i ∗ (acP(x) + 2) for the program Q above). We call this a cost invariant.
This is an important technical innovation of this paper, increasing the modularity
of cost analysis, because each loop can be verified and certified separately.

Relational Cost Analysis. AE allows specifying and verifying relational program
properties [37], because one can express rule schemata. This extends to QAE
and makes it possible, for the first time, to infer and to prove (automatically!),
for example, the impact of program transformation on performance.

Certification. Cost annotations inferred by abstract cost analysis, i.e., cost in-
variants and abstract cost bounds, are automatically certified by a deductive ver-
ification system, extending the approach reported in [4] to abstract cost and ab-
stract programs. This is possible because the specification (i.e., the cost bound)
and the loop (cost) invariants are inferred by the cost analyzer—the verification
system does not need to generate them.

To argue correctness of an abstract cost analysis is complex, because it must
be valid for an infinite set of concrete programs. For this reason alone, it is
useful to certify the abstract cost inferred for a given abstract program: during
development of the abstract cost analysis reported here, several errors in abstract
cost computation were detected—analysis of the failed verification attempt gave
immediate feedback on the cause. We built a test suite of problems so that any
change in the cost analyzer can be validated in the future.

Certification is crucial for the correctness of quantitative relational prop-
erties: The inferred cost invariants might not be precise enough to establish,
e.g., that a program transformation does not increase cost for any possible pro-
gram instance and run. This is only established at the certification stage, where
relational properties are formally verified. A relational setting requires provably
precise cost bounds. This feature is not offered by existing cost analysis methods.

2 QAE by Example

We introduce our approach and terminology informally by means of a motivat-
ing example: Code Motion [1] is a compiler optimization technique moving a
statement not affected by a loop from the beginning of the loop body to before
the loop. This code transformation should preserve behavior provided the loop
is executed at least once, but can be expected to improve computation effort,
i.e. quantitative properties of the program, such as execution time and memory

Certified Abstract Cost Analysis 27

int i = 0;
//@ loop invariant i ≥ 0 && i ≤ t;
//@ cost invariant

i · (acP (t,w) + acQ (t, z) + 2) ;
//@ decreases t− i;
while (i < t) {

//@ assignable x;
//@ accessible t, w;
//@ cost footprint t, w;
\abstract statement P;
//@ assignable y;
//@ accessible i , t , y, z;
//@ cost footprint t, z;
\abstract statement Q;
i ++;

}
//@ assert \cost == 2 +

t · (acP (t,w) + acQ (t, z) + 2) ;

Program Before

int i = 0;
//@ assignable x;
//@ accessible t, w;
//@ cost footprint t, w;
\abstract statement P;
//@ loop invariant i ≥ 0 && i ≤ t;
//@ cost invariant

i · (acQ (t, z) + 2) ;
//@ decreases t− i;
while (i < t) {

//@ assignable y;
//@ accessible i , t , y, z;
//@ cost footprint t, z;
\abstract statement Q;
i ++;

}
//@ assert \cost == 2 +

acP (t,w) + t · (acQ (t, z) + 2) ;

Program After

Inputs: t, w, x, y, z Precondition: t > 0 Postcondition: \cost 1 ≥ \cost 2

Preconditions and Postconditions

Fig. 1: Motivating example on relational quantitative properties.

consumption: The moved code block is executed just once in the transformed
context, leading to less instructions (less energy consumed) and, in case it allo-
cates memory, less memory usage. In the following we subsume any quantitative
aspect of a program under the term cost expressed in an unspecified cost model
with the understanding that it can be instantiated to specific cost measures, such
as number of instructions, number of allocated bytes, energy consumed, etc.

To formalize code motion as a transformation rule, we describe in- and out-
put of the transformation schematically. Fig. 1 depicts such a schema in a lan-
guage based on Java. An Abstract Statement (AS) with identifier Id , declared
as “\abstract statement Id ;”, represents an arbitrary concrete statement. It is
obviously unsafe to extract arbitrary, possibly non-invariant, code blocks from
loops. For this reason, the AS P in question has a specification restricting the
allowed behavior of its instances. For compatibility with Java we base our spec-
ification language on the Java Modeling Language (JML) [27]. Specifications are
attached to code via structured comments that are marked as JML by an “@”
symbol. JML keyword “assignable” defines the memory locations that may oc-
cur in the frame of an AS; similarly, “accessible” restricts the footprint. Fig. 1
contains further keywords explained below.

Input to QAE is the abstract program to analyze, including annotations
(highlighted in light gray in Fig. 1) that express restrictions on the permitted
instances of ASs. In addition to the frame and footprint, the cost footprint of an
AS, denoted with the keyword “cost footprint”, is a subset of its footprint listing
locations the cost expressions in AS instances may depend on. In Fig. 1, the cost
footprint of AS Q excludes accessible variables i and y. Annotations highlighted
in dark gray are automatically inferred by abstract cost analysis and are input

28 E. Albert et al.

for the certifier. As usual, loop invariants (keyword “loop invariant”) are needed
to describe the behavior of loops with symbolic bounds. The loop invariant in
Fig. 1 allows inferring the final value t of loop counter i after loop termination.
To prove termination, the loop variant (keyword “decreases”) is inferred.

So far, this is standard automated cost analysis [3]. The ability to infer
automatically the remaining annotations represents our main contribution: Each
AS P has an associated abstract cost function parametric in the locations of its
footprint, represented by an abstract cost symbol acP. The symbol acp (t,w) in
the “assert” statement in Fig. 1 can be instantiated with any concrete function
parametric in t, w being a valid cost bound for the instance of P. For example,
for the instantiation “P ≡ x=t+1;” the constant function acP (t,w) = 1 is the
correct exact cost, while acP (t,w) = t with t ≥ 1 is a correct upper bound cost.

As pointed out in Sect. 1 we require cost invariants to capture the cost of each
loop iteration. They are declared by the keyword “cost invariant”. To generate
them, it is necessary to infer the cost growth of abstract programs that bounds
the number of loop iterations executed so far. In Sect. 4 we describe automated
inference of cost invariants including the generation of cost growth for all loops.
Our technique is compositional and also works in the presence of nested loops.

The QAE framework can express and prove quantitative relational properties.
The assertions in the last lines in Fig. 1 use the expression \cost referring to the
total accumulated cost of the program, i.e., the quantitative postcondition. We
support quantitative relational postconditions such as \cost 1 ≥ \cost 2, where
\cost 1, \cost 2 refer to the total cost of the original (on the left) and trans-
formed (on the right) program, respectively. To prove relational properties, one
must be able to deduce exact cost invariants for loops such that the comparison
of the invariants allows concluding that the programs from which the invariants
are obtained fulfill the proven relational property. Otherwise, over-approximation
introduced by cost analysis could make the relation for the postconditions hold,
while the relational property does not necessarily hold for the programs.

To obtain a formal account of QAE with correctness guarantees we require a
mathematically rigorous semantic foundation of abstract cost. This is provided
in the following section.

3 (Quantitative) Abstract Execution

Abstract Execution [37, 38] extends symbolic execution by permitting abstract
statements to occur in programs. Thus AE reasons about an infinite set of
concrete programs. An abstract program contains at least one AS. The semantics
of an AS is given by the set of concrete programs it represents, its set of legal
instances. To simplify presentation, we only consider normally completing Java
code as instances: an instance may not throw an exception, break from a loop,
etc. Each AS has an identifier and a specification consisting of its frame and
footprint. Semantically, instances of an AS with identifier P may at most write
to memory locations specified in P’s frame and may only read the values of
locations in its footprint. All occurrences of an AS with the same identifier
symbol have the same legal instances (possibly modulo renaming of variables,
if variable names in frame and footprint specifications differ). For example, by

Certified Abstract Cost Analysis 29

//@ assignable x,y;
//@ accessible y, z;
\abstract statement P;

we declare an AS with identifier “P”, which can be instantiated by programs
that write at most to variables x and y, while only depending on variables y
and z. The program “x=y; y=17;” is a legal instance of it, but not “x=y; y=w;”,
which accesses the value of variable w not contained in the footprint.

We use the shorthand P(x, y :≈ y, z) for the AS declaration above. The left-
hand side of “:≈” is the frame, the right-hand side the footprint. Abstract pro-
grams allow expressing a second-order property such as “all programs assigning
at most x, y while reading at most y, z leave the value of i unchanged”. In Hoare
triple format (where i0 is a fresh constant not occurring in P):

{i .
= i0}P(x, y :≈ y, z); {i .

= i0} (∗)
3.1 Abstract Execution with Abstract Cost

We extend the AE framework [37,38] to QAE by adding cost specifications that
extend the specification of an AS with an annotated cost expression. An abstract
cost expression is a function whose value may depend on any memory location in
the footprint of the AS it specifies. This location set is called the cost footprint,
specified via the cost footprint keyword (see Fig. 1), and must be a subset of the
footprint of the specified AS. The cost footprint for the program in (∗) might be
declared as “{z}”. It implicitly declares the abstract function acP (z) that could
be instantiated to, say, quadratic cost “z2”.

Definition 1 (Abstract Program). A pair P = (abstrStmts , pabstr) of a set
of AS declarations abstrStmts �= ∅ and a program fragment pabstr containing
exactly those ASs is called abstract program. Each AS declaration in abstrStmts
is a pair (P(frame :≈ footprint), acP (costFootprint)), where P is an identifier;
frame, footprint, and costFootprint ⊆ footprint are location sets.

A concrete program fragment p is a legal instance of P if it arises from sub-
stituting concrete cost functions for all acP in abstrStmts, and concrete state-
ments for all P in abstrStmts, where (i) all ASs are instantiated legally, i.e., by
statements respecting their frame, footprint, and cost function, and (ii) all ASs
with the same identifier are instantiated with the same concrete program. The
semantics �P� consists of all its legal instances.

The abstract program consisting of only AS P in (∗) with cost footprint “{z}”
is formally defined as:

({(P(x, y :≈ y, z), acP (z))} , P;
)
. The program “P0 ≡

i =0; while (i<z) {x = z; i ++;}” with cost function “acP (z) = 3 · z + 2” is a
legal instance: it respects frame, footprint, and cost footprint, as well as the cost
function, that (assuming z ≥ 0) can be obtained by static cost analysis of P0.

By encoding the semantics of abstract programs in a program logic [38, Sect.
4.2] one can statically verify whether an instance is legal. It may require auxiliary
specifications (invariants, contracts) of the concrete code. The property is unde-
cidable, but can be proven automatically in many cases, see [38] for a discussion.
A first implementation of such a check is part of the REFINITY tool (see [36],
also https://www.key-project.org/REFINITY/).

https://www.key-project.org/REFINITY/

30 E. Albert et al.

3.2 Cost of Abstract Programs

Finitely executing a concrete program p starting in a state s0 = (p, σ0) with an
initial assignment σ0 of p’s program variables results in a finite trace of the form
t ≡ s0

c1−→ . . .
cn−→ sn. Each state si = (pi, σi) consists of a program counter pi

(the remaining program to execute) and a store σi (the current variable assign-

ment); each transition si
ci+1−−−→ si+1 updates si to si+1 according to the effect of

executing command ci+1 defined in the semantics of the programming language.
A complete trace corresponds to a terminating execution, i.e., sn = (ε, σn), where
ε is the empty program and σn the resulting final variable assignment.

The cost of a program can be computed based on execution traces. To al-
low arbitrary quantitative properties, we work on a generic cost model M that
assigns cost values to programming language instructions. We will compute the
cost of a trace t, denoted M(t), by summing up the costs of the executed in-
structions. A straightforward measure is the number of executed instructions
Minstr: In this cost model, instructions like “x=1;”, the evaluation of the loop
guard, etc., all are assigned cost 1. For example, the cost of the complete trace
of “while (i>0) i−−;” when started with an initial store assigning the value 3
to i is 7, because “i −−;” is executed three times and the guard is evaluated four
times. This can be generalized to symbolic execution: Executing the same pro-
gram with a symbolic store assigning to i a symbolic initial value i0 ≥ 0 produces
traces of cost 2 · i0 + 1. The cost of abstract programs, i.e., the generalization to
QAE, is defined similarly: By generalizing not merely over all initial stores, but
also over all concrete instances of the abstract program.

Definition 2 (Abstract Program Cost). Let M be a cost model. Let an
integer-valued expression cP consist of scalar constants, program variables, and
abstract cost symbols applied to constants and variables. Expression cP is the
cost of an abstract program P w.r.t.M if for all concrete stores σ and instances
p ∈ �P� such that p terminates with a complete trace t of cost M(t) when
executed in σ, cP evaluates toM(t) when interpreting variables according to σ,
and abstract cost functions according to the instantiation step leading to p. The
instance of cP using the concrete store σ is denoted cP(σ).

Example 1. We test the cost assertion in the last lines of the left program in
Fig. 1 by computing the cost of a trace obtained from a fixed initial store and
instances of P, Q. We use the cost modelMinstr and an initial store that assigns
2 to t and 0 to all other variables. We instantiate P with “x=2∗t;” and Q with
“y=i; y++;”. Consequently, the abstract cost functions acP (t,w) and acQ (t, z)
are instantiated with 1 and 2, respectively. Evaluating the postulated abstract
program cost 2 + t · (2 + acP (t,w) + acQ (t, z)) for the concrete store and AS
instantiations results in 2+2 ·(2+1+2) = 12. Consequently, the execution trace
should contain 12 transitions, which is the case.

3.3 Proving Quantitative Properties with QAE

There are two ways to realize QAE on top of the existing functional verification
layer provided by the AE framework [37, 38]: (i) provide a “cost” extension

Certified Abstract Cost Analysis 31

to the program logic and calculus underlying AE; (ii) translate non-functional
(cost) properties to functional ones. We opt for the second, as it is less prone to
introduce soundness issues stemming from the addition of new concepts to the
existing framework. It is also faster to realize and allows early testing.

The translation consists of three elements: (a) A global “ghost” variable
“cost” (representing keyword “\cost”) for tracking accumulated cost; (b) explicit
encoding of a chosen cost model by suitable ghost setter methods that update this
variable; (c) functional loop invariants and method postconditions expressing
cost invariants and cost postconditions.

Regarding item (c), we support three kinds of cost specification. These are,
descending in the order of their strength: exact, upper bound, and asymptotic
cost. At the analysis stage, it is usually impossible to determine the best match.
For this reason, there is merely one cost invariant keyword, not three. However,
when translating cost to functional properties, a decision has to be made. A
natural strategy is to start with the strongest kind of specification, then proceed
towards the weaker ones when a proof fails.

An exact cost invariant has the shape “cost == expr”, an upper bound
on the invariant cost is specified by “cost <= expr”; asymptotic cost is ex-
pressed by the idiom “asymptotic(cost) <= asymptotic(expr)”. The function
“asymptotic” abstracts from constant symbols in the argument. For example,
the (exact) cost postcondition of the abstract program on the right in Fig. 1 is:

cost == 2 + acP (t,w) + t · (acQ (t, z) + 2) (†)
Asymptotic cost would be expressed as asymptotic(cost) <= asymptotic(2 +
acP (t,w)+ t · (acQ (t, z)+2)) where the right-hand side of the equation is equiv-
alent to asymptotic(acP (t,w) + t · (acQ (t, z))).

Listing 2 shows the result of translating the cost invariant in Fig. 1 to a
functional loop invariant (highlighted lines), using cost model Minstr in ghost
setters and postconditions of AS (“ensures” clauses). ASs P, Q must include
the ghost variable “cost” in their frame, because they update its value. The
keyword \before in the postcondition of an AS refers to the value a variable
had just before executing the AS. In loops we use “inner” cost variables “iCost”
tracking the cost inside the loop. When the loop terminates, we add the final
value of “iCost” to “cost”. After every evaluation of the guard of the loop, the
cost is incremented accordingly. Using the translation in Listing 2 of the inferred
annotations in Fig. 1, the AE system proves cost postcondition (†) automatically.

Apart from the translation of inferred quantitative annotations to functional
AE specifications, we implemented the axiomatization of the asymptotic function
and extended the AE system’s proof script language. This made it possible to
define a highly automated proof strategy for non-linear arithmetic problems
generated by some cost analysis benchmarks.

4 Abstract Cost Analysis

Recall from Sect. 2 that for automatic cost certification we need to infer anno-
tations for abstract cost invariants and cost postconditions. To achieve this, we

32 E. Albert et al.

1 //@ ghost int cost = 0;
2 int i = 0;
3 //@ set cost = cost + 1;
4

5 //@ assignable x, cost ;
6 //@ accessible t, w;
7 //@ ensures cost == \before(cost)
8 //@ + acP (t,w);
9 \abstract statement P;

10

11 //@ ghost int iCost = 0;
12 //@ loop invariant i ≥ 0 && i ≤ t
13 //@ && iCost == i · (acQ (t, z) + 2) ;

13 //@ decreases t− i;
14 while (i < t) {
15 //@ set iCost = iCost + 1;
16 //@ assignable y, cost ;
17 //@ accessible i , t , y, z;
18 //@ ensures cost ==
19 //@ \before(cost) + acQ (t, z);
20 \abstract statement Q;
21 i ++;
22 //@ set iCost = iCost + 1;
23 }
24 //@ set cost = cost + 1;
25 //@ set cost = cost + iCost;

Listing 2: Translation of cost model and cost invariants to AE.

leverage a cost analysis framework for concrete programs to the abstract setting.
The presentation is structured as follows: Sect. 4.1 defines the notion of an ab-
stract cost relation system (ACRS) used in cost analysis for the abstract setting.
Sect. 4.2 details how to generate automatically inductive cost invariants for ab-
stract programs from ACRSs. Sect. 4.3 tells how to generate cost postconditions
used to prove relational properties and required to handle nested loops.

4.1 Inference of Abstract Cost Relations

There are two main cost analysis approaches: those using recurrence equations
in the style of Wegbreit [39], and those based on type systems [14, 24]. Our
formalization is based on the first kind, but the main ideas for extending the
framework to abstract programs would be also applicable to the second. The key
issue when extending a recurrences-based framework to the abstract setting is
the notion of abstract cost relation for loops which generalizes the concept of cost
recurrence equations for a loop to an abstract setting. We start with notation
for loops and technical details on assumed size relations.

while (G) {
//@ accessible r1,1, . . . , r1,hr1

//@ assignable w1,1, . . . , w1,hw1

//@ cost footprint c1,1, . . . , c1,hc1\abstract statement A1;
non abstract statement N1;
...
}

Loops. In our formalization we consider
while-loops containing n abstract state-
ments and m non-abstract statements.
Non-abstract statements include any
concrete instruction of the target lan-
guage (arithmetic instructions, condi-
tionals, method calls, . . .). We assume
loops L have the general outline dis-
played on the right. Each abstract statement has a frame specification, abstract
and non-abstract statements may appear in any order, either might be empty.

Size relations. We assume that for each loop sets of size constraints have been
computed. These sets capture the size relation among the variables in the loop
upon exit (called base case, denoted ϕB), and when moving from one iteration to
the next (denoted ϕI). ASs are ignored by the size analysis. While this would be

Certified Abstract Cost Analysis 33

unsound in general, it will be correct under the requirements we impose in Def. 4
and with the handling of ASs in Def. 3. Size relations are available from any cost
analyzer by means of a static analysis [13] that records the effect of concrete
program statements on variables and propagates it through each loop iteration.
In our examples, since we work on integer data, size analysis corresponds to a
value analysis [10] tracking the value of the integer variables.2

Example 2. The size relations for the loop on the left in Fig. 1 are ϕB = {i ≥ t}
and ϕI = {i < t, i′ = i+ 1}. ϕB is inferred from the loop guard and ϕI from the
guard and the increment of i (primed variables refer to the value of the variable
after the loop execution).

Based on pre-computed size relations, we define the cost of executing a loop by
means of an abstract cost relation system (ACRS). This is a set of cost equations
characterizing the abstract cost of executing a loop for any input with respect
to a given cost model M. Cost equations consist of a cost expression governed
by size constraints containing applicability conditions for the equation (like i < t
in ϕI above) and size relations between loop variables (like i′ = i+ 1 in ϕI).

Definition 3 (Abstract Cost Relation System). Let L be a loop as above
with n abstract and m non-abstract statements. Let x be the set of variables
accessed in L. Let ϕI , ϕB be sound size relations for L, and M a cost model.
The ACRS for L is defined as the following set of cost equations:

C(x) = CB , ϕB

C(x) =
∑n

j=1 acj
(
cj,1, . . . , cj,hcj

)
+

∑m
i=1 CNi + C(x′), ϕI

where:

(1) CB ≥ 0 is the cost of exiting the loop (executing the base case) w.r.t. M.
(2) Each acj (·) ≥ 0 represents the abstract cost for the abstract statement Aj

in L w.r.t. to M. Each acj is parameterized with the variables in the cost
footprint of the corresponding Aj, as it may depend on any of them.

(3) Each CNi ≥ 0 is the cost of the non-abstract statement Ni w.r.t. to M.
(4) C is a recursive call.
(5) x′ are variables x when renamed after executing the loop.
(6) The assignable variables wj,∗ in the acj get an unknown value in x′ (denoted

with “ ” in the examples below).

Ignoring the abstract statements, one can apply a complete algorithm for cost re-
lation systems [6] to an ACRS to obtain automatically a linear3 ranking function
f for loop L: f is a linear, non-negative function over x that decreases strictly
at every loop iteration. Function f yields directly the “//@ decreases f ;” anno-
tation required for QAE.

As in Sect. 3, the definition of ACRS assumes a generic cost model M and
uses C to refer in a generic way to cost according to M. For example, to infer
the number of executed steps, C is set to 1 per instruction, while for memory
usage C records the amount of memory allocated by an instruction.

2 For complex data structures, one would need heap analyses [35] to infer size relations.
3 There exist (more expensive) algorithms to obtain also polynomial ranking func-
tions [5] but for the sake of efficiency we are not using them in our system.

34 E. Albert et al.

General Case of ACRS. The definition of ACRS was simplified for presenta-
tion. The following generalizations, not requiring any new concept, are possible:
(1) We assume an ACRS for a loop has only two equations, one for the base case
(the guard G does not hold) and one for the iterative case (G holds). In general,
there might be more than one equation for the base case, e.g., if the guard in-
volves multiple conditions and the cost varies depending on the condition that
holds on the exit. Similarly, there might be multiple equations in the iterative
case, e.g., if the loop body contains conditional statements and each iteration
has different cost depending on the taken branch. This issue is orthogonal to
the extension to abstract cost. (2) A loop might contain method calls that in
turn contain ASs. In absence of recursion, such calls can be inlined. For recur-
sive methods, it is possible to compute the call graph and solve the equations
in reverse topological order such that the abstract cost of the (inner) method
calls is obtained first and then inserted into the surrounding equations. (3) The
cost of code fragments not part of any loop (before, after, and in between loops)
is defined as well by abstract cost equations accumulating the cost of all in-
structions these fragments include, just as for concrete programs. This aspect
does not require changes to the framework for concrete programs, so we do not
formalize it, but just illustrate it in the next example.

Example 3. The ACRSs of the programs in Fig. 1 are (left program above line,
right program below):

Cbefore(t, x,w, y, z) = cbefore + Cw0(i, t, x,w, y, z), {i = 0}
Cw0(i, t, x,w, y, z) = cBw0

, {i ≥ t}
Cw0(i, t, x,w, y, z) = cw0 + acP (t,w) + acQ (t, z) + Cw0(i

′, t, ,w, , z), {i′ = i+ 1, i < t}
Cafter(t, x,w, y, z) = cafter + acP (t,w) + Cw1(i, t, ,w, y, z), {i = 0}
Cw1(i, t, x,w, y, z) = cBw1

, {i ≥ t}
Cw1(i, t, x,w, y, z) = cw1 + acQ (t, z) + Cw1(i

′, t, x,w, , z), {i′ = i+ 1, i < t}

Notation c refers to the generic cost that can be instantiated to a chosen cost
modelM. Cost equation Cbefore for the first program is composed of the instruc-
tions appearing before the loop is cbefore plus the cost of executing the while loop
Cw0

. The size constraint fixes the initial value of i. Following Def. 3, there are two
equations corresponding to the base case of the loop and executing one iteration,
respectively. Observe that assignable variables in ASs have unknown values in
the ACRS (according to item (6) in Def. 3). Program after has a similar struc-
ture. A ranking function for both loops is t − i which is used to generate the
annotation “//@ decreases t−i;” inserted just before each loop in Fig. 1.

To guarantee soundness of abstract cost analysis, it is mandatory that (i) no
AS in the loop modifies any of the variables that influence loop cost, i.e., they
do not interfere with cost, and (ii) the cost of the AS in the loop is indepen-
dent of the variables modified in the loop. We call the latter ASs cost neutral.
The first requirement is guaranteed by item (6) in Def. 3, because the value of
assignable variables is “forgotten” in the equations. It is implemented, as usual in
static analysis, by using a name generator for fresh variables. If cost depends on

Certified Abstract Cost Analysis 35

assignable variables in an AS, then the ACRS will not be solvable (i.e., the analy-
sis returns “unbound cost”). The ACRS in the example contains “ ” in equations
that do not prevent solvability of the system nor its evaluation, because they
do not interfere with cost. However, if we had “forgotten” a cost-relevant vari-
able (such as t), we would be unable to solve or evaluate the equations: without
knowing t the equation guard is not evaluable. Requirement (ii) is ensured by the
following definition ensuring that variables in the cost footprint are not modified
by other statements in the loop.

Definition 4 (Cost neutral AS). Given a loop L, where

– W (L) is the set of variables written by the non-abstract statements of L.
– Abstr(L) is the set of all ASs in loop L.
– Frame(Abstr(L)) is the set of variables assigned by any AS A ∈ Abstr(L).
– CostFootprint(A) is the set of variables which the cost of an A depends on.

L is a loop with cost neutral ASs if, for all A ∈ Abstr(L), it is the case that
(W (L) ∪ Frame(Abstr(L))) ∩ CostFootprint(A) = ∅.
The definition above constitutes a sufficient, but not necessary criterion that
could be tightened by a more expensive analysis. For instance, our framework
easily extends to allow conditions in the cost footprint that the concretizations
of the AS must fulfill. In our example, the cost footprint might include condition
i′ ≥ i, where i′ is the value of i after executing the AS. This permits the abstract
statement to modify i provided it does not decrease its value. Thus, the AS is
not cost neutral, but the upper bound remains sound. The formalization of this
generalization is left to future work.

Example 4. It is easy to check that both loops in Fig. 1 have cost neutral ASs. On
the left: W (L) = {i}, Frame({P,Q}) = {x, y}, CostFootprint(P) = {t,w}, and
CostFootprint(Q) = {t, z}, so (W (L)∪ Frame({P,Q}))∩CostFootprint(P) = ∅,
and (W (L)∪Frame({P,Q}))∩CostFootprint(Q) = ∅. The program on the right
is checked analogously.

Given a program P with variables x and ACRS with initial equation Cini(x).
We denote by eval(Cini(x), σ0) the evaluation of the ACRS for a given initial
assignment σ0 of the variables. This is a standard evaluation of recurrence equa-
tions performed by instantiating the right-hand side of the equations with the
values of the variables in σ0 and checking the satisfiability of the size constraints
(if the expression being checked or accumulated contains “ ”, the evaluation re-
turns “unbound”). As usual, the process is repeated until an equation without
calls is reached.

Example 5. Consider the ACRS of the left program in Fig. 1 with variables
(t, x,w, y, z), initial state σ0 = (2, 0, 0, 0, 0), and cost model Minst (thus cbefore,
cBw0

and cw0
take values 1, 1 and 2 respectively). The evaluation of the ACRS

results in eval(Cini(t, x,w, y, z), (2, 0, 0, 0, 0)) = 6 + 2 · acP(2, 0) + 2 · acQ(2, 0).
The following theorem states soundness of the ACRS obtained by applying Def. 3
provided that all loops satisfy Def. 4.

36 E. Albert et al.

Theorem 1 (Soundness of ACRS). Let M be a cost model and P an ab-
stract program whose loops satisfy Def. 4. Let cP be the abstract cost of P
defined as in Definition 2. Let Cini be the initial equation for the ACRS ob-
tained by Def. 3. For any initial state of the variables σ0 ∈ Znm , it holds that
cP(σ0) ≤ eval(Cini(x), σ0).

4.2 From ACRS to Abstract Cost Invariants

Example 5 shows that ACRSs are evaluable for concrete instances. However,
to enable automated QAE, we need to obtain from them closed-form cost in-
variants and postconditions, i.e., non-recursive expressions. We introduce the
novel concept of abstract cost invariant (ACI) that enables automated, induc-
tive proofs over cost in a deductive verification system. The crucial difference to
(non-inductive) cost postconditions as inferred by existing cost analyzers is that
ACIs can be proven inductively for each loop iteration. Hence, they integrate
naturally into deductive verification systems that use loop invariants [21].

In contrast to ACIs, postconditions provide a bound for the cost after exe-
cution of the whole loop they refer to. Typically, a postcondition bound for a
loop has the form max iter ∗max cost+max base, where max iter is the max-
imal number of iterations of the loop, max cost is the maximal cost of any loop
iteration, and max base is the maximal cost of executing the loop with no itera-
tions. Instead, an ACI has the form growth ∗max cost+max base, where growth
counts how many times the loop has been executed and hence provides a bound
after each loop iteration. The challenge is to design an automated technique that
infers growth. We propose to obtain it from the ranking function:

Definition 5 (Growth). Given a loop with ranking function F = c+
∑

i ai ·vi,
where c and vi are the constant and variable parts of the function, respectively,
and ai are constant coefficients. If we denote with v0i the initial value of variable
vi before entering the loop, then growth =

∑
i ai ·

(
v0i − vi

)
.

Example 6. We look at four simple loops with ranking function decreases and
the growth inferred automatically by applying Def. 5:

int i = 0;
while (i < t)

i ++;

int i = t;
while (i > 0)

i −−;

int i = 0;
while (i < t)

i += 2;

int i = t;
while (i > 0)

i −= 2;

decreases t− i
growth i

decreases i
growth t− i

decreases t−i+1
2

growth i
2

decreases i+1
2

growth t−i
2

We can now define the concept of ACI that relies on abstract cost relations
defined in Sect. 4.1 and growth as defined above.

Definition 6 (Abstract Cost Invariant). Given an ACRS as in Def. 3
and its growth as in Def. 5, an abstract cost invariant is defined as follows:

cinv(x) = CB
max+growth ·

(∑n
j=1 acj

(
cj,1, . . . , cj,hcj

)
+

∑m
i=1 CNi

max
)
where CB

max

stands for the maximal value that the expression CB can take under the constraints
ϕB, and CNi

max the maximal value of CNi under ϕI . We generate the annotation
“//@ cost invariant cinv(x);”.

Certified Abstract Cost Analysis 37

To obtain the maximal cost of a cost expression under a set of constraints,
we use existing maximization procedures [5].

From Def. 6 we obtain ACIs as closed-form abstract cost expressions of the
form abexpr = cexpr | ac | abexpr1 + abexpr2 | abexpr1 ∗ abexpr2 where
ac represents an abstract cost function as defined in Sect. 3.1 and cexpr is a
concrete cost expression. The definition above yields linear bounds, however, the
extension to infer postconditions in the subsequent section leads to polynomial
expressions (of arbitrary degree).4

Example 7 (Abstract Cost Invariant). Consider the first loop in Example 6
(where growth = i) with the following frame and footprint:

//@ assignable j; accessible i , t , j , k; cost footprint k;

UsingMinstr, the evaluation of the loop guard and the increase of i both have
unit cost, so the ACRS is:

C(i, t, j, k) = 1 {i ≥ t}
C(i, t, j, k) = acP (k) + 2 + C(i′, t, , k) {i′ = i+ 1, i < t}

The value of the assignable variable j in the recursive call is “forgotten” (item (6)
in Def. 3), but this information loss does not affect solvability of the ACRS. We
obtain the following ACI: “//@ cost invariant 1 + i ∗ (2 + acP(k));”.

Example 8 (Upper Bound Abstract Cost
Invariant). Sometimes an ACI is over-
approximating cost, resulting in an upper
bound ACI. To illustrate this, we add an
instruction that creates an array of non-
constant size “i” to the program in Exam-
ple 7 and measure memory consumption
instead of instruction count.

while (i < t) {
a = new int[i];
//@ assignable j;
//@ accessible i , t , j , a, k;
//@ cost footprint k;
\abstract statement P;
i ++;

}
The resulting ACRS thus accumulates cost “i” at each iteration, plus the

memory consumed by the abstract statement:

C(i, t, j, k) = 0, {i ≥ t}
C(i, t, j, k) = acP (k) + i+ C(i′, t, , k), {i′ = i+ 1, i < t}

Now, maximizing the expression CN1 = i under {i′ = i+ 1, i < t} results in
CN1

max = t−1 and upper bound ACI “//@ cost invariant i ∗ (t − 1 + acP(k));”.

Let cL denote the abstract cost of executing a loop L (in analogy to cP in
Def. 2, but considering only loop L rather than the whole program P). We denote
by cI the portion of the cost in cL up to the execution of iteration I.

Proposition 1. Let L be a loop with variables x satisfying Def. 4, cinv(x) its
ACI, and σI ∈ Znm be the store after performing iteration I of L. Then the
following holds: (1) cinv(x) is true on entering the loop; (2) cI(σI) ≤ cinv(σI).

4 As our approach is based on a recurrences-based framework [39] that works for
exponential and logarithmic expressions, the results in this section generalize to
these expressions. However, the AE deductive verification system is not able to deal
with them automatically at the moment, so we skip these expressions in our account.

38 E. Albert et al.

4.3 From Cost Invariants to Postconditions

To handle programs with nested loops and to prove relational properties it is
necessary to infer cost postconditions for abstract programs. For nested loops the
cost postcondition states the abstract cost after complete execution of the inner
loop and it is used to compute the invariant of the outer loop. For relational
properties, the cost postconditions of two abstract programs are compared. Cost
postconditions for concrete programs are obtained by upper bound solvers (e.g.,
COSTA [3], CoFloCo [16], AProVE [17]) that computemax iter , an upper bound
on the number of iterations that a loop performs. To do so, one relies on ranking
functions. We do this as well, but generalize the computation of postconditions
to abstract programs. The cost postcondition is obtained by substituting growth

by max iter in the formula of cinv(x) in Def. 6 as follows.

Definition 7 (Cost Postcondition). Let L be a loop, max iter be an upper
bound on the number of iterations of L. Given the ACRS for L in Def. 3, we
infer the cost postcondition for L as

post(x) = CB
max +max iter(x) ·

(∑n
j=1 acj

(
cj,1, . . . , cj,hcj

)
+

∑m
i=1 CNi

max
)

and generate the annotation “ //@ assert cost == post(x);”.

To infer the postcondition for a complete abstract program, we take the sum
of all cost postconditions of its top-level loops plus the cost of the non-iterative
fragments. Fig. 1 shows the cost postconditions for our running example obtained
by replacing the growth i of the invariant with the bound t on the loop iterations
and requiring t ≥ 0. The generation of inductive ACIs for nested loops uses the
cost postcondition of inner loops to compute the invariants of the outer ones.
The following theorem states soundness of cost postconditions:

Theorem 2. Let L be a loop over variables x satisfying Def. 4 and post(x) its
cost postcondition. Let σL ∈ Zmn be the store upon termination of L. Then
cL(σL) ≤ post(σL).

5 Experimental Evaluation

We implemented a prototype of our approach downloadable from https://tinyurl.
com/qae-impl (including required libraries). The archive contains the bench-
marks of this section and additional examples as well as build and usage instruc-
tions. The prototype is a command-line implementation backed by an existing
cost analysis library for (non-abstract) Java bytecode as well as the deductive
verification system KeY [2] including the AE framework [37,38]. Our implemen-
tation consists of three components: (1) An extension of a cost analyzer (written
in Python) to handle abstract Java programs, (2) a conversion tool (written
in Java) translating the output of the analyzer to a set of input files for KeY,
(3) a bash script orchestrating the whole tool chain, specifically, the interplay
between item (1), item (2) and the two libraries. In case of a failed certification
attempt, our script offers the choice to open the generated proof in KeY for fur-
ther debugging. In total, our implementation (excluding the libraries) consists

https://tinyurl.com/qae-impl
https://tinyurl.com/qae-impl
https://tinyurl.com/qae-impl
https://tinyurl.com/qae-impl

Certified Abstract Cost Analysis 39

of 1,802 lines of Python, 703 lines of Java, and 389 lines of bash code (without
blank lines and comments).

To assess effectiveness and efficiency of our approach, we used our QAE im-
plementation to analyze seven typical code optimization rules using cost models
Minstr (rows “1∗”–“6∗” in Table 1) andMheap (rows “7∗”). WhileMinstr counts
the number of instructions,Mheap measures heap consumption. The first column
identifies the benchmark (“a” refers to the original program, “b” to the trans-
formed one), the second P refers to the kind of proven cost result (asymptotic
“a”, exact “e”, upper “u”), column three shows the inferred growth function for
each loop in the program (separated by “,” if there are two or more loops), in
the fourth column we list the cost postcondition obtained by the analysis (ex-
pressions indicating the number of loop iterations are highlighted), and columns
five to eight display performance metrics. Time tcost, given in milliseconds, is
the time needed to perform the cost analysis. The proof generation time tproof
is given in seconds. We also display the time tcheck needed for checking integrity
of an already generated proof certificate. Finally, sproof is the size of the gener-
ated KeY proof in terms of number of proof steps. Even though the time needed
for certification is significantly higher than for cost analysis (which is to be ex-
pected), each analysis can be performed within one minute. The time to check
a proof certificate amounts to approximately one fourth to one third of the time
needed to generate it. We stress that all analyses are fully automatic.

We briefly describe the nature of each experiment: 1 is a loop unrolling trans-
formation duplicating the body of a loop: each copy of the body is put inside an
if -statement conditioned by the loop guard. Here, we had to switch to asymptotic
cost invariants: The cost analyzer over-approximates the number of iterations
of the unrolled loop, since there are different possible control flows in the body.
This was automatically detected by the certifier which failed to find a proof when
exact cost invariants are conjectured and succeeds with asymptotic ones. 2 is the
CodeMotion example from Sect. 2. The result reflects the cost decrease in the
sense that less instructions need to be executed by the transformed program. 3
implements a LoopTiling optimization at compiler level in which a single loop
with n ·m iterations is transformed into two nested loops, an outer one looping
until n and an inner one until m. Since our cost analyzer only handles linear
size expressions, the first program is written using an auxiliary parameter t that
is then instantiated to value n · m. 4 is a SplitLoop transformation splitting a
loop with two independent parts into two separate loops. We prove that this
transformation does not affect the cost up to a constant factor. 5 is an opti-
mization combining two loops with the same body structure into one loop. 6 is
a three loops example, one nested and one simple. The optimization combines
the bodies of the outer loop in the nested structure and the simple loop. 7 is
an array optimization, where an array declaration is moved in front of a loop,
initializing it with an auxiliary parameter that is the sum of all the initial sizes.

40 E. Albert et al.

P
Cost analysis results tcost tproof tcheck sproof

Growth Postcondition [ms] [s] [s] #nodes

1a a i t·acP(x) 45.0 12.9 4.3 1,784

1b a i t·acP(x) 53.4 23.8 5.0 3,472

2a e i 2+t·(7 + acP(t, w) + acQ(t, z)) 50.0 23.3 5.7 3,692

2b e i 3 + acP(t, w)+t·(6 + acQ(t, z)) 42.0 19.7 5.7 3,243

3a e i 2+t·(6 + acP(k)) 49.1 18.7 5.1 2,821

3b e i , j 6+n ·m·(6 + acP(k)) 49.5 23.3 5.7 3,794

4a e i+ 1 2+(l + 1)·(7 + acQ1(t, w) + acQ2(t, z)) 49.5 23.8 5.7 3,933

4b e i+ 1 , i+ 1 2+(l + 1)·(12 + acQ1(t, w) + acQ2(t, z)) 48.5 29.4 7.3 5,137

5a e i , j 2+n·(6 + acP(y))+m·(6 + acP(y)) 55.1 25.3 7.1 4,795

5b e i 2+(n+m)·(8 + acP(y)) 48.2 14.1 4.7 2,492

6a e k , j , n− i 6+n·(m·(6 + acP(y))+n·(5 + acQ(y)) 49.8 32.0 8.1 7,078

6b e k , j 7+n·(m·(6 + acP(y)) + acQ(y)) 49.6 24.9 6.4 4,995

7a u i− 1 (t− 1)·(4 · (t− 1) + acP(y)) 51.2 15.6 5.3 2,578

7b u i− 1 4 ·m+(t− 1)·acP(y) 43.3 13.0 4.2 1,793

Table 1: Results of the experiments.

6 Related Work

The present paper builds on the original AE framework [37,38], which we extend
to Quantitative AE. At the moment no other approach or tool is able to analyze
and certify the cost of schematic programs, specifically relational properties, so
a direct comparison is impossible.

Cost Analysis. There are many resource analysis tools, including: [20], based
on introducing counters and inferring loop invariants; [23], based on an analysis
over the depth of functional programs formalized by means of type systems.
Approaches that bound the number of execution steps include [19,29], working at
the level of compilers. Systems such as AProVE [17] analyze the complexity of
Java programs by transforming them to integer transition systems; COSTA [3]
and CoFloCo [16] are based on the generation of cost recurrence equations
from which upper bounds can be inferred. That is also the basis of the approach
we pursue to infer abstract upper bounds in Sect. 4.1, hence our technique can be
viewed as a generalization of these systems. Approaches based on type systems
could also be generalized to work on abstract programs by introducing abstract
cost as in Sect. 4.1.

For our work it is crucial to use ranking functions to infer growth of cost
invariants. Ranking functions were used to generate bounds on the number of
loop iterations in several systems, but none used them to define growth: [10]
obtain runtime complexity bounds via symbolic representation from ranking
functions, likewise PUBS [3], Loopus [40], and ABC [8]. PUBS analyses all
loop transitions at once, Loopus uses an iterative procedure where bounds are
propagated from inner to outer loops, ABC deals with nested, but not sequential
loops. In our work, when inferring upper bounds, we solve all transitions at once
and handle nested as well as sequential loops.

Certified Abstract Cost Analysis 41

Certification. Several general-purpose deductive software verification [21] tools
exist, including VeryFast [34], Why [15], Dafny [28], KIV [33], and KeY [2].
We use KeY, the currently only system to implement AE. Interactive proof as-
sistants like Isabelle [31] or Coq [7] also support more or less expressive abstract
program fragments, but lack full automation. There are dedicated approaches in-
volving schematic programs for specific contexts, like regression verification [18],
compilation [22,26,30] or derived symbolic execution rules [12].

Regarding the combination of deductive verification and cost analysis, the
closest approach to ours is the integration of COSTA and KeY [4] which was
realized for concrete, not abstract programs. They verify upper bounds on the
cost of concrete programs by decomposing them into ranking functions and size
relations which are then verified separately. Here we use the novel concept of
cost invariant that allows verification of quantitative properties without decom-
position. Paper [4] deals only with the global number of iterations as is common
in worst-case cost analysis. Our cost invariants are designed to be inductive and
propagate cost through all loop iterations. Radiček et al. [32] devise a formal
framework for analyzing the relative cost of different programs (or the same pro-
gram with different inputs). Compared to our approach, they target purely func-
tional programs extended with monads representing cost, while we work with an
industrial programming language. Moreover, we generally reason about the cost
of transformations, not of a transformation applied to one particular program.

7 Conclusion and Future Work

We presented the first approach to analyze the cost of schematic programs with
placeholders. We can infer and verify cost bounds for a potentially infinite class
of programs once and for all. In particular, for the first time, it is possible to
analyze and prove changes in efficiency caused by program transformations—for
all input programs. Our approach supports exact and asymptotic cost and a
configurable cost model. We implemented a tool chain based on a cost analyzer
and a program verifier which analyzes and formally certifies abstract cost bounds
in a fully automated manner. Certification is essential, because only the verifier
can determine whether the bounds inferred by the cost analyzer are exact.

Our work required the new concept of an (abstract) cost invariant. This is
interesting in itself, because (i) it renders the analysis of nested loops modular
and (ii) provides an interface to backends (such as verifiers) that characterizes
the cost of code in iterations.

Obvious future work involves extending the analyzed target language. Cost
analysis and deductive verification (including AE) are already possible for a large
Java fragment [3, 37]. More interesting—and more challenging—is the analysis
of program transformations that parallelize code. The extension to larger classes
of cost functions, such as logarithmic or exponential, could be realized by inte-
grating non-linear SMT solvers into the tool chain.

Acknowledgments. This work was funded partially by the Spanish MCIU, AEI and

FEDER(EU) project RTI2018-094403-B-C31, by the CM project S2018/TCS-4314 co-

funded by EIE Funds of the EU and by the UCM CT42/18-CT43/18 grant.

42 E. Albert et al.

References

1. Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Tech-
niques, and Tools. Addison-Wesley, 1986.

2. Wolfgang Ahrendt, Bernhard Beckert, Richard Bubel, Reiner Hähnle, Peter H.
Schmitt, and Mattias Ulbrich, editors. Deductive Software Verification - The KeY
Book - From Theory to Practice, volume 10001 of LNCS. Springer, 2016.

3. Elvira Albert, Puri Arenas, Samir Genaim, German Puebla, and Damiano Zanar-
dini. Cost analysis of object-oriented bytecode programs. Theor. Comput. Sci.,
413(1):142–159, 2012.

4. Elvira Albert, Richard Bubel, Samir Genaim, Reiner Hähnle, Germán Puebla, and
Guillermo Román-Dı́ez. A formal verification framework for static analysis - as
well as its instantiation to the resource analyzer COSTA and formal verification
tool KeY. Software and Systems Modeling, 15(4):987–1012, 2016.

5. Roberto Bagnara, Patricia M. Hill, and Enea Zaffanella. The Parma polyhedra
library: Toward a complete set of numerical abstractions for the analysis and ver-
ification of hardware and software systems. Sci. Comput. Program., 72(1-2):3–21,
2008.

6. Roberto Bagnara, Fred Mesnard, Andrea Pescetti, and Enea Zaffanella. A new look
at the automatic synthesis of linear ranking functions. Inf. Comput., 215:47–67,
2012.

7. Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Devel-
opment - Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical
Computer Science. An EATCS Series. Springer, 2004.

8. Régis Blanc, Thomas A. Henzinger, Thibaud Hottelier, and Laura Kovács. ABC:
algebraic bound computation for loops. In Edmund M. Clarke and Andrei
Voronkov, editors, Logic for Programming, Artificial Intelligence, and Reasoning -
16th International Conference, LPAR-16, Dakar, Senegal, April 25-May 1, 2010,
Revised Selected Papers, volume 6355 of LNCS, pages 103–118. Springer, 2010.

9. Robert S. Boyer, Bernard Elspas, and Karl N. Levitt. SELECT—A formal sys-
tem for testing and debugging programs by symbolic execution. ACM SIGPLAN
Notices, 10(6):234–245, June 1975.

10. Marc Brockschmidt, Fabian Emmes, Stephan Falke, Carsten Fuhs, and Jürgen
Giesl. Alternating runtime and size complexity analysis of integer programs. In
Erika Ábrahám and Klaus Havelund, editors, Tools and Algorithms for the Con-
struction and Analysis of Systems - 20th Intl. Conf., TACAS, Grenoble, France,
volume 8413 of LNCS, pages 140–155. Springer, 2014.

11. Marc Brockschmidt, Richard Musiol, Carsten Otto, and Jürgen Giesl. Automated
termination proofs for Java programs with cyclic data. In P. Madhusudan and
Sanjit A. Seshia, editors, Computer Aided Verification - 24th International Con-
ference, CAV 2012, Berkeley, CA, USA, July 7-13, 2012 Proceedings, volume 7358
of LNCS, pages 105–122. Springer, 2012.

12. Richard Bubel, Andreas Roth, and Philipp Rümmer. Ensuring the Correctness of
Lightweight Tactics for JavaCard Dynamic Logic. Electr. Notes Theor. Comput.
Sci., 199:107–128, 2008.

13. Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear restraints
among variables of a program. In Alfred V. Aho, Stephen N. Zilles, and Thomas G.
Szymanski, editors, Conference Record of the Fifth Annual ACM Symposium on
Principles of Programming Languages, Tucson, Arizona, USA, January 1978,
pages 84–96. ACM Press, 1978.

Certified Abstract Cost Analysis 43

14. Karl Crary and Stephanie Weirich. Resource bound certification. In Mark N.
Wegman and Thomas W. Reps, editors, POPL 2000, Proceedings of the 27th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Boston,
Massachusetts, USA, January 19-21, 2000, pages 184–198. ACM, 2000.

15. Jean-Christophe Filliâtre and Claude Marché. The Why/Krakatoa/Caduceus plat-
form for deductive program verification. In Werner Damm and Holger Hermanns,
editors, Computer Aided Verification, 19th Intl. Conf., CAV, Berlin, Germany,
volume 4590 of LNCS, pages 173–177. Springer, 2007.

16. Antonio Flores-Montoya and Reiner Hähnle. Resource analysis of complex pro-
grams with cost equations. In Jacques Garrigue, editor, Programming Languages
and Systems - 12th Asian Symposium, APLAS 2014, Singapore, November 17-19,
2014, Proceedings, volume 8858 of LNCS, pages 275–295. Springer, 2014.

17. Jürgen Giesl, Marc Brockschmidt, Fabian Emmes, Florian Frohn, Carsten Fuhs,
Carsten Otto, Martin Plücker, Peter Schneider-Kamp, Thomas Ströder, Stephanie
Swiderski, and René Thiemann. Proving termination of programs automatically
with AProVE. In Stéphane Demri, Deepak Kapur, and Christoph Weidenbach,
editors, Automated Reasoning - 7th Intl. Joint Conf., IJCAR, Vienna, Austria,
volume 8562 of LNCS, pages 184–191. Springer, 2014.

18. Benny Godlin and Ofer Strichman. Regression Verification: Proving the Equiva-
lence of Similar Programs. Softw. Test., Verif. Reliab., 23(3):241–258, 2013.

19. Neville Grech, Kyriakos Georgiou, James Pallister, Steve Kerrison, and Ker-
stin Eder. Static energy consumption analysis of LLVM IR programs. CoRR,
abs/1405.4565, 2014.

20. Sumit Gulwani, Krishna K. Mehra, and Trishul M. Chilimbi. SPEED: precise and
efficient static estimation of program computational complexity. In Zhong Shao
and Benjamin C. Pierce, editors, Proceedings of the 36th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2009, Savannah, GA,
USA, January 21-23, 2009, pages 127–139. ACM, 2009.

21. Reiner Hähnle and Marieke Huisman. Deductive verification: from pen-and-paper
proofs to industrial tools. In Bernhard Steffen and Gerhard Woeginger, editors,
Computing and Software Science: State of the Art and Perspectives, volume 10000
of LNCS, pages 345–373. Springer, 2019.

22. Reiner Hähnle and Dominic Steinhöfel. Modular, correct compilation with au-
tomatic soundness proofs. In Tiziana Margaria and Bernhard Steffen, editors,
Leveraging Applications of Formal Methods, Verification and Validation: Founda-
tional Techniques, 8th Intl. Symp., Proc. Part I, ISoLA, Cyprus, volume 11244 of
LNCS, pages 424–447. Springer, 2018.

23. Jan Hoffmann and Martin Hofmann. Amortized resource analysis with polynomial
potential. In Andrew D. Gordon, editor, Programming Languages and Systems,
19th European Symposium on Programming, ESOP, Paphos, Cyprus, volume 6012
of LNCS, pages 287–306. Springer, 2010.

24. John Hughes, Lars Pareto, and Amr Sabry. Proving the correctness of reactive
systems using sized types. In Proceedings of the 23rd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’96, page 410–423,
New York, NY, USA, 1996. Association for Computing Machinery.

25. James C. King. Symbolic execution and program testing. Communications of the
ACM, 19(7):385–394, July 1976.

26. Sudipta Kundu, Zachary Tatlock, and Sorin Lerner. Proving Optimizations Correct
Using Parameterized Program Equivalence. In Proc. PLDI 2009, pages 327–337,
2009.

44 E. Albert et al.

27. Gary T. Leavens, Erik Poll, Curtis Clifton, Yoonsik Cheon, Clyde Ruby, David
Cok, Peter Müller, Joseph Kiniry, Patrice Chalin, Daniel M. Zimmerman, and
Werner Dietl. JML Reference Manual, May 2013. Draft revision 2344.

28. Rustan Leino. Dafny: An automatic program verifier for functional correctness. In
16th International Conference, LPAR-16, Dakar, Senegal, pages 348–370. Springer
Berlin Heidelberg, April 2010.

29. Umer Liqat, Kyriakos Georgiou, Steve Kerrison, Pedro López-Garćıa, John P. Gal-
lagher, Manuel V. Hermenegildo, and Kerstin Eder. Inferring parametric energy
consumption functions at different software levels: ISA vs. LLVM IR. In Marko
C. J. D. van Eekelen and Ugo Dal Lago, editors, Foundational and Practical As-
pects of Resource Analysis - 4th Intl. Workshop, FOPARA, London, UK, Revised
Selected Papers, volume 9964 of LNCS, pages 81–100, 2015.

30. Nuno P. Lopes, David Menendez, Santosh Nagarakatte, and John Regehr. Practical
Verification of Peephole Optimizations with Alive. Commun. ACM, 61(2):84–91,
2018.

31. Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL - A Proof
Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

32. Ivan Radiček, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Florian Zuleger.
Monadic refinements for relational cost analysis. Proc. ACM Program. Lang.,
2(POPL), December 2017.

33. Wolfgang Reif. The KIV-approach to software verification. In KORSO - Methods,
Languages, and Tools for the Construction of Correct Software, volume 1009 of
LNCS, pages 339–370. Springer, 1995.

34. Jan Smans, Bart Jacobs, Frank Piessens, and Wolfram Schulte. An automatic
verifier for Java-like programs based on dynamic frames. In José Luiz Fiadeiro
and Paola Inverardi, editors, Fundamental Approaches to Software Engineering,
11th Intl. Conf., FASE, Budapest, Hungary, volume 4961 of LNCS, pages 261–275.
Springer, 2008.

35. Fausto Spoto, Fred Mesnard, and Étienne Payet. A termination analyzer for Java
bytecode based on path-length. ACM Trans. Program. Lang. Syst., 32(3):8:1–8:70,
2010.

36. Dominic Steinhöfel. REFINITY to Model and Prove Program Transformation
Rules. In Bruno C. d. S. Oliveira, editor, Proc. 18th Asian Symposium on Pro-
gramming Languages and Systems (APLAS), LNCS. Springer, 2020.

37. Dominic Steinhöfel and Reiner Hähnle. Abstract execution. In Maurice H. ter
Beek, Annabelle McIver, and José N. Oliveira, editors, Formal Methods - The
Next 30 Years - Third World Congress, FM 2019, Porto, Portugal, October 7-11,
2019, Proceedings, volume 11800 of LNCS, pages 319–336. Springer, 2019.

38. Dominic Steinhöfel. Abstract Execution: Automatically Proving Infinitely Many
Programs. PhD thesis, Technical University of Darmstadt, Department of Com-
puter Science, Darmstadt, Germany, 2020.

39. Ben Wegbreit. Mechanical program analysis. Commun. ACM, 18(9):528–539, 1975.
40. Florian Zuleger, Sumit Gulwani, Moritz Sinn, and Helmut Veith. Bound analysis of

imperative programs with the size-change abstraction (extended version). CoRR,
abs/1203.5303, 2012.

Certified Abstract Cost Analysis 45

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Bootstrapping Automated Testing
for RESTful Web Services

Yixiong Chen1 , Yang Yang1, Zhanyao Lei1 ,
Mingyuan Xia2 , and Zhengwei Qi1 �

1 Shanghai Jiao Tong University, Shanghai, China
{lawischen,ylxy452782520,leizhanyao,qizhwei}@sjtu.edu.cn

2 AppetizerIO, Shanghai, China
ken@appetizer.io

Abstract. Modern RESTful services expose RESTful APIs to integrate
with diversified applications. Most RESTful API parameters are weakly
typed, which greatly increases the possible input value space. This poses
difficulties for automated testing tools to generate effective test cases to
reveal web service defects related to parameter validation. We call this
phenomenon the type collapse problem. To remedy this problem, we in-
troduce FET (Format-encoded Type) techniques, including the FET, the
FET lattice, and the FET inference to model fine-grained information for
API parameters. Enhanced by FET techniques, automated testing tools
can generate targeted test cases. We demonstrate Leif, a trace-driven
fuzzing tool, as a proof-of-concept implementation of FET techniques.
Experiment results on 27 commercial services show that FET inference
precisely captures documented parameter definitions, which helps Leif to
discover 11 new bugs and reduce 72% ∼ 86% fuzzing time as compared
to state-of-the-art fuzzers.

Keywords: Fuzz Testing · RESTful Web Service · Type Inference.

1 Introduction

The REST (Representational State Transfer) architecture [28] nowadays has
dominated the design of complex web services, such as public clouds (e.g. AWS
and Azure), social networking (e.g. Facebook and Twitter), and code hosting
(e.g. GitHub and GitLab). Typically, a RESTful web service exposes a set of
RESTful APIs. A client requests an API providing parameter values, and the
service responds with data represented in some common exchange format (e.g.
JSON or XML). According to a recent survey of 40 real-world popular RESTful
web services [36], modern services involve an average of 64 APIs and over 20
parameters per API. Testing such an input space of possible parameter value
combinatorics is challenging, and therefore automated testing is indispensable.

Since RESTful APIs are intended for applications implemented by different
programming languages, API parameters are weakly typed. An investigation
on 27 RESTful web services [19] shows that over 67% of the parameters are

© The Author(s) 2021
E. Guerra and M. Stoelinga (Eds.): FASE 2021, LNCS 12649, pp. 46–66, 2021.
https://doi.org/10.1007/978-3-030-71500-7 3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71500-7_3&domain=pdf
http://orcid.org/0000-0002-7209-2771
http://orcid.org/0000-0001-9890-8196
http://orcid.org/0000-0001-5899-0295
http://orcid.org/0000-0003-2730-2319
https://doi.org/10.1007/978-3-030-71500-7_3

Bootstrapping Automated Testing for RESTful Web Services 47

string-typed, about 32% are number-typed, and the remaining 1% are boolean-
typed or object-typed. Overusing primitive data types significantly increases
the possible input value space. For example, a string-typed parameter can
take values varying from a specific URL to a comment about a YouTube video.
This poses difficulties for generating effective test cases. Consequently, many
automated REST testing tools are ineffective while RESTful web services suffer
from various input-related attacks, such as integer overflow attacks and SQL
injection attacks [18]. We call this phenomenon the type collapse problem.

The solution is to bridge the gap for automated testing tools to have a better
understanding of parameters. We observe that though parameter types are weak,
their values usually have distinct formats. For example, a datetime parameter
may require an ISO8601 date string. This motivates us to introduce the FET
(Format-encoded Type) which combines data types and value formats to describe
parameters in fine grains. For instance, the SHA1 FET represents 40-digit-hex
string-typed parameters. Furthermore, we introduce the FET lattice which
hierarchically organizes a set of FETs by a partial order, along with the FET
inference which seeks suitable FETs among a FET lattice for parameters in an
unambiguous manner.

To manifest how to enhance automated REST testing by FET techniques, we
implement Leif, a trace-driven fuzz testing tool. Leif gains fine-grained parameter
information by performing FET inference on HTTP traffic and then mutates
parameter values to mimic real attacks based on the inferred results. We apply
Leif to real-world web services, and the experiment results are encouraging. FET
techniques provide better bug-finding capability and bring 72% ∼ 86% fuzzing
time reduction for Leif when compared to state-of-the-art fuzzing tools.

In particular, this paper makes the following contributions:

– We introduce FET techniques, including the FET, the FET lattice, and the
FET inference, to remedy the type collapse problem and serve as a cornerstone
for high-level automated testing tools.

– We implement Leif, a FET-enhanced fuzzing tool which showcases how to
construct a ubiquitous FET lattice for common RESTful APIs and embed
FET techniques in an existing testing workflow.

– We evaluate the accuracy of FET inference, and the result is encouraging
(67% exact matches, 32% partial matches, and 1% mismatches on average).

– We evaluate Leif’s bug-finding capability (11 distinct bugs detected in 27
commercial web services) as well as its testing efficiency (72% ∼ 86% fuzzing
time reduction as compared to existing fuzzing tools).

The remainder of the paper is organized as follows. Section 2 analyzes the type
collapse problem in detail. Section 3 introduces FET techniques to solve the type
collapse problem. Section 4 introduces Leif as a proof-of-concept implementation
of FET techniques. Section 5 presents the evaluation of FET techniques and Leif.
Section 6 discusses related works and Section 7 concludes.

48 Y. Chen et al.

2 Motivation

It is essential for automated REST testing tools to generate test cases by filling
parameters with automatically generated values. This procedure requires ade-
quate information about parameters. Otherwise, the possible candidate space
would become enormous even for one single parameter. Therefore, a majority of
state-of-the-art automated testing tools focus on reducing the candidate space
by sophisticated methodologies. For instance, RESTler [13] arranges multiple
APIs in the producer-consumer order, and uses response data gained from the
previous APIs to request the next. Chizpurfle [23] and EvoMaster [12] generate
optimal candidate values based on evolutionary algorithms.

Nevertheless, the previous works have not focused on the root cause of the
candidate space explosion. Since most RESTful APIs are designed for exchang-
ing data between programs implemented by different languages (e.g., Java for
mobile applications while Python for the service), only a few common primitive
data types can be used to represent API parameters. For example, Amazon’s
online shopping web service takes about 2,400 parameters, among which 748
are number-typed (31%) and 1,581 are string-typed (66%) [19]. That is, types,
which are supposed to be diversified, now collapse into very limited cases. Conse-
quently, existing automated testing tools encounter a huge candidate space, e.g.,
solely knowing a parameter is string-typed spans a boundless candidate space
from paragraphs of Shakespeare to specific datetime strings. In addition, it is
difficult to pick up effective values that can pass parameter checking, then reach
actual business logic, and finally trigger bugs. Figure 1 shows a code sample of
a RESTful API (requires four parameters: string-typed start, string-typed
end, number-typed amount, and number-typed interest). In order to generate
an effective value which can reach business logic for the parameter start, a
testing tool has to know it is an ISO8601 datetime string. Unfortunately, since
parameters are mainly in primitive data types, this information is usually hard
to obtain. Therefore, the testing tool may treat it as an ordinary string and
generate arbitrary strings which are all rejected by the parameter checking and
thus are basically useless.

1 def calculate_monthly_installment():
2 try:
3 start = parse(request.get("start"), "YYYY-MM-DDTHH:MM:SSZ")
4 end = parse(request.get("end"), "YYYY-MM-DDTHH:MM:SSZ")
5 amount = float(request.get("amount"))
6 interest = float(request.get("interest"))
7 except Exception:
8 return make_response("Invalid Parameter", 400, "Bad Request")
9 # business logic

10 ...

Fig. 1. A Code Sample of a RESTful API (Written in Python).

Bootstrapping Automated Testing for RESTful Web Services 49

The type collapse problem is the major obstacle to obtaining adequate pa-
rameter information and leads to inefficient automated testing. Therefore, our
solution is to provide a fine-grained description method for parameters by ex-
ploiting both its data type and its value format. Leveraged by such information,
we are able to bootstrap and enhance automated testing techniques to gain
efficiency improvement when testing RESTful web services.

3 FET Techniques

To address the type collapse problem, we introduce FET techniques, including
the FET (Format-encoded Type), the FET lattice, and the FET inference. A
FET models an API parameter by its data type and its value format. A FET
lattice hierarchically organizes a set of FETs based on a partial order. We design
FET inference algorithms to seek suitable FETs among a FET lattice for pa-
rameters, and the inferred results are the critical information for bootstrapping
test case generation strategies.

3.1 Type Lattice

The idea of the FET lattice is inspired by the type lattice [24] for programming
languages widely used in compilation and program analysis [33, 44, 45]. A type
lattice is a complete lattice defined on 〈T,�〉, where T is a set of data types (e.g.
long in C/C++) and � is a partial order representing type convertibility. Every
two lattice elements have a unique least upper bound and a unique greatest lower
bound. An element tj is said to cover another element ti if and only if ti � tj
but there does not exist a tm such that ti � tm � tj , where ti � tj means
ti � tj and ti �= tj . Type lattices can model class inheritance hierarchies for
object-oriented languages. In this context, for any two elements ti and tj , ti � tj
holds if and only if ti inherits from or equals to tj . Figure 2 depicts a type lattice
for java.util.Collection (each vertex represents a class or an interface, and
each directed edge stands for the inheritance relationship).

The type lattice is the cornerstone of type systems for modern programming
languages. In static compilation, the type lattice is applied to checking value
assignment and type casting for code validity [38]. In dynamic compilation, e.g.,
JIT (Just-in-time Compilation) [14], it is employed to predict variable types at
program points, so as to remove unnecessary type checking. The type lattice is a
powerful tool to ensure the correctness and efficiency of programs. However, in
the context of REST, API parameters only manifest limited primitive data types
due to the type collapse problem, where the type lattice is no longer sufficient.

3.2 FET Lattice

A FET lattice is defined on 〈Ψ ⊆ T ×F,�〉. A FET ψ ∈ Ψ is defined by (tψ, fψ),
where tψ ∈ T is a data type, and fψ ∈ F is a value format or more specifically
a set of values. � is a partial order that for any two FETs ψi and ψj , ψi � ψj

50 Y. Chen et al.

Interface

Abstract Class

Class

Abstract
List

Abstract
Set

Sorted
Set

Iterable

Collection

SetList Abstract
Collection

Tree
Set

Array
List

Hash
Set

Linked
ListVector

NoType

Fig. 2. A Type Lattice for the Java Collections Framework.

holds if and only if tψi is type-convertible to tψj and fψi is a subset of fψj ,
denoted by tψi

� tψj
and fψi

⊆ fψj
. A FET ψi covered by ψj implies that ψi

describes parameter features in a finer grain than ψj . ψ� and ψ⊥ are defined
as (AnyType, U) and (NoType, ∅), where U is the set containing arbitrary values.
Figure 3 depicts an example FET lattice (a FET’s name describes its value
format, and FETs at the same level are identically colored).

FET Acceptance for Parameter Values. Similar to type lattices, FET
lattices help to determine FETs for given parameter values. To achieve this, we
define that a value v is accepted by a FET ψ if and only if typeof(v) � tψ and
v ∈ fψ, denoted by ψ ∈ acceptance(v). Otherwise v is said to be rejected by
ψ, denoted by ψ /∈ acceptance(v). Spontaneously, ψ� accepts all values while
ψ⊥ accepts none. A value v can be accepted by more than one FET, while the
greatest lower bound of the acceptances describes the value in the finest grain.
We call such an acceptance the minimum acceptance of v. The predecessors
of the minimum acceptance accept v but describe it in a coarser grain, while
the siblings reject v but describe other similar values in the same grain. The
minimum acceptance, the predecessors, and the siblings of v compose a tree,
denoted by ψ-tree(v). For example, for a SHA1 string v, its minimum acceptance
(the SHA1 FET in Figure 3), the predecessors (Hash, String, and ψ�) and the
siblings (MD5, and SHA256) compose the ψ-tree(v).

Avoiding the Ambiguity of FET Lattices. As seen in Figure 3, if a sin-
gle value is accepted by two sibling FETs (e.g. MD5 and SHA1), the minimum
acceptance will fall into the trivial ψ⊥. Generally, a FET lattice is said to be
ambiguous if there exist two FETs with the same predecessor can both accept
the same value. To avoid ambiguity, a validation procedure is obligatory after
a FET lattice is constructed, which is to ensure the value formats of every two
sibling FETs with the same data type are always disjoint.

Bootstrapping Automated Testing for RESTful Web Services 51

Decimal
IdentifierDatetime Hash

URI UUID
Date

Only

ISO

8601
SHA1MD5

StringNull Number

Integer

Package

Name

Version

Tag

Epoch

String

SHA

256
Boolean

Fig. 3. An Example FET Lattice.

In practice, we specify value formats by the regular language, and provide
a ubiquitous FET lattice [20] to model the most common RESTful parameters.
We will elaborate FET lattice construction and verification in Section 4.2.

3.3 FET Inference

Tree-merging FET Inference. As discussed previously, for a single value
v, a unique ψ-tree(v) can always be found in an unambiguous FET lattice. A
RESTful API parameter usually involves multiple values in practice. Hence we
give the tree-merging FET inference. For a parameter with values v1, · · · , vn,
the tree-merging inference is to compute ψ-tree(v1), · · · , ψ-tree(vn), and then
merge them into one tree. The merged tree is denoted by ψ-treen(Vn) where
Vn = {v1, · · · , vn}. The tree-merging inference can be described as a “find-
expand-merge” procedure: (1) find the minimum acceptance for a single value vi
by performing a depth-first searching from ψ� and add the predecessors along
the searching path into the tree; (2) expand the tree by adding the siblings and
then the ψ-tree(vi) is obtained; (3) repeat the step (1) and (2) for every value
and merge all the trees. Step (1) and (2) are illustrated in Figure 4, and step (3)
can be reduced to the DNS tree merging [25]. Assuming that the FET lattice
has l levels with m FETs, the time complexity is O(m) for computing one tree
and O(l) for merging two trees. Thus the time complexity of tree-merging FET
inference for a parameter involving n values is O(n · (m+ l)).
Bitfield-boosting FET Inference. In practice, we notice that the number
of FETs m in a lattice is a constant while the number of values n is a variate
(usually over 1,000). Therefore, we optimize the tree-merging FET inference
based on three observations: (1) each FET can be uniquely represented by one
bit in a m-bit bitfield, and therefore ψ-trees can be represented by several bits
in such bitfields; (2) given a minimum acceptance, its ψ-tree can be uniquely

52 Y. Chen et al.

~ ~

RejectionCurrent / Minimum Acceptance

Sibling~UnvisitedPredecessor

Fig. 4. Inferring ψ-tree(vi) for a Single Value vi.

determined, so the ψ-tree for every FET can be computed before inference; (3)
merging two ψ-trees is equivalent to performing a bitwise OR operation on their
corresponding bitfields.

Hence, we give the forward computation algorithm and the bitfield-boosting
FET inference. The forward computation traverses the lattice in breadth-first
order, assigns a unique bitfield ID per FET, and computes the ψ-tree, as shown
in Algorithm 1. Leveraged by the forward computation, the bitfield-boosting
inference only needs to find the minimum acceptance by the depth-first search-
ing, yields the bitfield tree, and merges it into the ψ-treei−1(Vi−1), as shown
in Algorithm 2. Therefore, the ψ-treen(Vn) can be efficiently computed by a
series of bitwise OR operations instead of graph computations, reducing the time
complexity from O(n · (m+ l)) to O(n ·m).

4 FET-enhanced REST Fuzzing

To manifest the utility of FET techniques, we design Leif, a FET-enhanced REST
fuzzing tool, and we implement it to a command-line tool in 2,796 lines of Python
code. This section elaborates the workflow of Leif, along with methodologies for
collecting HTTP traffic (Section 4.1), for constructing FET lattices (Section 4.2),
and for interfacing FET techniques with fuzzers (Section 4.3).

Figure 5 depicts Leif’s workflow and its interaction with existing systems
and tools. Leif assumes that the web service under test is already deployed
on a staging server or in a production environment. The developer acquires
the Leif program with a built-in FET lattice and traces HTTP traffic between
the service and the clients. Then Leif identifies RESTful APIs by parsing the
captured traffic and performs FET inference on parameter values. The inferred
results are provided to bootstrap test case generating. Finally, Leif emits test
cases and observes wrongful behaviors of the service.

Bootstrapping Automated Testing for RESTful Web Services 53

Algorithm 1: The Forward Computation.

Input: A FET Lattice.

1 ID ← 1; queue ← Queue(ψ�);
2 while !queue.isEmpty() do
3 current ← queue.pop();
4 current.ID ← ID;
5 ID ← ID << 1;
6 foreach ψ � current AND ψ �= ψ⊥ do
7 queue.push(ψ);

8 ψ�.pTree ← 0; ψ�.sT ree ← ψ�.ID;
9 ψ�.tree ← ψ�.pTree ∨ ψ�.sT ree;

10 queue ← Queue(ψ�);
11 while !queue.isEmpty() do
12 current ← queue.pop();
13 sTree ← 0;
14 foreach ψ � current AND ψ �= ψ⊥ do
15 sTree ← sTree ∨ ψ.ID;

16 foreach ψ � current AND ψ �= ψ⊥ do
17 ψ.pTree ← current.pTree ∨ current.ID;
18 ψ.sTree ← sTree;
19 ψ.tree ← pTree ∨ sTree;
20 queue.push(ψ);

4.1 Collecting and Parsing HTTP Traffic

As introduced in Section 3.3, the inferred result of a parameter is contributed by
its different values, and therefore the accuracy of FET inference increases when
Leif witnesses more value cases. Thus developers are expected to apply suitable
tracing methods. For example, monkey testing and scripted regression testing
are more preferred than unit testing to collect traffic. Leif takes the HAR file (an
archival format for HTTP traffic [39]), which is the standard output of network
proxies (Fiddler, MitmProxy [22], etc.), and browser inspection (e.g. Chrome,
and Safari). To identify parameters, the payload (including the headers, the
query string, and the body) of a captured request is parsed to key-value pairs
in JSON format. Due to the type collapse problem, only four data types are
present: boolean, number, string and object (including array). Non-object-
typed parameters are directly provided to FET inference while object-typed
parameters are flattened. Since a JSON object is a tree of properties, Leif flattens
it by splitting leaf properties to independent non-object-typed parameters and
assigning new keys named by their JSONPaths [29], as illustrated in Figure 6.
Then the flatten parameters are also provided to FET inference. Finally, FET
inference receives parameters for each API where each parameter has a unique
key and usually multiple values.

54 Y. Chen et al.

Algorithm 2: The Bitfield-boosting FET Inference.

Input: Parameter Values Vn = {v1, · · · , vn}.
Output: ψ-treen(Vn).

1 ψ-tree0(V0) ← 0;
2 for i ← 1 to n do
3 current ← ψ�;
4 accepted ← true;
5 while accepted do
6 accepted ← false;
7 foreach ψ � current do
8 if ψ ∈ acceptance(vi) then
9 current ← ψ;

10 accepted ← true;

11 ψ-treei(Vi) ← ψ-treei−1(Vi−1) ∨ current.tree;

12 return ψ-treen(Vn);

4.2 Ubiquitous FET Lattice

Regular Expressions for Value Formats. In Leif’s built-in ubiquitous FET
lattice, value formats are specified by regular expressions. We choose to use the
regular language rather than creating a new language to define value formats
because it has many advantages in this scenario. Firstly, regular expressions are
the de-facto descriptions of most string formats. Although regular expressions are
context-free, they can still distinguish different value formats. Secondly, they are
already familiar to developers, and therefore they are easy to construct without
extra learning costs. Finally, to ensure the unambiguity of a FET lattice is
to ensure the regular expression orthogonality of sibling FETs, which can be
formally determined by finite automata [46].
FET Lattice Constructing and Updating. We construct the ubiquitous
FET lattice by referencing popular RESTful services (e.g. Google Map, AWS,
Twitter, and GitHub): (1) we crawl API documents from these services and
then identify potential FETs used in these services; (2) we construct regular
expressions for these FETs by referencing related RFCs (e.g. RFC3339 [35] for
ISO8601, and RFC3986 [16] for URI), programming language specifications (e.g.
the Java specification [34] for PackageName), and database schema definitions
(e.g. the MongoDB data type definition [21] for Hash) to build a base FET
lattice; (3) we apply the Bayesian regular expression generation technique [42]
to discover new FETs from traffic and merge them into the base lattice; (4) we
verify the unambiguity by checking the orthogonality of regular expressions for
sibling FETs, using dk.brics.automaton library [37]. The verified lattice has
21 FETs organized in 5 levels, and we believe it is competent to model most of
the RESTful services. If a developer has application-specific FETs (at the first
usage or when major service updates take place), one can update the lattice by
adding FETs via step (3) and repeat step (4) for unambiguity verification.

Bootstrapping Automated Testing for RESTful Web Services 55

Inferred
-

Mutated requests

Responses

Requests

Responses

HTTP
tracer

Phase 1
Parsing raw
HTTP traffic

Phase 3
Bootstrapping

high-level automated
testing techniques

Phase 2
Performing the FET inference

based on the FET lattice

Leif built-in or user-
specified FET lattice

RESTful web
service

Leif

H
TT

P
tra

ffi
c

Identified APIs
and parameters

Applications

Fig. 5. The Workflow Architecture of Leif.

<object> {
“title”: “A Brief History of Time”,
“price”: 45.00,
“catalogue”: {

“main”: “Science”,
“sub”: {

“main”: “Cosmology”
}

}
}

(a) The Original Parameter.

title price

submain

$

catalogue

main

(b) The Tree Structure.

<string>
<number>
<string>
<string>

$.title: “A Brief History of Time”
$.price: 45.00
$.catalogue.main: “Science”
$.catalogue.sub.main: “Cosmology”

(c) The Flattening Result.

Fig. 6. An Example of Object Flattening.

Twinning FET Inference. We notice some parameters can be represented
by multiple data types and are minimally accepted by distinct FETs in different
data types. For example, an epoch datetime (elapsed seconds or milliseconds
since 1970-01-01 00:00:00) is accepted by the EpochString FET when it is
represented by string while is accepted by the Integer FET when in number.
Apparently, applying type casting to such parameters is very meaningful during
testing. To support this feature, we implement the twinning FET inference.
Before a value is inferred, Leif generates its twinning value if possible. If the
original value is number-typed, Leif generates a twinning string-typed value
(e.g. 1589809244481 → "1589809244481") and vice versa ("1589809244481"
→ 1589809244481). Then both values are inferred, and the resulting two ψ-
trees are merged as if Leif witnesses two independent values. By doing so, both

56 Y. Chen et al.

the Datetime and the Integer FETs are included in the final ψ-treen of an
epoch datetime parameter.

4.3 FET-aware Trace-driven Fuzzing

Trace-driven fuzzing tools generate test cases by replacing parameter values
of captured requests with candidate values. Therefore the success of a fuzzer
mainly depends on its quality of candidate values. In conventional tools, using a
larger candidate dictionary is the basic strategy to increase the opportunity for
triggering bugs, yet it lengthens the fuzzing time.

On the contrary, Leif provides a small but targeted dictionary for each FET
and we give several examples (corresponding to Figure 3): Number is tried with
integer overflows (8-bit, 16-bit, 32-bit, and 64-bit overflows) with signed and
unsigned values; Datetime is tried with year overflows (year 2038, and year

10,000), invalid dates (e.g. 2019-2-29), and timezone tweaks; ISO8601 is tried
with omitting meta characters ("-", ":", etc.); URI is tried with malformed URLs
(e.g. doubling "/", stripping "protocol://", and unescaped characters). With
each parameter tagged by a ψ-treen, Leif generates test cases by exhausting
dictionaries of all the FETs in the tree. Notice that, as discussed in Section 3.2,
the predecessors and the siblings of the minimum acceptance describe similar
but usually invalid values. Therefore, candidates from these FETs are the most
likely values which can pass parameter checking and trigger bugs. For an API
with multiple parameters, Leif exhausts dictionaries for one parameter each time
and tests such API by iterations of exhaustion. In this way, Leif increases the
opportunity to trigger bugs and meanwhile saves the fuzzing time.

5 Evaluation

In this section, we evaluate Leif with real-world RESTful web services, and the
complete dataset of our evaluation is publicly available [19]. Specifically, we
design three experiments to answer the following research questions:

RQ-1 How accurately do FET inference results describe RESTful API param-
eters of complicated real-world web services?

RQ-2 Can Leif generate effective test cases and therefore help developers to
detect web service vulnerabilities in practice?

RQ-3 Does Leif have better bug-finding capability with reduced fuzzing time
when compared to existing state-of-the-art trace-driven and specification-
driven fuzz testing tools?

5.1 FET Inference Accuracy Evaluation

In this experiment, we assume that API documents provided by the service
developers are the ground truth and we validate the accuracy of FET inference

Bootstrapping Automated Testing for RESTful Web Services 57

by comparing the inferred results with the ground truth. We choose GitHub3

and Twitter4, and we randomly pick up 50 RESTful APIs (25 from each). We
extract two pieces of information from document text: (1) parameter data types,
as explicitly listed in the documents; (2) parameter value formats, as provided
in the detailed descriptions (e.g. “This [the parameter since] is a timestamp in
ISO8601 format.”5). We feed example requests gained from the documents to
FET inference, compare the inferred FETs with the ground truth, and observe
three levels of matching:

(1) exact match, the inferred FET is said to be an exact match if it has the
exactly same data type and the value format as the ground truth;

(2) partial match, the inferred FET is said to be a partial match if it has
the exact data type, but its value format is a proper superset of the ground
truth;

(3) mismatch, for the remaining cases.

Intuitively, an exact match precisely describes a parameter such that a fuzzer
can exploit it to generate the most targeted values. A partial match is benign,
for it includes values that will not appear in practice, and a fuzzer may generate
a small set of useless values based on a partial match. A mismatch indicates that
the value format is not yet supported by the current FET lattice.

65
%

34
%

1%

70
%

28
%

2%

67
%

32
%

1%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

exact
match

partial
match

mismatch

M
at

ch
in

g
Le

ve
l R

at
io

s

GitHub Twitter Weighted Avg.

exact
match

partial
match

mis-
match

(a) FET Inference Accuracy.

boolean

number

string

Boolean

12%

Integer

16%

Decimal

11% String

14%

UUID

13%

ISO8601

9%

URI

5%SHA1

5%
Epoch

5%

Version

5%

MD5

5%

(b) Exact Match Distribution.

Fig. 7. FET Inference Accuracy Evaluation Results.

Figure 7(a) exhibits the ratios of matching on GitHub (137 parameters),
Twitter (86 parameters) and the weighted average (223 parameters). In total,
149 (67%) inferred results are exact matches, and 71 (32%) are partial matches.

3 https://docs.github.com/en/free-pro-team@latest/rest/reference
4 https://developer.twitter.com/en/docs
5 https://docs.github.com/en/free-pro-team@latest/rest/reference/gists

https://docs.github.com/en/free-pro-team@latest/rest/reference
https://developer.twitter.com/en/docs
https://docs.github.com/en/free-pro-team@latest/rest/reference/gists

58 Y. Chen et al.

And we observe 3 mismatches in two cases: one is a binary-array parameter
for file uploading and the other is an array of key-value pairs (e.g. [["key1",
"value1"], ["key2", "value2"], ...]). Binary arrays can be supported by
adding a FET ([01]* for the value format) to the current lattice, but Leif aims
to detect logic-related bugs while binaries are usually logic-free but content-
sensitive [43]. Therefore Leif simply does not mutate them. As for key-value pairs,
they are actually two-dimensional arrays where the first dimension is immutable
since it indicates the actual parameter key. We consider allowing developers
to specify which special parameters are immutable in Leif’s future version to
support such cases. For the partial matches, we review the documents, and the
top cases are application-specified formats such as comma-separated strings

and PGP signatures. These formats are less common and developers can add
application-specific FETs to their lattices by following the steps introduced in
Section 4.2. Figure 7(b) exhibits the breakdown of exact matches (the inner
ring is the distribution of the primitive data types and the outer ring is the
inferred FETs) to quantify how FET inference improves parameter information.
The coarse-grained number-typed (27%) and string-typed (61%) parameters are
divided into much smaller slices (5% ∼ 14%). The breakdown clarifies that FET
inference classifies parameters in balance, and therefore restores the collapsed
types. This enables a fuzzer to generate more targeted values, which shrinks
candidate space and increases the opportunity to find bugs.

5.2 Leif Effectiveness Evaluation

In this experiment, we select 27 popular mobile applications to evaluate the ef-
fectiveness of Leif. Each of them is backed by a commercial RESTful web service
serving millions and billions of users. We monkey-test [30] each application for
20 minutes, capture HTTP traffic and run the full-stack Leif workflow. Table 1
lists the subjects and the services have an average of 133 RESTful APIs with
over 19 parameters per API. We collect 46 requests per API on average which
yields adequate request samples for inference. Leif reports 5XX HTTP responses
as bugs along with the corresponding traffic. We have reached out to the service
owners, reported these bugs, and validated these bugs through analysis of traffic
(through API URLs, parameter key-value pairs, and response data) and analysis
of the involved applications (through reverse engineering and static code analysis
of APKs) to eliminate any false-positive or duplicated cases. Table 2 summarizes
the 11 distinct bugs found by Leif. The testing process is fully automated which
mimics how developers would use Leif as a black-box fuzzing tool in practice
and our following analysis mimics how to classify bugs and locate related code
lines based on Leif’s testing results.
Security Bugs with Information Leakage. Bug 1, 2 and 10 are security bugs
with information leakage problems. They can be reproduced by mutating the
parameter appVer (VersionTag), the parameter platform (Identifier), and
the parameter c.v (Integer). These bugs not only cause service crashes but also
expose sensitive information to end users (potential attackers). With the exposed
information, attackers can easily design specialized attacks. For example, the

Bootstrapping Automated Testing for RESTful Web Services 59

Table 1. Experiment Subjects of the Effectiveness Validation.

Application
Name

Category Downloadsa Version
Traffic

Size (MB)
Unique

APIs
Para-
meters

Amazon Shopping 205M+ 18.4.0.1 213 142 2,380
Baidu Tools 2.8B+ 11.15.0.12 453 332 4,742
Bilibili Video 220M+ 5.49.0 524 219 4,338
Damai Shopping 6.6M+ 7.6.4 596 104 1,535

Dianping Social 340M+ 10.19.12 629 148 2,247
Eleme Social 180M+ 8.26.3 230 57 992
Hupu Reading 11.1M+ 7.3.26 295 229 4,446
iQiyi Video 2.5B+ 10.10.0 1,338 257 7,063

Jianshu Reading 6.4M+ 4.16.0 339 111 1,609
Jingdong Shopping 950M+ 8.3.2 514 131 1,521
Kaola Shopping 15.3M+ 4.3.5 322 252 3,848

Mafengwo Trip 21.3M+ 9.3.33 340 151 3,178
Meituan Shopping 1.4B+ 10.3.401 1,111 58 1,151
MissFresh Shopping 16.3M+ 9.6.4 348 50 719

ONE Reading 4.8M+ 4.6.2 242 53 567
Pinduoduo Shopping 1.9B+ 4.77.0 795 79 866

Qunar Trip 330M+ 8.9.28 1,246 146 1,563
Shanbay Tools 2.91M+ 4.2.6502 84 9 94
Sina News News 110M+ 7.25.1 266 53 724
Smzdm Shopping 8.5M+ 9.5.26 267 104 1,866

Sohu News News 170M+ 6.1.8 591 201 3,144
Tencent News News 2.9B+ 5.9.00 1,045 142 1,796

Tmall Shopping 310M+ 9.1.0 177 49 635
Toutiao News 2.0B+ 7.4.8 1,198 323 12,408
Tuniu Trip 79.7M+ 10.19.0 217 68 772
WUBA Social 370M+ 9.1.2 79 123 5,490

Xiaohongshu Social 66.3M+ 6.19.0 295 20 334

Total 13,754 3,611 70,028
a

The statistic is from Tencent AppStore (https://sj.qq.com) up to Jan. 9th, 2020.

response data of bug 10 contains the full Java exception stack trace without
any obfuscation. From the stack trace, attackers can obtain that the service uses
an outdated Spring Framework6 version which suffers from numerous security
vulnerabilities [5,6,8–11]. By exploiting CVE-2020-5421 and CVE-2020-5398 [10,
11], attackers can initiate reflected file download attacks [31] to mislead users
into downloading malware. And by exploiting CVE-2018-1257 [5], attackers can
expose STOMP over WebSocket and then initiate denial of service attacks [17].
They can also obtain that the service uses com.alibaba.fastjson library7 to
deserialize user inputs. Therefore attackers can launch remote code executions
by exploiting known defects in that specific library version [7, 32].

Upon such cases, we suggest developers should first avoid information leakage
problems by checking the service data flow, ensuring that no sensitive methods

6 Spring Framework, https://spring.io/projects/spring-framework
7 Fastjson, https://github.com/alibaba/fastjson

https://sj.qq.com
https://spring.io/projects/spring-framework
https://github.com/alibaba/fastjson

60 Y. Chen et al.

Table 2. Bugs Found by Leif during the Effectiveness Validation.

Bug
ID

Involved
Application

Status
Code

API Path Description

1 iQiyi 500 /book/register A private API, served for user registration.

2 Pinduoduo 500 /cappuccino/splash
A private API, served for first-screen ad-
vertising.

3a Sina News 500 /oauth2/getaid.json
A deprecated public API provided by Sina
Weibo, served for user authorization.

4a Sina News 503 /oauth2/getaid.json
A deprecated public API provided by Sina
Weibo, served for user authorization.

5b Smzdm 502 /integration.php
A public API provided by Baidu, served for
inter-application integration.

6c Sohu News 502 /sendacc.jsp
A public API provided by 53KF, served for
customer service.

7c Sohu News 502 /sendacc.jsp
A public API provided by 53KF, served for
customer service.

8 Toutiao 502 /user/tab/tabs/v3
A private API, probably served for inter-
application redirecting.

9 Toutiao 504 /user/tab/tabs/v3
A private API, probably served for inter-
application redirecting.

10 Tuniu 500 /vip/recommend
A private API, served for content recom-
mendation.

11b WUBA 502 /integration.php
A public API provided by Baidu, served for
inter-application integration.

a

Bug 3 and bug 4 involve the same API but with different HTTP status codes.
b

Bug 5 and bug 11 involve the same API but different applications.
c

Bug 6 and bug 7 involve the same API path but different domain names.

(e.g., java.lang.Exception.toString) can be output to end users, and then
diagnose security problems by analyzing server logs. Besides, they should stay
alert to public vulnerability reports and timely upgrade their codebases.

Third-party API Bugs. We notice that 6 of the bugs involve APIs provided
by third parties. Bug 3 and 4 involve the API for user authorization provided by
Sina Weibo, a social networking platform serving over half a billion users. We
decompile the Sina News APK and locate the related code lines. We find out
the application uses a deprecated version of the API. When this API fails, an
unhandled exception is propagated and causes the application to crash. It can be
reproduced by injecting meta characters "/.:/" to the parameter packagename
(PackageName) and to the parameter mfp (Hash). Bug 6 and 7 involve the API
provided by a customer service platform. The application also suffers from the
deprecated API and crashes when the API fails. Bug 5 and 11 are detected in
different applications but involve the same API provided by Baidu. These two
bugs can be reproduced by mutating the parameter SdkVer (VersionTag).

Using third-party APIs is very common, but they are often overlooked during
testing. However, bugs in third-party code are as important as the application’s
own code, because they both mean application functionality failure to billions
of end users. Our results show that Leif can find bugs across into third-party

Bootstrapping Automated Testing for RESTful Web Services 61

APIs. We suggest that developers should capture application traffic and apply
Leif to test untrusted third-party APIs. In addition, they should design proper
exception handling logic for third-party code and timely upgrade to the latest
API versions with known bugs fixed.
Bugs with Limited Information. We obtain very limited information from
bug 8 and 9, because their responses solely contain HTTP status codes. These
bugs could be as critical as the security bugs since they involve a private API
and cause the service to crash. Therefore service developers can debug such APIs
by following the analysis methods for the security bugs as mentioned.

5.3 Comparative Evaluation

Leif vs. Trace-driven Fuzzers. We classify Leif as a trace-driven fuzzer and
we now compare it with state-of-the-art trace-driven fuzzing tools. We select
BurpSuite [2], a commercial security testing fuzzer for RESTful web services, and
Fuzzapi [3], an open-source general-purpose HTTP fuzzer. They provide built-in
candidate dictionaries but require a series of manual configurations, including
filling the URL for each API and the data type for each parameter. Therefore
we only apply them to Sina News, Toutiao, and Amazon Shopping (518 unique
APIs with 15,512 parameters in total). In addition, we implement NaiveFuzzer
as a baseline that only understands primitive data types and randomly mutates
parameter values solely based on such coarse-grained information. We construct
NaiveFuzzer’s candidate dictionaries by combining the dictionaries of BurpSuite
and Fuzzapi.

We evaluate the bug-finding capabilities of BurpSuite, Fuzzapi, Leif, and
NaiveFuzzer by comparing the number of bugs found by each tool, as reported
in Figure 8(a). And we evaluate their fuzzing time by comparing the averaged
number of test cases generated per parameter, as exhibited in Figure 8(b). Less
generated test cases mean less test execution time, leading to the more efficient
fuzzing. Considering the subjects are already well-tested before release, we be-
lieve the bug-finding capability of Leif is better than BurpSuite and Fuzzapi
for Leif finds extra bugs. And NaiveFuzzer has the same capability as BurpSuite
and Fuzzapi. This is because they share the same candidate space. As for fuzzing
time, BurpSuite, Fuzzapi and NaiveFuzzer respectively generate 5.0× ∼ 6.7×,
3.6× ∼ 4.7× and 6.3× ∼ 7.1× test cases of Leif, indicating FET techniques
bring 72% ∼ 86% fuzzing time reduction.
Leif vs. Specification-driven Fuzzers. We now compare Leif with existing
specification-driven fuzzers, which test RESTful web services based on parsing
API specifications. We select RESTler [13], a state-of-the-art research fuzzer,
and TnT-Fuzzer [4], an open-source robustness testing tool. They both require
OpenAPI specifications [40] as input, but most of the subject services do not
provide OpenAPI specifications. Therefore we construct OpenAPI specifications
for Sina News, Toutiao, and Amazon Shopping by parsing HTTP traffic and
referencing their official API documents.

We intend to run RESTler, but unfortunately neither the executable program
nor the source code is available. According to the paper, RESTler only supports

62 Y. Chen et al.

1 1

0

1

0 0

2 2

0

1 1

0
0

1

2

3

Sina News Toutiao Amazon

B

ug
s F

ou
nd

 in
 T

ot
al

BurpSuite Fuzzapi

Leif NaiveFuzzer

(a) Bug-finding Capabilities.

17
8

23
4

18
0

14
6

14
3

12
8

31 35 36

20
9

24
7

22
8

0

50

100

150

200

250

300

Sina News Toutiao Amazon

T

es
t C

as
es

 G
en

er
at

ed
 p

er
 P

ar
am

et
er

BurpSuite Fuzzapi

Leif NaiveFuzzer

(b) Fuzzing Time.

Fig. 8. Bug-finding Capabilities and Fuzzing Time of the Evaluated Fuzzers.

primitive data types and uses a plain candidate dictionary (consisting of 0, 1, "",
and "sampleString"). Yet none of the bugs found by Leif can be triggered by
these values, indicating that performing RESTler would fail to detect any of the
bugs. And TnT-Fuzzer generates candidate values simply based on the Python
random() function (i.e. purely random fuzzing). We configure it to generate
1,000 test cases per parameter (about 5× of NaiveFuzzer and 30× of Leif). Still,
TnT-Fuzzer fails to find any bugs in the three services. We conclude that the
two fuzzers’ effectiveness is limited by the practical hardness of finding well-
written OpenAPI specifications and the quality of their candidates. These are
also the main shortcomings of all specification-driven fuzzers. Besides, many
modern APIs require short-lived session tokens for access control or throttling.
Specification-driven fuzzers require manual configuration or even repeated re-
configuration for such parameters. In contrast, it is easy for trace-driven fuzzers
to achieve this requirement by mutating freshly captured requests.

6 Related Work

Model-driven Testing. Model-driven testing [15, 26, 27, 47, 48] is usually
white-box and requires using some specific modeling method (e.g. UML or
DSL) through the whole lifecycle of developing, which is human-intensive and
technically-limited for services across multiple servers and micro-services from
different vendors. Essentially, FET techniques are also model-driven (i.e. driven
by the lattice model) but only intervene in the test phase. Thus FET techniques
can be practically employed to test diversified RESTful web services in black-box
approaches.
Trace-driven Fuzzing. Trace-driven fuzzing generates test cases by mutating
recorded requests. Fuzzapi [3], BurpSuite [2], AppSpider [1] and Leif all fall
into this category. Existing trace-driven fuzzers mainly focus on improving the

Bootstrapping Automated Testing for RESTful Web Services 63

ability to capture and replay HTTP traffic. However, Leif demonstrates that FET
techniques provide fundamental parameter information to fuzzers, bringing the
enhanced bug-finding capability and significant fuzzing time reduction.
Specification-driven Fuzzing. Another main class of fuzz testing techniques
is specification-driven fuzzing, such as TnT-Fuzzer [4], EvoMaster [12], and
RESTler [13], which avoids the type collapse problem by assuming developers
provide well-defined specifications with detailed parameter information. How-
ever, the OpenAPI [40] is the only well-established standard up to now, yet is
not widely used. A survey [41] reveals that 71% developers lack the knowledge of
the OpenAPI framework. Therefore, the specification-driven fuzzing is still too
idealistic for testing real-world RESTful web services. In comparison, instead of
asking developers for good specifications, FET techniques generate fine-grained
specifications (i.e. ψ-treesn of parameters) on its own.
Security Penetration Testing. Fuzz testing techniques are also commonly
purposed for security penetration testing. Commercial security penetration tools,
such as BurpSuite [2], use values of SQL injections, unescaped HTML charac-
ters, XML/JSON external entities, etc., to expose system vulnerabilities. FET
techniques can also be employed in security penetration testing, as demonstrated
in Section 5.2. While our main goal is not limited to security testing for RESTful
web services, because FET techniques improve the value selecting strategy for
general-purpose REST fuzzing.

7 Conclusion and Future Work

In this paper, we analyze the type collapse problem and propose FET tech-
niques to remedy this problem. As a proof-of-concept, we design and implement
Leif, a FET-enhanced trace-driven fuzzing tool. We demonstrate that using FET
techniques greatly improves a fuzzer’s understanding of parameters, resulting in
more effective fuzz testing. Our experiment results show that Leif unveils 11 new
bugs in application-specific web services as well as general third-party open API
platforms with 72% ∼ 86% fuzzing time reduction.

FET techniques are capable of effectively bootstrapping automated testing
tools. We believe they are also helpful for parameter validity checking because
these two technical problems are isomorphic in a sense. Thus we are beginning to
study how to automatically generate or enhance parameter checking code based
on FET techniques for RESTful web services.

Acknowledgments

We would like to thank the anonymous reviewers for their valuable comments.
This work was supported in part by National Key Research Development Pro-
gram of China (No. 2016YFB1000502), National NSF of China (No. 61672344,
61525204, and 61732010), Shanghai Pujiang Program (No. 19PJ1430900), and
Shanghai Key Laboratory of Scalable Computing and Systems.

64 Y. Chen et al.

References

1. AppSpider. https://www.rapid7.com/products/appspider

2. BurpSuite. https://portswigger.net/burp

3. Fuzzapi. https://github.com/Fuzzapi/fuzzapi

4. TnT-Fuzzer. https://github.com/Teebytes/TnT-Fuzzer

5. CVE-2018-1257. Available from MITRE, CVE-ID CVE-2018-1257 (Dec 6 2017),
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-1257

6. CVE-2018-1275. Available from MITRE, CVE-ID CVE-2018-1275 (Dec 6 2017),
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-1275

7. CVE-2017-18349. Available from MITRE, CVE-ID CVE-2017-18349 (Oct 23
2018), https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-18349

8. CVE-2018-15756. Available from MITRE, CVE-ID CVE-2018-15756 (Aug 23
2018), https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-15756

9. CVE-2020-5397. Available from MITRE, CVE-ID CVE-2020-5397 (Jan 3 2020),
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-5397

10. CVE-2020-5398. Available from MITRE, CVE-ID CVE-2020-5398 (Jan 3 2020),
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-5398

11. CVE-2020-5421. Available from MITRE, CVE-ID CVE-2020-5421 (Jan 3 2020),
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-5421

12. Arcuri, A.: RESTful API automated test case generation with EvoMaster. ACM
Trans. Softw. Eng. Methodol. 28(1), 3:1–3:37 (2019), https://doi.org/10.1145/
3293455

13. Atlidakis, V., Godefroid, P., Polishchuk, M.: RESTler: Stateful REST API fuzzing.
In: Atlee, J.M., Bultan, T., Whittle, J. (eds.) Proceedings of the 41st International
Conference on Software Engineering, ICSE 2019, Montreal, QC, Canada, May 25-
31, 2019. pp. 748–758. IEEE/ACM (2019), https://doi.org/10.1109/ICSE.2019.
00083

14. Aycock, J.: A brief history of just-in-time. ACM Comput. Surv. 35(2), 97–113
(2003), https://doi.org/10.1145/857076.857077

15. Baker, P., Dai, Z.R., Grabowski, J., Schieferdecker, I., Williams, C.: Model-driven
Testing: Using the UML Testing Profile. Springer Science & Business Media (2007)

16. Berners-Lee, T., Fielding, R., Masinterm, L.: RFC3986: Uniform Resource Iden-
tifier (URI): Generic Syntax. Internet Engineering Task Force (Jan 2005), https:
//www.rfc-editor.org/info/rfc3986

17. Breslaw, D., Bekerman, D.: How Mirai uses STOMP protocol to launch DDoS
attacks. Tech. rep., Imperva Inc. (Nov15 2016), https://www.imperva.com/blog/
mirai-stomp-protocol-ddos/

18. Chandrashekhar, R., Mardithaya, M., Thilagam, S., Saha, D.: SQL injection attack
mechanisms and prevention techniques. In: International Conference on Advanced
Computing, Networking and Security. pp. 524–533. Springer (2011)

19. Chen, Y., Yang, Y., Lei, Z., Xia, M., Qi, Z.: The public dataset of Leif evaluation
(Jan 2021), https://doi.org/10.6084/m9.figshare.12377150

20. Chen, Y., Yang, Y., Lei, Z., Xia, M., Qi, Z.: The ubiquitous FET lattice model
and verification (Jan 2021), https://doi.org/10.6084/m9.figshare.13622720

21. Chodorow, K.: MongoDB: The Definitive Guide: Powerful and Scalable Data Stor-
age. O’Reilly Media, Inc. (2013)

22. Cortesi, A., Hils, M., Kriechbaumer, T.: MitmProxy: A free and open source in-
teractive HTTPS proxy (2010), https://mitmproxy.org

https://www.rapid7.com/products/appspider
https://portswigger.net/burp
https://github.com/Fuzzapi/fuzzapi
https://github.com/Teebytes/TnT-Fuzzer
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-1257
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-1275
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-18349
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-15756
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-5397
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-5398
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-5421
https://doi.org/10.1145/3293455
https://doi.org/10.1145/3293455
https://doi.org/10.1109/ICSE.2019.00083
https://doi.org/10.1109/ICSE.2019.00083
https://doi.org/10.1145/857076.857077
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc3986
https://www.imperva.com/blog/mirai-stomp-protocol-ddos/
https://www.imperva.com/blog/mirai-stomp-protocol-ddos/
https://doi.org/10.6084/m9.figshare.12377150
https://doi.org/10.6084/m9.figshare.13622720
https://mitmproxy.org

Bootstrapping Automated Testing for RESTful Web Services 65

23. Cotroneo, D., Iannillo, A.K., Natella, R.: Evolutionary fuzzing of android OS
vendor system services. Empirical Software Engineering 24(6), 3630–3658 (2019),
https://doi.org/10.1007/s10664-019-09725-6

24. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Graham,
R.M., Harrison, M.A., Sethi, R. (eds.) Conference Record of the Fourth ACM
Symposium on Principles of Programming Languages, Los Angeles, California,
USA, January 1977. pp. 238–252. ACM (1977), https://doi.org/10.1145/512950.
512973

25. Cox, N.: Directory Services: Design, Implementation and Management. Elsevier
(2001)

26. Ed-Douibi, H., Izquierdo, J.L.C., Cabot, J.: Automatic generation of test cases
for REST APIs: A specification-based approach. In: 22nd IEEE International En-
terprise Distributed Object Computing Conference, EDOC 2018, Stockholm, Swe-
den, October 16-19, 2018. pp. 181–190. IEEE Computer Society (2018), https:
//doi.org/10.1109/EDOC.2018.00031

27. Fertig, T., Braun, P.: Model-driven testing of RESTful APIs. In: Gangemi, A.,
Leonardi, S., Panconesi, A. (eds.) Proceedings of the 24th International Confer-
ence on World Wide Web Companion, WWW 2015, Florence, Italy, May 18-22,
2015 - Companion Volume. pp. 1497–1502. ACM (2015), https://doi.org/10.1145/
2740908.2743045

28. Fielding, R.: Representational state transfer. Architectural Styles and the Design
of Netowork-based Software Architecture pp. 76–85 (2000)

29. Goessner, S.: JSONPath - XPath for JSON. http://goessner.net/articles/JsonPath
p. 48 (2007)

30. Google: Android Monkey. https://developer.android.com/studio/test/monkey
31. Hafif, O., Spiderlabs, T.: Reflected file download: A new web attack vector. Trust-

wave. Retrieved March 15, 2016 (2014), https://bit.ly/2F8YZEp
32. Hao, M.: Fastjson 1.2.68 and earlier remote code execution vulnerability threat

alert. Tech. rep., NSFOCUS, Inc. (Jun 2020), https://bit.ly/3iG0jwh
33. Jensen, S.H., Møller, A., Thiemann, P.: Type analysis for JavaScript. In: Pals-

berg, J., Su, Z. (eds.) Static Analysis, 16th International Symposium, SAS 2009,
Los Angeles, CA, USA, August 9-11, 2009. Proceedings. Lecture Notes in Com-
puter Science, vol. 5673, pp. 238–255. Springer (2009), https://doi.org/10.1007/
978-3-642-03237-0 17

34. Joy, B., Steele, G., Gosling, J., Bracha, G.: The Java language specification (2000)
35. Klyne, G., Newman, C.: RFC3339: Date and Time on the Internet: Timestamps. In-

ternet Engineering Task Force (Jul 2002), https://www.rfc-editor.org/info/rfc3339
36. Martin-Lopez, A., Segura, S., Ruiz-Cortés, A.: A catalogue of inter-parameter

dependencies in RESTful web APIs. In: Yangui, S., Rodriguez, I.B., Drira, K.,
Tari, Z. (eds.) Service-Oriented Computing - 17th International Conference, IC-
SOC 2019, Toulouse, France, October 28-31, 2019, Proceedings. Lecture Notes in
Computer Science, vol. 11895, pp. 399–414. Springer (2019), https://doi.org/10.
1007/978-3-030-33702-5 31

37. Møller, A., Bakic, A., Moran, J., et al.: Package dk.brics.automaton. Aarhus Uni-
versity (Jul 4 2017), https://www.brics.dk/automaton/

38. Møller, A., Schwartzbach, M.I.: Static program analysis. Notes. Feb (2012)
39. Morlitz, D.: HTTP archive file (May 2002), US Patent App. 09/726,985
40. OAI (OpenAPI Initiative): The OpenAPI specification. https://github.com/OAI/

OpenAPI-Specification

https://doi.org/10.1007/s10664-019-09725-6
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1109/EDOC.2018.00031
https://doi.org/10.1109/EDOC.2018.00031
https://doi.org/10.1145/2740908.2743045
https://doi.org/10.1145/2740908.2743045
http://goessner.net/articles/JsonPath
https://developer.android.com/studio/test/monkey
https://bit.ly/2F8YZEp
https://bit.ly/3iG0jwh
https://doi.org/10.1007/978-3-642-03237-0_17
https://doi.org/10.1007/978-3-642-03237-0_17
https://www.rfc-editor.org/info/rfc3339
https://doi.org/10.1007/978-3-030-33702-5_31
https://doi.org/10.1007/978-3-030-33702-5_31
https://www.brics.dk/automaton/
https://github.com/OAI/OpenAPI-Specification
https://github.com/OAI/OpenAPI-Specification

66 Y. Chen et al.

41. Open API CSA Working Group: Open API survey report. Tech. rep., Cloud
Security Alliance (Sep 2019), https://cloudsecurityalliance.org/blog/2019/09/11/
open-api-survey-report/

42. Ouyang, L.: Bayesian inference of regular expressions from human-generated ex-
ample strings. CoRR abs/1805.08427 (2018), http://arxiv.org/abs/1805.08427

43. Pham, V., Böhme, M., Roychoudhury, A.: Model-based whitebox fuzzing for
program binaries. In: Lo, D., Apel, S., Khurshid, S. (eds.) Proceedings of the
31st IEEE/ACM International Conference on Automated Software Engineering,
ASE 2016, Singapore, September 3-7, 2016. pp. 543–553. ACM (2016), https:
//doi.org/10.1145/2970276.2970316

44. Raychev, V., Vechev, M.T., Krause, A.: Predicting program properties from “big
code”. In: Rajamani, S.K., Walker, D. (eds.) Proceedings of the 42nd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2015, Mumbai, India, January 15-17, 2015. pp. 111–124. ACM (2015), https://doi.
org/10.1145/2676726.2677009

45. Scheurer, D., Hähnle, R., Bubel, R.: A general lattice model for merging symbolic
execution branches. In: Ogata, K., Lawford, M., Liu, S. (eds.) Formal Methods
and Software Engineering - 18th International Conference on Formal Engineering
Methods, ICFEM 2016, Tokyo, Japan, November 14-18, 2016, Proceedings. Lecture
Notes in Computer Science, vol. 10009, pp. 57–73 (2016), https://doi.org/10.1007/
978-3-319-47846-3 5

46. Thompson, K.: Programming techniques: Regular expression search algorithm.
Commun. ACM 11(6), 419–422 (Jun 1968), https://doi.org/10.1145/363347.
363387

47. Vu, H., Fertig, T., Braun, P.: Towards model-driven hypermedia testing for REST-
ful systems. In: Majchrzak, T.A., Traverso, P., Krempels, K..H., é rie Monfort, V.
(eds.) Proceedings of the 13th International Conference on Web Information Sys-
tems and Technologies, WEBIST 2017, Porto, Portugal, April 25-27, 2017. pp.
340–343. SciTePress (2017), https://doi.org/10.5220/0006353403400343

48. Yuan, Q., Wu, J., Liu, C., Zhang, L.: A model driven approach toward busi-
ness process test case generation. In: Liu, C., Ricca, F. (eds.) Proceedings of
the 10th IEEE International Symposium on Web Systems Evolution, WSE 2010,
3-4 October 2008, Beijing, China. pp. 41–44. IEEE Computer Society (2008),
https://doi.org/10.1109/WSE.2008.4655394

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

https://cloudsecurityalliance.org/blog/2019/09/11/open-api-survey-report/
https://cloudsecurityalliance.org/blog/2019/09/11/open-api-survey-report/
http://arxiv.org/abs/1805.08427
https://doi.org/10.1145/2970276.2970316
https://doi.org/10.1145/2970276.2970316
https://doi.org/10.1145/2676726.2677009
https://doi.org/10.1145/2676726.2677009
https://doi.org/10.1007/978-3-319-47846-3_5
https://doi.org/10.1007/978-3-319-47846-3_5
https://doi.org/10.1145/363347.363387
https://doi.org/10.1145/363347.363387
https://doi.org/10.5220/0006353403400343
https://doi.org/10.1109/WSE.2008.4655394
http://creativecommons.org/licenses/by/4.0/

A Decision Tree Lifted Domain for Analyzing
Program Families with Numerical Features

Aleksandar S. Dimovski 1, Sven Apel 2, and Axel Legay 3

1 Mother Teresa University, 12 Udarna Brigada 2a, 1000 Skopje, North Macedonia
aleksandar.dimovski@unt.edu.mk

2 Saarland University, Saarland Informatics Campus, E1.1, 66123 Saarbrücken,
Germany

3 Université catholique de Louvain, 1348 Ottignies-Louvain-la-Neuve, Belgium

Abstract. Lifted (family-based) static analysis by abstract interpreta-
tion is capable of analyzing all variants of a program family simultaneously,
in a single run without generating any of the variants explicitly. The ele-
ments of the underlying lifted analysis domain are tuples, which maintain
one property per variant. Still, explicit property enumeration in tuples,
one by one for all variants, immediately yields combinatorial explosion.
This is particularly apparent in the case of program families that, apart
from Boolean features, contain also numerical features with large domains,
thus giving rise to astronomical configuration spaces.
The key for an efficient lifted analysis is a proper handling of variability-
specific constructs of the language (e.g., feature-based runtime tests and
#if directives). In this work, we introduce a new symbolic representation
of the lifted abstract domain that can efficiently analyze program families
with numerical features. This makes sharing between property elements
corresponding to different variants explicitly possible. The elements of
the new lifted domain are constraint-based decision trees, where decision
nodes are labeled with linear constraints defined over numerical features
and the leaf nodes belong to an existing single-program analysis domain.
To illustrate the potential of this representation, we have implemented
an experimental lifted static analyzer, called SPLNum2Analyzer, for
inferring invariants of C programs. An empirical evaluation on BusyBox
and on benchmarks from SV-COMP yields promising preliminary re-
sults indicating that our decision trees-based approach is effective and
outperforms the baseline tuple-based approach.

1 Introduction

Many software systems today are configurable [6]: they use features (or config-
urable options) to control the presence and absence of functionality. Different
family members, called variants, are derived by switching features on and off, while
the reuse of common code is maximized, leading to productivity gains, shorter
time to market, greater market coverage, etc. Program families (e.g., software
product lines) are commonly seen in the development of commercial embedded
software, such as cars, phones, avionics, medicine, robotics, etc. Configurable

c© The Author(s) 2021
E. Guerra and M. Stoelinga (Eds.): FASE 2021, LNCS 12649, pp. 67–86, 2021.
https://doi.org/10.1007/978-3-030-71500-7 4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71500-7_4&domain=pdf
http://orcid.org/0000-0002-3601-2631
http://orcid.org/0000-0003-3687-2233
http://orcid.org/0000-0003-2287-8925
https://doi.org/10.1007/978-3-030-71500-7_4

68 A. S. Dimovski et al.

options (features) are used to either support different application scenarios for
embedded components, to provide portability across different hardware platforms
and configurations, or to produce variations of products for different market
segments or customers. We consider here program families implemented using
#if directives from the C preprocessor CPP [20]. They use #if-s to specify in
which conditions parts of code should be included or excluded from a variant.
Classical program families use only Boolean features that have two values: on and
off. However, Boolean features are insufficient for real-world program families,
as there exist features that have a range of numbers as possible values. These
features are called numerical features [25]. For instance, Linux kernel, BusyBox,
Apache web server, Java Garbage Collector represent some real-world program
families with numerical features. Analyzing such program families is very chal-
lenging, due to the fact that from only a few features, a huge number of variants
can be derived.

In this paper, we are concerned with the verification of program families with
Boolean and numerical features using abstract interpretation-based static analysis.
Abstract interpretation [7,24] is a general theory for approximating the semantics
of programs. It provides sound (all confirmative answers are correct) and efficient
(with a good trade-off between precision and cost) static analyses of run-time
properties of real programs. It has been used as the foundation for various
successful industrial-scale static analyzers, such as ASTREE [8]. Still, the static
analysis of program families is harder than the static analysis of single programs,
because the number of possible variants can be very large (often huge) in practice.
The simplest brute-force approach that uses a preprocessor to generate all variants
of a family, and then applies an existing off-the-shelf single-program analyzer to
each individual variant, one-by-one, is very inefficient [3,27]. Therefore, we use
so-called lifted (family-based) static analyses [3,22,27], which analyze all variants
of the family simultaneously without generating any of the variants explicitly.
They take as input the common code base, which encodes all variants of a
program family, and produce precise analysis results corresponding to all variants.
They use a lifted analysis domain, which represents an n-fold product of an
existing single-program analysis domain used for expressing program properties
(where n is the number of valid configurations). That is, the lifted analysis
domain maintains one property element per valid variant in tuples. The problem
is that this explicit property enumeration in tuples becomes computationally
intractable with larger program families because the number of variants (i.e.,
configurations) grows exponentially with the number of features. This problem
has been successfully addressed for program families that contain only Boolean
features [1,2,11], by using sharing through binary decision diagrams (BDDs).
However, the fundamental limitation of existing lifted analysis techniques is that
they are not able to handle numerical features.

To overcome this limitation, we present a new, refined lifted abstract domain
for effectively analyzing program families with numerical features by means of
abstract interpretation. The elements of the lifted abstract domain are constraint-
based decision trees, where the decision nodes are labelled with linear constraints

A Decision Tree Lifted Domain for Analyzing Program Families 69

over numerical features, whereas the leaf nodes belong to a single-program analysis
domain. The decision trees recursively partition the space of configurations (i.e.,
the space of possible combinations of feature values), whereas the program
properties at the leaves provide analysis information corresponding to each
partition, i.e. to the variants (configurations) that satisfy the constraints along
the path to the given leaf node. The partitioning is dynamic, which means that
partitions are split by feature-based tests (at #if directives), and joined when
merging the corresponding control flows again. In terms of decision trees, this
means that new decision nodes are added by feature-based tests and removed
when merging control flows. In fact, the partitioning of the set of configurations
is semantics-based, which means that linear constraints over numerical features
that occur in decision nodes are automatically inferred by the analysis and do
not necessarily occur syntactically in the code base.

Our lifted abstract domain is parametric in the choice of numerical property
domain [7,24] that underlies the linear constraints over numerical features labelling
decision nodes, and the choice of the single-program analysis domain for leaf
nodes. In fact, in our implementation, we also use numerical property domains
for leaf nodes, which encode linear constraints over program variables. We
rely on the well-known numerical domains, such as intervals [7], octagons [23],
polyhedra [10], from the APRON library [19] to obtain a concrete decision
tree-based implementation of the lifted abstract domain. This way, we have
implemented a forward reachability analysis of C program families with numerical
(and Boolean) features for the automatic inference of invariants. Our tool, called
SPLNum2Analyzer4, computes a set of possible invariants, which represent
linear constraints over program variables. We can use the implemented lifted
static analyzer to check invariance properties of C program families, such as
assertions, buffer overflows, null pointer references, division by zero, etc [8].

In summary, we make several contributions: (1) We propose a new, param-
eterized lifted analysis domain based on decision trees for analyzing program
families with numerical features; (2) We implement a prototype lifted static
analyzer, SPLNum2Analyzer, that performs a forward analysis of #if-enriched
C programs, where numerical property domains from the APRON library are
used as parameters in the lifted analysis domain; (3) We evaluate our approach for
automatic inference of invariants by comparing performances of lifted analyzers
based on tuples and decision trees.

2 Motivating Example

To illustrate the potential of a decision tree-based lifted domain, we consider a
motivating example using the code base of the following program family SIMPLE:

4 Num2 in the name of the tool refers to its ability to both handle Numerical features
and to perform Numerical client analysis of SPLs (program families).

70 A. S. Dimovski et al.

1© int x := 10, y := 0;
2© while (x != 0) {
3© x := x-1;
4© #if (SIZE ≤ 3) y := y+1; #else y := y-1; #endif
5© #if (!B) y := 0; #else skip; #endif 6©}
7© assert (y > 1);

The set F of features is {B, SIZE}, where B is a Boolean feature and SIZE is a
numerical feature whose domain is [1, 4] = {1, 2, 3, 4}. Thus, the set of valid
configurations is K = {B ∧ (SIZE=1), B ∧ (SIZE=2), B ∧ (SIZE=3), B ∧ (SIZE=
4),¬B ∧ (SIZE = 1),¬B ∧ (SIZE = 2),¬B ∧ (SIZE = 3),¬B ∧ (SIZE = 4)}. The
code of SIMPLE contains two #if directives, which change the value assigned
to y, depending on how features from F are set at compile-time. For each
configuration from K, a different variant (single program) can be generated
by appropriately resolving #if-s. For example, the variant corresponding to
configuration B ∧ (SIZE=1) will have B and SIZE set to true and 1, so that the
assignment y := y+1 and skip in program locations 4© and 5©, respectively, will
be included in this variant. The variant for configuration ¬B∧ (SIZE=4) will have
features B and SIZE set to false and 4, so the assignments y := y-1 and y := 0 in
program locations 4© and 5©, respectively, will be included in this variant. There
are |K| = 8 variants that can be derived from the family SIMPLE.

Assume that we want to perform lifted polyhedra analysis of SIMPLE using
the Polyhedra numerical domain [10]. The standard lifted analysis domain used
in the literature [3,22] is defined as cartesian product of |K| copies of the basic
analysis domain (e.g. polyhedra). Hence, elements of the lifted domain are tuples
containing one component for each valid configuration from K, where each
component represents a polyhedra linear constraint over program variables (x
and y in this case). The lifted analysis result in location 7© of SIMPLE is an
8-sized tuple shown in Fig. 1. Note that the first component of the tuple in
Fig. 1 corresponds to configuration B ∧ (SIZE=1), the second to B ∧ (SIZE=2),
the third to B ∧ (SIZE=3), and so on. We can see in Fig. 1 that the polyhedra
analysis discovers very precise results for the variable y: (y=10) for configurations
B ∧ (SIZE=1), B ∧ (SIZE=2), and B ∧ (SIZE=3); (y=−10) for configuration
B∧ (SIZE=4); and (y=0) for all other configurations. This is due to the fact that
the polyhedra domain is fully relational and is able to track all relations between
program variables x and y. Using this result in location 7©, we can successfully
conclude that the assertion is valid for configurations B∧(SIZE=1), B∧(SIZE=2),
and B ∧ (SIZE=3), whereas the assertion fails for all other configurations.

If we perform lifted polyhedra analysis based on the decision tree domain
proposed in this work, then the corresponding decision tree inferred in the final
program location 7© of SIMPLE is depicted in Fig. 2. Notice that the inner
nodes of the decision tree in Fig. 2 are labeled with Interval linear constraints
over features (SIZE and B), while the leaves are labeled with the Polyhedra
linear constraints over program variables x and y. Hence, we use two different
numerical abstract domains in our decision trees: Interval domain [7] for expressing
properties in decision nodes, and Polyhedra domain [10] for expressing properties

A Decision Tree Lifted Domain for Analyzing Program Families 71

(B∧(SIZE=1)︷ ︸︸ ︷
[y=10, x=0],

B∧(SIZE=2)︷ ︸︸ ︷
[y=10, x=0],

B∧(SIZE=3)︷ ︸︸ ︷
[y=10, x=0],

B∧(SIZE=4)︷ ︸︸ ︷
[y=−10, x=0],

¬B∧(SIZE=1)︷ ︸︸ ︷
[y=0, x=0],

¬B∧(SIZE=2)︷ ︸︸ ︷
[y=0, x=0],

¬B∧(SIZE=3)︷ ︸︸ ︷
[y=0, x=0],

¬B∧(SIZE=4)︷ ︸︸ ︷
[y=0, x=0]

)

Fig. 1: Tuple-based invariant at
location 7© of SIMPLE.

B

SIZE≤3 [y=0∧x=0]

[y=10∧x=0] [y=−10∧x=0]

Fig. 2: Decision tree-based invariant
at location 7© of SIMPLE (solid edges
= true, dashed edges = false).

in leaf nodes. The edges of decision trees are labeled with the truth value of
the decision on the parent node; we use solid edges for true (i.e. the constraint
in the parent node is satisfied) and dashed edges for false (i.e. the negation of
the constraint in the parent node is satisfied). As decision nodes partition the
space of valid configurations K, we implicitly assume the correctness of linear
constraints that take into account domains of numerical features. For example,
the node with constraint (SIZE≤3) is satisfied when (SIZE≤3) ∧ (1≤SIZE≤4),
whereas its negation is satisfied when (SIZE>3)∧ (1≤SIZE≤4). The constraints
(1≤SIZE≤4) represent the domain [1, 4] of SIZE. We can see that decision trees
offer more possibilities for sharing and interaction between analysis properties
corresponding to different configurations, they provide symbolic and compact
representation of lifted analysis elements. For example, Fig. 2 presents polyhedra
properties of two program variables x and y, which are partitioned with respect
to features B and SIZE. When (B ∧ (SIZE≤ 3)) is true the shared property is
(y=10, x=0), whereas when (B ∧ ¬(SIZE≤ 3)) is true the shared property is
(y=−10, x=0). When ¬B is true, the property is independent from the value
of SIZE, hence a node with a constraint over SIZE is not needed. Therefore, all
such cases are identical and so they share the same leaf node (y=0, x=0). In
effect, the decision tree-based representation uses only three leafs, whereas the
tuple-based representation uses eight properties. This ability for sharing is the
key motivation behind the decision trees-based representation.

3 A Language for Program Families

Let F = {A1, . . . , Ak} be a finite and totaly ordered set of numerical features
available in a program family. For each feature A ∈ F, dom(A) ⊆ Z denotes the
set of possible values that can be assigned to A. Note that any Boolean feature
can be represented as a numerical feature B ∈ F with dom(B) = {0, 1}, such
that 0 means that feature B is disabled while 1 means that B is enabled. A
valid combination of feature’s values represents a configuration k, which specifies
one variant of a program family. It is given as a valuation function k : F→ Z,

72 A. S. Dimovski et al.

which is a mapping that assigns a value from dom(A) to each feature A, i.e.
k(A) ∈ dom(A) for any A ∈ F. We assume that only a subset K of all possible
configurations are valid. An alternative representation of configurations is based
upon propositional formulae. Each configuration k ∈ K can be represented by
a formula: (A1 = k(A1)) ∧ . . . ∧ (Ak = k(Ak)). We often abbreviate (B = 1)
with B and (B = 0) with ¬B, for a Boolean feature B ∈ F. The set of valid
configurations K can be also represented as a formula: ∨k∈Kk.

We define feature expressions, denoted FeatExp(F), as the set of propositional
logic formulas over constraints of F generated by the grammar:

θ ::= true | eFZ �� eFZ | ¬θ | θ1 ∧ θ2 | θ1 ∨ θ2, eFZ ::= n | A | eFZ⊕eFZ

where A ∈ F, n ∈ Z, ⊕ ∈ {+,−, ∗}, and ��∈ {=, <}. We will use θ ∈ FeatExp(F)
to write presence conditions. When a configuration k ∈ K satisfies a feature
expression θ ∈ FeatExp(F), we write k |= θ, where |= is the standard satisfaction
relation of logic. We write [[θ]] to denote the set of configurations from K that
satisfy θ, that is, k ∈ [[θ]] iff k |= θ.

Example 1. For the SIMPLE program family from Section 2, the set of features
is F = {B, SIZE} where dom(SIZE) = [1, 4], and the set of configurations is
K = {B ∧ (SIZE=1), B ∧ (SIZE=2), B ∧ (SIZE=3), B ∧ (SIZE=4),¬B ∧ (SIZE=
1),¬B ∧ (SIZE=2),¬B ∧ (SIZE=3),¬B ∧ (SIZE=4)}. For the feature expression
(SIZE≤ 3), we have [[(SIZE≤ 3)]] = {B ∧ (SIZE=1), B ∧ (SIZE=2), B ∧ (SIZE=
3),¬B ∧ (SIZE = 1),¬B ∧ (SIZE = 2),¬B ∧ (SIZE = 3)}. Hence, B ∧ (SIZE =
2) |= (SIZE≤ 3) and B ∧ (SIZE=4) �|= (SIZE≤ 3), where B ∧ (SIZE=2) ∈ K,
B ∧ (SIZE=4) ∈ K, and (SIZE≤3) ∈ FeatExp(F). ��

We consider a simple sequential non-deterministic programming language,
which will be used to exemplify our work. The program variables Var are statically
allocated and the only data type is the set Z of mathematical integers. To encode
multiple variants, a new compile-time conditional statement is included. The new
statement “#if (θ) s #endif” contains a feature expression θ ∈ FeatExp(F) as a
presence condition, such that only if θ is satisfied by a configuration k ∈ K the
statement s will be included in the variant corresponding to k. The syntax is:

s ::= skip | x:=e | s; s | if (e) then s else s | while (e) do s | #if (θ) s #endif,
e ::= n | [n, n′] | x | e⊕e

where n ranges over integers, [n, n′] over integer intervals, x over program variables
Var, and ⊕ over binary arithmetic operators. Integer intervals [n, n′] denote a
random choice of an integer in the interval. The set of all statements s is denoted
by Stm; the set of all expressions e is denoted by Exp.

A program family is evaluated in two stages. First, the C preprocessor CPP

takes a program family s and a configuration k ∈ K as inputs, and produces a
variant (without #if-s) corresponding to k as the output. Second, the obtained
variant is evaluated using the standard single-program semantics. The first
stage is specified by the projection function Pk, which is an identity for all
basic statements and recursively pre-processes all sub-statements of compound

A Decision Tree Lifted Domain for Analyzing Program Families 73

int x := 10, y := 0;
while (x != 0) {

x := x-1;
y := y+1;
skip; }

(a) PB∧(SIZE=1)(SIMPLE)

int x := 10, y := 0;
while (x != 0) {

x := x-1;
y := y-1;
skip; }

(b) PB∧(SIZE=4)(SIMPLE)

int x := 10, y := 0;
while (x != 0) {

x := x-1;
y := y+1;
y := 0; }

(c) P¬B∧(SIZE=1)(SIMPLE)

int x := 10, y := 0;
while (x != 0) {

x := x-1;
y := y-1;
y := 0; }

(d) P¬B∧(SIZE=4)(SIMPLE)

Fig. 3: Different variants of the program family SIMPLE from Section 2.

statements. Hence, Pk(skip) = skip and Pk(s;s
′) = Pk(s);Pk(s

′). The interesting
case is “#if (θ) s #endif”, where statement s is included in the variant if k |= θ,

otherwise, s is removed 5: Pk(#if (θ) s #endif) =

{
Pk(s) if k |= θ

skip if k �|= θ
. For example,

variants PB∧(SIZE=1)(SIMPLE), PB∧(SIZE=4)(SIMPLE), P¬B∧(SIZE=1)(SIMPLE), as well as
P¬B∧(SIZE=4)(SIMPLE) shown in Fig. 3a, Fig. 3b, Fig. 3c, and Fig. 3d, respectively,
are derived from the SIMPLE family defined in Section 2.

4 Lifted Analysis based on Tuples

Lifted analyses are designed by lifting existing single-program analyses to work
on program families, rather than on individual programs. They directly analyze
program families. Lifted analysis as defined by Midtgaard et. al. [22] rely on
a lifted domain that is |K|-fold product of an existing single-program analysis
domain A defined over program variables Var. We assume that the domain A
is equipped with sound operators for concretization γA, ordering �A, join �A,
meet �A, bottom ⊥A, top �A, widening ∇A, and narrowing �A, as well as sound
transfer functions for tests FILTERA and forward assignments ASSIGNA. More
specifically, FILTERA(a : A, e : Exp) returns an abstract element from A obtained
by restricting a to satisfy the test e, whereas ASSIGNA(a : A, x:=e : Stm) returns
an updated version of a by abstractly evaluating x:=e in it.

Lifted Domain. The lifted analysis domain is defined as 〈AK, �̇, �̇, �̇, ⊥̇, �̇〉, where
AK is shorthand for the |K|-fold product

∏
k∈K A, that is, there is one separate

copy of A for each configuration of K. For example, consider the tuple in Fig. 1.

Lifted Abstract Operations. Given a tuple (lifted domain element) a ∈ AK, the
projection πk selects the kth component of a. All abstract lifted operations are
defined by lifting the abstract operations of the domain A configuration-wise.

γ(a) =
∏

k∈K(γA(πk(a))), a1�̇a2 ≡ πk(a1)�Aπk(a2), for ∀k∈K
a1 �̇ a2 =

∏
k∈K(πk(a1) �A πk(a2)), a1 �̇ a2 =

∏
k∈K(πk(a1) �A πk(a2))

�̇ =
∏

k∈K�A = (�A, . . . ,�A), ⊥̇ =
∏

k∈K⊥A = (⊥A, . . . ,⊥A)

a1 ∇̇ a2 =
∏

k∈K(πk(a1)∇Aπk(a2)), a1 �̇ a2 =
∏

k∈K(πk(a1)�Aπk(a2))

5 Since k ∈ K is a valuation function, either k |= θ holds or k �|= θ holds for any θ.

74 A. S. Dimovski et al.

Lifted Transfer Functions. We now define lifted transfer functions for tests,
forward assignments (ASSIGN), and #if-s (IFDEF). There are two types of
tests: expression-based tests, denoted FILTER, that occur in while-s and if-
s, and feature-based tests, denoted FEAT-FILTER, that occur in #if-s. Each
lifted transfer function takes as input a tuple from AK representing the invariant
before evaluating the statement (resp., expression) to handle, and returns a tuple
representing the invariant after evaluating the given statement (resp., expression).

FILTER(a : AK, e : Exp) =
∏

k∈K(FILTERA(πk(a), e))

FEAT-FILTER(a :AK, θ :FeatExp(F)) =
∏

k∈K

{
πk(a), if k |= θ

⊥A, if k �|= θ

ASSIGN(a :AK, x:=e :Stm) =
∏

k∈K(ASSIGNA(πk(a), x:=e))

IFDEF(a :AK, #if (θ) s :Stm)=[[s]](FEAT-FILTER(a, θ))�̇FEAT-FILTER(a,¬θ)

where [[s]](a) is the lifted transfer function for statement s. FILTER and ASSIGN
are defined by applying FILTERA and ASSIGNA independently on each com-
ponent of the input tuple a. FEAT-FILTER keeps those components k of the
input tuple a that satisfy θ, otherwise it replaces the other components with ⊥A.
IFDEF captures the effect of analyzing the statement s in the components k of
a that satisfy θ, otherwise it is an identity for the other components.

Lifted Analysis. Lifted abstract operators and transfer functions of the lifted
analysis domain AK are combined together to analyze program families. Initially,
we build a tuple ain where all components are set to �A for the first program
location, and tuples where all components are set to ⊥A for all other locations.
The analysis properties are propagated forward from the first program location
towards the final location taking assignments, #if-s, and tests into account with
join and widening around while-s. The soundness of the lifted analysis based on
AK follows immediately from the soundness of all abstract operators and transfer
functions of A (proved in [22]).

Numerical Lifted Analysis The single-program analysis domain A can be instanti-
ated by some of the well-known numerical property domains [24], such as Intervals
〈I,�I〉 [7], Octagons 〈O,�O〉 [26], and Polyhedra 〈P,�P 〉 [10]. The elements of
I are intervals of the form: ±x ≥ β, where x ∈ Var, β ∈ Z; the elements of O are
conjunctions of octagonal constraints of the form ±x1 ± x2 ≥ β, where x1, x2 ∈
Var, β ∈ Z; while the elements of P are conjunctions of polyhedral constraints of
the form α1x1 + . . .+ αkxk + β ≥ 0, where x1, . . . xk ∈ Var, α1, . . . , αk, β ∈ Z.

5 Lifted Analysis based on Decision Trees

We now introduce a new decision tree lifted domain. Its elements are disjunctions
of leaf nodes that belong to an existing single-program domain A defined over
program variables Var. The leaf nodes are separated by linear constraints over

A Decision Tree Lifted Domain for Analyzing Program Families 75

numerical features, organized in the decision nodes. Hence, we encapsulate the
set of configurations K into the decision nodes of a decision tree where each top-
down path represents one or several configurations that satisfy the constraints
encountered along the given path. We store in each leaf node the property
generated from the variants representing the corresponding configurations.

Abstract domain for decision nodes. We define the family of abstract domains for
linear constraints CD, which are parameterized by any of the numerical property
domains D (intervals I, octagons O, polyhedra P). We use CI = {+−Ai ≥ β |
Ai ∈ F, β ∈ Z} to denote the set of interval constraints, CO = {+−Ai +−Aj ≥ β |
Ai, Aj ∈ F, β ∈ Z} to denote the set of octagonal constraints, and CP = {α1A1 +
. . .+αkAk+β ≥ 0 | A1, . . . Ak ∈ F, α1, . . . , αk, β ∈ Z, gcd(|α1|, . . . , |αk|, |β|) = 1}
to denote the set of polyhedral constraints. We have CI ⊆ CO ⊆ CP.

The set CD of linear constraints over features F is constructed by the
underlying numerical property domain 〈D,�D〉 using the Galois connection

〈P(CD),�D〉 −−−−→←−−−−
αCD

γCD 〈D,�D〉, where P(CD) is the power set of CD. The abstrac-

tion function αCD : P(CD)→ D maps a set of interval (resp., octagon, polyhedral)
constraints to an interval (resp., an octagon, polyhedral) that represents a con-
junction of constraints; the concretization function γCD : D → P(CD) maps
an interval (resp., an octagon, a polyhedron) that represents a conjunction of
constraints to a set of interval (resp., octagonal, polyhedral) constraints. We have
γCD(�D) = ∅ and γCD(⊥D) = {⊥CD}, where ⊥CD is an unsatisfiable constraint.

The domain of decision nodes is CD. We assume F = {A1, . . . , Ak} be a finite
and totally ordered set of features, such that the ordering is A1 > A2 > . . . > Ak.
We impose a total order <CD on CD to be the lexicographic order on the coefficients
α1, . . . , αk and constant αk+1 of the linear constraints, such that:

(α1 ·A1 + . . .+ αk ·Ak + αk+1≥0) <CD (α′
1 ·A1 + . . .+ α′

k ·Ak + α′
k+1≥0)

⇐⇒ ∃j > 0.∀i < j.(αi = α′
i) ∧ (αj < α′

j)

The negation of linear constraints is formed as: ¬(α1A1 + . . . αkAk + β ≥
0) = −α1A1 − . . .− αkAk − β − 1 ≥ 0. For example, the negation of A− 3 ≥ 0
is the constraint −A+ 2 ≥ 0 (i.e., A ≤ 2). To ensure canonical representation
of decision trees, a linear constraint c and its negation ¬c cannot both appear
as nodes in a decision tree. For example, we only keep the largest constraint
with respect to <CD between c and ¬c. For this reason, we define the equivalence
relation ≡CD as c ≡CD ¬c. We define 〈CD, <CD〉 to denote 〈CD/≡, <CD〉, such that
elements of CD are constraints obtained by quotienting by the equivalence ≡CD .

Abstract domain for constraint-based decision trees. A constraint-based decision
tree t ∈ T(CD,A) over the sets CD of linear constraints defined over F and the
leaf abstract domain A defined over Var is either a leaf node $a%with a ∈ A,
or [[c : tl, tr]], where c ∈ CD (denoted by t.c) is the smallest constraint with
respect to <CD appearing in the tree t, tl (denoted by t.l) is the left subtree of
t representing its true branch, and tr (denoted by t.r) is the right subtree of t
representing its false branch. The path along a decision tree establishes the set

76 A. S. Dimovski et al.

of configurations (those that satisfy the encountered constraints), and the leaf
nodes represent the analysis properties for the corresponding configurations.

Example 2. The following two constraint-based decision trees t1 and t2 have
decision nodes labelled with Interval linear constraints over the numeric feature
SIZE with domain {1, 2, 3, 4}, whereas leaf nodes are Interval properties:

t1 = [[SIZE≥4 :$[y≥2]%,$[y=0]%]], t2 = [[SIZE≥2 :$[y≥0]%,$[y≤0]%]] ��
Abstract Operations. The concretization function γT of a decision tree t ∈
T(CD,A) returns γA(a) for k ∈ K, where k satisfies the set C ∈ P(CD) of
constraints accumulated along the top-down path to the leaf node a ∈ A. More
formally, γT(t) = γT[K](t). The function γT accumulates into a set C ∈ P(CD)
constraints along the paths up to a leaf node, which is initially equal to the set of
implicit constraints over F, K=∨k∈Kk, taking into account domains of features:

γT[C]($a%)=∏
k|=CγA(a), γT[C]([[c : tl, tr]])=γT[C∪{c}](tl)×γT[C∪{¬c}](tr)

Note that k |= C is equivalent with αCD({k}) �D αCD(C). Therefore, we can
check k |= C using the abstract operation �D of the numerical domain D.

Other binary operations of T(CD,A) are based on Algorithm 1 for tree unifica-
tion, which finds a common refinement (labelling) of two trees t1 and t2 by calling
function UNIFICATION(t1, t2,K). It possibly adds new constraints as decision
nodes (Lines 5–7, Lines 11–13), or removes constraints that are redundant (Lines
3,4,9,10,15,16). The function UNIFICATION accumulates into the set C ∈ P(CD)
(initialized to K, which represents implicit constraints satisfied by both t1 and t2),
constraints encountered along the paths of the decision tree. This set C is used
by the function isRedundant(c, C), which checks whether the linear constraint
c ∈ CD is redundant with respect to C by testing αCD(C) �D αCD({c}). Note that
the tree unification does not lose any information.

Example 3. Consider constraint-based decision trees t1 and t2 from Example 2.
After tree unification UNIFICATION(t1, t2,K), the resulting decision trees are:

t1 = [[SIZE ≥ 4 :$[y ≥ 2]%, [[SIZE ≥ 2 :$[y = 0]%,$[y = 0]%]]]],
t2 = [[SIZE ≥ 4 :$[y ≥ 0]%, [[SIZE ≥ 2 :$[y ≥ 0]%,$[y ≤ 0]%]]]]

Note that UNIFICATION adds a decision node for SIZE ≥ 2 to the right subtree of
t1, whereas it adds a decision node for SIZE ≥ 4 to t2 and removes the redundant
constraint SIZE ≥ 2 from the resulting left subtree of t2. ��

All binary operations are performed leaf-wise on the unified decision trees.
Given two unified decision trees t1 and t2, their ordering and join are defined as:

$a1%�T$a2%= a1�A a2, [[c : tl1, tr1]]�T [[c : tl2, tr2]]=(tl1�T tl2) ∧ (tr1�T tr2)
$a1%�T$a2%=$a1�Aa2%, [[c : tl1, tr1]]�T [[c : tl2, tr2]]=[[c : tl1�Ttl2, tr1�Ttr2]]
Similarly, we compute meet, widening, and narrowing of t1 and t2. The top is a
tree with a single �A leaf: �T =$�A%, while the bottom is: ⊥T =$⊥A%.
Example 4. Consider the unified trees t1 and t2 from Example 3. We have that
t1�T t2 holds, and t1�Tt2=[[SIZE≥4:$[y≥0]%, [[SIZE≥2:$[y≥0]%,$[y≤0]%]]]].

A Decision Tree Lifted Domain for Analyzing Program Families 77

Algorithm 1: UNIFICATION(t1, t2, C)

1 if isLeaf(t1) ∧ isLeaf(t2) then return (t1, t2);
2 if isLeaf(t1) ∨ (isNode(t1) ∧ isNode(t2) ∧ t2.c <CD t1.c) then
3 if isRedundant(t2.c, C) then return UNIFICATION(t1, t2.l, C);
4 if isRedundant(¬t2.c, C) then return UNIFICATION(t1, t2.r, C);
5 (l1, l2) = UNIFICATION(t1, t2.l, C ∪ {t2.c});
6 (r1, r2) = UNIFICATION(t1, t2.r, C ∪ {¬t2.c});
7 return ([[t2.c : l1, r1]], [[t2.c : l2, r2]]);

8 if isLeaf(t2) ∨ (isNode(t1) ∧ isNode(t2) ∧ t1.c <CD t2.c) then
9 if isRedundant(t1.c, C) then return UNIFICATION(t1.l, t2, C);

10 if isRedundant(¬t1.c, C) then return UNIFICATION(t1.r, t2, C);
11 (l1, l2) = UNIFICATION(t1.l, t2, C ∪ {t1.c});
12 (r1, r2) = UNIFICATION(t1.r, t2, C ∪ {¬t1.c});
13 return ([[t1.c : l1, r1]], [[t1.c : l2, r2]]);

14 else
15 if isRedundant(t1.c, C) then return UNIFICATION(t1.l, t2.l, C);
16 if isRedundant(¬t1.c, C) then return UNIFICATION(t1.r, t2.r, C);
17 (l1, l2) = UNIFICATION(t1.l, t2.l, C ∪ {t1.c});
18 (r1, r2) = UNIFICATION(t1.r, t2.r, C ∪ {¬t1.c});
19 return ([[t1.c : l1, r1]], [[t1.c : l2, r2]]);

Algorithm 2: ASSIGNT(t, x:=e)

1 if isLeaf(t) then return �ASSIGNA(t, x:=e)
;
2 return [[t.c : ASSIGNT(t.l, x:=e),ASSIGNT(t.r, x:=e)]];

Transfer functions. The transfer functions for forward assignments (ASSIGNT)
and expression-based tests (FILTERT) modify only leaf nodes of a constraint-
based decision tree. In contrast, transfer functions for variability-specific con-
structs, such as feature-based tests (FEAT-FILTERT) and #if-s (IFDEFT) add,
modify, or delete decision nodes of a decision tree. This is due to the fact that
the analysis information about program variables is located in leaf nodes, while
the information about feature variables is located in decision nodes.

Transfer function ASSIGNT for handling an assignment x:=e in the input tree
t is described by Algorithm 2. Note that x ∈ Var, and e ∈ Exp may contain only
program variables. We apply ASSIGNA to each leaf node a of t, which substitutes
expression e for variable x in a. Similarly, transfer function FILTERT for handling
expression-based tests e ∈ Exp is implemented by applying FILTERA leaf-wise.

Transfer function FEAT-FILTERT for feature-based tests θ is described by
Algorithm 3. It reasons by induction on the structure of θ (we assume negation is
applied to atomic propositions). When θ is an atomic constraint over numerical
features (Lines 2,3), we use FILTERD to approximate θ, thus producing a set of
constraints J , which are then added to the tree t, possibly discarding all paths of
t that do not satisfy θ. This is done by calling function RESTRICT(t,K, J), which

78 A. S. Dimovski et al.

Algorithm 3: FEAT-FILTERT(t, θ)

1 switch θ do
2 case (eFZ �� eFZ) || (¬(eFZ �� eFZ)) do
3 J = FILTERD(�D, θ); return RESTRICT(t,K, J)

4 case θ1 ∧ θ2 do
5 return FEAT-FILTERT(t, θ1) �T FEAT-FILTERT(t, θ2)

6 case θ1 ∨ θ2 do
7 return FEAT-FILTERT(t, θ1) �T FEAT-FILTERT(t, θ2)

adds linear constraints from J to t in ascending order with respect to <CD as
shown in Algorithm 4. Note that θ may not be representable exactly in CD (e.g.,
in the case of non-linear constraints over F), so FILTERD may produce a set of
constraints approximating it. When θ is a conjunction (resp., disjunction) of two
feature expressions (Lines 4,5) (resp., (Lines 6,7)), the resulting decision trees
are merged by operation meet �T (resp., join �T). Function RESTRICT(t, C, J),
described in Algorithm 4, takes as input a decision tree t, a set C of linear
constraints accumulated along paths up to a node, and a set J of linear constraints
in canonical form that need to be added to t. For each constraint j ∈ J , there
exists a boolean bj that shows whether the tree should be constrained with
respect to j or with respect to ¬j. When J is not empty, the linear constraints
from J are added to t in ascending order with respect to <CD . At each iteration,
the smallest linear constraint j is extracted from J (Line 9), and is handled
appropriately based on whether j is smaller (Line 11–15), or greater or equal
(Line 17–21) to the constraint at the node of t we currently consider.

Finally, transfer function IFDEFT is defined as:

IFDEFT(t, #if (θ) s) = [[s]]T(FEAT-FILTERT(t, θ)) �T FEAT-FILTERT(t, ¬θ)
where [[s]]T(t) denotes the transfer function in T(CD,A) for statement s.

After applying transfer functions, the obtained decision trees may contain
some redundancy that can be exploited to further compress them. Function
COMPRESST(t, C), described by Algorithm 5, is applied to decision trees t in order
to compress (reduce) their representation. We use five different optimizations.
First, if constraints on a path to some leaf are unsatisfiable, we eliminate that
leaf node (Lines 9,10). Second, if a decision node contains two same subtrees,
then we keep only one subtree and we also eliminate the decision node (Lines
11–13). Third, if a decision node contains a left leaf and a right subtree, such that
its left leaf is the same with the left leaf of its right subtree and the constraint in
the decision node is less or equal to the constraint in the root of its right subtree,
then we can eliminate the decision node and its left leaf (Lines 14,15). A similar
rule exists when a decision node has a left subtree and a right leaf (Lines 16,17).

Lifted analysis. The abstract operations and transfer functions of T(CD,A) can
be used to define the lifted analysis for program families. Tree tin at the initial

A Decision Tree Lifted Domain for Analyzing Program Families 79

Algorithm 4: RESTRICT(t, C, J)

1 if isEmpty(J) then
2 if isLeaf(t) then return t;
3 if isRedundant(t.c, C) then return RESTRICT(t.l, C, J);
4 if isRedundant(¬t.c, C) then return RESTRICT(t.r, C, J);
5 l = RESTRICT(t.l, C ∪ {t.c}, J) ;
6 r = RESTRICT(t.r, C ∪ {¬t.c}, J) ;
7 return ([[t.c : l, r]]);

8 else
9 j = min<CD

(J) ;

10 if isLeaf(t) ∨ (isNode(t) ∧ j <CD t.c) then
11 if isRedundant(j, C) then return RESTRICT(t, C, J\{j});
12 if isRedundant(¬j, C) then return �⊥A
;
13 if j =CD t.c then (if bj then t = t.l; else t = t.r) ;
14 if bj then return ([[j : RESTRICT(t, C ∪ {j}, J\{j}),�⊥A
]]) ;
15 else return ([[j :�⊥A
, RESTRICT(t, C ∪ {j}, J\{j})]]) ;

16 else
17 if isRedundant(t.c, C) then return RESTRICT(t.l, C, J);
18 if isRedundant(¬t.c, C) then return RESTRICT(t.r, C, J);
19 l = RESTRICT(t.l, C ∪ {t.c}, J) ;
20 r = RESTRICT(t.r, C ∪ {¬t.c}, J) ;
21 return ([[t.c : l, r]]);

location has only one leaf node �A and decision nodes that define the set K. Note
that if K ≡ true, then tin = �T. In this way, we collect the possible invariants in
the form of decision trees at all program locations.

We establish correctness of the lifted analysis based on T(CD,A) by showing
that it produces identical results with tuple-based domain AK. Let [[s]]T and [[s]]
denote transfer functions of statement s in T(CD,A) and AK, respectively. Recall
that ain =

∏
k∈K�A, and so γT(tin) = γ(ain).

Theorem 1. γT
(
[[s]]T(tin)

)
= γ

(
[[s]](ain)

)
.

Proof. The proof is by induction on the structure of s. We consider the most
interesting cases: #if (θ) s #endif. Transfer functions for #if are identical in
both lifted domains. We only need to show that FEAT-FILTER(a, θ) and FEAT-
FILTERT(t, θ) are identical. This is shown by induction on θ [13]. ��
Example 5. Let us consider the code base of a program family P given in Fig. 4.
It contains only one numerical feature SIZE with domain N. The decision tree
inferred at the final location 4© is depicted in Fig. 5. It uses the Interval domain
for both decision and leaf nodes. Note that the constraint (SIZE < 3) does
not explicitly appear in the code base, but we obtain it in the decision tree
representation. This shows that partitioning of the configuration space K induced
by decision trees is semantics-based rather than syntactic-based.

80 A. S. Dimovski et al.

Algorithm 5: COMPRESST(t, C)

1 switch t do
2 case �n
do
3 return �n
;

4 case [[t.c : l, r]] do
5 l′ = COMPRESST(t.l, C ∪ {t.c}) ;
6 r′ = COMPRESST(t.r, C ∪ {¬t.c}) ;
7 switch l′, r′ do
8 case �n′

l
,�n′
r
do

9 if UNSAT(C ∪ {t.c}) then return �n′
r
;

10 if UNSAT(C ∪ {¬t.c}) then return �n′
l
;

11 if n′
l = n′

r then return �n′
l
;

12 case [[c1 : l1, r1]], [[c2 : l2, r2]] when c1 = c2 ∧ l1 = l2 ∧ r1 = r2 do
13 return [[c1 : l1, r1]];

14 case �n′
l
, [[c2 : l2, r2]] when �n′

l
= l2 ∧ c ≤CD c2 do
15 return [[c2 : l2, r2]];

16 case [[c1 : l1, r1]],�n′
r
when �n′

r
= r1 ∧ c1 ≤CD c do
17 return [[c1 : l1, r1]];

18 case default: do
19 return [[t.c : l′, r′]];

1© int x := 0;
2© #if (SIZE ≤ 4) x := x+1; #else x := x-1; #endif

3© #if (SIZE==3 || SIZE==4) x := x-2; #endif 4©

Fig. 4: Code base for program family P .

SIZE<3

[x=1] [x=-1]

Fig. 5: Decision tree at loc. 4© of P .

Example 6. Let us consider the code base of a program family P ′ given in Fig. 6.
It contains one numerical feature A with domain [1, 4] and a non-linear feature
expression A ∗ A < 9. At program location 2©, FEAT-FILTERT($x = 0%, A ∗ A < 9)
returns an over-approximating tree $x = 0%, whereas FEAT-FILTERT($x =
0%,¬(A ∗ A < 9)) returns [[A ≥ 3,$x = 0%,$⊥I%]]. In effect, we obtain an
over-approximating result at the final program location 3© as shown in Fig. 7.
The precise result at the program location 3©, which can be obtained in case we
have numerical domains that can handle non-linear constraints, is given in Fig. 8.
We observe that when ¬(A ≤ 2), we obtain an over-approximating analysis result
(−1≤x≤1 instead of x = −1) due to the over-approximation of the non-linear
feature expression in the numerical domains we use. ��

A Decision Tree Lifted Domain for Analyzing Program Families 81

1© int x := 0;
2© #if (A ∗ A < 9) x := x+1;

#else x := x-1; #endif 3©

Fig. 6: Code base for P ′.

A≤2

[x=1] [−1≤x≤1]

Fig. 7: Over-approximating
decis. tree at loc. 3© of P ′.

A≤2

[x=1] [x=-1]

Fig. 8: Precise decision
tree at loc. 3© of P ′.

6 Evaluation

Implementation We have developed a prototype lifted static analyzer, called
SPLNum2Analyzer, that uses lifted abstract domains of tuples AK and deci-
sion trees T(CD,A). The abstract domains A for encoding properties of tuple
components and leaf nodes as well as the abstract domain D for encoding linear
constraints over numerical features are based on intervals, octagons, and poly-
hedra domains. Their abstract operations and transfer functions are provided
by the APRON library [19]. Our proof-of-concept implementation is written
in OCaml and consists of around 6K lines of code. The current front-end of
the tool accepts programs written in a (subset of) C with #if directives, but
without struct and union types. It currently provides only a limited support
for arrays, pointers, and recursion. The only basic data type is mathematical
integers. SPLNum2Analyzer automatically infers numerical invariants in all
program locations corresponding to all variants in the given family. We use
delayed widening and narrowing [7,24] to improve the precision of while-s.

Experimental setup and Benchmarks All experiments are executed on a 64-bit
Intel�CoreTM i7-8700 CPU@3.20GHz × 12, Ubuntu 18.04.5 LTS, with 8 GB
memory, and we use a timeout value of 300 sec. All times are reported as average
over five independent executions. The implementation, benchmarks, and all
results obtained from our experiments are available from: https://github.com/
aleksdimovski/SPLNUM2Analyzer. In our experiments, we use three instances
of our lifted analysis via tuples: AΠ(I), AΠ(O), and AΠ(P), and via decision
trees: AT(I), AT(O), and AT(P), which use intervals, octagons, and polyhedra
domains as parameters, respectively.

SPLNum2Analyzer was evaluated on a dozen of C programs collected from
several categories of the 8th International Competition on Software Verification
(SV-COMP 2019, https://sv-comp.sosy-lab.org/2019/): loops, loop-invgen
(invgen for short), loop-lit (lit), termination-crafted (crafted); as well
as from the real-world BusyBox project (https://busybox.net). In the case of
SV-COMP, we have first selected some numerical programs with integers, and
then we have manually added variability (features and #if directives) in each
of them. In the case of BusyBox, we have first selected some programs with
numerical features, and then we have simplified those programs so that our tool
can handle them. For example, any reference to a pointer or a library function is
replaced with [−∞,+∞]. Table 1 presents characteristics of the benchmarks. We

https://github.com/aleksdimovski/SPLNUM2Analyzer
https://github.com/aleksdimovski/SPLNUM2Analyzer
https://sv-comp.sosy-lab.org/2019/
https://busybox.net

82 A. S. Dimovski et al.

Table 1: Performance results for lifted static analyses based on decision trees vs.
tuples (which are used as baseline). All times are in seconds.

Benchmark folder |F| |K| LOC
AT(I) AT(O) AT(P)

Time Impr. Time Impr. Time Impr.

half 2.c invgen 2 36 60 0.010 2.4× 0.017 3.5× 0.022 4.6×
heapsort.c invgen 2 36 60 0.036 2.2× 0.226 1.1× 0.191 2.0×
seq.c invgen 3 125 40 0.039 9.3× 0.460 4.3× 0.164 11×
eq1.c loops 2 36 20 0.015 3.4× 0.049 3.1× 0.052 4×
eq2.c loops 2 25 20 0.013 1.9× 0.047 1.3× 0.040 1.9×
sum01*.c loops 2 25 20 0.016 1.7× 0.086 1.5× 0.062 2.2×
hhk2008.c lit 3 216 30 0.023 10× 0.153 4.5× 0.074 12.5×
gsv2008.c lit 2 25 25 0.013 1.5× 0.035 1.2× 0.037 2×
gcnr2008.c lit 2 25 30 0.021 2× 0.070 2.1× 0.102 2.6×
Toulouse*.c crafted 3 125 75 0.043 6.1× 0.259 2.4× 0.175 7.6×
Mysore.c crafted 3 125 35 0.019 3.7× 0.090 1.1× 0.056 5.4×
copyfd.c BusyBox 1 16 84 0.013 3.9× 0.041 6.2× 0.054 5.2×
real path.c BusyBox 2 128 45 0.023 14× 0.077 28× 0.085 32×

list: the file name (Benchmark), the category (folder), the number of features
and configurations (|F|, |K|), and lines of code (LOC).

Performance Results Table 1 shows the results of analyzing our benchmark files
by using different versions of our lifted static analyses based on decision trees
and on tuples. For each version of decision tree-based lifted analysis, there are
two columns. In the first column, Time, we report the running time in seconds
to analyze the given benchmark using the corresponding version of lifted analysis
based on decision trees. In the second column, Impr., we report the speed up
factor for each version of lifted analysis based on decision trees relative to the
corresponding baseline lifted analysis based on tuples (AT(I) vs. AΠ(I), AT(O)
vs. AΠ(O), and AT(P) vs. AΠ(P)). The performance results confirm that sharing
is indeed effective and especially so for large values of |K|. On our benchmarks,
it translates to speed ups (i.e., (AT(−) vs. AΠ(−)) that range from 1.1 to 4.6
times when |K|<100, and from 3.7 to 32 times when |K|>100.

Computational tractability The tuple-based lifted analysis AΠ(−) may become
very slow or even infeasible for very large configuration spaces |K|. We have tested
the limits of AΠ(P) and AT(−). We took a method, testkn(), which contains n
numerical features A1, . . . , An, such that each numerical feature Ai has domain
dom(Ai) = [0, k − 1] = {0, . . . , k − 1}. The body of testkn() consists of n sequen-
tially composed #if-s of the form #if (Ai = 0) i := i+1 #else i := 0 #endif

For example, test32() with two features A1 and A2, whose domain is [0, 2], is:

1© int i := 0;
2© #if (A1 = 0) i := i+1 #else i := 0 #endif
3© #if (A2 = 0) i := i+1 #else i := 0 #endif 4©

A Decision Tree Lifted Domain for Analyzing Program Families 83

(A1=0∧A2=0︷ ︸︸ ︷
[i = 2] ,

A1=0∧A2=1︷ ︸︸ ︷
[i = 0] ,

A1=0∧A2=2︷ ︸︸ ︷
[i = 0] ,

A1=1∧A2=0︷ ︸︸ ︷
[i = 1] ,

A1=1∧A2=1︷ ︸︸ ︷
[i = 0] ,

A1=1∧A2=2︷ ︸︸ ︷
[i = 0] ,

A1=2∧A2=0︷ ︸︸ ︷
[i = 1] ,

A1=2∧A2=1︷ ︸︸ ︷
[i = 0] ,

A1=2∧A2=2︷ ︸︸ ︷
[i = 0]

)

Fig. 9: AΠ(P) results at 4© of test32().

A2=0

A1=0 [i=0]

[i=2] [i=1]

Fig. 10: AD(P) results at 4© of test32().

Subject to the chosen configuration, the variable i in location 4© can have a
value in the range from value 2 when A1 and A2 are assigned to 0, to value 0 when
A2 ≥ 1. The analysis results in location 4© of test32() obtained using AΠ(P) and
AT(P) are shown in Fig. 9 and Fig. 10, respectively. AΠ(P) uses tuples with 9
interval properties (components), while AT(P) uses 3 interval properties (leafs).

Table 2: The performance results of analyzing testkn.

n
k = 3 k = 5 k = 7

AΠ(P) AT(P) Impr. AΠ(P) AT(P) Impr. AΠ(P) AT(P) Impr.

5 0.164 0.137 1.2× 2.859 0.139 20.6× 19.976 0.138 144.7×
6 0.701 0.293 2.4× 23.224 0.294 79.1× infeasible 0.299 ∞×
8 17.420 1.761 9.9× infeasible 1.765 ∞× infeasible 1.767 ∞×
10 278.7 5.591 49.8× infeasible 5.596 ∞× infeasible 5.639 ∞×
11 infeasible 13.807 ∞× infeasible 13.859 ∞× infeasible 13.809 ∞×
14 infeasible 327.10 ∞× infeasible 442.23 ∞× infeasible 459.19 ∞×

We have generated methods testkn() by gradually increasing variability. In
general, the size of tuples used by AΠ(P) is kn, whereas the number of leaf
nodes in decision trees used by AT(P) in the final program location is n + 1.
The performance results of analyzing testkn, for different values of n and k,
using AΠ(P) and AT(P) are shown in Table 2. In the columns Impr., we report
the speed-up of AT(P) with respect to AΠ(P). We observe that AT(P) yields
decision trees that provide quite compact and symbolic representation of lifted
analysis results. Since the configurations with equivalent analysis results are
nicely encoded using linear constraints in decision nodes, the performance of
AT(P) does not depend on k, but only depends on n. On the other hand, the
performance of AΠ(P) heavily depends on k. Thus, within a timeout limit of 300
seconds, the analysis AΠ(P) fails to terminate for test311, test

5
8, and test76. In

summary, we can conclude that decision trees AT(P) can not only greatly speed
up lifted analyses, but also turn previously infeasible analyses into feasible.

84 A. S. Dimovski et al.

7 Related Work

Decision-tree abstract domains have been successfully used in the field of abstract
interpretation recently [18,9,4,26]. Decision trees have been applied for the disjunc-
tive refinement of Interval domain [18]. That is, each element of the new domain
is a propositional formula over interval linear constraints. Segmented decision
tree abstract domains has also been defined [9,4] to enable path dependent static
analysis. Their elements contain decision nodes that are determined either by
values of program variables [9] or by the branch (if) conditions [4], whereas the
leaf nodes are numerical properties. Urban and Mine [26] use decision tree-based
abstract domains to prove program termination. Decision nodes are labelled
with linear constraints that split the memory space and leaf nodes contain affine
ranking functions for proving program termination.

Recently, two main styles of static analysis have been a topic of considerable
research in the SPL community: a dataflow analysis from the monotone framework
developed by Kildall [21] that is algorithmically defined on syntactic CFGs, and an
abstract interpretation-based static analysis developed by Cousot and Cousot [7]
that is more general and semantically defined. Brabrand et. al. [3] lift a dataflow
analysis from the monotone framework, resulting in a tuple-based lifted dataflow
analysis. Another efficient implementation of the lifted dataflow analysis from the
monotone framework is based on using variational data structures [27]. Midtgaard
et. al. [22] have proposed a formal methodology for systematic derivation of tuple-
based lifted static analyses in the abstract interpretation framework. A more
efficient lifted static analysis by abstract interpretation obtained by improving
representation via BDD domains is given in [11]. Another approach to speed up
lifted analyses is by using so-called variability abstractions [14,15], which are
used to derive abstract lifted analyses. They tame the combinatorial explosion
of the number of configurations and reduce it to something more tractable by
manipulating the configuration space. The work [5] presents a model checking
technique to analyze probabilistic program families.

8 Conclusion

In this work we employ decision trees and widely-known numerical abstract
domains for automatic inference of invariants in all locations of C program
families that contain numerical features. In future, we would like to extend the
lifted abstract domain to also support non-linear constraints [17]. An interesting
direction for future work would be to explore possibilities of applying variability
abstractions [14] as yet another way to speed up lifted analyses. We can also
define a backward lifted analysis in combination with a preliminary forward lifted
analysis to infer the necessary preconditions in order a given assertion to be
satisfied or violated. The obtained preconditions in the form of linear constraints
can be analyzed using model counting techniques to quantify how likely is an
input or a variant to satisfy them [16,12].

A Decision Tree Lifted Domain for Analyzing Program Families 85

References

1. Sven Apel, Hendrik Speidel, Philipp Wendler, Alexander von Rhein, and Dirk
Beyer. Detection of feature interactions using feature-aware verification. In 26th
IEEE/ACM International Conference on Automated Software Engineering (ASE
2011), pages 372–375, 2011.

2. Sven Apel, Alexander von Rhein, Philipp Wendler, Armin Größlinger, and Dirk
Beyer. Strategies for product-line verification: case studies and experiments. In
35th Intern. Conference on Software Engineering, ICSE ’13, pages 482–491, 2013.

3. Claus Brabrand, Márcio Ribeiro, Társis Tolêdo, Johnni Winther, and Paulo Borba.
Intraprocedural dataflow analysis for software product lines. T. Aspect-Oriented
Software Development, 10:73–108, 2013.

4. Junjie Chen and Patrick Cousot. A binary decision tree abstract domain functor.
In Static Analysis - 22nd International Symposium, SAS 2015, Proceedings, volume
9291 of LNCS, pages 36–53. Springer, 2015.

5. Philipp Chrszon, Clemens Dubslaff, Sascha Klüppelholz, and Christel Baier. Profeat:
feature-oriented engineering for family-based probabilistic model checking. Formal
Aspects Comput., 30(1):45–75, 2018.

6. Paul Clements and Linda Northrop. Software Product Lines: Practices and Patterns.
Addison-Wesley, 2001.

7. Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of fixpoints. In
Conference Record of the Fourth ACM Symposium on Principles of Programming
Languages, pages 238–252. ACM, 1977.

8. Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné,
David Monniaux, and Xavier Rival. The astreé analyzer. In Programming Languages
and Systems, 14th European Symposium on Programming, ESOP 2005, Proceedings,
volume 3444 of LNCS, pages 21–30. Springer, 2005.

9. Patrick Cousot, Radhia Cousot, and Laurent Mauborgne. A scalable segmented
decision tree abstract domain. In Time for Verification, Essays in Memory of Amir
Pnueli, volume 6200 of LNCS, pages 72–95. Springer, 2010.

10. Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear restraints
among variables of a program. In Conference Record of the Fifth Annual ACM
Symposium on Principles of Programming Languages (POPL’78), pages 84–96.
ACM Press, 1978.

11. Aleksandar S. Dimovski. Lifted static analysis using a binary decision diagram
abstract domain. In Proceedings of the 18th ACM SIGPLAN International Confer-
ence on Generative Programming: Concepts and Experiences, GPCE 2019, pages
102–114. ACM, 2019.

12. Aleksandar S. Dimovski. On calculating assertion probabilities for program families.
Prilozi Contributions, Sec. Nat. Math. Biotech. Sci, MASA, 41(1):13–23, 2020.

13. Aleksandar S. Dimovski, Sven Apel, and Axel Legay. A decision tree lifted domain
for analyzing program families with numerical features (extended version). CoRR,
abs/2012.05863, 2020.

14. Aleksandar S. Dimovski, Claus Brabrand, and Andrzej Wasowski. Variability
abstractions: Trading precision for speed in family-based analyses. In 29th European
Conference on Object-Oriented Programming, ECOOP 2015, volume 37 of LIPIcs,
pages 247–270. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015.

15. Aleksandar S. Dimovski, Claus Brabrand, and Andrzej Wasowski. Finding suitable
variability abstractions for lifted analysis. Formal Aspects Comput., 31(2):231–259,
2019.

86 A. S. Dimovski et al.

16. Aleksandar S. Dimovski and Axel Legay. Computing program reliability using
forward-backward precondition analysis and model counting. In Fundamental
Approaches to Software Engineering - 23rd International Conference, FASE 2020,
Proceedings, volume 12076 of LNCS, pages 182–202. Springer, 2020.

17. Philippe Granger. Static analysis of arithmetical congruences. International Journal
of Computer Mathematics, 30(3-4):165–190, 1989.

18. Arie Gurfinkel and Sagar Chaki. Boxes: A symbolic abstract domain of boxes. In
Static Analysis - 17th International Symposium, SAS 2010. Proceedings, volume
6337 of LNCS, pages 287–303. Springer, 2010.

19. Bertrand Jeannet and Antoine Miné. Apron: A library of numerical abstract domains
for static analysis. In Computer Aided Verification, 21st Intern. Conference, CAV
2009. Proceedings, volume 5643 of LNCS, pages 661–667. Springer, 2009.

20. Christian Kästner. Virtual Separation of Concerns: Toward Preprocessors 2.0. PhD
thesis, University of Magdeburg, Germany, May 2010.

21. Gary A. Kildall. A unified approach to global program optimization. In Con-
ference Record of the ACM Symposium on Principles of Programming Languages,
(POPL’73), pages 194–206, 1973.

22. Jan Midtgaard, Aleksandar S. Dimovski, Claus Brabrand, and Andrzej Wasowski.
Systematic derivation of correct variability-aware program analyses. Sci. Comput.
Program., 105:145–170, 2015.

23. Antoine Miné. The octagon abstract domain. Higher-Order and Symbolic Compu-
tation, 19(1):31–100, 2006.

24. Antoine Miné. Tutorial on static inference of numeric invariants by abstract
interpretation. Foundations and Trends in Programming Languages, 4(3-4):120–372,
2017.

25. Daniel-Jesus Munoz, Jeho Oh, Mónica Pinto, Lidia Fuentes, and Don S. Batory.
Uniform random sampling product configurations of feature models that have
numerical features. In Proceedings of the 23rd International Systems and Software
Product Line Conference, SPLC 2019, Volume A, pages 39:1–39:13. ACM, 2019.

26. Caterina Urban and Antoine Miné. A decision tree abstract domain for proving
conditional termination. In Static Analysis - 21st International Symposium, SAS
2014. Proceedings, volume 8723 of LNCS, pages 302–318. Springer, 2014.

27. Alexander von Rhein, Jörg Liebig, Andreas Janker, Christian Kästner, and Sven
Apel. Variability-aware static analysis at scale: An empirical study. ACM Trans.
Softw. Eng. Methodol., 27(4):18:1–18:33, 2018.

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source,

provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Finding a Universal Execution Strategy for
Model Transformation Networks�

Joshua Gleitze , Heiko Klare(�) , and Erik Burger

KASTEL, Karlsruhe Institute of Technology, Karlsruhe, Germany
joshua.gleitze@student.kit.edu, klare@kit.edu, burger@kit.edu

Abstract. When using multiple models to describe a (software) system,
one can use a network of model transformations to keep the models
consistent after changes. No strategy exists, however, to orchestrate the
execution of transformations if the network has an arbitrary topology.
In this paper, we analyse how often and in which order transformations
need to be executed. We argue why linear execution bounds are too
restrictive to be useful in practice and prove that there is no upper bound
for the number of necessary executions. To avoid non-termination, we
propose a conservative strategy that makes execution failures easier to
understand. These insights help developers and users of transformation
networks to understand under which circumstances their networks can
terminate. Additionally, the proposed strategy helps them to find the
cause when a network cannot restore consistency.

Keywords: model consistency · model transformation networks

1 Introduction

When modelling systems, one is often confronted with the task of model consis-
tency : Since model-driven development aims at separating concerns by tailoring
models to the needs of the people working on the system, there are typically
different models, each one capturing the parts of the system that are relevant to
the model’s target audience. All those models taken together should describe a
coherent system and not contain contradictory information. We say that the mod-
els should be consistent. Automatic detection and resolution of inconsistencies is,
however, still poorly addressed in current development processes [12].

There are different means of maintaining consistency. A popular one is to define
incremental model transformations, which update models based on information
that was changed in one of them. While there has been significant research
on model transformations themselves, particularly on binary transformations,
maintaining consistency of multiple models is less researched [2]. There are
approaches for multiary model transformations which can transform between
multiple models by means of a single transformation. Nevertheless, one will likely
� This work was supported by funding of the Helmholtz Association (HGF) through

the Competence Center for Applied Security Technology (KASTEL).
© The Author(s) 2021
E. Guerra and M. Stoelinga (Eds.): FASE 2021, LNCS 12649, pp. 87–107, 2021.
https://doi.org/10.1007/978-3-030-71500-7_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71500-7_5&domain=pdf
http://orcid.org/0000-0002-0392-5338
http://orcid.org/0000-0002-9711-8835
http://orcid.org/0000-0003-2832-3349
https://doi.org/10.1007/978-3-030-71500-7_5

88 J. Gleitze et al.

also want to be able to combine multiple transformations—binary or multiary—to
maintain consistency, creating a transformation network. Unlike using a single,
overarching transformation, defining a network makes it possible to reuse modular
ones. Additionally, knowledge about consistency between certain types of models
is often distributed across domain experts [13]. This can be accommodated by
transformation networks, because every domain expert can define transformations
independently and according to their view on consistency.

To the best of the authors’ knowledge, no strategy that determines an execu-
tion order of transformations to maintain consistency in a network with arbitrary
topology has been presented yet. Existing work proposes, for example, defining
an execution order explicitly [23, 35] or deriving a topological order [30]. Most
approaches restrict the supported kinds of network topologies to such in which
each transformation only needs to be executed once.

In this paper, we research properties and limitations of a universal strategy
that executes a transformation network of arbitrary topology. We show that
strategies that apply each transformation only once are not useful in practice.
At the other end of the spectrum, we prove that not limiting the number of
transformation executions does, in general, lead to non-termination. Based on
the insight that a universal strategy can only operate conservatively, we derive a
practicable strategy. In detail, we make the following contributions:

Formalisation (C1): We formalise transformation networks and execution
strategies to precisely define their expected properties.

Conservativeness Proof (C2): We prove that a universal execution strategy
must operate conservatively to avoid non-termination.

Strategy Design (C3): We propose a strategy that improves explainability
whenever no consistent models are found.

The contributions establish fundamental knowledge about the design space of
network execution strategies, their undecidability, and difficulties in reducing
conservativeness. The proposed strategy helps transformation network developers
and users to find the reasons when an execution does not yield consistent models.

2 Problem Statement

In this section, we will further motivate our research by giving an example and
clarifying its context. We provide a formalisation for transformation networks
and execution strategies to generate a common understanding and formal basis
for transformation network orchestration, constituting contribution C1 .

2.1 Motivating Example

Figure 1 depicts a software project whose contributors take the roles of architects,
developers and user experience (UX) designers. One person can take multiple
roles, but every role has a particular view on the project and uses related tools.
Architects use a UML-based tool to analyse and plan the architecture. Developers

Finding a Universal Execution Strategy for Model Transformation Networks 89

PCM Java

developers

OpenApi

UI

UX designers

UML

architects

Fig. 1. Example for a transformation network in model-driven (software) development.

program the software in Java. These two models overlap: Although they cannot
be derived completely from each other, the implementation should follow the
architecture and architects want to see how code changes affect the architecture.

UX designers develop the UI for the software. Their designs overlap with
the UML model, because, first, the software’s requirements mandate certain
properties of the UI, and, second, the architecture may restrict which information
can be shown at which point in the interface. The UI design also overlaps with
the code, since static parts of the UI can be derived from the UI model. Ideally,
changes in the UI code can even be propagated back into the UI model.

The developers use OpenAPI™ [32] to exchange specifications of HTTP APIs.
These specifications overlap with the parsing and serialisation code. Architects
want to analyse how their architecture choices influence performance, using the
Palladio Component Model (PCM) [24]. The architecture specification used in
the PCM overlaps with the one defined in UML. Additionally, the PCM model
contains information about performance properties and the deployment structure,
which can partially be derived from the code.

Those relations can be encoded in transformations to avoid re-specification
of similar information, such as the architecture in PCM and UML, to derive
information, like appropriate Java stubs from OpenAPI specifications, and to
preserve information consistency. Figure 1 shows the resulting transformation
network. In this paper, we will find an execution strategy for such transformations,
which is needed to correctly propagate changes from one model to the others.

2.2 Context

We discuss model transformation networks in a specific usage context. We assume
that different roles are involved in a development project, each using some
models to describe their view of the system. The models are kept consistent
by model transformations. For the sake of simplicity, we only discuss binary
transformations between two models. To foster independent specification and reuse
of transformations, we assume that they are not tailor-made, but may be general-
purpose. As a consequence, we cannot assume that the models or transformations
are or can be aligned, for example, to ensure that their execution in a specific

90 J. Gleitze et al.

order always results in consistent models. Neither can we assume that the network
has a certain topology. We do, however, assume that all transformations are in
accordance to a well-defined overall notion of consistency (reaching a consistent
state would be impossible otherwise). This means that all requirements we pose
on the transformations must only concern a transformation itself. A requirement
like “no transformation overwrites the result of another” would not fit our context.

We require that transformations are synchronising [4], i.e., that they can deal
with the situation that both of their models have been changed. This is essential
to find an execution strategy: When propagating changes in a transformation
network that contains cycles, it will inevitably happen that both models that are
connected by a transformation will be changed. In addition, the well-researched
bidirectional transformations only change one of the models [28] and could in
such a situation be forced to overwrite changes to yield a consistent result. This
assumption also enables concurrent modifications by different project members.

2.3 Formalisation

We are not concerned with how models are structured, so we simply resort to
defining a universe M that contains all models. First, we define the kind of
transformations that we use:

Definition 1. A synchronising binary transformation (syncx) t�

�

is a function
that updates two models:

t�

�

: (M×M)→ (M×M)

A syncx’ image consists of fixed points:

∀a ∈M ∀b ∈M : t�

�(
t�

�

(a, b)
)
= t�

�

(a, b)

The universe of all syncx for M is called T.

This formalisation is a simplification sufficient for the purposes of this paper.
In practice, transformations will, for example, be allowed to indicate an error
instead of being required to always produce appropriate new models.

In comparison to existing formalisms [28], there is no consistency relation in
the definition of a syncx. For our purposes, the consistency relation is not part
of a syncx, but rather encoded implicitly in the syncx’ behaviour. We assume
that the transformations are correct and hippocratic [28] with regard to their
implicit consistency relation and can then recover the relation:

Definition 2. The consistency relation R
t�

�

of syncx t�

�

is given by:

R
t�

�

=
{
(a, b) | t�

�

(a, b) = (a, b)
}

This paper focuses on transformation networks that are created when com-
bining multiple syncx:

Definition 3. A transformation network N =: ((V,E), T) consists of a directed,
connected, self-loop-free graph G = (V,E) and a syncx assignment T : E → T.
Any two vertices {a, b} ⊆ V have at most one edge between them: (a, b) ∈ E =⇒
(b, a) /∈ E. The universe of all model transformation networks for M is called U.

Finding a Universal Execution Strategy for Model Transformation Networks 91

A transformation network captures the topology and the used transformations.
There is no inherent reason to exclude multigraphs or self-loops. We use this
simpler definition because it makes it easier to argue about the networks without
restricting expressiveness. We use directed edges instead of undirected ones to
provide a notion of the “left” and “right” model for a syncx. The edges’ direction
does not indicate anything about the direction of change propagation. We will
usually regard the network as given and try to find suitable model assignments:

Definition 4. For a transformation network N =:((V,E), T), a model assign-
ment M is a function M : V →M.

Naturally, we are particularly interested in model assignments that are con-
sistent with the transformations:

Definition 5. For a transformation network N =: ((V,E), T), a model assign-
ment M is consistent if, and only if

∀(a, b) ∈ E : (M(a),M(b)) ∈ RT (a,b)

The set of all consistent model assignments for N is called RN .

We use the following additional notation in this paper:

– “A→ B” for the set of functions from set A to set B
– “f: A '→ B” for a partial function f from A to B
– “f(x) = ⊥” to mean that a partial function f is not defined at x
– “Im(f)” to denote the image of a function f

2.4 Problem Description

Our goal is to find an algorithm that, given a transformation network N =:
((V,E), T) ∈ U and a model assignment M , finds a consistent model assignment
M ′ by applying transformations in Im(T). We call such an algorithm a “(trans-
formation network) execution strategy”. It is “universal” if it is parametrised by
and thus defined for every network.

Definition 6. A universal execution strategy determines an order (i.e., a per-
mutation with duplicates) of transformations in Im(T) for a given transformation
network N=:((V,E), T) ∈ U and model assignment M ∈ (V →M). It realises a
partial function S : U× (V →M) '→ (V →M).

An execution strategy finds a new model assignment only by executing the
transformations of the network, as more precisely defined by Klare et al. [15,
Definition 8]. If S(N,M) �= ⊥, we say that the strategy “resolves” N and M . If
S(N,M) = ⊥, we say that the strategy fails. We have further requirements:

Requirement 1. An execution strategy must be correct:

∀N=:((V,E), T) ∈ U ∀M ∈ (V →M) : S(N,M) ∈ RN ∪ {⊥}
Requirement 2. An execution strategy must be hippocratic:

∀N=:((V,E), T) ∈ U ∀Mc ∈ RN : S(N,Mc) = Mc

92 J. Gleitze et al.

An execution strategy will not always be able to find a consistent new model
assignment (i.e., there will be some N,M such that S(N,M) = ⊥). First, there
may not be a consistent model assignment at all (i.e., RN = ∅). Second, there may
be a consistent model assignment but no execution order of the transformations
that yields that assignment [30, 16]. We call such inputs “unresolvable” [30].
Conversely, if there is an execution order of the transformations that yields a
consistent model assignment, we call the inputs “resolvable”.

An execution strategy may even fail for resolvable inputs: The execution
strategy may not “find” a consistent model assignment, even though it is reachable.
For example, the strategy may abort before having executed the transformations
often enough, or finding the assignment might require an order of execution
which the strategy does not consider. We call such a strategy “conservative”:

Definition 7. An execution strategy S is conservative if it is correct and if there
can be resolvable inputs N,M with S(N,M) = ⊥.

The higher the probability that an execution strategy yields a result for
resolvable inputs (we also say the lower its “level of conservativeness”), the more
useful the strategy will be. It is, however, also desirable that the strategy is
predictable, meaning that one can determine beforehand for which inputs the
strategy will succeed. For example, it would be useful to know whether a strategy
yields a result for a given network for any resolvable model assignment. Informally
speaking, we would like to have an “easy-to-check” criterion for transformation
networks determining whether this is the case. An even better criterion could be
applied to a single syncx, such that the strategy can resolve all inputs with a
network of syncx that fulfil the criterion. This would be ideal for the motivated
context of independently developing and freely combining syncx to a network.

To summarise, we aim to find a correct, hippocratic execution strategy that is
able to keep models consistent via transformation networks. The strategy should
succeed for realistic inputs with a high probability. Additionally, we aim to find
criteria that determine the cases in which the strategy will succeed.

3 Related Work

Approaches for restoring model consistency have been subject to intensive research,
surveyed by Macedo et al. [21]. Model transformations are a well-researched option,
and several tools and languages have been developed to support them [27, 18, 25].
Research has, however, mainly focused on consistency between two models, which
also concerns theoretical properties like termination as one of the properties
that we investigate for the execution of transformation networks [7]. Maintaining
consistency between more than two models has recently gained more attention,
especially in terms of a dedicated Dagstuhl seminar [2]. The central approaches
of multiary transformations and networks of binary transformations can be
distinguished. In Section 1, we have discussed that multiary transformations are
complex to specify, whereas networks of binary transformations have limited
expressiveness [30], which does, however, not seem to be practically relevant [2].

Finding a Universal Execution Strategy for Model Transformation Networks 93

Multiary Transformations: Different approaches for multiary transformations
have been proposed. QVT-R [22] supports multidirectionality already by design,
but ambiguities in the standard limit practical applicability [20]. Triple Graph
Grammars (TGGs) [26] are bidirectional specifications, which are well-suited for
model transformations [1]. Extensions of TGGs to multiple models called Multi
Graph Grammars (MGGs) [17] and Graph Diagram Grammars [34, 33] consider
the specification of multidirectional rules. All these approaches, however, require
the transformation developer to know about and be able to express the relations
between all involved models, which we reasonably excluded by assumption.

Auxiliary Models: Not all multiary relations can be expressed by sets of binary
ones. Adding one auxiliary model makes it, however, theoretically possible to
express arbitrary multiary relations by binary ones [30]. Some work discussed
which kinds of relations can be expressed with such an approach and how they
can be formalised in the lenses framework [5, 31]. Other work discussed how
composing such auxiliary models to express commonalities of models can be
achieved [14]. Such auxiliary models actually encode a multiary transformation
in a model together with binary transformations to the models to keep consistent,
resulting in the same challenges as for transformation network. In consequence,
our work on transformation networks is also required and applicable there.

Binary Transformations: Although they cannot express all multiary relations,
there are arguments in favour of using networks of modular transformations,
especially binary ones: They are easier to develop when domain knowledge is
distributed [13] and they are easier to comprehend by a single developer [2, 30].
Additionally, binary transformations are researched well and a variety of tools sup-
porting different kinds of specifying them exist [27, 18, 25, 21]. Most formalisms
and tools consider bidirectional transformations, whereas networks require syn-
chronising transformations, as motivated in Section 2.2. Non-synchronising trans-
formations can, however, be adapted to become synchronising [37].

Transformation Chains: Transformation chains combine transformations to
derive low-level models from high-level ones across intermediate representations.
Languages like FTG+PM [19] and UniTI [35] enable the specification of such
chains. Transformation chains are, however, only a special case of general transfor-
mation networks. Etien et al. consider specific properties of transformation chains.
They investigate how conflicts in terms of results depending on the execution
order can be detected [8]. These results do, however, not aim to relieve developers
from the task of finding an execution order manually, as we do in this paper.

Transformation Composition: Transformation composition techniques are
a means to build networks of binary transformations. They can be separated
into internal, white-box approaches [36], and external techniques, which consider
transformations as black-boxes. Our contributions can be seen as an external
composition technique. However, composition usually considers transformations
between the same rather than different types of models. From a theoretical
perspective (see Section 2.3) this could be treated equally by not distinguishing
models by their metamodels. Practical approaches, however, consider transfor-
mations between specific metamodels rather than arbitrary models.

94 J. Gleitze et al.

UML Java OpenApi

«interface»
ExampleService

+ getExamples()

+

1.

interface ExampleService {
public List<Example> getExamples();

}

+

2.

GET /example

+

3.
class ExampleServer
implements ExampleService { ... }

+
3.

!

Fig. 2. Example yielding inconsistent models after executing each transformation once.
Numbers in italics indicate the order in which changes are performed.

Execution Strategies: Di Rocco et al. [3] describe a simple strategy for or-
chestrating transformations, but make strong assumptions requiring that each of
them is only applied once. Stevens [30] proposes a strategy that also executes each
transformation only once in one direction. It includes a notion of authoritative
models, which are not allowed to be changed, and does not consider synchronising
transformations. Likewise, Stevens [29] proposes to find an orientation model
defining in which direction transformations are executed. If, however, several
transformations modify the same model, the approach leaves it to the developer
to determine an execution order after which all consistency relations hold. Such
strategies are only correct if the network is a tree, or if no transformations interfere
with each other. We present a simple scenario in which this is already too limiting
in Section 4.1. We overcome this limitation by executing transformations more
than once and thereby letting them “negotiate” a result even if they interfere,
which yields a universal execution strategy for arbitrary network topologies.

4 Design Space

We approach the possibilities for designing an execution strategy by looking at
how often it executes syncx in the worst case. We consider the two extremes of
executing every syncx at most once and executing them an unlimited number of
times, and find that neither of them will do: While the first one is too limiting, the
second one cannot guarantee termination. As a consequential insight, a universal
execution strategy needs to be conservative, introduced as contribution C2 .

4.1 One Execution per Transformation

Several proposed strategies execute every transformation in a network at most
once [30, 35]. Since we expect that transformations are developed independently,
and are thus not necessarily aligned (see Section 2.2), restricting the number
of executions to one per transformation would, however, limit the possible
combinations of them, and models could not be kept consistent in desirable
scenarios. We give an example for this in the following.

Finding a Universal Execution Strategy for Model Transformation Networks 95

1 0 . . . 0 0 . . . 0
i�

�

2 i�

�

4 i�

�

n i�

�

1 i�

�

3 i�

�

n−1

Fig. 3. A transformation network with n transformations reacting to each other.

We use the example of Section 2.1, and focus on the UML, Java and OpenAPI
models to consider the scenario visualised in Figure 2: An architect creates a new
UML interface and applies an execution strategy that executes every transforma-
tion once. First, the UML-to-Java syncx creates an appropriate interface in Java.
The OpenAPI-to-Java syncx recognises that the interface should be exposed
via an HTTP API and creates a matching endpoint in the OpenAPI model.
Additionally, it creates a stub implementation with parsing and serialisation code
in Java. The stub implementation classes can, however, not be propagated back
to UML, because the UML-to-Java syncx has already been executed.

We see that if we limit the number of executions to one per transformation,
transformations cannot propagate back the changes that other transformations
have made. However, in the context described in Section 2.2, it is necessary that
transformations are able to “react” to the changes made by other transformations.
This offers, for instance, separation of concerns: The logic for a certain aspect of
consistency can be put in only one transformation and other transformations will
propagate it throughout the network. Without such a mechanism, all aspects of
consistency would need to be implemented in all transformations. This would
cause duplication of logic and reduce reusability of transformations, which would
be impractical and contradicts our assumption of independent development. If
we added the logic for creating implementations of relevant Java interfaces to
the UML-to-Java syncx, then it would implicitly assume the presence of the
Java-to-OpenAPI syncx. It could, thus, not be easily reused in networks where
the Java-to-OpenAPI syncx is not used.

We can generalise the previous example: Let the model universe be the natural
numbers: M = N0. Let further for any 1 ≤ j ≤ n the syncx i�

�

j be defined as

i�

�

j : (a, b) '→
{
(m+ 1,m+ 1) if m = j

(m,m) else
with m := max{a, b}

i�

�

j sets both models to the higher number of the two, except if that number is j.
Then i�

�

j increments the result by one. This is an abstraction of syncx “reacting”
to each other: The i�

�

js seek to set all models to the same value, except that after
i�

�

j−1 was executed, i�

�

j changes its behaviour and increments the value by one.
We now construct the transformation network Nn for n = 2k, k ∈ N+ (see

Figure 3) with n indicating the number of syncx within the network, and examine
how many executions it requires:

Tn = (i, i+ 1) '→
{
i�

�

2i if i ≤ n
2

i�

�

2i−n−1 else

Nn = (([1, n+ 1], {(i, i+ 1) | i ∈ [1, n]}), Tn)

96 J. Gleitze et al.

Lemma 1. i�

�

n must be executed at least n times to resolve Nn with the initial
model assignment

M1 : i '→
{
1 if i = 1

0 else

Proof. The only reachable model assignment that is consistent is Mn : i '→ n. It is
reached by having every i�

�

j increment the highest number in the model assignment
by one if that highest number currently is j. All transformations incrementing
even numbers are on one side of i�

�

n (except for i�

�

n itself), all transformations
incrementing uneven numbers are on the other side. Thus, the currently highest
number must be propagated to the other side of i�

�

n at least n−1 times. Additionally,
i�

�

n must increment n− 1 to n.

Theorem 1. For any execution strategy that uses O(1) executions of each trans-
formation, there are inputs that the execution strategy cannot resolve.

Proof. Follows directly from Lemma 1.

The example network in Figure 2 is a simplification of a realistic transformation
scenario, which we generalised to the network Nn. In consequence of Theorem 1,
we can expect that transformation networks can, in general, not be resolved with
O(1) executions of each transformation.

4.2 Unlimited Executions

We now consider an execution strategy that executes transformations as long as
they still change models, and terminates once no more changes occur. This over-
comes the shortcoming that we observed with limiting the number of executions
to a constant; we will, however, see that we cannot guarantee termination of
such an execution strategy. By simulating Turing machines with transformation
networks, we prove that it is undecidable whether the strategy will terminate.

Given a Turing machine tm over some alphabet Σ, we construct a trans-
formation network Ntm =: ((V,E), Ttm) and a model assignment Mtm,x that
are resolvable if, and only if, tm halts on input x ∈ Σ∗. We assume that tm
contains no self-loops as well as no cycles of length 2, i.e., that each transition
and each sequence of two transitions changes the state of tm. This is without
loss of generality, since duplication and triplication of each state resolves such
self-loops and cycles, respectively. The constructed models consist of a times-
tamp, the tape content and the tape position (i.e., M = N0 × Σ∗ × N0). The
network Ntm has tm’s states as vertices and exactly one directed edge (in arbi-
trary direction) between each pair of states having a transition between them.
The transformations increment the timestamp, change the tape content and
update the tape position according to tm’s transition if, and only if, the source
model’s timestamp is higher than the target model’s timestamp. More formally,
let Tr(a, b) ⊆ Σ × {−1, 0, 1} ×Σ be the transitions defined between the states a

Finding a Universal Execution Strategy for Model Transformation Networks 97

and b (with −1, 0 and 1 indicating the head movements “left”, “stay” and “right”).
We define Ttm with w|p←r := w[0 .. p−1] · r · w[p+1 .. |w|−1] such that:

∀(a, b) ∈ E : Ttm(a, b)(α=:(ta, wa, pa), β=:(tb, wb, pb))

=

⎧⎪⎪⎨⎪⎪⎩
(α, (ta+1, wa|pa←r, pa+d)) if ta > tb ∧ ∃ (wa[pa], d, r) ∈ Tr(a, b)

((tb+1, wb|pb←r, pb+d), β) if ta < tb ∧ ∃ (wb[pb], d, r) ∈ Tr(b, a)

(α, β) else

Let s be the initial state of tm. We set

Mtm,x : v '→
{
(1, x, 0) if v = s

(0, ε, 0) else

Lemma 2. Executing the transformations of Ntm, with initial model assignment
Mtm,x, until no transformations change the model assignment anymore terminates
if, and only if, tm halts on input x. If executing the transformations terminates
with the final model assignment Mf , then the model with the highest timestamp
in Im(Mi) contains tm(x) as tape content.

Proof. We can see by induction over the model assignments Mi, i ∈ N0 created
while executing the transformations:

1. There is exactly one v ∈ V such that the model Mi(v) =: (t, x, p) has the
highest timestamp t of all models in Im(Mi).

2. There is at most one edge (a, b) ∈ E whose transformation is inconsistent, i.e.,
(Mi(a),Mi(b)) /∈ RTtm(a,b). This follows from the definitions of tm and the
last executed transformation. Additionally, a = v or b = v, because otherwise
there would have been two transformations to which models in Im(Mi−1) are
inconsistent. We assume without loss of generality a = v.

3. If (a, b) exists, then m′ :=Mi+1(b) will contain the same tape content and the
same tape position as would result if tm was executed one step from state v
with tape content x and tape position p. Additionally, m′ will be the model
with the highest timestamp of all models in Im(Mi+1).

4. (a, b) does not exist if, and only if, tm would halt in state v with tape content
x and tape position p.

Theorem 2. Let S be an execution strategy that executes transformations until
a consistent model assignment is reached. There are inputs for which it can not
be decided whether S will terminate.

Proof. It follows from Lemma 2 that deciding whether S terminates could decide
the halting problem for a universal Turing machine.

Even worse, this construction makes it unlikely that we will find a practicable
criterion that ensures success of an execution strategy like we have motivated in
Section 2.4. Because we want the criterion to apply to a single syncx, it would
need to restrict the syncx so much that it makes building a network simulating

98 J. Gleitze et al.

Turing machines out of the syncx impossible. But since the definition of the
syncx in Im(Ttm) is structurally simple, it seems unlikely that a syncx fulfilling
the hypothetical criterion would still be apt for most practical use cases.

We could avoid undecidability if we restricted the models’ size. The models
could then no longer store an unbounded tape and, thus, only simulate space-
restricted Turing machines. There is, however, no reasonable bound for a necessary
model size, to which they could be limited. In consequence, determining a universal
space bound for models would be an arbitrary and thus impractical restriction.

Finally, one could question whether it is relevant if an execution strategy can
be guaranteed to terminate. Execution strategies will be used to tell users whether
changes they made can be incorporated into the other models automatically.
In consequence, users should reliably and timely get a response. We might
compare this situation to merging changes in version control systems. There,
users also want a reliable and timely response on whether their changes could be
incorporated automatically, or whether they need to resolve conflicts manually.

5 Proposed Strategy

As a consequence of the previous findings, every universal execution strategy will
be conservative: there will be inputs for which it fails, even though there would
have been an execution order leading to a consistent model assignment. In this
section, we discuss how to find an appropriate execution order and bound, and
finally present the “explanatory strategy”, constituting contribution C3 .

5.1 Execution Order: Providing Explainability

Increasing the number of transformation executions an execution strategy permits,
lowers its level of conservativeness. In contrast, the effects of different orders in
which transformations can be executed are not as easy to categorise. The authors
developed a model transformation network simulator [11], whose source code
is available at GitHub [10]. It allows to construct transformation networks and
to define execution strategies, which can be applied step by step. All examples
presented in this paper are also modelled in the simulator. For each examined
systematic execution order, such as a depth-first or breadth-first selection, the
authors found categories of networks on which the order performed worse than
another one in terms of conservativeness. In consequence, conservativeness is not
a good sole criterion to evaluate orders by.

We know that a universal execution strategy will inevitably be conservative,
i.e., possibly fail for resolvable inputs. In practice, it will be important how well
an execution strategy provides explainability in such cases, i.e., helps users to
understand where and why the strategy failed with the selected execution order.
The order plays a decisive role in this regard, which is why we focus on finding a
strategy that improves the order. Imagine, for instance, that the strategy executed
transformations in an arbitrary order until some limit is reached. Users might
then be confronted with a situation where all transformations have been executed,

Finding a Universal Execution Strategy for Model Transformation Networks 99

but the last model assignment is only consistent with some of them. There would
be no clear pattern and little clues for users where to start investigating the
failure’s cause. To improve explainability, the authors thus propose the following
principle for an execution order:

Principle 1. Ensure consistency among the transformations that have already
been executed before executing a transformation that has not been executed yet.

Since a syncx can change both models, executing it may results in models that
are inconsistent with the syncx that have been executed previously. Following
Principle 1, these inconsistencies should be addressed first. In effect, a strategy
applying the principle will maintain a subnetwork of syncx with a consistent model
assignment and try to expand the subnetwork transformation by transformation.

To exemplify how Principle 1 provides explainability, suppose that an execution
strategy applying that principle fails after having executed the set of syncx E ⊆ T.
Let t�

�

∈ E be the last syncx that was executed for its first time. The strategy can
then inform users that integrating t�

�

into the subnetwork induced by E failed.
Furthermore, it can inform users that a result that is consistent with the syncx
in E \ {t�

�

} exists. By that, users gain valuable information for handling the error:
First, when trying to understand the error, they can ignore any syncx that is
not in E. Second, some aspect of consistency that is present in the consistency
relation realised by t�

�

, but absent in the consistency relations realised by the syncx
in E \ {t�

�

}, hinders the strategy from creating a consistent result. Third, when
users try to find a consistent model assignment manually, they can start with the
consistent result that exists for E \ {t�

�
} instead of having to start from scratch.

5.2 Execution Bound: Reacting to Each Other

As we have seen, we need to restrict the number of transformation executions
with a function in ω(m) (m being the number of syncx in the input network).
Such a limit must be reasonable to support most practical use cases: Not allowing
enough transformation executions reduces the usefulness of the strategy since not
all useful networks can be resolved. Allowing too many executions might make
the strategy run for a long time before aborting, without adding much value.

In Section 4.1, we have motivated that syncx should be able to “react” to
each other. We have seen that this excludes any bound in O(1) for the number
of executions per transformation, but to guarantee termination we can also not
allow transformations to react to each other indefinitely. If a syncx t�

�

changes the
models and the other already executed syncx have reacted to those changes by
adapting the models to be consistent with them as well, t�

�

should not react by
changing the models again. Because if t�

�

changed the models again, this could
easily result in executing the same sequences of transformations repeatedly and
there would likely be no consistent result.

We call transformations that behave in the described way N -converging. This
is not a property of a syncx on its own but relative to its network N . Thus, it
cannot be achieved just by proper construction of an individual transformation.

100 J. Gleitze et al.

Algorithm 1. The explanatory strategy in pseudocode.
1 Procedure propagate (network, changes):
2 executed ← ∅
3 accumulatedChanges ← changes

4 Invariant: accumulatedChanges applied to network consistent to executed
5 while network.contains (candidate | candidate /∈ executed

∧ accumulatedChanges.adjacentTo (candidate)) do
6 candidateChanges ← candidate.execute (accumulatedChanges)
7 subnetwork ← network.edgeInducedSubgraph (executed)
8 propagationChanges ←

propagate (subnetwork, accumulatedChanges ∪ candidateChanges)

9 candidateChanges ← candidate.execute (propagationChanges)
10 if candidateChanges.adjacentToAny (executed) then

// Only happens if candidate is not network-converging
11 fail (executed, propagationChanges)

12 accumulatedChanges ← propagationChanges ∪ candidateChanges
13 executed ← executed ∪ candidate
14 return accumulatedChanges

There is, unfortunately, also no simple way to check it statically. Nevertheless, it
captures the sensible expectation for transformations explained above. We yield
an execution bound for a strategy by only requiring it not to fail if all syncx
are N -converging. We will see how this execution bound behaves in combination
with Principle 1 in the subsequently presented execution strategy.

Definition 8. Let N=:(G,T) be a transformation network. A syncx t�

�

∈ Im(T)
is N-converging if for every initial model assignment and each subset of the
syncx Tp ⊆ Im(T) with t�

�

∈ Tp the resulting model assignment is consistent to t�

�

whenever t�

�

has been executed after a sequence of the syncx in Tp that contains
each permutation of those syncx as a (not necessarily continuous) subsequence.

We only require that the sequence of transformation executions contains each
permutation, but allow other executions in between. As an example, assume a
network N of N -converging syncx t�

�

1, t�

�

2 and t�

�

3. After executing them in the
order t�

�

1 t�

�

2 t�

�

3 t�

�

1 t�

�

2 t�

�

3, the current model assignment may still be inconsistent with
t�

�

1 because t�

�

1 was not executed after the order t�

�

3 t�

�

2. After executing t�

�

1 once more,
the resulting model assignment must now be consistent with all syncx: t�

�

1 was
executed after the two orders of other syncx t�

�

2 t�

�

3 and t�

�

3 t�

�

2. Likewise, t�

�

2 was
executed after t�

�

1 t�

�

3 and t�

�

3 t�

�

1, and t�

�

3 was executed after t�

�

1 t�

�

2 and t�

�

2 t�

�

1.

5.3 The Explanatory Strategy

We now turn to a concrete strategy that realises the discussed design choices.
Algorithm 1 gives pseudocode for such a strategy, which we call the “explanatory

Finding a Universal Execution Strategy for Model Transformation Networks 101

it

rec

it

rec

it

rec

it

rec

it

rec

it

rec

it

rec

candidate
executed

it
iteration step

rec recursion step

Fig. 4. Exemplary execution of the explanatory strategy for a change in the topmost
model, depicting the iterations (horizontal) and recursion steps (vertical).

strategy”. At a high level, it acts like this: Given a changed model assignment, the
strategy picks the next candidate syncx to execute. After executing the candidate,
the strategy calls itself on the subnetwork formed by the already executed syncx.
By that, it propagates the changes of the last execution throughout the sub-
network and ensures that they are consistent with the executed syncx. Finally,
the strategy executes the initial candidate again to ensure that the changes added
during the subnetwork propagation are consistent with the candidate. If that
repeated execution of the candidate generates new changes in any model that
is kept consistent by an already executed syncx, the execution fails, because
the candidate does not fulfil the definition of being N-converging, as we will
see in the following. In that case, the procedure returns the already executed
syncx to which consistency was restored by the also returned changes in order to
support a user in examining the reasons for the strategy to fail. If the models
are consistent with the candidate, the strategy picks the next one. In effect,
the strategy realises Principle 1 in a recursive fashion and ensures that each
permutation of all yet executed syncx is executed at every recursion level.

Figure 4 depicts an exemplary execution of the strategy for a network with
four models and four transformations. We assume that after an initially consistent
state of the models, the topmost one was modified. We can see that each recursion
only treats the subnetwork of previously executed transformations. Hence, the
network gets smaller at each recursion level.

Unlike the formalisation in Section 2.3, the presented algorithm is based on
changes instead of model states. Changes contain information that cannot be
recovered by comparing model states [6]. Thus in practice, we want to support
change-based execution. The algorithm also uses changes to determine potential
candidates for the next transformation to execute: It only picks candidates that
are adjacent to a model that was changed. The input changes describe all changes
that occurred since the last model assignment M that was known to be consistent.
The procedure returns accumulatedChanges that, when applied to M , yield a
new model assignment M ′. For our formalisation, M ′ is the algorithm’s output.

102 J. Gleitze et al.

We discuss some implementation details for the explanatory strategy further
below. First, we prove that the strategy has indeed the motivated properties. We
assert that it terminates always and determine its execution bound.

Theorem 3. The explanatory strategy terminates for every input.

Proof. Because all called functions terminate, only the loop (Line 5) and the
recursive call in Line 8 can lead to non-termination. Let m denote the number
of edges of network. The set executed is initialised to be empty (Line 2) and
grows by one element in every iteration of the loop. The loop is executed no more
than m times, because after m iterations there is no transformation that is not
in executed and, thus, the loop condition cannot be fulfilled.

The recursive call receives a network that is smaller than network in terms of
edges, because it does not contain the current candidate. If network is empty,
then the algorithm will not enter the loop and not make a recursive call. Hence,
the recursive stack never gets higher than m.

Theorem 4. The explanatory strategy executes syncx at most O(2m) times.

Proof. Let T (m) denote the number of syncx executions the algorithm invokes
for a network with m edges. The set executed is initialised to be empty and
grows by one syncx every loop iteration (Line 13). It follows that the recursive
call in Line 8 receives a network that is one syncx larger each time. Thus, we find

T (0) = 0, T (m) = 2m+
m−1∑
i=0

T (i) = 2 + 2T (m− 1) = 2 (2m − 1) ∈ O(2m)

Next, we show that the strategy fulfils the fundamental Requirements 1 and 2
regarding correctness and hippocraticness, which we defined in Section 2.4.

Theorem 5. The explanatory strategy is correct.

Proof. Assume the contrary, i.e., that the strategy produces a model assignment
M for network N such that M /∈ RN . That means that there is an edge (a, b) ∈ E
such that (M(a),M(b)) /∈ R

t�

�

, where t�

�

:= T (a, b). We distinguish these cases:

1. t�

�

was never executed. Then accumulatedChanges never contained any change
adjacent to a or b (Line 5). Since the initial changes were relative to a
consistent model assignment, we know that (M(a),M(b)) ∈ R

t�

�

.
2. t�

�

was executed and no other transformation adjacent to a or b was executed
afterwards. Then (M(a),M(b)) ∈ R

t�

�

per definition.
3. t�

�

was executed and another transformation u�

�

adjacent to a or b was executed
afterwards. Because u�

�

was executed after t�

�

, t�

�

was in executed when u�

�

was the
candidate. So t�

�

’s last execution was in the recursion after u�

�

’s first execution
in Line 6. Afterwards, u�

�

was only executed in Line 9. If u�

�

would have changed
M(a) or M(b), the strategy would have raised a failure. Hence, M(a) and
M(b) are the same as after the execution of t�

�

, and (M(a),M(b)) ∈ R
t�

�

.

All cases lead to a contradiction.

Finding a Universal Execution Strategy for Model Transformation Networks 103

Theorem 6. The explanatory strategy is hippocratic.

Proof. The strategy only produces changes by executing syncx, which, per defini-
tion, only generate changes if the models are not in their consistency relations.

Finally, we verify that we have indeed realised Principle 1 and that the
strategy does not fail for a network N of only N -converging transformations.

Theorem 7. The explanatory strategy ensures consistency among the transfor-
mations that have already been executed before executing a transformation that
has not been executed yet (see Principle 1).

Proof. After the recursive call in Line 8, the current model assignment is consistent
with all executed syncx (Theorem 5) and no changes to models adjacent to an
executed syncx are allowed.

Theorem 8. If the input network of the explanatory strategy consists only of
network-converging syncx, then the explanatory strategy does not fail.

Proof. First, we note that when calling the algorithm on a network with m trans-
formations, the first m− 1 iterations of the loop act identically to executing the
algorithm on a network without the last candidate. Second, we note that the sec-
ond part of the loop condition, “accumulatedChanges.adjacentTo (candidate)”
(Line 5), does not change the algorithm’s result apart from controlling the order
in which the syncx are executed. If any syncx was never executed because of
this condition, then executing it would not have changed any model. Hence, we
assume w.l.o.g. that all syncx in network will get executed.

Now we show the following, stronger statement by induction over the number
m of edges in network: “After running the explanatory strategy, the sequence
of executed syncx contains each permutation of those syncx (not necessarily
continuously)”. Since the transformations are network-converging and because
of our first note above, proving this statement shows that the condition leading
to a failure (Line 10) will never evaluate to true. The statement is trivially true
for m=1. Assume that the statement is true for all networks of size 1 ≤ n < m
but not true for a network of size m. That means that after executing the last
iteration of the loop, there is an order o of the m syncx in network in which they
have not been executed yet. Let t�

�

be the candidate of the last iteration. Let j be
the index of t�

�

in o. Per induction assumption, the order o[1] . . . o[j−1] has been
executed in the previous iterations of the loop. Afterwards, t�

�

was executed in
Line 6. Per induction assumption, the order o[j+1] . . . o[m] has been executed in
the recursive call (Line 8) of the last iteration. This happened after Line 6. Hence,
the transformations have been executed in the order o. This is a contradiction.

The explanatory strategy only guarantees to produce a consistent model as-
signment if all syncx are N -converging. We can, unfortunately, not provide an ap-
proach to achieve N -convergence by construction or to determine N -convergence.
We have, however, also discussed that every universal execution strategy needs to
operate conservatively and thus fails in certain cases. Thus, even if a network N

104 J. Gleitze et al.

contains syncx that are not N -converging, the explanatory strategy still operates
conservatively and at least fails based on the notion of a sensible and well-defined
property. In addition, the exponential worst-case performance of the strategy is
no limitation, because it does only represent a bound to ensure termination. In
cases in which the strategy terminates, we expect the repeated execution of each
syncx to perform only few changes in reaction to the changes made by other syncx,
as otherwise they are unlikely to be N -converging. The interested reader can try
out the explanatory strategy using the previously mentioned simulator [11].

In its current formulation, the explanatory strategy does not prevent the
syncx from overwriting the initial user changes. This seems inappropriate, as
user changes should usually not be reverted. Other authors address this issue by
forbidding changes to models that have been edited by users [3, 30, 29], called
“authoritative models”. There are, however, practical use cases where such changes
should be allowed—the example in Section 4.1 is one of them. An option would
be to let the strategy fail as soon as a syncx execution overwrites a user change.

6 Conclusion

In this paper, we have discussed influencing factors for designing a universal exe-
cution strategy for model transformation networks. Such a strategy orchestrates
transformations to create a consistent set of models. It involves determining
an order to execute the transformations in, and a bound for the number of
executions. We have proven that every universal execution strategy that always
terminates needs to be conservative, i.e., it will fail for certain cases in which an
execution order of transformations that yields a consistent solution exists. We
have argued that providing explainability in cases where an execution strategy
fails should be a central design goal. As a result, we have proposed the explanatory
strategy, which is proven correct and terminates for every input. Additionally, it
improves explainability of failures and has a well-defined bound for the number
of transformation executions to ensure a reasonable level of conservativeness.

We have formalised our findings on execution bounds and the behaviour of
the proposed execution strategy to prove the insights and expected properties of
the strategy. In consequence, this paper provides fundamental knowledge about
the design space and relevant design goals of transformation network execution
strategies. While the statements on correctness and well-definedness are proven,
those on the usefulness of the strategy were derived by argumentation. To improve
evidence of the results, the authors plan to apply the strategy to realistic use
cases, involving larger networks of more complex transformations.

Furthermore, the authors want to examine how the strategy can be further op-
timised: It might, e.g., be improved by backtracking and trying further candidate
transformations, or by selecting the next candidate more carefully. Since early
executed transformations will be executed most often, starting with those that
will most unlikely cause conflicts might be beneficial. Finally, this paper assumes
transformations to be binary. Since the presented strategy does not require this,
future research could investigate transferability to multiary transformations.

Finding a Universal Execution Strategy for Model Transformation Networks 105

References

1. Anjorin, A., Rose, S., Deckwerth, F., and Schürr, A.: “Efficient Model Synchro-
nization with View Triple Graph Grammars”. In: Modelling Foundations and
Applications, pp. 1–17. Springer International Publishing (2014)

2. Cleve, A., Kindler, E., Stevens, P., and Zaytsev, V.: “Multidirectional Transforma-
tions and Synchronisations (Dagstuhl Seminar 18491)”. Dagstuhl Reports 8(12),
1–48 (2019)

3. Di Rocco, J., Di Ruscio, D., Heinz, M., Iovino, L., Lämmel, R., and Pierantonio, A.:
“Consistency Recovery in Interactive Modeling”. In: 3rd International Workshop on
Executable Modeling co-Located with ACM/IEEE 20th International Conference
on Model Driven Engineering Languages and Systems. Vol-2019, pp. 116–122.
CEUR-WS.org (2017)

4. Diskin, Z., Gholizadeh, H., Wider, A., and Czarnecki, K.: “A Three-Dimensional Tax-
onomy for Bidirectional Model Synchronization”. Journal of Systems and Software
111, 298–322 (2016)

5. Diskin, Z., König, H., and Lawford, M.: “Multiple Model Synchronization with
Multiary Delta Lenses”. In: Fundamental Approaches to Software Engineering,
pp. 21–37. Springer International Publishing (2018)

6. Diskin, Z., Xiong, Y., Czarnecki, K., Ehrig, H., Hermann, F., and Orejas, F.: “From
State- to Delta-Based Bidirectional Model Transformations: The Symmetric Case”.
In: Model Driven Engineering Languages and Systems, pp. 304–318. Springer Berlin
Heidelberg (2011)

7. Ehrig, H., Ehrig, K., Lara, J. de, Taentzer, G., Varró, D., and Varró-Gyapay, S.:
“Termination Criteria for Model Transformation”. In: Fundamental Approaches to
Software Engineering, pp. 49–63. Springer Berlin Heidelberg (2005)

8. Etien, A., Aranega, V., Blanc, X., and Paige, R.F.: “Chaining Model Transforma-
tions”. In: First Workshop on the Analysis of Model Transformations, pp. 9–14.
ACM (2012)

9. Etien, A., Muller, A., Legrand, T., and Blanc, X.: “Combining Independent Model
Transformations”. In: 2010 ACM Symposium on Applied Computing, pp. 2237–2243.
ACM (2010)

10. Gleitze, J.: GitHub: Transformation Network Simulator, (2021). https://github.
com/jGleitz/transformationnetwork-simulator (visited on 01/14/2021)

11. Gleitze, J.: Transformation Network Simulator, (2021). https://jgleitz.github.io/
transformationnetwork-simulator (visited on 01/14/2021)

12. Guissouma, H., Klare, H., Sax, E., and Burger, E.: “An Empirical Study on the
Current and Future Challenges of Automotive Software Release and Configuration
Management”. In: 2018 44th Euromicro Conference on Software Engineering and
Advanced Applications, pp. 298–305. IEEE (2018)

13. Klare, H.: “Multi-model Consistency Preservation”. In: 21st ACM/IEEE Interna-
tional Conference on Model Driven Engineering Languages and Systems: Companion
Proceedings, pp. 156–161. ACM (2018)

14. Klare, H., and Gleitze, J.: “Commonalities for Preserving Consistency of Mul-
tiple Models”. In: 22nd ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems Companion, pp. 371–378. IEEE (2019)

15. Klare, H., Kramer, M.E., Langhammer, M., Werle, D., Burger, E., and Reussner, R.:
“Enabling consistency in view-based system development – The Vitruvius approach”.
Journal of Systems and Software 171 (2020)

http://dx.doi.org/10.1007/978-3-319-09195-2_1
http://dx.doi.org/10.1007/978-3-319-09195-2_1
http://dx.doi.org/10.4230/DagRep.8.12.1
http://dx.doi.org/10.4230/DagRep.8.12.1
http://ceur-ws.org/Vol-2019/exe_6.pdf
http://dx.doi.org/10.1016/j.jss.2015.06.003
http://dx.doi.org/10.1016/j.jss.2015.06.003
http://dx.doi.org/10.1007/978-3-319-89363-1_2
http://dx.doi.org/10.1007/978-3-319-89363-1_2
http://dx.doi.org/10.1007/978-3-642-24485-8_22
http://dx.doi.org/10.1007/978-3-642-24485-8_22
http://dx.doi.org/10.1007/978-3-540-31984-9_5
http://dx.doi.org/10.1145/2432497.2432500
http://dx.doi.org/10.1145/2432497.2432500
http://dx.doi.org/10.1145/1774088.1774557
http://dx.doi.org/10.1145/1774088.1774557
https://github.com/jGleitz/transformationnetwork-simulator
https://github.com/jGleitz/transformationnetwork-simulator
https://jgleitz.github.io/transformationnetwork-simulator
https://jgleitz.github.io/transformationnetwork-simulator
http://dx.doi.org/10.1109/SEAA.2018.00056
http://dx.doi.org/10.1109/SEAA.2018.00056
http://dx.doi.org/10.1109/SEAA.2018.00056
http://dx.doi.org/10.1145/3270112.3275335
http://dx.doi.org/10.1109/MODELS-C.2019.00058
http://dx.doi.org/10.1109/MODELS-C.2019.00058
http://dx.doi.org/10.1016/j.jss.2020.110815

106 J. Gleitze et al.

16. Klare, H., Syma, T., Burger, E., and Reussner, R.: “A Categorization of Interoper-
ability Issues in Networks of Transformations”. In: 12th International Conference
on Model Transformations. Journal of Object Technology (2019)

17. Königs, A., and Schürr, A.: “MDI: A Rule-based Multi-document and Tool Integra-
tion Approach”. Software and Systems Modeling 5(4), 349–368 (2006)

18. Kusel, A., Etzlstorfer, J., Kapsammer, E., Langer, P., Retschitzegger, W., Schoen-
boeck, J., Schwinger, W., and Wimmer, M.: “A Survey on Incremental Model
Transformation Approaches”. In: Workshop on Models and Evolution co-located
with ACM/IEEE 16th International Conference on Model Driven Engineering
Languages and Systems. Vol-1090, pp. 4–13. CEUR-WS.org (2013)

19. Lúcio, L., Mustafiz, S., Denil, J., Vangheluwe, H., and Jukss, M.: “FTG+PM:
An Integrated Framework for Investigating Model Transformation Chains”. In:
SDL 2013: Model-Driven Dependability Engineering, pp. 182–202. Springer Berlin
Heidelberg (2013)

20. Macedo, N., Cunha, A., and Pacheco, H.: “Towards a Framework for Multi-
Directional Model Transformations”. In: 3rd International Workshop on Bidirec-
tional Transformations. Vol-1133. CEUR-WS.org (2014)

21. Macedo, N., Jorge, T., and Cunha, A.: “A Feature-Based Classification of Model
Repair Approaches”. IEEE Transactions on Software Engineering 43(7), 615–640

22. Object Management Group (OMG): “Meta Object Facility (MOF) 2.0—Query/
View/Transformation Specification”, Version 1.3 (2016)

23. Pilgrim, J. von, Vanhooff, B., Schulz-Gerlach, I., and Berbers, Y.: “Constructing and
Visualizing Transformation Chains”. In: Model Driven Architecture – Foundations
and Applications, pp. 17–32. Springer Berlin Heidelberg (2008)

24. Reussner, R.H., Becker, S., Happe, J., Heinrich, R., Koziolek, A., Koziolek, H.,
Kramer, M., and Krogmann, K.: “Modeling and Simulating Software Architectures
– the Palladio Approach”. MIT Press (2016)

25. Samimi-Dehkordi, L., Zamani, B., and Kolahdouz-Rahimi, S.: “Bidirectional Model
Transformation Approaches – A Comparative Study”. In: 6th International Confer-
ence on Computer and Knowledge Engineering, pp. 314–320. IEEE (2016)

26. Schürr, A.: “Specification of graph translators with triple graph grammars”. In:
Graph-Theoretic Concepts in Computer Science, pp. 151–163. Springer Berlin
Heidelberg (1995)

27. Stevens, P.: “A Landscape of Bidirectional Model Transformations”. In: Generative
and Transformational Techniques in Software Engineering II, pp. 408–424. Springer
Berlin Heidelberg (2008)

28. Stevens, P.: “Bidirectional Model Transformations in QVT: Semantic Issues and
Open Questions”. Software and Systems Modeling 9(1), 7 (2010)

29. Stevens, P.: “Connecting software build with maintaining consistency between
models: towards sound, optimal, and flexible building from megamodels”. Software
and Systems Modeling 19(4), 935–958 (2020)

30. Stevens, P.: “Maintaining consistency in networks of models: bidirectional transfor-
mations in the large”. Software and Systems Modeling 19(1), 39–65 (2020)

31. Stünkel, P., König, H., Lamo, Y., and Rutle, A.: “Multimodel Correspondence
through Inter-Model Constraints”. In: 2nd International Conference on Art, Science,
and Engineering of Programming Companion, pp. 9–17. ACM (2018)

32. The Linux Foundation: OpenAPI Initiative, (2021). https://www.openapis.org/
(visited on 01/14/2021)

http://dx.doi.org/10.5381/jot.2019.18.3.a4
http://dx.doi.org/10.5381/jot.2019.18.3.a4
http://dx.doi.org/10.1007/s10270-006-0016-x
http://dx.doi.org/10.1007/s10270-006-0016-x
http://ceur-ws.org/Vol-1090/1.pdf
http://ceur-ws.org/Vol-1090/1.pdf
http://dx.doi.org/10.1007/978-3-642-38911-5_11
http://dx.doi.org/10.1007/978-3-642-38911-5_11
http://ceur-ws.org/Vol-1133/paper-11.pdf
http://ceur-ws.org/Vol-1133/paper-11.pdf
http://dx.doi.org/10.1109/TSE.2016.2620145
http://dx.doi.org/10.1109/TSE.2016.2620145
http://www.omg.org/spec/QVT/1.3
http://www.omg.org/spec/QVT/1.3
http://dx.doi.org/10.1007/978-3-540-69100-6_2
http://dx.doi.org/10.1007/978-3-540-69100-6_2
http://mitpress.mit.edu/books/modeling-and-simulating-software-architectures
http://mitpress.mit.edu/books/modeling-and-simulating-software-architectures
http://dx.doi.org/10.1109/ICCKE.2016.7802159
http://dx.doi.org/10.1109/ICCKE.2016.7802159
http://dx.doi.org/10.1007/3-540-59071-4_45
http://dx.doi.org/10.1007/978-3-540-88643-3_10
http://dx.doi.org/10.1007/s10270-008-0109-9
http://dx.doi.org/10.1007/s10270-008-0109-9
http://dx.doi.org/10.1007/s10270-020-00788-4
http://dx.doi.org/10.1007/s10270-020-00788-4
http://dx.doi.org/10.1007/s10270-019-00736-x
http://dx.doi.org/10.1007/s10270-019-00736-x
http://dx.doi.org/10.1145/3191697.3191715
http://dx.doi.org/10.1145/3191697.3191715
https://www.openapis.org/

Finding a Universal Execution Strategy for Model Transformation Networks 107

33. Trollmann, F., and Albayrak, S.: “Extending Model Synchronization Results from
Triple Graph Grammars to Multiple Models”. In: Theory and Practice of Model
Transformations, pp. 91–106. Springer International Publishing (2016)

34. Trollmann, F., and Albayrak, S.: “Extending Model to Model Transformation
Results from Triple Graph Grammars to Multiple Models”. In: Theory and Practice
of Model Transformations, pp. 214–229. Springer International Publishing (2015)

35. Vanhooff, B., Ayed, D., Van Baelen, S., Joosen, W., and Berbers, Y.: “UniTI: A
Unified Transformation Infrastructure”. In: Model Driven Engineering Languages
and Systems, pp. 31–45. Springer Berlin Heidelberg (2007)

36. Wagelaar, D., Tisi, M., Cabot, J., and Jouault, F.: “Towards a General Composition
Semantics for Rule-Based Model Transformation”. In: Model Driven Engineering
Languages and Systems, pp. 623–637. Springer Berlin Heidelberg (2011)

37. Xiong, Y., Song, H., Hu, Z., and Takeichi, M.: “Synchronizing Concurrent Model
Updates Based on Bidirectional Transformation”. Software and Systems Modeling
12(1), 89–104 (2013)

Image Sources

paintingred: “Default Avatar Headshot Icons”, found on Vecteezy.
https://www.vecteezy.com/vector-art/141712-default-avatar-headshot-icons.
Vecteezy Free License.

Object Management Group: UML logo.
https://www.uml.org/index.htm.
Trademark.
Palladio logo.
https://sdqweb.ipd.kit.edu/wiki/File:Palladio-Logo-stilisiert-vektor.pdf.
Authorized use.
The Linux Foundation: OpenAPI™ logo.
https://github.com/OAI/OpenAPI-Style-Guide/blob/master/graphics/
vector/OpenAPI_Logo_Black.svg. Trademark.

Freepik: “Computer”.
https://www.flaticon.com/free-icon/computer_1077701.
Flaticon Basic License.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

http://dx.doi.org/10.1007/978-3-319-42064-6_7
http://dx.doi.org/10.1007/978-3-319-42064-6_7
http://dx.doi.org/10.1007/978-3-319-21155-8_16
http://dx.doi.org/10.1007/978-3-319-21155-8_16
http://dx.doi.org/10.1007/978-3-540-75209-7_3
http://dx.doi.org/10.1007/978-3-540-75209-7_3
http://dx.doi.org/10.1007/978-3-642-24485-8_46
http://dx.doi.org/10.1007/978-3-642-24485-8_46
http://dx.doi.org/10.1007/s10270-010-0187-3
http://dx.doi.org/10.1007/s10270-010-0187-3
https://www.vecteezy.com/vector-art/141712-default-avatar-headshot-icons
https://www.uml.org/index.htm
https://sdqweb.ipd.kit.edu/wiki/File:Palladio-Logo-stilisiert-vektor.pdf
https://github.com/OAI/OpenAPI-Style-Guide/blob/master/graphics/vector/OpenAPI_Logo_Black.svg
https://github.com/OAI/OpenAPI-Style-Guide/blob/master/graphics/vector/OpenAPI_Logo_Black.svg
https://www.flaticon.com/free-icon/computer_1077701
http://creativecommons.org/licenses/by/4.0/

CoVEGI: Cooperative Verification via
Externally Generated Invariants

Jan Haltermann�(�) and Heike Wehrheim

Department of Computer Science, Paderborn University, Paderborn, Germany
jfh@mail.upb.de, wehrheim@upb.de

Abstract. Software verification has recently made enormous progress
due to the development of novel verification methods and the speed-up
of supporting technologies like SMT solving. To keep software verifi-
cation tools up to date with these advances, tool developers keep on
integrating newly designed methods into their tools, almost exclusively
by re-implementing the method within their own framework. While this
allows for a conceptual re-use of methods, it nevertheless requires novel
implementations for every new technique.
In this paper, we employ cooperative verification in order to avoid re-
implementation and enable usage of novel tools as black-box components
in verification. Specifically, cooperation is employed for the core ingre-
dient of software verification which is invariant generation. Finding an
adequate loop invariant is key to the success of a verification run. Our
framework named CoVEGI allows a master verification tool to delegate
the task of invariant generation to one or several specialized helper in-
variant generators. Their results are then utilized within the verification
run of the master verifier, allowing in particular for crosschecking the va-
lidity of the invariant. We experimentally evaluate our framework on an
instance with two masters and three different invariant generators using
a number of benchmarks from SV-COMP 2020. The experiments show
that the use of CoVEGI can increase the number of correctly verified
tasks without increasing the used resources.

Keywords: Cooperation, Software Verification, Invariant Generation

1 Introduction

Recent years have seen a major progress in software verification as for instance
witnessed by the annual competition on software verification SV-COMP [2]. This
success is on the one hand due to advances in SAT and SMT solving and on the
other hand due to novel verification methods like interpolation in model check-
ing [36], automata-based software verification [31] or property directed reacha-
bility [16]. Still, automatic verification remains a complex and error-prone task.
In particular, it is often the case that one tool can verify a particular class

� This author was partially supported by the German Research Foundation (DFG)
under contract WE2290/13-1.

c© The Author(s) 2021
E. Guerra and M. Stoelinga (Eds.): FASE 2021, LNCS 12649, pp. 108–129, 2021.
https://doi.org/10.1007/978-3-030-71500-7 6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71500-7_6&domain=pdf
http://orcid.org/0000-0002-5098-0495
http://orcid.org/0000-0002-2385-7512
https://doi.org/10.1007/978-3-030-71500-7_6

CoVEGI: Cooperative Verification via Externally Generated Invariants 109

of programs, but fails to verify other classes (or even gives incorrect answers),
whereas it is the reverse situation for another tool. Moreover, to keep their tools
up to date with novel techniques, tool developers keep on integrating them by
re-implementation within their framework.

An approach for changing this unsatisfactory situation is cooperative veri-
fication (for an overview see [13]). Cooperative verification builds on the idea
of letting tools (and thus techniques) cooperate on verification tasks, thereby
leveraging the tool’s individual strengths. In particular, cooperative verification
aims at black box combinations of tools, using existing tools off-the-shelf without
re-implementation. While this sounds like a natural idea, its realization poses a
number of challenges, the major one being the exchange and usage of analysis in-
formation. For cooperation, tools are required to produce (partial) results which
other tools can understand and employ in their verification run. With conditional
model checking [7], the first proposal of an exchange format for verification re-
sults was made. A conditional model checker outputs its (potentially partial)
result in the form of a condition which can be read by other conditional model
checkers in order to complete the verification task. Since verification tools nor-
mally do not understand conditions, reducers [23,9] have been proposed to bring
conditions back into a form understandable by verifiers, namely into (residual)
programs describing the so far unverified program part. This allows the result
of a conditional model checker to be made usable by arbitrary other verifiers.
A second type of existing result usage is the validation of tool’s results [4,34],
similar to proof-carrying code [37]. Both of these types are sequential forms
of cooperation: a first verifier starts and a second verifier continues, either by
completing or by validating a first result.

In this paper, we propose CoVEGI, a cooperation framework which comple-
ments these existing approaches by a new type of cooperation. Conceptually,
this framework (depicted in Figure 1) consists of a master verifier and a number
of helper invariant generators. The master verifier has the overall control on the
verification process and can delegate tasks to helpers as well as continue its own
verification process with (partial) results provided by helpers. The helpers run
in parallel as black boxes without cooperation. The task to be delegated is an in-
tegral part of software verification, namely invariant generation. The framework
allows cooperation via outsourcing the task of invariant generation, leveraging
the strength of specialized invariant generation tools.

Like for other types of cooperation, the question of the exchange format for
results comes up. Here, we have chosen correctness witnesses [3] for this purpose.
Correctness witnesses are employed in witness validation and certify a verifier’s
result stating the correctness of a program. These witnesses are particularly well
suited for our intended usage, because their format is standardized and a number
of verifiers already produce correctness witnesses. To account for the incoopera-
tion of helper verifiers not producing witnesses, our framework also foresees the
inclusion of adapters transforming invariants into correctness witnesses. We pro-
vide an implementation of two such adapters. Witnesses are then injected into
the verification run of the master. For stating the task to be solved by invariant

110 J. Haltermann and H. Wehrheim

Master
Verifier

WitnessInjector

Adapter

Helper Invari-
ant Generator

Adapter

Helper Invari-
ant Generator

Mapper Mapper

Invariant

Witness

Invariant

WitnessPro
g+P

rop
Prog+Prop

Task Task

|| . . . ||

Program

Property

Result

Fig. 1: Cooperative verification via externally generated invariants

generators we furthermore require mappers transforming program and property
to be proven into a task format understandable by the helper tools. Figure 1
depicts our framework for cooperative verification via externally generated in-
variants. The framework can be arbitrarily configured with different masters and
helpers, provided that suitable adapters and mappers are given.

We have implemented CoVEGI within the CPAchecker framework [10]
and have employed different configurations of it as master verifier. As helpers
we have chosen publicly available verification tools, some producing and one
not producing witnesses. We have then experimentally evaluated 14 different
combinations of master and helper on benchmarks of the annual competition
of software verification SV-COMP [2]. The experiments show an improvement
over the verification capabilities of the master tool, without incurring significant
overhead. In some cases, the verification time is even decreased in cooperative
verification.

Summarizing, we make the following contributions.

– We propose a framework for cooperative software verification based on a
master-helper architecture using externally generated invariants.

– We construct 14 different instantiations of the framework using 2 masters
and 3 helpers, running both helpers in isolation as well as in parallel.

– For the inclusion of helper verifiers, we implement two adapters, one trans-
forming invariants expressed in the LLVM IR language1 into correctness
witnesses, the other bringing a generated witness into the right format.

– We carry out an extensive experimental evaluation demonstrating the effec-
tiveness and efficiency of collective invariant generation.

2 Fundamentals

We aim at the cooperative verification of programs written in GNU C, focusing
on the validation of safety properties. To be able to define safety properties, a

1 https://llvm.org/docs/LangRef.html

CoVEGI: Cooperative Verification via Externally Generated Invariants 111

formal representation of programs as well as their semantics is needed. Thus we
briefly introduce the syntax and semantics of programs which we consider here.

We follow the notation of Beyer et al. [6] describing programs as control-flow
automata (CFAs). A CFA is basically a control-flow graph with edges annotated
with program statements. More formally, a program is represented as a control-
flow automaton C = (L, l0, G), consisting of a set of program locations L, an
initial location l0 ∈ L and the control-flow edges G,G ⊆ L × Op × L. The set
Op contains all possible operations on integer variables2 present in the program,
namely conditions (as of conditionals and loops), assignments, method calls and
return statements. Figure 2(a) shows a C-program taken from the SV-COMP
benchmarks3, and Figure 2(b) its corresponding CFA. The program also con-
tains a special error label, used for encoding the property to be verified. The
verification task for this program is to show the non-reachability of the error
label at location 9, i.e., for our example program the verifier has to prove that
y equals n after the loop which is true (since n is unsigned).

For the semantics, we start by defining program states. Let Var denote the
set of all integer variables occurring in programs, BExp the set of boolean ex-
pressions and AExp the set of arithmetic expressions over Var . Then a state σ of
the program is a mapping from the variables to the integers, i.e., σ : Var → Z.
We lift the mapping to also contain the evaluation of arithmetic and boolean
expressions so that σ maps AExp to Z and BExp to B. A finite program path π is

a sequence of transitions 〈σ0, l0〉 g0→ 〈σ1, l1〉 · · · gn−1→ 〈σn, ln〉, such that σ0 assigns
0 to all variables, ln is a leaf in the CFA and (li, gi, li+1) ∈ G holds for each

transition 〈σi, li〉 gi→ 〈σi+1, li+1〉 in π. Infinite program paths are defined analo-
geously. As for state changes in paths: If gi is a boolean expression, method call
or return statement, then σi = σi+1 holds. If gi is an assignment x = a, where
a ∈ AExp, then σi+1 = σi[x '→ σi(a)]. Finally, we denote all paths of a program
represented by a CFA C by paths(C).

Here, we are interested in verifying safety properties of programs given as
CFAs. For the purpose of this paper, we define a safety property P as a pair of a
location � ∈ L and a boolean condition ϕ ∈ BExp. There can be multiple safety
properties required to hold in a program. For our example program of Figure 2
the property is (8, n = y). For the verifier this is encoded in the form

8: if (!(n==y))

9: Error: return 1;

A CFA (or program) C violates a safety property P = (�, ϕ) when the pro-
gram reaches location � in a state which does not satisfy ϕ. More formally, P is

violated by C, if there is some path π ∈ paths(C), π = 〈σ0, l0〉 g0→ 〈σ1, l1〉 · · · gn−1→
〈σn, ln〉 and some i, 0 ≤ i ≤ n, such that �i = � and σi(ϕ) = false.

2 In our formalization, we use integer variables only, the implementation covers C
programs.

3 https://github.com/sosy-lab/sv-benchmarks

112 J. Haltermann and H. Wehrheim

1 int main() {

2 unsigned int n = nondet();

3 unsigned int x = n, y = 0;

4 while(x > 0){

5 x--;

6 y++; }

7 // Safety property

8 if (!(n == y)) {

9 Error: return 1; }

10 return 0;}

(a) C code example

1

2

3

4

5

6

8

911

12 10

n=nondet()

x=n

y=0
¬ (x>0)

(x>0)

x- -
y++

n==y ¬ (n==y)

ret 0 ret1

(b) The corresponding CFA

q1 q2 q3

q4

q5 q6

q7n == x+y

1,enterFunc 3,enterLoopHead 4,else

4,then6,enterLoopHead

8,then

8,else

o/w o/w o/w

o/w

o/w

o/w

o/w

(c) Part of the witness

Fig. 2: An example program, its control flow automaton and one witness

Cooperatively verifying safety of programs is achieved in our framework via
external (loop) invariant generation. Syntactically, a loop invariant is a boolean
expression associated to a loop head. A loop invariant needs to hold (1) before the
first loop execution and (2) after each loop execution. The expression n = x+ y,
for instance, is a loop invariant for the program in Figure 2(a), associated to
the loop head at location 4. This loop invariant facilitates verification, because
in conjunction with the negated loop condition and information about initial
variable values it ensures n to be equal to y after the loop. Other valid loop
invariants would be x ≥ 0 or n = 3 ⇒ y ≤ 5, which however all do not help in
proving the safety property. Especially the loop invariant true does not provide
any information. Thus, we call it a trivial invariant.

As stated before, we chose witnesses (more specifically, correctness witnesses)
as exchange format during collective invariant generation. Formally, a witness is
a finite state automaton in which transitions are labelled with so called source
code guards and states can be equipped with boolean expressions. When all
these boolean expressions are either true or false, we call the witness trivial.
Source code guards are of the form location,type where type can be then,
else, enterFunc and enterLoopHead. The guard o/w (otherwise) is used if a
source code line does not match the other guards present. Via these labels we
can match transitions of the automaton with edges in the CFA. Syntactically,
correctness witnesses are stored in an XML format and consist of two parts:

CoVEGI: Cooperative Verification via Externally Generated Invariants 113

(1) general information like the program associated with the witness, and (2)
a GraphML representation of the witness automaton. More information and a
formal specification of correctness witnesses can be found in [3].

In Figure 2(c), we see a correctness witness for our example program. State
q3 is reached by transitions labelled 3,enterLoopHead or 6,enterLoopHead and
thus corresponds to the loop head at program location 4. Associated with this
state is the invariant n = x+ y.

3 Concept

In this section, we introduce our novel concept of Cooperative Verification via
Externally Generated Invariants (CoVEGI), shown in Figure 1. The framework
contains two sorts of main components: Master verifiers (one) and helper invari-
ant generators (several). Next, we state some requirements on and explain the
functionality of these components as well as their cooperation.

3.1 Components of the CoVEGI-Framework

The most important component of the framework is the master verifier, which
we build out of an existing verifier. The master is responsible for coordinating
the verification process and can, if needed, request support from the second type
of components, the helpers, in the form of invariants as described by correctness
witnesses. Hence, the master is also steering the cooperation.

In the following, we explain the two sorts of main components in more detail:

Master Verifier A master verifier gets as input the program C as CFA and a
safety property P . It computes as output a boolean answer b, stating whether
the property holds, and possibly (but not necessarily) provides an overall
witness ω. To be able to process the provided support in form of invariants
stored inside of correctness witnesses, a master is required to implement an
internal function called injectWitness. The function loads a witness, extracts
the invariants present in it and injects them into the analysis of the master
verifier. The witness injection can either happen before (re-)starting the
analysis or during runtime.

Helper Invariant Generator A helper invariant generator gets as input the
program C as CFA and a safety property P . It computes as output a set of
invariants, stored in a verification witness ω′. The generated invariants are
neither required to be helpful for the master verifier nor to be correct. Thus,
helper invariant generators are also allowed to generate trivial invariants or
invariant candidates which might turn out to be wrong.

We can neither expect existing verification tools which we wish to use as helpers
to be able to work on CFAs, nor to understand the safety property or to produce
witnesses. Hence, we foresee two further sorts of components in our framework:

114 J. Haltermann and H. Wehrheim

Table 1: Overview of the configuration options available
Name Description Values

restartMaster restart the master after invariant generation boolean
termAfterFirstInv use first witness only boolean

timerM max. time for master until requestsForHelp is send time(s)
timeoutH max. time for helpers to generate an invariant time(s)

Mapper A mapper transforms the safety property specification inside the pro-
gram into the desired input format of the helper. A mapper basically con-
ducts some simple syntactic code replacements. For instance, for our running
example some helpers might instead require the safety property to be written
as assert(n==y); or as if(!(n==y)) {verifier error();}.

Adapter An adapter generates a correctness witness out of the computed loop
invariants of a helper. Furthermore, some helper invariant generators work
on intermediate representations (IR) of the C-language (e.g. LLVM) or inter-
mediate verification languages (e.g. Boogie). Then, the computed invariants
(formulated in terms of IR-variables) first of all need to be translated back
to the namespace of the C-program. An adapter for LLVM is explained in
more detail in Section 3.4.

3.2 Cooperation within CoVEGI

After having explained the individual components, we define their interaction
in the framework. In this paper, we focus on the parallel execution of several
helpers which implement complementary approaches so that we can leverage
their individual strengths. Algorithm 1 describes the form of cooperation. It
is steered by several user configurable options which fix aspects like time and
resource limits of master and helpers. Table 1 summarizes the configuration
options. We next describe them in detail.

Master options The following aspects of the master’s behavior need to be
fixed: First, when to delegate tasks to helpers, and second, how to continue
the verification process after invariant generation. For the delegation, we let
the master verifier run until it requests support, which can be checked by in-
specting the master’s flag requestsForHelp. The master gets a configurable
timelimit (called timerM) after which it is expected to send this request.
By adding such an explicit request for help, we allow the master to send a
request for other reasons (besides the timer) in the future. Then, after in-
variant generation, the master can either be freshly restarted or continued
(option restartMaster).

Helper option When at least two helpers run in parallel, eventually one of
them first computes a witness. We can then either (1) directly stop the
other helpers, or (2) wait for all to complete before injecting witnesses into
the master. This option is called termAfterFirstInv.

CoVEGI: Cooperative Verification via Externally Generated Invariants 115

Algorithm 1 CoVEGI-algorithm

Input: C � CFA
P � safety property
M � master
Helpers � set of helpers
conf � configuration

Output: ω � witness
b � result

1: M.start(C, P, conf.timerM);
2: wait until (M.requestsForHelp ∨ M.hasSolution());
3: if (M.hasSolution()) then
4: return M.getSolution();

5: for each H ∈ Helpers do parallel � run helpers in parallel
6: H.start(C, P, conf.timeoutH);
7: wait until (H.timedout() ∨ H.hasSolution() ∨ H.stopped());
8: if (H.hasSolution() ∧ nonTrivial(H.getSolution())) then
9: witnesses := witnesses ∪ H.getSolution();
10: if (conf.termAfterFirstInv) then
11: for each H’ ∈ helpers \{ H } do parallel
12: H’.stop(); � stop other helpers

13: if (M.hasSolution()) then
14: return M.getSolution();

15: if (witnesses �= ∅) then � invariants found
16: if (conf.restartMaster) then
17: M.stop();

18: M.inject(witnesses); � inject witnesses into master
19: if (conf.restartMaster) then
20: M.start(C,P, ∞);

21: join(M); � wait for M to finish
22: return M.getSolution();

Timeouts Finally, similar to the master, we can set a specific timeout for the
helpers which fixes how long they are allowed to try to generate invariants.
The timeout option is called timeoutH.

Next, we explain the CoVEGI algorithm shown in Algorithm 1 in detail. We as-
sume that master and helpers run as threads and can be started and stopped. We
furthermore employ methods wait for waiting until some condition is achieved
and join for waiting for a specific thread to complete.

Initially, the master verifier is started without any helper invariant generators
running in parallel (line 1), providing the opportunity to verify programs on its
own. It runs standalone until it requests for help (either due to not being able to
solve the problem alone or due to hitting its timer) or until it computes a result
which is subsequently returned (line 3). Afterwards all helpers are started in
parallel (lines 5 and 6). They also run until they reach their timeout, a solution
is found or they are stopped. Their solutions (invariants) are inserted into the

116 J. Haltermann and H. Wehrheim

witness set (line 9). Depending on option termAfterFirstInv, either all but the
first finished helper are stopped or it is waited until all helpers either computed a
solution or ran into their timeout. If invariants (witnesses) have been computed,
these are injected into the master (line 18). If the restartMaster option is set,
the master needs to be stopped before injection and restarted afterwards. Then
the master continues and completes its verification (without any further request
for help) and the result is finally returned.

Example 1. To explain the framework’s functionality, we demonstrate the CoV-
EGI algorithm on the example presented in Figure 2(a). Assume that we instan-
tiate the framework with a master verifier and four helper invariant generators,
that are used in parallel4. Moreover, we configure the framework as follows: We
set restartMaster to true, terminateAfterFirstInv to false, timerM to 50
seconds and timeoutH to 300 seconds.

Initially, the master verifier runs standalone and after 50 seconds runtime it
requests help. The master runs in parallel with the four helper invariant genera-
tors being called. Let us assume that the first helper returns only trivial invari-
ants (after 10s), the second one the invariant n ≥ y (after 50s), the third one the
invariant n = x+ y (after 100s) and the fourth the invariant n−x− y = 0 (after
500s). The trivial invariant is ignored (see check in line 8) and when the second
helper returns a solution, the third and fourth helper are still not stopped, due
to the chosen configuration. The algorithm waits until the third helper computes
the invariant and the fourth (only being able to compute an invariant after 500s)
hits the timeout after 300s. Then the master is stopped, the invariants n ≥ y
and n = x+ y are injected and the master is restarted. The master verifier can
use both invariants and might now compute the correct result.

3.3 Witness Injection

As master verifiers need to offer witness injection, we explain a possible pro-
cedure for predicate abstraction and k-induction, which are the two techniques
we use as masters during the evaluation. For both, the invariants are extracted
from the witness and then added to the analysis information already computed
by the master verifier. Both analyses store their analysis information in an ab-
stract reachability graph (ARG). Broadly speaking, an ARG is a CFA equipped
with predicates. More formally, an ARG is a finite state automaton, where nodes,
called abstract states, consist among others of analysis information (i.e. predi-
cates) and program locations. Two nodes within an ARG are connected if their
program locations are connected within the CFA. Note that a program location
may occur in multiple abstract states, e.g. when the analysis unrolls a loop.
Hence, witness injection has to update all the abstract states for whose program
location the witness contains an invariant.

Predicate Abstraction. We use a predicate abstraction technique [11],
conducting predicate refinement using a CEGAR (counter example guided ab-

4 In [29] is is shown that more than two helpers does not practically make sense.

CoVEGI: Cooperative Verification via Externally Generated Invariants 117

Invariants over
IR-variables with

IR-locations

Invariants over
C-variables with

C-locations
witness

translate construct

Fig. 3: Workflow of an adapter for an helper working on an IR

straction refinement) scheme [20] with lazy-abstraction [33] and Craig interpo-
lation [32].
Witness Injection: The predicate abstraction maintains, for each abstract state,
one set of available predicates (called precision) and one set of valid predicates.
Witness injection is realized by extracting all predicates and the corresponding
locations from the invariants. If these predicates contain conjunctions of clauses,
these are furthermore split up and inserted individually. Splitting predicates in-
creases the performance due to the fact that SMT solvers perform better on
many small predicates than on few larger ones5. These predicates are added to
the precision of abstract states corresponding to the locations specified in the
witness. Thereby, the predicates are used during the next abstraction performed
by the analysis. The abstraction function itself guarantees that only predicates
from the candidate set being valid at the current location are used. Thus, in-
valid invariants are ignored. This procedure can also be used when restarting
predicate abstraction, by adding the predicates from the witness to the initial
precision of the abstract states corresponding to the locations specified in the
witness (which is empty otherwise).

k-Induction. The basic idea of k-induction [25] is to generalize bounded
model checking (BMC) [14] via induction. After proving k-bounded program ex-
ecutions safe using BMC, a generalization is aimed for. Therefore, it generates
auxiliary invariants that are continuously refined using a CEGAR based analy-
sis [5]. These invariants are combined with the information generated by BMC
and generalized to a safety proof by successfully conducting an induction step.
Witness Injection: For both cases, adding invariants into a running analysis or
adding before restarting, we make use of the same idea: Whenever a witness is
made available to the analysis, the encoded predicates and the program loca-
tions are added as candidates to the set of auxiliary invariants, generated by
the analysis. New elements in this set are periodically checked for validity by k-
induction. Thereby, valid externally generated invariants are conjoined with the
predicates stored in the analysis abstract states, corresponding to the invariants
location. Invalid invariants are thus ignored.

3.4 Adapter for LLVM-based Helper Invariant Generators

Next, we exemplify an adapter for helper invariant generators working on LLVM,
following the general construction depicted in Figure 3. Often, tools associates
invariants to LLVM basic blocks. A basic block is a code fragment having a single

5 This has been reported by tool developers and has also shown in our experiments.

118 J. Haltermann and H. Wehrheim

entry location (the first) and a single exit location (in general the last location of
the block). To construct a witness containing the invariants, we need to translate
them and find the matching C-code location for the basic block. For both, we
use the LLVM-IR equipped with debug information, using the compiler with
launch parameter -g. Thereby, we obtain the IR-code fragment of the program
in Figure 2(a), shown in simplified form and containing the most important
debug information as comments. The example contains two basic blocks, entry
and bb.

1 entry:

2 v1 = bitcast i32 (...)* @nondet to i32 ()* �n
3 v2 = icmp eq i32 v1, 0

4 br i1 v2, label %error, label %_bb

5
6 _bb:

7 v3 = phi i32 [0, %entry], [v6, %_bb] �y
8 v4 = phi i32 [v1, %entry], [v5, %_bb] �x
9 v5 = add i32 v4, -1

10 v6 = add i32 v3, 1

11 v7 = icmp eq i32 v5, 0

12 br i1 v7, label %error, label %_bb �line 4

The helper invariant generator computes the invariant v1 − v4 − v3 = 0 for
the example and associates it with the basic block bb. At first, we need to
transform the variables from the IR to C-variables occurring in the program.
In this example we can use the debug information, as shown in comments in
the code. In general, a more sophisticated procedure is needed since LLVM-IR
uses a three address code. Therein, complex expressions are split into several
statements using intermediate variables which are resolved to C-expressions.

Afterwards, the transformed invariant needs to be associated with the correct
location in the C-code. We analyze the LLVM IR program structure to map the
basic blocks back to C-locations. In the example, the block bb is identified as
being the loop of the program, thus the invariant is mapped to the loop head.
For this, we employed some basic functions provided by PHASAR [41] in our
adapter. Finally, we construct the CFA of the C-program, store the invariants
at the nodes and convert the equipped CFA to a verification witness.

4 Evaluation

In the following, we evaluate different instantiations of CoVEGI. We focus on
both effectiveness and efficiency, generally aiming at checking whether the use
of CoVEGI can increase the number of correctly solved verification tasks within
the same resource limits. A more detailed evaluation of CoVEGI can be found
in an extended pre-print [29].

4.1 Research Questions

In the evaluation, we were interested in the following three research questions.

CoVEGI: Cooperative Verification via Externally Generated Invariants 119

Table 2: Summary of tools used as helpers
Tool Techniques Mapper Adapter

SeaHorn generation and solving constrained horn clauses � �

Ultimate-
Automizer

predicate abstraction, automata, path-based
refinement

� (�)

VeriAbs portfolio of 4 different sequential compositions � �

RQ1. Can collective invariant generation increase the effectiveness of the master
verifier? Evaluation plan: We let the framework run with a single invariant
generator and compare the results to a standalone run of the master verifier.

RQ2. Does cooperation impact the overall efficiency of the verification? Eval-
uation plan: We compare the run time of CoVEGI with one helper against
the two master verifiers running standalone.

RQ3. Does it pay off to run two invariant generators in parallel? Evaluation
plan: We let the framework run with two invariant generators and compare
the results to a run, where only a single invariant generator is used.

4.2 Experimental Setup

Tools. To be able to evaluate the performance of our framework CoVEGI, we
instantiated it with predicate abstraction and k-induction as master verifiers and
three helpers, using existing off-the-shelf invariant generation tools. We based
the implementation of our CoVEGI algorithm on CPAchecker6 1.9.1. To the
best of our knowledge, there are no standalone and publicly available invariant
generators, that generate invariants for both, global and local variables, without
doing a full verification. To be able to evaluate CoVEGI, we decided to use off-
the-shelf verifiers as invariant generators instead, by only using the generated
invariants. We thus looked at current and past participants of the annual compe-
tition of software verification SV-COMP [2] for invariant generation. We chose
the tools SeaHorn [28], UltimateAutomizer [30] and VeriAbs [1]. Both
UltimateAutomizer and VeriAbs achieved excellent results in this year’s
SV-COMP, being the reason to chose them. As third tool we use SeaHorn, a
verification tool neither currently participating in the SV-COMP nor producing
witnesses. It operates on the LLVM intermediate representation, therefore we
used the adapter exemplified in Section 3.4. The three helper invariant genera-
tors are used as black-boxes and employ verification techniques complementary
to those of both the other helpers and the two masters. An overview of the
techniques employed in these tools is given in Table 2. The table also states
whether the helpers require mappers and adapters. For VeriAbs and Ulti-
mateAutomizer we used the versions as used in the SV-COMP 20207. Due to
the fact that there is no precompiled binary of SeaHorn, we employ the docker

6 https://github.com/sosy-lab/cpachecker, Revision (8646a85)
7 https://gitlab.com/sosy-lab/sv-comp/archives-2020/tree/master/2020

120 J. Haltermann and H. Wehrheim

Table 3: Comparison of the two master verifiers running standalone and using a
single helper.

Tool - k-induction predicate abstr.
Combination alone +SH +UA +VA alone +SH +UA +VA

correct overall 146 148 158 163 116 122 132 125
correct true 102 104 114 119 78 84 94 87
correct false 44 44 44 44 38 38 38 38

additional true - +3 +13 +19 - +6 +16 +9
additional false - 0 0 0 - 0 0 0
uniquely solved 1 0 8 15 0 0 6 3

container of the latest version8. All three helper invariant generators are used in
their default configuration.

During evaluation, we used the following default configurations for our own
framework: We set termAfterFirstInv and restartMaster to true, setting the
timerM to 50s9 and the timeoutH to 300s. In general, we will use the abbrevia-
tions SH for SeaHorn, UA for UltimateAutomizer and VA for VeriAbs.

Verification Tasks. The verification tasks used are taken from the set of
SV-COMP 2020 benchmarks10. As we are interested in finding suitable loop
invariants, we selected all tasks from the category ReachSafety-Loops. To obtain
a more broad distribution of tasks, we randomly selected 55 additional tasks
from the categories ProductLines, Recursive, Sequentialized, ECA, Floats and
Heap, yielding in total 342 tasks.

Computing Resources. We conducted the evaluation on three virtual ma-
chines, each having an Intel Xeon E5-2695 v4 CPU with eight cores and a fre-
quency of 2.10 GHz and 16GB memory, running an Ubuntu 18.04 LTS with
Linux Kernel 4.15. We run our experiments using the same setting as in the
SV-COMP, giving each task 15 minutes of CPU-time on 8 cores and 15GB of
memory. We employed Benchexec guaranteeing these resource-limitations [12].

Availability. Our tool and all experimental data are available11.

4.3 Experimental Results

We implemented the CoVEGI-framework as proof-of-concept in the CPA-
checker-framework. For this, we had to extend the existing implementations
of k-induction and predicate abstraction with witness injection. For the helper
invariant generators we did not change a single line of code, only adding adapters
if needed. Integrating helpers like VeriAbs, not requiring an adapter or a map-
per, can be done within a few lines of code. Although the implementation is
a proof-of-concept, this shows that the presented framework works in practice

8 suggested by the developers; used docker seahorn/seahorn-llvm5 (4c01c1d)
9 Which has turned out to be a preferable value, as we explain in [29]

10 https://github.com/sosy-lab/sv-benchmarks/releases/tag/svcomp20
11 https://covercig.github.io/covegi/

CoVEGI: Cooperative Verification via Externally Generated Invariants 121

and is applicable to all kinds of off-the-shelf helper invariant generators, those
producing verification witnesses as well as those generating invariants in IR.

RQ1 (Effectiveness). To evaluate whether a master verifier benefits from
the support of a helper, we execute a combination of a master and a helper
in the default configuration and compare it to the master running standalone.
Here, we are interested in the number of correct verification results, i.e., the
verifier correctly reporting the safety property to be fulfilled (result true) or not
(result false). Running standalone, k-induction can correctly solve 146 of the
verification tasks, predicate abstraction 116.

Table 3 gives the results of this experiment. In the table we see the overall
number of correct results, the number of correct true and correct false results
plus the number of tasks additionally solved when using a helper and uniquely
solved by the configuration. Through the cooperative invariant generation, the
performance of both masters is increased. As expected, this applies to verification
tasks with fulfilled safety property only, i.e., the invariant generators can help in
proving a property to hold, but cannot help in refuting properties (as they cor-
rectly do not generate invariants in these cases). Besides the additionally solved
tasks, there is also one (for SH and UA) and two (for VA) tasks, respectively,
which cannot be correctly solved anymore. In these cases, the master consumes
most of the CPU time available, hence sharing resources in cooperation with the
helpers results in a timeout.

On our data set, the total number of correctly solved tasks using CoVEGI
increases by 12% for k-induction and 14% for predicate abstraction as master.

RQ2 (Efficiency). Next, we evaluate the efficiency of CoVEGI, analyzing
the CPU time spend solving the verification tasks. As CoVEGI eventually shares
the CPU time between master and helpers, we expect that more time is needed
to compute a correct result after the helper is started.

Figure 4 shows two quantile plots of the verification runs, 4(a) with k-
induction and 4(b) with predicate abstraction as master. A datapoint (x, y)
in the plot means that the verifier computes the x-fastest correct results in at
most y seconds. As CoVEGI instances behave like masters standalone in the
first 50 seconds, we only show results not solved within these 50 seconds. We
see that for tasks requiring a low amount of time, all instances (including the
master alone) require a similar amount of CPU time. For tasks requiring more
time, CoVEGI is actually often faster, the extreme being predicate abstraction
as master which alone is unable to solve more difficult tasks in the given time.

We exemplarily also compared the CPU time of k-induction standalone with
CoVEGI using VeriAbs as helper per task. It turns out that sharing does only
slightly impact the runtime, as shown in Figure 5. The scatter plot compares
the CPU time of k-induction standalone as master and k-induction supported by
VeriAbs, in case both tools solved the task correctly. A datapoint (x, y) means
that k-induction standalone takes x seconds to solve the task and in combination
with VeriAbs y seconds. The red dashed box contains all tasks solved within 50
seconds, where both tools behave equally, since the master does not request for

122 J. Haltermann and H. Wehrheim

90 100 110 120 130 140 150 160 170

100

1,000

90
50

n-th fastest correct result

C
P
U

ti
m
e
(s
) kInd

kInd-SH

kInd-UA

kInd-VA

(a) CoVEGI using k-induction as master

90 95 100 105 110 115 120 125 130 135

100

1,000

50

n-th fastest correct result

C
P
U

ti
m
e
(s
) pred

pred-SH

pred-UA

pred-VA

(b) CoVEGI using predicate abstraction as master

Fig. 4: Quantile plots for CoVEGI using different single helpers.

help in these cases. We see some tasks for which helping increased the runtime,
but also some for which it decreased it. In most of the cases, the CPU time used
by CoVEGI is not significantly higher.

Finally, we compare the average CPU time needed to correctly solve a task.
Table 4 shows the average time needed for all tasks and – in brackets – for the
correctly solved tasks only. We observe that the runtime increases when only
looking at correctly solved tasks (in particular for VeriAbs), however, when
considering all tasks the CPU time is even decreased. The latter effect is due to
the number of timeouts of the master decreasing when cooperating with helpers.
Concluding, we can make the following observation.

On our dataset, collaborative invariant generation does not negatively impact
the effectiveness; in some cases we even see small improvements.

RQ3 (Combination of helpers). In RQ3, we were interested in finding
out (a) whether it is beneficial to run two invariant generators in parallel, and
(b) if yes, which pair is best for this. We thus studied the number of correctly
solved tasks using the three possible pairs of helpers, each running two helpers
in parallel. Table 5 shows the results.

CoVEGI: Cooperative Verification via Externally Generated Invariants 123

1 10 100 1,000
1

10

100

1,000

k-induction standalone (s)

C
o
V
E
G
I
w
it
h
k
In
d
-V

e
r
iA

b
s(
s)

Fig. 5: Scatter plot for kInd and kInd-VA

Table 4: Total CPU time for
all tasks and average CPU time
taken for a correct answer in
brackets, both in seconds.

Master kInd Pred

standalone 491.000
(50)

479.000
(30)

+SH 489.000
(63)

468.000
(39)

+UA 477.000
(68)

454.000
(51)

+VA 482.000
(107)

470.000
(49)

Table 5: Number of correctly solved tasks using different forms of cooperation
with two or three helpers running in parallel.

Master +SH-UA +SH-VA +UA-VA +SH-UA-VA

k-induction 153 156 163 154
predicate abstr. 130 130 136 129

For checking whether parallel execution of helpers is beneficial, these num-
bers need to be compared against those for a single helper as given in Table 3.
We see that predicate abstraction benefits from using two helpers, especially
using UltimateAutomizer and VeriAbs. Using CoVEGI with these tools
perfectly combines their strengths, thereby increasing the number of correctly
solved tasks in total by 17%. In contrast, it turns out that for k-induction none
of the combinations of two helpers outperforms CoVEGI using VeriAbs only.
For UltimateAutomizer and VeriAbs as helpers, the total number does not
change, only the set of solved tasks. For instance, nearly 50% of the additional
tasks solved by kInd-UA-VA are not solved using kInd-UA and vice versa. This
result is based on the fact that they have to share the available CPU time in
the combination. Hence, tasks that are solved using one of them as helper alone
could not be solved anymore in a combination because of timeouts. This phe-
nomenon is even more an issue when running all three helpers in parallel.
The combination of all three helpers solves only 154 tasks correctly for k-
induction and 129 for predicate abstraction. In addition, we evaluated different
values for parameter timeoutH in [29], whereas it turns out that waiting for all
helpers to finish does not increase the number of correctly solved tasks.

On our dataset, CoVEGI can increase the total number of correctly solved
tasks using UA and VA in parallel; in general waiting for the other tool to
also finish its computation does not pay off.

124 J. Haltermann and H. Wehrheim

4.4 Threads to Validity

We have conducted our evaluation using a random sample of tasks as well as
those in the category Loops. Although this guarantees some diversity, our find-
ings may not completely carry over to arbitrary real-world programs.

The experiments are conducted using the reliable framework Benchexec
on identical machines with same resource limitations, guaranteeing comparable
results. As SeaHorn is used within a docker-container, its CPU usage however
cannot be measured by Benchexec. We therefore measured this externally,
rounded it up and added it to the measured CPU time, obtaining a lower bound
for the correctly solved tasks. Thereby, all results stay valid, especially of the
best performing instantiations of CoVEGI, as they do not use SeaHorn.

Our implementation of CoVEGI relies on the correctness of the used mas-
ter verifiers and helpers (which are given) as well as on the adapters (which
we build). An incorrectly translated invariant may however influence the per-
formance only negatively. Both master verifiers used as well as UltimateAu-
tomizer and VeriAbs are participating in the annual SV-COMP, hence they
might be tuned to the tasks employed. This does however not influence the va-
lidity of the results since our interest is in the additional number of tasks solved
by cooperation, not the solved ones per se.

5 Related work

In this paper, we presented a framework for cooperative verification via collec-
tive invariant generation. The idea of collaboration for verification by combin-
ing known techniques has been widely employed before. For instance, there are
combinations of verification with testing approaches [21,22,26,18,19,24] and with
approaches for invariant generation [40,27,39,15,17]. The latter combinations are
conducted in a white box manner using strong coupling between the components,
making the addition of a new approach a challenging task. Our framework con-
ceptually decouples the invariant generation from the verification, making it
more flexible. In addition, using a black box integration with defined exchange
formats allows us to easily exchange or integrate new approaches.

There are also existing concepts for collaboration between different tech-
niques in a black-box manner. Conditional model checking is a technique for
sequentially composing different model checkers, sharing information between
the tools in form of conditions [7]. Beyer and Jakobs developed a concept for
combining model checking with testing [8]. Although both approaches enable co-
operation, none combines a verification tool and tools for invariant generation.

We next shortly discuss three approaches which are conceptually closer to
our framework. Frama-C is a framework for code analysis, aiming for analyzing
industrial size code [35]. The framework contains different plugins, each imple-
menting a verification or testing technique. The plugins can exchange informa-
tion in form of ASCL source code annotations. Within Frama-C, the analyzers
can collaborate by being either sequentially or parallelly composed. For this, par-
tial results produced by an analysis can be completed by a second one or several

CoVEGI: Cooperative Verification via Externally Generated Invariants 125

partial results computed in parallel are composed to a complete result. Frama-
C offers the general possibility to define cooperation between existing plugins.
To the best of our knowledge, Frama-C does however not provide a conceptual
collaboration of a verification approach and tools for invariant generation driven
by the verification approach’s demand for support.

The approach of using continuously refined invariants for k-induction [5] uses
a lightweight dataflow analysis which can be considered to be a helper for ver-
ification. Therein, the supporting invariant generator runs in parallel to the k-
induction analysis. Compared to our framework, the main difference is the form
of cooperation used. Beyer et al. use a white-box integration for the cooperation
between k-induction and the invariant generator, building hardly wired connec-
tions between both analyses and sharing the information inside the tool. Thus,
integrating external tools is hard to achieve. Moreover, the approach is designed
to work for k-induction only. Note that an analogeous approach is proposed by
Brain et al. [17].

Pauck and Wehrheim proposed CoDiDroid, a framework for cooperative
taint flow analysis for Android apps [38]. Within their framework, different
analysis tools with specialized capabilities are combined as black-boxes. Co-
DiDroid is however tailored to the needs of Android taint flow analysis, thus
the exchanged information differs. Thus CoDiDroid is not able to orchestrate
or exchange information on safety analysis with shared invariant generation.

To summarize, there are a lot of existing approaches for cooperative verifica-
tion, but most of them are white-box combinations, and the existing black-box
combinations are not general enough to allow for collective invariant generation.

6 Conclusion

In this paper, we have presented a novel form of black box cooperation for
software verification via externally generated invariants. Within the configurable
framework named CoVEGI, the so called master verifier steering the verification
process is able to delegate the task of invariant generation to one or several
helper invariant generators.

We implemented CoVEGI within the CPAchecker framework using k-
induction and predicate abstraction as master analysis supported by three exist-
ing helpers SeaHorn, UltimateAutomizer and VeriAbs. Our evaluation on
a set of SV-COMP verification tasks shows that CoVEGI increases the number
of correctly solved tasks without increasing the overall verification time. The
best combination of helpers, UltimateAutomizer and VeriAbs in parallel,
yields an increase of 12% for k-induction and 17% for predicate abstraction.

Next, we plan to enhance the cooperation by analyzing the behavior of the
master in order to identify an optimal point to request for help. Moreover, ex-
tending CoVEGI by additionally taking error traces found by the helper into
account is also scheduled. In addition, we intend to investigate whether a selec-
tion of helpers on the basis of the given verification task is beneficial.

126 J. Haltermann and H. Wehrheim

References

1. Afzal, M., Asia, A., Chauhan, A., Chimdyalwar, B., Darke, P., Datar, A., Kumar,
S., Venkatesh, R.: Veriabs : Verification by abstraction and test generation. In:
ASE. pp. 1138–1141. IEEE (2019). https://doi.org/10.1109/ASE.2019.00121

2. Beyer, D.: Software verification with validation of results - (report on SV-COMP
2017). In: Legay, A., Margaria, T. (eds.) TACAS. LNCS, vol. 10206, pp. 331–349.
Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54580-5 20

3. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M.: Correctness witnesses: ex-
changing verification results between verifiers. In: Zimmermann, T., Cleland-
Huang, J., Su, Z. (eds.) FSE. pp. 326–337. ACM, New York, NY, USA (2016).
https://doi.org/10.1145/2950290.2950351

4. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Stahlbauer, A.: Witness valida-
tion and stepwise testification across software verifiers. In: Nitto, E.D., Harman,
M., Heymans, P. (eds.) ESEC/FSE. pp. 721–733. ACM, New York, NY, USA
(2015). https://doi.org/10.1145/2786805.2786867

5. Beyer, D., Dangl, M., Wendler, P.: Boosting k-induction with continuously-refined
invariants. In: Kroening, D., Pasareanu, C.S. (eds.) CAV. LNCS, vol. 9206, pp.
622–640. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4 42

6. Beyer, D., Gulwani, S., Schmidt, D.A.: Combining model checking and data-flow
analysis. In: Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.) Handbook
of Model Checking, pp. 493–540. Springer (2018). https://doi.org/10.1007/978-3-
319-10575-8 16

7. Beyer, D., Henzinger, T.A., Keremoglu, M.E., Wendler, P.: Conditional
model checking: a technique to pass information between verifiers. In:
Tracz, W., Robillard, M.P., Bultan, T. (eds.) FSE. p. 57. ACM (2012).
https://doi.org/10.1145/2393596.2393664

8. Beyer, D., Jakobs, M.: Coveritest: Cooperative verifier-based testing. In: Hähnle,
R., van der Aalst, W.M.P. (eds.) FASE. LNCS, vol. 11424, pp. 389–408. Springer
(2019). https://doi.org/10.1007/978-3-030-16722-6 23

9. Beyer, D., Jakobs, M., Lemberger, T., Wehrheim, H.: Reducer-based
construction of conditional verifiers. In: Chaudron, M., Crnkovic, I.,
Chechik, M., Harman, M. (eds.) ICSE. pp. 1182–1193. ACM (2018).
https://doi.org/10.1145/3180155.3180259

10. Beyer, D., Keremoglu, M.E.: CPAchecker: A tool for configurable software verifica-
tion. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV. LNCS, vol. 6806, pp. 184–190.
Springer, Berlin, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1 16

11. Beyer, D., Keremoglu, M.E., Wendler, P.: Predicate abstraction with adjustable-
block encoding. In: Bloem, R., Sharygina, N. (eds.) FMCAD. pp. 189–197. IEEE,
Washington, DC, USA (2010), http://ieeexplore.ieee.org/document/5770949/

12. Beyer, D., Löwe, S., Wendler, P.: Reliable benchmarking: requirements
and solutions. Int. J. Softw. Tools Technol. Transf. 21(1), 1–29 (2019).
https://doi.org/10.1007/s10009-017-0469-y

13. Beyer, D., Wehrheim, H.: Verification artifacts in cooperative verification:survey
and unifying component framework. In: Margaria, T., Steffen, B. (eds.) ISoLA.
LNCS, vol. 12476, pp. 143–167. Springer (2020). https://doi.org/10.1007/978-3-
030-61362-4 8

14. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model check-
ing. Advances in Computers 58, 117–148 (2003). https://doi.org/10.1016/S0065-
2458(03)58003-2

https://doi.org/10.1109/ASE.2019.00121
https://doi.org/10.1007/978-3-662-54580-5_20
https://doi.org/10.1145/2950290.2950351
https://doi.org/10.1145/2786805.2786867
https://doi.org/10.1007/978-3-319-21690-4_42
https://doi.org/10.1007/978-3-319-10575-8_16
https://doi.org/10.1007/978-3-319-10575-8_16
https://doi.org/10.1145/2393596.2393664
https://doi.org/10.1007/978-3-030-16722-6_23
https://doi.org/10.1145/3180155.3180259
https://doi.org/10.1007/978-3-642-22110-1_16
http://ieeexplore.ieee.org/document/5770949/
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/978-3-030-61362-4_8
https://doi.org/10.1007/978-3-030-61362-4_8
https://doi.org/10.1016/S0065-2458(03)58003-2
https://doi.org/10.1016/S0065-2458(03)58003-2

CoVEGI: Cooperative Verification via Externally Generated Invariants 127

15. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A.,
Monniaux, D., Rival, X.: A static analyzer for large safety-critical soft-
ware. In: Cytron, R., Gupta, R. (eds.) PLDI. pp. 196–207. ACM (2003).
https://doi.org/10.1145/781131.781153

16. Bradley, A.R.: Sat-based model checking without unrolling. In: Jhala, R.,
Schmidt, D.A. (eds.) VMCAI. LNCS, vol. 6538, pp. 70–87. Springer (2011).
https://doi.org/10.1007/978-3-642-18275-4 7

17. Brain, M., Joshi, S., Kroening, D., Schrammel, P.: Safety verification and refutation
by k-invariants and k-induction. In: Blazy, S., Jensen, T.P. (eds.) SAS. LNCS,
vol. 9291, pp. 145–161. Springer (2015). https://doi.org/10.1007/978-3-662-48288-
9 9

18. Christakis, M., Müller, P., Wüstholz, V.: Collaborative verification and test-
ing with explicit assumptions. In: Giannakopoulou, D., Méry, D. (eds.)
FM. LNCS, vol. 7436, pp. 132–146. Springer, Berlin, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32759-9 13

19. Christakis, M., Müller, P., Wüstholz, V.: Guiding dynamic symbolic exe-
cution toward unverified program executions. In: Dillon, L.K., Visser, W.,
Williams, L. (eds.) ICSE. pp. 144–155. ACM, New York, NY, USA (2016).
https://doi.org/10.1145/2884781.2884843

20. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided ab-
straction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003).
https://doi.org/10.1145/876638.876643

21. Csallner, C., Smaragdakis, Y.: Check ’n’ crash: combining static checking and
testing. In: Roman, G., Griswold, W.G., Nuseibeh, B. (eds.) ICSE. pp. 422–431.
ACM, New York, NY, USA (2005). https://doi.org/10.1145/1062455.1062533

22. Csallner, C., Smaragdakis, Y., Xie, T.: DSD-Crasher: A hybrid analysis tool for bug
finding. TOSEM 17(2), 8:1–8:37 (2008). https://doi.org/10.1145/1348250.1348254

23. Czech, M., Jakobs, M., Wehrheim, H.: Just test what you cannot verify! In: Egyed,
A., Schaefer, I. (eds.) FASE. LNCS, vol. 9033, pp. 100–114. Springer, Berlin, Hei-
delberg (2015). https://doi.org/10.1007/978-3-662-46675-9 7

24. Daca, P., Gupta, A., Henzinger, T.A.: Abstraction-driven concolic testing. In: Job-
stmann, B., Leino, K.R.M. (eds.) VMCAI. LNCS, vol. 9583, pp. 328–347. Springer,
Berlin, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49122-5 16

25. Donaldson, A.F., Haller, L., Kroening, D., Rümmer, P.: Software verification us-
ing k-induction. In: Yahav, E. (ed.) SAS. LNCS, vol. 6887, pp. 351–368. Springer
(2011). https://doi.org/10.1007/978-3-642-23702-7 26

26. Ge, X., Taneja, K., Xie, T., Tillmann, N.: Dyta: dynamic symbolic execu-
tion guided with static verification results. In: Taylor, R.N., Gall, H.C., Med-
vidovic, N. (eds.) ICSE. pp. 992–994. ACM, New York, NY, USA (2011).
https://doi.org/10.1145/1985793.1985971

27. Gupta, A., Rybalchenko, A.: Invgen: An efficient invariant generator. In: Bouaj-
jani, A., Maler, O. (eds.) CAV. LNCS, vol. 5643, pp. 634–640. Springer (2009).
https://doi.org/10.1007/978-3-642-02658-4 48

28. Gurfinkel, A., Kahsai, T., Komuravelli, A., Navas, J.A.: The seahorn verification
framework. In: Kroening, D., Pasareanu, C.S. (eds.) CAV. LNCS, vol. 9206, pp.
343–361. Springer (2015). https://doi.org/10.1007/978-3-319-21690-4 20

29. Haltermann, J., Wehrheim, H.: Cooperative Verification via Collective Invariant
Generation. arXiv e-prints arXiv:2008.04551 (2020), https://arxiv.org/abs/2008.
04551

https://doi.org/10.1145/781131.781153
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/978-3-662-48288-9_9
https://doi.org/10.1007/978-3-662-48288-9_9
https://doi.org/10.1007/978-3-642-32759-9_13
https://doi.org/10.1145/2884781.2884843
https://doi.org/10.1145/876638.876643
https://doi.org/10.1145/1062455.1062533
https://doi.org/10.1145/1348250.1348254
https://doi.org/10.1007/978-3-662-46675-9_7
https://doi.org/10.1007/978-3-662-49122-5_16
https://doi.org/10.1007/978-3-642-23702-7_26
https://doi.org/10.1145/1985793.1985971
https://doi.org/10.1007/978-3-642-02658-4_48
https://doi.org/10.1007/978-3-319-21690-4_20
https://arxiv.org/abs/2008.04551
https://arxiv.org/abs/2008.04551

128 J. Haltermann and H. Wehrheim

30. Heizmann, M., Chen, Y., Dietsch, D., Greitschus, M., Hoenicke, J., Li, Y., Nutz,
A., Musa, B., Schilling, C., Schindler, T., Podelski, A.: Ultimate automizer and
the search for perfect interpolants - (competition contribution). In: Beyer, D.,
Huisman, M. (eds.) TACAS. LNCS, vol. 10806, pp. 447–451. Springer (2018).
https://doi.org/10.1007/978-3-319-89963-3 30

31. Heizmann, M., Hoenicke, J., Podelski, A.: Software model checking for people who
love automata. In: Sharygina, N., Veith, H. (eds.) CAV. LNCS, vol. 8044, pp.
36–52. Springer (2013). https://doi.org/10.1007/978-3-642-39799-8 2

32. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from
proofs. In: Jones, N.D., Leroy, X. (eds.) POPL. pp. 232–244. ACM, New York,
NY, USA (2004). https://doi.org/10.1145/964001.964021

33. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: Launch-
bury, J., Mitchell, J.C. (eds.) POPL. pp. 58–70. ACM, New York, NY, USA (2002).
https://doi.org/10.1145/503272.503279

34. Jakobs, M., Wehrheim, H.: Certification for configurable program analysis. In:
Rungta, N., Tkachuk, O. (eds.) SPIN. pp. 30–39. LNCS, ACM, New York, NY,
USA (2014). https://doi.org/10.1145/2632362.2632372

35. Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-
c: A software analysis perspective. Formal Asp. Comput. 27(3), 573–609 (2015).
https://doi.org/10.1007/s00165-014-0326-7

36. McMillan, K.L.: Interpolation and model checking. In: Clarke, E.M., Henzinger,
T.A., Veith, H., Bloem, R. (eds.) Handbook of Model Checking, pp. 421–446.
Springer (2018). https://doi.org/10.1007/978-3-319-10575-8 14

37. Necula, G.C.: Proof-carrying code. In: Lee, P., Henglein, F., Jones, N.D.
(eds.) POPL. pp. 106–119. ACM Press, New York, NY, USA (1997).
https://doi.org/10.1145/263699.263712

38. Pauck, F., Wehrheim, H.: Together strong: cooperative Android app analysis. In:
Dumas, M., Pfahl, D., Apel, S., Russo, A. (eds.) ASE. pp. 374–384. ACM (2019).
https://doi.org/10.1145/3338906.3338915

39. Rocha, W., Rocha, H., Ismail, H., Cordeiro, L.C., Fischer, B.: Depthk: A k-
induction verifier based on invariant inference for C programs - (competition contri-
bution). In: Legay, A., Margaria, T. (eds.) TACAS. LNCS, vol. 10206, pp. 360–364
(2017). https://doi.org/10.1007/978-3-662-54580-5 23

40. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Scalable analysis of linear systems
using mathematical programming. In: Cousot, R. (ed.) VMCAI. LNCS, vol. 3385,
pp. 25–41. Springer (2005). https://doi.org/10.1007/978-3-540-30579-8 2

41. Schubert, P.D., Hermann, B., Bodden, E.: Phasar: An inter-procedural static anal-
ysis framework for C/C++. In: Vojnar, T., Zhang, L. (eds.) TACAS. LNCS,
vol. 11428, pp. 393–410. Springer (2019). https://doi.org/10.1007/978-3-030-17465-
1 22

https://doi.org/10.1007/978-3-319-89963-3_30
https://doi.org/10.1007/978-3-642-39799-8_2
https://doi.org/10.1145/964001.964021
https://doi.org/10.1145/503272.503279
https://doi.org/10.1145/2632362.2632372
https://doi.org/10.1007/s00165-014-0326-7
https://doi.org/10.1007/978-3-319-10575-8_14
https://doi.org/10.1145/263699.263712
https://doi.org/10.1145/3338906.3338915
https://doi.org/10.1007/978-3-662-54580-5_23
https://doi.org/10.1007/978-3-540-30579-8_2
https://doi.org/10.1007/978-3-030-17465-1_22
https://doi.org/10.1007/978-3-030-17465-1_22

CoVEGI: Cooperative Verification via Externally Generated Invariants 129

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Engineering Secure Self-Adaptive Systems
with Bayesian Games

Nianyu Li1(�), Mingyue Zhang2, Eunsuk Kang3, and David Garlan4

1 Peking University, Beijing, China nianyu li@pku.edu.cn
2 Peking University, Beijing, China mingyuezhang@pku.edu.cn

3 Carnegie Mellon University, Pittsburgh, USA eunsukk@andrew.cmu.edu
4 Carnegie Mellon University, Pittsburgh, USA garlan@cs.cmu.edu

Abstract. Security attacks present unique challenges to self-adaptive
system design due to the adversarial nature of the environment. Game
theory approaches have been explored in security to model malicious
behaviors and design reliable defense for the system in a mathematically
grounded manner. However, modeling the system as a single player, as
done in prior works, is insufficient for the system under partial compromise
and for the design of fine-grained defensive strategies where the rest of the
system with autonomy can cooperate to mitigate the impact of attacks.
To deal with such issues, we propose a new self-adaptive framework incor-
porating Bayesian game theory and model the defender (i.e., the system)
at the granularity of components. Under security attacks, the architecture
model of the system is translated into a Bayesian multi-player game,
where each component is explicitly modeled as an independent player
while security attacks are encoded as variant types for the components.
The optimal defensive strategy for the system is dynamically computed
by solving the pure equilibrium (i.e., adaptation response) to achieve
the best possible system utility, improving the resiliency of the system
against security attacks. We illustrate our approach using an example
involving load balancing and a case study on inter-domain routing.

1 Introduction

A self-adaptive system is designed to be capable of modifying its structure and
behavior at run time in response to changes in its environment and the system
itself (e.g., variability in system performance, deployment cost, internal faults,
and system availability) [9,12]. One of the major challenges in self-adaptive
systems is managing uncertainty ; i.e., the system should be capable of making
appropriate planning decisions despite limited observations about its environment.
Achieving security in presence of uncertainty is particularly challenging due to
the adversarial nature of the environment [17,13]: (1) to avoid detection, a typical
attacker may attempt to remain hidden while carrying out its actions, and so
accurately estimating its objectives and capabilities can be difficult, and (2) the
attacker actively attempts to cause as much harm as possible to the system, and
so a typical “average case” analysis may not be appropriate for making optimal
defensive decisions [28].

© The Author(s) 2021
E. Guerra and M. Stoelinga (Eds.): FASE 2021, LNCS 12649, pp. 130–151, 2021.
https://doi.org/10.1007/978-3-030-71500-7 7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71500-7_7&domain=pdf
https://doi.org/10.1007/978-3-030-71500-7_7

Engineering Secure Self-Adaptive Systems with Bayesian Games 131

Various game-theoretic approaches have been explored in the security com-
munity for modeling interactions between the system and attackers as a game
between a group of players (i.e., system and multiple attackers, each as one
player) and computing optimal strategies (i.e., Nash Equilibrium) for the system
to minimize the impact of possible attacks and improve its resiliency against
them [40,15,19,28]. These methods can be used to (1) model adversarial behaviors
by malicious attackers [19], and (2) design reliable defense for the system by using
underlying incentive mechanisms to balance perceived risks in a mathematically
grounded manner [15]. In particular, a type of game-theoretic method called
Bayesian games [25] is designed to explicitly encode and reason about uncertainty
in the information that players have (e.g., partial knowledge about each other’s
actions and objectives).

Prior works in security that leverage game theory [40,15,19,28] have treated
the system as an independent player (i.e., defender) in the game. However, such
a monolithic approach that involves abstracting the entire system as a single
player might be insufficient for capturing certain practical scenarios, where only
one part of the system is compromised while the remaining system components
may co-operate each other to mitigate the impact of an on-going attack.

In this paper, we argue that compared to a coarse one-player abstraction
of a system, modeling the defender under security attacks at the granularity of
components is more expressive, in that it allows the design of fine-grained defensive
strategies for the system under partial compromise. In particular, we advocate
a security modeling approach where an attack is modeled as the anomalous
behavior of a system component that deviates from its expected behavior, as an
alternative to a conventional approach where attackers themselves are modeled
as separate players.

To this end, we propose a novel approach to improving the resiliency of
self-adaptive systems against security attacks by leveraging game theory. In
particular, we propose a new self-adaptive framework that leverages multi-players
Bayesian games at the granularity of components at the system architecture
level. Specifically, in our approach, each major system component is modeled
separately as an independent player. Under an attack, one or more components
with vulnerabilities might be exploited by an attacker to deliberately perform
harmful actions (i.e., turning into a malicious type). Different types of attacks
that these components might be subject to are encoded as different types of game
players, encoding uncertainty in the attack being carried out. The rest of the
components are then modeled as forming a coalition to mitigate the impact of
the malicious actions by those compromised components.

To perform a security analysis, a model of the system architecture and
component attacks are translated into a mathematical Bayesian game structure.
Then, the adaptive defensive strategy for the system is dynamically computed
by solving a pure equilibrium, to achieve the best possible system utility under
all assignments of the components to their possible types (i.e., in the presence of
security attacks).

Our main contributions are summarized as follows:

132 N. Li et al.

– A self-adaptive framework that incorporates Bayesian game theory to improve
the resiliency of the system under potential security attacks;

– An approach to modeling the system under attacks as a multi-player game
with potentially uncooperative players at the granularity of components and
the use of equilibrium as an optimal adaptation response;

– A demonstration of the applicability of our approach through an example
with load-balancing scenarios and a case study involving a network routing
application with a proposed dynamic programming algorithm.

2 Background

2.1 Running Example

LoadBalancer

Server2

Server3

Server1

Fig. 1: Running Example.

As a running example, we adopt Znn.com, a
hypothetical news website that has been used
as a representative system for the application
of self-adaptive systems [10,11]. In a typical
workflow, given a request from a client, the
web server fetches appropriate content (in
form of text) from its back-end database and
generates a web page containing a visualiza-
tion of the text. Furthermore, the system also
provides an optional service with multimedia
content (e.g., images, videos). This service involves additional computation on the
server side, but also brings in more revenue compared to the requests with only
text. With RM and RT being the revenue, CM and CT being the computation
of one response to a user request with the media content and with only text
content, respectively, we assume that RM > RT > 0 and CM > CT > 0.

In order to support multiple servers, a LoadBalancer is added to distribute
the requests from the users to a pool of servers, as shown in Figure 1. The cost
of each server is proportional to its load due to, such as potential high response
time since companies such as Amazon, eBay, and Google claim that increased
user perceived response time results in revenue loss [33]. To be more specific,
the cost per server is denoted by (Si − T)2/K where Si is the current occupied
load for server i, depending on the request serving mode (i.e., Si = DiCT in text
only while Si = DiCM in multi-media mode where Di is the number of requests
distributed to server i); T is the threshold beyond which the response time would
be affected; K is a constant used to adjust the cost ratio.

The goal of the self-adaptive system is to maximize the difference between
revenue and cost.

U = RMxM +RTxT −
3∑

i=1

(Si ≤ T ? 0 : (Si − T)2/K) (1)

where xM and xT are the numbers of responses with media and text content,
respectively; the penalty is the sum of the cost for all three servers.

Suppose that some of the servers are vulnerable to various attacks such as
password guessing, SQL injection, command injection, etc [1]. The information

Engineering Secure Self-Adaptive Systems with Bayesian Games 133

collected from the web server, however, cannot fully demonstrate its compromise
due to, e.g., the deficiencies of scanning tools, but with uncertainty. As shown in
the Figure, Server2 could be potentially attacked with a 20% probability while
Server3 is with a higher probability of 50%. These two servers, if compromised in
reality, might perform harmful actions controlled by the attackers to achieve their
objectives, rendering the loss of system reward. Here we assume the malicious
strategies of simply discarding all the distributed user requests. The reward of
attacks is denoted by the system loss, i.e., subtracting the maximum reward the
system could achieve from the reward under attacks, leading to a zero-sum game.

2.2 Bayesian Game Theory

Game theory is the application of mathematical analysis of individual and coop-
erative behaviors between players that follow a certain strategy to satisfy their
self-interests [21,38]. A Bayesian game is a type of game in which players have
incomplete information about the other players [25]. For example, a player may
not know the exact type (e.g., malicious or good) associated with a unique payoff
function of the other players, but instead, have beliefs about these types. These
beliefs are represented by a probability distribution over the possible types. More
formally, Bayesian games or incomplete information games are defined as follows:

Definition 1. A Bayesian game is a tuple BG = 〈P,A,Θ,U, ρ〉
– A set of n players P ;
– A set of (joint) actions A = A1 × ...×An, where Ai denotes a finite set of
actions available to player Pi;

– A set of types for each player i : θi ∈ Θi;
– A payoff function for each player i : ui(a1, ..., an; θ1, ..., θn), determined by
the types of all players and actions they choose;

– A (joint) probability distribution ρ(θ1, ..., θn) over types.

Importantly, throughout the Bayesian games, we assume that the assignment
of types to players is private information, while the priori type probability
distribution, the action spaces and the payoff functions are assumed to be common
knowledge. A player’s strategy can be pure (i.e., take a deterministic action) or
mixed (i.e., randomly choose an action according to some probability distribution).
A strategy for player i is si : Θi × Ai → [0, 1], and ∀θ ∈ Θi,

∑
a∈Ai

si(a|θ) = 1.
The strategy is pure if it satisfies that ∀θ ∈ Θi, ∃a ∈ Ai, si(a|θ) = 1, also denoted
as si : Θi → Ai.

Definition 2. (Bayesian Nash Equilibrium Strategy) Given a joint strategy for
all players �s∗ = [s∗1, ..., s

∗
n], �s

∗ is the Bayesian Nash equilibrium strategy if for
any player i, it satisfies that:

s∗i = arg max
si∈S(θi)

∑
	θ−i

ρ(�θ−i|θi)E	a−i∼	s∗−i,ai∼si [ui(ai,�a−i; θi, �θ−i)]

where �a−i = [a1, ..., ai−1, ai+1, ..., an], �θ−i = [θ1, ..., θi−1, θi+1, ..., θn], �s∗−i =
[s∗1, ...s

∗
i−1, s

∗
i+1, ..., s

∗
n], S(θi) is the set of all possible strategies for agent i under

134 N. Li et al.

θi, and ρ(�θ−i|θi) is the conditional probability representing the player i’s belief
about other players’ types under type θi.
Bayesian Nash equilibrium is a set of strategies, one for each type of player. It is
the best strategy that maximizes his or her payoff to other players’ equilibrium
strategies. In a Nash equilibrium, there is no player who can improve his profit
by unilaterally modifying his strategy if the actions of the rest are fixed [25,21].

3 Self-Adaptive Framework Incorporating Bayesian
Game Theory

Environment Dynamics

Knowledge Base

Self-Adaptive Systems

Managed Subsystem

Managing Subsystem

Monitor

Sensors Actuators

Executor

Analyzer Planner

Bayesian Game

compromise
probability

Fig. 2: Self-Adaptive Framework.

Security attacks are usually asso-
ciated with a high degree of uncer-
tainty where the defender may know
little about the identity of the at-
tackers nor fully understand their
technical effect on the system. A
Bayesian game is a game in which
players have incomplete information
about the other players, appropriate
for modeling and dealing with the
attacks with uncertainty. In this sec-
tion, we propose a new type of self-
adaptive framework incorporating
Bayesian Game. Adaptation behav-
iors build on the Nash equilibrium
from unexpected attacks and are
achieved by elaborating the widely
adopted mechanism of the MAPE-
K (Monitoring, Analysis, Planning, Execution, Knowledge) loop [27,43], shown
in Figure 2.
Knowledge. Knowledge Base requires the system developers or domain experts
to specify (1) the component and connector model of the managed subsystem
and its action space for each component, (2) system objectives usually defined as
the quality attributes quantified by the utility, and (3) component vulnerabilities
with potential behavior deviations that can be exploited by the potential attacks.
Other necessary information such as the history information of system behaviors
and environment information are saved in Knowledge Base and can be updated
for the sake of self-adaptation.
Monitor. Events generated in the managed subsystem or environment indicating
the execution of system actions or natural changes in the environmental factors
are received. Monitor gathers and synthesizes the on-going attacks information
through sensors and saves information in the Knowledge Base. For our example,
events such as plenty of user request loss or command injection can indicate a
potential attack on the web server.
Analyzer. During speculative analysis, conditions of the environment/managed
subsystem representing violations or better satisfaction of goals that can arise

Engineering Secure Self-Adaptive Systems with Bayesian Games 135

based on the input from Monitor are identified. The Analyzer performs analysis
and further checks whether certain components are attacked with probabilities;
potential deviated malicious actions are identified; the rewards for the attack
are estimated, based on the knowledge about component vulnerabilities and
system objectives. Such attack probabilities can be analyzed with a statistical
combination of all feasible scenarios along with expert judgment [16,24]. A typical
example is that both Server2 and Server3 are analyzed to be compromised and
discarding user requests with a certain probability, reducing the system utility.
Planner. Planner generates a workflow of adaptation actions aiming to counteract
violations of system goals or better achieving goals. It consists of one or a set
of actions to be enacted by automatically solving the Multi-player Bayesian
Game transformed with the input of potential attacks from the Analyzer and
architectural model of the managed subsystem along with the system objectives,
which is elaborated in Section 4. For each security situation, it generates an
equilibrium if one exists as the adaptation to respond to unexpected attacks,
or prompts for a change in the design of the system if the violation cannot be
handled. Distributing more percentage of a user request to the normal server
while decreasing the percentage to those with a high probability of compromise
as well as adjusting the fidelity level for servers could be feasible actions for
Znn.com Website under security attacks.
Executor. During execution, the strategies from the adaptation equilibrium are
enacted on the managed subsystem through actuators. Typical examples could
be setting the distribution percentage of user percentage in LoadBalancer for
each server.

In the next part, we focus on planning activity with Bayesian game theory.
We assume adequate monitoring in place, sufficient analysis methods on potential
attacks with uncertainties based on observation and historical information, as
well as an execution environment through which selected adaptation strategies
are enacted.

4 Bayesian Game Through Model Transformation

In this section, we start by defining the system under attacks and transforming the
system architecture and on-going attacks into a component-based multi-player
Bayesian game. Solving the game with equilibrium is to find the adaptation
strategy. Then, we present the analysis results on our running example.

Component-based System. A system component is an independent and re-
placeable part of a system (e.g., a process, program) that fulfills a clear function
in the context of a well-defined architecture. Typical examples are the LoadBal-
ancer and servers in Figure 1. Components forming architectural structures affect
different quality attributes. For example, quality attributes of user satisfaction
(i.e., revenue) and the costs (i.e., penalty) identified in the Znn Website example
are influenced by the actions of all four components and characterized as utility
functions as shown in Eq.(1) mapping them to utility values.

Definition 3. A system can be formally defined as a tuple S = 〈C,A,Q〉.

136 N. Li et al.

– C is a set of components;
– A is a set of joint actions A = A1 × ...×An, where Ai denotes a finite set
of actions available to component i;

– Q is a set of quality attributes a system is interested in; for each Qx, a subset
of components SubCx ⊆ C could contribute to this quality attribute;

Each component is trying to make the right reaction to maximize the system
utility, essentially like a rational player in the game theory. Naturally, a system
under normal operation could be viewed as a cooperative game dealing with
how coalitions interact. Each component is denoted as an independent player
and these interacting components/players form a coalition. For instance, in the
running example, the LoadBalancer and three servers collaborate to achieve the
goals together, i.e., maximizing the system reward with revenue and penalty.
Specifically, the LoadBalancer should assign more user requests to those servers
with low computation usage, like the waiting queue in the bank, while the server
should adjust the fidelity level according to its current load. A high load may
lead to the text only content to decrease the cost while the server with low usage
can provide media content to promote the revenue.

Modeling Utility as Payoffs. The payoff among those players is allocated
by the utility from quality attributes. It is straightforward for developers to
design a system-level payoff function (e.g., the revenue and penalty in Section
2.1). However, due to the different roles of the components and the complex
relationship between them, it is complicated and sometimes untraceable to
manually design an appropriate component-level payoff function. To solve this
problem, we use the Shapley Value Method, a solution concept of fairly distributing
both gains and costs to several players working in coalition proportional to their
marginal contributions [37,36], to automatically decompose the system-level
utility into the component-level payoff. Shapley Value Method applies primarily
in situations when the contributions of each player are unequal, but each player
works in cooperation with each other to obtain the payoff. Given the component
set C, and a system-level utility function v, the payoff for a component i is:

φi(C, v) =
1

|C|!
∑

C′⊆C\{i}
|C ′|!(|C| − |C ′| − 1)![v(C ′ ∪ {i})− v(C ′)] (2)

where |C| is the number of components in the set; C\{i} is the set C excluding
component i; v(C ′) values the expected system-level utility when the system only
consists of the component set C ′.

The following is a typical example of system utility allocation with the
Shapley Value Method for the Znn website. To simplify the illustration, we
consider the situation where Server2 and Server3 are indeed compromised, the
LoadBalancer chooses the strategy equally distributing user requests to Server1
and Server2 (i.e., the requests distributed to Server1, Server2 and Server3 are
50, 50 and 0 respectively), and Server1 selects the text only mode. Besides,
the total unprocessed requests in the setting are 100, which is assumed to be
the full load of a server serving only text, with RM = 1.6, RT = 1,T = 50,
and K = 25 in Eq.(1). The computation capacity of a unit of text and media

Engineering Secure Self-Adaptive Systems with Bayesian Games 137

is 1 and 1.4 (i.e., CM and CT) respectively. Thus, the system utility in this
situation is Usystem = 50 (i.e., 50× 1− (50× 1− 50)2/25 with the remaining 50
requests discarded by malicious Server2). The cooperative player set consisting of
LoadBalancer and Server1 share this utility while Server2 and Server3 fight on
behalf of the attacks’ interests, thus not being considered in the coalition neither
allocated the payoff from the system utility.

Based on Eq.(2), we need the following two cases of coalitions for Shapley Value
calculation: (1) If there is only the LoadBalancer without Server1 in the coalition,
the utility of the system ULoadBalancer is 0 due to no requests process from Server1
neither from malicious Server2 ; (2) If there is only Server1 without LoadBalancer
distributing user requests, the requests are randomly passed among three servers,
i.e., the requests distributed to Server1, Server2 and Server3 are 34, 33 and 33
respectively, and the utility of the system for this coalition Userver1 is 34 (i.e., 34×
1−0). This is because malicious Server2 and Server3 do not return any feedback.
As a result, φLoadBalancer(C, v) = 1/2(Usystem −Userver1 +Uloadbalancer) = 8 and
φServer1 (C, v) = 1/2(Usystem − ULoadBalancer + Userver1) = 42. Therefore,the
payoff to player LoadBalancer and Server1 are 8 and 42 respectively. Meanwhile,
attacks’ utility, the difference between system utility and the highest utility the
system could achieve without attacks (i.e., equally distributing user requests to
three servers and each server choosing multi-media mode in this setting with
value 160 = 100× 1.6− 0) is equally divided for two malicious players. In other
words, both Server2 and Server3 is allocated payoff 55 = (160-50)/2. Following
the aforementioned allocation process, each player obtains a unique payoff under
different attack situations and strategies from the Shapley Value Method based
on their roles contributing to marginal system utility.

Component-based Attacks. A system under security attacks is also defined as a
tuple SAS = 〈C,A,Q,ATT 〉. Instead of modeling an attacker or several attackers
with possible complex behaviors over different parts of the system, we model the
on-going attacks ATT the system is enduring at the component level since the
vulnerabilities of the components as well as their potential behavior deviations
are comparatively easy to observe. ATT can be obtained by synthesizing the
information from Monitor and Analyzer as described in Section 3.

Definition 4. The security attacks on the system is formally defined as a tuple
ATT = 〈Catt, Aatt, Patt, Ratt〉.

– Catt is the set of components affected by the attacks;
– Aatt = Aatt1 × ...× Aattm where Aatti denotes the set of actions controlled
by attacks on compromised component i;

– Patt = {p1, ..., pm} is a set of probability where pi is the probability of compo-
nent i being successfully compromised;

– Ratt is the reward for attacks.

Translation into a Bayesian game With the definition of the system on the
component level and the definition of the attacks ATT , a system under security
attacks is converted into a non-cooperative Bayesian game by the following steps:

138 N. Li et al.

1. Each component in the system c ∈ C, such as LoadBalancer and three servers
in the running example, is separately modeled as an independent player;

2. The components potentially affected by attacks Catt ⊆ C is associated with
two types (e.g., Server2 and Server3 can be normal or malicious in the
simplified Znn website scenario) while the remaining components C − Catt,
i.e., LoadBalancer and Server1, are deterministic in normal type;

3. The probability distribution for a player i over two types is ρ(pi, 1− pi) as
defined in Patt. One typical example for Server2 is ρ(0.8, 0.2) and for Server3
ρ(0.5, 0.5);

4. The action space of player i under security attacks is the union of both
its normal actions and those malicious actions controlled by attacks (i.e.,
Ai ∪Aatti). Server2 can serve user requests either with text only or multi-
media content as a normal player, or maliciously discard them with the
intention of attacks;

5. The payoff for players in normal type is allocated with system utility by
the Shapley Value Method, while components in malicious type performing
harmful actions is assigned with utility the on-going attacks obtain by achiev-
ing their own goals. This assignment could be simple average distribution
or Shapley Value Method if the malicious players are treated as another
coalition;

6. The game constructed is put into a game solver, to find a Nash equilibrium,
which, in essence, is the best reaction for the system to potential attacks.

Note that this definition can be easily extended for the situation where a compo-
nent is simultaneously compromised by different attackers with multiple types.
Besides, the game solver we adopted in this work is Gambit [35], a collection of
tools for building game models, computing game equilibrium and analyzing game
results, to efficiently model the Bayesian game translated by the above steps and
automatically figure out the equilibrium strategy as the adaptation response.

4.1 Analysis Results for Znn.com Example

In this subsection, we demonstrate how our approach can produce adaptation
decisions under security attacks for Znn website to enhance the system utility. In
particular, we exploit the Bayesian game model by following the aforementioned
steps and generate the equilibrium. To explore different attack scenarios, we
statically analyze a discretized region of the state space, which is projected
over two dimensions that vary the malicious probability (i.e., probability S2 and
probability S3) of Server2 and Server3 respectively (with values in the range
[0, 1]). Each state of the discrete set requires a solution of the game with the
Nash Equilibrium that quantifies the best utility the system could obtain. The
experiment takes less than one minute to generate all the results, as shown in
Figure 3, and for each state, the solution generation time is negligible. To set
up the experiment, we assume there are 100 user requests - the maximum load
of a server in text only mode - with RM = 1.6, RT = 1, xM = 1.4, xT = 1,
T = 50, and X = 25 in Eq.(1). Additionally, we adopt the probabilistic model
checking method as the benchmark [11,7,32] and compare our Bayesian Game
theory method with it in terms of the system utility.

Engineering Secure Self-Adaptive Systems with Bayesian Games 139

Figure 3 (a) illustrates the percentage of user requests distributed to Server1
from the strategy for the LoadBalancer in equilibrium. As expected, the percent-
age of Server1 increases progressively with the increasing malicious probability
of Server2 and Server3 as more user requests are supposed to be processed
by a server under normal operation. In particular, we observed that the user
percentage is around one third when both Server2 and Server3 are functioning
normally (i.e., both probability S2 and probability S3 are 0), with LoadBalancer
equally delivering the user requests since none of the servers is compromised.
Moreover, the percentage for Server1 reaches around 84% when the other two
servers are fully compromised. In this situation, LoadBalancer does not deliver
all user requests to Server1 ; otherwise Server1 may be overloaded with the
increasing costs due to high response time which in turn outweigh its benefits of
request processing.

Fig. 3: Results for Znn Website: (a) percentage of user requests to Server1 ; (b)
percentage of user requests to Server2 ; (c) strategies for Server1 ; (d) system
utility with game theory approach; (e) delta utility between Bayesian game theory
approach and probabilistic model checking approach.

Figure 3 (b) describes the percentage of user request that LoadBalancer
delivers to Server2 in the equilibrium. We can also observe that user requests
to Server2 are negatively proportional to its malicious probability. Particularly,
user requests are 50 when probability probability S2 is 0 while Server3 is fully
malicious (i.e., probability S3=1) where LoadBalancer should equally distribute
the user request to both Server1 and Server2. Figure 3 (c) presents the strategy
in equilibrium for Server1. The states in which text content is provided are
indicated by red triangles, whereas the multimedia strategies for Server1 are
denoted by white rectangles. As we can see, red points are in the upper right
corner where malicious probabilities of Server2 and Server3 are greater than 50%,

140 N. Li et al.

which means that they are very likely compromised. Therefore, LoadBalancer
distributes as many user requests as possible to Server1, thus Server1 choosing
to provide text only content in avoid of overloading. Otherwise, Server1 can
provide multimedia content in less load condition to promote user satisfaction
with higher revenue.

Figure 3 (d) illustrates the maximum utility the system can achieve under
various attack situations. In particular, we observe that the utility reaches around
160 when all three servers are cooperative and is progressively decreased with
the increasing malicious probability of Server2 and Server3. This is consistent
with the fact that the system utility is deteriorated under security attack. To
compare the system utility in game theory with existing methods, we adopt
probabilistic model checking [29] as the comparison standard to formally model
the running example and synthesize the adaptation strategy maximizing its
expectation of the utility by reasoning about reward-based properties [11,7,32].
Figure 3 (e) presents the delta between two approaches (i.e., system utility with
game theory approach minus the utility with the probabilistic model checking
approach). Without security attacks, the adaptation decision generated by the
two approaches achieve the same utility. However, with the increasing malicious
probability of Server2 and Server3, game theory approach outperforms, providing
the better response to make up for the utility loss due to security attack, and
the average delta is 10.54, i.e., 15 percent outperforming with the average utility
80.39 achieved by game theory.

5 Evaluation – Routing Games
To evaluate our approach and assess its applicability for validation, we consider a
case study on an interdomain routing application. We first define the game (Sec-
tion 5.1) and propose a dynamic programming algorithm to solve the equilibrium
by decomposing the problem into smaller and tractable sub games (Section 5.2).
The results are present (Section 5.3) with a sensitivity analysis, illustrating how
the system can choose a robust strategy effective for a range of threat landscapes,
and a utility analysis by quantifying the defender’s utility with Bayesian game
compared to a greedy solution within the security context.

N1

N3 N4

N5

N2

Des:N5

N6 N7

Fig. 4: Routing Scenario.

A routing system is usually composed of
smaller networks called nodes as shown in Fig-
ure 4. Since not all nodes are directly connected,
packets often have to traverse several nodes and
the task of ensuring connectivity between nodes
is called interdomain routing [30,31]. Each node
could be owned by economic entities (Microsoft,
AT&T, etc.) and might be compromised by the
attacker at any time. Therefore, it is natural to
consider interdomain routing from a game-theoretic point of view. Specifically,
game players are source nodes located on a network, aiming to send a package
(i.e., starting at N1) to a unique destination node (i.e., N5). The interaction
between players is dynamic and complex – asynchronous, sequential, and based
on partial information - and the best strategy for each player as the adaptation
response is updated as needed.

Engineering Secure Self-Adaptive Systems with Bayesian Games 141

5.1 Game Definition for Interdomain Routing

The interdomain routing system is described below with the component-based
definition.

– The components set for the interdomain routing is C = {N1, N2, ..., N7};
– The action space for each node is to deliver the package at hand to its

neighboring nodes. Typical example is AN1 = {toN2, toN3};
– The only quality attribute this network needs to be concerned with is the

time delivering the package to its destination as we assume there is no case of
package loss. Specifically, we consider the delivery time is proportional to the
distance denoted by hops between nodes. Its utility function is encoded using
a formula that enables the quantification of the utility of a given state and
defined as Usystem = 10−#hops. Usually, the longer time, the lower utility
and the maximum utility system could achieve under normal operations for
this network is 8 with two hops 〈N1 N2 N5〉;
Currently, N2 and N4 are analyzed to be potentially attacked based on

the historical package delivery record, deliberately sending the package in the
opposite direction, extending the delivery time. The game definition with the
security attacks is summarized below.

– The player set for the game is C = {N1, N2, ..., N7}. The set of affected
components by the attack includes N2 and N4, i.e., Catt = {N2, N4};

– The action set for all players, including malicious ones controlled by attacks,
is delivering the package to its neighboring nodes.

– The set of types for potential attacked component node includes “normal” and
“malicious” (i.e., θN2 ∈ {normal, malicious}, θN4 ∈ {normal, malicious}).

– The payoff for all the normal players is allocated by the system utility with the
Shapley Value Method (i.e., Usystem ÷ |normal players|, equally allocated
in this case since all of the nodes in this network is not cut vertex with the
same importance). For example. each node is awarded 8/7 if none of them
is attacked. The utility for the ongoing attacks on two components is the
utility loss from the system’s best response without attack, rendering a case
of zero-sum game.

– The probability distribution for both component N2 and N4 could be, e.g.,
50%/50% split (i.e., ρN2,N4(normal, malicious) = (0.5, 0.5).

5.2 Dynamic Programming Algorithm
In practice, a network might be complex and each node could have hundreds
of neighboring nodes. It is impractical to directly build a game tree, in the
component level with a large number of players (each with a massive action set),
and solve such a network in a reasonable time. To deal with the complexity of
network nature, we propose an algorithm inspired by dynamic programming to
effectively solve the generated Bayesian game for this class of routing problems.

The algorithm 1 for routing game has as input a routing network N – consisting
of a starting point s of package delivery and a destination point d. To carry out

142 N. Li et al.

dynamic programming, the algorithm uses a set subG to store the set of nodes
which have been processed with their best reactive strategy. subG is initialized
as an empty set (line 1) and added with node d (line 2) since d does not need the
strategy to transmit the package. The algorithm starts by iterating all the nodes
in the distance disV alue (line 5), initialized by 1 (line 3). For example, N2, N4
and N7 are qualified in the first iteration. Each node is checked whether it is
potentially attacked (i.e., uncertain(n) in line 6). For those uncertain nodes (e.g.,
N2 and N4), they might affect the strategy of their prior nodes (line 7) (e.g.,
N1 and N3), which shall be added to todoS (line 8), to be processed to update
their strategy due to its neighboring uncertainty. A typical example is that node
N3 might trade off the delivery between N4 and N6 even though N4 is in the
shortest path from N3 to N5, however, could deliberately send the package back
controlled by the attack. If the node is not in todoS to be updated (line 11),
it is directly added to the setG (line 12) as the best strategy for such benign
node is passing the package down to its adjacent node along the shortest path.
In this routing scenario, N2, N4 and N7 is added to subG as their strategies in
equilibrium with normal type is easily determined.

After iterating all the nodes in disV alue 1, each node in todoS (line 15) is
checked whether it satisfies the condition (line 16) where all its neighboring
nodes (i.e., i ∈ adj(n)) closer to destination (i.e., dis(i, d) == dis(n)− 1) have
been solved with their best strategies (i.e., in subG), to build a sub-game. As
shown in the example, though both N1 and N3 are prior to an uncertain node,
their strategy update is postponed as N6 is not in subG yet, which affects the
sub-game generation for N3, in turn delaying the sub-game construction for N1.

na

na na

N3 N3 N3 N3

6/7 7/7 6/6 4/6

type(N2):
0.5

type(N2)
0.5

type(N4): type(N4) type(N4): type(N4):
0.5 0.5 0.5 0.5

)::::::::::::::::::

::::::::::::::::

:::::::::::::

))))))))))))))))))

))))))))) ::::::::::::::

To N6 To N4 To N4 To N4 To N4To N6 To N6 To N6

6/7

6/7

6/7

6/7

6/7

6/7

7/7

7/7

7/7

7/7

7/7

7/7

6/6

6/6

2/1

6/6

6/6

6/6

4/6

4/6

4/1

4/6

4/6

4/6

6/6

2/1

6/6

6/6

6/6

6/6

6/6

7/6

1/1

7/6

7/6

7/6

7/6

7/6

6/5

2/2

6/5

2/2

6/5

6/5

6/5

4/5

4/2

4/5

4/2

4/5

4/5

4/5

Fig. 5: Sub-Game for N3.

An exemplified subgame construction
(line 17) starting from N3 is illustrated
in Fig 5 when all conditions are satisfied.
The stochastic behavior of those poten-
tially compromised nodes can be modeled
by introducing a nature (or chance player),
who moves according to the probability dis-
tribution (e.g., 50%/50% split), randomly
determining whether attacks on N2 and
N4 are successful. Then, N3 can choose
an action passing to the one from the set
of its adjacent nodes, i.e., N6 or N4. Here,
N3 is a normal node aware of that the
package is transmitted from N1 and it is
not necessary to consider a rollback to N1.
The game is ended after N3’s action as we
can prune the following branches: 1) to N6, the remaining route sequence is N7
and N5 by default as their best strategy have been solved (i.e., N6 delivers the
package to N7, which in turn forwards to N5); 2) to N4, with N4 forwarding
to N5 if it is normal while backing to N3 in malicious type. When the game
terminates, each player gets a unique payoff following different branches. As

Engineering Secure Self-Adaptive Systems with Bayesian Games 143

Algorithm 1 Dynamic Programming Algorithm to Solve Routing Game.

1: setG ⇐ ∅
2: addNode(d, setG)
3: disV alue ⇐ 1
4: repeat
5: for all n ∈ N and dis(n, d) == disV alue do
6: if uncertain(n) == true then
7: for all np ∈ adj(n) and dis(np, d) == disV alue+ 1 do
8: addNode(np, todoS)
9: end for

10: end if
11: if n /∈ todoS then
12: addNode(n, setG)
13: end if
14: end for
15: for all n ∈ todoS do
16: if ∀i ∈ adj(n) and dis(i, d) == dis(n)− 1 and i ∈ sutG then
17: gambitTree ⇐ buildGame(n, d)
18: equilibria ← solve(gamebitTree)
19: removeNode(n, todoS)
20: addNode(n, setG)
21: end if
22: end for
23: disV alue ⇐ disV alue+ 1
24: until s ∈ subG

shown in the left most rectangle all the players (including N2 and N4 as they
are benign collaborating nodes) equally share the system utility value 6 with 3
hops from N3 to N5 plus the shortest path from N1 to N3. However, on the
rightmost branch, only five players ruling out N2 and N4 is allocated with the
system utility 4. The system utility is resulting from 6 hops if N3 decides to
deliver the package to N4 as the nature problematically chooses the malicious
type for N4, which sends the package back to N3 to maximize the attack’s utility.
Once N3 receives the package from N4, it redelivers the package to N6 because
N3 as a good player does not repeatedly send it back. To this end, N2 and N4 is
uniformly allocated the delta (i.e., 4) between the utility system obtained (i.e., 4)
and the maximum utility system could obtain (i.e., 8) as the payoff. The payoff
of the remaining branches can also be calculated accordingly.

After that, a pure Nash equilibrium is generated by solving this sub-game (line
18) with Gambit software tools [35], and the best strategy for the node is updated
according to the equilibrium. By solving the sub-game for N3, the strategy for
N3 in the equilibrium is to deliver the package to N6, as the potential detriment
on delayed delivery time to N4 due to attacks is greater than its comparative
advantage of the shortest path. Thus, this node with the solved strategy is
removed from todoS (line 19) and absorbed in setG (line 21). Once all the nodes
in the distance of disV alue from the destination have been iterated and all the

144 N. Li et al.

nodes in todoS satisfying conditions are computed for their best strategy, the
algorithm increment the value of disV alue one unit (line 23) and continue, until
the starting point s is in the set setG (line 24).

5.3 Experiment Setup & Results

We demonstrate how our Bayesian game approach combined with the proposed
dynamic programming algorithm can produce adaptation decisions about how to
forward packages for each node in the routing example. Similar to the experiment
results found on the Znn website, we statically analyzed a discretized region
of the state space which represented different attack scenarios (i.e., malicious
probability of N2 and N4). The entire experiment setup of the network structure
is exactly shown in Figure 4. In addition, we also adopted a greedy algorithm
for this routing application as the benchmark, and compared the system utility
between these two approaches to demonstrate the superiority of game theory
under security attacks. The experiment for the whole state space with Bayesian
approach takes less than one minute and the solution generation time for each
state is negligible.

Fig. 6: Results for interdomain route example: (a) Expected route in equilibrium;
(b) System utility with game theory approach; (c) Delta between system utility
from game theory approach and utility from greedy algorithm.

Figure 6 (a) presents the results of the strategy selection (i.e., expected package
sequence) over two dimensions that correspond to the malicious probability of
N2 and N4, respectively. Red triangle points denote that the strategy for N1 is
N2, extending the range of Probability N2 to around [0, 0.50]. This is because
when the chance of N2 coming under attack is less than 0.50, N1 should pass the
package to N2, since N2 is in the shortest path to the destination; otherwise, N1
delivers the package to N3. Similarly, when the malicious probability of N4 is less
than 0.35, the strategy for N3 reaching equilibrium is to deliver the package to
N4 (i.e., blue square points), since the benefits of a short delivery time outweigh
the potential detriment. For the remaining situations denoted by the black circle
points, N1 passes the package to N3, which in turn forwards it to N6.

Figure 6 (b) describes the utility the system could obtain for the attacked
components’ equilibrium strategies. As expected, when the Probability N2 is
greater than 50% and Probability N4 greater than 35% (i.e., black circle points
in Figure 6 (a)), the utility system can gain is 6 as there are 4 hops in the
expected sequence 〈N1 N3 N6 N7 N5〉). This plot also shows that the system

Engineering Secure Self-Adaptive Systems with Bayesian Games 145

utility increases progressively with decreasing probability of the compromised N2
and N4. When the probability N2 is 0, the expected utility increases to 8 (i.e.,
two hops in 〈N1 N2 N5〉). Similarly, the utility reaches 7 with probability N4 0
(i.e., three hops in 〈N1 N3 N4 N5〉).

Furthermore, we adopted a baseline that generates strategies for each node
in a non-repeating fashion, passing the package to the adjacent node along the
shortest path to the destination. The aim of this was to compare the utility
between two different approaches dealing with security attacks. For the network
as shown in Figure 4, the baseline firstly picks up the shortest path sequence
〈N1 N2 N5〉. If N2 is compromised and sends the package back, N1 redelivers
it to N3 instead of N2 since the package is received from N2. The system utility
for the greedy algorithm is the expected value, the weighted average of utility
for paths in different attack situations. Figure 6 (c) shows the delta between the
utility produced by our game theory method and the utility produced by the
baseline. During security attacks, we can see that the utility from the game theory
approach is always higher than the greedy approach under security attacks. The
delta is much more noticeable, especially in the situations where N2 and N4 are
highly likely to be compromised (i.e., Probability N2 and Probability N4 close
to 1). This is because game theory approaches can help the defenders to trade
off the gains and losses due to perceived risks.

In summary, based on the preliminary results of our experiment, our game
theory approach in the component level applies to self-adaptive applications. To
adopt our approach, attacks information, such as various types with probabilities
as well as its payoff, shall be provided from the Analyzer, to construct a Bayesian
game based on system architectural structures. The results have also shown
that game theory can enhance the performance of the system, especially when
a potential attack is more likely to happen. In these situations, game theory
approaches could help the defenders balance perceived risks by using underlying
incentive mechanisms, and figure out the best response as the adaptation to
be executed on the network using proven mathematics. Besides, our proposed
dynamic programming algorithm is specific to this kind of application to optimize
the game solving. Another potential application is the multi-agent finding (MAPF)
problem where a spatial position in a path can be viewed as a node in the
network [39,3]. Other optimization techniques might be adopted or customized
for different applications with complicated game structures.

6 Related Work
Self-adaptive systems under security attacks need to make adaptation decisions
as a response to a detected threat or to deviations from security goals and require-
ments [18]. Lorenzoli et al. [34] proposed a technique that could observe values at
relevant program points and identified the execution contexts leading to a soft-
ware failure so that mechanisms can be enabled for preventing future occurrences
of failures of the same type. Bailey et al. [4] generated Role Based Access Control
(RBAC) models to provide assurances for adaptations against insider threats.
RBAC technique was also applied to cloud computing environment to provide
appropriate security services according to the security level and dynamic changes

146 N. Li et al.

of the common resources [44]. Tsigkanos et al. [41] explored the use of Bigraphical
Reactive Systems to perform speculative threat analysis through model checking.
Burmester et al. [5] described a threat model to incorporate typical characteristics
of systems, such as survivability to abnormal behavior and possibility to recover
after critically vulnerable states are reached. Dimkov et al. [14] discussed insider
threats that span physical, cyber and social domains and present a framework
Portunes integrating all three security domains to describe attacks. Nashif et
al. [2] presented a multi-level intrusion detection system to detect network attacks
within three levels of granularities and proactively protected against them by
employing a fusion decision algorithm. Although, there are many different ways
of dealing with security attacks in self-adaptive systems, it is notable that the
application of game theory, with the characteristic of modeling the adversarial
nature of security attacks and designing reliable defense with proven mathematics,
has not gained the deserved attention.

Different sorts of games have been employed to study the actions of the
defender and attacker. Dijk et al. [42] presented a two-player game that reasons
about security scenarios where an attacker with uncertainty about its actions may
periodically gain full control of an asset, with each side trying to maintain control
as much as possible. An extension work by Farhang et al. [19] explicitly modeled
the information gains for the attackers as they control assets, improving attacker’s
capability. Based on these work, Kinneer et al. [28] additionally considered
multiple attacker types with different goals and capabilities by Bayesian Game.
Instead of modeling the attackers as independent players, our work models
the attacks on the component level, focusing on the defender modeling at the
architecture level and possible deviations of component behaviors. Cámara et
al. [6,8] adopted a game-theoretic perspective and model the system as turn-based
stochastic multi-player games between different players where players can either
cooperate to achieve the same goal or compete to achieve their own goals. In
addition, Glazier et al. [23] used game-based approach to automatically reason
and synthesize strategies for meta-manager by explicitly considering alternate
potential future state, thus improving the performance of a collection of autonomic
systems against a defined quality objective. Though, some of these existing works
concern about competitive behaviors in a system when some components cannot
be controlled and even behave according to conflicting goals with respect to other
components in the system. None of them, to the best of our knowledge, proposed
to model the Bayesian game in an architecture/component level and captured
multiple attacks as component’s variant types as well as the uncertainty due to
unsuccessful compromise.

Game theory is also increasingly applied to network security. Frigault et
al. [20] measured the network security in a dynamic environment with dynamic
Bayesian networks-based model to incorporate temporal factors. Charles et al. [26]
developed a packet forwarding game model under imperfect private monitoring.
Their equilibria rely on the probability of cooperation after observing a defection,
similar to our routing games in the evaluation. However, they looked at this
problem from the perspective of network nodes, without considering the situation

Engineering Secure Self-Adaptive Systems with Bayesian Games 147

of being attacked and how to allocate rewards from the system utility for multiple
components from the architecture perspective as illustrated in this work.

7 Conclusion and Future Work

In this paper, we have proposed a new framework for self-adaptive systems by
adopting Bayesian game theory and modeled the system under security attacks
as a multi-player game. An optimal adaptation strategy for responding to attacks
is generated by computing the equilibrium to the game. One limitation is that
we validate our approach on a simulated rather than an actual system, and we
plan to further evaluate the applicability and scalability of the approach using
case studies involving real systems. A second limitation is the simplification of
the amount of uncertainty, such as restricting the number of component types
under attacks and assuming the payoffs with zero-sum game, which might be
more complex in the real world security landscape. Rather, we attempted to
convey the idea of transforming the system architecture consisting of multiple
components under attacks into a Bayesian game. While the equilibrium is sensitive
to the probability distribution over types (i.e., malicious probability), sensitivity
analysis are useful when the probability cannot be determined by the analysis
with precision but lies within a known range. In addition, modeling attacks on
component level, though more monitorable and easy to handle, cannot depict
those attacks with highly motivated and capable adversaries willing to devote
significant time and continuous attack to facilitate their malicious goals, known
as advanced persistent threats (APTs) [28].

Moreover, we adopt pure equilibrium as the adaptation response. However, in
practice, there will likely be multiple equilibria and no guarantee of uniqueness.
While this is an area for future work, one possible way to overcome this is to
choose the equilibrium with highest utility for the system. Another limitation,
and a topic for future work, is that mixed equilibrium is another common solution
for game theory. Its interpretation on system behaviors could be various and
allows generation of different types of defense strategies for the system, which can
be explored for different applications. For example, if the mixed strategy for N1
in routing game is choosing N2 and N3 in 50%/50% split as shown in Figure 4,
we can consider that N1 may equally distribute its packages to N2 and N3 if
multiple packages exist, or deliver its packages to N3 for the current time and to
N2 next time. Also, the Bayesian games for these two examples were manually
created by following the framework into the input language of the Gambit tool,
to solve the equilibrium. In future, we are planning to construct the game in an
automated way by supporting an architecture description interchange language,
such as Acme [22].

Acknowledgements

The research is partially supported by the National Natural Science Foundation
of China under Grant Nos. 61620106007 and 61751210, award N00014172899 from
the Office of Naval Research and the NSA under Award No. H9823018D0008.

148 N. Li et al.

References

1. Web server and its types of attacks. https://www.greycampus.com/opencampus/
\ethical-hacking/web-server-and-its-types-of-attacks. Accessed: 2010-09-30.

2. Y. Al-Nashif, A. A. Kumar, S. Hariri, Y. Luo, F. Szidarovsky, and G. Qu. Multi-
level intrusion detection system (ml-ids). In 2008 International Conference on
Autonomic Computing, pages 131–140, 2008.

3. Ofra Amir, Guni Sharon, and Roni Stern. Multi-agent pathfinding as a combinatorial
auction. In The Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI),
pages 2003–2009, 2015.

4. Christopher Bailey, Lionel Montrieux, Rogério de Lemos, Yijun Yu, and Michel
Wermelinger. Run-time generation, transformation, and verification of access control
models for self-protection. In 9th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems, SEAMS 2014, Proceedings, Hyderabad,
India, June 2-3, 2014, pages 135–144, 2014.

5. Mike Burmester, Emmanouil Magkos, and Vassilios Chrissikopoulos. Modeling
security in cyber-physical systems. Int. J. Crit. Infrastructure Prot., 5(3-4):118–126,
2012.

6. Javier Cámara, Gabriel A. Moreno, and David Garlan. Stochastic game analysis
and latency awareness for proactive self-adaptation. In 9th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems, SEAMS 2014,
Proceedings, Hyderabad, India, June 2-3, 2014, pages 155–164, 2014.

7. Javier Cámara, Gabriel A. Moreno, and David Garlan. Reasoning about human
participation in self-adaptive systems. In 10th IEEE/ACM International Symposium
on Software Engineering for Adaptive and Self-Managing Systems, SEAMS, Florence,
Italy, May 18-19, 2015, pages 146–156, 2015.

8. Javier Cámara, Gabriel A. Moreno, David Garlan, and Bradley R. Schmerl. Ana-
lyzing latency-aware self-adaptation using stochastic games and simulations. ACM
Trans. Auton. Adapt. Syst., 10(4):23:1–23:28, 2016.

9. Betty H. C. Cheng and et al. Software engineering for self-adaptive systems: A
research roadmap. In Software Engineering for Self-Adaptive Systems [outcome of
a Dagstuhl Seminar], pages 1–26, 2009.

10. Shang-Wen Cheng, David Garlan, and Bradley R. Schmerl. Evaluating the effec-
tiveness of the rainbow self-adaptive system. In 2009 ICSE Workshop on Software
Engineering for Adaptive and Self-Managing Systems, SEAMS 2009, Vancouver,
BC, Canada, May 18-19, 2009, pages 132–141, 2009.

11. J. Cámara, D. Garlan, G.A. Moreno, and B. Schmerl. Chapter 7 - evaluating
trade-offs of human involvement in self-adaptive systems. In Ivan Mistrik, Nour Ali,
Rick Kazman, John Grundy, and Bradley Schmerl, editors, Managing Trade-Offs
in Adaptable Software Architectures, pages 155 – 180. Morgan Kaufmann, Boston,
2017.

12. Rogério de Lemos and et al. Software engineering for self-adaptive systems: A
second research roadmap. In Software Engineering for Self-Adaptive Systems II -
International Seminar, Dagstuhl Castle, Germany, October 24-29, 2010 Revised
Selected and Invited Papers, pages 1–32, 2010.

13. Premkumar T. Devanbu and Stuart G. Stubblebine. Software engineering for
security: a roadmap. In 22nd International Conference on on Software Engineering,
Future of Software Engineering Track, ICSE 2000, Limerick Ireland, June 4-11,
2000, pages 227–239, 2000.

https://www.greycampus.com/opencampus/\ethical-hacking/web-server-and-its-types-of-attacks
https://www.greycampus.com/opencampus/\ethical-hacking/web-server-and-its-types-of-attacks

Engineering Secure Self-Adaptive Systems with Bayesian Games 149

14. Trajce Dimkov, Wolter Pieters, and Pieter H. Hartel. Portunes: Representing attack
scenarios spanning through the physical, digital and social domain. In Automated
Reasoning for Security Protocol Analysis and Issues in the Theory of Security -
Joint Workshop, ARSPA-WITS 2010, Paphos, Cyprus, March 27-28, 2010. Revised
Selected Papers, pages 112–129, 2010.

15. Cuong T. Do, Nguyen H. Tran, Choong Seon Hong, Charles A. Kamhoua, Kevin A.
Kwiat, Erik Blasch, Shaolei Ren, Niki Pissinou, and Sundaraja Sitharama Iyengar.
Game theory for cyber security and privacy. ACM Comput. Surv., 50(2):30:1–30:37,
2017.

16. Dmitry Dudorov, David Stupples, and Martin Newby. Probability analysis of cyber
attack paths against business and commercial enterprise systems. In 2013 European
Intelligence and Security Informatics Conference, Uppsala, Sweden, August 12-14,
2013, pages 38–44, 2013.

17. Ahmed M. Elkhodary and Jon Whittle. A survey of approaches to adaptive
application security. In 2007 ICSE Workshop on Software Engineering for Adaptive
and Self-Managing Systems, SEAMS 2007, Minneapolis Minnesota, USA, May
20-26, 2007, page 16, 2007.

18. Mahsa Emami-Taba. A game-theoretic decision-making framework for engineering
self-protecting software systems. In Proceedings of the 39th International Conference
on Software Engineering, ICSE 2017, Buenos Aires, Argentina, May 20-28, 2017 -
Companion Volume, pages 449–452, 2017.

19. Sadegh Farhang and Jens Grossklags. Flipleakage: A game-theoretic approach
to protect against stealthy attackers in the presence of information leakage. In
Decision and Game Theory for Security - 7th International Conference, GameSec
2016, New York, NY, USA, November 2-4, 2016, Proceedings, pages 195–214, 2016.

20. Marcel Frigault, Lingyu Wang, Anoop Singhal, and Sushil Jajodia. Measuring
network security using dynamic bayesian network. In Proceedings of the 4th ACM
Workshop on Quality of Protection, QoP 2008, Alexandria, VA, USA, October 27,
2008, pages 23–30, 2008.

21. Drew Fudenberg and Jean Tirole. Game Theory. MIT press, 1991.
22. David Garlan, Robert T. Monroe, and David Wile. Acme: an architecture descrip-

tion interchange language. In Proceedings of the 1997 conference of the Centre
for Advanced Studies on Collaborative Research, November 10-13, 1997, Toronto,
Ontario, Canada, page 7, 1997.

23. Thomas J. Glazier and David Garlan. An automated approach to management
of a collection of autonomic systems. In IEEE 4th International Workshops on
Foundations and Applications of Self* Systems, FAS*W@SASO/ICCAC 2019,
Umea, Sweden, June 16-20, 2019, pages 110–115, 2019.

24. M. Hajizadeh, T. V. Phan, and T. Bauschert. Probability analysis of successful
cyber attacks in sdn-based networks. In 2018 IEEE Conference on Network Function
Virtualization and Software Defined Networks (NFV-SDN), pages 1–6, 2018.

25. John C Harsanyi. Games with incomplete information played by bayesian players,
i-iii. Management Science, 50(12):1804–1817, 2004.

26. Charles A. Kamhoua, Niki Pissinou, Alan Busovaca, and Kia Makki. Belief-
free equilibrium of packet forwarding game in ad hoc networks under imperfect
monitoring. In 29th International Performance Computing and Communications
Conference, IPCCC 2010, 9-11 December 2010, Albuquerque, NM, USA, pages
315–324, 2010.

27. Jeffrey O. Kephart and David M. Chess. The vision of autonomic computing. IEEE
Computer, 36(1):41–50, 2003.

150 N. Li et al.

28. Cody Kinneer, Ryan Wagner, Fei Fang, Claire Le Goues, and David Garlan. Model-
ing observability in adaptive systems to defend against advanced persistent threats.
In Proceedings of the 17th ACM-IEEE International Conference on Formal Methods
and Models for System Design, MEMOCODE 2019, La Jolla, CA, USA, October
9-11, 2019, pages 10:1–10:11, 2019.

29. Marta Kwiatkowska, Gethin Norman, and David Parker. Probabilistic Model Check-
ing: Advances and Applications, pages 73–121. Springer International Publishing,
Cham, 2018.

30. Hagay Levin, Michael Schapira, and Aviv Zohar. Interdomain routing and games.
In Proceedings of the 40th Annual ACM Symposium on Theory of Computing,
Victoria, British Columbia, Canada, May 17-20, 2008, pages 57–66, 2008.

31. Hagay Levin, Michael Schapira, and Aviv Zohar. Interdomain routing and games.
SIAM J. Comput., 40(6):1892–1912, 2011.

32. Nianyu Li, Sridhar Adepu, Eunsuk Kang, and David Garlan. Explanations for
human-on-the-loop: A probabilistic model checking approach. In Proceedings of
the 15th International Symposium on Software Engineering for Adaptive and Self-
managing Systems (SEAMS), 2020. To appear.

33. Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen.
Stronger semantics for low-latency geo-replicated storage. In Proceedings of the 10th
USENIX Symposium on Networked Systems Design and Implementation, NSDI
2013, Lombard, IL, USA, April 2-5, 2013, pages 313–328, 2013.

34. Davide Lorenzoli, Leonardo Mariani, and Mauro Pezzè. Towards self-protecting
enterprise applications. In ISSRE 2007, The 18th IEEE International Symposium
on Software Reliability, Trollhättan, Sweden, 5-9 November 2007, pages 39–48, 2007.

35. Richard D. McKelvey, Andrew M. McLennan, and Theodore L. Turocy. Gambit:
Software tools for game theory, version 16.0.1, 2018-02. http://www.gambit-project.
org.

36. Martin J. Osborne and Ariel Rubinstein. A course in game theory. MIT Press
Books, 1, 1994.

37. Lloyd S Shapley. A value for n-person games. In Contributions to the Theory of
Games, vol. 2, 1953.

38. Yoav Shoham and Kevin Leyton-Brown. Multiagent systems: Algorithmic, game-
theoretic, and logical foundations. Cambridge University Press, 2008.

39. Roykrong Sukkerd, Reid Simmons, and David Garlan. Tradeoff-focused contrastive
explanation for mdp planning, 2020.

40. Milind Tambe. Security and Game Theory - Algorithms, Deployed Systems, Lessons
Learned. Cambridge University Press, 2012.

41. Christos Tsigkanos, Liliana Pasquale, Carlo Ghezzi, and Bashar Nuseibeh. On the
interplay between cyber and physical spaces for adaptive security. IEEE Trans.
Dependable Secur. Comput., 15(3):466–480, 2018.

42. Marten van Dijk, Ari Juels, Alina Oprea, and Ronald L. Rivest. Flipit: The game
of ”stealthy takeover”. J. Cryptology, 26(4):655–713, 2013.

43. Danny Weyns, M. Usman Iftikhar, and Joakim Söderlund. Do external feedback
loops improve the design of self-adaptive systems? a controlled experiment. In Pro-
ceedings of the 8th International Symposium on Software Engineering for Adaptive
and Self-Managing Systems, SEAMS 2013, San Francisco, CA, USA, May 20-21,
2013, pages 3–12, 2013.

44. Youngmin Jung and Mokdong Chung. Adaptive security management model in
the cloud computing environment. In 2010 The 12th International Conference on
Advanced Communication Technology (ICACT), volume 2, pages 1664–1669, 2010.

http://www.gambit-project.org
http://www.gambit-project.org

Engineering Secure Self-Adaptive Systems with Bayesian Games 151

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source,

provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

An Abstract Contract Theory for
Programs with Procedures�

Christian Lidström(�) and Dilian Gurov

KTH Royal Institute of Technology, Stockholm, Sweden
{clid,dilian}@kth.se

Abstract. When developing complex software and systems, contracts
provide a means for controlling the complexity by dividing the respon-
sibilities among the components of the system in a hierarchical fashion.
In specific application areas, dedicated contract theories formalise the
notion of contract and the operations on contracts in a manner that sup-
ports best the development of systems in that area. At the other end,
contract meta-theories attempt to provide a systematic view on the var-
ious contract theories by axiomatising their desired properties. However,
there exists a noticeable gap between the most well-known contract meta-
theory of Benveniste et al. [5], which focuses on the design of embedded
and cyber-physical systems, and the established way of using contracts
when developing general software, following Meyer’s design-by-contract
methodology [18]. At the core of this gap appears to be the notion of pro-
cedure: while it is a central unit of composition in software development,
the meta-theory does not suggest an obvious way of treating procedures
as components.

In this paper, we provide a first step towards a contract theory that
takes procedures as the basic building block, and is at the same time
an instantiation of the meta-theory. To this end, we propose an ab-
stract contract theory for sequential programming languages with pro-
cedures, based on denotational semantics. We show that, on the one
hand, the specification of contracts of procedures in Hoare logic, and
their procedure-modular verification, can be cast naturally in the frame-
work of our abstract contract theory. On the other hand, we also show
our contract theory to fulfil the axioms of the meta-theory. In this way,
we give further evidence for the utility of the meta-theory, and prepare
the ground for combining our instantiation with other, already existing
instantiations.

1 Introduction

Contracts. Loosely speaking, a contract for a software or system component is
a means of specifying that the component obliges itself to guarantee a certain
behaviour or result, provided that the user (or client) of the component obliges
itself to fulfil certain constraints on how it interacts with the component.
� This work has been funded by the Swedish Governmental Agency for Innovation

Systems (VINNOVA) under the AVerT project 2018-02727.
c© The Author(s) 2021
E. Guerra and M. Stoelinga (Eds.): FASE 2021, LNCS 12649, pp. 152–171, 2021.
https://doi.org/10.1007/978-3-030-71500-7_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71500-7_8&domain=pdf

An Abstract Contract Theory for Programs with Procedures 153

One of the earliest inspirations for the notion of software contracts came
from the works of Floyd [10] and Hoare [15]. One outcome of this was Hoare
logic, which is a way of assigning meaning to sequential programs axiomati-
cally, through so-called Hoare triples. A Hoare triple {P}S{Q} consists of two
assertions P and Q over the program variables, called the pre-condition and
post-condition, respectively, and a program S. The triple states that if the pre-
condition P holds prior to executing S, then, if execution of S terminates, the
post-condition Q will hold upon termination. With the help of additional, so-
called logical variables, one can specify, with a Hoare triple, the desired relation-
ship between the final values of certain variables (such as the return value of a
procedure) and the initial values of certain other variables (such as the formal
parameters of the procedure).

This style of specifying contracts has been advocated by Meyer [18], together
with the design methodology Design-by-Contract. A central characteristic of this
methodology is that it is well-suited for independent implementation and verifi-
cation, where software components are developed independently from each other,
based solely on the contracts, and without any knowledge of the implementation
details of the other components.

Contract Theories. Since then, many other contract theories have emerged, such
as Rely/Guarantee reasoning [16,22] and a number of Assume/Guarantee con-
tract theories [4,6]. A contract theory typically formalises the notion of contract,
and develops a number of operations on contracts that support typical design
steps. This in turn has lead to a few developments of contract meta-theories
(e.g. [5,2,8]), which aim at unifying these, in many cases incompatible, contract
theories. The most comprehensive, and well-known, of these, is presented in Ben-
veniste et al. [5], and is concerned specifically with the design of cyber-physical
systems. Here, all properties are derived from a most abstract notion of a con-
tract. The meta-theory focuses on the notion of contract refinement, and the
operations of contract conjunction and composition. The intention behind re-
finement and composition is to support a top-down design flow, where contracts
are decomposed iteratively into sub-contracts; the task is then to show that the
composition of the sub-contracts refines the original contract. These operations
are meant to enable independent development and reuse of components. In ad-
dition, the operation of conjunction is intended to allow the superimposition of
contracts over the same component, when they concern different aspects of its
behaviour. This also enables component reuse, by allowing contracts to reveal
only the behaviour relevant to the different use cases.

Motivation and Contribution. The meta-theory of Benveniste et al. focuses on
the design of embedded and cyber-physical systems. However, there exists a
noticeable gap between this meta-theory and the way contracts are used when
developing general software following Meyer’s design-by-contract methodology.
At the core of this gap appears to be the notion of procedure1. While the proce-
1 We use the term “procedure”, rather than “function” or “method”, to refer to the

well-known control abstraction mechanism of imperative programming languages.

154 C. Lidström and D. Gurov

dure is a central unit of composition in software development, the meta-theory
does not suggest an obvious way of treating procedures as components. This sit-
uation is not fully satisfactory, since the software components of most embedded
systems are implemented with the help of procedures (a typical C-module, for
instance, would consist of a main function and a number of helper functions),
and their development should ideally follow the same design flow as that of the
embedded system as a whole.

In this paper we provide a first step towards a contract theory that takes
procedures as the basic building block, and at the same time respects the ax-
ioms of the meta-theory. Our contract theory is abstract, so that it can be
instantiated to any procedural language, and similarly to the meta-theory, is
presented at the semantics level only. Then, in the context of a simplistic imper-
ative programming language with procedures and its denotational semantics, we
show that the specification of contracts of procedures in Hoare logic, and their
procedure-modular verification, can be cast in the framework of our abstract
contract theory. We also show that our contract theory is an instance of the
meta-theory of Benveniste et al. With this we expect to contribute to the bridg-
ing of the gap mentioned above, and to give a formal justification of the design
methodology supported by the meta-theory, when applied to the software com-
ponents of embedded systems. Several existing contract theories have already
been shown to instantiate the meta-theory. In providing a contract theory for
procedural programs that also instantiates it, we increase the value of the meta-
theory by providing further evidence for its universality. In addition, we prepare
the theoretical ground for combining our instantiation with other instantiations,
which may target components not to be implemented in software.

Our theoretical development should be seen as a proof-of-concept. In future
work it will need to be extended to cover more programming language features,
such as object orientation, multi-threading, and exceptions.

Related Work. Software contracts and operations on contracts have long been
an area of intensive research, as evidenced, e.g., by [1]. We briefly mention some
works related to our theory, in addition to the already mentioned ones.

Reasoning from multiple Hoare triples is studied in [21], in the context of un-
available source code, where new properties cannot be derived by re-verification.
In particular, it is found that two Hoare-style rules, the standard rule of conse-
quence and a generalised normalisation rule, are sufficient to infer, from a set of
existing contracts for a procedure, any contract that is semantically entailed.

Often-changing source code is a problem for contract-based reasoning and
contract reuse. In [13], abstract method calls are introduced to alleviate this
problem. Fully abstract contracts are then introduced in [7], allowing reasoning
about software to be decoupled from contract applicability checks, in a way that
not all verification effort is invalidated by changes in a specification.

The relation between behavioural specifications and assume/guarantee-style
contracts for modal transition systems is studied in [2], which shows how to build
a contract framework from any specification theory supporting composition and
refinement. This work is built on in [9], where a formal contract framework based

An Abstract Contract Theory for Programs with Procedures 155

on temporal logic is presented, allowing verification of correctness of contract
refinement relative to a specific decomposition.

A survey of behavioural specification languages [14] found that existing lan-
guages are well-suited for expressing properties of software components, but it
is a challenge to express how components interact, making it difficult to reason
about system and architectural level properties from detailed design specifica-
tions. This provides additional evidence for the gap between contracts used in
software verification and contracts as used in system design.

Structure. The paper is organised as follows. Section 2 recalls the concept of con-
tract based design and the contract meta-theory considered in the present paper.
In Section 3 we present a denotational semantics for programs with procedures,
including a semantics for contracts for use in procedure-modular verification.
Next, Section 4 presents our abstract contract theory for sequential programs
with procedures. Then, we show in Section 5 that our contract theory fulfils the
axioms of the meta-theory, while in Section 6 we show how the specification of
contracts of procedures in Hoare logic and their procedure-modular verification
can be cast in the framework of our abstract contract theory. We conclude with
Section 7.

2 Contract Based Design

This section describes the concept of contract based design, and motivates its use
in cyber-physical systems development. We then recall the contract meta-theory
by Benveniste et al. [5].

2.1 Contract Based Design of Cyber-Physical Systems

Contract based design is an approach to systems design, where the system is
developed in a top-down manner through the use of contracts for components,
which are incrementally assembled so that they preserve the desired system-wide
properties. Contracts are typically described by a set of assumptions the com-
ponent makes on its environment, and a set of guarantees on the component’s
behaviour, given that it operates in an environment adhering to the assump-
tions [5].

Present-day cyber-physical systems, such as those found in the automotive,
avionics and other industries, are extremely complex. Products assembled by
Original Equipment Manufacturers (OEMs) often consist of components from a
number of different suppliers, all using their own specialised design processes,
system architectures, development platforms, and tools. This is also true inside
the OEMs, where there are different teams with different viewpoints of the sys-
tem, and their own design processes and tools. In addition, the system itself
has several different aspects that need to be managed, such as the architecture,
safety and security requirements, functional behaviour, and so on. Thus, a rigor-
ous design framework is called for that can solve these design-chain management
issues.

156 C. Lidström and D. Gurov

Contract based design addresses these challenges through the principles, at
the specification level, of refinement and abstraction, which are processes for
managing the design flow between different layers of abstraction, and composition
and decomposition, which manage the flow at the same level of abstraction.
Generally, when designing a system, at the top level of abstraction there will
be an overall system specification (or contract). This top-level contract is then
refined, to provide a more concrete contract for the system, and decomposed,
in order to obtain contracts for the sub-systems, and to separate the different
viewpoints of the system. A system design typically iterates the decomposition-
and-refinement process, resulting in several layers of abstraction, until contracts
are obtained that can be directly implemented, or for which implementations
already exist. An important requirement on this methodology of hierarchical
decomposition and refinement of contracts is that it must guarantee that when
the low-level components implement their concrete contracts, and are combined
to form the overall system, then the top-level, abstract, contract shall hold.

Furthermore, a contract framework in particular needs to support indepen-
dent development and component reuse. That is, specifications for components,
and their operations, must allow for components and specifications to be inde-
pendently designed and implemented, and to be used in different parts of the
system, each with their own assumptions on how the other components, the envi-
ronment, behave. This is achieved through the principle operations on contracts:
refinement, composition, and conjunction.

Refinement allows one to extract a contract at the appropriate level of ab-
straction. A desired property of refinement is that components which have been
designed with reference to the more abstract (i.e., weaker) contract do not need
to be re-designed after the refinement step. That is, in the early stages of devel-
opment an OEM may have provided a weak contract for some subsystem to an
external supplier, which implemented a component relying on this contract. As
development of the system progresses, and the contract is refined, the compo-
nent supplied externally should still operate according to its guarantees without
needing to be changed, when instead assuming the new, refined, contract.

Composition enables one to combine contracts of different components into
a contract for the larger subsystem obtained when combining the components.
Again, a desirable property is that other components relying on one or more
of the individual contracts, can, after composition of the contracts, assume the
new contract and still perform its guarantees, without being re-designed, thus
ensuring that subsystems can be independently implemented.

Finally, contract conjunction is another way of combining contracts, but now
for the different viewpoints of a single component. This allows one to separate a
contract into several different, finer contracts for the same component, revealing
just enough information for each particular system that depends on it, so that
it can be reused in different parts of the system, or in entirely different systems.

An Abstract Contract Theory for Programs with Procedures 157

2.2 A Contract Meta-Theory

We consider the meta-theory described in [5]. The stated purpose of the meta-
theory has been to distil the notion of a contract to its essence, so that it
can be used in system design methodologies without ambiguities. In particu-
lar, the meta-theory has been developed to give support for design-chain man-
agement, and to allow component reuse and independent development. It has
been shown that a number of concrete contract theories instantiate it, including
assume/guarantee-contracts, synchronous Moore interfaces, and interface theo-
ries. To our knowledge, this is the only meta-theory of its purpose and scope.

We now present the formal definitions of the concepts defined in the meta-
theory, and the properties that they entail. The meta-theory is defined only in
terms of semantics, and it is up to particular concrete instantiations to provide
a syntax.

Components. The most basic concept in the meta-theory is that of a component,
which represents any concrete part of the system. Thus, we have an abstract
component universe M with components m ∈M. Over pairs of components, we
have a composition operation ×. This operation is partially defined, and two
components m1 and m2 are called composable when m1×m2 is defined. In such
cases, we call m1 an environment for m2, and vice versa. In addition, component
composition must be both commutative and associative, in order to ensure that
different components can be combined in any order.

Typically, components are open, in the sense that they contain functionality
provided by other components, i.e., their environment. The environment in which
a component is to be placed is often unknown at development time, and although
a component cannot restrict it, it is designed for a certain context.

Contracts. In the meta-theory, the notion of contract is defined in terms of
sets of components. The contract universe C def

= 2M × 2M consists of contracts
C = (E,M), where E and M are the sets of environments and implementations
of C, respectively. Importantly, each pair (m1,m2) ∈ E×M must be composable.
This definition is intentionally abstract. The intuition is that contracts separate
the responsibilities of a component from the expectations on its environment.
Moreover, contracts are best seen as weak specifications of components: they
should expose just enough information to be adequate for their purpose.

For a component m and a contract C = (E,M), we shall sometimes write
m |=E C for m ∈ E, and m |=M C for m ∈ M . A contract C is said to be
consistent if it has at least one implementation, and compatible if it has at least
one environment.

Contract refinement. For two contracts C1 = (E1,M1) and C2 = (E2,M2), C1
is said to refine C2, denoted C1 � C2, iff M1 ⊆ M2 and E2 ⊆ E1. As an axiom
of the meta-theory, it is required that the greatest lower bound with respect
to refinement exists, for all subsets of C. Table 1 summarises the important
properties of refinement and the other operations on contracts that a concrete

158 C. Lidström and D. Gurov

Table 1. Properties that hold in theories that adhere to the meta-theory.

Property

1 Refinement. When C1 � C2, every implementation of C1 is also an implementation
of C2.

2
Shared refinement. Any contract refining C1 ∧ C2 also refines C1 and C2.
Any implementation of C1 ∧ C2 is a shared implementation of C1 and C2.
Any environment for C1 and C2 is an environment for C1 ∧ C2.

3 Independent implementability. Compatible contracts can be independently
implemented.

4 Independent refinement. For all contracts Ci and C′
i, i ∈ I, if Ci, i ∈ I are compat-

ible and C′
i � Ci, i ∈ I hold, then C′

i, i ∈ I are compatible and
⊗

i∈I C′
i �

⊗
i∈I Ci

5
Commutativity, sub-associativity. For any finite sets of contracts Ci, i = 1, . . . , n,
C1 ⊗ C2 = C2 ⊗ C1 and

⊗
1≤i≤n Ci � (

⊗
1≤i<n Ci)⊗ Cn holds.

6 Sub-distributivity. The following holds, if all contract compositions in the
formula are well defined: ((C11 ∧ C21)⊗ (C12 ∧ C22)) � ((C11 ⊗ C12) ∧ (C21 ⊗ C22))

contract theory needs to possess in order to be considered an instance of the
meta-theory.

Contract conjunction. The conjunction of two contracts C1 and C2, denoted
C1∧C2, is defined as their greatest lower bound w.r.t. the refinement order. (The
intention is that (E1,M1)∧ (E2,M2) should equal (E1 ∪E2,M1 ∩M2); however,
this cannot be taken as the definition since not every such pair necessarily con-
stitutes a contract.) Then, we have the three desirable properties of conjunction
listed in Table 1, which together are referred to as shared refinement.

Contract composition. The composition of two contracts C1 = (E1,M1) and
C2 = (E2,M2), denoted C1⊗C2 = (E,M), is defined when every two components
m1 ∈ M1 and m2 ∈ M2 are composable, and must then be the least contract,
w.r.t. the refinement order, satisfying the following conditions:

(i) m1 ∈M1 ∧m2 ∈M2 ⇒ m1 ×m2 ∈M ;
(ii) e ∈ E ∧m1 ∈M1 ⇒ m1 × e ∈ E2; and
(iii) e ∈ E ∧m2 ∈M2 ⇒ e×m2 ∈ E2.

If all of the above is satisfied, then properties 3-6 of Table 1 hold. The intention
is that composing two components implementing C1 and C2 should yield an
implementation of C1 ⊗ C2, and composing an environment of C1 ⊗ C2 with an
implementation of C1 should result in a valid environment for C2, and vice versa.
This is important in order to enable independent development.

3 Denotational Semantics of Programs and Contracts

In this section we summarise the background needed to understand the formal
developments later in the paper. First, we recall the standard denotational se-
mantics of programs with procedures on a typical toy programming language.

An Abstract Contract Theory for Programs with Procedures 159

Next, we summarise Hoare logic and contracts, and provide a semantic justifi-
cation of procedure-modular verification, also based on denotational semantics.

3.1 The Denotational Semantics of Programs with Procedures

This section sketches the standard presentation of denotational semantics for
procedural languages, as presented in textbooks such as [23,19]. This semantics
is the inspiration for the definition of components in our abstract contract theory
in Section 4.1. We start with a simplistic programming language not involving
procedures, and add procedures later to the language.

The following toy sequential programming language is typically used to
present the denotational semantics of imperative languages:

S ::= skip | x := a | S1;S2 | if b then S1 else S2 | while b do S

where S ranges over statements, a over arithmetic expressions, and b over Boolean
expressions.

To define the denotational semantics of the language, we define the set State
of program states. A state s ∈ State is a mapping from the program variables
to, for simplicity, the set of integers.

The denotation of a statement S, denoted [[S]], is typically given as a partial
function State ↪→ State such that [[S]] (s) = s′ whenever executing statement S
from the initial state s terminates in state s′. In case that executing S from s does
not terminate, the value of [[S]] (s) is undefined. The definition of [[S]] proceeds
by induction on the structure of S. For example, the meaning of sequential
composition of statements is usually captured with relation composition, as given
by the equation [[S1;S2]]

def
= [[S1]] ◦ [[S2]]. For the treatment of the remaining

statements of the language, the reader is referred to [23,19].
The definition of denotation captures through its type (as a partial func-

tion) that the execution of statements is deterministic. For non-deterministic
programs, the type of denotations is relaxed to [[S]] ⊆ State × State; then,
(s, s′) ∈ [[S]] captures that there is an execution of S starting in s that termi-
nates in s′. For technical reasons that will become clear below, we shall use this
latter denotation type in our treatment.

Note that we could alternatively have chosen State+ as the denotational do-
main, and most results would still hold in the context of finite-trace semantics.
However, we chose to develop the theory with a focus on Hoare-logic and de-
ductive verification. In fact, the domain State× State can be seen as a special
case of finite traces. In future work, we will also investigate concrete contract
languages based on this semantics, and extend the theory for that context.

Procedures and Procedure Calls. To extend the language and its denotational
semantics with procedures and procedure calls, we follow again the approach
of [23], but adapt it to an “open” setting, where some called procedures might not
be declared. We consider programs in the context of a finite set P of procedure
names (of some larger, “closed” program), and a set of procedure declarations of

160 C. Lidström and D. Gurov

the form proc p is Sp, where p ∈ P. Further, we extend the toy programming
language with the statement call p.

Listing 1.1. An even-odd toy program.

proc even i s i f n = 0 then r := 1 e l s e (n := n − 1 ; c a l l odd) ;
proc odd i s i f n = 0 then r := 0 e l s e (n := n − 1 ; c a l l even)

As an example, Listing 1.1 shows a (closed) program in the toy language,
implementing two mutually recursive procedures. The procedures check whether
the value of the global variable n is even or odd, respectively, and assign the
corresponding truth value to the variable r.

Due to the (potential) recursion in the procedure declarations, the denota-
tion of call p, and thus of the whole language, cannot be defined by structural
induction as directly as before. We therefore define, for any set P ⊆ P of proce-
dure names, the set EnvP = P → 2State×State of procedure environments, each
environment ρ ∈ EnvP thus providing a denotation for each procedure in P .

Let Env
def
=

⋃
P⊆P EnvP be the set of all procedure environments. We define

a partial order relation � on procedure environments, as follows. For any two
procedure environments ρ ∈ EnvP and ρ′ ∈ EnvP ′ , ρ � ρ′ if and only if P ⊆ P ′

and ∀p ∈ P. ρ(p) ⊆ ρ′(p).
Recall that a complete lattice is a partial order, every set of elements of which

has a greatest lower bound (glb) within the domain of the lattice (see, e.g., [23]).
It is easy to show that for any P ⊆ P, (EnvP ,�) is a complete lattice, since a
greatest lower bound will exist within EnvP . Then, the least upper bound (lub)
ρ1�ρ2 of any two function environments ρ1 ∈ EnvP1 and ρ2 ∈ EnvP2 also exists,
and is the environment ρ ∈ EnvP1∪P2

such that ∀p ∈ P1∪P2. ρ(p) = ρ1(p)∪ρ2(p).
We will sometimes need a procedure environment that maps every procedure

in P to State× State, and we shall denote this environment by ρ�P .
Next, for sets of procedures, we shall need the notion of interface, which is

a pair (P−, P+) of disjoint sets of procedure names, where P+ ⊆ P is a set of
provided (or declared) procedures, and P− ⊆ P a set of required (or called, but
not declared) ones.

Then, we (re)define the notion of denotation of statements S in the context
of a given interface (P−, P+) and environments ρ− ∈ EnvP− and ρ+ ∈ EnvP+ ,

and denote it by [[S]]
ρ+

ρ− . In particular, we define [[call p]]ρ
+

ρ− as ρ−(p) when p ∈ P−

and as ρ+(p) when p ∈ P+.
Intuitively, the denotation of a call to a procedure should be equal to the de-

notation of the body of the latter. We therefore introduce, given an environment
ρ− ∈ EnvP− , the function ξ : EnvP+ → EnvP+ defined by ξ(ρ+)(p)

def
= [[Sp]]

ρ+

ρ−

for any ρ+ ∈ EnvP+ and p ∈ P+, and consider its fixed points. By the Knaster-
Tarski Fixed-Point Theorem (as stated, e.g., in [23]), since (EnvP+ ,�) is a
complete lattice and ξ is monotonic, ξ has a least fixed-point ρ+0 .

An Abstract Contract Theory for Programs with Procedures 161

Finally, we define the notion of standard denotation of statement S in the
context of a given interface (P−, P+) and environment ρ− ∈ EnvP− , denoted

[[S]]ρ− , by [[S]]ρ−
def
= [[S]]

ρ+
0

ρ− , where ρ+0 is the least fixed-point defined above.
For example, for the closed program in Listing 1.1, we have an interface with

P+ = {even, odd} and P− = ∅. Then, (s, s′) ∈ [[Seven]]
ρ+

ρ− if either s(n) = 0

and s′ = s[r '→ 1], or else if s(n) > 0 and (s[n '→ s(n) − 1], s′) ∈ ρ+(odd). The
denotation [[Sodd]]

ρ+

ρ− is analogous. The resulting least fixed-point ρ+0 is such that

(s, s′) ∈ [[Seven]]ρ− , or equivalently (s, s′) ∈ [[Seven]]
ρ+
0

ρ− , whenever s(n) ≥ 0, and
either s(n) is even and then s′(n) = 0 and s′(r) = 1, or else s(n) is odd and then
s′(n) = 0 and s′(r) = 0. The standard denotation [[Sodd]]ρ− of odd is analogous.

3.2 Hoare Logic and Contracts

In this section we summarise the denotational semantics of Hoare logic and
the semantic justification of procedure-modular verification, as developed by the
second author in [12]. These formalisations serve as the starting point for the
definition of contracts in our contract theory developed in Section 4.2.

Hoare Logic. The basic judgement of Hoare logic [15] is the Hoare triple, written
{P}S{Q}, where P and Q are assertions over the program state, and S is a
program statement. The Hoare triple signifies that if the statement S is executed
from a state that satisfies P (called the pre-condition), and if this execution
terminates, then the final state of the execution will satisfy Q (called the post-
condition). Additionally, so-called logical variables can be used within a Hoare
triple, to specify the desired relationship between the values of variables after
execution and the values of variables before execution. The values of the program
variables are defined by the notion of state; to give a meaning to the logical
variables we shall use interpretations I. We shall write s |=I P to signify that
the assertion P is true w.r.t. state s and interpretation I. The formal validity of
a Hoare triple is denoted by |=par {P}S{Q}, where the subscript signifies that
validity is in terms of partial correctness, where termination of the execution
of S is not required.

An example of a Hoare triple, stating the desired behaviour of procedure odd
from Listing 1.1, is shown below, where we use the logical variable n0 to capture
to the value of n prior to execution of odd :

{n ≥ 0∧n = n0} Sodd {(n0 mod 2 = 0⇒ r = 0)∧(n0 mod 2 = 1⇒ r = 1)} (1)

Procedure even is specified analogously.
Hoare logic comes with a proof calculus for reasoning in terms of Hoare

triples, consisting of proof rules for the different types of statements of the pro-
gramming language. An example is the rule for sequential composition:

{P} S1 {R} {R} S2 {Q}
{P} S1;S2 {Q} Composition

162 C. Lidström and D. Gurov

which essentially states that if executing S1 from any state satisfying P termi-
nates (if at all) in some state satisfying R, and executing S2 from any state
satisfying R terminates (if at all) in some state satisfying Q, then it is the case
that executing the composition S1;S2 from any state satisfying P terminates
(if at all) in some state satisfying Q. The proof system is sound and relatively
complete w.r.t. the denotational semantics of the programming language (see,
e.g., [23,19]).

Hoare Logic Contracts. One can view a Hoare triple {P}S{Q} as a contract
C = (P,Q) imposed on the program S. In many contexts it is meaningful to
separate the contract from the program; for instance, if the program is yet to
be implemented. In our earlier work [12], we gave such contracts a denotational
semantics as follows:

[[C]]
def
= {(s, s′) | ∀I. (s |=I P ⇒ s′ |=I Q)} (2)

The rationale behind this definition is the following desirable property: a program
meets a contract whenever its denotation is subsumed by the denotation of the
contract, i.e., S |=par C if and only if [[S]] ⊆ [[C]].

For example, for the contract Codd induced by (1) we have that (s, s′) ∈
[[Codd]] if and only if either s(n) < 0, or else s′(r) = 0 if s(n) is even and
s′(r) = 1 if s(n) is odd. The denotation of Ceven is analogous.

The Denotational Semantics of Programs with Procedure Contracts. Let S be a
program with procedures, and let every declared procedure p ∈ P be equipped
with a procedure contract Cp. Procedure-modular verification refers to techniques
that verify every procedure in isolation. The key to this is to handle procedure
calls by using the contract of the called procedure rather than its body (i.e., by
contracting rather than by inlining [7]). In [12], a semantic justification of this
is given by means of a contract-relative denotational semantics of statements.
The intuition behind this semantics is that procedure calls are given a meaning
through the denotation of the contract of the called procedure, rather than
through the denotation of its body.

The contract-relative denotational semantics of a statement S, denoted [[S]]
cr,

is defined with the help of the contract environment ρc that is induced by the
procedure contracts, i.e., ρc(p)

def
= [[Cp]] for all p ∈ P, as [[S]]

cr def
= [[S]]ρc

. Notice
that this definition does not involve solving any recursive equations (i.e., finding
fixed points), and gives rise to a contract-relative notion of when a statement
meets a contract, namely S |=cr

par C if and only if [[S]]cr ⊆ [[C]]. This is exactly
the correctness notion that is the target of procedure-modular verification. As
shown in [12], this notion is sound w.r.t. the original notion S |=par C, in the
sense that S |=cr

par C entails S |=par C. In other words, verifying a program
procedure-modularly establishes that the program is correct w.r.t. its contract
in the standard sense.

For example, the contract-relative semantics of Seven is such that (s, s′) ∈
[[Seven]]

cr if either s(n) < 0, or s(n) = 0 and s′ = s[r '→ 1], or else s′(r) = 1

An Abstract Contract Theory for Programs with Procedures 163

if s(n) is even and s′(r) = 0 if s(n) is odd. The contract-relative semantics
of Sodd is analogous. Then, it is easy to check that both Seven |=cr

par Ceven and
Sodd |=cr

par Codd hold.

4 An Abstract Contract Theory

This section presents an abstract contract theory for programs with procedures.
The theory builds on the basic notion of denotation as a binary relation over
states. As we will show later, it is both an abstraction of the denotational se-
mantic view on programs with procedures and procedure contracts presented
in Sections 3.1 and 3.2, and an instantiation of the meta-theory described in
Section 2.2.

4.1 Components

In the context of a concrete programming language, we view a component as a
module, consisting of a collection of procedures that are provided by the module.
The module may call required procedures that are external to the module. The
way the provided procedures transform the program state upon a call depends
on how the required procedures transform the state. We take this observation
as the basis of our abstract setting, in which state transformers are modelled
as denotations (i.e., as binary relations over states). A component will thus be
simply a mapping from denotations of the required procedures to denotations of
the provided ones, both captured through the notion of procedure environments.

The contract theory is abstract, in that it is not defined for a particular
programming language, and may be instantiated with any procedural language.
As with the meta-theory, the abstract contract theory is also defined only on the
semantic level.

Recall the notions and notation from Section 3.1. A component interface
I = (P−, P+) is a pair of disjoint, finite sets of procedure names, of the required
and the provided ones, respectively.

Definition 1 (Component). A component m with interface Im = (P−
m , P+

m)
is a mapping m : EnvP−

m
→ EnvP+

m
.

Let M denote the universe of all components over P.
We assume that any system is built up from a set of base components, the

simplest components from which more complex components are then obtained
by composition. The base components must be monotonic functions over the
lattice defined in Section 3.1.

When P−
m = ∅, we shall identify m with an element of EnvP+

m
. In other

words, when a component is closed, i.e., is not dependent on any external pro-
cedures, the provided environment is constant.

Definition 2 (Component composability). Two components m1 and m2

are composable iff P+
m1
∩ P+

m2
= ∅.

164 C. Lidström and D. Gurov

When defining the composition of two components, particular care is required
in the treatment of procedure names that are provided by one of the components
while required by the other. Let μx. f(x) denote the least fixed-point of a func-
tion f , when it exists.

Definition 3 (Component composition). Given two composable components
m1 : EnvP−

m1
→ EnvP+

m1
and m2 : EnvP−

m2
→ EnvP+

m2
, their composition is

defined as a mapping m1 ×m2 : EnvP−
m1×m2

→ EnvP+
m1×m2

such that:

P+
m1×m2

def
= P+

m1
∪ P+

m2

P−
m1×m2

def
= (P−

m1
∪ P−

m2
) \ (P+

m1
∪ P+

m2
)

m1 ×m2
def
= λρ−m1×m2

∈ EnvP−
m1×m2

. μρ. χ+
m1×m2

(ρ)

where χ+
m1×m2

: EnvP+
m1×m2

→ EnvP+
m1×m2

is defined, in the context of a given

ρ−m1×m2
∈ EnvP−

m1×m2

, as follows. Let ρ+m1×m2
∈ EnvP+

m1×m2

, and let ρ−m1
∈

EnvP−
m1

be the environment defined by:

ρ−m1
(p)

def
=

{
ρ+m1×m2

(p) if p ∈ P−
m1
∩ P+

m2

ρ−m1×m2
(p) if p ∈ P−

m1
\ P+

m2

and let ρ−m2
∈ EnvP−

m2
be defined symmetrically. We then define:

χ+
m1×m2

(ρ+m1×m2
)(p)

def
=

{
m1(ρ

−
m1

)(p) if p ∈ P+
m1

m2(ρ
−
m2

)(p) if p ∈ P+
m2

In the above definition, χ+
m1×m2

represents the denotations of the procedure
bodies of the procedures provided by the two composed components, given deno-
tations of procedure calls to the same procedures. The choice of least fixed-point
will be crucial for the proof of Theorem 2(i) in Section 4.2 below.

The definition is well-defined, in the sense that the stated least fixed-points
exist, and the resulting components are monotonic functions.

Theorem 1. Component composition is well-defined.

The existence of a least fixed-point follows from the Knaster-Tarski Fixed-Point
Theorem, as stated, e.g., in [23]. It can then be shown, by structural induction,
that composition is well-defined. For lack of space, the proofs of all theorems,
some of which are conceptually not very involved but rather verbose, are omitted
here. The full proofs can be found in the accompanying technical report [17].

4.2 Denotational Contracts

We now define the notion of denotational contracts c in the style of assume/guar-
antee contracts [4,6]. Contracts shall also be given interfaces.

An Abstract Contract Theory for Programs with Procedures 165

Definition 4 (Denotational contract). A denotational contract c with in-
terface Ic = (P−

c , P+
c) is a pair (ρ−c , ρ

+
c), where ρ−c ∈ EnvP−

c
and ρ+c ∈ EnvP+

c
.

The intended interpretation of the environment pair is as follows: assuming that
the denotation of every called procedure p ∈ P−

c is subsumed by ρ−c (p), then
it is guaranteed that the denotation of every provided procedure p′ ∈ P+

c is
subsumed by ρ+c (p

′).

Definition 5 (Contract implementation). A component m with interface
Im = (P−

m , P+
m) is an implementation for, or implements, a contract c =

(ρ−c , ρ
+
c) with interface Ic = (P−

c , P+
c), denoted m |= c, iff P−

c ⊆ P−
m , P+

m ⊆ P+
c ,

and m(ρ−c � ρ�
P−

m\P−
c
) � ρ+c .

The reason for not requiring the interfaces to be equal is that we aim at a subset
relation between components implementing a contract and those implementing
a refinement of said contract, in the meta-theory instantiation.

For a mapping h : A → B and set A′ ⊆ A, let h|A′ denote as usual the
restriction of h on A′.

Definition 6 (Contract environment). A component m is an environment
for contract c iff, for any implementation m′ of c, m and m′ are composable,
and ∀ρ−m×m′ ∈ EnvP−

m×m′
. (m×m′)(ρ−m×m′)|P+

c
� ρ+c .

Intuitively, an environment of a contract c is then a component such that when
it is composed with an implementation of c, the composition will operate satis-
factorily with respect to the guarantee of the contract.

We will now define the refinement relation, and the conjunction and compo-
sition operations, on contracts.

Definition 7 (Contract refinement). A contract c refines contract c′, de-
noted c � c′, iff ρ−c′ � ρ−c and ρ+c � ρ+c′ , where � is the partial order relation
defined in Section 3.1.

The refinement relation reflects the intention that if a contract c refines another
contract c′, then any component implementing c should also implement c′.

Definition 8 (Contract conjunction). The conjunction of two contracts
c1 = (ρ−c1 , ρ

+
c1) and c2 = (ρ−c2 , ρ

+
c2) is the contract c1 ∧ c2

def
= (ρ−c1 � ρ−c2 , ρ

+
c1 � ρ+c2),

where � and � are the lub and glb operations of the lattice, respectively.

This definition is consistent with the intention that any contract that refines
c1 ∧ c2 should also refine c1 and c2 individually. The interface of c1 ∧ c2 is then
Ic1∧c2 = (P−

c1 ∪ P−
c2 , P

+
c1 ∩ P+

c2). Note that while this is the interface in general,
conjunction of contracts is typically used to merge different viewpoints of the
same component, and in that case Ic1 = Ic2 = Ic1∧c2 .

Definition 9 (Contract composability). Two contracts c1 = (ρ−c1 , ρ
+
c1) and

c2 = (ρ−c2 , ρ
+
c2) with interfaces Ic1 = (P−

c1 , P
+
c1) and Ic2 = (P−

c2 , P
+
c2) are compos-

able if: (i) P+
c1 ∩ P+

c2 = ∅, (ii) ∀p ∈ P−
c1 ∩ P+

c2 . ρ+c2(p) ⊆ ρ−c1(p), and
(iii) ∀p ∈ P−

c2 ∩ P+
c1 . ρ

+
c1(p) ⊆ ρ−c2(p).

166 C. Lidström and D. Gurov

The conditions for composability ensure that the mutual guarantees of the two
contracts meet each other’s assumptions.

Definition 10 (Contract composition). The composition of two composable
contracts c1 = (ρ−c1 , ρ

+
c1) and c2 = (ρ−c2 , ρ

+
c2), with interfaces Ic1 = (P−

c1 , P
+
c1) and

Ic2 = (P−
c2 , P

+
c2), respectively, is the contract c1⊗ c2

def
= (ρ−c1⊗c2 , ρ

+
c1 � ρ+c2), where:

ρ−c1⊗c2

def
= (ρ−c1 � ρ−c2)

∣∣(P−
c1

∪P−
c2

)\(P+
c1

∪P+
c2

)

The interface of c1 ⊗ c2 is Ic1⊗c2 = ((P−
c1 ∪ P−

c2) \ (P+
c1 ∪ P+

c2), P
+
c1 ∪ P+

c2).

Theorem 2. For any composable contracts c1 and c2, and any implementations
m1 |= c1 and m2 |= c2, m1 and m2 are composable, and c1 ⊗ c2 is the least
contract (w.r.t. refinement order) for which the following properties hold:

(i) m1 ×m2 |= c1 ⊗ c2,
(ii) if m is an environment to c1 ⊗ c2, then m1 ×m is an environment to c2,
(iii) if m is an environment to c1 ⊗ c2, then m×m2 is an environment to c1.

5 Connection to Meta-Theory

In this section we show that the abstract contract theory presented in Section 4
instantiates the meta-theory described in Section 2.2.

In our instantiation of the meta-theory, we consider as the abstract compo-
nent universe M the same universe of components M as defined in Section 4.1.
To distinguish the contracts of the meta-theory from those of the abstract the-
ory, we shall always denote the former by C and the latter by c. Recall that a
contract C is a pair (E,M), where E,M ⊆ M. The formal connection between
the two notions is established with the following definition.

Definition 11 (Induced contract). Let c be a denotational contract. It in-
duces the contract Cc = (Ec,Mc), where Ec

def
= {m ∈M | m is an environment

for c} and Mc
def
= {m ∈M | m |= c}.

Since contract implementation requires that the implementing component’s pro-
vided functions are a subset of the contract’s provided functions, every compo-
nent m such that P+

m ∩ P+
c = ∅ is composable with every component in Mc.

The definitions of implementation, refinement and conjunction of denota-
tional contracts make this straightforward definition of induced contracts possi-
ble, so that it directly results in refinement as set membership and conjunction
as lub w.r.t. the refinement order.

Theorem 3. The contract theory of Section 4 instantiates the meta-theory of
Benveniste et al. [5], in the sense that composition of components is associative
and commutative, and for any two contracts c1 and c2:

(i) c1 � c2 iff Cc1 refines Cc2 according to the definition of the meta-theory,

An Abstract Contract Theory for Programs with Procedures 167

(ii) Cc1∧c2 is the conjunction of Cc1 and Cc2 as defined in the meta-theory, and
(iii) Cc1⊗c2 is the composition of Cc1 and Cc2 as defined in the meta-theory.

The proof is straightforward, since many definitions of the contract theory are
deliberately similar to their counterparts in the meta-theory.

Let us now return to our example from Section 3. When applying Contract
Based Design, contracts at the more abstract level will be decomposed into
contracts at the more concrete level. So, for our example, we might have at the
top level a contract c = (ρ−c , ρ

+
c) with interface (∅, {even, odd}), where ρ−c = ∅,

and where ρ+c ∈ EnvP+
c

maps even to the set of pairs (s, s′) such that whenever
s(n) is non-negative and even, then s′(r) = 1, and when s(n) is non-negative
and odd, then s′(r) = 0, and maps odd in a dual manner. This contract could
then be decomposed into two contracts ceven and codd , so that ρ+ceven (even)

def
=

ρ+c (even) and ρ−ceven (odd)
def
= ρ+c (odd), and codd is analogous. Then, we would

have ceven ⊗ codd � c, and for any two components meven and modd such that
meven |= ceven and modd |= codd , it would hold that meven ×modd |= c.

6 Connection to Programs with Procedures

In this section we discuss how our abstract contract theory from Section 4 relates
to programs with procedures as presented in Section 3.1, and how it relates to
Hoare logic and procedure-modular verification as presented in Section 3.2.

First, we define how to abstract the denotational notion of procedures into
components in the abstract theory, based on the function ξ from Section 3.1.

Definition 12 (From procedure sets to components). For any set of pro-
cedures P+, calling procedures P ′, we define the component m : EnvP−

m
→

EnvP+
m

, where P−
m

def
= P ′ \ P+

m and P+
m

def
= P+, so that ∀ρ−m ∈ EnvP−

m
. ∀p ∈

P+
m . m(ρ−m)(p)

def
= [[Sp]]ρ−

m
.

As the next result shows, procedure set abstraction and component compo-
sition commute. Together with commutativity and associativity of component
composition, this means that the initial grouping of procedures into components
is irrelevant, and that one can start with abstracting each individual procedure
into a component.

Theorem 4. For any two disjoint sets of procedures P+
1 and P+

2 , abstracted
individually into components m1 and m2, respectively, and P+

1 ∪ P+
2 abstracted

into component m, it holds that m1 ×m2 = m.

The result is a direct consequence of Definition 12, Definition 3, and the
well-known Bekić’s Lemma [3] about simultaneous fixed-points.

168 C. Lidström and D. Gurov

Component abstraction example. Let us illustrate the theorem on our even-odd
example (however, the example does not really illustrate Bekić’s Lemma, since
the two procedures do not call themselves).

By Definition 12, the procedure set {even} is abstracted into component
meven : Env{odd} → Env{even} with interface ({odd}, {even}), so that ∀ρ− ∈
Env{odd}. m(ρ−)(even) = [[Seven]]ρ− . By definition, [[Seven]]ρ− is equal to

[[Seven]]
ρ+
0

ρ− , where ρ+0 is the least fixed point of ξ : Env{even} → Env{even}

defined by ξ(ρ+)(even)
def
= [[Seven]]

ρ+

ρ− for any ρ+ ∈ Env{even}. Notice, however,

that procedure even does not have any calls to itself, so [[Seven]]
ρ+
0

ρ− does not re-
ally depend on ρ+. Then, for any ρ− ∈ Env{odd}, (s, s′) ∈ m(ρ−)(even) if either
s(n) = 0 and s′ = s[r '→ 1], or else if s(n) > 0 and (s[n '→ s(n)−1], s′) ∈ ρ−(odd).

Similarly, the procedure set {odd} is abstracted into component modd :
Env{even} → Env{odd} with interface ({even}, {odd}), so that ∀ρ− ∈ Env{even}.
m(ρ−)(odd) = [[Sodd]]ρ− . Then, for any ρ− ∈ Env{even}, (s, s′) ∈ m(ρ−)(odd) if
either s(n) = 0 and s′ = s[r '→ 0], or else if s(n) > 0 and (s[n '→ s(n)− 1], s′) ∈
ρ−(even).

Now, applying Definition 12 to the whole (closed) program yields a com-
ponent m : Env∅ → Env{even,odd} with interface (∅, {even, odd}), so that
∀ρ− ∈ Env∅. ∀p ∈ {even, odd} . m(ρ−)(p) = [[Sp]]ρ− . Recall the denotations
[[Seven]]ρ− and [[Sodd]]ρ− from the end of Section 3.1.

Components meven and modd are composable, and by Definition 3, their
composition has (the same) interface (∅, {even, odd}), and is (also) a mapping
meven ×modd : Env∅ → Env{even,odd}.

Finally, note that function χ+
meven×modd

: Env{even,odd} → Env{even,odd} is
exactly the function ξ in the context of the interface (∅, {even, odd}). This
can be seen by first noting that since Env∅ = ∅, we have that χ+

meven×modd

only depends on its arguments. Furthermore, for all ρ+ ∈ Env{even,odd}, if

ρ+odd
def
= ρ+∣∣{odd} and ρ+even

def
= ρ+∣∣{even} we have that, since odd ∈ P−

even ∩ P+
odd ,

then χ+
meven×modd

(ρ+)(even) = meven(ρ
+
odd)(even) = [[Seven]]ρ+

odd
= [[Seven]]

ρ+

=

ξ(ρ+)(even). Similarly χ+
meven×modd

(ρ+)(odd) = ξ(ρ+)(odd). We therefore have
meven ×modd = m.

We now define how to abstract Hoare logic contracts into denotational con-
tracts, in terms of the contract environment ρc defined in Section 3.2.

Definition 13 (From Hoare logic contracts to denotational contracts).
For a procedure p with Hoare logic contract Cp, calling other procedures P−, we
define the denotational contract cp = (ρ−cp , ρ

+
cp) with interface P+

cp

def
= {p} and

P−
cp

def
= P−, so that ρ+cp(p)

def
= ρc(p), and ∀p′ ∈ P−. ρ−cp(p

′) = ρc(p
′).

In this way, conceptually, denotational contracts become assume/guarantee-
style specifications over Hoare logic procedure contracts: assuming that all (ex-

An Abstract Contract Theory for Programs with Procedures 169

ternal) procedures called by a procedure p transform the state according to their
Hoare logic contracts, procedure p obliges itself to do so as well.

We now show that if a procedure implements a Hoare logic contract, then the
abstracted component will implement the abstracted contract, and vice versa.
Together with Theorem 4, this result allows the procedure-modular verification
of abstract components.

Theorem 5. For any procedure p with procedure contract Cp, abstracted into
component mp with contract cp, we have Sp |=cr

par Cp iff mp |= cp.

The result follows mainly from Definitions 12 and 13, and the denotational se-
mantics given in Section 3.

Returning to the example from Sections 3 and 5, we can abstract the pro-
cedure set {even} into component meven , with interface ({odd}, {even}), which
would be a function Env{odd} → Env{even}, and ∀ρ− ∈ Env{odd}. m(ρ−)(even)
= [[Seven]]ρ− . The denotational contracts ceven and codd resulting from the de-
composition shown in Section 5, would be exactly the abstraction of the Hoare
Logic contracts Ceven and Codd shown in Section 3.2. They would both be part
of the contract environment used in procedure-modular verification, for example
when verifying that Seven |=cr

par Ceven , which would entail meven |= ceven . Thus,
by applying standard procedure-modular verification at the source code level,
we prove the top-level contract c proposed in Section 5.

7 Conclusion

We presented an abstract contract theory for procedural languages, based on de-
notational semantics. The theory is shown to be an instance of the meta-theory
of [5], and at the same time an abstraction of the standard denotational seman-
tics of procedural languages. We believe that our contract theory can be used to
support the development of cyber-physical and embedded systems by the design
methodology supported by the meta-theory, allowing the individual procedures
of the embedded software to be treated as any other system component. The
work also strengthens the claims of the meta-theory of distilling the notion of
contracts to its essence, by showing that it is applicable also in the context
of procedural programs and deductive verification. Finally, this work serves as
a preparation for combining our contract theory for procedural programs with
other instantiations of the meta-theory. In future work we plan to investigate
the utility of our contract theory on real embedded systems taken from the au-
tomotive industry, where not all components are procedural programs, or even
software (cf. our previous work, e.g., [11]). We also plan to extend our toy im-
perative language with additional features, such as procedure parameters and
return values. Furthermore, we plan to extend the contract theory to capture
program traces by developing a finite-trace semantics, to enable its use in the
specification and verification of temporal properties. Lastly, we plan to combine
our contract theory with an existing contract theory for hybrid systems [20].

170 C. Lidström and D. Gurov

References

1. Abadi, M., Lamport, L.: Composing specifications. ACM Trans. Program. Lang.
Syst. 15(1), 73–132 (Jan 1993). https://doi.org/10.1145/151646.151649

2. Bauer, S., David, A., Hennicker, R., Larsen, K., Legay, A., Nyman, U., Wa-
sowski, A.: Moving from specifications to contracts in component-based de-
sign. In: Fundamental Approaches to Software Engineering. pp. 43–58 (2012).
https://doi.org/10.1007/978-3-642-28872-2_3

3. Bekić, H.: Definable operation in general algebras, and the theory of automata and
flowcharts. In: Programming Languages and Their Definition - Hans Bekić (1936-
1982). Lecture Notes in Computer Science, vol. 177, pp. 30–55. Springer (1984).
https://doi.org/10.1007/BFb0048939

4. Benveniste, A., Caillaud, B., Ferrari, A., Mangeruca, L., Passerone, R., Sofro-
nis, C.: Multiple viewpoint contract-based specification and design. In: For-
mal Methods for Components and Objects. vol. 5382, pp. 200–225 (10 2007).
https://doi.org/10.1007/978-3-540-92188-2_9

5. Benveniste, A., Caillaud, B., Nickovic, D., Passerone, R., Raclet, J.B.,
Reinkemeier, P., Sangiovanni-Vincentelli, A., Damm, W., Henzinger, T.A.,
Larsen, K.G.: Contracts for System Design, vol. 12. Now Publishers (2018).
https://doi.org/10.1561/1000000053

6. Benvenuti, L., Ferrari, A., Mangeruca, L., Mazzi, E., Passerone, R., Sofronis, C.: A
contract-based formalism for the specification of heterogeneous systems. In: 2008
Forum on Specification, Verification and Design Languages. pp. 142–147 (09 2008).
https://doi.org/10.1109/FDL.2008.4641436

7. Bubel, R., Hähnle, R., Pelevina, M.: Fully abstract operation contracts. In: Lever-
aging Applications of Formal Methods, Verification and Validation. Specialized
Techniques and Applications. pp. 120–134 (2014). https://doi.org/10.1007/978-3-
662-45231-8_9

8. Chen, T., Chilton, C., Jonsson, B., Kwiatkowska, M.: A compositional specifica-
tion theory for component behaviours. In: Programming Languages and Systems.
pp. 148–168. Springer Berlin Heidelberg (2012). https://doi.org/10.1007/978-3-
642-28869-2_8

9. Cimatti, A., Tonetta, S.: Contracts-refinement proof system for component-
based embedded systems. Science of Computer Programming 97 (2015).
https://doi.org/10.1016/j.scico.2014.06.011

10. Floyd, R.W.: Assigning meanings to programs. Mathematical aspects of computer
science 19, 19–32 (1967). https://doi.org/10.1007/978-94-011-1793-7_4

11. Gurov, D., Lidström, C., Nyberg, M., Westman, J.: Deductive functional verifi-
cation of safety-critical embedded c-code: An experience report. In: Proceedings
of FMICS-AVoCS 2017. Lecture Notes in Computer Science, vol. 10471, pp. 3–18.
Springer (2017). https://doi.org/10.1007/978-3-319-67113-0_1

12. Gurov, D., Westman, J.: A Hoare Logic Contract Theory: An Exercise in Deno-
tational Semantics, pp. 119–127. Springer International Publishing, Cham (2018).
https://doi.org/10.1007/978-3-319-98047-8_8

13. Hähnle, R., Schaefer, I., Bubel, R.: Reuse in software verification by abstract
method calls. In: Automated Deduction – CADE-24. vol. 7898, pp. 300–314 (06
2013). https://doi.org/10.1007/978-3-642-38574-2_21

14. Hatcliff, J., Leavens, G.T., Leino, K.R.M., Müller, P., Parkinson, M.: Behav-
ioral interface specification languages. ACM Comput. Surv. 44(3) (Jun 2012).
https://doi.org/10.1145/2187671.2187678

https://doi.org/10.1145/151646.151649
https://doi.org/10.1007/978-3-642-28872-2_3
https://doi.org/10.1007/BFb0048939
https://doi.org/10.1007/978-3-540-92188-2_9
https://doi.org/10.1561/1000000053
https://doi.org/10.1109/FDL.2008.4641436
https://doi.org/10.1007/978-3-662-45231-8_9
https://doi.org/10.1007/978-3-662-45231-8_9
https://doi.org/10.1007/978-3-642-28869-2_8
https://doi.org/10.1007/978-3-642-28869-2_8
https://doi.org/10.1016/j.scico.2014.06.011
https://doi.org/10.1007/978-94-011-1793-7_4
https://doi.org/10.1007/978-3-319-67113-0_1
https://doi.org/10.1007/978-3-319-98047-8_8
https://doi.org/10.1007/978-3-642-38574-2_21
https://doi.org/10.1145/2187671.2187678

An Abstract Contract Theory for Programs with Procedures 171

15. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (Oct 1969). https://doi.org/10.1145/363235.363259

16. Jones, C.: Specification and design of (parallel) programs. In: Proceedings Of
IFIP’83. vol. 83, pp. 321–332 (01 1983)

17. Lidström, C., Gurov, D.: An abstract contract theory for programs with procedures
(full version). CoRR abs/2101.06087 (2021), https://arxiv.org/abs/2101.06087

18. Meyer, B.: Applying "design by contract". IEEE Computer 25(10), 40–51 (1992).
https://doi.org/10.1109/2.161279

19. Nielson, H.R., Nielson, F.: Semantics with Applications: An Appetizer. Springer-
Verlag, Berlin, Heidelberg (2007). https://doi.org/10.1007/978-1-84628-692-6

20. Nyberg, M., Westman, J., Gurov, D.: Formally proving compositionality in
industrial systems with informal specifications. In: Margaria, T., Steffen, B.
(eds.) Leveraging Applications of Formal Methods, Verification and Valida-
tion: Applications. pp. 348–365. Springer International Publishing, Cham (2020).
https://doi.org/10.1007/978-3-030-61467-6_22

21. Owe, O., Ramezanifarkhani, T., Fazeldehkordi, E.: Hoare-style reasoning from mul-
tiple contracts. In: Integrated Formal Methods - 13th International Conference.
Lecture Notes in Computer Science, vol. 10510, pp. 263–278. Springer (2017).
https://doi.org/10.1007/978-3-319-66845-1_17

22. van Staden, S.: On rely-guarantee reasoning. In: Mathematics of Program
Construction. pp. 30–49. Springer International Publishing, Cham (2015).
https://doi.org/10.1007/978-3-319-19797-5_2

23. Winskel, G.: The Formal Semantics of Programming Languages:
An Introduction. MIT Press, Cambridge, MA, USA (1993).
https://doi.org/10.7551/mitpress/3054.001.0001

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

https://doi.org/10.1145/363235.363259
https://arxiv.org/abs/2101.06087
https://doi.org/10.1109/2.161279
https://doi.org/10.1007/978-1-84628-692-6
https://doi.org/10.1007/978-3-030-61467-6_22
https://doi.org/10.1007/978-3-319-66845-1_17
https://doi.org/10.1007/978-3-319-19797-5_2
https://doi.org/10.7551/mitpress/3054.001.0001
http://creativecommons.org/licenses/by/4.0/

Paracosm: A Test Framework for Autonomous
Driving Simulations

Rupak Majumdar1 , Aman Mathur1 �, Marcus Pirron1 , Laura
Stegner2 , and Damien Zufferey1

1 MPI-SWS, Kaiserslautern, Germany {rupak, mathur, mpirron,

zufferey}@mpi-sws.org
2 University of Wisconsin, Madison, USA stegner@wisc.edu

Abstract. Systematic testing of autonomous vehicles operating in com-
plex real-world scenarios is a difficult and expensive problem. We present
Paracosm, a framework for writing systematic test scenarios for au-
tonomous driving simulations. Paracosm allows users to programmati-
cally describe complex driving situations with specific features, e.g., road
layouts and environmental conditions, as well as reactive temporal be-
haviors of other cars and pedestrians. A systematic exploration of the
state space, both for visual features and for reactive interactions with
the environment is made possible. We define a notion of test coverage
for parameter configurations based on combinatorial testing and low dis-
persion sequences. Using fuzzing on parameter configurations, our auto-
matic test generator can maximize coverage of various behaviors and find
problematic cases. Through empirical evaluations, we demonstrate the
capabilities of Paracosm in programmatically modeling parameterized
test environments, and in finding problematic scenarios.

Keywords: Autonomous driving · Testing · Reactive programming.

1 Introduction

Building autonomous driving systems requires complex and intricate engineering
effort. At the same time, ensuring their reliability and safety is an extremely
difficult task. There are serious public safety and trust concerns [63], aggravated
by recent accidents involving autonomous cars [48]. Software in such vehicles
combine well-defined tasks such as trajectory planning, steering, acceleration
and braking, with underspecified tasks such as building a semantic model of
the environment from raw sensor data and making decisions using this model.
Unfortunately, these underspecified tasks are critical to the safe operation of
autonomous vehicles. Therefore, testing in large varieties of realistic scenarios is
the only way to build confidence in the correctness of the overall system.

Running real tests is a necessary, but slow and costly process. It is diffi-
cult to reproduce corner cases due to infrastructure and safety issues; one can
neither run over pedestrians to demonstrate a failing test case, nor wait for
specific weather and road conditions. Therefore, the automotive industry tests

c© The Author(s) 2021
E. Guerra and M. Stoelinga (Eds.): FASE 2021, LNCS 12649, pp. 172–195, 2021.
https://doi.org/10.1007/978-3-030-71500-7 9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71500-7_9&domain=pdf
http://orcid.org/0000-0003-2136-0542
http://orcid.org/0000-0003-2405-0435
http://orcid.org/0000-0002-6501-728X
http://orcid.org/0000-0003-4496-0727
http://orcid.org/0000-0002-3197-8736
https://doi.org/10.1007/978-3-030-71500-7 9

Paracosm: A Test Framework for Autonomous Driving Simulations 173

System
Under
Test

(SUT)

Paracosm program

Collision
Monitor

Simulation

Controller

Visual model Physical model

Test Vehicle

... ...

World

Behavior

Visual model Physical model

Pedestrian

Road
Segment

Test Input
Generator

...

Fig. 1: A Paracosm program consists of parameterized reactive components
such as the test vehicle, the environment, road networks, other actors and their
behaviors, and monitors. The test input generation scheme guarantees good
coverage over the parameter space. The test scenario depicted here shows a test
vehicle stopping for a jaywalking pedestrian.

autonomous systems in virtual simulation environments [21, 26, 53, 61, 68, 72].
Simulation reduces the cost per test, and more importantly, gives precise control
over all aspects of the environment, so as to test corner cases.

A major limitation of current tools is the lack of customizability: they either
provide a GUI-based interface to design an environment piece-by-piece, or focus
on bespoke pre-made environments. This makes the setup of varied scenarios
difficult and time consuming. Though exploiting parametricity in simulation is
useful and effective [10,23,31,67], the cost of environment setup, and navigating
large parameter spaces, is quite high [31]. Prior works have used bespoke en-
vironments with limited parametricity. More recently, programmatic interfaces
have been proposed [27] to make such test procedures more systematic. However,
the simulated environments are largely still fixed, with no dynamic behavior.

In this work, we present Paracosm, a programmatic interface that enables
the design of parameterized environments and test cases. Test parameters control
the environment and the behaviors of the actors involved. Paracosm supports
various test input generation strategies, and we provide a notion of coverage for
these. Rather than computing coverage over intrinsic properties of the system
under test (which is not yet understood for neural networks [39]), our coverage
criteria is over the space of test parameters. Figure 1 depicts the various parts
of a Paracosm test. A Paracosm program represents a family of tests, where
each instantiation of the program’s parameters is a concrete test case.

Paracosm is based on a synchronous reactive programming model [13, 35,
40,70]. Components, such as road segments or cars, receive streams of inputs and
produce streams of outputs over time. In addition, components have graphical
assets to describe their appearance for an underlying visual rendering engine and
physical properties for an underlying physics simulator. For example, a vehicle
in Paracosm not only has code that reads in sensor feeds and outputs steering
angle or braking, but also has a textured mesh representing its shape, position

174 R. Majumdar et al.

and orientation in 3D space, and a physics model for its dynamical behavior. A
Paracosm configuration consists of a composition of several components. Us-
ing a set of system-defined components (road segments, cars, pedestrians, etc.)
combined using expressive operations from the underlying reactive programming
model, users can set up complex temporally varying driving scenarios. For ex-
ample, one can build an urban road network with intersections, pedestrians and
vehicular traffic, and parameterize both, environment conditions (lighting, fog),
and behaviors (when a pedestrian crosses a street).

Streams in the world description can be left “open” and, during testing,
Paracosm automatically generates sequences of values for these streams. We use
a coverage strategy based on k-wise combinatorial coverage [14, 38] for discrete
variables and dispersion for continuous variables. Intuitively, k-wise coverage
ensures that, for a programmer-specified parameter k, all possible combinations
of values of any k discrete parameters are covered by tests. Low dispersion [57]
ensures that there are no “large empty holes” left in the continuous parameter
space. Paracosm uses an automatic test generation strategy that offers high
coverage based on random sampling over discrete parameters and deterministic
quasi-Monte Carlo methods for continuous parameters [49,57].

Like many of the projects referenced before, our implementation performs
simulations inside a game engine. However, Paracosm configurations can also
be output to the OpenDRIVE format [7] for use with other simulators, which is
more in-line with the current industry standard. We demonstrate through various
case studies how Paracosm can be an effective testing framework for both
qualitative properties (crash) and quantitative properties (distance maintained
while following a car, or image misclassification).

Our main contributions are the following: (I) We present a programmable
and expressive framework for programmatically modeling complex and parame-
terized scenarios to test autonomous driving systems. Using Paracosm one can
specify the environment’s layout, behaviors of actors, and expose parameters
to a systematic testing infrastructure. (II) We define a notion of test coverage
based on combinatorial k-wise coverage in discrete space and low dispersion in
continuous space. We show a test generation strategy based on fuzzing that the-
oretically guarantees good coverage. (III) We demonstrate empirically that our
system is able to express complex scenarios and automatically test autonomous
driving agents and find incorrect behaviors or degraded performance.

2 Paracosm through Examples

We now provide a walkthrough of Paracosm through a testing example. Sup-
pose we have an autonomous vehicle to test. Its implementation is wrapped into
a parameterized class:

AutonomousVehicle(start , model , controller) {

void run (...) { ... } }

where the model ranges over possible car models (appearance, physics), and the
controller implements an autonomous controller. The goal is to test this class in

Paracosm: A Test Framework for Autonomous Driving Simulations 175

many different driving scenarios, including different road networks, weather and
light conditions, and other car and pedestrian traffic. We show how Paracosm
enables writing such tests as well as generate test inputs automatically.

A test configuration consists of a composition of reactive objects. The follow-
ing is an outline of a test configuration in Paracosm, in which the autonomous
vehicle drives on a road with a pedestrian wanting to cross. We have simplified
the API syntax for the sake of clarity and omit the enclosing Test class. In the
code segments, we use ‘:’ for named arguments.

1 // Test parameters

2 light = VarInterval (0.2, 1.0) // value in [0.2, 1.0]

3 nlanes = VarEnum ({2 ,4 ,6}) // value is 2, 4 or 6

4 // Description of environment

5 w = World(light:light , fog:0)

6 // Create a road segment

7 r = StraightRoadSegment(len:100, nlanes:nlanes)

8 // The autonomous vehicle controlled by the SUT

9 v = AutonomousVehicle(start :..., model :..., controller :...)

10 // Some other actor(s)

11 p = Pedestrian(start:.., model :..., ...)

12 // Monitor to check some property

13 c = CollisionMonitor(v)

14 // Place elements in the world

15 run_test(env: {w, r, v, p}, test_params: {light , nlanes},

monitors: {c}, iterations: 100)

An instantiation of the reactive objects in the test configuration gives a scene—
all the visual elements present in the simulated world. A test case provides
concrete inputs to each “open” input stream in a scene. A test case determines
how the scene evolves over time: how the cars and pedestrians move and how
environment conditions change. We go through each part of the test configuration
in detail below.

Reactive Objects. The core abstraction of Paracosm is a reactive object. Reac-
tive objects capture geometric and graphical features of a physical object, as well
as their behavior over time. The behavioral interface for each reactive object has
a set of input streams and a set of output streams. The evolution of the world is
computed in steps of fixed duration which corresponds to events in a predefined
tick stream. For streams that correspond to physical quantities updated by the
physics simulator, such as position and speeds of cars, etc., appropriate events
are generated by the underlying physics simulator.

Input streams provide input values from the environment over time; output
streams represent output values computed by the object. The object’s construc-
tor sets up the internal state of the object. An object is updated by event
triggered computations. Paracosm provides a set of assets as base classes.
Autonomous driving systems naturally fit reactive programming models. They
consume sensor input streams and produce actuator streams for the vehicle
model. We differentiate between static environment reactive objects (subclassing

176 R. Majumdar et al.

2 4

.2 .9

nlanes

light

camera

Fig. 2: Reactive streams represented by a marble diagram. A change in the value
of test parameters nlanes or light changes the environment, and triggers a
change in the corresponding sensor (output) stream camera.

Geometric) and dynamic actor reactive objects (subclassing Physical). Environ-
ment reactive objects represent “static” components of the world, such as road
segments, intersections, buildings or trees, and a special component called the
world. Actor reactive objects represent components with “dynamic” behavior:
vehicles or pedestrians. The world object is used to model features of the world
such as lighting or weather conditions. Reactive objects can be composed to gen-
erate complex assemblies from simple objects. The composition process can be
used to connect static components structurally–such as two road segments con-
necting at an intersection. Composition also connects the behavior of an object
to another by binding output streams to input streams. At run time, the values
on that input stream of the second object are obtained from the output values of
the first. Composition must respect geometric properties—the runtime system
ensures that a composition maintains invariants such as no intersection of geo-
metric components. We now describe the main features in Paracosm, centered
around the test configuration above.

Test Parameters. Using test variables, we can have general, but constrained
streams of values passed into objects [59]. Our automatic test generator can
then pick values for these variables, thereby leading to different test cases (see
Figure 2). There are two types of parameters: continuous (VarInterval) and dis-
crete (VarEnum). In the example presented, light (light intensity) is a continuous
test parameter and nlanes (number of lanes) is discrete.

World. The World is a pre-defined reactive object in Paracosm with a visual
representation responsible for atmospheric conditions like the light intensity,
direction and color, fog density, etc. The code segment

w = World(light:light , fog:0)

parameterizes the world using a test variable for light and sets the fog density
to a constant (0).

Road Segments. In our example, StraightRoadSegment was parameterized with
the number of lanes. In general, Paracosm provides the ability to build com-
plex road networks by connecting primitives of individual road segments and
intersections. (A detailed example is presented in our Technical Report [43].)

Paracosm: A Test Framework for Autonomous Driving Simulations 177

It may seem surprising that we model static scene components such as roads
as reactive objects. This serves two purposes. First, we can treat the number of
lanes in a road segment as a constant input stream that is set by the test case,
allowing parameterized test cases. Second, certain features of static objects can
also change over time. For example, the coefficient of friction on a road segment
may depend on the weather condition, which can be a function of time.

Autonomous Vehicles & System Under Test (SUT). AutonomousVehicle, as well
as other actors, extends the Physical class (which in turn subclasses Geometric).
This means that these objects have a visual as well as a physical model. The
visual model is essentially a textured 3D mesh. The physical model contains
properties such as mass, moments of inertia of separate bodies in the vehicle,
joints, etc. This is used by the physics simulator to compute the vehicle’s motion
in response to external forces and control input. In the following code segment,
we instantiate and place our test vehicle on the road:

v = AutonomousVehicle(start:r.onLane(1, 0.1), model:

CarAsset (...) , controller:MyController (...))

The start parameter “places” the vehicle in the world (in relative coordinates).
The model parameter provides the implementation of the geometric and physical
model of the vehicle. The controller parameter implements the autonomous
controller under test. The internals of the controller implementation are not
important; what is important is its interface (sensor inputs and the actuator
outputs). These determine the input and output streams that are passed to the
controller during simulation. For example, a typical controller can take sensor
streams such as image streams from a camera as input and produce throttle and
steering angles as outputs. The Paracosm framework “wires” these streams
appropriately. For example, the rendering engine determines the camera images
based on the geometry of the scene and the position of the camera and the
controller outputs are fed to the physics engine to determine the updated scene.
Though simpler systems like openpilot [15] use only a dashboard-mounted
camera, autonomous vehicles can, in general, mix cameras at various mount
points, LiDARs, radars, and GPS. Paracosm can emulate many common types
of sensors which produce streams of data. It is also possible to integrate new
sensors, which are not supported out-of-the-box, by implementing them using
the game engine’s API.

Other Actors. A test often involves many actors such as pedestrians, and other
(non-test) vehicles. Apart from the standard geometric (optionally physical)
properties, these can also have some pre-programmed behavior. Behaviors can
either be only dependent on the starting position (say, a car driving straight
on the same lane), or be dynamic and reactive, depending on test parameters
and behaviors of other actors. In general, the reactive nature of objects enables
complex scenarios to be built. For example, here, we specify a simple behavior of
a pedestrian crossing a road.The pedestrian starts crossing the road when a car
is a certain distance away. In the code segments below, we use ‘_’ as shorthand
for a lamdba expression, i.e., “f(_)” is the same as “x => f(x)”.

178 R. Majumdar et al.

Pedestrian(value start , value target , carPos , value dist ,

value speed) extends Geometric {

... // Initialization

// Generate an event when the car gets close

trigger = carPos.Filter(abs(_ - start) < dist)

// target location reached

done = pos.Filter(_ == target)

// Walk to the target after trigger fires

tick.SkipUntil(trigger).TakeUntil(done).foreach(... /*

walk with given speed */)

}

Monitors and Test Oracles. Paracosm provides an API to provide qualitative
and quantitative temporal specifications. For instance, in the following example,
we check that there is no collision and ensure that the collision was not trivially
avoided because our vehicle did not move at all.

// no collision

CollisionMonitor(AutonomousVehicle v) extends Monitor {

assert(v.collider.IsEmpty ()) }

// cannot trivially pass the test by staying put

DistanceMonitor(AutonomousVehicle v, value minD) extends

Monitor {

pOld = v.pos.Take (1).Concat(v.pos)

D = v.pos.Zip(pOld).Map(abs(_ - _)).Sum()

assert(D >= minD)

}

The ability to write monitors which read streams of system-generated events
provides an expressive framework to write temporal properties, something that
has been identified as a major limitation of prior tools [31]. Monitors for metric
and signal temporal logic specifications can be encoded in the usual way [18,33].

3 Systematic Testing of Paracosm Worlds

3.1 Test Inputs and Coverage

Worlds in Paracosm directly describe a parameterized family of tests. The
testing framework allows users to specify various strategies to generate input
streams for both, static, and dynamic reactive objects in the world.

Test Cases. A test of duration T executes a configuration of reactive objects
by providing inputs to every open input stream in the configuration for T ticks.
The inputs for each stream must satisfy const parameters and respect the range
constraints from VarInterval and VarEnum. The runtime system manages the
scheduling of inputs and pushing input streams to the reactive objects. Let In
denote the set of all input streams, and In = InD ∪ InC denote the partition of In
into discrete streams and continuous streams respectively. Discrete streams take

Paracosm: A Test Framework for Autonomous Driving Simulations 179

their value over a finite, discrete range; for example, the color of a car, the number
of lanes on a road segment, or the position of the next pedestrian (left/right) are
discrete streams. Continuous streams take their values in a continuous (bounded)
interval. For example, the fog density or the speed of a vehicle are examples of
continuous streams.

Coverage. In the setting of autonomous vehicle testing, one often wants to
explore the state space of a parameterized world to check “how well” an au-
tonomous vehicle works under various situations, both qualitatively and quan-
titatively. Thus, we now introduce a notion of coverage. Instead of structural
coverage criteria such as line or branch coverage, our goal is to cover the pa-
rameter space. In the following, for simplicity of notation, we assume that all
discrete streams take values from {0, 1}, and all continuous streams take values
in the real interval [0, 1]. Any input stream over bounded intervals—discrete or
continuous—can be encoded into such streams. For discrete streams, there are
finitely many tests, since each co-ordinate is Boolean and there is a fixed num-
ber of co-ordinates. One can define the coverage as the fraction of the number
of vectors tested to the total number of vectors. Unfortunately, the total num-
ber of vectors is very high: if each stream is constant, then there are already
2n tests for n streams. Instead, we consider the notion of k-wise testing from
combinatorial testing [38]. In k-wise testing, we fix a parameter k, and ask that
every interaction between every k elements is tested. Let us be more precise.
Suppose that a test vector has N co-ordinates, where each co-ordinate can get
the value 0 or 1. A set of tests A is a k-wise covering family if for every subset
{i1, i2, . . . , ik} ⊆ {1, . . . , N} of co-ordinates and every vector v ∈ {0, 1}k, there
is a test t ∈ A whose restriction to the i1, . . . , ik is precisely v.

For continuous streams, the situation is more complex: since any continuous
interval has infinitely many points, each corresponding to a different test case,
we cannot directly define coverage as a ratio (the denominator will be infinite).
Instead, we define coverage using the notion of dispersion [49, 57]. Intuitively,
dispersion measures the largest empty space left by a set of tests. We assume a
(continuous) test is a vector in [0, 1]N : each entry is picked from the interval [0, 1]
and there are N co-ordinates. Dispersion over [0, 1]N can be defined relative to
sets of neighborhoods, such as N -dimensional balls or axis-parallel rectangles.
Let us define B to be the family of N -dimensional axis-parallel rectangles in
[0, 1]N , our results also hold for other notions of neighborhoods such as balls
or ellipsoids. For a neighborhood B ∈ B, let vol(B) denote the volume of B.
Given a set A ⊆ [0, 1]N of tests, we define the dispersion as the largest volume
neighborhood in B without any test:

dispersion(A) = sup {vol(B) | B ∈ B and A ∩B = ∅}

A lower dispersion means better coverage.
Let us summarize. Suppose that a test vector consists of ND discrete co-

ordinates and NC continuous co-ordinates; that is, a test is a vector (tD, tC) in

{0, 1}ND × [0, 1]NC . We say a set of tests A is (k, ε)-covering if

180 R. Majumdar et al.

1. for each set of k co-ordinates {i1, . . . , ik} ⊆ {1, . . . , ND} and each vector

v ∈ {0, 1}k, there is a test (tD, tC) ∈ {0, 1}ND × [0, 1]NC such that the
restriction of tD to the co-ordinates i1, . . . , ik is v; and

2. for each (tD, tC) ∈ A, the set {tC | (tD, tC) ∈ A} has dispersion at most ε.

3.2 Test Generation

The goal of our default test generator is to maximize (k, ε) for programmer-
specified number of test iterations or ticks.

k-Wise Covering Family. One can use explicit construction results from combi-
natorial testing to generate k-wise covering families [14]. However, a simple way
to generate such families with high probability is random testing. The proof is by
the probabilistic method [4] (see also [44]). Let A be a set of 2k(k logN − log δ)

uniformly randomly generated {0, 1}N vectors. Then A is a k-wise covering fam-
ily with probability at least 1 − δ.

Low Dispersion Sequences. It is tempting to think that uniformly generating
vectors from [0, 1]N would similarly give low dispersion sequences. Indeed, as
the number of tests goes to infinity, the set of randomly generated tests has
dispersion 0 almost surely. However, when we fix the number of tests, it is well
known that uniform random sampling can lead to high dispersion [49,57]; in fact,
one can show that the dispersion of n uniformly randomly generated tests grows
asymptotically as O((log log n/n)

1
2) almost surely. Our test generation strategy

is based on deterministic quasi-Monte Carlo sequences, which have much better
dispersion properties, asymptotically of the order of O(1/n), than the dispersion
behavior of uniformly random tests. There are many different algorithms for
generating quasi-Monte Carlo sequences deterministically (see, e.g., [49,57]). We
use Halton sequences. For a given ε, we need to generate O(1ε) inputs via Halton
sampling. In Section 4.2, we compare uniform random and Halton sampling.

Cost Functions and Local Search. In many situations, testers want to optimize
parameter values for a specific function. A simple example of this is finding
higher-speed collisions, which intuitively, can be found in the vicinity of test pa-
rameters that already result in high-speed collisions. Another, slightly different
case is (greybox) fuzzing [5, 55], for example, finding new collisions using small
mutations on parameter values that result in the vehicle narrowly avoiding a col-
lision. Our test generator supports such quantitative objectives and local search.
A quantitative monitor evaluates a cost function on a run of a test case. Our test
generation tool generates an initial, randomly chosen, set of test inputs. Then,
it considers the scores returned by the Monitor on these samples, and performs
a local search on samples with the highest/lowest scores to find local optima of
the cost function.

Paracosm: A Test Framework for Autonomous Driving Simulations 181

4 Implementation and Tests

4.1 Runtime System and Implementation

Paracosm uses the Unity game engine [69] to render visuals, do runtime checks
and simulate physics (via PhysX [16]). Reactive objects are built on top of UniRx
[36], an implementation of the popular Reactive Extensions framework [56]. The
game engine manages geometric transformations of 3D objects and offers easy
to use abstractions for generating realistic simulations. Encoding behaviors and
monitors, management of 3D geometry and dynamic checks are implemented
using the game engine interface. The project code is available at: https://gitlab.
mpi-sws.org/mathur/paracosm.

A simulation in Paracosm proceeds as follows. A test configuration is spec-
ified as a subclass of the EnvironmentProgramBaseClass.Tests are run by invoking
the run_test method, which receives as input the reactive objects that should
be instantiated in the world as well as additional parameters relating to the test.
The run_test method runs the tests by first initializing and placing the reactive
objects in the scene using their 3D mesh (if they have one) and then invoking a
reactive engine to start the simulation. The system under test is run in a sepa-
rate process and connects to the simulation. The simulation then proceeds until
the simulation completion criteria is met (a time-out or some monitor event).

Output to Standardized Testing Formats. There have been recent efforts to cre-
ate standardized descriptions of tests in the automotive industry. The most
relevant formats are OpenDRIVE [7] and OpenSCENARIO (only recently
finalized) [8]. OpenDRIVE describes road structures, and OpenSCENARIO
describes actors and their behavior. Paracosm currently supports outputs to
OpenDRIVE. Due to the static nature of the specification format, a different
file is generated for each test iteration/configuration.

4.2 Evaluation

We evaluate Paracosm with respect to the following research questions (RQs):
RQ 1: Does Paracosm’s programmatic interface enable the easy design of test
environments and worlds?
RQ 2: Do the test input generation strategies discussed in Section 3 effectively
explore the parameter space?
RQ 3: Can Paracosm help uncover poor performance or bad behavior of the
SUT in common autonomous driving tasks?

Methodology. To answer RQ 1, we develop three independent environments rich
with visual features and other actors, and use the variety generated with just a
few lines of code as a proxy for ease of design. To answer RQ 2, we use coverage
maximizing strategies for test inputs to all the three environments/case studies.
We also use and evaluate cost functions and local search based methods. To
answer RQ 3, we test various neural network based systems and demonstrate

https://gitlab.mpi-sws.org/mathur/paracosm
https://gitlab.mpi-sws.org/mathur/paracosm

182 R. Majumdar et al.

Table 1: An overview of our case studies. Note that even though the Adaptive
Cruise Control study has 2 discrete parameters, we calculate k-wise coverage for
3 as the 2 parameters require 3 bits for representation.

Road segmentation Jaywalking pedestrian Adaptive Cruise Con-
trol

SUT VGGNet CNN [62] NVIDIA CNN [12] NVIDIA CNN [12]
Training 191 images 403 image & car con-

trol samples
1034 image & car con-
trol samples

Test
params

3 discrete 2 continuous 3 continuous & 2 dis-
crete

Test iters 100 100, 15s timeout 100, 15s timeout
Monitor Ground truth Scored Collision Collision & Distance
Coverage k = 3 with probabil-

ity ∼ 1
ε = 0.041 ε = 0.043, k = 3 with

probability ∼ 1

(a) A good test with all parameter val-
ues same as the training set (true positive:
89%, false positive: 0%).

(b) A bad test with all parameter values
different from the training set (true posi-
tive: 9%, false positive: 1%).

Fig. 3: Example results from the road segmentation case study. Pixels with a
green mask are segmented by the SUT as a road.

how Paracosm can help uncover problematic scenarios. A summary of the case
studies presented here is available in Table 1. In our Technical Report [43], we
present more case studies, specifically experiments on many pre-trained neu-
ral networks, busy urban environments and studies exploiting specific testing
features of Paracosm.

4.3 Case Studies

Road segmentation Using Paracosm’s programmatic interface, we design a long
road segment with several vehicles. The vehicular behavior is to drive on their
respective lanes with a fixed maximum velocity. The test parameters are the
number of lanes ({2, 4}), number of cars in the environment ({0, 5}) and light
conditions ({Noon, Evening}). Noon lighting is much brighter than the evening.
The direction of lighting is also the opposite. We test a deep CNN called VGGNet
[62], that is known to perform well on several image segmentation benchmarks.
The task is road segmentation, i.e., given a camera image, identifying which
pixels correspond to the road. The network is trained on 191 dashcam images

Paracosm: A Test Framework for Autonomous Driving Simulations 183

Table 2: Summary of results of the road segmentation case study. Each combi-
nation of parameter values is presented separately, with the parameter values
used for training in bold. We report the SUT’s average true positive rate (% of
pixels corresponding to the road that are correctly classified) and false positive
rate (% of pixels that are not road, but incorrectly classified as road).

lanes # cars Lighting # test iters True positive (%) False positive (%)

2 5 Noon 12 70% 5.1%
2 5 Evening 14 53.4% 22.4%
2 0 Evening 12 51.4% 18.9%
2 0 Noon 12 71.3% 6%
4 5 Evening 10 60.4% 7.1%
4 5 Noon 16 68.5% 20.2%
4 0 Evening 13 51.5% 7.1%
4 0 Noon 11 83.3% 21%

Table 3: Results for the jaywalking pedestrian case study.

Testing strategy Dispersion (ε) % fail Max. collision

Random 0.092 7% 10.5 m/s
Halton 0.041 10% 11.3 m/s
Random+opt/collision 0.109 13% 11.1 m/s
Halton+opt/collision 0.043 20% 11.9 m/s
Random+opt/almost failing 0.126 13% 10.5 m/s
Halton+opt/almost failing 0.043 13% 11.4 m/s

captured in the test environment with fixed parameters (2 lanes, 5 cars, and
Noon lighting), recorded at the rate of one image every 1/10th second, while
manually driving the vehicle around (using a keyboard). We test on 100 images
generated using Paracosm’s default test generation strategy (uniform random
sampling for discrete parameters). Table 2 summarizes the test results. Tests with
parameter values far away from the training set are observed to not perform so
well. As depicted in Figure 3, this happens because varying test parameters can
drastically change the scene.

Jaywalking pedestrian. We now test over the environment presented in Section 2.
The environment consists of a straight road segment and a pedestrian. The
pedestrian’s behavior is to cross the road at a specific walking speed when the au-
tonomous vehicle is a specific distance away. The walking speed of the pedestrian
and the distance of the autonomous vehicle when the pedestrian starts crossing
the road are test parameters. The SUT is a CNN based on NVIDIA’s behav-
ioral cloning framework [12]. It takes camera images as input, and produces the
relevant steering angle or throttle control as output. The SUT is trained on 403
samples obtained by driving the vehicle manually and recording the camera and
corresponding control data. The training environment has pedestrians crossing

184 R. Majumdar et al.

the road at various time delays, but always at a fixed walking speed (1 m/s). In
order to evaluate RQ 2 completely, we evaluate the default coverage maximizing
sampling approach, as well as explore two quantitative objectives: first, maxi-
mizing the collision speed, and second, finding new failing cases around samples
that almost fail. For the default approach, the CollisionMonitor as presented
in Section 2 is used. For the first quantitative objective, this CollisionMonitor’s
code is prepended with the following calculation:

// Score is speed of car at time of collision

coll_speed = v.speed.CombineLatest(v.collider , (s,c) => s)

.First()

The score coll_speed is used by the test generator for optimization. For the sec-
ond quantitative objective, the CollisionMonitor is modified to give high scores
to tests where the distance between the autonomous vehicle and pedestrian is
very small:

CollisionMonitor(AutonomousVehicle v, Pedestrian p)

extends Monitor {

minDist = v.pos.Zip(p.pos).Map (1/ abs(_-_)).Min()

coll_score = v.collider.Map(0)

// Score is either 0 (collision) or 1/ minDist

score = coll_score.DefaultIfEmpty(minDist)

assert(v.collider.IsEmpty ())

}

We evaluate the following test input generation strategies: (i) Random sam-
pling (ii) Halton sampling, (iii) Random or Halton sampling with local search
for the two quantitative objectives. We run 100 iterations of each strategy with
a 15 second timeout. For random or Halton sampling, we sample 100 times. For
the quantitative objectives, we first generate 85 random or Halton samples, then
choose the top 5 scores, and finally run 3 simulated annealing iterations on each
of these 5 configurations. Table 3 presents results from the various test input gen-
eration strategies. Clearly, Halton sampling offers the lowest dispersion (highest
coverage) over the parameter space. This can also be visually confirmed from
the plot of test parameters (Figure 4). There are no big gaps in the parameter
space. Moreover, we find that test strategies optimizing for the first objective
are successful in finding more collisions with higher speeds. As these techniques
perform simulated annealing repetitions on top of already failing tests, they also
find more failing tests overall. Finally, test strategies using the second objective
are also successful in finding more (newer) failure cases than simple Random or
Halton sampling.

Adaptive Cruise Control. We now create and test in an environment with our
test vehicle following a car (lead car) on the same lane. The lead car’s behav-
ior is programmed to drive on the same lane as the test vehicle, with a certain
maximum speed. This is a very typical driving scenario that engineers test their
implementations on. We use 5 test parameters: the initial lead of the lead car to

Paracosm: A Test Framework for Autonomous Driving Simulations 185

(a) Random sampling (no
opt.)

(b) Random + opt. / max-
imizing collision.

(c) Random + opt. / al-
most failing.

(d) Halton sampling (no
opt.)

(e) Halton + opt. / maxi-
mizing collision.

(f) Halton + opt. / almost
failing.

Fig. 4: A comparison of the various test generation strategies for the jaywalking
pedestrian case study. The X-axis is the walking speed of the pedestrian (2 to
10 m/s). The Y-axis is the distance from the car when the pedestrian starts
crossing (30 to 60 m). Passing tests are labelled with a green dot. Failing tests
(tests with a collision) are marked with a red cross.

the test vehicle ([8m, 40m]), the lead car’s maximum speed ([3m/s, 8m/s]), den-
sity of fog3 in the environment ([0, 1]), number of lanes on the road ({2, 4}), and
color of the lead car ({Black, Red, Y ello, Blue}). We use both, CollisionMonitor
4 and DistanceMonitor, as presented in Section 2. A test passes if there is no
collision and the autonomous vehicle moves atleast 5 m during the simulation
duration (15 s).

We use Paracosm’s default test generation strategy, i.e., Halton sampling
for continuous parameters and Random sampling for discrete parameters (no
optimization or fuzzing). The SUT is the same CNN as in the previous case
study. It is trained on 1034 training samples, which are obtained by manually
driving behind a red lead car on the same lane of a 2-lane road with the same
maximum velocity (5.5 m/s) and no fog.

The results of this case study are presented in Table 4. Looking at the dis-
crete parameters, the number of lanes does not seem to contribute towards a risk
of collision. Surprisingly, though the training only involves a Red lead car, the
results appear to be the best for a Blue lead car. Moving on to the continuous

3 0 denotes no fog and 1 denotes very dense fog (exponential squared scale).
4 the monitor additionally calculates the mean distance of the test vehicle to the lead
car during the test, which is used for later analysis.

186 R. Majumdar et al.

(a) Initial offset (X-axis)
vs. max. speed (Y-axis).

(b) Initial offset (X-axis)
vs. fog density (Y-axis).

(c) Max. speed (X-axis) vs.
fog density (Y-axis).

Fig. 5: Continuous test parameters of the Adaptive Cruise Control study plotted
against each other: the initial offset of the lead car (8 to 40 m), the lead car’s
maximum speed (3 to 8 m/s) and the fog density (0 to 1). Green dots, red crosses,
and blue triangles denote passing tests, collisions, and inactivity respectively.

Table 4: Parameterized test on Adaptive Cruise Control, separated for each value
of discrete parameters, and low and high values of continuous parameters. A test
passes if there are no collisions and no inactivity (the overall distance moved by
the test vehicle is more than 5 m. The average offset (in m) maintained by the
test vehicle to the lead car (for passing tests) is also presented.

Discrete parameters Continuous parameters

Num. lanes Lead car color Initial offset (m) Speed (m/s) Fog density

2 4 Black Red Yellow Blue < 24 ≥ 24 < 5.5 ≥ 5.5 < 0.5 ≥ 0.5

Test iters 54 46 24 22 27 27 51 49 52 48 51 49
Collisions 7 7 3 3 6 2 6 8 8 6 12 0
Inactivity 12 4 4 4 6 2 9 7 9 7 1 15
Offset (m) 42.4 43.4 46.5 48.1 39.6 39.1 33.7 52.7 38.4 47.4 36.5 49.8

parameters, the fog density appears to have the most significant impact on test
failures (collision or vehicle inactivity). In the presence of dense fog, the SUT
behaves pessimistically and does not accelerate much (thereby causing a failure
due to inactivity). These are all interesting and useful metrics about the perfor-
mance of our SUT. Plots of the results projected on to continuous parameters
are presented in Figure 5.

4.4 Results and Analysis

We now summarize the results of our evaluation with respect to our RQs:
RQ 1: All the three case studies involve varied, rich and dynamic environments.
They are representative of tests engineers would typically want to do, and we
parameterize many different aspects of the world and the dynamic behavior of its
components. These designs are at most 70 lines of code. This provides confidence
in Paracosm’s ability of providing an easy interface for the design of realistic
test environments.
RQ 2: Our default test generation strategies are found to be quite effective at
exploring the parameter space systematically, eliminating large unexplored gaps,

Paracosm: A Test Framework for Autonomous Driving Simulations 187

and at the same time, successfully identifying problematic cases in all the three
case studies. The jaywalking pedestrian study demonstrates that optimization
and local search are possible on top of these strategies, and are quite effective
in finding the relevant scenarios. The adaptive cruise control study tests over 5
parameters, which is more than most related works, and even guarantees good
coverage of this parameter space. Therefore, it is amply clear that Paracosm’s
test input generation methods are useful and effective.
RQ 3: The road segmentation case study uses a well-performing neural network
for object segmentation, and we are able to detect degraded performance for
automatically generated test inputs. Whereas this study focuses on static image
classification, the next two, i.e., the jaywalking pedestrian and the adaptive
cruise control study uncover poor performance on simulated driving, using a
popular neural network architecture for self driving cars. Therefore, we can safely
conclude that Paracosm can find bugs in various different kinds of systems
related to autonomous driving.

4.5 Threats to Validity

The internal validity of our experiments depends on having implemented our
system correctly and, more importantly, trained and used the neural networks
considered in the case studies correctly. For training the networks, we followed
the available documentation and inspected our examples to ensure that we use
an appropriate training procedure. We watched some test runs and replays of
tests we did not understand. Furthermore, our implementation logs events and
we also capture images, which allow us to check a large number of tests.

In terms of threats to external validity, the biggest challenge in this project
has been finding systems that we can easily train and test in complex driving
scenarios. Publicly available systems have limited capabilities and tend to be
brittle. Many networks trained on real world data do not work well in simulation.
We therefore re-train these networks in simulation. An alternative is to run
fewer tests, but use more expensive and visually realistic simulations. Our test
generation strategy maximizes coverage, even when only a few test iterations
can be performed due to high simulation cost.

5 Related Work

Traditionally, test-driven software development paradigms [9] have advocated
testing and mocking frameworks to test software early and often. Mocking frame-
works and mock objects [42,47] allow programmers to test a piece of code against
an API specification. Typically, mock objects are stubs providing outputs to ex-
plicitly provided lists of inputs of simple types, with little functionality of the
actual code. Thus, they fall short of providing a rich environment for autonomous
driving. Paracosm can be seen as a mocking framework for reactive, physical
systems embedded in the 3D world. Our notion of constraining streams is in-
spired by work on declarative mocking [59].

188 R. Majumdar et al.

Testing Cyber-Physical Systems. There is a large body of work on automated
test generation tools for cyber-physical systems through heuristic search of a
high-dimensional continuous state space. While much of this work has focused
on low-level controller interfaces [6,17,19,20,25,60] rather than the system level,
specification and test generation techniques arising from this work—for exam-
ple, the use of metric and signal temporal logics or search heuristics—can be
adapted to our setting. More recently, test generation tools have started target-
ing autonomous systems under a simulation-based semantic testing framework
similar to ours. In most of these works, visual scenarios are either fixed by
hand [1, 2, 10, 22, 27, 29, 66, 67], or are constrained due to the model or coverage
criteria [3, 45, 50]. These analyses are shown to be preferable to the application
of random noise on the input vector. Additionally, a simulation-based approach
filters benign misclassifications from misclassifications that actually lead to bad
or dangerous behavior. Our work extends this line of work and provides an ex-
pressive language to design parameterized environments and tests. AsFault [29]
uses random search and mutation for procedural generation of road networks for
testing. AC3R [28] reconstructs test cases from accident reports.

To address problems of high time and infrastructure cost of testing au-
tonomous systems, several simulators have been developed. The most popular
is Gazebo [26] for the ROS [54] robotics framework. It offers a modular and
extensible architecture, however falls behind on visual realism and complexity of
environments that can be generated with it. To counter this, game engines are
used. Popular examples are TORCS [72], CARLA [21], and AirSim [61] Mod-
ern game engines support creation of realistic urban environments. Though they
enable visually realistic simulations, and enable detection of infractions such as
collisions, the environments themselves are difficult to design. Designing a cus-
tom environment involves manual placement of road segments, buildings, and
actors (as well as their properties). Performing many systematic tests is there-
fore time-consuming and difficult. While these systems and Paracosm share
the same aims and much of the same infrastructure, Paracosm focuses on pro-
cedural design and systematic testing, backed by a relevant coverage criteria.

Adversarial Testing. Adversarial examples for neural networks [32,64] introduce
perturbations to inputs that cause a classifier to classify “perceptually identical”
inputs differently. Much work has focused on finding adversarial examples in the
context of autonomous driving as well as on training a network to be robust to
perturbations [11,30,46,51,71]. Tools such asDeepXplore [52],DeepTest [65],
DeepGauge [41], and SADL [37] define a notion of coverage for neural networks
based on the number of neurons activated during tests compared against the
total number of neurons in the network and activation during training. However,
these techniques focus mostly on individual classification tasks and apply 2D
transformations on images. In comparison, we consider the closed-loop behavior
of the system and our parameters directly change the world rather than apply
transformations post facto. We can observe, over time, that certain vehicles are
not detected, which is more useful to testers than a single misclassification [31].
Furthermore, it is already known that structural coverage criteria may not be an

Paracosm: A Test Framework for Autonomous Driving Simulations 189

effective strategy for finding errors in classification [39]. We use coverage metrics
on the test space, rather than the structure of the neural network. Alternately,
there are recent techniques to verify controllers implemented as neural networks
through constraint solving or abstract interpretation [24, 30, 34, 58, 71]. While
these tools do not focus on the problem of autonomous driving, their underlying
techniques can be combined in the test generation phase for Paracosm.

6 Future Work and Conclusion

Deploying autonomous systems like self-driving cars in urban environments raises
several safety challenges. The complex software stack processes sensor data,
builds a semantic model of the surrounding world, makes decisions, plans tra-
jectories, and controls the car. The end-to-end testing of such systems requires
the creation and simulation of whole worlds, with different tests representing dif-
ferent world and parameter configurations. Paracosm tackles these problems
by (i) enabling procedural construction of diverse scenarios, with precise control
over elements like road layout, physical and visual properties of objects, and
behaviors of actors in the system, and (ii) using quasi-random testing to obtain
good coverage over large parameter spaces.

In our evaluation, we show that Paracosm enables easy design of environ-
mnents and automated testing of autonomous agents implemented using neural
networks. While finding errors in sensing can be done with only a few static im-
ages, we show that Paracosm also enables the creation of longer test scenarios
which exercise the controller’s feedback on the environment. Our case studies
focused on qualitative state space exploration. In future work, we shall perform
quantitative statistical analysis to understand the sensitivity of autonomous ve-
hicle behavior on individual parameters.

In the future, we plan to extend Paracosm’s testing infrastructure to also aid
in the training of deep neural networks that require large amounts of high quality
training data. For instance, we show that small variations in the environment
result in widely different results for road segmentation. Generating data is a
time consuming and expensive task. Paracosm can easily generate labelled
data for static images. For driving scenarios, we can record a user manually
driving in a parameterized Paracosm environment and augment this data by
varying parameters that should not impact the car’s behavior. For instance, we
can vary the color of other cars, positions of pedestrians who are not crossing,
or even the light conditions and sensor properties (within reasonable limits).

Acknowledgements This research was funded in part by the Deutsche
Forschungsgemeinschaft project 389792660-TRR 248 and by the European
Research Council under the Grant Agreement 610150 (ERC Synergy Grant
ImPACT).

190 R. Majumdar et al.

References

1. Abbas, H., O’Kelly, M., Rodionova, A., Mangharam, R.: Safe at any speed: A
simulation-based test harness for autonomous vehicles. In: 7th Workshop on De-
sign, Modeling and Evaluation of Cyber Physical Systems (CyPhy17) (October
2017)

2. Abdessalem, R.B., Nejati, S., Briand, L.C., Stifter, T.: Testing vision-
based control systems using learnable evolutionary algorithms. In: Pro-
ceedings of the 40th International Conference on Software Engineering. p.
1016–1026. ICSE ’18, Association for Computing Machinery, New York, NY,
USA (2018). https://doi.org/10.1145/3180155.3180160, https://doi.org/10.1145/
3180155.3180160

3. Alexander, R., Hawkins, H., Rae, A.: Situation coverage – a coverage criterion for
testing autonomous robots (02 2015)

4. Alon, N., Spencer, J.H.: The Probabilistic Method. Wiley-Interscience series in
discrete mathematics and optimization, Wiley (2004)

5. American Fuzzy Loop: Technical “whitepaper” for afl-fuzz, http://lcamtuf.
coredump.cx/afl/technical details.txt, accessed: 2019-08-23

6. Annpureddy, Y., Liu, C., Fainekos, G.E., Sankaranarayanan, S.: S-TaLiRo: A tool
for temporal logic falsification for hybrid systems. In: TACAS 11. Lecture Notes
in Computer Science, vol. 6605, pp. 254–257. Springer (2011)

7. Association for Advancement of international Standardization of Automation and
Measuring Systems (ASAM): Opendrive (2018), http://www.opendrive.org/index.
html, accessed: 2019-08-21

8. Association for Advancement of international Standardization of Automation and
Measuring Systems (ASAM): Openscenario (2018), http://www.opendrive.org/
index.html, accessed: 2019-08-21

9. Beck, K.L.: Test Driven Development: By Example. Addison-Wesley Professional
(2002)

10. Ben Abdessalem, R., Nejati, S., Briand, L.C., Stifter, T.: Testing advanced driver
assistance systems using multi-objective search and neural networks. In: Proceed-
ings of the 31st IEEE/ACM International Conference on Automated Software En-
gineering (ASE). pp. 63–74 (2016)

11. Bhagoji, A.N., He, W., Li, B., Song, D.: Exploring the space of black-box attacks
on deep neural networks. CoRR abs/1712.09491 (2017), http://arxiv.org/abs/
1712.09491

12. Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P.,
Jackel, L.D., Monfort, M., Muller, U., Zhang, J., et al.: End to end learning for
self-driving cars. arXiv preprint arXiv:1604.07316 (2016)

13. Caspi, P., Pilaud, D., Halbwachs, N., Plaice, J.: Lustre: A declarative language
for programming synchronous systems. In: Conference Record of the Fourteenth
Annual ACM Symposium on Principles of Programming Languages, Munich, Ger-
many, January 21-23, 1987. pp. 178–188 (1987)

14. Colbourn, C.J.: Combinatorial aspects of covering arrays. Le Matematiche 59(1,2),
125–172 (2004), https://lematematiche.dmi.unict.it/index.php/lematematiche/
article/view/166

15. comma.ai: openpilot: open source driving agent (2016), https://github.com/
commaai/openpilot, accessed: 2018-11-13

16. Coporation, N.: Physx (2008), https://developer.nvidia.com/
gameworks-physx-overview, accessed: 2018-11-13

https://doi.org/10.1145/3180155.3180160
https://doi.org/10.1145/3180155.3180160
https://doi.org/10.1145/3180155.3180160
http://lcamtuf.coredump.cx/afl/technical_details.txt
http://lcamtuf.coredump.cx/afl/technical_details.txt
http://www.opendrive.org/index.html
http://www.opendrive.org/index.html
http://www.opendrive.org/index.html
http://www.opendrive.org/index.html
http://arxiv.org/abs/1712.09491
http://arxiv.org/abs/1712.09491
https://lematematiche.dmi.unict.it/index.php/lematematiche/article/view/166
https://lematematiche.dmi.unict.it/index.php/lematematiche/article/view/166
https://github.com/commaai/openpilot
https://github.com/commaai/openpilot
https://developer.nvidia.com/gameworks-physx-overview
https://developer.nvidia.com/gameworks-physx-overview

Paracosm: A Test Framework for Autonomous Driving Simulations 191

17. Deshmukh, J., Jin, X., Kapinski, J., Maler, O.: Stochastic local search for falsifi-
cation of hybrid systems. In: ATVA. pp. 500–517. Springer (2015)

18. Deshmukh, J.V., Donzé, A., Ghosh, S., Jin, X., Juniwal, G., Seshia, S.A.: Ro-
bust online monitoring of signal temporal logic. Formal Methods in System Design
51(1), 5–30 (2017). https://doi.org/10.1007/s10703-017-0286-7, https://doi.org/
10.1007/s10703-017-0286-7

19. Deshmukh, J.V., Horvat, M., Jin, X., Majumdar, R., Prabhu, V.S.: Testing cyber-
physical systems through bayesian optimization. ACM Trans. Embedded Com-
put. Syst. 16(5), 170:1–170:18 (2017). https://doi.org/10.1145/3126521, https:
//doi.org/10.1145/3126521

20. Donzé, A.: Breach, A Toolbox for Verification and Parameter Synthesis of Hybrid
Systems, pp. 167–170. Springer (2010)

21. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: CARLA: An open
urban driving simulator. In: Proceedings of the 1st Annual Conference on Robot
Learning. pp. 1–16 (2017)

22. Dreossi, T., Donzé, A., Seshia, S.A.: Compositional falsification of cyber-physical
systems with machine learning components. In: NASA Formal Methods - 9th Inter-
national Symposium, NFM 2017. Lecture Notes in Computer Science, vol. 10227,
pp. 357–372. Springer (2017)

23. Dreossi, T., Jha, S., Seshia, S.A.: Semantic adversarial deep learning 10981, 3–
26 (2018). https://doi.org/10.1007/978-3-319-96145-3 1, https://doi.org/10.1007/
978-3-319-96145-3 1

24. Dutta, S., Chen, X., Jha, S., Sankaranarayanan, S., Tiwari, A.: Sherlock - A tool for
verification of neural network feedback systems: demo abstract. In: Ozay, N., Prab-
hakar, P. (eds.) Proceedings of the 22nd ACM International Conference on Hybrid
Systems: Computation and Control, HSCC 2019, Montreal, QC, Canada, April
16-18, 2019. pp. 262–263. ACM (2019). https://doi.org/10.1145/3302504.3313351,
https://doi.org/10.1145/3302504.3313351

25. Fainekos, G.: Automotive control design bug-finding with the S-TaLiRo tool. In:
ACC 2015. p. 4096 (2015)

26. Foundation, O.S.R.: Vehicle simulation in gazebo, http://gazebosim.org/blog/
vehicle%20simulation, accessed: 2019-08-23

27. Fremont, D.J., Dreossi, T., Ghosh, S., Yue, X., Sangiovanni-Vincentelli, A.L., Se-
shia, S.A.: Scenic: A language for scenario specification and scene generation.
In: Proceedings of the 40th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation. pp. 63–78. PLDI 2019, ACM, New York,
NY, USA (2019). https://doi.org/10.1145/3314221.3314633, http://doi.acm.org/
10.1145/3314221.3314633

28. Gambi, A., Huynh, T., Fraser, G.: Generating effective test cases for self-
driving cars from police reports. In: Dumas, M., Pfahl, D., Apel, S., Russo, A.
(eds.) Proceedings of the ACM Joint Meeting on European Software Engineer-
ing Conference and Symposium on the Foundations of Software Engineering,
ESEC/SIGSOFT FSE 2019, Tallinn, Estonia, August 26-30, 2019. pp. 257–267.
ACM (2019). https://doi.org/10.1145/3338906.3338942, https://doi.org/10.1145/
3338906.3338942

29. Gambi, A., Müller, M., Fraser, G.: Automatically testing self-driving cars with
search-based procedural content generation. In: Zhang, D., Møller, A. (eds.) Pro-
ceedings of the 28th ACM SIGSOFT International Symposium on Software Test-
ing and Analysis, ISSTA 2019, Beijing, China, July 15-19, 2019. pp. 318–328.
ACM (2019). https://doi.org/10.1145/3293882.3330566, https://doi.org/10.1145/
3293882.3330566

https://doi.org/10.1007/s10703-017-0286-7
https://doi.org/10.1007/s10703-017-0286-7
https://doi.org/10.1007/s10703-017-0286-7
https://doi.org/10.1145/3126521
https://doi.org/10.1145/3126521
https://doi.org/10.1145/3126521
https://doi.org/10.1007/978-3-319-96145-3_1
https://doi.org/10.1007/978-3-319-96145-3_1
https://doi.org/10.1007/978-3-319-96145-3_1
https://doi.org/10.1145/3302504.3313351
https://doi.org/10.1145/3302504.3313351
http://gazebosim.org/blog/vehicle%20simulation
http://gazebosim.org/blog/vehicle%20simulation
https://doi.org/10.1145/3314221.3314633
http://doi.acm.org/10.1145/3314221.3314633
http://doi.acm.org/10.1145/3314221.3314633
https://doi.org/10.1145/3338906.3338942
https://doi.org/10.1145/3338906.3338942
https://doi.org/10.1145/3338906.3338942
https://doi.org/10.1145/3293882.3330566
https://doi.org/10.1145/3293882.3330566
https://doi.org/10.1145/3293882.3330566

192 R. Majumdar et al.

30. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,
M.T.: AI2: safety and robustness certification of neural networks with abstract
interpretation. In: 2018 IEEE Symposium on Security and Privacy, S&P 2018. pp.
3–18. IEEE (2018)

31. Gladisch, C., Heinz, T., Heinzemann, C., Oehlerking, J., von Vietinghoff, A.,
Pfitzer, T.: Experience paper: Search-based testing in automated driving control
applications. In: Proceedings of the 34th IEEE/ACM International Conference on
Automated Software Engineering (ASE). pp. 26–37 (2019)

32. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. CoRR abs/1412.6572 (2014), http://arxiv.org/abs/1412.6572

33. Ho, H., Ouaknine, J., Worrell, J.: Online monitoring of metric temporal logic. In:
Runtime Verification RV 2014. Lecture Notes in Computer Science, vol. 8734, pp.
178–192. Springer (2014)

34. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural
networks. In: Majumdar, R., Kuncak, V. (eds.) Computer Aided Verification -
29th International Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017,
Proceedings, Part I. Lecture Notes in Computer Science, vol. 10426, pp. 3–29.
Springer (2017). https://doi.org/10.1007/978-3-319-63387-9 1, https://doi.org/10.
1007/978-3-319-63387-9 1

35. Hudak, P., Courtney, A., Nilsson, H., Peterson, J.: Arrows, robots, and
functional reactive programming. In: Advanced Functional Programming, 4th
International School, AFP 2002, Oxford, UK, August 19-24, 2002, Re-
vised Lectures. Lecture Notes in Computer Science, vol. 2638, pp. 159–187.
Springer (2002). https://doi.org/10.1007/978-3-540-44833-4 6, https://doi.org/10.
1007/978-3-540-44833-4 6

36. Kawai, Y.: Unirx: Reactive extensions for unity (2014), https://github.com/
neuecc/UniRx, accessed: 2018-11-13

37. Kim, J., Feldt, R., Yoo, S.: Guiding deep learning system testing using sur-
prise adequacy. In: Proceedings of the 41st International Conference on Soft-
ware Engineering. pp. 1039–1049. ICSE ’19, IEEE Press, Piscataway, NJ, USA
(2019). https://doi.org/10.1109/ICSE.2019.00108, https://doi.org/10.1109/ICSE.
2019.00108

38. Kuhn, D.R., Kacker, R.N., Lei, Y.: Combinatorial testing. In: Laplante, P.A. (ed.)
Encyclopedia of Software Engineering, pp. 1–12. CRC Press (Nov 2010)

39. Li, Z., Ma, X., Xu, C., Cao, C.: Structural coverage criteria for neural networks
could be misleading. In: Sarma, A., Murta, L. (eds.) Proceedings of the 41st Inter-
national Conference on Software Engineering: New Ideas and Emerging Results,
ICSE (NIER) 2019, Montreal, QC, Canada, May 29-31, 2019. pp. 89–92. IEEE /
ACM (2019), https://dl.acm.org/citation.cfm?id=3339171

40. Liberty, J., Betts, P.: Programming Reactive Extensions and LINQ. Apress (2011)

41. Ma, L., Juefei-Xu, F., Zhang, F., Sun, J., Xue, M., Li, B., Chen, C., Su, T., Li, L.,
Liu, Y., Zhao, J., Wang, Y.: Deepgauge: Multi-granularity testing criteria for deep
learning systems. In: Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering. pp. 120–131. ASE 2018, ACM, New York,
NY, USA (2018). https://doi.org/10.1145/3238147.3238202, http://doi.acm.org/
10.1145/3238147.3238202

42. Mackinnon, T., Freeman, S., Craig, P.: Endo-testing: Unit testing with mock ob-
jects. In: eXtreme Programming and Flexible Processes in Software Engineering -
XP2000 (2000)

http://arxiv.org/abs/1412.6572
https://doi.org/10.1007/978-3-319-63387-9_1
https://doi.org/10.1007/978-3-319-63387-9_1
https://doi.org/10.1007/978-3-319-63387-9_1
https://doi.org/10.1007/978-3-540-44833-4_6
https://doi.org/10.1007/978-3-540-44833-4_6
https://doi.org/10.1007/978-3-540-44833-4_6
https://github.com/neuecc/UniRx
https://github.com/neuecc/UniRx
https://doi.org/10.1109/ICSE.2019.00108
https://doi.org/10.1109/ICSE.2019.00108
https://doi.org/10.1109/ICSE.2019.00108
https://dl.acm.org/citation.cfm?id=3339171
https://doi.org/10.1145/3238147.3238202
http://doi.acm.org/10.1145/3238147.3238202
http://doi.acm.org/10.1145/3238147.3238202

Paracosm: A Test Framework for Autonomous Driving Simulations 193

43. Majumdar, R., Mathur, A.S., Pirron, M., Stegner, L., Zufferey, D.: Para-
cosm: A language and tool for testing autonomous driving systems. CoRR
abs/1902.01084 (2019), http://arxiv.org/abs/1902.01084

44. Majumdar, R., Niksic, F.: Why is random testing effective for partition tolerance
bugs? PACMPL 2(POPL), 46:1–46:24 (2018)

45. Majzik, I., Semeráth, O., Hajdu, C., Marussy, K., Szatmári, Z., Micskei, Z., Vörös,
A., Babikian, A.A., Varró, D.: Towards system-level testing with coverage guar-
antees for autonomous vehicles. In: 2019 ACM/IEEE 22nd International Confer-
ence on Model Driven Engineering Languages and Systems (MODELS). pp. 89–94
(2019). https://doi.org/10.1109/MODELS.2019.00-12

46. Mirman, M., Gehr, T., Vechev, M.: Differentiable abstract interpretation
for provably robust neural networks. In: International Conference on Ma-
chine Learning (ICML) (2018), https://www.icml.cc/Conferences/2018/Schedule?
showEvent=2477

47. Mockito: Tasty mocking framework for unit tests in java, http://site.mockito.org,
accessed: 2019-08-23

48. National Transportation Safety Board: Collision between vehicle controlled by
developmental automated driving system and pedestrian, tempe, arizona, march
18, 2018. Highway Accident Report NTSB/HAR-19/03, National Transportation
Safety Board (November 2019)

49. Niederreiter, H.: Random number generation and quasi-Monte Carlo methods.
SIAM (1992)

50. O’Kelly, M., Sinha, A., Namkoong, H., Tedrake, R., Duchi, J.C.: Scalable end-
to-end autonomous vehicle testing via rare-event simulation. Advances in Neural
Information Processing Systems 31, 9827–9838 (2018)

51. Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Prac-
tical black-box attacks against machine learning. In: Proceedings of the 2017 ACM
on Asia Conference on Computer and Communications Security - ASIA CCS 17.
ACM (2017). https://doi.org/10.1145/3052973.3053009, https://doi.org/10.1145/
3052973.3053009

52. Pei, K., Cao, Y., Yang, J., Jana, S.: Deepxplore: Automated whitebox test-
ing of deep learning systems. In: Proceedings of the 26th Symposium on Op-
erating Systems Principles, Shanghai, China, October 28-31, 2017. pp. 1–18.
ACM (2017). https://doi.org/10.1145/3132747.3132785, https://doi.org/10.1145/
3132747.3132785

53. Pomerleau, D.: ALVINN: An autonomous land vehicle in a neural network. In:
NIPS 88: Neural Information Processing Systems (1988)

54. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R.,
Ng, A.: Ros: an open-source robot operating system. In: ICRA workshop on open
source software (2009)

55. Rawat, S., Jain, V., Kumar, A.J.S., Cojocar, L., Giuffrida, C., Bos, H.: Vuzzer:
Application-aware evolutionary fuzzing. In: NDSS (2017)

56. ReactiveX: Reactivex, http://reactivex.io/, accessed: 2019-08-23
57. Rote, G., Tichy, R.: Quasi-Monte-Carlo methods and the dispersion of point se-

quences. Mathematical and Computer Modelling 23, 9–23 (1996)
58. Ruan, W., Huang, X., Kwiatkowska, M.: Reachability analysis of deep neu-

ral networks with provable guarantees. In: Lang, J. (ed.) Proceedings of the
Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI
2018, July 13-19, 2018, Stockholm, Sweden. pp. 2651–2659. ijcai.org (2018).
https://doi.org/10.24963/ijcai.2018/368, https://doi.org/10.24963/ijcai.2018/368

http://arxiv.org/abs/1902.01084
https://doi.org/10.1109/MODELS.2019.00-12
https://www.icml.cc/Conferences/2018/Schedule?showEvent=2477
https://www.icml.cc/Conferences/2018/Schedule?showEvent=2477
http://site.mockito.org
https://doi.org/10.1145/3052973.3053009
https://doi.org/10.1145/3052973.3053009
https://doi.org/10.1145/3052973.3053009
https://doi.org/10.1145/3132747.3132785
https://doi.org/10.1145/3132747.3132785
https://doi.org/10.1145/3132747.3132785
http://reactivex.io/
https://doi.org/10.24963/ijcai.2018/368
https://doi.org/10.24963/ijcai.2018/368

194 R. Majumdar et al.

59. Samimi, H., Hicks, R., Fogel, A., Millstein, T.: Declarative mocking. In: ISSTA
2013. pp. 246–256. ACM (2013)

60. Sankaranarayanan, S., Fainekos, G.: Falsification of temporal properties of hybrid
systems using the cross-entropy method. In: HSCC 12. pp. 125–134. ACM (2012)

61. Shah, S., Dey, D., Lovett, C., Kapoor, A.: Airsim: High-fidelity visual and physical
simulation for autonomous vehicles. In: Field and Service Robotics (2017), https:
//arxiv.org/abs/1705.05065

62. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. CoRR abs/1409.1556 (2014)

63. Stewart, L., Musa, M., Croce, N.: Look no hands: self-driving vehi-
cles’ public trust problem (2019), https://www.weforum.org/agenda/2019/08/
self-driving-vehicles-public-trust/, accessed: 2021-01-18

64. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I.J.,
Fergus, R.: Intriguing properties of neural networks. CoRR abs/1312.6199 (2013)

65. Tian, Y., Pei, K., Jana, S., Ray, B.: Deeptest: Automated testing of deep-neural-
network-driven autonomous cars. In: Proceedings of the 40th International Con-
ference on Software Engineering. pp. 303–314. ACM (2018)

66. Tuncali, C.E., Fainekos, G., Prokhorov, D., Ito, H., Kapinski, J.: Requirements-
driven test generation for autonomous vehicles with machine learning components.
arXiv preprint arXiv:1908.01094 (2019)

67. Tuncali, C.E., Fainekos, G.E., Ito, H., Kapinski, J.: Sim-atav: Simulation-based
adversarial testing framework for autonomous vehicles. In: Proceedings of the
21st International Conference on Hybrid Systems: Computation and Control
(part of CPS Week), HSCC 2018, Porto, Portugal, April 11-13, 2018. pp. 283–
284. ACM (2018). https://doi.org/10.1145/3178126.3187004, http://doi.acm.org/
10.1145/3178126.3187004

68. Udacity: Self-driving car simulator, https://github.com/udacity/
self-driving-car-sim, accessed: 2019-08-23

69. Unity3D: Unity game engine, https://unity3d.com/, accessed: 2019-08-23
70. Wan, Z., Hudak, P.: Functional reactive programming from first principles. In:

Proceedings of the 2000 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), Vancouver, Britith Columbia, Canada, June
18-21, 2000. pp. 242–252. ACM (2000). https://doi.org/10.1145/349299.349331,
https://doi.org/10.1145/349299.349331

71. Wicker, M., Huang, X., Kwiatkowska, M.: Feature-guided black-box safety test-
ing of deep neural networks. In: Beyer, D., Huisman, M. (eds.) Tools and Algo-
rithms for the Construction and Analysis of Systems - 24th International Con-
ference, TACAS 2018, Held as Part of the European Joint Conferences on The-
ory and Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20,
2018, Proceedings, Part I. Lecture Notes in Computer Science, vol. 10805, pp.
408–426. Springer (2018). https://doi.org/10.1007/978-3-319-89960-2 22, https:
//doi.org/10.1007/978-3-319-89960-2 22

72. Wymann, B., Espié, E., Guionneau, C., Dimitrakakis, C., Coulom, R., Sumner, A.:
TORCS, The Open Racing Car Simulator. http://www.torcs.org (2014)

https://arxiv.org/abs/1705.05065
https://arxiv.org/abs/1705.05065
https://www.weforum.org/agenda/2019/08/self-driving-vehicles-public-trust/
https://www.weforum.org/agenda/2019/08/self-driving-vehicles-public-trust/
https://doi.org/10.1145/3178126.3187004
http://doi.acm.org/10.1145/3178126.3187004
http://doi.acm.org/10.1145/3178126.3187004
https://github.com/udacity/self-driving-car-sim
https://github.com/udacity/self-driving-car-sim
https://unity3d.com/
https://doi.org/10.1145/349299.349331
https://doi.org/10.1145/349299.349331
https://doi.org/10.1007/978-3-319-89960-2_22
https://doi.org/10.1007/978-3-319-89960-2_22
https://doi.org/10.1007/978-3-319-89960-2_22

Paracosm: A Test Framework for Autonomous Driving Simulations 195

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Compositional Analysis of Probabilistic Timed
Graph Transformation Systems�

Maria Maximova (�), Sven Schneider , and Holger Giese

University of Potsdam, Hasso Plattner Institute, Potsdam, Germany
{maria.maximova,sven.schneider,holger.giese}@hpi.de

Abstract. The analysis of behavioral models is of high importance for
cyber-physical systems, as the systems often encompass complex behav-
ior based on e.g. concurrent components with mutual exclusion or prob-
abilistic failures on demand. The rule-based formalism of probabilistic
timed graph transformation systems is a suitable choice when the mod-
els representing states of the system can be understood as graphs and
timed and probabilistic behavior is important. However, model checking
PTGTSs is limited to systems with rather small state spaces.
We present an approach for the analysis of large-scale systems modeled
as probabilistic timed graph transformation systems by systematically
decomposing their state spaces into manageable fragments. To obtain
qualitative and quantitative analysis results for a large-scale system, we
verify that results obtained for its fragments serve as overapproxima-
tions for the corresponding results of the large-scale system. Hence, our
approach allows for the detection of violations of qualitative and quanti-
tative safety properties for the large-scale system under analysis. We con-
sider a running example in which we model shuttles driving on tracks
of a large-scale topology and for which we verify that shuttles never col-
lide and are unlikely to execute emergency brakes. In our evaluation, we
apply an implementation of our approach to the running example.

Keywords: cyber-physical systems, graph transformation systems, qual-
itative analysis, quantitative analysis, probabilistic timed systems, com-
positional analysis, model checking

1 Introduction

Real-time cyber-physical systems often emit a complex behavior based on e.g.
concurrent components with mutual exclusion or probabilistic failures on de-
mand. Consequently, modeling formalisms for capturing such systems must
suitably support the modeling of their complex behaviors. In such a model
driven approach, the analysis of behavioral models w.r.t. a provided specifica-
tion is vital to ensure overall soundness of the resulting system.

� Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Founda-
tion) - 241885098, 148420506.

c© The Author(s) 2021
E. Guerra and M. Stoelinga (Eds.): FASE 2021, LNCS 12649, pp. 196–217, 2021.
https://doi.org/10.1007/978-3-030-71500-7_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71500-7_10&domain=pdf
http://orcid.org/0000-0001-9275-806X
http://orcid.org/0000-0001-9828-618X
http://orcid.org/0000-0002-4723-730X
https://doi.org/10.1007/978-3-030-71500-7_10

border

core
fragment

occurrence
of border

occurrence
of core

occurrence
of fragment

overlapping in border

1 1 2 2 3

1 2 3

Fig. 1: Occurrence of single FT with border and core in LST (left) and five
occurrences of three FTs in LST overlapping in their borders (right).

The rule-based transformation of graphs is a suitable choice when the mod-
els representing states of the system can be understood as graphs. In particular,
the formalism of probabilistic timed graph transformation systems (PTGTSs)
extends the standard rule-based transformation of graphs such that timed and
probabilistic behavior is covered by supporting (a) non-deterministic choice
among steps, (b) probabilistic choice among step results, and (c) steps repre-
senting the passage of time.

A model checking approach for PTGTSs w.r.t. probabilistic metric temporal
properties was introduced in [19]. However, also this model checking approach
is limited to systems with rather small state spaces due to the state space
explosion problem. As a workaround, a selected set of small examples may be
considered hopefully capturing all system-specific challenges to establish trust
that the model exhibits the required safe behavior and that unwanted behavior
is sufficiently unlikely. However, it cannot be excluded that the considered
small examples do not reveal all the threatening behavior.

We present a decomposition-based approach for the analysis of large-scale
systems modeled as PTGTSs to rule out violations of qualitative and quantita-
tive safety properties.

As a first step, we capture the underlying static large-scale topology (short
LST) of a large-scale system as a subgraph that is not changed by graph trans-
formation, describe how a fragment topology (short FT) can be embedded into
such an LST (see the left part of Figure 1), and specify how multiple such em-
beddings of FTs can overlap in their borders (see the right part of Figure 1).

As a second step, based on the decomposition described by such embed-
dings, we construct for each FT an adapted PTGTS. Such an adapted PTGTS
is then ensured to (a) exhibit the same behavior on the non-overlapped part of
the FT (named core) and to (b) simulate all possible behaviors that can happen
for any occurrence of the FT in an LST. To obtain the mentioned simulation,
we include modifications of the rules of the original PTGTS operating on the
border of an FT into the adapted PTGTS. With this direct relationship between
behaviors on the FTs and the LST, we obtain that the likelihood of an unwanted
or forbidden graph pattern in one of the adapated PTGTS is an upper bound
for its likelihood in its embedding in the large-scale PTGTS.

As a last step, exploiting our decomposition to counter the state space ex-
plosion problem, we apply the model checking approach from [19] to the PT-

Compositional Analysis of PTGTSs 197

GTSs constructed for the FTs employing its reduction to probabilistic timed
automata (PTA) instead of applying the model checking approach directly to
the PTGTS modeling the large-scale system.

To illustrate our approach, we consider a running example in which we
model shuttles driving on tracks of an LST and for which we verify that shut-
tles never collide and are unlikely to execute emergency brakes. In our evalu-
ation, we apply an implementation of our approach to the running example.

The idea to decompose a system into subsystems or to compose it from sub-
systems for the analysis has been studied intensively [25] but our suggested
compositional approach has distinguishing characteristics. Firstly, the vast ma-
jority of approaches (like process algebras or similar models) assume that the
modeling formalism supports the composition/decomposition as a first class
concept such that compositional analysis techniques are directly applicable as
the subsystem models cover all possible behaviors in all contexts. In contrast,
we do not rely on a built-in decomposition operator but rather allow for a
flexible derivation of an LST decomposition in terms of FTs, overlappings, and
a suitable overapproximation on the border, which are not predefined by the
modeling formalism.

Secondly, several approaches rely on a protocol-like specification of how
the decomposed subsystems interact, while in our approach the overapprox-
imation is derived systematically from the PTGTS model that does not nec-
essarily provide such a protocol-like specification already. The compositional
analysis approach for graph transformation systems (GTSs) from [24, 11] de-
fines explicit interfaces, which are used to consider whether the behavior of
two independent graphs glued via these interfaces (requiring that local tran-
sitions are compatible) cover jointly all global transitions. Moreover, in further
approaches, protocols for the roles of collaborations and ports of components
have been assumed. For example, in [14], the idea to overapproximate the
environment and border is explored for timed automata with explicit mod-
els of the roles in form of protocol automata. This idea has been combined
with dynamic collaborations in [12, 13] captured by timed GTSs (TGTSs) and
their analysis via inductive invariant checking [3, 4]. Later on, this approach
has been extended to role, component, and collaboration behavior, which is
captured by TGTSs and hybrid GTSs in [5] and [2], respectively. However, as
opposed to the presented approach, in all these cases an explicit concept of
interface is assumed to separate parts that are analyzed in isolation.

This paper is structured as follows. In section 2, we introduce our running
example from the domain of cyber-physical systems. In section 3, we recapit-
ulate the necessary preliminaries related to PTA and PTGTSs also presenting
the modeling of our running example. In section 4, we discuss the decompo-
sition of static substructures of large-scale systems. In section 5, we present
our decomposition-based approach allowing to split the model checking prob-
lem into more manageable parts. In section 6, we present an evaluation of the
conceptual results for our running example. Finally, in section 7, we close the
paper with a conclusion and an outlook on planned future work.

198 M. Maximova et al.

2 Running Example

We now informally introduce a scenario (based on the RailCab project [23]) of
autonomous shuttles driving on an LST, which serves as a running example in
the remainder of this paper. Based on this introduction, we will discuss how
we model this shuttle scenario as a PTGTS in the next section.

In the considered shuttle scenario, a track topology containing a large num-
ber of tracks of approximately equal length is given. Tracks are connected to
the adjacent tracks via directed connections building in this manner track se-
quences. Two track sequences can be joined together (i.e., can end up in a
common track with two predecessors) leading to a join fragment topology (see
FT8 in Figure 4a) or can split up from a common track (i.e., a common track
has then two successor tracks) leading to a fork fragment topology (see FT7

in Figure 4a). Moreover, depots may have a directed connection to a track
allowing shuttles to enter or exit the track topology. Shuttles, which are al-
ways located on a single track, may be in mode DRIVE, STOP, or BRAKE.
Being in mode DRIVE, shuttles drive to the next track (respecting the direc-
tion of the connection between the tracks) with a certain velocity, which may
be slow ([3, 4] time units per track) or fast ([2, 3] time units per track). Regu-
larly, shuttles change into mode STOP, which allows them to avoid coming too
close to other shuttles. Moreover, shuttles should slow down before entering
a track with a construction site on it. However, shuttles noticing the construc-
tion site too late have to execute an emergency brake thereby changing into the
mode BRAKE. To reduce the likelihood of such emergency brakes, yellow traf-
fic lights are installed a few tracks ahead of such construction sites to indicate
to shuttles that they should slow down. After construction sites, green traffic
lights may be installed permitting shuttles to increase their velocity. However,
we also consider failures on demand where a traffic light that is passed by a
shuttle is not recognized or, for some other reason, not appropriately taken
into account by the shuttle. We assume a failure probability of 10−6 for this
case assuming that the failure does not only depend on the visual observation
by the train driver but also depends on a failure of the backup system.

In our running example, static elements are the tracks, depots, installed
traffic lights, and construction sites as well as connections between these el-
ements. The PTGTS modeling the behavior of the described scenario never
changes this underlying LST. Complementary, dynamic elements are shuttles,
their attributes, their connections to tracks of the LST as well as the attributes
of traffic lights. Note that we use later a grammar to generate admissible LSTs.

For the considered shuttle scenario, we are interested in various properties.
Firstly, we need to verify that the behavior of the system never gets temporally
stuck in a state where no steps (discrete steps of e.g. driving shuttles or timed
steps) are enabled. Secondly, we need to verify whether the rules have been
constructed in a way ensuring the absence of collisions between shuttles (i.e.,
two shuttles should not be on a common track). Thirdly, emergency brakes
should be improbable at a local level for a single shuttle but also at the global
level for the entire LST and its possible numerous number of shuttles.

Compositional Analysis of PTGTSs 199

:Shuttle
mode:string
minDur:real

:Track
id:int
clockDrive:real

:TLYellow
active:bool

:TLGreen
active:bool

:ConstructionSite

TG

:Depot

:next

:at

:at:at :in

:out

:at⊥

(a) Type graph

INVdriving

S1:Shuttle
mode=m1
minDur=minD1

T1:Track
clockDrive=d1

e1:at
m1 = DRIVE
∧ d1 > minD1 + 1¬∃ ,�

(b) Invariant

L K R

G G′ G′′

� r

g1 g2

m m′ m′′

(c) DPO diagram

�0 �3
c0 ≥ 1 1; {c0}

�1

c0 ≥ 0

1; {c0}

�2

c0 ≥ 2

0.5; {c0}
0.5; {c0}

c0 ≤ 5; ∅

c0 ≤ 3; ∅ �; {done}

�; ∅

(d) Example of a PTA

APunexpectedVelocity

S1:Shuttle
minDur=minD1

minD1 �= 2
∧minD1 �= 3∃ ,�

APcollision

T1:Track
S1:Shuttle

S2:Shuttle

e1:at

e2:at
∃ ,�

APbraked

S1:Shuttle
mode=BRAKE∃ ,�

(e) Atomic propositions

L

r1 r2

a′1 = ⊥∧ unchanged(minD1, tid1)

[failure] reset: ∅, probability: 10−6

a1 = � guard: �, priority: 1, stepLabel: (minD1, tid1)

S1:Shuttle
minDur=minD1

T1:Track
id=tid1

Y1:TLYellow
active=a1

e1:at e2:at

R1 = L
minD′1 = 3∧ a′1 = ⊥∧ unchanged(tid1)

[success] reset: ∅, probability: 1− 10−6
R2 = L

(f) The rule SetSlow: a shuttle may successfully decrease its velocity by setting its time
per track to [3, 4] (where only the lower end of the interval is stored in the graph)
with probability 1− 10−6 or may fail to decrease its velocity with probability 10−6.
Setting the active attribute to ⊥ ensures that the rule cannot be applied twice.

m1 = DRIVE∧minD1 = 2∧m′1 = BRAKE∧ unchanged(minD1, tid1, tid2)

guard: d1 ≥ minD1, reset: {d′2}, priority: 0, stepLabel: (tid1, tid2)

�

S2:Shuttle

T2:Track

e5:at¬∃ ,� S1:Shuttle
mode=m1
minDur=minD1

T1:Track
id=tid1
clockDrive=d1

T2:Track
id=tid2
clockDrive=d2

CS:ConstructionSite
e1:at
+

e3:ate2:next

e4:at⊕

(g) The rule ConstructionSiteBrake: a shuttle with high velocity ([2, 3] time units per
track where only the lower end of the interval is stored in the graph) needs to execute
an emergency brake to ensure that the track with a construction site on it is not
entered with a too high velocity.

Fig. 2: Details for our running example, DPO diagram, and PTA example.

200 M. Maximova et al.

m′1 = DRIVE∧ unchanged(minD1, tid1, tid2)

guard: d1 ≥ minD1, reset: {d′2}, priority: 0, stepLabel: (m1, minD1, tid1, tid2)

�

CS:ConstructionSite T2:Track
e5:at¬∃ ,�

S2:Shuttle
mode=m2

T4:Track T2:Track
e5:at e6:next

m2 = DRIVE
∧¬∃ ,�

S2:Shuttle T3:Track
e5:at∧¬∃ ,�

S2:Shuttle
mode=m2

T4:Track T3:Track
e5:at e6:next

m2 = DRIVE
∧¬∃ ,�

S2:Shuttle T2:Track
e5:at∧¬∃ ,�

S1:Shuttle
mode=m1
minDur=minD1

T1:Track
id=tid1
clockDrive=d1

T2:Track
id=tid2
clockDrive=d2

T3:Track
e1:at
+

e2:next e3:next

e4:at⊕

(a) The rule Drive: a shuttle may drive to the next track where the application condi-
tion is used to rule out situations that on the next track is a construction site or that
the considered shuttle comes too close to another shuttle.

m′1 = DRIVE∧minD′1 = 2∧ unchanged(tid1)

guard: �, reset: {d′1}, priority: 0, stepLabel: (tid1)

�

T3:Track T1:Track
e3:next¬∃ ,�

S2:Shuttle T1:Track
e3:at∧¬∃ ,�

S2:Shuttle T2:Track
e3:at∧¬∃ ,�

S1:Shuttle
mode=m′1
minDur=minD′1

⊕ T1:Track
id=tid1
clockDrive=d1

T2:Track
e1:nexte2:at

⊕

(b) The rule DriveEnterFast: adaptation of the rule Drive for the case that a new shuttle
enters the current fragment topology with a high velocity (the similar rule for a shuttle
with a low velocity has been omitted here for brevity) from a context track belonging
to another fragment topology.

guard: d1 ≥ minD1, reset: {d′2}, priority: 0, stepLabel: (tid1, tid2)m′1 = DRIVE∧ unchanged(minD1, tid1, tid2)

�

T2:Track T3:Track
e4:next¬∃ ,�

S2:Shuttle T2:Track
e4:at∧¬∃ ,�

S1:Shuttle
mode=m1
minDur=minD1

T1:Track
id=tid1
clockDrive=d1

T2:Track
id=tid2
clockDrive=d2

e1:at
+

e2:next

e3:at⊕

(c) The rule DriveExit1: adaptation of the rule Drive for the case that a shuttle drives
onto the last track of the current fragment topology.

guard: d1 ≥ minD1, reset: ∅, priority: 0, stepLabel: (tid1)unchanged(tid1)

�T1:Track T2:Track
e2:next¬∃ ,�

S1:Shuttle
mode=m1
minDur=minD1

+ T1:Track
id=tid1
clockDrive=d1

e1:at
+

(d) The rule DriveExit2: adaptation of the rule Drive for the case that a shuttle exits the
current fragment topology towards a track belonging to another fragment topology.

Fig. 3: The rule Drive and the three adapted rules DriveEnterFast, DriveExit1,
and DriveExit2 for fragment topologies where parts of the application con-
dition of the rule Drive are omitted due to the overlay specification of the
running example.

Compositional Analysis of PTGTSs 201

3 Preliminaries

We now briefly introduce the subsequently required details for graph trans-
formation systems (GTSs) [10], probabilistic timed automata (PTA) [17], and
probabilistic timed graph transformation systems (PTGTSs) [18, 19] in our no-
tation. Along this presentation, we also discuss the modeling details for our
running example from the previous section.

We employ type graphs (cf. [10]) such as the type graph TG from Figure 2a
for our running example. A type graph describes the set of all admissible
(typed attributed) graphs by mentioning the allowed types of nodes, edges,
and attributes. We assume typed attributed graphs in which attributes are
specified using a many sorted first-order attribute logic as proposed in [21]
(the attribute constraint ⊥ (false) in TG means that the type graph does not
restrict attribute values). This approach to attribution has been used to capture
constraints on attributes in graph conditions in [27] and to describe attribute
modifications in [22, 28].

Graph transformation is then performed by applying a graph transforma-
tion rule (short rule) ρ = (� : K L, r : K R) consisting of two monomor-
phisms (i.e., all components of the morphisms are injective). The rule specifies
that the graph elements in L− �(K) are to be deleted, the graph elements in
K are to be preserved, and the graph elements in R − r(K) are to be added
during graph transformation. Such a rule is applied to a graph G for a given
match m : L G resulting in a graph G′′ by constructing the double pushout
(DPO) diagram (see Figure 2c) where the first and the second pushout squares
describe the removal and the addition of graph elements specified in the rule,
respectively. Moreover, a rule may additionally contain an application condi-
tion φ (denoted by ρ = (�, r, φ)) to rule out certain matches specifying e.g.
graph elements that may not be connected to graph elements matched by m.
For further details on the graph transformation approach, we refer to [10].

PTA [17] combine the use of clocks to capture real-time phenomena and
probabilism to approximate/describe the likelihood of outcomes of certain
steps. A PTA such as the one in Figure 2d consists of (a) a set of locations with a
distinguished initial location such as �0, (b) a set of clocks such as c0 (which are
initially set to 0), (c) an assignment of a set of atomic propositions (APs) such as
{done} to each location (for subsequent analysis of e.g. reachability properties),
(d) an assignment of constraints on its clocks to each location as invariants such
as c0 ≤ 3, and (e) a set of probabilistic timed edges each consisting of (e1) a
single source location, (e2) at least one target location, (e3) a clock constraint
such as c0 ≥ 2 specifying as a guard when the edge is enabled based on the
current values of the clocks, (e4) for each target location a probability such
as 0.5 that this target is reached (the sum of all the probabilities for the target
locations of the edge must add up to 1 as a probability distribution is required),
and (e5) for each target location a set of clocks such as {c0} to be reset to 0
when that target location is reached.

States of a PTA are given by pairs (�, v) where � is a location and v is the
variable valuation mapping each clock of the PTA to a real number. Nonde-

202 M. Maximova et al.

terminism arises in PTA since a step for advancing time as well as multiple
steps applying rules may be enabled in a single state. The logic PTCTL [17]
then allows to specify properties such as “what is the worst-case probability
that the PTA reaches a location labeled with the AP done within 5 time units”,
which can be analyzed by the PRISM model checker [16]. For the example
PTA from Figure 2d, the given condition is satisfied with probability 0.75 since
the nondeterminism of the PTA would be resolved (by a so-called adversary)
such that the PTA first takes a step to �1 without letting time pass and then
performs the probabilistic step (up to two times after waiting for not longer
than 2 time units) until it reaches the location �2 labeled with the AP done (the
probabilistic step cannot be taken a third time due to the requirement of at
most 5 time units in the quoted property above).

PTGTSs have been introduced in [18, 19] as a probabilistic real-time ex-
tension of GTSs. It has been shown that PTGTSs can be translated to PTA
and, hence, PTGTSs can be understood as a high-level language for PTA as
discussed below in more detail and can be analyzed using PRISM as well.

Similarly to PTA, a PTGTS state is given by a pair (G, v) of a graph and a
clock valuation. The initial state is given by a distinguished initial graph and a
valuation setting all clocks to 0. In our running example, each attribute of type
clockDrive of a Track node (cf. Figure 2a) represents one clock. Invariants and
APs are specified for PTGTSs by means of graph conditions as in Figure 2b and
Figure 2e, respectively, for our running example. We use the single invariant
INVdriving requiring that shuttles in mode DRIVE cannot be on a track longer
than the value of their minDur (minimal duration) attribute plus 1. Moreover,
we consider three APs to specify properties that we want to analyze later on.
The AP APunexpectedVelocity is used to detect graphs in which a shuttle does not
have an expected velocity of [2, 3] or [3, 4] time units per track where only the
lower end of the interval is stored in the graph in the minDur attribute. The
AP APcollision is used to detect graphs in which two shuttles are on a common
track to capture their collision. Finally, the AP APbraked is used to detect graphs
in which a shuttle has just executed an emergency brake.

PTGT rules of a PTGTS then correspond to edges of a PTA and contain
(a) a left-hand side graph L, (b) an attribute constraint on the clock attributes
contained in L to capture a guard, (c) a natural number describing a priority
where higher numbers denote higher priorities, and (d) a nonempty set of tu-
ples of the form (� : K L, r : K R, φ, C, p) where (�, r, φ) is an underlying
GT rule with application condition φ1, C is a set of clock attributes contained
in L to be reset, and p is a real-valued probability from [0, 1] where the prob-
abilities of all such tuples must add up to 1. See Figure 2f, Figure 2g, and
Figure 3a for three PTGT rules SetSlow, ConstructionSiteBrake, and Drive from
our running example where the last two PTGT rules have a unique underlying
GT rule with probability 1 and where the first PTGT rule has a higher priority
as well as two underlying GT rules with probabilities 10−6 and 1− 10−6. For
the PTGT rules ConstructionSiteBrake and Drive, we depict the graphs L, K, and

1 The underlying GT rule may not delete or add clock attributes.

Compositional Analysis of PTGTSs 203

R in a single graph (subsequently called LKR-graph) where graph elements to
be removed and to be added are annotated with + and ⊕, respectively. In the
PTGT rule SetSlow, no graph elements are removed or added (i.e., the graphs
L and R of the underlying GT rules coincide). Nevertheless, for this PTGT
rule, we depict the two right-hand side morphisms r1 and r2 as they describe
PTGT steps with different attribute modifications and probabilities. Also, the
PTGT rules ConstructionSiteBrake and Drive have application conditions, which
are depicted left to the � symbol or above the � symbol. The attribute precon-
ditions and attribute modifications are given for each PTGT rule in the red
box below the LKR-graph (or are split into multiple red boxes as for the PTGT
rule SetSlow). In these attribute preconditions and attribute modifications, un-
primed (primed) variables denote the values of attributes before (after) GT
rule application. Note that if variables are not changed by the GT rule appli-
cation, we denote this using the operator unchanged (see e.g. Figure 2g where
unchanged(minD1, tid1, tid2) denotes that the variables minD1, tid1, and tid2 re-
main unchanged). Moreover, further information about the PTGT rule (i.e.,
the guard and the priority) but also further information about the probabilis-
tic choices (i.e., the sets of clocks to be reset and probabilities) are depicted
in gray boxes. Lastly, we also allow to annotate a PTGT step in the induced
state space with (a) a name chosen for the probabilistic choice such as success
and failure in Figure 2f and (b) the values of the variables contained in the list
stepLabel (which may contain variables from L and R).

When comparing PTA and PTGTSs, we observe that PTA edges are either
enabled for the current valuation or not whereas PTGT rules may be applica-
ble for many matches at the same time (e.g. allowing to apply the Drive for
one of multiple shuttles). Priorities used in PTGTSs can be encoded in GTSs
(including PTGTSs) by adding the left-hand side graphs of rules with higher
priorities as negative application conditions to all rules with a lower priority.
Similarly, priorities, if integrated into PTA, could be encoded by refining the
guards. However, for our running example, we can exchange the underlying
track topology without effort, while this would require a fundamental adap-
tation of the corresponding PTA. Also, as in [19], we observe in section 6 that
small PTGTSs result in PTA of considerable size and we therefore conclude
that PTGTSs are typically much more concise compared to PTA.

4 Decomposition of Large-Scale Topologies

We now present our decomposition-based approach to analyze a PTGTS S0
modeling a large-scale cyber-physical system along the lines of the informal
presentation from the introduction. For our running example, such a PTGTS
is given by an initial graph typed over the type graph from Figure 2a that is
restricted later on in a suitable way, 13 PTGT rules of which we present three in
Figure 2f, Figure 2g, and Figure 3a (further rules are given in [20, Appendix]),
the invariant from Figure 2b, and the three APs from Figure 2e.

204 M. Maximova et al.

D T T T T T T T T D T T T T

T T T T

Y

T T

CS

T T T T T T T

Y

T

Y

T

CS

T T T

T T T T

G

T T T
T T

T T

T T

T T T
T

T

TTTT

FT1 FT2 FT3

FT4 FT5

FT6 FT7 FT8

(a) FTs for our running example where the red arrows indicate points for topology
(de)composition.

t1 : T t2 : T t3 : T

t4 : T t5 : T t6 : T

+ +

+

⊕

+ +

+

�

t3 : T T¬∃ ,� T t4 : T∧¬∃ ,�
t3 : T D∧¬∃ ,� D t4 : T∧¬∃ ,�

∧¬φFT1 ∧ . . . ∧ ¬φFT8

(b) Rule Merge for binary overlapping of two instances of FTs.

D T T T T T T T

Y

T T

CS

T T T T T T T T D

TD T T T

Y

T T

CS

T T T T T D

m1
m2 m3

(c) Decomposition M = {m1, m2, m3} of an LST w.r.t. FT1–FT8.

L K R

G G′ G′′�̂ r̂

� r

m m′ m′′

Fi

Li

F′i F′′i

Ki Ri

�̂i r̂i

�i ri

mi m′i m′′i

Fi
κ′i κ′′i

G
κ′ κ′′

κ

κi

αi ei e′i e′′i

Underlying GT rule ρ of the PTGTS S0

Step of S0 from G to G′′

Step of Si from Fi to F′′i

Underlying GT rule ρi of the PTGTS Si

(d) Correspondence of the graph transformation based steps between the large-scale
system S0 and one of its fragment systems Si, which are preserving the respective
static structure given by G and Fi.

Fig. 4: FTs for our running example, rule Merge, example for topology com-
position, and correspondence between steps in the large-scale system and a
fragment system.

Compositional Analysis of PTGTSs 205

As a first step, we identify a substructure of the initial graph of S0 that is
static in the sense that this substructure is preserved and also never extended
throughout all PTGT steps of S0. For large-scale cyber-physical systems such
as our running example, the existence of such a static substructure may be jus-
tified by a logical or spatial distribution. The embedding of a static substruc-
ture G in a given graph G is then captured by a monomorphism κ : G G
describing how G is embedded into G. As a special case, such an embedding κ
can be derived for arbitrary graphs G by a monomorphism κTG : TG TG de-
scribing how the given type graph TG is restricted to a smaller type graph TG.
That is, G then contains only those elements from G that are typed over the
smaller type graph TG. For our running example, we restrict the type graph
TG from Figure 2a to such a smaller type graph TG by removing the Shuttle
node with its attributes, the at edge connected to the Shuttle node, and the
active attributes from the TLYellow and TLGreen nodes. The graphs G obtained
from graphs G of S0 using this restriction are then called large-scale topologies
(LSTs) and contain for our running example a track topology with depots, traf-
fic lights, and construction sites. Note that the fact that such an underlying LST
is indeed preserved and never extended by arbitrary rule applications can be
verified (at least for our running example) by inspecting each rule individually
using the technique of 1-induction [9, 26].

As a second step, we now introduce the notion of a decomposition of
the LST into a small set of (constrained) fragment topologies (FTs). Such (con-
strained) FTs are given by (a) a graph that is typed over the type graph used
for the LST and (b) a graph condition describing constraints on how the graph
of the FT may be embedded into graphs of S0. Moreover, an overlapping specifi-
cation o is required to describe how the embeddings αi of the graphs of two FTs
may overlap in the LST. Such an overlapping specification is given by a set of
spans (o1 : O T1, o2 : O T2) where O is the permitted overlapping graph that
is embedded into the two FTs. A decomposition of an LST (in the following
definition, we simply consider the LST contained in the initial graph G0 of S0)
is then given by embeddings of selected FTs into the LST (cf. Figure 1) such
that the overlapping specification is satisfied (the constraints of the FTs are
checked for S0 later on). In applications, to reduce the state space explosion
problem for the model checking phase later on, it is advantageous to employ
a low number of small FTs that are strictly constrained and are allowed to
overlap in a manageable number of ways.

Definition 1 (Decomposition of LST). If

– S0 is a PTGTS with initial state s0 = (G0, v0),
– κ : G0 G0 is a monomorphism identifying the LST of S0 contained in G0,
– F is a set of (constrained) FTs of the form (Fi, φi),
– o((F1, φ1), (F2, φ2)) ⊆ {(o1, o2) | o1 : O F1, o2 : O F2} is an overlapping

specification, which describes how two FTs from F may overlap,
– M is a list of tuples of the form (F, φ, α) where (F, φ) ∈ F and α : F G0,
– the monomorphisms in M respect the overlapping specification o, i.e., (see [20] for

a visualization) for all (F1, φ1, α1 : F1 G0), (F2, φ2, α2 : F2 G0) ∈ M there

206 M. Maximova et al.

is some pair (o1 : O F1, o2 : O F2) ∈ o((F1, φ1), (F2, φ2)) such that for the
pushout (g1 : F1 P, g2 : F2 P) of (o1, o2) (i.e., the overlapping of F1 and F2
w.r.t. (o1, o2)) there is some h : P G′0 such that α1 = h ◦ g1 and α2 = h ◦ g2.

then M is a decomposition of the LST of S0 w.r.t. κ, F , and o. �

To provide a better intuition for this definition, we now present the decompo-
sition of the LST considered for our running example.

Example 1 (Decomposition for Running Example). Let F contain the constrained
FTs (FTi, φi) for 1 ≤ i ≤ 8 where each FTi is given in Figure 4a (here we use an
abbreviated notation where D, T, Y, G, and CS are the obvious abbreviations
for the node types of the type graph) and where φi states in each case that
shuttles must have a velocity of [2, 3] or [3, 4] time units per track.2

Let o((F1, φ1), (F2, φ2)) be the overlapping specification stating that over-
lappings (o1 : O F1, o2 : O F2) of two FTs are always (for any of the 8× 8
combinations) of the form O = T1 → T2 → T3 where T1 and T3 are mapped to
a Track node in F1 and F2 with an entering and an exiting red arrow by o1 and
o2, respectively.

An example of a decomposition of an LST employing the previously men-
tioned FTs and overlapping specification is given in Figure 4c where three
FTs are embedded into an LST. To be appropriate later on, the decomposition
must ensure that all tracks of the LST are covered by embedding morphisms to
which Shuttle nodes may be connected (e.g. due to Shuttle nodes in the initial
graph of S0 or due to connected Depot nodes from which Shuttle nodes may
enter the LST). In fact, the eight chosen FTs limit the reasoning for our running
example to LSTs that can be decomposed using these FTs. ♦

In general, we consider the two use cases: (a) a given PTGTS with underlying
LST is to be analyzed and (b) LSTs are to be constructed based on the se-
lected and analyzed FTs. Both use cases are supported but require a different
handling. For the use case (a) a parsing of the LST w.r.t. the given FTs and over-
lapping specification must be performed to obtain a decomposition of the LST.
Efficient parsing algorithms have been devised for the special case of hyper-
edge replacement (HR) grammars (which require that nodes are not deleted)
in [8, 6, 7]. A suitable graph transformation based grammar for our running
example with 25 rules is given in [20, Appendix]. For the use case (b) in which
we need to construct some LST, we may employ node deleting rules. For our
running example, consider the rule Merge from Figure 4b that can be used to
iteratively overlap two FTs starting with a disjoint union of copies of FTs. The
rule Merge overlaps two instances of three successive Track nodes following
the overlapping specification where the application condition ensures that the
rule is applied at entry and exit points also excluding the possibility that the
six matched Track nodes belong to an instance of FTi using ¬φFTi.

2 For each FT from Figure 4a, this constraint can be formalized as a graph condition.

Compositional Analysis of PTGTSs 207

5 Overapproximation of Behavior

The decompositions of LSTs introduced in the previous section are now used
as a foundation to establish a behavioral relationship between a given PTGTS
S0 and n PTGTs Si that operate on the instances of FTs that are embedded into
the LST of S0 according to the given LST decomposition.

For this purpose, we extend the structural embeddings given by the α
monomorphisms from FTs to the LST in Definition 1 to embeddings of the
entire graph (including the static but also the dynamic parts) of a state of
some Si called fragment topology state (FTS) into the entire graph of a state of
S0 called large-scale state (LSS). Consider the left middle square in Figure 4d
where the embedding αi together with the FT and LST embeddings κi and κ
is complemented with an embedding ei of the FTS Fi into the LSS G. Note
that ei must be an extension of αi in the sense that the square commutes (i.e.,
κ ◦ αi = ei ◦ κi is required). Also, ei ◦ κi must satisfy the constraint φi of the FT
used for Si.

To simplify our presentation, we assume that the PTGTS S0 (as in our
running example) only employs APs of the form ∃(f : ∅ P,�), invariants
of the form ¬∃(f : ∅ P,�), and application conditions in PTGT rules that
are conjunctions of graph conditions of the form ¬∃(f : ∅ P,�) for some
graph P. This restriction simplifies the identification of parts of FTSs and LSSs
that are considered for an evaluation of such graph conditions.

As a next step, we present a decomposition relation, which establishes a
relationship between S0 and the PTGTSs Si in terms of embedding monomor-
phisms κ, αi, ei, and κi for all reachable states of S0. Moreover, the decom-
position relation requires that (a) the timed and discrete steps of S0 can be
mimicked by each affected Si and (b) that discrete steps performed by some
PTGTS Si in isolation on a part of the LST where the FT Fi does not overlap
with the FT Fj of another PTGTS Sj with i �= j can be mimicked by S0. That is,
the decomposition relation is a simulation for the steps performed by S0 and a
bisimulation on those steps that are performed in isolation by a single PTGTS
Si. Also, to allow to derive results for S0 from a model checking based analysis
of the PTGTSs Si, we require a set of APs A that is part of the APs of S0 and
of each Si. Based on this set A, the decomposition relation also requires that
only those FTSs and LSSs are related that satisfy the same sets of APs in A. For
our running example, this set will contain all three APs of S0 (see Figure 2e).
Finally, we require that the initial states of S0 and the n PTGTSs Si are covered
by the decomposition relation.

Definition 2 (Decomposition Relation). Given

– (PTGTS for large-scale system) S0 is a PTGTS with initial LSS s0 =
(G0, v0) where the LST is identified via κ0 : G0 G0 (and preserved by all
steps of the PTGTS),

– (PTGTSs for FTs) for each 1 ≤ i ≤ n: Si is a PTGTS with initial FTS s0,i =

(F0,i, v0,i) where the underlying FT is identified via κi : F0,i F0,i (and preserved
by all steps of the PTGTS),

208 M. Maximova et al.

– (preserved atomic propositions) A is a set of APs contained in each Si, and
– (Decomposition of the LST) M is a decomposition of size n of the LST of S0

w.r.t. κ0, F = {F0,i | 1 ≤ i ≤ n}, and some overlapping specificiation o (cf.
Definition 1).

S is a decomposition relation between S0 and (S1, . . . ,Sn) containing tuples of
the form ((G, v), κ : G G, w) where (G, v) is a state of S0, κ identifies the LST
of G, and w is a tuple of length n of tuples of the form (si, Fi, φi, αi, κi, ei) when the
following items are satisfied.

1. (elements of decomposition relation) The relation S explains how the FTS
of the PTGTS Si is embedded into the LSS of S0, i.e., (see Figure 4d) if ((G, v), κ :
G G, w) ∈ S and ((Fi, vi), Fi, φi, αi, κi, ei) is the ith element of w, then si =
(Fi, vi) is a state of Si, (Fi, φi, αi) is the ith element of M, κi : Fi G′ (embedding
of FT into LST), ei : Fi G (embedding of FTS into LSS), ei ◦ κi satisfies φi, and
κ ◦ αi = ei ◦ κi (embedding ei is an extension of embedding κi),

2. (consistent valuations) The clock valuations of each FTS agree with the LSS,
i.e., if ((G, v), κ : G G, w) ∈ S, ((Fi, vi), Fi, φi, αi, κi, ei) ∈ w, and κi(ci) = c,
then vi(ci) = v(c).

3. (initial states related) The initial LSS of S0 is related, i.e., (s0, κ0, w) ∈ S
for some w where the ith element (si, Fi, φi, αi, κi, ei) of w satisfies si = s0,i.

4. (atomic propositions) The labeling with APs is in agreement w.r.t. A, i.e., if
((G, v), κ : G G, w) ∈ S, ap = ∃(f : ∅ P,�) ∈ A, the monomorphism
k : P G shows that ap is satisfied by G, then there is some 1 ≤ i ≤ n such
that ((Fi, vi), Fi, φi, αi, κi, ei) is the ith element of w, and there is some ki : P Fi
showing that ap is satisfied by Fi and k = ei ◦ ki.

5. (bisimulation of timed steps) If ((G, v), κ : G G, w) ∈ S and S0 has a
timed step (not involving a PTGTS rule) from (G, v) to (G, v + δ) then there is
some ((G, v + δ), w′) ∈ S where w′ is obtained pointwise from w by applying
the corresponding timed step to each ((Fi, vi), Fi, φi, αi, κi, ei) ∈ w resulting in
((Fi, vi + δ), Fi, φi, αi, κi, ei) and vice versa for a common timed step of each Si of
duration δ.

6. (simulation of structural steps of S0 by Si) if
– ((G, v), κ : G G, w) ∈ S and
– S0 performs the structural step from (G, v) to (G′′, v′′) using an underlying

GT rule ρ = (� : K L, r : K R, φac) given in Figure 4d where, since the
step of S0 preserves the LST, there are unique κ′ : G G′ and κ′′ : G G′′
such that �̂ ◦ κ′ = κ and κ′′ = r̂ ◦ κ′, then

– ((G′′, v′′), κ′′ : G G, w′′) ∈ S for some w′′ that is obtained pointwise
from w by adapting each tuple ((Fi, vi), Fi, φi, αi, κi, ei) ∈ w into a resulting
tuple ((F′′i , v′′i), Fi, φi, αi, κ′′i , e′′i) as follows. If m(L) ∩ ei(Fi) = ∅, then all
components of the tuple remain unchanged. Otherwise, the PTGTS Si must
simulate the step and the tuple needs the updating described in the following
steps.
• There must be a step of Si as given in Figure 4d from Fi to F′′i for some

underlying rule ρi = (�i : Ki Li, ri : Ki Ri, φac,i) with the same
probability and priority as ρ.

Compositional Analysis of PTGTSs 209

• Since the step of Si preserves the FT, there are unique κ′i : Fi F′i and
the required κ′′i : Fi F′′i such that �̂i ◦ κ′i = κi and κ′′i = r̂i ◦ κ′i .• The step of Si must allow for e′i : F′i G′ and e′′i : F′′i G′′ such that
�̂ ◦ e′i = ei ◦ �̂i and r̂ ◦ e′i = e′′i ◦ r̂i.

7. (simulation of structural steps of Si on its core by S0) if
– ((G, v), κ : G G, w) ∈ S,
– ((Fi, vi), Fi, φi, αi, κi, ei) ∈ w,
– Si performs the structural step from (Fi, vi) to (F′′i , v′′i) using an underlying

GT rule ρi = (�i : Ki Li, ri : Ki Ri, φac,i) given in Figure 4d where,
since the step of Si preserves the FT, there are unique κ′i : Fi F′i and κ′′i :
Fi F′′i such that �̂i ◦ κ′i = κi and κ′′i = r̂i ◦ κ′i ,

– ei(mi(Li)) does not overlap with any ej(Fj) for i �= j, then
– there is some ((G′′, v′′), κ′′ : G G, w′′) ∈ S for some G′′, v′′, κ′′, and w′′

as follows.
• There must be a step of S0 as given in Figure 4d from G to G′′ for some

underlying rule ρ = (� : K L, r : K R, φac) with the same probabil-
ity and priority as ρi.
• Since the step of S0 preserves the LST, there are unique κ′ : G G′ and

the required κ′′ : G G′′ such that �̂ ◦ κ′ = κ and κ′′ = r̂i ◦ κ′.
• The step of S0 must allow for e′i : F′i G′ and e′′i : F′′i G′′ such that

�̂ ◦ e′i = ei ◦ �̂i and r̂ ◦ e′i = e′′i ◦ r̂i.
• Finally, w′′ is obtained from w by only adapting the above chosen tuple

((Fi, vi), Fi, φi, αi, κi, ei) into the tuple ((F′′i , v′′i), Fi, φi, αi, κ′′i , e′′i). �

We now state that decomposition relations allow for the simulation of each
path of the PTGTS S0 by the PTGTSs Si.

Lemma 1 (Existence of Simulating Paths). If S is a decomposition relation be-
tween S0 and (S1, . . . ,Sn), and π is a path of length m in S0 from the initial state to
a state sm, then, for each 1 ≤ i ≤ n, there is a path πi of Si (of length ki ≤ m) ending
in a state si,ki

such that (sm, κ, w) ∈ S for some κ and w where the ith element of w is
of the form (si,ki

, Fi, φi, αi, κi, ei). Moreover, the probability of each such path πi is at
least as high as the probability of the path π. See [20] for the proof.

We now state that a PTGTS satisfies a safety property given by an AP, when
safety w.r.t. this AP can be established for each Si.

Theorem 1 (Safety Verification). If S is a decomposition relation between S0 and
(S1, . . . ,Sn) w.r.t A and ap ∈ A, then S0 is safe w.r.t. the occurrence of an ap-labeled
graph when (for each 1 ≤ i ≤ n) Si is safe w.r.t. the occurrence of an ap-labeled graph.
Moreover, the probability of an occurrence of an ap-labeled graph from some state s in
S0 is smaller than the probability of an occurrence of an ap-labeled graph from some
S-related state si in Si. See [20] for the proof.

We now apply the proposed methodology of establishing a behavioral rela-
tionship between the PTGTS S0 and the PTGTSs Si to our running example.
For this purpose, we now describe how the FTS of each Si is embedded into
the LSS of S0 and, based on this embedding, how the Si is derived from S0.

210 M. Maximova et al.

Example 2 (Construction of Embeddings and Simulating PTGTSs). Firstly, the em-
beddings ei of FTSs into the LSS are obtained as extensions of the structural
embeddings κi by also matching (a) all Shuttle nodes (with their attributes) that
are connected to Track nodes contained in the FT via next edges and (b) all active
attributes of TLYellow and TLGreen nodes contained in the FT. This extension
also naturally applies to the initial state of S0. Clearly, two embeddings ei and
ej (for i �= j) only overlap in elements of their FTs but not in the additionally
matched dynamic elements.

Secondly, we adapt the given PTGTS S0 to obtain for each of the eight FTs
one PTGTS Si by (a) changing the initial graph to the source of ei capturing
the FT as well as the additional dynamic elements of the initial state of S0
connected to it, (b) adding eight rules for overapproximating the behavior
of S0 on the tracks that may overlap with tracks of other FTs. For the latter
point, we observe that all but three of the rules of S0 (including SetSlow and
ConstructionSiteBrake from Figure 2) are never applicable on the parts of FTs
that may overlap with other FTs (i.e., borders of FTs). The remaining three rules
are Drive from Figure 3a as well as two similar rules for stopping the shuttle
that we do not consider in detail here. Three of the four derived rules for rule
Drive are given in Figure 3.

The additional rule DriveEnterFast is used to simulate Drive steps where a
shuttle in S0 drives from a track not covered by Si to a track covered by Si.
The rule DriveEnterFast is essentially constructed by omitting the source track
T1 from the rule Drive, by adding the shuttle with one of the two expected
velocities (the other velocity results in the omitted rule DriveEnterSlow)3, and
by omitting application conditions that may not be satisfied due to the over-
lapping specification and the structure of FTs.

Similarly, the additional rules DriveExit1 and DriveExit2 are constructed
from rule Drive to allow for the simulation of the two steps in which a shut-
tle in S0 drives using rule Drive on two tracks covered by Si to a track not
covered by Si. These two rules are then constructed similarly, by omitting the
tracks T3 (for DriveExit1) and T3 and T4 (for DriveExit2) from rule Drive as
these are not covered by the Si, by removing the shuttle with its attributes in
rule DriveExit2, by omitting application conditions that may not be satisfied
due to the overlapping specification and the structure of FTs, and by omitting
application conditions that refer to the removed tracks.

Note that these additional rules overapproximate the behavior that is possi-
ble in S0 as they may be used when analyzing Si also when no corresponding
shuttle in S0 is able to enter the FT or when rule Drive would be disabled
due to the omitted application conditions for the case of rules DriveExit1 and
DriveExit2. ♦

For our running example, we now describe the construction of a suitable de-
composition relation relying on the LST decomposition introduced before.

3 Here, we rely on the constraints on the eight FTs (cf. Example 1) requiring that the
AP APunexpectedVelocity is never labeled in the large-scale system S0.

Compositional Analysis of PTGTSs 211

Lemma 2 (Existence of Decomposition Relation for Running Example). For
the PTGTS S0 of our running example with an arbitrary initial LST such that M is a
decomposition of that LST w.r.t. some monomorphism κ, the set of eight FTs, and the
overlapping specification o from Example 1 there is a decomposition relation S between
S0 and the n PTGTSs Si from Example 2. See [20] for the proof.

Based on this decomposition relation and Theorem 1, we can obtain the desired
overapproximation result for S0 for the qualitative safety w.r.t. collisions and
the quantitative unlikeliness of emergency brakes.

Corollary 1 (Qualitative and Quantitative Safety for Running Example). S0
exhibits no collisions when this is the case for each Si. Moreover, emergency brakes
are performed in S0 with a probability not higher than the probability of such an
occurrence in any Si.

Note that we only need to analyze one PTGTS for each of the eight permitted
FTs w.r.t. the occurrence of collisions and the probability of emergency brakes.

6 Evaluation

To analyze the eight PTGTSs constructed for our running example in section 5

(see Table 1 for the results), we have employed the methodology from [19]
generating the state spaces for these PTGTSs without timed steps and then
generated the corresponding PTA from these state spaces. We then restricted
these PTA to timed automata (TA) essentially removing the information on
probabilities, applied UPPAAL [15] to determine the edges of the TA that can
never be applied due to unsatisfiable guards, and removed the correspond-
ing edges from the previously generated PTA. The entire analysis using our
prototypical implementation required less than three days on a machine using
up to 250 GB memory where the state space generation required most of the
time. However, there is a vast potential for optimizations regarding memory
consumption (by only storing subsequently relevant information on states and
steps) and runtime (by facilitating concurrency during state space generation).

Firstly, using UPPAAL, we have verified that each of the eight TA (hence,
also the eight PTA) have no reachable deadlock (where also timed steps are
disabled). Hence, we obtain that the PTGTS S0 also does not contain this par-
ticular modeling error since, using the decomposition relation, we also obtain
that every deadlock reachable in S0 can be reached analogously in each Si.

Secondly, we have observed that the obtained PTA do not label any lo-
cation with APunexpectedVelocity or APcollision. For APunexpectedVelocity this means that
the additional rules such as DriveEnterFast and DriveEnterSlow for overapprox-
imating the steps of entering shuttles entirely cover all possible velocities of
shuttles. For APcollision this means that Corollary 1 implies that the PTGTS S0
with an LST constructed in the described way from the eight FTs is safe w.r.t.
the occurrence of collisions.

Thirdly, to verify that yellow traffic lights suitably slow down the shuttles
before construction sites, we have identified locations �i in the resulting PTA

212 M. Maximova et al.

Table 1: Results of our evaluation for the running example
fragment topology states steps collisions max. probability for violating the

velocity limit at a construction site

FT1 9 18 0 0
FT2 335 693 0 0
FT3 216 503 0 0
FT4 109 379 312 915 0 1× 10−6

FT5 106 122 284 102 0 1× 10−12

FT6 12 473 31 812 0 0
FT7 4048 16 314 0 0
FT8 121 953 452 340 0 0

that are labeled with APbraked (occurring only in FT4 and FT5). In each case, we
were able to track using a custom analysis algorithm (since the PRISM model
checker was too slow for the large PTA at hand) the shuttle backwards over
all possible paths leading to such a location �i up to the step where the shuttle
entered the FT. We then determined the maximal probability of any such path
obtaining a worst-case emergency brake probability of 10−6 and 10−12 for any
entering shuttle in FT4 and FT5, respectively. On the one hand, FT5 is thereby
verified to be quantitatively more desirable compared to FT4. On the other
hand, Corollary 1 implies that installations of yellow traffic lights as in FT4

and FT5 suitably decrease the likelihood of emergency brakes also for S0.
However, the probabilities that some shuttle executes an emergency brake in a
given time span in FT4/FT5 (obtained by combining the maximal throughput
of shuttles for FT4/FT5 with the worst-case probability obtained for FT4/FT5)
can be expected to be too coarse upper bounds when the maximal throughput
is not to be expected for the real system.

7 Conclusion and Future Work

We presented an analysis approach for large-scale systems modeled as PT-
GTSs for which model checking is not feasible. In this approach, we rely on
a decomposition of an underlying static large-scale topology into fragment
topologies of manageable size. Model checking is then applied for each frag-
ment topology and an adaptation of the PTGTS to such a fragment topology.
We thereby determine (a) overapproximations of reachability properties im-
portant for qualitative safety properties and (b) upper bounds for probabilistic
reachability properties important for quantitative safety properties.

As future work, we intend to extend our analysis to fairness properties
and conditions of the metric temporal graph logic (MTGL) [29]. Also, to cover
further aspects of the RailCab project [23], we will develop more general de-
composition schemes where dynamic components (such as connected shuttles
driving in convoys) may be covered by multiple fragment topologies. Lastly, to
further evaluate applicability of our approach, we intend to apply it to other
case studies as e.g. the one discussed in [1].

Compositional Analysis of PTGTSs 213

References

[1] Paolo Baldan, Andrea Corradini, and Barbara König. “Static Analysis
of Distributed Systems with Mobility Specified by Graph Grammars—A
Case Study”. In: Proc. of Int. Conf. on Integrated Design & Process Technol-
ogy. Ed. by Ehrig, Krämer, et al. SDPS, 2002.

[2] Basil Becker. “Architectural modelling and verification of open service-
oriented systems of systems”. PhD thesis. Hasso-Plattner-Institut für
Softwaresystemtechnik, Universität Potsdam, 2014. url: http ://opus.
kobv.de/ubp/volltexte/2014/7015/.

[3] Basil Becker, Dirk Beyer, Holger Giese, Florian Klein, and Daniela Schill-
ing. “Symbolic invariant verification for systems with dynamic struc-
tural adaptation”. In: 28th International Conference on Software Engineering
(ICSE 2006), Shanghai, China, May 20-28, 2006. Ed. by Leon J. Osterweil,
H. Dieter Rombach, and Mary Lou Soffa. ACM, 2006, pp. 72–81. doi:
10.1145/1134285.1134297.

[4] Basil Becker and Holger Giese. “On Safe Service-Oriented Real-Time Co-
ordination for Autonomous Vehicles”. In: 11th IEEE International Sympo-
sium on Object-Oriented Real-Time Distributed Computing (ISORC 2008), 5-7
May 2008, Orlando, Florida, USA. IEEE Computer Society, 2008, pp. 203–
210. doi: 10.1109/ISORC.2008.13.

[5] Basil Becker, Holger Giese, and Stefan Neumann. Correct dynamic service-
oriented architectures : modeling and compositional verification with dynamic
collaborations. Tech. rep. 29. Hasso Plattner Institute at the University of
Potsdam, 2009.

[6] Frank Drewes, Berthold Hoffmann, and Mark Minas. “Formalization
and correctness of predictive shift-reduce parsers for graph grammars
based on hyperedge replacement”. In: J. Log. Algebraic Methods Program.
104 (2019), pp. 303–341. doi: 10.1016/j.jlamp.2018.12.006.

[7] Frank Drewes, Berthold Hoffmann, and Mark Minas. “Graph Parsing as
Graph Transformation - Correctness of Predictive Top-Down Parsers”.
In: Graph Transformation - 13th International Conference, ICGT 2020, Held
as Part of STAF 2020, Bergen, Norway, June 25-26, 2020, Proceedings. Ed. by
Fabio Gadducci and Timo Kehrer. Vol. 12150. Lecture Notes in Computer
Science. Springer, 2020, pp. 221–238. doi: 10.1007/978-3-030-51372-6_13.

[8] Frank Drewes, Berthold Hoffmann, and Mark Minas. “Predictive Top-
Down Parsing for Hyperedge Replacement Grammars”. In: Graph Trans-
formation - 8th International Conference, ICGT 2015, Held as Part of STAF
2015, L’Aquila, Italy, July 21-23, 2015. Proceedings. Ed. by Francesco Parisi
- Presicce and Bernhard Westfechtel. Vol. 9151. Lecture Notes in Com-
puter Science. Springer, 2015, pp. 19–34. doi: 10.1007/978-3-319-21145-
9_2.

[9] Johannes Dyck. “Verification of Graph Transformation Systems with k-
Inductive Invariants”. PhD thesis. University of Potsdam, Hasso Plattner
Institute, Potsdam, Germany, 2020. doi: 10.25932/publishup-44274.

214 M. Maximova et al.

http://opus.kobv.de/ubp/volltexte/2014/7015/
http://opus.kobv.de/ubp/volltexte/2014/7015/
https://doi.org/10.1145/1134285.1134297
https://doi.org/10.1109/ISORC.2008.13
https://doi.org/10.1016/j.jlamp.2018.12.006
https://doi.org/10.1007/978-3-030-51372-6_13
https://doi.org/10.1007/978-3-319-21145-9_2
https://doi.org/10.1007/978-3-319-21145-9_2
https://doi.org/10.25932/publishup-44274

[10] Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer.
Fundamentals of Algebraic Graph Transformation. Springer-Verlag, 2006.

[11] Amir Hossein Ghamarian and Arend Rensink. “Generalised Composi-
tionality in Graph Transformation”. In: Graph Transformations - 6th Inter-
national Conference, ICGT 2012, Bremen, Germany, September 24-29, 2012.
Proceedings. Ed. by Hartmut Ehrig, Gregor Engels, Hans-Jörg Kreowski,
and Grzegorz Rozenberg. Vol. 7562. Lecture Notes in Computer Science.
Springer, 2012, pp. 234–248. doi: 10.1007/978-3-642-33654-6_16.

[12] Holger Giese. “Modeling and Verification of Cooperative Self-adaptive
Mechatronic Systems”. In: Reliable Systems on Unreliable Networked Plat-
forms - 12th Monterey Workshop 2005, Laguna Beach, CA, USA, September
22-24, 2005. Revised Selected Papers. Ed. by Fabrice Kordon and Janos Szti-
panovits. Vol. 4322. Lecture Notes in Computer Science. Springer, 2005,
pp. 258–280. doi: 10.1007/978-3-540-71156-8_14.

[13] Holger Giese and Wilhelm Schäfer. “Model-Driven Development of Safe
Self-optimizing Mechatronic Systems with MechatronicUML”. In: Assur-
ances for Self-Adaptive Systems - Principles, Models, and Techniques. Ed. by
Javier Cámara, Rogério de Lemos, Carlo Ghezzi, and Antónia Lopes.
Vol. 7740. Lecture Notes in Computer Science. Springer, 2013, pp. 152–
186. doi: 10.1007/978-3-642-36249-1_6.

[14] Holger Giese, Matthias Tichy, Sven Burmester, and Stephan Flake. “To-
wards the compositional verification of real-time UML designs”. In: Pro-
ceedings of the 11th ACM SIGSOFT Symposium on Foundations of Software
Engineering 2003 held jointly with 9th European Software Engineering Confer-
ence, ESEC/FSE 2003, Helsinki, Finland, September 1-5, 2003. Ed. by Jukka
Paakki and Paola Inverardi. ACM, 2003, pp. 38–47. doi: 10.1145/940071.
940078.

[15] Eun-Young Kang, Dongrui Mu, and Li Huang. “Probabilistic Verification
of Timing Constraints in Automotive Systems Using UPPAAL-SMC”.
In: Integrated Formal Methods - 14th International Conference, IFM 2018,
Maynooth, Ireland, September 5-7, 2018, Proceedings. Ed. by Carlo A. Fu-
ria and Kirsten Winter. Vol. 11023. Lecture Notes in Computer Science.
Springer, 2018, pp. 236–254. doi: 10.1007/978-3-319-98938-9_14.

[16] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. “PRISM 4.0:
Verification of Probabilistic Real-Time Systems”. In: Computer Aided Ver-
ification - 23rd International Conference, CAV 2011, Snowbird, UT, USA,
July 14-20, 2011. Proceedings. Ed. by Ganesh Gopalakrishnan and Shaz
Qadeer. Vol. 6806. Lecture Notes in Computer Science. Springer, 2011,
pp. 585–591. isbn: 978-3-642-22109-5. doi: 10.1007/978-3-642-22110-1_47.

[17] Marta Z. Kwiatkowska, Gethin Norman, Jeremy Sproston, and Fuzhi
Wang. “Symbolic Model Checking for Probabilistic Timed Automata”.
In: Formal Techniques, Modelling and Analysis of Timed and Fault-Tolerant
Systems, Joint International Conferences on Formal Modelling and Analysis of
Timed Systems, FORMATS 2004 and Formal Techniques in Real-Time and
Fault-Tolerant Systems, FTRTFT 2004, Grenoble, France, September 22-24,

Compositional Analysis of PTGTSs 215

https://doi.org/10.1007/978-3-642-33654-6_16
https://doi.org/10.1007/978-3-540-71156-8_14
https://doi.org/10.1007/978-3-642-36249-1_6
https://doi.org/10.1145/940071.940078
https://doi.org/10.1145/940071.940078
https://doi.org/10.1007/978-3-319-98938-9_14
https://doi.org/10.1007/978-3-642-22110-1_47

2004, Proceedings. Ed. by Yassine Lakhnech and Sergio Yovine. Vol. 3253.
Lecture Notes in Computer Science. Springer, 2004, pp. 293–308. isbn:
3-540-23167-6. doi: 10.1007/978-3-540-30206-3_21.

[18] Maria Maximova, Holger Giese, and Christian Krause. “Probabilistic
timed graph transformation systems”. In: Graph Transformation - 10th
International Conference, ICGT 2017, Held as Part of STAF 2017, Marburg,
Germany, July 18-19, 2017, Proceedings. Ed. by Juan de Lara and Detlef
Plump. Vol. 10373. Lecture Notes in Computer Science. Springer, 2017,
pp. 159–175. isbn: 978-3-319-61469-4. doi: 10.1007/978-3-319-61470-0_10.

[19] Maria Maximova, Holger Giese, and Christian Krause. “Probabilistic
timed graph transformation systems”. In: J. Log. Algebr. Meth. Program.
101 (2018), pp. 110–131. doi: 10.1016/j.jlamp.2018.09.003.

[20] Maria Maximova, Sven Schneider, and Holger Giese. Compositional Anal-
ysis of Probabilistic Timed Graph Transformation Systems. Tech. rep. 133.
Potsdam, Germany: Hasso Plattner Institute at the University of Pots-
dam, 2021.

[21] Fernando Orejas. “Symbolic graphs for attributed graph constraints”. In:
J. Symb. Comput. 46.3 (2011), pp. 294–315. doi: 10.1016/j.jsc.2010.09.009.

[22] Fernando Orejas and Leen Lambers. “Lazy Graph Transformation”. In:
Fundam. Inform. 118.1-2 (2012), pp. 65–96. doi: 10.3233/FI-2012-706.

[23] RailCab Project. url: https://www.hni.uni-paderborn.de/cim/projekte/
railcab.

[24] Arend Rensink. “Compositionality in Graph Transformation”. In: Au-
tomata, Languages and Programming, 37th International Colloquium, ICALP
2010, July 6-10, Bordeaux, France, 2010, Proceedings, Part II. Ed. by Sam-
son Abramsky, Cyril Gavoille, Claude Kirchner, Friedhelm Meyer auf
der Heide, and Paul G. Spirakis. Vol. 6199. Lecture Notes in Computer
Science. Springer, 2010, pp. 309–320. doi: 10.1007/978-3-642-14162-1_26.

[25] Willem P. de Roever, Hans Langmaack, and Amir Pnueli, eds. Composi-
tionality: The Significant Difference, International Symposium, COMPOS’97,
Bad Malente, Germany, September 8-12, 1997. Revised Lectures. Vol. 1536.
Lecture Notes in Computer Science. Springer, 1998. isbn: 3-540-65493-3.
doi: 10.1007/3-540-49213-5.

[26] Sven Schneider, Johannes Dyck, and Holger Giese. “Formal Verification
of Invariants for Attributed Graph Transformation Systems Based on
Nested Attributed Graph Conditions”. In: Graph Transformation - 13th
International Conference, ICGT 2020, Held as Part of STAF 2020, Bergen,
Norway, June 25-26, 2020, Proceedings. Ed. by Fabio Gadducci and Timo
Kehrer. Vol. 12150. Lecture Notes in Computer Science. Springer, 2020,
pp. 257–275. doi: 10.1007/978-3-030-51372-6_15.

[27] Sven Schneider, Leen Lambers, and Fernando Orejas. “Automated rea-
soning for attributed graph properties”. In: STTT 20.6 (2018), pp. 705–
737. doi: 10.1007/s10009-018-0496-3.

216 M. Maximova et al.

https://doi.org/10.1007/978-3-540-30206-3_21
https://doi.org/10.1007/978-3-319-61470-0_10
https://doi.org/10.1016/j.jlamp.2018.09.003
https://doi.org/10.1016/j.jsc.2010.09.009
https://doi.org/10.3233/FI-2012-706
https://www.hni.uni-paderborn.de/cim/projekte/railcab
https://www.hni.uni-paderborn.de/cim/projekte/railcab
https://doi.org/10.1007/978-3-642-14162-1_26
https://doi.org/10.1007/3-540-49213-5
https://doi.org/10.1007/978-3-030-51372-6_15
https://doi.org/10.1007/s10009-018-0496-3

[28] Sven Schneider, Maria Maximova, Lucas Sakizloglou, and Holger Giese.
“Formal Testing of Timed Graph Transformation Systems using Metric
Temporal Graph Logic”. In: STTT (2019). Accepted.

[29] Sven Schneider, Lucas Sakizloglou, Maria Maximova, and Holger Giese.
“Optimistic and Pessimistic On-the-fly Analysis for Metric Temporal
Graph Logic”. In: Graph Transformation - 13th International Conference,
ICGT 2020, Held as Part of STAF 2020, Bergen, Norway, June 25-26, 2020,
Proceedings. Ed. by Fabio Gadducci and Timo Kehrer. Vol. 12150. Lecture
Notes in Computer Science. Springer, 2020, pp. 276–294. doi: 10.1007/
978-3-030-51372-6_16.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

Compositional Analysis of PTGTSs 217

https://doi.org/10.1007/978-3-030-51372-6_16
https://doi.org/10.1007/978-3-030-51372-6_16
http://creativecommons.org/licenses/by/4.0/

Efficient Bounded Model Checking
of Heap-Manipulating Programs

using Tight Field Bounds

Pablo Ponzio1,3 , Ariel Godio2, Nicolás Rosner�,
Marcelo Arroyo1, Nazareno Aguirre1,3 and Marcelo F. Frias2,3

1 University of Ŕıo Cuarto, Ŕıo Cuarto, Argentina
{pponzio,marcelo.arroyo,naguirre}@dc.exa.unrc.edu.ar

2 Buenos Aires Institute of Technology (ITBA), Buenos Aires, Argentina
{agodio,mfrias}@itba.edu.ar

3 National Council for Scientific and Technical Research (CONICET), Buenos Aires,
Argentina

Abstract. Software model checkers are able to exhaustively explore dif-
ferent bounded program executions arising from various sources of non-
determinism. These tools provide statements to produce non-determinis-
tic values for certain variables, thus forcing the corresponding model
checker to consider all possible values for these during verification. While
these statements offer an effective way of verifying programs handling ba-
sic data types and simple structured types, they are inappropriate as a
mechanism for nondeterministic generation of pointers, favoring the use
of insertion routines to produce dynamic data structures when verifying,
via model checking, programs handling such data types.
We present a technique to improve model checking of programs han-
dling heap-allocated data types, by taming the explosion of candidate
structures that can be built when non-deterministically initializing heap
object fields. The technique exploits precomputed relational bounds, that
disregard values deemed invalid by the structure’s type invariant, thus
reducing the state space to be explored by the model checker. Precom-
puting the relational bounds is a challenging costly task too, for which
we also present an efficient algorithm, based on incremental SAT solving.
We implement our approach on top of the CBMC bounded model checker,
and show that, for a number of data structures implementations, we can
handle significantly larger input structures and detect faults that CBMC
is unable to detect.

1 Introduction

SAT-based bounded model checking [7] is an automated software analysis tech-
nique, consisting of appropriately encoding a program as a propositional formula
in such a way that its satisfying valuations correspond to program defects, such

� Nicolás Rosner was affiliated with the University of Buenos Aires, Buenos Aires,
Argentina at the time of contribution to this work.

© The Author(s) 2021
E. Guerra and M. Stoelinga (Eds.): FASE 2021, LNCS 12649, pp. 218–239, 2021.
https://doi.org/10.1007/978-3-030-71500-7 11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71500-7_11&domain=pdf
https://doi.org/10.1007/978-3-030-71500-7 11

as violations of assertions, uncaught exceptions and memory leaks. Satisfying
valuations of the obtained propositional formulas can be automatically searched
for by resorting to SAT solving, exploiting the constant advances in this analysis
technology. SAT-based bounded model checking achieves full automation in pro-
gram verification at the cost of completeness: it limits the number of times that
loops are allowed to be executed to a user provided loop unwinding bound. This
in turn limits the data that the program can manipulate, which is constrained
to the program parameters, and what the program can allocate in its bounded
executions. Hence, although the approach is capable of exploring a huge num-
ber of execution traces, it cannot prove program correctness due to its bounded
nature. Nevertheless, it is very useful for bug finding, and is able to support
fully-fledged higher-level programming languages [8].

A tool based on bounded model checking over SAT is CBMC [20]. It supports
all of ANSI-C, including programs handling pointers and pointer arithmetic. The
tool is able to exhaustively explore many user-bounded program executions re-
sulting from various sources of non-determinism, including scheduling decisions
and the assignment of values to program variables. To achieve this, CBMC pro-
vides statements to produce non-deterministic values for certain variables, forc-
ing the model checker to consider all possible values for these variables during
verification. These statements enable program verification on all legal inputs, by
assigning these inputs values within their corresponding (legal) domains. While
this mechanism is effective for the verification of programs manipulating basic
data types and simple structured types, it is disabled as a feature for the gener-
ation of pointers. This issue forces the user to provide an ad-hoc environment to
verify programs handling dynamic data structures. In fact, a typical, convenient
mechanism to verify programs handling heap-allocated linked structures using
CBMC and similar tools, is to non-deterministically build such structures using
insertion routines [19, 22, 11].

The aforementioned approach, while effective, has its scalability tied to how
complex the insertion routines are, and how many of these are actually needed.
Indeed, there are many linked structures whose domain of valid structures can-
not be built only via insertion operations (e.g., red-black trees and node caching
linked lists require insertions as well as removals, in order to reach all bounded
valid structures). In this paper, we study an alternative technique for verifying,
using CBMC, programs handling heap-allocated linked structures. The approach
essentially consists of building a pool of objects with nondeterministically ini-
tialized fields, which are then used for nondeterministically building structures.
The rapid explosion in the number of generated linked structures is tamed by ex-
ploiting precomputed bounds for fields, that disregard values deemed invalid by
the structure’s assumed properties, such as datatype invariants and routine pre-
conditions. This leaves us the additional problem of precomputing these bounds,
a computationally costly task on its own. We then present a novel algorithm for
these precomputations, based on incremental SAT solving, making the whole
process fully automated.

Efficient Bounded Model Checking using Tight Field Bounds 219

avl_init(t);
int size = nondet_int();
__CPROVER_assume(size>=0 && size<=MAX_SIZE);
for (int i = 0; i < size; i++) {

int value = nondet_int();
__CPROVER_assume(value >= MIN_VAL && value < MAX_VAL);
avl_insert(t, value);

}
int r_value = nondet_int();
__CPROVER_assume(r_value >= MIN_VAL && r_value < MAX_VAL);
avl_remove(t, r_value);
__CPROVER_assert(avl_repok(t));

Fig. 1: Verification of AVL remove, building structures by multiple insertions.

We perform an experimental evaluation on a benchmark of data structure
implementations, showing that the use of field bounds contributes significantly
to improve both memory consumption and verification running times (including
the precomputations), allowing CBMC to consider larger structures as well as to
detect faults that could not be detected without their use.

2 A Motivating Example

Let us start by describing a particular verification scenario, that will serve the
purpose of motivating our approach. Suppose that we have an implementation
of dictionaries, based on AVL trees; furthermore, we would like to verify that
the remove operation on this structure preserves the structure’s invariant, i.e.,
after a removal is performed, the resulting structure is still a valid AVL tree
(acyclic, with every node having at most one parent, sorted, and balanced).
Moreover, let us assume that, besides operation avl remove, we have AVL’s
avl init, avl insert and avl repok, the latter being a routine that checks
whether a given structure satisfies the AVL invariant, as described above. In
order to perform the desired verification, we can proceed by building the program
shown in Figure 1. Notice how this program:

– employs CBMC primitives to nondeterministically decide how many values,
and which values to insert in/remove from the tree (appropriately con-
strained by constants MAX SIZE, MIN VAL and MAX VAL),

– uses an AVL insertion routine to produce the insertions, and
– uses an avl repok routine, which checks the AVL invariant on the linked

structure rooted at t.

When running CBMC on this program, if loops are unwound enough and
no violation of the assertion is obtained, then we have verified that, within the
provided bounds, remove indeed preserves the invariant.

The above traditional approach to verifying linked structures using CBMC
and similar tools [19, 22, 11] has its efficiency tied to how complex the involved
routines are, in particular the insertion routine(s) (the avl remove routine, being
verified, cannot be avoided).

220 P. Ponzio et al.

t = nondet_avl(MAX_SIZE, MIN_VAL, MAX_VAL);
__CPROVER_assume(avl_repok(t));
int r_value = nondet_int();
__CPROVER_assume(r_value >= MIN_VAL

&& r_value < MAX_VAL);
avl_remove(t, r_value);
__CPROVER_assert(avl_repok(t));

avlnode* nondet_avl(int size,
int min_val,
int max_val) {

avlnode *n = malloc(sizeof(avlnode) * size);
avlnode *result = NULL;
if (nondet_bool())

// root is null
return result;

result = n[0]; // root is n0
n[0]->left = NULL;
if (nondet_bool())

n[0]->left = n[1];
n[0]->right = NULL;
if (nondet_bool())

n[0]->right = n[1];
else if (nondet_bool())

n[0]->right = n[2];
...
return result;

}

Fig. 2: Verification of AVL remove, nondeterministically building linked structs

An alternative approach, employed by some symbolic execution-based model
checkers, notably [3, 23], consists of creating a pool of nodes, whose fields are
nondeterministically set, and which are also nondeterministically used to build
data structures. The process is illustrated in Figure 2. The key is in the use of
a routine nondet avl(), which encapsulates the generation of the linked struc-
ture. A fragment of this routine is shown at the right of Figure 2. Notice how
this routine will generate invalid structures, e.g., cyclic ones. The avl repok(t)

assumption after the generation will take care of disregarding these invalid struc-
tures for verification. Notice how our manually written example generation rou-
tine is avoiding to use any node besides n[0] as the root, or any node but n[1] as
n[0]->left, thus avoiding some isomorphic structures and obvious cycles, but
it does not avoid nodes from having more than one parent, nor it seems to take
into account the tree’s balancedness. Of course, we have other alternatives when
writing the nondeterministic generation routine nondet avl. We may produce a
generation routine that, based solely on the fields of the nodes involved in the
structure and their types, produces all possible structures, leaving the work of
filtering out valid ones to the assume(avl repok(t)) part of the program. We
can also write a sophisticated generation routine specifically tailored for AVL
trees, that already takes into account (most) invalid values for each node field,
and thus mostly produces valid structures. The first option has as an advan-
tage that it is generic, and thus can be made part of an automated verification
technique, at the cost of being, intuitively, less efficient; the second (and our
example), on the other hand, has in principle to be manually produced, and is
more error prone, since we may be disregarding some valid values making the
verification bounded incomplete, but is intuitively more efficient.

The technique we present in this paper consists of automatically producing
the second kind of generation routines. We will start with the first kind of gen-
eration, and automatically decide which values for each field of each node can
be safely removed, when we can establish that they do not participate in valid

Efficient Bounded Model Checking using Tight Field Bounds 221

structures (i.e., structures satisfying the corresponding structure invariant). This
additional problem of deciding when a value for a node field’s domain can be
safely removed is solved using a novel algorithm, presented in this paper, which
uses incremental SAT solving.

3 Tight Field Bounds

Tight field bounds are based on a relational semantics of structures’ fields in
program states. The relational semantics of structures is based on interpreting
a field f at a given program state as the set of pairs 〈id, v〉 relating the identifier
id (representing a unique reference to some data object o in the heap) with the
value v in the field f of o at that state (i.e., o->f = v in the state). Then,
each program state corresponds to a set of (functional) binary relations, one per
field of the structures involved in the program. For example, the program state
containing the binary tree depicted at the left of Fig. 3 are represented by the
following relations:

left = {〈N0, N1〉 〈N1, N3〉}, right = {〈N0, N2〉 〈N1, N4〉 , 〈N2, N5〉} (1)

For analysis techniques that must consider all possible state configurations
that satisfy some given property, we may reduce this relational semantics by
considering tight field bounds. Intuitively, for a field f and a property α, its
tight field bound on α is the union of f ’s representation across all program
states that satisfy α. Tight field bounds have been used to reduce the number
of variables and clauses in propositional representations of relational heap en-
codings for Java automated analyses [14, 13, 2], and in symbolic execution based
model checking to prune parts of the symbolic execution search tree constraining
nondeterministic options [15, 26] (see section 6 for a more detailed description
of these previous applications). Tight field bounds are computed from assumed
properties, and can be employed to restrict structures in states that are assumed
to satisfy such properties, i.e. precondition states. In our case, we will use the
invariant of the structure, as opposed to stronger preconditions, so that these
can be reused across several routines of the same structure.

Definition 1. Let f be a field of structure T1 with type T2. Let i and j be the
scopes for types T1 and T2, respectively. Let A = {a1, . . . , ai} be the identifiers for
data objects of type T1, and let B = {b1, . . . , bj} be the identifiers for data objects
of type T2. Given an identifier k, ok denotes the corresponding data object. The
tight field bound for field f is the smallest relation Uf ⊆ A×(B+Null) satisfying:
〈x, y〉 ∈ Uf iff there exists a valid heap instance I in which ox->f = oy.

By scope we mean the limit in the number of objects, ranges for numerical
types, and maximum depth in loop unwinding, as in [17, 12]. An important
assumption we make for analysis is that structure invariants do not refer to
the specific heap addresses of data objects, and in particular that these do not

222 P. Ponzio et al.

BT0 N0

N1 N2

N5N3 N4

BT1 N0

N1 N3

N5 N4

root

left right

left right right

left right

left right

root

Fig. 3: Two valid binary trees.

use pointer arithmetic. Therefore, permuting data object identifiers on a valid
instance still yields a valid instance (i.e., permuting the actual locations of data
objects in the heap is irrelevant for invariant satisfaction). This is most times
the case, and is indeed the case in all the examples that we will present in
Section 5. This is an important assumption because it enables us to add an
additional implicit invariant: symmetry breaking. This has an important impact
in the size of tight field bounds, since they get greatly reduced when isomorphic
structures are removed. We use a symmetry breaking procedure that removes
all symmetries. For details, we refer the reader to [14, 13].

4 A Technique for Nondeterministic Generation of
Dynamic Structures

We are now ready to describe the technique for nondeterministic generation of
dynamic structures, used to verify programs handling such data using CBMC.
The technique requires:

– the program p(T x) to be analyzed;
– a description of the structure of type T, which in the dynamic case, typically

consists of a struct or set of structs (that are dynamically allocated);
– a boolean program repok(T x), that (operationally) decides whether a given

instance x is valid, i.e., satisfies the structure’s invariant, or not; and
– a tight field bound Bf for every field f in T and the scope n to use for

bounded model checking of p.

The first three are necessary information; for the last one we present later on in
the paper an algorithm to compute tight bounds, from the other three.

The technique starts by building a routine nondet T(), that produces and re-
turns structures of type T. The routine works as follows. First, for every (pointer)
type Tt involved (including T), we start by allocating n (the scope) data objects:

Tt *tt_nodes = malloc(sizeof(Tt) * n);

Then, for every structure pointer type Ts (for which we already allocated n
data objects) and field f of type Tt in Ts, we build the following nondeterministic
assignment:

Efficient Bounded Model Checking using Tight Field Bounds 223

ts_nodes[0]->f = NULL;

if (nondet_bool()) ts_nodes[0]->f = tt_nodes[0];

else if (nondet_bool()) ts_nodes[0]->f = tt_nodes[1];

...

ts_nodes[1]->f = NULL;

if (nondet_bool()) ts_nodes[1]->f = tt_nodes[0];

else if (nondet_bool()) ts_nodes[1]->f = tt_nodes[1];

...

Finally, nondet T() ends by returning either NULL or t nodes[0] (no other
non-null node is necessary, due to symmetry breaking). Using nondet T(), we
build the following verification harness for p:

T x = nondet_T();

__CPROVER_assume(repok(x));

p(x);

__CPROVER_assert(repok(x));

Of course the last assertion can be replaced by any expected property of p.
We now turn our attention to the use of tight field bounds to reduce non-

determinism in nondet T(). For every structure Ts and field f with type Tt

declared in Ts, if 〈NTs
i NTt

j 〉 does not belong to the tight bound Bf , then we
remove from nondet T() the line:

if (nondet_bool()) ts_nodes[i]->f = tt_nodes[j];

To illustrate the benefits of using tight field bounds in this setting, compare
the two (semantically equivalent) nondet avl() methods in Figure 4 for build-
ing AVLs with size at most 4. At the left of Figure 4, we show the code for
the approach that considers all the feasible assignments to nodes’ fields within
the scope (many assignments not displayed due to the lack of space). With
precomputed tight field bounds we can discard a significant number of these
assignments, that are not allowed due to the bounds, as shown at the right of
Figure 4. Notice that, among many others, all self-loops in nodes are discarded
by the bounds.

4.1 Computing Tight Field Bounds

For the rest of this section we assume a fixed structure T, with fields f1, . . . , fm
and representation invariant repok, and a fixed scope k. Tight field bounds for
T can be automatically computed from assumed properties such as invariants
and preconditions. These properties must be expressed in a language amenable
to automated analysis, reducible to SAT-based analysis in our case. We employ
the automated translation of the definition of T and its repok to a propositional
formula implemented in the TACO tool [14, 13]. We also assume a symmetry
breaking predicate is created by this translation, forcing canonical orderings
of heap nodes in structures (see [14, 13] for a careful description of how these
symmetry-breaking predicates are automatically built). We discuss below the

224 P. Ponzio et al.

avlnode* nondet_avl() {
avlnode *n = malloc(sizeof(avlnode)*4);
if (nondet_bool())

return NULL;
avlnode *result = n[0];
// assignments to n[0]’s fields
n[0]->left = NULL;
if (nondet_bool())

n[0]->left = n[0];
else if (nondet_bool())

n[0]->left = n[1];
else if (nondet_bool())

n[0]->left = n[2];
else if (nondet_bool())

n[0]->left = n[3];
n[0]->right = NULL;
if (nondet_bool())

n[0]->right = n[0];
else if (nondet_bool())

n[0]->right = n[1];
else if (nondet_bool())

n[0]->right = n[2];
else if (nondet_bool())

n[0]->right = n[3];
n[0]->height = 0;
if (nondet_bool())

n[0]->height = 1;
else if (nondet_bool())

n[0]->height = 2;
else if (nondet_bool())

n[0]->height = 3;
// assignments to n[1], n[2] and n[3]’s
// fields follow a similar pattern to
// n[0]’s and are ommited
return result;

}

avlnode* nondet_avl() {
avlnode *n = malloc(sizeof(avlnode)*4);
if (nondet_bool()) return NULL;
avlnode *result = n[0];
// assignments to n[0]’s fields
n[0]->left = NULL;
if (nondet_bool())

n[0]->left = n[1];
n[0]->right = NULL;
if (nondet_bool())

n[0]->right = n[1];
else if (nondet_bool())

n[0]->right = n[2];
n[0]->height = 1;
if (nondet_bool())

n[0]->height = 2;
else if (nondet_bool())

n[0]->height = 3;
// assignments to n[1]’s fields
n[1]->left = NULL;
if (nondet_bool())

n[1]->left = n[3];
n[1]->right = NULL;
if (nondet_bool())

n[1]->right = n[3];
n[1]->height = 1;
if (nondet_bool())

n[1]->height = 2;
// assignments to n[2]’s fields
n[2]->left = NULL;
if (nondet_bool())

n[2]->left = n[3];
n[2]->right = NULL;
if (nondet_bool())

n[2]->right = n[3];
n[2]->height = 1;
if (nondet_bool())

n[2]->height = 2;
// assignments to n[3]’s fields
n[3]->left = NULL;
n[3]->right = NULL;
n[3]->height = 1;
return result; }

Fig. 4: Building AVLs with size at most 4. Left: all feasible assignments to node’s
fields. Right: only assignments deemed feasible by tight field bounds

parts of the translation that are important for the understanding of our approach,
and refer the reader to the literature for additional details [14, 13].

Let f be a field of T with type T’. Let A = a1, . . . , ak and B = b1, . . . , bk be
the identifiers for data objects of type T and T’ within scope k, respectively. This
bounded field is then a relation f ⊆ A× (B+ null). The propositional encoding
of f consists of boolean variables fi,j , 0 ≤ i, j < k, such that fi,j = True
in a instance I if and only if the value of f for object ai is equal to object
bj (i.e. ai->f = bj) in I (the original translation has variables representing
ai->f = null, we omit these here to simplify the presentation).

As an example, Figure 5 below shows the propositional variables representing
all the feasible values of binary trees’ left and right fields for scope 6, in tabular

Efficient Bounded Model Checking using Tight Field Bounds 225

form. In the tables, object identifiers are named Ni (0 ≤ i < 6), variables li,j
(0 ≤ i, j < 6) denote Ni->left = Nj (similarly, ri,j denote Ni->right = Nj).

left N0 N1 . . . N5

N0 l0,0 l0,1 . . . l0,5
N1 l1,0 l1,1 . . . l1,5
.
.
.

.

.

.
.
.
.

. . .
.
.
.

N5 l5,0 l5,1 . . . l5,5

right N0 N1 . . . N5

N0 r0,0 r0,1 . . . r0,5
N1 r1,0 r1,1 . . . r1,5
.
.
.

.

.

.
.
.
.

. . .
.
.
.

N5 r5,0 r5,1 . . . r5,5

Fig. 5: Propositional encodings of binary trees’ left and right fields for a scope
of 6

In this way, the binary tree at the left of Figure 3, whose relational represen-
tation is given in equation 1, is defined exactly by setting the following variables
to true (and all the remaining variables to false):

left = {l0,1, l1,3}, right = {r0,2, r1,4, r2,5} (2)

As each propositional variable in the encoding of a field represents exactly
the fact that a single pair of objects belongs to the field, in the following we
will speak of these two notions (propositional variables and pairs of objects re-
lated by a field) interchangeably. In fact, as our approach operates with propo-
sitional formulas (needed for exploiting incremental SAT solving), the tight field
bounds will be represented and computed in terms of propositional variables. It
is straightforward to see that if variable fi,j belongs to the tight field bound for
field f , then 〈ai, bj〉 is a feasible pair in the relational semantics (and is infeasible
if fi,j does not belong to the tight field bound).

It is worth noticing that deciding if there exists a structure with a particular
field value, say ai->f = bj , can be accomplished by querying the solver about the
satisfiability of a formula consisting of a propositional encoding of the structure
and the invariant (prop repok), the propositional encoding of the symmetry
breaking predicate (prop sbpred), and the corresponding variable fi,j :

prop repok ∧ prop sbpred ∧ fi,j (3)

In case the satisfiability verdict is true, the valuation returned by the solver
corresponds to a valid (in the sense that it satisfies the invariant) memory heap,
containing pair 〈ai, bj〉 in the relational representation of f . Also, from the valu-
ation we can retrieve for each field f all the (true) variables that represent pairs
of objects related by f in that particular heap.

The formula above can be used to compute tight bounds, determining what
are the infeasible variables fi,j (and hence the corresponding pairs in the fields’
semantics), in states that satisfy the invariant. In [14], the infeasible variables
are determined using a top-down algorithm. In the algorithm therein, the field
semantics is initially set, for a field of type B declared in structure A, to A ×

226 P. Ponzio et al.

(B∪{null}). From this fully populated initial semantics, each pair is checked for
feasibility. Pairs found to be infeasible are removed from the bound. Adopting
this top-down approach for computing tight field bounds leads to feasibility
checks (a large number of these) that are independent from one another, thus
making it amenable to distributed processing. Moreover, a pair can be removed
from the bound as soon as it is deemed infeasible, which can be exploited to
compute tight field bounds “non-exhaustively”, e.g., dedicating a certain time
to the computation of tight field bounds, and taking the obtained tight field
bound for improving SAT analysis, regardless of whether the tight bound is the
tightest (it converged to removing all infeasible pairs) or not. The latter can be
achieved thanks to the fact that, in the top-down approach, intermediate bounds
are also tight bounds [14, 13]. As each SAT query in this top-down approach
is independent from the rest, the algorithm does not exploit the incremental
capabilities of modern SAT solvers.

Let us present our approach to compute tight field bounds. As opposed to
the technique in [14], our algorithm operates in a bottom-up fashion. In our
presentation below, we assume a propEncoding method that takes the repok,
a symmetry breaking predicate sbpred, and the scopes scope, and returns an
encoding object. Its getPropositionalFormula method creates and returns a
CNF propositional formula, encoding the repok and sbpred for the given scope.
Also, the encoding’s getVars(f) method returns all the propositional variables
in the encoding of field f (see Figure 5). The algorithm uses an incremental SAT
solver, represented by a module solver, with the following routines:

– load: receives as argument a propositional formula in CNF and loads it into
the solver.

– addClause: (incrementally) adds a clause to the current formula in the solver
for future solving invocations.

– solve: calls the SAT-solving procedure, deciding whether the formula cur-
rently loaded in the solver is satisfiable (SAT) or not.

– getModel: if the formula is satisfiable, it returns the valuation produced by
the SAT-solver. The truth value of a variable v in the model can be retrieved
by invoking getValue(v).

The pseudocode of our algorithm is shown in Figure 6. Line 3 builds a proposi-
tional encoding using the repok, the symmetry breaking predicate sbpred and
the scopes. The CNF propositional formula produced by the encoding object
is then loaded into the solver in Line 4. Lines 5-7 initialize sets vars f1, . . . ,
vars fm, each containing all the propositional variables in the encoding of the
corresponding fields f1, · · · , fm. As opposed to the top-down algorithm proposed
in [14], which initialized fields’ semantics as binary relations containing all pairs,
the bottom-up algorithm starts with empty sets feasible f1, . . . , feasible fm
(lines 8-10). feasible f1, . . . , feasible fm are used by the algorithm to store
partial bounds for the corresponding fields f1, · · · , fm, and will be iteratively
extended with the true variables in instances returned by the SAT solver.

A crucial step in our algorithm is performed at line 12, where the current
formula loaded in the SAT solver is extended, exploiting incremental SAT solv-

Efficient Bounded Model Checking using Tight Field Bounds 227

ing [16], with a progress-ensuring constraint on heap fields. Here, we add a
clause that consists of the disjunction of all the variables in the encoding of
fields that have not been previously added to the feasible f1, . . . , feasible fm
sets. The purpose of is to ensure that instances returned by solver.solve()

in Line 13 contain at least one pair that does not belong to the sets already
held in feasible f1, . . . , feasible fm. Intuitively, by adding the clause in line
12, the call to solver.solve() in line 13 can be interpreted as “find a valid
heap instance of the data structure that can be used to extend at least one of
the current bounds in feasible f1, . . . , feasible fm”. If such an instance ex-
ists, it is returned by the solver.getModel() method, and stored in the model
variable in line 14. The variables that are true in model are then added to the
feasible f1, . . . , feasible fm sets in lines 15-19. The loop terminates when
feasible f1, . . . , feasible fm cannot be augmented any further (lines 20, 21),
in which case, as we prove below, these sets hold tight field bounds and are
returned by the algorithm (line 24).

As an example, assume we are computing tight field bounds for binary trees,
and that the invocation to solver.solve() returned the instance at the left of
Figure 3. Then, the variables in sets left and right shown in equation 2 will
be added to feasible left and feasible right, respectively, in lines 15-19.
Notice that this forces an instance with at least one variable not in the left or
right sets to be returned by solver.solve() in the next iteration.

It is worth noticing the importance of the progress-ensuring constraint in
line 12, being encoded as a clause. This is what enables the possibility of us-
ing incremental SAT solving [16] in our tight bounds computation. Essentially,
incremental SAT solvers allow one to append further constraints after each sat-
isfying valuation is found, as long as these are in CNF. These constraints are
conjoined with the main (CNF) formula, and used in computing the “next”
satisfying instance without having to restart the solving process (which is a
very time consuming process). Also, this allows the solver to exploit the learned
clauses (that summarize the conflicts found by the solver in the search of satis-
fying valuations) to help accelerate subsequent queries [10]. Notice that, if the
new constraints were not in CNF, the whole resulting formula would have to be
translated to CNF and the SAT process restarted from scratch.

Theorem 1 proves our algorithm terminates and computes tight field bounds.

Theorem 1. Algorithm 6 terminates and returns valid tight field bounds.

Proof. Termination easily follows from the following two facts: (i) for given
bounds on data domains of the structure under analysis and limited by scopes ,
the number of pairs that can be added to a field bound is a finite number; and
(ii) each while-loop iteration either adds at least an extra pair to the bounds,
or otherwise returns unsat, in which case the loop terminates.

To prove that the algorithm yields tight field bounds, we proceed as follows.
Notice that at each iteration, and for any field fi, the bound associated to field
fi (feasible fi) is a subset of the corresponding tight bound, i.e., contains
only feasible variables: the initial bound (∅) is obviously a subset of the tight

228 P. Ponzio et al.

1 procedure bottom−up(repok , sbpred , scopes)
2 begin
3 encoding = propEncoding (repok , sbpred , scopes)
4 s o l v e r . load (encoding . getPropos i t iona lFormula ())
5 v a r s f 1 = enconding . getVars (f 1)
6 . . .
7 v a r s fm = enconding . getVars (fm)
8 f e a s i b l e f 1 = {}
9 . . .

10 f e a s i b l e fm = {}
11 while True do
12 s o l v e r . addClause (

∨
j∈1,..,m,
v∈(vars fj\feasible fj)

v)

13 i f s o l v e r . s o l v e () = SAT then
14 model = s o l v e r . getModel ()
15 f e a s i b l e f 1 = f e a s i b l e f 1 ∪
16 {v | v <− v a r s f 1 and model . getValue (v) = True}
17 . . .
18 f e a s i b l e fm = f e a s i b l e f n ∪
19 {v | v <− v a r s fm and model . getValue (v) = True}
20 else \\ UNSAT
21 break
22 f i
23 done
24 return f e a s i b l e f 1 , . . . , f e a s i b l e fm
25 end

Fig. 6: Bottom-up algorithm for tight field bounds computation

bound, and bounds are extended only by adding variables extracted from valid
structures (i.e., each loop iteration produces a valid expansion). An inductive
argument allows us to conclude that, on termination, the bound associated to
field fi (feasible fi) is a subset of the tight bound. We will now show that
feasible fi is the tight field bound. Let us suppose that, once the algorithm
terminates, bound feasible fi is not tight, i.e., there exists a variable vw,z

that does not belong to feasible fi. Then, there must exist a canonical (i.e.,
satisfying symmetry breaking) instance I of repok within scopes, in which
ow->fi = oz. Therefore, I satisfies repok, sbpred, and vw,z = True, contradict-
ing the fact that the algorithm had terminated. Therefore, all variables excluded
from feasible fi are infeasible, making this bound tight.

As opposed to the top-down algorithm for tight bounds introduced in [14, 13]
Algorithm 6 only provides useful information once it terminates – intermediate
bounds cannot be used to improve analysis. Moreover, whereas the top-down
approach lends itself well to parallelization (as we mentioned before, it implies
a large number of independent SAT queries, that can be solved in a distributed
manner), it is not obvious how one would reasonably distribute our new bottom-

Efficient Bounded Model Checking using Tight Field Bounds 229

up computation. Nevertheless, as we will show in Section 5, the sequential Al-
gorithm 6 and its optimizations (i.e. the usage of incremental SAT-solving) are
substantially faster than the parallel, distributed, top-down approach.

5 Evaluation

Our first experimental evaluation assesses the impact of tight field bounds in
verification of code handling linked structures using CBMC. The evaluation is
based on a benchmark of collection implementations, previously used for tight
field bounds computation in [14, 13], composed of data structures with increas-
ingly complex invariants:

– an implementation of sequences based on singly linked lists (LList);
– a List implementation (from Apache Commons.Collections), based on circu-

lar doubly-linked lists (AList);
– a List implementation (from Apache Commons Collections), based on node

caching linked lists (CList);
– a Set implementation (from java.util) based on red-black trees (TSet);
– an implementation of AVL trees obtained from the case study used in [4]

(AVL); and
– an implementation of binomial heaps used as part of a benchmark in [28]

(BHeap).

Experiments in this section were run on workstations with Intel Core i7
4790 processor, 8Mb Cache, 3.6Ghz (4 Turbo), and 16 Gb of RAM, running
GNU/Linux. The incremental SAT solver used was Minisat 2.2.0. We denote
by OOM that the 16GB of memory were exhausted, and by OOM+ that the
16GB where exhausted while CBMC was preprocessing; in this latter case no
numbers of clauses or variables were produced by CBMC. Timeout was set for
these experiments to 1 hour.

Table 1 reports, for the most relevant routines of each of the data structures in
our benchmark, the verification running times with the underlying decision pro-
cedure running times discriminated in seconds, as well as the number of clauses
and variables (expressed in thousands) in the CNF formulas corresponding to
each of the verification tasks, for several scopes (S). Since we checked whether
the routines preserved the corresponding structure’s invariant, we did not con-
sider for the experiments those routines that did not modify the structure (these
trivially preserve the invariant). We assessed three different approaches:

– Build*: use of verification harnesses based on insertion routines (see Fig. 1),
– Gen&Filter (generate and filter): non-deterministic generation of data struc-

tures without tight field bounds (as illustrated in Fig. 4), using a traditional
symmetry breaking algorithm to discard isomorphic structures [14] (we do
not discuss this here due to space reasons),

– TFB: our introduced approach, which incorporates tight field bounds into the
previous to discard irrelevant non-deterministic assignments of field values
(as illustrated in Fig. 4).

230 P. Ponzio et al.

Some remarks on the results are in order. Table 1 shows that in all analyzed
routines, the TFB approach allowed us to analyze larger scopes for which the
other input generation techniques exhausted the allotted time or memory. TFB
was able to analyze larger scopes than Gen&Filter in 7 out of 12 cases (remark-
ably, by at least 6 in AList, at least 3 in CList and at least 2 in AVL), and in
8 out of 12 cases with respect to Build* (by at least 4 in all 8 cases). Routine
extractMin in structure BHeap is particularly interesting: it contains a bug first
found in [14] that can only be exhibited by an input with at least 13 nodes.
Gray cells mark experiments in which the bug was detected by CBMC. Notice
in particular that Build* does not scale well enough to find this bug.

Our second evaluation is devoted to tight field bounds computation, in com-
parison with the top-down approach presented in [14]. We re-ran the TACO
experiments as reported in [13] on the same hardware we used for our own
experiments for a fair comparison. Original scripts and configurations were pre-
served. All distributed experiments were run on a cluster of 9 PCs (one being the
master) of the same characteristics as described above. Each distributed exper-
iment was run 3 times; the reported timing is the average thereof. All times are
given in wall-clock seconds. A timeout (TO) is set at 18,000 seconds (5 hours),
for tight bounds computation. Our bottom up tight field bounds technique is
non-parallel, and was run on a single workstation. Table 2 summarizes the re-
sults of our experiments regarding tight bounds computation. We compared the
running times of computing tight field bounds using the distributed technique
from [14] and our non-parallel presented algorithm, for scopes 10, 12, 15, 17 and
20, reporting the following:

– TACO(||): The parallel wall-clock time required to compute tight field bounds
with TACO, the tool subsuming the top-down tight bounds approach [14, 13].

– TACO(s): The TACO sequentialized time, i.e., the sum of times over all the
Minisat solvings performed by the TACO distributed algorithm.

– BU: The time the bottom-up algorithm (Alg. 6) requires to compute tight
field bounds.

– speedup(||): The speed-up achieved by BU when compared to the distributed
TACO time reported as TACO(||).

– Speedup(s): The speed-up achieved by BU when compared to the sequen-
tialized TACO time reported as TACO(s).

The speed-ups obtained by Alg. 6 are, in comparison with the distributed
approach in [14], in general very good. In particular, in all experiments but AVL
with scope 20, the running time of our sequential bottom-up approach (BU) is
already below the wall-clock time of (parallel) TACO. For AVL trees with scope
20, the only experiment where BU performed slower than TACO, the achieved
speed up is 0.6X. This means that running BU on a single workstation does not
even take twice as long as running TACO(||) on 32 processors (4 cores in 8 slave
machines used for distributed computation). Second, it is worth noticing that
structures with strong invariants (e.g., BHeap) intuitively lead to “small” tight
field bounds; a bottom-up approach then, as we explained earlier, is particularly
well suited for tight bounds computation for these structures, since the process

Efficient Bounded Model Checking using Tight Field Bounds 231

Table 1: Dynamic data structure verification in CBMC: TFB versus Build* and
Gen&Filter. Verification and solving times in seconds, clauses and variables in
thousands

Routine S Build* Gen&Filter TFB
Time(Solv) Clauses Vars Time(Solv) Clauses Vars Time(Solv) Clauses Vars

S
L
is
t

insBack 18 10(5) 705 2,236 11(5) 248 1,157 10(4) 188 916
19 12(6) 797 2,524 13(6) 275 1,288 11(4) 206 1,015
20 14(7) 898 2,836 16(7) 303 1,428 13(5) 226 1,122

remove 18 10(6) 629 2,004 14(9) 247 1,154 11(6) 201 967
19 13(8) 715 2,274 23(16) 275 1,288 13(7) 221 1,075
20 14(9) 809 2,567 20(12) 303 1,431 15(8) 243 1,190

A
L
is
t

addLast 13 2(1) 146 628 9(7) 235 947 3(2) 184 738
14 2(1) 164 704 TO 267 1,082 3(2) 206 827
20 6(4) 292 1,285 – – – 8(6) 357 1,459

remInd 14 5(3) 255 1,099 1168(1166) 352 1,444 8(6) 307 1,270
15 6(5) 287 1,238 TO 400 1,645 10(8) 346 1,431
20 17(14) 471 2,058 – – – 27/24 568 2,387

C
L
is
t

addLast 6 407(402) 2,471 9,937 2(1) 109 430 1(1) 103 402
7 TO 3,754 15,158 2(1) 133 527 2(1) 122 482

17 – – – 1423(1419) 527 2,188 10(7) 411 1,692
18 – – – TO 583 2,425 10(7) 449 1,853
20 – – – – – – 14(10) 530 2,195

remove 6 490(486) 1,750 6,994 4(3) 258 1,002 4(3) 247 958
7 TO 2,755 11,066 8(3) 356 1,395 5(4) 332 1,298

15 – – – 2820(2812) 2,151 8,642 60(52) 1,768 7,103
16 – – – TO 2,537 10,202 102(93) 2,067 8,315
20 – – – – – – 219(201) 3,578 14,454

A
V
L

insert 1 114(105) 13,724 58,613 19(17) 2,232 9,593 7(5) 712 3,006
2 OoM+ – – 69(62) 7,011 30,138 21(15) 1,665 7,125
3 – – – 203(182) 19,230 82,602 57(38) 3,414 14,745
4 – – – OoM+ – – 169(114) 7,005 30,500
5 – – – – – – 411(266) 13,818 60,663
6 – – – – – – OoM 26,981 119,475

delete 2 94(87) 10,874 46,271 11(10) 1,227 5,257 4(3) 421 1,777
3 OoM+ 39(34) 3,844 16,491 11(8) 823 3,487
4 – – – 118(105) 10,522 45,120 40(29) 2,351 10,058
5 – – – OoM 26,768 114,697 108(81) 3,823 16,387
7 – – – – – – 1171/1011 14,365 62,154
8 – – – – – – OoM+ – –

T
S
e
t

add 1 158(104) 11,849 43,627 20(16) 2,093 8,076 10(7) 980 3,811
2 OoM+ – – 63(62) 5,609 21,908 37(27) 3,043 11,961
4 – – – 362(314) 23,538 93,122 206(160) 12,042 47,960
5 – – – OoM+ – – 386(305) 18,270 73,206
6 – – – – – – OoM+

remove 2 128(85) 9,708 34,998 10(7) 1,029 3,934 9(7) 1,000 3,825
3 OoM 28,268 107,255 23(19) 2,074 8,039 22(17) 2,016 7,818
9 – – – 828/761 22,881 91,143 760/699 22,698 90,434

10 – – – OoM 29,724 118,620 OoM 29,548 117,943

B
H
e
a
p

insert 5 188(181) 17,620 75,858 35(32) 2,722 11,679 32(28) 2,627 11,297
6 OoM 27,217 117,396 56(50) 3,852 16,522 47(42) 3,717 15,972

13 – – – 640/603 18,480 78,795 523/487 17,827 76,142
14 – – – OoM 21,645 92,214 OoM 20,967 89,456

extrMin 5 157(152) 14,713 63,329 26(23) 2,015 8,603 24(21) 1,930 8,267
6 OoM 23,511 101,429 44(39) 3,022 12,905 40(35) 2,914 12,474

12 – – – 487(459) 14,254 60,615 441(414) 13,921 59,285
13 – – – 576 17,094 72,634 535 16,711 71,102

of computing bounds by discovering and adding new elements to a partial bound
until nothing new can be discovered, quickly converges to termination in these

232 P. Ponzio et al.

Table 2: Tight field bounds computation times and achieved speed-ups.
LList S10 S12 S15 S17 S20
TACO(||) 7.5 10.7 29.0 42.6 66.1
TACO(s) 122.0 231.8 777.4 1204.7 1932.5

BU 1.3 2.0 3.4 5.3 11.5
speedup(||) 5.7X 5.3X 8.3X 8.0X 5.7X
speedup(s) 91.7X 114.1X 224.6X 227.7X 166.8X

AList S10 S12 S15 S17 S20
TACO(||) 15.9 29.8 73.0 120.3 2174.8
TACO(s) 381.4 807.9 2153.8 3638.0 67936.0

BU 2.0 2.5 4.9 8.6 16.1
speedup(||) 7.6X 11.8X 14.7X 13.9X 134.9X
speedup(s) 184.2X 319.3X 435.9X 423.0X 4217.0X

CList S10 S12 S15 S17 S20
TACO(||) 35.6 64.2 110.7 176.3 4634.6
TACO(s) 981.1 1881.9 3331.1 5386.0 145106.0

BU 2.4 4.5 12.0 54.5 2831.2
speedup(||) 14.6X 14.0X 9.2X 3.2X 1.6X
speedup(s) 402.0X 410.8X 276.8X 98.7X 51.2X

AVL S10 S12 S15 S17 S20
TACO(||) 64.6 141.9 465.9 2437.7 5939.5
TACO(s) 1893.7 4323.3 14645.6 77536.6 187161.0

BU 8.1 23.0 111.4 1078.0 8562.2
speedup(||) 7.8X 6.1X 4.1X 2.2X 0.6X
speedup(s) 231.2X 187.3X 131.4X 71.9X 21.8X

TSet S10 S12 S15 S17 S20
TACO(||) 76.0 145.6 258.2 872.8 2335.4
TACO(s) 2434.9 4411.4 8005.7 27538.8 74134.6

BU 4.8 10.3 39.1 168.6 527.6
speedup(||) 15.6X 14.0X 6.5X 5.1X 4.4X
speedup(s) 458.9X 425.4X 204.4X 163.2X 140.4X

BHeap S10 S12 S15 S17 S20
TACO(||) 115.9 188.3 345.0 1119.7 3224.0
TACO(s) 3505.6 5747.1 10759.1 35409.9 102496.0

BU 4.4 9.1 23.8 80.7 243.9
speedup(||) 26.0X 20.4X 14.4X 13.8X 13.2X
speedup(s) 786.0X 625.3X 452.0X 438.6X 420.1X

cases. Third, some structures with relatively weak invariants also had good run-
ning times (AList, in particular), when compared to other case studies. Although
the invariants in these cases are weaker, which intuitively would lead to more
expensive tight bounds computations, these structures have fewer fields, so the
state space to be covered to compute tight bounds is significantly smaller than
that of more complex structures.

All the experiments in this section can be reproduced following the instruc-
tions available at [1].

Efficient Bounded Model Checking using Tight Field Bounds 233

Threats to Validity. Our experimental evaluation is limited to data structures.
From the vast domain of data structures, we have selected a few ones that we
consider representative for several reasons: they are often used as case studies in
the evaluation of other software analysis tools [6, 9, 18, 28], their invariants have
varied complexity (which is a dimension that affects tight bounds’ size, and thus
their computation), some are acyclic and others are not (which shows that the
encoding we make in CBMC is quite general), etc. We consider this is a good
menu, representative of a wider class of data structures.

Our approach to capture both the Build* and Gen&Filter strategies might
have accidentally favored our technique. We tried different alternatives for cap-
turing Build* and Gen&Filter, in particular with different ways of writing the
repOK routines (which affected running times). We took the best alternative
found for each case, to perform the comparison. In the case of Build*, we took
the smallest number of builder routines that guaranteed producing all (bounded)
structures, since this is a factor that impacts running times. All structures with
the exception of CList and TSet required just the add routine, while these two
also needed a remove routine, to guarantee generation of all structures.

Regarding variance across cluster runs, different schedulings indeed yield
slightly different timings. Since the granularity of individual analyses is fine,
differences are typically small. However, they grow with the scope (e.g., usually
smaller than 5% for scope sizes below 10, but up to 15% for the largest sizes).
We used the average of 3 runs to reduce the effect of variance in the experiments.

Finally, we did not prove our implementations correct, so our results may
be affected by errors in our implementations. We checked consistency of the re-
sults across different techniques and tools to confirm that bounds were correctly
computed, and verification was bounded complete in all cases.

6 Related Work

Automated analysis of code handling dynamic data structures has been the fo-
cus of various lines of research, including separation logic based approaches [5],
approaches based on combinations of testing and static analysis [22], various
forms of model checking including explicit state model checking [27], symbolic
execution based model checking [23] and SAT-based verification [14, 13]. The
approach that we refer to as Build*, producing nondeterministic structures by
using insertion routines, has been used in some of these approaches, including
[22, 11]. The “generate & filter” mechanism, on the other hand, is more often
employed in modular (assume-guarantee) verification. In particular, the lazy ini-
tialization approach, whose symmetry breaking we borrowed for “generate & fil-
ter” in this paper is used in [19], among others. However, in SAT-based bounded
model checking, with tools such as [20], “generate & filter” is not reported as
an analysis option for dynamic data structures. The use of tight bounds to im-
prove analysis has been used previously to improve test generation and bounded
verification for JML-annotated Java programs [14, 13]. The setting is however
different from that of CBMC, due to the relational program (and heap state) se-

234 P. Ponzio et al.

mantics, which enabled them to exploit tight bounds directly at the propositional
encoding level. Tight bounds have also been used for improving symbolic exe-
cution based model checking [15, 26]. Again, the context is different, since these
approaches that essentially “walk” the code (either concretely or symbolically),
can exploit tight bounds more deeply [26], also obtaining greater profits.

We have also reported a novel technique to compute tight bounds. This al-
gorithm is inspired in the work of [24] about black-box test input generation
using SAT. Our work is also closely related to [14, 13]. The approach to com-
pute tight field bounds presented in [14, 13] as part of the TACO tool, performs
a very large number of independent SAT queries to compute bounds, and thus
requires a cluster of workstations to do so effectively (we compared with this
approach in the paper). Another alternative approach to compute tight field
bounds is presented in [25], but requires structure specifications to be provided
in a Separation Logic flavor [21] to compute field bounds.

7 Conclusions

We have investigated the use of tight field bounds in the context of SAT-based
bounded model checking, more concretely, in (assume-guarantee) verification of
C code, using CBMC. We showed that, in this context, and in particular in
the verification of programs dealing with linked structures, an approach based
on nondeterministically generating structures, and then “filtering out” ill-formed
ones, can be more efficient than the more traditional approach of repeatedly using
data structure builders, especially when tight bounds are exploited. We have
performed a number of experiments that confirm that this alternative approach
allows CBMC to consider larger input sizes as well as to detect bugs that could
not be detected without using bounds.

Since the approach depends on precomputing tight field bounds, we have also
studied this problem, providing a novel algorithm for tight field bound compu-
tation. Tight field bounds have proved useful for a number of different analyses,
but computing them is costly, and previous field bound computation approaches
that performed reasonably did so at the expense of relying on a cluster of work-
stations to perform the task, or were only applicable to a limited set of class
invariants, expressible in separation logic. Thus, while tight field bounds proved
to have a deep impact in the previously mentioned automated software analysis
techniques, their use has been severely undermined by the necessity of a cluster
of computers for their effective computation, or the availability of specifications
in separation logic. The algorithm presented in this article allows one to compute
tight field bounds on a single workstation more efficiently than the distributed
approach on a cluster of 8 quad-core, and therefore makes tight field bounds
computation both practical and worthwhile, as part of the above mentioned
analyses.

Efficient Bounded Model Checking using Tight Field Bounds 235

References

1. Website and replication package for Efficient Bounded Model Check-
ing of Heap-Manipulating Programs using Tight Field Bounds.
https://sites.google.com/view/bmc-bounds.

2. Pablo Abad, Nazareno Aguirre, Valeria S. Bengolea, Daniel Alfredo Ciolek,
Marcelo F. Frias, Juan P. Galeotti, Tom Maibaum, Mariano M. Moscato, Nicolás
Rosner, and Ignacio Vissani. Improving test generation under rich contracts by
tight bounds and incremental SAT solving. In Sixth IEEE International Confer-
ence on Software Testing, Verification and Validation, ICST 2013, Luxembourg,
Luxembourg, March 18-22, 2013, pages 21–30. IEEE Computer Society, 2013.

3. Saswat Anand, Corina S. Pasareanu, and Willem Visser. JPF-SE: A symbolic exe-
cution extension to java pathfinder. In Orna Grumberg and Michael Huth, editors,
Tools and Algorithms for the Construction and Analysis of Systems, 13th Interna-
tional Conference, TACAS 2007, Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2007 Braga, Portugal, March 24 -
April 1, 2007, Proceedings, volume 4424 of Lecture Notes in Computer Science,
pages 134–138. Springer, 2007.

4. Jason Belt, Robby, and Xianghua Deng. Sireum/topi LDP: a lightweight semi-
decision procedure for optimizing symbolic execution-based analyses. In Hans van
Vliet and Valérie Issarny, editors, Proceedings of the 7th joint meeting of the Euro-
pean Software Engineering Conference and the ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering, 2009, Amsterdam, The Nether-
lands, August 24-28, 2009, pages 355–364. ACM, 2009.

5. Josh Berdine, Cristiano Calcagno, Byron Cook, Dino Distefano, Peter W. O’Hearn,
Thomas Wies, and Hongseok Yang. Shape analysis for composite data struc-
tures. In Werner Damm and Holger Hermanns, editors, Computer Aided Verifica-
tion, 19th International Conference, CAV 2007, Berlin, Germany, July 3-7, 2007,
Proceedings, volume 4590 of Lecture Notes in Computer Science, pages 178–192.
Springer, 2007.

6. Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko Marinov. Korat: automated
testing based on java predicates. In Phyllis G. Frankl, editor, Proceedings of the
International Symposium on Software Testing and Analysis, ISSTA 2002, Roma,
Italy, July 22-24, 2002, pages 123–133. ACM, 2002.

7. Edmund M. Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu. Bounded
model checking using satisfiability solving. Formal Methods Syst. Des., 19(1):7–34,
2001.

8. Edmund M. Clarke, Daniel Kroening, and Flavio Lerda. A tool for checking
ANSI-C programs. In Kurt Jensen and Andreas Podelski, editors, Tools and Algo-
rithms for the Construction and Analysis of Systems, 10th International Confer-
ence, TACAS 2004, Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2004, Barcelona, Spain, March 29 - April 2, 2004,
Proceedings, volume 2988 of Lecture Notes in Computer Science, pages 168–176.
Springer, 2004.

9. Greg Dennis, Felix Sheng-Ho Chang, and Daniel Jackson. Modular verification
of code with SAT. In Lori L. Pollock and Mauro Pezzè, editors, Proceedings of
the ACM/SIGSOFT International Symposium on Software Testing and Analysis,
ISSTA 2006, Portland, Maine, USA, July 17-20, 2006, pages 109–120. ACM, 2006.

10. Niklas Eén and Niklas Sörensson. An extensible sat-solver. In Enrico Giunchiglia
and Armando Tacchella, editors, Theory and Applications of Satisfiability Testing,

236 P. Ponzio et al.

6th International Conference, SAT 2003. Santa Margherita Ligure, Italy, May 5-8,
2003 Selected Revised Papers, volume 2919 of Lecture Notes in Computer Science,
pages 502–518. Springer, 2003.

11. Stephan Falke, Florian Merz, and Carsten Sinz. LLBMC: improved bounded model
checking of C programs using LLVM - (competition contribution). In Nir Piter-
man and Scott A. Smolka, editors, Tools and Algorithms for the Construction and
Analysis of Systems - 19th International Conference, TACAS 2013, Held as Part
of the European Joint Conferences on Theory and Practice of Software, ETAPS
2013, Rome, Italy, March 16-24, 2013. Proceedings, volume 7795 of Lecture Notes
in Computer Science, pages 623–626. Springer, 2013.

12. Marcelo F. Frias, Juan P. Galeotti, Carlos López Pombo, and Nazareno Aguirre.
Dynalloy: upgrading alloy with actions. In Gruia-Catalin Roman, William G.
Griswold, and Bashar Nuseibeh, editors, 27th International Conference on Software
Engineering (ICSE 2005), 15-21 May 2005, St. Louis, Missouri, USA, pages 442–
451. ACM, 2005.

13. Juan P. Galeotti, Nicolás Rosner, Carlos Gustavo López Pombo, and Marcelo F.
Frias. TACO: efficient sat-based bounded verification using symmetry breaking
and tight bounds. IEEE Trans. Software Eng., 39(9):1283–1307, 2013.

14. Juan P. Galeotti, Nicolás Rosner, Carlos López Pombo, and Marcelo F. Frias.
Analysis of invariants for efficient bounded verification. In Paolo Tonella and
Alessandro Orso, editors, Proceedings of the Nineteenth International Symposium
on Software Testing and Analysis, ISSTA 2010, Trento, Italy, July 12-16, 2010,
pages 25–36. ACM, 2010.

15. Jaco Geldenhuys, Nazareno Aguirre, Marcelo F. Frias, andWillem Visser. Bounded
lazy initialization. In Guillaume Brat, Neha Rungta, and Arnaud Venet, editors,
NASA Formal Methods, 5th International Symposium, NFM 2013, Moffett Field,
CA, USA, May 14-16, 2013. Proceedings, volume 7871 of Lecture Notes in Com-
puter Science, pages 229–243. Springer, 2013.

16. John N. Hooker. Solving the incremental satisfiability problem. J. Log. Program.,
15(1&2):177–186, 1993.

17. Daniel Jackson. Software Abstractions - Logic, Language, and Analysis. MIT Press,
2006.

18. Daniel Jackson and Mandana Vaziri. Finding bugs with a constraint solver. In
Debra J. Richardson and Mary Jean Harold, editors, Proceedings of the Interna-
tional Symposium on Software Testing and Analysis, ISSTA 2000, Portland, OR,
USA, August 21-24, 2000, pages 14–25. ACM, 2000.

19. Sarfraz Khurshid, Corina S. Pasareanu, and Willem Visser. Generalized symbolic
execution for model checking and testing. In Hubert Garavel and John Hatcliff,
editors, Tools and Algorithms for the Construction and Analysis of Systems, 9th
International Conference, TACAS 2003, Held as Part of the Joint European Con-
ferences on Theory and Practice of Software, ETAPS 2003, Warsaw, Poland, April
7-11, 2003, Proceedings, volume 2619 of Lecture Notes in Computer Science, pages
553–568. Springer, 2003.

20. Daniel Kroening and Michael Tautschnig. CBMC - C bounded model checker -
(competition contribution). In Erika Ábrahám and Klaus Havelund, editors, Tools
and Algorithms for the Construction and Analysis of Systems - 20th International
Conference, TACAS 2014, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2014, Grenoble, France, April 5-13, 2014.
Proceedings, volume 8413 of Lecture Notes in Computer Science, pages 389–391.
Springer, 2014.

Efficient Bounded Model Checking using Tight Field Bounds 237

21. Huu Hai Nguyen, Cristina David, Shengchao Qin, and Wei-Ngan Chin. Automated
verification of shape and size properties via separation logic. In Byron Cook and
Andreas Podelski, editors, Verification, Model Checking, and Abstract Interpreta-
tion, 8th International Conference, VMCAI 2007, Nice, France, January 14-16,
2007, Proceedings, volume 4349 of Lecture Notes in Computer Science, pages 251–
266. Springer, 2007.

22. Aditya V. Nori, Sriram K. Rajamani, SaiDeep Tetali, and Aditya V. Thakur. The
yogiproject: Software property checking via static analysis and testing. In Stefan
Kowalewski and Anna Philippou, editors, Tools and Algorithms for the Construc-
tion and Analysis of Systems, 15th International Conference, TACAS 2009, Held
as Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2009, York, UK, March 22-29, 2009. Proceedings, volume 5505 of Lecture
Notes in Computer Science, pages 178–181. Springer, 2009.

23. Corina S. Pasareanu, Willem Visser, David H. Bushnell, Jaco Geldenhuys, Peter C.
Mehlitz, and Neha Rungta. Symbolic pathfinder: integrating symbolic execution
with model checking for java bytecode analysis. Autom. Softw. Eng., 20(3):391–
425, 2013.

24. Pablo Ponzio, Nazareno Aguirre, Marcelo F. Frias, and Willem Visser. Field-
exhaustive testing. In Thomas Zimmermann, Jane Cleland-Huang, and Zhendong
Su, editors, Proceedings of the 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, FSE 2016, Seattle, WA, USA, November
13-18, 2016, pages 908–919. ACM, 2016.

25. Pablo Ponzio, Nicolás Rosner, Nazareno Aguirre, and Marcelo F. Frias. Efficient
tight field bounds computation based on shape predicates. In Cliff B. Jones, Pekka
Pihlajasaari, and Jun Sun, editors, FM 2014: Formal Methods - 19th Interna-
tional Symposium, Singapore, May 12-16, 2014. Proceedings, volume 8442 of Lec-
ture Notes in Computer Science, pages 531–546. Springer, 2014.

26. Nicolás Rosner, Jaco Geldenhuys, Nazareno Aguirre, Willem Visser, and
Marcelo F. Frias. BLISS: improved symbolic execution by bounded lazy initializa-
tion with SAT support. IEEE Trans. Software Eng., 41(7):639–660, 2015.

27. Willem Visser and Peter C. Mehlitz. Model checking programs with java
pathfinder. In Patrice Godefroid, editor, Model Checking Software, 12th Interna-
tional SPIN Workshop, San Francisco, CA, USA, August 22-24, 2005, Proceedings,
volume 3639 of Lecture Notes in Computer Science, page 27. Springer, 2005.

28. Willem Visser, Corina S. Pasareanu, and Radek Pelánek. Test input generation for
java containers using state matching. In Lori L. Pollock and Mauro Pezzè, editors,
Proceedings of the ACM/SIGSOFT International Symposium on Software Testing
and Analysis, ISSTA 2006, Portland, Maine, USA, July 17-20, 2006, pages 37–48.
ACM, 2006.

238 P. Ponzio et al.

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Efficient Bounded Model Checking using Tight Field Bounds 239

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

http://creativecommons.org/licenses/by/4.0/

Effects of Program Representation on Pointer
Analyses — An Empirical Study

Jyoti Prakash(�)1 , Abhishek Tiwari2 , and Christian Hammer1

1 University of Potsdam, Potsdam, Germany
jyotiprakash1@acm.org, c.hammer@acm.org

2 National University of Singapore, Singapore, Singapore
tiwari@comp.nus.edu.sg

Abstract Static analysis frameworks, such as Soot and Wala, are used
by researchers to prototype and compare program analyses. These frame-
works vary on heap abstraction, modeling library classes, and underlying
intermediate program representation (IR). Often, these variations pose
a threat to the validity of the results as the implications of comparing
the same analysis implementation in different frameworks are still un-
explored. Earlier studies have focused on the precision, soundness, and
recall of the algorithms implemented in these frameworks; however, little
to no work has been done to evaluate the effects of program represen-
tation. In this work, we fill this gap and study the impact of program
representation on pointer analysis. Unfortunately, existing metrics are
insufficient for such a comparison due to their inability to isolate each
aspect of the program representation. Therefore, we define two novel
metrics that measure these analyses’ precision after isolating the influ-
ence of class-hierarchy and intermediate representation. Our results es-
tablish that the minor differences in the class hierarchy and IR do not
impact program analysis significantly. Besides, they reveal the sources of
unsoundness that aid researchers in developing program analysis.

Keywords: Pointer Analysis, Java, Program Analysis, Empirical Studies

1 Introduction

Researchers have proposed various approaches to enhance the precision and
soundness of static analyses [6, 9, 10, 14, 17, 26, 30, 31]. They use program analy-
sis frameworks to prototype and evaluate their algorithms. A program analysis
based on declarative specifications (a growingly popular implementation para-
digm) uses these frameworks to extract fundamental dataflow relations and feeds
them as the ground facts to a Datalog engine.

Program analysis frameworks, primarily Soot and Wala, are being increas-
ingly adopted in program analysis [11, 31, 40]. These frameworks provide APIs,
which abstract internal program representation. However, program representa-
tion in these frameworks is heterogeneous in many aspects. A few of those are:

© The Author(s) 2021
E. Guerra and M. Stoelinga (Eds.): FASE 2021, LNCS 12649, pp. 240–261, 2021.
https://doi.org/10.1007/978-3-030-71500-7_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71500-7_12&domain=pdf
http://orcid.org/0000-0002-2974-4308
http://orcid.org/0000-0001-8415-5410
http://orcid.org/0000-0001-5955-3732
https://doi.org/10.1007/978-3-030-71500-7_12

Effects of Program Representation on Pointer Analyses 241

– Intermediate Representation (IR). The intermediate language for program
representation is an abstraction of the object code (bytecode) or source code.
It removes syntactic sugar from the language and transforms it into a (mini-
mal) core language. Thus, analysis developers can focus on the core language
features to define their analysis.

– Modeling of libraries in analysis scope. Real-life applications are seldomly
developed from scratch; instead, they reuse library modules. Whole-program
analyses consider these libraries for soundness in terms of the class-hierarchy,
which forms the analyses’ scope. Users can tune the scope to favor scalability
over soundness.

– Heap Modeling. Heap modeling is the technique to model dynamic heap al-
location statically. Precise heap modeling is undecidable; therefore, analyses
use approximations to keep it decidable [20]. Apart from these approxima-
tions, optimization may choose to keep a low memory footprint at the cost
of precision and soundness.
These factors influence the precision, scalability, soundness of the analyses,

and at the same time, impede a fair comparison of analyses. Earlier research
(Späth et al. [29]) was concerned about the validity of results when comparing
two analyses frameworks. Reif et al. consider the comparison of different frame-
works “bogus” [21] at the outset. Although many earlier works have proposed
techniques to enhance scalability and precision, little to no work was done on
how program representation influences program analyses. As a result, a com-
parison of new analyses with existing analyses suffers from a threat to validity
that might have been overlooked. In this work, we fill the gap with an empirical
study of these aspects of program analysis frameworks.

We choose pointer analysis for this study. Pointer analysis computes the heap
locations referred by program variables and builds the foundation for many oth-
ers, such as alias analysis, type-state, or program slicing. To evaluate interme-
diate representation and library modeling, we choose Doop, a state-of-the-art
pointer analysis framework and compare its analysis for different frontends. For
the third aspect, heap modeling, we compare the pointer analysis of Wala’s (a
state-of-the-art program analysis) framework with Doop using Wala’s frontend,
i.e., leveraging the identical intermediate representation.

A challenging aspect of this work is that the existing notions of precision
for pointer analysis were insufficient. The computation of these metrics does
not isolate single aspects of pointer analysis but rather combines all effects.
For example, the average points-to set size is influenced by all three of the
aforementioned aspects. It is difficult to determine the effect of each aspect by
only looking at the score. In this work, we counteract this problem by introducing
metrics that isolate a particular aspect under study and nullifies the effect of
others. Therefore, we define two novel metrics in section 3.1, one for measuring
the effects of libraries to enable a fair comparison among frameworks. To the
best of our knowledge, it is the first study that evaluates the impact of program
representation on pointer analysis. Precisely, in this paper, we make the following
contributions:

242 J. Prakash et al.

– We defined two metrics for evaluating each aspect in isolation, one for mod-
eling of library classes, the other for IR.

– We evaluated the differences in library modeling and found that these have
little influence on program analyses. Additionally, we discovered sources of
unsoundness in these frameworks.

– We evaluated the precision for different IRs and found that they have no
impact on the precision of virtual method call elimination.

– We empirically found differences in heap abstractions even for analyses claim-
ing the same levels of context-sensitivity regarding the types of heap objects.
In summary, our empirical study dispels the threats to the validity of the

results of existing works posed by these differences of frameworks. It also dis-
covers novel sources of unsoundness and imprecision in existing frameworks that
provide suggestions that users/developers of these frameworks could incorporate
into their analyses. Although we focus on pointer analysis in the paper, our re-
sults are, in principle, generalizable to many other static analyses, as the findings
presented in this paper also hold for these. We have made the artifacts available
on https://github.com/jpksh90/pointeval to facilitate reproduction.

2 Background and Motivation

The goal of pointer analysis is to determine which objects a variable may refer
(point) to at runtime. A points-to set is a static approximation of this question,
which maps variables to objects that are allocated on the heap (heap objects).
More precisely, if V is the set of variables in a program, and H is the set of heap
objects, then points-to : V→ P(H). points-to(v) returns the set of heap objects
in H referred by v.

Doop is a framework that exclusively focuses on pointer analysis, defines
the analysis’ inference rules in Datalog [41], and is in active development. It
supports tuning of the analysis to adapt for various factors of precision (and
scalability). Doop leverages the program synthesizer Soufflé [12, 22] to resolve
points-to according to the inference rules and the ground facts, which are derived
directly from the program.

Wala [37] and Soot [28] are general-purpose program analyzers providing
some pre-defined analyses and APIs for the development of custom analyses.
Wala comes with various pre-defined pointer analyses [39], some of which feature
novel optimizations to enhance scalability.

A context-sensitive analysis improves a pointer analysis’ precision by discern-
ing method calls based on their calling contexts. Popular notions of contexts
are based on method callsites [23] (callsite-sensitive), invoking objects (object-
sensitive) [19], or hybrids thereof [13].

In the sequel, we explain the need for this study by exemplifying the three
factors that influence the results of pointer analyses.

https://github.com/jpksh90/pointeval

Effects of Program Representation on Pointer Analyses 243

Listing 1.1: Factory Method
1 public class Factory {
2 public static void main(String args []) {
3 AInt a = AInt.getInstance (5);
4 AInt b = AInt.getInstance (7); } }
5 class AInt {
6 private Integer a; //... getter , setter and constructor
7 public static AInt getInstance(int x) {
8 return new AInt(x); // allocation a@8
9 }}

Listing 1.2: Soot IR for the main method in Listing 1.1
1 public class Factory extends java.lang.Object {
2 // constructor
3 public static void main(java.lang.String []) {
4 java.lang.String [] r0;
5 AInt r1, r2;
6 r0 := @parameter0: java.lang.String [];
7 r1 = staticinvoke <AInt: AInt getInstance(int) >(5);
8 r2 = staticinvoke <AInt: AInt getInstance(int) >(7);
9 return; } }

2.1 Intermediate Representation

Many program analyses tools leverage an intermediate representation (IR) in-
stead of the actual source or bytecode for analysis. IRs remove syntactic sugar
from the source code and make it amenable to analysis by focussing on the fun-
damental operations. Popular strategies for IR generation are based on three-
address code or static single assignment (SSA) form [4]. By default, the Soot
framework uses a three-address-based IR (Jimple) [35], while Wala uses a SSA-
based IR [38]. Both IRs are register-based [36,38], and hence introduce synthetic
variables to mimic the stack-based Java bytecode. Doop can be configured to
leverage either Jimple or Wala’s IR as a frontend for program representation.

Consider the code example in Listing 1.1 and its Jimple IR depicted in List-
ing 1.2. The main method declaration (line 2) translates to the almost identical
line 3 in the IR, whose parameter is translated to the variable @parameter0
(line 6). Due to the additional local variable r0 (line 4), the single main method
argument translates to two variables in the IR. The invocations of the static
method getInstance (lines 3 and 4 of Listing 1.1) are translated to the corre-
sponding operation code staticinvoke with the method name and arguments.
The newly allocated objects returned from these factory method invocations are
stored in the variables r1 and r2.

Wala’s IR generation differs significantly from Soot (see Listing 1.3). As an
SSA-based IR, it does not assign names to method parameters and variables
but ordinal numbers (starting from ‘1 ’) called variable numbers (we prepend
‘v ’ to these numbers for clarity). Thus, the receiver object (this reference in
Java), or the first parameter in the case of a static method is (silently) assigned

244 J. Prakash et al.

Listing 1.3: Wala IR for the main method in Listing 1.1
1 Factory.main([Ljava/lang/String;)V
2 5 = invokestatic < Application , LAInt ,

getInstance(I)LAInt; > 3 @1 exception :4
3 8 = invokestatic < Application , LAInt ,

getInstance(I)LAInt; > 6 @7 exception :7
4 return

Listing 1.4: Snapshot of pointer analysis results from Doop with different IR
1 // Variables in main method with **** Wala ****
2 < <<main method array >> <Factory: void

main(java.lang.String []) >/v1
3 // Variables in main method with **** Soot ****
4 > <<main method array >> <Factory: void

main(java.lang.String []) >/@parameter0
5 > <<main method array >> <Factory: void

main(java.lang.String []) >/l0#_0

the number v1. Further method parameters are assigned subsequent variable
numbers, succeeded by local variables. Again, the static method calls to the
method getInstance are translated to invokestatic, where v3 and v6 hold the
(implicitly defined) constant arguments 6 and 7. The objects returned from the
factory method invocations are stored in the variables v5 and v8. Potential
exceptions thrown in the invoked methods are stored in v4 or v7, respectively.

The differences in program representation influence the metrics of pointer
analysis: We analyzed Listing 1.1 context-insensitively with Doop, using Jimple
and Wala’s IR. The results are shown in Listing 1.4: The main method parameter
object «main method array» is referred by one variable in Wala (line 2) but
two variables in Soot (lines 4– 5). Even though the average points-to set size is
1 for all variables in Listing 1.4, we found noticeable differences in the average
points-to set sizes in other program’s analyses, with Soot’s frontend the average
size of the points-to set being 2.07 for 3328 variables, and 1.95 for 2298 variables
using Wala’s—Jimple again created more variables than Wala. These subtle
differences in program representation affect the average points-to set size, and
it is unclear whether these two numbers are in fact comparable. In this work,
we aim to investigate the impact of IRs on the precision and scalability of the
analysis (Section 4.3).

2.2 Static modeling of libraries

As a whole program analysis, a pointer analysis does not only requires knowledge
of the program to be analyzed but also the library classes, especially those related
to the runtime. For example, a whole program analysis of a Java application
would require the runtime libraries, such as those in rt.jar, and other dependent
libraries, bundled with the application. Analysis frameworks such as Soot and
Wala construct the class hierarchy based on all classes present in libraries and the

Effects of Program Representation on Pointer Analyses 245

application. They can also remove “irrelevant” classes, favoring scalability over
soundness. Interestingly, we found cases where some frontends do not load all of
the required classes, which induces discrepancies when comparing the analyses.

Consider the program shown in Listing 1.1. To corroborate our intuition,
we analyzed this program context-insensitively with Soot’s and Wala’s front-
ends. Using the former front-end, Doop loads 3,837 classes and computes the
analysis with an average points-to set size of 2.07. With Wala’s front-end, it
loads 19,927 (~5×) classes for analysis with an average points-to set size of
1.95. Further investigating the types of heap objects, we found that Doop with
Wala’s IR contains objects of the class java.security.PrivilegedActionException,
which is absent in the analysis with Soot. Note that our simple program contains
no instance of that type, so it must stem from analyzing libraries. In another
instance, Soot loads the classes from javax.crypto, whereas Wala does not. In this
research, we examine the imprecise modeling and discover possible implications
on precision and soundness (sections 4.1 and 4.2).

2.3 Heap Abstraction

Heap abstraction is an important aspect of pointer analysis and determines how
object allocations are statically represented in the analysis. One simple approach
is to create a unique representation for each object allocation site in the pro-
gram (allocation site abstraction). However, at runtime allocation sites can be
executed more than once, creating several objects that are then represented by
the same abstract value. As an example, consider the object allocation (line 8)
of Listing 1.1, represented via a single abstract object, say a@8. In the main
method the newly allocated objects returned by getInstance are captured by the
variables a and b, which would both refer to the abstract object, a@8 in the
result of the pointer analysis. Thus, a and b are spuriously considered aliases
(i.e., refering to the same object.) This imprecision stems from ignoring the
calling-context of getInstance (context-insensitive heap abstraction).

A context-sensitive heap abstraction (a.k.a heap cloning) discerns the ab-
stract3 heap-objects based on the calling context, associating the calling context
with the heap object to distinguish the allocations in a pair 〈allocation site,
call stack〉. Thus the allocation at line 8 is represented as two heap objects,
〈a@8, 3〉 and 〈a@8, 4〉. Without loss of generality, the length of the call stack
can be increased to any finite number, lest the analysis be undecidable. All
state-of-the-art pointer analysis frameworks offer context-sensitive heap abstrac-
tion with a finite context length.

The discussion above demonstrates how the choice of heap abstraction can
(potentially) influence pointer analysis. Therefore, in this work, we study the
frameworks’ heap abstractions. We conducted a preliminary study to gain ini-
tial insights and to validate our intuition, and context-sensitively analyzed List-
ing 1.1 with a one-call-site context-sensitivity in Doop with Wala’s IR, and the
one-call-site sensitive analysis of the Wala framework. Both of these analyses
3 In the sequel we will reference abstract heap objects as heap objects for brevity.

246 J. Prakash et al.

use a context-sensitive heap abstraction with context length of one. In spite of
that, Wala creates 17 objects while Doop creates 133 objects (~7×). The av-
erage points-to set size varies between 1.55 for the analysis provided by Wala
and 1.62 for Doop with Wala’s IR4. Thus, we can see that even with the same
level of sensitivity in heap abstraction (and IR), analysis results depend on
the framework used. Manual inspection revealed that Wala selectively uses the
context-sensitive heap abstraction, applying contextual heap abstraction only
to non-library classes while treating the library’s objects context-insensitively.
Out of the 17 heap objects, Wala uses context-sensitivity for only 6 objects. In
contrast, Doop leverages context-sensitivity for all heap objects, including the
library’s objects. These initial insights motivated us to analyze the influence of
heap abstraction on precision and scalability in more detail in Section 4.4.

To summarize, the parameters for program analysis such as IR (Section 2.1),
static modeling of libraries (Section 2.2), and heap abstraction (Section 2.3)
affect the precision and scalability of a pointer analysis. Based on initial insights,
we analyze the influence of the mentioned parameters using different frameworks,
frontends, and on a larger and diverse set of benchmark applications.

3 Methodology

3.1 Metrics Used

The precision of a pointer analysis has been defined in numerous ways in the
literature. Some of the metrics for precision available in the literature are the
average size of the points-to sets, the number of call-graph edges, and the number
of resolved virtual calls. These metrics are not clearly superior to one another
but rather tailored to specific clients, for example, the latter is leveraged by
compilers in devirtualization of virtual method calls.

All of these metrics reflect how precisely the analysis computes the points-to
sets (sets of heap objects referred by a variable). For example, whether or not a
virtual call can be resolved depends on the heap objects’ types in the points-to
set of the target variable. If there is only one type (or subtypes thereof that do
not redefine the virtual method) then the virtual call is resolvable. Therefore,
the precision of a client analysis depends on how precisely the points-to set for
each variable in the program can be resolved, in other words, how low the value
of the average points-to set size is. An average size close to one is considered the
hallmark of pointer analysis [27].

Therefore, we leverage the wide-spread metric of average points-to set size for
our evaluation, i.e., the ratio of the total sizes of the points-to sets to the total
number of local variables [26,34]. It permits a client-agnostic comparison of the
pointer analysis, which generalizes our evaluation results to any specific analysis.
We refer to the average points-to set size as precision in this paper. Note that the
actual precision of the analysis is inversely connected to the average points-to
4 Note that due to context-sensitive analysis, the average points-to set size is better

than that mentioned in sections 2.2 and 2.1.

Effects of Program Representation on Pointer Analyses 247

set size: A lower precision value (i.e. average points-to set size) implies a higher
precision of the computed analysis result, as precise analyses aim at excluding
unrealizable (at runtime) allocation sites from the points-to sets of variables.

An IR may create many synthetic variables, among other reasons for method
parameters or for φ-nodes at control-flow joins of SSA-form. For example, three-
address code re-uses the same variable in assignments in the if and else blocks
of a conditional. However, SSA-based IRs insert a synthetic variable in a φ-node
at the control-flow join to select one of the distinct variables of the respective
blocks. The presence of synthetic variables in IRs impedes the comparison of
different analyses using the average points-to set size, as averages depend on
the (unequal) number of variables. Therefore, we devise heuristics to establish
comparability of our metrics for different IRs.

Another challenge in this work is inferring the impact of each analysis param-
eter on its precision. Computed at the end of the analysis, the average points-to
set size loses information on the contribution of a particular aspect of pointer
analysis. Therefore, we require a fine-grained metric to quantify the precision
for each parameter. We propose two such techniques, one for the class hierarchy
and the other for the intermediate representation.

Class Hierarchy The analysis of the program’s class hierarchy builds the foun-
dation for inferring relevant variables and heap allocations. However, each frame-
work leverages a particular strategy to infer classes that contribute to the pro-
gram’s semantics. Adding irrelevant classes to the class hierarchy may manifest
into a synthetically precise analysis, as these classes add to the total number of
variables (which will all be pointing to an empty set), thus potentially decreasing
the average size of points-to sets. Some of these variables and heap allocations
are not part of the actual code executed at runtime, but rather arise out of an
imperfect model of the program analysis framework’s frontend. Here, we study
the variables and heap objects stemming from the additional classes exclusive
to a framework.

We first instrument the Doop framework to log the class hierarchies and
compare the class hierarchies obtained using Soot and Wala as frontends, which
yields the classes exclusive to each of the frameworks. CH soot and CH wala de-
notes the set of classes in the class hierarchies of Soot and Wala respectively.
CH common = CH soot ∩CH wala is the set of classes common to both frameworks.
We define CH-precision in terms of the average points-to set size restricted to
variables defined in methods of CH common .

Definition 1. CH-Precision (CP). Let Vc
f be the set of variables defined in

methods of CH common for the frontend f ∈ {soot, wala}, and Hc
f (v) = {h | h ∈

points-to(v), v ∈ Vc
f}. CH-Precision is the ratio of Hc

f and Vc
f , i.e.,

CPf =

∑
v∈Vc

f

Hc
f (v)

|Vc
f |

248 J. Prakash et al.

If an analysis does not contain any exclusive classes or all of their variables
(and corresponding heap objects) belong to the types present in the set of ex-
clusive classes, CH-precision equals the average points-to set size.

Intermediate Representation (IR) The choice of IR determines a program’s
representation but retains the program’s semantics, particularly with respect to
heap allocations. Thus, different IR’s can differ in the number of variables but
will not introduce additional heap objects (e.g. Listing 1.4).A fundamental differ-
ence between Soot’s Jimple and Wala’s SSA-based IR is that SSA creates unique
variables for each variable definition, while three-address code does not. Render-
ing our precision metric comparable for structurally different IRs is challenging,
as tracking which variables correspond to each other is technically involved and
may not be unique. Therefore, we rely on a heuristic to determine comparable
variables. We motivate the heuristics considering two different IRs for the main
method in Listing 1.1. Jimple (Listing 1.2) defines four variables, r0 – r2, and
parameter0, while Wala’s IR (Listing 1.3) defines three variables: v1 (implicit,
not shown in the listing), v5, v8.

Definition 2. Defm denotes the set of variables defined in a method.
Defm(m, ir) =

⋃
si∈Sm,ir

def (si), where Sm,ir is the set of statements in method
m for ir , def (si) the variables defined in si.

Definition 3. Interesting Method. A method m is interesting if |Defm(m,wala)|
�= |Defm(m, jimple)| and m is defined in class C ∈ CH common , i.e., the number
of variables defined in the method with the same signature vary for different IRs.
M denotes the set of interesting methods.

To determine the set of interesting methods (M) we leverage the logs from
pointer analyses and segregate the variables in the logs according to the declaring
method (m). If the sizes of the corresponding sets differ for a method m, it is con-
sidered interesting. (M is confined to the set of methods defined in CH common to
exclude the exclusive classes.) Subsequently, we determine the points-to relation
for the variables in M.

Simple average of the heap objects and number of variables is insufficient
for comparing the precision of the analysis between two IRs. Differences in class
hierarchies and aliasing generates new variables, which makes the ratio incompa-
rable if the heap objects are not same. To circumvent this problem, we combine
average points-to set size with ideas from virtual call resolution. The number of
virtual call sites in a program is identical irrespective of the differences in pro-
gram representation (caused by aliasing and redundant variables). Therefore, we
receive a fair comparison if we restrict the average point-to set size to the target
variables of virtual method calls. We define a new metric, average devirtualized
heap objects (Hf

v), which is the ratio of the total size of points-to sets of target
variables at the virtual call sites to the number of virtual call sites.

Definition 4. Average devirtualized heap objects (Hf
v). For the set of virtual

call-sites C in the IR of a framework f and VC,f as the set of invoking variables

Effects of Program Representation on Pointer Analyses 249

at C, let Hv = points-to(v) be the set of heap objects referred by v ∈ VC,f .
Average devirtualized heap objects is

Hf
v =

∑
v∈VC,f

points-to(v)

|C|
Based on the above discussion, we formulate and answer the following re-

search questions:
RQ1. How does the class hierarchy vary with the benchmarks?
RQ2. How do differences in class hierarchies affect the precision of analyses?
RQ3. How do the choice of IR affect the precision of the analysis?
RQ4. How do the heap abstractions differ between pointer analysis frameworks?

4 Evaluation

We use Doop version 4.20.7-67 and Wala version 1.5.0. For RQ1-RQ3, we
invoked Doop with the following analysis options: 1-call-site-sensitive,
1-object-sensitive, 2-call-site-sensitive+heap, 2-object-sensitive+
heap. Specific options used in our study for each research questions are de-
scribed in their respective sections. We use the DaCapo [2] (version 9.12-bach)
benchmarks, a standardized suite of open-source Java applications, for our study.

4.1 RQ1: Class hierarchy differences with benchmarks

We captured the class hierarchies considered by the analyses to determine the dif-
ferences. We instrumented Doop to log the classes considered during a (context-
insensitive) analysis, which yields the complete class hierarchy. In order to in-
vestigate whether the class hierarchy depends on the frontend, we performed
this experiment with Soot and Wala as frontend5. Table 1 lists the differences
in the class hierarchies using Soot and Wala. On an average, Wala exclusively
contains ~13,994 classes in its class hierarchy. The number of classes exclusive to
Wala range from 12,524 (Xalan) to 16,707 (Tradebeans). Soot’s class hierarchy
on average contains 26 classes not present in Wala’s, ranging from zero to 62.

In the case of PMD and H3, Soot’s class hierarchy contains only a single ad-
ditional class, Jython has an additional 2 classes. Eclipse, Lusearch, and Luindex
contain 62, 53, 53 additional classes, respectively. In the remaining cases the class
hierarchy in Soot is strictly a subset of Wala’s. In next RQ, we will study the
impact of these additional classes on the precision and scalability of the analysis.

4.2 RQ2: Precision differences with class hierarchy

5 Note that Soot and Wala provide options to exclude certain classes from analysis
(to, e.g., exclude library classes). For a fair comparison we ignore this feature and
compute the whole class hierarchy including libraries.

250 J. Prakash et al.

Table 1: Difference in classes considered by Soot and Wala. Last two columns
show the extra classes loaded by Soot and Wala respectively.

#classes analyzed Extra classes
Benchmark Wala Soot Soot Wala
Avrora 21,997 9,204 0 12,793
Batik 23,461 10,739 12 12,734
Eclipse 25,718 9,813 62 15,967
H2 21,007 8,042 1 12,966
Jython 23,323 10,411 2 12,914
Lusearch 20,469 4,671 53 15,851
Luindex 20,479 4,681 53 15,851
PMD 21,315 8,517 1 12,799
SunFlow 20,677 7,847 0 12,830
Tradebeans 20,658 3,951 0 16,707
Xalan 22,688 10,164 0 12,524

Study Setup We have used the var-points-to relation, which maps all vari-
ables and context pairs to their resolved pairs of heap-object and context. We
select those variables that originate from classes common to both frameworks
(Section 4.1) and query their points-to information. We then compute the CH −
Precision based on Definition 1.

Results Table 2 presents the results of the analysis (for one-callsite, one-object,
and two-object context-sensitivity) for the objects and variables belonging to ex-
clusive classes present in Wala (only non-zero values included). Note that the
two-object sensitive analysis did not terminate for Eclipse and Jython, there-
fore, these are not presented in the table. In one-callsite and one-objects analy-
sis, Table 2 lists six out of eleven benchmarks contain variables that belong to
the exclusive class hierarchy. The remaining benchmark applications show no
differences in the number of variables and heap-objects, despite the presence
of additional classes. It demonstrates that the additional classes loaded by the
these frameworks have no influence on the precision of these benchmarks.

The third and fourth columns of Table 2 list the number of variables (in
principle, variable-context pairs) and heap objects belonging to the set of exclu-
sive classes, respectively. In all analyses, all but one benchmark have a higher
average points-to set size for exclusive variables than the general average. Trade-
beans only creates 3 additional heap objects with Wala’ frontend, therefore the
analyses are almost identical for both frontends. The average points-to sets for
exclusive classes for bigger benchmarks such as Eclipse and Jython are outliers,
showing very high averages. Still, the contribution of exclusive classes’ heap ob-
jects and variables is negligible compared with the total heap objects of these
benchmarks.

The eighth and ninth columns depict the CH-precision and the original pre-
cision for the analyses. We observe that the CH-precision is slightly lower than
the precision for all benchmarks but tradebeans, which originates from the addi-

Effects of Program Representation on Pointer Analyses 251

Table 2: Differences in precision in the presence of additional objects in class
hierarchy (Wala). HO denotes the sum of number of heap objects in points-to
set. CPwala is the precision score for variables in CH common .

Exclusive classes Original
Analysis Benchmark Vars. HO Average Vars. HO Precision CPwala

1CS avrora 19 297 15.63 96,680 883,798 9.141 9.140
eclipse 453 171,071 377.64 1,231,854 61,556,548 49.970 49.850
h2 31 321 10.35 78,154 639,202 8.178 8.177
jython 35 17,682 505.2 289,244 8,000,917 27.661 27.603
tradebeans 3 3 1 59,853 549,391 9.179 9.179
xalan 39 2,466 63.23 147,488 1,911,750 12.962 12.948

1OS avrora 19 14,844 781.26 82,972 404,231 4.871 4.694
eclipse 388 329,008 847.95 1,053,618 46,337,474 43.979 43.683
h2 31 2747 88.61 59,800 220,058 3.679 3.635
jython 35 147,214 4,206.11 573,823 22,152,008 38.604 38.35
tradebeans 3 4 1.33 45,807 154,883 3.381 3.381
xalan 39 13,831 354.64 199,404 1,576,762 7.907 7.839

2OS avrora 19 1752 92.21 119,805 348,368 2.907 2.893
h2 31 1195 38.54 82,795 242,667 2.930 2.917
tradebeans 3 4 1.33 57,200 197,808 3.458 3.458
xalan 55 4268 77.6 362,885 1,733,576 4.777 4.766

Table 3: Differences in precision in the presence of additional objects in class
hierarchy for Eclipse (Soot).

Variables Heap Objects CPsoot Original
1-call-site Exclusive Classes 786 3331 44.95 -

Original 1.5M 68.5M - 44.92
1-object Exclusive Classes 1020 4130 44.90 -

Original 1.3M 60.8M - 44.87

tional heap objects and variables. These primarily belong to the internal libraries
such as sun.util, sun.util.resources (discussed later).

With the Soot frontend (Table 3), the CH-Precision differs from Precision
only for the benchmark Eclipse, for the other benchmarks the analysis does
not contain any objects where the type belongs to the exclusive classes of the
frontend. However, it is difficult to compare the precision of Soot v/s Wala on
CH-Precision score due to differing variable numbers for the same benchmark
application.

Finding 1 : Differences in class-hierarchy negligibly impact the pointer
analysis precision (and thus client analyses).

Soundness In our observation, the Wala frontend takes the internal Java libraries
into account. We find heap objects belonging to libraries such as sun.nio.fs,
sun.util.resources, sun.security, and sun.nio.cs, which are internal libraries used
by the JVM. Soot, on the other hand, does not model these libraries for analysis.

Comparing the class hierarchies of the analyses using Soot and Wala, we ob-
served that the class hierarchy using Soot as frontend is a subset of Wala’s for all

252 J. Prakash et al.

Table 4: Total (for each framework) and interesting (section 4.3) methods M.
Benchmark 1-CS 1-OS 2-OS

Soot Wala M Soot Wala M Soot Wala M
Avrora 3651 3678 3194 3642 3669 3187 3615 3642 3159
Batik 3407 3415 3006 3398 3406 2999 3285 3293 2895
Eclipse 20339 20281 18723 20261 20204 18655 Timed out
H2 3041 3091 2673 3027 3075 2661 2985 3029 2616
Jython 8482 8531 7672 8447 8494 7643 Timed out
Lusearch 2449 2457 2135 2440 2448 2128 2414 2422 2103
Luindex 3524 3532 3132 3514 3522 3124 3466 3474 3081
PMD 4587 4596 4131 4577 4586 4124 4418 4427 3978
Sunflow 8369 8384 7514 8335 8350 7475 7740 7754 6928
Tradebeans 2442 2406 2083 2433 2397 2076 2407 2371 2051
Xalan 4607 5701 4125 4597 5678 4115 4502 5503 4031

benchmarks except Eclipse. This suggests that analyses with Soot are as sound
as analyses with Wala for all benchmarks except Eclipse. Eclipse is a compelling
case: Its analysis using Soot contains heap objects and variables that belong to
the internal libraries of Eclipse, such as org.eclipse.core.internal.runtime.Perfor-
manceStatsProcessor, while the analyses with Wala does not report these objects.
However, results from the analyses with Wala contain heap objects from the in-
ternal libraries such as sun.util.*, which are not present using Soot. It shows
that the class hierarchy model is unsound in both frontends, as both lack some
of the classes loaded by these benchmark applications at runtime.

Our study reveals that library modeling in both Soot and Wala is unsound
even for (non-native) Java objects, shown by the presence of heap-objects
belonging to the exclusive classes of Soot and Wala.

4.3 RQ3: Precision for IR varies with the framework

Study Setup The study setup is similar to Section 4.2. We use the application’s
var-points-to sets, i.e., the relation of variables and heap objects excluding the
library objects. From the results of the three analysis sensitivities, we extract the
set of interesting methods (M, Def. 3) and compute the average devirtualized
heap objects score for the virtual calls in interesting methods. We use the Jimple
IR (--no-ssa option in Doop), and Wala’s IR (--wala-fact-gen option in
Doop) for evaluation.

Results Table 4 reports the number of interesting methods and total methods
resolved using both frontends. Note that the number of interesting method is
identical for both frameworks for the same type of context-sensitivity. The num-
ber of reachable methods in each analysis differs, just as the number of distinct
methods signatures discovered in each framework (columns Soot, Wala in 1-CS,
1-OS, 2-OS6). However, deriving a relationship between those is impossible, as
6 We excluded 2-CS for its large file sizes.

Effects of Program Representation on Pointer Analyses 253

Table 5: Results for IR. Third and fifth columns are the number of heap objects.
Fourth and sixth columns are the number of virtual calls. Last two columns lists
the average devirtualized heap objects (Hf

v) for Soot and Wala respectively.
Soot Wala Hf

v

Analysis Benchmark Heap Objs. Virt. Calls Heap Objs. Virt. Calls Soot Wala
1 call-site Avrora 7,684 3499 7759 3499 2.20 2.22
sensitive Batik 2,645 1588 2702 1588 1.67 1.70

Eclipse 7.7M 56.8K 7.9M 56.8K 136.33 139.24
H2 1,936 1,434 1,988 1,434 1.35 1.39
Jython 662K 9,286 656K 9,283 71.33 70.67
Lusearch 1,667 1,139 1,674 1,139 1.46 1.47
Luindex 8,090 4408 8,098 4,408 1.84 1.84
PMD 8,518 3,527 8,708 3,527 2.42 2.47
Sunflow 4,741 2,088 4,627 2,088 2.27 2.22
Tradebeans 1,638 1,114 1,649 1,106 1.47 1.49
Xalan 43K 5,832 55K 5,850 7.45 9.44

1 object Avrora 6,561 3,498 6,563 3,498 1.88 1.88
sensitive Batik 1,673 1,587 1,709 1,587 1.05 1.08

Eclipse 2.9M 56.7K 3.0M 56.8K 51.61 53.53
H2 1,218 1,433 1,258 1,433 0.85 0.88
Jython 3.5K 9,272 3.6K 9,269 386.79 389.20
Lusearch 958 1,138 964 1,138 0.84 0.85
Luindex 4,530 4,407 4,552 4,407 1.03 1.03
PMD 7,369 3,527 7,518 3,527 2.09 2.13
Sunflow 2,978 2,088 2,864 2,088 1.43 1.37
Tradebeans 928 1,113 938 1,105 0.83 0.85
Xalan 99K 5,830 106K 5,810 17.11 18.33

2 object Avrora 8,561 3,459 8,563 3,459 2.47 2.48
sensitive Batik 1,257 1,567 1,275 1,567 0.80 0.81

H2 1,288 1,433 1,307 1,433 0.90 0.91
Luindex 5,210 4,363 5,215 4,363 1.19 1.20
Lusearch 948 1,138 954 1,138 0.83 0.84
PMD 7,271 3,496 7,398 3,496 2.08 2.12
Sunflow 2,342 2,088 2,324 2,088 1.12 1.11
Tradebeans 919 1,113 929 1,105 0.83 0.84
Xalan 214K 5,791 215K 5,771 36.97 37.36

analyses such as one-call-site and one-object are not comparable. In all cases, we
observed that the majority (~90%) of the methods are interesting. Therefore,
we cannot ignore the significance of this aspect.

Interesting methods are difficult to ignore because of their sheer presence in
the benchmarks applications.

Table 5 presents the differences in the average devirtualized heap objects
for Jimple and Wala IR. Although the number of variables and abstract heap
locations are dependent on the IR, we did not observe many differences between
those when restricting ourselves to target variables of virtual method calls, which
corresponds to our intuition. The differences in the Hf

v values for both IRs

254 J. Prakash et al.

Table 6: Differences Soot IR v/s Wala IR for Xalan
Methods Wala Soot Actual
org.apache.xalan.transformer.TransformerImpl.transformNode() � � �

Exceptions � � �

org.apache.xalan.xsltc.trax.TransformerFactoryImpl.setFeature() � � �

MethodResolver.getConstructor() � � �

xerces.xml.dtd.XMLDTDLoader() � � —
org.apache.xpath.getSourceTree() � � �

Listing 1.5: Differences in types of heap objects created in both analysis
1 (Wala) sun.misc.URLClassPath$Loader
2 (Wala) java.util.zip.ZipError
3 (Soot) javax.xml.transform.FactoryFinder$ConfigurationError

are negligible except for three larger benchmarks, Jython, Eclipse, and Xalan.
Overall, the values from Soot IR were smaller than those of Wala, implying
that devirtualization in Soot is either slightly more precise or slightly less sound
than in Wala, however, the differences are minor in the majority of the cases. In
conclusion, the choice of IR shows little to no impact on the precision of pointer
analysis. In the sequel, we describe one such case study where the difference in
Hf

v is approximately two, which is a significant figure as compared to others.

Finding 2 : IR has negligible impact on the precision of pointer analysis at
least for the devirtualization client.

Case Study—Xalan To further investigate the differences, we chose Xalan using
a one-call-site analysis as the Hf

v values for Soot (7.45) and Wala (9.44) display
the highest difference among all benchmarks. The number of heap objects in
both cases differs significantly, with Soot having 43K heap objects, and Wala
having 55K heap objects for a comparable number of virtual calls (5,832 vs.
5,850).

To examine the heap objects, we collected their class types. We observed that
the types of some of these objects belongs to the classes in CH soot\CH common or
CH wala\CH common . Listing 1.5 depicts the differences in heap objects created
by these frameworks.

We also discovered (potential) sources of imprecision and unsoundness in
both analyses. Table 6 lists methods and exceptions missed by both Soot and
Wala frameworks. Note that these methods and exceptions belong to the com-
mon class hierarchy. We observed that Wala has precise exception modeling
compared to Soot. For other virtual methods invocations, we compared the run-
time call-graph to the static call-graph. In our observation, both Wala and Soot
are unsound, as demonstrated by the absence of certain method calls in the call-
graph for both analyses. In addition, Wala imprecisely includes xerces.xml.dtd.
XMLDTDLoader() into its call-graph (which at least in our experiments was not
executed at runtime).

Effects of Program Representation on Pointer Analyses 255

Apart from reflection, imprecise/unsound virtual call resolution also induces
imprecision/unsoundness into the analysis.

4.4 RQ4: Heap abstractions in pointer analysis frameworks

Table 7: Number of Heap objects

#Heap Objects #Types
Benchmark Doop Wala Doop Wala
avrora 2,504 28,235 751 3,256
batik 1,699 16,724 537 1,938
h2 1,467 16,688 482 1,934
lusearch 1,242 16,274 551 1,898
luindex 1,901 19,343 404 2,250
pmd 2,398 31,774 734 2,498
sunflow 4,424 16,688 1,196 1,934
tradebeans 1,230 16,734 405 1,937
xalan 3,874 18,174 1,003 2,078

In this section, we compare Doop’s
analysis using Wala’s frontend with
Wala’s own analysis. We omit the
comparison with the Soot frame-
work as it leverages IRs different
from Wala’s and thus would not be
comparable.

Study Setup We compare the
one-call-site sensitive with context-
sensitive heap abstraction (unique
heap objects for each call-site, heap
cloning) analysis available in the
Wala framework with a one-call-site with one-level heap abstraction in Doop,
and set the time budget to 7 hours. Analyses with a higher level of call-site sensi-
tivity were not scalable in the Wala framework and therefore, we do not leverage
those. Other optimizations in Wala, such as the use of object-sensitivity only for
collection objects, are not comparable to the object-sensitive analysis available
in Doop. Therefore, we also choose to ignore it. To handle reflective calls in Wala,
we use the option REFLECTIONS.FULL. In what follows, we present the results of
our study. We first present the differences in the number of heap objects and,
subsequently, delve into its implications.

Differences in the heap objects For evaluation, we extracted the heap-objects cre-
ated in Wala’s and Doop’s analyses and observe huge differences in the number of
heap objects created. Intuitively, using the same level of heap-sensitivity (heap-
cloning) should create the same number of heap objects. However, in certain
cases, the number of heap objects in Wala exhibits a factor of ~14 compared to
those in Doop (columns 2 and 3 in 7). (Note that eclipse and jython are elided,
as the analyses did not terminate within the time budget owing to the large
file size (~100GB).) Therefore, the heap abstractions of these analyses are not
comparable, although superficially they look similar.

Subtle optimizations also manifests into imprecise heap modeling even
though, at the outset, they look similar.

To investigate this further, we compared the the types of the heap objects.
Our study shows that the set of types are not even consistent using the same
frontend! In many cases the types of objects analyzed by Wala is approximately
four times those in Doop (columns 4 and 5 in Table 7). The differences in heap
abstraction for application level objects build the reason for this.

256 J. Prakash et al.

Application level objects Application level objects, i.e., the heap objects cre-
ated due to allocations within the program (rather than libraries.) In three out
of eleven benchmarks we observe that Doop’s analysis is lacking application
level classes that Wala reports. We found corresponding allocations on a man-
ual inspection of the source code. For example, in avrora, the analysis in Wala
allocates heap objects of BRNE_builder [8], which are not present in Doop’s.
Similar cases can be found in PMD and Xalan. However, owing to the limita-
tions of the program representation, we could not determine the precise reason
for the unsoundness. Pointer analysis uses an IR based on a control flow graph
(CFG) rather than source code. Being a lower level representation of the program
source code the IR mangles variables names. Therefore, a one-to-one correspon-
dence between the IR’s variables and variables in source code is not trivial.

Finding 3 : Heap modeling is not similar even for allocations within the
application scope. Wala handles application levels objects more precisely than
Soot in our evaluation.

5 Threats to Validity

Naturally, the technique used relies on the precise handling of reflection calls and
other dynamic features of the languages such as dynamic proxies. Other than
that, handling of native calls could alleviate the unsoundness of the analyses.
Analysis of native calls could infer the native objects in JVM missed by the Soot
framework. Here, we have used the TamiFlex framework for handling reflection
calls. Other approaches have improved the reflection handling [10,15–18,25]. To
convince ourself, we experimented with one of the state-of-the-art techniques,
i.e., reflection with matching substring resolution [10]. However, we did not find
any significant differences in results. Another limitation of this study is the un-
soundness from ignoring the native library calls in static analyses. Few of the
sources of unsoundness discovered stem from the native calls. Recently, Four-
tounis et al. [7] proposed a technique for resolving native calls in Java. However,
at the time of writing this paper, the technique was not available. Further, our
analysis in Section 4.3 is based on test-cases which may not reflect all possible
executions of an application.

Our study also involves hours of manual evaluation which can be subject to
bias. To counteract it, we did a manual inspection of the source code, especially
for the sources of unsoundness. We had rerun the benchmark applications with
valid inputs to determine to compare and reassert that the objects are actually
allocated during runtime.

6 Related Work

Pointer analysis tools Pointer analysis has garnered significant interest in the
last decades, focussing on scalability, precision, and soundness. The Doop sys-
tem used in this paper results from years of research on declarative-style pointer

Effects of Program Representation on Pointer Analyses 257

analysis [1,3,10,24,26]. Similarly, the Wala framework was a result of an indus-
trial project and, unlike Doop, follows an imperative paradigm. The underlying
program representation comes with many prior assumptions mentioned. In this
work, we study the effects of these assumptions on program analysis.

Empirical studies on pointer analysis Recent empirical studies focussed on the
soundness limitations from dynamic features of languages in existing pointer
analyses and call-graph construction as pointer analysis and call-graph con-
struction are closely related static analyses and are mutually dependent. Di-
etrich et al. [5] proposed automated and manual techniques to generate un-
soundness oracles to test static analysis. Sui et al. [32] present the causes of
unsoundness in static analysis frameworks (Soot, Wala, and Doop) due to the
dynamic features of languages. Rief et al. [21] did a comprehensive study, fo-
cussed on features in Java 9, for call-graph generation algorithms and expose the
problems in the state-of-the-art esp. related to method calls in the Java runtime.
Our work is orthogonal: we evaluate the influence of program representation on
program analyses. Here, we rather focus on the program representation in static
analysis frameworks and also the unsoundness arising out of it. Our study is also
extensible for Java 9.

Sui et al. [33] evaluated the recall of call-graph construction and present
how it impacts the algorithms in practice. Their evaluation expose the problems
in the state-of-the-art esp. related to method calls in the Java runtime. Our
unsoundness results concur with theirs. Here, we have focussed on program rep-
resentation rather than the dynamic features of the language, which are hard to
analyze for static analyzers. Further, our work features two novel metrics apart
from the standard precision and recall, to measure the impact of different aspects
of program representation.

7 Conclusion

This paper reports the effects of program representation on program analysis.
Our metrics makes it possible to compare implementations leveraging different
frontends. We find that differences in program representation have negligible im-
pact on the precision of the pointer analysis. In addition, we also discovered novel
sources of unsoundness and imprecision in the program analysis. Our results also
demonstrate that the promised heap abstraction are practically not similar, even
though they may appear so on a birds eye view. Since pointer analysis builds the
foundation of many static analyses, we conjecture the results generalize these,
as well.

References

1. Antoniadis, T., Triantafyllou, K., Smaragdakis, Y.: Porting doop to souf-
flé;: A tale of inter-engine portability for datalog-based analyses. In: Pro-
ceedings of the 6th ACM SIGPLAN International Workshop on State Of

258 J. Prakash et al.

the Art in Program Analysis. pp. 25–30. SOAP 2017, ACM, New York,
NY, USA (2017). https://doi.org/10.1145/3088515.3088522, http://doi.acm.org/
10.1145/3088515.3088522

2. Blackburn, S.M., Garner, R., Hoffmann, C., Khang, A.M., McKinley, K.S.,
Bentzur, R., Diwan, A., Feinberg, D., Frampton, D., Guyer, S.Z., Hirzel, M.,
Hosking, A., Jump, M., Lee, H., Moss, J.E.B., Phansalkar, A., Stefanović, D.,
VanDrunen, T., von Dincklage, D., Wiedermann, B.: The dacapo benchmarks:
Java benchmarking development and analysis. In: Proceedings of the 21st An-
nual ACM SIGPLAN Conference on Object-oriented Programming Systems,
Languages, and Applications. pp. 169–190. OOPSLA ’06, ACM, New York,
NY, USA (2006). https://doi.org/10.1145/1167473.1167488, http://doi.acm.org/
10.1145/1167473.1167488

3. Bravenboer, M., Smaragdakis, Y.: Strictly declarative specification of so-
phisticated points-to analyses. In: Proceedings of the 24th ACM SIG-
PLAN Conference on Object Oriented Programming Systems Languages
and Applications. pp. 243–262. OOPSLA ’09, ACM, New York, NY, USA
(2009). https://doi.org/10.1145/1640089.1640108, http://doi.acm.org/10.1145/
1640089.1640108

4. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Ef-
ficiently computing static single assignment form and the control depen-
dence graph. ACM Trans. Program. Lang. Syst. 13(4), 451–490 (Oct 1991).
https://doi.org/10.1145/115372.115320

5. Dietrich, J., Sui, L., Rasheed, S., Tahir, A.: On the construction of soundness ora-
cles. In: Proceedings of the 6th ACM SIGPLAN International Workshop on State
Of the Art in Program Analysis. pp. 37–42. SOAP 2017, Association for Computing
Machinery, New York, NY, USA (2017). https://doi.org/10.1145/3088515.3088520,
https://doi.org/10.1145/3088515.3088520

6. Fourtounis, G., Triantafyllou, L., Smaragdakis, Y.: Identifying java calls in
native code via binary scanning. In: Proceedings of the 29th ACM SIG-
SOFT International Symposium on Software Testing and Analysis. pp. 388–
400. ISSTA 2020, Association for Computing Machinery, New York, NY,
USA (2020). https://doi.org/10.1145/3395363.3397368, https://doi.org/10.1145/
3395363.3397368

7. Fourtounis, G., Triantafyllou, L., Smaragdakis, Y.: Identifying java calls in
native code via binary scanning. In: Proceedings of the 29th ACM SIG-
SOFT International Symposium on Software Testing and Analysis. pp. 388–
400. ISSTA 2020, Association for Computing Machinery, New York, NY,
USA (2020). https://doi.org/10.1145/3395363.3397368, https://doi.org/10.1145/
3395363.3397368

8. GitHub: https://github.com/cmorty/. https://github.com/cmorty/avrora/
blob/222ea1645b67bc40429881526555d19bced4a590/src/avrora/arch/avr/
AVRInstrBuilder.java (August 2020), (Accessed on 05.08.2020)

9. Grech, N., Fourtounis, G., Francalanza, A., Smaragdakis, Y.: Heaps don’t
lie: Countering unsoundness with heap snapshots. Proc. ACM Program. Lang.
1(OOPSLA) (Oct 2017). https://doi.org/10.1145/3133892, https://doi.org/10.
1145/3133892

10. Grech, N., Kastrinis, G., Smaragdakis, Y.: Efficient Reflection String Analy-
sis via Graph Coloring. In: Millstein, T. (ed.) 32nd European Con-
ference on Object-Oriented Programming (ECOOP 2018). Leibniz Inter-
national Proceedings in Informatics (LIPIcs), vol. 109, pp. 26:1–26:25.

https://doi.org/10.1145/3088515.3088522
http://doi.acm.org/10.1145/3088515.3088522
http://doi.acm.org/10.1145/3088515.3088522
https://doi.org/10.1145/1167473.1167488
http://doi.acm.org/10.1145/1167473.1167488
http://doi.acm.org/10.1145/1167473.1167488
https://doi.org/10.1145/1640089.1640108
http://doi.acm.org/10.1145/1640089.1640108
http://doi.acm.org/10.1145/1640089.1640108
https://doi.org/10.1145/115372.115320
https://doi.org/10.1145/3088515.3088520
https://doi.org/10.1145/3088515.3088520
https://doi.org/10.1145/3395363.3397368
https://doi.org/10.1145/3395363.3397368
https://doi.org/10.1145/3395363.3397368
https://doi.org/10.1145/3395363.3397368
https://doi.org/10.1145/3395363.3397368
https://doi.org/10.1145/3395363.3397368
https://github.com/cmorty/avrora/blob/222ea1645b67bc40429881526555d19bced4a590/src/avrora/arch/avr/AVRInstrBuilder.java
https://github.com/cmorty/avrora/blob/222ea1645b67bc40429881526555d19bced4a590/src/avrora/arch/avr/AVRInstrBuilder.java
https://github.com/cmorty/avrora/blob/222ea1645b67bc40429881526555d19bced4a590/src/avrora/arch/avr/AVRInstrBuilder.java
https://doi.org/10.1145/3133892
https://doi.org/10.1145/3133892
https://doi.org/10.1145/3133892

Effects of Program Representation on Pointer Analyses 259

Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2018).
https://doi.org/10.4230/LIPIcs.ECOOP.2018.26, http://drops.dagstuhl.de/opus/
volltexte/2018/9231

11. Grech, N., Smaragdakis, Y.: P/taint: Unified points-to and taint analy-
sis. Proc. ACM Program. Lang. 1(OOPSLA), 102:1–102:28 (Oct 2017).
https://doi.org/10.1145/3133926, http://doi.acm.org/10.1145/3133926

12. Jordan, H., Scholz, B., Subotić, P.: Soufflé: On synthesis of program analyz-
ers. In: Chaudhuri, S., Farzan, A. (eds.) Computer Aided Verification. pp. 422–
430. Springer International Publishing, Cham (2016), https://doi.org/10.1007/
978-3-319-41540-6_23

13. Kastrinis, G., Smaragdakis, Y.: Hybrid context-sensitivity for points-to analysis.
In: Proceedings of the 34th ACM SIGPLAN Conference on Programming Language
Design and Implementation. p. 423–434. PLDI ’13, Association for Computing
Machinery, New York, NY, USA (2013). https://doi.org/10.1145/2491956.2462191,
https://doi.org/10.1145/2491956.2462191

14. Li, Y., Tan, T., Møller, A., Smaragdakis, Y.: A principled approach to selective
context sensitivity for pointer analysis. ACM Trans. Program. Lang. Syst. 42(2)
(May 2020). https://doi.org/10.1145/3381915, https://doi.org/10.1145/3381915

15. Li, Y., Tan, T., Sui, Y., Xue, J.: Self-inferencing reflection resolution for java.
In: Jones, R. (ed.) ECOOP 2014 – Object-Oriented Programming. pp. 27–53.
Springer Berlin Heidelberg, Berlin, Heidelberg (2014), https://doi.org/10.1007/
978-3-662-44202-9_2

16. Li, Y., Tan, T., Xue, J.: Effective soundness-guided reflection analysis. In: Blazy, S.,
Jensen, T. (eds.) Static Analysis. pp. 162–180. Springer Berlin Heidelberg, Berlin,
Heidelberg (2015), https://doi.org/10.1007/978-3-662-48288-9_10

17. Li, Y., Tan, T., Xue, J.: Understanding and analyzing java reflection. ACM Trans.
Softw. Eng. Methodol. 28(2) (Feb 2019). https://doi.org/10.1145/3295739, https:
//doi.org/10.1145/3295739

18. Liu, J., Li, Y., Tan, T., Xue, J.: Reflection analysis for java: Uncovering more
reflective targets precisely. In: 2017 IEEE 28th International Symposium on Soft-
ware Reliability Engineering (ISSRE). pp. 12–23 (2017), https://doi.org/10.1109/
ISSRE.2017.36

19. Milanova, A., Rountev, A., Ryder, B.G.: Parameterized object sensitivity for
points-to analysis for java. ACM Trans. Softw. Eng. Methodol. 14(1), 1–41
(Jan 2005). https://doi.org/10.1145/1044834.1044835, https://doi.org/10.1145/
1044834.1044835

20. Ramalingam, G.: The undecidability of aliasing. ACM Trans. Program. Lang. Syst.
16(5), 1467–1471 (Sep 1994). https://doi.org/10.1145/186025.186041, http://doi.
acm.org/10.1145/186025.186041

21. Reif, M., Kübler, F., Eichberg, M., Helm, D., Mezini, M.: Judge: Iden-
tifying, Understanding, and Evaluating Sources of Unsoundness in Call
Graphs. In: Proceedings of the 28th ACM SIGSOFT International Sym-
posium on Software Testing and Analysis (to appear). ISSTA 2019 (2019).
https://doi.org/10.1145/3293882.3330555, http://dx.doi.org/10.1145/3293882.
3330555

22. Scholz, B., Jordan, H., Subotić, P., Westmann, T.: On fast large-scale pro-
gram analysis in datalog. In: Proceedings of the 25th International Confer-
ence on Compiler Construction. pp. 196–206. CC 2016, ACM, New York,
NY, USA (2016). https://doi.org/10.1145/2892208.2892226, http://doi.acm.org/
10.1145/2892208.2892226

https://doi.org/10.4230/LIPIcs.ECOOP.2018.26
http://drops.dagstuhl.de/opus/volltexte/2018/9231
http://drops.dagstuhl.de/opus/volltexte/2018/9231
https://doi.org/10.1145/3133926
http://doi.acm.org/10.1145/3133926
https://doi.org/10.1007/978-3-319-41540-6_23
https://doi.org/10.1007/978-3-319-41540-6_23
https://doi.org/10.1145/2491956.2462191
https://doi.org/10.1145/2491956.2462191
https://doi.org/10.1145/3381915
https://doi.org/10.1145/3381915
https://doi.org/10.1007/978-3-662-44202-9_2
https://doi.org/10.1007/978-3-662-44202-9_2
https://doi.org/10.1007/978-3-662-48288-9_10
https://doi.org/10.1145/3295739
https://doi.org/10.1145/3295739
https://doi.org/10.1145/3295739
https://doi.org/10.1109/ISSRE.2017.36
https://doi.org/10.1109/ISSRE.2017.36
https://doi.org/10.1145/1044834.1044835
https://doi.org/10.1145/1044834.1044835
https://doi.org/10.1145/1044834.1044835
https://doi.org/10.1145/186025.186041
http://doi.acm.org/10.1145/186025.186041
http://doi.acm.org/10.1145/186025.186041
https://doi.org/10.1145/3293882.3330555
http://dx.doi.org/10.1145/3293882.3330555
http://dx.doi.org/10.1145/3293882.3330555
https://doi.org/10.1145/2892208.2892226
http://doi.acm.org/10.1145/2892208.2892226
http://doi.acm.org/10.1145/2892208.2892226

260 J. Prakash et al.

23. Sharir, M., Pnueli, A.: Two approaches to interprocedural data flow analysis. New
York Univ. Comput. Sci. Dept., New York, NY (1978), https://cds.cern.ch/record/
120118

24. Smaragdakis, Y., Balatsouras, G.: Pointer analysis. Found. Trends Program. Lang.
2(1), 1–69 (Apr 2015). https://doi.org/10.1561/2500000014, http://dx.doi.org/10.
1561/2500000014

25. Smaragdakis, Y., Balatsouras, G., Kastrinis, G., Bravenboer, M.: More sound
static handling of java reflection. In: Feng, X., Park, S. (eds.) Programming Lan-
guages and Systems - 13th Asian Symposium, APLAS 2015, Pohang, South Korea,
November 30 - December 2, 2015, Proceedings. Lecture Notes in Computer Science,
vol. 9458, pp. 485–503. Springer (2015). https://doi.org/10.1007/978-3-319-26529-
2_26, https://doi.org/10.1007/978-3-319-26529-2_26

26. Smaragdakis, Y., Bravenboer, M., Lhoták, O.: Pick your contexts well: Under-
standing object-sensitivity. In: Proceedings of the 38th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. pp. 17–30. POPL
’11, ACM, New York, NY, USA (2011). https://doi.org/10.1145/1926385.1926390,
http://doi.acm.org/10.1145/1926385.1926390

27. Smaragdakis, Y., Kastrinis, G.: Defensive Points-To Analysis: Effective
Soundness via Laziness. In: Millstein, T. (ed.) 32nd European Con-
ference on Object-Oriented Programming (ECOOP 2018). Leibniz Inter-
national Proceedings in Informatics (LIPIcs), vol. 109, pp. 23:1–23:28.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2018).
https://doi.org/10.4230/LIPIcs.ECOOP.2018.23, http://drops.dagstuhl.de/opus/
volltexte/2018/9228

28. Soot: Soot - a framework for analyzing and transforming java and android appli-
cations (Jan 2019), http://sable.github.io/soot/

29. Späth, J., Ali, K., Bodden, E.: Ideal: Efficient and precise alias-aware dataflow
analysis. In: 2017 International Conference on Object-Oriented Programming, Lan-
guages and Applications (OOPSLA/SPLASH). ACM Press (Oct 2017), https:
//doi.org/10.1145/3133923

30. Späth, J., Ali, K., Bodden, E.: Context-, flow-, and field-sensitive data-flow
analysis using synchronized pushdown systems. Proc. ACM Program. Lang.
3(POPL), 48:1–48:29 (2019). https://doi.org/10.1145/3290361, https://doi.org/
10.1145/3290361

31. Späth, J., Do, L.N.Q., Ali, K., Bodden, E.: Boomerang: Demand-driven flow- and
context-sensitive pointer analysis for java. In: Krishnamurthi, S., Lerner, B.S. (eds.)
30th European Conference on Object-Oriented Programming, ECOOP 2016, July
18-22, 2016, Rome, Italy. LIPIcs, vol. 56, pp. 22:1–22:26. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2016). https://doi.org/10.4230/LIPIcs.ECOOP.2016.22,
https://doi.org/10.4230/LIPIcs.ECOOP.2016.22

32. Sui, L., Dietrich, J., Emery, M., Rasheed, S., Tahir, A.: On the soundness of call
graph construction in the presence of dynamic language features - a benchmark
and tool evaluation. In: Ryu, S. (ed.) Programming Languages and Systems. pp.
69–88. Springer International Publishing, Cham (2018), https://doi.org/10.1007/
978-3-030-02768-1_4

33. Sui, L., Dietrich, J., Tahir, A., Fourtounis, G.: On the recall of static call graph con-
struction in practice. In: Proceedings of the ACM/IEEE 42nd International Confer-
ence on Software Engineering. p. 1049–1060. ICSE ’20, Association for Computing
Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3377811.3380441,
https://doi.org/10.1145/3377811.3380441

https://cds.cern.ch/record/120118
https://cds.cern.ch/record/120118
https://doi.org/10.1561/2500000014
http://dx.doi.org/10.1561/2500000014
http://dx.doi.org/10.1561/2500000014
https://doi.org/10.1007/978-3-319-26529-2_26
https://doi.org/10.1007/978-3-319-26529-2_26
https://doi.org/10.1007/978-3-319-26529-2_26
https://doi.org/10.1145/1926385.1926390
http://doi.acm.org/10.1145/1926385.1926390
https://doi.org/10.4230/LIPIcs.ECOOP.2018.23
http://drops.dagstuhl.de/opus/volltexte/2018/9228
http://drops.dagstuhl.de/opus/volltexte/2018/9228
http://sable.github.io/soot/
https://doi.org/10.1145/3133923
https://doi.org/10.1145/3133923
https://doi.org/10.1145/3290361
https://doi.org/10.1145/3290361
https://doi.org/10.1145/3290361
https://doi.org/10.4230/LIPIcs.ECOOP.2016.22
https://doi.org/10.4230/LIPIcs.ECOOP.2016.22
https://doi.org/10.1007/978-3-030-02768-1_4
https://doi.org/10.1007/978-3-030-02768-1_4
https://doi.org/10.1145/3377811.3380441
https://doi.org/10.1145/3377811.3380441

Effects of Program Representation on Pointer Analyses 261

34. Tan, T., Li, Y., Xue, J.: Efficient and precise points-to analysis: Modeling the heap
by merging equivalent automata. In: Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation. pp. 278–291.
PLDI 2017, Association for Computing Machinery, New York, NY, USA (2017).
https://doi.org/10.1145/3062341.3062360

35. Vallée-Rai, R., Co, P., Gagnon, E., Hendren, L., Lam, P., Sundaresan, V.: Soot - a
java bytecode optimization framework. In: Proceedings of the 1999 Conference of
the Centre for Advanced Studies on Collaborative Research. p. 13. CASCON ’99,
IBM Press (1999), https://dl.acm.org/doi/10.5555/781995.782008

36. Vallée-Rai, R., Gagnon, E., Hendren, L., Lam, P., Pominville, P., Sundaresan,
V.: Optimizing java bytecode using the soot framework: Is it feasible? In: Watt,
D.A. (ed.) Compiler Construction. pp. 18–34. Springer Berlin Heidelberg, Berlin,
Heidelberg (2000), https://doi.org/10.1007/3-540-46423-9_2

37. WALA: Watson libraries for program analysis (Jan 2019), http://wala.sourceforge.
net/wiki/index.php/Main_Page

38. Wala: Intermediate representation (IR) (Aug 2020), https://github.com/wala/
WALA/wiki/Intermediate-Representation-(IR)

39. Wala: Pointer analysis (Aug 2020), https://github.com/wala/WALA/wiki/
Pointer-Analysis

40. Wei, F., Roy, S., Ou, X., Robby: Amandroid: A precise and general inter-component
data flow analysis framework for security vetting of android apps. ACM Trans.
Priv. Secur. 21(3) (Apr 2018). https://doi.org/10.1145/3183575, https://doi.org/
10.1145/3183575

41. Wikipedia: Datalog (Jan 2019), https://en.wikipedia.org/wiki/Datalog

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

https://doi.org/10.1145/3062341.3062360
https://dl.acm.org/doi/10.5555/781995.782008
https://doi.org/10.1007/3-540-46423-9_2
http://wala.sourceforge.net/wiki/index.php/Main_Page
http://wala.sourceforge.net/wiki/index.php/Main_Page
https://github.com/wala/WALA/wiki/Intermediate-Representation-(IR)
https://github.com/wala/WALA/wiki/Intermediate-Representation-(IR)
https://github.com/wala/WALA/wiki/Pointer-Analysis
https://github.com/wala/WALA/wiki/Pointer-Analysis
https://doi.org/10.1145/3183575
https://doi.org/10.1145/3183575
https://doi.org/10.1145/3183575
https://en.wikipedia.org/wiki/Datalog
http://creativecommons.org/licenses/by/4.0/

Keeping Pace with the History of
Evolving Runtime Models

Lucas Sakizloglou �, Matthias Barkowsky , and Holger Giese

Hasso Plattner Institute, University of Potsdam, Potsdam, Germany
<name>.<surname>@hpi.de

Abstract. Structural runtime models provide a snapshot of the con-
stituents of a system and their state. Capturing the history of runtime
models, i.e., previous snapshots, has been shown to be useful for a number
of aims. Handling, however, history at runtime poses important chal-
lenges to tool support. We present the InTempo tool which is based
on the Eclipse Modeling Framework and encodes runtime models as
graphs. Key features of InTempo, such as, the integration of temporal
requirements into graph queries, the in-memory storage of the model,
and a systematic method to contain the model’s memory consumption,
intend to address issues which seemingly place limitations on the avail-
able tool support. InTempo offers two operation modes which support
both runtime and postmortem application scenarios.

Keywords: runtime models · time-awareness · temporal graph queries

1 Introduction to InTempo

A (structural) Runtime Model (RTM) provides a snapshot of the constituents of
a system and their state [3]. RTMs are typically employed in the context of Self-
adaptive Systems (SAS) [4], where a feedback loop adapts the system behavior
at runtime in response to external or internal stimuli, the latter represented as
model fragments in the RTM and detected via the execution of model queries.

Encoding an RTM as a graph enables detection via graph queries, which
specify a sought (graph) pattern. Such an encoding conforms to a metamodel
which restricts the structure of model instances and defines types of vertices,
edges, and attributes. Formally, these concepts rely on typed, attributed graph
transformation [6] where graphs are typed over a type graph.

Capturing the history of RTMs, i.e., previous snapshots, may be useful for
a number of aims such as the detection of recurrent behavior or postmortem
analysis [3,8]. However, handling history at runtime poses important challenges
to tool support. Tools are required to enable the specification and timely execu-
tion of queries with temporal requirements , i.e., requirements on the evolution of
patterns over multiple snapshots. Timely execution is crucial for SAS, where a
loop may depend on query results before planning and performing adaptations.

Faced with these challenges, the available tool support is seemingly limited
either by the lack of support for direct specification of temporal requirements
in graph queries [5] or by the on-disk representation of the model [8,11] that
introduces an overhead on execution times in runtime settings, e.g., in SAS.

c© The Author(s) 2021
E. Guerra and M. Stoelinga (Eds.): FASE 2021, LNCS 12649, pp. 262–268, 2021.
https://doi.org/10.1007/978-3-030-71500-7 13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71500-7_13&domain=pdf
http://orcid.org/0000-0001-6971-1589
http://orcid.org/0000-0002-1138-2425
http://orcid.org/0000-0002-4723-730X
https://doi.org/10.1007/978-3-030-71500-7_13

Keeping Pace with the History of Evolving Runtime Models 263

We present the InTempo (Incremental queries with Temporal requirements)
tool (available online at [13]) which is based on the eponymous querying scheme
in [15] and aims at mitigating these limitations. InTempo introduces ITQL, a
language for the specification of temporal graph queries, which allow for the ex-
pression of temporal requirements. The core functionality of InTempo executes
a query over an in-memory RTM which captures information about previous
snapshots, called Runtime Model with History (RTMH), and returns the pattern
occurrences in the RTMH that satisfy the specified temporal requirements. In-
Tempo is implemented in the Eclipse Modeling Framework (EMF) [7] and can
be used either via the Eclipse user interface or via an API. The latter enables
InTempo results to be utilized by other tools, e.g., a SAS feedback loop.

InTempo offers two operation modes intended for different application sce-
narios (see Figure 1 for an illustration). The RTMHAnalysis (Section 2) con-
stitutes the core functionality of InTempo and executes a user-specified ITQL
query (in a file with .itql extension—required extensions are in parentheses in
Figure 1) over a user-provided RTMH, i.e., a persisted instance of an EMF
model (in the standard xmi format). This mode returns the query results for the
given RTMH. Query results are kept in-between analyses and are updated by
each RTMHAnalysis, which is also known as incremental (query) execution. The
RTMHAnalysis is intended to be used in settings where query results can be fur-
ther utilized at runtime. For instance, a SAS feedback loop may use InTempo
to detect problems formulated as patterns, similarly to [9]. Subsequently, the
query results may be utilized to plan adaptations which address these problems.

The LogAnalysis operation mode (Section 3) assumes that, instead of being
captured by an RTMH, past and present data about the system have been cap-
tured in an event log. InTempo introduces E2P, a specification language that
allows for the mapping of event types to corresponding modifications of model
fragments, i.e, nodes, edges, and attributes. As input, LogAnalysis requires the
ITQL query, the log (with comma-separated values), and the E2P mapping. It
then processes the log and maintains an internal RTMH which it uses to per-
form RTMHAnalysis upon every event. LogAnalysis is intended for postmortem
scenarios. Thus, it returns the results that were valid after each RTMHAnalysis
sorted by the log timestamps, which affords a global, yet detailed, view on the
evolution of the system state.

InTempo is capable of containing the data accumulation in the RTMH by
systematically discovering and discarding data that is obsolete with respect to a
given timestamp, i.e., not relevant to future query executions—this capability is
presented in detail in [15]. Note that an implicit requirement of both operation
modes is that the metamodel of the analyzed system has been encoded as an
EMF Ecore model and is available in Eclipse (gray input in Figure 1).

Metamodel
(ecore)

RTMH (xmi)
RTMH

Analysis
Mapping

(e2p)

Query (itql) Log Analysis

Postmortem analysis
SAS Feedback Loop

RTMH

Analysis

Metamodel
(ecore)

Log (*)

Query (itql)
internal
RTMH

Fig. 1: InTempo Execution Modes and Exemplary Application Scenarios

264 L. Sakizloglou et al.

cts: long
dts: long
id: string
status: string

Sensor
cts: long
dts: long
id: string
status: string

Pump

cts: long
dts: long

SHS

Fig. 2: SHS Metamodel

Exemplary Application To demonstrate
the features and operation of InTempo we
rely on an example drawn from the case-study
conducted in [15]. Based on real-world smart
medical environments, the case-study envi-
sions a Smart Healthcare System (SHS) where
certain medical procedures are automated and performed by devices, such as a
smart pump administering medicine or a sensor tracking patient data and diag-
noses—as otherwise a clinician would be doing. Data collected from the SHS are
aggregated and recorded in medical (event) logs.

InTempo requires a metamodel which has been instrumented such that all
nodes have at least two attributes named cts and dts, which capture the time
point of creation, respectively deletion, of the node in the system. As an example,
see the metamodel of our SHS in Figure 2. Note that to encode cts and dts

for edges in EMF, the respective edges would have to be modeled as nodes.
Technically, an RTMH is an instance of such a metamodel. See G3 in Figure 3
for an example based on the SHS metamodel: The RTMH reflects that a node
of type Sensor that is attached to the patient with id=1 has been activated and
thus has been added to the SHS at timestamp 3. The sensor status reflects that
the patient has been diagnosed with sepsis. The value ∞ reflects that a dts for
this node has not been set, i.e., the node is still present in the modeled system.

2 RTMHAnalysis

This section presents an exemplary query in ITQL which it then uses to demon-
strate the RTMHAnalysis. It concludes with technical details.

InTempo Query Language (ITQL) Formally, a temporal graph query q is
characterized by a (graph) pattern p and an application condition ac, denoted
q = (p, ac). A match m corresponds to an occurrence of p in the RTMH. In order
for m to be valid, it must satisfy the ac. ITQL supports the formulation of ac in
the Metric Temporal Graph Logic (MTGL) [10] which supports operators such
as negation (¬), existential quantification (∃), conjunction (∧), and the metric,
i.e, interval-based, temporal operators until (UI , where I is a time interval over
IR+

0) and since (SI), as well as abbreviations such as eventually, i.e., ♦I ∃n =
trueUI ∃n, where n is a graph pattern and true is always satisfied. MTGL also
supports the nesting of patterns to bind graph elements in outer conditions and
relate them to inner (nested) conditions, i.e., elements common to two patterns
n1 and n2 refer to the same element in the RTMH.

MTGL is able to express real-time properties such as “every patient diag-
nosed with sepsis, must eventually within 5 time units be given the proper drug”
(adjusted from the medical guideline in [14]). In an RTMH of the SHS, In-
Tempo can find violations of the property above by executing the ITQL query
q1 = (n1, κ), with κ the MTGL formula ¬(♦[0,5] ∃n2) and n1, n2 patterns rep-
resenting a sepsis diagnosis and drug administration respectively. The query
searches for matches of n1 in the RTMH that satisfy κ, i.e., for patients that,

Keeping Pace with the History of Evolving Runtime Models 265

cts = 3
dts = ∞
id = 1
status=sepsis

s:Sensor
cts = 3
dts = ∞
id = 1
status=sepsis

s:Sensor

G3 G9

cts = 9
dts = ∞
id = 1
status=drug

u:Pump
sepsis diagnosis,ts=3,id=1 ⏎
drug administration,ts=9,id=1 ⏎ cts = 0

dts = ∞

shs:SHS
cts = 0
dts = ∞

shs:SHS

Fig. 3: Exemplary Medical Log and Corresponding RTMH G3 and G9

although diagnosed with sepsis, did not receive a drug within the designated
time. In InTempo, each match is associated with a temporal validity, i.e., a set
of time intervals for which, based on the overlap among the cts and dts of the
matched elements and the interval for which ac is satisfied, the match is valid.
ITQL also allows for the definition of OCL constraints [12] on sought patterns.

($n1 , !(true U[0,5] E $n2))

declarations{
n1{shs:SHS

s:Sensor
shs -ownedSensors- > s
[OCL:"s.status=‘sepsis ’"]}

n2{shs:SHS
s:Sensor
u:Pump
shs -ownedPumps- > u
shs -ownedSensors- > s
[OCL:"u.status=‘drug ’"]}

}

Fig. 4: Example query in ITQL

Output The ITQL specification for the
query q1 is shown in Figure 4. Performing
RTMHAnalysis for the query q1 on the RTMH

G9 of Figure 3 returns one match, since there
is indeed no Pump attached to the SHS, i.e., a
match for n2, within five time units after a
Sensor was activated, i.e., a match for n1 was
found. The temporal validity interval [3, 4] is
returned together with the match. The match,
i.e., violation, is indeed valid only for that in-
terval since after timestamp 4, a match for n2

starts to exist within five time units of a match
for n1. If the API of InTempo is used, the
query returns the match of the n1 pattern, i.e., the EMF objects, together with
the temporal validity. In case InTempo is used via the UI it displays a message
box in Eclipse with the following message: SHS@0[] Sensor@3[status=sepsis]

[[3,4]]. Note that “@” precedes the cts of an object and values within square
brackets are attributes of the object.

Technical Details For the execution of temporal graph queries, InTempo em-
ploys the operationalization framework presented in [15]. The framework sup-
ports the decomposition of a query into a suitable ordering of simpler sub-queries
which is executed bottom-up. The outermost query computes the overall result.
For pattern-matching, InTempo employs the Story Diagram Interpreter from [1]
which uses heuristics shown to reduce the pattern-matching effort. InTempo
provides an Xtext [2] editor for ITQL which supports completion suggestions
for element types and validation of the query syntax.

3 LogAnalysis

This section demonstrates the LogAnalysis operation mode which assumes that
data from past states have been captured as events in a log. InTempo offers
the capability to process the system changes and, upon each change, obtain an
updated RTMH which is then used internally to perform RTMHAnalysis.

266 L. Sakizloglou et al.

init:{adds shs:SHS}

"sepsis diagnosis":{
adds s:Sensor [status="sepsis" id=
*p2]
adds-ref shs -ownedSensors- > s}

"drug administration":{
adds u:Pump [status="drug" id=*p2]
adds-ref shs -ownedPumps- > u}

Fig. 5: E2P Example for SHS

Events-to-Patterns (E2P) Spec-
ification Language The mapping
of log events (which encapsulate sys-
tem changes) to prescribed modifica-
tions on an RTMH is facilitated by
E2P. An E2P specification consists
of mappings between events and ac-
tions that should be performed on
an RTMH. E2P supports five actions
(formulated as verbs): adds, to add a node and optionally assign values to the
added node’s attributes; adds-ref, to add an edge between two nodes; modifies,
to modify the attribute values of a node; deletes and deletes-ref, to delete a node,
respectively an edge, from the RTMH. To accommodate linked data, E2P allows
for the indexing of added nodes so that later events can refer to modifications
that have been processed earlier. An example of an E2P mapping from an ex-
emplary log in Figure 3 (left) to the corresponding elements of the SHS is shown
in Figure 5. Note that edge types, e.g. OwnedPumps, are not depicted in Figure 3.

As an example, the event drug administration from the medical log in
Figure 3 corresponds to the following changes to the (internal) RTMH: a Pump is
created; its attribute status is set to “drug” and its attribute id takes the value
of the second field after the event name (expressed by the special ∗p token), i.e.,
the id field in the log of Figure 3. By default, the cts is set to the value of
the event field that is next to the event name, i.e., the ts field in Figure 3. The
init statement is used to initialize the RTMH and the cts of nodes within is set
to zero. To increase the readability of specifications, an explicit assignment for
the dts may be omitted: Unless there is an attribute assignment, the dts of all
nodes is set to the maximum value supported.

Output LogAnalysis provides a view on the matches per event timestamp. Per-
forming LogAnalysis on the query q1 and the log of Figure 3 would return:

@3 SHS@0[] Sensor@3[status=sepsis] [[3,∞]]

@9 SHS@0[] Sensor@3[status=sepsis] [[3,4]]

First, the sepsis diagnosis event is processed which makes the internal RTMH

be identical to G3 in the same figure. The query is executed using RTMHAnalysis
and returns a match, i.e., violation, since at that moment a match for n2 does
not exist in the graph. The temporal validity is equal to [3,∞], i.e., the match
is valid from time point 3 onward. Next, the drug administration event is
processed which leads to G9. The result of RTMH Analysis for G9 is the same
as the result described in Section 2.

Technical Details In LogAnalysis the query execution framework monitors the
RTMH for changes and, upon every change, recomputes the matches. Previous
matches are kept in-between executions and therefore the query is executed
incrementally. Similarly to ITQL, E2P is supported by an Xtext editor that
offers syntax validation and completion suggestions for element types.

Keeping Pace with the History of Evolving Runtime Models 267

4 Conclusion and Future Work

We presented InTempo, an EMF tool which enables the specification and incre-
mental execution of temporal graph queries over a runtime model with history.
The latter can be either provided as input or obtained by an event log. InTempo
stands out from relevant tools owing to the integration of temporal requirements
into graph queries, the in-memory representation of the model, and the sys-
tematic measures to contain memory consumption despite the accumulation of
temporal data. Moreover, InTempo offers input editors with features that aim
at helping the user, e.g. syntax validation. In the future, besides streamlining
InTempo, we plan to perform extensive evaluation and comparisons with other
tools. Moreover, we plan to explore the utilization of InTempo in self-adaptation
scenarios where the history of the system is required.

References

1. Barkowsky, M., Giese, H.: Hybrid search plan generation for generalized graph
pattern matching. JLAMP 114, 100563 (2020)

2. Bettini, L.: Implementing domain-specific languages with Xtext and Xtend. Packt
Publishing Ltd (2016)

3. Bencomo N., Goetz S., and Song H.: Models@ run. time: a guided tour of the state
of the art and research challenges. SoSyM 18.5 (2019)

4. Brun, Y., Di Marzo Serugendo, G., Gacek, C., Giese, et al.:Software engineering
for self-adaptive systems, pp. 48–70. Heidelberg (2009) Springer

5. Búr, M., Szilágyi, G., Vörös, A., Varró, D.: Distributed graph queries over mod-
els@run.time for runtime monitoring of cyber-physical systems. STTT 22(1)

6. Ehrig, H., Prange, U., Taentzer, G.: Fundamental Theory for Typed Attributed
Graph Transformation. ICGT Berlin, Heidelberg (2004) Springer

7. Eclipse Foundation: Eclipse modeling framework (EMF) (Aug 2020), https://www.
eclipse.org/modeling/emf/, accessed: 2020-10-11

8. Garćıa-Domı́nguez, A., Bencomo, N., Parra-Ullauri, J.M., Garćıa-Paucar, L.H.:
Querying and Annotating Model Histories with Time-Aware Patterns. MODELS.
pp. 194–204 (2019) ACM/IEEE

9. Ghahremani, S., Giese, H., Vogel, T.: Efficient utility-driven self-healing employing
adaptation rules for large dynamic architectures. ICAC (2017)

10. Giese, H., Maximova, M., Sakizloglou, L., Schneider, S.: Metric Temporal Graph
Logic over Typed Attributed Graphs. FASE, (2019) Springer

11. Gómez, A., Cabot, J., Wimmer, M.: TemporalEMF: A temporal metamodeling
framework. ER, vol. 11157, pp. 365–381. (2018) Springer

12. Kleppe, A., Warmer, J.: An introduction to the object constraint language (OCL).
In: TOOLS p. 456 (2000)

13. MDELab: InTempo Homepage, http://www.hpi.uni-potsdam.de/giese/public/
mdelab/mdelab-projects/intempo/, accessed: 2021-01-19

14. Rhodes, A., Evans, L.E., Alhazzani, W., Levy, M.M., et al.: Surviving sepsis cam-
paign: International guidelines for management of sepsis and septic shock: 2016.
Intensive care medicine 43(3), 304–377 (2017)

15. Sakizloglou, L., Ghahremani, S., Barkowsky, M., Giese, H.: A scalable querying
scheme for memory-efficient runtime models with history. MoDELS pp. 175–186.
(2020) ACM/IEEE

https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/modeling/emf/
http://www.hpi.uni-potsdam.de/giese/public/mdelab/mdelab-projects/intempo/
http://www.hpi.uni-potsdam.de/giese/public/mdelab/mdelab-projects/intempo/

268 L. Sakizloglou et al.

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

SpecTest: Specification-Based Compiler Testing

Richard Schumi(�) and Jun Sun
Singapore Management University, Singapore, Singapore

{rschumi,junsun}@smu.edu.sg

Abstract. Compilers are error-prone due to their high complexity. They
are relevant for not only general purpose programming languages, but
also for many domain specific languages. Bugs in compilers can poten-
tially render all programs at risk. It is thus crucial that compilers are
systematically tested, if not verified. Recently, a number of efforts have
been made to formalise and standardise programming language seman-
tics, which can be applied to verify the correctness of the respective com-
pilers. In this work, we present a novel specification-based testing method
named SpecTest to better utilise these semantics for testing. By applying
an executable semantics as test oracle, SpecTest can discover deep se-
mantic errors in compilers. Compared to existing approaches, SpecTest is
built upon a novel test coverage criterion called semantic coverage which
brings together mutation testing and fuzzing to specifically target less
tested language features. We apply SpecTest to systematically test two
compilers, i.e., the Java compiler and the Solidity compiler. SpecTest im-
proves the semantic coverage of both compilers considerably and reveals
multiple previously unknown bugs.
Keywords: Mutation testing · Compiler testing · K framework · Formal
semantics · Rare language features

1 Introduction

Compilers must be thoroughly tested (if not verified) for multiple reasons. First,
compilers are essential for the software ecosystem. Their correctness is a prereq-
uisite for program correction. That is, a compiler bug might propagate to all pro-
duced programs. Second, compilers are error-prone due to their high complexity.
Their main functionality is to convert source code to executable machine code.
They often provide additional features, like code optimisation or debug utilities.
A variety of compilers has been written for countless languages. Modern compil-
ers like GCC, javac, and LLVM are overwhelmingly complicated (e.g., GCC has
more than 7M lines of code and OpenJDK has more than 11M [20]). Although
some of them have been used for decades, they may still be buggy [54,55].

Recently, there have been numerous efforts on formalising and standard-
ising programming language semantics, such as K-Java [24], C semantics [29],
KJS [47], or KSolidity [34,44], which readily serve as a specification of the respec-
tive compilers. Usually, these executable semantics are accompanied by manually
crafted unit tests. Such tests are however designed to test the semantics rather
than the compliance of the compiler to the language semantics. In this work, we
aim to better utilise these semantics by automatically generating test programs
with a novel coverage criterion that facilitates systematic compiler testing.

Multiple approaches have been recently proposed to test compilers. Most of
them successfully found compiler bugs. For instance, the EMI project discovered
c© The Author(s) 2021
E. Guerra and M. Stoelinga (Eds.): FASE 2021, LNCS 12649, pp. 269–291, 2021.
https://doi.org/10.1007/978-3-030-71500-7_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71500-7_14&domain=pdf
https://doi.org/10.1007/978-3-030-71500-7_14

270 R. Schumi and J. Sun

more than 1600 bugs in GCC and LLVM [53]. Another study has revealed bugs
in the Java compiler by comparing different javac and JVM versions [27]. For
the relatively new Solidity (smart contract) language, many crashes were found
through fuzzing [28]. Moreover, bugs in compilers may be exploited by attackers.
For example, prior to version 0.5.0, the Solidity compiler had an uninitialised
storage pointer vulnerability that affected many smart contracts on Ethereum.
A honey pot named OpenAddressLottery was designed to exploit this vulnerably
and steal ether (i.e., digital money in Ethereum). There are hundreds or even
thousands of programming languages according to different sources [30] and
many new ones emerge every year. For example, various new general purpose or
domain-specific languages have been developed recently, such as Rust, Kotlin,
Solidity, and Move.

Compiler testing is an ongoing research field. Next, we briefly review existing
approaches according to how they address the following two problems.
1. The test generation problem: how are test cases (i.e., programs with specific

inputs) selected and generated?
2. The oracle problem: how are testing results deemed successful or failure?

Existing compiler testing approaches solve the test generation problem mainly
through two ways, by generating programs according to a grammar that spec-
ifies the syntax of a language [49,31,23], or by mutating existing seed pro-
grams [40,55,41]. For the former, due to a huge search space, additional selection
criteria must be applied to selectively generate test cases for compilers, such as
standard code coverage criteria like statement coverage. For the latter, existing
mutation strategies are often limited by the ‘weak’ oracles (as we will discuss
shortly) employed by the approach, e.g., mutating to introduce ‘dead’ code.
Generally, approaches which generate complicated syntax focus more on parsing
errors instead of errors in the semantics. For the oracle problem, existing propos-
als mainly have three oracles. The first oracle is one that only flags a test failure
if the program is incompilable or leads to crashes [28]. The second oracle flags
a test failure if certain algebraic properties are violated. For instance, the alge-
braic property adopted in the EMI approach [55] is that mutating unreachable
code does not change the execution result. We remark that these two oracles are
‘weak’ as they are unable to detect simple semantic errors such as 3+4 = 8. The
third, stronger oracle is one that checks whether the output of a test program is
consistent with a reference, which could be a second compiler (i.e., differential
testing [45]), or an abstract specification like a state machine [35,36]. This oracle
requires a reference, which is not always feasible. Furthermore, it is limited to
bugs which result in inconsistencies between the compiled program and the ref-
erence. Last but not least, existing approaches do not provide a good adequacy
measurement on the progress of compiler testing. Often measurements, like code
coverage, are used as an indicator, but they have the limitation that they need
access to the compiler code, and achieving full code coverage is challenging.

In this work, we present a novel specification-based testing method called
SpecTest for compiler testing. SpecTest differs from existing approaches in the
following aspects. First, SpecTest is built upon a strong oracle, i.e., an executable

SpecTest: Specification-Based Compiler Testing 271

language specification that can predict the expected output of test programs.
This strong oracle enables us to detect semantic errors, i.e., bugs that are related
to the semantics. Such bugs may also originate from the runtime environment.
Hence, SpecTest is not just limited to classical compiler bugs. Second, SpecTest
offers a testing adequacy measurement in term of semantic coverage and has a
built-in mutation-based test case generation method which aims to achieve high
semantic coverage. The semantic coverage measures the number of language
semantic rules that are covered by existing test cases. The test case generation
method mutates the seed programs accordingly to maximise the coverage of the
language semantics, e.g., by introducing less-tested language features into these
programs. Compared to measuring the code coverage of a compiler, our semantic
coverage has the added value that it does not need access to the compiler code,
and it specifically targets semantic bugs.

Given a language semantics (in the form of a set of small-step operational
semantic rules), SpecTest executes fully automatically. We have implemented
SpecTest for two compilers, i.e., the Java compiler and the Solidity compiler and
tested the language features that are supported by our applied semantics [24,44].
The results of the evaluation were promising. SpecTest successfully increases the
semantic coverage for both compilers, and identified many bugs and issues that
helped the compiler and specification developers.

To sum up, we make the following technical contributions.
– We propose a semantic coverage criterion for measuring the adequacy of

compiler testing.
– We introduce a novel compiler testing method that uses an executable lan-

guage specification as an oracle.
– We demonstrate the applicability and generality of SpecTest by applying it

to two compilers.
The paper is structured as follows. Sect. 2 explains our method and discusses

the required components in detail. In Sect. 3, we present our evaluation with
two compilers. Next, we review related work in Sect. 4 and conclude in Sect. 5.

2 Method

In this section, we outline how SpecTest works. In particular, we present its
high-level design, highlight relevant details of its components, and explain the
workflow step by step using an example.

2.1 Overall Design

The overall workflow of SpecTest is depicted in Fig. 1. In the following, we
introduce the tasks briefly before diving into the details of the main components.

(1) A set of user-provided seed programs are given as input to a program
fuzzer one by one, which generates a set of test inputs for each program with
the intention to cover as many program paths as possible. A program and the
associated test inputs form a test case that is the basis for the next phase, the
test execution and evaluation. (2) The program is compiled with the compiler

272 R. Schumi and J. Sun

Seed
Programs Fuzzing Mutated

Programs

Source
Code

Mutation

Test
Inputs

+

Test
Cases

Compilation
and

Execution

Semantic
Model

Execution

Semantic
Rule

Coverage

Test
Outputs

Test
Outputs

Output
Comparison

Pass/Fail
Verdict

starting phase only

Fig. 1: Overview of the data flow of SpecTest

and executed with test
inputs generated by
the fuzzer. The final
state (i.e., variable val-
uations) is obtained as
the program execution
result. (3) An exe-
cutable language se-
mantics is executed
with the same program
and the same inputs,
through firing a set of
structural operational
semantic (SOS) rules.
The final state is ob-
tained as the semantic execution result. During the semantic execution, we
monitor how frequent each SOS rule is fired in order to identify rarely fired
rules. (4) The results of the program and semantic execution are compared in
order to assess whether the program (built by a compiler) produces an output
which is consistent with the language semantics. If the results are inconsistent,
the test case is flagged as a failure. The failure may be either due to a bug in
the compiler (or the execution environment of the program, e.g., JVM) or in
the language semantics. (5) We rank the SOS rules according to the number of
times they are fired and identify the ones which are least fired. Each SOS rule is
typically associated with one language feature and thus we are able to system-
atically identify language features which are least tested. With the information,
a program mutator mutates the seed programs so that the corresponding lan-
guage features are introduced systematically into the programs. In contrast to
classical mutation testing [33], which ensures the quality of test suites, we apply
mutations to generate more and better test cases. (6) We then repeat from step
(1), and the process continues until a user-specified timeout is triggered. The
output of SpecTest includes a set of passed/failed test cases as well as a report
on the semantic coverage, i.e., the number of times each SOS rule is fired.

It should be noticed that there are three main components in SpecTest, i.e.,
the executable program semantics which serves as oracle, the program fuzzer, and
the program mutator. We present details of these components in the following.

2.2 The Oracle

The oracle is an executable semantics of the programming language. That is,
the oracle encodes the language semantics in the form of small-step SOS rules.
Given a program (and necessary inputs for the program), the oracle is capable
of executing the program according to the language semantics to produce the
expected output, without going through the compiler to be tested.

Creating an executable semantics for a programming languages is not trivial.
It requires experience as well as effort. Nonetheless, it is desirable to have one

SpecTest: Specification-Based Compiler Testing 273

rule I1 + I2 => I1 +Int I2

rule if (true) S else _ => S

rule [Allocate -Global -NonArrayType]:
<k> #allocate(N, CN, #varInfo(X:Id, E:Value , T:NonArrayType , #storage , L)) =>

. ...</k>
<account >

<acctID > N </acctID > <contractName > CN </contractName >
<acctEnv > CONTEXT:Map => CONTEXT[X <- #storedVar(Slot +Int 1, T, #storage ,

1)] </acctEnv >
<acctStorage > STORAGE:Map => STORAGE[Slot +Int 1 <- E] </acctStorage >
<acctSlots > Slot => Slot +Int 1 </acctSlots > ...

</account >

Fig. 2: Example SOS rules for Solidity [44]

because it provides a reliable way to check the correctness of compilers, and
it will save time and effort in the long term since it effectively reveals ambi-
guities, inconsistencies and incompleteness. Many researchers have realised the
importance of executable language semantics and have built foundations that
we can work with, like the K framework [50], Redex [37], or Ott [51]. There are
already executable semantics for many programming languages, like C, JAVA,
JavaScript, or Solidity, which represent a strong oracle for compiler testing.

It is conceivable and in fact confirmed by our experiments that the oracle it-
self can be buggy due to human errors in encoding the language semantics or due
to ambiguity in the language semantics in the first place. However, even a po-
tentially buggy executable semantics is much better than none for the following
reasons. First, during the above-mentioned process, SpecTest is able to identify
bugs in the oracle, which helps to improve the language semantics. Second, bugs
in the semantics are overall less likely compared to compiler bugs since the com-
piler must not only implement the semantics but also handle sophisticated code
optimisations, which are known to be error-prone.

In this work, we apply the K framework [50] as a basis for our oracle. The K
framework provides convenient notations for defining language semantics or type
systems based on rewriting rules, configurations, and computations. It comes
with a range of supporting tools, like a parser, an interpreter, or a program
verifier, which enable the execution of the specifications. In short, it combines
the functionality of both the compiler and the runtime environment. Encoding
small-step SOS rules in the K framework is relatively straightforward. For ex-
ample, Fig. 2 shows three (simplified) rules defined for Solidity (i.e., a language
for programming smart contracts) programs. In particular, the first rule shows
how simple addition should behave for Integers, given the existing k construct
for addition +Int. The second example is a rule for an if conditional statement,
where the condition is true and the result is the then-branch. Not all rules are
simple though. The third example is a rule for the storage allocation of a global
non-array variable. In general, the rules become more complex for sophisticated
language features such as concurrency or higher order functions.

In this work, we adopt and extend the K semantics for Java [24] and Solidity
[34,44] to implement SpecTest. The K semantics for Solidity, called KSolidity,
has currently 304 rules. The K semantics for Java, called K-Java, has 1385 rules.
K-Java was developed for an earlier version of Java (1.4) and some rules are dep-
recated or unreachable. Our extension to these existing efforts concerned mainly

274 R. Schumi and J. Sun

two aspects, i.e., extending them with proper interface and conversion so that
they work with other components in SpecTest; and introducing a measurement
feature for semantic coverage. For example, we enhanced the coverage engine of
the old K version for K-Java, and we added a visualisation of the covered rules.

Given a test case (in the form of a program with inputs), the executable
semantics is used as follows. First, the test case is executed using the built-in
execution engine of the K framework which fires the SOS rules one by one. The
final variable valuations are captured as the result of the test case. For instance,
for Solidity, we capture all the persistent states in the blockchain network (which
includes addresses, their balances and the values of storage variables). This test-
ing result is turned into an assertion in the test case. The test case with the
assertion is then executed using the compiled program. If the assertion fails
(e.g., the value of at least one variable is different), a bug is revealed.

Simply applying the above-mentioned steps to test compilers would not be
comprehensive. That is, existing seed programs often use a limited set of common
language features and thus would not be able to test the compiler extensively.
In fact, our experience on testing the Solidity compiler with existing smart con-
tracts suggests that many smart contracts are suspiciously similar. As a result,
the test cases would only exercise a limited set of semantic rules and thus would
miss those bugs in the part of the Solidity compiler that encodes the remaining
semantic rules. While collecting a large set of seed programs would likely be
helpful, the larger problem at stake is whether there could be a certain quanti-
tative measurement on the comprehensiveness of the test cases and whether we
can use the measurement to guide the generation of new test cases? SpecTest’s
answer to this question lies in the design of the mutator and the fuzzer.

2.3 The Mutator

Due to the high complexity of modern compilers, it is important that a meaning-
ful coverage criterion is applied for compiler testing. Existing approaches either
are not concerned with coverage or they use coverage criteria which are not ideal
for compiler testing. Hence, we introduce our novel semantic coverage.

Definition 1. Given R is the set of all semantic rules of our specification, T is
the set of our given test programs, It is the set of all possible inputs for the test
program t ∈ T , and cover(t, i, r) is a predicate that is true when there exists a
test program t and a test input i ∈ It for t and they are able to fire the semantic
rule r of our specification; our semantic coverage can be defined as follows:

∀r ∈ R : ∃t ∈ T : ∃i ∈ It : cover(t, i, r)

This means that to achieve semantic coverage (or at least increase it), it is not
only important that we have good test programs, but also the test inputs for
these programs are essential. In order to produce good test programs, we apply
our mutations that inject language features to specifically target the uncovered
rules as we will explain in detail in the following. The coverage of all rules r ∈ R
would give us full semantic coverage, but in reality this is often infeasible, hence
we also depict it as the percentage of rules that are covered.

SpecTest: Specification-Based Compiler Testing 275

In SpecTest, we achieve high semantics coverage with the following two syn-
ergistic parts. First, we design and implement a mutator which systematically
introduces less-exercised language features into the test programs automatically.
Second, we design and apply powerful fuzzing techniques to generate program
inputs to exercise all statements including the less-used features in the test pro-
grams. The latter can be achieved with fuzzers optimised for existing code cov-
erage criteria such as branch or statement coverage.

We believe that a comprehensive test suite for a compiler must cover all
relevant aspects of the language semantics, and semantic coverage offers such a
measurement. The above definition simply measures whether a rule is fired or
not. It might be meaningful to further measure the context in which each SOS
rule is fired (as certain bugs might only be triggered when a rule is fired in a
certain context), which we leave as future work.

To achieve high semantic coverage, SpecTest employs a two-part solution.
Given the oracle’s feedback on which SOS-rules are not fired (or least fired), the
language features which are associated with the SOS rules are identified. This is
straightforward as each SOS rule is associated with a specific language construct.
For instance, when the first rule of Fig. 2 is not fired, then this would highlight
that our test programs contain no addition between Integer variables. Next, the
mutator takes the information and systematically mutates the seed programs to
introduce these less-tested language constructs.

The mutator is a code mutation engine which is designed to automatically
mutate a given source program to generate new programs (i.e., test cases for the
compiler). Existing mutation approaches [38,41,55] for compiler testing already
applied mutators to generate test programs, but they mutate based on simple
algebraic rules and are not systematic. For instance, equivalence modulo inputs
(EMI) [41] works by injecting code into seed programs with the aim to achieve
a high difference in the control- and data-flow compared to the original seed
program in order to produce diverse test programs. In comparison, our mutator
is designed to maximise semantic coverage.

Implementing the mutator is not trivial. For SpecTest, the mutators for So-
lidity and Java were implemented based on existing parsers through code instru-
mentation. That is, given a language feature and a source program, the mutator
first parses the source program to build an AST. Afterwards, it identifies poten-
tial locations in the AST for introducing the features. Lastly, it systematically
applies a mutation strategy specifically designed for the language constructs to
inject them at all possible or specific pre-defined locations. In the following, we
introduce three mutation strategies as examples.

We investigated features that were specific for Solidity. For example, one mu-
tation introduces modifiers for functions, which define conditions that must hold
when a function is executed. Listing 1.1 shows a smart contract with modifiers
written in the Solidity language. Unlike traditional programs, smart contracts
cannot be modified once they are deployed on the blockchain. As a result, their
correctness is crucial. So is the correctness of the compiler since the compiled
programs are deployed on the blockchain. Furthermore, the Solidity compiler

276 R. Schumi and J. Sun

1 contract AccessRestriction {
2 address public owner = msg.sender;
3 // default modifier:
4 modifier onlyBy(address account){
5 require(msg.sender ==account , "Sender

not authorized");
6 _; } // injected modifier:
7 modifier cgskst(address value){
8 require(value == address (0x0),"");
9 _; } // injected modifier:

10 modifier cbhsmo(address value){
11 require(value == address (0x0),"");
12 _; } // injected modifier:
13 modifier nlwxmv(address value){
14 require(value == address (0x0),"");
15 _;
16 }//Make newOwner the contract owner:
17 function changeOwner(address newOwner

) public onlyBy(owner) cgskst(
address (0x0)) cbhsmo(address (0x0
)) nlwxmv(address (0x0)){

18 owner = newOwner;
19 }}

Listing 1.1: Simple modifier example

bibt4QkDIfJ: {
bsJxhbtSJBu: {

bHhq23OwDjZ: { try {
bEdqZ33tKi9: {

bVm9tCxbul4: {
if (i >= 5){ break; }

break bEdqZ33tKi9;
} }

}catch(RuntimeException e){
bQ2yucCPLQr: {

System.out.print("X");
break bQ2yucCPLQr;

} } } } }

Listing 1.2: Labelled block mutation

contract Test {
function testFunc(int a)

public pure returns (int) {
int result = a + a++;
// produces 3 when a is 1
return result;

} }

Listing 1.3: Simple contract example

has been under rapid development and there are unique language features with
sometimes confusing semantics. Thus, it is a good target for evaluating the ef-
fectiveness of SpecTest. In this example, the modifier onlyBy ensures that the
function changeOwner can only be called when the address of the contract owner is
used. By integrating various dummy modifiers (Lines 7, 10 & 13) into our seed
contracts and by adding them to functions (Line 17), we noticed that an older
version of the Solidity compiler crashed in some cases, when more than a certain
number of modifiers are used. Such a case is difficult to find with normal tests,
since it is rare to use multiple modifiers for a function. Given that a less-fired
SOS rule is concerned with the modifier construct in Solidity, to introduce mod-
ifiers, the mutator scans through the AST for function declarations. For each
function declaration, the mutator randomly adds one or more modifiers.

We also introduced specific mutations for Java. For example, our experiments
showed that semantic rules associated with labels were not fired. Hence, we in-
troduced mutations that target these rules, e.g., a mutation that injects labelled
blocks, which is a special and rarely used feature that allows an immediate exit of
a block with a break statement. This mutation is illustrated in Listing 1.2, where
we injected labelled blocks and breaks (with these labels) into a seed program.

Both for Solidity and Java, we noticed that there are various rules in the K
specifications (i.e., 11 rules Java and 17 for Solidity) concerning mathematical
expressions that were not covered, e.g., computations with hex-values. In order
to cover these rules and to cover unusual usages in different contexts, we relied
on a random approach in contrast to the other mutations where we injected code
at specific places. We developed mutations that produce a variety of mathemat-
ical expressions combining various language features, like operations containing
variables with different data types, hexadecimal, octal or binary literals, pre-
and postfix increment/decrement (++/--), bitwise and bitshift operators, various
combinations of unary operators and arrays. A simplified example of a muta-

SpecTest: Specification-Based Compiler Testing 277

tion produced with this strategy is shown in Listing 1.3. It can be seen that the
increment operators (++) is used in an unusual context within a mathematical
expression. Our experiments showed that the computation produced unexpected
results, i.e., we found an issue with the computation order that caused the in-
crement to be executed first, although it should be executed last [19].

2.4 The Fuzzer

By injecting specific language features into the seed programs, the mutator in-
creases the likelihood of firing uncovered or poorly covered SOS rules during the
test execution. The fuzzer is a fuzzing engine which generates test inputs for
a given program. The generation is based on optimization (e.g., using genetic
algorithms). One of the required inputs for the fuzzer is a set of seed source
programs. Such source programs are often abundant. For instance, there are
thousands of Solidity programs (contracts) on EtherScan.io. The fuzzer takes
these contracts as input and generates test inputs for each contract. During this
process, the fuzzer sets up a test blockchain network, deploys the contracts, and
generates a sequence of transactions which invoke functions.

For Solidity, we applied an existing smart contract fuzzer called sFuzz [46]
that works with a new adaptive fuzzing technique for maximising the branch
coverage. sFuzz uses an optimised version of a technique called American Fuzzy
Lop (AFL) [59], for producing inputs that can achieve a high branch cover-
age. It includes various test oracles for the detection of general vulnerabilities,
like Integer overflows, or smart contract specific vulnerabilities, like a gasless
send [48]. We applied sFuzz to maximise the coverage of our test programs to
cover our injected features. For our injected features, the coverage was usually
easily achieved. However, for other cases or to minimise the test inputs, it might
be necessary to customise the fuzzer to specifically target newly added language
features. For example, during the mutation, we can record which parts of the
contracts have been mutated and prioritise those parts during fuzzing. For Java,
we did not apply a fuzzer, because the majority of our seed programs were simple
in nature. A single run produced full coverage in almost all cases.

3 Evaluation

We have implemented SpecTest for two compilers, a compiler for a general pur-
pose language (Java) and one for a new domain-specific language (Solidity).
In the following, we design multiple experiments to systematically answer the
following research questions (RQ).
– RQ1: How effective is our proposed method in finding bugs or inconsisten-

cies? This is important since the primary aim of SpecTest is to provide a
systematic way of generating a test suite for identifying compiler bugs.

– RQ2: What kind of bugs and inconsistencies can be found? To further mo-
tivate the usage of SpecTest, it makes sense to point out what issues can
be found. In particular, we would like to check whether indeed there are
compiler bugs associated with less-fired SOS rules.

278 R. Schumi and J. Sun

– RQ3: To what extent can the coverage of rules within the language specifica-
tion be increased with specific mutations? The semantic rule coverage is one
of the core aspects of SpecTest for finding bugs. Therefore, it is important
to investigate to which extent we can increase this coverage.

– RQ4: How much effort is it to apply SpecTest? When a tester is considering
a testing method, the effort usually plays a big role. To create a good basis
for a decision, we discuss the effort of applying SpecTest to two compilers.

3.1 Test Setting

As seed programs, we used existing tests cases of K-Java [24] and KSolidity
[34,44]. KSolidity is still under development, which means that we could not test
all features or a large set of contracts, but it was already sufficiently developed
to support many interesting cases. K-Java supports most features of Java 8,
but it also has limitations, i.e., it was implemented in an old version of the K
framework, which did not focus on performance. Hence, we used seed programs
without imports of libraries. We do not regard this as a limitation since small
programs have advantages, e.g., they are easier to debug and it reduces the time
for test case minimisation. Moreover, it is well-known that many bugs can be
revealed by small test cases [32], which are also common in traditional testing.

For Solidity, we had 37 seed programs that were part of the KSolidity project
due to its early stage. Hence, it makes sense to apply SpecTest since it enables the
generation of more test programs in a systematic way. Our mutator for Solidity
is written with about 5,300 lines of Java code. In each test run, we applied one
of our mutations (or in some cases also combinations) to the seed programs. We
applied sFuzz to the mutated contracts and then converted the resulting test
cases in a usable form for KSolidity. We primarily tested the Solidity compiler
version 0.5.13, but initially also older versions. In some cases, we had to apply
Truffle tests [21] (v5.1.10) and for debugging we used Remix [18], which facilitates
a step-by-step exploration of the contract bytecode.

For Java, we applied 756 seed programs and our mutator has about 6,100 lines
of code. The mutations were similar as explained before. In contrast to Solidity,
we did not need a sophisticated fuzzer since the mutated Java programs were
covered easily. Our focus was Java 13 (openjdk 13, 2019-09-17, RE build 13+33-
Ubuntu-1), but we also tested older versions (11 and 8). For the mutator, we
applied JavaParser 3.14.3 for parsing the programs and for injecting mutations.

The experiments for Solidity were performed on a Dell X1 Carbon with an
Intel i7-8565U CPU with four 1.80GHz cores and 16 GB RAM, for Java on a
PC with an Intel i7-7700 CPU with four 3.60GHz cores and 64 GB RAM.

3.2 Experiment Result

We ran more than 30,000 test cases for Java, which had a total execution time
of about three weeks. For Solidity, we ran more than 50,000 test cases with a
total execution time of about two weeks. Details about the distribution of the
run time will follow below. The execution times are not exact numbers, since the

SpecTest: Specification-Based Compiler Testing 279

experiments sometimes were stuck due to out of memory exceptions, not enough
space, etc. Unfortunately, we could not fully resolve such issues, because many
mutations inject features with random aspects into the diverse seed programs.
This caused various unpredictable situations, like endless loops or too large data
structures. By adopting our mutator, we greatly reduced the number of such
situations, but we could not remove all rare cases.

RQ1: How effective is our proposed method in finding bugs or inconsistencies?
We discovered issues and bugs both for Solidity and Java. Some of these issues
were not found within the compiler or the runtime environment, but within
the language semantics. Fixing such issues is also essential, since improving the
specification is an important aspect of testing.

In total, we found six issues for the Solidity compiler [19,10], two were related
to error/warning messages [7,13], and three of the other issues might have the
same cause, i.e., the execution order. For KSolidity, we found eight issues, six
of them were related to unimplemented features. For Java, we found four issues
with the compiler [2,5], two of which were concerned with error messages [6,12],
and we discovered 13 issues with K-Java [14,15,11,9,8,3,1,16] (eight issues or
bugs, one warning related issue, and four minor issues, like a wrong output
representation [16]). More details about the different types of issue follow below.

Our experiments showed that SpecTest is able to reveal issues, inconsistencies
and bugs. These issues were not only found in the compiler, but also in language
semantics (which are developed independently by other groups with dedicated
effort). One might argue that finding bugs/issues in the language semantics is not
as meaningful as finding bugs in the compiler. We believe that it is also crucial
to ensure the robustness of the semantics since in general the quality of the tests
or specification are essential for the overall robustness of software. SpecTest
was able to find various inconsistencies and bugs in the specifications, which
is important for the specification developers, as well as issues in the compilers.
We have spent effort on confirming our findings and out of the 31 issues, we
submitted 19 to the corresponding git repositories and reported the other issues
to the developers or to a bug reporting system. For 13 issues, we received a
confirmation or the developers mentioned that they will investigate and fix them.

An aspect that might have limited the effectiveness, is that we did not fully
apply our method for Java, since we only tested simple seed programs and did not
use fuzzing. We believe that the issues we found still showed that our method
was reasonably effective, even though we only partially applied it. Using the
full extend of SpecTest for Java might require a more powerful specification,
which is a potential topic for future work. Moreover, it should be mentioned that
KSolidity is still being developed and not as stable as the Solidity compiler (or
runtime environment), since much more effort was invested into its development.
This is similar for K-Java, and Java in general is robust due to its maturity.

RQ2: What kind of bugs and inconsistencies can be found? We categorise
our findings into three categories as illustrated in Table 1, i.e., (1) normal issues,
bugs and missing features, (2) issues related to warning or error messages, and
(3) minor inconsistencies or issues, like a small discrepancy in the output, e.g.,

280 R. Schumi and J. Sun

Table 1: Found semantics and compiler issues
Solidity KSolidity Java K-Java

Normal issue or bug 4 8 2 8
Warning or error
message related issues 2 - 2 1

Minor issues - - - 4
Total 6 8 4 13

-0e+00.0 instead of -0.0 [16].
Additionally, we differenti-
ate whether the origin of an
issue was the compiler or the
specification, as illustrated
by the rows of Table 1.

The most interesting issues that we found were the ones concerning the wrong
computation order in Solidity. The cause of these issues were actual semantic
errors within the compiler. Moreover, we also found various issues with error or
warning messages. Such issues might seem trivial, but it is important to fix them
since meaningless error messages can cause a huge waste of debugging effort. The
bugs we found in the specifications had multiple sources, like the syntax parser,
wrong semantic rules, partially implemented rules, or rules applied in a wrong
context. Although K-Java and KSolidity had already many manual tests, we
showed that SpecTest was able to discover many inconsistencies and bugs. In
the following, we present example issues from the mentioned categories.

Solidity Findings. One of the issues [19] that SpecTest identified was that
there were wrong results, when we tested expressions with different assignment
operators. The behaviour can be observed in the following example, where the
increment operator is applied at first, but should be applied in the end.
int a = 2; a *= 1 + a++; // results in 9 but should be 6

A potential cause might be a wrong computation order. This issue was found
since some SOS rules for assignment operators were uncovered. By creating mu-
tations that target these rules, we could generate expressions like in the example
which led to the discovery of the issue since the oracle predicted a different result.

An inconsistency regarding an error message [13] was revealed when we tested
computations with different data types. As illustrated below, we discovered that
it is possible to add int variables with different bit sizes, but an error is produced
if an int_const is added to an int variable with a smaller bit size.
int8 a = 10; int16 b = 234;
int c = b + a; // works
int c = 234 + a;// TypeError: Oper. + incompatible with types int_const & int8

In this case, our oracle performed the computation without an error, but the
Solidity compiler produced a type error. For KSolidity, we found an incorrect
overflow behaviour for computations, and that there is no support for numerous
language features, like increment operators.

Additionally, we applied our Solidity truffle tests to the Conflux blockchain
[17], which is a new alternative for Ethereum. It basically can be seen as another
runtime environment for Solidity contracts. With our tests, we were able to
reveal a bug in the testing environment that resulted in incorrect results when
we injected formulas with unary and bitwise operators [4].

Java findings. Our experiments showed that there is an inconsistency [1,2]
when casts from double and long variables to Integers are performed. These casts
are handled differently by Java when an overflow occurs, i.e., in the following code
the results will be the maximum Integer for the double cast and bits will be cut

SpecTest: Specification-Based Compiler Testing 281

off for the long cast. In K-Java both casts produce the same result, i.e., bits will
be cut off. Although this behaviour is documented in the language specification
and already others were wondering about this issue, we believe that the approach
of K-Java is more consistent, and we are still waiting for a comment of the Java
team about the motivation to handle these cases differently.
System.out.println (((int)2147483648L)); // -2147483648
System.out.println (((int)2147483648.0)); // 2147483647

A problem we found for the Java compiler [6] is a missing error message
when a computation with a long and a double variable is performed. Normally,
an incompatible types error is produced as illustrated in the following code, but
the error does not occur when the same computation is done with an += operator.
long a = 1L + 0.1 * 3L; // produces error: incompatible types: possible lossy
long b = 1L; // conversion from double to long
b += 0.1 * 3L; // no error is produced

We discovered that K-Java has an issue with the modulo operator [14]. The
computation is wrong for all negative doubles and floats, i.e., it produces incon-
sistent values compared to Java and compared to the same computation with
Integer values. This is illustrated in the following examples.
System.out.println("-8 % 3 = "+(-8 % 3)); //K-Java and Java return -2
System.out.println(" -8.0 % 3.0= "+(-8.0 % 3)); //K-Java 1.0 Java -2.0
System.out.println(" 8 % -3 = "+(8 % -3)); //K-Java and Java return 2
System.out.println(" 8.0 % -3.0= "+(8.0 % -3.0));//K-Java -4.0 Java 2.0

In general, we found most issues, when we injected mathematical expres-
sions into the seed programs. This was an interesting finding for us, since these
expressions are a major component of all programming languages, and we as-
sumed it would be straightforward to develop a specification for them. However,
it turned out that many interesting and ambiguous situations can occur when
various combinations of operators, variables and literals are tested.

RQ3: Can SpecTest effectively improve semantic coverage? The objective of
SpecTest is to systematically generate a test suite for achieving better semantic
coverage. In order to evaluate the coverage, we conducted the following experi-
ments. We identified the semantic rules that were least covered by the existing
tests for Solidity and Java, and then applied SpecTest systematically (with spe-
cific mutators) and measured the improvement in terms of semantic coverage.

First, we evaluated the semantic coverage criterion that is achievable with
the original seed programs of K-Java and KSolidity to have a reference value for
the comparison with the mutated test programs. Table 2 shows a comparison
of the coverage from the original test cases from K-Java to our mutated test
cases. The rule coverage of this early version of the K framework of K-Java is
rudimentary. Hence, we could only measure the covered lines and characters of
the rule files, and many of these files were already fully covered due to redundant
or unreachable rules. Nevertheless, we were able to identify various uncovered
rules in four of the files, and we produced mutations that covered these rules.

KSolidity was built with a new version of the K framework, which has a
better measurement of the rule coverage. Since the development of KSolidity
is still ongoing, we focused on the completed features, like conditions, loops,

282 R. Schumi and J. Sun

Table 2: Comparison of the covered rules between the
K-Java tests (Default) and our mutated test cases

File Default Mutants Difference
Char Line Char Line Char Line

folding.k 93.04 93.89 93.04 93.89 - -
unfolding.k 91.84 94.55 91.84 94.55 - -

process-class-decs.k 89.07 92.95 89.07 92.95 - -
expressions.k 72.30 78.74 86.58 89.92 14.28 11.18

process-comp-units.k 83.39 86.03 83.39 86.03 - -
static-init.k 81.20 82.35 81.20 82.35 - -

process-class-members.k 80.65 83.53 80.65 83.53 - -
statements.k 80.51 82.38 80.51 82.38 - -

new-instance.k 79.59 82.41 79.59 82.41 - -
method-invoke.k 79.44 80.74 79.44 80.74 - -

api-core.k 61.77 63.37 78.74 81.82 16.97 18.45
var-lookup.k 77.52 79.41 77.52 79.41 - -

process-type-names.k 76.56 75.76 76.56 75.76 - -
expressions-classes.k 73.03 65.00 73.03 65.00 - -
process-local-classes.k 67.62 72.12 67.62 72.12 - -

process-anonymous-classes.k 66.79 81.52 66.79 81.52 - -
arrays.k 62.07 66.90 62.07 66.90 - -

api-threads.k 35.51 39.04 41.43 47.01 5.92 7.97
syntax-conversions.k 40.65 42.42 40.65 42.42 - -

literals.k 29.19 34.31 38.73 42.72 9.54 8.40

arrays, structs, simple
transactions, or mathe-
matical expressions, and
managed to increase the
coverage. Even with just
these features, we found
meaningful bugs. The
coverage improvements
compared to the original
seed programs are illus-
trated in Table 3. There
were partially imple-
mented features which
could not be fully cov-
ered. The coverage of
the completed features
was considerably im-
proved.

We have shown that our mutations can increase the rule coverage both for K-
Java and KSolidity. Our close investigation shows that the increase in coverage
requires non-trivial programs (e.g., programs that specifically include missing
language features) which are unlikely to be generated without our mutator. It
is worth mentioning that writing mutations for the uncovered rules lead to the
discovery of many issues. Moreover, the mutations that targeted specific semantic
rules or language features could generally increase the coverage instantaneously
with a single test, but we still applied them to all seed programs, and we also used
general mutation operators to produce mutants for many different situations.

RQ4: How much effort is it to apply SpecTest? To answer this question, we
analysed the effort required to apply and implement SpecTest for Java and Solid-
ity. It consists of two parts, the effort of applying SpecTest once it is developed,
and the implementation effort. The latter one consists of three parts, the effort
for developing the oracle, the mutator and the fuzzer. The goal of this analysis
is to understand how generalisable SpecTest is to a new programming language.

Applying SpecTest after the implementation has the following timing re-
quirements. Both for Solidity and Java, the mutant generation took only a few
seconds. For Solidity, we set a timeout of 2 min per contract for fuzzing and
it took on average 24 min to finish all 37 contracts. Usually, 40–45 test cases
were created by the fuzzer (normally multiple per contract depending on the
mutation). Most test cases were executed by KSolidity within a minute, but
there were outliers which did not terminate even after hours. Hence, we used a
timeout of 5 min. On average, the testing time of KSolidity was 37 min (when
five runs with different mutations were considered). For Java, we did not apply
a fuzzer due to the simplicity of the seed programs. We executed the 756 test
programs directly with K-Java, which took on average 3 hours and 51 min for
an introduced mutation (for five runs with different mutation types).

SpecTest: Specification-Based Compiler Testing 283

Table 3: Comparison of the covered rules
between the original KSolidity tests
(Default) and our mutated test cases

File Default Mutants Difference
function.k 86.21 86.21 -

expression.k 92.31 95.38 3.08
solidity-syntax.k 62.50 72.12 9.62

statement.k 92.86 92.86 -
contract.k 94.12 94.12 -
driver.k 49.15 49.15 -
solidity.k 50.00 50.00 -

We now discuss our development
efforts and the time requirements of
the implementation of SpecTest for a
new language. In our case, the most
effort went into the development of
the mutator and the supporting tool-
ing, like translators. The implementa-
tions for both Solidity and Java took
about two to three months each. It
should be noted that this time depends on the availability of existing tools,
like a language parser or fuzzer. For this work, we relied on pre-existing lan-
guage specifications, which helped to reduce the overall effort, but as mentioned
they came with limitations, which caused additional efforts. Writing a specifica-
tion for a new programming language is not trivial. Based on past experiences,
we assume that it takes about six to 12 months depending on the complexity of
the language. Given the many recent efforts on developing executable language
semantics, we believe that SpecTest provides a good way to better utilise these
existing specifications for systematic compiler testing.

To summarise, the implementation effort of SpecTest is about two to three
work months mainly for the mutator, if there is an existing specification and a
fuzzer. The application of our method in terms of run time is about a few hours
for a single mutation. Further increasing the number of seed programs, and
performing a reasonable number of mutations increases this time to a couple of
days or weeks, when the tests are only executed on one machine. Even though
this seems like a lot of effort, we believe our method is still worthwhile, since it
will pay off eventually, especially considering all the effort that can be required
for releasing a new compiler version, when serious bugs are discovered. Moreover,
our method can be easily accelerated by distributing it to multiple machines.

As mentioned before, the implementation effort for our method was about
two to three work months. This is about the time that is needed for the mutator
and for other minor tools. It does not include the effort for creation of the
language specification or the fuzzer. There are already many existing fuzzers that
could be adopted for new programming languages, and also numerous language
specifications. We especially want to recommend our method for all languages
with pre-existing specifications (or when similar specifications exist) since then
there is only a small implementation effort, which will soon be mitigated by the
advantages of SpecTest. Even when there are no pre-existing specifications for
a language, we highly recommend to create one and to adopt our method, since
it will save time in the long term.

An effort that should not be underestimated is the time for analysing bugs. It
can be troublesome and to find the cause of a bug, due to the complexity of the
test cases, i.e., it sometimes took us hours or even days. In such cases, it can be
helpful to minimise failing test cases. There are numerous techniques, like delta
debugging [62] or program slicing [58], which can reduce the debugging effort,
and integrating them into SpecTest would be interesting for future work.

284 R. Schumi and J. Sun

3.3 Threats to Validity

A threat to the validity of our evaluation might be that we did not show a
comparison to other compiler testing methods. A comparison might be inter-
esting, but our main goal was to show the general applicability and usefulness
of SpecTest for different compilers. It would not be fair to compare SpecTest
to other testing techniques that focus on different types of bugs, e.g., it might
be much easier to find simple parsing errors caused by unusual characters (with
techniques, like fuzzing).

One might argue that the test size we used is too limited, which might be a
potential threat to the validity of our evaluation. It is true that it would make
sense to apply more seed programs and to continue mutating and testing for an
extended period of time. However, due to restrictions of KSolidity and K-Java,
a larger set of seed programs was not supported, and due to a limited time and
computing budget, we did not execute more tests. Nevertheless, we believe that
our test size was reasonable, since it allowed us to reveal various issues and bugs.

Another threat to the validity of our evaluation might be that we should
not have just relied on existing specifications, where we cannot be sure about
their quality. It is true that we might have more confidence in a specification
that we created, but since SpecTest checks the correctness of compilers as well
as specifications, we have trust that our specifications had a reasonable quality.

4 Related Work

Compiler testing is a broad research field with a range of techniques that target,
e.g., the test case generation [49,31,23] or the oracle problem [22]. Several surveys
give an overview of these methods [56,26,39,25]. Our study however shows that
existing approaches suffer from two weaknesses. They do not apply a test case
generation that can extensively cover rare language features, and they often
rely on weak or limited test oracles. The test case generation often works with
standard code coverage criteria concerning compiler components. For example,
Zelenov and Zelenova [61] applied a BNF grammar as a model and produced
test cases according to, e.g., code or functional coverage of a syntax analyser. A
method based on the coverage of context-free grammar rules was presented by
Purdom [49], but it only targets the parser of the compiler. Kalinov et al. [35,36]
defined coverage criteria based on a statement machine specification. In contrast
to our work, they do not identify rare language features by analysing semantic
rule coverage, and they do not construct their test programs via code mutation.

Various compiler testing methods work without any coverage by just ran-
domly generating test cases according to a grammar, which defines valid pro-
grams [52,60]. There are also techniques that use mutation for producing test
cases [38,41,55]. For example, Le, Sun, and Su [41] produced mutants that should
have the same behaviour as the original programs in order to find cases where the
behaviour diverges. However, in contrast to our work, they are not considering
a semantic coverage for less used language features.

SpecTest: Specification-Based Compiler Testing 285

Several attempts have been presented to answer the oracle problem for com-
piler testing. In the simple case of positive/negative testing, an oracle only tells
whether a program is compilable. When a test program is compiled, the result is
checked to see if it matches the expectation of the oracle. A match means a suc-
cessful compilation. Otherwise, there may be a bug. For example, Zelenov and
Zelenova [61] illustrated a specification-based approach for generating positive
and negative tests. Such approaches are limited to testing the syntax parser.

In the line of work on differential testing compilers [45], the oracle is defined
as consistency among two or more compilers for the same language. In this
method, the same test programs are given to multiple compilers and the results
are compared. If there is a difference then a bug in one of the compilers or an
ambiguity in the language is found. There exist different versions of differential
testing as explained by McKeeman [45]. Cross-compiler testing [52] is a technique
that works by contrasting a new compiler against a pre-existing compiler that
has the same specification. When the same test programs are executed with
both compilers, a different result can reveal a fault in the new or pre-existing
compiler. Sometimes this technique is also called randomised differential testing
[60], because the test programs are usually generated randomly, e.g., based on
a grammar. Another differential testing technique is cross-optimisation testing,
where programs compiled with different optimisations implemented for the same
compiler are contrasted to find bugs. Le, Sun, and Su [42] presented such a
technique for stress testing link optimisers. Their method generates random test
programs and injects various function calls into different code regions in order to
increase dependencies between procedures, and it also randomly selects different
optimisation levels to produce challenging tests for the optimiser. Cross-version
or regression testing is another differential testing method that tries to find bugs
by comparing different versions of the same compiler. For example, Sun, Le,
and Su [54] developed Epiphron, a tool that generates random test programs to
find inconsistencies with the debug information, like missing warning messages,
in different versions of the same compiler. Such approaches work only if there
are multiple relatively mature compilers for the same language. In contrast to
these techniques, SpecTest works with a formal language specification which
is especially useful when no compilers could be used as a reference. Moreover,
different compilers or compiler versions for the same language might still suffer
from the same bugs, which is unlikely for an independent specification.

There are approaches that assume the existence of a reference compiler, i.e.,
the oracle is an existing formally proven compiler. For example, Leroy [43] pre-
sented CompCert, a compiler for a subset of C, which was verified with the
proof assistant Coq. However, there are usually no such compilers for a newly
developed language and the existing ones cover only subsets of languages since
formally proving a compiler is extremely challenging.

For metamorphic testing [57], the oracle is defined as certain algebraic prop-
erties of the compiler. For instance, one such property explored in the compiler
testing technique called equivalence modulo inputs (EMI) [40,55] is that a mod-
ification on a program part which is never executed should not alter the result.

286 R. Schumi and J. Sun

Based on this simple oracle, EMI works by randomly pruning dead code (i.e.,
code which is not executed given a certain program input) or by randomly insert-
ing or removing instructions from dead code based on a Markov Chain Monte
Carlo method. Such approaches are limited to identifying bugs which violate the
algebraic properties. Hence, they are not able to find deep semantic errors.

The closest related work to SpecTest was proposed by Kalinov et al. [35,36],
where a language specification in the form of abstract state machines and mon-
tages is used as an oracle. With this specification, they compare the expected
output from the specification to that of a compiled program in order to check
whether there are compiler bugs. This approach is limited by the choice of the
specification language and it quickly becomes infeasible, because the computa-
tion time is too high. Moreover, it is not concerned with semantic coverage.

To demonstrate the limitations of the closely related methods, we come back
to the example of Sect. 2, i.e., we discussed a bug with the increment operator
that we discovered during our analysis of the Solidity compiler.
int a = 1; int result = a + a++; // produces 3, but it should be 2

In this example, the compiler had an issue with the computation order, which
resulted in wrong results. Existing approaches, like EMI or differential testing
might be able to detect such issues, but with EMI it is difficult to find mutations
that lead to such cases. The same is true for differential testing and there is also
a high chance that different compiler versions have the same faulty behaviour
for such a case (e.g., all versions of the Solidity compiler had this issue).

5 Conclusion

We have demonstrated our novel compiler testing technique called SpecTest
that targets less-used language features. SpecTest is based on three components:
an executable language specification, a fuzzer for generating test inputs, and
a mutator which generates new programs by injecting rare language features.
Comparing the abstract execution of the specification to the concrete execution
of a compiled program enables our method to find deep semantic errors as well
as inconsistencies and issues in the specification.

We evaluated SpecTest by applying it to two programming languages: Java
and Solidity. The results are encouraging. We discovered various issues con-
cerning the compilers and the language specifications. Some of them helped to
improve the quality of the compilers and many will enhance the specifications.

In the future, we plan to further explore the generality of SpecTest for other
languages, and we intend to consider different types of executable specifications.

Acknowledgments

This research is supported by the National Research Foundation Singapore under
its NSoE Programme (Award Number.: NSOE-TSS2019-03).

SpecTest: Specification-Based Compiler Testing 287

References

1. Casting a floating-point number to an integer, https://github.com/kframework/
java-semantics/issues/64

2. Casting double to int and long to int produce different results, https://bugs.
java.com/bugdatabase/view_bug.do?bug_id=JDK-8246334

3. Division by zero exception, https://github.com/kframework/java-semantics/
issues/63

4. Incorrect output from bitwise and unary operation function call, https://github.
com/Conflux-Chain/conflux-rust/issues/988

5. Minus sign issues for hex octal and binary literals, https://bugs.java.com/
bugdatabase/view_bug.do?bug_id=8236406

6. Missing error message incompatible types: possible lossy conversion, https://
bugs.java.com/bugdatabase/view_bug.do?bug_id=JDK-8244681

7. More specific error message for division by zero, https://github.com/ethereum/
solidity/issues/8064

8. New string leads to timeout, https://github.com/kframework/java-semantics/
issues/62

9. Octal values in double/float arrays, https://github.com/kframework/
java-semantics/issues/61

10. Out of bounds array access, https://github.com/ethereum/solidity/issues/
8364

11. Parsing issue for hexadecimal, https://github.com/kframework/
java-semantics/issues/60

12. Type error for short computations, https://bugs.java.com/bugdatabase/view_
bug.do?bug_id=JDK-8240371

13. Typeerror too restrictive or inconsistent?, https://github.com/ethereum/
solidity/issues/8139

14. Wrong modulo computation for negative doubles, https://github.com/
kframework/java-semantics/issues/58

15. Wrong precision for float variables, https://github.com/kframework/
java-semantics/issues/59

16. Wrong representation of floating point numbers, https://github.com/
kframework/java-semantics/issues/66

17. Conflux: High-efficiency public blockchain (2019), https://www.conflux-chain.
org

18. Remix: Ethereum ide and tools for the web (2019), https://remix.ethereum.org
19. Specify and enforce evaluation order on sub-expressions (2019), https://github.

com/ethereum/solidity/issues/7820
20. Discover, track and compare open source (2020), https://www.openhub.net
21. Truffle suite: Sweet tools for smart contracts (2020), http://truffleframework.

com
22. Barr, E.T., Harman, M., McMinn, P., Shahbaz, M., Yoo, S.: The oracle problem

in software testing: A survey. IEEE Trans. Software Eng. 41(5), 507–525 (2015)
23. Bauer, J.A., Finger, A.B.: Test plan generation using formal grammars. In: Pro-

ceedings of the 4th International Conference on Software Engineering, Munich,
Germany, September 1979. pp. 425–432. IEEE Computer Society (1979), http:
//dl.acm.org/citation.cfm?id=802969

https://github.com/kframework/java-semantics/issues/64
https://github.com/kframework/java-semantics/issues/64
https://bugs.java.com/bugdatabase/view_bug.do?bug_id=JDK-8246334
https://bugs.java.com/bugdatabase/view_bug.do?bug_id=JDK-8246334
https://github.com/kframework/java-semantics/issues/63
https://github.com/kframework/java-semantics/issues/63
https://github.com/Conflux-Chain/conflux-rust/issues/988
https://github.com/Conflux-Chain/conflux-rust/issues/988
https://bugs.java.com/bugdatabase/view_bug.do?bug_id=8236406
https://bugs.java.com/bugdatabase/view_bug.do?bug_id=8236406
https://bugs.java.com/bugdatabase/view_bug.do?bug_id=JDK-8244681
https://bugs.java.com/bugdatabase/view_bug.do?bug_id=JDK-8244681
https://github.com/ethereum/solidity/issues/8064
https://github.com/ethereum/solidity/issues/8064
https://github.com/kframework/java-semantics/issues/62
https://github.com/kframework/java-semantics/issues/62
https://github.com/kframework/java-semantics/issues/61
https://github.com/kframework/java-semantics/issues/61
https://github.com/ethereum/solidity/issues/8364
https://github.com/ethereum/solidity/issues/8364
https://github.com/kframework/java-semantics/issues/60
https://github.com/kframework/java-semantics/issues/60
https://bugs.java.com/bugdatabase/view_bug.do?bug_id=JDK-8240371
https://bugs.java.com/bugdatabase/view_bug.do?bug_id=JDK-8240371
https://github.com/ethereum/solidity/issues/8139
https://github.com/ethereum/solidity/issues/8139
https://github.com/kframework/java-semantics/issues/58
https://github.com/kframework/java-semantics/issues/58
https://github.com/kframework/java-semantics/issues/59
https://github.com/kframework/java-semantics/issues/59
https://github.com/kframework/java-semantics/issues/66
https://github.com/kframework/java-semantics/issues/66
https://www.conflux-chain.org
https://www.conflux-chain.org
https://remix.ethereum.org
https://github.com/ethereum/solidity/issues/7820
https://github.com/ethereum/solidity/issues/7820
https://www.openhub.net
http://truffleframework.com
http://truffleframework.com
http://dl.acm.org/citation.cfm?id=802969
http://dl.acm.org/citation.cfm?id=802969

288 R. Schumi and J. Sun

24. Bogdanas, D., Rosu, G.: K-Java: A complete semantics of java. In: Proceedings of
the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL 2015, Mumbai, India, January 15-17, 2015. pp. 445–456.
ACM (2015). https://doi.org/10.1145/2676726.2676982

25. Boujarwah, A.S., Saleh, K.: Compiler test case generation methods: a sur-
vey and assessment. Information & Software Technology 39(9), 617–625 (1997).
https://doi.org/10.1016/S0950-5849(97)00017-7

26. Chen, J., Hu, W., Hao, D., Xiong, Y., Zhang, H., Zhang, L., Xie, B.: An empirical
comparison of compiler testing techniques. In: Proceedings of the 38th International
Conference on Software Engineering, ICSE 2016, Austin, TX, USA, May 14-22,
2016. pp. 180–190. ACM (2016). https://doi.org/10.1145/2884781.2884878

27. Chen, Y., Su, T., Su, Z.: Deep differential testing of JVM implementations. In: Pro-
ceedings of the 41st International Conference on Software Engineering, ICSE 2019,
Montreal, QC, Canada, May 25-31, 2019. pp. 1257–1268. IEEE / ACM (2019).
https://doi.org/10.1109/ICSE.2019.00127

28. Cummins, C., Petoumenos, P., Murray, A., Leather, H.: Compiler fuzzing
through deep learning. In: Proceedings of the 27th ACM SIGSOFT Inter-
national Symposium on Software Testing and Analysis, ISSTA 2018, Am-
sterdam, The Netherlands, July 16-21, 2018. pp. 95–105. ACM (2018).
https://doi.org/10.1145/3213846.3213848

29. Ellison, C., Rosu, G.: An executable formal semantics of C with appli-
cations. In: Field, J., Hicks, M. (eds.) Proceedings of the 39th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2012, Philadelphia, Pennsylvania, USA, January 22-28, 2012. pp. 533–544.
ACM (2012). https://doi.org/10.1145/2103656.2103719, https://doi.org/10.
1145/2103656.2103719

30. Fowler, T.: How many computer languages are there? (2020), https://
careerkarma.com/blog/how-many-coding-languages-are-there

31. Hanford, K.V.: Automatic generation of test cases. IBM Systems Journal 9(4),
242–257 (1970). https://doi.org/10.1147/sj.94.0242

32. Jackson, D., Damon, C.: Elements of style: Analyzing a software design feature with
a counterexample detector. In: Proceedings of the 1996 International Symposium
on Software Testing and Analysis, ISSTA 1996, San Diego, CA, USA, January
8-10, 1996. pp. 239–249. ACM (1996). https://doi.org/10.1145/229000.226322

33. Jia, Y., Harman, M.: An analysis and survey of the development of
mutation testing. IEEE Trans. Software Eng. 37(5), 649–678 (2011).
https://doi.org/10.1109/TSE.2010.62

34. Jiao, J., Kan, S., Lin, S., Sanan, D., Liu, Y., Sun, J.: Semantic understanding
of smart contracts: Executable operational semantics of solidity. In: 2020 IEEE
Symposium on Security and Privacy, SP 2020, San Francisco, CA, USA, May 18-
20, 2020. IEEE (2020), accepted for publication

35. Kalinov, A., Kossatchev, A., Posypkin, M., Shishkov, V.: Using ASM specifica-
tion for automatic test suite generation for mpC parallel programming language
compiler. Action Semantics AS 2002 p. 99 (2002)

36. Kalinov, A., Kossatchev, A.S., Petrenko, A.K., Posypkin, M., Shishkov,
V.: Coverage-driven automated compiler test suite generation. Electr. Notes
Theor. Comput. Sci. 82(3), 500–514 (2003). https://doi.org/10.1016/S1571-
0661(05)82625-8

37. Klein, C., Clements, J., Dimoulas, C., Eastlund, C., Felleisen, M., Flatt, M., Mc-
Carthy, J.A., Rafkind, J., Tobin-Hochstadt, S., Findler, R.B.: Run your research:

https://doi.org/10.1145/2676726.2676982
https://doi.org/10.1016/S0950-5849(97)00017-7
https://doi.org/10.1145/2884781.2884878
https://doi.org/10.1109/ICSE.2019.00127
https://doi.org/10.1145/3213846.3213848
https://doi.org/10.1145/2103656.2103719
https://doi.org/10.1145/2103656.2103719
https://doi.org/10.1145/2103656.2103719
https://careerkarma.com/blog/how-many-coding-languages-are-there
https://careerkarma.com/blog/how-many-coding-languages-are-there
https://doi.org/10.1147/sj.94.0242
https://doi.org/10.1145/229000.226322
https://doi.org/10.1109/TSE.2010.62
https://doi.org/10.1016/S1571-0661(05)82625-8
https://doi.org/10.1016/S1571-0661(05)82625-8

SpecTest: Specification-Based Compiler Testing 289

on the effectiveness of lightweight mechanization. In: Proceedings of the 39th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2012, Philadelphia, Pennsylvania, USA, January 22-28, 2012. pp. 285–296. ACM
(2012). https://doi.org/10.1145/2103656.2103691

38. Köroglu, Y., Wotawa, F.: Fully automated compiler testing of a reasoning engine
via mutated grammar fuzzing. In: Proceedings of the 14th International Workshop
on Automation of Software Test, AST@ICSE 2019, May 27, 2019, Montreal, QC,
Canada. pp. 28–34. IEEE / ACM (2019). https://doi.org/10.1109/AST.2019.00010

39. Kossatchev, A.S., Posypkin, M.: Survey of compiler testing methods. Programming
and Computer Software 31(1), 10–19 (2005). https://doi.org/10.1007/s11086-005-
0008-6

40. Le, V., Afshari, M., Su, Z.: Compiler validation via equivalence modulo inputs. In:
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, PLDI ’14, Edinburgh, United Kingdom - June 09 - 11, 2014. pp. 216–226.
ACM (2014). https://doi.org/10.1145/2594291.2594334

41. Le, V., Sun, C., Su, Z.: Finding deep compiler bugs via guided stochastic program
mutation. In: Proceedings of the 2015 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA
2015, part of SPLASH 2015, Pittsburgh, PA, USA, October 25-30, 2015. pp. 386–
399. ACM (2015). https://doi.org/10.1145/2814270.2814319

42. Le, V., Sun, C., Su, Z.: Randomized stress-testing of link-time optimizers. In: Pro-
ceedings of the 2015 International Symposium on Software Testing and Analysis,
ISSTA 2015, Baltimore, MD, USA, July 12-17, 2015. pp. 327–337. ACM (2015).
https://doi.org/10.1145/2771783.2771785

43. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–
115 (2009). https://doi.org/10.1145/1538788.1538814

44. Lin, S.W.: KSolidity semantics (2018), https://github.com/kframework/
solidity-semantics

45. McKeeman, W.M.: Differential testing for software. Digital Technical Jour-
nal 10(1), 100–107 (1998), http://www.hpl.hp.com/hpjournal/dtj/vol10num1/
vol10num1art9.pdf

46. Nguyen, D.T., Pham, L.H., Sun, J., Lin, Y., Tran, M.Q.: sFuzz: An efficient adap-
tive fuzzer for solidity smart contracts. In: Proceedings of the 42nd International
Conference on Software Engineering, ICSE 2020. IEEE / ACM (2020)

47. Park, D., Stefanescu, A., Rosu, G.: KJS: a complete formal semantics of
javascript. In: Grove, D., Blackburn, S. (eds.) Proceedings of the 36th ACM
SIGPLAN Conference on Programming Language Design and Implementa-
tion, Portland, OR, USA, June 15-17, 2015. pp. 346–356. ACM (2015).
https://doi.org/10.1145/2737924.2737991, https://doi.org/10.1145/2737924.
2737991

48. Prechtel, D., Groß, T., Müller, T.: Evaluating spread of ’gasless send’ in ethereum
smart contracts. In: 10th IFIP International Conference on New Technologies, Mo-
bility and Security, NTMS 2019, Canary Islands, Spain, June 24-26, 2019. pp. 1–6.
IEEE (2019). https://doi.org/10.1109/NTMS.2019.8763848

49. Purdom, P.: A sentence generator for testing parsers. BIT Numerical Mathematics
12(3), 366–375 (1972)

50. Rosu, G., Serbanuta, T.: An overview of the K semantic framework. J. Log. Algebr.
Program. 79(6), 397–434 (2010). https://doi.org/10.1016/j.jlap.2010.03.012

51. Sewell, P., Nardelli, F.Z., Owens, S., Peskine, G., Ridge, T., Sarkar, S., Strnisa, R.:
Ott: Effective tool support for the working semanticist. J. Funct. Program. 20(1),
71–122 (2010). https://doi.org/10.1017/S0956796809990293

https://doi.org/10.1145/2103656.2103691
https://doi.org/10.1109/AST.2019.00010
https://doi.org/10.1007/s11086-005-0008-6
https://doi.org/10.1007/s11086-005-0008-6
https://doi.org/10.1145/2594291.2594334
https://doi.org/10.1145/2814270.2814319
https://doi.org/10.1145/2771783.2771785
https://doi.org/10.1145/1538788.1538814
https://github.com/kframework/solidity-semantics
https://github.com/kframework/solidity-semantics
http://www.hpl.hp.com/hpjournal/dtj/vol10num1/vol10num1art9.pdf
http://www.hpl.hp.com/hpjournal/dtj/vol10num1/vol10num1art9.pdf
https://doi.org/10.1145/2737924.2737991
https://doi.org/10.1145/2737924.2737991
https://doi.org/10.1145/2737924.2737991
https://doi.org/10.1109/NTMS.2019.8763848
https://doi.org/10.1016/j.jlap.2010.03.012
https://doi.org/10.1017/S0956796809990293

290 R. Schumi and J. Sun

52. Sheridan, F.: Practical testing of a C99 compiler using output comparison. Softw.,
Pract. Exper. 37(14), 1475–1488 (2007). https://doi.org/10.1002/spe.812

53. Su, Z., Sun, C.: Emi-based compiler testing (2018), https://web.cs.ucdavis.
edu/~su/emi-project

54. Sun, C., Le, V., Su, Z.: Finding and analyzing compiler warning defects.
In: Proceedings of the 38th International Conference on Software Engineering,
ICSE 2016, Austin, TX, USA, May 14-22, 2016. pp. 203–213. ACM (2016).
https://doi.org/10.1145/2884781.2884879

55. Sun, C., Le, V., Su, Z.: Finding compiler bugs via live code mutation. In: Proceed-
ings of the 2016 ACM SIGPLAN International Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications, OOPSLA 2016, part of SPLASH
2016, Amsterdam, The Netherlands, October 30 - November 4, 2016. pp. 849–863.
ACM (2016). https://doi.org/10.1145/2983990.2984038

56. Tang, Y., Ren, Z., Kong, W., Jiang, H.: Compiler testing: A systematic literature
analysis. CoRR abs/1810.02718 (2018), http://arxiv.org/abs/1810.02718

57. Tao, Q., Wu, W., Zhao, C., Shen, W.: An automatic testing approach
for compiler based on metamorphic testing technique. In: 17th Asia Pacific
Software Engineering Conference, APSEC 2010, Sydney, Australia, Novem-
ber 30 - December 3, 2010. pp. 270–279. IEEE Computer Society (2010).
https://doi.org/10.1109/APSEC.2010.39

58. Tip, F.: A survey of program slicing techniques. J. Prog. Lang. 3(3) (1995), http:
//compscinet.dcs.kcl.ac.uk/JP/jp030301.abs.html

59. Wang, C., Kang, S.: ADFL: an improved algorithm for american fuzzy lop in
fuzz testing. In: Cloud Computing and Security - 4th International Conference,
ICCCS 2018, Haikou, China, June 8-10, 2018, Revised Selected Papers, Part
V. Lecture Notes in Computer Science, vol. 11067, pp. 27–36. Springer (2018).
https://doi.org/10.1007/978-3-030-00018-9_3

60. Yang, X., Chen, Y., Eide, E., Regehr, J.: Finding and understanding bugs in C
compilers. In: Proceedings of the 32nd ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI 2011, San Jose, CA, USA, June
4-8, 2011. pp. 283–294. ACM (2011). https://doi.org/10.1145/1993498.1993532

61. Zelenov, S.V., Zelenova, S.A.: Automated generation of positive and negative
tests for parsers. In: Formal Approaches to Software Testing, 5th International
Workshop, FATES 2005, Edinburgh, UK, July 11, 2005, Revised Selected Pa-
pers. Lecture Notes in Computer Science, vol. 3997, pp. 187–202. Springer (2005).
https://doi.org/10.1007/11759744_13

62. Zeller, A., Hildebrandt, R.: Simplifying and isolating failure-inducing input. IEEE
Trans. Software Eng. 28(2), 183–200 (2002). https://doi.org/10.1109/32.988498

https://doi.org/10.1002/spe.812
https://web.cs.ucdavis.edu/~su/emi-project
https://web.cs.ucdavis.edu/~su/emi-project
https://doi.org/10.1145/2884781.2884879
https://doi.org/10.1145/2983990.2984038
http://arxiv.org/abs/1810.02718
https://doi.org/10.1109/APSEC.2010.39
http://compscinet.dcs.kcl.ac.uk/JP/jp030301.abs.html
http://compscinet.dcs.kcl.ac.uk/JP/jp030301.abs.html
https://doi.org/10.1007/978-3-030-00018-9_3
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1007/11759744_13
https://doi.org/10.1109/32.988498

SpecTest: Specification-Based Compiler Testing 291

use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/
4.0/), which permits use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes
were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

PASTA: An Efficient Proactive Adaptation
Approach Based on Statistical Model Checking

for Self-Adaptive Systems

Yong-Jun Shin(�) , Eunho Cho , and Doo-Hwan Bae

Korea Advanced Institute of Science and Technology (KAIST)
Deajeon, Republic of Korea

{yjshin, ehcho, bae}@se.kaist.ac.kr

Abstract. Proactive adaptation, in which the adaptation for a system’s
reliable goal achievement is performed by predicting changes in the envi-
ronment, is considered as an effective alternative to reactive adaptation,
in which adaptation is performed after observing changes. When predict-
ing the environmental changes, the prediction may be uncertain, so it is
necessary to verify and confirm an adaptation’s consequences before ex-
ecution. To resolve the uncertainty, probabilistic model checking (PMC)
has been utilized for verification of adaptation tactics’ effects on the goal
of a self-adaptive system (SAS). However, PMC-based approaches have
limitations on the state-explosion problem of complex SAS model verifi-
cation and the modeling languages supported by the model checkers. In
this paper, to overcome the limitations of the PMC-based approaches,
we propose an efficient Proactive Adaptation approach based on STA-
tistical model checking (PASTA). Our approach allows SASs to mitigate
the uncertainty of the future environment, faster than the PMC-based
approach, by producing statistically sufficient samples for verification
of adaptation tactics based on statistical model checking (SMC) algo-
rithms. We provide algorithmic processes, a reference architecture, and
an open-source implementation skeleton of PASTA for engineers to apply
it for SAS development. We evaluate PASTA on two SASs using actual
data and show that PASTA is efficient comparing to the PMC-based
approach. We also provide a comparative analysis of the advantages and
disadvantages of PMC- and SMC-based proactive adaptation to guide
engineers’ decision-making for SAS development.

Keywords: Self-adaptive system · Proactive adaptation · Statistical
model checking · Environmental uncertainty

1 Introduction

As the complexity of an environment that affects a system’s goal achievement in-
creases, analyzing the environment becomes important for reliable goal achieve-
ment. The environment, such as user traffic and outdoor temperatures, can
change over time [15,29]. Full anticipation of environmental changes at the sys-
tem design time is challenging and often impossible [6,9]. Systems are required

c© The Author(s) 2021
E. Guerra and M. Stoelinga (Eds.): FASE 2021, LNCS 12649, pp. 292–312, 2021.
https://doi.org/10.1007/978-3-030-71500-7 15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71500-7_15&domain=pdf
http://orcid.org/0000-0001-6068-5054
http://orcid.org/0000-0002-4293-945X
http://orcid.org/0000-0002-3152-5219
https://doi.org/10.1007/978-3-030-71500-7_15

PASTA: Proactive Adaptation Based on Statistical Model Checking 293

to be self-adaptive so that they change their behaviors and structures accord-
ing to the environmental changes at runtime. To realize this, numerous design
approaches [11,13,14,16] have been proposed based on the MAPE feedback loop
[18]. These adaptation processes involve the continual monitoring and analysis
of the environment as well as the planning and execution of the adaptation.

For most existing approaches, adaptation has been reactively triggered by
system failures or changes in the environment [12,31,33]. Other adaptation ap-
proaches, known as proactive or predictive adaptation, have emerged, which
have proven to be more effective than reactive adaptations in a changing envi-
ronment by predicting changes in advance [2,24,26]; however, the prediction of
environmental changes is uncertain, so the uncertainty affects the consequences
of proactive adaptation. To resolve the uncertainty, probabilistic model checking
(PMC) was utilized in some studies for the verification of adaptation tactics and
their effects on the system’s adaptation goal [5,26,27,28].

PMC-based approaches are a major method used for proactive adaptation;
however, PMC may be not appropriate for the verification of large and com-
plex self-adaptive system (SAS) models due to the state explosion problem.
PMC requires a high verification cost in time and memory to fully examine
the given probabilistic models, so the verification of complex SAS models and
adaptation tactics may fail due to time and memory constraints. In addition,
modeling languages supported by probabilistic model checkers must be used for
the modeling of the SAS and the environment. Engineers must be familiar with
modeling languages, such as Markov chains, Markov decision processes, or au-
tomata, that model checkers can interpret [21]. To overcome the limitations, we
propose an efficient proactive adaptation approach based on statistical model
checking (SMC) that consumes a smaller verification resource than PMC and
only requires simulation results of system models without limiting languages.

Our Proactive Adaptation approach based on STAtistical model checking
(PASTA) offers the following contributions:

– We propose a proactive adaptation approach utilizing SMC to eliminate the
uncertainty of the future environment faster than PMC for the verification
of adaptation tactics.

– We provide algorithmic processes, a reference architecture, and an open-
source implementation skeleton of PASTA for developers who will apply
PASTA to SAS development.

– Based on evaluations using actual data, we also provide a comparative anal-
ysis of the advantages and disadvantages of PMC- and SMC-based proactive
adaptation to guide engineers’ decision making.

The remainder of this paper is organized as follows. Section 2 introduces
related work of proactive adaptation. Section 3 provides the background knowl-
edge of SMC. Section 4 presents an illustrative example. Section 5 introduces our
PASTA approach. Section 6 evaluates PASTA based on two SASs with actual
data. Section 7 reveals the threats and validity of our work. Section 8 concludes
the paper.

294 Y.-J. Shin et al.

2 Related Work: Proactive Adaptation

Numerous studies on proactive or predictive adaptation have been conducted
to address issues related to changing environments [3,20,24,25]. As opposed to
reacting to changes in the environment or system, predicting and responding to
the predicted situations could be more difficult but more effective in prevent-
ing system failures and meeting requirements. Many case studies on proactive
adaptation have been conducted, and it has been demonstrated that proactive
adaptation outperforms reactive adaptation in terms of the system’s adaptation
goal [2,10,20]. For proactive adaptation, the prediction of the future environment
is uncertain, so approaches utilizing probabilistic model checking (PMC), which
verifies the property satisfaction of probabilistic model, have been proposed to
provide verified and trustworthy proactive adaptation results [5,26,27,28]. The
main process of PMC-based proactive adaptation is illustrated in Fig. 1. Core
of the process are the formal modeling of the future environment, system, and
adaptation tactics, and the verification of the models to identify an optimal
adaptation tactic for adaptation goal achievement. However, PMC is not appro-
priate for the verification of large and complex models due to its state explosion
problem. It requires exhaustively examining all possible states of SAS models
to verify adaptation tactics. It also requires engineers to develop SAS models
written in modeling languages that model checkers can support. To tackle the
limitations, as an alternative to PMC-based approaches, which have been the
major trend of proactive adaptation, in this paper, we propose a statistical model
checking (SMC)-based proactive adaptation approach [19,23,34].

Fig. 1. PMC-based proactive adaptation process

PASTA: Proactive Adaptation Based on Statistical Model Checking 295

3 Background: Statistical Model Checking (SMC)

We have utilized statistical model checking (SMC) to verify adaptation tactics
at runtime under an uncertain environment. SMC is an efficient technique for
verifying a stochastic model [22,23]. Although PMC exhaustively examines the
model, SMC simulates the model to obtain samples and provides statistical
evidence of the satisfaction or violation of the given property using hypothesis
testing for the samples. In fact, SMC requires only a set of simulation results, so
it can be applied to an executable black-box model or to only a set of simulation
results. The fact that the verification results depend on the quality of the model
is the same as PMC. However, as it is a simulation-based approach, it is known
to be an efficient alternative to PMC in terms of time and memory, performing
verification with a certain confidence [1,19]. In this regard, SMC can be used
effectively for the runtime verification of SAS adaptation tactics with uncertain
environments. The following examples of SMC algorithms are widely used:

– Simple Monte Carlo Simulation (SMCS). This is the simplest and
most intuitive SMC algorithm [1,4]. It estimates the quantitative satisfaction
of a property according to the ratio of samples that satisfy the property in
the overall samples. It requires a fixed number of samples from the user.

– Single Sampling Plan (SSP). The SSP [34] tests a hypothesis H : p ≥ θ
with fixed-size samples, where p is the probability that a system meets a
given property and θ is the verification threshold of p. The user provides two
error bounds α (0 ≤ α ≤ 1) and β (0 ≤ β ≤ 1) of false negatives and false
positives, respectively. Within the given error bounds, the SSP estimates p
to accept or to reject H. The detailed algorithm can be found in [19,23,34].

– Sequential Probability Ratio Test (SPRT). Similar to the SSP, the
SPRT [32] tests a hypothesis H within the given error bounds, but the num-
ber of samples is determined automatically. It simulates the target system
to obtain a sample, and iterates the simulations to generate sufficient sam-
ples until it can accept or reject H within a given error bound. The detailed
algorithm can be found in [19,23,34].

For the PASTA approach, an SMC algorithm is selected and used to obtain
statistical evidence of an adaptation tactic’s performance in a future environment
to evaluate possible tactics and to identify the optimal tactic at runtime.

4 Illustrative Example

We illustrate PASTA using an adaptive air condition control system as an ex-
ample. The system monitors indoor and outdoor air conditions, including tem-
perature and humidity, and adaptively controls the indoor condition for a given
target condition. Planning an adaptive air condition control with an immediate
reaction to the monitored indoor condition can aid the system in achieving its
goal; however, the indoor air conditions may change over time due to the influ-
ence of the outdoor air conditions, as shown in Fig. 2. If the adaptation plan

296 Y.-J. Shin et al.

is made without taking the environmental change into account, the adaptation
consequences may differ from the expectations, and thus there could have been
a better adaptation tactic that was not chosen. The air condition control system
developed by the PASTA approach forecasts future air condition changes and
selects an optimal adaptation tactic whose adaptation consequences are verified
by SMC at runtime. Throughout this paper, we will describe our approach using
this example.

Fig. 2. Adaptive air condition control system

5 Proactive Adaptation Based on Statistical Model
Checking

5.1 PASTA overview

We propose the PASTA approach, which is a proactive adaptation, using SMC.
Fig. 3 presents the overall adaptation process. The aim of the approach is to
provide efficient proactive adaptation based on the prediction of environmen-
tal changes and the verification of the adaptation tactics of the SAS. (Step 1)
Initially, PASTA continuously monitors the environment to capture its change
at runtime. (Step 2) It analyzes the monitored (historical) environment data
and forecasts future environmental changes based on its forecasting algorithm.
The prediction or expectation of the future environment is in the form of non-
deterministic possibility, such as the probability density function of future envi-
ronmental conditions. (Step 3) Based on the prediction, a sample of the possible
future environment is made and given to the simulation engine as a simulation
environment. (Step 4) In the given environment, an adaptation tactic is applied
to the system model and simulated to make a sample evaluation of the tac-
tic’s performance. The simulations are repeated until the system obtains the

PASTA: Proactive Adaptation Based on Statistical Model Checking 297

statistically sufficient number of samples for the verification of the tactic’s per-
formance for the adaptation goal in the expected future environmental change.
(Step 5) Based on the accumulated samples, the performance of an adaptation
tactic is verified. All adaptation tactics are evaluated repeatedly in the same
manner, and the SAS statistically guarantees the effects of its adaptation tac-
tics. (Step 6 and 7) When all possible adaptation tactics have been evaluated,
an optimal adaptation tactic is chosen and executed. This adaptation process
is continuously repeated to respond to continuous environmental changes. We
describe the PASTA approach in detail based on this adaptation process in the
subsequent sections.

Fig. 3. Overall PASTA process

5.2 Knowledge

Principle. The PASTA approach requires an SAS to accumulate the monitored
environment data. The accumulated historical environment data is analyzed to
predict environmental changes. Furthermore, the system has its current system
model that is an abstraction of the system behavior executable by a simulator.
The model in PASTA is user-specific, and although the modeling language and
system information to be modeled are selected by the engineer, the only require-
ment is that the model is executable to generate simulation logs. The system
model also contains a finite set (space) of possible adaptation tactics that will
be verified. An adaptation tactic is a specification of an adaptation that can be
applied to the SAS and its model, such as a set of configurations. The adap-

298 Y.-J. Shin et al.

tation goal is also specified in the knowledge. Thus, the optimal tactic for the
adaptation goals will be selected and executed.

Example. The environmental factors of interest in the adaptive air condition
control system are the indoor/outdoor temperature and humidity; therefore, the
monitored environment data at a specific time include values of four factors. The
simulation models imitate the changes of the indoor temperature and humidity
affected by outdoor conditions and the air condition control system’s control
values. The system’s possible adaptation tactics are defined by the system ca-
pabilities of each temperature and humidity control capability. For example, the
system can increase or decrease the temperature and humidity in 0.1◦C and
0.1% increments up to 5◦C and 5%, respectively, in a discrete simulation time
unit. The tactic space is a Cartesian product of the possible temperature and
humidity controls. The adaptation goal is to manipulate the indoor temperature
and humidity to the user’s desired conditions.

5.3 Monitoring Environmental Changes

Principle. (Step 1) The system constantly monitors the environment. The en-
vironment is measured as the values of the environmental conditions observable
by the sensors. The current environmental data are added to the environment
database. The current state of the system is also monitored, and the system
model is kept up to date.

Example. The air condition control system constantly monitors the in-
door/outdoor temperature and humidity. It accumulates the environment data
in its environment database.

5.4 Forecasting Future Environmental Change

Principle. (Step 2) PASTA forecasts future environmental changes based on
the accumulated historical environment data using a data analysis or forecast-
ing techniques. As the given historical environmental data consist of time-series
data, a time-series analysis and forecasting methods, such as random walk [30],
errortrend-seasonal [17], autoregressive integrated moving average model [7], or
any machine-learning techniques, can be applied, and the choice of the fore-
casting methods depends on domain engineers. What is important here is that
the predictions of future environmental changes based on historical data are
uncertain, so the results of the forecasting are non-deterministic expectations,
such as the probability density function of future environmental conditions. This
uncertainty will be resolved by SMC.

Example. The system predicts the outdoor temperature and humidity chan-
ges, which exhibit distinct repetitive patterns (seasonality) at 24-hour intervals.
As the environmental data of this system exhibit distinct seasonality, they can
be predicted naively with a random walk model using seasonal differencing [17].
Based on the historical temperature data and the forecasting algorithm, the
temperature change from the present to a few hours later can be predicted using
the probability density function. For example, if the current temperature at 2

PASTA: Proactive Adaptation Based on Statistical Model Checking 299

p.m. is 24◦C, the temperature at 3 p.m. can be expected to change according to
the uniform distribution between 24◦C and 30◦C.

5.5 Planning Adaptation Using SMC

Algorithm 1: PASTA adaptation planning

Input : envPrediction, sysModel, tacticSpace, goalProp
Output: optimalTactic
Procedure

evaluationSheet = [] ;
foreach tactic in tacticSpace do

simulationResultList = [] ;
while !samplesSufficient() do

envSample = makeSample(envPrediction);
simResult = simulate(envSample, sysModel, tactic);
addElement(simulationResultList, simResult);

end
evaluationResult = verify(simulationResultList, goalProp);
addElement(evaluationSheet, (tactic, evaluationResult));

end
optimalTactic = getOptimalTactic(evaluationSheet);

end

Principle. The adaptation planning of the PASTA approach involves search-
ing for the optimal tactic among possible adaptation tactics using SMC, as shown
in Algorithm 1. Evaluating an adaptation tactic using SMC consists of three
steps: sampling environmental changes, simulating adaptation tactics, and veri-
fying the simulation results. (Step 3) The forecasting result is non-deterministic,
so the sample generator produces a deterministic sample of possible future en-
vironmental conditions based on the forecasting result. SMC eliminates the un-
certainty of the nondeterministic future environment by producing statistically
sufficient samples, while PMC probabilistically verifies a stochastic model. The
number of samples is determined depending on the SMC algorithms, as explained
in the background section. (Step 4) The simulator takes the sample environment,
the system model, and an adaptation tactic as inputs. It applies the given tactic
to the system model, simulates the system in the sample of the future envi-
ronment, and returns a simulation result logs that represents the effects of the
adaptation tactic in the future environment. (Step 5) The verifier receives the
numerous simulation results and evaluates the tactic’s performance for the adap-
tation goal represented as a verification property. This process is performed for
all adaptation tactics, and (Step 6) the optimal tactic is selected based on all
evaluation (verification) results. Therefore, the planning time required for an
adaptation depends on the number of tactics, the number of required samples,
and the time for a single simulation of the model.

300 Y.-J. Shin et al.

Example. Based on the predicted range of the temperature change at 3 p.m.
(24◦C ∼ 30◦C), the samples of the future outdoor temperature (for example,
25◦C, 27◦C, and 29◦C) are randomly selected by an SMC algorithm. The sys-
tem model and an adaptation tactic (for example, lower the indoor temperature
by 3◦C) under the current evaluation are simulated with the sample environ-
ments, respectively. Based on the simulation results, the verifier evaluates the
adaptation results of the indoor temperature control. In this example, the av-
erage distance between the target condition and the current condition is used
as a verification property representing an adaptation goal, but the maximum
distance indicating the worst case, the presence or absence of events occurring
with small probabilities, or any temporal logic can be used as verification prop-
erties [19,23,34]. When all possible temperature and humidity control tactics are
verified (evaluated), the optimal one is selected.

5.6 Executing Adaptation

Principle. (Step 7) The chosen optimal adaptation tactic is applied to the
managed system by the actuators of the system.

Example. The adaptive air control system operates the selected optimal
temperature and humidity control. The controls affect the indoor conditions
through the system’s actuators.

5.7 PASTA Implementation

We also provide a PASTA reference architecture in Fig. 4 for the implementation
of this approach. It is a layered architecture of an SAS with the PASTA approach.
In the interaction layer, PASTA monitors the environment and managed system
through the sensor and affects them through the actuators, like typical SASs. In
the data analysis layer, there is a forecasting engine for the prediction of environ-
mental changes and a knowledge management module for keeping the knowledge
of the system up-to-date at all times. In the adaptation planner layer, a module
searches for the optimal adaptation tactic through interactions with the adap-
tation verification layer. In the adaptation verification layer, the SMC module
verifies an adaptation tactic governing the sample generator, the simulator, and
the verifier.

The sample generator produces samples of the future environment based on
the prediction of the forecasting engine. The simulator simulates the system
model with an adaptation tactic in the given sample future environment. The
verifier analyzes the simulation results to check the adaptation goal achieve-
ment, such as quality of service or invariant properties. In the knowledge layer,
there is an environment database, a system model manager, an adaptation tac-
tic repository, and an adaptation goal manager. This layer interacts with the
others, providing and updating the knowledge of the SAS. This architecture is
a reference, so it includes the essential components of an SAS with the PASTA
approach and can be extended.

PASTA: Proactive Adaptation Based on Statistical Model Checking 301

Fig. 4. PASTA reference architecture

In addition, to support engineers who develop SASs based on the PASTA ap-
proach, which was explained in the previous sections, we implemented a PASTA
skeleton based on the reference architecture with guiding comments and released
the source code on an open-source repository1. The skeleton is available in Java
and Python. Engineers should write application-specific codes following com-
ments tagged with “todo”. The class diagram of the skeleton is presented in Fig.
5. An adaptation is activated by the “adaptManagedSystem” operator. It pro-
motes easier PASTA implementation, allowing for the utilization of third-party
libraries or tools for some components, such as the forecasting engine or the
SMC module.

6 Evaluation

6.1 Research Questions

We demonstrate the feasibility of applying the PASTA approach as one efficient
alternative to PMC-based proactive adaptation to SAS development. There are
three research questions addressed.

RQ1: (Cost efficiency of PASTA) How fast is PASTA’s adaptation
planning? PASTA leverages SMC for efficient adaptation verification at run-
time. Although almost all existing proactive adaptation approaches utilize PMC
for the runtime verification of adaptation tactics, the PASTA approach is one of
the most efficient alternatives to PMC-based proactive adaptation approaches.
To determine the efficiency of PASTA, we compare the application planning time
of PASTA and the PMC-based adaptation. We confirm the differences in time
consumption between SMC- and PMC-based approaches in solving proactive
adaptation problems of the same complexities.

RQ2: (Adaptation planning accuracy of PASTA) How accurately
does PASTA search for the optimal adaptation tactic? PMC formally
examines a probabilistic model and verifies whether it satisfies the given proper-
ties; however, SMC examines the given model with numerous sample simulation

1 https://github.com/yongjunshin/PASTA

https://github.com/yongjunshin/PASTA

302 Y.-J. Shin et al.

Fig. 5. Class diagram of the PASTA skeleton

results, so it returns the statistical evidence of the model’s properties and thus
has the inevitable limitation that it can return inaccurate verification results
limited to the finite number of samples. It is known that SMC can produce
results similar to PMC [19,23,34], and for this research question, we compare
the similar proactive adaptation planning results of PASTA with the planning
results of the PMC-based approach. We determine how much accuracy has been
lost by the cost savings identified in RQ1 as well as whether the loss of accuracy
is acceptable.

RQ3: (Adaptation performance of PASTA) How effective is the
adaptation goal achievement performance of PASTA? For research ques-
tion 3, we examine whether the PASTA approach is actually effective in achiev-
ing the adaptation goals of SASs. To evaluate the adaptation performance of
PASTA, we compare the simulation execution results of approaches taking no
adaptation, reactive adaptation, PMC-based proactive adaptation, and PASTA.

6.2 Evaluation Setup

We evaluate the PASTA approach using two example SASs. One is the adap-
tive air condition control system, the illustrative example of this paper, and the

PASTA: Proactive Adaptation Based on Statistical Model Checking 303

Fig. 6. Adaptation tactic of traffic signal controller

other is an adaptive traffic signal controller of an intersection. The flow of cars in
cities changes with the passage of time, which causes traffic congestion. A smart
traffic signal controller that automatically controls traffic flow is a good exam-
ple of applying proactive adaptation because changes in traffic conditions can
be predicted based on historical data. Our signal controller predicts the traffic
volume in an intersection and identifies an optimal configuration of signal pat-
terns that minimizes the number of waiting vehicles. An actual signal controller
is abstracted, and durations of signal patterns are dynamically controlled, as
shown in Fig. 6. We applied PASTA to the two cases of different complexities
and simulated them based on actual data acquired from public data repositories
to make them realistic. Detailed descriptions of the two SASs and the evaluation
setup are provided in Table 1.

We compared the adaptation cost, accuracy, and performance of the PASTA
approach with the PMC-based proactive adaptation approach. The PMC-based
proactive adaptation approach was implemented following a pioneering paper
[26]. PRISM, a widely used probabilistic model checker, was utilized in the im-
plementation [21]. We used default hybrid computation engine. The models of
environments, systems, and tactics were specified in Markov decision processes
(MDPs), and the adaptation goals were specified in the reward-based properties
of the MDPs. As in paper [26], the following environmental changes have been
predicted based on the data, and the PRISM modules have been constructed and
verified based on the prediction. Thus, the optimal adaptation tactic has been
found. In addition to the PMC-based approach, non-adaption and reactive adap-
tation approaches were also compared in terms of a system’s goal achievement.
For the PASTA approach, SMCS, the naivest SMC algorithm as explained in
the background section, was implemented and evaluated by varying the number
of samples used for the verification from 10 to 10000 (10, 100, 1000, 2000, ...,
9000, 10000).

6.3 Evaluation Results

RQ1: We measured and compared the time spent on adaptation planning for
both case systems using the PASTA and PMC-based approaches. The adap-
tation planning time includes modeling or sampling time and probabilistic or
statistical verification time to identify the optimal tactic. Figs. 7 and 8 show the

304 Y.-J. Shin et al.

Table 1. SASs for evaluation

Adaptive air condition con-
trol system

Adaptive traffic signal con-
troller

Environment
Temperature and humidity condi-
tion

Car inflow to an intersection

Environment
complexity

2 environmental factors (tempera-
ture, humidity)

12 environmental factors (the
number of car inflow from 4 source
roads to other 3 destination roads:
12 directions)

Source of
real envi-
ronmental
data

Open weather data portal of -
South Korea (https://data.kma.
go.kr) - 2018 hourly weather data
of Seoul

Open traffic data of Daegu, South
Korea (https://car.daegu.go.kr) -
2018 Daily&Hourly Traffic data of
an intersection in Daegu

System Indoor air condition controller Traffic signal controller

System
model

Model of changing indoor temper-
ature and humidity affected by en-
vironment conditions and the sys-
tem’s control

Model of changing the number of
waiting cars in the intersection af-
fected by car inflow and traffic sig-
nals

Sensors
Temperature sensor, humidity
sensor

Traffic flow sensors for each 12 di-
rections

Actuators
Temperature control actuator, hu-
midity control actuator

Traffic lights

Adaptation
tactic

Temperature control value, hu-
midity control value

Configuration of traffic signal pat-
tern duration

Size of the
adaptation
tactic space

101 possible control values for
each temperature and humidity by
the system capability (-5, -4.9, ...
+4.9, +5 (◦C, %))

6,188 possible configurations of
traffic signal pattern duration
(Fig. 6)

Adaptation
cycle

1 hour 1 hour

Adaptation
goal

Target air condition (25, 50) - fol-
lowing ASHRAE comfort zone [8]

Minimizing the number of waiting
cars

Tactic
evaluation
criteria

Average difference between con-
trolled indoor condition and tar-
get condition

Average of the number of waiting
cars

Forecasting
method

Random walk model with seasonal
differencing [30]

Polynomial regression

evaluation results for each system. The reported planning time is the average
of 100 repeated experiments. The adaptation planning time for the PMC-based
approach is constant, but the time for PASTA increases in proportion to the
number of samples used for the SMC because the time for a single simulation
is almost constant. Unfortunately, the traffic signal controller was not able to
obtain adaptation planning results using PMC with a 2G memory because its
models and tactics were more complex than the air condition control system so
consume larger verification resource. Therefore, for the traffic signal controller,

PASTA: Proactive Adaptation Based on Statistical Model Checking 305

Fig. 7. Adaptation planning cost - Air condition control system

Fig. 8. Adaptation planning cost - Traffic signal controller

the adaptation planning time for the PMC-based approach was not assigned;
however, both systems confirmed that PASTA would complete adaptation plan-
ning much faster than the PMC-based approach. It was also confirmed that the
adaptation planning time of PASTA is proportional to the number of samples
and the complexity of the adaptation problem.

RQ2: To confirm the similarity of the optimal tactics that the PASTA and
PMC-based approaches found, we compared the optimal tactics returned by the
PASTA and PMC-based approaches in the same situation. To quantify the simi-

306 Y.-J. Shin et al.

larity, we defined two criteria. If the two tactics were the same, they were defined
as identical, and if they were adjacent in terms of the tactic specifications, they
were defined as similar. For example, for the air condition control system, tem-
perature control tactics +3◦C and +3.1◦C were adjacent because the tempera-
ture control unit is 0.1C based on the system’s capability, and the probability
that arbitrarily two tactics are adjacent is less than 2%. Because the samples
used by SMC are randomly generated, we repeated the PASTA experiments 100
times and report the percentage of identical or similar tactics compared to the
tactic returned by the PMC-based approach. Because the traffic signal controller
could not find the optimal tactic utilizing PMC, only the experimental results
of the air condition controller are shown in Fig. 9. We could see that PASTA
always found the same or similar optimal tactic as the PMC-based approach
except when using 10 samples; however, one limitation of utilizing SMC is that
regardless of how many samples we increased, we could not always obtain the
same results as the PMC-based approach’s results, which is considered an oracle.
This case system returned accurate results at approximately 50% on average.

Fig. 9. Adaptation planning accuracy - Air condition control system

RQ3: For RQ1 and RQ2, we showed that PASTA can quickly find a sub-
optimal adaptation tactic that is similar to the PMC-based approach’s result.
For RQ3, we obtained simulation results to confirm the adaptation performance
of the PASTA approach in comparison with non-adaptation, reactive adapta-
tion, and PMC-based proactive adaptation. As shown in Fig. 10, the goal of the
air condition control system was to keep the temperature at 25◦C, and proac-
tive adaptation approaches showed a better adaptation performance than other
strategies. In addition, the PASTA and PMC-based approaches exhibited a simi-
lar performance because PASTA has always made similar adaptation decisions to

PASTA: Proactive Adaptation Based on Statistical Model Checking 307

Fig. 10. Adaptation performance - Air condition control system

Fig. 11. Adaptation performance - Traffic signal controller

the PMC-based approach. In Fig. 11, the goal of the traffic signal controller was
to reduce the number of vehicles waiting at the intersection as much as possible,
and proactive adaptation using PASTA showed the best performance. These two
results demonstrate that proactive adaptation outperforms reactive adaptation
and PASTA shows similar adaptation performance to the PMC-based approach
with smaller verification cost.

308 Y.-J. Shin et al.

Table 2. Comparison of proactive adaptation approaches

PMC-based approach SMC-based approach (PASTA)

Forecasting time Forecasting time
Adaptation
cost

Modeling time (relatively high) Sampling time (relatively low)

Probabilistic verification time
(relatively high)

Statistical verification (Simulation
+ hypothesis testing) time (rela-
tively low)

Adaptation
accuracy and
performance

Regarded as an oracle (high,
limited to the quality of the
models)

Provides similar adaptation results
to PMC-based adaptation (rela-
tively low, limited to the quality of
the samples and models)

Pros
The optimal adaptation tactic
can be found.

A sub-optimal adaptation tactic can
be found with a lower adaptation
cost. If the model can be simulated,
it is not limited to a particular mod-
eling language.

Cons

High adaptation cost is re-
quired. Modelling language
is dependent on the model
checker.

The adaptation result is not fully
trustworthy.

Proper
application

Safety-critical system Real-time system

We compared two approaches of proactive adaptation: PMC-based and SMC-
based (PASTA) approaches. As we confirmed in our evaluation, the two ap-
proaches have their own advantages and disadvantages, so engineers should
carefully decide which to choose for their SAS development. We summarized
our insights regarding their characteristics in Table 2 to guide engineers’ de-
cision making. As we emphasized, the SMC-based approach makes adaptation
decisions, verifying a system’s adaptation tactics faster than the PMC-based ap-
proach. In addition, if it is possible to generate simulation results from the given
models, the modeling language is not limited to the model checker; however, it
is indubitable that an adaptation decision made by the SMC-based approach
may not be globally optimal. Therefore, the SMC-based approach may not be
suitable for some safety-critical systems, and the PMC-based approach could
be the better choice if the trustworthiness of the system is the most important
concern. For SASs requiring a lower adaptation cost, such as real-time systems,
PASTA is more appropriate than the PMC-based approach.

7 Threats to Validity

One threat is the selection of the SMC algorithm. We selected SMCS to demon-
strate the adaptation performance when selecting the simplest SMC algorithm.
SMCS is suitable for explicitly indicating SMC-based adaptation costs affected

PASTA: Proactive Adaptation Based on Statistical Model Checking 309

by the number of samples, and all other SMC algorithms have similar character-
istics. To reduce this threat, we also implemented SSP and SPRT and compared
them to the PMC-based approach, and both showed similar cost, accuracy, and
performance differences. Therefore, for this paper, only SMCS was selected and
explained by varying the number of samples.

Another threat is the implementation of the PMC-based adaptation ap-
proach. We implemented the PMC-based approach directly following paper [26].
This threat was reduced because the authors published all the structures and
codes of the PRISM module for the implementation of the approach. We im-
plemented two case systems according to the PRISM module code shown in
the paper. For a fair comparison, environment, system, and adaptation tactic
spaces of the same complexities were given to both the PMC-based and PASTA
approach.

8 Conclusion

We have proposed PASTA, a proactive adaptation approach using SMC, that
is one efficient alternative to PMC-based proactive adaptation. We applied the
PASTA approach to two realistic SASs. Through experiments based on actual
data, we confirmed that PASTA would make an adaptation decision similar to
the PMC-based proactive application approach in a shorter time. We then con-
firmed that the adaptation decision is more effective in achieving the system’s
goals than non-adaptation, reactive adaptation, and the PMC-based approach.
Currently, PMC-based approaches are considered the major trend in proactive
adaptation, but in this paper, we showed that the SMC-based proactive adap-
tation approach can be an efficient alternative. In addition, the algorithmic pro-
cesses, reference architecture, and open-source skeleton of PASTA proposed in
this paper will be of substantial help to developers who wish to apply PASTA to
SAS development. This study was primarily conducted to validate the PASTA
approach, but in the future, we plan to study methods such as effective sampling
and adaptation space reduction for a more effective PASTA approach, and we
also plan to apply PASTA to actual running systems.

Acknowledgement

This research is partly supported by the MSIT(Ministry of Science and ICT),
Korea, under the ITRC(Information Technology Research Center) support pro-
gram (IITP-2020-2020-0-01795) supervised by the IITP(Institute of Informa-
tion & Communications Technology Planning & Evaluation). This research is
partly supported by IITP grant funded by MSIT (No. 2015-0-00250, (SW Star-
Lab) Software R&D for Model-based Analysis and Verification of Higher-order
Large Complex System). This research is partly supported by Next-Generation
Information Computing Development Program through the National Research
Foundation of Korea(NRF) funded by MSIT (2017M3C4A7066212).

310 Y.-J. Shin et al.

References

1. Aichernig, B.K., Schumi, R.: Statistical model checking meets property-based test-
ing. In: 2017 IEEE International Conference on Software Testing, Verification and
Validation (ICST). pp. 390–400. IEEE (2017)

2. Anaya, I.D.P., Simko, V., Bourcier, J., Plouzeau, N., Jézéquel, J.M.: A prediction-
driven adaptation approach for self-adaptive sensor networks. In: Proceedings of
the 9th International Symposium on Software Engineering for Adaptive and Self-
Managing Systems. pp. 145–154. ACM (2014)

3. Angelopoulos, K., Papadopoulos, A.V., Silva Souza, V.E., Mylopoulos, J.: Model
predictive control for software systems with cobra. In: Proceedings of the 11th
international symposium on software engineering for adaptive and self-managing
systems. pp. 35–46. ACM (2016)

4. Boyer, B., Corre, K., Legay, A., Sedwards, S.: Plasma-lab: A flexible, distributable
statistical model checking library. In: International Conference on Quantitative
Evaluation of Systems. pp. 160–164. Springer (2013)

5. Calinescu, R., Ghezzi, C., Kwiatkowska, M., Mirandola, R.: Self-adaptive software
needs quantitative verification at runtime. Communications of the ACM 55(9),
69–77 (2012)

6. Cheng, B.H., de Lemos, R., Giese, H., Inverardi, P., Magee, J., Andersson, J.,
Becker, B., Bencomo, N., Brun, Y., Cukic, B., et al.: Software engineering for self-
adaptive systems: A research roadmap. In: Software engineering for self-adaptive
systems, pp. 1–26. Springer (2009)

7. Dagum, E.B.: The X-II-ARIMA seasonal adjustment method. Statistics Canada,
Seasonal Adjustment and Time Series Staff (1980)

8. De Dear, R.J., Brager, G.S.: Thermal comfort in naturally ventilated buildings:
revisions to ashrae standard 55. Energy and buildings 34(6), 549–561 (2002)

9. De Lemos, R., Giese, H., Müller, H.A., Shaw, M., Andersson, J., Litoiu, M.,
Schmerl, B., Tamura, G., Villegas, N.M., Vogel, T., et al.: Software engineering
for self-adaptive systems: A second research roadmap. In: Software Engineering
for Self-Adaptive Systems II, pp. 1–32. Springer (2013)

10. De Matteis, T., Mencagli, G.: Proactive elasticity and energy awareness in data
stream processing. Journal of Systems and Software 127, 302–319 (2017)

11. Elkhodary, A., Esfahani, N., Malek, S.: Fusion: a framework for engineering self-
tuning self-adaptive software systems. In: Proceedings of the eighteenth ACM SIG-
SOFT international symposium on Foundations of software engineering. pp. 7–16.
ACM (2010)

12. Fredericks, E.M., Ramirez, A.J., Cheng, B.H.: Towards run-time testing of dynamic
adaptive systems. In: Proceedings of the 8th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems. pp. 169–174. IEEE Press
(2013)

13. Garlan, D., Cheng, S.W., Huang, A.C., Schmerl, B., Steenkiste, P.: Rainbow:
Architecture-based self-adaptation with reusable infrastructure. Computer 37(10),
46–54 (2004)

14. Gerostathopoulos, I., Skoda, D., Plasil, F., Bures, T., Knauss, A.: Tuning self-
adaptation in cyber-physical systems through architectural homeostasis. Journal
of Systems and Software 148, 37–55 (2019)

15. Giese, H., Bencomo, N., Pasquale, L., Ramirez, A.J., Inverardi, P., Wätzoldt, S.,
Clarke, S.: Living with uncertainty in the age of runtime models. In: Models@ run.
time, pp. 47–100. Springer (2014)

PASTA: Proactive Adaptation Based on Statistical Model Checking 311

16. Hielscher, J., Kazhamiakin, R., Metzger, A., Pistore, M.: A framework for proactive
self-adaptation of service-based applications based on online testing. In: European
Conference on a Service-Based Internet. pp. 122–133. Springer (2008)

17. Hyndman, R.J., Athanasopoulos, G.: Forecasting: principles and practice. OTexts
(2018)

18. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1),
41–50 (Jan 2003)

19. Kim, Y., Kim, M., Kim, T.H.: Statistical model checking for safety critical hybrid
systems: An empirical evaluation. In: Haifa Verification Conference. pp. 162–177.
Springer (2012)

20. Krupitzer, C., Pfannemüller, M., Kaddour, J., Becker, C.: Satisfy: Towards a self-
learning analyzer for time series forecasting in self-improving systems. In: 2018
IEEE 3rd International Workshops on Foundations and Applications of Self* Sys-
tems (FAS* W). pp. 182–189. IEEE (2018)

21. Kwiatkowska, M., Norman, G., Parker, D.: Prism 4.0: Verification of probabilistic
real-time systems. In: International conference on computer aided verification. pp.
585–591. Springer (2011)

22. Larsen, K.G., Legay, A.: Statistical model checking past, present, and future. In:
International Symposium On Leveraging Applications of Formal Methods, Verifi-
cation and Validation. pp. 135–142. Springer (2014)

23. Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: An overview. In:
International conference on runtime verification. pp. 122–135. Springer (2010)

24. Metzger, A.: Towards accurate failure prediction for the proactive adaptation of
service-oriented systems. In: Proceedings of the 8th workshop on Assurances for
self-adaptive systems. pp. 18–23. ACM (2011)

25. Metzger, A., Neubauer, A., Bohn, P., Pohl, K.: Proactive process adaptation using
deep learning ensembles. In: International Conference on Advanced Information
Systems Engineering. pp. 547–562. Springer (2019)

26. Moreno, G.A., Cámara, J., Garlan, D., Schmerl, B.: Proactive self-adaptation under
uncertainty: a probabilistic model checking approach. In: Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineering. pp. 1–12. ACM (2015)

27. Moreno, G.A., Cámara, J., Garlan, D., Schmerl, B.: Efficient decision-making under
uncertainty for proactive self-adaptation. In: 2016 IEEE International Conference
on Autonomic Computing (ICAC). pp. 147–156. IEEE (2016)

28. Moreno, G.A., Cámara, J., Garlan, D., Schmerl, B.: Flexible and efficient decision-
making for proactive latency-aware self-adaptation. ACM Transactions on Au-
tonomous and Adaptive Systems (TAAS) 13(1), 3 (2018)

29. Shin, Y.J., Baek, Y.M., Jee, E., Bae, D.H.: Data-driven environment modeling for
adaptive system-of-systems. In: Proceedings of the 34th ACM/SIGAPP Sympo-
sium on Applied Computing. pp. 2044–2047 (2019)

30. Spitzer, F.: Principles of random walk, vol. 34. Springer Science & Business Media
(2013)

31. Sykes, D., Corapi, D., Magee, J., Kramer, J., Russo, A., Inoue, K.: Learning revised
models for planning in adaptive systems. In: 2013 35th International Conference
on Software Engineering (ICSE). pp. 63–71. IEEE (2013)

32. Wald, A.: Sequential tests of statistical hypotheses. The annals of mathematical
statistics 16(2), 117–186 (1945)

33. Xu, C., Yang, W., Ma, X., Cao, C.: Environment rematching: toward dependability
improvement for self-adaptive applications. In: Proceedings of the 28th IEEE/ACM
International Conference on Automated Software Engineering. pp. 592–597. IEEE
Press (2013)

312 Y.-J. Shin et al.

34. Younes, H.L.: Verification and planning for stochastic processes with asynchronous
events. Ph.D. thesis, Carnegie Mellon University (2005)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Understanding Local Robustness of Deep Neural
Networks under Natural Variations

Ziyuan Zhong , Yuchi Tian , and Baishakhi Ray

Columbia University, New York, NY, USA {ziyuan.zhong,
yuchi.tian}@columbia.edu, rayb@cs.columbia.edu

Abstract. Deep Neural Networks (DNNs) are being deployed in a wide
range of settings today, from safety-critical applications like autonomous
driving to commercial applications involving image classifications. How-
ever, recent research has shown that DNNs can be brittle to even slight
variations of the input data. Therefore, rigorous testing of DNNs has
gained widespread attention.
While DNN robustness under norm-bound perturbation got significant
attention over the past few years, our knowledge is still limited when
natural variants of the input images come. These natural variants, e.g.,
a rotated or a rainy version of the original input, are especially concerning
as they can occur naturally in the field without any active adversary and
may lead to undesirable consequences. Thus, it is important to identify
the inputs whose small variations may lead to erroneous DNN behaviors.
The very few studies that looked at DNN’s robustness under natural
variants, however, focus on estimating the overall robustness of DNNs
across all the test data rather than localizing such error-producing points.
This work aims to bridge this gap.
To this end, we study the local per-input robustness properties of the
DNNs and leverage those properties to build a white-box (DeepRobust-
W) and a black-box (DeepRobust-B) tool to automatically identify the
non-robust points. Our evaluation of these methods on three DNN mod-
els spanning three widely used image classification datasets shows that
they are effective in flagging points of poor robustness. In particular,
DeepRobust-W and DeepRobust-B are able to achieve an F1 score
of up to 91.4% and 99.1%, respectively. We further show that Deep-
Robust-W can be applied to a regression problem in a domain be-
yond image classification. Our evaluation on three self-driving car mod-
els demonstrates that DeepRobust-W is effective in identifying points
of poor robustness with F1 score up to 78.9%.

Keywords: Deep Neural Networks · Software Testing · Robustness of
DNNs.

1 Introduction

Deep Neural Networks (DNNs) have achieved an unprecedented level of perfor-
mance over the last decade in many sophisticated areas such as image recogni-
tion [38], self-driving cars [5] and playing complex games [65]. These advances
c© The Author(s) 2021
E. Guerra and M. Stoelinga (Eds.): FASE 2021, LNCS 12649, pp. 313–337, 2021.
https://doi.org/10.1007/978-3-030-71500-7_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71500-7_16&domain=pdf
http://orcid.org/0000-0001-9661-1233
http://orcid.org/0000-0002-9711-1449
http://orcid.org/0000-0003-3406-5235
https://doi.org/10.1007/978-3-030-71500-7_16

314 Z. Zhong et al.

(a) 0◦,
bird

(b) +6◦,
airplane

(c) +24◦,
cat

(d) -9◦,
dog

(e) 0◦,
bird

(f) +6◦,
bird

(g) +24◦,
bird

(h) -9◦,
bird

Fig. 1: (a)-(d) A well-trained Resnet model [14] misclassifies the rotated
variations of a bird image into three different classes though the original
un-rotated image is classified correctly. (e)-(h) The same model successfully
classifies all the rotated variants of another bird image from the same test
set. The sub-captions consist of rotation degrees and the predicted classes.
have also motivated companies to adapt their software development flows to in-
corporate AI components [3]. This trend has, in turn, spawned a new area of
research within software engineering addressing the quality assurance of DNN
components [11,20,32,36,40,42,55,57,73,74,91,92].

Notwithstanding the impressive capabilities of DNNs, recent research has
shown that DNNs can be easily fooled, i.e., made to mispredict, with a lit-
tle variation of the input data [14, 23, 73]—either adding a norm-bound pixel-
level perturbation into the original input [9, 23, 71], or with natural variants of
the inputs, e.g., rotating an image, changing the lighting conditions, adding fog
etc. [14, 52, 55]. The natural variants are especially concerning as they can oc-
cur naturally in the field without any active adversary and may lead to serious
consequences [73,92].

While norm-bound perturbation based DNN robustness is relatively well-
studied, our knowledge of DNN robustness under the natural variations is still
limited—we do not know which images are more robust than others, what their
characteristics are, etc. For example, consider Figure 1: although the original
bird image (a) is predicted correctly by a DNN, its rotated variations in images
(b)-(d) are mispredicted to three different classes. This makes the original image
(a) very weak as far as robustness is concerned. In contrast, the bird image
(e) and all its rotated versions (generated by the same degrees of rotation) in
Figure 1:(f)-(h) are correctly classified. Thus, the original image (e) is quite
robust. It is important to distinguish between such robust vs. non-robust images,
as the non-robust ones can induce errors with slight natural variations.

Existing literature, however, focuses on estimating the overall robustness of
DNNs across all the test data [4, 14, 88]. From a traditional software point of
view, this is analogous to estimating how buggy a software is without actually
localizing the bugs. Our current work tries to bridge this gap by localizing the
non-robust points in the input space that pose significant threats to a DNN
model’s robustness. However, unlike traditional software where bug localization
is performed in program space, we identify the non-robust inputs in the data
space. As a DNN is a combination of data and architecture, and the architecture
is largely uninterpretable, we restrict our study of non-robustess to the input
space. To this end, we first quantify the local (per input) robustness property of
a DNN. First, we treat all the natural variants of an input image as its neigh-
bors. Then, for each input data, we consider a population of its neighbors and

Understanding Local Robustness of DNNs under Natural Variations 315

measure the fraction of this population classified correctly by the DNN - a high
fraction of correct classifications indicates good robustness (Figure 1:e) and vice
versa (Figure 1:a). We term this measure neighbor accuracy. Using this metric,
we study different local robustness properties of the DNNs and analyze how
the weak, a.k.a. non-robust, points differ characteristically from their robust
counterparts. Given that the number of natural neighbors of an image can be
potentially infinite, first we performed a more controlled analysis by keeping the
natural variants limited to spatially transformed images generated by rotation
and translation, following the previous work [4, 14, 88]. Such controlled exper-
iments help us to explore different robustness properties while systematically
varying transformation parameters.

Our analysis with three well-known object recognition datasets across three
popular DNN models, i.e., a total of nine DNN-dataset combinations, reveal
several interesting properties of local robustness of a DNN w.r.t. natural variants:

– The neighbors of a weaker point are not necessarily classified to one single
incorrect class. In fact, the weaker the point is its neighbors (mis)classifications
become more diverse.

– The weak points are concentrated towards the class decision boundaries of the
DNN in the feature space.

Based on these findings, we further develop two techniques (a black-box and
a white-box) that can localize the points of poor robustness, thereby providing
a means of, input-specific, real-time feedback about robustness to the end-user.
Our white-box and black-box detectors can identify weak, a.k.a. non-robust,
points with f1 score up to 91.4% and 99.1%, respectively, at neighbor accuracy
cutoff 0.75. To further check the generalizability of our technique, we aim to de-
tect weak points w.r.t. a self-driving car application where we generated natural
input variants by adding rain and fog. Note that these are more complex im-
age transformations, and also the model works in a regression setting instead of
classification. These models take an image as input, and output a driving angle.
Our white-box detector can identify weak points with f1 score up to 78.9%.

In summary, we make the following contributions:
– We conduct an empirical study to understand the local robustness properties

of DNNs under natural variations.
– We develop a white-box (DeepRobust-W) and a black-box (DeepRobust-

B) method to automatically detect weak points.
– We present a detailed evaluation of our methods on three DNN models across

three image classification datasets. To check the generalizability of our find-
ings, we further evaluate DeepRobust-W in a setting with non-spatial trans-
formations (i.e., rain and fog), a different task (i.e., regression), and a safety-
critical application (i.e., self-driving car). We find that DeepRobust can
successfully detect weak points with reasonably good precision and recall.

– We made our code public at https://github.com/AIasd/DeepRobust.

https://github.com/AIasd/DeepRobust

316 Z. Zhong et al.

2 Background: DNN Testing

Existing studies have proposed different techniques to generate test data inputs
by perturbing input images for a DNN and use them to evaluate the robustness
of the DNN. Depending on how the input image is perturbed, the techniques for
generating DNN test data can be classified into three broad categories:

i) Adversarial inputs are typically generated by norm-based perturbation
techniques [9, 23, 39, 46, 53, 85] where some pixels of an input image (I) are
perturbed by norm-based distance (l1,l2 or linf) such that the distance between
the perturbed image and I is ≤ ε, where ε is a small positive value. These
adversarial examples are used to expose the security vulnerabilities of DNNs.

ii) Natural variations are generated through a variety of image transfor-
mations, and are used to evaluate the robustness of DNNs under such varia-
tions [13, 14, 73]. Sources of these variations include changes in camera configu-
ration, or variations in background or ambient conditions. The transformations
simulating these variations could be spatial, such as rotation, translations, mir-
roring, shear, and scaling on images, or non-spatial transformations, such as
changes in the brightness or contrast of an image. Here we first focus on spatial
transformations as opposed to adversarial one for two reasons. First, compared
with adversarial examples, which is fairly contrived, spatial transformations are
more likely to arise in more benign environments. Second, using simple para-
metric spatial transformations like rotations and translations, it is easier to sys-
tematically explore the local robustness properties. Later, to emulate a more
natural variation we add fog and rain on the images of self-driving car dataset
and evaluate our method’s generalizibility.

iii) GAN-based image generation techniques use Generative Adversarial Net-
work (GAN) to synthesize images. GAN is one class of generative models trained
as a minimax two-player game between a generative model and a discriminative
model [22]. GAN-based image generation has been successfully used to generate
DNN test data instances [92,93].
Standard Accuracy vs. Robust Accuracy. Standard accuracy measures how
accurately an ML model predicts the correct classes of the instances in a given
test dataset. Robust, a.k.a. adversarial accuracy, estimates how accurately an
ML model classifies the generated variants [76]. In this paper, we adopt a point-
wise robust accuracy measure, neighbor accuracy, to quantify the robustness of
a DNN for the neighbors around each data point.

3 Methodology

3.1 Terminology

Original Data Point: An original data point represents an original un-modified
data instance (image in our case) in the studied dataset. The original data points
can come from training, validation, or testing dataset, depending on the exper-
imental setting. In Figure 2, the triangle in the center is an original data point.

Understanding Local Robustness of DNNs under Natural Variations 317

Neighbors: Neighbors are images generated by the natural variations, e.g.,
spatial transformations applied to an original image. Since the transformation
parameters are continuous (e.g., degree of rotations), there can be an infinite
number of neighbors per image. In Figure 2, the small circles around an original
data point represent its neighbors.

Neighbor Accuracy: We define neighbor accuracy as the percentage of its
neighbors, including itself, that can be correctly classified by the DNN model.
Figure 2 illustrates this; here, red small circles indicate misclassified neighbors,
while the green small circles are correctly classified ones. The figure shows that
there are only five neighbors per original data point. In the left-hand-side dia-
gram, four out of five neighbors are correctly classified by the given DNN model.
If the original data point is correctly classified as well, the neighbor accuracy of
the original data is (5/6=) 83.3%. Similarly, in Figure 2 (right), four out of the
five neighbors have been misclassified by the model; if the original data point is
misclassified, the neighbor accuracy is (1/6=) 16.6%.

0

Robust Region Weak Region

weak original point

strong original point

misclassi ed neighbor

correctly classi ed neighbor

Fig. 2: Illustrating our terminologies.
The triangles are original points, and
the small circles are their neigh-
bors generated by natural variations.
The light-green region is robust with
higher neighbor accuracy, while the
light-red region is vulnerable. The
corresponding original points are ro-
bust and non-robust accordingly.

Robustness. An original data point
is strong, a.k.a. robust, w.r.t. the
DNN model under test if its neigh-
bor accuracy is higher than a pre-
defined threshold. Conversely, a weak,
a.k.a. non-robust, point has the neigh-
bor accuracy lower than a pre-defined
threshold. For example, at 0.75 neigh-
bor accuracy threshold, the black tri-
angle in Figure 2 is a strong point, and
the grey triangle is a weak point.

A region contains an original point
and all of its neighbors. If the original
point is strong (weak), we call the cor-
responding region as a robust (weak) region. In Figure 2, the light green region
is robust while the light red region is weak.

Neighbor Diversity: For multi-class classification task, different neighbors of
an original point can be mis-classified to different classes. Neighbor Diversity
score measures how many diverse classes a point’s neighbors are classified, and
is formally computed using Simpson Diversity Index (λ) [67]: λ =

∑k
i=1 p

2
i (1)

where k is the total number of possible classes and pi is the probability
of an image’s neighbors being predicted to be class i. Large Simpson Index
means low diversity. Let’s consider we have three possible classes A, B, and
C. Assume an image has 4 neighbors. Including the original image, there are
5 images in total. If two of the five images are classified as A, and rest are
classified as B, then λ = (2/5)2 + (3/5)2 + (0/5)2 = 0.52. In contrast, if two of
them are classified as A, and two are classified as B, and one is classified as C
then λ = (2/5)2+(2/5)2+(1/5)2 = 0.36. Clearly, the latter case is more diverse
and thus, has a lower λ score.

318 Z. Zhong et al.

Feature Representation: In a DNN, the neurons’ output in each layer capture
different abstract representation of the raw input, which are commonly known
as features, extracted by the current layer and all the preceding layers. Each
layer’s output forms the corresponding feature space. For a given input data
point, we consider the output of the DNN’s second-to-last layer as its feature
representation or feature vector.

3.2 Data Collection

Neighbor Generation: For the image classification tasks, for each original im-
age point, we generate its neighbors by combining two types of spatial transfor-
mations: rotation and translation. We carefully choose these two types as repre-
sentatives of non-linear and linear spatial transformations, respectively, following
Engstrom et al. [14]. In particular, following them, we generate a neighbor by
randomly rotating the original point by t (∈ [−30, 30]) degrees, shifting it by dx
(about 10% of the original image’s width i.e. ∈ [−3, 3]) pixels horizontally, and
shifting it by dy (about 10% of the original image’s height i.e. ∈ [−3, 3]) pixels
vertically. It should be noted that for image classification it is standard in the
literatures [14, 15, 86] to assume that the transformed image has the same label
as the original one. As the transformation parameters are continuous, there can
be infinite neighbors of an original data point. Hence, we sample m neighbors
for each original data point. We explore the impact of m in RQ2.

For the self-driving-car task where the model predicts steering angle, for each
original image point, we generate 50% neighbors with rain effect and the rest
50% with fog effects. We adopt a widely used self-driving car data augmentation
package, Automold [60], for adding these effects where we randomly vary the
degrees of the added effect. For the rain effect, we set “rain_type=heavy" and
everything else as default. For the fog effect, we set everything as default.
Estimating Neighbor Accuracy: To compute the neighbor accuracy of a
data point for a given DNN model, we first generate its neighbor samples by
applying different transformations—spatial for image classification and rain or
fog for self-driving-car application. Then we feed these generated neighbors into
the DNN model and compute the accuracy by comparing the DNN’s output with
the label of the original data point. For self-driving-car application, we follow the
technique described in DeepTest [73]. More specifically, if the predicted steering
angle of the transformed image is within a threshold to the original image, we
consider it as correct. This ensures that any small variations of steering angle
are tolerated in the predicted results. We then compute neighbour accuracy =

#correct predictions
original point+#total neighbours .

3.3 Classifying Robust vs. Weak Points

We propose two methods, DeepRobust-W and DeepRobust-B, to identify
whether an unlabeled input is strong or weak w.r.t. a DNN in real time. If a test
image is identified as a weak point, although it may be classified correctly by

Understanding Local Robustness of DNNs under Natural Variations 319

the pre-trained model, this image is in a vulnerable region where a slight change
to this image may cause the pre-trained DNN to misclassify the changed input.

Original
Training

Data

Pre-trained
DNN under

Test
Generate
Neighbors

Strong/Weak
Points

DEEPROBUST-W

feature
vectors

Neighbor
Accuracy

ground-truth
labels

(a) workflow - training

Test Data
Point

Pre-trained
DNN under

Test
feature
vectors DEEPROBUST-W

Strong
Point

Weak Point

(b) workflow - testing
Fig. 3: Workflow of DeepRobust-W

DeepRobust-W: White-box Classifier This is a binary classifier designed
to classify an image (in particular, image feature vector) as a strong or weak
point. Here, we assume that we have white box access to the DNN under test
to extract the feature vectors of the input images from the DNN. These feature
vectors are given as inputs to DeepRobust-W. Figure 3 shows the workflow.
Training : During training of DeepRobust-W, we first feed all the original
training images and their neighbors to the DNN under test. From the DNN
outputs, we compute the neighbor accuracy for each data point in the training
set and label each point strong/weak depending on whether its neighbor accuracy
is higher/lower than a predefined threshold. For each original data point, we also
extract the output of the DNN’s second-to-last layer as its feature vector. We
use these vectors as inputs to train DeepRobust-W and the outputs are the
corresponding strong/weak labels.
Testing : Given a test input, we extract its feature vector by feeding the test
image to the DNN under test and then feed the extracted feature vector to the
trained DeepRobust-W, which predicts if the input is a strong or weak point.

Test Data

Pre-trained
DNN under

Test
Generate
Neighbors

Diversity
Score

Weak
Point

Diversity
Score Threshold DEEPROBUST-B

Strong
Point

Fig. 4: Workflow of DeepRobust-B

DeepRobust-B: Black-box Clas-
sifier This is also a binary classifier
that is intended to classify an image
to strong/weak point. However, here
the user does not have white box ac-
cess to the DNN under test. Figure 4
shows the workflow.

Given a test input, we first randomly generate some of its neighbors. We then
query the DNN under test with all these neighbors and compute the diversity
score, as per Equation 1. If the neighbor diversity score (inversely correlated
with neighbor diversity) is greater than a given diversity score threshold, the
given test input is classified as a strong point; otherwise, a weak point.

Notice that, in this method, we do not need a training step. We only need the
diversity score threshold, which can be empirically set using a ground-truth data
set. In particular, we first calculate the neighbor accuracy and diversity score of
each pre-annotated point. Next, based on a given neighbor accuracy threshold,

320 Z. Zhong et al.

we identify the weak points, as the ground truth. The highest diversity score
among these weak points is chosen as the diversity score threshold.

Usage Scenario DeepRobust-W/B works in a real-world setting where a cus-
tomer/user runs a pre-trained DNN model in real-time which constantly receives
inputs and wants to test if the prediction of the DNN on a given input can be
trusted. DeepRobust-W assumes that the user has white-box access to DNN
under test and all the training data used to train the DNN. DeepRobust-W
leverages the feature vector and neighbor accuracy of the training data to train
the classifier, which can notify the user if the current input is a strong point or
weak point. If the input is classified as strong point, the user can give more trust
to the original DNN’s prediction. On the other hand, if the point is classified as a
weak point, the user may want to be more cautious about the DNN’s prediction
and conduct additional inspections.

In the blackbox setting, DeepRobust-B assumes the user does not have
white-box access to DNN under test. DeepRobust-B comes with a small over-
head of transforming the input multiple times to get some neighbors and query-
ing DNN under test on them to estimate the diversity score.

4 Experimental Design

4.1 Study Subjects

Image Classification Similar to many existing works [36, 41, 61, 73, 74, 92] on
DNN testing, in this work, we use image classification application of DNNs as
the basis of our investigation. This is one of the most popular computer vision
tasks, where the model tries to classify the objects in an image or video.
Datasets: We conduct our experiments on three image classification datasets:
F-MNIST [87], CIFAR-10 [37], and SVHN [89].

– CIFAR-10: consists of 50,000 training and 10,000 testing 32x32 color images.
Each image is one of ten digit classes.

– F-MNIST: consists of 60,000 training images and 10,000 testing 28x28 gray-
scale images. Each image is one of ten fashion product related classes.

– SVHN: consists of 73,257 training images and 26,032 testing images. Each
image is a 32x32 color cropped image of house numbers collected from Google
Street View images.

Architectures: The popular DNN-based image classifiers are variants of con-
volutional neural networks (CNN) [28,38,79]. Here we study the following three
architectures for all the three datasets:
– ResN: Following Engstrom et al. [14], we use ResN model with 4 groups of

residual layers with filter sizes 16, 16, 32, and 64, and 5 residual units each.
– VGG: We use the same VGG architecture as proposed in [66].

Understanding Local Robustness of DNNs under Natural Variations 321

– WRN: We use a structure with block type (3, 3) and depth 28 in [90] but
replace the widening factor 10 with 2 for less parameters and faster training.
We train all the models from scratch using widely used hyper-parameters and

achieve accepted level of validation natural accuracy). When training models on
CIFAR-10, we pre-process the input images with random augmentation (random
translation with dx, dy ∈ [−2, 2] pixels both horizontally and vertically) which is
a widely used preprocessing step for this dataset. When training models on the
other two datasets, plain images are directly fed into the models. The natural
accuracies and robust accuracies of the models are shown in Table 1.

Table 1: Study Subjects (values are in percent-
age)
Dataset CIFAR-10 SVHN F-MNIST

Model VGG ResN WRN VGG ResN WRN VGG ResN WRN

nat acc’ 89.0 89.3 90.6 94.5 95.3 95.2 93.4 93.5 93.6
rob acc* 75.5 68.5 74.8 78.1 78.9 81. 61.1 63.0 64.2
’Natural accuracy. *Robust accuracy is estimated as the

average neighbor accuracy for test data points.

Steering Angle Prediction
We further evaluate Deep-
Robust-W in a self-driving
car application to show that
it can be applied into a regres-
sion task. These models learn
to steer (i.e., predict steering
angle) by taking in visual inputs from car-mounted cameras that record the
driving scene, paired with the steering angles from a human driver.
Datasets: We use the dataset by Stocco et al. [68], which is collected by the
authors driving on three tracks of different environments in the Udacity Simu-
lator [77]. It consists of 37888 central camera training images and 9427 central
camera evaluation images. Each image is of size 320x120.
Architectures: We evaluate our method on the three pre-trained DNN models
used in [68]: NVIDIA DAVE-2 [6], Epoch [2], and Chauffeur [1]. These models
have been used by many previous testing works on self-driving car [55,68,73].

4.2 Evaluation

Evaluation Metric. We evaluate both DeepRobust-W and DeepRobust-B
for detecting weak points under twelve and nine different DNN-dataset combina-
tions, respectively, in terms of precision, recall, and F1 score. Let us assume that
E is the number of weak points detected by our tool and A is the the number
of true weak points in the ground truth set. Then the precision and recall are
|A∩E|
|E| and |A∩E|

|A| , respectively. F1 score is a single accuracy measure that con-
siders both precision and recall, and defined as 2×precision×recall

precision+recall . We perform
each experiment for two thresholds of neighbor accuracy that defines strong vs.
weak points: 0.75 and 0.50.
Baselines. We compare DeepRobust-W and DeepRobust-B with two base-
lines. One naive baseline (denoted random) is randomly selecting the same num-
ber of points as detected by our proposed method to be weak points. Another
baseline (denoted top1) is based on prediction confidence score—if the confi-
dence of a data point is higher than a pre-defined cutoff we call it a strong point,
weak otherwise. This baseline is based on the intuition that DNNs might not be
confident enough to predict the weak points.

322 Z. Zhong et al.

5 Results

In this section, we elaborate on our results. In our preliminary experiments,
we have two findings regarding neighbor accuracy. First, the neighbor accuracy
vary widely across data points and there is a non-trivial number of points hav-
ing relatively low neighbor accuracy. For example, for all the models trained on
CIFAR-10 dataset, 40% of training data and 42% of testing data have neighbor
accuracy <0.75, and 16% of training data and 20% of testing data have neigh-
bor accuracy <0.50. These points degrade the aggregated spatial robustness of
the model. The same finding holds for the other two datasets. Second, the dis-
tribution of neighbor accuracy for a dataset is similar across different models.
For CIFAR-10, F-MNIST and SVHN, 60%, 76%, and 81%, respectively, of data
points have neighbor accuracy change < 0.2 across any two models on the same
dataset. This implies that a large portion of data points’ neighbor accuracy is
independent of the model selected.

The first observation shows that neighbor accuracy is a distinguishable mea-
sure for local robustness for the datasets and models we study. The second
observation implies that the properties of points of low neighbor accuracy may
be similar across models for each dataset. Following these two observations, we
dive deeper and explore the characteristics of data points with different neighbor
accuracy in RQ1. We then evaluate the performance of DeepRobust-W and
DeepRobust-B which are developed based on the observations from RQ1 in
RQ2 and RQ3, respectively. Finally, in RQ4, we evaluate the generalizability of
our method by applying DeepRobust-W in a regression task for self-driving
cars under more complex transformations.

RQ1. What are the characteristics of the weak points?
We explore the characteristics of robust vs. non-robust points in their feature

space. In particular, we check the difference in feature representations between:
a) robust and non-robust points, and b) points with different degrees of robust-
ness.

RQ1a. Given a well trained model, do the feature representations of robust and
non-robust points vary? In this RQ, we first explore how robust (i.e., strong)
and non-robust (i.e., weak) data points are distributed in the feature space.

We apply t-SNE[44], a widely used visualization method, to visualize the
distribution of points of different neighbor accuracy in the representation space
for all three datasets when using ResN as the classifier. Figure 5 shows the
visualization of feature vectors from two randomly picked classes with colors
indicating the neighbor accuracy of each point. The darker a point’s color is,
the lower its neighbor accuracy is. It is evident that most points of low neighbor
accuracy tend to be further away from the class center.

To numerically verify this observation, first, we define a class center ck for
each class k as the median value of the feature vectors of all the points from class
k. Thus, if fi is the feature of a point at ith dimension and f̂ik is the median
of the ith dimension features for all the points in class k, ck is defined to be
(ˆf1k, ..., ˆfjk, ..., ˆfnk).

Understanding Local Robustness of DNNs under Natural Variations 323

(a) CIFAR-10 (b) F-MNIST (c) SVHN
Fig. 5: The t-SNE plots of data points from two randomly chosen classes
across three datasets using ResNet. Darker color indicates lower neighbor
accuracy.

The reason we take median rather than mean is that it is a more sta-
tistically stable measure and is less likely to be heavily influenced by out-
liers in the representation space. Then, for every point p, we define a ratio:

r(p) =
d
(p)
same_class

d
(p)
nearest_other_class

, where d
(p)
same_class is the distance of the p-th point’s

feature vector to its own class center and d
(p)
nearest_other_class is the distance of

the p-th point’s feature vector to the class center of its closest other class. A
small r(p) means that the point p is close to its own class center while far from
other classes, i.e., p is far from the decision boundary. In contrast, a larger r(p)

indicates that the point p is closer to some other classes, i.e., it is closer to the
decision boundary. Table 2: Weak and strong points ratio, and co-

hen’s d effect size
Dataset CIFAR-10 SVHN F-MNIST

Model ResN WRN VGG ResN WRN VGG ResN WRN VGG

Neighbor Accuracy Cutoff=0.5

rw 0.915 0.955 1.004 1.046 1.103 0.997 0.746 0.734 0.976
rs 0.609 0.584 0.975 0.294 0.309 0.977 0.297 0.293 0.930
d* 1.368 1.736 1.163 2.077 2.428 1.420 1.426 1.312 1.332

Neighbor Accuracy Cutoff=0.75

rw 0.778 0.796 0.992 0.604 0.671 0.983 0.516 0.496 0.953
rs 0.588 0.558 0.973 0.260 0.274 0.977 0.253 0.257 0.918
d* 0.786 1.040 0.749 0.860 1.111 0.401 0.749 0.642 0.937

*Cohen’s d effect size of 0.20 = small, 0.50 = medium,
0.80 = large, 1.20 = very large, and 2.0 = huge [10,59].

We then measure the av-
erage r(p) among the weak
points (denoted as rw) and
among strong points (de-
noted as rs) for all three
datasets across three mod-
els. Besides, we also calcu-
late mann-whitney wilocox
test[47] and cohen’s d effect
size [10] between the two ra-
tios to test if the two ratios in-
deed have statistically signifi-
cant difference and how large the difference is.

As shown in Table 2, for both the neighbor accuracy cutoff (0.5 and 0.75),
except one setting, the cohen’s d effect size for every setting is larger than 0.50,
which implies a medium to very large difference. Besides, for every setting, the
mann-whitney wilocox test value (not shown in the table) is smaller than 1e−80,
which implies the difference is indeed statistically significant.

The visualization and numerical results imply that most weak points are
close to the decision boundaries between classes. Note that similar observation
was also observed by Kim et. al. [36] in case of adversarial perturbation. In
particular, they find that adversarial examples tend to be closer to class decision
boundaries. In contrast, we focus on spatial robustness and find that spatially
non-robust points are closer to decision boundaries.

324 Z. Zhong et al.

RQ1b. Given a well trained model, do the feature representations of the data
points vary by their degree of robustness? By analyzing the classifications of
the neighbors of weak vs. strong points, we observe that the weaker a point is,
its neighbors are more likely to be classified in different classes. We quantify this
observation by computing diversity of the outputs a point’s neighbor; We adopt
Simpson Diversity Index (λ) [67] as defined in Equation (1).

Table 3: Spearman Correlation between
Neighbor Accuracy and Simpson Diversity
Index. All coefficients are reported with sta-
tistical significance (p < 0.05).
Dataset CIFAR-10 SVHN F-MNIST

Model ResN WRN VGG ResN WRN VGG ResN WRN VGG

corr.coeff. 0.853 0.909 0.946 0.970 0.984 0.983 0.923 0.962 0.8947

Table 3 shows the Spear-
man correlation between neigh-
bor accuracy and λ on the
three datasets and three mod-
els for each. Note that while
calculating the correlation, we
remove points with neighbor
accuracy 100% since there are many points having 100% neighbor accuracy and
tend to bias upward the Spearman Correlation; if we include points with neigh-
bor accuracy 100%, the correlations become even higher. We notice that for any
setting, the Spearman Correlation is never lower than 0.853. This indicates that
neighbor accuracy and diversity are highly correlated with each other. For exam-
ple, the bird image in Fig.1a has neighbor accuracy 0.49 and diversity 0.36, while
the bird image in Fig.1e has neighbor accuracy 1 and diversity 1. This shows,
the classifier tends to be confused about weak points and mispredicts them into
many different kinds of classes.

Result 1: In the representation space, weak points tend to lie towards the
class decision boundary while the strong points lie towards the center. The
weaker an image is, the model tends to be more confused by it, and classify
its neighbors into more diverse classes.

RQ2. Can we detect the weak points in a white-box setting?

We explore this RQ using DeepRobust-W, as discussed in Section 3.3.
DeepRobust-W takes the feature vector of a data point as input and classifies
it to a strong/weak point. We implement DeepRobust-W with a simple 4-layer,
fully connected neural network architecture with hidden layer dimensions 1500,
1000, and 500, respectively.

Table 4 shows the result. At 0.75 setting, DeepRobust-W has F1 up to
91.4%, with an average of 76.9%. At 0.50 setting, DeepRobust-W detects weak
points with average F1 of 61.1%, while it can go up to 79.1%. DeepRobust-W
consistently performs significantly better than the baseline methods.

The top1 has very good precision, since a mis-classified image with low con-
fidence tends to have very poor local robustness. However, there also exist many
images that are correctly classified with high confidence yet have poor local ro-
bustness. The miss of these points leads the top1 to have very poor recall and
thus even worse F1 compared with the random baseline. Our method comes to
aid by providing high recall at the same time of decent precision.

Understanding Local Robustness of DNNs under Natural Variations 325

Table 4: Performance of Deep-
Robust-W and the baseline
methods for predicting weak
points.
dataset model method 0.75 neighbor acc. 0.50 neighbor acc.

f1 tp fp f1 tp fp

CIFAR-10 ResN ours 0.79 3844 764 0.581 1290 664
top1 0.376 1218 206 0.182 255 120
random 0.488 2372 2236 0.233 520 1445

WRN ours 0.747 2901 906 0.56 947 610
top1 0.35 889 222 0.183 189 90
random 0.395 1534 2273 0.154 261 1296

VGG ours 0.654 2222 938 0.493 747 543
top1 0.439 1070 153 0.266 278 106
random 0.332 1127 2033 0.132 200 1090

SVHN ResN ours 0.755 6814 2530 0.577 1414 674
top1 0.315 1665 142 0.267 452 122
random 0.343 3095 6249 0.086 210 1878

WRN ours 0.709 5062 2143 0.582 1404 1055
top1 0.292 1238 130 0.203 275 85
random 0.28 2000 5205 0.095 229 2230

VGG ours 0.595 5214 3367 0.498 1272 911
top1 0.172 840 67 0.139 221 52
random 0.341 2986 5595 0.094 240 1943

F-MNIST ResN ours 0.914 6034 873 0.791 2144 556
top1 0.124 428 11 0.039 57 7
random 0.657 4340 2567 0.263 712 1988

WRN ours 0.896 5743 652 0.76 2033 641
top1 0.144 490 14 0.045 63 8
random 0.638 4093 2302 0.281 752 1922

VGG ours 0.864 6348 1231 0.654 1895 1082
top1 0.104 392 5 0.028 39 5
random 0.734 5393 2186 0.295 854 2123

Notice that DeepRobust-W’s perfor-
mance depends on the training data selec-
tion, mainly (a) how many weak vs. strong
points are used to train the model, and
(b) how many neighbors are generated
per point to decide if it is strong/weak.
To investigate (a), we assign a weight to
each input point, indicating how likely it
gets selected to train DeepRobust-W.
In particular, for an input i, a weight
wi :=

1+(1−ni)
m×100m

1+100m is computed, where
n is its neighbor accuracy, and m is a
configurable parameter; with larger m,
more weak points are sampled and Deep-
Robust-W will be trained with more
weak points, and vice versa.

Table 5A shows the performance: as
m increases, the detector trades precision
for recall. In this way, choosing different
values of m, the precision-recall trade-off
of the detector can be adjusted according
to a user’s need. From a different perspec-

tive, this way of oversampling weak points also addresses the potential problem
of imbalanced data when the weak points are much less than the strong points.
Table 5: DeepRobust-W performance using different sampling strategies
for training

A: with varying number of strong/weak points

dataset m prec recall tp fp f1

CIFAR-10 0 0.660 0.518 1290 664 0.581
1 0.615 0.599 1490 932 0.607
2 0.544 0.699 1740 1460 0.612

SVHN 0 0.677 0.502 1414 674 0.577
1 0.575 0.653 1837 1357 0.612
2 0.332 0.767 2160 4356 0.463

F-MNIST 0 0.794 0.787 2144 556 0.791
1 0.746 0.839 2284 777 0.79
2 0.712 0.871 2372 962 0.783

B: with varying number of neigbours

dataset #neighbors prec recall tp fp f1

CIFAR-10 6 0.662 0.389 967 493 0.49
12 0.685 0.384 955 440 0.492
25 0.665 0.502 1250 629 0.572
50 0.660 0.518 1290 664 0.581

200 0.683 0.507 1261 585 0.582

SVHN 6 0.723 0.403 1136 436 0.518
12 0.672 0.527 1483 725 0.59
25 0.619 0.629 1771 1090 0.624
50 0.632 0.605 1703 993 0.618

200 0.667 0.550 1550 774 0.603

F-MNIST 6 0.817 0.727 1981 443 0.77
12 0.784 0.790 2153 592 0.787
25 0.773 0.787 2143 629 0.78
50 0.836 0.727 1981 390 0.778

200 0.778 0.812 2211 632 0.794

Next, we check how DeepRobust-W’s performance is dependent on the
number of sampled neighbors, because a data point can potentially have infinite
neighbors. Table 5B shows that the number of neighbors does not have much
influence on the performance of the detector once it goes beyond some value (F1
score change less than 3.5 percentage point between 25 and 200 samples) for
all the three datasets. Thus, we choose 50 for all of our experiments. For future
work, a statistical bound with confidence intervals for neighbor accuracy can be
estimated by modeling neighbor accuracy using distributions like folded normal.

326 Z. Zhong et al.

Result 2: DeepRobust-W can identify weak points with reasonably high
F1 score: on average 76.9%, at 0.75 neighbor accuracy cut-off.

RQ3. Can we identify the weak points in a black-box set-
ting?

We explore this RQ using DeepRobust-B, as discussed in Section 3.3. We
assume only having access to unlabeled testing data and the model under test as
a black-box. To evaluate DeepRobust-B, we spatially transform each test input
m times by randomly applying dω ∈ [−30,+30] degrees rotation, dx ∈ [−3,+3]
pixels horizontal translation, and dy ∈ [−3,+3] pixels vertical translation. We
then calculate the output diversity score (λ) based on Equation (1) and rank
the test images based on λ. Finally, we mark top k images as potential most
non-robust points. The parameter k is chosen according to users’ need.

Fig. 6: The spearman correlation
coeff. between diversity score (λ)
and neighbor accuracy, with vary-
ing #neighbors (m).

Fig. 7: AUC-ROC curve with neighbor
accuracy cutoff at 0.75. The red ver-
tical line indicates when the diversity
score threshold is chosen from train-
ing data.

With each test data, Deep-
Robust-B queries the model with m
neighbors to compute λ. Since query-
ing the classifier comes with an over-
head, our goal is to achieve an optimal
accuracy with minimal queries (i.e., m). To determine an optimal m value, we
explore the spearman correlation between diversity score and neighbor accuracy,
with varying m, when running ResN on all the three datasets (see Figure 6). The
correlation increases as m increases, as with more query λ becomes more accu-
rate, and so the neighbor accuracy. We notice that at m = 15, the correlation
coefficients across all the experimental settings reach above 0.8, and the rate of
increase begins to slow down significantly. The results for the other two archi-
tectures are highly similar. Thus, we set m = 15 as default for DeepRobust-B.

Next, we evaluate DeepRobust-B’s performance. We plot AUC-ROC by
changing top− k at m = 15 and compare our method with the random baseline
and the top1 baseline as before. As shown in Figure 7, our method performs much
better than the random baseline. In particular, our proposed method achieves
AUC higher than 0.87 for all settings when neighbor accuracy cutoff is 0.5 and
0.97 when neighbor accuracy cutoff is 0.75.

Instead of above ranking based scheme, DeepRobust-B can also be used as
a classifier if a diversity threshold is given (see Section 3.3). Here, we estimate
the threshold using pre-annotated training data.

Understanding Local Robustness of DNNs under Natural Variations 327

Table 6: Performance of Deep-
Robust-B and the baseline meth-
ods for predicting weak points.
dataset model method 75% 50%

f1 tp fp f1 tp fp

CIFAR-10 ResN ours 0.939 4714 257 0.622 1454 801
top1 0.376 1218 206 0.182 255 120
random 0.501 2516 2455 0.234 549 1706

WRN ours 0.938 3657 171 0.585 986 604
top1 0.35 889 222 0.183 189 90
random 0.383 1494 2334 0.182 307 1283

VGG ours 0.945 3397 148 0.682 1087 390
top1 0.439 1070 153 0.266 278 106
random 0.36 1296 2249 0.153 244 1233

SVHN ResN ours 0.956 8371 365 0.67 1845 858
top1 0.315 1665 142 0.267 452 122
random 0.336 2944 5792 0.102 280 2423

WRN ours 0.963 6827 227 0.718 1602 514
top1 0.292 1238 130 0.203 275 85
random 0.275 1950 5104 0.085 191 1925

VGG ours 0.976 8608 144 0.779 2138 454
top1 0.172 840 67 0.139 221 52
random 0.339 2997 5755 0.102 279 2313

F-MNIST ResN ours 0.987 6422 81 0.802 2316 546
top1 0.124 428 11 0.039 57 7
random 0.655 4265 2238 0.289 835 2027

WRN ours 0.989 6246 70 0.857 2297 360
top1 0.144 490 14 0.045 63 8
random 0.631 3987 2329 0.274 736 1921

VGG ours 0.991 7078 60 0.847 2393 418
top1 0.104 392 5 0.028 39 5
random 0.711 5084 2054 0.277 784 2027

We evaluate precision and recall of
DeepRobust-B in the nine DNN-dataset
combinations under neighbor accuracy
cutoffs 0.5 and 0.75. Table 6 shows the re-
sult. At 0.75 setting, DeepRobust-B has
f1 up to 99.1%, with an average of 96.5%.
At 0.50 setting, DeepRobust-B detects
weak points with average f1 of 72.9%,
while it can go up to 85.7%. It consistently
produces better estimation than the top1
baseline and the random baseline. This
shows that our black-box method can ef-
fectively identify weak points.

Note that, generating the spatial
transformations and querying the model
with it under black box setting is fast. Pre-
vious black box methods for adversarial
perturbation work in such fashion [26,51].
For example, using CIFAR-10 , when we
use a batch with size 100, the average
transformation+query time for one image

is 0.031 ± 0.015 ms. For the other two datasets, the overhead is similar. Thus,
to for m = 15 queries, it takes only 0.465± 0.225 ms, which is a negligible over-
head for most real-world DNN based vision applications. This implies that our
black-box method can also be used in real time for many applications.

Result 3: Given only black-box access to the DNN classifier, DeepRobust-
B can identify weak points with f1 that are much better than those of using
top1 method or random method.

RQ4. How generalizable are these findings?
The local robustness issues also exist in more critical applications like self-

driving-car. Here we explore more complex transformations, i.e., adding rain and
fog to the driving scenes. As shown in Figure 8, among those correctly classified
data points, there is a non-trivial portion (45.8%) of them (in the heatmap, more
red signified weaker) suffer from low (<0.75) neighbor accuracy.

Note that, here, we test regression models, which take images of driving
scenes as inputs and output the corresponding steering angles.

Let a set of outputs predicted by a DNN be denoted by {θ̂o1, θ̂o2, ..., θ̂on}, and
ground truth labels for the original (unmodified) image points be {θ1, θ2, ..., θn}.
If the difference between predicted steering angle θ̂oi of a transformed image and
the ground truth label of the original image θi is above a threshold, we consider
it as incorrect.

The threshold λMSEorig is defined following DeepTest’s [73] as MSEorig =
1
n

∑n
i=1(θi − θ̂oi)

2 . MSE is the Mean Square Error between the outputs and

328 Z. Zhong et al.

the manual labels, and λ is a positive coefficient that is chosen to reflect a user’s
tolerance on the deviation. Note that there is no softmax layer (and thus no
confidence score) in these regression models so the top1 baseline method cannot
be used here.

Fig. 8: The t-SNE plot of correctly
classified data points from Self-
Driving dataset by the epoch
model. data points are colored
based on neighbor accuracy.

Table 7 shows the result when λ = 3.
At 0.75 setting, DeepRobust-W has f1
score up to 78.9%, with an average of
58.2%. At 0.50 setting, DeepRobust-W
detects weak points with an average f1 of
47.9%, while it can go up to 68.2%. It con-
sistently produces better estimation than
the random baseline under all the settings.
It should be noted that our observation is
valid for all the λ used in [73] from λ equal
to 1 to 5. This shows that our proposed
method DeepRobust-W can be applied
to regression problems with more complex natural transformations.
model method 0.75 neighbor acc. 0.50 neighbor acc.

f1 tp fp f1 tp fp

chauffeur ours 0.417 555 547 0.346 339 384
random 0.146 194 908 0.096 94 629

epoch ours 0.789 4354 1112 0.682 2641 1127
random 0.586 3234 2232 0.411 1592 2176

dave2 ours 0.541 979 471 0.409 475 246
random 0.193 350 1100 0.121 141 580

Table 7: Performance of Deep-
Robust-W for predicting weak
points of Self-Driving dataset

It should also be noted that it is un-
realistic to use DeepRobust-B for this
task for two reasons: It is impractical
to try different variations of an image
in real-time for a self-driving car, which
is a time-sensitive application. Further,
DeepRobust-B requires the calculation
of neighbor diversity score. For a regres-
sion problem, the predicted values are

continuous, so there is a very low probability for any two predictions being
equal. Thus, the neighbor diversity score for every data point will be the same
and cannot be used for identifying the weak points.

Result 4: DeepRobust-W can detect weak points of a self-driving car
dataset with f1 score up to 78.9%, with an average of 58.2%, at neighbor
accuracy cutoff 0.75.

6 Related Work

Adversarial examples. Many works focus on generating adversarial examples
to fool the DNNs and evaluate their robustness using pixel-based perturbation
[9, 17, 23, 25, 31, 36, 48, 49, 54, 63, 80–83]. Some other papers [14, 15, 86], like us,
proposed more realistic transformations to generate adversarial examples. In par-
ticular, Engstrom et al. [14] proposed that a simple rotation and translation can
fool a DNN based classifier, and spatial adversarial robustness is orthogonal to
lp-bounded adversarial robustness. However, all these works estimate the overall
robustness of a DNN based on its aggregated behavior across many data points.
In contrast, we analyze the robustness of individual data points under natural
variations and propose methods to detect weak/strong points automatically.

Understanding Local Robustness of DNNs under Natural Variations 329

DNN testing. Many researchers [16, 21, 29, 36, 41, 55, 69, 70, 74, 94] proposed
techniques to test DNN. For example, Pei et al. [55] proposed an image transfor-
mation based differential testing framework, which can detect erroneous behavior
by comparing the outputs of an input image across multiple DNNs. Ferit et al.
[16] used fault localization methods to identify suspicious neurons and leveraged
those to generate adversarial test cases.

In contrast, others [8, 29, 64, 73, 78, 92, 94] used metamorphic testing where
the assumption is the outputs of an original and its transformed image will be
the same under natural transformations. Among them, some use a uncertainty
measure to quantify some types of non-robustness of an input for prioritizing
samples for testing / retraining [8] or generating test cases[78]. We follow a simi-
lar metamorphic property while estimating neighbor accuracy and our proposed
DeepRobust-B also leverages an uncertainty measure. The key differences are:
First, we focus on estimating model’s performance on general natural variants of
an input rather than the input itself or only spatial variants. Second, we focus on
the task of weak points detection rather than prioritizing / generating test cases.
We also give detailed analyses of the properties of natural variants and propose
a feature vector based white-box detection method DeepRobust-W. Further,
we show that our method works across domains (both image classification and
self-driving car controllers) and tasks (both classification and regression). Other
uncertainty work complement ours in the sense that we can easily leverage weak
points identified by DeepRobust-W and DeepRobust-B to prioritize test
cases or generate more adversarial cases of natural variants.

Another line of work [18, 19, 27, 33, 34, 58, 72] estimates the confidence of
a DNN’s output. For example, [19] leverages thrown away information from
existing models to measure confidence; [27] shows other NN properties like depth,
width, weight decay, and batch normalization are important factors influencing
prediction confidence. Although such methods can provide a confidence measure
per input or its adversarial variants, they do not check its natural robustness
property, i.e., with natural variations how will they behave.

DNN verification. There also exist work on verifying properties for a DNN
model [7, 12, 24, 30, 56, 62, 83]. Most of them focus on verifying properties on lp
norm bounded input space. Recently, Balunovic et al.[4] provides the first ver-
ification technique for verifying a data point’s robustness against spatial trans-
formation. However, their technique suffers from scalability issues.

Robust training. Regular neural network training involves the optimization
of the loss for each data point. Robust training of neural network works on
minimizing the largest loss within a bounded region usually using adversarial
examples [15,35,43,45,50,75,81,83,84]. While both robust training methods and
our work generate variants of data points, instead of training a model with these
variants to improve robustness, we use them to estimate the robustness of unseen
data points. The relation between robust retraining and our work is similar to
bug fixing vs. bug detection in traditional software engineering literature.

330 Z. Zhong et al.

7 Threats to Validity

We adopt rotation and translation as transformations for image classification
tasks and rain and fog effects for the self-driving car task. There are many more
natural variations such as brightness, snow effect etc. However, rotation and
translation are representative of spatial transformation and used by many paper
in evaluating robustness of DNN models[14, 55]. Rain and fog effects are also
widely leveraged in many influential studies on testing self-driving cars [55,73,92].

Besides, for some of the experiments we did not show all the combinations
under both neighbor accuracy cutoffs (i.e. 0.5 and 0.75). However, we note that
the observations are consistent and we did not include them purely because
of space limitation. Another limitation is that for both DeepRobust-W and
DeepRobust-B, we need to decide the number of neighbors to use for training a
classifier and estimating λ, respectively. We mitigate it by selecting the neighbor
numbers that give stable performance in terms of precision and recall.

8 Conclusion and Future Work

In this work, we involve the data characteristic into the robustness testing of
DNN models. We adopt the concept of neighbor accuracy as a measure for local
robustness of a data point on a given model. We explore the properties of neigh-
bor accuracy and find that weak points are often located towards corresponding
class boundaries and their transformed versions tend to be predicted to be more
diverse classes. Leveraging these observations, we propose a white-box method
and a black-box method to identify weak/strong points to warn a user about po-
tential weakness in the given trained model in real-time. We design, implement
and evaluate our proposed framework, DeepRobust-W and DeepRobust-B,
on three image recognition datasets and one self-driving car dataset (for Deep-
Robust-W only) with three models for each. The results show that they can
effectively identify weak/strong points with high precision and recall.

For future work, other consistency analysis methods [18] e.g. variation ratio,
entropy can be tried. We can potentially attain statistical guarantee for our
black-box method by modeling the neighbor accuracy distribution and assume
certain level of correlation between neighbor accuracy and complexity score.
Besides, other definitions of robustness like consistency can be explored. We can
also leverage ideas from [8,78] to easily prioritize test cases or generate more hard
test cases based on identified weak points. Further, we can potentially modify
existing fixing methods such as [20] targeting the weak points to fix them.

9 Acknowledgement

We thank Mukul Prasad and Ripon Saha from Fujisu US for valuable discussions.
This work is supported in part by NSF CCF-1845893 and CCF-1822965.

Understanding Local Robustness of DNNs under Natural Variations 331

References

1. Chauffeur model. https://github.com/udacity/self-driving-car/tree/master/
steering-models/community-models/chauffeur (2016)

2. Epoch model. https://github.com/udacity/self-driving-car/tree/master/
steering-models/community-models/cg23 (2016)

3. Amershi, S., Begel, A., Bird, C., DeLine, R., Gall, H., Kamar, E., Nagappan, N.,
Nushi, B., Zimmermann, T.: Software engineering for machine learning: A case
study. In: Proceedings of the 41st International Conference on Software Engineer-
ing: Software Engineering in Practice. pp. 291–300. ICSE-SEIP ’19, IEEE Press
(2019). https://doi.org/10.1109/ICSE-SEIP.2019.00042, https://doi.org/10.1109/
ICSE-SEIP.2019.00042

4. Balunovic, M., Baader, M., Singh, G., Gehr, T., Vechev, M.: Certifying geomet-
ric robustness of neural networks. In: Advances in Neural Information Processing
Systems. pp. 15287–15297 (2019)

5. Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P.,
Jackel, L.D., Monfort, M., Muller, U., Zhang, J., et al.: End to end learning for
self-driving cars. arXiv preprint arXiv:1604.07316 (2016)

6. Bojarski, M., Testa, D.D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., Jackel,
L.D., Monfort, M., Muller, U., Zhang, J., Zhang, X., Zhao, J., Zieba, K.: End to
end learning for self-driving cars. CoRR abs/1604.07316 (2016), http://arxiv.
org/abs/1604.07316

7. Bunel, R., Turkaslan, I., Torr, P.H., Kohli, P., Kumar, M.P.: A unified view of piece-
wise linear neural network verification. In: Proceedings of the 32nd International
Conference on Neural Information Processing Systems. p. 4795–4804. NIPS’18,
Curran Associates Inc., Red Hook, NY, USA (2018)

8. Byun, T., Sharma, V., Vijayakumar, A., Rayadurgam, S., Cofer, D.: Input priori-
tization for testing neural networks (01 2019)

9. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In:
Security and Privacy (SP), 2017 IEEE Symposium on. pp. 39–57. IEEE (2017)

10. Cohen, J.: Statistical Power Analysis for the Behavioral Sciences. Lawrence Erl-
baum Associates (1988)

11. Du, X., Xie, X., Li, Y., Ma, L., Liu, Y., Zhao, J.: Deepstellar: Model-
based quantitative analysis of stateful deep learning systems. In: Proceed-
ings of the 2019 27th ACM Joint Meeting on European Software Engineer-
ing Conference and Symposium on the Foundations of Software Engineering. p.
477–487. ESEC/FSE 2019, Association for Computing Machinery, New York, NY,
USA (2019). https://doi.org/10.1145/3338906.3338954, https://doi.org/10.1145/
3338906.3338954

12. Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks. In:
International Symposium on Automated Technology for Verification and Analysis.
pp. 269–286. Springer (2017)

13. Engstrom, L., Tran, B., Tsipras, D., Schmidt, L., Madry, A.: A rotation and
a translation suffice: Fooling cnns with simple transformations. arXiv preprint
arXiv:1712.02779 (2017)

14. Engstrom, L., Tran, B., Tsipras, D., Schmidt, L., Madry, A.: Exploring the land-
scape of spatial robustness. In: International Conference on Machine Learning. pp.
1802–1811 (2019)

15. Engstrom, L., Tran, B., Tsipras, D., Schmidt, L., Mądry, A.: A rotation and a
translation suffice: Fooling cnns with simple transformations. In: Proceedings of
the 36th international conference on machine learning (ICML) (2019)

https://github.com/udacity/self-driving-car/tree/master/steering-models/community-models/chauffeur
https://github.com/udacity/self-driving-car/tree/master/steering-models/community-models/chauffeur
https://github.com/udacity/self-driving-car/tree/master/steering-models/community-models/cg23
https://github.com/udacity/self-driving-car/tree/master/steering-models/community-models/cg23
https://doi.org/10.1109/ICSE-SEIP.2019.00042
https://doi.org/10.1109/ICSE-SEIP.2019.00042
https://doi.org/10.1109/ICSE-SEIP.2019.00042
http://arxiv.org/abs/1604.07316
http://arxiv.org/abs/1604.07316
https://doi.org/10.1145/3338906.3338954
https://doi.org/10.1145/3338906.3338954
https://doi.org/10.1145/3338906.3338954

332 Z. Zhong et al.

16. Eniser, H.F., Gerasimou, S., Sen, A.: Deepfault: Fault localization for deep neu-
ral networks. In: Hähnle, R., van der Aalst, W. (eds.) Fundamental Approaches
to Software Engineering. pp. 171–191. Springer International Publishing, Cham
(2019)

17. Feinman, R., Curtin, R.R., Shintre, S., Gardner, A.B.: Detecting adversarial sam-
ples from artifacts. arXiv preprint arXiv:1703.00410 (2017)

18. Gal, Y.: Uncertainty in Deep Learning (2016)
19. Gal, Y., Ghahramani, Z.: Dropout as a bayesian approximation: Representing

model uncertainty in deep learning. In: Balcan, M.F., Weinberger, K.Q. (eds.)
Proceedings of The 33rd International Conference on Machine Learning. Proceed-
ings of Machine Learning Research, vol. 48, pp. 1050–1059. PMLR, New York, New
York, USA (20–22 Jun 2016), http://proceedings.mlr.press/v48/gal16.html

20. Gao, X., Saha, R., Prasad, M., Roychoudhury, A.: Fuzz testing based data aug-
mentation to improve robustness of deep neural networks. In: Proceedings of the
42nd International Conference on Software Engineering. ICSE 2020, ACM (2020)

21. Gerasimou, S., Eniser, H.F., Sen, A., Çakan, A.: Importance-driven deep learning
system testing. In: International Conference of Software Engineering (ICSE) (2020)

22. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Advances in neural
information processing systems. pp. 2672–2680 (2014)

23. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. In: International Conference on Learning Representations (ICLR) (2015)

24. Gross, D., Jansen, N., Pérez, G.A., Raaijmakers, S.: Robustness verification for
classifier ensembles. In: Hung, D.V., Sokolsky, O. (eds.) Automated Technology for
Verification and Analysis. pp. 271–287. Springer International Publishing, Cham
(2020)

25. Gu, S., Rigazio, L.: Towards deep neural network architectures robust to adversarial
examples. In: International Conference on Learning Representations (ICLR) (2015)

26. Guo, C., Gardner, J., You, Y., Wilson, A.G., Weinberger, K.: Simple black-box
adversarial attacks. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of
the 36th International Conference on Machine Learning. Proceedings of Machine
Learning Research, vol. 97, pp. 2484–2493. PMLR, Long Beach, California, USA
(09–15 Jun 2019), http://proceedings.mlr.press/v97/guo19a.html

27. Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neu-
ral networks. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th Inter-
national Conference on Machine Learning. Proceedings of Machine Learning Re-
search, vol. 70, pp. 1321–1330. PMLR, International Convention Centre, Sydney,
Australia (06–11 Aug 2017), http://proceedings.mlr.press/v70/guo17a.html

28. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016)

29. He, P., Meister, C., Su, Z.: Structure-invariant testing for machine translation. In:
International Conference of Software Engineering (ICSE) (2020)

30. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural
networks. In: International Conference on Computer Aided Verification. pp. 3–29.
Springer (2017)

31. Ilyas, A., Santurkar, S., Tsipras, D., Engstrom, L., Tran, B., Madry, A.: Adversarial
examples are not bugs, they are features (2019), http://arxiv.org/abs/1905.02175

32. Islam, M.J., Nguyen, G., Pan, R., Rajan, H.: A comprehensive study on deep
learning bug characteristics. In: Proceedings of the 2019 27th ACM Joint Meeting

http://proceedings.mlr.press/v48/gal16.html
http://proceedings.mlr.press/v97/guo19a.html
http://proceedings.mlr.press/v70/guo17a.html
http://arxiv.org/abs/1905.02175

Understanding Local Robustness of DNNs under Natural Variations 333

on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering. pp. 510–520. ESEC/FSE 2019, Association for Computing
Machinery, New York, NY, USA (2019). https://doi.org/10.1145/3338906.3338955,
https://doi.org/10.1145/3338906.3338955

33. Jha, S., Raj, S., Fernandes, S., Jha, S.K., Jha, S., Jalaian, B., Verma, G., Swami,
A.: Attribution-based confidence metric for deep neural networks. In: Advances in
Neural Information Processing Systems. pp. 11826–11837 (2019)

34. Jiang, H., Kim, B., Gupta, M.: To trust or not to trust a classifier. In: Advances
in Neural Information Processing Systems. pp. 5541—-5552 (2018)

35. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: An
Efficient SMT Solver for Verifying Deep Neural Networks, pp. 97–117. Springer
International Publishing, Cham (2017)

36. Kim, J., Feldt, R., Yoo, S.: Guiding deep learning system testing using surprise
adequacy. In: Proceedings of the 41st International Conference on Software Engi-
neering. pp. 1039–1049. IEEE Press (2019)

37. Krizhevsky, A.: Learning multiple layers of features from tiny images. University
of Toronto (05 2012)

38. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in neural information processing systems.
pp. 1097–1105 (2012)

39. Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial examples in the physical world.
arXiv preprint arXiv:1607.02533 (2016)

40. Li, Z., Ma, X., Xu, C., Cao, C., Xu, J., Lü, J.: Boosting operational dnn testing effi-
ciency through conditioning. In: Proceedings of the 2019 27th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering. p. 499–509. ESEC/FSE 2019, Association for Computing
Machinery, New York, NY, USA (2019). https://doi.org/10.1145/3338906.3338930,
https://doi.org/10.1145/3338906.3338930

41. Ma, L., Juefei-Xu, F., Sun, J., Chen, C., Su, T., Zhang, F., Xue, M., Li, B., Li, L.,
Liu, Y., et al.: Deepgauge: Comprehensive and multi-granularity testing criteria for
gauging the robustness of deep learning systems. arXiv preprint arXiv:1803.07519
(2018)

42. Ma, S., Liu, Y., Lee, W.C., Zhang, X., Grama, A.: Mode: automated neural network
model debugging via state differential analysis and input selection. In: Proceedings
of the 2018 26th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. pp. 175–186. ACM
(2018)

43. Ma, X., Li, B., Wang, Y., Erfani, S.M., Wijewickrema, S., Schoenebeck, G., Song,
D., Houle, M.E., Bailey, J.: Characterizing adversarial subspaces using local in-
trinsic dimensionality. In: International Conference on Learning Representations
(ICLR) (2018)

44. van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. Journal of Ma-
chine Learning Research 9, 2579–2605 (2008), http://www.jmlr.org/papers/v9/
vandermaaten08a.html

45. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning
models resistant to adversarial attacks. In: International Conference on Learning
Representations (ICLR) (2018)

46. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning
models resistant to adversarial attacks. In: International Conference on Learning
Representations (ICLR) (2018)

https://doi.org/10.1145/3338906.3338955
https://doi.org/10.1145/3338906.3338955
https://doi.org/10.1145/3338906.3338930
https://doi.org/10.1145/3338906.3338930
http://www.jmlr.org/papers/v9/vandermaaten08a.html
http://www.jmlr.org/papers/v9/vandermaaten08a.html

334 Z. Zhong et al.

47. Mann, H.B., Whitney, D.R.: On a test of whether one of two random variables
is stochastically larger than the other. Annals of Mathematical Statistics 18(1),
50–60 (1947)

48. Mao, C., Zhong, Z., Yang, J., Vondrick, C., Ray, B.: Metric learning for adversarial
robustness. In: Advances in Neural Information Processing Systems. pp. 478–489
(2019)

49. Metzen, J.H., Genewein, T., Fischer, V., Bischoff, B.: On detecting adversarial
perturbations. In: International Conference on Learning Representations (ICLR)
(2017)

50. Mirman, M., Gehr, T., Vechev, M.: Differentiable abstract interpretation for prov-
ably robust neural networks. In: International Conference on Machine Learning.
pp. 3575–3583 (2018)

51. Moon, S., An, G., Song, H.O.: Parsimonious black-box adversarial attacks via effi-
cient combinatorial optimization. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Pro-
ceedings of the 36th International Conference on Machine Learning. Proceedings
of Machine Learning Research, vol. 97, pp. 4636–4645. PMLR, Long Beach, Cali-
fornia, USA (09–15 Jun 2019), http://proceedings.mlr.press/v97/moon19a.html

52. Ozdag, M., Raj, S., Fernandes, S., Velasquez, A., Pullum, L., Jha, S.K.: On the sus-
ceptibility of deep neural networks to natural perturbations. In: AISafety@IJCAI
(2019)

53. Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z.B., Swami, A.: The
limitations of deep learning in adversarial settings. In: 2016 IEEE European Sym-
posium on Security and Privacy (EuroS&P). pp. 372–387. IEEE (2016)

54. Papernot, N., McDaniel, P., Wu, X., Jha, S., Swami, A.: Distillation as a defense to
adversarial perturbations against deep neural networks. In: Security and Privacy
(SP), 2016 IEEE Symposium on. pp. 582–597. IEEE (2016)

55. Pei, K., Cao, Y., Yang, J., Jana, S.: Deepxplore: Automated whitebox testing
of deep learning systems. In: Proceedings of the 26th Symposium on Operating
Systems Principles. pp. 1–18. ACM (2017)

56. Pei, K., Cao, Y., Yang, J., Jana, S.: Towards practical verification of machine
learning: The case of computer vision systems. arXiv preprint arXiv:1712.01785
(2017)

57. Pham, H.V., Lutellier, T., Qi, W., Tan, L.: Cradle: Cross-backend validation to
detect and localize bugs in deep learning libraries. In: Proceedings of the 41st
International Conference on Software Engineering. p. 1027–1038. ICSE ’19, IEEE
Press (2019). https://doi.org/10.1109/ICSE.2019.00107, https://doi.org/10.1109/
ICSE.2019.00107

58. Qiu, X., Meyerson, E., Miikkulainen, R.: Quantifying point-prediction uncertainty
in neural networks via residual estimation with an i/o kernel. In: International
Conference on Learning Representations (2020), https://openreview.net/forum?
id=rkxNh1Stvr

59. Sawilowsky, S.: New effect size rules of thumb. Journal of Modern Applied Statis-
tical Methods 8, 597–599 (11 2009). https://doi.org/10.22237/jmasm/1257035100

60. Saxena, U.: Automold. https://github.com/UjjwalSaxena/
Automold--Road-Augmentation-Library/

61. Sen, K., Marinov, D., Agha, G.: CUTE: A concolic unit testing engine for C. In:
FSE (2005)

62. Seshia, S.A., Desai, A., Dreossi, T., Fremont, D.J., Ghosh, S., Kim, E., Shivaku-
mar, S., Vazquez-Chanlatte, M., Yue, X.: Formal specification for deep neural
networks. In: International Symposium on Automated Technology for Verification
and Analysis. pp. 20–34. Springer (2018)

http://proceedings.mlr.press/v97/moon19a.html
https://doi.org/10.1109/ICSE.2019.00107
https://doi.org/10.1109/ICSE.2019.00107
https://doi.org/10.1109/ICSE.2019.00107
https://openreview.net/forum?id=rkxNh1Stvr
https://openreview.net/forum?id=rkxNh1Stvr
https://doi.org/10.22237/jmasm/1257035100
https://github.com/UjjwalSaxena/Automold--Road-Augmentation-Library/
https://github.com/UjjwalSaxena/Automold--Road-Augmentation-Library/

Understanding Local Robustness of DNNs under Natural Variations 335

63. Shaham, U., Yamada, Y., Negahban, S.: Understanding adversarial training: In-
creasing local stability of neural nets through robust optimization. arXiv preprint
arXiv:1511.05432 (2015)

64. Shankar, V., Dave, A., Roelofs, R., Ramanan, D., Recht, B., Schmidt, L.: A sys-
tematic framework for natural perturbations from videos (06 2019)

65. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., van den Driessche, G.,
Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S.,
Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M.,
Kavukcuoglu, K., Graepel, T., Hassabis, D.: Mastering the game of go with deep
neural networks and tree search. Nature 529, 484–503 (2016), http://www.nature.
com/nature/journal/v529/n7587/full/nature16961.html

66. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale im-
age recognition. In: International Conference on Learning Representations (ICLR)
(2015)

67. SIMPSON, E.H.: Measurement of diversity. Nature 163(4148), 688–688 (1949),
https://doi.org/10.1038/163688a0

68. Stocco, A., Weiss, M., Calzana, M., Tonella, P.: Misbehaviour prediction for au-
tonomous driving systems. In: Proceedings of 42nd International Conference on
Software Engineering. p. 12 pages. ICSE ’20, ACM (2020)

69. Stocco, A., Weiss, M., Calzana, M., Tonella, P.: Misbehaviour prediction for au-
tonomous driving systems. In: International Conference of Software Engineering
(ICSE) (2020)

70. Sun, Y., Wu, M., Ruan, W., Huang, X., Kwiatkowska, M., Kroening, D.: Concolic
testing for deep neural networks (2018)

71. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I.,
Fergus, R.: Intriguing properties of neural networks. In: International Conference
on Learning Representations (ICLR) (2014)

72. Teye, M., Azizpour, H., Smith, K.: Bayesian uncertainty estimation for batch nor-
malized deep networks. In: Dy, J., Krause, A. (eds.) Proceedings of the 35th In-
ternational Conference on Machine Learning. Proceedings of Machine Learning
Research, vol. 80, pp. 4907–4916. PMLR, Stockholmsmässan, Stockholm Sweden
(10–15 Jul 2018), http://proceedings.mlr.press/v80/teye18a.html

73. Tian, Y., Pei, K., Jana, S., Ray, B.: Deeptest: Automated testing of deep-neural-
network-driven autonomous cars. In: International Conference of Software Engi-
neering (ICSE), 2018 IEEE conference on. IEEE (2018)

74. Tian, Y., Zhong, Z., Ordonez, V., Kaiser, G., Ray, B.: Testing dnn image classifier
for confusion & bias errors. In: International Conference of Software Engineering
(ICSE) (2020)

75. Tramèr, F., Kurakin, A., Papernot, N., Goodfellow, I., Boneh, D., Mc-
Daniel, P.: Ensemble adversarial training: Attacks and defenses. arXiv preprint
arXiv:1705.07204 (2017)

76. Tsipras, D., Santurkar, S., Engstrom, L., Turner, A., Madry, A.: Robustness may be
at odds with accuracy. In: International Conference on Learning Representations
(ICLR) (2019)

77. Udacity: A self-driving car simulator built with Unity. https://github.com/
udacity/self-driving-car-sim (2017), online; accessed 18 August 2019

78. Udeshi, S., Jiang, X., Chattopadhyay, S.: Callisto: Entropy-based test generation
and data quality assessment for machine learning systems. In: 2020 IEEE 13th
International Conference on Software Testing, Validation and Verification (ICST).
pp. 448–453 (2020)

http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
https://doi.org/10.1038/163688a0
http://proceedings.mlr.press/v80/teye18a.html
https://github.com/udacity/self-driving-car-sim
https://github.com/udacity/self-driving-car-sim

336 Z. Zhong et al.

79. Wang, F., Jiang, M., Qian, C., Yang, S., Li, C., Zhang, H., Wang, X., Tang, X.:
Residual attention network for image classification. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. pp. 3156–3164 (2017)

80. Wang, J., Dong, G., Sun, J., Wang, X., Zhang, P.: Adversarial sample detection for
deep neural network through model mutation testing. In: Proceedings of the 41st
International Conference on Software Engineering. p. 1245–1256. ICSE ’19, IEEE
Press (2019). https://doi.org/10.1109/ICSE.2019.00126, https://doi.org/10.1109/
ICSE.2019.00126

81. Wang, S., Chen, Y., Abdou, A., Jana, S.: Mixtrain: Scalable training of formally
robust neural networks. arXiv preprint arXiv:1811.02625 (2018)

82. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Efficient formal safety analysis
of neural networks. In: Proceedings of the 32Nd International Conference on Neural
Information Processing Systems. pp. 6369–6379. NIPS’18, Curran Associates Inc.,
USA (2018), http://dl.acm.org/citation.cfm?id=3327345.3327533

83. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Formal security analysis of
neural networks using symbolic intervals. USENIX Security Symposium (2018)

84. Wong, E., Schmidt, F., Metzen, J.H., Kolter, J.Z.: Scaling provable adversarial
defenses. In: Advances in Neural Information Processing Systems. pp. 8400–8409
(2018)

85. Xiao, C., Li, B., Zhu, J.Y., He, W., Liu, M., Song, D.: Generating adversarial
examples with adversarial networks. In: 27th International Joint Conference on
Artificial Intelligence (IJCAI) (2018)

86. Xiao, C., Zhu, J.Y., Li, B., He, W., Liu, M., Song, D.: Spatially transformed adver-
sarial examples. In: International Conference on Learning Representations (ICLR)
(2018)

87. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-mnist: a novel image dataset for bench-
marking machine learning algorithms (2017)

88. Yang, F., Wang, Z., Heinze-Deml, C.: Invariance-inducing regularization using
worst-case transformations suffices to boost accuracy and spatial robustness. In:
Advances in Neural Information Processing Systems 32. pp. 14757–14768 (2019)

89. Yuval Netzer, T.W., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits in
natural images with unsupervised feature learning. In: NIPS Workshop on Deep
Learning and Unsupervised Feature Learning (2011)

90. Zagoruyko, S., Komodakis, N.: Wide residual networks. In: BMVC (2016)
91. Zhang, H., Chan, W.K.: Apricot: A weight-adaptation approach to fix-

ing deep learning models. In: 2019 34th IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE). pp. 376–387 (Nov 2019).
https://doi.org/10.1109/ASE.2019.00043

92. Zhang, M., Zhang, Y., Zhang, L., Liu, C., Khurshid, S.: Deeproad: Gan-based
metamorphic autonomous driving system testing. arXiv preprint arXiv:1802.02295
(2018)

93. Zhao, Z., Dua, D., Singh, S.: Generating natural adversarial examples. In: Inter-
national Conference on Learning Representations (ICLR) (2018)

94. Zhou, H., Li, W., Kong, Z., Guo, J., Zhang, Y., Zhang, L., Yu, B., Liu, C.: Deep-
billboard: Systematic physical-world testing of autonomous driving systems. In:
International Conference of Software Engineering (ICSE) (2020)

https://doi.org/10.1109/ICSE.2019.00126
https://doi.org/10.1109/ICSE.2019.00126
https://doi.org/10.1109/ICSE.2019.00126
http://dl.acm.org/citation.cfm?id=3327345.3327533
https://doi.org/10.1109/ASE.2019.00043

Understanding Local Robustness of DNNs under Natural Variations 337

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Test-Comp Contributions

C
o
n
si
st

en
t *

Complete

*
W
e
ll
D
o
cu
m
ented*Easyt

o
Re

u
se

* *Evaluated

*
A
S

*

Ar
tifact *

-
Test

C o m
p

E
F

Status Report on Software Testing:
Test-Comp 2021

Dirk Beyer �

LMU Munich, Munich, Germany

Abstract. This report describes Test-Comp 2021, the 3rd edition of the
Competition on Software Testing. The competition is a series of annual
comparative evaluations of fully automatic software test generators for C
programs. The competition has a strong focus on reproducibility of its
results and its main goal is to provide an overview of the current state
of the art in the area of automatic test-generation. The competition was
based on 3 173 test-generation tasks for C programs. Each test-generation
task consisted of a program and a test specification (error coverage,
branch coverage). Test-Comp 2021 had 11 participating test generators
from 6 countries.

Keywords: Software Testing · Test-Case Generation · Competition ·
Program Analysis · Software Validation · Software Bugs · Test Validation
· Test-Comp · Benchmarking · Test Coverage · Bug Finding · Test-Suites
· BenchExec · TestCov

1 Introduction

Among several other objectives, the Competition on Software Testing (Test-
Comp [4, 5, 6], https://test-comp.sosy-lab.org/2021) showcases every year the state
of the art in the area of automatic software testing. This edition of Test-Comp
is the 3rd edition of the competition. It provides an overview of the currently
achieved results by tool implementations that are based on the most recent ideas,
concepts, and algorithms for fully automatic test generation. This competition
report describes the (updated) rules and definitions, presents the competition
results, and discusses some interesting facts about the execution of the competition
experiments. The setup of Test-Comp is similar to SV-COMP [8], in terms
of both technical and procedural organization. The results are collected via
BenchExec’s XML results format [16], and transformed into tables and plots
in several formats (https://test-comp.sosy-lab.org/2021/results/). All results are
available in artifacts at Zenodo (Table 3).

This report extends previous reports on Test-Comp [4, 5, 6].
Reproduction packages are available on Zenodo (see Table 3).
Funded in part by the Deutsche Forschungsgemeinschaft (DFG) – 418257054 (Coop).
� dirk.beyer@sosy-lab.org

c© The Author(s) 2021
E. Guerra and M. Stoelinga (Eds.): FASE 2021, LNCS 12649, pp. 341–357, 2021.
https://doi.org/10.1007/978-3-030-71500-7_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71500-7_17&domain=pdf
https://orcid.org/0000-0003-4832-7662
https://www.sosy-lab.org/people/beyer/
https://test-comp.sosy-lab.org/2021
https://test-comp.sosy-lab.org/2021/results/
http://gepris.dfg.de/gepris/projekt/418257054
https://www.sosy-lab.org/people/beyer/

342 Dirk Beyer

Competition Goals. In summary, the goals of Test-Comp are the following [5]:

• Establish standards for software test generation. This means, most promi-
nently, to develop a standard for marking input values in programs, define
an exchange format for test suites, agree on a specification language for
test-coverage criteria, and define how to validate the resulting test suites.
• Establish a set of benchmarks for software testing in the community. This

means to create and maintain a set of programs together with coverage
criteria, and to make those publicly available for researchers to be used in
performance comparisons when evaluating a new technique.
• Provide an overview of available tools for test-case generation and a snapshot

of the state-of-the-art in software testing to the community. This means to
compare, independently from particular paper projects and specific techniques,
different test generators in terms of effectiveness and performance.
• Increase the visibility and credits that tool developers receive. This means

to provide a forum for presentation of tools and discussion of the latest
technologies, and to give the participants the opportunity to publish about
the development work that they have done.
• Educate PhD students and other participants on how to set up performance

experiments, package tools in a way that supports reproduction, and how to
perform robust and accurate research experiments.
• Provide resources to development teams that do not have sufficient computing

resources and give them the opportunity to obtain results from experiments
on large benchmark sets.

Related Competitions. In the field of formal methods, competitions are re-
spected as an important evaluation method and there are many competitions [2].
We refer to the previous report [5] for a more detailed discussion and give here
only the references to the most related competitions [2, 8, 32, 39].

Quick Summary of Changes. As the competition continuously improves,
we report the changes since the last report. We list a summary of five new
items in Test-Comp 2021 as overview:

• Extended task-definition format, version 2.0: Sect. 2
• SPDX identification of licenses in SV-Benchmarks collection: Sect. 2
• Extension of the SV-Benchmarks collection by several categories: Sect. 3
• Elimination of competition-specific functions __VERIFIER_error and
__VERIFIER_assume from the test-generation tasks (and rules): Sect. 3
• CoVeriTeam: New tool that can be used to remotely execute test-generation

runs on the competition machines: Sect. 4

2 Definitions, Formats, and Rules

Organizational aspects such as the classification (automatic, off-site, reproducible,
jury, training) and the competition schedule is given in the initial competi-
tion definition [4]. In the following, we repeat some important definitions that
are necessary to understand the results.

Status Report on Software Testing: Test-Comp 2021 343

Test
Generator

Program
under Test

Test
Specification

Test Suite
(Test Cases)

Test
Validator

Bug
Report

Coverage
Statistics

Fig. 1: Flow of the Test-Comp execution for one test generator (taken from [5])

Test-Generation Task. A test-generation task is a pair of an input program
(program under test) and a test specification. A test-generation run is a non-
interactive execution of a test generator on a single test-generation task, in
order to generate a test suite according to the test specification. A test suite
is a sequence of test cases, given as a directory of files according to the for-
mat for exchangeable test-suites.1

Execution of a Test Generator. Figure 1 illustrates the process of executing
one test generator on the benchmark suite. One test run for a test generator gets
as input (i) a program from the benchmark suite and (ii) a test specification
(cover bug, or cover branches), and returns as output a test suite (i.e., a set of
test cases). The test generator is contributed by a competition participant as
a software archive in ZIP format. The test runs are executed centrally by the
competition organizer. The test-suite validator takes as input the test suite from
the test generator and validates it by executing the program on all test cases:
for bug finding it checks if the bug is exposed and for coverage it reports the
coverage. We use the tool TestCov [15] 2 as test-suite validator.

Test Specification. The specification for testing a program is given to the
test generator as input file (either properties/coverage-error-call.prp or
properties/coverage-branches.prp for Test-Comp 2021).

The definition init(main()) is used to define the initial states of the pro-
gram under test by a call of function main (with no parameters). The defini-
tion FQL(f) specifies that coverage definition f should be achieved. The FQL
(FShell query language [28]) coverage definition COVER EDGES(@DECISIONEDGE)
means that all branches should be covered (typically used to obtain a
standard test suite for quality assurance) and COVER EDGES(@CALL(foo))
means that a call (at least one) to function foo should be covered (typ-
ically used for bug finding). A complete specification looks as follows:
COVER(init(main()), FQL(COVER EDGES(@DECISIONEDGE))).
1 https://gitlab.com/sosy-lab/software/test-format/
2 https://gitlab.com/sosy-lab/software/test-suite-validator

https://github.com/sosy-lab/sv-benchmarks/blob/testcomp21/c/properties/coverage-error-call.prp
https://github.com/sosy-lab/sv-benchmarks/blob/testcomp21/c/properties/coverage-branches.prp
https://gitlab.com/sosy-lab/software/test-format/
https://gitlab.com/sosy-lab/software/test-suite-validator

344 Dirk Beyer

Table 1: Coverage specifications used in Test-Comp 2021 (similar to 2019, 2020)

Formula Interpretation

COVER EDGES(@CALL(reach_error)) The test suite contains at least one test
that executes function reach_error.

COVER EDGES(@DECISIONEDGE) The test suite contains tests such that
all branches of the program are executed.

1 format_version: ’2.0’
2

3 # old file name: floppy_true−unreach−call_true−valid−memsafety.i.cil.c
4 input_files: ’floppy.i.cil−3.c’
5

6 properties:
7 − property_file: ../properties/unreach−call.prp
8 expected_verdict: true
9 − property_file: ../properties/valid−memsafety.prp

10 expected_verdict: false
11 subproperty: valid−memtrack
12 − property_file: ../properties/coverage−branches.prp
13

14 options:
15 language: C
16 data_model: ILP32

Fig. 2: Example task definition file floppy.i.cil-3.yml for C program
floppy.i.cil-3.c (format version and options are new compared to last year)

Table 1 lists the two FQL formulas that are used in test specifications of
Test-Comp 2021; there was no change from 2020 (except that special function
__VERIFIER_error does not exist anymore).

Task-Definition Format 2.0. The format for the task defi-
nitions in the SV-Benchmarks repository was extended by op-
tions that can carry information from the test-generation task
to the test tool. Test-Comp 2021 used the format in version 2.0
(https://gitlab.com/sosy-lab/benchmarking/task-definition-format/-/tree/2.0).
The options now contain the language (C or Java) and the data
model (ILP32, LP64, see http://www.unix.org/whitepapers/64bit.html, only
for C programs) that the program of the test-generation task assumes
(https://github.com/sosy-lab/sv-benchmarks#task-definitions). An example task
definition is provided in Fig. 2: This YAML file specifies, for the C program
floppy.i.cil-3.c, two verification tasks (reachability of a function call
and memory safety) and one test-generation task (coverage of all branches).
Previously, the options for language and data model where defined in
category-specific configuration files (for example c/ReachSafety-ControlFlow.cfg),
which were deleted before Test-Comp 2021.

https://github.com/sosy-lab/sv-benchmarks/blob/testcomp21/c/ntdrivers/floppy.i.cil-3.yml
https://github.com/sosy-lab/sv-benchmarks/blob/testcomp21/c/ntdrivers/floppy.i.cil-3.c
https://gitlab.com/sosy-lab/benchmarking/task-definition-format/-/tree/2.0
http://www.unix.org/whitepapers/64bit.html
https://github.com/sosy-lab/sv-benchmarks#task-definitions
https://github.com/sosy-lab/sv-benchmarks/blob/testcomp21/c/ntdrivers/floppy.i.cil-3.c
https://github.com/sosy-lab/sv-benchmarks/blob/testcomp20/c/ReachSafety-ControlFlow.cfg

Status Report on Software Testing: Test-Comp 2021 345

License and Qualification. The license of each participating test genera-
tor must allow its free use for reproduction of the competition results. De-
tails on qualification criteria can be found in the competition report of Test-
Comp 2019 [6]. Furthermore, the community tries to apply the SPDX stan-
dard (https://spdx.dev) to the SV-Benchmarks repository. Continuous-integration
checks based on REUSE (https://reuse.software) will ensure that all benchmark
tasks adhere to the standard.

3 Categories and Scoring Schema

Benchmark Programs. The input programs were taken from the largest and
most diverse open-source repository of software-verification and test-generation
tasks 3, which is also used by SV-COMP [8]. As in 2020, we selected all pro-
grams for which the following properties were satisfied (see issue on GitHub 4

and report [6]):

1. compiles with gcc, if a harness for the special methods 5 is provided,
2. should contain at least one call to a nondeterministic function,
3. does not rely on nondeterministic pointers,
4. does not have expected result ‘false’ for property ‘termination’, and
5. has expected result ‘false’ for property ‘unreach-call’ (only for category Error

Coverage).

This selection yielded a total of 3 173 test-generation tasks, namely 607 tasks
for category Error Coverage and 2 566 tasks for category Code Coverage. The
test-generation tasks are partitioned into categories, which are listed in Ta-
bles 6 and 7 and described in detail on the competition web site.6 Figure 3
illustrates the category composition.

The programs in the benchmark collection contained functions
__VERIFIER_error and __VERIFIER_assume that had a specific prede-
fined meaning. Last year, those functions were removed from all programs
in the SV-Benchmarks collection. More about the reasoning is explained
in the SV-COMP 2021 competition report [8].

Category Error-Coverage. The first category is to show the abilities to dis-
cover bugs. The benchmark set consists of programs that contain a bug. Every
run will be started by a batch script, which produces for every tool and every
test-generation task one of the following scores: 1 point, if the validator succeeds
in executing the program under test on a generated test case that explores the
bug (i.e., the specified function was called), and 0 points, otherwise.

3 https://github.com/sosy-lab/sv-benchmarks
4 https://github.com/sosy-lab/sv-benchmarks/pull/774
5 https://test-comp.sosy-lab.org/2021/rules.php
6 https://test-comp.sosy-lab.org/2021/benchmarks.php

https://spdx.dev
https://reuse.software
https://github.com/sosy-lab/sv-benchmarks
https://github.com/sosy-lab/sv-benchmarks/pull/774
https://test-comp.sosy-lab.org/2021/rules.php
https://test-comp.sosy-lab.org/2021/benchmarks.php

346 Dirk Beyer

Arrays

BitVectors

ControlFlow

ECA

Floats

Heap

Loops

Recursive

Sequentialized

XCSP

BusyBox-MemSafety

DeviceDriversLinux64-ReachSafety

Cover-Error

Arrays

BitVectors

ControlFlow

ECA

Floats

Heap

Loops

Recursive

Sequentialized

XCSP

Combinations

BusyBox

DeviceDriversLinux64

SQLite

MainHeap

Cover-Branches

C-Overall

Fig. 3: Category structure for Test-Comp 2021; compared to Test-Comp 2020,
there are three new sub-categories in Cover-Error and two new sub-categories
in Cover-Branches: we added the sub-categories XCSP, BusyBox-MemSafety,
and DeviceDriversLinux64-ReachSafety to category Cover-Error, and the sub-
categories XCSP and Combinations to category Cover-Branches

Category Branch-Coverage. The second category is to cover as many branches
of the program as possible. The coverage criterion was chosen because many
test generators support this standard criterion by default. Other coverage cri-
teria can be reduced to branch coverage by transformation [27]. Every run
will be started by a batch script, which produces for every tool and every

Status Report on Software Testing: Test-Comp 2021 347

test-generation task the coverage of branches of the program (as reported by
TestCov [15]; a value between 0 and 1) that are executed for the generated
test cases. The score is the returned coverage.

Ranking. The ranking was decided based on the sum of points (normalized for
meta categories). In case of a tie, the ranking was decided based on the run time,
which is the total CPU time over all test-generation tasks. Opt-out from categories
was possible and scores for categories were normalized based on the number of
tasks per category (see competition report of SV-COMP 2013 [3], page 597).

4 Reproducibility

In order to support independent reproduction of the Test-Comp results, we
made all major components that are used for the competition available in public
version-control repositories. An overview of the components that contribute to
the reproducible setup of Test-Comp is provided in Fig. 4, and the details are
given in Table 2. We refer to the report of Test-Comp 2019 [6] for a thorough
description of all components of the Test-Comp organization and how we ensure
that all parts are publicly available for maximal reproducibility.

In order to guarantee long-term availability and immutability of the test-
generation tasks, the produced competition results, and the produced test suites,
we also packaged the material and published it at Zenodo (see Table 3). The
archive for the competition results includes the raw results in BenchExec’s
XML exchange format, the log output of the test generators and validator,
and a mapping from file names to SHA-256 hashes. The hashes of the files
are useful for validating the exact contents of a file, and accessing the files
inside the archive that contains the test suites.

To provide transparent access to the exact versions of the test generators that
were used in the competition, all test-generator archives are stored in a public
Git repository. GitLab was used to host the repository for the test-generator
archives due to its generous repository size limit of 10GB.

Competition Workflow. As illustrated in Fig. 4, the ingredients for a test or
verification run are (a) a test or verification task (which program and which
specification to use), (b) a benchmark definition (which categories and which
options to use), (c) a tool-info module (uniform way to access a tool’s version
string and the command line to invoke), and (d) an archive that contains all
executables that are required and cannot be installed as standard Ubuntu package.

(a) Each test or verification task is defined by a task-definition file (as shown,
e.g., in Fig. 2). The tasks are stored in the SV-Benchmarks repository and
maintained by the verification and testing community, including the competition
participants and the competition organizer.

(b) A benchmark definition defines the choices of the participating team, that
is, which categories to execute the test generator on and which parameters to
pass to the test generator. The benchmark definition also specifies the resource
limits of the competition runs (CPU time, memory, CPU cores). The benchmark
definitions are created or maintained by the teams and the organizer.

348 Dirk Beyer

(a) Test-Generation Tasks

(e) Test-Generation Run

(b) Benchmark Definitions (c) Tool-Info Modules (d) Tester Archives

(f) Test Suite

Fig. 4: Benchmarking components of Test-Comp and competition’s execution flow
(same as for Test-Comp 2020)

Table 2: Publicly available components for reproducing Test-Comp 2021

Component Fig. 4 Repository Version

Test-Generation Tasks (a) github.com/sosy-lab/sv-benchmarks testcomp21
Benchmark Definitions (b) gitlab.com/sosy-lab/test-comp/bench-defs testcomp21
Tool-Info Modules (c) github.com/sosy-lab/benchexec 3.6
Test-Generator Archives (d) gitlab.com/sosy-lab/test-comp/archives-2021 testcomp21
Benchmarking (e) github.com/sosy-lab/benchexec 3.6
Test-Suite Format (f) gitlab.com/sosy-lab/software/test-format testcomp21

Table 3: Artifacts published for Test-Comp 2021

Content DOI Reference

Test-Generation Tasks 10.5281/zenodo.4459132 [9]
Competition Results 10.5281/zenodo.4459470 [7]
Test Suites (Witnesses) 10.5281/zenodo.4459466 [10]
BenchExec 10.5281/zenodo.4317433 [43]

(c) A tool-info module is a component that provides a uniform way to
access the test-generation or verification tool: it provides interfaces for access-
ing the version string of a test generator and assembles the command-line
from the information given in the benchmark definition and task definition.
The tool-info modules are written by the participating teams with the help
of the BenchExec maintainer and others.

(d) A test generator is provided as an archive in ZIP format. The archive
contains a directory with a README and LICENSE file as well as all components
that are necessary for the test generator to be executed. This archive is created by
the participating team and merged into the central repository via a merge request.

All above components are reviewed by the competition jury and improved
according to the comments from the reviewers by the teams and the organizer.

https://github.com/sosy-lab/sv-benchmarks/tree/testcomp21/c
https://gitlab.com/sosy-lab/test-comp/bench-defs/-/tree/testcomp21/benchmark-defs
https://github.com/sosy-lab/benchexec/tree/3.6/benchexec/tools
https://gitlab.com/sosy-lab/test-comp/archives-2021/tree/testcomp21/2021
https://github.com/sosy-lab/benchexec/tree/3.6
https://gitlab.com/sosy-lab/software/test-format/-/tree/testcomp21
https://doi.org/10.5281/zenodo.4459132
https://doi.org/10.5281/zenodo.4459470
https://doi.org/10.5281/zenodo.4459466
https://doi.org/10.5281/zenodo.4317433

Status Report on Software Testing: Test-Comp 2021 349

Table 4: Competition candidates with tool references and representing jury members

Tester Ref. Jury member Affiliation

CMA-ES Fuzz [33] Gidon Ernst LMU Munich, Germany
CoVeriTest [12, 31] Marie-Christine Jakobs TU Darmstadt, Germany
FuSeBMC [1, 25] Kaled Alshmrany U. of Manchester, UK
HybridTiger [18, 38] Sebastian Ruland TU Darmstadt, Germany
Klee [19, 20] Martin Nowack Imperial College London, UK
Legion [37] Dongge Liu U. of Melbourne, Australia
LibKluzzer [35] Hoang M. Le U. of Bremen, Germany
PRTest [14, 36] Thomas Lemberger LMU Munich, Germany
Symbiotic [21, 22] Marek Chalupa Masaryk U., Brno, Czechia
TracerX [29, 30] Joxan Jaffar National U. of Singapore, Singapore
VeriFuzz [23] Raveendra Kumar M. Tata Consultancy Services, India

Due to the reproducibility requirements and high level of automation that
is necessary for a competition like Test-Comp, participating in the competi-
tion is also a challenge itself: package the tool, provide meaningful log output,
specify the benchmark definition, implement a tool-info module, and trouble-
shoot in case of problems. Test-Comp is a friendly and helpful community,
and problems are reported in a GitLab issue tracker, where the organizer and
the other teams help fixing the problems.

To provide participants access to the actual competition machines, the com-
petition used CoVeriTeam [13] (https://gitlab.com/sosy-lab/software/coveriteam/)
for the first time. CoVeriTeam is a tool for cooperative verification, which
enables remote execution of test-generation or verification runs directly on the
competition machines (among its many other features). This possibility was
found to be a valuable service for trouble shooting.

5 Results and Discussion

For the third time, the competition experiments represent the state of the
art in fully automatic test generation for whole C programs. The report helps
in understanding the improvements compared to last year, in terms of effec-
tiveness (test coverage, as accumulated in the score) and efficiency (resource
consumption in terms of CPU time). All results mentioned in this article were
inspected and approved by the participants.

Participating Test Generators. Table 4 provides an overview of the par-
ticipating test generators and references to publications, as well as the team
representatives of the jury of Test-Comp 2021. (The competition jury consists of
the chair and one member of each participating team.) Table 5 lists the features
and technologies that are used in the test generators. An online table with infor-
mation about all participating systems is provided on the competition web site.7

7 https://test-comp.sosy-lab.org/2021/systems.php

https://gitlab.com/sosy-lab/software/coveriteam/
https://test-comp.sosy-lab.org/2021/systems.php

350 Dirk Beyer

Table 5: Technologies and features that the competition candidates used

Participant B
ou

n
d
ed

M
od

el
C

h
ec

ki
n
g

C
E
G

A
R

E
vo

lu
ti

on
ar

y
A

lg
or

it
h
m

s

E
xp

li
ci

t-
V

al
u
e

A
n
al

ys
is

F
lo

at
in

g-
P
oi

nt
A

ri
th

m
et

ic
s

G
u
id

an
ce

by
C

ov
er

ag
e

M
ea

su
re

s

P
re

d
ic

at
e

A
b
st

ra
ct

io
n

R
an

d
om

E
xe

cu
ti

on

S
ym

b
ol

ic
E
xe

cu
ti

on

T
ar

ge
te

d
In

p
u
t

G
en

er
at

io
n

A
lg

or
it

h
m

S
el

ec
ti

on

P
or

tf
ol

io

CMA-ES Fuzz � � � �

CoVeriTest � � � � �

FuSeBMC � � � � �

HybridTiger � � � �

Klee � �

Legion � � � � �

LibKluzzer � � �

PRTest �

Symbiotic � � � �

TracerX � � �

VeriFuzz � � � � �

Computing Resources. The computing environment and the resource lim-
its were the same as for Test-Comp 2020 [5]: Each test run was limited to
8 processing units (cores), 15GB of memory, and 15min of CPU time. The
test-suite validation was limited to 2 processing units, 7GB of memory, and
5min of CPU time. The machines for running the experiments are part of a
compute cluster that consists of 168 machines; each test-generation run was
executed on an otherwise completely unloaded, dedicated machine, in order to
achieve precise measurements. Each machine had one Intel Xeon E3-1230 v5
CPU, with 8 processing units each, a frequency of 3.4GHz, 33GB of RAM,
and a GNU/Linux operating system (x86_64-linux, Ubuntu 20.04 with Linux
kernel 5.4). We used BenchExec [16] to measure and control computing resources
(CPU time, memory, CPU energy) and VerifierCloud 8 to distribute, install,
run, and clean-up test-case generation runs, and to collect the results. The values

8 https://vcloud.sosy-lab.org

�

https://vcloud.sosy-lab.org

Status Report on Software Testing: Test-Comp 2021 351

Table 6: Quantitative overview over all results; empty cells mark opt-outs; label ‘new’
indicates first-time participants

Participant

C
ov

er
-E

rr
or

60
7

ta
sk

s

C
ov

er
-B

ra
n
ch

es
25

66
ta

sk
s

O
ve

ra
ll

31
73

ta
sk

s

CMA-ES Fuzz new 0 411 254
CoVeriTest 225 1128 1286
FuSeBMC new 405 1161 1776
HybridTiger 266 860 1228
Klee 339 784 1370
Legion 35 651 495
LibKluzzer 359 1292 1738
PRTest 79 519 526
Symbiotic 314 1169 1543
TracerX 246 1087 1315
VeriFuzz 385 1389 1865

for time and energy are accumulated over all cores of the CPU. To measure the
CPU energy, we use CPU Energy Meter [17] (integrated in BenchExec [16]).
Further technical parameters of the competition machines are available in the
repository which also contains the benchmark definitions. 9

One complete test-generation execution of the competition consisted of
34 903 single test-generation runs. The total CPU time was 220 days and the
consumed energy 56 kWh for one complete competition run for test generation
(without validation). Test-suite validation consisted of 34 903 single test-suite
validation runs. The total consumed CPU time was 6.3 days. Each tool was
executed several times, in order to make sure no installation issues occur dur-
ing the execution. Including preruns, the infrastructure managed a total of
210 632 test-generation runs (consuming 1.8 years of CPU time) and 207 459
test-suite validation runs (consuming 27 days of CPU time). We did not mea-
sure the CPU energy during preruns.

Quantitative Results. Table 6 presents the quantitative overview of all tools
and all categories. The head row mentions the category and the number of test-
generation tasks in that category. The tools are listed in alphabetical order; every
table row lists the scores of one test generator. We indicate the top three candi-
dates by formatting their scores in bold face and in larger font size. An empty table
cell means that the test generator opted-out from the respective main category
9 https://gitlab.com/sosy-lab/test-comp/bench-defs/tree/testcomp21

https://gitlab.com/sosy-lab/test-comp/bench-defs/tree/testcomp21

352 Dirk Beyer

Table 7: Overview of the top-three test generators for each category (measurement
values for CPU time and energy rounded to two significant digits)

Rank Tester Score CPU CPU
Time Energy
(in h) (in kWh)

Cover-Error
1 FuSeBMC 405 22 0.26
2 VeriFuzz 385 2.6 0.031
3 LibKluzzer 359 90 0.99

Cover-Branches
1 VeriFuzz 1389 630 8.1
2 LibKluzzer 1292 520 5.7
3 Symbiotic 1169 440 5.1

Overall
1 VeriFuzz 1865 640 8.1
2 FuSeBMC 1776 410 4.8
3 LibKluzzer 1738 610 6.7

(perhaps participating in subcategories only, restricting the evaluation to a specific
topic). More information (including interactive tables, quantile plots for every
category, and also the raw data in XML format) is available on the competition
web site 10 and in the results artifact (see Table 3). Table 7 reports the top three
test generators for each category. The consumed run time (column ‘CPU Time’)
is given in hours and the consumed energy (column ‘Energy’) is given in kWh.

Score-Based Quantile Functions for Quality Assessment. We use score-
based quantile functions [16] because these visualizations make it easier to
understand the results of the comparative evaluation. The web site 10 and the
results artifact (Table 3) include such a plot for each category; as example,
we show the plot for category Overall (all test-generation tasks) in Fig. 5. All
11 test generators participated in category Overall, for which the quantile plot
shows the overall performance over all categories (scores for meta categories
are normalized [3]). A more detailed discussion of score-based quantile plots for
testing is provided in the previous competition report [6].

Alternative Rankings. Table 8 is similar to Table 7, but contains the alternative
ranking categories Green Testing and New Test Generators. Column ‘Quality’
gives the score in score points (sp), column ‘CPU Time’ the CPU usage in
hours (h), column ‘CPU Energy’ the CPU usage in kilo-watt-hours (kWh), and
column ‘Rank Measure’ reports the values for the rank measure, which is different
for the two alternative ranking categories. (An entry ‘–’ for ‘CPU Energy’ indicates
that we did not measure the energy consumption for technical reasons.)
10 https://test-comp.sosy-lab.org/2021/results

https://test-comp.sosy-lab.org/2021/results

Status Report on Software Testing: Test-Comp 2021 353

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 200 400 600 800 1000 1200 1400 1600 1800

M
in

. n
um

be
r

of
 te

st
 ta

sk
s

Cumulative score

CMA-ES-Fuzz
CoVeriTest
FuSeBMC

HybridTiger
KLEE

Legion
LibKluzzer

PRTest
Symbiotic

TracerX
VeriFuzz

Fig. 5: Quantile functions for category Overall. Each quantile function illustrates
the quantile (x-coordinate) of the scores obtained by test-generation runs below
a certain number of test-generation tasks (y-coordinate). More details were given
previously [6]. The graphs are decorated with symbols to make them better
distinguishable without color.

Table 8: Alternative rankings; quality is given in score points (sp), CPU time
in hours (h), energy in kilo-watt-hours (kWh), the first rank measure in kilo-
joule per score point (kJ/sp), and the second rank measure in score points (sp);
measurement values are rounded to 2 significant digits

Rank Test Generator Quality CPU CPU Rank
Time Energy Measure

(sp) (h) (kWh)

Green Testing (kJ/sp)
1 TracerX 1 315 210 2.5 6.8
2 Klee 1 370 210 2.6 6.8
3 FuSeBMC 1 776 410 4.8 9.7
worst 51

New Test Generators (sp)
1 FuSeBMC 1 776 410 4.8 1 776
2 CMA-ES Fuzz 254 310 – 254

Green Testing — Low Energy Consumption. Since a large part of the cost of
test generation is caused by the energy consumption, it might be important to
also consider the energy efficiency in rankings, as complement to the official
Test-Comp ranking. This alternative ranking category uses the energy consump-
tion per score point as rank measure: CPU Energy

Quality , with the unit kilo-joule per

354 Dirk Beyer

2019 2020 2021
0

5

10

15

9

4

2

6
9

Year

E
va

lu
at

ed
te

st
ge

ne
ra

to
rs

Fig. 6: Number of evaluated test generators for each year (top: number of first-time
participants; bottom: previous year’s participants)

score point (kJ/sp).11 The energy is measured using CPU Energy Meter [17],
which we use as part of BenchExec [16].
New Test Generators. To acknowledge the test generators that participated for the
first time in Test-Comp, the second alternative ranking category lists measures
only for the new test generators, and the rank measure is the quality with the
unit score point (sp). For example, CMA-ES Fuzz is an early prototype and has
already obtained a total score of 411 points in category Cover-Branches, and
FuSeBMC is a new tool based on some mature components and became second
place already in its first participation. This should encourage developers of test
generators to participate with new tools of any maturity level.

6 Conclusion

Test-Comp 2021 was the the 3rd edition of the Competition on Software Testing,
and attracted 11 participating teams (see Fig. 6 for the participation numbers and
Table 4 for the details). The competition offers an overview of the state of the art in
automatic software testing for C programs. The competition does not only execute
the test generators and collect results, but also validates the achieved coverage
of the test suites, based on the latest version of the test-suite validator TestCov.
As before, the jury and the organizer made sure that the competition follows the
high quality standards of the FASE conference, in particular with respect to the
important principles of fairness, community support, and transparency.

Data Availability Statement. The test-generation tasks and results of the
competition are published at Zenodo, as described in Table 3. All compo-
nents and data that are necessary for reproducing the competition are avail-
able in public version repositories, as specified in Table 2. Furthermore, the
results are presented online on the competition web site for easy access:
https://test-comp.sosy-lab.org/2021/results/.

11 Errata: Table 8 of last year’s report for Test-Comp 2020 contains a typo: The unit of the
energy consumption per score point is kJ/sp (instead of J/sp).

https://test-comp.sosy-lab.org/2021/results/

Status Report on Software Testing: Test-Comp 2021 355

References

1. Alshmrany, K., Menezes, R., Gadelha, M., Cordeiro, L.: FuSeBMC: A white-box
fuzzer for finding security vulnerabilities in C programs (competition contribution).
In: Proc. FASE. LNCS 12649, Springer (2021)

2. Bartocci, E., Beyer, D., Black, P.E., Fedyukovich, G., Garavel, H., Hartmanns, A.,
Huisman, M., Kordon, F., Nagele, J., Sighireanu, M., Steffen, B., Suda, M., Sutcliffe,
G., Weber, T., Yamada, A.: TOOLympics 2019: An overview of competitions in
formal methods. In: Proc. TACAS (3). pp. 3–24. LNCS 11429, Springer (2019).
https://doi.org/10.1007/978-3-030-17502-3_1

3. Beyer, D.: Second competition on software verification (Summary of SV-
COMP 2013). In: Proc. TACAS. pp. 594–609. LNCS 7795, Springer (2013).
https://doi.org/10.1007/978-3-642-36742-7_43

4. Beyer, D.: Competition on software testing (Test-Comp). In: Proc. TACAS (3). pp.
167–175. LNCS 11429, Springer (2019). https://doi.org/10.1007/978-3-030-17502-
3_11

5. Beyer, D.: Second competition on software testing: Test-Comp 2020. In: Proc.
FASE. pp. 505–519. LNCS 12076, Springer (2020). https://doi.org/10.1007/978-3-
030-45234-6_25

6. Beyer, D.: First international competition on software testing (Test-Comp 2019).
Int. J. Softw. Tools Technol. Transf. (2021)

7. Beyer, D.: Results of the 3rd Intl. Competition on Software Testing (Test-Comp
2021). Zenodo (2021). https://doi.org/10.5281/zenodo.4459470

8. Beyer, D.: Software verification: 10th comparative evaluation (SV-COMP 2021). In:
Proc. TACAS (2). LNCS 12652, Springer (2021), preprint available.

9. Beyer, D.: SV-Benchmarks: Benchmark set of 3rd Intl. Competition on Software
Testing (Test-Comp 2021). Zenodo (2021). https://doi.org/10.5281/zenodo.4459132

10. Beyer, D.: Test suites from Test-Comp 2021 test-generation tools. Zenodo (2021).
https://doi.org/10.5281/zenodo.4459466

11. Beyer, D., Chlipala, A.J., Henzinger, T.A., Jhala, R., Majumdar, R.: Gener-
ating tests from counterexamples. In: Proc. ICSE. pp. 326–335. IEEE (2004).
https://doi.org/10.1109/ICSE.2004.1317455

12. Beyer, D., Jakobs, M.C.: CoVeriTest: Cooperative verifier-based testing. In: Proc.
FASE. pp. 389–408. LNCS 11424, Springer (2019). https://doi.org/10.1007/978-3-
030-16722-6_23

13. Beyer, D., Kanav, S.: CoVeriTeam: On-demand composition of cooperative
verification systems. unpublished manuscript (2021)

14. Beyer, D., Lemberger, T.: Software verification: Testing vs. model checking. In:
Proc. HVC. pp. 99–114. LNCS 10629, Springer (2017). https://doi.org/10.1007/978-
3-319-70389-3_7

15. Beyer, D., Lemberger, T.: TestCov: Robust test-suite execution and
coverage measurement. In: Proc. ASE. pp. 1074–1077. IEEE (2019).
https://doi.org/10.1109/ASE.2019.00105

16. Beyer, D., Löwe, S., Wendler, P.: Reliable benchmarking: Requirements
and solutions. Int. J. Softw. Tools Technol. Transfer 21(1), 1–29 (2019).
https://doi.org/10.1007/s10009-017-0469-y

17. Beyer, D., Wendler, P.: CPU Energy Meter: A tool for energy-aware algorithms
engineering. In: Proc. TACAS (2). pp. 126–133. LNCS 12079, Springer (2020).
https://doi.org/10.1007/978-3-030-45237-7_8

https://doi.org/10.1007/978-3-030-17502-3_1
https://doi.org/10.1007/978-3-642-36742-7_43
https://doi.org/10.1007/978-3-030-17502-3_11
https://doi.org/10.1007/978-3-030-17502-3_11
https://doi.org/10.1007/978-3-030-45234-6_25
https://doi.org/10.1007/978-3-030-45234-6_25
https://doi.org/10.5281/zenodo.4459470
https://www.sosy-lab.org/research/pub/2021-TACAS.Software_Verification_10th_Comparative_Evaluation_SV-COMP_2021.pdf
https://doi.org/10.5281/zenodo.4459132
https://doi.org/10.5281/zenodo.4459466
https://doi.org/10.1109/ICSE.2004.1317455
https://doi.org/10.1007/978-3-030-16722-6_23
https://doi.org/10.1007/978-3-030-16722-6_23
https://doi.org/10.1007/978-3-319-70389-3_7
https://doi.org/10.1007/978-3-319-70389-3_7
https://doi.org/10.1109/ASE.2019.00105
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/978-3-030-45237-7_8

356 Dirk Beyer

18. Bürdek, J., Lochau, M., Bauregger, S., Holzer, A., von Rhein, A., Apel, S., Beyer, D.:
Facilitating reuse in multi-goal test-suite generation for software product lines. In:
Proc. FASE. pp. 84–99. LNCS 9033, Springer (2015). https://doi.org/10.1007/978-
3-662-46675-9_6

19. Cadar, C., Dunbar, D., Engler, D.R.: Klee: Unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Proc. OSDI. pp. 209–224.
USENIX Association (2008)

20. Cadar, C., Nowack, M.: Klee symbolic execution engine in 2019. Int. J. Softw.
Tools Technol. Transf. (2020). https://doi.org/10.1007/s10009-020-00570-3

21. Chalupa, M., Novák, J., Strejček, J.: Symbiotic 8: Parallel and targeted test
generation (competition contribution). In: Proc. FASE. LNCS 12649, Springer
(2021)

22. Chalupa, M., Strejček, J., Vitovská, M.: Joint forces for memory safety checking.
In: Proc. SPIN. pp. 115–132. Springer (2018). https://doi.org/10.1007/978-3-319-
94111-0_7

23. Chowdhury, A.B., Medicherla, R.K., Venkatesh, R.: VeriFuzz: Program-aware
fuzzing (competition contribution). In: Proc. TACAS (3). pp. 244–249. LNCS 11429,
Springer (2019). https://doi.org/10.1007/978-3-030-17502-3_22

24. Cok, D.R., Déharbe, D., Weber, T.: The 2014 SMT competition. JSAT 9, 207–242
(2016)

25. Gadelha, M.R., Menezes, R., Cordeiro, L.: Esbmc 6.1: Automated test-case genera-
tion using bounded model checking. Int. J. Softw. Tools Technol. Transf. (2020).
https://doi.org/10.1007/s10009-020-00571-2

26. Godefroid, P., Sen, K.: Combining model checking and testing. In: Handbook of
Model Checking, pp. 613–649. Springer (2018). https://doi.org/10.1007/978-3-319-
10575-8_19

27. Harman, M., Hu, L., Hierons, R.M., Wegener, J., Sthamer, H., Baresel, A., Roper,
M.: Testability transformation. IEEE Trans. Software Eng. 30(1), 3–16 (2004).
https://doi.org/10.1109/TSE.2004.1265732

28. Holzer, A., Schallhart, C., Tautschnig, M., Veith, H.: How did you
specify your test suite. In: Proc. ASE. pp. 407–416. ACM (2010).
https://doi.org/10.1145/1858996.1859084

29. Jaffar, J., Maghareh, R., Godboley, S., Ha, X.L.: TracerX: Dynamic symbolic
execution with interpolation (competition contribution). In: Proc. FASE. pp. 530–
534. LNCS 12076, Springer (2020). https://doi.org/10.1007/978-3-030-45234-6_28

30. Jaffar, J., Murali, V., Navas, J.A., Santosa, A.E.: Tracer: A symbolic execution
tool for verification. In: Proc. CAV. pp. 758–766. LNCS 7358, Springer (2012).
https://doi.org/10.1007/978-3-642-31424-7_61

31. Jakobs, M.C., Richter, C.: CoVeriTest with adaptive time scheduling (competition
contribution). In: Proc. FASE. LNCS 12649, Springer (2021)

32. Kifetew, F.M., Devroey, X., Rueda, U.: Java unit-testing tool com-
petition: Seventh round. In: Proc. SBST. pp. 15–20. IEEE (2019).
https://doi.org/10.1109/SBST.2019.00014

33. Kim, H.: Fuzzing with stochastic optimization (2020), Bachelor’s Thesis, LMU
Munich

34. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–394
(1976). https://doi.org/10.1145/360248.360252

35. Le, H.M.: Llvm-based hybrid fuzzing with LibKluzzer (competition con-
tribution). In: Proc. FASE. pp. 535–539. LNCS 12076, Springer (2020).
https://doi.org/10.1007/978-3-030-45234-6_29

https://doi.org/10.1007/978-3-662-46675-9_6
https://doi.org/10.1007/978-3-662-46675-9_6
https://doi.org/10.1007/s10009-020-00570-3
https://doi.org/10.1007/978-3-319-94111-0_7
https://doi.org/10.1007/978-3-319-94111-0_7
https://doi.org/10.1007/978-3-030-17502-3_22
https://doi.org/10.1007/s10009-020-00571-2
https://doi.org/10.1007/978-3-319-10575-8_19
https://doi.org/10.1007/978-3-319-10575-8_19
https://doi.org/10.1109/TSE.2004.1265732
https://doi.org/10.1145/1858996.1859084
https://doi.org/10.1007/978-3-030-45234-6_28
https://doi.org/10.1007/978-3-642-31424-7_61
https://doi.org/10.1109/SBST.2019.00014
https://doi.org/10.1145/360248.360252
https://doi.org/10.1007/978-3-030-45234-6_29

Status Report on Software Testing: Test-Comp 2021 357

36. Lemberger, T.: Plain random test generation with PRTest. Int. J. Softw. Tools
Technol. Transf. (2020)

37. Liu, D., Ernst, G., Murray, T., Rubinstein, B.: Legion: Best-first concolic testing
(competition contribution). In: Proc. FASE. pp. 545–549. LNCS 12076, Springer
(2020). https://doi.org/10.1007/978-3-030-45234-6_31

38. Ruland, S., Lochau, M., Jakobs, M.C.: HybridTiger: Hybrid model checking
and domination-based partitioning for efficient multi-goal test-suite generation
(competition contribution). In: Proc. FASE. pp. 520–524. LNCS 12076, Springer
(2020). https://doi.org/10.1007/978-3-030-45234-6_26

39. Song, J., Alves-Foss, J.: The DARPA cyber grand challenge: A competi-
tor’s perspective, part 2. IEEE Security and Privacy 14(1), 76–81 (2016).
https://doi.org/10.1109/MSP.2016.14

40. Stump, A., Sutcliffe, G., Tinelli, C.: StarExec: A cross-community infrastructure
for logic solving. In: Proc. IJCAR, pp. 367–373. LNCS 8562, Springer (2014).
https://doi.org/10.1007/978-3-319-08587-6_28

41. Sutcliffe, G.: The CADE ATP system competition: CASC. AI Magazine 37(2),
99–101 (2016)

42. Visser, W., Păsăreanu, C.S., Khurshid, S.: Test-input generation
with Java PathFinder. In: Proc. ISSTA. pp. 97–107. ACM (2004).
https://doi.org/10.1145/1007512.1007526

43. Wendler, P., Beyer, D.: sosy-lab/benchexec: Release 3.6. Zenodo (2021).
https://doi.org/10.5281/zenodo.4317433

Open Access. This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution, and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-030-45234-6_31
https://doi.org/10.1007/978-3-030-45234-6_26
https://doi.org/10.1109/MSP.2016.14
https://doi.org/10.1007/978-3-319-08587-6_28
https://doi.org/10.1145/1007512.1007526
https://doi.org/10.5281/zenodo.4317433
http://creativecommons.org/licenses/by/4.0/

CoVeriTest with Adaptive Time Scheduling
(Competition Contribution)�

Marie-Christine Jakobs1��(�) and Cedric Richter2

1 Technical University of Darmstadt, Department of Computer Science,
Darmstadt, Germany, jakobs@cs.tu-darmstadt.de

2 Paderborn University, Paderborn, Germany, cedricr@mail.upb.de

Abstract. CoVeriTest, which is integrated in the analysis framework
CPAchecker, adopts verification technology for test-case generation. It
encodes individual test goals as reachability queries, which are then pro-
cessed by verifiers. To increase the effectiveness on a broad class of testing
tasks, CoVeriTest leverages the strengths of two different analyses: an ex-
plicit value analysis and predicate abstraction. Similar to TestComp’20,
the two analyses are interleaved and the time duration of an interleaving
segment is calculated dynamically. However, the calculation of the time
duration focuses on the predicted future performance instead of the past
performance, thus, rewarding analyses that likely cover open test goals.

Keywords: Test-case generation · Cooperative Verification · CPAchecker

1 Test-Generation Approach

Generating test-cases for a diverse set of tasks like in TestComp is challeng-
ing and often cannot be performed effectively by a single approach. Therefore,
cooperative approaches that combine the strengths of multiple test-case gen-
erators frequently show superior performance as long as they do not spend too
much time in unproductive test-case generators. To avoid unproductive test-case
generation, we equip our CoVeriTest submission with a novel learning-based
scheduler that considers the expected productiveness of a test-case generator.

CoVeriTest is a hybrid approach based on the concept of cooperative,
verification-based testing [5], which combines complementary verifiers. In our
current instantiation, we iteratively run two verification algorithms, namely value
analysis [4] and predicate analysis [3]. In each iteration, the analyses proceed
their exploration until they hit their time limit. The time limit of an analysis is
computed dynamically at the beginning of each iteration round using our novel
learning-based time scheduler. To generate test cases, we encode the (open) test

� This work was funded by the Hessian LOEWE initiative within the Software-Factory
4.0 project and it was partially supported by the German Research Foundation
(DFG) within the Collaborative Research Centre ”On-The-Fly Computing” (SFB
901) (grant number 160364472).

�� jury-member

c© The Author(s) 2021
E. Guerra and M. Stoelinga (Eds.): FASE 2021, LNCS 12649, pp. 358–362, 2021.
https://doi.org/10.1007/978-3-030-71500-7 18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71500-7_18&domain=pdf
https://doi.org/10.1007/978-3-030-71500-7_18

CoVeriTest with Adaptive Time Scheduling (Competition Contribution) 359

Value
analysis

...
...

...
...

Scheduler

Predicate
analysis

open

Test goals

covered
coveredco

ve
re
d

CEX
pathCE

X
pa

th

limitPlimitV

Fig. 1. Our adaptive scheduler integrated in the workflow of CoVeriTest

goals, which are shared between the analyses, as unreachability queries and let
the analyses prove the unreachability of those goals. A reported counterexample
proves the reachability of a test goal. Therefore, the counterexample is converted
into a test [1] and the test goal is removed from the set of open test goals.

Time Scheduling. Our time scheduler limits the time per iteration round
to 100 s3 and distributes the 100 s based on the expected contribution of the
individual analyses. The idea is that an analysis gets more time if there exists
more paths to open test goals that the analysis is expected to handle well.

Figure 1 shows the integration of our time scheduler into the CoVeriTest

workflow. First, the scheduler samples a set of syntactical counterexample paths ρ,
which starts at the beginning of the program and ends in an open test goal. Then,
it estimates for each path ρ the probability P (Vi | ρ) that analysis i detects ρ
as a real counterexample4. We estimate the probability P (Vi | ρ) using an uni-
gram language model [9] in combination with the approach of Richter et al. [10]
for the abstraction of the syntactical paths ρ. Finally, the scheduler assigns a
time budget to analysis i in proportion to the average probability of detecting a
counterexample path on a testing task T (program plus open test goals):

limitnewi = 10s+ 80s ∗ Eρ∈T [P (Vi | ρ)] (1)

Learning Probability Distribution. The probability distribution P (Vi | ρ) is
unknown. Thus, we aim to learn the distribution. To this end, we executed the
value and predicate analysis separately on the TestComp’20 category coverage-
branches and used the reported counterexamples, which are obviously counter-
examples that can be decided by the reporting analysis, to pre-train our unigram
language model [9]. At the beginning of each CoVeriTest execution, we load the
pre-trained model and use the reported counterexamples to improve it during

3 We choose the same iteration time limit as in TestComp’20 [8], which has been
established by extensive evaluation of CoVeriTest [5].

4 Note that it is not important that ρ is a real counterexample. We rather model the
probability that the analysis i can decide whether ρ is a counterexample than to
decide whether ρ is a counterexample.

360 M.-C. Jakobs and C. Richter

execution. When the sampled paths are indecisive, Eρ∈T [P (Vi | ρ)] becomes
the normalized progress used in the TestComp’20 strategy [8]. The normalized
progress describes the relative contribution of an analysis to the goals covered
in the last iteration.

2 Tool Architecture

CoVeriTest is an extension of the software analysis framework CPAchecker [2]
(version 2.0) and is written in Java. For parsing, we use the Eclipse CDT parser5.
For test-case generation, we rely on two instances of CPAchecker’s test-case
generation algorithm, which extracts test cases from counterexamples [1]. One
instance generates test cases based on CPAchecker’s value analysis [4] and the
other instance uses CPAchecker’s predicate analysis [3]. Both analyses apply
counterexample-guided abstraction refinement [7] and use the SMT solver Math-
SAT5 [6]. We interleave the two instances and determine their time slices based
on their expected success on the set of open test goals. To determine the time
slices, we added the adaptive scheduler described in the previous section.

3 Strengths and Weaknesses

The main difference between CoVeriTest versions in Test-Comp’20 and Test-
Comp’21 is the distribution of the 100 s per round. Our own experiments with
the Test-Comp 2020 benchmark set revealed a small advantage for our new dis-
tribution with respect to the coverage-branches category. Comparing the com-
petition results against a CoVeriTest configuration using the time distribution
from Test-Comp’20 shows that the new distribution performs slightly worse in
the coverage-error category. In total, 13 errors are missed, 8 of them are
missed in the subcategory Floats. Overall, an advantage of the new distribu-
tion is scarcely noticeable on the Test-Comp 2021 benchmark set. The unigram
language model does not generalize well.

Since the underlying analyses remain the same, CoVeriTest still gener-
ates a small number of test cases. Also, the problems with tasks using large
arrays and the subcategories BusyBox-Memsafety and SQLite-Memsafety re-
main. Additionally, CoVeriTest performs poorly on the new ntdrivers tasks
and the new subcategory Combinations. While finding the error in the new
nla-digbench tasks is difficult, covering branches works well for these tasks.
Moreover, CoVeriTest deals well with the new category XCSP and the remain-
ing new tasks.

4 Setup

We develop our extension of CoVeriTest in a fork6 of CPAchecker and submit-
ted revision 970d550, which participated in all categories. To run CoVeriTest

5 https://www.eclipse.org/cdt/
6 https://github.com/cedricrupb/cpachecker

https://www.eclipse.org/cdt/
https://github.com/cedricrupb/cpachecker

CoVeriTest with Adaptive Time Scheduling (Competition Contribution) 361

on program program.i, one requires a Java 11 runtime environment and must
execute the following command line:

scripts/cpa.sh -testcomp21 -setprop log.consoleLevel=SEVERE -stats

-benchmark -heap 10000m -spec property.prp program.i

Note that property.prp is a place marker for the test specification (coverage-
-error-call.prp or coverage-branches.prp). Tests are generated for pro-
grams assuming a 32-bit environment. To support 64-bit environments, one
needs to add the configuration option -64. The generated tests are written to
the folder output/test-suite and adhere to the XML format demanded by the
Test-Comp rules. Additionally, the folder contains the mandatory metadata file.

5 Project and Contributors

CoVeriTest is an extension of the CPAchecker project7 and is developed as a
joint, open source project between research groups of Paderborn University and
TU Darmstadt. Contributors are Marie-Christine Jakobs and Cedric Richter.
We also like to thank all developers of CPAchecker.

References

1. Beyer, D., Chlipala, A.J., Henzinger, T.A., Jhala, R., Majumdar, R.: Generating
tests from counterexamples. In: Proc. ICSE. pp. 326–335. IEEE (2004), https:
//doi.org/10.1109/ICSE.2004.1317455

2. Beyer, D., Keremoglu, M.E.: CPAchecker: A tool for configurable software
verification. In: Proc. CAV. pp. 184–190. LNCS 6806, Springer (2011), https:
//doi.org/10.1007/978-3-642-22110-1 16

3. Beyer, D., Keremoglu, M.E., Wendler, P.: Predicate abstraction with adjustable-
block encoding. In: Proc. FMCAD. pp. 189–197. FMCAD (2010), http://
ieeexplore.ieee.org/document/5770949/

4. Beyer, D., Löwe, S.: Explicit-state software model checking based on CEGAR and
interpolation. In: Proc. FASE. pp. 146–162. LNCS 7793, Springer (2013), https:
//doi.org/10.1007/978-3-642-37057-1 11

5. Beyer, D., Jakobs, M.: CoVeriTest: Cooperative verifier-based testing. In: Proc.
FASE. pp. 389–408. LNCS 11424, Springer (2019), https://doi.org/10.1007/
978-3-030-16722-6 23

6. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT
solver. In: Proc. TACAS. pp. 93–107. LNCS 7795, Springer (2013), https://doi.
org/10.1007/978-3-642-36742-7 7

7. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided ab-
straction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003),
http://doi.acm.org/10.1145/876638.876643

8. Jakobs, M.: CoVeriTest with dynamic partitioning of the iteration time limit (com-
petition contribution). In: Proc. FASE. pp. 540–544. LNCS 12076, Springer (2020),
https://doi.org/10.1007/978-3-030-45234-6 30

7 https://cpachecker.sosy-lab.org/

https://doi.org/10.1109/ICSE.2004.1317455
https://doi.org/10.1109/ICSE.2004.1317455
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
http://ieeexplore.ieee.org/document/5770949/
http://ieeexplore.ieee.org/document/5770949/
https://doi.org/10.1007/978-3-642-37057-1_11
https://doi.org/10.1007/978-3-642-37057-1_11
https://doi.org/10.1007/978-3-030-16722-6_23
https://doi.org/10.1007/978-3-030-16722-6_23
https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1007/978-3-642-36742-7_7
http://doi.acm.org/10.1145/876638.876643
https://doi.org/10.1007/978-3-030-45234-6_30
https://cpachecker.sosy-lab.org/

362 M.-C. Jakobs and C. Richter

9. Jurafsky, D.: Speech & language processing. Pearson Education India (2000)
10. Richter, C., Hüllermeier, E., Jakobs, M.C., Wehrheim, H.: Algorithm selection for

software validation based on graph kernels. JASE 27(1), 153–186 (2020), https:
//doi.org/10.1007/s10515-020-00270-x

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

https://doi.org/10.1007/s10515-020-00270-x
https://doi.org/10.1007/s10515-020-00270-x
http://creativecommons.org/licenses/by/4.0/

FuSeBMC: A White-Box Fuzzer for Finding
Security Vulnerabilities in C Programs

(Competition Contribution)

Kaled M. Alshmrany(�)1 �, Rafael S. Menezes2 , Mikhail R. Gadelha3 ,
and Lucas C. Cordeiro4

1 University of Manchester, Manchester, UK
Institute of Public Administration, Jeddah, Saudi Arabia

kaled.alshmrany@manchester.ac.uk
2 Federal University of Amazonas, Manaus, Brazil

3 SIDIA Instituto de Ciência e Tecnologia, Manaus, Brazil
4 University of Manchester, Manchester, UK

Abstract. We describe and evaluate a novel white-box fuzzer for C pro-
grams named FuSeBMC, which combines fuzzing and symbolic execution,
and applies Bounded Model Checking (BMC) to find security vulnera-
bilities in C programs. FuSeBMC explores and analyzes C programs (1)
to find execution paths that lead to property violations and (2) to in-
crementally inject labels to guide the fuzzer and the BMC engine to
produce test-cases for code coverage. FuSeBMC successfully participates
in Test-Comp’21 and achieves first place in the Cover-Error category
and second place in the Overall category.

Keywords: Automated Test-Case Generation · Symbolic Execution ·
Bounded Model Checking · Fuzzing · Security.

1 Test Generation Approach

Automated test-case generation is a method to check whether the software
matches expected requirements [2]. It involves the automated execution of soft-
ware components to evaluate intricate properties and achieve code coverage met-
rics (e.g., decision, branch, instruction). Here, we describe and evaluate a novel
white-box fuzzer, FuSeBMC, capable of automatically producing test-cases for C
programs. FuSeBMC provides an innovative software testing framework that de-
tects security vulnerabilities in C programs by using fuzzing and symbolic execu-
tion in combination with Bounded Model Checking (BMC) (cf. Fig. 1). FuSeBMC
builds on top of clang [1] to instrument the C program, uses Map2check [8] as a
fuzzing engine, and ESBMC (Efficient SMT-based Bounded Model Checker) [4,5]
as BMC and symbolic execution engines, thus combining dynamic and static ver-
ification techniques.

� Jury Member

© The Author(s) 2021
E. Guerra and M. Stoelinga (Eds.): FASE 2021, LNCS 12649, pp. 363–367, 2021.
https://doi.org/10.1007/978-3-030-71500-7 19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71500-7_19&domain=pdf
http://orcid.org/0000-0002-5822-5435
http://orcid.org/0000-0002-6102-4343
http://orcid.org/0000-0001-6540-6587
http://orcid.org/0000-0002-6235-4272
https://doi.org/10.1007/978-3-030-71500-7_19

364 K. M. Alshmrany et al.

C Code

Test

Specification

Analyze C

code

Inject labels

Create Graphml

Test suite

Fuzzing

BMC

Selective

Fuzzer Test suiteLearn

Produce counterexamples for

cover-error and cover-branches

Test specification

Test generation

Test execution

Fig. 1: FuSeBMC: a white-box fuzzer framework for C Programs.

FuSeBMC takes a C program and a test specification [3] as input. In the
Cover-Error category, FuSeBMC invokes the fuzzing and BMC engines sequen-
tially to find a path that violates a given property. It uses an iterative BMC
approach that incrementally unwinds the program until it finds a property vi-
olation or exhausts time or memory limits. FuSeBMC uses incremental BMC
to explore the program state space searching for a property violation since all
programs in Test-Comp’21 are known to have issues. In the Cover-Branches

category, FuSeBMC explores and analyzes the target C program using the clang
compiler to inject labels incrementally. FuSeBMC will compute all branches of
the C code and inject the labels for each branch by adding the label GOAL-N ,
where N is the goal number. Both engines will check whether these injected
labels are reachable to produce test-cases for branch coverage.

FuSeBMC analyzes the counterexamples and saves them as a graphml file.
It checks whether the fuzzing and BMC engines could produce counterexamples
for both categories Cover-Error and Cover-Branches. If that is not the case,
FuSeBMC employs a second fuzzing engine named selective fuzzer which produces
test-cases for the rest of the labels. The selective fuzzer produces test-cases by
learning from the two engines’ output: it analyzes the range of the inputs that
should be passed to examine the target C program and then produces different
test-cases. Lastly, FuSeBMC prepares valid test-cases with metadata to test a
target C program using TestCov [3] as a test validator.

FuSeBMC sets a 150 seconds limit for the fuzzing engine and a 700 seconds
limit for the BMC engine and sets a 50 seconds limit for the selective fuzzer.
These numbers were obtained empirically by analyzing the Test-Comp’21 results.

2 Strengths and Weaknesses

Incremental BMC allows FuSeBMC to keep unwinding the program until a prop-
erty violation is found or time or memory limits are exhausted. This approach is
advantageous in the Cover-Error category as finding one error is the primary

A White-Box Fuzzer for Finding Security Vulnerabilities in C Programs 365

goal. Another strength of FuSeBMC is that it can accurately model C programs
that use the IEEE floating-point arithmetic [6,7]. The floating-point encoding
layer in our BMC engine extends the support for the SMT FP theory to solvers
that do not support it natively. FuSeBMC can test programs with floating-point
arithmetic using all currently supported solvers in BMC engine (ESBMC), in-
cluding Boolector [9], which does not support the SMT FP theory natively.

In both Cover-Error and Cover-Branches categories, various test-cases pro-
duced by FuSeBMC are validated successfully. The majority of our test-cases
were produced by the BMC engine and the selective fuzzer; our fuzzing engine
did not produce many test-cases because it does not model the C library, so it
mostly guesses the inputs. For example, in the Cover-Error category, TestCov
confirms 500 test-cases produced by FuSeBMC, where our fuzzing engine pro-
duces 13 (Map2Check), BMC engine produces 393 (ESBMC), while our selective
fuzzer produces 94 test-cases (selective).

However, note that our fuzzing engine is not limited to only produce test-
cases. It helps our selective fuzzer by providing information about the number of
inputs required to trigger a property violation, i.e., the number of assignments
required to reach an error. In several cases, the BMC engine can exhaust the time
limit before providing such information, e.g., when there are large arrays that
need to be initialized at the beginning of the program. For example, consider
the following code fragment extracted from the standard copy1 ground-2.c

benchmark, as illustrated in Fig. 2.

1 #define N 100000
2 . . .
3 int a , a1 [N] , a2 [N] ;
4 for (a = 0 ; a < N ; a++) {
5 a1 [a] = VERIFIER nondet int () ;
6 a2 [a] = VERIFIER nondet int () ;
7 }
8 . . .
9 for (int x = 0 ; x < N ; x++)

10 VERIFIER assert (a1 [x] == a2 [x]) ;

Fig. 2: Code fragment that contains a large array.

In this particular example, ESBMC exhausts the time limit before check-
ing the assertion a1[x] == a2[x]. Apart from that, our employed verification
engines also demonstrate a certain level of weakness to produce test-cases due
to the many optimizations we perform when converting the program to SMT.
In particular, two techniques affected the test-case generation significantly: con-
stant folding and slicing. Constant folding evaluates constants (which includes
nondeterministic symbols) and propagates them throughout the formula during
encoding, and slicing removes expression not in the path to trigger a property

366 K. M. Alshmrany et al.

violation. These two techniques can significantly reduce SMT solving time. How-
ever, they can remove the expressions required to trigger a violation when the
program is compiled, i.e., variable initialization might be optimized away, forcing
FuSeBMC to generate a test-case with undefined behavior.

Regarding our fuzzing engine, we identified a limitation to handle programs
with pointer dereferences. The fuzzing engine keeps track of variables throughout
the program but has issues identifying when they go out of scope. When we try
to generate a test-case that triggers a pointer dereference, our fuzzing engine
provides thrash values, and the selective fuzzer might create test-cases that do
not reach the error.

3 Tool Setup and Configuration

In order to run our fusebmc.py script,5 one must set the architecture (i.e., 32 or
64-bit), the competition strategy (i.e., k -induction, falsification, or incremental
BMC), the property file path, and the benchmark path, as:

fusebmc.py [-a {32, 64}] [-p PROPERTY_FILE]

[-s {kinduction,falsi,incr,fixed}]

[BENCHMARK_PATH]

where -a sets the architecture, -p sets the property file path, and -s sets
the strategy (e.g., kinduction, falsi, incr, or fixed). For Test-Comp’21,
FuSeBMC uses incr for incremental BMC.

When choosing the fuzzing engine, we set the following options when execut-
ing Map2Check: timeout of 150 seconds for Map2Check in Cover-Error, and a
timeout of 70 seconds in Cover-Branches; --fuzzer-mb 1000 limits memory to
1000 MB; --target-function-name reach−error defines the function name
to be searched; --target-function checks whether the target-function is reach-
able; --nondet-generator fuzzer uses only fuzzing; --generate-witness sets
the witness output path.

By choosing incremental BMC, the following options are set when executing
ESBMC: --no-div-by-zero-check disables the division by zero check (required
by Test-Comp); --force-malloc-success sets that all dynamic allocations suc-
ceed (a Test-Comp requirement); --floatbv enables floating-point SMT encod-
ing; --incremental-bmc enables incremental BMC; --unlimited-k-steps re-
moves the upper limit of iteration steps for incremental BMC; --witness-output
sets the witness output path; --no-bounds-check and --no-pointer-check

disable bounds-check and pointer-safety checks, resp., since we are only inter-
ested in finding reachability bugs; --k-step 5 sets the incremental BMC to 5;
--no-allign-check disables pointer alignment checks; and --no-slice disables
slicing of unnecessary instructions.

The Benchexec tool info module is named fusebmc.py and the benchmark
definition file is FuSeBMC.xml.
5 https://gitlab.com/sosy-lab/test-comp/archives-2021/-/blob/master/2021/
FuSeBMC.zip

https://gitlab.com/sosy-lab/test-comp/archives-2021/-/blob/master/2021/FuSeBMC.zip
https://gitlab.com/sosy-lab/test-comp/archives-2021/-/blob/master/2021/FuSeBMC.zip

A White-Box Fuzzer for Finding Security Vulnerabilities in C Programs 367

4 Software Project

The FuSeBMC source code is written in C++ and it is available for downloading
at GitHub,6 which includes the latest release of FuSeBMC v3.6.6. FuSeBMC is
publicly available under the terms of the MIT License. Instructions for building
FuSeBMC from the source code are given in the file README.md (including the
description of all dependencies).

References

1. Clang documentation. http://clang.llvm.org/docs/index.html.
2. Anand, S., Burke, E.K., Chen, T.Y., Clark, J.A., Cohen, M.B., Grieskamp, W.,

Harman, M., Harrold, M.J., McMinn, P.: An orchestrated survey of methodologies
for automated software test-case generation. J. Syst. Softw. 86(8), 1978–2001, 2013.

3. Beyer, D.: Second competition on software testing: Test-Comp 2020. In FASE,
LNCS 12076, pp. 505–519, 2020.

4. Gadelha, M.R., Monteiro, F.R., Morse, J., Cordeiro, L.C., Fischer, B., Nicole, D.A.:
ESBMC 5.0: An industrial-strength C model checker. In ASE, pp. 888–891, 2018.

5. Gadelha, M.R., Monteiro, F.R., Cordeiro, B., Nicole: ESBMC v6.0: Verifying C
Programs Using k -Induction and Invariant Inference - (Competition Contribution).
In TACAS, LNCS 11429, pp. 209–213, 2019.

6. Gadelha, M.R., Menezes, R., Monteiro, F.R., Cordeiro, L.C., Nicole, D.A.: ES-
BMC: scalable and precise test generation based on the floating-point theory -
(competition contribution). In FASE, LNCS 12076, pp. 525–529, 2020.

7. Gadelha, M.R., Cordeiro, L.C., Nicole, D.A.: An Efficient Floating-Point Bit-
Blasting API for Verifying C Programs. In VSTTE, LNCS 12549, pp. 178–195,
2020.

8. Menezes, R., Rocha, H., Cordeiro, L., Barreto, R.: Map2check using LLVM and
KLEE. In TACAS, LNCS 10806, pp. 437–441, 2018.

9. Niemetz, A., Preiner, M., Biere, A.: Boolector 2.0 system description. Journal on
Satisfiability, Boolean Modeling and Computation 9, 53–58 (2014)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

6 https://github.com/kaled-alshmrany/FuSeBMC

http://clang.llvm.org/docs/index.html
http://creativecommons.org/licenses/by/4.0/
https://github.com/kaled-alshmrany/FuSeBMC

C
o
n
si
st

en
t *

Complete

*
W
e
ll
D
o
cu
m
ented*Easyt

o
Re

u
se

* *Evaluated

*
A
S

*

Ar
tifact *

-
Test

C o m
p

E
F

Symbiotic 8: Parallel and
Targeted Test Generation

(Competition Contribution)

Marek Chalupa �, Jakub Novák, and
Jan Strejček

Masaryk University, Brno, Czech Republic

� Jury member and the corresponding author: chalupa@fi.muni.cz.

Abstract. The setup of Symbiotic 8 for Test-Comp 2021 brings radical
changes in the test generation for coverage-branches property. Similarly
as in Symbiotic 7, we generate tests by running our fork of symbolic
executor Klee on the analyzed program. Symbiotic 8, however, runs
several instances of Klee in parallel. We run one instance of Klee on
the original program and, simultaneously, we create one (intentionally
unsound) program slice for every program-terminating instruction in the
program and run Klee on these slices. Apart from this principal change,
we also improved other components of the tool, mainly the program
slicer. Further, our fork of Klee now supports symbolic pointer arith-
metics and comparison of symbolic addresses.

1 Test-Generation Approach

Symbiotic [3,2] is an open-source program analysis framework that combines
static analyses with code transformations in order to enable faster analysis of
the code. In the setup for Test-Comp 2021, Symbiotic uses program slicing [6]
in combination with symbolic execution [5].

Static (backward) program slicing [6] is a technique that removes program
instructions that have no influence on reachability or the effect of selected parts
of the program. In Test-Comp, we use program slicing for all properties. For
coverage-error-call property, we slice the program to remove instructions
that cannot affect reachability of the error location. For coverage-branches

property, we use program slicing to create modified versions of the program on
which we are likely to quickly generate tests that reach hard-to-cover parts of
the program.

Symbolic execution [5] is a program analysis technique that enumerates all
possible execution paths of a program. For every path, it computes its corre-
sponding path condition, which is a collection of constraints on program inputs
that forms the necessary and sufficient condition to follow the path. Each path
condition is then used to create a test that makes the program execute the given
path.

© The Author(s) 2021
E. Guerra and M. Stoelinga (Eds.): FASE 2021, LNCS 12649, pp. 368–372, 2021.
https://doi.org/10.1007/978-3-030-71500-7 20

https://doi.org/10.5281/zenodo.4491729
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71500-7_20&domain=pdf
http://orcid.org/0000-0003-1132-5516
http://orcid.org/0000-0001-5873-403X
https://doi.org/10.1007/978-3-030-71500-7_20

Symbiotic 8: Parallel and Targeted Test Generation 369

1.1 Workflow of Symbiotic 8

The workflow of Symbiotic 8 in Test-Comp 2021 for the property
coverage-error-call is the same as in Symbiotic 7: we slice the analyzed
program with respect to calls of the error function and run Klee on this sliced
program. If Klee finds a feasible path that calls the error function, we attempt
to replay this path in the unsliced program to fill in the possibly missing values
returned from calls to functions VERIFIER nondet * that may have been sliced
away.

The workflow for the property coverage-branches changed significantly in
Symbiotic 8. For this property, we run several instances of Klee in parallel:
one instance on the original program and other instances on slices generated for
every terminating location in the program.

More precisely, we create a pool of processes that keeps running at most
8 processes at the same time (on the first-come-first-served basis). We start an
instance of Klee on the original program and add it to the pool. Then we identify
instructions in the program that terminate the execution (further referred to as
targets). For each target, we create a slice and queue a run of Klee on this slice.

These slices are unsound in the sense that they do not preserve all execution
paths to the targets. A slice is constructed in two steps:

1. We gather all instructions that are backward-reachable from the target in
the target’s function and recursively in the callers of the target’s function.
However, we move only up the call stack and do not submerge into procedures
during this process.

2. After we gather all such instructions, we replace all other instructions with a
call to abort and apply standard program slicing with respect to the target.

For example, consider the code on the left in Figure 1. It contains three possi-
ble targets, namely error() (line 7), abort() (line 13), and return 0 (line 17).
If we slice with respect to the target error(), we start searching the program
backwards from this target and get all instructions in the body of function foo.
Then we pop up from the call to line 16 and collect all instructions of function
main except the call to abort (from which the call to foo is unreachable). All
instructions except the gathered ones are replaced with a call to abort. Standard
program slicing then produces the program depicted in the middle in Figure 1 (in
this case, it just removes the return). The slice for the target abort() preserves
only three first lines of main as depicted on the right in Figure 1.

Whenever the main instance of Klee finishes tests generation, we have tests
for all feasible execution paths of the program. Therefore, we kill all other run-
ning instances of Klee and discard tests that were not generated by the main
instance to reduce the size of the test suite. If the main instance does not finish
before timeout, we keep all generated tests.

Using the unsound slices aims only to help reaching hard-to-cover places in
the program. In particular, potentially expensive detours are replaced by abort

and symbolic execution thus does not waste resources to discover them (see
line 2 in the middle in Figure 1). The current construction of unsound slices

370 M. Chalupa et al.

1 int inc(int x) {
2 return x + 1;
3 }
4

5 void foo(int x) {
6 if (x > 0)
7 error();
8 }
9

10 int main() {
11 int y = nondet ();
12 if (y < 0)
13 abort();
14 if (y == 0)
15 y = inc(y);
16 foo(y);
17 return 0;
18 }

int inc(int x) {
abort();

}

void foo(int x) {
if (x > 0)

error();
}

int main() {
int y = nondet ();
if (y < 0)

abort();
if (y == 0)

y = inc(y);
foo(y);

}

int main() {
int y = nondet ();
if (y < 0)

abort();

}

Fig. 1. And example of a program (left) and its unsound slice with respect to the call
of error() (middle) and abort() (right).

guarantees that if a test covers a target in the corresponding slice, then it covers
the same target also in the original program. The opposite implication does not
hold due to the unsoundness. Note that tests generated from the slices may not
and usually do not cover all branches in the original program, therefore we still
need to run Klee on the original program.

2 Software Architecture

All parts of Symbiotic 8 use llvm 10 [7]. We compile the analyzed program
into llvm bitcode by the compiler Clang.

To carry out symbolic execution, we use our fork of the open-source sym-
bolic executor Klee [1]. The fork has several modifications compared to the
mainstream Klee. The main modification is the representation of pointers as
segment-offset pairs that enables symbolic-sized allocations. Since this year, our
fork Klee also supports comparison of and arithmetic on symbolic pointers.
We use Z3 [4] as the SMT solver in Klee. The components of Symbiotic are
programmed in C++ and the scripts that schedule and control running these
components are written in Python.

3 Strengths and Weaknesses

Although symbolic execution is very good in generating test-cases, it suffers from
the path explosion problem. This problem emerges on programs that contain
many branching instructions or loops with the number of iterations dependent on
the input and may hinder symbolic execution from exploring “deep” parts of the

Symbiotic 8: Parallel and Targeted Test Generation 371

Fig. 2. The coverage achieved by Symbiotic 8 and 7 on individual benchmarks of the
Cover-Branches category

program. Using unsound program slices for terminating instructions attempts to
alleviate this problem. Although the slice is not guaranteed to preserve paths to
the target for which it was created, there are programs where this technique helps
symbolic execution to cover substantially more instructions. However, there are
also many cases where the technique worsens the coverage alike.

Figure 2 illustrates the overall positive and negative effect of this approach.
The scatter plot on the left compares the coverage achieved by Symbiotic 8
and the coverage achieved by Symbiotic 7 on individual benchmarks that were
used in both Test-Comp 2020 and 2021.1 The scatter plot shows that the be-
havior of the tool changes dramatically. To summarize the data, we compute
the difference between the two coverages on each benchmark (for example, if
Symbiotic 8 achieves 80% and Symbiotic 7 60% coverage, the difference is
+20%). The histogram on the right indicates that the overall effect of unsound
slices is positive as the distribution is skewed to positive values. Indeed, Sym-
biotic 8 won the 3rd place in the category Cover-Branches (corresponding to
coverage-branches property) in Test-Comp 2021 which is a big improvement
over the previous Test-Comp, where Symbiotic was 8th out of 9 participants
in this category.

The workflow of Symbiotic on coverage-error-call did not change from
the last year and thus the results are similar.

4 Tool Setup and Configuration

The archive is available at https://doi.org/10.5281/zenodo.4491729. Run Sym-
biotic with the following command

1 The use of unsound slices is not the only difference between Symbiotic 8 and 7, but
we believe that it has the biggest impact on the presented results.

https://doi.org/10.5281/zenodo.4491729

372 M. Chalupa et al.

bin/symbiotic --test-comp --prp <prpfile> [--32] <source>

where --prp sets the verified property and --32 tells Symbiotic to assume
32-bit architecture (64-bit architecture is assumed by default). The generated
test-cases are stored in the directory test-suite.

5 Software Project and Contributors

Symbiotic 8 as it competes in Test-Comp 2021 has been developed by Marek
Chalupa and Jakub Novák under the supervision of Jan Strejček. The tool and
its components are available under MIT License. llvm, Klee, and Z3 are also
available under open-source licenses. The project web page is:

https://github.com/staticafi/symbiotic

References

1. C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and automatic gen-
eration of high-coverage tests for complex systems programs. In OSDI, pages
209–224. USENIX Association, 2008. http://www.usenix.org/events/osdi08/tech/
full papers/cadar/cadar.pdf.

2. M. Chalupa, T. Jašek, L. Tomovič, M. Hruška, V. Šoková, P. Ayaziová, J. Strejček,
and T. Vojnar. Symbiotic 7: Integration of predator and more (competition contri-
bution). In TACAS, volume 12079 of LNCS, pages 413–417. Springer, 2020. doi:
10.1007/978-3-030-45237-7 31.

3. M. Chalupa, M. Vitovská, T. Jašek, M. Šimáček, and J. Strejček. Symbiotic 6:
generating test cases by slicing and symbolic execution. International Journal on
Software Tools for Technology Transfer, 2020. doi: 10.1007/s10009-020-00573-0.

4. L. de Moura and N. Bjørner. Z3: an efficient SMT solver. In TACAS, volume 4963
of LNCS, pages 337–340. Springer, 2008. doi: 10.1007/978-3-540-78800-3 24.

5. J. C. King. Symbolic execution and program testing. Communications of ACM,
19(7):385–394, 1976. doi: 10.1145/360248.360252.

6. Mark Weiser. Program slicing. IEEE Transactions on Software Engineering,
10(4):352–357, 1984. doi: 10.1109/TSE.1984.5010248.

7. LLVM. http://llvm.org/.

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

https://github.com/staticafi/symbiotic
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
http://dx.doi.org/10.1007/978-3-030-45237-7_31
http://dx.doi.org/10.1007/s10009-020-00573-0
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1145/360248.360252
http://dx.doi.org/10.1109/TSE.1984.5010248
http://llvm.org/
http://creativecommons.org/licenses/by/4.0/

Author Index

Aceto, Luca 3
Aguirre, Nazareno 218
Albert, Elvira 24
Alshmrany, Kaled M. 363
Apel, Sven 67
Arroyo, Marcelo 218
Attard, Duncan Paul 3

Bae, Doo-Hwan 292
Barkowsky, Matthias 262
Beyer, Dirk 341
Burger, Erik 87

Chalupa, Marek 368
Chen, Yixiong 46
Cho, Eunho 292
Cordeiro, Lucas C. 363

Dimovski, Aleksandar S. 67

Francalanza, Adrian 3
Frias, Marcelo F. 218

Gadelha, Mikhail R. 363
Garlan, David 130
Giese, Holger 196, 262
Gleitze, Joshua 87
Godio, Ariel 218
Gurov, Dilian 152

Hähnle, Reiner 24
Haltermann, Jan 108
Hammer, Christian 240

Ingólfsdóttir, Anna 3

Jakobs, Marie-Christine 358

Kang, Eunsuk 130
Klare, Heiko 87

Legay, Axel 67
Lei, Zhanyao 46

Li, Nianyu 130
Lidström, Christian 152

Majumdar, Rupak 172
Mathur, Aman 172
Maximova, Maria 196
Menezes, Rafael S. 363
Merayo, Alicia 24

Novák, Jakub 368

Pirron, Marcus 172
Ponzio, Pablo 218
Prakash, Jyoti 240

Qi, Zhengwei 46

Ray, Baishakhi 313
Richter, Cedric 358
Rosner, Nicolás 218

Sakizloglou, Lucas 262
Schneider, Sven 196
Schumi, Richard 269
Shin, Yong-Jun 292
Stegner, Laura 172
Steinhöfel, Dominic 24
Strejček, Jan 368
Sun, Jun 269

Tian, Yuchi 313
Tiwari, Abhishek 240

Wehrheim, Heike 108

Xia, Mingyuan 46

Yang, Yang 46

Zhang, Mingyue 130
Zhong, Ziyuan 313
Zufferey, Damien 172

	ETAPS Foreword
	Preface
	Organization
	Contents
	FASE Contributions
	 On Benchmarking forConcurrent Runtime Verification
	1 Introduction
	2 Benchmark Design and Implementation
	2.1 Approach
	2.2 Realisability
	2.3 Measurement Collection

	3 Evaluation
	3.1 Benchmark Expressiveness and Veracity
	3.2 Case Study

	4 Conclusion
	Reference

	Certified Abstract Cost Analysis
	1 Introduction
	2 QAE by Example
	3 (Quantitative) Abstract Execution
	3.1 Abstract Execution with Abstract Cost
	3.2 Cost of Abstract Programs
	3.3 Proving Quantitative Properties with QAE

	4 Abstract Cost Analysis
	4.1 Inference of Abstract Cost Relations
	4.2 From ACRS to Abstract Cost Invariants
	4.3 From Cost Invariants to Postconditions

	5 Experimental Evaluation
	6 Related Work
	7 Conclusion and Future Work
	References

	Bootstrapping Automated Testing for RESTful Web Services
	1 Introduction
	2 Motivation
	3 FET Techniques
	3.1 Type Lattice
	3.2 FET Lattice
	3.3 FET Inference

	4 FET-enhanced REST Fuzzing
	4.1 Collecting and Parsing HTTP Traffic
	4.2 Ubiquitous FET Lattice
	4.3 FET-aware Trace-driven Fuzzing

	5 Evaluation
	5.1 FET Inference Accuracy Evaluation
	5.2 Leif Effectiveness Evaluation
	5.3 Comparative Evaluation

	6 Related Work
	7 Conclusion and Future Work
	Acknowledgments
	References

	A Decision Tree Lifted Domain for Analyzing Program Families with Numerical Features
	1 Introduction
	2 Motivating Example
	3 A Language for Program Families
	4 Lifted Analysis based on Tuples
	5 Lifted Analysis based on Decision Trees
	6 Evaluation
	7 Related Work
	8 Conclusion
	References

	Finding a Universal Execution Strategy for Model Transformation Networks
	1 Introduction
	2 Problem Statement
	2.1 Motivating Example
	2.2 Context
	2.3 Formalisation

	3 Related Work
	4 Design Space
	4.1 One Execution per Transformation
	4.2 Unlimited Executions

	5 Proposed Strategy
	5.1 Execution Order: Providing Explainability
	5.2 Execution Bound: Reacting to Each Other
	5.3 The Explanatory Strategy

	6 Conclusion
	References

	CoVEGI: Cooperative Verification via Externally Generated Invariants
	1 Introduction
	2 Fundamentals
	3 Concept
	3.1 Components of the CoVEGI-Framework
	3.2 Cooperation within CoVEGI
	3.3 Witness Injection
	3.4 Adapter for LLVM-based Helper Invariant Generators

	4 Evaluation
	4.1 Research Questions
	4.2 Experimental Setup
	4.3 Experimental Results
	4.4 Threads to Validity

	5 Related work
	6 Conclusion
	References

	Engineering Secure Self-Adaptive Systems with Bayesian Games
	1 Introduction
	2 Background
	2.1 Running Example
	2.2 Bayesian Game Theory

	3 Self-Adaptive Framework Incorporating Bayesian Game Theory
	4 Bayesian Game Through Model Transformation
	4.1 Analysis Results for Znn.com Example

	5 Evaluation – Routing Games
	5.1 Game Definition for Interdomain Routing
	5.2 Dynamic Programming Algorithm
	5.3 Experiment Setup & Results

	6 Related Work
	7 Conclusion and Future Work
	Acknowledgements
	References

	An Abstract Contract Theory for Programs with Procedures
	1 Introduction
	2 Contract Based Design
	2.1 Contract Based Design of Cyber-Physical Systems
	2.2 A Contract Meta-Theory

	3 Denotational Semantics of Programs and Contracts
	3.1 The Denotational Semantics of Programs with Procedures
	3.2 Hoare Logic and Contracts

	4 An Abstract Contract Theory
	4.1 Components
	4.2 Denotational Contracts

	5 Connection to Meta-Theory
	6 Connection to Programs with Procedures
	7 Conclusion
	References

	Paracosm: A Test Framework for Autonomous Driving Simulations
	1 Introduction
	2 Paracosm through Examples
	3 Systematic Testing of Paracosm Worlds
	3.1 Test Inputs and Coverage
	3.2 Test Generation

	4 Implementation and Tests
	4.1 Runtime System and Implementation
	4.2 Evaluation
	4.3 Case Studies
	4.4 Results and Analysis
	4.5 Threats to Validity

	5 Related Work
	6 Future Work and Conclusion
	Acknowledgements
	References

	Compositional Analysis of Probabilistic Timed Graph Transformation Systems
	1 Introduction
	2 Running Example
	3 Preliminaries
	4 Decomposition of Large-Scale Topologies
	5 Overapproximation of Behavior
	6 Evaluation
	7 Conclusion and Future Work
	References

	Effcient Bounded Model Checking of Heap-Manipulating Programs using Tight Field Bounds
	1 Introduction
	2 A Motivating Example
	3 Tight Field Bounds
	4 A Technique for Nondeterministic Generation of Dynamic Structures
	4.1 Computing Tight Field Bounds

	5 Evaluation
	6 Related Work
	7 Conclusions
	References

	Effects of Program Representation on Pointer Analyses — An Empirical Study
	1 Introduction
	2 Background and Motivation
	2.1 Intermediate Representation
	2.2 Static modeling of libraries
	2.3 Heap Abstraction

	3 Methodology
	3.1 Metrics Used

	4 Evaluation
	4.1 RQ1: Class hierarchy differences with benchmarks
	4.2 RQ2: Precision differences with class hierarchy
	4.3 RQ3: Precision for IR varies with the framework
	4.4 RQ4: Heap abstractions in pointer analysis frameworks

	5 Threats to Validity
	6 Related Work
	7 Conclusion
	References

	Keeping Pace with the History of Evolving Runtime Models
	1 Introduction to InTempo
	2 RTMнAnalysis
	3 LogAnalysis
	4 Conclusion and Future Work
	References

	SpecTest: Specification-Based Compiler Testing
	1 Introduction
	2 Method
	2.1 Overall Design
	2.2 The Oracle
	2.3 The Mutator
	2.4 The Fuzzer

	3 Evaluation
	3.1 Test Setting
	3.2 Experiment Result
	3.3 Threats to Validity

	4 Related Work
	5 Conclusion
	Acknowledgments
	References

	PASTA: An Efficient Proactive Adaptation Approach Based on Statistical Model Checking for Self-Adaptive Systems
	1 Introduction
	2 Related Work: Proactive Adaptation
	3 Background: Statistical Model Checking (SMC)
	4 Illustrative Example
	5 Proactive Adaptation Based on Statistical Model Checking
	5.1 PASTA overview
	5.2 Knowledge
	5.3 Monitoring Environmental Changes
	5.4 Forecasting Future Environmental Change
	5.5 Planning Adaptation Using SMC
	5.6 Executing Adaptation
	5.7 PASTA Implementation

	6 Evaluation
	6.1 Research Questions
	6.2 Evaluation Setup
	6.3 Evaluation Results

	7 Threats to Validity
	8 Conclusion
	Acknowledgement
	References

	Understanding Local Robustness of Deep Neural Networks under Natural Variations
	1 Introduction
	2 Background: DNN Testing
	3 Methodology
	3.1 Terminology
	3.2 Data Collection
	3.3 Classifying Robust vs. Weak Points

	4 Experimental Design
	4.1 Study Subjects
	4.2 Evaluation

	5 Results
	6 Related Work
	7 Threats to Validity
	8 Conclusion and Future Work
	9 Acknowledgement
	References

	Test-Comp Contributions
	Status Report on Software Testing: Test-Comp 2021
	1 Introduction
	2 Definitions, Formats, and Rules
	3 Categories and Scoring Schema
	4 Reproducibility
	5 Results and Discussion
	6 Conclusion
	References

	CoVeriTest with Adaptive Time Scheduling (Competition Contribution)
	1 Test-Generation Approach
	2 Tool Architecture
	3 Strengths and Weaknesses
	4 Setup
	5 Project and Contributors
	References

	FuSeBMC: A White-Box Fuzzer for Finding Security Vulnerabilities in C Programs (Competition Contribution)
	1 Test Generation Approach
	2 Strengths and Weaknesses
	3 Tool Setup and Configuration
	4 Software Project
	References

	Symbiotic 8: Parallel and Targeted Test Generation (Competition Contribution)
	1 Test-Generation Approach
	1.1 Workflow of Symbiotic 8

	2 Software Architecture
	3 Strengths and Weaknesses
	4 Tool Setup and Configuration
	5 Software Project and Contributors
	References

	Author Index

