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ETAPS Foreword

Welcome to the 24th ETAPS! ETAPS 2021 was originally planned to take place in
Luxembourg in its beautiful capital Luxembourg City. Because of the Covid-19 pan-
demic, this was changed to an online event.

ETAPS 2021 was the 24th instance of the European Joint Conferences on Theory
and Practice of Software. ETAPS is an annual federated conference established in
1998, and consists of four conferences: ESOP, FASE, FoSSaCS, and TACAS. Each
conference has its own Program Committee (PC) and its own Steering Committee
(SC). The conferences cover various aspects of software systems, ranging from theo-
retical computer science to foundations of programming languages, analysis tools, and
formal approaches to software engineering. Organising these conferences in a coherent,
highly synchronised conference programme enables researchers to participate in an
exciting event, having the possibility to meet many colleagues working in different
directions in the field, and to easily attend talks of different conferences. On the
weekend before the main conference, numerous satellite workshops take place that
attract many researchers from all over the globe.

ETAPS 2021 received 260 submissions in total, 115 of which were accepted,
yielding an overall acceptance rate of 44.2%. I thank all the authors for their interest in
ETAPS, all the reviewers for their reviewing efforts, the PC members for their con-
tributions, and in particular the PC (co-)chairs for their hard work in running this entire
intensive process. Last but not least, my congratulations to all authors of the accepted
papers!

ETAPS 2021 featured the unifying invited speakers Scott Smolka (Stony Brook
University) and Jane Hillston (University of Edinburgh) and the conference-specific
invited speakers Isil Dillig (University of Texas at Austin) for ESOP and Willem Visser
(Stellenbosch University) for FASE. Inivited tutorials were provided by Erika Abrahdm
(RWTH Aachen University) on analysis of hybrid systems and Madhusudan
Parthasararathy (University of Illinois at Urbana-Champaign) on combining machine
learning and formal methods.

ETAPS 2021 was originally supposed to take place in Luxembourg City, Luxem-
bourg organized by the SnT - Interdisciplinary Centre for Security, Reliability and
Trust, University of Luxembourg. University of Luxembourg was founded in 2003.
The university is one of the best and most international young universities with 6,700
students from 129 countries and 1,331 academics from all over the globe. The local
organisation team consisted of Peter Y.A. Ryan (general chair), Peter B. Roenne (or-
ganisation chair), Joaquin Garcia-Alfaro (workshop chair), Magali Martin (event
manager), David Mestel (publicity chair), and Alfredo Rial (local proceedings chair).

ETAPS 2021 was further supported by the following associations and societies:
ETAPS e.V., EATCS (European Association for Theoretical Computer Science),
EAPLS (European Association for Programming Languages and Systems), and EASST
(European Association of Software Science and Technology).
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The ETAPS Steering Committee consists of an Executive Board, and representa-
tives of the individual ETAPS conferences, as well as representatives of EATCS,
EAPLS, and EASST. The Executive Board consists of Holger Hermanns (Saar-
briicken), Marieke Huisman (Twente, chair), Jan Kofron (Prague), Barbara Konig
(Duisburg), Gerald Liittgen (Bamberg), Caterina Urban (INRIA), Tarmo Uustalu
(Reykjavik and Tallinn), and Lenore Zuck (Chicago).

Other members of the steering committee are: Patricia Bouyer (Paris), Einar Broch
Johnsen (Oslo), Dana Fisman (Be’er Sheva), Jan-Friso Groote (Eindhoven), Esther
Guerra (Madrid), Reiko Heckel (Leicester), Joost-Pieter Katoen (Aachen and Twente),
Stefan Kiefer (Oxford), Fabrice Kordon (Paris), Jan Kfetinsky (Munich), Kim G.
Larsen (Aalborg), Tiziana Margaria (Limerick), Andrew M. Pitts (Cambridge), Grigore
Rosu (Illinois), Peter Ryan (Luxembourg), Don Sannella (Edinburgh), Lutz Schroder
(Erlangen), Ilya Sergey (Singapore), Mariélle Stoelinga (Twente), Gabriele Taentzer
(Marburg), Christine Tasson (Paris), Peter Thiemann (Freiburg), Jan Vitek (Prague),
Anton Wijs (Eindhoven), Manuel Wimmer (Linz), and Nobuko Yoshida (London).

I’d like to take this opportunity to thank all the authors, attendees, organizers of the
satellite workshops, and Springer-Verlag GmbH for their support. I hope you all
enjoyed ETAPS 2021.

Finally, a big thanks to Peter, Peter, Magali and their local organisation team for all
their enormous efforts to make ETAPS a fantastic online event. I hope there will be a
next opportunity to host ETAPS in Luxembourg.

February 2021 Marieke Huisman
ETAPS SC Chair
ETAPS e.V. President



Preface

This volume contains the papers accepted for the 24th International Conference on
Foundations of Software Science and Computation Structures (FoSSaCS). The
conference series is dedicated to foundational research with a clear significance for
software science. It brings together research on theories and methods to support the
analysis, integration, synthesis, transformation, and verification of programs and
software systems.

This volume contains 28 contributed papers selected from 88 paper submissions.
Each submission was reviewed by at least three Program Committee members, with the
help of external reviewers, and the final decisions took into account the feedback from
a rebuttal phase. The conference submissions were managed using the EasyChair
conference system, which was also used to assist with the compilation of these
proceedings.

We wish to thank all the authors who submitted papers to FoSSaCS 2021, the
Program Committee members, the Steering Committee members, the external
reviewers, and the ETAPS 2021 organizers. Due to the Covid-19 pandemic, ETAPS
2021 was held online.

July 2021 Stefan Kiefer
Christine Tasson
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Constructing a universe for the setoid model

Thorsten Altenkirch! * @, Simon Boulier?", Ambrus Kaposi®*® *, Christian
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Abstract. The setoid model is a model of intensional type theory that
validates certain extensionality principles, like function extensionality
and propositional extensionality, the latter being a limited form of uni-
valence that equates logically equivalent propositions. The appeal of this
model construction is that it can be constructed in a small, intensional,
type theoretic metatheory, therefore giving a method to boostrap ex-
tensionality. The setoid model has been recently adapted into a formal
system, namely Setoid Type Theory (SeTT). SeTT is an extension of
intensional Martin-Lof type theory with constructs that give full access
to the extensionality principles that hold in the setoid model.

Although already a rich theory as currently defined, SeT'T currently lacks
a way to internalize the notion of type beyond propositions, hence we
want to extend SeTT with a universe of setoids. To this aim, we present
the construction of a (non-univalent) universe of setoids within the setoid
model, first as an inductive-recursive definition, which is then translated
to an inductive-inductive definition and finally to an inductive family.
These translations from more powerful definition schemas to simpler ones
ensure that our construction can still be defined in a relatively small
metatheory which includes a proof-irrelevant identity type with a strong
transport rule.

Keywords: type theory - function extensionality - univalence - setoid
model - induction-recursion - induction-induction
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1 Introduction

Intuitionistic type theory is a formal system designed by Per Martin-Lof to be
a full-fledged foundation in which to develop constructive mathematics [23,24].
A central aspect of type theory is the coexistence of two notions of equality. On
the one hand definitional equality, the computational equality that is built into
the formalism. On the other hand “propositional” equality, the internal notion
of equality that is actually used to state and prove equational theorems within
the system. The precise balance between these two notions is at the center of
type theory research; however, it is generally understood that to properly sup-
port formalization of mathematics, one should aim for a notion of propositional
equality that is as extensional as possible.

Two extensionality principles seem particularly desirable, since they arguably
constitute the bare minimum for type theory to be comparable to set theory as a
foundational system for set-level mathematics, in terms of power and ergonomics.
One is function extensionality (or funext), according to which functions are equal
if point-wise equal. Another is propositional extensionality (or propext), that
equates all propositions that are logically equivalent.

Type theory with equality reflection, also known as extensional type theory
(ETT) does support extensional reasoning to some degree, but unfortunately
equality reflection makes the problem of type-checking ETT terms computa-
tionally unfeasible: it is undecidable.

On the other hand, intensional type theory (ITT) has nice computational
properties like decidable type checking that can make it more suitable for com-
puter implementation, but as usually defined (for example, in [23]) it severely
lacks extensionality. It is known from model constructions that extensional prin-
ciples like funext are consistent with I'TT. Moreover, ITT extended with the
principle of uniqueness of identity proofs (UIP) and funext is known to be as
powerful as ETT [19]. We could recover the expressive power of ETT by adding
these principles to ITT as axioms, however destroying some computational prop-
erties like canonicity.

What we would like instead is a formulation of ITT that supports exten-
sionality, while retaining its convenient computational behaviour. Unfortunately,
canonicity for Martin-Lof’s inductively defined identity type says that if two
terms are propositionally equal in the empty context, then they are also defi-
nitionally equal. This rules out function extensionality. The first step towards
a solution is to give up the idea of propositional equality as a single inductive
definition given generically for arbitrary types. Instead, equality should be spe-
cific to each type former in the type theory, or in other words, every type former
should be introduced alongside an explanation of what counts as equality for its
elements.

This idea of pairing types together with their own equality relation goes
back to the notion of setoid or Bishop set. Setoids provide a quite natural and
useful semantic domain in which to interpret type theory. The first setoid model
was constructed to justify function extensionality without relying on funext in
the metatheory [18]. Moreover, it was shown by Altenkirch [4] that if the model
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construction is carried out in a type theoretic metatheory with a universe of strict
(definitionally proof-irrelevant) propositions, it is possible to define a univalent
universe of propositions satisfying propositional extensionality. The setoid model
thus satisfies all the extensionality principles that we would like to have in a set-
level type theory ® . The question is whether there exists a version of intensional
type theory that supports setoid reasoning, and hence the forms of extensionality
enabled by it.

This question was revisited and answered in Altenkirch et al. [5]. In this
paper, the authors define Setoid Type Theory (SeTT), an extension of inten-
sional Martin-Lof type theory with constructs for setoid reasoning, where funext
and propext hold by definition. SeTT is based on the strict setoid model of
Altenkirch®, which makes it possible to show consistency via a syntactic trans-
lation. This is in contrast with other type theories based on the setoid model,
like Observational Type Theory [9] and XTT [28], which instead rely on ETT
for their justification. A major property of SeTT is thus to illustrate how to
bootstrap extensionality, by translation into a small intensional core.

SeTT as defined in [5] is already a rich theory, but its introspection capabili-
ties are currently lacking, as its universes are limited to propositions. We would
like to internalise the notion of type in SeTT, thus extending the theory with a
universe of setoids. This goal brings up several questions, one of which has to do
with the notion of equality with which the universe should come equipped: the
universe of setoids is itself a setoid (as any type is) so it certainly cannot be uni-
valent, since setoids lack the necessary structure. Another issue is the way such
universe can be justified by the setoid model, and in particular what principles
are needed in the metatheory to do so.

Contributions This paper documents our work towards the construction of a
universe of setoids inside the setoid model, and tries to answer these and other
questions related to the design and implementation of this construction. Our
main contribution is the construction of the universe in the model; this is given
in steps, first as an inductive-recursive definition, which is then translated to
an inductive-inductive definition, and subsequently to an inductive type. As a
consequence, we show that we only need to assume indexed W-types and proof-
irrelevant identity types in the metatheory (along with some obligatory basic
tools like X and IT types) to construct the universe.

The universe constructions presented in this paper are, to our knowledge, the
first examples of two kinds of data type reductions in an intensional metatheory:
the first involving an inductive-recursive type which includes strict propositions,
and the second involving an infinitary inductive-inductive type.

Finally, the mathematical contents of this paper have been formalized in the
proof-assistant Agda (see [10]).

Structure of the paper We begin by describing the metatheory that we will use
throughout the paper, in Section 2. In Section 3, after briefly recalling cate-

5 In the sense of HoTT we mean a type theory limited to h-sets.
5 A strict model is one where every equation holds definitionally.
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gories with families as an abstract notion of models of type theory, we outline
Altenkirch’s setoid model as given in [5]. We then briefly discuss the rules of
Setoid Type Theory in Section 3.2.

In Section 4 we discuss the setoid model and various design choices related to
it. We then recall inductive-recursive universes, and the way they can be equiv-
alently defined as a plain inductive definition, in Section 4.1. We then provide,
in Section 4.2, a first complete definition of the setoid universe using a special
form of induction-recursion. This form of induction-recursion is not known to
be reducible to plain inductive types. Then we describe an alternative definition
of the universe in Section 4.3, that does not rely on induction-recursion but in-
stead on infinitary induction-induction. This inductive-inductive encoding of the
universe is obtained from the inductive-recursive one, inspired by the method of
Section 4.1. We end the series of universe constructions with Section 4.4, where
we outline a purely inductive definition of the setoid universe, obtained from the
inductive-inductive one.

1.1 Related work

The setoid model was first described in [18] in order to add extensionality princi-
ples to Type Theory such as function extensionality and propositional extension-
ality. A strict variant of the setoid model was given in [4] using a definitionally
proof-irrelevant universe of propositions. Recently, support for such a universe
was added to the proof-assistants Agda and Coq [17], allowing a full formal-
ization of Altenkirch’s setoid model. Setoid Type Theory (SeTT) is a recently
developed formal system derived from this model construction [5]. Observational
Type Theory (OTT) [9] is a syntax for the setoid model differing from SeTT
in the use of a different notion of heterogeneous equality. Moreover, the consis-
tency proof for OTT relies on Extensional Type Theory, whereas for SeTT it
is obtained via a syntactic translation. XTT [28] is a cubical variant of OTT
where the equality type is defined using an interval pretype 7 . XTT’s universes
support universe induction, whereas it is left open whether the construction
presented here supports this principle. Palmgren and Wilander [27] construct a
setoid universe using a translation into constructive set theory. Palmgren [26]
constructs an encoding of ETT in ITT through Aczel’s encoding of set theory
in type theory [3]. He uses type theory as a language for his formalisation but
his construction is set-theoretic in nature. Setoids are utilized to encode sets as
arbitrarily branching well-founded trees quotiented by bisimulation. His notion
of family of setoids does not use strict propositions and it has a weaker form of
proof irrelevance which seems to be not enough to obtain a model of SeTT.
The principle of propositional extensionality in the setoid model is an in-
stance of Voevodsky’s univalence axiom [29]. The cubical set model is a con-
structive model justifying this axiom [11]. A type theory extracted from this
model is Cubical Type Theory [13]. The relationship between the cubical set

7 To quote one of the referees: the fact that the interval is a pretype is but the easiest
part of the story.
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model and cubical type theory is similar to that between the setoid model and
SeTT. Compared to cubical type theories, SeTT has the advantage that the
equality type satisfies more definitional equalities. For instance, whereas in cu-
bical type theory equality of functions is isomorphic to pointwise equality, in
SeTT the isomorphism is replaced by a definitional equality. SeTT is also a syn-
tactically straightforward extension of Martin-Lof Type Theory, that does not
require exotic objects like the interval pretype. In turn, the obvious advantage
of cubical type theory is that it is not limited to setoids.

An exceptional aspect of the metatheory used in this paper is the presence
of a proof-irrelevant identity type with a strong transport rule allowing to elim-
inate into arbitrary types. In [1], Abel gives a proof of normalization for the
Logical Framework extended with a similar proof-irrelevant equality type. Abel
and Coquand show in [2] that the combination of impredicativity with a strong
transport rule results in terms that fail to normalize but this is irrelevant in our
setting.

2 MLTTProp

This section describes MLTTFP | our ambient metatheory. We employ Agda
notation to write down MLTTF™®P terms throughout the paper.

One of the main appeals of Altenkirch’s setoid model is that it can justify
several useful extensionality principles while being defined in a small intensional
metatheory. We tried to stay true to this idea when figuring out the necessary
metatheoretical tools for the universe construction in this paper. In particular,
we wanted to avoid having to assume strong definition schemas that go beyond
inductive families. MLTTF™P is thus an intensional type theory in the style of
Martin-Lof type theory.

We have sorts Type; of types and Prop, of strict propositions for ¢ € {0, 1}.
Here, i = 0 means “small” (and we will omit the subscript) and ¢ = 1 means
“large”. We have implicit lifting from ¢ = 0 to ¢ = 1, but do not assume type
formers are preserved. Type; has universes for Type and Prop. We do not
distinguish notationally between universes and sorts. We continue to describe
only the case ¢ = 0; everything introduced has an analogue at level ¢ = 1.
Propositions lift to types via Lift : Prop — Type, with constructor lift : {P :
Prop} — P — Lift P and destructor unlift : {P : Prop} — Lift P — P.

We have standard type formers IT, X, Bool, 0,1 in Type. X-types are defined
negatively by pairing —, — and projections 7y, m5. We have definitional n-rules
for IT-, Y-, 1-types. We also require indexed W-types, both in Type and Prop:
Wg:(S:1— Type) — ((i : I) - S i — I — Type) — I — O where
O € {Type, Prop}. The elimination principle of Wpyop only allows defining
functions into elements of Prop. From Wp.op we can define propositional trun-
cation ||| : Type — Prop, with constructor || : {A : Type} — A — ||4||
and eliminator elimy_| : {P : Prop} — (A — P) — ||A[| = P.

In addition to type formers in Type, we will need the propositional versions
of 0, 1, IT, and Y. The latter three can be defined from their Type counterparts
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via truncation. That is, given P : Prop and ) : P — Prop:

Lprop = |1
II'prop P Q = ||IT (Lift P) (Lift o Q o unlift)]|
Yprop P Q := || X (Lift P) (Lift o Q o unlift)||

We assume that we have Oprop : Prop together with exfalsoprop : {A : Type} —
Oprop — A.

Finally, we will assume an identity type in the style of Martin-Lof’s inductive
identity type. The main difference is that our identity type is a Prop-valued
relation. We have a transport combinator transp from which J is derivable.

Id: {A: Type} - A— A — Prop
refl : {A: Type}(a: A) = ldaa
transp : {A: Type}(C: A — Type){ap a1 : A} = ldaga; = C ag— C ay

with transp C {z} {2} e u = u. The transp combinator provides a strong elim-
ination principle allowing to eliminate a strict proposition (the identity type)
into arbitrary types. We only use this identity type in Section 4.4. For the rest
of our constructions, the traditional Martin-Lo6f’s identity type suffices.

2.1 Formalization

A universe of strict propositions has been recently added to the Agda proof assis-
tant [17], making most of MLTTE™P a subset of Agda, with the exception of the
proof-irrelevant identity type. Most of the universe constructions presented here
have been formalized and proof-checked using Agda, with the proof-irrelevant
identity type and the strong transport rule added via postulates and rewriting.
The formalization can be found in [10].

For convenience, we slightly deviate from MLTTF™P both in the paper and
in the formalization, for instance by relying on pattern matching instead of elim-
inators, and using primitive versions of Prop-valued IT and X types instead of
deriving them from truncation. We operate under the assumption that every-
thing can be equivalently carried out in MLTTF™®P although we have not fully
checked all the necessary details.

3 Setoid model

By setoid model we mean a class of models of type theory where contexts/closed
types are interpreted as setoids, i.e. sets with an equivalence relation, and de-
pendent types are interpreted as dependent/indexed setoids. A setoid model was
first given for intensional type theory by M. Hofmann [18], in order to provide
a semantics for extensionality principles such as function and propositional ex-
tensionality.
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Here we consider a similar model construction due to Altenkirch [4]. The
peculiarity of this model is that it is presented in a type theoretic and intensional
metatheory which includes a strict universe of propositions.

The setoid model thus defined validates function extensionality, a universe of
propositions with propositional extensionality, and quotient types. Therefore, it
provides a way to bootstrap and “explain” extensionality, since the model con-
struction effectively gives an implementation of various extensionality principles
in terms of a small, completely intensional theory.

3.1 Setoid model as a CwF

The setoid model can be framed categorically as a category with families (CwF,
[14]) with extra structure for the various type and term formers. The core struc-
ture of a CwF can be given as the following signature:
Con : Type
Ty : (I': Con) — Type
Sub: (I" A: Con) — Type
Tm: (I': Con) — Ty I' — Type

In our presentation of the setoid model, contexts are given by setoids, that is,
types together with an equivalence relation. A key point of the model is that the
equivalence relation is valued in Prop and is thus definitionally proof irrelevant.

I": Con

|I'| : Type
I'”:|I'| = |I'| - Prop
refl I': (y: |T]) = I~ yy
sym I': V{vo i} = I o = I 7y
trans I':V{vo 71 2} =T v =T 7y =T 7

Types in a context I' are given by displayed setoids over I' with a fibra-
tion condition given by coe, coh. In the following, we sometimes omit implicit
quantifications such as the V{vyy 71} in the type of symI".

A:Ty T’

|A[ + |[I'| = Type

A7 A{yo I} = I vo 11— |Alyo — [Ajy1 — Prop

ref* : {~v: |[|}(a:|Aly) = A” (refl " v) a a
sym* : V{yomraoar H{p: I'" v0o 11} = A” pao a1 — A~ (sym I' p) a1 ao
trans* : A~ po ag a1 — A™ p1 a1 az — A” (trans I'po p1) ao a2

coe: I v v1 = |Alyo = |Almn

coh: (p: I v 1)(a:|Alvw) = A" pa(coe Apa)

This definition of types in the setoid model is different from the one in [4],

but it is equivalent to it [12, Section 1.6.1]. The main difference here is in the
use of a heterogeneous equivalence relation A™ in the definition of types.
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Substitutions are interpreted as functors between the corresponding setoids,
whereas terms of type A in context I are sections of the type seen as a se-
toid fibration I"A — I'. Note that we only need to include components for the
functorial action on objects and morphisms, since the functor laws follow from
proof-irrelevance in the metatheory, and thus hold definitionally.

oc:Sub I’ A t: TmI" A
lof = || = |4] [t (v 1)) = |Aly
o™ I popr = A” (lo|po) (|o|p1) t7 (e I o 1) = AT p ([tvo) ([E7)

We can show that the setoid model validates the usual basic type formers
(I1, X, etc.), function extensionality and a universe of strict propositions with
propositional extensionality [4]. Note that we do not need identity types or in-
ductive types (W-types) for this.

3.2 Setoid Type Theory

The setoid model presented in the previous section is strict, that is, every equa-
tion of a CwF holds by definition in the semantics. One advantage of strict
models is that they can be turned into syntactic translations, in which syntactic
objects of the source theory are interpreted as their counterparts in another tar-
get theory. In the case of the setoid model, this gives rise to a setoid translation,
where source contexts are interpreted as target contexts together with a target
type representing the equivalence relation, and so on.®

A setoid translation is used in [5] to justify Setoid Type Theory (SeTT), an
extension of Martin-Lof type theory (+ Prop) with equality types for contexts
and dependent types that reflect the setoid equality of the model.

We recall the rules of SeTT that extend regular MLTT below, but with
a variation: whereas the equality types in [5] are stated as elements of SeTT’s
internal universe of propositions, here we state the context equalities as elements
of the external, metatheoretic universe Prop. This generalises the notion of
model of SeTT thus making it easier to construct models. Equality on types is
defined as before in [5].

We have a universe of propositions Prop defined as follows:

I : Con P :Tm I'" Prop w:TmI" P v:Tm I' P
Prop : Ty I" P:TyI' u=wv

Equality type constructors for contexts and dependent types internalize the
idea that every context and type comes equipped with a setoid equivalence rela-
tion. Note that Prop is the universe of the metatheory while Prop is the internal

8 Semantically, this translation corresponds to a model construction, in particular a
functor from the category of models of the target theory to the category of models
of what will be Setoid Type Theory. Since the setoid translation is structural in the
context component, we can work with models in the style of categories with families
rather than contextual categories.
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one. As in the model, equality for dependent types is indexed over context equal-
ity.
A:TyF pm:FNpopl
I' : Con po,p1:Sub AT ao : Tm A Alpo] a1 : Tm A Alp1]
'™ po p1: Prop A~ po1 ao a1 : Tm A Prop

We have rules witnessing that these are indeed equivalence relations. We only
recall reflexivity:

p:Sub AT A:Ty I p:Sub AT a:Tm A Alp|
Rp: I pp Ra:TmI" A~ (Rp)aa

In addition, we also have rules representing the fact that every construction in
SeTT respects setoid equality, so that we can transport along any such equality:

A:Ty I’ po,p1:Sub AT p:I'"™ po p1 a:Tm A Alpo]

coeqa pa:Tm A Alp]
coha pa:Tm A A~ pa (coea p a)

Notably, equality types in SeTT compute definitionally on concrete type
formers. In particular, they compute to their obvious intended meaning, so that
an equality of pairs is a pair of equalities, an equality of functions is a map
of equalities, and so on. From this, we get definitional versions of function and
propositional extensionality.

We can easily recover the usual Martin-Lof identity type from setoid equality,
with transport implemented via coercion.

A:Ty I’ ao,a1 : Tm I A
Ida ap a1 := A~ (RT") ap a1 : Tm I" Prop

P:Ty (IA) p:Tm I" (Id A ap a1) t:Tm I" Plao]
transp P pt:=coe P (Rid,p) ¢t : Tm I" Pla]

We can also derive Martin-Lof’s J eliminator for this homogeneous identity
type. The only caveat is that transp and the J eliminator do not compute defi-
nitionally on reflexivity.

4 Universe of setoids

As pointed out in the introduction, SeTT is seriously limited by the lack of a
universes internalizing the notion of setoid. Our goal is to extend SeTT with
a universe of setoids; since SeTT is a direct syntactic reflection of the setoid
model, this essentially amounts to showing that a universe of setoids with the
necessary structure and equations can be constructed within the setoid model.
This opens several questions and possible design choices.

A first fundamental consideration has to do with the very definition of the
setoid universe: as any type in the setoid model, this universe must be a setoid
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and thus come equipped with an equivalence relation. However, unlike the uni-
verse of propositions, a universe of setoids cannot be univalent, since this would
force it to be a groupoid. The obvious choice is therefore to have a non-univalent
universe, and instead define the universe’s relation so that it reflects a simple
syntactic equality of codes rather than setoid equivalence.

Another question has to do with the metatheoretic tools required to carry
out the construction of the universe. In fact, one of the main aspects of the setoid
model construction recalled in Section 3 and shown originally in [4] is that it
can be carried out in a very small type theoretic metatheory, thus providing a
way to reduce extensionality to a small intensional core. We would like to stay
faithful to this ideal when constructing this setoid universe.

A known and established method for defining universes in type theory relies
on induction-recursion (IR), a definition schema developed by Dybjer [15,16].
Inductive-recursive definitions can be found throughout the literature, from the
already mentioned type theoretic universes, including the original formulation
& la Tarski by Martin-Lof [24], to metamathematical tools like computability
predicates.

Although universe constructions in type theory—including our own setoid
universe—are naturally presented as inductive-recursive definitions, they may
not necessarily require a metatheory with induction-recursion. In fact, it is pos-
sible to reduce some instances of induction-recursion to plain induction (more
specifically, inductive families), including some universe definitions. We recall
this reduction in Section 4.1.

Other design choices on the setoid universe are less essential, but still require
careful consideration. For instance, one question is whether the setoid universe
should support universe induction, thus exposing the inductive structure of the
codes. Such an elimination principle is known to be inconsistent with univalence,
although this is not an issue in our case; nevertheless it is not immediately clear
if the elimination principle can be justified by the semantics, that is, if our encod-
ing of the setoid universe in the model allows to define such a universe eliminator.
The question arises because our final encoding of the setoid universe only sup-
ports a weak form of elimination, for reasons that are explained in Section 4.4.
Although not currently needed, a stronger eliminator might be necessary to jus-
tify universe induction. This problem should not arise in the other encodings of
the setoid universe (as given in Section 4.2 and Section 4.3).

Another design choice has to do with how the setoid universe relates to
the other universes. One could provide a code for Prop in the setoid universe.
Moreover, the setoid universes could form a hierarchy, possibly cumulative.

Yet another choice is whether to have two separate sorts, one for propositions
and one for sets (with propositions convertible to sets) or a single sort of types
(sets), with propositions given by elements of a universe of propositions, which
is a (large) type. We have chosen to present the second option to fit with the
standard notion of (unisorted) CwF. However, this has downsides: to even talk
about propositions, we need to have a notion of large types. The first option is
more symmetric: we can have parallel hierarchies for propositions and sets.
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4.1 Inductive-recursive universes

An inductive-recursive universe is given by a type of codes U : Type, and a
family El : U — Type that assigns, to each code corresponding to some type,
the meta-theoretic type of its elements. The resulting definition is inductive-
recursive because the inductive type of codes is defined simultaneously with the
recursive function El.

An example is the following definition of a small universe with bool and IT.

data U : Type El : U — Type
bool : U El bool :=2
pi:(A:U) > (ElA—>U)—>U  El(pi AB):=(a:El A) - El (B a)

Induction-recursion is arguably a nice and natural way to define internal
universes in type theory, however it is not always strictly required. We can
translate basic instances of induction-recursion into inductive families using the
equivalence of I-indexed families of types and types over I (that is, A : Type
with A — T) [22].

In our case, we can encode U as an inductive type inU that carves out all
types in Type that are in the image of El. In other words, inU is a predicate
that holds for any type that would have been obtained via El in the inductive-
recursive definition. As El is indexed by the type of codes, the definition of inU
quite expectedly reflects the inductive structure of codes.

data inU : Type — Type,
inBool : in-U 2
inPi :inUA— ((a: A) = inU (B a)) —=inU ((a: A) — (B a))

U and El can be given by U:= X (A: Type) (in-U A) and El := 7.

Note that this construction gives rise to a universe in Type,, rather than
Type, since the definition of U quantifies over all possible types in Type. Hence
this kind of construction requires a metatheory with at least one universe.

4.2 Inductive-recursive setoid universe

In this section we give a first definition of the setoid universe, as a direct general-
ization of the simple inductive-recursive definition just shown. We only consider
a very small universe with bool type 2 and I for simplicity; a more realistic uni-
verse that includes more type formers can be found in the Agda formalization.
To construct the universe of setoids in the setoid model, we first of all need
to define a type U : Ty I' for every I' : Con, and for every A : Tm I' U a
type Bl A : Ty I'. Recalling Section 3, these are essentially record types made
of several components. Since U is a closed type, it requires the same data of
a setoid; in particular, we need a type of codes together with an equivalence
relation reflecting equality of codes, in addition to proofs that these are indeed
equivalence relations:
reflz,( : (AU)—)AN{,{A
symy : A~y B— B~y A
transy : A~y B— B~y C — A~y C

data U : Type;
—~y —:U - U — Prop,
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Il is given by a family of setoids indexed over the universe, that is, a way to
assign to each code in the universe a carrier set and an equivalence relation.
El: U4/ — Type
7F7~E|7:{aa':U}—>a~ua/—>E|a—>E| a’ — Prop
Note that — = — ~g — is indexed over equality on the universe, because El is

a displayed setoid over U, hence in particular it must respect the setoid equality
of U. We also require data and proofs that make sure we get setoids out of El:

refle : (A:U)(z : El A) > refly A2 ~p o
symg :pFx~ga —sym, pka ~gx
transg : pFa ~g o’ — gk o’ ~ga” —transy p g ~g a”
coegj: A~y B—EIA—EIB
cohg : (p: A~y A') (z:El A) — pb 2 ~g coeg p

We give an inductive definition of ¢, mutually with a recursive definition of
the 4 functions — ~yy —, refly;, El and — F — ~g —. The other functions are then
recursively defined: reflg alone, sym;, and symg, mutually, transy, transg, coeg
and cohg mutually. The whole construction is quite long, below we only show
the more interesting definitions of &/ and El:

data U : Type, El bool :=2
bool : U El (pi A B h) :=
pi: (A:U)(B:ElA—=U) Y (f:(a:El A) = El (B a))
— ({zx 2z’ Bl A} = refly AF 2z ~g (V{x z'}p:refly Az ~gz)
—>waqu/)—>1/{ —>hprx~E|fw,)

Note that in the definition of U we require that the family B : El A — U be a
setoid morphism, respecting the setoid equalities involved. This choice is crucial
for the definition of El to go through, in particular since we eliminate the code
for IT types into the setoid of functions that map equal elements to equal results.
To state this mapping property we need to compare elements in different types,
coming from applying f to different arguments z and z’. We know that x and z’
are equal, but to conclude B x ~y; B x’ we need to know that B respects setoid
equality. This is exactly what we get from our definition of .

We can now give a full definition of the setoid universe, and of [El A for any
A:Tm I' U:

|U| := Ay. U |El Al :== Av.El (A7)

U™ :=Apzy.x~uy (El A)™ :==Apzy. A" pkar~gy
refl U := refly refl (IEl A) := reflg
coe U:=Apa.a coe (El A) := Ap.coeg (A™ p)

coh U := Ap. refly coh (El A) := Ap. cohg (A™ p)
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We can show that U is closed under II types and booleans, and satisfies
El (piAB) = II (El A) (El B) and Elbool = Bool. The universe can be closed
under more constructions if more codes are added to U. This gives a complete
definition of a universe of setoids, which is, however, inductive-recursive. More-
over, the kind of recursion involved in this definition is particularly complex,
and not obviously reducible to well-understood notions of induction-recursion
like the one described in [16]. In any case, we would like to avoid extending the
metatheory with any form of induction-recursion in order to keep the metatheory
as small and essential as possible.

In the next section we transform our current inductive-recursive definition to
one that does not use induction-recursion. The way this is done is inspired by
the well-known trick to eliminate induction-recursion described in Section 4.1,
but modified in a novel way to account for the presence of Prop-valued types.
To our knowledge, this is the first time this reduction method is applied to an
inductive-recursive type of this kind.

4.3 Inductive-inductive setoid universe

We will follow the method outlined in Section 4.1. In addition to inU for defining
U, we also introduce a family inU~ of binary relations between types in the
universe, from which we then define — ~;; —.
data inU : Type — Type;
bool : inU 2
m:inU~aa Ao — (V{.IIO :cl}(xm AL Zo .’El) — inU~ (b 1}0) (b :]31) (BN 1‘01))
—inU (X (f:(z:A) = Bx)
((zo 1+ A)(wo1 : Ax o 21) — B wo1 (f o) (f 21)))

data inU~: {4 A" : Type} = inU A — inU A" — (A — A" — Prop) — Type,

bool.~. : inU~ bool bool (Azo z1 . zo <y x1)
e {bo : (To 2 Ag) — inU (Bo o) H{b1 : (z1: A1) — inU (B1 1)}
{aog~ : inU~ ag ap Ao~ }{ai~ :inU~ay a1 A1}
{bo~ : V{0 z1}(z01 : Ao~ o 1) — inU~ (b z0) (bo 1) (Bo~ To1)}
{bi~ : V{zo 21} (201 : A1~ 2o 1) = inU~ (b1 0) (b1 z1) (Bi~ To1)}
— inU~ ag a1 Aoi~
— (V{zo z1}(mo1 : Aoi~ To ©1) — inU~ (bo o) (b1 71) (Boi~ To1))
— inUn~ (7 ag ag~ bo bo~) (7 a1 a1~ b1 bis)

(Mo fi - Y(zo x1) = Aoi~ 2o ©1 — Boi~ o1 (m1 fo xo) (11 f1 1))

Just as the role of inU is, as before, to classify all types that are image of El,
in the same way inU~ a a’ classifies all relations of type A — A’ — Prop that
are image of — - — ~g —, given proofs a : inU A,a’ : inU A’. In particular, this
definition of inU~ states that the appropriate equivalence for boolean elements

is the obvious syntactic equality — ;2 —, whereas functions are to be compared
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pointwise. Note that inU appears in the sort of inU~. Since these types are
mutually defined, they form an instance of induction-induction, a schema that
allows the definition of a type mutually with other types that contain the first
one in their signature [25].°

As in the universe example in Section 4.1, we now define U as a X' type, and
El as the corresponding first projection.

U : Type, El : U — Type
U:=X (X :Type) (inU X) El:=m

What is left now is to define the setoid equality relation on the universe, as
well as the setoid equality relation on El A for any A in U. Two codes A, B in
the universe U are equal when there exists a setoid equivalence relation on their
respective sets El A and El B. Intuitively, since elements of a setoid are only ever
compared to elements of the same setoid, this should only be possible if A and B
are codes for the same setoid, that is, if A ~y; B. Existence and well-formedness
of such relations is expressed via the type inU~ just defined, hence we would
expect A ~y B to be defined as follows:

(A,a) ~y (B,b) ==X (R: A— B — Prop) (inU~ a b R)

Unfortunately this definition only manages to capture the idea, but does
not actually typecheck. In fact, — ~z; — should be a Prop,-valued relation, so
A ~y B should be a proposition. However, the Y type shown above clearly is
not, since it quantifies over a type of relations, which is not a proposition. One
possible solution is actually quite simple, and it just involves truncating the X
type above to force it to be in Prop;.

-~y —:U = U — Prop,
(A,a) ~y (B,b):=||¥ (R: A— B — Prop) (inU~ a b R)||

We are now left to define the indexed equivalence relation on El:

~-F-~g-:{AB:U} > A ~y B—El A—ElB— Prop
prr~py =7

In the definition above, p has type || X (R : EIA — EIB — Prop) (...)|
If the type was not propositionally truncated, we could define p - = ~g y by
extracting the relation out of the first component of p, and apply it to z,y.
That is, p = & ~g y := 71 pxy. This would make the definition of — ~;; — and
— F — ~f — in line with how we defined I/ and ELl

However, this does not work in our case, since the type of p is propositionally
truncated, hence it cannot be eliminated to construct a proof-relevant object.
Fortunately, we can work around this limitation by defining p = = ~g y by
induction on the codes A B : U, in a way that ends up being logically equivalent
to the proposition we would have obtained by 7 p x y if there were no truncation.

® The main example of induction-induction is the intrinsic definition of a dependent
type theory in type theory [6].
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More precisely, we need to construct proofs that for any concrete R and inR, the
types |(R,inR)| F z ~g y and R x y are logically equivalent. These in turn need
to be defined mutually with — F — ~g —. We direct the interested reader to
the Agda formalization for the full details of these definitions, as they are quite
involved.

The full definition of the universe is concluded with the remaining definitions,
like refly,, reflg), etc., which can be adapted from their IR counterparts more or
less straightforwardly. The final result does not use induction-recursion, but it is
nevertheless an instance of infinitary induction-induction. The ability to define
arbitrary, infinitary inductive-inductive types clashes, again, with our objective
of keeping the metatheory as small and simple as possible. The next step is
therefore to reduce this inductive-inductive universe to one that does not require
(infinitary) induction-induction.

4.4 Inductive setoid universe

This section encodes the inductive-inductive universe of setoids from the pre-
vious section without assuming arbitrary inductive-inductive definitions in the
metatheory.

Before turning our attention to the setoid universe, we recall the known, sys-
tematic method to reduce finitary inductive-inductive types to inductive families.

Reducing finitary induction-induction It is known that finitary inductive-
inductive definitions can be reduced to inductive families [8,7,21]. To illustrate
the idea, let us consider a well-known example of a finitary inductive-inductive
type, the intrinsic encoding of type theory in type theory itself. Actually, we
only consider the type of contexts Con : Type and the type of types Ty : Con —
Type; since the latter is indexed over the former, this is already an example of
induction-induction.

Contexts in Con are formed out of empty contexts e and context extension
—,—. Types in Ty are either the base type ¢ or II types.

e : Con t:(I':Con) > Ty I’
—,—:(I":Con) = Ty I' — Con II:{Ir':Con}(A:TyI') =Ty ([A) =Ty I

The general method to eliminate induction-induction is to split the original
inductive-inductive types into a type of codes and associated well-formedness
predicates. In our Con/Ty example, these would be respectively given by codes
Cong, Ty, : Type and predicates Con; : Cong — Type, Ty; : Cong — Ty, —
Type.

The definition of the codes and predicate types follows that of the original
inductive-inductive type, and can be derived systematically from it. More im-
portantly, they can be defined without induction-induction, since although Cong
and Ty, are defined mutually, their sorts are not indexed.
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e, : Con; e
—1— :Y{Io Ao} — Cony Iy — Ty, Io Ao
— Cony (1,0 Ao)
11 :V{Io} — Cony Iy — Tyy I (o Io)
II, : V{Iv Ao Bo} — Coni Ip
— Ty, Io Ao — Ty, (10,0 Ao) Bo
— Ty, Io (IIo Iv Ao Bo)

e : Cong
—,0— : Cong = Ty, — Cong
to : Cong — Ty,
Iy : Cong — Tyy — Ty, — Ty,

We can recover the original inductive-inductive type as Con := X ([ :
Cong) (Cony Ip) and Ty I' := X' (A : Tyy) (Ty; (m I') Ap). Recovering the
constructors is straightforward:

(0,1)

(I'n, I), (Ao, A1) = ((Io ,0 Ao), (I't,1 Ar))

v (I, I1) = (10 To,u1 IN)

1T {To, Iy} (Ao, A1) (Bo, Br) := (ITo To Ao Bo, I T A1 Bi)

Finally, we can define eliminators/induction principles for Con and Ty as just
defined, by induction on the well-typing predicates.

Following [25], we distinguish two versions of the eliminator: the simple and
the general one. Note that this is orthogonal to the distinction between non-
dependent and dependent eliminators, from which we only consider the latter.
The motives for the simple eliminator are C’ : Con — Type, T" : (I" : Con)(A :
Ty I') — Type and the eliminators themselves have the following signatures:

elim-,, : (I': Con) = C' T elimy, :V{I'WA: Ty I) = T' I A

In the case of the general eliminator, the motive for Ty depends on the motive
for Con, making the two eliminators recursive-recursive functions. For motives
C:Con — Typeand T : (I': Con) — Ty I' = C I' — Type the signatures are:

elimcon : (I": Con) - C' I elimp :V{I'}(A: Ty I') =T I' A (elimcon I)

The general eliminators can be derived from our encoding of Con and Ty via
untyped codes and well-typing predicates. The way to do it is to first define the
graph of the eliminators in the form of inductively-generated relations:

data R-Con: (I": Con) — C I' — Type
data R-Ty :{I':Con}(A: Ty I)(v:CI')—=T1I A~y — Type

The next step is to prove that these relations are functional, by induction on
the untyped codes Cong and Ty, [21]. From this result, defining the eliminators
is immediate.

Reducing the setoid universe The reduction described in the previous sec-
tion works generically for an arbitrary finitary inductive-inductive type, thus
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giving a systematic way to reduce finitary inductive-inductive definitions to in-
ductive families. However, it is not clear whether this method extends to in-
finitary induction-induction, of which the setoid universe defined in Section 4.3
is an instance. Of course, the absence of a general reduction method does not
mean that we cannot reduce particular concrete instances of infinitary induction-
induction, which is exactly what we hope for our universe construction.

The obvious challenge in successfully completing this reduction is to avoid
the need for extensionality in the metatheory. In fact, consider the simple in-
finitary inductive-inductive type obtained from the previous Con/Ty example by
replacing the finitary constructor IT with an infinitary one: IT : {I" : Con} —
(N — Ty I') — Ty I'. Already with this simple example, we run into prob-
lems as soon as we try to define the eliminator. One issue is that the definition
of the eliminator relies on a proof that the well-typing predicates inUq,inU~q
are propositional, that is, any two of their elements are equal. Without further
assumptions this proof can only be done by induction, and requires function
extensionality since these predicates include higher-order constructors.

One way to get around this is to define the well-typing predicates as Prop-
valued families, rather than in Type:

data inUg : Type — Type;

data inU~g : {4 A" : Type} — (A — A" — Prop) — Type,

data inU; :(A:Type) — inUy A — Prop,

data inU~; : {4 A" : Type} —» (R: A — A" — Prop) — inU~¢ R — Prop,

Using Prop avoids the issue of proving propositionality altogether, since the
predicates are now propositional by definition. However, it introduces a different
issue: inU; and inU~ give rise to equational constraints on their indices, in the
form of proofs of the Prop-valued identity type. The definition of the eliminators
for inU and inU~ relies on the ability to transport along these proofs, hence the
need to extend our metatheory with a primitive, strong form of transport for
Id.10

Having Prop and a strong transport principle does help to some extent.
However, we would still need extensionality to derive the general eliminators for
inU and inU~. In fact, as explained in the previous section, to derive the general
recursive-recursive eliminators we need to prove that the corresponding graph
relations are functional, which cannot be done without funext.

Luckily, the simple elimination principle is sufficient for our purposes: all
functions described in Section 4.3 can be defined just using the simple elimina-
tor without recursion-recursion. The simple eliminator itself can be defined by
pattern matching on the untyped codes, and does not require extensionality or
any extra principles beyond strong transport.

Once the inductive encoding of the inductive-inductive universe is done, the
setoid universe can be defined just as in Section 4.3.

10 Note that this issue cannot be solved by expressing the equational constraints with
an identity type in Type, since the well-typing predicates force it to necessarily be
in Prop.
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5 Conclusions and further work

We have described the construction of a universe of setoids in the setoid model
of type theory; this is given in several steps, first as an inductive-recursive defini-
tion, then as an inductive-inductive definition, and finally as an inductive type.
Every encoding is obtained from the previous by adapting known data type
transformation methods in a novel way that accounts for the peculiarities of our
construction. In [5] we present rules for SetTT, clearly these rules need to be
extended by the rules for a universe reflecting the semantics presented here.

It is known that finitary II'Ts can be reduced to inductive types in an exten-
sional setting [21]. In our paper we reduce an infinitary IIT to inductive types
in an intensional setting. In the future, we would like to investigate whether this
reduction can be generalised to arbitrary infinitary IITs.

In contrast to the inductive-recursive and inductive-inductive versions of the
universe, the inductive definition relies on a metatheory with a strong transport
rule. As future work, we would like to prove normalization for this metatheory
since previous work in this respect [2] seems to suggest that is represents a
non-trivial addition.

Another question regards the relationship between SeTT [5] and XTT [28].
Both systems are syntactic representations of the setoid model with similar de-
sign choices, like definitional proof-irrelevance. We would like to know whether
their respective notions of models are equivalent, that is, if we can obtain an
XTT model from a SeTT model, and vice versa. Since XTT universes support
universe induction, for one direction we would need to extend our own universe
with the same principle (see discussion in Section 3 and the previous paragraph).
Thus a related question is whether our encodings of the setoid universe can sup-
port universe induction. A further question is whether this mapping of models
is functorial.

Groupoids can be regarded as generalized setoids. In the future we would
like to design a type theory internalizing the groupoid model of type theory [20],
in the same way that SeTT represents a syntax for the setoid model. A further
question is whether such “groupoid type theory” can be justified, similarly to
SeTT, via a syntactic translation, perhaps with SeTT itself as the target theory.
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Abstract. We define nominal equational problems of the form IWVY : P,
where P consists of conjunctions and disjunctions of equations s ~ t,
freshness constraints a#t and their negations: s %, ¢ and a3ft, where a is
an atom and s, ¢ nominal terms. We give a general definition of solution
and a set of simplification rules to compute solutions in the nominal
ground term algebra. For the latter, we define notions of solved form from
which solutions can be easily extracted and show that the simplification
rules are sound, preserving, and complete. With a particular strategy for
rule application, the simplification process terminates and thus specifies an
algorithm to solve nominal equational problems. These results generalise
previous results obtained by Comon and Lescanne for first-order languages
to languages with binding operators. In particular, we show that the
problem of deciding the validity of a first-order equational formula in
a language with binding operators (i.e., validity modulo a-equality) is
decidable.

Keywords: Nominal syntax - Unification - Disunification.

1 Introduction

Nominal unification [23] is the problem of solving equations modulo a-equivalence.
A solution consists of a substitution and a freshness context V, i.e., a set of
primitive constraints of the form a#X (read: “a is fresh for X”), which intuitively
means that a cannot occur free in the instances of X. Nominal unification is
decidable and unitary [23], and efficient algorithms exist [5,17], which can be
used to solve problems of the form 3X (A A; I s; ~4 t;), where s;, t; are nominal
terms with variables X and A; is a freshness context.
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Similarly, nominal disunification is the problem of solving disequations i.e.,
negated equations of the form s %, ¢t. An algorithm to solve nominal constraint
problems of the form

Pi=3X (A4t simati) A (A5 Fps#ags))

is available [1], which finds solutions in the nominal term algebra 7 (X, A, X) by
constructing suitable representation of the witnesses for the variables in P.

Comon and Lescanne [10] investigated a more general version of this problem,
called equational problem, in their words: “an equational problem is any first-
order formula whose only predicate symbol is =7, that is, it has the form
Jwi, ..., w,YY1,...,Ym : P where P is a system, i.e., an equation s = ¢, or a
disequation s # ¢, or a disjunction of systems \/ P;, or a conjunction of systems
A\ P, or a failure L, or success T. The study of such problems was motivated by
applications in pattern-matching for functional languages, sufficient completeness
for term rewriting systems, negation in logic programming languages, etc.

In order to extend these applications to languages that offer support for
binders and a-equivalence following the nominal approach, such as aProlog [6],
aKanren [4], aLeanTAP [20], to nominal rewriting [14] and nominal (universal)
algebra [15], in this paper we consider nominal equational problems.

Based on Comon and Lescanne’s work, the nominal extension of a first-order
equational problem is a formula P ::= dW; ... W, VY;...Y,, : P where P is a
nominal system, i.e., a formula consisting of conjunctions and disjunctions of
freshness, equality constraints, and their negations.

Contributions. This paper introduces nominal equational problems (NEPs) and
presents simplification rules to find solutions in the ground nominal algebra. The
simplification rules are shown to be terminating (by using a measure that strictly
decreases with each rule application), and also sound and solution-preserving.
The simplification process for NEPs is more challenging than in the syntactic
case because it deals with two predicates (/. and #) and needs to consider
the interaction between freshness and a-equality constraints, and quantifiers.
The elimination of universal quantifiers requires careful analysis since universal
variables may occur in freshness constraints and in their negations. To make the
process more manageable, we define a set of rules together with a strategy of
application (specified by rule conditions) that simplifies the termination proof.

Finally, we show that the irreducible forms are either L or problems from
which a solution can be easily extracted. In particular, if the NEP consists only of
existentially quantified conjunctions of freshness and a-equality constraints, we
obtain solved forms consisting of a substitution and a freshness context, as in
the standard nominal unification algorithm [23].

Related Work. Comon and Lescanne [10] introduced first-order equational prob-
lems and studied their solutions in the algebra of rational trees, the initial term
algebra, and the ground term algebra. A restricted version of equational prob-
lems, called disunification problems, which do not contain quantified variables,
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has been extensively studied in the first-order framework [8,3,11,2,22]. More
recently, a nominal approach to disunification problems was proposed by Ayala
et.al [1], including only conjunctions of equations and disequations and freshness
constraints, without quantified variables. Here we generalise this previous work
to deal with general formulas including disjunction, conjunction and negation of
equations and freshness constraints, as well as existential and universal quantifica-
tion over variables. To deal with negation of freshness, disjunctive formulas, and
quantification we extend the semantic interpretation and design a different set of
simplification rules as well as a more elaborated strategy for rule application.

Extensions of first-order equational problems modulo equational theories have
also been considered. Although the problem of solving disequations modulo an
equational theory is not even semi-decidable in general (as shown by Comon [7]),
there are useful decidable and semi-decidable cases. For example, solvability of
complement problems (a sub-class of equational problems) is decidable modulo
theories with permutative operators (which include commutative theories) [9,13],
and for linear complement problems solvability modulo associativity and commu-
tativity is also decidable [16,19,12]. Buntine and Biirckert [3] solve systems of
equations and disequations in equational theories with a finitary unification type.
Fernandez [11] shows that E-disunification is semi-decidable when the theory
FE is presented by a ground convergent rewrite system, and gives a sound and
complete E-disunification procedure based on narrowing. Baader and Schulz [2]
show that solvability of disunification problems in the free algebra of the combined
theory F4 U...U E, is decidable if solvability of disunification problems with
linear constant restrictions in the free algebras of the theories E;(1 < i < n)
is decidable. Lugiez [18] introduces higher-order disunification problems and
gives some decidable cases for which equational problems can be extended to
higher-order systems.

Organisation. Section 2 recalls the main concepts of nominal syntax and semantics.
Section 3 introduces nominal equational problems and a notion of solution for
such problems. Section 4 presents a rule-based procedure for solving NEPs, as
well as soundness, preservation of solutions, and termination results. Section 5
shows that the simplification rules reach solved forms from which solutions can
be easily extracted. Section 6 concludes and discusses future work.

2 Background

We assume the reader is familiar with nominal techniques and recall some concepts
and notations that shall be used in the paper; for more details, see [14,21,23].

Nominal Terms. We fix countable infinite pairwise disjoint sets of atoms A =
{a,b,c,...} and variables X = {X,Y, Z,...}. Atoms follow the permutative con-
vention: names a, b range permutatively over A. Therefore, they represent different
objects. Let X be a finite set of term-formers disjoint from A and X such that
for each f € X| a unique non-negative integer n (the arity of f, written as f : n)
is assigned. We assume there is at least one f : n such that n > 0.
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A permutation 7w is a bijection A — A with finite domain, i.e., the set
dom(7) := {a € A | w(a) # a} is finite. We shall represent permutations as
lists of swappings © = (a1 by)(az ba)...(an b,). The identity permutation is
denoted by id and 7 o 7’ the composition of m and 7’. The set P of all such
permutations together with the composition operation form a group (P, o) and
it will be denoted simply by P. The difference set of m and ~ is defined by

ds(m,7) = {a € A|7(a) # y(a)}-

Definition 1 (Nominal Terms). The set T(X, A, X) of Nominal Terms, or
just terms for short, is inductively defined by the following grammar:

sst,uc=al|m- X | [at| f(te,... tn),

where a is an atom, - X is a moderated variable, [a]t is the abstraction of a in
the term t, and f(t1,...,tn) is a function application with f € ¥ and f:n. A
term is ground if it does not contain variables.

In an abstraction [a]t, ¢ is the scope of the binder [-] and it binds all free
occurrences of a in t. An occurrence of an atom in a term is free if it is not
under the scope of a binder. Notice that syntactical equality is not modulo
a-equivalence; for example, [a]a Z [b]b. We may denote s = ¢ by s = ¢ with the

same intended meaning and ¢ abbreviates an ordered sequence tq,...,t, of terms.

Ezample 1. Let X := {lam: 1,app : 2} be a signature for the A-calculus. Using
atoms to represent variables, A-expressions are generated by the grammar:

e ::=a | lam([ale) | app(e, €)

As usual, we sugar app(s,t) to st and lam([a]s) to Ala]s. The following are
examples of nominal terms: (A[a]a) X and (A[a](A[b]ba) c)d.

We inductively extend the action of a permutation 7 to a term ¢, denoted as
7 -1, by setting: 7-a =7(a),7- (7' - X) = (won') - X,7- ([a]t) = [r(a)](7 - 1),
and 7 - f(f) = f(n - 1).

Substitutions, ranging over o,7,T ..., are maps (with finite domain) from
variables to terms. The action of a substitution o on a term t, denoted to,
is inductively defined by: ac = a, (7 - X)o = 7w - (Xo), ([a]t)o = [a](to) and
ft1, ... tp)o = f(tio,...,tyo). Notice that t(oy) = (to)y.

Definition 2 (Positions and subterms). Let s be a nominal term. The set
Pos(s) of positions in s is a set of strings over positive integers defined inductively
below. Additionally, s|, denotes the subterm of s at position p and s(p) denotes
the symbol at position p.

— Ifs=aors=mn-X, then Pos(s) = {e} and s|c = s;

— if s = [a]t then Pos(s) = {e} U{l-p|p € Pos(t)}, sle = s and s|1., = t[p;

— if s = f(s1,...,5,) then Pos(s) = {e} UU;_,{i-p | p € Pos(si)}. s|c = s and
S|7p == Si|p'



26 M. Ayala-Rincén et al.

Freshness and a-equality. A nominal equation is the symbol T or an expression
s &2, t where s and t are nominal terms. A trivial equation is either s =, s or
T. Freshness constraints have the form a#t where a is an atom and ¢ a term.
A freshness context is a finite set of primitive freshness constraints of the form
a#X, we use A, V, and I" to denote them. We extend the notation to sets of
atoms: A# X denotes that a#X for every a € A.

a-derivability is given by the deduction rules in Figure 1, which define an
equational theory called CORE.

(- 7 Ha)#X eV —  (#-abs-

Vrap ) TGRS ) SRy P
V b aftt V b aftt co YV F adtts,
_abs-b -f
VT e ePsh) YV E S (tr,- o) (#-5)
! !

o~ (ax) dS(ﬂ',ﬂ' )#X eV VEta,t bs-
Viaraa VEkrn-X=~xarm - X (var) V F [a]t ~a [a]t’ (abs-a)

Vktr, (ad) -t V- a#tt’ Vhktimaty -+ VEt,~at,

(abs-b) ®)

V F [a]t = [a'] VE flte,. . tn) =a fty, ... )

Fig. 1. CORE freshness and a-equality rules.

— Write V F a#£t when there exists a derivation of V F a#t.
The judgement V = a#t intuitively means that using freshness constraints
from V as assumptions a does not occur free in t.

— Write V - s &, t when there exists a derivation of V F s =, t.
The judgement V s =, t intuitively means that using freshness con-
straints from V as assumptions s is a-equivalent to ¢.

Semantic Notions. Nominal equational theory has a natural semantic denotation
in nominal sets since we can easily interpret freshness and abstraction.

A P-set X is an ordinary set equipped with an action in P x X — X (written
as m-x) such that id-x =z and 7+ (7' - z) = (mro7’) - x. A set of atoms A C A
supports x € X iff for all permutations m € P fixing every element of A - acts
trivially on x via m, i.e., if 7(a) = a for all a € A then 7 -z = z. Semantic
freshness is defined in terms of support as follows: an atom a is fresh for z € X
iff a ¢ supp(z). We denote this by writing a#sem®. A nominal set is a P-set such
that every element is finitely supported.

To build an algebraic ground term-model of CORE, we fix the set G consisting
of equivalence classes of provable a-equivalent ground terms. More precisely, given
a ground term g, the class g is the set of ground terms ¢’ for which there exist a
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derivation b g =, ¢’. Note that G is a nominal set by defining the natural action:
m-g =T - g. Bach function symbol f € X' is interpreted by an equivariant function
% mapping (f1,...,%,) = f(t1,...,t,) and abstractions [a]t are interpreted by
an equivariant function []_in A x G — G such that a#semlalg always.
Signature interpretation is homomorphically extended to the set of terms
as follows: Fix a wvaluation function ¢ that assigns to every variable X € X an
element of G. The interpretation of a term ¢ under ¢, [t]_, is defined as:

[ol; =a  [r-X].=m-<(X)  [lat], = [@[t];
Lf(tr, s ta)le = ([t - Tl

Definition 3 (Validity under ). Let A be any infinite subalgebra of CORE
with domain A and s a valuation function assigning for every variable X € X an
element of A. We say that:

1. [a#tt] (resp. [t ~q u]_) is valid if affsem [t]. (resp. [t]. = [u].)-

2. [V]. is valid when a#tsems(X) for each a#X € V.

3. [V & a#t]_ is valid when the validity of [V]_ implies a#tsem [t]., and
4. [V Ft=q u]_ is valid when the validity of [V] _ implies [t] . = [u]..

Write V |= s =, t(resp. V = adft) when [V 1= s =, t]_ (resp. [V I a#ft],) is
valid for any valuation .

A model of a nominal theory is an interpretation that validates all of its
axiomatic judgements V F s = t. It is easy to see that the interpretation we
define above is a model of CORE. For the rest of the paper, we slightly abuse
notation by calling CORE both the theory and its model making distinctions
when necessary.

Remark 1. Tt is worth noticing the syntactic character of CORE: by interpreting
atoms as themselves and since there are no equational axioms, we easily connect
V E a#t and V + a#t. This behaviour is not the rule if equational axioms are
considered. For instance, consider the theory LAM that axiomatises S-equality in
the A-calculus. It is a fact that a#tsem(A|a]b)a in LAM but there is no syntactic
derivation for a#(\[a]b)a. Furthermore, by completeness for equality derivation,
we establish a connection between V |= s =, t and V I s &, t.

There are alternative definitions of nominal terms where the syntax is many-
sorted. We chose to work with an unsorted syntax for simplicity; all the results
below can be extended to the many-sorted case, indeed they are proved for any
infinite subalgebra of the ground nominal algebra.

3 Nominal Equational Problems

In this section, we introduce nominal equational problems (NEPs) as our main
object of study. A NEP is a fist-order formula built only with the predicates =,
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and #. Their negations, denoted %, and 3%, are used to build disequations and
non-freshness constraints. A trivial disequation is either s %, s or L.

Intuitively, a non-freshness constraint a3t — read a is not fresh for t — states
that there exists at least one instance of ¢ where a occurs free. Similarly, for
disequations: s %,, t states that s and t are not a-equivalent.

Definition 4. A nominal system is a formula defined by the following grammar:
PP :=T|L|smgt]|séat|att|axt|PAP |PVP

In the next definition, we make a distinction between the set of variables
occurring in a NEP: the mutually disjoint sets W = {Wy,...,W,} and Y =
{Y1,..., Y.} denote existentially and universally quantified variables, respectively.
The former we call auziliary variables and the latter parameters.

Definition 5 (NEP). A NEP is a formula of the form below, where P is a nominal
system.
Po=aW, ... WV, .. Y, : P

The set Fv(P) contains the free variables occurring in P. For the rest of the
paper, we use the following implicit naming scheme for variables: W denotes an
auxiliary variable, Y a parameter, X a free variable, and Z an arbitrary variable.

Ezample 2. Nominal disunification constraints [1] are pairs of the form P :=
IW(E || D), where E is a finite set of nominal equations-in-context, i.e., E =
n
U{A; F s; =4 t;} and D is a finite set of nominal disequations-in-context,
i=0

m

D = J{V; - uj %4 v;}. This problem is a particular NEP: taking the judgement
j=0
AbFsratas A= s~,t oryet as AV s ~, t*, we obtain the formula:

n

P = (/\(ﬁ[Al] Vs R ti)) A (

=0 g

(=[V5] Vuy #a v5),

<.

0

where [A;], [V,] are conjunctions of freshness constraints in A;, V;, respectively.

Sufficient completeness, that is, deciding whether a set of pattern (rules)
covers all possible cases, is a well-known problem in functional programming. In
the next example, we show how to naturally represent such problems as NEPs.

Ezample 3. Consider the function map which applies a function [a]F to every
element of any list L. It may be defined by the rules below:

R F map([a] £, nil) — nil
mee F map([a]F, cons(X, L)) — cons(F{a +— X}, map([a]F, L)),

4 Similarly, for disequations.
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where {a — _} is a binary term-former representing (explicit) substitutions;
see [14, Example 43] for more details. Since we are not imposing a type disci-
pline on nominal terms it is possible to construct ill-typed terms, for instance
map(a, [a]t). In what follows we ignore those expressions by noticing that a type
discipline will not allow such constructions. Then sufficient completeness can be
checked using the following NEP:

VY1YaY3L' : map([a]F, L) %a map([b]Y1, nil)A
map([a]F, L) %4 map([b]Yz, cons(Y3, L"),

If the problem has a solution then Rmap is not complete, and the solution
indicates the missing pattern cases in the definition.

Solutions of Nominal Equational Problems. We are interested in solutions for NEPs
in the ground nominal algebra. From now on, A denotes an infinite subalgebra of
CORE with domain A. Below we define solutions using idempotent substitutions,
which can be seen as a representation for valuations that map variables to
elements of the ground term algebra.

We first extend the interpretation function under a valuation ¢ [-]_ (see
Section 2) to the negated form of freshness and a-equality constraints.

Definition 6. Let ¢ be a (fized but arbitrarily given) valuation. A negative
constraint axt (resp. s %o t) is valid under ¢ when:

— it is not the case that affsem [t]., this is written [aXst]_; and, respectively,
— it is not the case that [s]_ = [t]., this is written [s %4 t]_.

In standard unification algorithms, idempotent substitutions are used as a
compact representation of a set of valuations in the ground term algebra. Similarly,
given a valuation in the ground term algebra, one can build a ground substitution
representing it. In the case of the ground nominal algebra, where elements are
a-equivalence classes of terms, the representative is generally not unique, but
any representative can be used.

Definition 7. Given a substitution o = [X1/t1,..., Xn/tn], for any valuation
¢, we denote by <7 the valuation such that <°(X) = ¢(X) if X ¢ dom(o), and
§7(X) = [Xa], otherwise.

Given a valuation s = [X; — g; | X; € X,g; € 4], and a finite set X of
variables, we denote by o5 any ground substitution such that for each X; € X,
o(X;) = ti, if gi = [t:].. We say that o5 is a grounding substitution for X.

The next lemma states that under mild conditions we can extend substitutions
to valuations preserving semantic equality.

Lemma 1. Given an idempotent substitution o = [X1/t1,...,X,/t,] and a
valuation s we have: [so]_ = [s] .-

The next definition allows us to use idempotent substitutions to represent
solutions of constraints.
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Definition 8 (Constraint A-validation). Let o be an idempotent substitution
whose domain includes all the variables occurring in a constraint C. Then o
A-validates C iff [C]_, is valid in A for any valuation <.

We now extend semantic validity to the syntax of systems. The interpretation
for the logical connectives is defined as expected.

Definition 9 (A-validation). For an idempotent substitution o whose domain
includes all variables occurring in a system P, we say that o A-validates P iff

1. P=T; or

2. P=C and o A-validates C; or

3. P=P A...\P, and o A-validates each P;, 1 <i <mn; or

4. P=P V...V P, and o A-validates at least one P;, 1 < i < m.

Solutions of equational problems instantiate free variables and satisfy existen-
tial and universal requirements for auxiliary variables and parameters, respectively.
To define this notion, we extend the domain of the substitution to include also
existential and universally quantified variables as follows.

Definition 10 (A-Solution). Let P = 3WVY : P be a NEP. Let o be an
idempotent substitution such that dom(c) = Fu(P). Then o is an A-solution of P
iff there is a ground substitution &, where dom(8) = W, such that for all ground
substitution \, where dom(\) =Y, 06\ A-validates P. The set of A-solutions of
P is denoted SA(P), or simply S(P) if A is clear from the context.

Ezample 4. Consider the signature X, := {zero : 0,suc : 1} for natural numbers,
and the nominal initial algebra A, with zero and suc interpreted as expected.
The problem P := IWVY : W %, suc(Y) has id as solution. Indeed, taking for
example 6 = [W/zero] or 6 = [W/a] and any choice of A (dom(A\) = {Y}), the
composition iddA A-validates W %, suc(Y).

In Definition 10, § is the substitution that instantiates auxiliary variables, so
there can be many (possibly infinite) number of such §’s.

Lemma 2 (Equivariance of Solutions). If o is an A-solution of the NEP
P then for any permutation w, m- o (defined by [X;/7 - t;], as expected) is an
A-solution of w-P. In particular, if an A-solution contains an atom not occurring
in P, that atom can be swapped for any other atom not occurring in P.

Lemma 2 is a direct consequence of the fact that interpretations are equiv-
ariant, and shows that solutions are closed by permutation. It allows us to use
permutations to represent infinite choices for atoms in solutions.

Ezample 5. Consider the problem VY : X #, Aa]Y, built over the signature of
Example 1. The set of solutions contains o = [X/a] as well as (a b)-[X/a] = [X/b];
for any other atom b.
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Lemma 3 (Closure by Instantiation). If o is an A-solution of the NEP
P = JWVYY : P then any idempotent substitution o' obtained as an instance of
o such that dom(o’) = dom(o) is also an A-solution of P. In particular, for any
such ground instance o’ of o there is a ground substitution §, where dom(d) = W,

such that for all ground substitution A\, where dom(\) =Y, 0’6\ A-validates P.

Proof. By definition of A-solution, to show that ¢’ is an A-solution of P we need
to consider all the valuations of the form ¢°'%* as indicated in Definitions 8,9,
10. The result follows from the fact that for any valuation ¢7'9X there exists an
equivalent valuation ¢’ 70 by Lemma 1.

4 A rule-based procedure

In this section we present a set of simplification rules to solve NEPs. A simplification
step, denoted P = P’, transforms P into an equivalent problem P’ from which
solutions are easier to extract.

4.1 Simplification Rules

Rules may have application conditions (rule controls) that define a strategy of
simplification. Our strategy gives priority to rules according to their role. We
split the rules into groups R; as shown in Figures 2, 3 and 4: R; eliminates
trivial constraints, Ry deals with clash and occurs check, R3 eliminates unneeded
quantifiers, R4 and R5 decompose positive and negative constraints, respectively,
Re eliminates parameters and R, instantiates variables. The Explosion and
Elimination of Disjunction rules in Rg search for solutions as explained below.
Finally, Rg eliminates the remaining universal quantifiers. A rule R € R; can
only be applied if no rules from R, where j < 7, can be applied.

Since we are dealing with formulas that contain disjunction and conjunction
connectives, we need to take into account the standard Boolean axioms. To
simplify, instead of working modulo the Boolean axioms we apply a Boolean
normalisation step before a rule is applied. Following Comon and Lescanne [10],
we choose to take conjunctive normal form: Before the application of each rule
P is reduced to a conjunction of disjunctions.

The explosion rule creates new branches by instantiating variables considering
all possible ways of constructing terms (i.e., each f € X abstractions and atoms).
Note that X' U Atoms(P) U {a’} is a finite set (we can represent all possible
constructions with a finite number of cases), so the rule is finitely branching.

The rule Elimination of Disjunctions also builds a finite number of branches.
Therefore, our procedure builds a finitely branching tree of problems to be solved.

Rules R1-Rs are not sufficient to eliminate all parameters from a NEP (see
Example 6) in contrast with the syntactic case [7], where similar rules produce
parameterless normal forms. This is because we are dealing with both freshness
and a-equality. Indeed, normal forms for rules R1-Rg may contain parameters,
but only in disjunctions involving both freshness and equality constraints for the
same parameter as the following lemma states. The rules in Rg (Figure 4) are
introduced to deal with this problem.
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R1 : Trivial Rules

(Tl) t~at=— T (TQ) t%atﬁL (Tg) a%ab:>L

(Ty) a#b=T (T5) a#a=— L (Ts) afa =T

(T7) ap= L (Tz) a#tNat = L (To) a#tVat=T

Ro: Clash and Occurrence Check Rules

(CLy) s t=T (CL2) s ot = L

Conditions for (CL;) and (CLz): s(e) # t(e) and neither is a moderated variable.
(01) Tl Nt — L (OQ)W-Z%“at:>T

Conditions for (O1) and (02): Z € vars(t) and t Z 7' - Z

Rs: Elimination of parameters and auxiliary unknowns.

(C1)VY,Y : P = VY : P, Y ¢ vars(P)
(Co) IW, W : P = 3IW : P, W ¢ vars(P)
(C3) IW, W i - W mo t AP =>3IW : P, W ¢ vars(P,t)

Ra4: Equality and freshness simplification

(B1) 7-Xmov-X= Ads(m,)#X (F1) a#n-X = 7 "(a)#X,7 #id
(E2)  [a]t ma [au =t ~a u (F2)  a#la]t =T
(Bs) [a]t =a [lu== (ba) -t ~q uAb#t (F3) a#t[b]t = a#t
(Bs)  f() ma f(G) = Niti Ra ui (Fi)  a#tf(tr,... tn) = Niadtt;
Rs: Disunification
(DC)  f(t) #a f(0) = Viti Za us (NFY) a¥r- X = 7' (a)% X, 7 # id
(D1) 7 X %oy X = Vids(m,7)%X (NF2) a¥at = L
(D2)  [a]t #a la]u =t %40 u (NF3) a[bt = adt
(D3)  [a]t %o [bJlu = (ba) -t % uV bt (NFy) a¥f(t) = Viadst;

Re: Simplification of Parameters

1 VY,YZP/\7T'Y7’”Lth:>J_ifY¢VaI'S(t)

)

) VY

Us) VY, Y : PAm-Ymot= L, ifn-Y #£1
YWY :PA(m1-Z1i ®ati Ve VT Zn R tn V

YVY,Y : PAa#tY = L

Us) VY,Y : PAa¥Y = L

onditions for (Uy):

Q=

VY i PA(T-Y %4 tVQ)=VY : PAQ[Y/r™

Lot], if Y ¢ vars(t), Y €Y

Q)= VY :PAQ

— Each equation in the disjunction contains at least one occurrence of a parameter

and m; - Z; £ t; foreachi=1,...,n
— @ does not contain any parameter.

R7: Instantiation Rules

()T - Z~gtANP = Z~on ' tANP[Z/n" 1]

— If ¥ = id then Z is not a parameter and Z occurs in P and if ¢ is a variable then

t occurs in P.
— If m # id, then t is not of the form id - Z'.
(I) 7 Z o tV P = 7

otV P[Z/mh

— If # = id then Z occurs in P and if ¢ is a variable then ¢ occurs in P.

— If m # id then ¢t is not of the form id - Z’.

Fig. 2. Preserving Rules
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Rs: Explosion and Elimination of Disjunction

(ED)VY : PA(P1V P) = VY : PA Py,if vars(P1) NY = () or vars(P) NY = ().

(EDQ) V?l,vgi P A (P1 V PQ) - Vﬁ,?g :PA Pl,if vars(Pl) ﬁ?i: ¢ and
vars(P2)NY; =0

(Exp) WYY : P = FW/IAWVYY : PAX ~n t, fort = f(W')ort =[a]W ort =a
Conditions for (Exp):

1. X is a free or existential variable occurring in P, W' are newly chosen auxiliary
variables not occurring anywhere in the problem;

2. f € X and a € Atoms(P) U{a’}, where a’ is a new atom;

3. there exists an equation X =, u (or disequation X %, u) in P such that u is not a
variable and contains at least one parameter; and

4. no other rule can be applied.

Fig. 3. Globally Preserving Rules

Ezample 6. Both P = a#Y1 VY =, f(Y1) and P = a#Y1 VaxY VY] =, f(Y)
are irreducible: neither (Uy) nor (ED;) apply since all the disjuncts contain
parameters; (EDy) does not apply since each constraint has a parameter that
occurs in another constraint; (Exp) does not apply because there is no equation
or disequation with a free or existentially quantified variable in one side.

The following lemma characterises the irreducible disjunctions with respect
to rules R1-Rg where parameters may remain.

Lemma 4. Let P be a disjunction of constraints irreducible w.r.t. R1-Rg. For
each parameter Y such that P = a#Y VvV Q (resp. P = oY V Q), for some atom
a, the following holds:

1. oY (resp. a#Y ) cannot occur in Q;

2. Y has to occur in Q;

3. if Q contains an equational constraint then it has the form Y =, t, where
Y ¢ vars(t), or Y ~q t, with Y € vars(t);

4. @ does not contain disequations or primitive freshness constraints for free or
ezistentially quantified variables.

Proof. In an irreducible disjunction of constraints at least one of the sides
of equations (or disequations) is a variable, otherwise we could simplify the
equation/disequation.

Condition 1. It holds, otherwise we could apply (7). Condition 2. It holds,
otherwise we could apply (EDs).

Condition 3. If () had an equation of the form X =, t, for some free or
existentially quantified variable, then ¢ could not contain a parameter, otherwise
we could apply rule (Exp). Therefore, t = t[Z1, ..., Z,], for n > 0 where each Z;



34 M. Ayala-Rincén et al.

Ro: Simplification of parameters in freshness constraints

(Un)VY,Y : PA(a#Y V Q) = L

if R1-Rs do not apply (so Q does not contain a¥;Y) and Y € vars(Q).
(Us) VY,Y : PA (aY V Q) =

if R1-Rs do not apply (so Q does not contain a#Y) and Y € vars(Q).

Fig. 4. Preserving Rules for (non)freshness constraints with parameters.

is either a free or existentially quantified variable, and one could apply rule ED;.
Thus, if an equation exists, one of the sides has to be a parameter, say Y =, t,
and Y cannot occur in t otherwise rule Os applies.

Condition 4. If Q) were to contain a disequation, say X #,, t then ¢ could
not contain a parameter, otherwise we could apply (Exp) as above, but then we
could apply rule (ED;). Therefore, if () were to contain a disequation, it would
be of the form Y %, ¢, then it would either reduce with (Oz) or with (Us). Thus,
@ does not contain disequations. Similary, if () contained a primitive freshness
constraint for a free or existentially quantified variable then (ED;) would apply.

The remaining disjunctions with parameters can be simplified using the rules
in Ry, since they will not produce solutions (as shown in Theorem 1).
We end this section with an example of application of the simplification rules.

Example 7. Let P be a NEP, using the signature from Example 1, as follows:

P =YY : Ma]X %o M\ a]Y 25 VY : [a]X 4 [a]\[a]Y 22 VY 1 X 3, Ala]Y
Rules in R1-R7 cannot be applied and the explosion rule produces six problems:

P =dWLVY : X %, )\[a]Y ANX ~o \Wy Ps=TFWVYY : X %, [a]Y ANX = [b]W
Po =AW, WoVY : X ?éa [a]YAX =W1Ws P;=3dWVY : X ?éa [a]YAX =a
PSZHWVY:Xﬁa[a]Y/\X:[a}W PGZVY:Xaéa[a]Y/\X:b

Reducing the first problem we get:
Pr =5 IWAVY AW e A[a]Y A X ~a AW,
ZE WYY Wi 20 [d]Y A X ~a AWG
E2 JWAWLVY - Wi #a [a]Y A X ~a AWL AW Ra AWS
2L AW WYY - AW 2 [a]Y A X ma AWL A W) A AW,
L WA WYY © X o AWL A Wi ~a ATV
2 AW W ¢ X ~a AAW2 A W) A AWS.

At this point P; has reached a normal form without any parameter. Solutions of P; can
be easily obtained by taking any instance of X of the form A\¢. It is easy to check that
this choice indeed generates solutions of P. Similar reductions apply to P;, 2 <14 < 6.
As we will see in the next section, application of such simplification rules is
well-behaved in the sense that we do not loose any solution along the way.
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4.2 Soundness and Preservation of Solutions

The next step is to ensure that the application of rules does not change the set
of solutions of an equational problem.

Definition 11 (Soundness and preservation of solution). Let A be any
infinite subalgebra of CORE.

1. A rule R is A-sound if, P = P’ implies S(P") C S(P).
2. A rule R is A-preserving if, P =>r P’ implies S(P) C S(P').
3. A rule R is A-globally preserving if given any problem P,

S(P) C U S(Py).
P —r - P;
supp(7) N Atoms(P) =0

All our rules, except those in Rg, are sound and preserving (Theorem 1).
The rules in Rg create branches in the derivation tree; they are sound and only
globally preserving (Theorem 2).

Theorem 1. The rules in Rq1 to Ry and the rules in Rg are A-sound and
A-preserving for any infinite subalgebra A of CORE.

Proof. Rules in R, R2, and R3 : soundness and preservation of solutions are
easy to deduce. For instance, for clash rules, (C'Ly) and (CLs), it follows by
inspection of deduction rules that the judgement F sy =, t7v is not derivable
for any valuation ¢ and corresponding grounding substitution v = afmrs(& " (see
Definition 7) if the root constructors of s and ¢ are different (hence every 7 is
a solution for the disequation). For (C3) observe that we can take [W/t] as a
witness for W on a validation for IW : P, if W ¢ vars(P,t).

Rules in R4 and R5. It follows from soundness and preservation of simplification
rules in [14]. We use the fact that nominal equality and freshness rules from Fig.
1 are reversible; for instance, let v be a grounding substitution, a judgement
F f(8)y = f(@)y fails, which makes f(8)y 5, f(@)y valid, iff one of the premises
F s;v &, u;7y does not hold.

Rules in Rg: The result is straightforward for rules U; and Us.

U,. To prove soundness for Us notice that the solution set of a conjunction
is the intersection of the solution set of each of its members. We have to show
that every solution of Q[Y/m~! -] is a solution of (7Y #, tV Q). Let v be a
solution of Q[Y/7~! -] and take any substitution \ satisfying the conditions of
Definition 10. So (Q[Y /7~ - #])yA is valid and we need to show the validity of

(7Y %0 t)YAV QYA (1)

For each such A there are two possible cases: First, F 7 - YA =, ty\ (note
that A is a ground substitution so both sides of this equation are ground); then
we have that YA = Y\ [Y/7~! - tyA]. By hypothesis, ¥\ validates Q[Y /7! - ¢]
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so YN'[Y/n~t - ty)\] validates Q. Second; I/ 7 - Y\ &, ty\, then v\ validates
m-Y %, t. Hence ~ a solution of (1).

To prove preservation for Us, take v a solution of VY, Y : 7-Y %, t V Q, we
need to show that 7 is also a solution of VY, Y : Q[Y /7! - ¢]. Notice that v is a
solution of VY, Y : 1Y %, t or VY,Y : Q but it clearly cannot solve the first
problem. Hence, ~y solves VY, Y : Q. By Definition 10, for all substitutions A with
domain Y U {Y'} we have that \y validates Q. In particular, the substitution
[Y/7~1 - ty]\y which is equivalent to [Y/7~! - ¢]\y (since v is away from \) must
also validate Q. Consequently, Ay validates (Q[Y /71 - t]).

U,. Soundness for this rule follows trivially. For preservation of solutions, we
show that any solution of VY : \/, Z; =, t; V@ is a solution of VY : Q. The shape
of the first problem induces a requirement that the disjunction \/, Z; =4 t; does
not have a solution. To show this we prove that the negated form A, Z; %, t;
has at least one solution. Notice that such a solution is a witness for the failure
of \/, Z; =4 t;, since all of those equations have at least one parameter. Lemma 5
shows that this is true.

Us and Us. We need to show that every solution of VY, Y : P A a#Y is also
a solution of L, i.e., no such solution exists for the lhs of the rule. In fact, the
existence of such v would imply that (taking A = [Y/a]) a#a which is impossible.
For Us we do the same reasoning with A = [Y/[a]a].

Rules in R;. Soundness and preservation of (I7) has been proved in previous
works, since rule (1) is used in standard nominal unification algorithms [23]. Rule
(I2) is a direct adaptation of the rule used in the standard (syntactic) case, proved
sound and preserving in [10]. Indeed, v € S(7 - Z %, t V P) if, and only if, for
any grounding instance 7' of v, 7' € S(Z %4 71 -t) or o/ € S(P) (by Lemma 3).
Finally, notice that v € S(P)\ S(Z %, w1 - t) if and only if v € S(P[Z/7~ ! - 1]).
Rules in Ry. Soundness follows trivially, since | has no solution. We show
below that Uy is A-preserving; the proof is analogous for rule (Us).

Let P = dJWYY,Y : P A (a#Y V Q) where Q is fully reduced by R;-Rsg,
Y € vars(Q) and @ does not contain a3ty . We prove that P does not have
solutions by induction on the number of freshness constraints in a#Y V Q.

Base case: () contains just equational constraints, each containing at least one
occurrence of the parameter Y, as specified in Lemma 4. Suppose by contradiction
that there exists an A-solution ~. Thus, v is away from Y U {Y}, dom(y) = X =
Fv(P), there is a ground substitution § with dom(5) = W and for all A\ away
from X, W, with dom(\) =Y U {Y}, v6\ A-validates P A (a#Y V Q). Then, it
A-validates both P and (a#Y V Q). The latter implies that v0A A-validates @
for every A (but then @ has a solution, which is impossible due to the form of
the equational constraints) or @) implies a¥tY (since there is at least one f € X
such that f:n and n > 0, and therefore a#Y is false for an infinite number of
ground terms Y'A). The latter is impossible since a#Y is defined as a & supp(Y),
which is defined as (aa’) - Y =Y for a new o/, and reduced problems cannot
contain fixed point equations or their negations (these are simplified using rules
(E7) and (D), respectively).
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The inductive step is proved similarly, using Lemma 4 as in the base case to
deduce that the constraints in ) cannot entail a3fY .

Theorem 2. Let A be any infinite subalgebra of CORE.

1. Rule (Exp) is A-sound and A-globally preserving.
2. Rules (EDy) and (EDs) are A-sound and A-globally preserving.

Lemma 5 guarantees the existence of a solution for a conjunction of non-trivial
disequations as long as the algebra considered has sufficient ground terms.

Lemma 5. Let P be a conjunction of non-trivial disequations. Let A be any
infinite subalgebra of CORE. Then P has at least one solution in A.

Proof. The proof proceeds by induction on the number of distinct variables
occurring in P. For the base case P has no variables. Then every substitution
solves P, since by hypothesis P does not contain any trivial disequation t %, t.

Assume the result holds for problems with m — 1 variables. Let P be a
conjunction of non-trivial disequations such that |vars(P)| = m and X €
vars(P). For each disequation s %, t € P, the equation s ~,, t has at most one
solution (modulo c-renaming) when the variables distinct from X are considered
as constants. Let S the set of such solutions for all these equations. Since A (the
domain of \A) is infinite, there exists a € A such that [X/a] ¢ S. Therefore, [X/a]
is a solution for P. Now, consider the problem P’ = P[X/a| which has m — 1
variables. The result follows by induction hypothesis.

4.3 Termination

To prove termination we define a measure function for NEPs that strictly decreases
with each application of a rule. The measure uses the following auxiliary functions:

Definition 12 (Auxiliary Functions). The function sizePar(t) denotes the
sum of the sizes of the parameter positions in t:

sizePar(t) := Z Ipjl

p; EPosPar(t)

where PosPar(t) = {p; | t|,, =Y; for some parameter Y;}.
Given a disjunction of equations, disequations, freshness, and negated freshness
constraints d = Cy V ...V C, we define auziliary functions ¢, and ¢ over d.

1. ¢1(d) is the number of distinct parameters in d.
2. ¢a(d) is the multiset {MSP(C1),...,MSP(C,,)} where MSP(C') is defined by:
(a) MSP(C) =0 if C is an equation or disequation and a member of C is a
solved parameter (a parameterY is solved in d if there exists a disequation
Y %4 wind andY occurs only once in d); or if C is a primitive freshness
or a primitive negated freshness constraint;
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(b) otherwise, MSP(s =2, t) = MSP(s %, t) = max(sizePar(s), sizePar(t))
and MSP(a#t) = MSP(aXst) = sizePar(t).

Definition 13 (Measure). Let P = IWVYYd; A...Ad, be a nominal equational
problem in conjunctive normal form. P is measured using the tuple:

D(P) = (Nu, Ng, ¥1(P), M, 2(P)), where

1. N, is the number of free variables that are unsolved in P. A variable X is
solved if there is an equation X =, t and X occurs only once in P.

2. Ny is a multiset that contains for each disjunction d; in P the number of
variables that are not d-solved in d;.

A wvariable X is d-solved in d; if d; = X 56, tV Q and X does not occur in Q.

3. Wl (P) is the multiset {(¢1 (dl), ¢2(d1)), ceey ((bl (dn), ¢2(dn))}

4. M is the multiset {M(dy), ..., M(d,)} where M(d) is the multiset of sizes of
the constraints in d. The size of a constraint is the size of its largest member,
or 0 if it has a solved variable or it is a primitive (negated) freshness.

5. Wy(P) is the total size of P (that is, the number of function symbols, atoms,
variables, quantifiers, conjunctions, disjunctions, T, L in P.

Using this measure we can prove the termination of the simplification process.

Theorem 3. The procedure defined in Section 4 for application of rules, ex-
pressed as R = R1Ra ... Rg, terminates.

5 Nominal Equational Solved Forms

We have shown that the simplification process terminates and each application
of the transformation rules preserves solutions. We now characterise the normal
forms, called solved forms. Intuitively, solved forms are simple enough that one
can easily extract solutions from it. A first example of well-known solved form
is that of unification solved form: a conjunction of equations X; = t; such that
each X; occurs only once. It directly represents a solution mapping X; — ;.
We show in Theorem 4 existence of solutions for certain solved forms, and in
Theorem 5 we prove that our procedure is complete with respect to solved forms.

Definition 14 (Solved Forms).

1. A NEP P is in parameterless solved form if it contains no universal quantifiers.
2. A NEP s a definition with constraints if it is T, L or a conjunction of the

form
n m p
P=3W: (/\ZZ %ati> A (/\ZJI f;‘éa’l}j> N (/\Cl> s
i=1 j=1 1=1

such that:
— each Z; occurs only once in P;
— each Zj’. is syntactically different from v;; and
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— each Cy is either a positive, a# X, or negative, ax X, freshness constraint

such that each pair a, X occurs at most once in P.
3. A NEP is n unification solved form if it is a definition with constraints which

does not contain negative constraints.

Theorem 4 below shows that a problem reduced to definition with constraints
solved form has at least one solution.

Theorem 4. Let A be any infinite subalgebra of CORE. If P 2 L is in definition
with constraints solved form, then it has at least one solution.

Proof. First assume P is in unification solved form (see Definition 14). Let V
be the context containing all constraints C} occurring in P. Furthermore, define
the substitution o that assigns to each free variable X; the term t;, and the
substitution § mapping each existential variable Wy, to t;. Then [Vod] » which
is equivalent to [V] s by Lemma 1, is valid in .A. Consequently,

[V b Xi0 ~ t;08], and [V F Wid ~q t,0]

are valid judgements. So, o is an A-solution of P with existential witnesses given
by d. In the general case, when P is in definition with constraints solved form
containing also negative constraints, the construction is similar. We can guarantee

a solution for the disunification part of the problem, A Z} %, v;, by Lemma 5.
j=1

Definition 15. A set R of rules for solving nominal equational problems is

complete w.r.t. a kind of solved forms S if for each P there exists a family of

NEPs Q; in S-solved form such that P == % Q; and S(P) = J; S(Q;).

The next result states that a NEP’s normal form with respect to the simpli-
fication rules given in the previous section is a definition with constraints. In
particular, all parameters are removed from the problem. The proof is by case
analysis, considering all possible occurrences of parameters in a problem.

Theorem 5 (Completeness). Let A be any infinite subalgebra of CORE. Then
the rules in Figures 2, 3, and j are complete for parameterless solved forms and
definition with constraints solved forms.

6 Conclusion

In this paper, we introduced nominal equational problems (NEPs) as an extension
of standard first-order equational problems to nominal terms which, besides
equations and disequations, includes freshness and non-freshness constraints. We
proposed a sound and preserving rule-based algorithm to solve NEPs in the nominal
ground algebra CORE, and showed that this algorithm is complete for two main
types of solved forms: parameterless and definition with constraints. As future
work, we aim to investigate the purely equational approach to nominal syntax
via the formulation of freshness constraints using fixed-point equations with the
V-quantifier [21], as well as the solvability of nominal equational problems in
more complex algebras.
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Abstract. In rendez-vous protocols an arbitrarily large number of indis-
tinguishable finite-state agents interact in pairs. The cut-off problem asks
if there exists a number B such that all initial configurations of the proto-
col with at least B agents in a given initial state can reach a final config-
uration with all agents in a given final state. In a recent paper [17], Horn
and Sangnier prove that the cut-off problem is equivalent to the Petri net
reachability problem for protocols with a leader, and in EXPSPACE for
leaderless protocols. Further, for the special class of symmetric protocols
they reduce these bounds to PSPACE and NP, respectively. The problem
of lowering these upper bounds or finding matching lower bounds is left
open. We show that the cut-off problem is P-complete for leaderless pro-
tocols, NP-complete for symmetric protocols with a leader, and in NC
for leaderless symmetric protocols, thereby solving all the problems left
open in [17].

Keywords: rendez-vous protocols - cut-off problem - Petri nets

1 Introduction

Distributed systems are often designed for an unbounded number of participant
agents. Therefore, they are not just one system, but an infinite family of systems,
one for each number of agents. Parameterized verification addresses the problem
of checking that all systems in the family satisfy a given specification.

In many application areas, agents are indistinguishable. This is the case in
computational biology, where cells or molecules have no identities; in some se-
curity applications, where the agents’ identities should stay private; or in ap-
plications where the identities can be abstracted away, like certain classes of
multithreaded programs [15,2,31,3,18,25]. Following [3,18], we use the term repli-
cated systems for distributed systems with indistinguishable agents. Replicated
systems include population protocols, broadcast protocols, threshold automata,
and many other models [15,2,11,7,16]. They also arise after applying a counter
abstraction [28,3]. In finite-state replicated systems the global state of the sys-
tem is determined by the function (usually called a configuration) that assigns
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to each state the number of agents that currently occupy it. This feature makes
many verification problems decidable [4,10].

Surprisingly, there is no a priori relation between the complexity of a param-
eterized verification question (i.e., whether a given property holds for all initial
configurations, or, equivalently, whether its negation holds for some configura-
tion), and the complexity of its corresponding single-instance question (whether
the property holds for a fixed initial configuration). Consider replicated systems
where agents interact in pairs [15,17,2]. The complexity of single-instance ques-
tions is very robust. Indeed, checking most properties, including all properties
expressible in LTL and CTL, is PSPACE-complete [9]. On the contrary, the com-
plexity of parameterized questions is very fragile, as exemplified by the following
example. While the existence of a reachable configuration that populates a given
state with at least one agent is in P, and so well below PSPACE, the existence
of a reachable configuration that populates a given state with ezactly one agent
is as hard as the reachability problem for Petri nets, and so non-elementary [6].
This fragility makes the analysis of parameterized questions very interesting, but
also much harder.

Work on parameterized verification has concentrated on whether every ini-
tial configuration satisfies a given property (see e.g. [15,11,3,18,7]). However,
applications often lead to questions of the form “do all initial configurations
in a given set satisfy the property?”, “do infinitely many initial configurations
satisfy the property?”, or “do all but finitely many initial configurations satisfy
the property?”. An example of the first kind is proving correctness of popula-
tion protocols, where the specification requires that for a given partition Zy, Z;
of the set of initial configurations, and a partition Qg, Q1 of the set of states,
runs starting from Zy eventually trap all agents within @, and similarly for 7y
and @7 [12]. An example of the third kind is the existence of cut-offs; cut-off
properties state the existence of an initial configuration such that for all larger
initial configurations some given property holds [8,4]. A systematic study of the
complexity of these questions is still out of reach, but first results are appearing.
In particular, Horn and Sangnier have recently studied the complexity of the
cut-off problem for parameterized rendez-vous networks [17]. The problem takes
as input a network with one single initial state init and one single final state fin,
and asks whether there exists a cut-off B such that for every number of agents
n > B, the final configuration in which all agents are in state fin is reachable
from the initial configuration in which all agents are in state init.

Horn and Sangnier study two versions of the cut-off problem, for leaderless
networks and networks with a leader. Intuitively, a leader is a distinguished agent
with its own set of states. They show that in the presence of a leader the cut-off
problem and the reachability problem for Petri nets problems are inter-reducible,
which shows that the cut-off problem is in the Ackermannian complexity class
Fu [22], and non-elementary [6]. For the leaderless case, they show that the prob-
lem is in EXPSPACE. Further, they also consider the special case of symmetric
networks, for which they obtain better upper bounds: PSPACE for the case of a
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Horn and Sangnier

Asymmetric rendez-vous

Symmetric rendez-vous

Presence of a leader
Absence of a leader

This paper

Decidable, non-elementary
EXPSPACE

Asymmetric rendez-vous

PSPACE
NP

Symmetric rendez-vous

Presence of a leader
Absence of a leader

Decidable, non-elementary
P-complete

NP-complete
NC

Table 1. Summary of the results by Horn and Sangnier and the results of this paper.

leader, and NP in the leaderless case. These results are summarized at the top
of Table 1.

In [17] the question of improving the upper bounds or finding matching lower
bounds is left open. In this paper we close it with a surprising answer: All
elementary upper bounds of [17] can be dramatically improved. In particular,
our main result shows that the EXPSPACE bound for the leaderless case can be
brought down to P. Further, the PSPACE and NP bounds of the symmetric case
can be lowered to NP and NC, respectively, as shown at the bottom of Table 1.
We also obtain matching lower bounds. Finally, we provide almost tight upper
bounds for the size of the cut-off B; more precisely, we show that if B exists,

oM .
then B € 2" for a protocol of size n.

Our results follow from two lemmas, called the Scaling and Insertion Lemmas,
that connect the continuous semantics for Petri nets to their standard semantics.
In the continuous semantics of Petri nets transition firings can be scaled by a
positive rational factor; for example, a transition can fire with factor 1/3, taking
“1/3 of a token” from its input places. The continuous semantics is a relaxation
of the standard one, and its associated reachability problem is much simpler
(polynomial instead of non-elementary [14,6,5]). The Scaling Lemma' states that
given two markings M, M’ of a Petri net, if M’ is reachable from M in the
continuous semantics, then nM’ is reachable from nM in the standard semantics
for some n € 2’”0(1), where m is the total size of the net and the markings. The
Insertion Lemma states that, given four markings M, M’, L, L', if M’ is reachable
from M in the continuous semantics and the marking equation L' = L + Ax has
a solution x € ZT (observe that x can have negative components), then nM’+ L’
is reachable from nM + L in the standard semantics for some n € 2. We
think that these lemmas can be of independent interest.

The paper is organized as follows. Section 2 contains preliminaries; in par-
ticular, it defines the cut-off problem for rendez-vous networks and reduces it to
the cut-off problem for Petri nets. Section 3 gives a polynomial time algorithm
for the leaderless cut-off problem for acyclic Petri nets. Section 4 introduces
the Scaling and Insertion Lemmas, and Section 5 presents the novel polynomial

! Heavily based on previous results by Fraca and Haddad [14].
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time algorithm for the cut-off problem. Sections 6 and 7 present the results for
symmetric networks, for the cases with and without leaders, respectively.

Due to lack of space, full proofs of some of the lemmas can be found in the
appendix.

2 Preliminaries

Multisets Let E be a finite set. For a semi-ring S, a vector from E to S is a
function v : E — S. The set of all vectors from E to S will be denoted by S¥. In
this paper, the semi-rings we will be concerned with are the natural numbers N,
the integers Z and the non-negative rationals Q>¢ (under the usual addition and
multiplication operators). The support of a vector v is the set [v] := {e: v(e) #
0} and its size is the number [jv]| = >__c,j abs(v(e)) where abs(z) denotes the
absolute value of x. Vectors from E to N are also called discrete multisets (or
just multisets) and vectors from E to Q¢ are called continuous multisets.

Given a multiset M and a number a we let o - M be the multiset given by
(- M)(e) = M(e) -« for all e € E. Given two multisets M and M’ we say that
M < M’ if M(e) < M'(e) for all e € E and we let M + M’ be the multiset
given by (M + M')(e) = M(e) + M'(e) and if M’ < M, we let M — M’ be the
multiset given by (M — M’)(e) = M(e) — M'(e). The empty multiset is denoted
by 0. We sometimes denote multisets using a set-like notation, e.g. {a,2 - b, c§
denotes the multiset given by M(a) = 1, M (b) =2, M (c) =1 and M(e) = 0 for
all e ¢ {a,b, c}.

Given an I x J matrix A with I and J sets of indices, I’ C I and J' C J,
we let Ay denote the restriction of M to rows indexed by I’ and columns
indexed by J'.

Rendez-vous protocols and the cut-off problem. Let Y be a fixed finite
set which we will call the communication alphabet and we let RV (X)) = {la, 7a :
a € X}. The symbol !a denotes that the message a is sent and 7a denotes that
the message a is received.

Definition 1. A rendez-vous protocol P is a tuple (Q, X, init, fin, R) where Q
is a finite set of states, X is the communication alphabet, init, fin € Q are the
initial and final states respectively and R C @ x RV (X) x Q is the set of rules.

The size |P| of a protocol is defined as the number of bits needed to encode
P in {0,1}* using some standard encoding. A configuration C' of P is a multiset
of states, where C(q) should be interpreted as the number of agents in state
q. We use C(P) to denote the set of all configurations of P. An initial (final)
configuration C' is a configuration such that C(q) = 0 if ¢ # init (resp. C(q) =0
if ¢ # fin). We use Cj,;, (Cf,) to denote the initial (resp. final) configuration
such that C7;, (init) = n (resp. Cf, (fin) = n).

The operational semantics of a rendez-vous protocol P is given by means
of a transition system between the configurations of P. We say that there is
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a transition between C and C’, denoted by C = (' iff there exists a € X,

p,q,p',¢ € Q such that (p,la,p),(q,?a,q') € R, C > {p,q§ and C' = C —

{p,q5+17,q'S. As usual, = denotes the reflexive and transitive closure of =
The cut-off problem for rendez-vous protocols, as defined in [17], is:

Given: A rendez-vous protocol P
Decide: Is there B € N such that 7, = Ch, for every n > B 7

init
If such a B exists then we say that P admits a cut-off and that B is a cut-off
for P.

Petri nets. Rendez-vous protocols can be seen as a special class of Petri nets.

Definition 2. A Petri net is a tuple N = (P, T, Pre, Post) where P is a finite
set of places, T is a finite set of transitions, Pre and Post are matrices whose
rows and columns are indexed by P and T respectively and whose entries belong
to N. The incidence matriz A of N is defined to be the P x T matriz given by
A = Post — Pre. Further by the weight of N, we mean the largest absolute value
appearing in the matrices Pre and Post.

The size |N| of N is defined as the number of bits needed to encode N in
{0,1}* using some suitable encoding. For a transition ¢t € T we let *t = {p :
Pre[p,t] > 0} and t* = {p : Post[p,t] > 0}. We extend this notation to set of
transitions in the obvious way. Given a Petri net A/, we can associate with it a
graph where the vertices are P U T and the edges are {(p,t) : p € "t} U{(¢,p) :
p € t°}. A Petri net AV is called acyclic if its associated graph is acyclic.

A marking of a Petri net is a multiset M € N, which intuitively denotes
the number of tokens that are present in every place of the net. For ¢t € T and
markings M and M’, we say that M’ is reached from M by firing ¢, denoted
M L M| if for every place p, M(p) > Pre[p,t] and M’(p) = M(p) + Alp, .

A firing sequence is any sequence of transitions o = t1,to,...,t; € T*. The
support of o, denoted by [o], is the set of all transitions which appear in o. We
let oo’ denote the concatenation of two sequences o, d’.

Given a firing sequence o = ti,ta,...,t; € T*, we let M < M’ denote that

there exist My, ..., My_1 such that M h, My L2, My ... Mp_1 LNV Further,

M — M’ denotes that there exists ¢ € T such that M - M', and M 5 M’
denotes that there exists ¢ € T* such that M = M.

Marking equation of a Petri net system. In the following, a Petri net system is
a triple (N, M, M’) where A is a Petri net and M # M’ are markings. The
marking equation for (N, M, M") is the equation

M =M+ Av

over the variables v. It is well known that M < M’ implies M’ = M + A7,
where & € N7 is the the Parikh image of o, defined as the vector whose com-
ponent 7[75] for transition ¢ is equal to the number of times ¢ appears in o.
Therefore, if M %> M’ then & is a nonnegative integer solution of the marking
equation. The converse does not hold.
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From rendez-vous protocols to Petri nets. Let P = (Q, X, init, fin, R) be
a rendez-vous protocol. Create a Petri net Np = (P, T, Pre, Post) as follows.
The set of places is ). For each letter a € X and for each pair of rules r =
(g,'a,s),r" = (¢,?a,s") € R, add a transition ¢, to Np and set

— Pre[p,t] = 0 for every p ¢ {q,q'}, Post[p,t] = 0 for every p ¢ {s,s'}
— If ¢ = ¢’ then Prelq,t] = —2, otherwise Pre[q,t] = Prel¢’,t] = —1
— If s = &' then Post[s,t] = 2, otherwise Post[s,t] = Post[s',t] = 1.

It is clear that any configuration of a protocol P is also a marking of Np,
and vice versa. Further, the following proposition is obvious.

Proposition 1. For any two configurations C and C' we have that C = C'
over the protocol P iff C = C' over the Petri net Np.

Consequently, the cut-off problem for Petri nets, defined by

Given : A Petri net system (N, M, M")
Decide: Is there B € N such that n- M = n - M’ for every n > B ?

generalizes the problem for rendez-vous protocols.

3 The cut-off problem for acyclic Petri nets

We show that the cut-off problem for acyclic Petri nets can be solved in polyno-
mial time. The reason for considering this special case first is that it illustrates
one of the main ideas of the general case in a very pure form.

Let us fix a Petri net system (N, M, M’) for the rest of this section, where
N = (P, T, Pre, Post) is acyclic and A is its incidence matrix. It is well-known
that in acyclic Petri nets the reachability relation is characterized by the marking
equation (see e.g. [24]):

Proposition 2 ([24]). Let (N,M,M') be an acyclic Petri net system. For
every sequence o € T*, we have M % M’ iff T is a solution of the marking
equation. Consequently, M = M’ iff the marking equation has a nonnegative
integer solution.

This proposition shows that the reachability problem for acyclic Petri nets
reduces to the feasibilty problem (i.e., existence of solutions) of systems of linear
diophantine equations over the nonnegative integers. So the reachability problem
for acyclic Petri nets is in NP, and in fact both the reachability and the feasibility
problems are NP-complete [13].

There are two ways to relax the conditions on the solution so as to make the
feasibility problem polynomial. Feasibility over the nonnegative rationals and
feasibility over all integers are both in P. The first is due to the polynomiality
of linear programming. For the second, feasibility can be decided in polynomial
time after computing the Smith or Hermite normal forms (see e.g. [29]), which
can themselves be computed in polynomial time [19]. We show that the cut-off
problem can be reduced to these two relaxed problems.
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3.1 Characterizing acyclic systems with cut-offs

Horn and Sangnier proved in [17] a very useful charaterization of the rendez-
vous protocols with a cut-off: A rendez-vous protocol P admits a cut-off iff there
exists n € N such that C?,,, = Cfi, and ortl = C’g: !. The proof immediately
generalizes to the case of Petri nets:

Lemma 1 ([17]). A Petrinet system (N, M, M') (acyclic or not) admits a cut-
off iff there exists n € N such that n-M =5 n-M’ and (n+1)-M = (n+1)-M'.
Moreover if n- M S n-M' and (n+1)- M = (n+1) - M’, then n® is a cut-off
for the system.

Using this lemma, we characterize those acyclic Petri net systems which
admit a cut-off.

Theorem 1. An acyclic Petri net system (N, M, M’) admits a cut-off iff the
marking equation has solutions x € ng and y € Z* such that [[y] C [x].

Proof. (=): Suppose (N, M, M’) admits a cut-off. Hence there exists b € N
such that for all n > b we have nM = nM’. Let bM = bM’ and (b+ 1)M =
(b+1)M’. Then, notice that (2b+1)M T (2b+1)M’ and (2b+2)M " (2b+
2)M'. Hence, if we let n = 2b+ 1, 0 = 0’7’ and 7 = 7/7" we have, nM % nM’,
(n+1)M 5= (n+1)M’' and [r] C [o]. By Proposition 2, there exist x',y’ € N
such that [y'] C [x'], nM’ = nM + Ax' and (n +1)M' = (n + 1)M + Ay’.
Letting x = x'/n and y =y’ — X/, we get our required vectors.

(«<): Suppose x € QZO and y € ZT are solutions of the marking equation such
that [y] C [x]. Let u be the least common multiple of the denominators of
the components of x, and let a be the largest absolute value of the numbers in
the vector y. By definition of u we have a(ux) € NT. Also, since [y] C [x] it
follows by definition of o that a(ux) +y > 0 and hence a(ux) +y € NT. Since
M' =M+ Ax and M’ = M + Ay we get

apM’' = apM + A(aux) and (ap+ 1M = (ap+ 1)M + Alaux +y)
Taking ap = n, by Proposition 2 we get that nM = nM’ and (n + 1)M =
(n+1)M’'. By Lemma 1, (N, M, M’) admits a cut-off.

Intuitively, the existence of the rational solution x € ng guarantees nM =

nM' for infinitely many n, and the existence of the integer solution y € Z7T
guarantees that for one of those n we have (n+ 1)M = (n+ 1)M’ as well.

Ezample 1. The net system given by the net on Figure 1 along with the markings
M = {i§ and M’ = [ f§ admits a cut-off. The conditions of the theorem are

satisfied by x = (%, %, %, %) and y = (—1,1,1,1).
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Fig. 1. A net with cut-off 2.

3.2 Polynomial time algorithm

We derive a polynomial time algorithm for the cut-off problem from the char-
acterization of Theorem 1. The first step is the following lemma. A very similar
lemma is proved in [14], but since the proof is short we give it for the sake of
completeness:

Lemma 2. If the marking equation is feasible over Q>q, then it has a solution
with mazximum support. Moreover, such a solution can be found in polynomial
time.

Proof. If y,z € QL are solutions of the marking equation, then we have M’ =
M+ A((y +2)/2) and [y] U [z] C [(y +2z)/2]. Hence if the marking equation
if feasible over @>¢, then it has a solution with maximum support.

To find such a solution in polynomial time we proceed as follows. For every
transition ¢ we solve the linear program M’ = M + Av,v > 0,v(t) > 0. (Recall
that solving linear programs over the rationals can be done in polynomial time).
Let {t1,...,tn} be the set of transitions whose associated linear programs are
feasible over QZ,, and let {ui,...,u,} be solutions to these programs. Then

1/n- Y1 u; is a solution of the marking equation with maximum support.
We now have all the ingredients to give a polynomial time algorithm.

Theorem 2. The cut-off problem for acyclic net systems can be solved in poly-
nomaal time.

Proof. First, we check that the marking equation has a solution over the non-
negative rationals. If such a solution does not exist, by Theorem 1 the given net
system does not admit a cut-off.

Suppose such a solution exists. By Lemma 2 we can find a non-negative
rational solution x with maximum support in polynomial time. Let U contain
all the transitions ¢ such that x; = 0. We now check in polynomial time if the
marking equation has a solution y over ZT such that y, = 0 for every t € U. By
Theorem 1 such a solution exists iff the net system admits a cut-off.
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The rendez-vous protocol given in Figure 2, which was stated in [17], is an
example of a protocol where the smallest cut-off is exponential in the size of
the protocol. In the next sections, we will actually prove that if a net system A
(acyclic or not) admits a cut-off, then there is one with a polynomial number of

bits in |A].

Fig. 2. Example of a protocol with an exponential cut-off

4 The Scaling and Insertion lemmas

Similar to the case of acyclic net systems, we would like to provide a character-
ization of net systems admitting a cut-off and then use this characterization to
derive a polynomial time algorithm. Unfortunately, in general net systems there
is no characterization of reachability akin to Proposition 2 for acyclic systems.
To this end, we prove two intermediate lemmas to help us come up with a char-
acterization for cut-off admissible net systems in the general case. We believe
that these two lemmas could be of independent interest in their own right. Fur-
ther, the proofs of both lemmas are provided so that it will enable us later on
to derive a bound on the cut-off for net systems.

4.1 The Scaling Lemma

The Scaling Lemma shows that, given a Petri net system (N, M, M"), whether
nM 5 nM’ holds for some n > 1 can be decided in polynomial time; more-
over, if nM = nM’ holds for some n, then it holds for some n with at most
(IN|(log || M|| + log [|M']|))°™) bits. The name of the lemma is due to the fact
that the firing sequence leading from nM to nM’ is obtained by scaling up a
continuous firing sequence from M to M’; the existence of such a continuous
sequence can be decided in polynomial time [14].

In the rest of the section we first recall continuous Petri nets and the chara-

terization of [14], and then present the Scaling Lemma?.

2 The lemma is implicitly proved in [14], but the bound on the size of n is hidden in
the details of the proof, and we make it explicit.
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Reachability in continuous Petri nets. Petri nets can be given a continuous
semantics (see e.g. [1,30,14]), in which markings are continuous multisets; we call
them continuous markings. A continuous marking M enables a transition ¢ with
factor X € Q>¢ if M(p) > X\ - Prelp,t] for every place p; we also say that M
enables At. If M enables At, then At can fire or occur, leading to a new marking
M’ given by M'(p) = M(p) + X - Alp,t] for every p € P. We denote this by
M % M', and say that M’ is reached from M by firing At. A continuous firing
sequence is any sequence of transitions o = Ait1, Aata, ..., Aty € (Qs0 x T)*.
We let M % M’ denote that there exist continuous markings M, ..., My_1

such that M % M, % My My % M'. Further, M % M’ denotes

that M % M’ holds for some continuous firing sequence o.

The Parikh image of o = Aity, Aata, ..., A\gti, € (@0 x T)* is the vector
7 e QL, where ?[t] = Zle 0i1\i, where ¢;, = 1 if t; = ¢ and 0 otherwise.
The support of ¢ is the support of its Parikh image 7. M % M’ then
7 is a solution of the marking equation over ng but the converse does not
hold. In [14], Fraca and Haddad strengthen this necessary condition to make

it also sufficient, and use the resulting characterization to derive a polynomial
algorithm.

Theorem 3 ([14]). Let (N, M, M’) be a Petri net system.

- M % M’ aff T is a solution of the marking equation over ng, and there
exist continuous firing sequences T, 7' and continuous markings L and L'

’

such that [r] = [o] =[], M %) L, and L' L@) M.
— It can be decided in polynomial time if M % M’ holds.

Scaling. It follows easily from the definitions that nM = nM’ holds for some
n>1iff M % M'. Indeed, if M %) M’ for some o = Aitq, Aata, ..., Mgty €
(Q@>0 x T)*, then we can scale this continuous firing sequence to a discrete se-
quence nM n—;> nM' where n is the smallest number such that nA;, ..., n\, € N,
and no = t7M1¢52 7™ So Theorem 3 immediately implies that the existence
of n > 1 such that nM = nM’ can be decided in polynomial time. The following

lemma also gives a bound on n.

Lemma 3. Let (N, M, M') be a Petri net system with weight w such that M %
M’ for some continuous firing sequence o € (Q>o xT)*. Let m be the number of
transitions in [o] and let £ be ||||. Let k be the smallest natural number such
that k& € NT. Then, there exists a firing sequence T € T* such that [r] = [o]
and

(16w(w +1)*"ke- M) = (16w(w + 1)*"k( - M)

Lemma 4. (Scaling Lemma). Let (N, M, M’) be a Petri net system such
that M % M’. There exists a number n with a polynomial number of bits in

IN|(log || M|| + log ||[M'||) such that nM = nM' for some T with [r] = [o].
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4.2 The Insertion Lemma

In the acyclic case, the existence of a cut-off is characterized by the existence of
solutions to the marking equation QZ, and Z”. Intuitively, in the general case
we replace the existence of solutions ‘over ng by the conditions of the Scaling
Lemma, and the existence of solutions over ZT by the Insertion Lemma:

Lemma 5 (Insertion Lemma). Let M, M’ L,L’ be markings of N satisfying
M Z M’ for some o € T* and L' = L + Ay for some y € ZT such that
Iyl C [o]. Then uM + L = uM’ + L for u = |ly||(| @ ||nw + nw + 1) , where
w is the weight of N, and n is the number of places in *[o].

The idea of the proof is a follows: In a first stage, we asynchronously execute
multiple “copies” of the firing sequence ¢ from multiple “copies” of the marking
M, until we reach a marking at which all places of *[o] contain a sufficiently
large number of tokens. At this point we temporarily interrupt the executions
of the copies of o to insert a firing sequence with Parikh mapping |y o +y.
The net effect of this sequence is to transfer some copies of M to M’, leaving
the other copies untouched, and exactly one copy of L to L’. In the third stage,
we resume the interrupted executions of the copies of o, which completes the
transfer of the remaining copies of M to M’ .

Proof. Let x be the Parikh image of o, i.e., x = o. Since M % M’, by the
marking equation we have M’ = M + Ax

First stage: Let A\, = ||z||, Ay = |ly|| and p = A\y(Aynw +nw + 1). Let 0 :=
1,79, ..., r5 and let M =: My — My = My ... My_1 = My, := M. Notice
that for each place p € *[o], there exists a marking M;, € {My,..., My_1} such
that M;, (p) > 0.

Since each of the markings in {M;,},ce(, can be obtained from M by firing
a (suitable) prefix of o, it is easy to see that from the marking uM + L =
AyM + L+ (Mg Aynw+ A\ynw)M we can reach the marking First := A\, M + L +
> peco] (AzAyw + Ayw)M;, . This completes our first stage.

Second stage - Insert: Since [y] C [o], if y(¢) # 0 then x(¢) # 0. Since
x(t) > 0 for every transition, it now follows that (A\,x + y)(t) > 0 for every
transition ¢ and (A,x + y)(t) > 0 precisely for those transitions in [o].

Let £ be any firing sequence such that § = A\,x +y. Notice that for every
place p € *[o], First(p) > A A\, w+Ayw > |[(Ayx+y)| - w. By an easy induction

on |||, it follows that that First %, Second for some marking Second. By the
marking equation, it follows that Second = A\,M’ + L' + Zpe'[[a]]()‘ﬂc)‘yw +
Ayw)M;,. This completes our second stage.

Third stage: Notice that for each place p € *[o], by construction of M; , there
is a firing sequence which takes the marking M; to the marking M’. It then
follows that there is a firing sequence which takes the marking Second to the
marking Ay M’ + L' + 3 copo(Aadyw + Ayw)M" = pM' + L'. This completes
our third stage and also completes the desired firing sequence from uM + L to
uM’ + L.
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5 Polynomial time algorithm for the general case

Let (N, M, M’) be a net system with N' = (P, T, Pre, Post), such that A is its
incidence matrix. As in Section 3, we first characterize the Petri net systems
that admit a cut-off, and then provide a polynomial time algorithm.

5.1 Characterizing systems with cut-offs

We generalize the characterization of Theorem 1 for acyclic Petri net systems to
general systems.

Theorem 4. A Petri net system (N, M, M') admits a cut-off iff there exists
some rational firing sequence o such that M % M’ and the marking equation
has a solution'y € Z* such that [y] C [o].

Proof. (=): Assume (N, M, M') admits a cut-off. Hence there exists B € N such
that for all n > B we have nM = nM’. Similar to the proof of theorem 1, we
can show that there exist n € N and firing sequences 7, 7/ such that nM = nM’,
(n+1)M 75 (n+1)M’ and ['] C [7].

Let 7 = tytg - - - tg. Construct the rational firing sequence o :=t1/nty/n ---
tr/n. From the fact that nM = nM’, we can easily conclude by induction on k
that M % M’. Further, by the marking equation we have nM’ = nM+A7 and

— =
(n+1)M' = (n+1)M+A7r' . Lety = 7/ —= 7. Then y € Z” and M’ = M + Ay.
Further, since [7'] C [7] = [o], we have [y] C [o].

(«<): Assume there exists a rational firing sequence o and a vector y € ZT such
that [y] C [o], M % M'" and M' = M+ Ay. Let s = |N|(log || M || +1og || M']]).
It is well known that if a system of linear equations over the integers is feasible,
then there is a solution which can be described using a number of bits which is
polynomial in the size of the input (see e.g. [20]). Hence, we can assume that
|ly|l can be described using s®() bits.

By Lemma 4 there exists n (which can be described using s®*) bits) and a
firing sequence 7 with [7] = [o] such that nM = nM’. Hence knM = knM’ is
also possible for any k € N. By Lemma 5, there exists u (which can once again
be described using s bits) such that pnM + M 5 unM’ + M’ is possible.
By Lemma 1 the system (N, M, M") admits a cut-off with a polynomial number
of bits in s.

Notice that we have actually proved that if a net system admits a cut-off
then it admits a cut-off with a polynomial number of bits in its size. Since the
cut-off problem for a rendez-vous protocol P can be reduced to a cut-off problem
for the Petri net system (Np, (init§, {fin§), it follows that,

Corollary 1. If the system (N, M, M') admits a cut-off then it admits a cut-
off with a polynomial number of bits in |N|(log || M| + log ||M'||). Hence, if a
rendez-vous protocol P admits a cut-off then it admits a cut-off with a polynomial
number of bits in |P|.
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5.2 Polynomial time algorithm

We use the characterization given in the previous section to provide a polynomial
time algorithm for the cut-off problem. The following lemma, which was proved
in [14] and whose proof is given in the appendix, enables us to find a firing
sequence between two markings with maximum support.

Lemma 6. [1/] Among all the rational firing sequences o such that M %
M, there is one with mazimum support. Moreover, the support of such a firing
sequence can be found in polynomial time.

We now have all the ingredients to prove the existence of a polynomial time
algorithm.

Theorem 5. The cut-off problem for net systems can be solved in polynomial
time.

Proof. First, we check that there is a rational firing sequence o with M %)
M’, which can be done in polynomial time by ([14], Proposition 27). If such a
sequence does not exist, by Theorem 4 the given net system does not admit a
cut-off.

Suppose such a sequence exists. By Lemma 6 we can find in polynomial time,
the maximum support S of all the firing sequences 7 such that M % M’. We
now check in polynomial time if the marking equation has a solution y over ZT
such that y(¢) = 0 for every t ¢ S. By Theorem 4 such a solution exists iff the
net system admits a cut-off.

This immediately proves that the cut-off problem for rendez-vous protocols
is also in polynomial time. By an easy logspace reduction from the Circuit Value
Problem [21], we prove that

Lemma 7. The cut-off problem for rendez-vous protocols is P-hard.

Clearly, this also proves that the cut-off problem for Petri nets is P-hard.

6 Symmetric rendez-vous protocols

In [17] Horn and Sangnier introduce symmetric rendez-vous protocols, where
sending and receiving a message at each state has the same effect, and show
that the cut-off problem is in NP. We improve on their result and shown that it
is in NC.

Recall that NC is the set of problems in P that can be solved in polyloga-
rithmic parallel time, i.e., problems which can be solved by a uniform family of
circuits with polylogarithmic depth and polynomial number of gates. Two well-
known problems which lie in NC are graph reachability and feasibility of linear
equations over the finite field Fy of size 2 [27,23]. We proceed to formally define
symmetric protocols and state our results.
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Definition 3. A rendez-vous protocol P = (Q, X, init, fin, R) is symmetric, iff
its set of rules is symmetric under swapping la and ?a for each a € X, i.e., for
each a € X, we have (¢,'a,q") € R iff (¢,7a,¢') € R.

Horn and Sangnier show that, because of their symmetric nature, there is a
very easy characterization for cut-off admitting symmetric protocols.

Proposition 3. ([17], Lemma 18) A symmetric protocol P admits a cut-off iff
there exists an even number e and an odd number o such that C¥,,, 5 Cfin and
fnit ; Cjoin
From a symmetric protocol P, we can derive a graph G(P) where the vertices
are the states and there is an edge between ¢ and ¢’ iff there exists a € X such
that (¢, a,q’) € R. The following proposition is immediate from the definition of
symmetric protocols:

Proposition 4. Let P be a symmetric protocol. There exists an even number
e such that C%,;, — C%, iff there is a path from init to fin in the graph G(P).

init

Proof. The left to right implication is obvious. For the other side, suppose there
is a path init, 1, g2, . . ., ¢m—1, fin in the graph G(P). Then notice that {2-init§ —
(2-¢15—=12-¢5 - = {2 -gm-15 — (2§ is a valid run of the protocol.

Since graph reachability is in NC , this takes care of the “even” case from
Proposition 3. Hence, we only need to take care of the “odd” case from Propo-
sition 3.

Fix a symmetric protocol P for the rest of the section. As a first step, for
each state ¢ € Q, we compute if there is a path from init to ¢ and if there is
a path from ¢ to fin in the graph G(P). Since graph reachability is in NC this
computation can be carried out in NC by parallely running graph reachability
for each ¢ € Q. If such paths exist for a state ¢ then we call ¢ a good state,
and otherwise a bad state. The following proposition easily follows from the
symmetric nature of P:

Proposition 5. If ¢ € Q is a good state, then {2 -init§ = {2-q§ and {2-q5 =
(2 fin§.

Similar to the general case of rendez-vous protocols, given a symmetric pro-
tocol P we can construct a Petri net ANp whose places are the states of P and
which faithfully represents the reachability relation of configurations of P. Ob-
serve that this construction can be carried out in parallel over all the states in
Q@ and over all pairs of rules in R. Let N' = (P, T, Pre, Post) be the Petri net
that we construct out of the symmetric protocol P and let A be its incidence
matrix. We now write the marking equation for A/ as follows: We introduce a
variable v[t] for each transition ¢ € T and we construct an equation system Egq
enforcing the following three conditions:

— v[t] = 0 for every ¢ € T such that “¢ Ut® contains a bad state.
By definition of a bad state, such transitions will never be fired on any run
from an initial to a final configuration and so our requirement is safe.
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= Y er Alg,t] - v[t] = 0 for each ¢ ¢ {init, fin}.
Notice that the net-effect of any run from an initial to a final configuration
on any state not in {int, fin} is 0 and hence this condition is valid as well.

= Yer Alinit, t] - v[t] = =1 and ), . Alfin, t] - v[t] = 1.

It is clear that the construction of Eq can be carried out in parallel over each
q € @ and each t € T. Finally, we solve Fq over arithmetic modulo 2, i.e., we
solve Eq over the field Fy which as mentioned before can be done in NC. We
have:

Lemma 8. There exists an odd number o such that C%,;, ~ Chy, ff the equation
system Eq has a solution over Fs.

Proof. (Sketch.) The left to right implication is true because of taking modulo 2
on both sides of the marking equation. For the other side, we use an idea similar
to Lemma 5. Let x be a solution to Fq over Fy. Using Proposition 5 we first
populate all the good states of @ with enough processes such that all the good
states except init have an even number of processes. Then, we fire exactly once,
all the transitions ¢ such that x[t] = 1. Since x satisfies Fq, we can now argue
that in the resulting configuration, the number of processes at each bad state is
0 and the number of processes in each good state except fin is even. Hence, we
can once again use Proposition 5 to conclude that we can move all the processes
which are not at fin to the final state fin.

Theorem 6. The problem of deciding whether a symmetric protocol admits a
cut-off is in NC.

Proof. By Proposition 3 it suffices to find an even number e and an odd number
o such that C¢,,, = Cf, and C7;, 5 C%,,- By Proposition 4 the former can be
done in NC. By Lemma 8 and by the fact that the equation system Eq can be
constructed and solved in NC, it follows that the latter can also be done in NC.

7 Symmetric protocols with leaders

In this section, we extend symmetric rendez-vous protocols by adding a special
process called leader. We state the cut-off problem for such protocols and prove
that it is NP-complete.

Definition 4. A symmetric leader protocol is a pair of symmetric protocols P =
(PL,PF) where PL = (QF, X, init™, fin™, R*) is the leader protocol and PF =
(QF, 2, init", fin™, RF) is the follower protocol where Q¥ N QF = .

A configuration of a symmetric leader protocol P is a multiset over Q¥ U QY
such that > 5. C(gq) = 1. This corresponds to the intuition that exactly one

process can execute the leader protocol. For each n € N, let CZ ., (resp. C}i‘n)

denote the initial (resp. final) configuration of P given by C?, (init’) =1 (resp.

C’ﬁn(ﬁnL) =1) and O, (init") = n (resp. C’gn(ﬁnF) =n). We say that C' = C’

init
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if there exists (p,!a,p'), (¢,%a,¢') € R®UR", C > {p,q§ and C' = C — {p,¢§ +
(P, q'S. Since we allow at most one process to execute the leader protocol, given
a configuration C, we can let lead(C') denote the unique state ¢ € Q¥ such that

C(q) > 0.

Definition 5. The cut-off problem for symmetric leader protocols is the follow-
mng.

Input: A symmetric leader protocol P = (P, PF).
Output: Is there B € N such that for alln > B, Cp, = Ch.

init
We know the following fact regarding symmetric leader protocols.

Proposition 6. ([17], Lemma 18) A symmetric leader protocol admits a cut-off
iff there exists an even number e and an odd number o such that CS,;, = Chn

ine
and C° ., = cs,,.

init

The main theorem of this section is

Theorem 7. The cut-off problem for symmetric leader protocols is NP-complete

7.1 A non-deterministic polynomial time algorithm

Let P = (PE, PF) be a symmetric leader protocol with PX = (QF, ¥, init”, fin”,
RYY and PP = (QF, X, init™, fin®', RT"). Similar to the previous section, from
PF we can construct a graph G(PF') where the vertices are given by the states
QT and the edges are given by the rules in RF. In G(PF), we can clearly remove
all vertices which are not reachable from the state init! and which do not have
a path to ﬁnF . In the sequel, we will assume that such vertices do not exist in
G(PH).

Similar to the general case, we will construct a Petri net Np from the given
symmetric leader protocol P. However, the construction is made slightly com-
plicated due to the presence of a leader.

From P = (PL,PF), we construct a Petri net N' = (P, T, Pre, Post) as
follows: Let P be Q¥ U QF'. For each a € X and r = (¢,a,s),r’ = (¢, ?a,s') €
RYURY such that at most one of r and r' belongs to R”, we will have a transition
tr, € T in N such that

— Pre[p,t] =0 for every p ¢ {q,¢'}, Post|p,t] =0 for every p ¢ {s,s'}
— If ¢ = ¢’ then Pre[q,t] = —2, otherwise Pre[q,t] = Pre[¢’,t] = —1
— If s = ¢’ then Post[s,t] = 2, otherwise Post[s,t] = Post[s',t] = 1.

)

Transitions t,,- in which exactly one of r, 7’ is in RE will be called leader
transitions and transitions in which both of r, " are in R will be called follower-
only transitions. Notice that if ¢ is a leader transition, then there is a unique place
p € *tNQF and a unique place p € t* N QF. These places will be denoted by
t.from and t.to respectively.

As usual, we let A denote the incidence matrix of the constructed net N.
The following proposition is obvious from the construction of the net N
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Proposition 7. For two configurations C' and C', we have that C = C' in the
protocol P iff C = C in the net N

Because P is symmetric we have the following fact, which is easy to verify.
Proposition 8. If g € QF, then {2 - init? § 5 12-¢§ 5 (2 fin"'§

For any vector x € NT', we define lead(x) to be the set of all leader transitions
such that x[t] > 0. The graph of the vector x, denoted by G(x) is defined as
follows: The set of vertices is the set {t.from : t € lead(x)} U{t.to : t € lead(x)}.
The set of edges is the set {(t.from,t.to) : t € lead(x)}. Further, for any two
vectors x,y € N7 and a transition t € T, we say that x = y[t--] iff x[t] = y[t] - 1
and x[t'] = y[t'] for all ¢/ # t.

Definition 6. Let C be a configuration and let x € NT. We say that the pair
(C,x) is compatible if C + Ax > 0 and every vertex in G(x) is reachable from
lead(C).

The following lemma states that as long as there are enough followers in
every state, it is possible for the leader to come up with a firing sequence from
a compatible pair.

Lemma 9. Suppose (C,x) is a compatible pair such that C(q) > 2||x|| for
every ¢ € QF. Then there is a configuration D and a firing sequence & such that

C’£>D and?:x.

Proof. (Sketch.) We prove by induction on ||x||. If x[t] > 0 for some follower-only
transition, then it is easy to verify that if we let C’ be such that C % C’ and x’
be x[t--], then (C’,x’) is compatible and C(q) > 2||x|| for every ¢ € QF.

Suppose x[t] > 0 for some leader transition. Let p = lead(C). If p belongs
to some cycle S = p,r1,p1,72, D2, ..., Dk, Tk+1, P i the graph G(x), then we let
C % " and x’ = x[t--]. It is easy to verify that C’ + Ax’ > 0, C'(q) > 2||x/||
for every q € QF and lead(C’) = p;. Any path P in G(x) from p to some vertex
s either goes through p; or we can use the cycle S to traverse from p; to p first
and then use P to reach s. This gives a path from p; to every vertex s in G(x').

If p does not belong to any cycle in G(x), then using the fact that C+.Ax > 0,
we can show that there is exactly one out-going edge ¢ from p in G(x). We then
let C' % €’ and x' = x[t--]. Since any path in G(x) from p has to necessarily
use this edge ¢, it follows that in G(x’) there is a path from t.to = lead(C") to
every vertex.

Lemma 10. Let par € {0,1}. There exists k € N such that CF,, = C}Em and
k = par (mod 2) iff there exists n € N, x € NT such that n = par (mod 2),
(Cinit»x) is compatible and CF, = Cf;, + Ax.

wnit)
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Proof. (Sketch.) The left to right implication is easy and follows from the mark-
ing equation along with induction on the number of leader transitions in the
run. For the other side, we use an idea similar to Lemma 5. Let (C7,;,,x) be the
given compatible pair. We first use Proposition 8 to populate all the states of
QF with enough processes such that all the states of QF except init!” have an
even number of processes. Then we use Lemma 9 to construct a firing sequence
& which can be fired from C7,,, and such that ? = x. By means of the marking
equation, we then argue that in the resulting configuration, the leader is in the
final state, n followers are in the state fin” and every other follower state has
an even number of followers. Once again, using Proposition 8 we can now move
all the processes which are not at fin’" to the final state fin®".

Lemma 11. Given a symmetric leader protocol, checking whether a cut-off ex-
ists can be done in NP.

Proof. By Proposition 6 it suffices to find an even number e and an odd number
o such that C¢ ., = Cf,, and CF 5 C#%,,- Suppose we want to check that there

init inut
exists 2k € N such that C2F, = Cfi’; We first non-deterministically guess a set
of leader transitions S = {t1,...,¢;} and check that for each ¢ € S, we can reach
t.from and t.to from init" using only the transitions in S.

Once we have guessed all this, we write a polynomially sized integer linear
program as follows: We let v denote |T'| variables, one for each transition in T°
and we let n be another variable, with all these variables ranging over N. We then
enforce the following conditions: Cf = C27 + Av and v[t] =0 < t ¢ S
and solve the resulting linear program, which we can do in non-deterministic
polynomial time [26]. If there exists a solution, then we accept. Otherwise, we
reject.

By Lemma 10 and by the definition of compatibility, it follows that at least

one of our guesses gets accepted iff there exists 2k € N such that C2%, 5 C% .

wme

Similarly we can check if exists 20 + 1 € N such that C2H1 % C’Qi;“l.

init
By a reduction from 3-SAT, we prove that

Lemma 12. The cut-off problem for symmetric leader protocols is NP-hard.
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Abstract. Knaster-Tarski’s theorem, characterising the greatest fix-
point of a monotone function over a complete lattice as the largest post-
fixpoint, naturally leads to the so-called coinduction proof principle for
showing that some element is below the greatest fixpoint (e.g., for provid-
ing bisimilarity witnesses). The dual principle, used for showing that an
element is above the least fixpoint, is related to inductive invariants. In
this paper we provide proof rules which are similar in spirit but for show-
ing that an element is above the greatest fixpoint or, dually, below the
least fixpoint. The theory is developed for non-expansive monotone func-
tions on suitable lattices of the form MY, where Y is a finite set and M
an MV-algebra, and it is based on the construction of (finitary) approx-
imations of the original functions. We show that our theory applies to a
wide range of examples, including termination probabilities, behavioural
distances for probabilistic automata and bisimilarity. Moreover it allows
us to determine original algorithms for solving simple stochastic games.

1 Introduction

Fixpoints are ubiquitous in computer science as they allow to provide a meaning
to inductive and coinductive definitions (see, e.g., [26,23]). A monotone function
f : L — L over a complete lattice (L,C), by Knaster-Tarski’s theorem [28],
admits a least fixpoint pf and greatest fixpoint v f which are characterised as the
least pre-fixpoint and the greatest post-fixpoint, respectively. This immediately
gives well-known proof principles for showing that a lattice element [ € L is
below v f or above pf

1T f(l) f)E1

IEvf pfEl
On the other hand, showing that a given element [ is above v f or below pf
is more difficult. One can think of using the characterisation of least and largest
fixpoints via Kleene’s iteration. E.g., the largest fixpoint is the least element
of the (possibly transfinite) descending chain obtained by iterating f from T.
Then showing that f*(T) C [ for some 7, one concludes that vf C I. This proof
principle is related to the notion of ranking functions. However, this is a less
satisfying notion of witness since f has to be applied 4 times, and this can be
inefficient or unfeasible when ¢ is an infinite ordinal.
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The aim of this paper is to present an alternative proof rule for this purpose
for functions over lattices of the form L = MY where Y is a finite set and M
is an MV-chain, i.e., a totally ordered complete lattice endowed with suitable
operations of sum and complement. This allows us to capture several exam-
ples, ranging from ordinary relations, for dealing with bisimilarity, behavioural
metrics, termination probabilities and simple stochastic games.

Assume f : MY — MY monotone and consider the question of proving that
some fixpoint a : Y — M is the largest fixpoint v f. The idea is to show that
there is no “slack” or “wiggle room” in the fixpoint a that would allow us to
further increase it. This is done by associating with every a : Y — M a function
f# on 2Y whose greatest fixpoint gives us the elements of ¥ where we have
a potential for increasing a by adding a constant. If no such potential exists,
i.e. vf# is empty, we conclude that a is vf. A similar function fg (specifying
decrease instead of increase) exists for the case of least fixpoints. Note that the
premise is v f;ﬁ = (), i.e. the witness remains coinductive. The proof rules are:

f@=a  viF=0 fla)=a  vfp=0
vf=a uf=a

For applying the rule we compute a greatest fixpoint on 2, which is finite,
instead of working on the potentially infinite M. The rule does not work for
all monotone functions f : MY — MY, but we show that whenever f is non-
expansive the rule is valid. Actually, it is not only sound, but also reversible, i.e.,
if a = vf then vf# = (), providing an if-and-only-if characterisation.

Quite interestingly, under the same assumptions on f, using a restricted
function f¥, the rule can be used, more generally, when a is just a pre-fixpoint
(f(a) C a) and it allows to conclude that vf C a. A dual result holds for post-
fizpoints in the case of least fixpoints.

f@Ea wvfi=0 aLfla) wvfi=10
vfEa atpf

As already mentioned, the theory above applies to many interesting scenarios:
witnesses for non-bisimilarity, algorithms for simple stochastic games [11] and
lower bounds for termination probabilities and behavioural metrics in the setting
of probabilistic systems [1] and probabilistic automata [2]. In particular we were
inspired by, and generalise, the self-closed relations of Fu [16], also used in [2].

Motivating Example. Consider a Markov chain (S, T, n) with a finite set of states
S, where T' C S are the terminal states and every state s € S\T is associated
with a probability distribution 7(s) € D(S).? Intuitively, n(s)(s’) denotes the
probability of state s choosing s’ as its successor. Assume that, given a fixed
state s € S, we want to determine the termination probability of s, i.e. the
probability of reaching any terminal state from s. As a concrete example, take
the Markov chain given in Fig. 1, where u is the only terminal state.

3 D(S) is the set of all maps p: .S — [0,1] such that Y oeesP(s) =1
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T :[0,1]° = [0,1)°

1 ifveT
T(t)(s) = { S n(s)(s") - t(s') otherwise @C(@

s1es 0/1 1 0/1 11 1/1

Fig. 1: Function 7 (left) and a Markov chain with two fixpoints of 7 (right)

The termination probability arises as the least fixpoint of a function T defined
as in Fig. 1. The values of p7 are indicated in green (left value).

Now consider the function ¢ assigning to each state the termination probabil-
ity written in red (right value). It is not difficult to see that ¢ is another fixpoint
of T, in which states y and z convince each other incorrectly that they terminate
with probability 1, resulting in a vicious cycle that gives “wrong” results. We
want to show that u7 # t without knowing p7. Our idea is to compute the set
of states that still has some “wiggle room”, i.e., those states which could reduce
their termination probability by ¢ if all their successors did the same. This def-
inition has a coinductive flavour and it can be computed as a greatest fixpoint
on the finite powerset 2° of states, instead of on the infinite lattice S0

We hence consider a function Tt . 281" oIS , dependent on ¢, defined as
follows. Let [S]" be the set of all states s where t(s) > 0, i.e., a reduction is in
principle possible. Then a state s € [S]" is in T/ (S') iff s ¢ T and for all &' for
which 7(s)(s") > 0 it holds that s’ € S’, i.e. all successors of s are in S’.

The greatest fixpoint of Té is {y, z}. The fact that it is not empty means that
there is some “wiggle room”, i.e., the value of ¢ can be reduced on the elements
{y, z} and thus ¢t cannot be the least fixpoint of f. Moreover, the intuition that
t can be improved on {y, z} can be made precise, leading to the possibility of
performing the improvement and search for the least fixpoint from there.

Contributions. In the paper we formalise the theory outlined above, showing
that the proof rules work for non-expansive monotone functions f on lattices of
the form MY, where Y is a finite set and M an MV-algebra (§3 and §4). Addi-
tionally, given a decomposition of f we show how to obtain the corresponding
approximation compositionally (§5). Then, in order to show that our approach
covers a wide range of examples and allows us to derive original algorithms, we
discuss various applications: termination probability, behavioural distances for
probabilistic automata and bisimilarity (§6) and simple stochastic games (§7).
Proofs and further material can be found in the full version of the paper [5].

2 Lattices and MV-Algebras

In this section, we review some basic notions used in the paper.
A preordered or partially ordered set (P,C) is often denoted simply as P,
omitting the order relation. Given z,y € P, with « C y, we denote by [z,y] the
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interval {z € P |z C z C y}. The join and the meet of a subset X C P (if they
exist) are denoted | | X and [] X, respectively.

A complete lattice is a partially ordered set (L,C) such that each subset
X C L admits a join | | X and a meet [ ] X. A complete lattice (L, C) always has
a least element | = | |0 and a greatest element T =[]0.

A function f : L — L is monotone if for all [,I’ € L, if | T 1’ then f(I) C
f(I"). By Knaster-Tarski’s theorem [28, Thm. 1], any monotone function on a
complete lattice has a least and a greatest fixpoint, denoted respectively uf
and v f, characterised as the meet of all pre-fixpoints respectively the join of all
post-fixpoints: uf =[{l | f(I) T} and vf = | [{l | I C f(1)}.

Let (C,C), (A, <) be complete lattices. A Galois connection is a pair of
monotone functions («, ) such that « : C' — A, v: A — C and for all a € A
and ¢ € C: a(c) < a <= ¢ C y(a). Equivalently, for all « € A and ¢ € C,
(i) ¢ C vy(a(e)) and (ii) a(y(a)) < a. In this case we will write (a,7) : C — A.
For a Galois connection (a,7) : C — A, the function « is called the left (or
lower) adjoint and v the right (or upper) adjoint.

Galois connections are at the heart of abstract interpretation [13,14]. In par-
ticular, when (o, ) is a Galois connection, given f€:C — C and f4: A — A,
monotone functions, if f€ o~y C vo f4, then vf¢ C y(vf4). If equality holds,
ie., f€ oy =0 fA, then greatest fixpoints are preserved along the connection,
ie, vf¢ =~wfA).

Given a set Y and a complete lattice L, the set of functions LY = {f | f :
Y — L}, endowed with pointwise order, i.e., for a,b € LY, a C b if a(y) C b(y)
for all y € Y, is a complete lattice.

In the paper we will mostly work with lattices of the kind MY where M is a
special kind of lattice with a rich algebraic structure, i.e. an MV-algebra [21].

Definition 1 (MV-algebra). An MV-algebra is a tuple M = (M,®,0,(-))
where (M, ®,0) is a commutative monoid and (-) : M — M maps each element to
its complement, such that for allz,y € M (1)T =x; (2) 2®0=0; (3) (TDy)D
y=Fsdz) s

We denote 1 = 0, multiplication x @y = T &Y and subtraction Oy = x X7.

Definition 2 (natural order). Let M = (M, ®,0,(-)) be an MV-algebra. The
natural order on M is defined, for x,y € M, by x C y if x & z = y for some
z € M. When C is total M is called an MV-chain.

The natural order gives an MV-algebra a lattice structure where L = 0,
T=LaUy=(zoy dyand zMNy =TUY = 2 (TDy). We call the
MV-algebra complete, if it is a complete lattice, which is not true in general,
e (0,110 Q, <).

Ezample 3. A prototypical example of an MV-algebra is ([0,1],4,0, (-)) where
x @y =min{z+y,1} and T =1 — x for x,y € [0,1]. This means that z @ y =
max{z +y — 1,0} and =z © y = max{0,z — y} (truncated subtraction). The
operators @ and ® are also known as strong disjunction and conjunction in
Lukasiewicz logic [22]. The natural order is < (less or equal) on the reals.



66 P. Baldan et al.

Another example is ({0,...,k},®,0,(:)) where n ® m = min{n + m, k} and
n=k—nforn,m e {0,...,k}. Both MV-algebras are complete and MV-chains.

Boolean algebras (with disjunction and complement) also form MV-algebras
that are complete, but in general not MV-chains.

MV-algebras are the algebraic semantics of Lukasiewicz logic. They can be
shown to correspond to intervals of the kind [0, u] in suitable groups, i.e., abelian
lattice-ordered groups with a strong unit u [21].

3 Non-expansive Functions and Their Approximations

As mentioned in the introduction, our interest is for fixpoints of monotone func-
tions f : MY — MY, where M is an MV-chain and Y is a finite set. We will
see that for non-expansive functions we can over-approximate the sets of points
in which a given a € MY can be increased in a way that is preserved by the
application of f. This will be the core of the proof rules outlined earlier.

Non-expansive Functions on MV-Algebras. For defining non-expansiveness it is
convenient to introduce a norm.

Definition 4 (norm). Let M be an MV-chain and let Y be a finite set. Given
a € MY we define its norm as |a| = max{a(y) |y € Y}.

Given a finite set Y we extend @ and @ to MY pointwise. Given Y’ C Y and
d € M, we write dy for the function defined by dy- (y) =0 if y € Y and oy (y) =
0, otherwise. Whenever this does not generate confusion, we write J instead of
Sy. It can be seen that |-| has the properties of a norm, i.e., for all a,b € MY
and § € M, it holds that (1) |a ® b| C |a| & [b], (2) [§ ® a| = 6 ® |a| and and
|a] = 0 implies that a is the constant 0. Moreover, it is clearly monotonic, i.e.,
if a C b then |a] C |b].

We next introduce non-expansiveness. Despite the fact that we will finally be
interested in endo-functions f : MY — MY, in order to allow for a compositional
reasoning we work with functions where domain and codomain can be different.

Definition 5 (non-expansiveness). Let f : MY — MZ be a function, where
M is an MV-chain and Y, Z are finite sets. We say that it is non-expansive if
for all a,b € MY it holds | f(b) © f(a)| C [b© al.

Note that (a,b) — |a ©b| is the supremum lifting of a directed version of
Chang’s distance [21]. Tt is easy to see that all non-expansive functions on MV-
chains are monotone.

Approzimating the Propagation of Increases. Let f: MY — M?Z be a monotone
function and take a,b € MY with a C b. We are interested in the difference
b(y) © a(y) for some y € Y and on how the application of f “propagates” this
increase. The reason is that, understanding that no increase can be propagated
will be crucial to establish when a fixpoint of a non-expansive function f is
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actually the largest one, and, more generally, when a (pre-)fixpoint of f is above
the largest fixpoint.

In order to formalise the above intuition, we rely on tools from abstract inter-
pretation. In particular, the following pair of functions, which, under a suitable
condition, form a Galois connection, will play a major role. The left adjoint a s
takes as input a set Y’ and, for y € Y”, it increases the values a(y) by d, while
the right adjoint v, s takes as input a function b € MY, b € [a,a ® ] and checks
for which parameters y € Y the value b(y) exceeds a(y) by 0.

We also define [Y],, the subset of elements in Y where a(y) is not 1 and thus
there is a potential to increase, and ¢,, which gives us the minimal such increase.

Definition 6 (functions to sets, and vice versa). Let M be an MV-algebra
and let Y be a finite set. Define the set [Y], = {y € Y | a(y) # 1} and 6, =
min{a(y) | y € [Y]a} with min( = 1.

For 0 C 6 € M we consider the functions ags = 2¥e = [a,a @ 6] and
Ya,5 ° @, a B 6] — 2le  defined, for Y’ € 2¥1e and b € [a,a @ 6], by

aas(Y)=a®dy  va5(0) ={y € [Y]a|bly) ©aly) 34}

When ¢ is sufficiently small, the pair (o s,7a,6) is a Galois connection.
Qg 5

Lemma 7 (Galois connection). Let M be an —
MV-algebra and Y be a finite set. For 0 # 6 C J,, oYl [a,a & 0]
the pair (Qq.5,%Va,5) 2¥la [a,a @ 0] is a Galois ~_
connection. Ya,s

Whenever f is non-expansive, it is easy to see that it restricts to a function
fila,a® 0] — [f(a), f(a) @ 4] for all 6 € M.

As mentioned before, a crucial result shows that for all non-expansive func-
tions, under the assumption that Y, Z are finite and the order on M is total,
we can suitably approximate the propagation of increases. In order to state this
result, a useful tool is a notion of approximation of a function.

Definition 8 ((d,a)-approximation). Let M be an MV-chain, let Y, Z be
finite sets and let f: MY — MZ be a non-expansive function. For a € MY and
any § € M we define ff(s 2V 5 2l715@) g ffé = Yf(a),6 © f © Qa,5-

Given Y’ C [Y],, its image fi;(Y’) C [Z] f(q) is the set of points z € [Z] (4
such that 0 C f(a @ dy+)(2) © f(a)(z), i-e., the points to which f propagates an
increase of the function a with value ¢ on the subset Y.

We first show that ffé is antitone in the parameter §, a non-trivial result.

Lemma 9 (anti-monotonicity). Let M be an MV-chain, let Y, Z be finite
sets, let f : MY — M? be a non-expansive function and let a € MY . For
0,0 € M, if 0 C & then f¥, C f7,.

Since fjé increases when ¢ decreases and there are finitely many such func-
tions, there must be a value ¢/ such that all functions ffé for 0 C 6 C f are
equal. This function is denoted by f7#* and is called the a-approzimation of f.
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We next show that indeed, for all non-expansive functions, the a-approxima-
tion properly approximates the propagation of increases.

Theorem 10 (approximation of non-expansive functions). Let M be a
complete MV-chain, let Y,Z be finite sets and let f : MY — MZ be a non-
expansive function. Then there exists 1} € M, the largest value below or equal to
da such that ffé = fjfé, for all0C 6,6 T of.

. . # . o
We deno.te tf%zs function by fI and call it the la,a @ d] Ya.s oYa
a-approximation of f. Then for all 0 C § € M:

fl = lﬁ?

a. V@50 f C [ 0 vas o
b for 0 € 0a: 0T o] iff vy 50 f = fF onag (@010 O N5 2T

Note that if Y = Z and «a is a fixpoint of f, i.e., a = f(a), condition (a) above
corresponds exactly to soundness in the sense of abstract interpretation [13],
while condition (b) corresponds to (v-)completeness (see also §2).

4 Proof Rules

In this section we formalise the proof technique outlined in the introduction for
showing that a fixpoint is the largest and, more generally, for checking over-
approximations of greatest fixpoints of non-expansive functions.

Consider a monotone function f : MY — MY for some finite set Y. We
first focus on the problem of establishing whether some given fixpoint a of f
coincides with vf (without explicitly knowing vf), and, in case it does not,
finding an “improvement”, i.e., a post-fixpoint of f, larger than a. Observe that
when a is a fixpoint, [Y], = [Y]f(,) and thus the a-approximation of f (Thm. 10)
is an endofunction f# : [Y], — [Y],. We have the following result, which relies
on the fact that due to Thm. 10 7, s preserves fixpoints (of f and f7).

Theorem 11 (soundness and completeness for fixpoints). Let M be a
complete MV-chain, Y a finite set and f : MY — MY be a non-expansive func-
tion. Let a € MY be a fizpoint of f. Then vf¥ =0 if and only if a = v f.

Whenever a is a fixpoint, but not yet the largest fixpoint of f, we can increase
it and obtain a post-fixpoint.

Lemma 12. Let M be a complete MV-chain, f : MY — MY a non-expansive
function, a € M a fizxpoint of f, and let fF be the corresponding a-approzimation
and ¢f as in Thm. 10. Then o, s(vf#)=a® (Lé)yf# is a post-fixpoint of f.

Using these results one can perform an alternative fixpoint iteration where we
iterate to the largest fixpoint from below: start with a post-fixpoint ag C f(ao)
(which is clearly below vf) and obtain, by (possibly transfinite) iteration, an
ascending chain that converges to a, the least fixpoint above ag. Now check
with Thm. 11 whether Y’ = vf# = (). If yes, we have reached vf = a. If not,
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a, f(Y)=a® (¢f)y+ is again a post-fixpoint (cf. Lem. 12) and we continue this
procedure until — for some ordinal — we reach the largest fixpoint v f, for which
we have ufi = 0.

Interestingly, the soundness result in Thm. 11 can be generalised to the case
in which a is a pre-fixpoint instead of a fixpoint. In this case, the a-approximation
for a function f : MY — MY is a function f# : [Y], — [Y] () where domain and
codomain are different, hence it would not be meaningful to look for fixpoints.
However, as explained below, it can be restricted to an endofunction.

Theorem 13 (soundness for pre-fixpoints). Let M be a complete MV-chain,
Y a finite set and f : MY — MY be a non-expansive function. Given a pre-
fizpoint a € MY of f, let [Y]ozy) = {y € [Y]a | aly) = f(a)(y)}. Let us define
fi i Wazs) = V=g as fa(Y) = fEY) O [Y]azp(a), where [ 20 —
21s) s the a-approzimation of f. If vfi =0 thenvf Ca.

Roughly, the intuition for the above result is the following: the value of f(a)
on some y might or might not depend “circularly” on the value of a on y itself.
In a purely inductive setting, without such circular dependencies, uf = vf and
hence a being a pre-fixpoint means that we over-approximate v f. However, we
might have vicious cycles, as explained in the introduction, that destroy the
over-approximation since the values are too low. Now, since we restrict to non-
expansive functions, it must be the case that there is a cycle, such that all
elements on this cycle are points where a and f(a) coincide. It is hence sufficient
to check whether a given pre-fixpoint could be increased on its subpart which
corresponds to a fixpoint, i.e., the idea is to restrict to [Y]a:f(a). We detect such
situations by looking for “wiggle room” as for fixpoints.

Completeness does not generalise to pre-fixpoints, i.e., it is not true that if
a is a pre-fixpoint of f and vf C a then vfF = ). A pre-fixpoint might contain
slack even though it is above the greatest fixpoint. A counterexample is in Ex. 25.

The Dual View for Least Fizpoints. The theory developed so far can be easily
dualised to check under-approximations of least fixpoints. Given a complete MV-
algebra M = (M, @, 0, (-)) and a monotone function f : MY — MY, in order to
show that a post-fixpoint a € MY satisfies a C pf, we can in fact simply work
in the dual MV-algebra, M = (M,J,®,(-),1). It is convenient to formulate

the conditions using © and the original order.

We next outline the dualised setting. The notation a0
for the dual case is obtained from that of the original /a\
(primal) case, exchanging subscripts and superscripts. ov]” [a©0,d]
Given a € MY, define [Y]® = {y € Y | a(y) # 0} ~_
and §* = min{a(y) | y € [Y]*}. For 6 € M, we consider okt

the pair of functions (a®? %% : 21" — [a©0,d]
where, for Y/ € 201" we let a®?(Y") = a © 6y and, for b € [a © 0, a], v*(b) =
{yeY laly)sbdly) 20}

A function f : MY — MZ is non-expansive in the dual MV-algebra when it
is in the primal one. Its approximation in the sense of Thm. 10 is denoted f%.
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Table 1: Basic functions f: MY — M? (constant, reindexing, minimum, maxi-
mum, average), function composition, disjoint union and the corresponding ap-

proximations f7 : 2Ve 5 2[%ls @) Ji: 21" 5 202

]f(a)

Notation: R™'(2) = {y € Y | yRz}, supp(p) = {y € Y | p(y) > 0} for p € D(Y),
Min, = {y € Y | a(y) minimal}, Maz, = {y € Y | a(y) maximal}, a: Y — M

[function f [definition of f [fZ(Y") (above), f&(Y”) (below)
Ck fla)=k 0
(k € M%) 0
u* fla)=aou u T(Y")
(u: Z —=Y) u”H(Y")
ming fla)(z) = gnérzla(y) {z € Z]sa | Ming) _, _ C Y'}
(RCY x Z) {z e [z)f@ | Ming,_,  NY'#0}
maxpg fla)(z) = rlrll%z(a(y) {z € [Z]f(a) | Maza|R_1(z> Ny’ #0}
(RCY x Z) {z € [2)@ | Mazay,_,  CY'}
avp  (M=[01),  f()p) = 3, py) - alv){p € Plpw | supp(p) < Y’}
Z=DC D)) {p € [D]"') | supp(p) €Y'}
hog f(a) = h(g(a)) hggag 0gil (Y")
(g: MY — MW, hé" o g4 (Y")
h: MW — M?)
CEARETE @@ = @)@ B F0f, (7 YD)
(fo: MY 5 M%,  |(z€ Z) Wier (£) 57 (Y O V)
Y=UY,Z=W %)

el il

Then the dualisations of Thm. 11 and 13 hold, i.e., if a is a fixpoint of f, then
vig = 0 iff uf = a, and whenever a is a post-fixpoint, v f* = () implies a C p.f.

5 (De)Composing Functions and Approximations

Given a non-expansive function f and a (pre/post-)fixpoint a, it is often non-
trivial to determine the corresponding approximations. However, non-expansive
functions enjoy good closure properties (closure under composition, and closure
under disjoint union) and we will see that the same holds for the corresponding
approximations. Furthermore it turns out that the functions needed in the ap-
plications can be obtained from just a few templates. This gives us a toolbox for
assembling approximations with relative ease.

Theorem 14. All basic functions listed in Table 1 are non-expansive. Further-
more non-expansive functions are closed under composition and disjoint union.
The approximations are the ones listed in the third column of the table.
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6 Applications

6.1 Termination Probability

We start by making the example from the introduction (§1) more formal. Con-
sider a Markov chain (S, T,n), as defined in the introduction (Fig. 1), where we
restrict the codomain of n: S\T — D(S) to D C D(S), where D is finite (to
ensure that all involved sets are finite). Furthermore let 7°: [0,1]% — [0,1]° be
the function from the introduction whose least fixpoint p7 assigns to each state
its termination probability.

Lemma 15. The function T can be written as T = (n*oavp)Weg where k: T —
[0, 1] is the constant function 1 defined only on terminal states.

From this representation and Thm. 14 it is obvious that 7 is non-expansive.

Lemma 16. Let t: S — [0,1]. The approximation for T in the dual sense is
T 2057 — 2157 with

Ti(S") = {s € [S]7W | s & T A supp(n(s)) € 5').

It is well-known that the function 7 can be tweaked in such a way that it has
a unique fixpoint, coinciding with p7, by determining all states which cannot
reach a terminal state and setting their value to zero [3]. Hence fixpoint iteration
from above does not bring us any added value here. It does however make sense
to use the proof rule in order to guarantee lower bounds via post-fixpoints.

Furthermore, termination probability is a special case of the considerably
more complex stochastic games that will be studied in §7, where the trick of
modifying the function is not applicable.

6.2 Behavioural Metrics for Probabilistic Automata

Before we start discussing probabilistic automata, we first consider the Hausdorff
and the Kantorovich lifting and the corresponding approximations.

Hausdorff Lifting. Given a metric on a set X, the Hausdorff metric is obtained
by lifting the original metric to 2X. Here we define this for general distance
functions on M, not restricting to metrics. In particular the Hausdorff lifting is
given by a function H : MX*X — M2 *2" where
H(d) (X1, X2) = max{;lnea)}((l mgéi§(12 d(x1,2), max mr}éi}(ll d(z1,22)}.

An alternative characterisation due to Mémoli [20], also in [4], is more convenient
for our purposes. If we let u : 2X*X — 2% x 2X with u(C) = (7[C], 72[C)),
where 71, m9 are the projections m; : X x X — X and m;[C] = {m;(c) | c € C}.
Then H(d)(X1,X2) = min{max(y, z,)ec d(z1,22) | C € X x X A u(C) =
(X1, X2)}. Relying on this, we can obtain the result below, from which we deduce
that H is non-expansive and construct its approximation as the composition of
the corresponding functions from Table 1.
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Lemma 17. H = min, o maxe where maxe : MX XX — M2 " (e C(XxX)x
2X%X s the “is-element-of "-relation on X x X ), min,,: M2 o M2t <2

Kantorovich Lifting. The Kantorovich (also known as Wasserstein) lifting con-
verts a metric on X to a metric on probability distributions over X. As for the
Hausdorff lifting, we lift distance functions that are not necessarily metrics.

Furthermore, in order to ensure finiteness of all the sets involved, we re-
strict to D C D(X), some finite set of probability distributions over X. A
coupling of p,q € D is a probability distribution ¢ € D(X x X) whose left
and right marginals are p,q, i.e., p(r1) = ml(z;) = Y wex ¢(w1,m2) and
q(x2) = mf(x2) == Y, cx c(21,22). The set of all couplings of p,q, denoted
by 2(p, q), forms a polytope with finitely many vertices [24]. The set of all poly-
tope vertices that are obtained by coupling any p,q € D is also finite and is
denoted by VPp C D(X x X).

The Kantorovich lifting is given by K : [0, 1]¥*X — [0, 1]P*P where

K@@= mn >, cler,z)-d,eo).
¢ P (z1,22)EX XX

The coupling ¢ can be interpreted as the optimal transport plan to move goods
from suppliers to customers [30]. Again there is an alternative characterisation,
which shows non-expansiveness of KC:

Lemma 18. Letu: VPp — Dx D, u(c) = (mE, mE). Then K = min, oavyp,,,
where avyp,, : [0,1]%X*% — [0,1]YF? | min,: [0,1]VFP — [0, 1]P*D.

Probabilistic Automata. We now compare our approach with [2], which describes
the first method for computing behavioural distances for probabilistic automata.
Although the behavioural distance arises as a least fixpoint, it is in fact better,
even the only known method, to iterate from above, in order to reach this least
fixpoint. This is done by guessing and improving couplings, similar to strategy
iteration discussed later in §7. A major complication, faced in [2], is that the
procedure can get stuck at a fixpoint which is not the least and one has to
determine that this is the case and decrease the current candidate. In fact this
paper was our inspiration to generalise this technique to a more general setting.

A probabilistic automaton is a tuple A = (S, L, n, ), where S is a non-empty
finite set of states, L is a finite set of labels, n: S — 2P(5) assigns finite sets of
probability distributions to states and ¢: S — L is a labelling function. (In the
following we again replace D(S) by a finite subset D.)

The probabilistic bisimilarity pseudometrics is the least fixpoint of the func-
tion M: [0,1]9%% — [0,1]%*% where for d: S x S — [0,1], s,t € S:

B 1 if 6(8) # f(t)
M(d)(s,t) = {H(K(d))(n(s)m(t)) otherwise

where A is the Hausdorff lifting (for M = [0, 1]) and K is the Kantorovich lifting
defined earlier. Now assume that d is a fixpoint of M, i.e., d = M(d). In order
to check whether d = uf, [2] adapts the notion of a self-closed relation from [16].
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Definition 19 ([2]). A relation M C S x S is self-closed wrt. d = M(d) if,
whenever s M t, then

— £(s) =L(t) and d(s,t) > 0,
—ifpen(s) and d(s,t) = ming ¢,y K(d)(p,q'), then there exists q € n(t) and
c € 2(p,q) such that d(s,t) = Zu ves d(u,v) - c(u,v) and supp(c) € M,
—if g en(t) and d(s,t) = miny ¢, (s IC( )Py q), then there exists p € n(s) and
d(u,v) -

c € 2(p,q) such that d(s,t) = c(u,v) and supp(c) C M.

u,vES

The largest self-closed relation, denoted by ~,; is empty if and only if d =
wf [2]. We now investigate the relation between self-closed relations and post-
fixpoints of approximations. For this we will first show that M can be composed
from non-expansive functions, which proves that it is indeed non-expansive. Fur-
thermore, this decomposition will help in the comparison.

Lemma 20. The fizpoint function M characterizing probabilistic bisimilarity
pseudometrics can be written as:

M =max,o(((nxn) oHoK)W¢)

where p: (S x S)W (S x S) — (S x S) with p((s,t),7)

o( = (s,t).* Furthermore
[: SxS —[0,1] is defined as (s, t) = 0 if £(s) = L(t ) andl(s,t

)= Lift(s) # £(2).

Hence M is a composition of non-expansive functions and thus non-expansive
itself. We do not spell out Mi explicitly, but instead show how it is related to
self-closed relations.

Proposition 21. Let d: Sx S — [0,1] where d = M(d). Then MY, : 2lSxS)* _,
20581 where [S x S]% = {(s,t) € S x S | d(s,t) > 0}.

Then M is a self-closed relation wrt. d if and only if M C [S x S]* and M
is a post-fixpoint of Mi.

6.3 Bisimilarity

In order to define standard bisimilarity we use a variant G of the Hausdorff lifting
‘H from §6.2 where max and min are swapped and which we denote by G.

Now we can define the fixpoint function for bisimilarity and its corresponding
approximation. For simplicity we consider unlabelled transition systems, but it
would be straightforward to handle labelled transitions.

Let X be a finite set of states and 7 : X — 2% a function that assigns a set
of successors n(x) to a state € X. For the fixpoint function for bisimilarity
B: {0, 13X — {0,1}% %X we use the Hausdorff lifting G with M = {0,1}.

Lemma 22. Bisimilarity on n is the greatest fixpoint of B = (n xn)* o g.

4 Here we use i € {0,1} as indices to distinguish the elements in the disjoint union.
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Since we are interested in the greatest fixpoint, we are working in the primal
sense. Bisimulation relations are represented by their characteristic functions
d: X x X — {0,1}, in fact the corresponding relation can be obtained by taking
the complement of [X x X|q = {(z1,22) € X1 X X5 | d(z1,22) = 0}.

Lemma 23. Let d: X x X — {0,1}. The approzimation for the bisimilarity
function B in the primal sense is Bj: 20X xX]a _y 2[XxX]s0) gyith

BZ?&(R) = {(1’171‘2) S [X X X]B(d) |
Vy1 € n(z1)3y2 € n(2) ((y1,42) € [X x X]aV (y1,92) € R))
AVyz € n(x2)3yr € n(z1) ((y1,y2) € [X x X]a V (y1,%2) € R)}

We conclude this section by discussing how this view on bisimilarity can
be useful: first, it again opens up the possibility to compute bisimilarity — a
greatest fixpoint — by iterating from below, through smaller fixpoints. This could
potentially be useful if it is easy to compute the least fixpoint of B inductively
and continue from there.

Furthermore, we obtain a technique for witnessing non-bisimilarity of states.
While this can also be done by exhibiting a distinguishing modal formula [17,9]
or by a winning strategy for the spoiler in the bisimulation game [27], to our
knowledge there is no known method that does this directly, based on the defi-
nition of bisimilarity.

With our technique however, we can witness non-bisimilarity of two states
x1,x2 € X by presenting a pre-fixpoint d (i.e., B(d) < d) such that d(x1,22) =0
(equivalent to (x1,z2) € [X x X]4) and I/le7£ = (), since this implies vB(z1,22) <
d(z1,x2) = 0 by our proof rule.

There are two issues to discuss: first, how can we characterise a pre-fixpoint
of B (which is quite unusual, since bisimulations are post-fixpoints)? In fact, the
condition B(d) < d can be rewritten to: for all (z1,22) € [X x X|q there exists
y1 € n(zy1) such that for all yo € n(x2) we have (y1,y2) € [X x X]q (or vice
versa). Second, at first sight it does not seem as if we gained anything since we
still have to do a fixpoint computation on relations. However, the carrier set is
[X x X]q, i-e., a set of non-bisimilarity witnesses and this set can be small even
though X might be large.

Example 24. We consider the transition system depicted below.
Our aim is to construct a witness showing that

x,u are not bisimilar. This witness is a function
d: X x X — {0,1} with d(z,u) =0 = d(y,u)
and for all other pairs the value is 1.

Hence [X x X]j—p) = [X x X]q = {(z,u),(y,u)} and it is easy to check
that d is a pre-fixpoint of B and that vB} = (0. we iterate over {(x,u), (y,u)}
and first remove (y,u) (since y has no successors) and then (x,u). This implies
that vB < d and hence vB(z,u) = 0, which means that x,u are not bisimilar.
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Ezample 25. We modify Ex. 24 and consider a function d where d(xz,u) = 0
and all other values are 1. Again d is a pre-fixpoint of B and vB < d (since
only reflexive pairs are in the bisimilarity). However vB} # (), since {(z,u)} is a
post-fixpoint. This is a counterexample to completeness discussed after Thm. 13.

Intuively speaking, the states y, u over-approximate and claim that they are
bisimilar, although they are not. (This is permissible for a pre-fixpoint.) This
tricks x, v into thinking that there is some wiggle room and that one can increase
the value of (x,u). This is true, but only because of the limited, local view, since
the “true” value of (y,u) is 0.

7 Simple Stochastic Games

Introduction to Simple Stochastic Games. In this section we show how our tech-
niques can be applied to simple stochastic games [11,10]. A simple stochastic
game is a state-based two-player game where the two players, Min and Max,
each own a subset of states they control, for which they can choose the succes-
sor. The system also contains sink states with an assigned payoff and averaging
states which randomly choose their successor based on a given probability dis-
tribution. The goal of Min is to minimise and the goal of Max to maximise the
payoff.

Simple stochastic games are an important type of games that subsume parity
games and the computation of behavioural distances for probabilistic automata
(cf. §6.2, [2]). The associated decision problem is known to lie in NP NcoNP, but
it is an open question whether it is contained in P. There are known randomised
subexponential algorithms [7].

It has been shown that it is sufficient to consider positional strategies, i.e.,
strategies where the choice of the player is only dependent on the current state.
The expected payoffs for each state form a so-called value vector and can be
obtained as the least solution of a fixpoint equation (see below).

A simple stochastic game is given by a finite set V' of nodes, partitioned into
MIN, MAX , AV (average) and SINK , and the following data: 1y, : MIN — 2V
Nmax : MAX — 2V (successor functions for Min and Max nodes), 7, : AV — D
(probability distributions, where D C D(V) finite) and w : SINK — [0, 1]
(weights of sink nodes).

The fixpoint function V: [0,1]V — [0,1]V is defined below for a: V — [0,1]
and v € V:

My €y, (v) a(v') v € MIN
V(a)(v) = { K Emax(v) a(v') ve MAX

ZU’EV nav('U)(’Ul) . a(v’) veE AV

w(v) v € SINK

The least fixpoint of V specifies the average payoff for all nodes when Min and
Max play optimally. In an infinite game the payoff is 0. In order to avoid infinite
games and guarantee uniqueness of the fixpoint, many authors [18,10,29] restrict
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to stopping games, which are guaranteed to terminate for every pair of Min/Max-
strategies. Here we deal with general games where more than one fixpoint may
exist. Such a scenario has been studied in [19], which considers value iteration
to under- and over-approximate the value vector. The over-approximation faces
challenges with cyclic dependencies, similar to the vicious cycles described ear-
lier. Here we focus on strategy iteration, which is usually less efficient than value
iteration, but yields a precise result instead of approximating it.

FEzample 26. We consider the game depicted below. Here min is a Min node with
Nmin (Min) = {1, av}, max is a Max node with nyax(max) = {e,av}, 1 is a sink
node with payoff 1, € is a sink node with some small payoff ¢ € (0,1) and av is
an average node which transitions to both min and max with probability %
Min should choose av as successor since a payoff of 1 is bad for Min. Given
this choice of Min, Max should not declare av as successor since this would create
an infinite play and hence the payoff is 0. Therefore Max has to choose € and be
content with a payoff of ¢, which is achieved from all nodes different from 1.

(D (o o)

In order to be able to determine the approximation of V and to apply our
techniques, we consider the following equivalent definition.

Lemma 27. V = (n},, oming) W (0, o maxe) W (X, oavp) W ey, where € C
V x 2V is the “is-element-of ”-relation on V.

As a composition of non-expansive functions, V is non-expansive as well. Since
we are interested in the least fixpoint we work in the dual sense and obtain the
following approximation, which intuitively says: we can decrease a value at node
v by a constant only if, in the case of a Min node, we decrease the value of one
successor where the minimum is reached, in the case of a Max node, we decrease
the values of all successors where the maximum is reached, and in the case of an
average node, we decrease the values of all successors.

Lemma 28. Let a: V — [0,1]. The approximation for the value iteration func-
tion V in the dual sense is V;&: 2lVI® 5 2lVIV ith,

VL(V') = {v e [V]Y@ | (ve MIN A Ming, . V' #0)V
(ve MAX A Maz,, . CV')V (v € AV A supp(nay(v)) € V')}

Strategy Iteration from Above and Below. We describe two algorithms based on
strategy iteration, first introduced by Hoffman and Karp in [18], that are novel,
as far as we know. The first iterates to the least fixpoint from above and uses
the techniques described in §4. The second iterates from below: the role of our
results is not directly visible in the code of the algorithm, but its non-trivial
correctness proof is based on the proof rule introduced earlier.
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Determine ;Y (from above)

Determine pV

1. Guess a Min-strategy 7@ i:=0 (from below)
2. a® = wY_)
1) o

3.7 ,) T Swm.i"(T(l)’ a®) 1. Guess a Max-strategy o®,

4. If 70D £ 7 .= {4 1 then goto 2. 5 o= ()

5. Compute V' = Vg, where a = a(‘”. 2. 0 =V

/ 8 ) ) .

6. If V' = () then stop and return a®. 3. ot = swmax (6@, a®)
Otherwise set a(w_l) = a— (W)vr, 4. I oD £ o get 1= i+1
7O = swmin (1), a0FD), 4 = 042, and goto 2. Otherwise stop
goto 2. and return a(V.

(a) Strategy iteration from above (b) Strategy iteration from below

Fig. 2: Strategy iteration from above and below

We first recap the underlying notions: a Min-strategy is a mapping 7: MIN —
V such that 7(v) € Nmin(v) for every v € MIN. With such a strategy, Min
decides to always leave a node v via 7(v). Analogously o: MAX — V fixes
a Max-strategy. Fixing a strategy for either player induces a modified value
function. If 7 is a Min-strategy, we obtain V; which is defined exactly as V but
for v € MIN where we set V- (a)(v) = a(7(v)). Analogously, for o a Max-strategy,
V, is obtained by setting V,(a)(v) = a(o(v)) when v € MAX. If both players
fix their strategies, the game reduces to a Markov chain.

In order to describe our algorithms we also need the notion of a switch.
Assume that 7 is a Min-strategy and let a be a (pre-)fixpoint of V.. Min can now
potentially improve her strategy for nodes v € MIN where min, e, . () a(v') <
a(t(v)), called switch nodes. This results in a Min-strategy 7/ = $wmin(7, @),
where® 7/(v) = argmin, ., () a?(v') for a switch node v and 7/, 7 agree
otherwise. Also, swmax(0, @) is defined analogously for Max strategies.

Now strategy iteration from above works as described in Figure 2a. The
computation of p)V_u) in the second step intuitively means that Max chooses
his best answering strategy and we compute the least fixpoint based on this
answering strategy. At some point no further switches are possible and we have
reached a fixpoint a, which need not yet be the least fixpoint. Hence we use
the techniques from §4 to decrease a and obtain a new pre-fixpoint a(t1), from
which we can continue. The correctness of this procedure partially follows from
Thm. 11 and Lem. 12, however we also need to show the following: first, we
can compute a() = pV, ) efficiently by solving a linear program (cf. Lem. 29)
by adapting [11]. Second, the chain of the a decreases, which means that the
algorithm will eventually terminate (cf. Thm. 30).

5 If the minimum is achieved in several nodes, Min simply chooses one of them. How-
ever, she will only switch if this strictly improves the value.
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Strategy iteration from below is given in Figure 2b. At first sight, the algo-
rithm looks simpler than strategy iteration from above, since we do not have
to check whether we have already reached vV, reduce and continue from there.
However, in this case the computation of p)_ ) via a linear program is more
involved (cf. Lem. 29), since we have to pre-compute (via greatest fixpoint it-
eration over 2") the nodes where Min can force a cycle based on the current
strategy of Max, thus obtaining payoff 0.

This algorithm does not directly use our technique but we can use our proof
rules to prove the correctness of the algorithm (Thm. 30). In particular, the
proof that the sequence a(*) increases is quite involved: we have to show that
a® = V. < pV,aen = altY. We prove this, using our proof rules, by
showing that a(® is below the least fixpoint of V, (is1).

The algorithm generalises strategy iteration by Hoffman and Karp [18]. Note
that we cannot simply adapt their proof, since we do not assume that the game
is stopping, which is a crucial ingredient.

Lemma 29. The least fixzpoints of V. and V, can be determined by solving linear
programs.

Theorem 30. Strategy iteration from above and below both terminate and com-
pute the least fixpoint of V.

Example 31. Ex. 26 is well suited to explain our two algorithms.

Starting with strategy iteration from above, we may guess T(O)(min) = 1.
In this case, Max would choose av as successor and we would reach a fixpoint,
where each node except for € is associated with a payoff of 1. Next, our algorithm
would detect the vicious cycle formed by min, av and max. We can reduce the
values in this vicious cycle and reach the correct payoff values for each node.

For strategy iteration from below assume that o(®)(max) = av. Given this
strategy of Max, Min can force the play to stay in a cycle formed by min, av and
max. Thus, the payoff achieved by the Max strategy o(®) and an optimal play by
Min would be 0 for each of these nodes. In the next iteration Max switches and
chooses € as successor, i.e. (') (max) = e, which results in the correct values.

We implemented strategy iteration from above and below and classical Kleene
iteration in MATLAB. In Kleene iteration we terminate with a tolerance of
107, ie., we stop if the change from one iteration to the next is below this
bound. We tested the algorithms on random stochastic games and found that
Kleene iteration is always the fastest, but only converges and it is known that
the rate of convergence can be exponentially slow [10]. Strategy iteration from
below is usually slightly faster than strategy iteration from above. More details
can be found in the full version [5].

8 Conclusion

It is well-known that several computations in the context of system verification
can be performed by various forms of fixpoint iteration and it is worthwhile to



Fixpoint Theory — Upside Down 79

study such methods at a high level of abstraction, typically in the setting of
complete lattices and monotone functions. Going beyond the classical results
by Tarski [28], combination of fixpoint iteration with approximations [14,6] and
with up-to techniques [25] has proven to be successful. Here we treated a more
specific setting, where the carrier set consists of functions from a finite set into an
MV-chain and the fixpoint functions are non-expansive (and hence monotone),
and introduced a novel technique to obtain upper bounds for greatest and lower
bounds for least fixpoints, including associated algorithms. Such techniques are
widely applicable to a wide range of examples and so far they have been studied
only in quite specific scenarios, such as in [2,16,19].

In the future we plan to lift some of the restrictions of our approach. First, an
extension to an infinite domain Y would of course be desirable, but since several
of our results currently depend on finiteness, such a generalisation does not seem
to be easy. Another restriction, to total orders, seems easier to lift: in particular,
if the partially ordered MV-algebra M is of the form M’ where I is a finite
index set and M an MV-chain. (E.g., finite Boolean algebras are of this type.)
Then our function space is MY = (MI )Y = MY *! and we have reduced to the
setting presented in this paper. This will allow us to handle featured transition
systems [12] where transitions are equipped with boolean formulas. We also plan
to determine the largest possible increase that can be added to a fixpoint that
is not yet the greatest fixpoint in order to maximally speed up fixpoint iteration
from below (this might be larger than ¢f).

There are several other application examples that did not fit into this paper,
but that can also be handled by our approach: for instance behavioural distances
for metric transition systems [15] and other types of systems [4]. We also plan
to investigate other types of games, such as energy games [8]. While here we in-
troduced strategy iteration techniques for simple stochastic games, we also want
to check whether we can provide an improvement to value iteration techniques,
combining our approach with [19].

We also plan to study whether some examples can be handled with other
types of Galois connections: here we used an additive variant, but looking at
multiplicative variants (multiplication by a constant factor) might also be fruit-
ful.

Acknowledgements: We are grateful to Ichiro Hasuo for making us aware of
stochastic games as application domain. Furthermore we would like to thank
Matthias Kuntz and Timo Matt for their help with experiments.
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Abstract. Linear Temporal Logic (LTL) interpreted on finite traces is
a robust specification framework popular in formal verification. However,
despite the high interest in the logic in recent years, the topic of their
quantitative extensions is not yet fully explored. The main goal of this
work is to study the effect of adding weak forms of percentage constraints
(e.g. that most of the positions in the past satisfy a given condition, or
that o is the most-frequent letter occurring in the past) to fragments of
LTL. Such extensions could potentially be used for the verification of
influence networks or statistical reasoning. Unfortunately, as we prove in
the paper, it turns out that percentage extensions of even tiny fragments
of LTL have undecidable satisfiability and model-checking problems. Our
undecidability proofs not only sharpen most of the undecidability results
on logics with arithmetics interpreted on words known from the literature,
but also are fairly simple. We also show that the undecidability can be
avoided by restricting the allowed usage of the negation, and discuss how
the undecidability results transfer to first-order logic on words.

1 Introduction

Linear Temporal Logic [29] (LTL) interpreted on finite traces is a robust logical
framework used in formal verification [1,18,19]. However, LTL is not perfect:
it can express whether some event happens or not, but it cannot provide any
insight on how frequently such an event occurs or for how long such an event took
place. In many practical applications, such quantitative information is important:
think of optimising a server based on how frequently it receives messages or
optimising energy consumption knowing for how long a system is usually used
in rush hours. Nevertheless, there is a solution: one can achieve such goals by
adding quantitative features to LTL.

It is known that adding quantitative operators to LTL often leads to un-
decidability. The proofs, however, typically involve operators such as “next” or
“until”, and are often quite complicated (see the discussion on the related work
below). In this work, we study the logic LTLy, a fragment of LTL where the
only allowed temporal operator is “sometimes in the future” F. We extend its
language with two types of operators, sharing a similar “percentage” flavour: with
the Past-Majority PM ¢ operator (stating that most of the past positions satisfy
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a formula ), and with the Most-Frequent-Letter MFL o predicates (meaning
that the letter o is among the most frequent letters appearing in the past). These
operators can be used to express a number of interesting properties, such as if
a process failed to enter the critical section, then the other process was in the
critical section the majority of time. Of course, for practical applications, we could
also consider richer languages, such as parametrised versions of these operators,
e.g. stating that at least a fraction p of positions in the past satisfies a formula.
However, we show, as our main result, that even these very simple percentage
operators raise undecidability when combined with F .

To make the undecidability proof for both operators similar, we define an
intermediate operator, Half , which is satisfied when exactly half of the past
positions satisfy a given formula. The Half operator can be expressed easily
with PM , but not with MFL — we show, however, that we can simulate it to an
extent enough to show the undecidability. Our proof method relies on enforcing
a model to be in the language ({wht}{shdw})™, for some letters wht and shdw,
which a priori seems to be impossible without the “next” operator. Then, thanks
to the specific shape of the models, we show that one can “transfer” the truth of
certain formulae from positions into their successors, hence the “next” operator
can be partially expressed. With a combination of these two ideas, we show that
it is possible to write equicardinality statements in the logic. Finally, we perform
a reduction from the reachability problem of Two-counter Machines [26]. In the
reduction, the equicardinality statements will be responsible for handling zero-
tests. The idea of transferring predicates from each position into its successor
will be used for switching the machine into its next configuration.

The presented undecidability proof of LTL with percentage operators can
be adjusted to extensions of fragments of first-order logic on finite words. We
show that FOy[<], i.e. the two-variable fragment of first-order logic admitting
the majority quantifier M and linear order predicate < has an undecidable sat-
isfiability problem. Here the meaning of a formula Mxz.p(z,y) is that at least
a half of possible interpretations of x satisfies ¢(z,y). Our result sharpens an
existing undecidability proof for (full) FO with Majority from [23] (since in our
case the number of variables is limited) but also FO?[<, succ] with arithmetics
from [25] (since our counting mechanism is weaker and the successor relation
succ is disallowed). On the positive side, we show that the undecidability heavily
depends on the presence of the negation in front of the percentage operators.
To do so, we introduce a logic, extending the full LTL, in which the usage of
percentage operators is possible, but suitably restricted. For this logic, we show
that the satisfiability problem is decidable.

All the above-mentioned results can be easily extended to the model checking
problem, where the question is whether a given Kripke structure satisfies a given
formula. The full version of the paper is available on arXiv [4].

1.1 Related work

The first paper studying the addition of quantitative features to logic was [21],
where the authors proved undecidability of Weak MSO with Cardinalities. They
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also developed a model of so-called Parikh Automaton, a finite automaton im-
posing a semi-linear constraint on the set of its final configurations. Such an
automaton was successfully used to decide logics with counting as well as logics
on data words [27,17]. Its expressiveness was studied in [11].

Another idea in the realm of quantitative features is availability languages [20],
which extend regular expressions by numerical occurrence constraints on the let-
ters. However, their high expressivity leads to undecidable emptiness problems.
Weak forms of arithmetics have also attracted interest from researchers working
on temporal logics. Several extensions of LTL were studied, including extensions
with counting [24], periodicity constraints [14], accumulative values [7], discount-
ing [2], averaging [9] and frequency constraints [8]. A lot of work was done to
understand LTL with timed constraints, e.g. a metric LTL was considered in [28].
However, its complexity is high and its extensions are undecidable [3].

Arithmetical constraints can also be added to the First-Order logic (FO)
on words via so-called counting quantifiers. It is known that weak MSO on
words is decidable with threshold counting and modulo-counting (thanks to the
famous Biichi theorem [10]), while even FO on words with percentage quantifiers
becomes undecidable [23]. Extensions of fragments of FO on words are often
decidable, e.g. the two-variable fragment FO? with counting [12] or FO? with
modulo-counting [25]. The investigation of decidable extensions of FO* is limited
by the undecidability of FO? on words with Presburger constraints [25].

Among the above-mentioned logics, the formalisms of this paper are most
similar to Frequency LTL [8]. The satisfiability problem for Frequency LTL was
claimed to be undecidable, but the undecidability proof as presented in [8] is
bugged (see [9, Sec. 8] for discussion). It was mentioned in [9] that the unde-
cidability proof from [8] can be patched, but no correction was published so far.
Our paper not only provides a valid proof but also sharpens the result, as we
use a way less expressive language (e.g. we are allowed to use neither the “until”
operator nor the “next” operator). We also believe that our proof is simpler.
The second-closest formalism to ours is average-LTL [9]. The main difference is
that the averages of average-LTL are computed based on the future, while in
our paper, the averages are based on the past. The second difference, as in the
previous case, is that their undecidability proof uses more expressive operators,
such as the “until” operator.

2 Preliminaries

We recall definitions concerning logics on words and temporal logics (cf. [15]).

Words and logics. Let AP be a countably-infinite set of atomic propositions,
called here also letters. A finite word w € (2A7)* is a non-empty finite sequence
of positions labelled with sets of letters from AP. A set of words is called a
language. Given a word to, we denote its i-th position with w; (where the first
position is wg) and its prefix up to the i-th position with to<,. We usually use
the letters p,q, i, to denote positions. With || we denote the length of .
The syntax of LTLg, a fragment of LTL with only the finally operator F | is
defined with the grammar: ¢, ¢’ :=a (witha € AP) | ¢ | o A¢' | Fop.
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The satisfaction relation |= is defined for words as follows:

w,iEa if a € 1,

10, = - ifnot m,ifE

w,i 1 Apeifto,i =@ and w,i = o
w,il=F¢  if 3jsuch that [w|>j>iandw,j = .

We write to |= ¢ if 10,0 = . The usual Boolean connectives: T, L, V, —, <
can be defined, hence we will use them as abbreviations. Additionally, we use
the globally operator G ¢ := —F =y to speak about events happening globally in
the future.

Percentage extension. In our investigation, percentage operators PM, MFL and
Half are added to LTLE.

The operator PM ¢ (read as: majority in the past) is satisfied if at least half
of the positions in the past satisfy ¢:

o, i = PM o if [{j < i w,j |= o} > 4

For example, the formula G (r +» =g) AGPMr A GF (g APMy) is true
over words where each request r is eventually fulfilled by a grant g, and where
each grant corresponds to at least one request. This can be also seen as the
language of balanced parentheses, showing that with the operator PM one can
define properties that are not regular.

The operator MFL o (read as: most-frequent letter in the past), for o € AP,
is satisfied if o is among the letters with the highest number of appearances in
the past, i.e.

w,i =MFLoifvVr € AP. {j<i:w,jl=o} >|{j<i:w,j=T}

For example, the formula G =(r A g) NG MFL 7 A GF (9 A MFL g) again
defines words where each request is eventually fulfilled, but this time the formula
allows for states where nothing happens (i.e. when both r and g are false).

The last operator, Half is used to simplify the forthcoming undecidability
proofs. This operator can be satisfied only at even positions, and its intended
meaning is exactly half of the past positions satisfy a given formula.

w,i =Half pif [{j <i:w,jl= ¢} =4

It is not difficult to see that the operator Half ¢ can be defined in terms of the
past-majority operator as PM (¢) A PM (—y) and that Half ¢ can be satisfied
only at even positions.

In the next sections, we distinguish different logics by enumerating the allowed
operators in the subscripts, e.g. LTLy pm or LTLy mFL-

Computational problems Kripke structures are commonly used in verification to
formalise abstract models. A Kripke structure is composed of a finite set S of
states, a set of initial states I C S, a total transition relation R C S x S, and a
finite labelling function £ : S — 2AP . A trace of a Kripke structure is a finite word
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0(s0),4(s1),-..,L(sk) for any s, s1,..., sk satisfying sg € I and (s;,$,41) € R
for all i < k.

The model-checking problem amounts to checking whether some trace of a
given Kripke structure satisfies a given formula ¢. In the satisfiability problem,
or simply in SAT, we check whether an input formula ¢ has a model, i.e. a finite
word to witnessing w = ¢.

3 Playing with Half Operator

Before we jump into the encoding of Minsky machines, we present some exercises
to help the reader understand the expressive power of the logic LT Ly gaie. The
tools established in the exercises play a vital role in the undecidability proofs
provided in the following section.

We start from the definition of shadowy words.

Definition 1. Let wht and shdw be fixed distinct atomic propositions from AP.
A word to is shadowy if its length is even, all even positions of v are labelled
with wht, all odd positions of v are labelled with shdw, and no position is labelled
with both letters.

On ROR 2On

We will call the positions satisfying wht simply white and their successors satis-
fying shdw simply their shadows.

The following exercise is simple in LTL, but becomes much more challenging
without the X operator.

Ezercise 1. There is an LTLg gair formula ¥s4d0wy defining shadowy words.

Solution. We start with the “base” formula ¢§%}, := wht A G (wht <> —shdw) A
G (wht — F shdw), which states that the position 0 is labelled with wht, each
position is labelled with exactly one letter among wht, shdw and that every white
eventually sees a shadow in the future. What remains to be done is to ensure
that only odd positions are shadows and that only even positions are white.

In order to do that, we employ the formula ¢, := G ((Half wht) <> wht).
Since Half is never satisfied at odd positions, the formula p2}; stipulates that
odd positions are labelled with shdw. An inductive argument shows that all the
even positions are labelled with wht: for the position 0, it follows from (¢7},. For
an even position p > 0, assuming (inductively) that all even positions are labelled

exl

with wht, the formula ¢¢; ensures that p is labelled with wht.

Putting it all together, the formula ¥snadowy 1= cpfff}t/\ gpifl}i is as required. 0O

In the next exercise, we show that it is possible to transfer the presence of
certain letters from white positions into their shadows. It justifies the usage of
“shadows” in the paper.

We introduce the so-called counting terms. For a formula ¢, word v and a
position p, by #; (ro, p) we denote the total number of positions among 0, ..., p—1
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satisfying ¢, i.e. the size of {p’ < p | w,p’ E ¢}. We omit to in counting terms if
it is known from the context.

Ezercise 2. Let o and & be distinct letters from AP \ {wht, shdw}. There is an
LTLF Harr formula ¢ such that w = @ iff:

O~>F ) T~>G

1. 1o is shadowy,
2. only white (resp., shadow) positions of w can be labelled o (resp., &) and
3. for any even position p we have: to,p = 0 < 1, p+1 | 5.

@@

Solution. Note that the first two conditions can be expressed with the conjunction
of Yshadowy, G (0 — wht) and G (¢ — shdw). The last condition is more involving.
Assuming that the words under consideration satisfy conditions 1-2, it is easy to
see that the third condition is equivalent to expressing that all white positions p
satisfy the equation (©):

(©): #Ehm(mm) = #:hdw/\(?(m’p)

supplemented with the condition (), ensuring that the last white position sat-
isfies the condition 3, i.e.

() for the last white position p we have: w,p E o < w,p+1 4.

The proof of the following lemma can be found in the appendix.

Lemma 1. Let to be a word satisfying the conditions 1-2. Then vo satisfies the
condition 3 iff vo satisfies (&) and for all white positions p the equation (O) holds.

Going back to Exercise 2, we show how to define (V) and () in LTLy pair,
taking advantage of shadowness of the intended models. Take an arbitrary white
position p of w. The equation (V) for p is clearly equivalent to:

(V)1 #onino (0,p) + (g - #fhde&(m,p)) = g

Since p is even, we infer that £ € N. From the shadowness of w, we know that
there are exactly £ shadows in the past of p. Moreover, each shadow satisfies either
& or =G. Hence, the expression £ —#5, . (v, p) from (©'), can be replaced with
#5 dwns (W0, p). Finally, since wht and shdw label disjoint positions, the property
that every white position p satisfies (©) can be written as an LTLg gai¢ formula
() := G (wht — Half ([wht A o] V [shdw A —G])). Its correctness follows from
the correctness of each arithmetic transformation and the semantics of LTLg frais-

For the property ({), we first need to define formulae detecting the last and
the second to last positions of the model. Detecting the last position is easy:
since the last position of w is shadow, it is sufficient to express that it sees only
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shadows in its future, i.e. p{*2 := G (shdw). Similarly, a position is second to

last if it is white and it sees only white or last positions in the future, which
results in a formula %2 := wht A G (wht V ¢$%2,). Note that the correctness of
0¥2 and %7 follows immediately from shadowness. Hence, we can define the
formula ¢ (¢ as F (%7 A o) < F (922 A G). The conjunction of (o) and ¢(q)
formulae gives us to @97 0

O~sG "

We consider a generalisation of shadowy models, where each shadow mimics
all letters from a finite set X C AP rather than just a single letter o. Such a
generalisation is described below. In what follows, we always assume that for
each o € X there is a unique &, which is different from o, and & ¢ Y. Moreover,
we always assume that o1 # o9 implies 61 # 5.

Definition 2. Let ¥ C AP\ {wht, shdw} be a finite set. A shadowy word to is
called truly Y-shadowy, if for every letter o € X only the white (resp. shadow)
positions of v can be labelled with o (resp. &) and every white position p of to
satisfies w,p = o < w,p+1 Ea.

Knowing the solution for the previous exercise, it is easy to come up with a

formula 1/’:272151.};5 defining truly X-shadowy models: just take the conjunction of

Vshadowy and cpf,’"ing over all letters o € X. The correctness follows immediately

from from Exercise 2.

Corollary 1. The formula 7/’227213;5, defines the language of truly X-shadowy
words.

The next exercise shows how to compare cardinalities in LTLg gair over
truly Y-shadowy models. We are not going to introduce any novel techniques
here, but the exercise is of great importance: it is used in the next section to
encode zero tests of Minsky machines.

FEzercise 3. Let X be a finite subset of AP \ {wht, shdw} and let a#p € X.
There exists an LTLg pair formula 144,—43 such that for any truly X-shadowy
word v and any of its white positions p: the equivalence w,p = Yuo=—ps <

#;ht/\a(m7p) = #;ht/\ﬁ(m,p) holds.

o = #0 T

S
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The solution is in the appendix, here we briefly discuss the main idea. Follow
the previous exercise. The main difficulty is to express the equality of counting
terms, written as LHS = RHS. Note that it is clearly equivalent to LHS + (§ —
RHS) = £. Unfold £ on the left hand side, i.e. replace it with the total number
of shadows in the past. Use the fact that v satisfies 7" which implies the
equality #5,,,5(10,p) = #:h dn B(m’ p). Finally, get rid of subtraction and write
an LTLg pair formula by employing Half. The presented exercises show that
the expressive power of LTLg Hair is so high that, under a mild assumption of
truly-shadowness, it allows us to perform cardinality comparison. We are now
only a step away from showing undecidability of the logic, which is tackled next.

4 Undecidability of LTL extensions

This section is dedicated to the main technical contribution of the paper, namely

that LTLg pair, LTLr pm and LTLg pmrr have undecidable satisfiability and

model checking problems. We start from LTLg g1air. Then, the undecidability of

LTLg pam will follow immediately from the fact that Half is definable by PM.

Finally, we will show how the undecidability proof can be adjusted to LTLg mF1.-
We start by recalling the basics on Minsky Machines.

Minsky machines A deterministic Minsky machine is, roughly speaking, a finite
transition system equipped with two unbounded-size natural counters, where
each counter can be incremented, decremented (only in the case it is positive),
and tested for being zero. Formally, a Minsky machine A is composed of a finite
set of states @ with a distinguished initial state gy and a transition function § :
(Qx{0,+}%) — ({=1,0,1}2x(Q \ {qo}) satisfying three additional requirements:
whenever §(q, f,s) = (f,3,¢') holds, f = —1 implies f = +, 5 = —1 implies s = +
(i.e. it means that only the positive counters can be decremented) and ¢ # ¢’
(the machine cannot enter the same state two times in a row). Intuitively, the
first coordinate of § describes the current state of the machine, the second and
the third coordinates tell us whether the current value of the i-th counter is zero
or positive, the next two coordinates denote the update on the counters and the
last coordinate denotes the target state.

We define a run of a Minsky machine A as a sequence of consecutive transi-
tions of A. Formally, a run of A is a finite word tv € (Qx{0,+}* x {—1,0,1}? x
Q\ {qo})T such that, when denoting w; as (¢*, f%, s, f*, 5, ¢ ), all the following
conditions are satisfied:

L ¢"=gand fO=s"=0, o

2. for each i we have d(q', f*,s') = (f*, 5", q),

3. for each i < |w| we have ¢y = ¢'', '

4. for each i, f% equals 0 iff fO+ -+ fi=! =0, and + otherwise; similarly s° is
0if s+ ...+ 3571 =0 and + otherwise.

It is not hard to see that this definition is equivalent to the classical one [26]. We
say that a Minsky machine reaches a state g € @ if there is a run with a letter
containing ¢ on its last coordinate. It is well known that the problem of checking
whether a given Minsky machine reaches a given state is undecidable [26].
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4.1 “Half of” meets the halting problem

We start from presenting the overview of the claimed reduction. Until the end
of Section 4, let us fix a Minsky machine A = (Q, qo, ) and its state q € Q.
Our ultimate goal is to define an LTLg mgaie formula wjl such that ’(/Jj\ has a
model iff A reaches q. To do so, we define a formula v 4 such that there is a
one-to-one correspondence between the models of ¥4 and runs of A. Expressing
the reachability of ¢, and thus wl, based on 14 is easy.

Intuitively, the formula v 4 describes a shadowy word to encoding on its white
positions the consecutive letters of a run of A. In order to express it, we introduce
a set X 4, composed of the following distinguished atomic propositions:

— from, and to, for all states q € Q,
— fVal, and sVal, for counter values ¢ € {0,+}, and
— fOP,, and sOP,,, for all operations op € {—1,0,1}.

We formalise the one-to-one correspondence as the function run, which takes
an appropriately defined shadowy model and returns a corresponding run of A.
More precisely, the function run(w) returns a run whose ith configuration is
(q, f,s,f,5,qn) if and only if the ith white configuration of w is labelled with
fromg, fValy, sVals, fOP3, sOP5 and tog, .

The formula 4 ensures that its models are truly X 4-shadowy words repre-
senting a run satisfying properties P1-P4. To construct it, we start from wzﬂlggfy*‘
and extending it with four conjuncts. The first two of them represent properties
P1-P2 of runs. They can be written in LTLg in an obvious way.

To ensure the satisfaction of the property P3, we observe that in some sense
the letters from, and to, are paired in a model, i.e. always after reaching a state
in A you need to get out of it (the initial state is an exception here, but we
assumed that there are no transitions to the initial state). Thus, to identify for
which ¢ we should set the from, letter on the position p, it is sufficient to see
for which state we do not have a corresponding pair, i.e. for which state g the
number of white from, to the left of p is not equal to the number of white to, to
the left of p. We achieve this in the spirit of Exercise 3.

Finally, the satisfaction of the property P4 can be achieved by checking for
each position p whether the number of white fOP; to the left of p is the same as
the number of white fOP_, to the left of p, and similarly for the second counter.
This reduces to checking an equicardinality of certain sets, which can be done
by employing shadows and Exercise 3.

The reduction Now we are ready to present the claimed reduction.

We first restrict the class of models under consideration to truly X 4-shadowy
words (for the feasibility of equicardinality encoding) with a formula Q/Jzzzgngy““.
Then, we express that the models satisfy properties P1 and P2. The first property
can be expressed with ¢ p1 = from, A fValy A sValy.

The property P2 will be a conjunction of two formulae. The first one, namely
by, is an immediate implementation of P2. The second one, i.e. ¢%,, is not
necessary, but simplifies the proof; we require that no position is labelled by more
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than six letters from X 4.

Ypy = G (wht —>\/ fromg A fValy N sVals N fOP7 A\ sOP5 A togy ),
5(a.f.8)=(f.5.an)

Yy = G /\ =(p1 Ap2 A Apr).
P1s--,P7E€EXA

P1,...,p7 are pairwise different

We put ¢py = 1/}]132 A 1@:2 and Yenc-pasics = ¢§ZZZJ;waA NYp1r Apo.

We now formalise the correspondence between intended models and runs. Let
run be the function which takes a word tv satisfying ¥enc-pasics and returns the
word 1 such that || = |ro|/2 and for each position i we have:

(w) : m;A = (qaf787f7§7qN) lﬁ
wo; 2 { wht, fromg, fValy, sVals, fOPg, sOPs, togy }

The definition of ¥epe-pasics makes the function run correctly defined and
unambiguous, and that the results of run satisfy properties P1 and P2.

Fact 5 The function run is uniquely defined and returns words satisfying P1
and P2.

What remains to be done is to ensure properties P3 and P4. Both formulas
rely on the tools established in Exercise 3 and are defined as follows:

vps = G(uht— N\ (from, V dsppom,—1o,)).
7€Q\{q0}
Ypy = G(fVal, — 1/J#fOP+1:#fOP71)

NG (sValy = Yusop, ,—#sop_,)
A G (wht — (fValg<=fVal ) AN G (wht — (sValg<>—sValy))

Lemma 2. If o satisfies Yenc-pasics N Vp3, then run(w) satisfies P1-P3.

Proof. The satisfaction of the properties P1 and P2 by run(w) follows from Fact 5.
Ad absurdum, assume that run(tv) does not satisfy P3. It implies the existence of
a white position p in to such that o, p = to, but w, p+2 |= from,, for some g # ¢'.
By our definition of Minsky machines, we conclude that to,p = fromy, for some
q" # q. Thus, w,p |~ from,,.

From the satisfaction of ¥p3 by o we know that to,p = Vs from, =#to,- Let
k be the total number of positions labelled with from, before p. Since w,p =
V4 from, =#to0, holds, by Exercise 3 we infer that the number of positions satisfying
toq before p is also equal to k. Since 1, p+2 [~ from, and from the satisfaction of
Y ps3 by to we once more conclude w, p+2 = w#fmmq:#toq. But such a situation
clearly cannot happen due to the fact that the number of to, in the past is equal
to k + 1, while the number of from, in the past is k. 0O
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FinaHY7 let us define ¢A as wenc—basics A wPS A 1Z)P4- The use of <+ in wP4
guarantees that fVal, labels exactly the white positions having the counter empty
(and similarly for the second counter). The counters are never decreased from 0,
thus the white positions not satisfying fVal, are exactly those having the first
counter positive.

The proof of the forthcoming fact relies on the correctness of Exercise 3 and
is quite similar to the proof of Lemma 2, and is presented in the appendix.

Lemma 3. If w satisfies ¥4, then run(r) is a run of A.

Lastly, to show that the encoding is correct, we need to show that each run
has a corresponding model. It is again easy: it can be shown by constructing
an appropriate w; the white positions are defined according to («~), and the
shadows can be constructed accordingly.

Fact 6 If A is a run of A, then there is a word v =14 s.t. run(t) = 4.

Let 9% := ta AF (tog). Observe that the formula % is satisfiable if and
only if A reaches q. The “if” part follows from Lemma 3 and the satisfaction
of the conjunct F (toq) from 1.4. The “only if” part follows from Fact 6. Hence,
from undecidability of the reachability problem Minsky machines we infer our
main theorem:

Theorem 1. The satisfiability problem for LTLy wmarr @s undecidable.

6.1 Undecidability of model-checking

For a given alphabet X', we can define a Kripke structure Ky whose set of traces
is the language (2%)%: the set of states S of Ky is composed of all subsets of X,
all states are initial (7.e. I = S), the transition relation is the maximal relation
(R = SxS) and ¢(X)=X for any subset X C X. It follows that a formula ¢
over an alphabet X is satisfiable if and only if there is a trace of Ky satisfying
. From the undecidability of the satisfiability problem for LTLg mair we get:

Theorem 2. Model-checking of LTLg maie formulae over Kripke structures is
undecidable.

The decidability can be regained if additional constraints on the shape of Kripke
structures are imposed: model-checking of LTLg 1a1¢ formulae over flat structures
is decidable [13].

As discussed earlier, the Half operator can be expressed in terms of the PM
operator. Hence, we conclude:

Corollary 2. Model-checking and satisfiability problems for LTLy pm are un-
decidable.
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6.2 Most-Frequent Letter and Undecidability

We next turn our attention to the MFL operator, which turns out to be a little
bit problematic. Typically, formulae depend only on the atomic propositions that
they explicitly mentioned. Here, it is not the case. Consider a formula ¢ = MFL a
and words w; = {a}{}{a} and wy = {a,b}{b}{a,b}. Clearly, w;,2 |= ¢ whereas
w2,2 [~ . This can be fixed in many ways — for example, by parametrising
MFL with a domain, so that it expresses that “a is the most frequent letter
among by, ...,b," We show, however, that even this very basic version of MFL
is undecidable. The proof is an adaptation of our previous proofs with a little
twist inside.

First, we adjust the definition of shadowy words. A word w is strongly shadowy
if w is shadowy and for each even position of tv we have that wht and shdw are the
most frequent letters among the other labelling v while for odd positions wht is
the most frequent. Note that the words constructed in the previous sections were
strongly shadowy because each letter o appeared only at whites or at shadows.

MFL

shadowy defining strongly shad-

FEzercise 4. There exists an LTLg mpr, formula
owy words.

Proof. 1t suffices to revisit Exercise 1 and to modify the formula ¢, stipulating

that odd positions are exactly those labelled with shdw (since it is the only

formulae employing Half ). We claim that ¢2; can be expressed with

eMEL .= G [MFL (wht) A (wht <+ MFL (shdw))]

Indeed, take any word w = ¢ A @MELOf course we have w,0 = wht (due to
¢y, Moreover, w, 1 = shdw holds: otherwise we would get contradiction with
shdw not being the most frequent letter in the past of 1. Now assume p > 1 and
assume that the word tvg, ..., t0,_; is strongly shadowy. Consider two cases. If p
is odd, then both wht and shdw are the most frequent letters in the past of p—1
and p—1 is labelled by wht. Then, shdw is not the most frequent letter in the past
of p and thus p is labelled by shdw and wht is the most frequent letter in the past
of p. If p is even, p—2 is labelled by wht and the most frequent letters in the past
of p—2 are wht and shdw, and p—1 is labelled by shdw. Thus both wht and shdw
are the most frequent letters in the past of p and therefore wht is labelled by wht.
Thus, wy, ..., w, is strongly shadowy. By induction, tv is strongly shadowy. It

can be readily checked that every strongly shadowy word satisfies wi‘;{f(fowy. 0O

We argue that over the strongly shadowy models, the formulae Half o and
MFL o are equivalent.

Lemma 4. For all strongly shadowy words 1 = w%ﬁowy, all even positions 21

and all letters o we have the equivalence w,2i = Half o iff 0,2 = MFLo.

Proof. Ifro,2i = MFL o, then w, 2i = MFL wht due to the strongly shadowness
of . Hence #5 (v, 2i) = #5,,(10,2i) = 2!, implying w,2i = Half 0.

Now, assume that to, 2i = Half o holds, so o appears i times in the past. Since
1 is strongly shadowy we know that wht is the most frequent letter. Moreover,
wht appears % =4 times in the past. Hence, w,2i = MFL 0. O
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We say that a letter o is importunate in a word w if o labels more than half
of the positions in some even prefix of tv. Notice that strongly shadowy words
cannot have importunate letters.

With the above lemma, it is tempting to finish the proof as follows: replace
each Half (¢) in the formulae from Section 4.1 with MFL (p,) for some fresh
atomic proposition p, and require that G (¢ > p,) holds. A formula obtained
from ¢ in this way will be called a dehalfication of ¢ and will be denoted with
dehalf (). The next lemma shows that dehalf(-) preserves satisfaction of certain
LTLF,Half formulae.

Lemma 5. Let ¢ be an LTLg ngaie formula without nested Half operators and
without F modality, A be the set of all formulae \ such that Half X\ appears in
@ and let w be a word such that w = w%gjowy A Nxea G (o < A). Then for
all even positions 2p of w we have that vo,2p = dehalf(p) implies w,2p E .

Moreover, w = G (wht — dehalf(y)) implies w = G (wht — ).

Proof. The proof goes via structural induction over LTLg maie formulae without
nested Half operators and without F operators. The only interesting case is
when ¢ = Half )\, which follows from Lemma 4. O

Note, however, that the above lemma works only one way: it fails when the
formula ¢ is satisfied in more than half of the positions of some prefix, as that
would make p, importunate leading to unsatisfiablity of 1/)%5 dLowy.

6.3 Most-Frequent Letter: the reduction

The next step is to construct a formula defining truly X 4-shadowy words, which
are the crucial part of %Izﬁmics. To do it, we first need to rewrite a formula @77,

transferring the truth of a letter o from whites into their shadows. The main ingre-

dient of pX%7% is the formula @0y := G (wht — Half ([wht A o] V [shdw A =5])),
which we replace with dehalf(¢()). We call the obtained formula (@frens)MEL
and show its correctness below.

First, by Lemma 5 we know that every model of (p2%)MFL i5 also a model
of o™ Then, the models of p%% can be made strongly shadowy, so dehalfi-
cation of "¢ is satisfiability-preserving.

Lemma 6. Let p, be a fresh letter for ¢ := [wht A o] V [shdw A —G]. Take 1o,
a strongly shadowy word satisfying w = @l without any occurrences of py.

Then v, the word obtained by labelling with p, all the positions of v satisfying
@, is strongly shadowy.

Hence, we obtain the correctness of (p!2%)MFL By applying the same strategy

g~~0
to other conjuncts of Yenc-pasics and Fact 5, we obtain ’(/J%};_Lbasics satisfying:

Corollary 3. The function run (taking as input the words satisfying YMEL - )

is uniquely defined and returns words satisfying P1 and P2. Moreover the formulae

MFL . .
emestasics AN Yenc_pasics are equi-satisfiable.
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Towards completing the undecidability proof we need to prepare the rewritings
of the formulae ¢ p3 and ¢ py. For ¢ p3 we proceed similarly to the previous case.
We know that the models of ML - Adehalf(1ps) satisfy P3 (due to Lemma 5
they satisfy ¥ p3 and hence, by Lemma 2, also P3). To observe the existence
of such models, we show again that the satisfiability of ®¥ps is preserved by

dehalfication.

Lemma 7. Let p, be a fresh letter for pq := [wht A from |V [shdw A —to,) indexed
over q € Q\{qo}. Take v, a strongly shadowy word satisfying v = pMEL . Aipps
without any occurrences of py. Then w', the word obtained by labelling with p,

all the positions of 1o satisfying g, is strongly shadowy.
From Lemma 2, Lemma 7 and Lemma 5 we immediately conclude:

Corollary 4. If w satisfies ML . Adehalf(¢ps), then run(w) satisfies P1-

P3. Moreover the formulae é‘fiﬁmsics A dehalf(¥p3) and Yenc-pasics N Wp3 are
equi-satisfiable.

The last formula to rewrite is ¥ py. We focus only on its first part, speaking
about the first counter, i.e.

G (fValy — Half ([wht A fOP 1]V [shdw A =fOP _1]) AN G (wht — (fValy <> —fVal,))

Note that this time we cannot simply dehalfise this formula: the letter re-
sponsible for the inner part of Half would necessarily be importunate — con-
sider an initial fragment of a run of A in which A increments its first counter
without decrementing it. Fortunately, we cannot say the same when the ma-
chine decrements the counter and hence, it suffices to express the equivalent
(due to even length of shadowy models) statement ¢, as follows: G (fVal, —

—~—

Half =([wht A fOP ]V [shdw A ~fOP_,]) A G (wht — (fValy <> —fVal,)).

As we did before, we show that dehalfication of ¢, preserves satisfiability:
Lemma 8. Let p, be a fresh letter for ¢ := =([wht A fOP 1]V [shdw A —|f513'_/1}).
Take 1o, a strongly shadowy word satisfying w = pMEL - A dehalf(¢ps) A Y,
without any occurrences of p,. Then w', the word obtained by labelling with p,
all the positions of v satisfying @, is strongly shadowy.

Finally, let (¢%)M = ML A dehalf(ips) A dehalf(ips) A F tog. From

enc-basics
Lemma 3, Lemma 8 and Lemma 5 we immediately conclude:

Corollary 5. If w satisfies (1/)?4)MFL then it satisfies P1-P/j. Moreover the for-
mulae (V3)MFE and ¢ are equi-satisfiable.

Thus, by Theorem 1 and the above corollary, we obtain the undecidability
of LTLg mr1,. Undecidability of the model-checking problem is concluded by
virtually the same argument as in Section 6.1. Hence:

Theorem 3. The model-checking and the satisfiability problems for LTLy mrL
are undecidable.
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7 Decidable variants

We have shown that LTLg with frequency operators lead to undecidability. With-
out the operators that can express F (e.g. F, G or U), the decision problems
become N P-complete. Below we assume the standard semantics of LTL operator
X, d.e.w,if=Xpiff i+1 < |w| and tv,i+1 = ¢.

Theorem 4. Model-checking and satisfiability problems for LTLx mrL.pv are
N P-complete.

The complexity of LTLx mrr,pm is so low because the truth of the formula
depends only on some initial fragment of a trace. This is a big restriction of the
expressive power. Thus, we consider a different approach motivated by [7].

In the new setting, we allow to use arbitrary LTL formulae as well as per-
centage operators as long as the they are not mixed with G. We introduce a
logic LTL”, which extends the classical LTL [29] with the percentage operators
of the form Py for any e { <, <,=,>,>}, k € Nand ¢ € LTL. By way
of example, the formula P _9q9(a) is true at a position p if less then 20% of
positions before p satisfy a. The past majority operator is a special case of the
percentage operator: PM = P >50y. Formally:

Wi P oggeif {7 <i:w,jlE e} i

To avoid undecidability, the percentage operators cannot appear under nega-
tion or be nested. Therefore, the syntax of LTL” is defined with the grammar
o, 0" =YL | eV | oA¢" | F(YrrL A Pary¥irL), where YL, ¥y
are (full) LTL formulae.

The main tool used in the decidability proof is the Parikh Automata [21].
A Parikh automaton P = (A, &) over the alphabet Y is composed of a finite-
state automaton A accepting words from X* and a semi-linear set £ given as a
system of linear inequalities with integer coefficients, where the variables are z,
for a € Y. We say that P accepts a word w if A accepts v and the mapping
assigning to each variable z, from &£ the total number of positions of tv carrying
the letter a, is a solution to £. Checking non-emptiness of the language of P can
be done in NP [17]. Our main decidability results is obtained by constructing an
appropriate Parikh automaton recognising the models of an input LTL” formula.

Theorem 5. Model-checking and satisfiability problems for LTL” are decidable.

Proof. Let ¢ € LTL”. By turning ¢ into a DNF, we can focus on checking
satisfiability of some of its conjuncts. Hence, w.l.o.g. we assume that ¢ = g A
A, i, where g is in LTL and all ¢; have the form F (wLTL APk %LZJLTL) for
some LTL formulae z/JLTL and wLTL Observe that a word v is a model of ¢ iff it
satisfies pg and for each conjunct ¢; we can pick a witness position p; from 1 such
that ,p; = Yity, A Poak,otiiag,. Moreover, the percentage constraints inside
such formulae speak only about the prefix w.,,. Thus, knowing the position p;
and the number of positions before p; satisfying wi’%L, the percentage constraint
inside ¢; can be imposed globally rather than locally. It suggests the use of Parikh
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automata: the LTL part of ¢ can be checked by the appropriate automaton A
(due to the correspondence that for an LTL formula over finite words one can
build a finite-state automaton recognising the models of such a formula [19]) and
the global constraints, speaking about the satisfaction of percentage operators,
can be ensured with a set of linear inequalities £.

Our plan is as follows: we decorate the intended models to with additional
information on witnesses, such that the witness position p; for ¢; will be labelled
by w; (and there will be a unique such position in a model), all positions before
p; will be labelled by b; and, among them, we distinguish with a letter s; some
special positions, i.e. those satisfying wi’%L. More formally, for each ¢; we produce
an LTL formula ¢} according to the following rules:

— there is a unique position p; such that w,p; = w; (selecting a witness for ;),

— for all j < p; we have 1, j |= b; (the positions before p; are labelled with b;),

- wEG(s—[bA ¢£%L]) (distribution of the special positions among b;) and
i1 "

— w,p; = Yy (a precondition for ;).

Let ¢ := 0o A Ny €4 A Ny F (pi A Poag,%8:). Note that w = ¢ implies
1w = . Moreover, any model to |= ¢ can be labelled with letters b;, s;, w; such
that the decorated word satisfies ¢'. Let ¢” := g A A\, ¢ and let € be the
system of n inequalities with & = 100 - a3, < k; - x5,. Now observe that any
model of ¢ satisfies £ (i.e. the value assigned to x, is the total number of
positions labelled with a), due to the satisfaction of counting operators, and vice
versa: every word 1o = ¢’ satisfying £ is a model of ¢”. It gives us a sufficient
characterisation of models of ¢. Let A be a finite automaton recognising the
models of ¢, then a Parikh automaton P = (A, £), as we already discussed, is
non-empty if and only if ¢ has a model. Since checking non-emptiness of P is
decidable, we can conclude that LTL” is decidable. 0O

A rough complexity analysis yields an NEXPTIME upper bound on the prob-
lem: the automaton P that we constructed is exponential in ¢ (translating ¢
to DNF does not increase the complexity since we only guess one conjunct,
which is of polynomial size in ¢). Moreover, checking non-emptiness can be
done non-deterministically in time polynomial in the size of the automaton.
The NExpPTIME bound is not optimal: we conjuncture that the problem is
PSpacE-complete. We believe that by employing techniques similar to [7], one
can construct P and check its non-emptiness on the fly, which should result in
the PSPACE upper bound.

For the model-checking problem, we observe that determining whether some
trace of a Kripke structure K = (S, I, R, () satisfies ¢ is equivalent to checking the
satisfiability of formula i A ¢, where i is a formula describing all the traces of
K. Such a formula can be constructed in a standard manner. For simplicity, we
treat S as a set of auxiliary letters, and consider the conjunction of (1) \/ ., s, (2)
G(XT =V ser(sAXs)) and (3) Ayeg G (s = A\ cqs) D), expressing that
the trace starts with an initial state, consecutive positions describe consecutive
states and that the trace is labelled by the appropriate letters. Thus, the model-
checking problem can be reduced in polynomial time to the satisfiability problem.
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8 Two-Variable First-Order Logic with Majority

The Two-Variable First-Order Logic on words (FO*[<]) is a robust fragment
of First-Order Logic FO interpreted on finite words. It involves quantification
over variables x and y (ranging over the words’ positions) and it admits a linear
order predicate < (interpreted as a natural order on positions) and the equality
predicate =. Henceforth we assume the usual semantics of FO?[<] (cf. [16]).

In this section, we investigate the logic FOﬁ,,[<], namely the extension of
F02[<] with the so-called Majority quantifier M. Such quantifier was intensively
studied due to its close connection with circuit complexity and algebra, see
e.g. [22,5,6]. Intuitively, the formula Mz.@ specifies that at least half of all the
positions in a model, after substituting « with them, satisfy ¢. Formally o |
Mz.¢ holds, if and only if % < Hp | w,p | lz/p]}|. We stress that the
formula Mz.¢ may contain free occurrences of the variable y.

Note that the Majority quantifier shares similarities to the PIM operator, but
in contrast to PM, the M quantifier counts globally. We take advantage of such
similarities and by reusing the technique developed in the previous sections, we
show that the satisfiability problem for FO3[<] is also undecidable. We stress
that our result significantly sharpens an existing undecidability result for FO with
Majority from [23] (since in our case the number of variables is limited) as well
as for FO?[<, succ] with Presburger Arithmetics from [25] (since our counting
mechanism is limited and the successor relation succ is disallowed).

Proof plan There are three possible approaches to proving the undecidability
of FO%A[<]. The first one is to reproduce all the results for LTLg pn, which
is rather uninspiring. The second one is to define a translation from LTLg pm
to FOy[<] that produces an equisatisfiable formula. But because of models of
odd length, this involves a lot of case study. Here we present a third approach,
which, we believe, gives the best insight: we show a translation from LTLg pn to
FOY[<] that works for LTLg pp formulae whose all models are shadowy. Since
we only use such models in the undecidability proof of LTLg pm, this shows the
undecidability of FOY[<].

Shadowy models We first focus on defining shadowy words in FO}[<]. Before
we start, let us introduce a bunch of useful macros in order to simplify the
forthcoming formulae. Their names coincide with their intuitive meaning and
their semantics.

— Halfx.p := Mx.p A Mx.—p,
— first(z) = —Jyy <z, second(x) = Jyy <z AVyy <z — first(y),
— last(z) = —Jyy >z, sectolast(x) := Jyy > AVyy >ax — last(y)

Lemma 9. There is an FOy[<] formula wfh?ldowy defining shadowy words.

Proof. Let @™ be a formula defining the language of all (non-empty) words,

where the letters wht and shdw label disjoint positions in the way that the first
position satisfies wht and the total number of shdw and wht coincide. It can be
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written, e.g. with Vz(wht(x) <> —shdw(x))AJx(first(x) Awht(x)) AHalfz.wht(z) A
Halfz.shdw(z). To define shadowy words, it would be sufficient to specify that
no neighbouring positions carry the same letter among { wht, shdw }. This can
be done with, rather complicated at the first glance, formulae:

Lp{;),;ﬁifht(x) = whi(x) — Halfy. ([y < & A whit(y)] V [x < y A shdw(y)]),

plorbid (@) = shdw(z)—Halfy. ([(y<z V a=y) A shdw(y)|V[z<y A wht(y)]) .

bid bid
Flnauy’ let wehadowy = (Péeargeg AVz. (‘p{;l:t tht( ) 90?;;112 shdw(x))

Showing that shadowness implies the satisfaction of 1/}5,“1 dowy €21 be done by

routine induction. For the opposite direction, take to |= 159 dowy- Since 10 [= plemd
the only possibility for 1w to not be shadowy is to have two consecutive positions
p,p+1 carrying the same letter. W.l.o.g assume they are both white. Let w be
the number of white positions to the left of p and let s be the number of shadows

to the right of p. By applying @fgﬁﬁht to p we infer that w + s = %|m| On the

other hand, by applying cp{j;f_izlht to p+1 it follows that (w+1)+s = %\m|, which
contradicts the previous equation. Hence, tv is shadowy. O

Translation Tt is a classical result from [16] that FO?[<] can express LTLg.
We define a translation tt,(p) from LTLg pm to FO%,,[<], parametrised by a
variable v (where v is either z or y and v denotes the different variable from
v), inductively. We write v < v rather than v < v Vv = v for simplicity. For
LTLy cases, we follow [16]: tt,(a) := a(v), for a fresh unary predicate a for
each a € AP, tr,(—p) = —tr,(9), tty(p A @) = tr, (@) Atry (), te,(Fop) =
v (v < ) Ateg(p). For PM, we propose tt,(PM ) := Mo((0 < v A trg(p)) V
(1") > v A wht(v))). Finally, for a given LTLg pn formula ¢, let tv(y) stand for

shadowy A Jz. (ﬁTSt( ) A ttiﬂ(@))
The following lemma shows the correctness of the presented translation.

Lemma 10. An LTLg py formula ¢ has a shadowy model iff te(¢) has a model.

Since the formulae used in our undecidability proof for LTLg pv have only
shadowy models, by Lemma 10 we conclude that FOY[<] is also undecidable.

Theorem 6. The satisfiability problem for FOY[<] is undecidable.

9 Conclusions

We have provided a simple proof showing that adding different percentage op-
erators to LTLg yields undecidability. We showed that our technique can be
applied to an extension of first-order logic on words, and we hope that our work
will turn useful in showing undecidability for other extensions of temporal logics.
Decidability results for logics with percentage operators in restricted contexts
were also provided.
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Abstract. We describe the canonical weak distributive law 6: SP —
PS of the powerset monad P over the S-left-semimodule monad S, for
a class of semirings S. We show that the composition of P with S by
means of such ¢ yields almost the monad of convex subsets previously in-
troduced by Jacobs: the only difference consists in the absence in Jacobs’s
monad of the empty convex set. We provide a handy characterisation of
the canonical weak lifting of P to EM(S) as well as an algebraic the-
ory for the resulting composed monad. Finally, we restrict the composed
monad to finitely generated convex subsets and we show that it is pre-
sented by an algebraic theory combining semimodules and semilattices
with bottom, which are the algebras for the finite powerset monad Py.

Keywords: algebraic theories - monads - weak distributive laws.

1 Introduction

Monads play a fundamental role in different areas of computer science since they
embody notions of computations [32], like nondeterminism, side effects and ex-
ceptions. Consider for instance automata theory: deterministic automata can be
conveniently regarded as certain kind of coalgebras on Set [33], nondeterminis-
tic automata as the same kind of coalgebras but on EM(Py) [35], and weighted
automata on EM(S) [4]. Here, Py is the finite powerset monad, modelling nonde-
terministic computations, while S is the monad of semimodules over a semiring
S, modelling various sorts of quantitative aspects when varying the underlying
semiring S. It is worth mentioning two facts: first, rather than taking coalgebras
over EM(T), the category of algebras for the monad T, one can also consider
coalgebras over KI(T"), the Kleisli category induced by T' [20]; second, these two
approaches based on monads have lead not only to a deeper understanding of the
subject, but also to effective proof techniques [6,7,14], algorithms [1,8,22,36,39]
and logics [19,21,27].

Since compositionality is often the key to master complex structures, com-
puter scientists devoted quite some efforts to compose monads [40] or the equiva-
lent notion of algebraic theories [24]. Indeed, the standard approach of composing
monads by means of distributive laws [3] turned out to be somehow unsatisfac-
tory. On the one hand, distributive laws do not exist in many relevant cases:
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see [28,41] for some no-go theorems; on the other hand, proving their existence
is error-prone: see [28| for a list of results that were mistakenly assuming the
existence of a distributive law of the powerset monad over itself.

Nevertheless, some sort of weakening of the notion of distributive law—e.g.,
distributive laws of functors over monads [26]-proved to be ubiquitous in com-
puter science: they are GSOS specifications [38], they are sound coinductive
up-to techniques [7] and complete abstract domains [5]. In this paper we will
exploit weak distributive laws in the sense of [15] that have been recently shown
successful in composing the monads for nondeterminism and probability [17].

The goal of this paper is to somehow combine the monads Py and S men-
tioned above. Our interest in S relies on the wide expressiveness provided by the
possibility of varying S: for instance by taking S to be the Boolean semiring,
one obtains the monad Py; by fixing S to be the field of reals, coalgebras over
EM(S) turn out be linear dynamical systems [34].

We proceed as follows. Rather than composing Py, we found it convenient to
compose the full, not necessarily finite, powerset monad P with S. In this way we
can reuse several results in [12] that provide necessary and sufficient conditions
on the semiring S for the existence of a canonical weak [15] distributive law
§: SP — PS. Our first contribution (Theorem 21) consists in showing that
such 0 has a convenient alternative characterisation, whenever the underlying
semiring is a positive semifield, a condition that is met, e.g., by the semirings of
Booleans and non-negative reals.

Such characterisation allows us to give a handy definition of the canoni-
cal weak lifting of P over EM(S) (Theorem 24) and to observe that such lift-
ing is almost the same as the monad C: EM(S) — EM(S) defined by Jacobs
in [25] (Remark 25): the only difference is the absence in C of the empty subset.
Such difference becomes crucial when considering the composed monads, named
CM: Set — Set in [25] and P.S: Set — Set in this paper: the latter maps a set
X into the set of convex subsets of S X, while the former additionally requires the
subsets to be non-empty. It turns out that while K1(CM) is not CPPQ-enriched,
a necessary condition for the coalgebraic framework in [20], KI(P.S) indeed is
(Theorem 30).

Composing monads by means of weak distributive laws is rewarding in many
respects: here we exploit the fact that algebras for the composed monad P.S
coincide with d-algebras, namely algebras for both P and S satisfying a certain
pentagonal law. One can extract from this law some distributivity axioms that,
together with the axioms for semimodules (algebras for the monad §) and those
for complete semilattices (algebras for the monad P), provide an algebraic theory
presenting the monad P.S (Theorem 32).

We conclude by coming back to the finite powerset monad Py. By replac-
ing, in the above theory, complete semilattices with semilattices with bottom
(algebras for the monad Py) one obtains a theory presenting the monad Py.S of
finitely generated convex subsets (Theorem 35), which is formally defined as a
restriction of the canonical P.S. The theory, displayed in Table 1, consists of the



104 F. Bonchi and A. Santamaria

Table 1. The sets of axioms FEs, for semilattices (left), Frsa for S-semimodules
(right) and Eps for their distributivity (bottom).

(zUy)Uz=zU(@yUz2) || (z+y)+z=2+Ww+2) A+sp)-z=AXz+pu-zx
rUy=yUx r+y=y+z Os-x=0
Ul ==z r+0==z Ap)-z=X-(p-x)
xUx =z A(z4+y)=A-z+Xy
A-0=0
AL =1 for X # 0s A(zUy) =A-z)U(N-y)
r+1l=1 x4+ (yUz)=(z+y)U(z+2)

theory presenting the monad P; and the theory presenting the monad S with
four distributivity axioms.

To save space we had to omit most of the proofs of the results in this article:
the interested reader can find them in [9].

Notation. We assume the reader to be familiar with monads and their maps.
Given a monad (M, nM, M) on C, EM(M) and KI(M) denote, respectively, the
Eilenberg-Moore category and the Kleisli category of M. The latter is defined
as the category whose objects are the same as C and a morphism f: X — Y
in KI(M) is a morphism f: X — M(Y) in C. We write UM : EM(M) — C and
Upr: KI(M) — C for the canonical forgetful functors, and F™: C — EM(M),
Fyr: C — KI(M) for their respective left adjoints. Recall, in particular, that
FM(X) = (X,p¥) and, for f: X — Y, FM(f) = M(f). Given n a natural
number, we denote by n the set {1,...,n}.

2 (Weak) Distributive laws

Given two monads S and T on a category C, is there a way to compose them
to form a new monad ST on C? This question was answered by Beck [3] and
his theory of distributive laws, which are natural transformations 6: T'S — ST
satisfying four axioms and that provide a canonical way to endow the composite
functor ST with a monad structure. We begin by recalling the classic definition.
In the following, let (T, 7", uT) and (S, 7n°, u¥) be two monads on a category C.

Definition 1. A distributive law of the monad S over the monad T is a natural
transformation 6: T'S — ST such that the following diagrams commute.

7SS %5, STS 5% §ST 7S L% 78T L5 STT
] b o
TS g ST TS g ST
(1)
T S

TS 9 ST TS 9 ST
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One important result of Beck’s theory is the bijective correspondence between
distributive laws, liftings to Eilenberg-Moore algebras and extensions to Kleisli
categories, in the following sense.

Definition 2. A lifting of the monad S to EM(T) is a monad (S, nd, ,ug) where

EM(T) —5— EM(T) ~ ~
FTT TFT COmmutes, UT’I’IS = ’)’}SUT, UTMS — ,U/SUT.

C S C

An extension of the monad T to KI1(S) is a monad (T, 07, ,uf) such that

c—L—-c
Fsl lFS commutes, 1 FS an, L FS Fslj,

KI(S) —— KI(S)

Bohm [11] and Street [37] have studied various weaker notions of distributive
law; here we shall use the one that consists in dropping the axiom involving n”
in Definition 1, following the approach of Garner [15].

Definition 3. A weak distributive law of S over T is a natural transformation
§: TS — ST such that the diagrams in (1) regarding p°, p* and n° commute.

There are suitable weaker notions of liftings and extensions which also bijec-
tively correspond to weak distributive laws as proved in [11,15].

Definition 4. A weak lifting of S to EM(T) consists of a monad (S, ng, ,ug) on
EM(T) and two natural transformations

vrs —» syT — =, yTs

such that me = idUTg and such that the following diagrams commute:

Urss —5, suyTs —5-, §suT . uT

UT/ASl luSUT v V \WSAUT (2)
Urs z suT Urs d SuT
SsUuT 2T, guTS§ 5, yTSS . g .

uSUTl lUT;LS K ‘UT/ YAU (3)
SUT m UTs SUT T urs

A weak extension of T' to KI(S) is a functor T: KI(S) — KI(S) together with a
natural transformation uT: TT — T such that FsT = TFS and MTFS = FSMT.
Theorem 5 ([3,11,15]). There is a bijective correspondence between (weak)

distributive laws TS — ST, (weak) liftings of S to EM(T) and (weak) extensions
of T to KI(S).
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3 The Powerset and Semimodule Monads

The Monad P. Let us now consider, as S, the powerset monad (P,np,up),
where 7% (z) = {z} and p§ (U) = Upey U. Its algebras are precisely the com-
plete semilattices and we have that KI(P) is isomorphic to the category Rel of
sets and relations. Hence, giving a distributive law TP — PT is the same as
giving an extension of 7" to Rel: for this to happen the notion of weak cartesian
functor and natural transformation is crucial.

Definition 6. A functorT: Set — Set is said to be weakly cartesian if and only
if it preserves weak pullbacks. A natural transformation p: F — G is said to be
weakly cartesian if and only if its naturality squares are weak pullbacks.

Kurz and Velebil [29] proved, using an original argument of Barr [2], that an
endofunctor 7" on Set has at most one extension to Rel and this happens precisely
when it is weakly cartesian; similarly a natural transformation ¢: F' — G, with
F and G weakly cartesian, has at most one extension ¢: F — G, precisely when
it is weakly cartesian. The following result is therefore immediate.

Proposition 7 ([15, Corollary 16]). For any monad (T,n™, u*) on Set:

1. There exists a unique distributive law of P over T if and only if T, nT and
uT are weakly Cartesian.
2. There exists a unique weak distributive law of P over T if and only if T and

uT are weakly Cartesian.

The Monad 8. Recall that a semiring is a tuple (S, +, -, 0, 1) such that (S, +,0)
is a commutative monoid, (S,-,1) is a monoid, - distributes over + and 0 is an
annihilating element for -. In other words, a semiring is a ring where not every
element has an additive inverse. Natural numbers N with the usual operations
of addition and multiplication form a semiring. Similarly, integers, rationals and
reals form semirings. Also the Booleans Bool = {0, 1} with V and A acting as +
and -, respectively, form a semiring.

Every semiring S generates a semimodule monad S on Set as follows. Given a
set X, S(X) = {p: X — S| supp o finite}, where supp p = {z € X | p(z) # 0}.
For f: X =Y, define for all p € S(X)

SN =(ym X @)Y -8
zef~{y}

This makes S a functor. The unit 7% : X — S(X) is given by 1% (z) = A,, where
A, is the Dirac function centred in x, while the multiplication u$: S?(X) —
S(X) is defined for all ¥ € S?(X) as

pR@) = (2 3 W) @) X - 5.

pEsupp ¥
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Table 2. Definition of some properties of a semiring S. Here a,b,c,d € S.

Positive [a+b=0 = a=0=0

Semifield|a #0 = Jz.a-z=x-a=1

Refinablela+b=c+d = 3Jz,y,z,t.x+y=a,z+t=b,x+z=c,y+t=d
(A) jla+b=1= a=00rb=0

(B) |la-b=0 = a=0o0rb=0

(©) at+c=b+c = a=0b

(D) |Va,b.3z.a+z=borb+zxz=a

(B) la+b=c-d = 3t: {(x,y) € S|z +y=d} — S such that

Z t(mvy)m:av Z t(xvy)y:b7 Z t($7y):C'

z+y=d z+y=d zty=d

An algebra for S is precisely a left-S-semimodule, namely a set X equipped with
a binary operation +, an element 0 and a unary operation A- for each A € 5,
satisfying the equations in Table 1. Indeed, if X carries a semimodule structure
then one can define a map a: SX — X as, for p € §X,

a(p) =) pl)-a (4)

zeX

where the above sum is finite because so is supp ¢. Vice versa, if (X,a) is an
S-algebra, then the corresponding left-semimodule structure on X is obtained
by defining for all A € S and z,y € X

r+'y=a(z— 1,y —1), 0% = a(e), Atz =alz— A). (5)

Above and in the remainder of the paper, we write the list (1 + s1,..., 2, —
$y) for the only function ¢: X — S with support {z1,...,z,} mapping z; to s;
and we write the empty list ¢ for the function constant to 0. For instance, for
a=pS: S§X — SX, the left-semimodule structure is defined for all 1, s €
SX and x € X as

S

(1 +1° p2)(x) = p1(x) + @2(x), 0" (z) =0, (A - p1)(@) = A~ o ().

Proposition 7 tells us exactly when a (weak) distributive law of the form
TP — PT exists for an arbitrary monad 7" on Set. Take then 7' = S: when are
the functor S and the natural transformations n° and uS weakly cartesian? The
answer has been given in [12] (see also [18]), where a complete characterisation in
purely algebraic properties for S is provided. In Table 2 we recall such properties.

Theorem 8 ([12]). Let S be a semiring.

1. The functor S is weakly cartesian if and only if S is positive and refinable.

2. n% is weakly cartesian if and only if S enjoys (A) in Table 2.

3. If S is weakly cartesian, then pS is weakly cartesian if and only if S enjoys
(B) and (E) in Table 2.
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Remark 9. In [12, Proposition 9.1] it is proved that if S enjoys (C) and (D), then
S is refinable; if S is a positive semifield, then it enjoys (B) and (E). In the next
Proposition we prove that if S is a positive semifield then it is also refinable,
hence S and p® are weakly cartesian.

Proposition 10. If S is a positive semifield, then it is refinable.

Proof. Let a, b, ¢c and d in S be such that a +b = c+d. If a + b = 0, then take
r=y=z=t=0, otherwise take

ac ad be . bd
- —_— = z = = .
crd YT cxad c+d’ c+d
Thenz4+y=a,z+t=bx+z=c,y+t=d. O

Example 11. Tt is known that, for S = N, a distributive law §: SP — PS exists.
Indeed one can check that all conditions of Theorem 8 are satisfied, therefore we
can apply Proposition 7.1. In this case, the monad SX is naturally isomorphic
to the commutative monoid monad, which given a set X returns the collection
of all multisets of elements of X. The law § is well known (see e.g. [15,23]): given
a multiset (Aj,...,A,) of subsets of X in SPX, where the A;’s need not be
distinct, it returns the set of multisets {(a1,...,an) | a; € A;}.

Convex Subsets of Left-semimodules. Theorem 8 together with Propo-
sition 7.1 tell us that whenever the element 1 of S can be decomposed as a
non-trivial sum there is no distributive law §: SP — PS. Semirings with this
property abound, for example Q, R, R* with the usual operations of sum an
multiplication, as well as Bool (since 1V 1 = 1). Such semirings are precisely
those for which the notion of conver subset of their left-semimodules is non-
trivial. For the existence of a weak distributive law, however, this condition on
1g is not required: convexity will indeed play a crucial role in the definition of
the weak distributive law.

Definition 12. Let S be a semiring, X an S-left-semimodule and A C X. The
convex closure of A is the set

A—{Xn:)\za,|n€N,al€A,zn:/\Z—1}gX

i=1 i=1
The set A is said to be convex if and only if A= A.
Recalling that the category of S-left-semimodules is isomorphic to EM(S),

we can use (4) to translate Definition 12 of convex subset of a semimodule into
the following notion of convex subset of a S-algebra a: SX — X.

Definition 13. Let S be a semiring, (X,a) € EM(S), A C X. The convex
closure of A in (X, a) is the set

A" = {a(so) | peSX, suppp C A Y o(x) = 1}¢

zeX



Combining Semilattices and Semimodules 109

A is said to be convex in (X, a) if and only if A = A, We denote by PeX the
set of convex subsets of X with respect to a.

Remark 14. Observe that () is convex, because 7 = (), since there is no p € SX
with empty support such that > ¢(z) = 1.

Ezxample 15. Suppose S is such that 7° is weakly cartesian (equivalently (A)
holds: x + y =1 = x =0 or y = 0), for example S = N, and let (X,a) €
EM(S). A ¢ € SX such that )y o(r) =1 and supp ¢ C A is a function that
assigns 1 to ezactly one element of A and 0 to all the other elements of X. These
functions are precisely all the A, for those elements x € A. Since a: SX — X
is a structure map for an S-algebra, it maps the function A, into x. Therefore
A" ={a(A,) |z € A} ={z |2 € A} = A. Thus all A € PSX are convex.

FEzxample 16. When S = Bool, we have that & is naturally isomorphic to Py, the
finite powerset monad, whose algebras are idempotent commutative monoids
or equivalently semilattices with a bottom element. So, for (X,a) € EM(S), a
¢ € SX such that ) . ¢(x) = 1 and suppp C A is any finitely supported
function from X to Bool that assigns 1 to at least one element of A. Intuitively,
such a ¢ selects a non-empty finite subset of A, then a(y) takes the join of all
the selected elements. Thus, A" adds to A all the possible joins of non-empty
finite subsets of A: A is convex if and only if it is closed under binary joins.

4 The Weak Distributive Law 6: SP — PS

Weak extensions of S to KI(P) = Rel only consist of extensions of the functor
S and of the multiplication p®, for which necessary and sufficient conditions
are listed in Theorem 8. Hence for semirings S satisfying those criteria a weak
distributive law 6: SP — PS does exist, and it is unique because there is only
one extension of the functor S to Rel.

Theorem 17. Let S be a positive, refinable semiring satisfying (B) and (E) in
Table 2. Then there exists a unique weak distributive law 0: SP — PS defined
for all sets X and ¢ € SPX as:

VAe PX.P(A)= > (A x) (a)}
(6)

dx(P) = {90 €SX | I e S(>x). Ve € X. p(x) = AX;ZA(A@) (b)

where Sx s the set {(A,z) € PX x X |z € A}.

The above §, which is obtained by following the standard recipe of Proposition 7,
is illustrated by the following example.

FEzample 18. Take S = R with the usual operations of sum and multiplication.
Consider X = {x,y,z,a,b}, A1 = {z,y}, A2 = {y,z} and A3 = {a,b}. Let
® € S(PX) be defined as

@Z(A1F—>5, AQF—>9, A3+—>13)
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and ®(A) = 0 for all other sets A C X, so supp® = {A;, As, A3}. In order to
find an element ¢ € 0x(®), we can first take a ¢ € S(5x) satisfying condition
(a) in (6) and then compute the ¢ € SX using condition (b).

Among the ¢ € S(2x), consider for instance the following:

o (Al,ﬂj) — 2 (Ag,y) — 4 (Ag,(l) — 6
0= ((Ahy) =3 (Az,2) =5 (A3,b0) =7 )

Since @(A1) = (A1, @) + P(A1,y), D(A2) = (A2,y) + ¥(Az,2) and D(A43) =
P(As,a) +1p(As, b), we have that ¢ satisfies condition (a) in (6). Condition (b)
forces ¢ to be the following:

p=(x—2 y—3+4 25 a6, b—T).

Remark 19. Tf S enjoys (A) in Table 2, then the transformation § given in (6)
is actually a distributive law, and for S = N we recover the well-known § of
Example 11. Example 18 can be repeated with S = N: then @ is the multiset
where the set A; occurs five times, Ay nine times and As thirteen times. The
elements of dx (P) are all those multisets containing one element per copy of Ay,
As and Az in supp @. The ¢ provided indeed contains five elements of A; (two
copies of x and three of y), nine elements of Ay (four copies of y and five of z),
thirteen elements of As (six copies of a and seven of b).

As Example 18 shows, each element ¢ of §x (&) is determined by a function
1 choosing for each set A € supp @ a finite number of elements z7',... 27 in A
A

and s7',...,s2 in S in such a way that > 55t = @(A). The function ¢ maps

each xf to sf if the sets in supp @ are disjoint; if however there are xf and x,’f
such that xf = a:kB (like y in Example 18), then 953-4 is mapped to 53-4 + skB.
Among those v’s, there are some special, minimal ones as it were, that choose
for each A in supp @ exactly one element of A, and assign to it @(A). The induced
¢ in 6x (@) can be described as 3~ 4 ¢, -1,y P(A) (equivalently S(u) (@)') where
u: supp ® — X is a function selecting an element of A for each A € supp @ (that

is u(A) € A). We denote the set of such ¢’s by ¢(®P).
(@) = {SW)(P) | u: supp P — X such that VA € supp P.u(A) € A}  (7)

Ezample 20. Take X, A; and A, as in Example 18, but a different, smaller,
¢ € S(PX) defined as ¢ = (A; — 1, Ay — 2). There are only four functions
u: supp ® — X such that u(A) € A and thus only four functions ¢ in ¢(P):

U1:(A1I—>(E, A2l—>y) ©1 =
UQ:(Al’—).’)S7 Ag’—)Z)
uz = (A1 =y, Ay y) 3= (y > 3)
U4:(A1i—>y, A2|—>Z)

Observe that the function ¢ = (z — 1,y — 1,z — 1) belongs to dx(P) but not
to ¢(P). Nevertheless ¢ can be retrieved as the convex combination % o1+ % 3.

! More precisely, we should write S(u)(®’") where &' is the restriction of @ to supp P.
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Our key result states that every ¢ € dx(P) can be written as a convex
combination (performed in the S-algebra (SX, u%)) of functions in ¢(®), at least
when S is a positive semifield, which by Remark 9 and Proposition 10 satisfies
all the conditions that make (6) a weak distributive law. The proof is laborious
and omitted here: we only remark that divisions in S play a crucial role in it.

Theorem 21. Let S be a positive semifield. Then for all sets X and & € SPX

bx (@) = { pS (@) |0 € 82X Y W) = 1, supp¥ C (@) § =« @), (8)
peSX

Remark 22. 1f we drop the hypothesis of semifield and only have the minimal
assumptions of Theorem 17, then (8) does not hold any more: S = N is a
counterexample. Indeed, in this case every subset of SX is convex with respect
to u% (see Example 15), therefore we would have dx (®) = ¢(®), which is false:
the function ¢ of Example 18 is an example of an element in dx (P) \ ¢(P).

Remark 23. When S = Bool (which is a positive semifield), the monad S coin-
cides with the monad Py. The function ¢(-) in (7) can then be described as

¢(A) = {Ps(u)(A) | u: A — X such that VA € A.u(A) € A}

for all A € P;PX. It is worth remarking that this is the transformation x
appearing in Example 9 of [27] (which is in turn equivalent to the one in Example
2.4.7 of [31]). This transformation was erroneously supposed to be a distributive
law, as it fails to be natural (see [28]). However, by taking its convex closure, as
displayed in (8), one can turn it into a weak distributive law.

5 The Weak Lifting of P to EM(S)

By exploiting the characterisation of the weak distributive law ¢ (Theorem 21),
we can now describe the weak lifting of P to EM(S) generated by .

Recall from Definition 13 that P?X is the set of convex subsets of X with
respect to the S-algebra a: SX — X. The functions (x4 : P¢X — PX and
T(X,a): PX — P2 X are defined for all A € P X and B € PX as

a

L(X,a) (A) =A and 7T(X,a) (B) = E s (9)

that is ¢(x q) is just the obvious set inclusion and 7(x ,) performs the convex
closure in a. The function o, : SP$X — PIX is defined for all & € SP!X as

aa(®) = {alp) | ¢ €c(P)}. (10)

To be completely formal, above we should have written ¢(S(¢)(®)) in place
of ¢(®), but it is immediate to see that the two sets coincide. Proving that
aq: SPYX — PrX is well defined (namely, a,(P) is a convex set) and forms an
S-algebra requires some ingenuity and will be shown later in Section 5.1. The
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assignment (X, a) — (P2X,a,) gives rise to a functor P: EM(S) — EM(S)
defined on morphisms f: (X,a) = (X', d’) as

P(f)(A) = Pf(A) (11)

for all A € P2X. For all (X,a) in EM(S), nfi ¢ (X,a) — P(X,a) and
pst_a) : PP(X,a) — P(X,a) are defined for z € X and A € P (P?X) as

n&,a)(a:) ={z} and /LZSX,Q)(A) = U A. (12)
AcA

Theorem 24. Let S be a positive semifield. Then the canonical weak lifting
of the powerset monad P to EM(S), determined by (8), consists of the monad
(P,n",uP) on EM(S) defined as in (10), (11), (12) and the natural transfor-
mations v: USP — PUS and 7: PUS — USP defined as in (9).

It is worth spelling out the left-semimodule structure on P%X corresponding
to the S-algebra o : SPIX — P X. Let us start with A-*+ A for some A € P¢X.
By (5), A% A = ,(®) where & = (A — A). By (10), aq(®) = {alp) |
¢ € ¢(P)}. Following the definition of ¢(P) given in (7), one has to consider
functions u: supp® — X such that u(B) € B for all B € supp ®: if X # 0,
then supp® = {A} and thus, for each x € A, there is exactly one function
Uy : supp® — X mapping A into z. It is immediate to see that S(u,)(P) is
exactly the function ( — A) and thus a(S(uz ) (D)) is, by (5), A-%x. Now if A = 0,
then supp @ = (), so there is ezactly one function u: supp ® — X and S(u)(P)
is the function mapping all € X into 0 and thus, by (5), a(S(u)(®)) = 0°.
Summarising,

A,aaA:{{A-“xlxeA} if A0 "

{0%} ifA=0
Following similar lines of thoughts, one can check that
A+ B={z+"y | € A, ye B} and 0% = {0} (14)

Remark 25. By comparing (14) and (13) with (4) and (5) in [25], it is immediate
to see that our monad P coincides with a slight variation of Jacobs’s convex
powerset monad C, the only difference being that we do allow for @) to be in
PeX. Jacobs insisted on the necessity of C(X) to be the set of non-empty convex
subsets of X, because otherwise he was not able to define a semimodule structure
on C(X) such that 0- 0 = {0*}. However, we do manage to do so, since by (13),
0-A=0°for all A and in particular for A = (). At first sight, this may look like
an ad-hoc solution, but this is not the case: it is intrinsic in the definition of the
unique weak lifting of P to EM(S), as stated by Theorem 24 and shown next.

5.1 Proof of Theorem 24

By Theorem 5, the weak distributive law (6) corresponds to a weak lifting P of
P to EM(S), which we are going to show coincides with the data of (9)-(12). The
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image along P of a S-algebra (X,a) will be a set Y together with a structure
map «, that makes it a S-algebra in turn. Garner [15, Proposition 13| gives
us the recipe to build Y and «, appropriately. Y is obtained by splitting the
following idempotent in Set:

S
e(xa) = PX 25 S(PX) 25 p(SX) Lo PX (15)

as a composite €(x q) = L(X,a) © T(X,a), Where T(x q) is the corestriction of e(x 4)
to its image and u(x ) is the set-inclusion of the image of e x ,) into PX. In
other words, Y is the set of fixed points of e(x 4). a4 is obtained as the composite
St(x,a) Sx

T(X,a)

a, = SY SPX PSX Lo, pX Y.

Let us, then, fix an S-algebra (X,a). Given A € PX, we have n5y(4) =
Ay PX — S, the Dirac-function centred in A. The set dx(n2y(A4)) has a
simple description, shown in the next Lemma.

Lemma 26. For all A€ PX

Ix(npx(A)) = {sﬁ €SX | suppp C A, Y p(x) = 1} :

zeX

The image along A of the idempotent e is therefore

e(A) = Pa(dx (npx (A))) = {a(w) | o € SX,suppp C A, Y plx) = 1} =A%
reX

Hence the idempotent e computes the convex closure of elements of PX and
its fixed points are precisely the convex subsets of X with respect to the struc-
ture map a. Therefore, the carrier set of P(X,a) is precisely P¢X, the natural
transformations 7 and ¢ are, respectively, the convex closure operator and the
set-inclusion of P2X into PX as in (9).

P2X is then equipped with a structure map a,: SP?X — P?X given by
St(x,a)

ox T(X,a)

ag = SPX SPX PSX L% PX PoX.
Let us try to calculate ay: given @: P?X — S with finite support, we have that
S(t(x,a))(P) is just the extension of & to PX which assigns 0 to each non-convex

subset of X. If we write ¢ instead of ¢(x ) for short, we have

a

aq(P) = Pa(dx (S(t)(@))) - (16)
Next, we can use the following technical result.

Proposition 27. Let (X, a) be a S-algebra. If A is a convex subset of (SX, u%;),
then Pa(A) is convez in (X, a).
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Since dx (®') is the convex closure of ¢(®') in (SX, u$;) for every &' € SPX,
by Proposition 27 we can avoid to perform the a-convex closure in (16). Therefore
S
— el
aa(P) = Pa(dx(S(1)(2))) = Pa(c(S(1)(2)) ™).

In the next Proposition we show that also the ui—convex closure is superfluous,
due to the fact that @ € SP*X (and not simply SPX), thus obtaining (10).

Proposition 28. Let S be a positive semifield, (X,a) a S-algebra, € SP?X.
Then Pa(dx (S()(P))) = Pa(c(S(t)(P))).

Proof. In this proof we shall simply write & instead of the more verbose S()(9P).
We want to prove that

Pa(dx (D)) =

{dw|¢68Xﬂuwwm@—%Xu@D€AVx€X¢@ﬂ: z:¢p@} (17)
A€ supp P
u(A)=z

where we have, by Theorem 21, that

Pa(6x(®)) = {al(uX(P)) | ¥ € X, Y W(p) = 1,supp¥ C ()}
peSX

First of all, §) is not a S-algebra, because there is no map S(@) — () given that
S(@) ={0: 0 — S}, hence X # . Next, if ® = e: PX — S, namely the function
constant to 0, then ¢(®) = {e: X — S} therefore one can easily see that the
left-hand side of (17) is equal to {a(e: X — S)}. For the same reason, the right-
hand side is also equal to {a(e: X — S)}. Moreover, if ®(()) # 0, then there is
no u: supp® — X such that u(0) € 0, so ¢(P) = 0 and so is the left-hand side
of (17); for the same reason, also the right-hand side is empty.

Suppose then, for the rest of the proof, that ® # 0 and that @(()) = 0.

For the right-to-left inclusion in (17): given 1 € ¢(®), consider ¥ = 12 (¢) =
Ay € S%2X. Then ¥ clearly satisfies all the required properties and uf( () =,

The left-to-right inclusion is more laborious. Let ¥ € S2X be such that
> vesx P(x) = 1 and such that supp¥ C ¢(®), that is, for all p € supp¥
there is u?: supp® — X such that u¥(A4) € A for all A € supp® and ¢ =
S(u?)(@). We have to show that a(u(¥)) = a(y) for some ¢ € SX of the form
> Acsupp P(A) -u(A) for some choice function u: supp @ — X. Notice that the
given ¥ is a convex linear combination of functions ¢’s in SX like the one we have
to produce: the trick will be to exploit the fact that each A € supp @ is convex.
Here we shall only give a sketch of the proof. Suppose supp ® = {A;,..., A,}
and supp ¥ = {p',...,¢©™}. Call v/ the choice function that generates ’. Then
¥ is of this form:

ul(Al) — @(Al) Um(Al) — @(Al)
w—( : A R HW@M>
ul(Ay) = @(A,) u™(Ap) — P(A,)

el P
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Define the following element of S?X:

ul(Ar) = U(p") ul(An) = ¥(ph)
u™(Ay) = T(p™) u™(Ap) = (™)

Observe that u'(4;),...,u™(A;) € A; by definition, and A; is convex by assump-
tion: since Z L (gpj) = 1 we have that a(x?) € A;. Set then u(4;) = a(x?)
and define v = S(a)(¥’): we have ¢ e ¢(P) with u as the generating choice
function. It is not difficult to see that u$ (¥) = us (¥'), therefore we have

a() = a(S(a)(¥)) = a(pX (")) = a(uX (¥))
as desired. 0O

The rest of the proof of Theorem 24, concerning the action of P on morphisms
and the unit and multiplication of the monad P, consists in following the recipe
provided by Garner [15].

6 The Composite Monad: an Algebraic Presentation

We can now compose the two monads P and S by considering the monad arising
from the composition of the following two adjunctions:

S F75
P T B
Set 1 EM(S) L EM(P)
~_ -~
Us P

Direct calculations show that the resulting endofunctor on Set, which we call
P.S, maps a set X and a function f: X — Y into, respectively,

P.SX = PﬁX(SX) and  P.S(f)(A) = {S(f)(®) | P € A} (18)

for all A € P.SX. For all sets X, n=: X — P.SX and p%: P.SP.SX —
P.SX are defined as

Et@) ={4.)  and RS = | as(2) (19)
e

forall z € X and &« € P.SP.SX.

Theorem 29. Let S be a positive semifield. Then the canonical weak distribu-
tive law §: SP — PS given in Theorem 21 induces a monad P.S on Set with
endofunctor, unit and multiplication defined as in (18) and (19).



116 F. Bonchi and A. Santamaria

Recall from Remark 25 that the monad C: EM(S) — EM(S) from [25] coin-
cides with our lifting 2 modulo the absence of the empty set. The same happens
for the composite monad, which is named CM in [25]. The absence of § in CM
turns out to be rather problematic for Jacobs. Indeed, in order to use the stan-
dard framework of coalgebraic trace semantics [20], one would need the Kleisli
category KI(CM) to be enriched over CPPO, the category of w-complete partial
orders with bottomn and continuous functions. KI(CM) is not CPPQ-enriched
since there is no bottom element in CM(X). Instead, in P.SX the bottom is
exactly the empty set; moreover, KI(P.S) enjoys the properties required by [20].

Theorem 30. The category KI(P.S) is enriched over CPPO and satisfies the
left-strictness condition: for all f: X — P.SY and Z set, Ly zof = 1lxz.

It is immediate that every homset in KI(P.S) carries a complete partial order.
Showing that composition of arrows in KI(P.S) preserves joins (of w-chains)
requires more work: the proof, omitted here, crucially relies on the algebraic
theory presenting the monad P.S, illustrated next.

An Algebraic Presentation. Recall that an algebraic theory is a pair T =
(X, E) where X is a signature, whose elements are called operations, to each of
which is assigned a cardinal number called its arity, while F is a class of formal
equations between X-terms. An algebra for the theory 7T is a set A together with,
for each operation o of arity s in X, a function 04 : A® — A satisfying the equa-
tions of E. A homomorphism of algebras is a function f: A — B respecting the
operations of X in their realisations in A and B. Algebras and homomorphisms
of an algebraic theory T form a category Alg(7).

Definition 31. Let M be a monad on Set, and T an algebraic theory. We say
that T presents M if and only if EM(M) and Alg(T) are isomorphic.

Left S-semimodules are algebras for the theory LSM = (Xrsa, Ecsm)
where Xgrsm = {+,0} U{A- | A € S} and Epsaq is the set of axioms in
Table 1. As already mentioned in Section 3, left S-semimodules are exactly S-
algebras and morphisms of S-semimodules coincide with those of S-algebras.
Thus, the theory LSM presents the monad S.

Similarly, semilattices are algebras for the theory SL = (¥Xs., Esz) where
Ysec = {U, L} and Es, is the set of axioms in Table 1. It is well known that
semilattices are algebras for the finite powerset monad. Actually, this monad is
presented by SL. In order to present the full powerset monad P we need to take
joins of arbitrary arity. A complete semilattice is a set X equipped with joins
|| ca® for all-mot necessarily finite-A C X. Formally the (infinitary) theory
of complete semilattices is given as CSL = (Xesr, Ecsr) where Yese = {[; |
I set} and Eesc is the set of axioms displayed in Table 3 (for a detailed treatment
of infinitary algebraic theories see, for example, [30]).

We can now illustrate the theory (X, FE) presenting the composed monad
P.S: the operations in X are exactly those of complete semilattices and S-
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Table 3. The sets of axioms Ecs, for complete semilattices: the second axiom gen-
eralises the usual idempotency and commutativity properties of finitary U, while the
third one generalises associativity and neutrality of U@ = 1.

Llie{o} Ti = To

Ujes i = Uier @5 for all f: I — J surjective
Wier @i = Ujey Uigg-1qjy @i forall f: T —J

semimodules, while the axioms are those of complete semilattices and S-semi-
modules together with the set Ep of distributivity axioms illustrated below.

A Jui= A2 forx#o, | Ja+ | [u= || @ty (20
i€l i€l iel JjEJ (i,9)eIxJ
In short, ¥ = Yes,r U X,sm and E = Eese U Ersap U Ep.
Theorem 32. The monad P.S is presented by the algebraic theory (X, E).

The presentation crucially relies on the fact that P.S is obtained by com-
posing P and S via §. Indeed, we know from general results in [11,15] that P.S-
algebras are in one to one correspondence with d-algebras [3], namely triples
(X, a,b) such that a: SX — X is a S-algebra, b: PX — X is a P-algebra and
the following diagram commutes.

SPX ox PSX
Sbl lpa
SX PX (21)
S T
X

The S-algebra a corresponds to a S-semimodule (X, +,0, A-), the P-algebra b
to a complete lattice (X[ |;) and the commutativity of diagram (21) expresses
exactly the distributivity axioms in (20).

Ezample 33. Let S be RY and let [a,b] with a,b € RT denote the set {x € RT |
a <z < b} and [a,00) the set {x € RT | a < z}. For 1 = {z}, P.S(1) = {0} U
{[a,b] | a,b € RT}U{[a,+00) | a € RT}. The P.S-algebra ul=%: P.SP.S1 —
P.S1 induces a §-algebra where the structure of complete lattice is given as?

|_| 4= [infier, a;,sup;ep b)) if, for all i € I, A; = [a;, bi] Asup;c; b € RY
by ’ [inf;er a;, 00) otherwise
The R*T-semimodule is as expected, e.g., [a1,b1] + [az,b2] = [a1 + ag, b1 + ba].

2 For the sake of brevity, we are ignoring the case where some A; = .
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Finite Joins and Finitely Generated Convex Sets. We now consider the
algebraic theory (X', E’) obtained by restricting (X, F) to finitary joins. More
precisely, we fix

Y =YsrUXrsm E'=Es UErspm U Ep

where (Xs., Esr) is the algebraic theory for semilatices, (Xzsa, Ecsa) is the
one for S-semimodules, and Eps is the set of distributivity axioms illustrated
in Table 1. Thanks to the characterisation provided by Theorem 32, we easily
obtain a function translating X’-terms into convex subsets.

Proposition 34. Let T g/ (X) be the set of X'-terms with variables in X quo-
tiented by E'. Let []x: T g/ (X) = P.S(X) be the function defined as

[l = (A} forz e X p¢y_{“§5f|feﬁﬂ #A£0
[0] = {0“5} B {0 }S otherwise
[L]=0 [t1 +t2] = {f1 +* f25| fi€[ti, fo € [t2]}

[t uta] = [T U]
Let [-]: Tsr gr — P.S be the family {[-]x }xe|set|- Then [-]: Txr pr — PeS is a
map of monads and, moreover, each [-]x: T/ g (X) = P.S(X) is injective.

We say that a set A € P.S(X) is finitely generated if there exists a finite set
B C 8(X) such that B = A. We write P¢.S(X) for the set of all A € P.S(X)
that are finitely generated. The assignment X +— P;.S(X) gives rise to a monad
PrcS: Set — Set where the action on functions, the unit and the multiplication
are defined as for P.S.

Theorem 35. The monads Ts g and Py.S are isomorphic. Therefore (X', E")
is a presentation for the monad Py.S.

Example 36. Recall P.S(1) for S = RT from Example 33. By restricting to
the finitely generated convex sets, one obtains Ps.S(1) = {0} U {[a,b] | a,b €
RT3}, that is the sets of the form [a,c0) are not finitely generated. Table 4
illustrates the isomorphism [-]: T g/ (1) — P.S(1). It is worth observing that
every closed interval [a, b] is denoted by a term in Tsv g/ (1) for 1 = {z}: indeed,
[(a-z)U(b-z)] = [a,b]. For 2 = {x,y}, Pr.S(2) is the set containing all convex
polygons: for instance the term (r1 -z +s1-y)U (ro-x+s2-y) U (rg- x4+ s3-y)
denote a triangle with vertexes (14, s;). For n = {zg,... 2,1}, it is easy to see
that P;.S(n) contains all convex n-polytopes.

7 Conclusions: Related and Future Work

Our work was inspired by [17] where Goy and Petrisan compose the monads of
powerset and probability distributions by means of a weak distributive law in
the sense of Garner [15]. Our results also heavily rely on the work of Clementino
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Table 4. The inductive definition of the function [-]1: T/ g/ (1) = PS(1) for 1 = {z}.

A-a,\-b] ifX£0, [t] = [a,b]
X-tl=40 ifAA0, [t] =0
[0,0] otherwise
[[[[1:% = {1, 1% [t + ta] = {([Dch +az,bi +bo] if [t:] = [as, bi]
0] =10,0 otherwise
[L]=0 [min a;, max b;] if [t;] = [as, bi]
_ ) a1, b4] if [t1] = a1, 1], [t2] =0
el =4 b it [t2] = faz.bo), [n] =
0 otherwise

et al. [12] that illustrates necessary and sufficient conditions on a semiring S
for the existence of a weak distributive law §: SP — PS. However, to the best
of our knowledge, the alternative characterisation of ¢ provided by Theorem 21
was never shown.

Such characterisation is essential for giving a handy description of the lifting
P: EM(S) — EM(S) (Theorem 24) as well as to observe the strong relationships
with the work of Jacobs (Remark 25) and the one of Klin and Rot (Remark 23).
The weak distributive law ¢ also plays a key role in providing the algebraic
theories presenting the composed monad P.S (Theorem 24) and its finitary
restriction Pr.S (Theorem 35). These two theories resemble those appearing in,
respectively, [17] and [10] where the monad of probability distributions plays the
role of the monad S in our work.

Theorem 30 allows to reuse the framework of coalgebraic trace semantics [20]
for modelling over K1(P.S) systems with both nondeterminism and quantitative
features. The alternative framework based on coalgebras over EM(P.S) directly
leads to nondeterministic weighted automata. A proper comparison with those
in [13] is left as future work. Thanks to the abstract results in [7], language
equivalence for such coalgebras could be checked by means of coinductive up-
to techniques. It is worth remarking that, since § is a weak distributive law,
then thanks to the work in [16], up-to techniques are also sound for “convex-
bisimilarity” (in coalgebraic terms, behavioural equivalence for the lifted functor

P EM(S) — EM(S)).

We conclude by recalling that we have two main examples of positive semi-
fields: Bool and R*. Booleans could lead to a coalgebraic modal logic and trace
semantics for alternating automata in the style of [27]. For R*, we hope that
exploiting the ideas in [34] our monad could shed some lights on the behaviour
of linear dynamical systems featuring some sort of nondeterminism.
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Abstract. The origin semantics for transducers was proposed in 2014,
and it led to various characterizations and decidability results that are
in contrast with the classical semantics. In this paper we add a further
decidability result for characterizing transducers that are close to one-
way transducers in the origin semantics. We show that it is decidable
whether a non-deterministic two-way word transducer can be resynchro-
nized by a bounded, regular resynchronizer into an origin-equivalent one-
way transducer. The result is in contrast with the usual semantics, where
it is undecidable to know if a non-deterministic two-way transducer is
equivalent to some one-way transducer.

Keywords: String transducers - Resynchronizers - One-way transducers

1 Introduction

Regular word-to-word functions form a robust and expressive class of transforma-
tions, as they correspond to deterministic two-way transducers, to deterministic
streaming string transducers [1], and to monadic second-order logical transduc-
tions [11]. However, the transition from word languages to functions over words
is often quite tricky. One of the challenges is to come up with effective charac-
terizations of restricted transformations. A first example is the characterization
of functions computed by one-way transducers (known as rational functions).
It turns out that it is decidable whether a regular function is rational [14],
but the algorithm is quite involved [3]. In addition, non-determinism makes the
problem intractable: it is undecidable whether the relation computed by a non-
deterministic two-way transducer can be also computed by a one-way transducer,
[2]. A second example is the problem of knowing whether a regular word func-
tion can be described by a first-order logical transduction. This question is still
open in general [16], and it is only known how to decide if a rational function is
definable in first-order logic [13].

Word transducers with origin semantics were introduced by Bojanczyk [4]
and shown to provide a machine-independent characterization of regular word-
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input: input: b a
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Fig. 1: On the left, an input-output pair for a transducer 7' that reads wd and
outputs dw, d € X, w € X*, the arrows denoting origins. On the right, the same
input-output pair, but with origins modified by a resynchronizer R. The resyn-
chronized relation R(T) is order-preserving, and 7" is one-way resynchronizable.

to-word functions. The origin semantics, as the name suggests, means tagging
the output by the positions of the input that generated that output.

A nice phenomenon is that origins can restore decidability for some inter-
esting problems. For example, the equivalence of word relations computed by
one-way transducers, which is undecidable in the classical semantics [18,19], is
PSPACE-complete for two-way non-deterministic transducers in the origin se-
mantics [7]. Another, deeper, observation is that the origin semantics provides
an algebraic approach that can be used to decide fragments. For example, [4]
provides an effective characterization of first-order definable word functions un-
der the origin semantics. As for the problem of knowing whether a regular word
function is rational, it becomes almost trivial in the origin semantics.

A possible objection against the origin semantics is that the comparison of
two transducers in the origin semantics is too strict. Resynchronizations were
proposed in order to overcome this issue. A resynchronization is a binary relation
between input-output pairs with origins, that preserves the input and the out-
put, changing only the origins. Resynchronizations were introduced for one-way
transducers [15], and later for two-way transducers [7]. For one-way transduc-
ers rational resynchronizations are transducers acting on the synchronization
languages, whereas for two-way transducers, regular resynchronizations are de-
scribed by regular properties over the input that restrict the change of origins.
The class of bounded? regular resynchronizations was shown to behave very
nicely, preserving the class of transductions defined by non-deterministic, two-
way transducers: for any bounded regular resynchronization R and any two-way
transducer T', the resynchronized relation R(7T) can be computed by another
two-way transducer [7]. In particular, non-deterministic, two-way transducers
can be effectively compared modulo bounded regular resynchronizations.

As mentioned above, it is easy to know if a two-way transducer is equiv-
alent under the origin semantics to some one-way transducer [4], since this is
equivalent to being order-preserving. But what happens if this is not the case?
Still, the given transducer 7" can be “close” to some order-preserving transducer.
What we mean here by “close” is that there exists some bounded regular resyn-

4 “Bounded” refers here to the number of source positions that are mapped to the
same target position. It rules out resynchronizations such as the universal one.
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chronizer R such that R(T') is order-preserving and all input-output pairs with
origins produced by T are in the domain of R. We call such transducers one-way
resynchronizable. Figure 1 gives an example.

In this paper we show that it is decidable if a two-way transducer is one-way
resynchronizable. We first solve the problem for bounded-visit two-way transduc-
ers. A bounded-visit transducer is one for which there is a uniform bound for the
number of visits of any input position. Then, we use the previous result to show
that one-way resynchronizability is decidable for arbitrary two-way transducers,
so without the bounded-visit restriction. This is done by constructing, if possible,
a bounded, regular resynchronization from the given transducer to a bounded-
visit transducer with regular language outputs. Finally, we show that bounded
regular resynchronizations are closed under composition, and this allows to com-
bine the previous construction with our decidability result for bounded-visit
transducers.

Related work and paper overview. The synthesis problem for resynchronizers asks
to compute a resynchronizer from one transducer to another one, when the two
transducers are given as input. The problem was studied in [6] and shown to
be decidable for unambiguous two-way transducers (it is open for unrestricted
transducers). The paper [21] shows that the containment version of the above
problem is undecidable for unrestricted one-way transducers.

The origin semantics for streaming string transducers (SST) [1] has been
studied in [5], providing a machine-independent characterization of the sets of
origin graphs generated by SSTs. An open problem here is to characterize origin
graphs generated by aperiodic streaming string transducers [10,16]. Going be-
yond words, [17] investigates decision problems of tree transducers with origin,
and regains the decidability of the equivalence problem for non-deterministic
top-down and MSO transducers by considering the origin semantics. An open
problem for tree transducers with origin is that of synthesizing resynchronizers
as in the word case.

We will recall regular resynchronizations in Section 3. Section 4 provides the
proof ingredients for the bounded-visit case, and the proof of decidability of
one-way resynchronizability in the bounded-visit case can be found in Section 5.
Finally, in Section 6 we sketch the proof in the general case. A full version of
the paper is available at https://arxiv.org/abs/2101.08011.

2 Preliminaries

Let X be a finite input alphabet. Given a word w € X* of length |w| = n, a
position is an element of its domain dom(w) = {1,...,n}. For every position
i, w(i) denotes the letter at that position. A cut of w is any number from 1
to |w| 4+ 1, so a cut identifies a position between two consecutive letters of the
input. The cut i = 1 represents the position just before the first input letter,
and i = |w| 4+ 1 the position just after the last letter of w.
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Two-way transducers. We use two-way transducers as defined in [3,6], with a
slightly different presentation than in classical papers such as [22]. As usual for
two-way machines, for any input w € X*, w(0) =+ and w(|w| 4+ 1) = -, where
F,- ¢ X are special markers used as delimiters.

A two-way transducer (or just transducer from now on) is a tuple T =
(Q, X, I A, I, F), where X, I" are respectively the input and output alphabets,
Q = Q< WQ. is the set of states, partitioned into left-reading states from @~
and right-reading states from Q. , I C Q. is the set of initial states, F' C @ is
the set of final states, and A C @ x (YW {F,-}) x I'* x @ is the finite transition
relation. Left-reading states read the letter to the left, whereas right-reading
states read the letter to the right. This partitioning will also determine the head
movement during a transition, as explained below.

As usual, to define runs of transducers we first define configurations. Given
a transducer T and a word w € X*, a configuration of T' on w is a state-cut pair
(q,1), with ¢ € Q and 1 <4 < |w|+ 1. A configuration (¢,7), 1 <14 < |w|+1
means that the automaton is in state ¢ and its head is between the (i — 1)-th
and the i-th letter of w. The transitions that depart from a configuration (q,1)
and read @ are denoted (q,7) — (¢’,i'), and must satisfy one of the following:
(1) ¢€Qs, ¢ €Qs, a=w(i), (¢,a,v,¢') € A, and ' =i+ 1,

(2) ¢ €Qx, ¢ €Q<, a=w(i), (¢,a,v,¢") € A, and i’ =i,

(3)q€Q<,qd €Qn,a=w(i—1), (q,a,v,q¢) € A, and i’ =1,

4)qeQx, ¢ €Qx,a=w(—1), (qav,q) e A and i =i—1. When T
has only right-reading states (i.e. @< = (), its head can only move rightward.
In this case we call T' a one-way transducer.

A run of T on w is a sequence p = (q1,171) aﬂ]f (q2,12)

(Gm—+1,%m+1) of configurations connected by transitions. Note that the positions
15725 -+, Jm of letters do not need to be ordered from smaller to bigger, and
can differ slightly (by +1 or —1) from the cuts iy, 42, ...,%y+1, since cuts take
values in between consecutive letters.

A configuration (g, ¢) on w is initial (resp. final)if g € T andi =1 (resp. g € F
and ¢ = |w| 4+ 1). A run is successful if it starts with an initial configuration and
ends with a final configuration. The output associated with a successful run
p as above is the word vivg -« v, € I'*. A transducer T defines a relation
[T] C X* x I'* consisting of all the pairs (u, v) such that v is the output of some
successful run p of T on u.

ajlva agp|vm

Origin semantics. In the origin semantics for transducers [4] the output is tagged
with information about the position of the input where it was produced. If
reading the i-th letter of the input we output v, then all letters of v are tagged
with ¢, and we say they have origin i. We use the notation (v,i) for v € I'*
to denote that all positions in the output word v have origin ¢, and we view

(v,1) as word over the alphabet I" x N. The outputs associated with a successful
by v b2‘”2 b |vm

run p = (q1,91) — (q2,42) — (g3,i3) -+ “=" (gm+1,im+1) in the origin
semantics are the words of the form v = (vy,j1)(v2, j2) -+ (U, jm) over I' X N
where, for all 1 <k <m, jr =i, if @ € Qw, and ji =i — 1 if ¢ € Q<. Under
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the origin semantics, the relation defined by T, denoted [17,, is the set of pairs
o = (u,v) —called synchronized pairs— such that u € X* and v € (I" x N)* is
the output of some successful run on wu.

Equivalently, a synchronized pair (u, v) can be described as a triple (u, v, orig),
where v is the projection of v on I', and orig : dom(v) — dom(u) associates with
each position of v its origin in u. So for v = (vy, j1)(ve, j2) - - (Vm, jm) as above,
UV = v1...Um, and, for all positions ¢ s.t. |vy...v_1] <@ < |v1...vg|, we have
orig(i) = jr. Given two transducers T7,Ts, we say they are origin-equivalent if
[T1], = [T2],. Note that two transducers T7,T> can be equivalent in the clas-
sical semantics, [T1] = [I:], while they can have different origin semantics, so

[T1], # (T3],

Bounded-visit transducers. Let k > 0 be some integer, and p some run of a
two-way transducer T. We say that p is k-visit if for every ¢ > 0, it has at most
k occurrences of configurations from @ x {i}. We call a transducer T k-visit if
for every o € [T], there is some successful, k-visit run p of T with output o
(actually we should call the transducer k-visit in the origin semantics, but for
simplicity we omit this). For example, the relation {(w,w) | w € X*}, where w
denotes the reverse of w, can be computed by a 3-visit transducer. A transducer
is called bounded-visit if it is k-visit for some k.

Common guess. It is often useful to work with a variant of two-way transducers
that can guess beforehand some annotation on the input and inspect it consis-
tently when visiting portions of the input multiple times. This feature is called
common guess [5], and strictly increases the expressive power of two-way trans-
ducers, including bounded-visit ones.

3 One-way resynchronizability

3.1 Regular resynchronizers

Resynchronizations are used to compare transductions in the origin semantics.
A resynchronization is a binary relation R C (X* x (I" x N)*)? over synchronized
pairs such that (o,0’) € R implies that o = (u,v, orig) and ¢’ = (u,v, orig)
for some origin mappings orig, orig’ : dom(v) — dom(u). In other words, a
resynchronization will only change the origin mapping, but neither the input, nor
the output. Given a relation S C X* x (I" x N)* with origins, the resynchronized
relation R(S) is defined as R(S) = {0’ | (0,0") € R, o € S}. For a transducer
T we abbreviate R([T],) by R(T). The typical use of a resynchronization R is
to ask, given two transducers T, 7", whether R(T) and T’ are origin-equivalent.

Regular resynchronizers (originally called MSO resynchronizers) were intro-
duced in [7] as a resynchronization mechanism that preserves definability by
two-way transducers. They were inspired by MSO (monadic second-order) trans-
ductions [9,12] and they are formally defined as follows. A regular resynchronizer

is a tuple R = (I, O, ipar, opar, (move, ), (next; /), /) consisting of
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— some monadic parameters (colors) I = (I,...,1I,,) and O = (Oy,...,0,),

— MSO sentences ipar, opar, defining languages over expanded input and output
alphabets, i.e. over X' = ¥ x 211} and [V = I' x 211} respectively,

— MSO formulas move,(y, z), next. (2, z") with two free first-order variables
and parametrized by expanded output letters 7, 7" (called types, see below).

To apply a regular resynchronizer as above, one first guesses the valuation of all
the predicates I, Oy, and uses it to interpret the parameters I and O. Based
on the chosen valuation of the parameters O, each position = of the output v
gets an associated type 7, = (v(z),b1,...,b,) € I' x {0,1}", where b; is 1 or
0 depending on whether x € O; or not. We refer to the output word together
with the valuation of the output parameters as annotated output, so a word
over I' x {0,1}™. Similarly, the annotated input is a word over X x {0,1}™.
The annotated input and output word must satisfy the formulas ipar and opar,
respectively.

The origins of output positions are constrained using the formulas move,
and next, ,-, which are parametrized by output types and evaluated over the an-
notated input. Intuitively, the formula move, (y, z) states how the origin of every
output position of type 7 changes from y to z. We refer to y and z as source
and target origin, respectively. The formula next, ,/(z, z’) instead constrains the
target origins z, 2z’ of any two consecutive output positions with types 7 and 7/,
respectively.

Formally, R = (I, O, ipar, opar, (move, ), (next, ,+)) defines the resynchroniza-
tion consisting of all pairs (o, 0’), with o = (u,v, orig), o’ = (u, v, orig’), u € X*,
and v € I'*, for which there exist «/ € X" and v’ € I'"* such that

— my(u)=wand 7p(v') =v

— o' satisfies ipar and v’ satisfies opar,

(u', orig(x), orig’ (x)) satisfies move, for all T-labeled output positions x €
dom(v’), and

(v, orig’ (x), orig’ (x+1)) satisfies next, . for all z, x+1 € dom(v’) such that
z and x + 1 have label 7 and 7/, respectively.

Ezample 1. Consider the following resynchronization R. A pair (o,0’) belongs
to R if ¢ = (uv,uwv, orig), o' = (uv, uww, orig’), with u, v,w € XT. The origins
orig and orig’ are both the identity over u and v. The origin of every position
of w in o (hence a source origin) is either the first or the last position of v. The
origin of every position of w in ¢’ (a target origin) is the first position of v.

This resynchronization is described by a regular resynchronizer that uses two
input parameters I, Is to mark the last and the first positions of v in the input,
and one output parameter O to mark the factor w in the output. The formula
move, (y, z) is either (I1(y)V Is(y)) Alz(2) or (y = 2), depending on whether the
type T describes a position inside w or a position outside w.

We now turn to describing some important restrictions on (regular) resyn-

chronizers. Let R = (I, O, ipar, opar, (move; ), (next. ;/)) be a resynchronizer.
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— R is k-bounded (or just bounded) if for every annotated input u’ € X", every
output type 7 € I/, and every position z, there are at most k positions ¥
such that (u/,y, z) satisfies move,. Recall that y, z are input positions.

— R is T-preserving for a given transducer T', if every o € [T], belongs to the
domain of R.

— R is partially bijective if each move, formula defines a partial, bijective func-
tion from source origins to target origins. Observe that this property implies
that R is 1-bounded.

The boundedness restriction rules out resynchronizations such as the univer-
sal one, that imposes no restriction on the change of origins. It is a decidable
restriction [7], and it guarantees that definability by two-way transducers is effec-
tively preserved under regular resynchronizations, modulo common guess. More
precisely, Theorem 16 in [7] shows that, given a bounded regular resynchronizer
R and a transducer T, one can construct a transducer 7" with common guess
that is origin-equivalent to R(T).

Ezample 1 (continued). Consider again the regular resynchronizer R described
in the previous example. Note that R is 2-bounded, since at most two source
origins are redirected to the same target origin. If we used an additional output
parameter to distinguish, among the positions of w, those that have source origin
in the first position of v and those that have source origin in the last position of
v, we would get a 1-bounded, regular resynchronizer.

We state below two crucial properties of regular resynchronizers (the second
lemma is reminiscent of Lemma 11 from [21], which proves closure of bounded
resynchronizers with vacuous next, .- relations).

Lemma 1. Every bounded, reqular resynchronizer is effectively equivalent to
some 1-bounded, regular resynchronizer.

Lemma 2. The class of bounded, reqular resynchronizers is effectively closed
under composition.

3.2 Main result

Given a two-way transducer T one can ask if it is origin-equivalent to some
one-way transducer. It was observed in [4] that this property holds if and only
if all synchronized pairs defined by T are order-preserving, namely, for all o =
(u,v, orig) € [T],and all y,y" € dom(v), with y < 3/, we have orig(y) < orig(y’).
The decidability of the above question should be contrasted to the analogous
question in the classical semantics: “is a given two-way transducer classically
equivalent to some one-way transducer?” The latter problem turns out to be
decidable for functional transducers [14,3], but is undecidable for arbitrary two-
way transducers [2].
Here we are interested in a different, more relaxed notion:
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Definition 1. A transducer T is called one-way resynchronizable if there exists
a bounded, regular resynchronizer R that is T-preserving and such that R(T') is
order-preserving.

Note that if 7”7 is an order-preserving transducer, then one can construct
rather easily a one-way transducer T” such that 77 =, T", by eliminating non-
productive U-turns from accepting runs.

Moreover, note that without the condition of being T-preserving every trans-
ducer T would be one-way resynchronizable, using the empty resynchronization.

Ezxample 2. Consider the transducer 77 that moves the last letter of the input wa
to the front by a first left-to-right pass that outputs the last letter a, followed by a
right-to-left pass without output, and finally by a left-to-right pass that produces
the remaining w. Let R be the bounded regular resynchronizer that redirects the
origin of the last a to the first position. Assuming an output parameter O with
an interpretation constrained by opar that marks the last position of the output,
the formula move(ayl)(y,z) says that target origin z (source origin y, resp.) of
the last a is the first (last, resp.) position of the input. It is easy to see that
R(T1) is origin-equivalent to the one-way transducer that on input wa, guesses
a and outputs aw. Thus, 77 is one-way resynchronizable. See also Figure 1.

Example 3. Consider the transducer T5 that reads inputs of the form u#v and
outputs vu in the obvious way, by a first left-to-right pass that outputs v, followed
by a right-to-left pass, and a finally a left-to-right pass that outputs u. Using
the characterization with the notion of cross-width that we introduce below, it
can be shown that T3 is not one-way resynchronizable.

In order to give a flavor of our results, we anticipate here the two main theo-
rems, before introducing the key technical concepts of cross-width and inversion
(these will be defined further below).

Theorem 1. For every bounded-visit transducer T', the following are equivalent:

(1) T is one-way resynchronizable,

(2) the cross-width of T is finite,

(8) no successful run of T has inversions,

(4) there is a partially bijective, reqular resynchronizer R that is T-preserving
and such that R(T) is order-preserving.

Moreover, condition (3) is decidable.

We will use Theorem 1 to show that one-way resynchronizability is decidable
for arbitrary two-way transducers (not just bounded-visit ones).

Theorem 2. It is decidable whether a given two-way transducer T is one-way
resynchronizable.

Let us now introduce the first key concept, that of cross-width:
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Definition 2 (cross-width). Let o = 1

(u,v,o0rig) be a synchronized pair ‘::é£9??:ﬂiﬂf?:1‘

and let X1, Xo C dom(v) be sets of  input — I
output positions such that, for all //’/
r1 € X1 and o € Xo, ©1 < T2 and ///CmSS

orig(x1) > orig(xe). We call such a pair

(X1, X5) a cross and define its width as """ ” ”
min(|orig(X1)|, |orig(X2)|), where orig(X) = {orig(x) | v € X} is the set of
origins corresponding to a set X of output positions. The cross-width of a syn-
chronized pair o is the mazximal width of the crosses in o. A transducer has
bounded cross-width if for some integer k, all synchronized pairs associated with
successful runs of T have cross-width at most k.

For instance, the transducer 75 in Example 3 has unbounded cross-width. In
contrast, the transducer 77 in Example 2 has cross-width one.

The other key notion of inversion will be introduced formally in the next
section (page 135), as it requires a few technical definitions. The notion however
is very similar in spirit to that of cross, with the difference that a single inversion
is sufficient for witnessing a family of crosses with arbitrarily large cross-width.

4 Proof overview for Theorem 1

This section provides an overview of the proof of Theorem 1, and introduces the
main ingredients.

We will use flows (a concept inspired from crossing sequences [22,3] and
revised in Section 4.1) in order to derive the key notion of inversion. Roughly
speaking, an inversion in a run involves two loops that produce outputs in an
order that is reversed compared to the order on origins. Inversions were also used
in the characterization of one-way definability of two-way transducers under the
classical semantics [3]. There, they were used for deriving some combinatorial
properties of outputs. Here we are only interested in detecting inversions, and
this is a simple task.

Flows will also be used to associate factorization trees with runs (the exis-
tence of factorization trees of bounded height was established by the celebrated
Simon’s factorization theorem [23]). We will use a structural induction on these
factorization trees and the assumption that there is no inversion in every run to
construct a regular resynchronization witnessing one-way resynchronizability of
the transducer at hand.

Another important ingredient underlying the main characterization is given
by the notion of dominant output interval (Section 4.2), which is used to for-
malize the invariant of our inductive construction.

4.1 Flows and inversions

Intervals. An interval of a word is a set of consecutive positions in it. An interval
is often denoted by I = [i,’), with ¢ = min(I) and ¢ = max(I) + 1. Given two
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intervals I = [¢,4') and J = [j, '), we write I < J if i’ < j, and we say that I, J
are adjacent if i’ = j. The union of two adjacent intervals I = [i,i'), J = [4,7’),
denoted I-J, is the interval [4, j') (if I, J are not adjacent, then I-.J is undefined).

Subruns. Given a run p of a transducer, a subrun is a factor of p. Note that a
subrun of a two-way transducer may visit a position of the input several times.
For an input interval I = [i,j) and a run p, we say that a subrun p’ of p spans
over I if i (resp. j) is the smallest (resp. greatest) input position labeling some
transition of p’. The left hand-side of the figure at page 134 gives an example of
an interval I of an input word together with the subruns a1, as, as, 81, B2, B3, 11
that span over it. Subruns spanning over an interval can be left-to-right, left-to-
left, right-to-left, or right-to-right depending on where the starting and ending
positions are w.r.t. the endpoints of the interval.

Flows. Flows are used to summarize subruns of a two-way transducer that span
over a given interval. The definition below is essentially taken from [3], except for
replacing “functional” by “K-visit”. Formally, a flow of a transducer 7' is a graph
with vertices divided into two groups, L-vertices and R-vertices, labeled by states
of T', and with directed edges also divided into two groups, productive and non-
productive edges. The graph satisfies the following requirements. Edge sources
are either an L-vertex labeled by a right-reading state, or an R-vertex labeled by
a left-reading state, and symmetrically for edge destinations; moreover, edges are
of one of the following types: LL, LR, RL, RR. Second, each node is the endpoint
of exactly one edge. Finally, L (R, resp.) vertices are totally ordered, in such
a way that for every LL (RR, resp.) edge (v,v’), we have v < v'. We will only
consider flows of K-visiting transducers, so flows with at most 2K vertices. For
example, the flow in the left-hand side of the figure at page 134 has six L-vertices
on the left, and six R-vertices on the right. The edges a1, ais, a3 are LL, LR, and
RR, respectively.

Given a run p of T and an interval I = [i,4’) on the input, the flow of p on
I, denoted flow ,(I), is obtained by identifying every configuration at position i
(resp. i) with an L (resp. R) vertex, labeled by the state of the configuration, and
every subrun spanning over I with an edge connecting the appropriate vertices
(this subrun is called the witnessing subrun of the edge of the flow). An edge is
said to be productive if its witnessing subrun produces non-empty output.

Flow monoid. The composition of two flows F' and G is defined when the R-
vertices of F' induce the same sequence of labels as the L-vertices of G. In this
case, the composition results in the flow F'-G that has as vertices the L-vertices of
F and the R-vertices of G, and for edges the directed paths in the graph obtained
by glueing the R-vertices of F' with the L-vertices of G so that states are matched.
Productiveness of edges is inherited by paths, implying that an edge of F' - G
is productive if and only if the corresponding path contains at least one edge
(from F or G) that is productive. When the composition is undefined, we simply
write F'- G = L. The above definitions naturally give rise to a flow monoid
associated with the transducer T', where elements are the flows of T', extended
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with a dummy element 1, and the product operation is given by the composition
of flows, with the convention that L is absorbing. It is easy to verify that for
any two adjacent intervals I < J of a run p, flow,(I) - flow,(J) = flow,(I - J).
We denote by My the flow monoid of a K-visiting transducer 7.

Let us estimate the size of Mr. If () is the set of states of T, there are at most
|Q|* possible sequences of L and R-vertices; and the number of edges (marked
as productive or not) is bounded by ( ) (2K) 2K < (2K +1)2K . Including the
dummy element | in the low monoid, we get |Mr| < (|Q|- (2K +1))?K+1 =: M.

Loops. A loop of a run p over input w is an interval I = [, y) with a flow F =

ﬂow (I) such that F - F = | w - A AT rr N
(call F idempotent). The jg;—)‘ﬁ - 5, :

run p can be pumped on a ,40:);93

loop I = [i,j) as expected: —3o<ﬂ2—;5<«

given n > 0, we let pump7(p) 4 04 -

be the run obtained from p v ,f o

by glueing the subruns that ugc‘“j (

span over the intervals [1,4) - 2e——00-

and [j, |w| 4+ 1) with n copies Sy
of the subruns spanning over
I (see figure to the right).

I I 2 more copies of [

The lemma below shows that the occurrence order relative to subruns wit-
nessing LR or RL edges of a loop (called straight edges, for short) is preserved
when pumping the loop. This seemingly straightforward lemma is needed for
detecting inversions and its proof is surprisingly non-trivial. For example, the
external edge connecting the two L-vertices 1, 2 in the figure above appears before
edge «z, and also before every copy of as in the run where loop I is pumped.

Lemma 3. Let p be a run of T onu, let J < I < K be a partition of the domain
of u into intervals, with I loop of p, and let F' = flow ,(J), E = flow,(I), and
G = flow,(K) be the corresponding flows. Consider an arbitrary edge f of either
F or G, and a straight edge e of the idempotent flow E. Let py and p. be the
witnessing subruns of f and e, respectively. Then the occurrence order of py and
pe in p is the same as the occurrence order of py and any copy of pe in pump? (p).

We can now recall the key notion of inversion:
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Definition 3 (inversion). An inversion of p is a tuple (I,e, I’ e’) such that

— I, 1" are loops of p and I < I', ommmmen N oo RSN

— e, e are productive straight | C&;« 7777777 4 !
edges in flow ,(I) and flow ,(I") e *5:)
respectively, ‘

— the subrun witnessing € pre- L ‘
cedes the subrun witnessing e in

the run order ‘ Q<” -~

(see the figure to the right). — e

4.2 Dominant output intervals

In this section we identify some particular intervals of the output that play an
important role in the inductive construction of the resynchronizer for a one-way
resynchronizable transducer.

Given n € N, we say that a set B of output positions is n-large if |orig(B)| >
n; otherwise, we say that B is n-small. Recall that here we work with a K-
visiting transducer T, for some constant K, and that M = (|Q|- (2K +1))25 +1
is an upper bound to the size of the flow monoid My. We will extensively use
the derived constant C = M?¥X to distinguish between large and small sets of
output positions. The intuition behind this constant is that any set of output
positions that is C-large must traverse a loop of p. This is captured by the lemma
below. The proof uses algebraic properties of the flow monoid My [20] (see also
Theorem 7.2 in [3], which proves a similar result, but with a larger constant
derived from Simon’s factorization theorem):

Lemma 4. Let I be an input interval and B a set of output positions with
origins inside I. If B is C-large, then there is a loop J C I of p such that
ﬂowp(J) contains a productive straight edge witnessed by a subrun that intersects

B (in particular, out(J)NB #0).

We need some more notations for outputs. Given an input interval I we
denote by out,(I) the set of output positions whose origins belong to I (note
that this might not be an output interval). An output block of I is a maximal
interval contained in out,(I).

The dominant output interval of I, denoted bigout ,(I), is the smallest output
interval that contains all C-large output blocks of I. In particular, bigout ,(I)
either is empty or begins with the first C-large output block of I and ends with
the last C-large outblock block of I. We will often omit the subscript p from the
notations flow ,(I), out,(I), bigout ,(I), etc., when no confusion arises.

We now fix a successful run p of the K-visiting transducer 7. The rest of
the section presents some technical lemmas that will be used in the inductive
constructions for the proof of the main theorem. In the lemmas below, we assume
that all successful runs of T (in particular, p) avoid inversions.
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Lemma 5. Let I} < Iy be two input intervals and By, By output blocks of Iy,
15, respectively. If both By, By are C-large, then By < Bs.

Proof (sketch). If the claim would not hold, then Lemma 4 would provide some
loops J; € I} and Jy C Iy, together with some productive edges in them,
witnessing an inversion. 0O

Lemma 6. Let I = I, - I, B = bigout(I), and B; = bigout(I;) for i = 1,2.
Then B\ (By U By) is 4K C-small.

Proof (sketch). By Lemma 5, By < By. Moreover, all C-large output blocks
of I or Iy are also C-large output blocks of I, so B contains both By and Bs.
Suppose, by way of contradiction, that B\ (B; U Bg) is 4K C-large. This means
that there is a 2K C-large set S C B\ (B U Bs) with origins entirely to the left of
I, or entirely to the right of I;. Suppose, w.l.o.g., that the former case holds, and
decompose S as a union of maximal output blocks Bf, B, ..., B] with origins
either entirely inside I, or entirely outside. Since S N By = 0, every block B;
with origins inside [; is C-small. Similarly, one can prove that every block B
with origins outside I; is C-small too. Moreover, since p is K-visiting, we get
n < 2K. Altogether, this contradicts the assumption that S is 2K C-large. O

Lemma 7. Let I =1 - Iy -+ I,,, such that I is a loop and flow(I) = flow (Iy)
for all k. Then bigout (I) can be decomposed as By - Jy By - Jo ...  Ju_1 - By,
where

1. for all 1 < k <n, By, = bigout(I}) (with By possibly empty);
2. for all 1 < k < n, the positions in Jy, have origins inside Iy, U Ix+1 and Jy, is
2K C-small.

Proof (sketch). The proof idea is similar to the previous lemma. First, using
properties of idempotent flows, one shows that all output positions strictly be-
tween By and By,1, for any k =1,...,n—1, have origin in I} U I;41. Then, one
observes that every output block of I disjoint from Bj is C-small, and since
T is K-visiting there are at most K such

blocks. This shows that every output inter- 7 ok
val Ji between Bj and Bjy4i is 2K C-small. Cj
For an illustration see the figure to the right. ! 1 . R
The C-large blocks in I; are shown in red; CO.:) !

in blue those for Iy, in purple those for I3. A

So bigout(I;) is the entire output between 7 oms

the two red dots, bigout(I2) between the two CO‘:)

blue dots, and bigout(I3) between the pur- . ---e———«

ple dots. All three blocks are non-empty, and ___,
bigout (I - I - Is) goes from the first red to i:)
the second purple dot. Black non-dashed ar-
rows stand for C-small blocks. a
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5 Proof of Theorem 1

This section is devoted to proving the characterization of one-way resynchro-
nizability in the bounded-visit case. We will use the notion of bounded-traversal
from [21], that was shown to characterize the class of bounded regular resynchro-
nizers, in as much as bounded-delay characterizes rational resynchronizers [15].

Definition 4 (traversal [21]). Let 0 = (u,v,orig) and o' = (u,v, orig’) be
two synchronized pairs with the same input and output words.

Given two input positions y,y" € dom(u), we say that y traverses y' if there is
a pair (y, z) of source and target origins associated with the same output position
such that y' is between y and z, with y' # z and possibly y' = vy. More precisely:

— (y,vy') is a left-to-right traversal if y < 3" and for some output position x,
orzg(x) y and z = orig'(x) > v';
- (y,9) is a rlght to-left traversal zfy > 5y and for some output position x,
orzg(x) =y and z = orig'(z) < y'.

A pair (o,0") of synchronized pairs with input u and output v is said to have
k-bounded traversal, with k € N, if every y' € dom(u) is traversed by at most k
distinct positions of dom(u).

A resynchronizer R has bounded traversal if there is some k € N such that
every (o,0’) € R has k-bounded traversal.

Lemma 8 ([21]). A regular resynchronizer is bounded if and only if it has
bounded traversal.

Proof (of Theorem 1). First of all, observe that the implication 4 — 1 is straight-
forward. To prove the implication 1 — 2, assume that there is a k-bounded,
regular resynchronizer R that is T-preserving and such that R(T) is order-
preserving. Lemma 8 implies that R has t-bounded traversal, for some constant
t. We head towards proving that 1" has cross-width bounded by ¢ + k. Consider
two synchronized pairs o = (u,v, orig) and o’ = (u, v, orig") such that o € [T7],
and (o,0’) € R, and consider a cross (X7, X5) of 0. We claim that |orig(X1)]
or |orig(Xs)| is at most t + k. Let o1 = min(orig(X1)), 2§ = max(orig’(X1)),
xo = max(orig(X1)), and z), = min(orig’(Xs2)). Since (X1, X2) is a cross, we
have x; > x5, and since o’ is order-preserving, we have 2| < z}. Now, if
x] > xo, then at least |orig(X2)| — k input positions from X, traverse x) to
the right (the —k term is due to the fact that at most k input positions can be
resynchronized to x)). Symmetrically, if 2| < x5, then at least |orig(X1)| — k
input positions from X traverse xo to the left (the —k term accounts for the
case where some positions are resynchronized to z and x} = x3). This implies
min(|orig(X1)|, |orig(X2)|) <t + k, as claimed.

The remaining implications rely on the assumption that 7" is bounded-visit.

The implication 2 — 3 is shown by contraposition: one considers a successful
run p with an inversion, and shows that crosses of arbitrary width emerge after
pumping the loops of the inversion (here Lemma 3 is crucial).
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The proof of 3 — 4 is more involved, we only sketch it here. Assuming
that no successful run of 7" has inversions we build a partially bijective, regular
resynchronizer R that is T-preserving and R(7T') is order-preserving. The resyn-
chronizer R uses some parameters to guess a successful run p of T on v and a
factorization tree of bounded height for p. Formally, a factorization tree for a
sequence a of monoid elements (e.g. the flows flow ,([y, y]) for all input positions
y) is an ordered, unranked tree whose yield is the sequence «. The leaves of
the factorization tree are labeled with the elements of «. All other nodes have
at least two children and are labeled by the monoid product of the child labels
(in our case by the flows of p induced by the covered factors in the input). In
addition, if a node has more than two children, then all its children must have
the same label, representing an idempotent element of the monoid. By Simon’s
factorization theorem [23], every sequence of monoid elements has some factor-
ization tree of height at most linear in the size of the monoid (in our case, at
most 3| M|, see e.g. [8]).

Parameters. We use input parameters to encode the successful run p and a
factorization tree for p of height at most H = 3|Mr|. These parameters specify,
for each input interval corresponding to a subtree, the start and end positions of
the interval and the label of the root of the subtree. Correctness of these anno-
tations can be enforced by an MSO sentence ipar. The run and the factorization
tree also need to be encoded over the output, using output parameters. More
precisely, given a level in the tree and an output position, we need to be able to
determine the flow and the productive edge that generated that position. We
omit the technical details for checking correctness of the output annotation using
the formulas opar, move, and next; ..

Moving origins. For each level £ of the factorization tree, a partial resyn-
chronization relation R, is defined. The relation is partial in the sense that some
output positions may not have a source-target origin pair defined at a given level.
But once a source-target pair is defined for some output position at a given level,
it remains defined for all higher levels.

In the following we write bigout(p) for the dominant output interval associ-
ated with the input interval I(p) corresponding to a node p in the tree. For every
level ¢ of the factorization tree, the resynchronizer R, will be a partial function
from source origins to target origins, and will satisfy the following;:

— the set of output positions for which R, defines target origins is the union
of the intervals bigout(p) for all nodes p at level ¢;

— R only moves origins within the same interval at level ¢, that is, R, defines
only pairs (y, z) of source-target origins such that y, z € I(p) for some node
p at level /;

— the target origins defined by R, are order-preserving within every interval
at level £, that is, for all output positions z < z’, if R, defines the target
origins of x, 2’ to be z, 2’, respectively, and if z, 2’ € I(p) for some node p at
level £, then z < 2/;

— Ry is £ - 4KC-bounded, namely, there are at most ¢ - 4K C distinct source
origins that are moved by R, to the same target origin.
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The construction of Ry is by induction on ¢. For a binary node p at level
¢ with children p1,ps, the resynchronizer R, inherits the source-origin pairs
from level £ — 1 for output positions that belong to bigout(p1) U bigout(p2).
Note that bigout(p1) < bigout(pz) by Lemma 5, so R, is order-preserving in-
side bigout (p1) U bigout (p2). Output positions inside bigout(p) \ (bigout(p1) U
bigout (p2)) are moved in an order-preserving manner to one of the extremities
of I(p), or to the last position of I(p;). Boundedness of R, is guaranteed by
Lemma 6.

The case where p is an idempotent node at level ¢ with children py, pa, ..., pn
follows a similar approach. For brevity, let I; = I(p;) and B; = bigout(p;),
and observe that, by Lemma 5, B; < By < --- < B,. Lemma 7 provides a
decomposition of bigout (p) as By-Jy-Bo-Ja+. .. Jy_1- By, for some 2K C-small
output intervals J; with origins inside Iy, U Ij41, for k =1,...,n — 1. As before,
the resynchronizer R, behaves exactly as Ry for the output positions inside
the By’s. For any other output position, say x € Ji, the resynchronizer R, will
move the origin either to the last position of I} or to the first position of Iy,
depending on whether the source origin of = belongs to Ij, or Ijy1. 0

6 Proof overview of Theorem 2

The main obstacle towards dropping the bounded-visit restriction from Theo-
rem 1, while maintaining the effectiveness of the characterization, is the lack of a
bound on the number of flows. Indeed, for a transducer T" that is not necessarily
bounded-visit, there is no bound on the number of flows that encode successful
runs of 7', and thus the proofs of the implications 2 — 3 — 4 are not applicable
anymore. However, the proofs of the implications 1 — 2 and 4 — 1 remain valid,
even for a transducer T that is not bounded-visit.

The idea for proving Theorem 2 is to transform 7" into an equivalent bounded-
visit transducer low(T'), so that the property of one-way resynchronizability is
preserved. More precisely, given a two-way transducer 7', we construct:

1. a bounded-visit transducer low(T) that is classically equivalent to T,
2. a 1-bounded, regular resynchronizer R that is T-preserving and such that
R(T) =, low(T).

We can apply our characterization of one-way resynchronizability in the
bounded-visit case to the transducer low(T'). If low(T) is one-way resynchroniz-
able, then by Theorem 1 we obtain another partially bijective, regular resynchro-
nizer R’ that is low(T)-preserving and such that R’ (low(T"))) is order-preserving.
Thanks to Lemma 2, the resynchronizers R and R’ can be composed, so we con-
clude that the original transducer 7' is one-way resynchronizable. Otherwise,
if low(T) is not one-way resynchronizable, we show that neither is 7. This is
precisely shown in the lemma below.

Lemma 9. For all transducers T, T’, with T' bounded-visit, and for every par-
tially bijective, reqular resynchronizer R that is T-preserving and such that
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R(T) =, T', T is one-way resynchronizable if and only if T is one-way resyn-
chronizable.

There are however some challenges in the approach described above. First, as
T may output arbitrarily many symbols with origin in the same input position,
and low(T) is bounded-visit, we need low(T') to be able to produce arbitrarily
long outputs within a single transition. For this reason, we allow low(T) to be
a transducer with reqular outputs. The transition relation of such a transducer
consists of finitely many tuples of the form (q,a, L,¢’), with ¢,¢' € Q, a € X,
and L C I'* a regular language over the output alphabet. The semantics of a
transition rule (¢, a, L, ¢’) is that, upon reading a, the transducer can switch from
state ¢ to state ¢/, and move its head accordingly, while outputting any word
from L. We also need to use transducers with common guess. Both extensions,
regular outputs and common guess, already appeared in prior works (cf. [5,7]),
and the proof of Theorem 1 in the bounded-visit case can be easily adapted to
these features.

There is still another problem: we cannot always expect that there exists a
bounded-visit transducer low(T') classically equivalent to T. Consider, for in-
stance, the transducer that performs several passes on the input, and on each
left-to-right pass, at an arbitrary input position, it copies as output the letter
under its head. It is easy to see that the Parikh image of the output is an exact
multiple of the Parikh image of the input, and standard pumping arguments
show that no bounded-visit transducer can realize such a relation.

A solution to this second problem is as follows. Before trying to construct
low(T), we test whether T' satisfies the following condition on vertical loops
(these are runs starting and ending at the same position and at the same state).
There should exist some K such that T" is K -sparse, meaning that the number of
different origins of outputs generated inside some vertical loop is at most K. If
this condition is not met, then we show that 7" has unbounded cross-width, and
hence, by the implication 1 — 2 of Theorem 1, 7" is not one-way resynchronizable.
Otherwise, if the condition holds, then we show that a bounded-visit transducer
low(T) equivalent to T' can indeed be constructed.

7 Complexity

We discuss the effectiveness and complexity of our characterization. For a k-
visit transducer T, the effectiveness of the characterization relies on detecting
inversions in successful runs of T'. It is not difficult to see that this can be decided
in space that is polynomial in the size of T" and the bound k. We can also show
that one-way resynchronizability is PSPACE-hard. For this we recall that the
emptiness problem for two-way finite automata is PSPACE-complete. Let A be a
two-way automaton accepting some language L, and let X’ be a binary alphabet
disjoint from that of L. The function {(w-ay ...an,an...a1) |w € Lyay ...a, €
X*,n > 0} can be realized by a two-way transducer T of size polynomial in |A],
and T is one-way resynchronizable if and only if L is empty.
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In the unrestricted case, we showed that one-way resynchronizability is decid-
able (Theorem 2). We briefly outline the complexity of the decision procedure:

1. First one checks that T is K-sparse for some K. To do this, we construct
from T the regular language L of all inputs with some positions marked
that correspond to origins produced within the same vertical loop. Bounded
sparsity is equivalent to having a uniform bound on the number of marked
positions in every input from L. Standard techniques for two-way automata
allow to decide this in space that is polynomial in the size of T. Moreover,
this also gives us a computable exponential bound to the largest constant K
for which T" can be K-sparse.

2. Next, we construct from the K-sparse transducer T a bounded-visit trans-
ducer T” that is classically equivalent to T and has exponential size.

3. Finally, we decide one-way resynchronizability of 7" by detecting inversions
in successful runs of 77 (Theorem 1).

Summing up, one can decide one-way resynchronizability of unrestricted two-
way transducers in exponential space. It is open if this bound is optimal. We
also do not have any interesting bound on the size of the resynchronizer that
witnesses one-way resynchronizability, both in the bounded-visit case and in the
unrestricted case. Similarly, we lack upper and lower bounds on the size of the
resynchronized one-way transducers, when these exist.

8 Conclusions

As the main contribution of this paper, we provided a characterization for the
subclass of two-way transducers that are one-way resynchronizable, namely, that
can be transformed by some bounded, regular resynchronizer, into an origin-
equivalent one-way transducer.

There are similar definability problems that emerge in the origin semantics.
For instance, one could ask whether a given two-way transducer can be resyn-
chronized, through some bounded, regular resynchronization, to a relation that is
origin-equivalent to a first-order transduction. This can be seen as a relaxation of
the first-order definability problem in the origin semantics, namely, the problem
of telling whether a two-way transducer is origin-equivalent to some first-order
transduction, shown decidable in [4]. It is worth contrasting the latter problem
with the challenging open problem whether a given transduction is equivalent
to a first-order transduction in the classical setting.
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Abstract. Session types are widely used as abstractions of asynchronous
message passing systems. Refinement for such abstractions is crucial as
it allows improvements of a given component without compromising its
compatibility with the rest of the system. In the context of session types,
the most general notion of refinement is the asynchronous session subtyp-
ing, which allows to anticipate message emissions but only under certain
conditions. In particular, asynchronous session subtyping rules out can-
didates subtypes that occur naturally in communication protocols where,
e.g., two parties simultaneously send each other a finite but unspecified
amount of messages before removing them from their respective buffers.
To address this shortcoming, we study fair compliance over asynchronous
session types and fair refinement as the relation that preserves it. This
allows us to propose a novel variant of session subtyping that leverages
the notion of controllability from service contract theory and that is a
sound characterisation of fair refinement. In addition, we show that both
fair refinement and our novel subtyping are undecidable. We also present
a sound algorithm, and its implementation, which deals with examples
that feature potentially unbounded buffering.

Keywords: Session types - Asynchronous communication - Subtyping.

1 Introduction

The coordination of software components via message-passing techniques is be-
coming increasingly popular in modern programming languages and development
methodologies based on actors and microservices, e.g., Rust, Go, and the Twelve-
Factor App methodology [1]. Often the communication between two concurrent
or distributed components takes place over point-to-point FIFO channels.
Abstract models such as communicating finite-state machines [5] and asyn-
chronous session types [21] are essential to reason about the correctness of such
systems in a rigorous way. In particular these models are important to rea-
son about mathematically grounded techniques to improve concurrent and dis-
tributed systems in a compositional way. The key question is whether a com-
ponent can be refined independently of the others, without compromising the
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correctness of the whole system. In the theory of session types, the most general
notion of refinement is the asynchronous session subtyping [14, 15, 26], which
leverages asynchrony by allowing the refined component to anticipate message
emissions, but only under certain conditions. Notably asynchronous session sub-
typing rules out candidate subtypes that occur naturally in communication pro-
tocols where, e.g., two parties simultaneously send each other a finite but un-
specified amount of messages before removing them from their buffers.

We illustrate this key limitation of asynchronous session subtyping with Fig-
ure 1, which depicts possible communication protocols between a spacecraft and
a ground station. For convenience, the protocols are represented as session types
(bottom) and equivalent communicating finite-state machines (top). Consider
Ts and Tg first. Session type Tg is the abstraction of the spacecraft. It may
send a finite but unspecified number of telemetries (¢m), followed by a message
over — this phase of the protocol typically models a for loop and its exit. In the
second phase, the spacecraft receives a number of telecommands (tc), followed
by a message done. Session type T is the abstraction of the ground station. It is
the dual of T, written Tg, as required in standard binary session types without
subtyping. Since T and Tg are dual of each other, the theory of session types
guarantees that they form a correct composition, namely both parties terminate
successfully, with empty queues.

However, it is clear that this protocol is not efficient: the communication is
half-duplex, i.e., it is never the case that more than one party is sending at any
given time. Using full-duplex communication is crucial in distributed systems
with intermittent connectivity, e.g., in this case ground stations are not always
visible from low orbit satellites.

The abstraction of a more efficient ground station is given by type T/, which
sends telecommands before receiving telemetries. It is clear that T/, and T
forms a correct composition. Unfortunately T/, is not an asynchronous subtype
of T according to earlier definitions of session subtyping [14,15,26]. Hence they
cannot formally guarantee that T¢, is a safe replacement for T¢;. Concretely, these
subtyping relations allow for anticipation of emissions (output) only when they
are preceded by a bounded number of receptions (input), but this does not hold
between T, and T because the latter starts with a loop of inputs. Note that
the composition of T/, and T is not existentially bounded, hence it cannot be
verified by related communicating finite-state machines techniques [4,19,20,24].

In this paper we address this limitation of previous asynchronous session
subtyping relations. To do this, we move to an alternative notion of correct com-
position. In [14] the authors show that their subtyping relation is fully abstract
w.r.t. the notion of orphan-message-free composition. More precisely, it captures
exactly a notion of refinement that preserves the possibility for all sent messages
to be consumed along all possible computations of the receiver. In the spacecraft
example, given the initial loop of outputs in T, there is an extreme case in which
it performs infinitely many outputs without consuming any incoming messages.
Nevertheless, this limit case cannot occur under the natural assumption that
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TG = pt. @ {tc: t, done : ut’. &{tm : t', over : end}}
Te = pt. &{tm : t, over : ut'. ® {tc : t’, done : end}}
Ts = pt. ® {tm : t, over : ut'. &{tc : t', done : end}}

Fig. 1. Satellite protocols. T¢ is the refined session type of the ground station, T is
the session type of ground station, and T’ is the session type of the spacecraft.

the loop of outputs eventually terminates, i.e., only a finite (but unspecified)
amount of messages can be emitted.

The notion of correct composition that we use is based on fair compliance,
which requires each component to always be able to eventually reach a success-
ful final state. This is a liveness property, holding under full fairness [32], used
also in the theory of should testing [30] where “every reachable state is required
to be on a path to success”. This is a natural constraint since even programs
that conceptually run indefinitely must account for graceful termination (e.g., to
release acquired resources). Previously, fair compliance has been considered to
reason formally about component/service composition with synchronous session
types [29] and synchronous behavioural contracts [11]. A preliminary formali-
sation of fair compliance for asynchronous behavioural contracts was presented
in [10], but considering an operational model very different from session types.

Given a notion of fair compliance defined on an operational model for asyn-
chronous session types, we define fair refinement as the relation that preserves it.
Then, we propose a novel variant of session subtyping called fair asynchronous
session subtyping, that leverages the notion of controllability from service con-
tract theory, and which is a sound characterisation of fair refinement. We show
that both fair refinement and fair asynchronous session subtyping are undecid-
able, but give a sound algorithm for the latter. Our algorithm covers session
types that exhibit complex behaviours (including the spacecraft example and
variants). Our algorithm has been implemented in a tool available online [31].

Structure of the paper The rest of this paper is structured as follows. In § 2
we recall syntax and semantics of asynchronous session types, we define fair
compliance and the corresponding fair refinement. In § 3 we introduce fair asyn-
chronous subtyping, the first relation of its kind to deal with examples such as
those in Figure 1. In § 4 we propose a sound algorithm for subtyping that sup-
ports examples with unbounded accumulations, including the ones discussed in
this paper. In § 5 we discuss the implementation of this algorithm. Finally, in
§ 6 we discuss related works and future work. We give proofs for all our results
and examples of output from our tool in [9].
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2 Refinement for Asynchronous Session Types

In this section we first recall the syntax of two-party session types, their reduction
semantics, and a notion of compliance centred on the successful termination of
interactions. We define our notion of refinement based on this compliance and
show that it is generally undecidable whether a type is a refinement of another.

2.1 Preliminaries: Asynchronous Session Types

Syntar The formal syntax of two-party session types is given below. We follow
the simplified notation used in, e.g., [7,8], without dedicated constructs for send-
ing an output/receiving an input. Additionally we abstract away from message
payloads since they are orthogonal to the results of this paper.

Definition 1 (Session Types). Given a set of labels L, ranged over by I, the
syntax of two-party session types is given by the following grammar:

T = @{lz : E}ie[ ‘ &{ll : Ti}ie] | /JtT | t ‘ end

Output selection &{l; : T;};cr represents a guarded internal choice, specify-
ing that a label [; is sent over a channel, then continuation T; is executed. Input
branching &{l; : T; }icr represents a guarded external choice, specifying a proto-
col that waits for messages. If message [; is received, continuation T; takes place.
In selections and branchings each branch is tagged by a label [;, taken from a
global set of labels £. In each selection/branching, these labels are assumed to
be pairwise distinct. In the sequel, we leave implicit the index set ¢ € I in input
branchings and output selections when it is clear from the context. Types ut.T
and t denote standard recursion constructs. We assume recursion to be guarded
in session types, i.e., in ut. T, the recursion variable t occurs within the scope
of a selection or branching. Session types are closed, i.e., all recursion variables
t occur under the scope of a corresponding binder ut. 7. Terms of the session
syntax that are not closed are dubbed (session) terms. Type end denotes the
end of the interactions.

The dual of session type T, written T, is inductively defined as follows:
@{ll : Ti}ie] :éé{li : Ti}iej, &{ll : Ti}ie[ = @{ll : Ti}ie[, end =end, t = t,
and put. 1" = pt.T.

Operational characterisation Hereafter, we let w range over words in L£*, write €
for the empty word, and write w;-wo for the concatenation of words w; and wo,
where each word may contain zero or more labels. Also, we write T{T'/t} for T
where every free occurrence of t is replaced by T”.

We give an asynchronous semantics of session types via transition systems
whose states are configurations of the form: [T}, w:]|[T2,ws] where T7 and T
are session types equipped with two sequences w; and wo of incoming messages
(representing unbounded buffers). We use s, s, etc. to range over configurations.

In this paper, we use explicit unfoldings of session types, as defined below.
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Definition 2 (Unfolding). Given session type T, we define unfold(T):

unfold(T") = {;nf°|d(T/{T/t}) if T = pt. T

otherwise

Definition 2 is standard, e.g., an equivalent function is used in the first session
subtyping [18]. Notice that unfold(7) unfolds all the recursive definitions in front
of T, and it is well defined for session types with guarded recursion.

Definition 3 (Transition Relation). The transition relation — over configu-
rations is the minimal relation satisfying the rules below (plus symmetric ones):

1. Zf] € I then [@{ll : Ti}ie],W1]|[TQ7WQ] — [Tj,wl]HTQ,WQ'lj];
2. Zf] € I then [&{ll : Ti}iej,lj~wl]|[T2,LU2] — [Tj,w1]|[Tg,wg];
3. if [unfold(Ty), w1]|[T2, wa] — s then [Th,wi]|[Te, ws] — s.

We write —* for the reflexive and transitive closure of the — relation.

Intuitively a configuration s reduces to configuration s’ when either (1) a
type outputs a message [, which is added at the end of its partner’s queue; (2)
a type consumes an expected message [; from the head of its queue; or (3) the
unfolding of a type can execute one of the transitions above.

Next, we define successful configurations as those configurations where both
types have terminated (reaching end) and both queues are empty. We use this
to give our definition of compliance which holds when it is possible to reach a
successful configuration from all reachable configurations.

Definition 4 (Successful Configuration). The notion of successful configu-
ration is formalised by a predicate s/ defined as follows:

[T, wr]|[S,ws]v/ iff unfold(T")=unfold(S)=end and wr=ws=e¢

Definition 5 (Compliance). Given a configuration s we say that it is a cor-
rect composition if, whenever s —* s', there exists a configuration s"” such that
s'—=* " and §"/.

Two session types T and S are compliant if [T, €]|[S, €] is a correct composition.

Observe that our definition of compliance is stronger than what is generally
considered in the literature on session types, e.g., [16,23,24], where two types
are deemed compliant if all messages that are sent are eventually received, and
each non-terminated type can always eventually make a move. Compliance is
analogous to the notion of correct session in [29] but in an asynchronous setting.

A consequence of Definition 5 is that it is generally not the case that a session
type T is compliant with its dual T, as we show in the example below.

Ezample 1. The session type T' = &{l; : end, Iy : pt. © {l3 : t}} and its dual
T = &{l1 : end, Iy : pt.&{l3 : t}} are not compliant. Indeed, when T sends
label I, the configuration [end, €]|[end, €] is no longer reachable.
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2.2 Fair Refinement for Asynchronous Session Types

We introduce a notion of refinement that preserves compliance. This follows
previous work done in the context of behavioural contracts [11] and synchronous
multi-party session types [29]. The key difference with these works is that we are
considering asynchronous communication based on (unbounded) FIFO queues.
Asynchrony makes fair refinement undecidable, as we show below.

Definition 6 (Refinement). A session type T refines S, written T T S, if for
every S’ s.t. S and S’ are compliant then T and S’ are also compliant.

In contrast to traditional (synchronous and asynchronous) subtyping for ses-
sion types [14, 18, 26], this refinement is not covariant on outputs, i.e., it does
not always allow a refined type to have output selections with less labels.?

Ezample 2. Let T = pt. & {l; : t} and S = pt. & {l1 : t, lo : end}. We have
that T is a synchronous (and asynchronous) subtype of S. However T is not a
refinement of S. In particular, the type S = ut. &{l; : t, 5 : end} is compliant
with S but not with 7', since T does not terminate.

Next, we show that the refinement relation C is generally undecidable. The
proof of undecidability exploits results from the tradition of computability the-
ory, i.e., Turing completeness of queue machines. The crux of the proof is to
reduce the problem of checking the reachability of a given state in a queue ma-
chine to the problem of checking the refinement between two session types.

Preliminaries Below we consider only state reachability in queue machines, and
not the typical notion of the language recognised by a queue machine (see, e.g., [7]
for a formalisation of queue machines). Hence, we use a simplified formalisation,
where no input string is considered.

Definition 7 (Queue Machine). 4 queue machine M is defined by a siz-tuple
(Qa Ea F7 $7 S, 6) where:

— @ s a finite set of states;

— X C I is a finite set denoting the input alphabet;

— I is a finite set denoting the queue alphabet (ranged over by A, B,C, X );

— $ eI — X is the initial queue symbol;

— s € Q is the start state;

—0:QxI — Qx I is the transition function (I'* is the set of sequences of
symbols in ).

Considering a queue machine M = (Q, X, I,8$,s,0), a configuration of M is
an ordered pair (¢,7) where ¢ € Q is its current state and v € I'* is the queue.
The starting configuration is (s, $), composed of the start state s and the initial
queue symbol $.

Next, we define the transition relation (—js), leading a configuration to
another, and the related notion of state reachability.

3 The synchronous subtyping in [18] follows a channel-oriented approach; hence it has
the opposite direction and is contravariant on outputs.
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Definition 8 (State Reachability). Given a machine M =(Q, X, I,8$,s,0),
the transition relation —p; over configurations QQ X I'* is defined as follows.
Forp,q e Q, Ae I, and a,y € I'*, we have (p, Aa) =y (g, vy) whenever
d(p, A) = (¢,7). Let =%, be the reflexive and transitive closure of — .

A target state g € @Q is reachable in M if there isy € I'* s.t. (s,8) =3, (q7.7)-

Since queue machines can deterministically encode Turing machines (see,
e.g., [7]), checking state reachability for queue machines is undecidable.

Theorem 1. Given a queue machine M and a target state qy¢ it is possible to
reduce the problem of checking the reachability of qr in M to the problem of
checking refinement between two session types.

In the light of the undecidability of reachability in queue machines, we can
conclude that refinement (Definition 6) is also undecidable.

2.3 Controllability for Asynchronous Session Types

Given a notion of compliance, controllability amounts to checking the existence
of a compliant partner (see, e.g., [12,25,33]). In our setting, a session type is
controllable if there exists another session type with which it is compliant.
Checking for controllability algorithmically is not trivial as it requires to con-
sider infinitely many potential partners. For the synchronous case, an algorithmic
characterisation was studied in [29]. In the asynchronous case, the problem is
even harder because each of the infinitely many potential partners may generate
an infinite state computation (due to unbounded buffers). The main contribution
of this subsection is to give an algorithmic characterisation of controllability in
the asynchronous setting. Doing this is important because controllability is an
essential ingredient for defining fair asynchronous subtyping, see Section 3.

Definition 9 (Characterisation of Controllability, T ctrl). Given a session
type T, we define the judgement T ok inductively as follows:

end €T T{end/t} ok T ok Vi e I. T; ok
end ok pt. T ok &A1 : T} ok @®{l; : Ti }ier ok

where end € T holds if end occurs in T.

We write T ctrl if there exists T’ such that (i) T’ is obtained from T by
syntactically replacing every input prefiz &{l; : T;}icr occurring in T with a
term &{l; : T;} (with j € I) and (it) T' ok holds.

Notice that a type T such that T ctrl is indeed controllable, in that 77, the
dual of type T" considered above, is compliant with T (the predicate end € T in
the premise of the rule for recursion guarantees that a successful configuration is
always reachable while looping). Moreover the above definition naturally yields
a simple algorithm that decides whether or not 7 ctrl holds for a type T, i.e.,
we first pick a single branch for each input prefix syntactically occurring in T
(there are finitely many of them) and then we inductively check if 7" ok holds.

The following theorem shows that the judgement T ctrl, as defined above,
precisely characterises controllability (i.e., the existence of a compliant type).
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Theorem 2. T ctrl holds if and only if there exists a session type S such that
T and S are compliant.

Ezample 3. Consider the session type T = pt. &{l1 : &{ly : ®{ly : end, I5 :
ut’. @ {lg : t'}}, I3 : t}}. Tctrl does not hold because it is not possible to
construct a T” as specified in Definition 9 for which 7" ok holds. By Theorem 2,
there is no session type S that is compliant with 7". Hence T is not controllable.

3 Fair Asynchronous Session Subtyping

In this section, we present our novel variant of asynchronous subtyping which
we dub fair asynchronous subtyping.

We need to define a distinctive notion of unfolding. Function selUnfold(T')
unfolds type T by replacing recursion variables with their corresponding defi-
nitions only if they are guarded by an output selection. In the definition, we
use the predicate @g(t,T") which holds if all instances of variable t are output
selection guarded, i.e., t occurs free in T only inside subterms &{l; : T} }ier.

Definition 10 (Selective Unfolding). Given a term T, define selUnfold(T") =

&{l; : Titier if T'=®{l; : Ti}ier

&Al; : selUnfold(T;) }ier if T =&{l;i: T }ier
T'{#t.T" [t} if T =t T, @&g(t,T)
pt.selUnfold(selRepl(t, £, 77){nt-T'/t}) with t fresh if T = pt.T', =@ g(t,T")
t if T =t

end if T =end

where, selRepl(t,t,T") is obtained from T' by replacing the free occurrences of t
that are inside a subterm ®{l; : S;}icr of T' by t.

Ezample 4. Consider the type T' = ut.&{l1 : t, I : ®{l5 : t}}, then we have
seIUnfoId(T) = ,ut.&{ll 0t 1o @{lg D pt. &{ll 0t 1o @{lg : t}}}}

i.e., the type is only unfolded within output selection sub-terms. Note that t is
used to identify where unfolding must take place, e.g.,

selRepl(t,t, & {11 : t, lo: ®{l3: t}}) = &{l1 : ¢, Io : ©{l3 : £}}.

The last auxiliary notation required to define our notion of subtyping is that
of input contexts, which are used to record inputs that may be delayed in a
candidate super-type.

Definition 11 (Input Context). An input context A is a session type with
several holes defined by the syntax:

A= [F | &l Atier | utA |t
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where the holes [|*, with k € K, of an input context A are assumed to be pairwise
distinct. We assume that recursion is guarded, i.e., in an input context pt.A,
the recursion variable t must occur within a subterm &{l; : A;}ier-

We write holes(A) for the set of hole indices in A. Given a type Ty, for each
k € K, we write A[Ty]*€¥ for the type obtained by filling each hole k in A with
the corresponding Tj,.

In contrast to previous work [6,7,13-15,26], these input contexts may contain
recursive constructs. This is crucial to deal with examples such as Figure 1.

We are now ready to define the fair asynchronous subtyping relation, written
<. The rationale behind asynchronous session subtyping is that under asyn-
chronous communication it is unobservable whether or not an output is antici-
pated before an input, as long as this output is executed along all branches of
the candidate super-type. Besides the usage of our new recursive input contexts
the definition of fair asynchronous subtyping differs from those in [6,7,13-15,26]
in that controllability plays a fundamental role: the subtype is not required to
mimic supertype inputs leading to uncontrollable behaviours.

Definition 12 (Fair Asynchronous Subtyping, <).
A relation R on session types is a controllable subtyping relation whenever

(T,S) € R implies:

. if T = end then unfold(S) = end;

if T = pt. T then (T'{7/t},S) € R;

if T = &{l; : T;}ier then unfold(S) = &{l; : Sj}jes, I O K, and Yk €
K. (T, Sk) € R, where K = {k € J | Sy, is controllable};

4. ZfT = EB{lz : Ti}ie[ then seIUnfoId(S) = A[@{ll : Ski}ie[]keK and Vi €

I.(T;, A[Ski]* %) e R.

Lo o ~

T is a controllable subtype of S if there is a controllable subtyping relation R s.t.
(T,S) € R.

T is a fair asynchronous subtype of S, written T' < S, whenever: S controllable
implies that T is a controllable subtype of S.

Notice that the top-level check for controllability in the above definition is
consistent with the inner controllability checks performed in Case (3).

Subtyping simulation game Session type T is a fair asynchronous subtype of S
if S is not controllable or if T is a controllable subtype of S. Intuitively, the
above co-inductive definition says that it is possible to play a simulation game
between a subtype T and its supertype S as follows. Case (1) says that if T is
the end type, then S must also be end. Case (2) says that if T is a recursive
definition, then it simply unfolds this definition while S does not need to reply.
Case (3) says that if T is an input branching, then the sub-terms in S that are
controllable can reply by inputting at most some of the labels [; in the branching
(contravariance of inputs), and the simulation game continues (see Example 5).
Case (4) says that if T' is an output selection, then S can reply by outputting all
the labels [; in the selection, possibly after executing some inputs, after which the
simulation game continues. We comment further on Case (4) with Example 6.
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Ezample 5. Consider T' = &{l; : end, Iy : end} and S = &{l; : end, I3 :
pt.®{ls : t}}. We have T' < S. Once branch [z, that is uncontrollable, is removed
from S, we can apply contravariance for input branching. We have I = {1,2} D
{1} = K in Definition 12.

Ezample 6. Consider T and T(, from Figure 1. For the pair (T}, Tz), we apply
Case (4) of Definition 12 for which we compute

selUnfold(T¢;) = A[@{tc : put'. & {tc : t’, done : end}, done : end}]

with A = pt.&{tm : t, over : []'}. Observe that A contains a recursive sub-term,
such contexts are not allowed in previous works [14,15, 26].

The use of selective unfolding makes it possible to express T in terms of a
recursive input context A with holes filled by types (i.e., closed terms) that start
with an output prefix. Indeed selective unfolding does not unfold the recursion
variable t (not guarded by an output selection), which becomes part of the input
context A. Instead it unfolds the recursion variable t’ (which is guarded by an
output selection) so that the term that fills the hole, which is required to start
with an output prefix, is a closed term.

Case (4) of Definition 12 requires us to check that the following pairs are
in the relation: (i) (T(, A[ut’. & {tc : t/, done : end}]) and (i7) (ut’. &{tm :
t’, over : end}, Alend]). Observe that T = Aut’. @ {tc : t’',done : end}].
Hence, we have T{, < T with

R={(T},Tc), (end,end), (ut'.&{tm: t', over: end}, ut.&{tm: t, over: end})}
and R is a controllable subtyping relation.

We show that fair asynchronous subtyping is sound w.r.t. fair refinement. In
fact, fair asynchronous subtyping can be seen as a sound coinductive characteri-
sation of fair refinement. Namely this result gives an operational justification to
the syntactical definition of fair asynchronous session subtyping. Note that < is
not complete w.r.t. C, see Example 7.

Theorem 3. Given two session types T and S, if T'<S then T C S.

Ezample 7. Let T = ®{ly : &{l3 : end}} and S = &{l3 : ®{l; : end, 5 : end}}.
We have T'C S, but T is not a fair asynchronous subtype of S since {l1} #
{l1,12}, i.e., covariance of outputs is not allowed.

Unfortunately, fair asynchronous session subtyping is also undecidable. The
proof is similar to the one of undecidability of fair refinement, in particular we
proceed by reduction from the termination problem in queue machines.

Theorem 4. Given two session types T and S, it is in general undecidable to
check whether T'<S.
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4 A Sound Algorithm for Fair Asynchronous Subtyping

We propose an algorithm which soundly verifies whether a session type is a
fair asynchronous subtype of another. The algorithm relies on building a tree
whose nodes are labelled by configurations of the simulation game induced by
Definition 12. The algorithm analyses the tree to identify witness subtrees which
contain input contexts that are growing following a recognisable pattern.

Ezample 8. Recall the satellite communication example (Figure 1). The space-
craft with protocol T's may be a replacement for an older generation of spacecraft
which follows the more complicated protocol T¢, see Figure 2. Type T¢ notably
allows the reception of telecommands to be interleaved with the emission of
telemetries. The new spacecraft may safely replace the old one because T's <T¥.
However, checking Ts <T¢ leads to an infinite accumulation of input con-
texts, hence it requires to consider infinitely many pairs of session types. E.g.,
after Ts selects the output label ¢m twice, the subtyping simulation game con-
siders the pair (Ts,T¢), where also T4 is in Figure 2. The pairs generated for
this example illustrate a common recognisable pattern where some branches
grow infinitely (the tc-branch), while others stay stable throughout the deriva-
tion (the done-branch). The crux of our algorithm is to use a finite parametric
characterisation of the infinitely many pairs occurring in the check of T's <T%.

The simulation tree for T < S, written simtree(T,.S), is the labelled tree rep-
resenting the simulation game for T'< S, i.e., simtree(T,S) is a tuple (N, ng, —
,A) where N is its set of nodes, ng € N is its root, —» is its transition function,
and A is its labelling function, such that A(ng) = (S, T). We omit the formal def-
inition of —», as it is straightforward from Definition 12 following the subtyping
simulation game discussed after that definition. We give an example below.

Notice that the simulation tree simtree(T,S) is defined only when S is con-
trollable, since T'< S holds without needing to play the subtyping simulation
game if S is not controllable. We say that a branch of simtree(T, S) is successful
if it is infinite or if it finishes in a leaf labelled by (end, end). All other branches
are unsuccessful. Under the assumption that S is controllable, we have that all
branches of simtree(T, S) are successful if and only if T'<S. As a consequence
checking whether all branches of simtree(T, S) are successful is generally unde-
cidable. It is possible to identify a branch as successful if it visits finitely many
pairs (or node labels), see Example 6; but in general a branch may generate
infinitely many pairs, see Examples 8 and 12.

In order to support types that generate unbounded accumulation, we charac-
terise finite subtrees — called witness subtrees, see Definition 13 — such that all
the branches that traverse these finite subtrees are guaranteed to be successful.

Notation We give a few auxiliary definitions and notations. Hereafter A and A’
range over ertended input contexts, i.e., input contexts that may contain distinct
holes with the same index. These are needed to deal with unfoldings of input
contexts, see Example 9.
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te Itm

2te
: g lover a !.::L o ?donc lover a

?done
T =pt &{ te:  ®{tm :t, over : put'. &{tc: t', done : end}},
done : pt”. @ {tm : t", over : end}}
TY = &{te: &{tec: Tg,
done : pt”. @ {tm : t", over : end} },
done : pt”. @ {tm : t", over : end}

Fig. 2. T¢ is an alternative session type for Ts, see Example 8.

The set of reductions of an input context A is the minimal set S s.t. (i) A € S;
(17) if &{l; : Ai}ier € S then Vi € I.A; € S and (4ii) if pt. A" € S then
A'{ut-A'/e} € S. Notice that due to unfolding (item (74i)), the reductions of an
input context may contain extended input contexts. Moreover, given a reduction
A’ of A, we have that holes(A’) C holes(A).

Example 9. Consider the following extended input contexts:
Al = /Lt &{ll : Hl, l2 : &{13 : t}} A2 = &{13 : ,U,t &{ll : Hl, l2 : &{lg : t}}}
unfold( A1) = &{l1 : []*, Io: &{l3 : pt. &{l : []*, Io: &{l3 : t}}}}

Context As is a reduction of Ay, i.e., one can reach A, from A, by unfolding
Ay and executing the input /. Context unfold(A;) is also a reduction of Aj;.
Observe that unfold(A;) contains two distinct holes indexed by 1.

Given an extended context A and a set of hole indices K such that K C
holes(A), we use the following shorthands. Given a type T} for each k € K,
we write A|Ty |F€K for the extended context obtained by replacing each hole
k € K in A by Ty. Also, given an extended context A’ we write A(A')E for
the extended context obtained by replacing each hole k € K in A by A’. When
K = {k}, we often omit K and write, e.g., A(A")¥ and A|T} |*.

Example 10. Using the above notation and posing A = &{tc : [|!, done : []?},
we can rewrite T4 (Figure 2) as A(A[T4 | [ ut”. & {tm : t”, over : end}|2.

Example 11. Consider the session type below
S = &{ll : &{ll ZT17 l2 : TQ, l3 : Tg}, lg : &{ll :Tl7 12 : Tg, 13 : T3}, 13 : Tg}.

Posing A = &{l; : [}, 12 : []%, 15 : []?} we have holes(A) = {1,2,3}. Assuming
J ={1,2} and K = {3}, we can rewrite S as A(A|T; |77} | T} |FK.

Exzample 12. Figure 3 shows the partial simulation tree for Ts < T, from Fig-
ures 1 and 2 (ignore the dashed edges for now). Notice how the branch leading
to the top part of the tree visits only finitely many node labels (see dotted box),
however the bottom part of the tree generates infinitely many labels, see the
path along the !tm transitions in the dashed box.
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Fig. 3. Simulation tree for Ts < T (Figures 1 and 2), the root of the tree is in bold.

Witness subtrees Next, we define witness trees which are finite subtrees of a
simulation tree which we prove to be successful. The role of the witness subtree
is to identify branches that satisfy a certain accumulation pattern. It detects an
input context A whose holes fall in two categories: (i) growing holes (indexed
by indices in J below) which lead to an infinite growth and (i7) constant holes
(indexed by indices in K below) which stay stable throughout the simulation
game. The definition of witness trees relies on the notion of ancestor of a node
n, which is a node n’ (different from n) on the path from the root ng to n. We
illustrate witness trees with Figure 3 and Example 13.

Definition 13 (Witness Tree). A tree (N,ng,—,\) is a witness tree for A,
such that holes(A) = I, with ) C K C I and J = I\ K, if all the following
conditions are satisfied:

1. for alln € N either A(n) = (T, A'(A[S;]7€7)7 | Sk |*€K) or
An) = (T, A{A(A[S; 7)) | Sk |FEE), where A is a reduction of A, and
it holds that
— holes(A") C K implies that n is a leaf and
— if M(n) = (T, A[S;]*¢T) and n is not a leaf then unfold(T') starts with an
output selection;
2. each leaf n of the tree satisfies one of the following conditions:
(a) XM(n) = (T,S) and n has an ancestor n’ s.t. X(n') = (T, S)
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(b) A(n) = (T, A(A[S;]7€7)7 | Sk |*<K) and n has an ancestor n’ s.t. \(n') =
(T, AlS;J'<") _

(¢) Mn) = (T, A[S;]'*") and
n has an ancestor n' s.t. X(n') = (T, A(A|S;]7€7)7 | Sy, | *<K)

(d) X(n) = (T, A'[Si]*<K") where K' C K

and for all leaves (T, S) of type (2¢) or (2d) T < .S holds.

Intuitively Condition (1) says that a witness subtree consists of nodes that
are labelled by pairs (T,S5) where S contains a fixed context A (or a reduc-
tion/repetition thereof) whose holes are partitioned in growing holes (J) and
constant holes (K). Whenever all growing holes have been removed from a pair
(by reduction of the context) then this means that the pair is labelling a leaf of
the tree. In addition, if the initial input is limited to only one instance of A, the
Lh.s. type starts with an output selection so that this input cannot be consumed
in the subtyping simulation game.

Condition 2 says that all leaves of the tree must validate certain conditions
from which we can infer that their continuations in the full simulation tree
lead to successful branches. Leaves satisfying Condition (2a) straightforwardly
lead to successful branches as the subtyping simulation game, starting from the
corresponding pair, has been already checked starting from its ancestor having
the same label. Leaves satisfying Condition (2b) lead to an infinite but regular
“increase” of the types in J-indexed holes — following the same pattern of
accumulation from their ancestor. The next two kinds of leaves must additionally
satisfy the subtyping relation — using witness trees inductively or based on the
fact they generate finitely many labels. Leaves satisfying Condition (2c) lead
to regular “decrease” of the types in J-indexed holes — following the same
pattern of reduction from their ancestor. Leaves satisfying Condition (2d) use
only constant K-indexed holes because, by reduction of the context A’, the
growing holes containing the accumulation .4 have been removed.

Remark 1. Definition 13 is parameterised by an input context A. We explain how
such contexts can be identified while building a simulation tree in Section 5.

Ezample 13. In the tree of Figure 3 we highlight two subtrees. The subtree in the
dotted box is not a witness subtree because it does not validate Condition (1) of
Definition 13, i.e., there is an intermediary node with a label in which the r.h.s
type does not contain A.

The subtree in the dashed box is a witness subtree with 3 leaves, where the
dashed edges represent the ancestor relation, A = &{tc : [], done : []?}, J = {1}
and K = {2}. We comment on the leaves clockwise, starting from (end, end),
which satisfies Condition (2d). The next leaf satisfies condition (2c), while the
final leaf satisfies Condition (2b).

Algorithm Given two session types T and S we first check whether S is uncon-
trollable. If this is the case we immediately conclude that T'<.S. Otherwise, we
proceed in four steps.



158 M. Bravetti et al.

S1 We compute a finite fragment of simtree(T,S), stopping whenever (i) we
encounter a leaf (successful or not), (i) we encounter a node that has an ancestor
as defined in Definition 13 (Conditions (2a), (2b), and (2c)), (i#) or the length
of the path from the root of simtree(T,S) to the current node exceeds a bound
set to two times the depth of the AST of S. This bound allows the algorithm to
explore paths that will traverse the super-type at least twice. We have empirically
confirmed that it is sufficient for all examples mentioned in Section 5.

S2 We remove subtrees from the tree produced in S1 corresponding to successful
branches of the simulation game which contain finitely many labels. Concretely,
we remove each subtree whose each leaf n is either successful or has an ancestor
n' such that n' is in the same subtree and A\(n) = A(n').

S3 We extract subtrees from the tree produced in S2 that are potential can-
didates to be subsequently checked. The extraction of these finite candidate
subtrees is done by identifying the forest of subtrees rooted in ancestor nodes
which do not have ancestors themselves.

S4 We check that each of the candidate subtrees from S3 is a witness tree.

If an unsuccessful leaf is found in S1, then the considered session types are not
related. In S1, if the generation of the subtree reached the bound before reaching
an ancestor or a leaf, then the algorithm is unable to give a decisive verdict, i.e.,
the result is unknown. Otherwise, if all checks in S4 succeed then the session
types are in the fair asynchronous subtyping relation. In all other cases, the
result is unknown because a candidate subtree is not a witness.

Example 1. We illustrate the algorithm above with the tree in Figure 3. Af-
ter S1, we obtain the whole tree in the figure (11 nodes). After S2, all nodes in
the dotted boxed are removed. After S3 we obtain the (unique) candidate sub-
tree contained in the dashed box. This subtree is identified as a witness subtree
in S4, hence we have Ts <T§.

We state the main theorem that establishes the soundness of our algorithm,
where —* is the reflexive and transitive closure of —».

Theorem 5. Let T and S be session types s.t. simiree(T,S) = (N, ng,—, ). If
simtree(T, S) contains a witness subtree with root n then for every node n' € N
s.t. n —*n', either n’ is a successful leaf, or there exists n' s.t. n' — n'".

We can conclude that if the candidate subtrees of simtree(T,S) identified
with the strategy explained above are also witness subtrees, then we have T'< S.

5 Implementation

To evaluate our algorithm, we have produced a Haskell implementation of it,
which is available on GitHub [31]. Our tool takes two session types T' and S
as input then applies Steps S1 to S4 to check whether T'< S. A user-provided
bound can be given as an optional argument. We have run our tool on a dozen
of examples handcrafted to test the limits of our algorithm (inc. the examples
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discussed in this paper), as well as on the 174 tests taken from [6]. All of these
tests terminate under a second.

For debugging and illustration purposes, the tool can optionally generate
graphical representations of the simulation and witness trees, and check whether
the given types are controllable. We give examples of these in [9].

Our tool internally uses automata to represent session types and uses strong
bisimilarity instead of syntactic equality between session types. Using automata
internally helps us identify candidate input contexts as we can keep track of
states that correspond to the input context computed when applying Case (4)
of Definition 12. In particular, we augment each local state in the automata
representation of the candidate supertype with two counters: the c-counter keeps
track of how many times a state has been used in an input context; the h-
counter keeps track of how many times a state has occurred within a hole of an
input context. We illustrate this with Figure 4 which illustrates the internal data
structures our tool manipulates when checking Ts < T¢ from Figures 1 and 2.
The state indices of the automata in Figure 4 correspond to the ones in Figure 1
(224 column) and Figure 2 (3¢ column).

The first row of Figure 4 represents the root of the simulation tree, where
both session types are in their respective initial state and no transition has been
executed. We use state labels of the form n.; where n is the original identity
of the state, c is the value of the c-counter, and h is the value of the h-counter.
The second row depicts the configuration after firing transition !¢tm, via Case (4)
of Definition 12. While the candidate subtype remains in state 0 (due to a self-
loop) the candidate supertype is unfolded with selUnfold(7¢) (Definition 10).
The resulting automaton contains an additional state and two transitions. All
previously existing states have their h-counter incremented, while the new state
has its c-counter incremented. The third row of the figure shows the configuration
after firing transition lover, using Case (4) of Definition 12 again. In this step,
another copy of state 0 is added. Its c-counter is set to 2 since this state has been
used in a context twice; and the h-counters of all other states are incremented.

Using this representation, we construct a candidate input context by building
a tree whose root is a state g.j such that ¢ > 1. The nodes of the tree are
taken from the states reachable from ¢, stopping when a state ¢/, e such that
¢ < cis found. A leaf qc, ,» becomes a hole of the input context. The hole
is a constant (K) hole when &’ = ¢, and growing (.J) otherwise. Given this
strategy and the configurations in Figure 4, we successfully identify the context
A = &{tc: []}, done : [)?} with J = {1} and K = {2}.

6 Related and Future Work

Related work We first compare with previous work on refinement for asyn-
chronous communication by some of the authors of this paper. The work in [10]
also considers fair compliance, however here we consider binary (instead of mul-
tiparty) communication and we use a unique input queue for all incoming mes-
sages instead of distinct named input channels. Moreover, here we provide a
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Last transition ‘ State of Ts ‘ Representation of T
6 0 S
2tc 1tm
?d()ne
Itm 0
?done
lover 1

Fig. 4. Internal representation of the simulation tree for Ts < T§ (fragment).

sound characterisation of fair refinement using coinductive subtyping and pro-
vide a sound algorithm and its implementation. In [13] the asynchronous sub-
typing of [7,14,15,26] is used to characterise refinement for a notion of correct
composition based on the impossibility to reach a deadlock, instead of the possi-
bility to reach a final successful configuration as done in the present paper. The
refinement from [13] does not support examples such as those in Figure 1.

Concerning previous notions of synchronous subtyping, Gay and Hole [17,18]
first introduced the notion of subtyping for synchronous session types, which is
decidable in quadratic time [22]. This subtyping only supports covariance of out-
puts and contravariance of inputs, but does not address anticipation of outputs.
Padovani studied a notion of fair subtyping for synchronous multi-party session
types in [29]. This work notably considers the notion of wiability which corre-
sponds, in the synchronous multiparty setting, to our notion of controllability.
We use the term controllability instead of viability following the tradition of
service contract theories like those based on Petri nets [25,33] or process cal-
culi [12]. In contrast to [29], asynchronous communication makes it much more
involved to characterise controllability in a decidable way, as we do in this pa-
per. Fair refinement in [29] is characterised by defining a coinductive relation
on normal form of types, obtained by removing inputs leading to uncontrollable
continuations. Instead of using normal forms, we remove these inputs during
the asynchronous subtyping check. A limited form of variance on output is also
admitted in [29]. Covariance between the outputs of a subtype and those of
a supertype is possible when the additional branches in the supertype are not
needed to have compliance with potential partners. In [29] this check is made
possible by exploiting a difference operation [29, Definition 3.15] on types, which
synthesises a new type representing branches of one type that are absent in the
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other. We observe that the same approach cannot work to introduce variance
on outputs in an asynchronous setting. Indeed the interplay between output an-
ticipation and recursion could generate differences in the branches of a subtype
and a supertype that cannot be statically represented by a (finite) session type.

Padovani also studied an alternative notion of fair synchronous subtyping
in [28]. Although the contribution of that paper refers to session types, the for-
mal framework therein seems to deviate from the usual session type approach.
In particular, it considers shared channel communication instead of binary chan-
nels: when a partner emits a message, it is possible to have a race among several
potential receivers for consuming it. As a consequence of this alternative seman-
tics, the subtyping in [28] does not admit variance on input. Another difference
with respect to session type literature is the notion of success among interacting
sessions: a composition of session is successful if at least one participant reaches
an internal successful state. This approach has commonalities with testing [27],
where only the test composed with the system under test is expected to succeed,
but differs from the typical notion of success considered for session types. In [2,3]
(resp. [14]) it was proved that the Gay-Hole synchronous session subtyping (resp.
orphan message free asynchronous subtyping) coincides with refinement induced
by a successful termination notion requiring interacting processes to be both in
the end state (with empty buffers, in the asynchronous case).

Several variants of asynchronous session subtyping have been proposed in [14,
15,26] and further studied in our earlier work [6,7,13]. All these variants have
been shown to be undecidable [7,8,23]. Moreover, all these subtyping relations
are (implicitly) based on an unfair notion of compliance. Concretely, the defi-
nition of asynchronous subtyping introduced in this paper differs from the one
in [14,15] since no additional constraint guaranteeing absence of orphan-messages
is considered. Such a constraint requires the subtype not to have output loops
whenever an output anticipation is performed, thus guaranteeing that at least
one input is performed in all possible paths. In this paper, absence of orphan
messages is guaranteed by enforcing types to (fairly) reach a successful termi-
nation. Moreover, our novel subtyping differs from those in [14,15,26] since we
use recursive input contexts (and not just finite ones) for the first time — this
is necessary to obtain T/, <Tg and Ts <T§ (see Figures 1 and 2). Notice that
not imposing the above mentioned orphan-message-free constraint of [14, 15] is
consistent with recursive input contexts that allows for input loops in the super-
type whenever an output anticipation is performed. In [6], we proposed a sound
algorithm for the asynchronous subtyping in [14]. The sound algorithm that we
present in this paper substantially differs from that of [6]. Here we use witness
trees that take under consideration both increasing and decreasing of accumu-
lated input. In [6], instead, only regular growing accumulation is considered.

Future work In future work, we will investigate how to support output variance
in fair asynchronous subtyping. We also plan to study fairness in the context
of asynchronous multiparty session types, as fair compliance and refinement
extend naturally to several partners. Finally, we will investigate a more refined
termination condition for our algorithm using ideas from [6, Definition 11].
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Abstract. Broadcast consensus protocols (BCPs) are a model of com-
putation, in which anonymous, identical, finite-state agents compute by
sending/receiving global broadcasts. BCPs are known to compute all
number predicates in NL = NSPACE(logn) where n is the number of
agents. They can be considered an extension of the well-established
model of population protocols. This paper investigates execution time
characteristics of BCPs. We show that every predicate computable by
population protocols is computable by a BCP with expected O(nlogn)
interactions, which is asymptotically optimal. We further show that every
log-space, randomized Turing machine can be simulated by a BCP with
O(nlogn-T) interactions in expectation, where T is the expected runtime
of the Turing machine. This allows us to characterise polynomial-time
BCPs as computing exactly the number predicates in ZPL, i.e. predicates
decidable by log-space, randomised Turing machine with zero-error in ex-
pected polynomial time where the input is encoded as unary.

Keywords: broadcast protocols - complexity theory - distributed com-
puting

1 Introduction

In recent years, models of distributed computation following the computation-by-
consensus paradigm attracted considerable interest in research (see for example
[9,25,26,8,13]). In such models, network agents compute number predicates, i.e.
Boolean-valued functions of the type N* — {0, 1}, by reaching a stable consen-
sus whose value determines the outcome of the computation. Perhaps the most
prominent model following this paradigm are population protocols [5,6], a model
in which anonymous, identical, finite-state agents interact randomly in pairwise
rendezvous to agree on a common Boolean output.

Due to anonymity and locality of interactions, it is an inherent property of
population protocols that agents are generally unable to detect with absolute
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certainty when the computation has stabilized. This makes sequential composi-
tion of protocols difficult, and further complicates the implementation of control
structures such as loops or branching statements. To overcome this drawback,
two kinds of approaches have been suggested in the literature: 1.) Let agents
guess when the computation has stabilized, leading to composable, but merely
approximately correct protocols [7,24], or 2.) extend population protocols by
global communication primitives that enable agents to query global properties
of the agent population [13,8,26].

Approaches of the first kind are for the most part based on simulations of
global broadcasts by means of epidemics. In epidemics-based approaches the
spread of the broadcast signal is simulated by random pairwise rendezvous,
akin to the spread of a viral epidemic in a population. When the broadcasting
agent meets a certain fraction of “infected” agents, it may decide with reasonable
certainty that the broadcast has propagated throughout the entire population,
which then leads to the initiation of the next computation phase. Of course, the
decision to start the next phase may be premature, in which case the rest of
the execution may be faulty. However, epidemics can also be used to implement
phase clocks that help keep the failure probability low (see e.g. [7]).

In [13], Blondin, Esparza, and one of the authors of this paper introduced
broadcast consensus protocols (BCPs), an extension of population protocols by
reliable, global, and atomic broadcasts. BCPs find their precursor in the broad-
cast protocol model introduced by Emerson and Namjoshi in [17] to describe
bus-based hardware protocols. This model has been investigated intensely in
the literature, see e.g. [18,19,15,28|. Broadcasts also arise naturally in biological
systems. For example, Uhlendorf et al. analyse applications of broadcasts in the
form of an external, global light source for controlling a population of yeasts [12].

The authors of [13] show that BCPs compute precisely the predicates in
NL = NSPACE(logn), where n is the number of agents. For comparison, it is
known that population protocols compute precisely the Presburger predicates,
which are the predicates definable in the first-order theory of the integers with
addition and the usual order; a class much less expressive than the former.

An epidemics-based approach was used in [7] to show that population pro-
tocols can simulate with high probability a step of a virtual register machine
with expected O(nlog®(n)) interactions, where n is the number of agents. This
result stimulated further research into time bounds for classical problems such
as leader election (see e.g. [21,1,16,29,11]) and majority (see e.g. [4,2]). In their
seminal paper [5], Angluin et al. already showed that population protocols can
stably compute Presburger predicates with O(n?logn) interactions in expecta-
tion. Belleville et al. further showed that leaderless protocols require 